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Editorial on the Research Topic

Non-lymphoid functions of regulatory T cells in health and disease
Over exuberant immune response can be self-destructive and is required to be efficiently

controlled to avoid collateral damage. Foxp3+ regulatory T (Treg) cells are a subtype of CD4+

lymphocytes that serve this paramount purpose through mechanisms of peripheral tolerance

(1). On the other hand, due to their inherent immune-regulatory properties, Treg cells are

obstructive to anti-tumor immunity, and are well-recognized targets in cancer

immunotherapy (2). Contrary to earlier beliefs when they were considered to be a

universal immunosuppressive population, research in the last several years have led to the

identification of a rather diverse and distinct pool of heterogenous Treg subsets.

Phenotypically and functionally distinct Treg populations have been identified in non-

lymphoid tissues and tumor sites where their physiologic significance is now well recognized

under various contexts of health and disease. This series of articles in Frontiers in

Immunology presents 12 full length review articles, 3 mini reviews, 2 original research

articles and one brief research report, covering various aspects of the biology of Treg cells of

non-lymphoid origin, with an overall goal of providing a comprehensive viewpoint of

prominent researchers in the field for the readers of this Research Topic.

Two review articles by Lee et al. and Malko et al. provide comprehensive discussions and

current updates on the overall progress on the research on non-lymphoid Treg populations in

various tissues ranging from visceral adipose tissue (VAT), muscle, kidney, liver,

reproductive organs, as well as barrier sites like skin, lung and intestine and the Central

nervous system (CNS). The authors further provide a brief overview on the therapeutic

interventions that are currently pursued in the clinic to utilize Treg depletion or promotion

strategies in the context of cancer immunotherapy and tissue-specific inflammatory and

autoimmune diseases. In order to exert their tissue-specific effects, Treg cells utilize a variety

of tissue homing and retention strategies by which they migrate to peripheral tissue sites,

respond to microenvironment specific survival signals, and exert tissue protective functions.
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Brull et al. covers this aspect and discuss tissue-specific adaptation

strategies that shape up cellular crosstalk between Treg cells and

immune and non-immune cell types, both in the context of barrier

tissue environment as well as immune privileged sites like CNS.

Epigenetic reprogramming is key in establishing and maintaining

Treg cell function, and likely a main player in generating their

diversity. Kraj discusses how Bone Morphogenetic Protein (BMP)

signaling might contribute to this epigenetic reprograming through

BMP receptor BMPR1a signaling, as deletion of BMPR1a in mature

Treg cells leads to increasingly more peripheral Treg cells with lower

levels of Foxp3 and a naïve phenotype, including reduced suppressive

function. Besides mediators of plasticity and adaptation, striking

changes in Kdm6b demethylase and Cdkn1 cell cycle inhibitor were

observed, suggesting a dysregulated epigenetic reprogramming.

Over the last decade, immunometabolism has evolved as a crucial

area of research interconnecting the changes in metabolism to the

quantity and quality of immune response. Not surprisingly, distinct

metabolic adaptation strategies are also utilized by Treg cells in non-

lymphoid environments and at tumor sites to ensure survival,

hemostasis and tissue specific functions. The article by Yang discuss

recent progress in our understanding of Treg metabolism in the

context of tissue homeostasis and functions, and its implications on

defining Treg-mediated and Treg-aiming novel therapeutic strategies

against autoimmunity and cancer. In another review article, Lu et al.

focus on downstream effector mechanism of metabolic

reprogramming and metabolite mediated epigenetic modifications

in Treg cells and its implications on Treg activation, differentiation

and function.

Heart failure is a worldwide problem with high rates of

hospitalization and mortality. Two review articles provide

comprehensive summary on the function and significance of Treg

cells in myocardial infarction and conditions of chronic heart failure.

Myocardial infarction (MI) involves a rapid inflammatory response

followed by replacement of dead myocardium with fibrous tissue.

Recent studies have shown that Treg cells directly promote

proliferation and survival of cardiomyocytes in MI mice by

producing CST7, TNFSFL1, IL33, FGL2, MATN2, and IGF2 (3).

The review article by Weiß et al. summarize recent advances on our

understanding of Treg-mediated MI repair, made possible by the use

of T cell receptor (TCR) transgenic mouse models with defined

antigen specificity against the cardiac-specific part of the myosin

heavy alpha chain MYHCA antigen (4). Contrary to MI, in chronic

heart failure, Treg cells promote angiogenesis and change to a

profibrotic cell type. The article by Lu et al. summarize their

function in the pathogenesis of chronic heart failure and focusses

on the interaction between Treg cell and their target cells, which

include cells of immune (e.g., monocytes/macrophages, dendritic

cells, T cells, B cells) as well as parenchymal (e.g., cardiomyocytes,

fibroblasts, endothelial cells) origin.

Three articles of the Research Topic discuss Treg cells in the brain.

Treg cells are abundant in the gastrointestinal tract, where microbiota

induced pTreg and Treg cells of thymic origin, tTreg cells, coexist (5). The

gastrointestinal tract and the central nervous system are functionally

connected, providing evidence that Treg cells function along the gut-

brain axis, interacting with immune cells, epithelial cells, and neurons.

For example, the neurotransmitter acetylcholine activates antigen-
Frontiers in Immunology 026
presenting cells in the colon and may support the development of Treg

cells in the gut (6). Choi et al. describe current knowledge regarding the

biological role of tissue-resident Treg cells and their interactions along the

gut-brain axis. Two original research articles describe their findings on

brain Treg cells. Ito et al. previously showed that large numbers of Treg

cells infiltrate and expand in the brain during the chronic phase after

stroke and are involved in neural repair (7). IL-33 and its receptor ST2

play an important role in their proliferation upon induction of brain

injury. In one study, Xie et al. demonstrated a fundamental role of IL-33/

ST2 signaling on Treg cells in traumatic brain injury (TBI) model. IL-33

administration after TBI significantly reduced brain lesion size and

improved neurological function, and importantly, Treg cell depletion

significantly reduced the protective effect of IL-33 after TBI. Thus IL-33

and Treg cells may represent a novel immunotherapeutic strategy to

improve TBI outcome. In another original research article, Yamamoto

et al. made a challenging trial to create brain Treg cells in vitro. They co-

cultured spleen-derived Treg cells with primary astrocytes or microglia to

mimic the brain environment in the presence of various cytokines and

growth factors. The results showed that the addition of IL-2, IL-33, and

histamine to the astrocyte co-culture partially conferred characteristics

similar to the brain Treg cell population. Brain Treg-like cells generated

in vitro showed increased brain infiltration and improved pathology in

stroke and Parkinson’s disease models compared with splenic Treg cells.

Skin, as a barrier organ, is heavily exposed to commensals and

pathogens implicating that a fine balance between effector and

immune tolerance mechanisms must exist in order to ensure

proper immune homeostasis. Experimental evidence in the past

several years strongly suggest that skin resident Treg cells, in

addition to committing to such so called classical immune

suppressive mechanisms, also take part in non-immune functions

like wound healing, repair as well as hair follicle cycling (8, 9). The

review article by Hajam et al. discuss the current progress in our

understanding on recently discovered non-canonical unconventional

functions of skin Treg cells. A different aspect of Treg-mediated

unconventional functions is elaborated in recent years by using zebra

fish as a model system, where Treg like (zTreg) cells have been

identified, and their spectacular regenerative properties have been

demonstrated in multiple organs (10). As a follow up of this study, an

original brief research report by Hui et al. demonstrates the role of

zTreg cells in the regeneration of zebrafish caudal fin tissue. By

employing a caudal fin amputation model in zebra fish, the authors

demonstrate that zTreg cells promote vigorous proliferation of

blastemal cells residing underneath wound epidermis by producing

insulin like growth factors Igf2a and Igf2b, consequently leading to

efficient tissue regeneration.

As critical enforcers of peripheral tolerance, Treg cells contribute

to cancer establishment and progression (11). Treg cell infiltration

and higher ratio of Treg to other effector T cells correlate with poor

prognosis in cancer patients (2). Their intrinsic ability to suppress

immune responses is critical to tumor control, but our increased

knowledge of the physiological function of Treg cells in tissues suggest

mechanisms beyond traditional immune suppression. A collection of

reviews on this topic examine the phenotype, function and

therapeutic targeting of tumor Treg cells. Qiu et al. describe the

interplay between factors known to control original and emerging

hallmarks of cancer and the reciprocal and dynamic interactions they
frontiersin.org
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have with non-lymphoid Treg cells. In a short review, Gao et al.

discuss how tumor cell-modulated elements of the tumor

microenvironment (such as aminoacids, nucleic acids and glucose)

modulate Treg cell surface molecules, cytokine production and

transcriptional regulators. Moreover, they describe the potential of

current immunomodulatory therapies and give examples of how their

anti-tumor effects might relate to targeting different functions of the

intratumoral Treg cell compartment. Sekiya presents the role of the

nuclear orphan receptor family Nr4a in the differentiation and

maintenance of thymic Treg cells, and the nuances in Nr4a1 and 2

function, that seem to be heightened by signals from the tumor

microenvironment. Within solid tumors, colorectal cancer (CRC)

presents a quite unique situation, due in part to the large

environmental interface that hosts most our commensal

microorganisms. CRC has been characterized by a high frequency

of TH17-like Treg cells, with an increased capacity to suppress T cell

proliferation via their reduced expression of Tcf-1, yet increased pro-

inflammatory function that drives polyp growth. As a consequence,

there are contradictory observations regarding Treg cell correlation

with outcome. Aristin-Revilla et al. dive deep into the heterogeneity of

intestinal Treg cell populations, factors that contribute to generate it,

and how this might explain the paradox regarding infiltration of Treg

cells and prognosis in colorectal cancer. Importantly, they describe

current therapeutic efforts designed to target molecules important for

CRC tumor-infiltrating Treg cells and how they are faring in

clinical trials.

Pregnancy represents a complex physiological situation in which

a foreign tissue is growing within another living organism. This semi-

allogeneic scenario evokes tumor immunity, and Treg cells play

similar roles inducing a tolerogenic environment in which these

semi-foreign, invasive tissues continue to grow. Muralidhara et al.

draws parallels between uterine and tumor Treg cells, and highlights

the differences driven by the dynamic nature of the inflammatory

environment and the mix-nature of foreign antigens. These issues are

critical when considering treating cancer with anti-Treg cell therapies

during pregnancy.

We edited this Research Topic to highlight and update readers on

Treg cell phenotypic diversity and role in physiological functions
Frontiers in Immunology 037
beyond peripheral tolerance. We hope the audience benefits from

recent discoveries and contributes to expand our knowledge of this

growing field.
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Forkhead box protein 3 (Foxp3+)-expressing regulatory T (Treg) cells are a unique CD4+T
cell subset that suppresses excessive immune responses. The epigenetic plasticity and
metabolic traits of Treg cells are crucial for the acquisition of their phenotypic and
functional characteristics. Therefore, alterations to the epigenetics and metabolism
affect Treg cell development and function. Recent evidence reveals that altering the
metabolic pathways and generation of metabolites can regulate the epigenetics of Treg
cells. Specifically, some intermediates of cell metabolism can directly act as substrates or
cofactors of epigenetic-modifying enzymes. Here, we describe the metabolic and
epigenetic features during Treg cell development, and discuss how metabolites can
contribute to epigenetic alterations of Treg cells, which affects Treg cell activation,
differentiation, and function.

Keywords: regulatory T cells, metabolism, epigenetics, immune suppression, metabolites
INTRODUCTION

Forkhead box protein 3 (Foxp3+)-expressing regulatory T (Treg) cells are a subset of CD4+ T cells
that are essential for maintaining immune tolerance (1). In non-lymphoid tissues, they can also
modulate non-immunological processes, such as wound healing and tissue repair (2). To acquire
their phenotypic and functional hallmarks, Treg cells must generate a specific epigenetic signature
(3) and rely on their unique metabolic requirements (4). The alteration of either of these features
can lead to Treg cell instability and functional disruption. Increasingly, research has focused on the
interplay between epigenetic and metabolic features, with the recognition that cellular metabolism
can regulate epigenetic states when the intermediary metabolism generates substrates or cofactors
for chromatin regulation (5, 6). Although integrated analysis of the complex interactions between
epigenetics and the cellular metabolism that reprograms Treg cells is a relatively new area, such a
conceptual understanding will be important for the design of effective strategies aimed at
manipulating Treg cells in cancer and autoimmune diseases.

It is becoming increasingly clear that Treg cells have their own metabolic preferences at different
stages of activation to support their energetic and biosynthetic demands (4). Importantly, some
intermediates can also regulate the epigenetics of Treg cells and, as a consequence, influence cell
differentiation and function (7). There are several universal principles regarding the role of the
metabolism-epigenetics axis that facilitate epigenetic dynamics under metabolic changes (8).
org August 2021 | Volume 12 | Article 72878318
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For example, S-adenosylmethionine (SAM) is the methyl donor
for DNA and histone methylation, acetyl-coenzyme A (acetyl-
CoA) is the acetyl donor for histone acetylation; tricarboxylic
acid (TCA) metabolites related to a-ketoglutarate (a-KG) are
important for demethylases, and NAD+ availability regulates the
function of the sirtuin (SIRT) family of enzymes (9). Thus, it is
not difficult to speculate that fluctuations in metabolite levels
could modulate the activities of epigenetic enzymes and therefore
influence the epigenetic state during Treg cell development.

From this perspective, we summarize the current knowledge
of metabolic reprogramming and epigenetic features in Treg cells
within different contexts. We then discuss how metabolism
controls epigenetic modification and evaluate the functional
molecular consequences of these modifications for Treg cell
activation, differentiation, and function.
AN OVERVIEW OF METABOLIC
REPROGRAMMING IN TREG CELLS

Treg cells require energy for survival and function; nutrient
processing through distinct metabolic pathways produces
adenosine triphosphate (ATP) to meet these energy
requirements (4). The metabolic pathways of Treg cells are
Frontiers in Immunology | www.frontiersin.org 29
affected by the availability of nutrients such as glucose, fatty
acids, and amino acids (Figure 1).

Glucose is involved in both glycolysis and oxidative
phosphorylation (OXPHOS). Glycolysis is a relatively
inefficient pathway for the generation of cellular ATP (only
two molecules); however, it can be rapidly activated via the
induction of enzymes involved in this pathway (10). Potentially
more important than rapid ATP generation, however, is the
ability of glycolysis to produce various intermediates to support
anabolic reactions in cells (11). For these reasons, although
mouse Treg cells differentiated from naive T cells is not
characterized by increased glycolysis (12, 13), glycolysis is
observed in proliferating, migrating and effector Treg cells (14,
15). Proliferative Treg cells activate mTORC1 and glucose uptake
(16), but high-glucose conditions impair suppressive function
and long-term stability in vitro (17). Surprisingly, unlike mouse
Treg cells, the requirement of glycolysis seem to differ in human
Treg cells (18, 19). Freshly-isolated human Treg cells are
glycolytic, and glycolysis is necessary for the proliferation,
differentiation and suppressive function in vitro (18, 19).
Consequently, inhibition of glycolysis impairs the generation
and functions of human Treg cells, accompanied with reduced
the expression of Foxp3 and other Treg cell markers (18, 19).

Furthermore, glucose metabolism of Treg cells differs
in the tumor microenvironment and autoimmune diseases.
FIGURE 1 | An overview of metabolic reprogramming in Treg cells. Glycolysis is engaged to fuel the proliferation and migration of Treg cells, but is associated with
reduced suppressive function and long-term instability in mice. Glycolysis is required for the proliferation, differentiation and suppressive function of human Treg cells.
Treg cells increase the reliance on OXPHOS and FAO. Under homeostatic conditions, Treg cells readily take up exogenous fatty acids for this purpose. Serine-driven
one-carbon metabolism and glutamine-driven glutaminolysis are not necessary for Treg cells because their absence promotes the differentiation and function of Treg
cells. Intratumoral Treg cells use lactic acid to feed the TCA cycle and generate PEP to fuel proliferation. These cells reprogram lipid metabolism by upregulating lipid
uptake and de novo lipid synthesis to support FAO-driven OXPHOS metabolism. In autoimmune diseases, inflammatory Treg cells exhibit a dysfunctional suppressive
function, which can be supported by high levels of glycolytic metabolism. Oleic acid counteracts this effect. The OXPHOS of lipids can also be promoted by the DNA-binding
inflammasome receptor AIM. FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation; PEP, phosphoenolpyruvate; TCA cycle, tricarboxylic acid cycle.
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Indeed, glucose uptake is upregulated in dysfunctional Treg cells
from autoimmune diseases (20), but is notably low in
intratumoral Treg cells (17). Studies in mice have revealed that
lower glucose uptake is a universal phenotype of intratumoral
Treg cells (17, 20). Intratumoral Treg cell avoidance of glucose
metabolism is functionally important and may be mediated by
CTLA-4 overexpression (21). By blocking CD28 signaling,
decreased glucose utilization can ensure the functional stability
of Treg cells (21). Intratumoral Treg cells then increase their
uptake of the glycolytic by-product, lactic acid (17). Treg cells use
lactic acid, not only to feed the TCA cycle, but also to generate
phosphoenolpyruvate (PEP), which is essential for fueling the
proliferation of Treg cells within tumors (17). Consequently,
treatment with lactate maintains the suppressive function of Treg
cells against the negative effects of high-glucose conditions (17).
Metabolic support by lactic acid reflects the metabolic flexibility
of using a carbon source in intratumoral Treg cells according to
the nutrient milieu. Thus, Treg cells display broad heterogeneity
in their metabolism of glucose within context-specific tissues and
diseases. As such, increased glucose uptake is considered a
hallmark functional change in Treg cells.

Lipid metabolism is important for Treg cell development (22).
It is now accepted that the fatty acid oxidation (FAO)-driven
OXPHOS metabolic reprogramming maintains its suppressive
phenotype, which is further promoted by the expression
of Foxp3 (13, 16, 23). Intriguing to know that fatty acids
produced by gut microbiota and the composition of
gut bile acid metabolites mediate enhancement of Treg
cell differentiation and cell homeostasis (24–26). Under
homeostatic conditions, mouse Treg cells do not depend on de
novo fatty acid synthesis, but readily take up exogenous fatty
acids for this purpose (27). Thus, inhibiting acetyl-CoA
carboxylase 1 (ACC1), an enzyme that initiates the generation
of long-chain fatty acids, does not affect Treg cell differentiation
and function (27). In contrast, intratumoral Treg cells rely on
both exogenous fatty acids and de novo fatty acids (14, 20, 28).
Specially, intratumoral Treg cells are highly expressed fatty acid
transporters CD36 (14, 28), which enhance lipid uptake and
activate PPAR-b pathways to support intratumoral Treg cell
survival and suppressive functions (28). Intratumoral Treg cells
also actively rewire transcription factor SREBP-dependent
de novo lipid biosynthesis, contributing to the TCR-induced
functional maturation and induction of PD-1 expression (20).
In the case of autoimmune disease, the OXPHOS of lipids is
promoted by the DNA-binding inflammasome receptor AIM,
which attenuates Akt phosphorylation, mTOR and Myc
signaling (29). Interestingly, more recent work using tissue-
resident Treg cells from patients with multiple sclerosis reveals
that oleic acid is necessary to counteract the negative effects of
upregulated glucose uptake (30). Oleic acid amplifies FAO-
driven OXPHOS metabolism, creating a positive feedback
mechanism that increases the expression of Foxp3 and the
phosphorylation of STAT5, thereby enhancing suppressive
function (30). It is now clear that context-dependent lipid
metabolic adaption engaged by Treg cells orchestrates signaling
pathways to support suppressive activity.
Frontiers in Immunology | www.frontiersin.org 310
Amino acid metabolism supports protein and nucleotide
synthesis needed for rapid cell growth (31). As such, subunits
of amino acid transporters, including SLC7A5, SLC43A2,
SLC7A1, especially SLC3A2 and SLC7A11, have been found
highly upregulated during Treg cell proliferation and activation
in human and mouse studies (32–34). Branched-chain amino
acids, including isoleucine, are required for in vivo maintenance
of the proliferative state of mouse Treg cells, which are reliant on
the amino acid transporter SLC3A2-dependent metabolic
reprogramming (33). In TCR-stimulated human Treg cells,
cystine/glutamate antiporter SLC7A11 acts as a key molecular
determinant in the control of Treg cell proliferation in normal
and pathological conditions (34). Consistent with these
observations, arginine and leucine are required to license Treg
cells’ response to TCR stimulation (32); whereas Treg cells from
mice fed with reduced isoleucine, leucine, or valine have
decreased the proliferation and suppressive ability (33). In
addition, amino acid metabolic enzymes and intermediates are
also an important factor in determining Treg cell induction. For
example, the activity of the amino acid-consuming enzyme
indoleamine 2,3-dioxygenase (IDO) can strongly promote Treg
cell differentiation in vitro (35). Tryptophan metabolites,
especially kynurenine, which is generated through IDO, can
bind the aryl hydrocarbon receptor on T cells and promote
Treg cell induction (36). However, there is also evidence
revealing that SLC1A5 and SLC7A5, which are responsible for
the uptake of glutamine and leucine, may not be necessary to
generate Treg cells (37, 38). Interestingly, in the setting of T cell
differentiation, glutamine deprivation even promotes the
generation and function of Treg cells while inhibiting Th1 cell
(39, 40); Limitation of serine availability preserves Foxp3
expression and Treg cell function (41). In this regard, such
reliance on different amino acids allows the opportunity for
metabolic selection in Treg cell development.

Together, Treg cells adopt a coordinated metabolic profile
with engagement of glycolysis, FAO-driven OXPHOS and amino
acid metabolism, which are not mutually exclusive during Treg
cell development. In addition, the specific metabolic
reprogramming of Treg cells determine their differentiation
and function in different contexts, with Treg cells able to alter
the metabolic phenotype to adapt to the environment, especially
in non-lymphoid tissues.
EPIGENETIC LANDSCAPE OF
TREG CELLS

The Treg cell-specific epigenetic landscape begins to be established
in early stages of thymic Treg cell generation before the expression
of Foxp3 and other Treg cell signature genes (42, 43). In non-
lymphoid tissues, Treg cells show a stepwise acquisition of
chromatin accessibility and reprogramming toward the non-
lymphoid tissue Treg cell phenotype (44). Treg cells from
different non-lymphoid tissues have a distinct chromatin
accessibility profiling (44), but exhibit a conserved tissue-repair
chromatin signature both in human and mice (45). As we discuss
August 2021 | Volume 12 | Article 728783
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here, epigenetic regulation in Treg cells mainly includes DNA
methylation, histone methylation and acetylation, which
influences gene expression patterns in a coordinated manner.

DNA methylation is the most important Treg-specific
epigenetic signature (42, 46–49), the process by which a methyl
(-CH3) group is added to the ϵ-amino group of amino acid
residues on DNA (50). DNA methylation is generally associated
with transcriptional repression; therefore, comparison of genome-
wide DNA methylation profiles between mouse Treg and
conventional T cells reveal that naturally occurring Treg
cells (nTreg cells) frequently display hypomethylation at Treg
cell-associated gene loci (such as Foxp3, Ctla4, Tnfrsf18, and
Ikzf2), which contributes to Treg cell suppressive activity and
lineage stability (47). Notably, much of our current understanding
of the role of methylation in Treg cells comes from a particular
region at the Foxp3 locus; specifically, the distal enhancer elements
known as conserved non-coding sequences (CNSs) (51, 52).
Demethylation of CNS2 in the Foxp3 gene enable the binding of
transcription factors such as RUNX1–CBFb, and Foxp3 itself (53).
Foxp3 cannot blind to fully methylated CNS2 in vitro (53). To
support this, Treg cells generated in vitro (iTreg cells) with unstable
Foxp3 expression possess a methylated or partially demethylated
CNS2 region (47, 51, 53, 54), while Treg cells with stable Treg cell-
specific DNA hypomethylation allow them to transfer in vivo and
effectively suppress the immune response (55). However,
inflammatory gene loci (such as Tbx1) appears to have methyl-
DNA marks mediated by the epigenetic regulator Uhrf1, which
represents a stable Treg cell identitiy by repressing effector T cell
transcriptional programs (56, 57). In this way, DNA methylation
regulation appears to be flexible, allowing for an open state at genes
required for Treg cell differentiation and function while maintaining
methyl-DNA marks at the inflammatory gene locus.

Unlike DNA methylation, histone methylation either
activates or represses gene expression depending on which
residue is modified and the number of methyl groups
incorporated (58). Global mapping reveals that nTreg cells
have the largest unique H3K4me3 and H3k27me3 islands,
compared to conventional T cells (59). Yet, enhanced
H3K4me3 modification in the Treg cell-associated genes is also
detected in iTreg and conventional T cells (47). It suggests that
the histone methylation may be not specific for the nTreg cell
lineage. However, when human Treg cells lose their Foxp3
signature, they exhibit decreased abundance of permissive
H3K4me3 within the downregulated Treg cell signature genes
(such as Foxp3 and Ctla4), and increased abundance of
H3K4me3 within the Th2-associated genes (such as Il-4 and
Il-5); the H3K27me3 profile, a repression-related histone
modification, does not change significantly (60). Consistent
with this, H3K4me3 modification, but not H3K27me3, is
found to accumulate in the majority of promoters of
transcriptional start site (TSS) clusters (61). Of note, Foxp3-
bound sites in activated Treg cells are specifically enriched
for H3K27me3, which are required for Foxp3-mediated
repressive chromatin under inflammatory conditions (62).
Adding complexity, Foxp3 itself at Treg cell specific-super
enhancers (SEs) region shows a stronger H3K4me1, and
Frontiers in Immunology | www.frontiersin.org 411
weaker H3K27me3 (42). Thus, further work is needed to
determine what role of specific histone methylation at specific
locus may have during Treg cell activation and development.

Histone acetylation is another important chromatin
modification in Treg cells, which acts on targeted regions of
chromatin to regulate specific gene transcription, or acts in a
more global manner (63). Acetylation neutralizes the positive
charge of lysine, leading to a more open chromatin configuration
that enables DNA binding, whereas histone deacetylation is
typically associated with condensed chromatin and transcriptional
repression (6). The importance of histone acetylation in the context
of Treg cells is exemplified by the effects of pan-histone deacetylase
(HDAC) inhibition in mice, which increases acetylated histone 3
and boosts thymic production of Treg cells with enhanced
suppression (64), highlighting the relevance of the overall
acetylation status for controlling the generation and functional
responses of Treg cells. Accordingly, Treg cell-specific
hypomethylation is accompanied by histone acetylation and an
open chromatin status to regulate the expression of Treg cell genes,
which mediates important influences on the susceptibility to
autoimmune disorders (65). Compared with conventional T cells,
H3K27ac deposition at the Foxp3 promoter occur exclusively in
Treg cells (66); conserved Foxp3 binding is associated with
decreased H3K27ac in both human and mouse Treg cells (67).
These data suggest that H3K27ac modification in specific locus is
important for Treg cell differentiation and function.

The recent technique of assay for transposase-accessible
chromatin with high-throughput sequencing (ATAC-seq) has
enabled the genome-wide identification of open chromatin
regions (68). Global changes in chromatin accessibility identify
3833 loci with sex-dependent differential accessibility in visceral
adipose tissue (VAT) Treg cells (69). These sites include male
VAT Treg cell signature such as Il1rl1, Il10, Pparg and Klrgl,
which shows increased accessibility (69). The application of
single cell ATAC-seq allows for investigation of heterogeneity
in non-lymphoid tissue Treg cells. For instance, single-cell
ATAC-seq identifies tissue-repair Treg cell chromatin
landscape, and this signature is likely induced by the
transcription factor BATF which is critical for tissue Treg cell
differentiation, recruitment, and maintenance (45, 70).

Collectively, these data indicate that epigenetics are important
for multiple aspects of Treg cell reprogramming. However, the
mechanism of Treg cell functional coordination through
regulation of the epigenetic landscape in the context of the
promoter, enhancer, and gene body of a specific gene requires
further investigation. Importantly, these data also suggest that
manipulation of the epigenetic landscape could provide an
important strategy for controlling Treg cells in a context-
dependent manner.
METABOLIC CONTROL OF EPIGENETICS
IN TREG CELLS

Immune cell metabolism studies have focused on understanding
how metabolites modulate their plasticity by affecting epigenetic
August 2021 | Volume 12 | Article 728783
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reprogramming, as well as how the interplay between metabolic
pathways and epigenetic modification support their activation,
differentiation, and function. However, this is a relatively new
area of Treg cell biology. Thus, unraveling how metabolism and
epigenetics coordinate with each other to regulate cell plasticity
and/or function will be a key area of research for Treg cells.

In this section, we focus on the role of specific metabolites
that reprogram the transcriptional profile of Treg cells through
epigenetic changes, as achieved by changes in differentiation and
function. We also discuss whether the effects of metabolite-
conditioned epigenetic modifications are consistent with those
of the corresponding metabolic pathway. (Figure 2)

Methyltransferase Regulation in Treg Cells
by SAM as a Methyl Donor
DNA and histone methylation require DNA methyltransferases
(DNMTs) and histone methyltransferases (HMTs), which add
methyl groups to DNA or lysine/arginine residues of histones,
respectively. The activities of these enzymes influence the
methylation landscape, and therefore activate or repress target
gene expression. As demonstrated in Treg cells, the
pharmacological inhibition of DNMTs is sufficient to induce
Foxp3 expression in mature conventional CD4+ T cells and
potentiate suppressive function (71–74), suggesting the
importance of these enzymes in Treg cells.

Although structurally and functionally diverse, DNMTs and
HMTs share a similar reaction mechanism, i.e., the transfer of a
methyl group. SAM is one of the most thoroughly-described
methyl donors for methylation, which is generated in the one-
carbon metabolism pathway that encompasses both the folate
and methionine cycle (75). Several amino acids, such as
threonine, serine, and glycine, can initiate the one-carbon
metabolism pathways in the folate cycle, thereby promoting
the production of SAM in the methionine cycle (76, 77). The
downstream metabolite of SAM is S-adenosylhomocysteine
(SAH), which competitively inhibits DNMTs and HMTs (75).
In a variety of cellular systems, it has been proven that alterations
in the intracellular concentrations of SAM and SAH determine
the amount of DNA and histone methylation, thereby altering
gene transcription (78, 79). Given the complexity of SAM and
SAH metabolism, it implies that multiple metabolic inputs are
closely linked to methylation levels.

From a metabolic perspective, recycling homocysteine to
methionine induced by 1,25-Dihydroxyvitamin D3 is
associated with CD4+T cell DNA methylation and Treg cell
stability, which reverses autoimmune neurodegenerative disease
in mice (80). One-carbon units fed by serine metabolism are
synergistically integrated into the methionine cycle to fuel the
generation of SAM (75), which may increase histone and DNA
methylation; however, this needs to be formally demonstrated in
Treg cells. In this regard, increased serine metabolism can
enhance Treg cell proliferation but downregulate Foxp3
expression, whereas restriction of serine availability by
glutathione is required for the suppressive function of Treg
cells (41). In addition, all-trans retinoic acid (atRA), the major
vitamin Ametabolite, also increases histone acetylation on Foxp3
Frontiers in Immunology | www.frontiersin.org 512
gene promoter and CpG demethylation in the region of Foxp3
locus, stabilizing human nTreg cells under inflammatory
conditions (81, 82). Although little is known about how
metabolites synergistically orchestrate SAM availability in Treg
cells, there is no doubt that additional connections will unfold
after further investigation of metabolites and the metabolic
pathways that may modify methyltransferases.

Demethylase Regulation in Treg Cells
by a-KG, 2-Hydroxyglutarate (2-HG),
Succinate, and Fumarate
Active removal of histone and DNA methylation is mediated by
the Tet family of DNA demethylases (ten-eleven translocation
family members, Tets) and histone demethylases (HDMs).
Tet1/2 catalyzes the conversion of 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC) in Foxp3 to establish a Treg
cell-specific hypomethylation pattern and stable Foxp3
expression in mouse lymphoid tissues (83). In contrast, Tet1/2
deletion leads to Foxp3 hypermethylation, impairs Treg cell
differentiation and function (83). With respect to HDMs,
deficiency in Jmjd3 alters H3K27me3 and H3K4me3 levels,
which inhibits mouse Treg cell differentiation (84). As
methylation levels are responsive to enzyme activity, the
regulation of these processes will undoubtedly become an
important field in Treg cell research.

From a metabolic perspective, the demethylation mechanism is
associated with a-KG, 2-HG, succinate, and fumarate, which are
key metabolites of the TCA cycle. Tets and HDMs belong to the
class of a-KG-dependent dioxygenases that use a-KG and oxygen
as substrates (85). Succinate, fumarate and 2-HG, which are
metabolism-derived structural analogs of a-KG, act as
competitive inhibitors of these a-KG-dependent dioxygenases
(85, 86). These metabolites can be derived from either glucose
or glutamine, and participate in both anabolism and catabolism
(87). Consequently, metabolic interventions that involve
alterations in these metabolites modulate the activity of Tets and
HDMs, which in turn regulate Treg cell activation, differentiation,
and function. For example, the deamination of glutamate to form
a-KG is the last step in glutamine catabolism, which allows
glutamine to fuel the TCA cycle, and is therefore crucial for
decreasing Foxp3 expression and inhibiting suppressive function
in Treg cells (39, 40). In addition, glutamine catabolism maintains
a high level of intracellular a-KG and a high intracellular a-KG/
succinate ratio, which is sufficient for regulating multiple
chromatin modifications, including H3K27me3 and Tet-
dependent DNA demethylation (88).

The effect of the glutamate-dependent metabolic pathway on
the development of Treg cells through epigenetic modification
has been directly validated in mice (89). Inhibition of
the conversion of glutamate to a-KG prevents the production
of 2-HG, reduces methylation of the Foxp3 gene locus, and
increases Foxp3 expression (89). This is because 2-HG markedly
increases the methylation levels of the Foxp3 promoter in
differentiating Treg cells (89). In line with this, the knockdown
of isocitrate dehydrogenase (IDH) 1 and IDH2, which catalyzes
the reduction of a-KG to 2-HG by NADPH, reduces methylation
August 2021 | Volume 12 | Article 728783
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levels at the Foxp3 promoter and CNS2 regions (89). Intriguingly,
increased conversion of glutamate to a-KG leads to much greater
accumulation of 2-HG in Th17 cells than in Treg cells, which
correlates with hypermethylation of the Foxp3 gene locus and
reduces the mRNA and protein levels of Foxp3 in fully
differentiated Th17 cells (89). These results suggest that different
cell types may exhibit differential sensitivity to 2-HG levels; thus,
manipulating a single step in a glutamate metabolic pathway could
regulate the Th17/Treg balance by affecting the methylation state
of Foxp3 (89).

Mitochondrial respiratory capacity is critical for the
engagement of metabolites in the mitochondrial TCA cycle;
mitochondrial perturbation also contributes to the changes of
metabolites (e.g., a-KG, succinate, and fumarate), which leads to
alterations in epigenetic modifications depending on cell type
and conditions (87). Mitochondrial Transcription Factor A
(Tfam) is essential for mitochondrial respiration and controls
transcription and replication of mitochondrial genome (90).
Ablation of Tfam impairs Treg cell maintenance in non-
lymphoid tissues and tumor microenvironment, but does not
affect Treg cells in the steady state in lymphoid organs (91).
Mechanistically, Tfam-deficient Treg cell switch OXPHOS
toward glycolysis, a metabolic pathway that impairs the
function and stability of Treg cells (91). Consistently, Tfam-
deficient Treg cells exhibit increased DNA methylation,
specifically at the Treg-specific demethylation region of the
Foxp3 locus (91). Of note, it is unclear which mitochondrial
metabolism metabolites influence DNAmethylation in Treg cells
during mitochondrial perturbation induced by Tfam deficiency.
However, in erythroid cells, Tfam deletion results in aberrant
histone acetylation and an increase in the abundance of the
metabolite b-hydroxybutyrate, which is known to inhibit histone
deacetylases (92). These data support cell-specific activities of
Tfam in regulating epigenetic modifications.

Studies have pinpointed a metabolic-epigenetic role for
mitochondrial respiratory chain complex III in mouse Treg
cells (93). Loss of complex III in Treg cells results in global
DNA hypermethylation without affecting the methylation status
of canonical Treg cell genes (93). This effect is dependent on the
increase of the metabolites 2-HG and succinate, which inhibits
the Tet family of DNA demethylases (93). Although mice lacking
the mitochondrial complex III in Treg cells do not alter Treg cell
proliferation and survival, Treg cells display a loss of suppression
capacity, which leads to the development of fatal inflammatory
disease early in life (93). These data point to the crucial role of
mitochondrial function in the regulation of Treg cell
development via modification of DNA methylation; however,
it is currently unclear why the mitochondrial respiratory capacity
is directed to methylation at specific genomic locations under
different contexts.

Histone Acetyltransferase (HAT)
Regulation in Treg Cells by acetyl-CoA
Histone acetylation involves the transfer of an acetyl group to the
ϵ-amino group of a histone lysine residue, which is catalyzed by
multiple families of HATs. In addition to regulating chromatin
Frontiers in Immunology | www.frontiersin.org 714
accessibility by acetylating lysine residues within histone protein,
HATs play important roles in regulating the acetylation and
function of many non-histone proteins (94). Indeed, in
comparison to HAT-mediated Foxp3 acetylation, the role of
HATs on histone acetylation in Treg cells is less well understood
(95–97). Only one study profiles CBP/p300-meidated H3K27
acetylation, which regulates transcriptional network and drives
differentiation of human Treg cells (98). Nevertheless, epigenetic
changes modified by HATs can be an important driver of Treg
cell function.

HATs-mediated histone acetylation requires the availability
of acetyl-CoA, while the product CoA-SH inhibits
acetyltransferase activity (99). In addition, other acyl-CoA also
influences the activity of HATs. For example, palmitoyl-CoA is a
potent inhibitor of HAT activity (100); Crotonyl-CoA,
conversely, is used as an alternative substrate for the
acetyltransferase p300-catalyzed histone crotonylation (101). It
suggests that optimal acetyltransferase activity requires an
increased local acetyl-CoA to CoA-SH ratio, and appropriately
relative concentration of acyl-CoA and acetyl-CoA, which
determines the catalytic activity and substrate specificity of
HAT enzymes (102–104). Therefore, metabolic pathways
leading to the production or consumption of acetyl-CoA, such
as fatty acid oxidation (105) and glucose metabolism (103, 106),
are thus able to shape the histone acetylation landscape by
modulating the activity of HATs. Several enzymes involved in
the production of acetyl-CoA also regulate the deposition of
acetylation marks, including acetate-dependent acetyl-CoA
synthetase 2 (ACSS2) and citrate-dependent ATP-citrate lyase
(ACL) (107). However, the details of these metabolic pathways
and the enzymes involved in histone acetylation have not been
analyzed in the context of Treg cell development.

The availability of glucose and glycolytic activity influence
global levels of histone acetylation through the generation of
acetyl-CoA (103, 106). Lactate dehydrogenase A (LDHA), an
enzyme that supports aerobic glycolysis in T cells, maintains high
levels of acetyl-CoA to enhance histone acetylation (108).
Ablation of LDHA diminishes H3K9ac in Ifng promoter, but
does not affect the number of thymic Treg cells (108). However,
as we discussed above, glycolysis itself negatively affects
suppressive function of Treg cells. Thus, the glucose-driven
generation of acetyl-CoA and histone acetylation fail to explain
the observation that glucose uptake is associated with
dysfunctional Treg cells.

Indeed, the possible metabolic association between histone
acetylation and Treg cell function is that the major source of
carbon for histone acetylation is lipid-derived acetyl-CoA (105).
By repressing both glucose and glutamine metabolism, fatty acid
oxidation reprograms the cellular metabolism, leading to
increased lipid-derived acetyl-CoA, which is reflected in
increased acetate, citrate, and histone acetylation (105). Thus,
these data imply that lipid metabolism on acetyl-CoA may
specifically lead to a state of acetylation, which is an important
feature of Treg cell stability. However, this hypothesis has not
been directly tested in Treg cells, but there is evidence that some
metabolites can feed intracellular acetyl-CoA pool to enhance
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histone acetylation. The bile acid metabolite isoalloLCA
increases recruitment of the HAT p300 and H3K27ac levels at
the Foxp3 promoter region, and promotes the differentiation of
Treg cells (109). Although lacking the ability to generate Treg
cells, acetate has been shown to influence levels of histone
acetylation and chromatin accessibility (110). However, further
investigation is required to ascertain the relative contributions of
different acetyl-CoA sources to the acetylation of Treg cells.

HDACs Regulation in Treg Cell by
Lactate and Butyrate
In addition to metabolic regulation of HATs, metabolic products
such as lactate and butyrate have been identified as inhibitors of
HDACs, specifically class I and class II HDACs which are zinc-
dependent enzymes. Butyrate, a product of bacterial anaerobic
fermentation, enhances histone H3 acetylation in the promoter
and CNS regions of the Foxp3 locus, and eventually facilitates
Foxp3 expression in naïve T cell (7, 110). Butyrate can induce the
differentiation of peripheral Treg cells (7, 110); in particular,
butyrate-induced Treg cells have ability to alleviate chronic
intestinal inflammation (7). Lactate, the end product of glucose
metabolism, can also inhibit HDACs activity (111), and maintain
the suppressive function and proliferation of intratumoral Treg
cells (17). In addition, the ketone body b-hydroxybutyrate,
closely related to the structure of butyrate, is an endogenous
inhibitor of class I HDACs (112). In mouse CD+8 memory T
cells, b-hydroxybutyrate epigenetically modifies H3K9 of Foxo1
and Ppargc1a (encodes PGC-1a), which upregulate their target
gene Pck1, thereby directing the carbon flow along the
gluconeogenic pathway to glycogen and the pentose phosphate
pathway (113). This study reveals b-hydroxybutyrate acts as an
unusual metabolite linking epigenetic modification and immune
cell metabolism, but this effect has not been studied in Treg cells.

Sirtuin Regulation in Treg Cells by NAD+

Sirtuins (SIRT1-7) belongs to the class III HDAC family, which
collectively deacetylates a broad range of histone and non-histone
proteins (114). Sirtuins can directlymediate deacetylation of Foxp3
protein, and act as a negative regulator of Treg cell function (115–
117). Importantly, sirtuins, specifically SIRT1 and SIRT7 involve in
OX40-mediated inhibition of Foxp3 expression and Treg cell
induction (118). OX40 upregulates BATF3 and BATF; then they
bind to the Foxp3 locus and recruit the histone deacetylases SIRT1
and SIRT7, which produce a closed chromatin configuration to
repress Foxp3 expression (118).

Metabolically, sirtuins are dependent on NAD+ availability as a
cofactor and are regulated by the NAD+/NADH ratio (119).
Reduced NAD+ levels due to increased glycolytic metabolism
have been shown to reduce NAD+-dependent HDAC activity
(120). A decreased NAD+/NADH ratio has been observed in Treg
cells that are deficient in complex III, which display a
loss of suppressive capacity with a concomitant increase in
glycolytic flux (93). These data support the hypothesis that, as a
consequence of the increased glycolysis, NAD+ exerts a negative
influence on Treg cells, at least at some stage. In support of this
notion,NAD+directly promotes in vitroTreg conversion intoTh17
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cells (121). However, establishing the mechanistic links between
NAD+ involved in glycolyticmetabolism and variations in sirtuins-
regulated acetylation is critical for identifying the role of
metabolism-epigenetics in Treg cell development.

RNA Methylation
RNA methylation forming N6-methyladenosine (m6A) in
mRNA has emerged as a new layer of post-transcriptional gene
regulation. The deposition of m6A is catalyzed by METTL3–
METTL14 complexes, which are SAM-dependent RNA
methyltransferase (122). The removal of m6A is achieved by
the RNA demethylases FTO and ALKBH5, whose activity
depends on a-KG (123, 124). RNA methylation mediated by
the RNA methyltransferases METTL3 and METTL14 has been
characterized in Treg cells (125–127). METTL14 maintains their
differentiation and function (125), whereas METTL3 only affects
Treg cell stability but not differentiation (126, 127). Specifically,
the depletion of METTL3 in Treg cells leads to increased SOCS
mRNA levels, which suppresses the IL-2-STAT5 signaling
pathway, resulting in Treg cell dysfunction (127). Moreover,
METTL14-deficient Treg cells exhibit decreased RORgt
expression, which contributes to their decreased suppressive
capacity in colitis (125). It is evident that RNA methylation
plays an important role in the gene expression that controls
Treg cells. However, it is still unclear how specific RNA
methylation sites are differentially regulated by different RNA
methyltransferases in Treg cells. In addition, the contribution of
metabolite changes to RNA methylation within Treg cells has
received relatively little research attention, given the presumed
relationship between metabolites and RNA methyltransferases/
demethylases. Thus, it is necessary to determine the full scope of
involvement of RNA methylation in the differential gene
expression of Treg cells and how metabolic alterations are
involved in this process.

O-GlcNAcylation
O-GlcNAcylation is a post-translational modification that
reversibly attaches b-N-acetylglucosamine (O-GlcNAc) at the
hydroxyl group of serine or threonine residues (128). This
process is catalyzed by O-GlcNAc transferase (OGT) and
reversed by O-linked GlcNAc hydrolase (OGA) (129). The by-
product of the hexosamine biosynthetic pathway, i.e., UDP-
GlcNAc, is required as a substrate, which offers a link between
metabolic processes and O-GlcNAcylation. In activated T cells,
glucose andglutamine areused to fuelO-GlcNAcylation toproduce
high concentrations of UDP-GlcNAc (130). This process is
regulated by c-Myc (130), which maintains Treg cell homeostasis
by promoting OXPHOS (131), suggesting that O-GlcNAcylation
may therefore influence Treg cell stability. Indeed, a correlation has
been revealed between O-GlcNAcylation abundance and Treg cell
function, as O-GlcNAcylation can stabilize Foxp3 and activate
STAT5 (132). The selective ablation of OGT in Treg cells leads to
aggressiveautoimmunesyndrome inmice as a resultofdeficiencyof
Treg cells (132). However, high glucose levels can also enhance
cellular O-GlcNAcylation of transcriptional factors such as c-Rel,
whichnegatively regulates Foxp3 expression (133). It seems that the
effects ofO-GlcNAcylationonFoxp3 are not sufficient to explain all
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the functions of O-GlcNAcylation in Treg cells. Thus, it is important
todeepenourunderstandingof globalO-GlcNAcylation inTreg cells
and their association with metabolic reprogramming.
CONCLUSION

In summary, there is an intimate link between the metabolism of
Treg cells and their epigenetic reprogramming, which in turn plays
a coordinated role in their activation, differentiation, and
suppressive function. However, as a relatively new area of
research, it is not surprising that the studies discussed here have
only scratched the surface of themetabolic control of epigenetics in
Treg cells. Many questions need to be answered in the future. First,
each epigeneticmodification can be influenced bymetabolites from
multiple metabolic pathways, and metabolites from the same
pathway can competitively serve as substrates for enzymes or
inhibit substrate utilization. To date, studies have focused on only
single metabolites. Thus, understanding the relative contributions
ofmetabolites and how the epigeneticmodification responds to the
status of the entire metabolic network represents important future
work. Second, Treg cells are always attuned to local environmental
cues that allow the production of intermediates necessary for cell
survival or growth. As described above, Treg cells display broad
heterogeneity in themetabolismofglucoseand lipidswithin various
contextual features. For example, to avoid a negative effect of
glycolysis on suppressive function, tumor-infiltrating Treg cells
instead upregulate pathways involved in the metabolism of
the glycolytic by-product, lactic acid, to maintain suppressive
function and proliferation (17). Such metabolism plasticity may
Frontiers in Immunology | www.frontiersin.org 916
be an important consideration in assessing how metabolism
reprograms the epigenetic features of Treg cells, especially in non-
lymphoid tissues during non-homeostatic states. Finally, no studies
reveal only the magnitude of metabolic effects on epigenetic
enzymes, independently of other effects, such as transcriptional
programs. As a complex relationship certainly exists between
metabolism and epigenetics with regards to maintaining Treg cell
activation, differentiation, and function, this relationship should be
elucidated in future research.
AUTHOR CONTRIBUTIONS

JL wrote the article. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported by the National Natural Science
Foundation of China (grant number 82073860) and the Young
Elite Scientist Sponsorship Program of Henan Association for
Science and Technology (grant number 2021HYTP048).
ACKNOWLEDGMENTS

We apologize to those authors whose work could not be cited due to
space limitations.
REFERENCES

1. Dominguez-Villar M, Hafler DA. Regulatory T Cells in Autoimmune Disease.
Nat Immunol (2018) 19(7):665–73. doi: 10.1038/s41590-018-0120-4

2. Burzyn D, Benoist C, Mathis D. Regulatory T Cells in Nonlymphoid Tissues.
Nat Immunol (2013) 14(10):1007–13. doi: 10.1038/ni.2683

3. Lu L, Barbi J, Pan F. The Regulation of Immune Tolerance by FOXP3. Nat
Rev Immunol (2017) 17(11):703–17. doi: 10.1038/nri.2017.75

4. Newton R, Priyadharshini B, Turka LA. Immunometabolism of Regulatory
T Cells. Nat Immunol (2016) 17(6):618–25. doi: 10.1038/ni.3466

5. Zhang Q, Cao X. Epigenetic Regulation of the Innate Immune Response to
Infection. Nat Rev Immunol (2019) 19(7):417–32. doi: 10.1038/s41577-019-
0151-6

6. KinnairdA, Zhao S,WellenKE,Michelakis ED.Metabolic Control of Epigenetics
in Cancer. Nat Rev Cancer (2016) 16(11):694–707. doi: 10.1038/nrc.2016.82

7. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al.
Commensal Microbe-Derived Butyrate Induces the Differentiation of Colonic
RegulatoryTCells.Nature (2013) 504(7480):446–50. doi: 10.1038/nature12721

8. Reid MA, Dai Z, Locasale JW. The Impact of Cellular Metabolism on
Chromatin Dynamics and Epigenetics. Nat Cell Biol (2017) 19(11):1298–306.
doi: 10.1038/ncb3629

9. Cavalli G, Heard E. Advances in Epigenetics Link Genetics to the
Environment and Disease. Nature (2019) 571(7766):489–99. doi: 10.1038/
s41586-019-1411-0

10. Melkonian EA, Schury MP. Biochemistry, Anaerobic Glycolysis. In:
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2021).

11. Lunt SY, Vander Heiden MG. Aerobic Glycolysis: Meeting the Metabolic
Requirements of Cell Proliferation. Annu Rev Cell Dev Biol (2011) 27:441–
64. doi: 10.1146/annurev-cellbio-092910-154237
12. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-
Dependent Glycolytic Pathway Orchestrates a Metabolic Checkpoint for the
Differentiation of TH17 and Treg Cells. J Exp Med (2011) 208(7):1367–76.
doi: 10.1084/jem.20110278

13. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason
EF, et al. Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic
Programs are Essential for Effector and Regulatory CD4+ T Cell Subsets.
J Immunol (2011) 186(6):3299–303. doi: 10.4049/jimmunol.1003613

14. Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A,
et al. HIF-1alpha Is a Metabolic Switch Between Glycolytic-Driven
Migration and Oxidative Phosphorylation-Driven Immunosuppression of
Tregs in Glioblastoma. Cell Rep (2019) 27(1):226–37.e4. doi: 10.1016/
j.celrep.2019.03.029

15. Sun IH, Oh MH, Zhao L, Patel CH, Arwood ML, Xu W, et al. mTOR
Complex 1 Signaling Regulates the Generation and Function of Central and
Effector Foxp3(+) Regulatory T Cells. J Immunol (2018) 201(2):481–92. doi:
10.4049/jimmunol.1701477

16. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, et al.
Foxp3 and Toll-Like Receptor Signaling Balance Treg Cell Anabolic
Metabolism for Suppression. Nat Immunol (2016) 17(12):1459–66. doi:
10.1038/ni.3577

17. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM,
Grebinoski S, et al. Metabolic Support of Tumour-Infiltrating Regulatory T
Cells by Lactic Acid. Nature (2021) 591(7851):645–51. doi: 10.1038/s41586-
020-03045-2

18. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M,
et al. The Proteomic Landscape of Human Ex Vivo Regulatory and
Conventional T Cells Reveals Specific Metabolic Requirements. Immunity
(2016) 44(2):406–21. doi: 10.1016/j.immuni.2016.01.028
August 2021 | Volume 12 | Article 728783

https://doi.org/10.1038/s41590-018-0120-4
https://doi.org/10.1038/ni.2683
https://doi.org/10.1038/nri.2017.75
https://doi.org/10.1038/ni.3466
https://doi.org/10.1038/s41577-019-0151-6
https://doi.org/10.1038/s41577-019-0151-6
https://doi.org/10.1038/nrc.2016.82
https://doi.org/10.1038/nature12721
https://doi.org/10.1038/ncb3629
https://doi.org/10.1038/s41586-019-1411-0
https://doi.org/10.1038/s41586-019-1411-0
https://doi.org/10.1146/annurev-cellbio-092910-154237
https://doi.org/10.1084/jem.20110278
https://doi.org/10.4049/jimmunol.1003613
https://doi.org/10.1016/j.celrep.2019.03.029
https://doi.org/10.1016/j.celrep.2019.03.029
https://doi.org/10.4049/jimmunol.1701477
https://doi.org/10.1038/ni.3577
https://doi.org/10.1038/s41586-020-03045-2
https://doi.org/10.1038/s41586-020-03045-2
https://doi.org/10.1016/j.immuni.2016.01.028
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Metabolic Control of Epigenetics in Treg Cells
19. De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna
C, et al. Glycolysis Controls the Induction of Human Regulatory T Cells by
Modulating the Expression of FOXP3 Exon 2 Splicing Variants. Nat
Immunol (2015) 16(11):1174–84. doi: 10.1038/ni.3269

20. Lim SA, Wei J, Nguyen TM, Shi H, Su W, Palacios G, et al. Lipid Signalling
Enforces Functional Specialization of Treg Cells in Tumours. Nature (2021)
591(7849):306–11. doi: 10.1038/s41586-021-03235-6

21. Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y,
et al. CTLA-4 Blockade Drives Loss of Treg Stability in Glycolysis-Low
Tumours. Nature (2021) 591(7851):652–8. doi: 10.1038/s41586-021-03326-4

22. GerrietsVA,KishtonRJ,Nichols AG,MacintyreAN, InoueM, IlkayevaO, et al.
Metabolic Programming and PDHK1 Control CD4+ T Cell Subsets and
Inflammation. J Clin Invest (2015) 125(1):194–207. doi: 10.1172/JCI76012

23. Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3
Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate
Environments. Cell Metab (2017) 25(6):1282–93.e7. doi: 10.1016/
j.cmet.2016.12.018

24. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM,
et al. Individual Intestinal Symbionts Induce a Distinct Population of
RORgamma(+) Regulatory T Cells. Science (2015) 349(6251):993–7. doi:
10.1126/science.aaa9420

25. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. The
Microbiota Regulates Type 2 Immunity Through RORgammat(+) T Cells.
Science (2015) 349(6251):989–93. doi: 10.1126/science.aac4263

26. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial Bile Acid
Metabolites Modulate Gut RORgamma(+) Regulatory T Cell Homeostasis.
Nature (2020) 577(7790):410–5. doi: 10.1038/s41586-019-1865-0

27. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al.
De Novo Fatty Acid Synthesis Controls the Fate Between Regulatory T and T
Helper 17 Cells. Nat Med (2014) 20(11):1327–33. doi: 10.1038/nm.3704

28. Wang H, Franco F, Tsui YC, Xie X, Trefny MP, Zappasodi R, et al. CD36-
Mediated Metabolic Adaptation Supports Regulatory T Cell Survival and
Function in Tumors. Nat Immunol (2020) 21(3):298–308. doi: 10.1038/
s41590-019-0589-5

29. Chou WC, Guo Z, Guo H, Chen L, Zhang G, Liang K, et al. AIM2 in
Regulatory T Cells Restrains Autoimmune Diseases. Nature (2021) 591
(7849):300–5. doi: 10.1038/s41586-021-03231-w

30. Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M,
et al. Oleic Acid Restores Suppressive Defects in Tissue-Resident FOXP3
Tregs From Patients With Multiple Sclerosis. J Clin Invest (2021) 131(2):
e138519. doi: 10.1172/JCI138519

31. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser
ML, et al. Amino Acids Rather Than Glucose Account for the Majority of
Cell Mass in Proliferating Mammalian Cells. Dev Cell (2016) 36(5):540–9.
doi: 10.1016/j.devcel.2016.02.012

32. Shi H, Chapman NM, Wen J, Guy C, Long L, Dhungana Y, et al. Amino
Acids License Kinase Mtorc1 Activity and Treg Cell Function via Small G
Proteins Rag and Rheb. Immunity (2019) 51(6):1012–27:e7. doi: 10.1016/
j.immuni.2019.10.001

33. Ikeda K, Kinoshita M, Kayama H, Nagamori S, Kongpracha P, Umemoto E,
et al. Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent
Maintenance of Regulatory T Cells. Cell Rep (2017) 21(7):1824–38. doi:
10.1016/j.celrep.2017.10.082

34. Procaccini C, Garavelli S, Carbone F, Di Silvestre D, La Rocca C, Greco D, et al.
Signals of Pseudo-Starvation Unveil the Amino Acid Transporter SLC7A11 as
Key Determinant in the Control of Treg Cell Proliferative Potential. Immunity
(2021) 54(7):1543–60.e6. doi: 10.1016/j.immuni.2021.04.014

35. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al.
The Combined Effects of Tryptophan Starvation and Tryptophan
Catabolites Down-Regulate T Cell Receptor Zeta-Chain and Induce a
Regulatory Phenotype in Naive T Cells. J Immunol (2006) 176(11):6752–
61. doi: 10.4049/jimmunol.176.11.6752

36. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield
CA. An Interaction Between Kynurenine and the Aryl Hydrocarbon
Receptor can Generate Regulatory T Cells. J Immunol (2010) 185(6):3190–
8. doi: 10.4049/jimmunol.0903670

37. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, et al.
Inflammatory T Cell Responses Rely on Amino Acid Transporter ASCT2
Frontiers in Immunology | www.frontiersin.org 1017
Facilitation of Glutamine Uptake and Mtorc1 Kinase Activation. Immunity
(2014) 40(5):692–705. doi: 10.1016/j.immuni.2014.04.007

38. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of
Amino-Acid Transport by Antigen Receptors Coordinates the Metabolic
Reprogramming Essential for T Cell Differentiation. Nat Immunol (2013) 14
(5):500–8. doi: 10.1038/ni.2556

39. Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, et al.
Glutamine-Dependent Alpha-Ketoglutarate Production Regulates the
Balance Between T Helper 1 Cell and Regulatory T Cell Generation. Sci
Signaling (2015) 8(396):ra97. doi: 10.1126/scisignal.aab2610

40. Metzler B, Gfeller P, Guinet E. Restricting Glutamine or Glutamine-
Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells
With High FOXP3 Expression and Regulatory Properties. J Immunol (2016)
196(9):3618–30. doi: 10.4049/jimmunol.1501756

41. Kurniawan H, Franchina DG, Guerra L, Bonetti L, Baguet LS, Grusdat M,
et al. Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell
Function. Cell Metab (2020) 31(5):920–36.e7. doi: 10.1016/j.cmet.2020.
03.004

42. Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R,
et al. Guidance of Regulatory T Cell Development by Satb1-Dependent
Super-Enhancer Establishment. Nat Immunol (2017) 18(2):173–83. doi:
10.1038/ni.3646

43. Ohkura N, Sakaguchi S. Transcriptional and Epigenetic Basis of Treg Cell
Development and Function: Its Genetic Anomalies or Variations in
Autoimmune Diseases. Cell Res (2020) 30(6):465–74. doi: 10.1038/s41422-
020-0324-7

44. Delacher M, Imbusch CD, Hotz-Wagenblatt A, Mallm JP, Bauer K, Simon
M, et al. Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary
Lymphoid Organs and Are Programmed by the Transcription Factor BATF.
Immunity (2020) 52(2):295–312.e11. doi: 10.1016/j.immuni.2019.12.002

45. Delacher M, Simon M, Sanderink L, Hotz-Wagenblatt A, Wuttke M,
Schambeck K, et al. Single-Cell Chromatin Accessibility Landscape
Identifies Tissue Repair Program in Human Regulatory T Cells. Immunity
(2021) 54(4):702–20.e17. doi: 10.1016/j.immuni.2021.03.007

46. Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A,
Träger U, et al. Genome-Wide DNA-Methylation Landscape Defines
Specialization of Regulatory T Cells in Tissues. Nat Immunol (2017) 18
(10):1160–72. doi: 10.1038/ni.3799

47. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al.
T Cell Receptor Stimulation-Induced Epigenetic Changes and Foxp3
Expression are Independent and Complementary Events Required for
Treg Cell Development. Immunity (2012) 37(5):785–99. doi: 10.1016/
j.immuni.2012.09.010

48. Morales-Nebreda L, McLafferty FS, Singer BD. DNA Methylation as a
Transcriptional Regulator of the Immune System. Transl Res (2019)
204:1–18. doi: 10.1016/j.trsl.2018.08.001

49. Jones PA. Functions of DNA Methylation: Islands, Start Sites, Gene Bodies
and Beyond. Nat Rev Genet (2012) 13(7):484–92. doi: 10.1038/nrg3230

50. Bannister AJ, Kouzarides T. Regulation of Chromatin by Histone
Modifications. Cell Res (2011) 21(3):381–95. doi: 10.1038/cr.2011.22

51. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, et al. Epigenetic
Control of the Foxp3 Locus in Regulatory T Cells. PloS Biol (2007) 5(2):e38.
doi: 10.1371/journal.pbio.0050038

52. Kawakami R, Kitagawa Y, Chen KY, Arai M, Ohara D, Nakamura Y, et al.
Distinct Foxp3 Enhancer Elements Coordinate Development, Maintenance,
and Function of Regulatory T Cells. Immunity (2021) 54(5):947–61.e8. doi:
10.1016/j.immuni.2021.04.005

53. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY.
Role of Conserved non-Coding DNA Elements in the Foxp3 Gene in
Regulatory T-Cell Fate. Nature (2010) 463(7282):808–12. doi: 10.1038/
nature08750

54. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, et al. DNA
Methylation Controls Foxp3 Gene Expression. Eur J Immunol (2008) 38
(6):1654–63. doi: 10.1002/eji.200838105

55. Mikami N, Kawakami R, Chen KY, Sugimoto A, Ohkura N, Sakaguchi S.
Epigenetic Conversion of Conventional T Cells Into Regulatory T Cells by
CD28 Signal Deprivation. Proc Natl Acad Sci USA (2020) 117(22):12258–68.
doi: 10.1073/pnas.1922600117
August 2021 | Volume 12 | Article 728783

https://doi.org/10.1038/ni.3269
https://doi.org/10.1038/s41586-021-03235-6
https://doi.org/10.1038/s41586-021-03326-4
https://doi.org/10.1172/JCI76012
https://doi.org/10.1016/j.cmet.2016.12.018
https://doi.org/10.1016/j.cmet.2016.12.018
https://doi.org/10.1126/science.aaa9420
https://doi.org/10.1126/science.aac4263
https://doi.org/10.1038/s41586-019-1865-0
https://doi.org/10.1038/nm.3704
https://doi.org/10.1038/s41590-019-0589-5
https://doi.org/10.1038/s41590-019-0589-5
https://doi.org/10.1038/s41586-021-03231-w
https://doi.org/10.1172/JCI138519
https://doi.org/10.1016/j.devcel.2016.02.012
https://doi.org/10.1016/j.immuni.2019.10.001
https://doi.org/10.1016/j.immuni.2019.10.001
https://doi.org/10.1016/j.celrep.2017.10.082
https://doi.org/10.1016/j.immuni.2021.04.014
https://doi.org/10.4049/jimmunol.176.11.6752
https://doi.org/10.4049/jimmunol.0903670
https://doi.org/10.1016/j.immuni.2014.04.007
https://doi.org/10.1038/ni.2556
https://doi.org/10.1126/scisignal.aab2610
https://doi.org/10.4049/jimmunol.1501756
https://doi.org/10.1016/j.cmet.2020.03.004
https://doi.org/10.1016/j.cmet.2020.03.004
https://doi.org/10.1038/ni.3646
https://doi.org/10.1038/s41422-020-0324-7
https://doi.org/10.1038/s41422-020-0324-7
https://doi.org/10.1016/j.immuni.2019.12.002
https://doi.org/10.1016/j.immuni.2021.03.007
https://doi.org/10.1038/ni.3799
https://doi.org/10.1016/j.immuni.2012.09.010
https://doi.org/10.1016/j.immuni.2012.09.010
https://doi.org/10.1016/j.trsl.2018.08.001
https://doi.org/10.1038/nrg3230
https://doi.org/10.1038/cr.2011.22
https://doi.org/10.1371/journal.pbio.0050038
https://doi.org/10.1016/j.immuni.2021.04.005
https://doi.org/10.1038/nature08750
https://doi.org/10.1038/nature08750
https://doi.org/10.1002/eji.200838105
https://doi.org/10.1073/pnas.1922600117
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Metabolic Control of Epigenetics in Treg Cells
56. Helmin KA, Morales-Nebreda L, Acosta MAT, Anekalla KR, Chen SY,
Abdala-Valencia H, et al. Maintenance DNA Methylation Is Essential for
Regulatory T Cell Development and Stability of Suppressive Function. J Clin
Invest (2020) 130(12):6571–87. doi: 10.1172/JCI137712

57. Obata Y, Furusawa Y, Endo TA, Sharif J, Takahashi D, Atarashi K, et al. The
Epigenetic Regulator Uhrf1 Facilitates the Proliferation and Maturation of
Colonic Regulatory T Cells. Nat Immunol (2014) 15(6):571–9. doi: 10.1038/
ni.2886

58. Kouzarides T. Chromatin Modifications and Their Function. Cell (2007) 128
(4):693–705. doi: 10.1016/j.cell.2007.02.005

59. Wei G,Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. GlobalMapping of H3K4me3
and H3K27me3 Reveals Specificity and Plasticity in Lineage Fate Determination
of Differentiating CD4+ T Cells. Immunity (2009) 30(1):155–67. doi: 10.1016/
j.immuni.2008.12.009

60. HeH, Ni B, Tian Y, Tian Z, Chen Y, Liu Z, et al. HistoneMethylationMediates
Plasticity of Human FOXP3(+) Regulatory T Cells by Modulating Signature
Gene Expressions. Immunology (2014) 141(3):362–76. doi: 10.1111/imm.12198

61. Morikawa H, Ohkura N, Vandenbon A, Itoh M, Nagao-Sato S, Kawaji H,
et al. Differential Roles of Epigenetic Changes and Foxp3 Expression in
Regulatory T Cell-Specific Transcriptional Regulation. Proc Natl Acad Sci
USA (2014) 111(14):5289–94.

62. Arvey A, van der Veeken J, Samstein RM, Feng Y, Stamatoyannopoulos JA,
Rudensky AY. Inflammation-Induced Repression of Chromatin Bound by
the Transcription Factor Foxp3 in Regulatory T Cells. Nat Immunol (2014)
15(6):580–7. doi: 10.1038/ni.2868

63. Mijnheer G, Lutter L, Mokry M, van der Wal M, Scholman R, Fleskens V,
et al. Conserved Human Effector Treg Cell Transcriptomic and Epigenetic
Signature in Arthritic Joint Inflammation. Nat Commun (2021) 12(1):2710.
doi: 10.1038/s41467-021-22975-7

64. Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, et al.
Deacetylase Inhibition Promotes the Generation and Function of Regulatory
T Cells. Nat Med (2007) 13(11):1299–307. doi: 10.1038/nm1652

65. Ohkura N, Yasumizu Y, Kitagawa Y, Tanaka A, Nakamura Y, Motooka D,
et al. Regulatory T Cell-Specific Epigenomic Region Variants Are a Key
Determinant of Susceptibility to Common Autoimmune Diseases. Immunity
(2020) 52(6):1119–32.e4. doi: 10.1016/j.immuni.2020.04.006

66. Feng Y, van der Veeken J, ShugayM, Putintseva EV, Osmanbeyoglu HU, Dikiy
S, et al. AMechanism forExpansionofRegulatoryT-CellRepertoire and itsRole
in Self-Tolerance. Nature (2015) 528(7580):132–6. doi: 10.1038/nature16141

67. Arvey A, van der Veeken J, Plitas G, Rich SS, Concannon P, Rudensky AY.
Genetic and Epigenetic Variation in the Lineage Specification of Regulatory
T Cells. eLife (2015) 4:e07571. doi: 10.7554/eLife.07571

68. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition
of Native Chromatin for Fast and Sensitive Epigenomic Profiling of Open
Chromatin, DNA-Binding Proteins and Nucleosome Position. Nat Methods
(2013) 10(12):1213–8. doi: 10.1038/nmeth.2688

69. Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K, Henstridge DC,
et al. Sex-Specific Adipose Tissue Imprinting of Regulatory T Cells. Nature
(2020) 579(7800):581–5. doi: 10.1038/s41586-020-2040-3

70. Hayatsu N, Miyao T, Tachibana M, Murakami R, Kimura A, Kato T, et al.
Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription
Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.
Immunity (2017) 47(2):268–83.e9. doi: 10.1016/j.immuni.2017.07.008

71. Singer BD, Mock JR, Aggarwal NR, Garibaldi BT, Sidhaye VK, Florez MA,
et al. Regulatory T Cell DNA Methyltransferase Inhibition Accelerates
Resolution of Lung Inflammation. Am J Respir Cell Mol Biol (2015) 52
(5):641–52. doi: 10.1165/rcmb.2014-0327OC

72. Lu CH, Wu CJ, Chan CC, Nguyen DT, Lin KR, Lin SJ, et al. DNA
Methyltransferase Inhibitor Promotes Human CD4(+)CD25(h)FOXP3(+)
Regulatory T Lymphocyte Induction Under Suboptimal TCR Stimulation.
Front Immunol (2016) 7:488. doi: 10.3389/fimmu.2016.00488

73. Chan MW, Chang CB, Tung CH, Sun J, Suen JL, Wu SF. Low-Dose 5-Aza-
2’-Deoxycytidine Pretreatment Inhibits Experimental Autoimmune
Encephalomyelitis by Induction of Regulatory T Cells. Mol Med (2014)
20:248–56. doi: 10.2119/molmed.2013.00159

74. Kim HP, Leonard WJ. CREB/ATF-Dependent T Cell Receptor-Induced
FoxP3 Gene Expression: A Role for DNAMethylation. J Exp Med (2007) 204
(7):1543–51. doi: 10.1084/jem.20070109
Frontiers in Immunology | www.frontiersin.org 1118
75. Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease.
Cell Metab (2017) 25(1):27–42. doi: 10.1016/j.cmet.2016.08.009

76. Locasale JW. Serine, Glycine and One-Carbon Units: Cancer Metabolism in
Full Circle. Nat Rev Cancer (2013) 13(8):572–83. doi: 10.1038/nrc3557

77. Yang M, Vousden KH. Serine and One-Carbon Metabolism in Cancer. Nat
Rev Cancer (2016) 16(10):650–62. doi: 10.1038/nrc.2016.81

78. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, et al.
Histone Methylation Dynamics and Gene Regulation Occur Through the
Sensing of One-Carbon Metabolism. Cell Metab (2015) 22(5):861–73. doi:
10.1016/j.cmet.2015.08.024

79. Pfalzer AC, Choi SW, Tammen SA, Park LK, Bottiglieri T, Parnell LD, et al.
S-Adenosylmethionine Mediates Inhibition of Inflammatory Response and
Changes in DNA Methylation in Human Macrophages. Physiol Genomics
(2014) 46(17):617–23. doi: 10.1152/physiolgenomics.00056.2014

80. Moore JR, Hubler SL, Nelson CD, Nashold FE, Spanier JA, Hayes CE. 1,25-
Dihydroxyvitamin D3 Increases the Methionine Cycle, CD4(+) T Cell DNA
Methylation and Helios(+)Foxp3(+) T Regulatory Cells to Reverse
Autoimmune Neurodegenerative Disease. J Neuroimmunol (2018)
324:100–14. doi: 10.1016/j.jneuroim.2018.09.008

81. Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q, et al. Critical Role of All-Trans
Retinoic Acid in Stabilizing Human Natural Regulatory T Cells Under
Inflammatory Conditions. Proc Natl Acad Sci USA (2014) 111(33):E3432–
40. doi: 10.1073/pnas.1408780111

82. Golovina TN, Mikheeva T, Brusko TM, Blazar BR, Bluestone JA, Riley JL.
Retinoic Acid and Rapamycin Differentially Affect and Synergistically
Promote the Ex Vivo Expansion of Natural Human T Regulatory Cells.
PloS One (2011) 6(1):e15868. doi: 10.1371/journal.pone.0015868

83. Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, et al. Hydrogen Sulfide
Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive
Regulatory T Cell Differentiation and Maintain Immune Homeostasis.
Immunity (2015) 43(2):251–63. doi: 10.1016/j.immuni.2015.07.017

84. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical Role of
Histone Demethylase Jmjd3 in the Regulation of CD4+ T-Cell
Differentiation. Nat Commun (2014) 5:5780. doi: 10.1038/ncomms6780

85. Chisolm DA, Weinmann AS. Connections Between Metabolism and
Epigenetics in Programming Cellular Differentiation. Annu Rev Immunol
(2018) 36:221–46. doi: 10.1146/annurev-immunol-042617-053127

86. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of Alpha-KG-
Dependent Histone and DNA Demethylases by Fumarate and Succinate
That are Accumulated in Mutations of FH and SDH Tumor Suppressors.
Genes Dev (2012) 26(12):1326–38. doi: 10.1101/gad.191056.112

87. Martinez-Reyes I, Chandel NS. Mitochondrial TCA Cycle Metabolites
Control Physiology and Disease. Nat Commun (2020) 11(1):102. doi:
10.1038/s41467-019-13668-3

88. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular
Alpha-Ketoglutarate Maintains the Pluripotency of Embryonic Stem Cells.
Nature (2015) 518(7539):413–6. doi: 10.1038/nature13981

89. Xu T, Stewart KM,Wang X, Liu K, Xie M, Ryu JK, et al. Metabolic Control of
TH17 and Induced Treg Cell Balance by an Epigenetic Mechanism. Nature
(2017) 548(7666):228–33. doi: 10.1038/nature23475

90. Picca A, Lezza AM. Regulation of Mitochondrial Biogenesis Through
TFAM-Mitochondrial DNA Interactions: Useful Insights From Aging and
Calorie Restriction Studies. Mitochondrion (2015) 25:67–75. doi: 10.1016/
j.mito.2015.10.001

91. Fu Z, Ye J, Dean JW, Bostick JW, Weinberg SE, Xiong L, et al. Requirement
of Mitochondrial Transcription Factor A in Tissue-Resident Regulatory T
Cell Maintenance and Function. Cell Rep (2019) 28(1):159–71.e4. doi:
10.1016/j.celrep.2019.06.024

92. Liu X, Zhang Y, Ni M, Cao H, Signer RAJ, Li D, et al. Regulation of
Mitochondrial Biogenesis in Erythropoiesis by mTORC1-Mediated Protein
Translation. Nat Cell Biol (2017) 19(6):626–38. doi: 10.1038/ncb3527

93. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martinez-
Reyes I, et al. Mitochondrial Complex III is Essential for Suppressive
Function of Regulatory T Cells. Nature (2019) 565(7740):495–9. doi:
10.1038/s41586-018-0846-z

94. Wapenaar H, Dekker FJ. Histone Acetyltransferases: Challenges in Targeting
Bi-Substrate Enzymes. Clin Epigenet (2016) 8:59. doi: 10.1186/s13148-016-
0225-2
August 2021 | Volume 12 | Article 728783

https://doi.org/10.1172/JCI137712
https://doi.org/10.1038/ni.2886
https://doi.org/10.1038/ni.2886
https://doi.org/10.1016/j.cell.2007.02.005
https://doi.org/10.1016/j.immuni.2008.12.009
https://doi.org/10.1016/j.immuni.2008.12.009
https://doi.org/10.1111/imm.12198
https://doi.org/10.1038/ni.2868
https://doi.org/10.1038/s41467-021-22975-7
https://doi.org/10.1038/nm1652
https://doi.org/10.1016/j.immuni.2020.04.006
https://doi.org/10.1038/nature16141
https://doi.org/10.7554/eLife.07571
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1038/s41586-020-2040-3
https://doi.org/10.1016/j.immuni.2017.07.008
https://doi.org/10.1165/rcmb.2014-0327OC
https://doi.org/10.3389/fimmu.2016.00488
https://doi.org/10.2119/molmed.2013.00159
https://doi.org/10.1084/jem.20070109
https://doi.org/10.1016/j.cmet.2016.08.009
https://doi.org/10.1038/nrc3557
https://doi.org/10.1038/nrc.2016.81
https://doi.org/10.1016/j.cmet.2015.08.024
https://doi.org/10.1152/physiolgenomics.00056.2014
https://doi.org/10.1016/j.jneuroim.2018.09.008
https://doi.org/10.1073/pnas.1408780111
https://doi.org/10.1371/journal.pone.0015868
https://doi.org/10.1016/j.immuni.2015.07.017
https://doi.org/10.1038/ncomms6780
https://doi.org/10.1146/annurev-immunol-042617-053127
https://doi.org/10.1101/gad.191056.112
https://doi.org/10.1038/s41467-019-13668-3
https://doi.org/10.1038/nature13981
https://doi.org/10.1038/nature23475
https://doi.org/10.1016/j.mito.2015.10.001
https://doi.org/10.1016/j.mito.2015.10.001
https://doi.org/10.1016/j.celrep.2019.06.024
https://doi.org/10.1038/ncb3527
https://doi.org/10.1038/s41586-018-0846-z
https://doi.org/10.1186/s13148-016-0225-2
https://doi.org/10.1186/s13148-016-0225-2
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Metabolic Control of Epigenetics in Treg Cells
95. Xiao Y, Nagai Y, Deng G, Ohtani T, Zhu Z, Zhou Z, et al. Dynamic
Interactions Between TIP60 and P300 Regulate FOXP3 Function Through a
Structural Switch Defined by a Single Lysine on TIP60. Cell Rep (2014) 7
(5):1471–80. doi: 10.1016/j.celrep.2014.04.021

96. Wang L, Kumar S, Dahiya S,Wang F,Wu J, Newick K, et al. Ubiquitin-Specific
Protease-7 Inhibition Impairs Tip60-Dependent Foxp3+ T-Regulatory Cell
Function and Promotes Antitumor Immunity. EBioMedicine (2016) 13:99–
112. doi: 10.1016/j.ebiom.2016.10.018

97. Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC, et al. Inhibition of
P300 Impairs Foxp3(+) T Regulatory Cell Function and Promotes
Antitumor Immunity. Nat Med (2013) 19(9):1173–7. doi: 10.1038/nm.3286

98. Castillo J, Wu E, Lowe C, Srinivasan S, McCord R, Wagle MC, et al. CBP/
p300 Drives the Differentiation of Regulatory T Cells Through
Transcriptional and Non-Transcriptional Mechanisms. Cancer Res (2019)
79(15):3916–27. doi: 10.1158/0008-5472.CAN-18-3622

99. Meier JL. Metabolic Mechanisms of Epigenetic Regulation. ACS Chem Biol
(2013) 8(12):2607–21. doi: 10.1021/cb400689r

100. Montgomery DC, Sorum AW, Guasch L, Nicklaus MC, Meier JL. Metabolic
Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors.
Chem Biol (2015) 22(8):1030–9. doi: 10.1016/j.chembiol.2015.06.015

101. Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, et al.
Intracellular Crotonyl-CoA Stimulates Transcription Through P300-
Catalyzed Histone Crotonylation. Mol Cell (2015) 58(2):203–15. doi:
10.1016/j.molcel.2015.02.029

102. Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA Induces Cell Growth and
Proliferation by Promoting the Acetylation of Histones at Growth Genes.
Mol Cell (2011) 42(4):426–37. doi: 10.1016/j.molcel.2011.05.004

103. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson
CB. ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation.
Science (2009) 324(5930):1076–80. doi: 10.1126/science.1164097

104. Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. Nucleocytosolic Acetyl-
Coenzyme a Synthetase is Required for Histone Acetylation and Global
Transcription.Mol Cell (2006) 23(2):207–17. doi: 10.1016/j.molcel.2006.05.040

105. McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, et al. Lipids
Reprogram Metabolism to Become a Major Carbon Source for Histone
Acetylation. Cell Rep (2016) 17(6):1463–72. doi: 10.1016/j.celrep.2016.10.012

106. Cluntun AA, Huang H, Dai L, Liu X, Zhao Y, Locasale JW. The Rate of
Glycolysis Quantitatively Mediates Specific Histone Acetylation Sites. Cancer
Metab (2015) 3:10. doi: 10.1186/s40170-015-0135-3

107. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl
Coenzyme A: A Central Metabolite and Second Messenger. Cell Metab
(2015) 21(6):805–21. doi: 10.1016/j.cmet.2015.05.014

108. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic Glycolysis
Promotes T Helper 1 Cell Differentiation Through an Epigenetic
Mechanism. Science (2016) 354(6311):481–4. doi: 10.1126/science.aaf6284

109. Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile Acid Metabolites
Control TH17 and Treg Cell Differentiation. Nature (2019) 576(7785):143–8.
doi: 10.1038/s41586-019-1785-z

110. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al.
Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory
T-Cell Generation. Nature (2013) 504(7480):451–5. doi: 10.1038/nature12726

111. Latham T, Mackay L, Sproul D, Karim M, Culley J, Harrison DJ, et al.
Lactate, a Product of Glycolytic Metabolism, Inhibits Histone Deacetylase
Activity and Promotes Changes in Gene Expression. Nucleic Acids Res (2012)
40(11):4794–803. doi: 10.1093/nar/gks066

112. Newman JC, Verdin E. Beta-Hydroxybutyrate: Much More Than a
Metabolite. Diabetes Res Clin Pract (2014) 106(2):173–81. doi: 10.1016/
j.diabres.2014.08.009

113. Zhang H, Tang K, Ma J, Zhou L, Liu J, Zeng L, et al. Ketogenesis-Generated
Beta-Hydroxybutyrate is an Epigenetic Regulator of CD8(+) T-Cell Memory
Development. Nat Cell Biol (2020) 22(1):18–25. doi: 10.1038/s41556-019-
0440-0

114. Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R. From Sirtuin Biology
to Human Diseases: An Update. J Biol Chem (2012) 287(51):42444–52. doi:
10.1074/jbc.R112.402768

115. van Loosdregt J, Brunen D, Fleskens V, Pals CE, Lam EW, Coffer PJ. Rapid
Temporal Control of Foxp3 Protein Degradation by Sirtuin-1. PloS One
(2011) 6(4):e19047. doi: 10.1371/journal.pone.0019047
Frontiers in Immunology | www.frontiersin.org 1219
116. Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, et al. Sirtuin-1 Targeting
Promotes Foxp3+ T-Regulatory Cell Function and Prolongs Allograft
Survival. Mol Cell Biol (2011) 31(5):1022–9. doi: 10.1128/MCB.01206-10

117. Marcel N, Perumalsamy LR, Shukla SK, SarinA. The Lysine Deacetylase Sirtuin
1Modulates theLocalization andFunctionof theNotch1Receptor inRegulatory
T Cells. Sci Signaling (2017) 10(473):eaah4679. doi: 10.1126/scisignal.aah4679

118. Zhang X, Xiao X, Lan P, Li J, Dou Y, Chen W, et al. OX40 Costimulation
Inhibits Foxp3 Expression and Treg Induction via BATF3-Dependent and
Independent Mechanisms. Cell Rep (2018) 24(3):607–18. doi: 10.1016/
j.celrep.2018.06.052

119. Chalkiadaki A, Guarente L. Sirtuins Mediate Mammalian Metabolic
Responses to Nutrient Availability. Nat Rev Endocrinol (2012) 8(5):287–
96. doi: 10.1038/nrendo.2011.225

120. Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, et al. The NAD
(+)-Dependent SIRT1 Deacetylase Translates a Metabolic Switch Into
Regulatory Epigenetics in Skeletal Muscle Stem Cells. Cell Stem Cell (2015)
16(2):171–83. doi: 10.1016/j.stem.2014.12.004

121. Elkhal A, Rodriguez Cetina Biefer H, Heinbokel T, Uehara H, Quante M,
Seyda M, et al. NAD(+) Regulates Treg Cell Fate and Promotes Allograft
Survival via a Systemic IL-10 Production That is CD4(+) CD25(+) Foxp3(+)
T Cells Independent. Sci Rep (2016) 6:22325. doi: 10.1038/srep22325

122. PendletonKE,Chen B, LiuK,HunterOV, Xie Y,TuBP, et al. TheU6 snRNAM
(6)AMethyltransferaseMETTL16Regulates SAMSynthetase Intron Retention.
Cell (2017) 169 824-835(5):e14. doi: 10.1016/j.cell.2017.05.003

123. Aik W, Demetriades M, Hamdan MK, Bagg EA, Yeoh KK, Lejeune C, et al.
Structural Basis for Inhibition of the Fat Mass and Obesity Associated
Protein (FTO). J Med Chem (2013) 56(9):3680–8. doi: 10.1021/jm400193d

124. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al.
The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent
Nucleic Acid Demethylase. Science (2007) 318(5855):1469–72. doi: 10.1126/
science.1151710

125. Lu TX, Zheng Z, Zhang L, Sun HL, Bissonnette M, Huang H, et al. A New
Model of Spontaneous Colitis in Mice Induced by Deletion of an RNA M(6)
A Methyltransferase Component METTL14 in T Cells. Cell Mol
Gastroenterol Hepatol (2020) 10(4):747–61. doi: 10.1016/j.jcmgh.2020.07.001

126. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. M(6)A mRNA
Methylation Controls T Cell Homeostasis by Targeting the IL-7/STAT5/
SOCS Pathways. Nature (2017) 548(7667):338–42. doi: 10.1038/nature23450

127. Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC, Broughton JP, et al. M
(6)A mRNA Methylation Sustains Treg Suppressive Functions. Cell Res
(2018) 28(2):253–6. doi: 10.1038/cr.2018.7

128. Yang X, Qian K. Protein O-GlcNAcylation: Emerging Mechanisms and
Functions. Nature Reviews. Mol Cell Biol (2017) 18(7):452–65. doi: 10.1038/
nrm.2017.22

129. Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-
GlcNAcylation.ChemRev (2021)121(3):1513–81.doi: 10.1021/acs.chemrev.0c00884

130. Swamy M, Pathak S, Grzes KM, Damerow S, Sinclair LV, van Aalten DM,
et al. Glucose and Glutamine Fuel Protein O-GlcNAcylation to Control T
Cell Self-Renewal and Malignancy. Nat Immunol (2016) 17(6):712–20. doi:
10.1038/ni.3439

131. Saravia J, Zeng H, Dhungana Y, Bastardo Blanco D, Nguyen TM, Chapman
NM, et al. Homeostasis and Transitional Activation of Regulatory T Cells
Require C-Myc. Sci Adv (2020) 6(1):eaaw6443. doi: 10.1126/sciadv.aaw6443

132. Liu B, Salgado OC, Singh S, Hippen KL, Maynard JC, Burlingame AL, et al.
The Lineage Stability and Suppressive Program of Regulatory T Cells Require
Protein O-GlcNAcylation. Nat Commun (2019) 10(1):354. doi: 10.1038/
s41467-019-08300-3

133. de Jesus TJ, Tomalka JA, Centore JT, Staback Rodriguez FD, Agarwal RA, Liu
AR, et al.NegativeRegulation of FOXP3ExpressionbyC-RelO-GlcNAcylation.
Glycobiology (2021). doi: 10.1093/glycob/cwab001 [Epub ahead of print]

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
August 2021 | Volume 12 | Article 728783

https://doi.org/10.1016/j.celrep.2014.04.021
https://doi.org/10.1016/j.ebiom.2016.10.018
https://doi.org/10.1038/nm.3286
https://doi.org/10.1158/0008-5472.CAN-18-3622
https://doi.org/10.1021/cb400689r
https://doi.org/10.1016/j.chembiol.2015.06.015
https://doi.org/10.1016/j.molcel.2015.02.029
https://doi.org/10.1016/j.molcel.2011.05.004
https://doi.org/10.1126/science.1164097
https://doi.org/10.1016/j.molcel.2006.05.040
https://doi.org/10.1016/j.celrep.2016.10.012
https://doi.org/10.1186/s40170-015-0135-3
https://doi.org/10.1016/j.cmet.2015.05.014
https://doi.org/10.1126/science.aaf6284
https://doi.org/10.1038/s41586-019-1785-z
https://doi.org/10.1038/nature12726
https://doi.org/10.1093/nar/gks066
https://doi.org/10.1016/j.diabres.2014.08.009
https://doi.org/10.1016/j.diabres.2014.08.009
https://doi.org/10.1038/s41556-019-0440-0
https://doi.org/10.1038/s41556-019-0440-0
https://doi.org/10.1074/jbc.R112.402768
https://doi.org/10.1371/journal.pone.0019047
https://doi.org/10.1128/MCB.01206-10
https://doi.org/10.1126/scisignal.aah4679
https://doi.org/10.1016/j.celrep.2018.06.052
https://doi.org/10.1016/j.celrep.2018.06.052
https://doi.org/10.1038/nrendo.2011.225
https://doi.org/10.1016/j.stem.2014.12.004
https://doi.org/10.1038/srep22325
https://doi.org/10.1016/j.cell.2017.05.003
https://doi.org/10.1021/jm400193d
https://doi.org/10.1126/science.1151710
https://doi.org/10.1126/science.1151710
https://doi.org/10.1016/j.jcmgh.2020.07.001
https://doi.org/10.1038/nature23450
https://doi.org/10.1038/cr.2018.7
https://doi.org/10.1038/nrm.2017.22
https://doi.org/10.1038/nrm.2017.22
https://doi.org/10.1021/acs.chemrev.0c00884
https://doi.org/10.1038/ni.3439
https://doi.org/10.1126/sciadv.aaw6443
https://doi.org/10.1038/s41467-019-08300-3
https://doi.org/10.1038/s41467-019-08300-3
https://doi.org/10.1093/glycob/cwab001
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Metabolic Control of Epigenetics in Treg Cells
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lu, Liang, Meng, Zhang, Zhao and Zhang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
Frontiers in Immunology | www.frontiersin.org 1320
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
August 2021 | Volume 12 | Article 728783

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Akihiko Yoshimura,

Keio University, Japan

Reviewed by:
Masaki Miyazaki,

Kyoto University, Japan
Manolo Sambucci,

Santa Lucia Foundation (IRCCS), Italy

*Correspondence:
Xiang Cheng

nathancx@hust.edu.cn

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 29 June 2021
Accepted: 02 September 2021
Published: 22 September 2021

Citation:
Lu Y, Xia N and Cheng X (2021)

Regulatory T Cells in
Chronic Heart Failure.

Front. Immunol. 12:732794.
doi: 10.3389/fimmu.2021.732794

REVIEW
published: 22 September 2021

doi: 10.3389/fimmu.2021.732794
Regulatory T Cells in
Chronic Heart Failure
Yuzhi Lu1,2, Ni Xia1,2 and Xiang Cheng1,2*

1 Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 2 Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China

Heart failure is a global problemwithhigh hospitalizationandmortality rates. Inflammation and
immune dysfunction are involved in this disease. Owing to their unique function, regulatory T
cells (Tregs) have reacquired attention recently. They participate in immunoregulation and
tissue repair in the pathophysiology of heart failure. Tregs are beneficial in heart by
suppressing excessive inflammatory responses and promoting stable scar formation in the
early stage of heart injury. However, in chronic heart failure, the phenotypes and functions of
Tregs changed. They transformed into an antiangiogenic and profibrotic cell type. In this
review,we summarized the functions of Tregs in the development of chronic heart failure first.
Then, we focused on the interactions between Tregs and their target cells. The target cells of
Tregs include immune cells (such asmonocytes/macrophages, dendritic cells, T cells, and B
cells) and parenchymal cells (such as cardiomyocytes, fibroblasts, and endothelial cells).
Next-generation sequencing and gene editing technology make immunotherapy of heart
failure possible. So, prospective therapeutic approaches based on Tregs in chronic heart
failure had also been evaluated.

Keywords: heart failure, regulatory T cell, immune cell, cardiomyocyte, fibroblast, endothelial cell
INTRODUCTION

Heart failure (HF) is a complex clinical syndrome caused by the progressing of various heart
diseases. Structural and functional defects of heart lead to impaired cardiac filling or ejection of
blood. Shortness of breath, fluid retention, and fatigue are the classic symptoms of HF (1). It has
become a public health problem because of high morbidity, hospitalization, and mortality rates. HF
influences more than 37.7 million patients globally (2). Sudden cardiac death and multiple organ
dysfunction account for nearly 10% annual mortality in HF patients (3). Therefore, taking effective
measures before HF or exploring new strategies to reduce the mortality of HF is urgently needed.

Different ways can be used to classify HF. According to the location of the deficit parts, HF can be
divided into left ventricular HF, right ventricular HF, and biventricular HF. Based on the change of
ejection fraction value, two types of HF can be classified. It includes HF with preserved ejection
fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). The ejection fraction of HFpEF
patients is unusually more than 50% or at least over 40%. HFpEF is always accompanied by
interstitial fibrosis, thicken ventricular wall, and decreased ventricular compliance. The incidence of
HFpEF increases gradually in recent years. However, lacking effective therapeutic drugs in the
clinical treatment of HFpEF makes it a poor prognosis. HFrEF usually occurs once a large amount of
cardiomyocytes (CMs) is lost, such as in myocardial infarction (MI). The decompensated phase of
org September 2021 | Volume 12 | Article 732794121
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cardiomyopathy is also manifested with a decreased ejection
fraction. Depending on the speed of onset, HF can be divided
into acute HF and chronic HF. Multiple factors, such as infection
and volume overload, induce the occurrence of acute HF in
chronic HF patients and increase the risk of readmission and
mortality rate (1). Due to the rapid progress of the disease, the
time window for the clinic research of acute HF is inadequate.
Rarely had study on immune cells in acute HF been done. In this
review, we mainly focused on chronic HF and described the
important roles of Tregs in the development of chronic HF.

Ischemic injury, especially MI, accounts for the main reason of
chronicHF. The process ofMI toHF includes three consecutive but
overlapping stages. Massive CMs die when coronary artery is
suddenly interrupted. Necrotic cells release debris and induce an
inflammation response, which leads to the infiltration of a large
number of immune cells anddegradationof the extracellularmatrix
(ECM) (inflammation stage). With the removal of debris and
necrotic cells, inflammation is resolved and scar is initially
formed (repair stage). In mature stage, cells related to tissue
repair are deactivated. At the same time, collagen is cross-linked.
These changespromote the formationof stable scar.However, long-
termmechanical stress and the activation of the sympathetic nerve
and the renin–angiotensin–aldosterone system lead to negative
ventricular remodeling and chronic HF (3). Genetic mutation
and previous viral or bacterial infection are the main reasons of
cardiomyopathy. The release of autoantigens and pathogen-related
molecular patterns activate the immune response, which leads to
fibrosis and negative ventricular remodeling of the heart.

Inflammation and immune cells participate in both acute heart
injury and chronic HF. Inflammatory factors and inflammation-
related lectin, such as tumor necrosis factor (TNF)-a, interleukin
(IL) -1b, IL-6, lectin 3, are increased inHFpatients. Single-cell RNA
sequencing of CD45+ cells in myocarditis and pressure overload-
induced HFmice suggested an immune activation state during HF
(4, 5). Most of the clinical trials based on anti-inflammatory or
immunoregulatory treatments yet yielded disappointing results,
except for IL-1b antibody canakinumab and IL-1 receptor
antagonist anakinra in specific populations. For detailed
information on these clinical trials, please refer to the review by
Van Linthout andTschöpe (6). These unsatisfactory results remind
us of the complexity of immune response after HF. Regulatory T
cells (Tregs), standing in the central site in immunomodulation,
participate in the process of chronic HF. Here, we concentrated on
Tregs and described their interactions with their target cells in HF.
The approaches based on Tregs in the treatment of HF had also
been referred.
REGULATORY T CELLS IN HEART
FAILURE AND HEART FAILURE-
RELATED DISEASES

Tregs are defined as CD4+CD25hiFoxp3+ cells. Foxp3 (forkhead
box P3) is a transcription factor that is necessary for the
development and function of Tregs. Dysfunction of Tregs due
Frontiers in Immunology | www.frontiersin.org 222
to Foxp3 mutation leads to fatal autoimmune diseases.
Depending on the different sources, Tregs can be divided into
thymus-derived Tregs (tTregs) and peripheral Tregs (pTregs) in
vivo or induced Tregs (iTregs) in vitro (7).

Suppressing excessive immune response and maintaining
immune homeostasis and peripheral tolerance are the classic
functions of Tregs. Inhibitory cytokines of Tregs, including
IL-10, transforming growth factor (TGF)–b, and IL-35,
participate in the suppression function of T cells directly (8–
10). Molecules on Tregs, such as cytotoxic T lymphocyte-
associated antigen 4 (CTLA4) and lymphocyte activation gene
3 (LAG3), also take part in immunomodulation indirectly by
interacting with antigen-presenting cells (APCs), especially
dendritic cells (DCs) (11, 12). Exoenzyme CD39 or CD39/
CD73 on Tregs converts extracellular ATP into adenosine,
which suppresses the immune response (13). It is rare but had
been described that Tregs played a cytolytic effect by producing
granzyme B (14). Recent evidence indicated that Tregs in non-
lymphoid tissue obtained specific phenotypes and functions in
tissue repair. Tregs in visceral adipose tissue regulated adipocyte
metabolism through the transcription factor peroxisome
proliferator-activated receptor gamma (15). Analogously, in
injured skeletal muscle, Tregs accumulated in the lesion and
produced amphiregulin (Areg). Areg promoted the skeletal
muscle repair (16). As the Notch signaling ligand, Jagged-1
was highly expressed on skin Tregs, which was necessary for
hair regeneration (17). Since then, tissue Tregs had been found in
cerebral ischemic injury and acute lung injury (18, 19). Recently,
we reported a kind of Tregs that expresses “secreted protein
acidic and rich in cysteine” (SPARC) in the hearts of MI mice.
They played a protective role in preventing cardiac rupture (20).
This result demonstrates that heart Tregs participate in cardiac
repair directly. All the results raise the potential protective effects
of Tregs on parenchymal cells.

HF is the end stage of almost all cardiovascular diseases.
Numerous studies reported that Tregs acted as a protective
subset in the early stage of heart injury. Tregs increased in the
hearts and mediastinal lymph nodes in mice after acute MI and
promoted tissue repair (21, 22). Adoptive transfer of Tregs
ameliorated fibrosis and improved mouse heart function after
MI (22). In myocardial ischemia–reperfusion (I/R) injury, the
similar prevalent role of Tregs had also been reported in mice
(23). IL-2 complexes (IL-2Cs) amplified Tregs in vivo (24). In
ischemic heart injury, IL-2Cs expanded Tregs and maintained
heart function in mice (25, 26). Super agonistic anti-CD28
antibody (CD28-SA) and IL-33 amplified Tregs preferentially
and improved cardiac contractility in MI mice. They may be used
for Treg’s therapy in the future (20, 21, 27). Similarly, infusion of
Tregs extenuated cardiac hypertrophy and ventricular
remodeling induced by angiotensin II (Ang II). Tregs reduced
the mortality of coxsackievirus B3 (CVB3)-induced myocarditis
in mice, which reemphasized the protective role of Tregs (28, 29).
C-X-C motif chemokine receptor 4 (CXCR4) is essential for
Tregs’ accumulation in lesions. POL5551, the antagonist of
CXCR4, increased the mobilization and accumulation of Tregs
to infarcted heart and improved the prognosis of I/R injury in
September 2021 | Volume 12 | Article 732794
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mice (30). However, in HF mice, Tregs became a Th1-like pro-
inflammatory subset and promoted adverse ventricular
remodeling (31). These results indicate that Tregs are plastic in
phenotype and function in different periods after heart injury.
However, what boosts these changes deserves further study.

Clinically, studies reported a positive correlation between a low
frequency of Tregs and high risk of cardiovascular disease. It might
beused as an independent predictor for rehospitalization inpatients
with worsening HF (32, 33). Treg’s number decreased in the
peripheral blood but significantly increased in the coronary
thrombi in acute MI patients. Different from peripheral blood,
the T-cell receptors (TCRs) of Tregs in the coronary thrombi
showed an oligoclonal characteristic (34–36). A reduced number
of Tregs had also been observed in the peripheral blood of patients
with acute coronary syndrome, dilated cardiomyopathy (DCM),
and ischemicHF (37–40). Increased apoptosis and impaired output
ofTregs from the thymusduringHFmay contribute to the decrease
(41). Recently, a clinic study described a positive association
between low fraction of circulating Tregs and high mortality in
ischemic HFrEF patients (42). Except for the change in Treg
number, the suppression function of Tregs on conventional T
cells decreased. The secretion of soluble fibrinogen-like protein 2,
a novel effector factor of Tregs, was also impaired in ischemic HF
patients (43). Aldesleukina is a kind of recombinant human IL-2. A
clinical trial using Aldesleukina in patients with stable ischemic
heart disease and acute coronary syndrome to evaluate its ability in
increasing the number of circulating Tregs has been conducted in
2018. However, the final result has not been reported (TRIAL
REGISTRATION NUMBER: NCT03113733).

Immune cells and parenchymal cells play important roles in
both the early stage of heart injury and the development of HF.
Mechanistically, except for producing anti-inflammatory factors,
Tregs also participate in HF and HF-related diseases by
interacting with immune and parenchymal cells directly. The
roles of these related cells in heart had been described in detail in
the following subsections (Figure 1).
REGULATORY T CELLS INTERACT
WITH HEART FAILURE-RELATED
IMMUNE CELLS

Regulatory T Cells Interact With
Monocytes/Macrophages in Heart Failure
In mice, monocytes include Ly6Chi monocytes and Ly6Clow

monocytes. Following neutrophils, Ly6Chi monocytes are
recruited to the heart in the very early stage of injury. They
produce pro-inflammatory factors, such as IL-1, IL-6, and
TNF-a. Subsequently, Ly6Clow monocytes migrate to the
lesion. They secrete anti-inflammatory factors, such as IL-10
(44). By devouring necrotic cells and debris, monocytes
transform into macrophages. Macrophages can also be divided
into two groups: M1 (classical macrophages) and M2 (alternative
macrophages) in mice. M1 macrophages are very efficient in
producing toxic intermediates and pro-inflammatory cytokines.
Frontiers in Immunology | www.frontiersin.org 323
In contrast to M1 macrophages, M2 macrophages produce
molecules, such as IL-10 and osteopontin. They improve tissue
repair by promoting inflammation resolut ion and
angiogenesis (45).

An increased number of monocytes/macrophages had been
observed in mice of heart injury. The number of pro-
inflammatory CD11b+F4/80+Gr-1hi monocytes and CD11b+F4/
80+CD206- M1 macrophages increased in the peripheral blood
and hearts of ischemic HF mice, respectively (46). Similarly, an
accumulation of macrophages in the remote myocardium of MI-
related HF in mice was also reported. Furthermore, the
researchers found that monocyte ’s recruitment from
circulation and macrophage’s local proliferation contributed to
the expansion of heart macrophages. Inhibiting the recruitment
of monocytes improved heart function, which indicates a
negative role of monocyte-derived macrophages in the heart
(47). However, depletion of macrophages impaired repair and
deteriorated ventricular remodeling in cryoinjured hearts of mice
(48). Studies based on the distinct lineage of macrophages in
heart injury verified the heterogeneous effects of macrophages in
mice. It may explain the inconsistent results. MHChiCCR2- and
MHCIIlowCCR2- macrophages are resident subsets in the heart.
They self-renew mainly through local proliferation. In
Cx3cr1CreER-YFP:R26Td mice, depleting resident macrophages
during MI promoted adverse ventricular remodeling and
exacerbated cardiac function (49). This result illustrates a
protective role of resident macrophages. In contrast to resident
subset, another study showed that the infiltration of monocyte-
derived CCR2+ macrophages was required for adverse
ventricular remodeling in pressure overload mice (50). In
human, the analog phenomenon had also been reported (51).

Tregs play protective roles in ischemic heart disease, the main
cause of HF. They regulate monocyte infiltration, reduce
inflammation-related molecule secretion, and promote
macrophage survival and M2 polarization. Weirather et al. (21)
found that elimination of Tregs beforeMI increased the number of
pro-inflammatory myeloid cells. The markers related to M1
macrophages were also elevated. These changes led to a poor
prognosis in mice (21). In mouse I/R injury, the similar effects of
Tregs had also been reported (52). IL-35, which ismainly expressed
by Tregs, maintained the survival of CX3CR1+Ly6Clow

macrophages and reduced cardiac rupture after MI in mice (53).
Recently, it was reported that the exosomes derived from Tregs
reduced the infarct size in mice by promoting the polarization of
macrophages toM2subset afterMI (54). In in vitro experiments, the
same effect of Tregs on the polarization ofmonocytes had also been
described (55). Except for ischemic heart disease, hypertension and
myocarditis are also important causes of HF. Adoptive transfer of
Tregs ameliorated cardiac damage in Ang II-induced hypertension
model and CVB3-related myocarditis model. They made a visible
reduction of macrophages (28, 56) (Figure 2 and Table 1). These
results show that Tregs regulate the number and function of
macrophages. However, it is still unclear whether Tregs influence
the proliferation and/or polarization of macrophages locally in the
lesion or just inhibit the recruitment of some specific
monocytes selectively.
September 2021 | Volume 12 | Article 732794
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Despite owning the fruitful results in animal research, rarely
had a study on the direct interaction between Tregs and
macrophages been done in HF patients. Whether macrophages
in acute injury and chronic HF have different phenotypes and
functions needs further study. Furthermore, we wondered if Tregs
can still promote the M2 macrophage polarization in the end stage
of heart injury. A study found that Tregs enhanced the efferocytosis
of macrophages in inflammation-related diseases in mice.Whether
this effect of Tregs is also existing in HF or not needs further
investigation (65). Unlike the large number of macrophages, Tregs
account for a small but indispensable part in cardiac injury. It
reiterates that Tregs may synergize with macrophages through a
cascade amplification effect. This effect may enhance the anti-
inflammatory and pro-healing roles of Tregs.
Frontiers in Immunology | www.frontiersin.org 424
Regulatory T Cells Interact With Dendritic
Cells in Heart Failure
DCs, which serve as the bridge between innate and adaptive
immune cells, perceive the changes in the environment. They
play important roles in immune tolerance and immune response.
According to different sources, DCs are divided into myeloid
DCs (mDCs) and plasmacytoid DCs (pDCs). mDC, which is also
DC1, is derived from myeloid stem cells under the stimulation of
granulocyte-macrophage colony-stimulating factor (GM-CSF).
pDC, also known as DC2, is derived from lymphoid stem cells.
Controlling helper T (Th) cell differentiation is the main function
of DCs. DC1 produces IL-12 and induces the differentiation of
Th cells into Th1 cells. However, DC2 hardly produces IL-12 and
promotes the differentiation of Th cells into Th2 cells.
FIGURE 1 | The roles of immune cells and parenchymal cells in acute heart injury and chronic heart failure. We summarized the immune cells that infiltrated
the heart in a large number after acute heart injury. Neutrophils (Neu) infiltrate the heart in the very early stage of heart injury. They participate in the
inflammation response and then undergo apoptosis, which promote the resolution of inflammation. Neutrophils are indispensable in heart repair after injury.
Monocytes (including Ly6Clow and Ly6Chi monocytes) accumulate in the heart after acute injury and differentiate into macrophages after phagocytosis of cell
debris. M2 polarization of macrophages improves the prognosis of acute heart injury. In heart failure, monocyte-derived macrophages aggravate the damage,
while resident macrophages play an anti-inflammatory effect and improve the prognosis of heart failure. DCs participate in the inflammatory response in the
early stage of heart injury. They secrete cytokines, present antigens, and activate T cells, which play an important role in heart repair in the early stage of
damage. DCs have the ability to activate CD4+ T cells and cytotoxic CD8+ T cells, which exacerbate HF. T cells play different roles after myocardial infarction.
In the early stage of myocardial infarction, they are essential for the repair, while the activated T cells aggravate the damage during heart failure. After
myocardial infarction, Th1, Th17, and gd T cells aggravate ventricular remodeling by producing pro-inflammatory factors. In heart failure, the imbalances of
Th1/Th2 and Th17/regulatory T cell (Treg) were observed. Tregs inhibit the inflammation response in the early stage of injury. At the same time, they produce
repair-related molecules to promote repair directly. However, in heart failure, Tregs change their phenotype and function and worsen heart failure. B cells
produce pro-inflammatory factors in the early stage of injury and recruit monocytes into the heart to aggravate acute heart injury. B cells are dysfunctional in
heart failure. The inhibitory function of regulatory B cell (Breg) is damaged. Substantial antibodies and complements are produced by B cells, which aggravate
heart failure. A large number of cardiomyocytes (CMs) die in the acute phase of myocardial infarction. They release damage-associated molecular patterns and
pro-inflammatory factors. Then, the necrotic CMs are cleared, and extracellular matrix is deposited. CMs’ apoptosis in non-infarct area, which exacerbates
interstitial fibrosis. Fibroblasts are activated in the early stage of damage and participate in tissue repair. Then, they are deactivated. The excessive proliferation
and activation of fibroblasts and delayed deactivation all aggravate the prognosis of heart failure. Endothelial cells (ECs) are activated in the early stage of
injury. They produce molecules that promote the recruitment of leukocytes and participate in the formation of new blood vessels. Their roles in heart failure
have not yet been elucidated.
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FIGURE 2 | Regulatory T cells (Tregs) interact with immune cells. Tregs regulate the recruitment and functions of immune cells through cell-to-cell contact or
cytokine or exosome secretion. Tregs reduce the migration of monocytes from the circulation and promote the polarization of monocytes/M1 macrophages to M2
macrophages. Conventional dendritic cells (cDCs) induce naive T cells to differentiate into Tregs in physiological homeostasis. However, in heart injury, Tregs assist in
the generation of tolerance DC (tDCs), and tDCs induce Treg proliferation in turn. Tregs inhibit the migration of T cells and regulate the function of Th1, Th17, and
CD8+ T cells and reduce the production of pro-inflammatory factors and antibodies in B cells. Tregs promote the proliferation of regulatory B cells (Bregs). B cells,
including Bregs, promote Treg proliferation. In heart failure, the balance of Th1/Th2 and Th17/Treg shifts to Th1 and Th17, respectively. Tregs are dysfunctional in
both number and function in heart failure. Their inhibitory functions in T cells and B cells are damaged.
TABLE 1 | The interaction between tregs and innate immune cells in HF.

Cell Type Innate Immune Cells in HF Interaction Between Tregs and Innate Immune Cells in HF

Monocyte/
Macrophage

①Pro-inflammatory macrophages increased in the heart of HF mice.
Splenectomy ameliorated cardiac remodeling and inflammation. Adoptive
transfer of HF mouse splenocytes induced cardiac remodeling (46).
②Recruitment and local proliferation contributed to the expansion of
macrophages in the remote myocardium of MI-induced HF. Inhibiting the
recruitment of monocytes improved heart function in MI mice (47).
③Depletion of macrophages increased left ventricular dilatation and wall
thinning in cryoinjury mice (48).
④Depletion of resident macrophages exacerbated cardiac function and
promoted adverse cardiac remodeling in MI (49).
⑤Depletion of CCR2+ macrophages alleviated ventricular remodeling,
dysfunction, and cardiac fibrosis on pressure overload mice (50).
⑥CCR2+ macrophages are a pro-inflammatory population and were
associated with persistent LV systolic dysfunction in human HF (51).

①Tregs reduced the migration of monocytes and promoted the
polarization of macrophages to M2 macrophages (21, 52, 54).
②Elimination of Tregs in I/R mice increased pro-inflammatory
macrophages, accelerated ventricular dilation, and accentuated apical
remodeling. Increasing Tregs in I/R mice reversed the effects (52).
③In Ang II-induced hypertension mice, adoptive transfer of Tregs reduced
macrophages in the heart and ameliorated cardiac damage (28).
④Adoptive transfer of Tregs improved heart function in CVB3-related
myocarditis (56).

Dendritic
cell

①cDCs increased in the heart of HF mice. Splenectomy ameliorated cardiac
remodeling and inflammation. Adoptive transfer of HF mouse splenocytes
induced cardiac remodeling (46).
② Depletion of DCs deteriorated heart function and ventricular remodeling with
increased pro-inflammatory cytokines and decreased anti-inflammatory
cytokines in MI (57).
③G-CSF improved, but GM-CSF aggravated, early ventricular remodeling in
MI rats (58).

①Tregs promoted the production of tDCs by secreting extracellular
vesicles (59).
②The interaction of Tregs and DCs reduced costimulatory molecule
expression on DCs and led to inadequate activation of effector T cells
(60).
③cDC1s induced the production of self-tolerant Tregs. cDC2s presented
heart antigens to effector T cells and promoted T-cell activation and
polarization in MI (61).
④tDCs increased antigen-specific Tregs and produced beneficial effects
in MI. In vitro, antigen-loaded DC or GM-GSF-stimulated DC induced the
proliferation of Tregs (62–64).
Frontiers in Im
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Treg, regulatory T cell; HF, heart failure; MI, myocardial infarction; LV, left ventricular; DC, dendritic cell; cDC, classic DC; CCR, C-C motif Receptor; G-CSF, granulocyte colony-stimulating
factor; GM-CSF, granulocyte-macrophage colony stimulating factor; I/R, ischemia-reperfusion; Ang, angiotensin; CVB3, coxsackievirus B3; tDC, tolerogenic DC.
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The number of DCs increased in the hearts in both acute
injury and HF. It indicated that they may have distinct functions
in different phases of heart injury (46, 66, 67). DCs ameliorated
left ventricular remodeling after MI. Elimination of DCs by using
CD11cDTR mice worsened ventricular remodeling and function
(57). However, treating MI rats with granulocyte colony-
stimulating factor (G-CSF) or GM-CSF revealed that G-CSF
improved but GM-CSF aggravated ventricular remodeling (58).
These controversial results may be associated with the expansion
of different DC subsets in the heart. Cross-priming DCs have the
ability to activate both CD4+ T cells and CD8+ cytotoxic T cells.
Recently, using Clec9a-depleted mice that were deficient in DC
cross-priming, Forte E. et al. (68) found that in ischemic HF,
cross-priming DCs accumulated in hearts and contributed to the
exacerbation of post-ischemic inflammatory damage. These
results may remind us of the different roles of DCs in the
process of heart injury.

Although majority of studies found that the total number of
DCs in peripheral blood is elevated in HF patients, the results are
inconsistent (69–73). The differences in severity and etiology of
HF may be responsible for the discordant results. It reminds us
that more detailed and reasonable classification of HF is needed
for further clinical research.

The interaction between Tregs and DCs has not been fully
elucidated. Tolerogenic DC (tDC), which is blunt to certain
antigens, acts as a protective subset in many immune-related
diseases. Tregs promoted the production of tDCs by secreting
extracellular vesicles containing miR-150-5p and miR-142-3p in
vitro (59). Except for generating tDCs, Tregs also influence the
maturation and function of DCs. A few studies showed that the
interaction between Tregs and DCs reduced the costimulatory
molecule expression on DCs. These defective DCs led to
inadequate activation of effector T cells in vivo (60, 74).
Similarly, after coculturing with CD4+CD25+ Tregs but not
CD4+CD25- T cells, DCs reduced their maturation and their
ability in antigen-presenting was also damaged (75).

DCs have direct effects on Tregs. In homeostatic conditions,
immature DCs induced the anergy of self-reactive T cell and
promoted the differentiation of naive T cells into autoantigen-
specific Tregs. This process was related to cDC1 (61, 76). In
addition to cDC1, tDCs can also promote the formation of
antigen-specific Tregs during injury. This may be a treatment
strategy for immune-related diseases. Stimulating bone marrow-
derived DCs with TNF-a and cardiac lysates from MI mice
induced the generation of tDCs. Adoptive transfer of these tDCs
into MI mice increased antigen-specific Tregs in lymph nodes,
spleens, and hearts. Finally, they achieved a beneficial effect on
ventricular remodeling (62). Similarly, the effects of tDCs in
increasing the number of Tregs had also been reported in
autoimmune myocarditis and chronic Chagas disease mice (63,
64). DCs enhanced Treg functions in inhibiting the proliferation
and accumulation of effector T cells likewise, which avoid
excessive autoimmune response caused by cardiac injury (77).
Just like in vivo, antigen-loaded DCs, especially mature DCs,
stimulate the proliferation of Tregs directly in vitro (78)
(Figure 2 and Table 1).
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Although the changes in the number of DCs had been
described in a series of clinical studies of HF, there is a lack of
description on the direct interaction between Tregs and DCs in
vivo. Some new breakthroughs are urgently needed.

Regulatory T Cells Interact With Effector
T Cells in Heart Failure
T cells are heterogeneous groups that output from the thymus. T
cells consist of CD4+ T cells and CD8+ T cells. CD4+ T cells are the
main T-cell subset in heart injury, and the classification of CD4+ T
cells is mainly based on the cytokines they produced. Common
types of CD4+ T-cell subsets include Th1 cells [producing
interferon (IFN)-g], Th2 cells (producing IL-4, IL-5, and IL-13),
Th17 cells (producing IL-17), and Tregs (producing IL-10, TGF-b,
and IL-35). Based on the constitution of TCR, T cells can also be
divided into abT cells (including CD8+ T cells, Th1, Th2, and
Th17 cells) and gdT cells.

T cells infiltrated into the damaged heart and their deficiencies
in the number and function are involved in the pathophysiological
process of HF. CD4 or MHC-II knockout mice are lack of CD4+ T
cells. Experiments using these mice showed that CD4+ T cells were
indispensable for proper collagen deposition in the infarct area
(79). Myosin heavy chain alpha (MYHCA) is the main
autoantigen released during MI. By transferring MYHCA614-629-
specific CD4+ T cells to recipient mice, Rieckmann et al. (80)
found that these cells accumulated in mediastinal lymph nodes
and hearts after MI. Surprisingly, a large number of the transferred
cells transformed into Tregs and obtained a distinct pro-healing
effect (80). However, eliminating CD4+ T cells from the fourth
week after ligation reduced the infiltration of CD4+ T cells in
hearts and rescued the left ventricular dilatation in HF mice.
Adoptive transfer of heart-infiltrating CD3+ T cells or splenic
CD4+ T cells from HF mice to naive recipient mice led to a
damaged left ventricular function (81). These results indicate a
plastic function of T cells in acute injury and HF. It may be related
to the different activation and transcription characteristics of T
cells at different stages. As the main source of IFN-g, Th1 cells are
harmful to the ischemic heart in mice (82). IL-17A produced by
gdT cells exacerbated left ventricular remodeling in both MI and
myocardial I/R injury mice (83–85). Although cytotoxic CD8+ T
cells played a negative role in MI mice, CD8+AT2R+ T cells
secreted IL-10 and potentially facilitated wound healing after MI
(21, 86).

T-cell infiltration had also been described in endocardial
biopsies of patients with inflammatory DCM. It mainly
consisted of Th1, Th2, and Treg cells. Moreover, the correlation
between the characteristics of T-cell receptor V-beta (TRBV) and
etiology had also been described (87). Recently, Tang et al. (88)
found an aggregation of T cells in the hearts of ischemic HF
patients, which included a large number of CD4+ T cells and CD8+

T cells. Furthermore, they described an oligoclonal characteristic
of heart tissue-specific TCRs that is different from peripheral blood
T cells (88). These results suggest an antigen-related activation of
T cells.

Except for the changes of a certain T-cell population, the
imbalance between T-cell subsets had also been observed in HF.
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Eight weeks after MI, a reduced Th1/Th2 ratio and an increased
Th17/Treg ratio were observed in mice (81). Exercise, catechin,
fenofibrate, and inhibition of micro-RNA155 had been reported
to reverse the imbalance of Treg/Th17 ratio in mice (89–92). In
human, HF was usually accompanied by immune activation. The
balance of Th1/Th2 and Th17/Treg in circulation shifted to Th1
and Th17, respectively (40, 93–96). What factors drive these
shifts and whether these changes are caused by, or lead to,
adverse ventricular remodeling and HF need to be established.

The research on Tregs in suppressing the infiltration and
function of T cells is abundant in the heart. In MI, Treg
supplementation reduced the number of CD3+ T cells in the
heart. On the contrary, ablation of Tregs increased the absolute
counts of CD4+ T cells and CD8+ T cells in mice (21, 22). In in
vitro experiments, Tregs obtained from the spleens of MI mice
were defective in inhibiting the function of conventional T cells.
However, recently, we found that Tregs infiltrating into MI
hearts had increased expression of CTLA-4 and KLRG-1 in
mice. It indicates an enhanced inhibitory capacity of heart
Tregs. These results may indicate a different function of tissue
Tregs and lymphoid Tregs (20, 97). In a previous study, we also
showed that Tregs inhibited the response of cytotoxic CD8+ T
cells in mice after MI (22). Adoptive transfer of Tregs attenuated
cardiac remodeling by reducing IFN-g expression in MI mice
(98). Exosomes secreted by Tregs containing micro-RNAs, such
as Let-7d, regulate the function of a variety of immune cells in
Frontiers in Immunology | www.frontiersin.org 727
mice. They inhibited the proliferation and cytokine production
of Th1 cells (99). Whether this mechanism is also involved in HF
needs fur ther explora t ion . As a subse t o f Tregs ,
CD4+CD25+GARP+ Tregs obtained from the peripheral blood
of DCM patients were dysfunctional in suppressing the
proliferation of Tresp cells (CD4+CD25-GARP-). It may
explain the hyperinflammatory state of DCM patients (39)
(Figure 2 and Table 2). Study on the direct effect of Tregs on
Th17, Th2, or newly discovered Th9 and Th22 cells in HF is
scarce, which needs more research.

Regulatory T Cells Interact With B Cells in
Heart Failure
As another adaptive immune cell subset, B cells include B1 cells
and B2 cells. B1 cells (including B1a and B1b) produce natural
antibodies without any stimulation of exogenous antigens during
prenatal life. However, B2 cells, including follicular B cells and
marginal zone B cells, are generated postnatally and are
unusually stimulated by exogenous antigens. Except for the
different sources, B1 cells and B2 cells have specific markers
separately. B1 cell is CD19+CD11b+IgM+ subset in mice, and B1a
also has a high expression of CD5, but B1b is CD5 negative.
However, in human, B1 cells are CD20+CD27+CD38low/int

CD43+. B2 cells are CD19+CD11b- (111, 112).
B cells accumulate in the heart during the acute phase of heart

injury. A study showed that B cells induced the infiltration of
TABLE 2 | The interaction between tregs and adaptive immune cells in HF.

Cell
Type

Adaptive Immune Cells in HF Interaction Between Tregs and Adaptive Immune Cells
in HF

T cell ① CD4+ T cell-deficient MI mice displayed aggravated ventricular dilation and greater mortality
and heart rupture rates (79).
②Elimination of CD4+ T cells reduced inflammatory cell infiltration and reduced left ventricular
dilatation in HF mice. Transferring heart-infiltrated CD3+ T cells or splenic CD4+ T cells from HF
mice to naive recipient mice resulted in left ventricular dysfunction (81).
③ Adoptive transfer of heart antigen-specific MYHCA614-629 CD4

+ T cells acquired a Treg
phenotype and showed pro-healing effects (80).
④ Th1 cells is the main source of IFN-g. IFN-g aggravated wound healing by influencing the
functions of fibroblast (82).
⑤ gdT cells is the major source of IL-17A. IL-17A exacerbated left ventricular remodeling after
heart injury in both MI and I/R (83–85).
⑥ CD8+AT2R+ T cells contributed to maintaining cardiomyocyte viability and reduced ischemic
heart injury by increasing IL-10 and reducing IL-2 and IFN-g expression (86).
⑦ Tregs became Th1-like cells with antiangiogenic and profibrotic effects and participated in
adverse ventricular remodeling in HF (31).

①Adoptive transfer of Tregs attenuated cardiac remodeling by
reducing IFN-g expression in MI (98).
②Exosomes produced by Tregs inhibited the proliferation and
cytokine secretion of Th1 cells that may be involved in the
regulation of heart damage (99).
③Tregs inhibited the response of CD8+ T cells after MI by
reducing pro-inflammatory factors of CD8+ T cells (22).
④Tregs from HF patients were dysfunctional in suppressing
the function of responder T cell (Tresp) (39).

B cell ①B cells induced Ly6C+ monocyte infiltration by producing CCL7. Elimination of B cells
improved heart function after MI (100).
②B cells assisted in the increase of T cells and DCs in pericardial adipose tissue. CB2-/- mice
showed deteriorated ventricular remodeling after MI, and pericardial adipose tissue removal
reversed the effect (101).
③Rituximab or antibody-dependent B-cell deletion reversed myocardial hypertrophy and
improved cardiac function (102, 103).
④ DCM patients presented a high frequency of CD19+ B cells, and the percentage of TNF-a
producing B cells increased obviously (104).
⑦Bregs were deficient in number and function in DCM patients (105).
⑧Bregs were enriched in pericardial adipose tissue and attenuated post-MI inflammation and
improved the outcome of MI (106).

①CD4+LAP+ Tregs in the peripheral blood of DCM patients
were dysfunctional. Their abilities in inhibiting B-cell
proliferation and antibody production were impaired (107).
② Bregs induced the expansion of Tregs, and Tregs also
increased the number of Bregs in turn (108).
③ B cells induced the production of Tregs (109, 110).
Treg, regulatory T cell; MI, myocardial infarction; Th, helper T cell; IFN, interferon; IL, interleukin; AT2R, angiotensinⅡ type 2 receptor; CCL, chemokine C-C motif ligand; DC, dendritic cell;
CB, cannabinoid receptor; DCM, dilated cardiomyopathy; TNF, tumor necrosis factor; Breg, regulatory B cell; Tresp, responder T cell; LAP, leucine aminopeptidase; CD, cluster of
differentiation.
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Ly6C+ monocytes by producing CCL7. Elimination of B cells
improved heart function after MI in mice (100). Moreover, B
cells assisted the increase of a variety of immune cells, including
T cells and DCs, in pericardial adipose tissue. Research using
cannabinoid receptor CB2 knockout (CB2-/-) mice, which have
an increased number of B cells, showed deteriorated ventricular
remodeling after MI (101). Deleting B cells with anti-CD22
reduced the pro-inflammatory cytokine production. It
alleviated heart fibrosis in heart hypertrophic mice induced by
Ang II (102). In HF, blocking CD20 on B cells with rituximab
reversed myocardial hypertrophy and improved cardiac function
in transverse aortic constriction mouse models (103). Compared
with healthy controls, Yu et al. (104) found a high frequency of
CD19+ B cells in the peripheral blood of DCM patients.
Furthermore, they reported that the percentage of TNF-a, but
not IL-10, producing B cells increased perceptibly (104). All these
results suggest a negative role of B cells in HF-related diseases.
Mechanistically, besides producing antibodies, B cells also secrete
abundant cytokines, such as IL-1, IL-6, TNF, TGF-b, and IL-10.
They can also interact with other immune cells directly. Apart
from Tregs, a group of IL-10+ B cells with regulatory function
called regulatory B cells (Bregs) had also been discovered (113).
In pericardial adipose tissue, CD5+ Bregs were enriched and
attenuated the inflammation response after MI in mice (106).
According to our research, Bregs in DCM patients were deficient
in number. Their effect in inhibiting the function of conventional
T cells was also damaged (105).

Tregs regulate the functions of B cells in multiple ways. They
interacted with B cells directly and inhibited antibody production
(114). Moreover, Tregs participated in the peripheral tolerance by
restraining the proliferation of autoreactive B cells and promoting
their apoptosis (115). However, our previous study showed that
CD4+LAP+ Tregs in the peripheral blood of DCM patients were
dysfunctional. Their abilities in inhibiting B-cell proliferation and
antibody production were impaired compared to healthy controls.
This change in B cells may lead to immune disorders in HF (107).

Besides being the target of Tregs, B cells can also act
aggressively in Treg proliferation. Experiments showed that B
cells, including Bregs, promoted Treg proliferation, which may
associate with homeostasis maintenance (108–110) (Figure 2
and Table 2). Studies on the interaction between Tregs and B
cells are fruitful. However, it is poorly understood during HF,
and a more in-depth investigation is needed.
REGULATORY T CELLS INTERACT WITH
HEART FAILURE-RELATED
PARENCHYMAL CELLS

Regulatory T Cells Interact With
Cardiomyocytes in Heart Failure
CMs are striated self-beating and cylindrical rod-shaped muscle
cells that fundamentally govern the function of the myocardium.
Most CMs are rich in myofibrils. They are tightly connected and
form a muscle fiber network to participate in the systolic and
diastolic functions of the heart. However, there is a small part of
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CMs that lacks myofibrils. They are highly self-disciplined and
take part in cardiac electrical conduction. CMs are vulnerable to
hypoxia. Once damaged, necrotic CMs release damage-
associated molecular patterns (DAMPs) and cytokines that are
associated with acute inflammation response and ventricular
remodeling. Transfusion of Tregs or expanding endogenous
Tregs by IL-2C reduced the apoptosis of CMs and ameliorated
cardiac function in MI mice (22, 26). In addition to the
antiapoptotic effect, Tregs also promote the proliferation of
CMs directly according to recent research. Zacchigna et al.
(116) found that Tregs promoted the survival of CMs in MI
mice during pregnancy by generating CST7, TNFSFL1, IL33,
FGL2, MATN2, and IGF2. Another study also revealed that
within 1 week after birth, Tregs aggregated in hearts after injury
and played a protective role in ameliorating cardiac fibrosis in
mice. Single-cell RNA sequencing showed that Tregs promoted
the proliferation of CMs in a paracrine manner. They produced
regeneration-related molecules, including CCL24, Areg, and
GAS6 (117). These results give rise to the tissue regeneration
function of Tregs in the heart, which had been confirmed in
injured muscle and skin (16, 17). In vitro, Tang et al. (22) found
that Tregs mitigated the apoptosis of neonatal rat CMs induced
by lipopolysaccharide (LPS). This effect was cell-to-cell contact
dependent. IL-10 but not TGF-b also participated in the process
(22). In addition to maintaining the number of viable CMs, Tregs
may directly restrict the pro-inflammatory cytokine secretion,
such as IL-1b and TNF-a in CMs. A deeper understanding of the
protective mechanism of Tregs in CMs may provide a new
strategy for the treatment of HF.

Regulatory T Cells Interact With
Fibroblasts in Heart Failure
Timely activation and proliferation of cardiac fibroblasts are
important for effective repair after heart injury. Myofibroblasts
that transformed from fibroblasts produce growth factors,
cytokines, chemokines, and ECM components. They are
involved in wound healing and facilitate the recruitment and
activation of immune cells. Single-cell RNA sequencing of cardiac
interstitial cells revealed that fibroblasts are heterogeneous
populations in mice after MI. They had either profibrotic or
antifibrotic signature and participated in the heart’s responses to
injury (118). Fibroblasts are critical to maintain heart integrity in
injury. However, excessive activation of fibroblasts or diminished
apoptosis of myofibroblasts unusually means poor repair after
heart injury (119). A recent study reported a novel function of
fibroblasts beyond tissue repair and fibrosis. Fibroblast-specific
protein 1 (FSP1) expressing fibroblasts participated in
angiogenesis in mice and played a protective role after MI (120).

Tregs can interact with fibroblasts directly. Coculture
experiment of fibroblasts and splenic Tregs showed that Tregs
modulated the phenotype of fibroblasts and reduced the
expression of alpha-smooth muscle actin (a-SMA) and matrix
metalloproteinase-3. Therefore, attenuated the contraction of
fibroblast-populated collagen pads (52). Yet, our latest research
found that a unique population of Tregs producing SPARC
accumulated in the heart. They reduced heart rupture by
increasing the production of collagen III in fibroblasts after MI
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in mice. In vitro, coculture of fibroblasts with SPARC-
overexpressing Tregs confirmed the result (20). These results
indicate that Tregs inhibit the excessive activation of fibroblasts.
This may give an explanation of the protective role of Tregs in
the non-infarct area during ischemic heart injury. However, in
the infarct area, promoting collagen production and deposition
are the primary functions of Tregs.

Regulatory T Cells Interact With
Endothelial Cells in Heart Failure
Endothelial cells (ECs) are essential in heart homeostasis and
tissue repair. They influence both vascular and immune systems.
Cardiac ECs are involved in the formation of vessels and regulate
the integrity of the vascular. Injury-activated ECs participate in
inflammation response by producing cytokines, chemokines, and
growth factors, such as IL-6, P-selectin, E-selectin, vascular cell
adhesion molecule (VCAM)-1, and intercellular adhesion
molecule (ICAM)-1. Hypoxia induced the generation of vascular
growth factors and promoted the activation of ECs, which induced
vessel formation in ischemic and hypertrophic hearts (121).
Therefore, ECs are considered immunoregulatory cells by some
immunologists, although they have no direct functions on
phagocytosis, antibody production, and cellular immunity.

Regulating the activation of ECs and angiogenesis and
modulating leukocyte migration are the main effects of Tregs on
ECs. Pulmonary arterial hypertension is one of the causes of right
ventricular HF. In mice, elimination of Tregs decreased the
production of several vascular protection-related proteins in ECs,
such as cyclooxygenase 2 (COX-2), prostaglandin I2 synthase
(PTGIS; prostacyclin synthase), programmed death ligand 1 (PD-
L1) and heme oxygenase 1 (HO-1) and worsened pulmonary
hypertension. However, the protective effect appeared again by
transferring Tregs in vivo. In vitro, coculture of human heart
microvascular ECs with Tregs also increased these protective
proteins (122). Furthermore, Tregs inhibited the activation of
human umbilical vein endothelial cells (HUVECs) that was
induced by oxidized low-density lipoprotein and LPS in vitro.
They reduced the expression of VCAM-1, monocyte
chemoattractant protein monocyte chemotactic protein-1, and IL-
6 in ECs (123). Similarly, fine particles and vasoactive substances,
such as Ang II, also act as EC-activating factors. However, Tregs
inhibited the activation of ECs in these situations (124, 125).
Effective angiogenesis prevents HF by reducing adverse
ventricular remodeling. ECs are the main members in the process
(126). Transferring Tregs improved the prognosis of MI in mice by
increasing the production of small capillaries (<10 mm) (97). In HF
mice, Tregs were significantly increased. However, they transformed
into Th1-like pro-inflammatory cells with the capacity to produce
IFN-g, TNF-a, and tumor necrosis factor receptor (TNFR)1.
Compared with naive Tregs, they exhibited an antiangiogenic
effect when cocultured with rat coronary ECs (31). Different
functions of Tregs between early stage of MI and HF explain the
temporal and spatial heterogeneity of Tregs. During inflammation,
CD73 on the Tregs protected the integrity of the vascular
endothelium and reduced leukocyte transcellular migration (127).
An in vitro study reported that iTregs, but not nTregs, passed
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through the single layer of endothelium and inhibited the activation
of ECs. This made a reduced migration of effector T cells and
attenuated inflammatory response (128). After coculturing with
HUVECs, Tregs obtained a stronger suppression function on
effector T cells. This effect was related to the interaction of PD-1
on Tregs and PD-L1/PD-L2 on activated ECs (129). In human,
HLA-DR+ ECs promoted Tregs’ proliferation through the surface
marker CD54 on ECs (130). The interaction between Tregs and ECs
is abundant. Targeting ECs may be a chance for HF patients, and
more research is needed for better clinical treatment. The crosstalk
between Tregs and parenchymal cells is complex and needs more
investigation (Figure 3 and Table 3).

Apart from the cells mentioned above, the changes in
neutrophils, natural killer (NK) cells, eosinophils, and mast cells
had also been observed in heart injury. Tregs reduced the infiltration
of neutrophils after acute heart injury and ameliorated heart
function. Just like what was observed in bone marrow transplant
tolerance inmice, Tregs may also promote the education of NK cells
(22, 131). Moreover, suppressing mast cell degranulation is another
function of Tregs. However, whether this mechanism is involved in
HF needs further research (132). Although Liu et al. (133) had
reported a protective role of eosinophils in MI recently, whether
Tregs help the effect of eosinophils deserves further study.
CONCLUSIONS AND PERSPECTIVES

The crosstalk between Tregs and immune cells or parenchymal
cells is complex. Numerous preclinical studies on Tregs have been
conducted in type 1 diabetes, organ transplantation, and
autoimmune diseases. Evidence supported that Tregs were safe
in protecting patients of autoimmune diseases and organ
transplant rejection. In recent years, researchers found that
antigen-specific Tregs and engineered Tregs were more efficient
in the treatment of disease. They had stronger suppression
function or more precisely accumulated after injury compared
with polyclonal Tregs (134). However, it is worth noting that
treatment with Tregs may cause systemic immune disorders
sometimes. Manufacturing Tregs for clinical applications and
monitoring the biological functions of transferred Tregs in vivo
are needed to be addressed firstly. Furthermore, finding ways for
commercialization of Treg-based therapy is also a great challenge.

Despite the difficulties, next-generation sequencing, including
bulk sequence and single-cell sequence, gives us the chance to
explore the functions of immune and parenchymal cells in heart
development and injury. More importantly, single-cell
sequencing helps us to map the development trajectories of
cells by in-depth analysis of the transcriptome characteristics
of single cells. The characteristics of individual Tregs had been
described in atherosclerosis, myocarditis, MI, and pressure
overload-induced HF in mice (4, 5, 20, 135). We also reported
the differences in transcriptome characteristics between heart
Tregs and splenic Tregs after MI and described an oligoclonal
feature of heart Tregs (20). All the results assisted us to identify
the subset of Tregs that is beneficial in tissue repair or prognosis
of HF.
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FIGURE 3 | Regulatory T cells (Tregs) interact with cardiac parenchymal cells. Tregs regulate the functions of cardiac parenchymal cells through cell-to-cell contact
or molecule secretion. For cardiomyocytes, Tregs inhibit pro-inflammatory factor production and reduce the apoptosis of cardiomyocytes after heart injury in adult
mice. Moreover, they directly promote the proliferation of cardiomyocytes in injured mice of a week old or pregnant. Tregs inhibit pro-inflammatory factor production
of fibroblasts and promote collagen III synthesis in fibroblasts through secreted protein acidic and rich in cysteine (SPARC) secretion in the infarcted area. Tregs
inhibit fibrosis of the interstitial zone by regulating fibroblast activation. Tregs inhibit the activation of endothelial cells (ECs) and reduce the migration of leukocytes. In
the early stage of heart injury, Tregs promote angiogenesis. However, dysfunctional pro-inflammatory Tregs in heart failure inhibit the effect.
TABLE 3 | The interaction between tregs and parenchymal cells in HF .

Cell Type Parenchymal Cells in HF Interaction Between Tregs and Parenchymal cells

Cardiomyocyte Cardiomyocyte is the main cell type in the heart. It participates in
heart contraction and produces pro-inflammatory factors under
stress conditions.

①Tregs reduced pro-inflammatory factor production of hypoxic cardiomyocytes
in vitro (22).
②Tregs reduced the apoptosis of hypoxic cardiomyocytes and ameliorated
cardiac function in MI mice (22, 26).
③Tregs promoted cardiomyocyte proliferation directly (116, 117).

Fibroblast Fibroblast is the main cell type in the heart. During heart damage,
fibroblasts are activated and participate in tissue repair and adverse
ventricular remodeling.
①Fibroblasts in the heart were heterogeneous populations and
constituted multiple subsets. FSP1-expressing fibroblasts participated
in promoting angiogenesis and played a protective role in MI (118, 120).
②Excessive activation of fibroblasts and diminished apoptosis of
myofibroblasts participated in poor repair after heart injury (119).

①Tregs accumulated in MI heart produced SPARC, which reduced heart rupture
by increasing the production of collagen III in fibroblasts. In vitro, coculture of
fibroblasts with SPARC-overexpressing Tregs had the same effect (20).
②In vitro, Tregs reduced the expression of a-SMA and MMP3 in fibroblasts and
attenuated the contraction of fibroblast-populated collagen pads (52).

Endothelial cell
(EC)

Cardiac ECs participate in the regulation of vascular integrity and
have dual effects in coagulation and anti-coagulation.
①Hypoxia promoted activated ECs to form vessels in ischemic and
hypertrophic hearts (121).

①Elimination of Tregs decreased the production of vascular protective related
proteins in ECs and worsened pulmonary hypertension. In coculture of human
heart microvascular ECs with Tregs, these proteins increased (122).
②Tregs inhibited the activation of ECs induced by ox-LDL, LPS, fine particles,
and vasoactive substances (123–125).
③Adoptive transfer of Tregs induced an increase in small capillaries in MI (97).
④Tregs became Th1-like cells with an antiangiogenic effect in HF. This effect was
related to the expression of TNFR1 on Tregs (31).
⑤Tregs protected the integrity of vascular endothelium and reduced the
leukocyte transcellular migration (127).
⑥In coculture of Tregs with HUVECs, the suppressive function of Tregs on
effector T cells increased (129).
⑦HLA-DR+ ECs promoted Treg proliferation through the surface marker
CD54 (130).
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HLA, human leukocyte antigen.
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Different pathophysiological changes exist in acute heart injury
and HF. What needs to be solved urgently now is to dynamically
describe the transcriptomic and TCR characteristics of Tregs along
the development of HF. Based on this, modifying Tregs, such as
generating heart injury-related CAR-Treg or constructing Treg
with heart antigen-specific TCR, may inhibit excessive immune
responses and regulate the functions of immune or parenchymal
cells more powerfully. Compared with total Tregs, application of
specific molecules of Tregs in vivo, such as some cytokines or
transcription factors of heart Tregs, may be another potential
choice. We believe that individualized treatment of HF will come
true eventually with the development of biotechnologies.
Describing the characteristics of the target cells of Tregs in HF
in detail and understanding the mechanisms of their interactions
will help us choose the most suitable method in the individualized
therapy of HF.

In this review, we summarized the latest studies on Tregs in
the early stage of heart injury and HF. At the same time, we
described the interactions between Tregs and their target cells in
HF and HF-related diseases, which will help us form a big picture
Frontiers in Immunology | www.frontiersin.org 1131
of the inflammatory responses related to HF. Combining the
latest technology methods with the basic knowledge of Tregs
would contribute to the individualized treatment of HF. Taking
different interventions based on different stages of heart injury
may maximize the benefits of patients.
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Foxp3+ regulatory T (Treg) cells are a CD4 T cell subset with unique immune regulatory
function that are indispensable in immunity and tolerance. Their indisputable importance
has been investigated in numerous disease settings and experimental models. Despite the
extensive efforts in determining the cellular and molecular mechanisms operating their
functions, our understanding their biology especially in vivo remains limited. There is
emerging evidence that Treg cells resident in the non-lymphoid tissues play a central role
in regulating tissue homeostasis, inflammation, and repair. Furthermore, tissue-specific
properties of those Treg cells that allow them to express tissue specific functions have
been explored. In this review, we will discuss the potential mechanisms and key cellular/
molecular factors responsible for the homeostasis and functions of tissue resident Treg
cells under steady-state and inflammatory conditions.

Keywords: regulatory T cell, tissue residency, inflammation, homeostasis, Foxp3
INTRODUCTION

The immune system is incessantly confronted by antigens derived not only from invading foreign
pathogens but also from self. Highly efficacious processes are in place so that harmful pathogens are
cleared by rapid yet indiscriminating innate immunity and by more sophisticated antigen-specific
adaptive immunity. For those lymphocytes posing a risk of self-reactivity, they are effectively
eliminated during the development within the primary lymphoid tissues. The elimination is
incomplete though, thus some lymphocytes with potential self-reactivity still mature and seed the
periphery. There comes a secondary screening procedure in the periphery to prevent unwanted
activation of self-reactive lymphocytes, predominantly operated through regulatory T (Treg) cells
(1, 2).

Treg cells are a subset of CD4 T lymphocytes that plays an indispensable role in maintaining
immunity and tolerance. Treg cell development is regulated by the master transcription factor, Foxp3,
which forms multiprotein complexes capable of activating or repressing gene transcription responsible
for Treg cell differentiation and functions (3). Depending on the site of their generation, Treg cells are
primarily divided into two distinct subsets, thymus-derived tTreg and peripherally induced pTreg cells.
Foxp3 expression is acquired in developing T cells within the thymus, and the level of self-reactivity is
thought to support the differentiation into tTreg lineage cells (4, 5). On the other hand, conventional
CD4 T cells activated during immune responses may acquire Foxp3 expression under adequate
org March 2022 | Volume 13 | Article 865593136
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conditions and become pTreg cells (inducible iTreg cells when
generated in vitro) (5, 6). The chief importance of Treg cells in
immunity and tolerance is well exemplified from the facts that
Foxp3deficiencyor its functionalmutation results in systemic lethal
autoimmune inflammation (7, 8). Scurfy mice have a missense
mutation in the Foxp3 gene due to 2-bp insertion, generating
truncated Foxp3 protein and lacking Treg cells, and exhibit a fatal
lymphoproliferative disease and premature death (9, 10). Likewise,
deletion in Foxp3 gene causes scurfy-like phenotypes (11).
Similarly, the immunodysregulation polyendocrinopathy
enteropathy x-linked (IPEX) syndrome is a rare recessive disease
with life-threatening multi-organ autoimmune inflammation, and
mutations in the Foxp3 gene is responsible for the manifestation of
the disease (12, 13).More than70mutations in the Foxp3 genehave
been identified in IPEX syndrome, ranging from a single base
substitution through deletion mutations (14, 15). Recapitulation of
some of the IPEXmutation in mice results in the development of a
fulminant autoimmune syndrome (16). Unlike the scurfymutation
or Foxp3 deletion in mice where Treg cell generation is severely
impaired, some IPEX patients still display undisturbed Treg cell
generation, suggesting functional defects of Treg cells (17). The
contributionof tTreg andpTreg cells to the immunity and tolerance
is generally overlapping, although there is evidence that pTreg cells
may play an additional role in maintaining inflammation and
tolerance especially at the mucosal tissues (18, 19). Indeed,
deletion of the conserved noncoding sequence-1 (CNS-1) of the
Foxp3 gene causes severe defects in TGFb-dependent Foxp3
expression in vitro (i.e., iTreg cells) without affecting thymic
generation of tTreg cells (20). These animals spontaneously
develop Th2 type inflammation at mucosal sites (20, 21), further
emphasizing non-overlapping roles of in vivo generated pTreg cells
from those of tTreg cells.

Over the last decade,much attention has been paid to the tissue-
resident T cell subset, a sessile population of antigen-experienced
memory T cells within the non-lymphoid tissues. They play a
critical role in protecting the host from pathogens reentering the
tissue sites. They are also found to display transcriptionally distinct
programs from those of circulating memory counterparts,
suggesting a distinct mechanism for their homeostasis and
functions (22, 23). It was subsequently reported that certain Treg
cells also express tissue-resident properties especially first in the
visceral adipose tissue (VAT), and then innumerousnon-lymphoid
tissues including the skeletal muscles, intestine, skin, and central
nervous system. As we begin to understand more about distinct
features ofTreg cells residing in different tissue sites, this reviewwill
discuss various tissue-resident (TR)-Treg cell subsets and the
cellular/molecular mechanisms shaping their homeostasis as well
as their beneficial or pernicious functions.
TREG CELL-MEDIATED IMMUNE
SUPPRESSION

Themechanisms throughwhich Treg cells regulate immunity have
extensively been examined over the years. Treg cell-mediated
immune regulation is generally achieved via two modalities:
contact-dependent and -independent mechanisms. Treg cells
Frontiers in Immunology | www.frontiersin.org 237
secrete copious amounts of anti-inflammatory/regulatory
mediators to dampen inflammatory responses. IL-10 produced by
Treg cells, although dispensable for tTreg cell development and not
required to prevent systemic autoimmune inflammation, play an
instrumental role in limiting inflammationespecially at themucosal
interface (24). TGFb1, a pleiotropic cytokine with potent immune
suppressive property, is another cytokine produced by Treg cells
(25). TGFb1 produced by Treg cells was shown to be required to
inhibit allergic and autoimmune inflammatory responses (26, 27),
although the role of Treg cell-derived TGFb1 has also been
challenged (28). IL-35, composed of the IL-12p35 and Ebi3
subunits, is another Treg cell-derived cytokine known to
antagonize T cell proliferation (29). Besides producing immune
regulatory cytokines, Treg cells are also capable of suppressing
effector T cell responses by consuming IL-2 (30). As for contact-
dependentmechanisms, Treg cells express numerous inhibitory co-
receptors capable of antagonizing immune activation. Lymphocyte
activation gene 3 (Lag3) is a CD4-related receptor expressed by
activated T cells, and Treg cells are known to express high level of
Lag3 (31). Lag3-deficient Treg cells express deficient suppressive
activity (31), although the precise underlying mechanism remains
unclear. Lag3 may suppress antigen presenting cell maturation by
interacting with its ligand, MHCII, thereby diminishing T cell
activation (32). Cytotoxic T lymphocyte-associated protein 4
(CTLA4) is a B7 like molecule constitutively expressed in Treg
cells andhas been implicated inTreg cell suppression (33), although
CTLA4-deficient Treg cells were still able to suppress immune
responses (34). Treg cells can suppress effector T cell responses
thoughdegrading extracellularATP.Tregcells highly expressCD73
and CD39, ATP hydrolyzing ectoenzymes, on their surface.
Adenosines and AMPs generated from degrading extracellular
ATP have the capacity to inhibit antigen presenting cell
maturation and T cell activation (35). In sum, the mode of
suppressive mechanisms in Treg cells is likely determined by
inflammatory and tissue conditions.
SUBSETS OF TISSUE RESIDENT
TREG CELLS: CHARACTERISTICS
AND FUNCTIONS IN HEALTHY/
DISEASE STATUS

Treg Cells in the Visceral Adipose
Tissues (VAT)
While there were many reports describing Treg cells detected in
tissues fromthe earlyera in theTregcellfield, thegenesisofTR-Treg
cell concept is a seminal study by Feuerer et al. that examined a
unique Treg cell population within the VAT (36). First hint came
fromanunexpected observation thatmore than 50%ofCD4T cells
found in the epididymal fat pads express Foxp3. TheseTreg cells are
equally suppressive, and most importantly display transcriptional
profiles that are distinct from Treg cells isolated from the
counterparts of lymphoid tissues (36). VAT Treg cells are thought
tobeoriginated fromthe thymus.VATTregcells express high levels
of Helios and neuropilin-1 (Nrp-1), markers considered for tTreg
cells (37). TCR sequencing analysis uncovers little overlap between
March 2022 | Volume 13 | Article 865593
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VATTreg and conventional CD4 T cells from the lymphoid tissues
(36, 37). Likewise, adoptively transferred conventional CD4 T cells
do not give rise to VAT Treg cells (38). Notably, Treg cell
accumulation in the VAT seems to occur early in life (prior to 3-4
weeks of age), since thymectomy at this age does not affect the
numbers of VAT Treg cells (37). The contribution of circulating
Treg cells in VAT Treg establishment seemsminimal after 3 weeks
as replenishing VAT Treg cells by adoptive transfer of Treg cells or
using parabiosis model fails to do so (37).

Genes preferentially expressed in VAT Treg cells include
transcription factors such as Pparg, Rora, and Gata3, and
chemokines/cytokines and their receptors such as Cxcl2, Cxcr6,
Ccr1, Ccr2, Il10, Il5, Il1rl1, and Il9r (39, 40). There are co-
stimulatory receptors, Pdcd1, and Ctla80, and other proteins related
to lipid metabolism including Dgat1, Dgat2, and Cd36 highly
expressed in VAT Treg cells (39, 40). Peroxisome proliferator-
activated receptor (PPAR) is the master transcriptional regulator
that controls adipocytedifferentiation (41). Itwas found thatTreg cell
expression of the Pparg is essential for VAT Treg cell accumulation,
phenotype, and functions (39). Treg cell-specific PPARg-deficient
mice showdecreasedVATTregcell numberand lossof their function
without affecting Treg cells from other tissues (39). Likewise, mice
treated with a PPARg agonist demonstrate a pronounced increase in
the number ofVATTreg cells (39). In addition to thePparg gene, the
Il1rl1 gene encoding ST2protein, the receptor for IL-33, is also highly
expressed in VAT Treg cells (39), suggesting that IL-33 may play a
role in VAT Treg cells. Indeed, IL-33 promotes VAT Treg cell
accumulation (37, 42). Single-cell RNA sequencing analysis showed
trajectory of VAT Treg cells, as the splenic Treg cells expressing low
levels of PPARg contain precursors of TR-Treg cells, which
accumulate in non-lymphoid tissue including VAT, further
supporting a critical role of PPARg in tissue adaptation of Treg
cells (43).

One notable feature of VAT Treg cells is that they express a
clonally expanded TCR repertoire (36, 37), strongly suggesting that
there may be antigen(s) expressed within the tissue. By generating
TCR Tgmice utilizing VAT Treg clone, Li et al. demonstrated that
the Tg mice (named vTreg53) have substantial population of VAT
Treg cells expressing the TCR. Consistent with the earlier
transcriptional profiles from polyclonal VAT Treg cells, VAT
Treg cells from the TCR Tg mice express representative gene
signatures that are previously identified (38).

Obesity-associated metabolic diseases are in part driven by
chronic inflammation of the VAT, and VAT Treg cells are
central regulators of the inflammatory responses (36). In obese
patients, the number of Treg cells in the circulation as well as
VAT is substantially reduced (44). Eller and colleagues showed
that significant decrease in the number of VAT Treg cells is
closely associated with an increase in inflammatory mediators
and a decrease in insulin sensitivity in VAT (45). In contrast,
supplementation with Treg cells reduced VAT inflammation and
improved metabolic parameters in obese mice (45). How VAT
Treg cells are reduced during obesity has recently been explored.
IFNa produced by plasmacytoid dendritic cells could deplete
PPARg+ VAT Treg cells (46). Alternatively, the soluble isoform
of IL-33 receptor ST2 (sST2) acts as an obesity induced
Frontiers in Immunology | www.frontiersin.org 338
adipokine capable of antagonizing IL-33 signaling, thereby
disrupting VAT Treg cell homeostasis (47).

Cold exposure is another factor that regulates VAT Treg cell
accumulation. Short-term cold exposure enhances in vivo Treg cell
induction in mice and humans by upregulating C17orf59 that
inhibits mTORC1 signaling, thereby enhancing Treg cell
generation (48). It has been reported that Treg cells are more
enriched in brown adipose tissue (BAT) and subcutaneous adipose
tissue (SAT) compared to VAT, implying the impact of cold
exposure on generation and accumulation of Treg cells in fat
tissues (49). Systemic ablation of Treg cells results in compromised
energy expenditure adaptation upon cold exposure, accompanied
with increased macrophage infiltration into brown adipose tissue
(BAT) (50), indicating a novel role of Treg cells in thermogenesis.
Treg cells upregulate thermogenic gene expressions upon cold
exposure or b3-adrenergic receptor agonist CL316243 stimulation
(50, 51). Interestingly, the role of SAT Treg cells in promoting
adipocyte beiging and thermogenesis appears to be more
prominent in female mice than male mice (51). This finding
suggests a possible sex difference in the role of fat Treg cells. Along
the line, the role of sex hormones in regulating VAT Treg cell
accumulation has recently been uncovered, as androgen promotes
production of IL-33 from stromal cells, which results in local
expansion of VAT Treg cells in males (52). The precise
contribution of sex hormones during fat Treg cell homeostasis
needs to be investigated.

However, there is also emerging evidence that VAT Treg cells
may negatively influence insulin resistance. IL-10 secreted from
Treg cells, including VAT Treg cells, can drive insulin resistance
in obesity by suppressing adipocyte energy expenditure and
thermogenesis (53). In support, Treg cell specific IL-10
deficiency leads to increased insulin sensitivity and reduced
obesity in male mice fed with high fat diet. Blimp1 is a
transcription factor involved in IL-10 expression in Treg cells
(54). Blimp1 deficiency in Treg cells reduces IL-10+ Treg cells
especially within the adipose tissue, and Blimp1 deficient mice
are protected from insulin resistance and obesity (53). Zheng and
colleagues reported that VAT Treg cells may play a distinct role
during insulin resistance derived from obesity and from aging
(55). Indeed, mice deficient in VAT Treg cells, while susceptible
to obesity associated insulin resistance, are better protected from
age-associated insulin resistance (55), suggesting a complexity of
VAT Treg cell-mediated regulation of insulin metabolism. A
recent study from Li et al. uncovered using single-cell ATAC-
sequencing that insulin signaling triggers the transition of VAT
Treg cell subsets (CD73hiST2lo subset into a CD73loST2hi subset)
through a HIF-1a-Med23-PPARg axis (56). In obese and aged
mice, CD73hiST2lo VAT Treg cells are markedly decreased (56).
In support, deleting Hif1a or Med23 in Treg cells is sufficient to
block the transition, resulting in an enrichment of CD73hiST2lo

VAT Treg cells, which activate beige fat biogenesis and protect
from metabolic disorders (56).

Lastly, the discrepancy on adipose tissue TR-Treg cells among
species is a subject of high importance. A study by Laparra et al.
directly compared the proportion of Treg cells present in VAT or
SAT among mouse models, cynomolgus macaques, and humans
March 2022 | Volume 13 | Article 865593
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(57). Surprisingly, the proportion of fat TR-Treg cells is found
low, except C57BL/6 strain which show male-specific and aging-
related increase of Treg cells. As C57BL/6 mouse strains are
widely used to study VAT Treg cells, this species/strain-related
discrepancy needs to be taken into account when translating the
findings to humans.

Treg Cells in the Skin
Skin is the largest organ of the body and the importance of
cutaneous Treg cells in maintaining tissue homeostasis and
immune tolerance especially against skin microbiome has been
investigated. In the skin of adult mice, the proportion of Foxp3+

Treg cells is considerably higher than that of circulation or of
lymphoid tissues (~40% vs. ~10%) (58). Gratz et al. reported the
existence of Treg cells expressing activated effector memory
phenotypes that preferentially locate in hair follicles in the skin
of mice (59). Memory phenotype Treg cells found in normal
human skin are similarly localized in hair follicles (60).
Ontogeny of skin resident Treg cells begins early at postnatal
period, during which immune tolerance against commensal
microbes is thought to be established (58). Preventing Treg cell
accumulation in the skin by treating sphingosine-1-phosphate
receptor agonist (FTY720) substantially disrupts tolerance
against commensal bacteria, upon challenge later (58). A
subset of CCR6high Treg cells found within the neonatal
thymus are thought to be those seeding the skin during
postnatal period (61). Inhibiting the migration during this
developmental window results in accumulation of these Treg
cells in the thymus, suggesting that they are of thymic origin.

Skin Treg cells are highly heterogeneous. Comparing TCR
sequences between conventional memory T helper cells and Treg
cells isolated from human skin revealed little homology,
indicating that they may recognize different antigens (60). An
elegant study from Tomura and colleagues utilized a mouse
model expressing a photoconvertible protein to track migratory
cells during contact hypersensitivity. From single cell gene and
protein expression analyses they identified two populations of
skin Treg cells, one subset primarily expressing Nrp1 and
another subset that express CD39 together with CD25,
granzyme B, or CTLA4 (62). Skin Treg cells are also known to
express GATA3 and RORa (63), and they may directly control
Treg cell functions because mice deficient in these transcription
factors in Treg cells spontaneously develop Th2 type skin
inflammation (64).

Skin-specific environmental cues help to promote skin TR-
Treg cell development and proper functions. Skin commensal
microbes play an important role for the early recruitment of Treg
cells to the skin, since germ-free neonates display substantial
reduction in skin Treg cells (61). Microbiota are known to
stimulate CCL20 production by hair follicles, supporting the
migration of Treg cells (61). Phenotypic features of skin resident
Treg cells are analogous to that of memory T cells in that they
express low levels of CD25 yet higher KLRG1, CTLA4, and CD127
(59). Moreover, various chemokine receptors involved in skin
migration are expressed, including CCR2, CCR6, CCR8, CCR10,
CXCR4, and CXCR6. IL-15 and dermal fibroblasts, conditions
Frontiers in Immunology | www.frontiersin.org 439
found in chronically inflamed skin, trigger cocultured cutaneous
Treg cell proliferation in an antigen-independent manner,
indicating that skin Treg cells may directly respond to
inflammatory cues to limit inflammatory processes (65).
Likewise, IL-33, an alarmin cytokine highly expressed in the
skin from patients with atopic dermatitis or psoriasis, is known
to drive accumulation and functional maturation of skin Treg cells
(66). Interestingly, unlike lymphoid Treg cells, skin Treg cells are
found to highly express both IL-2 and IL-7 receptors (59).
However, IL-2 is dispensable for their maintenance in the skin.
Instead, IL-7 seems crucial for their retention in the skin at steady
state (59). Additionally, skin Treg cells express the mitochondrial
enzyme, arginase 2 (Arg2) (67). Arg2 augments suppressive
functions of Treg cells in part by regulating their metabolic
program via mTOR signaling (67). Arg2 deletion in primary
human Treg cells results in the loss of Treg transcriptional
signature (67), suggesting broad functions of Arg2 in Treg cells.

There is a plethora of evidence emphasizing the importance of
skin Treg cells for maintaining tissue homeostasis. Skin Treg cells
express Notch ligand family member, Jagged 1, and facilitates hair
follicle stem cell function and hair follicle regeneration by
supporting stem cell proliferation and differentiation through
the CXCL5-IL-17 axis (68). It was recently reported that obesity
targets hair follicle stem cells to accelerate hair thinning and loss
(69). High-fat diet (HFD) induced IL-1-derived NFkB activation
within the stem cells, which inhibits Sonic hedgehog (SHH) signal
transduction in the stem cells, thereby inducing depletion of hair
follicle and hair loss. Because HFD is known to impair Treg cell
function especially in the fat tissues, it is interesting to speculate
that HFD inhibits hair follicle stem cells through altering skin Treg
cell functions. Skin Treg cells also inhibit myofibroblast activation,
which suppress excessive scar formation during wound healing
(64). Treg cells can promote the repair of skin trauma by the
expression of epidermal growth factor receptor (EGFR) and are
involved in stem cell differentiation in the skin (70). In support,
the lack of EGFR in Treg cells can lead to delayed wound closure
and increase accumulation of pro-inflammatory macrophages
(70). Expansion of skin Treg cells with a healing function upon
UVB exposure has been reported (71). The expanded Treg cells
promote wound healing and suppresses inflammation, via
proenkephalin (PENK), an endogenous opioid precursor, and
amphiregulin (Areg), the EGFR ligand (71).

Skin Treg cells are fundamentally important in regulating
inflammatory responses in the skin. In vitiligo, a T cell mediated
autoimmune condition resulting in the loss of melanocytes,
cutaneous Treg cells are greatly reduced, suggesting that
autoreactive T cell activation is not adequately controlled (72).
Diffuse systemic scleroderma/sclerosis (SSc) is an autoimmune
condition characterized by excessive fibrosis in barrier tissues like
skin (73). Skin Treg cells are similarly reduced in the SSc skin, which
seems associated with diminished TGFb and IL-10 expression (74).
However, one study that compared Treg cells from blood and the
skin of limited and diffuse SSc patients found that Treg cells in the
skin lesions produced pro-fibrotic Th2 cytokines like IL-13 and IL-4
(75). Along the same line, an increase in the frequency of circulating
CD25+FoxP3+CD127− Treg cells in SSc patients was observed
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especially in early phase of the disease. There is also recent evidence
indicating that Treg cells could contribute to SSc pathogenesis by
conversion into pathogenic effector T cells (76). Fenoglio et al. found
a significant correlation between increased circulating Th17 cells
and alteration of Treg cell compartment (77). Therefore, these
dysfunctional Treg cells may exacerbate the disease. Elevated
methylation levels of the FoxP3 promoter, inversely correlated
with FoxP3 mRNA expression, are accompanied by reduced
proportion of CD4+CD25+FoxP3+ Tregs (78). Indeed, increased
methylation levels of the FoxP3 promoter in Ssc patients was found
associated with reduced FoxP3 mRNA expression and proportion
of CD4+CD25+FoxP3+ Treg cells (79). Treg cells are also able to
limit psoriatic inflammation in the skin. Experimental psoriasis
induced by topical imiquimod application results in significant
accumulation of Treg cells in the skin lesion, as seen in human
psoriasis (80). The accumulation is thought to mediate resolution of
the inflammation, because Treg cell depletion dramatically
exacerbates skin inflammation (80). However, Treg cells may
alternatively promote the disease in some cases. The disease-
promoting features of Treg cells are attributed to Treg cells’
differentiation into IL-17-producing effector-like cells (81, 82).

Treg Cells in the Lung
As the lung is constantly exposed to microbial and environmental
antigens, balancing tolerance and immunity is an important task
of lung resident immune cells. The lung is another organ replete
with TR-Treg cells. Treg cells resident in the lung tissue express
various immune regulatory properties during infection, allergy,
and injury. In asthmatic inflammation, Foxp3 expression in TR-
Treg cells or the frequency of TR-Treg cells is found diminished
(83), although in some cases, Treg cell numbers are instead
increased in patients with severe allergic inflammation,
suggesting their defective suppressive functions (84). The precise
mechanisms underlying the defects is not well understood.
However, inflammatory cytokines may destabilize the stability of
Treg cells or undermine Treg cell functions. Thymic stromal
lymphopoietin (TSLP) highly present in allergic conditions is
shown to inhibit IL-10 production by Treg cells, resulting in
diminished suppressive functions (85). Similar defective functions
and reduced numbers of TR-Treg cells are found in idiopathic
pulmonary fibrosis (IPF), a chronic lung disease caused by the
accumulation of extracellular matrix in the lung (86). Earlier
studies identified that Treg cells in the bronchoalveolar lavage
are reduced in patients with IPF (87). Reilkoff et al. reported that
Semaphorin (Sema) 7a expression is increased in lymphocytes
including Treg cells and that Sema 7a+ Treg cells represent
functionally defective Treg cells potentially supporting fibrosis in
a TGFb-driven fibrosis (88), suggesting that targeting Sema 7a+
Treg cells could be a strategy of therapy. In addition, an elegant
study from Belperio and colleagues presented the evidence
supporting a pathogenic role of Treg cells during fibrosis in the
lung. Using bleomycin-induced fibrosis model in mice, treatment
of mice with IL-2 complex during intratracheal bleomycin
challenge exacerbates lung fibrosis, which was in part due to
heightened type 2 immunity triggered by altered Treg cell
functions (89). On the other hand, ST2+ Treg cells producing
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IL-13 in response to IL-33 are shown to be critical in preventing
mortality following acute lung injury by limiting inflammatory
cytokine production and Ly6C monocyte accumulation (90).
Therefore, expanding Treg cells may deviate immune responses
to type 2 immunity, yet the impact of type 2 immune responses
remains controversial. Unlike bleomycin-induced lung injury
model, CD103+ TR-Treg cells in the lung could potentially limit
lung fibrosis induced by TR-pathogenic CD4 in Aspergillus
infection model (91). Ichikawa et al. demonstrated that in
response to chronic exposure to Aspergillus fumigatus CD69
+CD103+ TR-Treg cells are generated to limit pathogenic
functions of CD69+CD103+ TR-effector memory CD4 T cells to
suppress fibrotic inflammatory responses (91). Therefore, the
precise roles of TR-Treg cells may be determined by the type of
immune responses in the lung.

The contribution of lung TR-Treg cells has also been explored
in the model of lung infection. During pulmonary infection with
Cryptococcus, antigen specific Treg cells are induced and
accumulate in the lung. These Treg cells uniquely express the
IRF4 to suppress Th2 type immune responses induced to control
fungal replication and pathology. IRF4 expression in Treg cells
plays a critical role for their retention in the lung through CCR5
expression (92). In viral infection such as influenza virus, antigen
specific Treg cells expressing memory phenotype accumulate in
the lung tissue and control anti-viral responses (93). Helios, an
Ikaros family member transcription factor and preferentially
expressed in Treg cells, was recently reported to be highly
expressed in lung Treg cells during influenza virus infection.
Importantly, Helios+ Treg cells have the ability to persist in the
lung tissues and to more potently suppress virus specific CD8 T
cell responses (94). Treg cells are also shown to mediate rapid
antigen-specific primary and memory T cells responses (95) and
to promote formation of follicular helper T cell and germinal
center B cell responses in the lymph nodes by controlling IL-2
availability (96), thereby enhancing anti-viral immune responses.
In addition to modulating anti-viral immunity, lung Treg cells
promote tissue repair. Arpaia et al. previously reported that
inflammatory cytokine IL-18 or alarmin IL-33 is able to induce
Areg production from lung Treg cells during lung injury from viral
infection, and the production of Areg seems crucial for Treg cell-
mediated tissue repair (97). Given that TCR- and IL-2-signaling
pathways primarily control Treg cell suppressive function, this
study suggests that a distinct pathway triggered by ‘innate’ tissue-
derived signals generated during inflammation and tissue injury is
critically involved in tissue repair function, independent of the
Treg cell suppressive function. Transcriptomic analysis of human
TR-Treg cells uncovers that human lung TR-Treg cells
differentially express genes associated with the Wnt pathway
(specifically Wnt ligands, wnt1, wnt2, wnt7a and Wnt receptor,
Fizzled 2), supporting the possibility that lung TR-Treg cell may
mediate epithelial cell repair and regeneration (98).

Amid the SARS-CoV2 pandemic, the roles of lung TR-Treg
cells during COVID-19 pathogenesis remain to be determined.
Circulating Treg cell number is greatly reduced in COVID-19
patients, and importantly, the reduction rate is correlated with
disease severity (99–102). A recent study also reported a decrease
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in airway Treg cells in COVID-19 patients compared to healthy
controls (103). The loss of Treg cells in circulation seems related to
increased and persistent tissue damage, which often leads to
worsen disease outcomes. On the other hand, another study by
Galvan-Pena et al., showed increase in proportions and Foxp3
levels in circulating Treg cells, correlating with disease severity
(104). These discrepant findings are likely attributed to lung TR-
Treg cell heterogeneity, suggesting a need for more precise
characterization of lung TR-Treg cells beyond the change in
their number or ratio. Evaluating antigen specificity of Treg cells
to virus will be necessary based on the protective role of antigen-
specific CCR7+ tissue resident memory (Trm) CD8 T cells in the
non-hospitalized and convalescent patients, emphasizing the
importance of persistent antigen-specific Trm cells (105). Given
that lung TR-Treg cells can limit pulmonary immunopathology
during respiratory virus infection, understanding the behavior of
lung TR-Treg cells from COVID-19 patients may provide better
insights into the understanding the pathology of this virus.
However, a study from Benoist and colleagues reports that Treg
cells from severe COVID-19 patients appear to express distinct
phenotypes, unexpectedly characterized by increased Treg cell
proportion and Foxp3 expression (104). It was found that these
Treg cells overexpress not only suppressive effectors but also pro-
inflammatory cytokine such as IL-32. Most strikingly, these Treg
cells express similar traits as tumor-infiltrating Treg cells. These
results suggest a detrimental role of Treg cells in COVID-19, by
interfering with anti-viral immunity (104).

Treg Cells in the Skeletal Muscle
Treg cells present in the skeletal muscle were first reported in
2013 (106). A small proportion of Treg cells (~10% of CD4+ T
cells) exist in the muscle of healthy mice (106). In the injured
condition, Treg cells rapidly proliferate within 3-4 days and then
decrease. However, even after a month after injury, detectable
Treg cells remain (106, 107). Accumulation of Treg cells in
injured muscle is primarily mediated by IL-33 secreted by
injured skeletal muscle (107). IL-33 acts on the cells expressing
IL33 receptor, ST2, one of the most strongly up-regulated genes
in Treg cells isolated from injured muscle compared to Tregs
present in lymphoid tissue (106).

Where these Treg cells are originated from remains unclear.
Treatment of FTY720 before inducing muscle injury reduced the
absolute number of accumulated Treg cells, but not their
proportion among CD4+ T cells in the muscle (107),
suggesting accumulation of muscle Treg cells in response to
injury may be dependent on the recruitment from the circulating
T cell pool. However, this does not rule out the possibility that
local expansion of Treg cells that are already found in the muscle.
The TCR sequences of muscle Treg cells were distinct from
muscle conventional T cells and a substantial proportion (20-
40%) of muscle Treg cells is clonally expanded (106). Using a
transgenic mice carrying rearranged transgenes encoding the
TCRa and TCRb chains from a muscle TR-Treg clone, Cho et al.
showed a muscle specific accumulation and proliferation of Treg
cells, indicating TCR-dependent development of muscle Treg
cells (108). Therefore, muscle Treg cells may arise from the
mixed origins, and this needs to be further examined.
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Skeletal muscle regeneration requires the activation and
differentiation of myogenic stem cells, called muscle satellite
cells (109). Upon muscle injury, proinflammatory (M1 type)
macrophages immediately infiltrate the tissue, followed by anti-
inflammatory (M2 type) macrophages (110). M1 macrophages
stimulate satellite cell proliferation and exacerbate inflammation,
while M2 macrophages induce differentiation of satellite cells
and promote tissue regeneration (110). Muscle Treg cells play a
crucial role in M1-to-M2 switch in macrophages as this
transition is absent when Treg cells are depleted (106). Treg
cells also limit IFNg production, reducing inflammation and
fibrosis (111). Furthermore, Treg cells may directly regulate
activity of muscle satellite cells. In vitro coculture with Treg
cells induces enhanced proliferation and reduced myogenic
differentiation of muscle satellite cells (106). Regulatory role of
Treg cells on tissue regeneration seems to be dependent on a
growth factor, Areg. Areg is overexpressed by muscle Treg cells
and administration of Areg to Treg-depleted mice at the time of
muscle injury induces expression of genes involved in muscle
repair (106). Addition of Areg in the muscle satellite cell culture
also enhances differentiation of myogenic differentiation (106),
suggesting a critical role of Areg, particularly derived from Treg
cells, on muscle repair.

Little is knownaboutTreg cells inmuscle disease.Treg cellswere
highly accumulated in skeletalmuscles ofmdx dystrophin-deficient
mice, amodel of humanDuchennemuscular dystrophy (DMD), in
whichmuscle injury and inflammation ismitigated by expansion of
the Treg population but exacerbated by Treg-cell depletion (112).
The P2X7 purinergic receptor (P2RX7) appears to be especially
important in this respect. Genetic ablation of the P2X7 gene inmdx
mice orP2RX7antagonist administration leads to improvedmuscle
structure and function,with reductionof inflammationandfibrosis,
and increased muscle strength and endurance (113, 114). Muscle
Treg cells also support muscle repair after myocardial infarction
directly via promoting cardiomyocyte proliferation (115) and
indirectly via modulating M1/M2 differentiation (116). More
work is needed to understand TR-Treg cell biology in the muscle.

Treg Cells in the Intestine
The gut tissues are separated from microbial and food antigens
by single layer of intestinal epithelial cells (117). Therefore, the
epithelial layers as well as underlying tissues, lamina propria, are
heavily populated with various immune cells particularly with
regulatory properties. In support, the intestines are most
frequently affected by the loss-of-function mutations of the
FOXP3 gene in IPEX patients, highlighting the key role of Treg
cells in the intestinal tolerance (118). Intestinal TR-Treg cells are
heterogeneous and can be divided into the three subsets based on
transcription factor expression: GATA3+Helios+, RORgt+, and
RORgt-Helios- Treg cells (119). Wang et al. reported that Treg
cell-specific deletion of GATA3 results in a spontaneous
inflammatory disorder (120). These Treg cells display defective
suppressive function with diminished Foxp3 expression, instead
acquire Th17 phenotypes (120). In contrast, Wohlfert et al.
reported that Treg cell-specific Gata3-/- mice do not exhibit
any inflammatory conditions at steady state. However, the
frequency of Treg cells in the intestinal tract is found markedly
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diminished in these mice (121). Consistent with this observation,
Gata3-/- Treg cells fail to protect animal from colitis (121).
Particularly, GATA3 expression in Treg cells plays an important
role in limiting expression of effector T cell markers such as
RORgt and IL-17A especially under inflammatory settings (121).
GATA3 also induces expression of ST2 and loss of GATA3
markedly reduces ST2 expression in Treg cells (122). RORgt, a
transcription factor involved in Th17 cell differentiation, is also
found highly expressed in colonic Treg cells compared to splenic
Treg cells at steady state and its expression is microbiome-
dependent (123, 124). RORgt supports Foxp3 expression in
colonic Treg cells in part by suppressing the effector programs
(125). RORgt-deficient Treg cells transferred into Rag-/- mice
induced for colitis fail to protect mice from the disease, as these
Treg cells express Th1-like effector phenotypes and subsequently
lose suppressive activity (125).

Intestine TR-Treg cells likely have mixed origin. Approximately
10% of CD4+ T cells express Foxp3 in germ-free mice, while ~35%
of colonic CD4+ T cells are Treg cells in specific pathogen-free
(SPF) mice (126), suggesting that the majority is likely of locally
generated pTreg cells. Indeed, analysis on colonic Treg cells in SPF
mice showed low expression of Helios and Nrp-1, markers of tTreg
cells (107, 126, 127). Adoptive transfer of naïve conventional T cells
from lymph node (LN) to Treg-depleted mice successfully restored
RORgt+ or Helios+ colonic Treg cells upon interaction with
microbiota (128), indicating microbiome-derived signals are
required for inducing certain subset of Treg cells in the gut.
However, some Treg cells are likely of thymic origin. In support,
TCR repertoire of intestine TR-Treg cells is similar to LN Treg cells
but distinct from intestinal conventional T cells (129).

Inflammatory bowel disease (IBD) is a group of chronic
inflammatory diseases of the intestine, including ulcerative
colitis and Crohn’s disease. IBD patients have increased Treg
cells in the mucosa of gut; however, the suppressive function of
Treg cells from IBD patients seems impaired (130). Increased
expressions of Tbet and RORgt are associated with elevated levels
of proinflammatory cytokines including IL-17, IL-6, and IL-1b,
resulting in a decreased suppressive Treg cell function and severe
inflammation in IBD (131–133). Areg is also highly expressed by
intestinal Treg cells; however, Treg-specific ablation of Areg does
not alter the phenotypes nor functions of Treg cells, suggesting
dispensable role of Treg cell-derived Areg in the intestine (97).
Dysregulated Treg cell functions appear to contribute to the
pathogenesis, although the precise role of dysregulated Treg cells
in IBD etiology remains to be determined.

Treg cells play anopposite role in the context of colorectal cancer
(CRC), where an increased accumulation of Treg cells is associated
with worse prognosis and Treg cells suppress anti-tumor effector T
cell immunity (134). However, it is also possible that Treg cells can
be protective in CRC as Treg cells are the major source of IL-10,
which reduce polyposis (135). Oral administration of IL-10 to a
mousemodel of spontaneous gastrointestinal polyposis ameliorates
disease and enhances survival, via regulating the ratio between
RORgt+IL-17+ and RORgt-IL-17- Treg cell subsets (136). This
opposite role of Treg cells might be due to their extremely high
heterogeneity in intestines. Single-cell RNA sequencing analysis on
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intratumoral Tregs fromCRC patients revealed Treg cells with low
activity of the MondoA-thioredoxin-interacting protein (TXNIP)
axis and increased glucose uptake (137). Treg cells with low
MondoA-TXNIP axis are Th17-like and hyperglycolytic, which
promote tumor growth. This seems to be a result of adaptation to
glucose-depleting tumor microenvironment. It was recently
reported that TCF-1 plays an essential role in regulating Treg cell
development and functions (138). Interestingly, TCF-1-deficient
Treg cells, while fully competent to suppress T cell proliferation and
cytotoxicity, were unable to control CD4 T cell polarization and
inflammation (138). In mice with polyposis, the lack of TCF-1
expression in Treg cells promotes tumor growth. Likewise, in CRC
patients TCF-1low Treg cells and elevated Th17 immunity were
found (138). In a mouse model of environmental enteric
dysfunction (EED), a gastrointestinal inflammatory disease
caused by malnutrition and chronic infection, Hand and
colleagues recently reported that mice with EED harbor increased
RORgt+ Treg cells in the small intestine, contributing to poor
efficacyof oral vaccines (139).DeletionofRORgt expression inTreg
cells was sufficient to restore small intestinal vaccine specific CD4T
cell responses and vaccine induced protection, suggesting a
detrimental role of Treg cells. However, the lack of these Treg
cells was associated with enhanced susceptibility to EED (139).
These findings highlight the complex and diverse mechanisms
mediated by intestine TR-Treg cells in different disease settings.

Treg Cells in Tumors
?A3B2 twb .24w?>Treg cells are abundant in tumor tissues. It is
generally known that intratumoral Treg cells hinder effective anti-
tumor immunity, representing a critical barrier to successful anti-
tumor immunity and immunotherapy. De Simone et al. compared
Treg cells infiltrating colorectal or non-small cell lung carcinomas
and found that intratumoral Treg cells are highly suppressive
compared to Treg cells isolated from normal tissues or the
peripheral blood of the same patients (140). Phenotypically,
these Treg cells express immune checkpoint surface receptors
(Lag3, CTLA4, PD1, TIM3). Expression of tumor Treg cell
signature genes, such as Layn, Mageh1, and Ccr8, is found
negatively correlated with poor patient survival (140). Similar
features of intratumoral Treg cells are also found in human
breast cancer, namely, high suppressive ability and their gene
expression pattern, notably CCR8 (141). In prostate cancer
patients, CCR4+ Treg cells are found abundant in the tumor
tissue and associate with poor prognosis (142). Tumor
microenvironment secretes chemokines selectively recruiting
Treg cells to tumor sites. Hypoxia induces CCL28 in ovarian
cancer and liver cancer, recruiting CCR10+ Treg cells (143).
Pancreatic ductal adenocarcinoma secretes CCL5 to recruit
CCR5+ Treg cells and blocking CCL5 expression could improve
anti-tumor immunity (144). Anti-CCR4 antibody treatment
enhances antitumor immune responses mainly by altering
tumor infiltrating Treg cells in an ovarian cancer model (145).
Similarly, anti-CCR4 antibody selectively depletes intratumoral
Treg cells, promoting anti-tumor T cell responses (146).

TCRrepertoire analysesuncover little overlapbetweeneffectorT
cells and intratumoral Treg cells in human breast cancer and
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melanoma patients (141, 147). Instead, tumor Treg cells display
substantial overlap with circulating Treg cells, suggesting that they
are likely of tTreg cell origin (147). Alternatively, tumor
microenvironment can promote the differentiation of pTreg cells
from naïve CD4+ T cells due to enriched signals including TGF-b,
IL-10, and indoleamine 2,3-dioxygenase (IDO), all of which are
known Treg cell inducers. For example, acute myeloid leukemia
cells express IDO, supporting the intratumoral Treg cell conversion
(148). The precise origin of intratumoral Treg cells may thus differ
depending on the tumor cell types.

Treg cells accelerate immune evasion by tumor cells, leading to
tumor development and progression in various types of cancer. Treg
cells known to restrict the anti-tumor immune response through
multiple mechanisms such as CTLA4 mediated suppression of
antigen presenting cell function, consumption of IL-2, production
of immunosuppressive cytokines, and expression of immune
checkpoint inhibitory receptors. Lag3 is highly expressed in
intratumoral Treg cells. Lag3 expressed on Treg cells was initially
reported to play an important role in mediating Treg cell functions
(31). Paradoxically, Lag3 expression in Treg cells was shown to limit
Treg cell function and survival in a mouse model of autoimmune
diabetes (149). Whether Lag3 expression in intratumoral Treg cells
plays positive or negative role in Treg cell functions need to be
examined. If Lag3 is an inhibitory receptor interfering with Treg cell
function as observed in diabetes, targeting Lag3 in intratumoral Treg
cells will enforce the function, further limiting anti-tumor immunity.

Treg Cells in Transplantation
Treg cells derived from recipients are generally considered critical in
preventing allograft rejection, as a selective depletion of recipient
Treg cells but not donor Treg cells abrogates graft acceptance (150,
151). Using a murine cardiac allograft model, Hancock and
colleagues found that ~100-fold higher intragraft Foxp3 levels in
recipients tolerized with anti-CD154 antibody and donor-specific
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transfusion, compared to those rejecting allograft (152). Treg cells
are further found indispensable for tolerance induction, because
anti-CD25 antibody injection or peritransplant CD25+ Treg cell
depletion prevents long-term graft survival (152). Similar protective
roles of Treg cells were also reported in liver and lung
transplantation (153, 154). In case of kidney transplantation,
allografts are spontaneously accepted, which is associated with
increased Foxp3 expression (155). Interestingly, donor-derived
TR-Treg cells were more potent than the recipient-derived Treg
cells (156). The precise mechanisms supporting the formation of
TR-Treg cells and the cellular and molecular signatures of TR-Treg
cells within different transplant organs remain to be determined.
CROSSTALK BETWEEN TREG CELLS
AND TISSUES

Once activated Treg cells enter the inflamed or infected target
tissues, they receive additional tissue-derived signals that allow
them to further differentiate into TR-Treg cells. These signals are
tissue-specific, and likely turn on the ‘tissue-specific’ signatures
on Treg cells (Figure 1). For example, IL-33, a member of the IL-
1 family and an alarmin, is mainly produced by epithelial and
endothelial cells following damage or cell stress and function as a
‘pan-TR-Treg cell factor’ as they are expressed in multiple tissue
sites (157). A study by Shiering et al. has found that IL-33
produced by inflamed intestines acts on colonic Treg cells that
highly express the ST2 and supports Treg cell function and, most
importantly, provides a signal for Treg cell accumulation and
maintenance in the sites (122). Similar mechanism was also
observed in intestinal cancer. Pastille et al. demonstrated that
tumor infiltrating Treg cells preferentially express ST2 and that
IL-33 stimulated intratumoral Treg cells display more activated
phenotypes and better accumulate in the tumor (158). IL-33 also
FIGURE 1 | Tissue-specific adaptation of TR-Treg cells and crosstalk between tissue and Treg cells. The factors produced from tissues shape Treg cells’ ability to
control in the tissue. Treg cells express markers to become more tissue specific and produce factors that regulate tissue function. MCT-1, lactate transporter; Areg,
amphiregulin; 5-HT7, serotonin receptor; CCN3, cellular communication network factor 3; PENK, proenkephalin; EGFR, epidermal growth factor receptor.
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shapes Treg cell stability by curtailing IL-17 production by Treg
cells. IL-33’s ability to modulate Treg cell homeostasis is also
found in VAT. Vasanthakumar et al. reported that IL-33
expressed in the VAT is able to induce VAT TR-Treg cell
proliferation and maintain Treg cell identity, because both
proportions and Foxp3 expression of VAT TR-Treg cells are
greatly diminished in Myd88-/- mice (159). Expression of the
Pparg, a master transcription factor essential for VAT TR-Treg
cells, is maintained through IL-33 stimulation, further
supporting the IL-33’s support for VAT Treg cells (159). Last
example of IL-33 function as a regulator of TR-Treg cells is from
skeletal muscle. Kuswanto et al. demonstrated that IL-33 is
rapidly produced after acute muscle injury and that IL-33 is
primarily produced by CD31+ endothelial cells (107). IL-33
signaling is particularly important for muscle TR-Treg cell
accumulation, as Treg cell-specific ST2-deficient mice exhibit
delayed muscle repair (107). Most notably, tissue regenerative
activities of Treg cells, for instance to induce tissue repair factors
such as Myog (muscle transcription factor) and Adam8
(constructing extracellular matrix) are significantly decreased
in the absence of ST2 on Treg cells (107). In addition to
soluble mediators like cytokine IL-33, there are tissue-specific
mechanisms involved in TR-Treg cell trafficking, accumulation,
and retention. FucT-VII (alpha-1,3-fucosyltransferase VII) is an
enzyme required for PSGL-1 glycosylation to facilitate TR-Treg
cell accumulation in tissues like skin and lamina propria (160,
161). ATP released by necrotic muscle cells during muscle injury
inhibits TR-Treg cell generation and functions through
purinergic P2X receptors, delaying myofiber regeneration (113,
114). In the CNS, serotonin (5-HT) produced by brain cells
activates 5-HT7 receptor expressing Treg cells, supporting Treg
cell expansion (162). Meanwhile, Treg cells infiltrating the brain
during ischemic injury release osteopontin that enhances the
repair activity of microglia (162). A protein known as cellular
communication network factor 3 (CCN3) is another cellular
factor secreted from CNS TR-Treg cells, promoting
oligodendrocyte differentiation and remyelination (163).

The evidence that local metabolites critically modulate Treg cell
functions continues to rise (164, 165). Treg cells heavily rely on
oxidative phosphorylation for their homeostasis and functions (165,
166). Hafler and colleagues recently reported that tissue-derived
lipid molecule plays a key role in maintaining Treg cell homeostasis
(167). Oleic acid, the most prevalent free fatty acid, amplifies Treg
cell-oxidative phosphorylation by increasing Foxp3 expression as
well as Stat5 phosphorylation, enhancing Treg cell suppressive
functions. Indeed, Treg cells isolated from multiple sclerosis (MS)
patients express different transcriptomic signatures that resemble
those exposed to proinflammatory arachidonic acid (167). In
support, the concentration of oleic acid was significantly reduced,
and exposing MS patient Treg cells to oleic acid restores defects in
suppressive functions. Tumors provide hostile environments for
recruited immune cells (metabolite-depleted, hypoxic, and acidic
conditions). An elegant study by Delgoffe and colleagues recently
reported that intratumoral Treg cells unexpectedly utilize glycolysis
by-product, lactic acid as an alternative energy source (168). Treg
cell expression of a lactate transporter MCT-1 is thus essential for
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Treg cell survival and function within tumors, as Treg cell specific
MCT1 deletion results in slow tumor growth, and more
importantly, in an increased response to immunotherapy. How
metabolic rewiring of intratumoral Treg cells favors Treg cell
proliferation, survival, and suppressive functions will require
further investigation. Therefore, tissue-specific metabolites may
play a fundamental role in modulating Treg cell homeostasis and
functions by reprogramming gene expression profiles of TR-Treg
cells to equip them with cellular machineries ideal for their
adequate maintenance.
THERAPEUTIC INTERVENTIONS

Therapeutic approaches targeting Treg cells have gained much
attention and multiple clinical trials are underway to apply
preclinical findings in clinical settings (Table 1). Strategies
leveraging Treg cells vary depending on the disease type, as
augmentation of Treg cell number and function is critical for
autoimmune diseases whereas depleting or suppressing Treg cells
is required for successful cancer treatment. Depletion of Treg cells
has been traditional attempts predominantly by targeting CD25.
The approach has expanded to other Treg cell markers such as
CD122, CD44, 4-1BB, and CCR8 in order to improve the
specificity of treatments (192). Recent studies suggest a new
approach rather to weaken Treg cell function via stimulating
costimulatory molecules such as OX40 and GITR (193, 194).
Now that TR-Treg cells may acquire tissue-specific signatures in
phenotypes and gene profiles, developing more specialized tools
targeting tissue-specific TR-Treg cells, particularly in tumors of
different tissue sites, will be needed. Combining Treg cell target
approaches with other immunotherapies such as anti-PD1 and
anti-PDL1 therapies has also been attempted in cancer patients. Of
note, depleting Treg cells may trigger compensation program such
as an increased infiltration of macrophage in tumor or a reduction
in conventional T cells (195, 196), reducing the efficacy of
immunotherapy. Therefore, modulating Treg cells has to be
performed in consideration of multiple Treg cell-extrinsic factors.

Likewise, CD25 can also be a target to promote Treg cell
expansion as treatment with low dose IL-2 or IL-2:anti-IL-2
complexes that selectively expand Treg cells including TR-Treg
cells (197). However, IL-2 can still be used by CD25+ effector T
cells, or TR-Treg cells in different tissues may utilize other factors
(e.g. IL-7 or TGFb) to maintain in certain tissues. Therefore,
more specialized and tailored approaches to different tissues are
necessary to support Treg cell homeostasis.
CONCLUSION AND OUTSTANDING
QUESTIONS

It is obvious that TR-Treg cells are critical regulators of tissue
functions including homeostasis, inflammation, and repair, or a
significant barrier antagonizing effective anti-tumor immunity.
Over the years, the field has significantly grown and identified
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TR-Treg cells within different tissue sites, primarily skin, muscle,
and VAT. We now begin to understand the origin of TR-Treg
cells and key tissue-derived factors that promote the generation
and maintenance of TR-Treg cells. There are several important
questions that warrant future investigations. First, we need to
better understand the mechanisms involved in TR-Treg cell
retention within the tissues. Tissue retention is an important
feature of tissue resident lymphocytes and appears to be
mediated by multiple mechanisms depending on the tissue
types and the nature of immune responses. Treg cell retention
at the site of Leishmania infection is in part mediated by CD103,
the aE chain of the aEb7 integrin that is highly expressed on
Treg cells (198). Sphingosine 1-phosphate receptor 5 (S1PR5)
has recently been identified as a key regulator of the peripheral
retention of TR-memory CD8 T cells (199). TR-Treg cells may
share similar mechanisms for efficient tissue retention. Second,
there is increasing evidence that local tissue antigen stimulation
is critical for TR-Treg cell maintenance. A TCR transgenic mice
Frontiers in Immunology | www.frontiersin.org 1045
specific for VAT-specific antigens has opened new opportunity
to understand VAT TR-Treg cell biology (38). More rigorous
TCR repertoire analyses and identification of key tissue specific
antigens supporting TR-Treg cell differentiation will obviously be
the next step.
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V, López-Meseguer M, et al. Long-Term Results of Sirolimus Treatment in
Lymphangioleiomyomatosis: A Single Referral Centre Experience. Sci Rep
(2021) 11(1):10171. doi: 10.1038/s41598-021-89562-0

188. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK,
et al. Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells.
Sci Transl Med (2015) 7(315):315ra189. doi: 10.1126/scitranslmed.aad4134

189. Dong S, Hiam-Galvez KJ, Mowery CT, Herold KC, Gitelman SE, Esensten
JH, et al. The Effect of Low-Dose IL-2 and Treg Adoptive Cell Therapy in
Patients With Type 1 Diabetes. JCI Insight (2021) 6(18):e147474. doi:
10.1172/jci.insight.147474

190. Sicard A, Lamarche C, Speck M, Wong M, Rosado-Sánchez I, Blois M, et al.
Donor-Specific Chimeric Antigen Receptor Tregs Limit Rejection in Naive
But Not Sensitized Allograft Recipients. Am J Transplant (2020) 20(6):1562–
73. doi: 10.1111/ajt.15787

191. Rosado-Sánchez I, Levings MK. Building a CAR-Treg: Going From the Basic
to the Luxury Model. Cell Immunol (2020) 358:104220. doi: 10.1016/
j.cellimm.2020.104220

192. Togashi Y, Shitara K, Nishikawa H. Regulatory T Cells in Cancer
Immunosuppression - Implications for Anticancer Therapy. Nat Rev Clin
Oncol (2019) 16(6):356–71. doi: 10.1038/s41571-019-0175-7

193. Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, Jaffee EM, et al. OX40
CostimulationcanAbrogateFoxp3+RegulatoryTCell-MediatedSuppressionof
Antitumor Immunity. Int J Cancer (2009) 125(3):630–8. doi: 10.1002/ijc.24435

194. Coe D, Begom S, Addey C, White M, Dyson J, Chai JG. Depletion of
Regulatory T Cells by Anti-GITR mAb as a Novel Mechanism for Cancer
Immunotherapy. Cancer immunology immunotherapy CII (2010) 59
(9):1367–77. doi: 10.1007/s00262-010-0866-5

195. Gyori D, Lim EL, Grant FM, Spensberger D, Roychoudhuri R, Shuttleworth
SJ, et al. Compensation Between CSF1R+ Macrophages and Foxp3+ Treg
Cells Drives Resistance to Tumor Immunotherapy. JCI Insight (2018) 3(11):
e120631. doi: 10.1172/jci.insight.120631

196. Curtin JF, Candolfi M, Fakhouri TM, Liu C, Alden A, Edwards M, et al. Treg
Depletion Inhibits Efficacy of Cancer Immunotherapy: Implications for Clinical
Trials. PloS One (2008) 3(4):e1983. doi: 10.1371/journal.pone.0001983

197. Rosenzwajg M, Churlaud G,Mallone R, Six A, Dérian N, ChaaraW, et al. Low-
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Regulatory T cells (Tregs) are a subset of CD4+ T cells with their immunosuppressive
activities to block abnormal or excessive immune responses to self and non-autoantigens.
Tregs express the transcription factor Foxp3, maintain the immune homeostasis, and
prevent the initiation of anti-tumor immune effects in various ways as their mechanisms to
modulate tumor development. Recognition of different phenotypes and functions
of intratumoral Tregs has offered the possibilities to develop therapeutic strategies by
selectively targeting Tregs in cancers with the aim of alleviating their immunosuppressive
activities from anti-tumor immune responses. Several Treg-based immunotherapeutic
approaches have emerged to target cytotoxic T lymphocyte antigen-4, glucocorticoid-
induced tumor necrosis factor receptor, CD25, indoleamine-2, 3-dioxygenase-1, and
cytokines. These immunotherapies have yielded encouraging outcomes from preclinical
studies and early-phase clinical trials. Further, dual therapy or combined therapy has been
approved to be better choices than single immunotherapy, radiotherapy, or
chemotherapy. In this short review article, we discuss our current understanding of the
immunologic characteristics of Tregs, including Treg differentiation, development,
therapeutic efficacy, and future potential of Treg-related therapies among the general
cancer therapy.

Keywords: regulatory T cell, tumor, immunosuppression, immunotherapy, radiotherapy
INTRODUCTION

Thymic T cells express T-cell receptor (TCR) at the mature stage when thymus produces immune
functional T cells through positive and negative selection to recognize endogenous or exogenous
antigens. The purpose of positive selection is to make those T cells carrying TCR that receives
survival signals from the major histocompatibility complex-II (MHC-II) molecules on thymic cells,
while negative selection mainly leads to the exclusion of T cells with high affinity for MHC-bound
antigen peptides. However, some T cells with self-reactive TCR can develop into
CD4+CD25+Foxp3+ regulatory T cells (Tregs) after interacting with autoantigen peptides with
high affinity (1). Tregs are an immunosuppressive subgroup of the CD4+ T cells. The concept
of immunosuppressive T cells was proposed in 1970s (2, 3). A decade later, reports confirmed
that Tregs exerted their immunosuppressive effects in mouse tumor models (4, 5).
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Such immunosuppressive effect of Tregs was further confirmed
in 1995 (6). At present, many different types of Tregs have been
identified. Naturally developed Tregs account for 5% to 10% of
total peripheral CD4+ T cells and are characterized by their high
expression of CD25 and low expression of CD45RB (7–9). While
the IL-2 receptor CD25 serves as a surface marker of suppressor
T cells (10), the forkhead/winged helix transcription factor
(Foxp3) is considered a classical combined marker of Tregs
(11). The most prominent Treg types include thymus-derived
Tregs (tTregs), peripherally generated Tregs (pTregs) from the
Foxp3– T conventional (Tconv) cells, and in vitro interleukin-2
(IL-2) and transform growth factor-b (TGF-b)-induced Tregs
(iTregs) from Tconv cells (12). tTregs are generated in the
thymus through MHC class II-dependent TCR interactions
that result in high-avidity selection. Activated polyclonal
tTregs modulate T-effector cell trafficking to the target organs,
while antigen-specific iTregs inhibit T-effector cell priming by
targeting the antigen presenting cells (APCs) (13).

Both tTregs and pTregs are stable in the expression of Foxp3
and other Treg signature genes such as Cd25 and cytotoxic T
lymphocyte antigen-4 (Ctla4). These Tregs show sustained
immunosuppressive function. The intronic enhancers CNSs
(conserved non-coding sequences), also known as TSDRs
(Treg-specific demethylation regions), and promoter of the
Foxp3 gene play important role in Foxp3 gene stable
expression (14, 15). In contrast, the expression of Foxp3 and
Treg signature genes in iTregs remains unstable due to
incomplete epigenic changes at the TSDRs and these iTregs
may become T-effector cells under certain in vivo conditions
(16). The stability of Foxp3 expression and immunosuppressive
functionality of iTregs relies on the efficient demethylation of the
CpG island in the first intron of Foxp3 gene locus CNS2 region
(16–19). CNS2 demethylation enhances the recruitment of
transcription factors STAT5 (signal transducer and activator of
transcription 5), NFAT (nuclear factor of activated T cells),
Runx1/Cbfb, CREB (cAMP-response element binding protein),
and Foxp3 itself (20, 21). While reduced demethylation of CNS2
in iTregs leads to impaired Foxp3 expression and iTreg function
stability (22), complete demethylation of CNS2 is required for
optimal Foxp3 gene expression and iTreg immunosuppression
activity (23). In addition to CNS2 demethylation, other key
factors determining the development of iTregs include the
types of APCs, their differentiation status, and cytokine
environment in the activation process.

Tumor infiltrating dendritic cells (DCs), and TGF-b, IL-2,
and indoleamine-2, 3-dioxygenase-1 (IDO-1) are all essential
cells and molecules that promote CD4+ T-cell differentiation into
Tregs (24, 25). Tregs have been among the most extensively
studied lymphocytes in oncology for decades. Yet, the successful
and precise targeting of Tregs for cancer immunotherapy has
been elusive, although these cells may exert different functions
depending on their residential tissue types. For example, multiple
classes of genes are differentially regulated in Tregs from the
visceral adipose tissue (VAT) compared with those in the
lymphoid organs, including those encoding the transcription
factors, chemokines and cytokines and their receptors, and
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molecules that are implicated in lipid metabolism to regulate
adipose tissue homeostasis and organismal metabolism. These
Tregs display much more restricted repertoire of antigen-specific
TCRs and stronger dependency on the cytokine IL-33 and its
receptors ST2 than those in the lymphoid organs (26,
27). Skeletal muscle Tregs are expanded in response to acute
or chronic injury. Like the VAT Tregs, skeletal muscle Tregs also
express high levels of transcription factors, chemokines,
cytokines, and their receptors (26). The colonic Tregs are
developed against microbial antigens. Mice devoid of any
microbiota showed much smaller number of colonic Tregs
than those in specific pathogen-free (SPF) mice (28). Intestinal
Tregs express high levels of ST2 and tissue repair factors. These
cells also express inducible costimulator (ICOS), CTLA-4, and
ectonucleotidases CD39 and CD73 to regulate Th2- and Th1/
Th17-mediated immunity (29). Tregs in the skin are involved in
regulating microbial colonization, wound healing, and hair
follicle development (29). In tumor microenvironment, Tregs
inhibit the antitumor immunity and promote tumor occurrence
and development by suppressing the function of immune effector
cells via a variety of mechanisms (30) that will be discussed here.
Emerging evidence suggests that Tregs demonstrate remarkable
adaptability to their local environment and facilitate the immune
homeostasis through highly specialized tissue-specific pathways
(31). After effective elimination of pathogenic threats, the
evolutionarily evolved immune system immediately restores
the quiescence and prevents further harm (32).
REGULATORY T-CELL
IMMUNOSUPPRESSIVE
FUNCTION REGULATION

Tregs are important mediators of the peripheral tolerance to
autoantigens and non-autoantigens, which can be controlled by a
variety of inhibitory mechanisms. Treg differentiation,
proliferation, and immunosuppression activity vary in response
to environmental signals that may alter Treg stability, plasticity,
and tissue-specific heterogeneity and shape Treg environmental-
dependent immunosuppressive functions (10, 33, 34). These
signals include cell-extrinsic factors, such as nutrients,
vitamins, and metabolites, and cell-intrinsic metabolic
programs. Foxp3 is the major regulatory molecule of Tregs
that produces and maintains Treg immunosuppressive activity.
Studies have found that lack of Foxp3 in mice increased T-
effector cell activity due to Treg depletion (35). Like Treg
depletion, mutations of Foxp3 caused fatal immune
dysregulation-associated multi-organ autoimmune diseases,
such as polyendocrinopathy, enteropathy, and X-linked
syndrome (36–38). Transfer of donor CD4+CD25+ Tregs into
neonatal Foxp3-deficient mice rescued the lymphoproliferative
disorder in recipient mice, suggesting that Foxp3 is a critical
regulator of CD4+CD25+ Treg function (11). Yet, both extrinsic
and intrinsic factors may enhance or impair Treg differentiation,
proliferation, and immunosuppression function, depending on
the Treg residential environment and their immune status.
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Treg Surface Molecules
Treg surface molecules are among the essential Treg cell intrinsic
molecules that respond to the tissue environment and alter Treg
stability, plasticity, and tissue-specific heterogeneity. Common
surface regulatory molecules include CD25, CTLA-4, TGF-b
receptor, CD36, SLC27A1, and glucocorticoid induced tumor
necrosis factor receptor (GITR). Expression of these molecules is
required for Treg survival and immunosuppression. Foxp3
transfection of CD4+CD25- primitive T cells transformed these
cells into CD4+CD25+ Tregs cells that expressed these surface
markers (39–41). Tregs regulate T-cell immune response using
surface CTLA-4. CTLA-4 or even its truncated form without the
cytoplasmic portion regulates the expression of CD80/86 on the
surface of APCs during Treg-APC conjugation and immune
synapse formation. This process allows CLTA-4 to remove
CD80/86 on APC surface via a trogocytosis mechanism,
followed by trans-endocytosis for intracellular degradation (40,
42, 43). Decreased CD80/86 expression on APC surface reduces
CD28-mediated T-cell stimulation due to cell-extrinsic ligand
depletion (40), causes CD80/programed death ligand-1 (PD-L1)
heterodimer disruption, and increases free PD-L1 levels from the
APCs (43) (Figure 1). Tregs in VAT express CD36 to uptake
long-chain fatty acid and contribute to lipid accumulation in
obese subjects (44). Short-chain fatty acids also promote iTreg
differentiation (45, 46). In brain tumors, high percentages of
Tregs express CD36 and SLC27A1 (fatty acid transporters).
Inhibition of lipid uptake with sulfo-N-succinimidyl oleate
(SSO) or fatty acid oxidation (FAO) with etomoxir prevented
Treg immunosuppressive activity under this environment (47).
Intratumoral Tregs showed over 15-fold increase of CD36
expression compared with those in the lymphoid organs. CD36
expression supports the suppressive activity of intratumoral
Tregs. Disruption of CD36 selectively stimulated intratumoral
Treg apoptosis and impaired tumor Treg accumulation and
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suppressive activity. Therefore, selective depletion of CD36 in
Tregs suppressed tumor growth, decreased intratumoral Treg
cells, and enhanced the anti-tumor activity in tumor-infiltrating
lymphocytes without distrusting the immune homeostasis (48).

Secreted Cytokines
Tregs also secrete suppressor cytokines, including TGF-b, IL-10,
IL-35, and IL-33 (Figure 1). TGF-b and IL-10 inhibit the function
of DCs and CD8+ T-effector cells and promote the transformation
of CD4+ T cells into Tregs. TGF-b plays an essential role in Treg
differentiation and controls the Treg suppressive activity (42).
TGF-b signaling positively regulates Treg-dependent and
-independent mechanisms of T-cell development and
homeostasis (49). TGF-b signaling is also essential for Treg
survival (50). When IL-10 induces M2 macrophages
polarization to promote tumor immune escape during tumor
progression (51, 52), IL-35 secreted from Tregs induces non-
Tregs that inhibit other cells by the “infectious tolerance”
mechanism (53, 54). Treg development, maintenance,
accumulation, and immnosupression function in VAT and
tumor tissues depend upon the expression of TCR, Foxp3, and
IL-33. In tumor tissues, IL-33 deficiency attenuated Treg
immunosuppressive activity against tumor growth. This activity
of IL-33 was IL-33 receptor ST2-independent but depended on
the NF-kB-T-bet-dependent IFN-g production (55). In contrast,
Treg development and maintenance in VAT was dependent upon
the high expression of ST2 (56). IL-33 treatment increased ST2+

Tregs in VAT in obese mice (57). TCR : MHC-II interactions are
also required for VAT Treg development and maintenance (58).
In contrast, many extrinsic cytokines play different roles in Treg
immunosuppression (Figure 1). Tregs lost their stability or
proliferation when cells were exposed to inflammatory
cytokines IL-6 and leptin and even IL-4 (19, 59, 60). Tregs
became Foxp3- cells that express inflammatory cytokines and
FIGURE 1 | Treg-mediated immunosuppression mechanisms and potential therapeutic targets to alleviate immunosuppression in tumors. Foxp3, forkhead box P3;
CTLA4, cytotoxic T lymphocyte antigen-4; PD-L1, programmed death ligand 1; DC, dendritic cell; Trp, L-tryptophan; Arg, L-arginine; ATP, adenosine triphosphate;
Glut, Glucose transporters; MCT1, monocarboxylate transporter 1; STAT5, signal transducer and activator of transcription 5; NFAT, Nuclear factor of activated T
cells; PPAR-g, peroxisome proliferator- activated receptor-g; HIF-1a, hypoxia-inducible factor 1a; Foxo1, Forkhead Box O1.
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failed to mediate immune suppression (61–63). Tregs also express
leptin receptor, and leptin decreases Treg proliferation. Leptin is
an important environment cue in the adipose tissue to modulate
Tregs (60). CD44hi memory T cells release IL-4, IL-21, and IFN-g
that inhibit TGF-b-induced Foxp3 expression (64). IL-6 and
downstream STAT3 activation, as well as IL-23, IL-1b, and IL-
21 are critical for Treg-to-Th17 conversion (65–67).

Transcription Factors
In the nucleus, besides Foxp3, other transcription factors, such as
STAT5, NFAT, Foxo1 (Forkhead Box O1), PPAR-g (peroxisome
proliferator- activated receptor-g), and HIF-1 (hypoxia-inducible
factor 1) control Treg development and maintenance by binding
to the Foxp3 gene promoter and regulating Foxp3 gene
expression (44, 68–71) (Figure 1). Foxo1 deficiency curtailed
Treg development. Tregs from Foxo1-deficient mice were non-
functional, did not express CTLA-4, and TGF-b failed to induce
Foxp3 expression or to diminish T-bet expression (70).
The expression of PPAR-g is critical for establishing Treg
transcriptional program and homeostasis, although this
function of PPAR-g seems mainly in VAT but less so in other
organs (44). Hypoxia increases the expression of HIF-1a as a
negative regulator of iTreg differentiation that promotes Th17
differentiation (72, 73).

Amino Acid and Nucleic Acid Metabolites
Tumor cells modulate several environmental cues to affect tumor-
resident Treg generation and function. Different from lymphoid
tissue Tregs, those in tumors are often in activated state with a
metabolic signature. Subtle perturbations in metabolic signaling
impact tumor-resident Treg cell homeostasis and function (33).
Basal amino acid catabolism maintains immune homeostasis, but
increased amino acid catabolism enhances immune suppression.
L-tryptophan (Trp) and L-arginine (Arg) are probably the most
important immune response regulatory amino acids. While TDO
(2,3-dioxygenase), IDO-1 and IDO-2 catabolize Trp, iNOS
(inducible nitric oxide synthetase), and arginases Arg1 and
Arg2 catabolize Arg. Reduction in Treg numbers is associated
with reduced Trp and Arg catabolism. DCs express IDO to induce
Foxp3+ Treg generation by inhibiting DC IL-6 production
(74, 75). In mice, administration of Trp metabolite 3-
hydroxyanthranthranilic acid (3-HAA) enhanced TGF-b
secretion in DCs, increased Treg cells, and reduced Th1 and
Th17 cell conversions (76, 77) (Figure 1). IDO has brought
to the attention due to its broad expression in a variety of
human tumor types. Under the tumor microenvironment, the
immunosuppressive Tregs express lipid phosphatase PTEN
(phosphatase and tensin homolog). IDO activates PTEN as a
mechanism to maintain Treg immunosuppressive activity (78).
Active IDO also maintains Treg immunosuppressive activity by
suppressing IL-6 expression from DCs and blocking Treg to Th17
cell conversion. In a mouse melanoma model, IDO inhibitor
together with anti-tumor vaccine increased DC IL-6 secretion,
Treg to Th17 conversion, and CD8+ T-cell activity and anti-
tumor efficacy (74). In addition, suppression of Arg1 and Arg2
activities inhibited Treg proliferation and promoted tumor
antigen-specific T-cell tolerance. High levels of Foxp3+ Tregs in
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the tumor environment and the absence of Arg2 significantly
impacted the survival of patients with head and neck squamous
cell carcinoma (79, 80).

Extracellular purine metabolites regulate Foxp3 expression via
the pro-inflammatory adenosine triphosphate (ATP) and anti-
inflammatory adenosine. Tregs are more sensitive to oxidative
stress than T-effector cells due to the low level of NRF2 (nuclear
factor-erythroid factor 2-related factor 2, a key transcription
factor for antioxidant responses) in Tregs. Oxidative stress
induces Treg apoptosis, followed by ATP release. Apoptotic
Tregs express the ectonucleotidases CD39 and CD73 that
convert extracellular ATP into immunosuppressive adenosine to
increase Treg suppressive function (53, 81, 82). Adenosine binds
to the A2A receptor (A2AR) to inhibit T-effector cell activity (83)
(Figure 1). Activation of the adenosine signaling pathway can
lead to enhanced Treg function, impaired APC function, and
inhibition of NK cell activation (84). While apoptotic Tregs
suppressed T-cell activation and tumor necrosis factor-a
(TNF-a) and IL-2 expression, pharmacological inhibition of
A2A inhibitor blocked these Treg activities (81).

Glucose Uptake and Glycolysis
Tregs use mitochondrial metabolism and oxidative
phosphorylation for energy production (85). Treg cell extrinsic
nutrients regulate oxidative phosphorylation. High glucose
conditions, glucose transporter-mediated glucose uptake, or
glucose avidity in Tregs correlate with Treg poor suppressive
function and instability (86). In contrast, glucose deprivation
drives Foxp3 expression, and shifts the T-cell differentiation
from Tconv to iTregs (72, 85, 87). Intratumoral Tregs
metabolize the glycolytic by-product lactic acid to support
their proliferation and suppressor function. Deletion of the
lactate transporter monocarboxylate transporter 1 (MCT1)
in Tregs slowed tumor growth and increased responses to
immunotherapy (86) (Figure 1). Together, elevated glycolysis
can be detrimental to Treg. Accelerated glycolysis in tumor cells
enhances glucose consumption and leads to increase of fatty acids.
The metabolism of fatty acid then promotes Treg development
(88). Increased glycolysis also promotes Th1 cell differentiation
by epigenic regulation of the Ifng gene locus (89). Inhibition of
glycolysis promotes the induction of Foxp3 expression in response
to TGF-b and IL-2 stimulations (72, 90). Glycolytic enzyme
enolase-1 also binds to the Foxp3 promoter and represses the
expression of a transcription isoform of Foxp3 that is important
for Treg suppressive activity (91). T cells use glycolysis during T-
effector cell differentiation. While programmed cell death 1 (PD-1)
ligation leads to defective T-cell glycolysis, amino acid metabolites
and CTLA-4 inhibit T-cell glycolysis (92), supporting a
mechanism by which Tregs control T-cell glycolysis and
T-effector cell differentiation. Inhibition of the glycolytic pathway
with the glucose analogue 2-deoxyglucose blocked Th17
development while promoting Treg generation (72).

The regulation of tissue-specific Treg differentiation,
maintenance, and immunosuppression function has been
summarized elsewhere (33). In addition to what we discussed
above, many other metabolites also affect Treg pathobiology. For
example, Vitamin A metabolite all-trans retinoic acid (RA)
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produced by DC subsets promote Foxp3 expression (93–96). The
ten-eleven translocation (TET) family enzymes activate TSDR
demethylation (97–99). CNS2 is demethylated in a TET-
dependent manner in Foxp3+ iTregs (98). Vitamin C shows its
activity to induce TET enzymatic activity in iTregs, thereby
providing a new mechanism to stabilize iTregs (98, 100, 101).
Tregs also suppress the activities of B cells, natural killer T cells
(NKT), and cytotoxic T lymphocyte by secreting perforin and
granzymes A and B (102, 103) (Figure 1). Tregs also inhibit the
activation of type II innate lymphocytes, including NKT cells,
mast cells, basophils, and eosinophils (104).
REGULATORY T-CELL
TARGETING THERAPIES

Anti-CTLA-4 Monoclonal Antibody
CTLA-4 is an inhibitory receptor on Treg surface and is the most
studied and widely used drug target in the clinic. Although Tregs
inhibit the immune function in vivo through a variety of ways,
deficiency of the CTLA-4 pathway in Tregs makes it difficult for
Tregs to maintain their self-tolerance and immune homeostasis
even if other inhibitory mechanisms are more active to
compensate for the defects. CTLA-4 is an important negative
regulator of T-cell responses and a key molecular target for Treg
inhibition in physiological and pathological immune responses,
including autoimmunity, allergy, and tumor immunity (105).
The binding of CTLA-4 with CD80/86 molecule cuts off the
CD80/86-CD28 pathway, an important step of T-cell activation.
If the CD80/86-CD28 pathway is blocked, T cells become
inactive in immune response. It is known that radiotherapy
upregulates the expression of CD80 on APC surface. CTLA-4 on
Treg surface has higher affinity to CD80, which leads to
enhanced immunosuppression after radiotherapy. Therefore,
the anti-CTLA-4 antibody therapy can be carried out at the
same time of radiotherapy to achieve better anti-tumor immune
effect. At present, the anti-CTLA-4 antibody drug mainly refers
to iplimumab (IPI). It is the first Treg-targeted drug approved for
clinical use, as the first choice for the treatment of advanced
malignant melanoma. To enhance the CTLA-4 single drug
therapy efficacy, Rudqvist et al. tested and found that
combination of radiotherapy and anti-CTLA-4 antibody drug
significantly increased the number of infiltrating lymphocytes
and improved the survival rate in a mouse breast cancer model
(106). Similarly, A phase II clinical trial evaluated the efficacy of
local radiotherapy and IPI in patients with metastatic non-small
cell lung cancer. The results showed that the objective response
rate (ORR) and progression free survival (PFS) were all
significantly better in patients received the combined therapy
than those from the IPI therapy alone (107). Consistently, in a
mouse liver metastasis model, combination of radiotherapy and
anti-CD25/CTLA-4 antibody therapy increased tumor CD8+ T-
cell accumulation with concurrent decrease of tumor Tregs,
suppressed locally irradiated and abscopal unirradiated tumor
growth, and improved overall survival rate. Therefore, combined
radiotherapy with anti-CTLA-4 antibody reduced liver
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metastasis (108). Yet, not all studies yielded the same
conclusion. A retrospective analysis of 133 tumor samples from
patients with metastatic non-small cell lung cancer, melanoma,
or renal cell cancer after receiving radiotherapy with or without
combined immunotherapy showed that the combination of focal
palliative radiation and CTLA-4 and/or PD-1 inhibitors was well
tolerated. Patients received the combination therapy experienced
more immune-related adverse events than those received either
therapy individually (107). These observations might be due to
the small patient sample size and many different types of
treatments and combinations.

Anti-GITR Monoclonal Antibody
GITR is a member of the TNF receptor protein family. In recent
years, GITR has been widely studied as a promising Treg target.
Studies have shown that the interaction between GITR and GITR
ligand provides costimulatory signals for CD4+ and CD8+ T cells,
activates T-effector cells, and suppresses Treg inhibitory activity
(109). An agonistic anti-GITR monoclonal antibody or GITR
ligands to activate GITR signaling can inhibit CD4+Foxp3+ Treg
immunosuppressive activity and induce T-effector cell resistance
to CD4+Foxp3+ Treg-mediated immunosuppression (110). The
agonist GITR monoclonal antibody enhanced the anti-tumor
response by increasing the activity of T-effector cells and
reducing the invasion of Tregs (111). TRX-518, a GITR
monoclonal antibody, was applied to 40 patients with metastatic
solid tumors such as melanoma, non-small cell lung, and colorectal
cancers in a phase I study. Single dose of TRX518 up to 8 mg/kg
was well tolerated (NCT01239134). A phase I study of AMG228,
another GITR agonist, exhibited favorable pharmacokinetics in
patients with advanced solid tumors, but there was no evidence of
T-cell activation or anti-tumor activity with AMG 228
monotherapy (NCT02437916) (112). In a mouse model of
glioma, anti-GITR monoclonal antibody therapy combined with
the radiotherapy increased the ratio of CD4+ T cells to Tregs,
promoted tumor regression, and significantly improved mouse
survival rate (113). Therefore, the effect of GITR on radio-
sensitivity is worth to explore further in human trials.

Anti-CD25 Antibody
CD25 antigen, as IL-2 receptor, is a 55-kDa single chain
glycoprotein, and is mainly expressed by activated T cells. IL-2
is necessary for the expansion of CD8+ cytotoxic T lymphocyte
(CTL) cells. In tumor microenvironment, Tregs express IL-2
receptors with high affinities that surpass the T-effector
cells to obtain limited IL-2. Therefore, Tregs gain greater
proliferation advantage than the T-effector cells do to promote
immunosuppression (114, 115). Oweida et al. showed that anti-
CD25 antibody treatment combined with the radiotherapy
enhanced the T-cell cytotoxicity and induced the tumor
antigen-specific memory response, which cured 57.1% of mouse
tumors (116). To confirm further the effect benefit of this
combination therapy, Ji et al. proved that radiotherapy
combined with anti-CD25 monoclonal antibody therapy
reversed the increase of PD-1 expression on CD8+ T cells and
CD4+ T cells during the radiotherapy, thereby inhibiting the
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tumor growth and improving the overall survival rate (108). Yet,
few similar studies failed to obtain clinically significant
enhancement of Treg-depletion-associated beneficial effects
(117–119). One possible reason is that the activated T-effector
cells also express CD25. Anti-CD25 antibody treatment may also
reduce the activity of activated T-effector cells, thereby weakening
the anti-tumor immunity that was enhanced by Treg depletion.
Anti-CD25 antibody therapy has also been evaluated in clinical
trials. To breast cancer patients, use of an anti-CD25-depleting
antibody daclizumab stabilized cancer progression and increased
overall survival time in a median follow-up of 22.3 months (120).
Meanwhile, the administration time and dose of monoclonal
antibody may also be important factors to affect the tumor
immunity between Tregs and T-effector cells.

IDO-1 Inhibitor
IDO-1 is a naturally occurred immune regulatory enzyme. Prior
studies have found many potential immunosuppressive
mechanisms of IDO-1, among which the main mechanism is
Trp catabolism in the microenvironment. The relationship
between tumor growth and the increase of Trp catabolism
becomes more and more recognized. Trp is metabolized into
kynurenine by the IDO limiting enzyme, which blocks or
inactivates the cell cycle of T-effector cells. This progress plays a
direct role in tumor immune escape to promote Treg maturation
and activation. IDO inhibitors have been intensively studied in
recent years. The radiotherapy could alter IDO-mediated immune
activity, and there was a strong correlation between the IDO
activity and survival outcomes in patients under a radiotherapy
(121). Therefore, the use of IDO inhibitors during radiotherapy
can delay the tumor growth. IDO inhibitors in combination with
radiotherapy down-regulated the number of CD4+CD25+Foxp3+

Tregs and DC expression of MHC-II in the spleen, along with
decreased expression of inhibitory receptors (PD-1 and T cell
immunoglobulin domain and mucin domain 3) and ligands
(galetin-9 and B- and T-lymphocyte attenuator) to prevent T-
cell exhaustion, while DCs and T-effector cells were activated
(122). This combination therapy enhanced anti-tumor immunity
and inhibited tumor progression.

Immunosuppressive Cytokines
Other therapy related to the inhibition of Treg function is to target
the Treg immunosuppressive cytokines, such as TGF-b and IL-10.
Hou et al. showed that TGF-b chimeric antigen receptor (CAR) T
cells promoted the anti-tumor immune response by alleviating
TGF-b-mediated immunosuppression, and reduced Foxp3+ Treg
differentiation (123). IL-10 deficiency diminished the Treg-
mediated immunosuppression by suppressing neuropillin
expression in Treg cells in mouse tumor models (124).
Furthermore, pegylated-recombinant human IL-10 has been
used in phase I clinical trial (NCT02009449) to decrease TGF-b
expression and up-regulate serum levels of IFN-g and IL-18
in patients with tumors (125). Pegylated-recombinant
human IL-10 has also been used to test its efficacy in patients
with metastatic pancreatic cancer (phase III clinical trial,
NCT02923921) (126).
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Dual Therapy
The combination of immunotherapy and radiotherapy enhances
the anti-tumor immune response through various mechanisms of
immune escape, thereby improving the survival rate more than any
single therapy. PD-1 is a type I transmembrane glycoprotein, which
was first discovered in 1992 (127). It is mainly expressed on the
surface of activated T cells, but its ligand PD-L1 is expressed in
many cell types, such as APCs, macrophages, and tumor cells, etc.
Under normal circumstances, PD-1 binding of PD-L1 can stop the
continuous activation of T cells and prevent the occurrence of
autoimmune diseases. Under pathological conditions however, PD-
L1 expression from tumor cells was significantly higher than that
in other normal cells. The interaction of PD-1 and PD-L1 inhibits
the activation of anti-tumor T cells, thereby inducing tumor growth.
Many studies have shown that the radiotherapy combined with
the anti-PD-1-PD-L1 therapy dramatically suppressed tumor
growth. For example, combined use of irradiation and anti-PD-
L1 antibody therapy reduced the local accumulation of tumor-
infiltrating myeloid-derived suppressor cells with feature of
immune suppression (128), which altered the tumor immune
microenvironment (129), supporting a close interaction between
irradiation, T cells, and the PD-L1/PD-1 axis. Pembrolizumab is a
highly selective humanized PD-1 monoclonal antibody. A
randomized phase II clinical trial (NCT02492568) of 92 patients
of advanced non-small cell lung cancer showed that combined
therapy of pembrolizumab after radiotherapy showed much higher
overall response rate, progression-free survival rate, and overall
survival time than those in patients received pembrolizumab alone
(130). A retrospective analysis of 133 patients with metastatic non-
small cell lung cancer, melanoma, or renal cell cancer after receiving
radiotherapy with or without combined immunotherapy with
CTLA-4 and/or PD-1 inhibitors showed that patients were well
tolerated with the combination of focal palliative radiation and
CTLA-4 and/or PD-1 inhibitors (107). Twyman-Saint Victor et al.
put forward the hypothesis that the optimal response in melanoma
and other cancer types required radiotherapy together with the
anti-CTLA-4 and anti-PD-L1/PD-1 antibodies (Figure 2) (131).
They demonstrated that anti-CTLA-4 monoclonal antibody
IPI combined with radiotherapy made the tumor substantially
subsided in both clinical trials and mouse models of metastatic
melanoma, although drug resistance can be a potential concern. Of
note, radiotherapy, anti-CTLA-4 antibody, and anti-PD-L1/PD-1
antibody promote tumor immune response with distinct
mechanisms. Radiotherapy enhances intratumoral T-cell TCR
repertoire diversity, anti-CTLA-4 antibody inhibits Treg and
increases CD8+ T cell to Treg ratio, and anti-PD-L1/PD-1
antibody reverses T-cell exhaustion and increases T-cell
expansion. Melanoma patients or mice with high expression of
PD-L1 on melanoma cells failed to respond to radiotherapy or
combined therapy and these patients showed much shorter
progression-free survival and overall survival. High expression of
PD-L1 on melanoma cells allowed tumors to escape the anti-
CTLA-4-based therapy (131). Therefore, the known drug
resistance may rely on the PD-L1 upregulation on melanoma
cells, leading to T-cell depletion. The results from this clinical
study suggest the importance of combined application of anti-
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CTLA-4 monoclonal antibody, anti-PD-1-PD-L1 monoclonal
antibody, and radiotherapy, which activate the anti-tumor
responses in multiple mechanisms.

In a mouse model of anti-PD1 antibody therapy-resistant
non-small cell lung adenocarcinoma, combination of anti-GITR
monoclonal antibody therapy, anti-PD-1 monoclonal antibody
therapy, and radiotherapy also significantly increased the
numbers of CD4+ and CD8+ effector memory cells in blood,
spleen, and tumor draining lymph node, enhanced tumor-
specific immune response, and improved the survival rate
(Figure 2) (132). Half of the mice showed no tumors.
Furthermore, an anti-GITR antibody (BMS-986156) combined
with a PD-1 inhibitor (nivolumab) was well tolerated with low
immunogenicity in patients with advanced solid tumors
(Figure 2). Antitumor activity was observed with combined
use of BMS-986156 and nivolumab at doses predicted to be
biologically active (NCT02598960). In a trial of solid tumors,
including colorectal cancer, melanoma, and renal cell carcinoma,
17 patients who received a combination therapy of an anti-GITR
antibody agonist (MK-1248) and humanized PD-1 monoclonal
antibody pembrolizumab reached to an objective response rate of
18% versus no response in 20 patients who received MK-1248
monotherapy (Figure 2) (133). In preclinical experiments, anti-
TGF-b monoclonal antibody and anti-PD-1 monoclonal
antibody combination with radiotherapy also showed effective
antitumor activity (Figure 2) (134, 135). Together, these studies
suggest the potential that dual therapy combined with or without
radiotherapy overcomes common tumor resistance concerns.
CONCLUSIONS

In this short review, we overviewed the origins, functions, and
potential clinical applications of Tregs in cancer patients. Tregs
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participate in the process of immune dysfunction. Based on the
mechanism of Tregs, some immunotherapies have demonstrated
their clinical efficacy in tumor controls, and candidate drugs have
proceeded to clinical trials (Table 1). In particular, the
combination of immune inhibitory therapies and radiotherapy
has demonstrated its success of inhibitory efficacies in tumor
progression, and potential synergistic mechanisms of
combination therapy may explain the positive results seen in
both clinical trials and experimental models. There are
accumulating evidences to support the hypothesis that
radiotherapy combined with anti-Treg therapy reverses Treg
immunosuppressive activity and enhances the efficacy of
radiotherapy. Therefore, the revised Treg immunotherapy has
become a potential breakthrough point of cancer therapy. It is
necessary to explore more Treg functions and inhibitors in the
future to effectively control or reverse the immunosuppressive
activities of Tregs and to optimize cancer combinational therapy.

As we discussed above, there are many essential molecules
that regulate Treg functions. These include Treg surface
March 2022 | Volume 13 | Article 833667
FIGURE 2 | PD-1/PD-L1 is a key target of the dual therapy. The strategy of dual therapy contains anti-PD-1/PD-L1 antibodies to enhance the anti-tumor responses.
PD-1, programmed cell death 1; PD-L1, programmed death ligand 1; GITR, glucocorticoid induced tumor necrosis factor receptor.
TABLE 1 | Selected immunotherapy targets and clinical trials.

Target Immunotherapy Clinical trails

CTLA-4 Iplimumab (IPI) NCT02221739
GITR TRX-518 NCT01239134

AMG228 NCT02437916
BMS-986156 NCT02598960
MK-1248 NCT02553499

CD25 Daclizumab –

IDO-1 IDO inhibitors –

Cytokines Pegylated-recombinant human IL-10
1D11, a TGFb-neutralizing antibody

NCT02009449;
NCT02923921
-

PD-1 Pembrolizumab
Nivolumab

NCT02492568
-
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molecules, cytokines, transcription factors, amino acid and
nucleic acid metabolites, and glucose and glycolytic
metabolites. Targeting these molecules and their pathways has
led to the development of varies immunotherapy approaches to
target the immunosuppressive activity of Tregs against different
types of tumors. Yet, while drug efficacy and target selection are
of the primary interest of patients and physicians, the
development of drug resistance has been the major hurdle in
cancer therapy. Here we discussed the benefit of dual therapy by
combining the radiotherapy with anti-CTLA-4 and/or anti-PD-
1-PD-L1 antibody immunotherapy. While dual therapy may
demonstrate synergistic beneficial effects against tumor
progression, patients may still develop drug resistance.
Immunosuppressive Tregs display adverse effects in tumor
growth by down-regulating T-effector cell immune responses.
Tregs play protective roles in cardiac, metabolic, autoimmune,
and neurological diseases (136–139). We showed that adoptive
transfer of Tregs in recipient mice blocked angiotensin II
perfusion-induced abdominal aortic aneurysms (140), induced
b3-adrenergic receptor agonist-induced adipose tissue
thermogenic program (141), and blunted the development of
spontaneous systemic lupus erythematosus (142). Therefore, one
should consider these beneficial effects of Tregs before treating
cancer patients, especially those with cardiovascular, metabolic,
and neurological complications. Therefore, discovery of tumor-
selective Treg functions and combination therapy to target
multiple Treg immunosuppression pathways might be
necessary. For example, CD36 expression in intratumoral
Tregs was much higher than in those from lymphoid organs
(48). CD36 targeting primes tumors to PD-1 blockade and
Frontiers in Immunology | www.frontiersin.org 859
elicited additive anti-tumor responses with the anti-PD1
antibody therapy (48). Tumor resident Tregs express high
levels of unique signature genes Ccr8, Tnfrsf8, Cxcr3, and
Smasn1 (143, 144), which might serve as valuable targets for
tumor immunotherapy. Further, non-lymphoid and tumor
tissues differ in their metabolic environments, nutrient
supplies , and intracel lular metabolic requirements.
Consideration of these factors may help develop new
generations drugs for cancer patients by selectively targeting
the immunosuppressive functions of intratumoral Tregs.
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The transforming growth factor-b (TGF-b) family includes cytokines controlling cell
behavior, differentiation and homeostasis of various tissues including components of
the immune system. Despite well recognized importance of TGF-b in controlling T cell
functions, the immunomodulatory roles of many other members of the TGF-b cytokine
family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone
Morphogenic Protein Receptor 1a (BMPR1a) is upregulated by activated effector and
Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell
types. BMPR1a inhibits generation of proinflammatory Th17 cells and sustains peripheral
Treg cells. This finding underscores the importance of the BMPs in controlling Treg cell
plasticity and transition between Treg and Th cells. BMPR1a deficiency in in vitro induced
and peripheral Treg cells led to upregulation of Kdm6b (Jmjd3) demethylase, an
antagonist of polycomb repressive complex 2 (PRC2), and cell cycle inhibitor Cdkn1a
(p21Cip1) promoting cell senescence. This indicates that BMPs and BMPR1a may
represent regulatory modules shaping epigenetic landscape and controlling
proinflammatory reprogramming of Th and Treg cells. Revealing functions of other BMP
receptors and their crosstalk with receptors for TGF-bwill contribute to our understanding
of peripheral immunoregulation.

Keywords: Treg, Th17, BMP, BMPR1a, immunity, epigenetic, Kdm6b, Cdkn1a
INTRODUCTION

The major polarized Th subsets, Th1, Th2, Th9 and Th17 cells, are generated in response of CD4+ T
cells to antigenic stimulation, co-stimulatory signals and cytokines and utilize specialized effector
mechanisms to eliminate different types of pathogens (1–4). TGF-b has emerged as the cytokine
controlling intrinsic activation of T cells and their antigenic responses (5, 6). In the presence of IL-4
or inflammatory cytokines, especially IL-6, TGF-b supports generation of Th9 or Th17 cells
respectively (7, 8). Th cell functions are controlled by regulatory CD4+ T cells (Treg), which express
the transcription factor Foxp3 (9, 10). Treg cells maintain immunological self-tolerance and
homeostasis but also control clinical conditions including immunometabolic and degenerative
diseases, and tissue regeneration (10–13). Population of thymus derived Treg cells is complemented
by peripheral Treg cells generated from conventional CD4+ Th cells which upregulate Foxp3 in
response to stimulation with antigen and TGF-b (14, 15). Peripheral Treg cells exhibit considerable
heterogeneity and utilize specialized mechanisms to constrain inflammatory reactions in response
to self and exogenous antigens (16–19). Foxp3 is essential for Treg cell function, especially for its
org March 2022 | Volume 13 | Article 865546164
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Kraj BMPs Are Immunoregulatory Cytokines
suppressive activity (9). However, Treg cell lineage commitment
in the thymus seems to be initiated before Foxp3 expression and
Foxp3 expression does not confer all features of Treg phenotype
like expression of CTLA-4, lack of IL-2 expression (20–23).
Recent reports indicate that Treg-specific epigenetic changes
including DNA demethylation and histone modifications
establish a pattern of Treg gene expression and stability of Treg

cell phenotype (24–27). Treg-specific defects often correlate
with the development of several autoimmune disorders such
as type 1 diabetes, multiple sclerosis, psoriasis, rheumatoid
arthritis and Crohn’s disease (10, 28–31). This includes
reduced induction and homing of peripheral Treg cells,
alleviated or altered suppressor mechanisms and decreased
stability of Treg phenotype. Deficiency of Treg cells caused by
mutations of Foxp3 results in early onset autoimmune disease as
demonstrated in Foxp3 mutant scurfy mice and humans with
IPEX (immune dysregulation, polyendocrinopathy, enteropathy,
X-linked) syndrome (32, 33). Deletion of multiple other genes
affecting Foxp3 protein stability or altered epigenetic status of
Foxp3 gene locus resulted in compromised function of Treg cells
and were associated with autoimmune pathology (34, 35).
Nevertheless, compromised function of Treg cells is not always
associated with their reduced frequency (36, 37). For example,
signaling through the IL-27R or TGF-bR, impacted Treg cell
function but was not accompanied by major phenotypic or
quantitative changes of Treg population resulting in systemic
autoimmunity (38, 39).

Uncovering what mechanisms control Treg cell homeostasis
become even more important when it was discovered that Treg

cells which lost Foxp3 expression (exTreg cells) may produce
inflammatory cytokines, IFN-g and IL-17 (40, 41). While
downregulation of Foxp3 may be required to alleviate
suppressive effect of Treg cells, allowing for effective immune
responses to pathogens, in other cases Treg cell instability
exacerbated tissue damage and contributed to immune
pathology (42, 43). Treg instability also contributes to the
augmentation of anti-tumor immunity (44, 45). exTreg cells
promoted destruction of pancreatic islets and accelerated onset
of diabetes (41). In rheumatoid arthritis and EAE, pathogenic
Th17 cells were shown to arise from Treg cells (46, 47). In
contrast, resolution of inflammation may depend on the
opposite process of trans differentiation of Th17 cells into Treg

cells (47, 48). Thus, regulation of the Th cell lineage plasticity is
critical for understanding of immune regulation and
pathogenesis of autoimmune diseases (49, 50).
GENERATION AND MAINTENANCE OF
TREG POPULATION

Multiple reports identified membrane and soluble molecules
which proved essential to control abundance and fitness of Treg

cell population in peripheral organs and promote their
suppressor function. This includes signaling through the TCR,
costimulatory molecules (CD28 and CTLA-4) and cytokines
receptors (18, 43, 51–56). IL-2 and TGF-b were the most
Frontiers in Immunology | www.frontiersin.org 265
studied cytokines in the context of Treg cell biology. IL-2 is a
key cytokine required for induction of Foxp3 in thymic Treg

precursors and in peripheral CD4+ T cells (14, 57–59).
Mechanistically, Stat5 in response to IL-2 signaling binds
enhancer in the Foxp3 gene inducing its expression in the
thymus (60). In peripheral Treg cel ls IL-2 induced
transcriptional program controls metabolic fitness of Treg cells,
sustains their survival and suppressor function and prevents
autoimmunity (61, 62). Foxp3 CNS2 (conserved noncoding
sequence) enhancer element acts as an IL-2 sensor by binding
Stat5 and conferring stable inheritance of Foxp3 expression (63).
IL-2 induced genetic program of Treg cell differentiation and
peripheral maintenance depend on activation of Smad3 and the
presence of TGF-b (59, 64–66). While both IL-2 and TGF-b
promote generation and sustain Treg cells, IL-2 inhibits and TGF-b
enhances generation of effector Th17 cells underscoring the
importance of context dependent signaling for Th lineage
ontogeny (67, 68).

Immunoregulatory role of TGF-b has been known before the
discovery of Treg cells (69). TGF-b provides vital signals that
limit immune activation so deletion of the TGF-b1 gene in
experimental mice, which abrogated TGF-b signaling in
multiple T cell subsets, induced severe autoimmune
inflammatory disease (5, 70). T cell specific inhibition of TGF-
bRII signaling had similar outcome and precipitated systemic
autoimmune disease characterized by massive activation and
expansion of T cells (71, 72). Co-transfer of naive CD4+ T cells
expressing dominant negative TGF-bRII, and Treg cells, into
recipient mice demonstrated that effector cells need to respond
to TGF-b for the Treg cells to control their activation (73). T cell
specific deletion of TGF-bRII revealed that TGF-b signaling is
not required for thymic development of Treg cells but supports
Foxp3 expression, suppressor function and sustains peripheral
population of Treg cells (74, 75). In summary, earlier reports
supported conclusions that while Treg thymic development is
not affected, both T cell autonomous and Treg dependent
tolerance mechanisms are abrogated by elimination of TGF-b
signaling in effector Th and in Treg cells (75–77). The caveat of
these experiments is that they relied on inhibition of TGF-b
signaling in multiple T cell subsets and examined Treg cells in
the context of induced severe autoimmune inflammatory
disease, complicating interpretation of the role of TGF-b in
Treg cells (6). In contrast, analysis of newborn mice with T cell
specific TGF-bRI gene deletion and, inhibition of TGF-b
signaling in thymic organ cultures identified TGF-b, in
connection with IL-2, as cytokines essential for inducing
Foxp3 expression and thymocyte commitment to Treg cell
differentiation in the thymus (78). However, another report
defined TGF-b role in Treg development to be limited to
enhancing survival and protection from negative selection of
thymocytes committed to become Treg cells (79). This report of
limited impact of TGF-b in inducing Treg cell generation was
questioned by demonstrating that intrathymic transfer of early
thymocytes, where TGF-bRI gene deletion is induced at the
double positive stage, failed to produce any Treg cells,
corroborating reports that TGF-b signaling is indispensable for
March 2022 | Volume 13 | Article 865546
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Treg lineage commitment (80). In contrast, deletion of the TGF-
bRI gene in Treg cells following Foxp3 expression, by Foxp3
controlled cre expression, did not decrease thymic generation of
Treg cells, in agreement with reports that TGF-b signaling is
dispensable for Treg lineage commitment (80). Moreover,
abrogation of TGF-b signaling in already differentiated Treg

cells did not decrease proportion of peripheral Treg cells, Foxp3
expression was preserved and no systemic autoimmunity was
observed (39). Only aged mice suffered from local skin and
gastrointestinal inflammation due to selective defect of TGF-bRI
deficient Treg cells to migrate, accumulate and control Th17 cell
mediated responses. In contrast to Th17 cells, control of Th1
effector cells by TGF-bRI deficient Treg cells was enhanced. This
result suggested that TGF-b does not control overall fitness of
Treg cells but rather modulates their suppressor function to
selectively impact different Th subsets in specific organs.
Another report demonstrated that Treg cell mediated production
of TGF-b is necessary to prevent food allergy underscoring the
importance of Treg derived TGF-b in allergic responses and
maintenance of immune tolerance (81).
BONE MORPHOGENETIC PROTEINS,
THEIR RECEPTORS AND
SIGNALING PATHWAYS

Bone Morphogenetic Proteins (BMPs) are the largest subfamily
of the TGF-b cytokine superfamily which also includes TGF-b, a
founding member of the family, activins, nodal and growth and
differentiation factors. BMPs were identified by their ability to
induce bone differentiation (82). It is now well known that in
addition of inducing differentiation of osteoblasts, bone-forming
cells, BMPs control multiple cellular processes including
differentiation of various cell types, adhesion, migration and
proliferation and apoptosis (83, 84). They have prominent role in
regulating body axes formation during embryonal development,
regulate epithelial - mesenchymal transition in cancer and
wound healing (83, 85–87). BMPs sustain stem cell renewal
and differentiation, including tissue specific and cancer stem cells
(88–90). Individual BMPs often have overlapping functions, but
they can be highly specific when function as morphogens or
cytokines sustaining tissue homeostasis. BMPs are highly
pleiotropic cytokines which act in autocrine, paracrine and
endocrine fashion determined by tissue environment and
intrinsic properties of target cells (91).

Tight regulation of BMP signaling is crucial to maintain
homeostasis of tissues and organs, and is achieved by
controlling BMP gene expression, secretion and maturation of
BMP precursors. Proteases involved in producing active, mature
BMPs include furin, which is induced in activated T cells and
essential for Treg cell suppressor function (92). Mature BMPs are
bound and sequestered by soluble (e.g. chordin, noggin, gremlin)
or membrane/matrix proteins (e.g. fibrin, small leucine-rich
proteins) or pseudoreceptors like BAMBI (BMP and Activin
Membrane-Bound Inhibitor) (93, 94). This complex system
regulates BMPs bioavailability by controlling their secretion,
Frontiers in Immunology | www.frontiersin.org 366
proteolytic maturation of BMP precursors, degradation
and sequestration.

TGF-b family cytokines, including BMPs, signal through
heteromeric complexes of type I and type II receptors, which
have activity of serine/threonine kinases (Figure 1). Cytokine
ligand binds to a type II receptor and the ligand-receptor
complex binds to a type I receptor. Formation of a ternary
complex activates receptor kinase activity and induces
phosphorylation of transcription factors, Smads, which activates
canonical signal transduction pathway (84). TGF-b itself binds
TGF-bRII and TGF-bRI (Alk-5) and induces phosphorylation of
Smad2/3. BMPs bind one of type II receptors, BMPR2, activin
receptor type 2A (ACVR2A) or activin receptor type 2B
(ACVR2B). Ligand binding to type II receptor induces
recruitment of one of type I receptors, activin receptor-like
kinase 1 (Alk-1, ACVRL1), activin A receptor type 1 (Alk-2,
ACVR1), activin receptor type 1B (Alk-4, ACVR1B), BMPR1a
(Alk-3) or BMPR1b (Alk-6, not expressed by CD4 cells) and leads
to conformational change of the heteromeric receptor to induce
kinase activity of type I receptor and phosphorylation of Smad1/5/
8. Promiscuity of ligand receptor interactions contributes to
redundant functions of BMPs but also underlies signaling
crosstalk between TGF-b and BMPs. TGF-b bound to TGF-bRII
may recruit and transphosphorylate ACVRL1 or BMPR1a with
subsequent phosphorylation and activation of Smad1/5/8 (95).
Type II receptors ACVR2A or ACVR2B may also bind TGF-bRI
with resulting phosphorylation of Smad2/3. Thus, combinatorial
activation of both Smad pathways could be essential for signaling
crosstalk of TGF-b and BMPs (96). Smad transcription factors
phosphorylated by TGF-b or by BMP receptors (R-Smads) form
trimeric complexes with Smad4 and translocate into nucleus. They
interact with multiple co-activators, including genes controlling
Treg phenotype, and bind specific motifs present in regulatory
regions of Smad inducible genes, including Foxp3 (84, 97, 98).
Besides activating Smads, BMPs signal through multiple Smad-
independent (non-canonical) pathways (99). This involves
activation of Tak-1 (TGF-b activated kinase 1) and downstream
activation of NF-kB (100–104). Smad independent signaling also
includes activation of PI3K-Akt pathway (105). Finally, BMPs
activate p38/JNK kinases which engages TRAF4 or TRAF6 and
activates Tak1 (106–108).
BONE MORPHOGENETIC PROTEINS
CONTROL OF TREG LINEAGE

While TGF-b mediated regulation of Th lineage differentiation
and immune system homeostasis have been extensively studied,
the role of other members of the TGF-b family, including BMPs
is only starting to emerge (109). Recent reports demonstrate that
BMPs, similar to TGF-b, are immunomodulatory cytokines
which control differentiation and functions of immune cells
impacting immune tolerance, inflammation and linage
specification of effector Th cells (110). BMPs regulate thymic
development of T cells, but published results remain controversial
(111–115). Both thymocytes and thymic stromal cells produce
March 2022 | Volume 13 | Article 865546
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BMPs and express BMP receptors. Fetal thymic cultures and
signaling inhibitor studies showed that BMPs are required for
early thymocyte progenitor homeostasis but block transition
from double negative to double positive thymocytes (112, 116).
In contrast, analysis of conditional knockout mice where
BMPR1a gene was deleted in hematopoietic cells (by crossing
to vav-cre mice) did not reveal changes in thymus cellularity and
subset proportions (114). Analysis of mice where BMPR1a gene
was deleted in double positive thymocytes showed normal
development of T cells with the exception of a population of
Foxp3+ Treg cells which was severely decreased suggesting a
unique role of this receptor in Treg specification (117). However,
thymic but not peripheral Treg population was normal when
BMPR1a gene was deleted at the later stage, in thymocytes
expressing Foxp3 (118).

BMPR1a is expressed in mature CD4+ T cells in lymph
nodes, spleen and peripheral organs (118). It is expressed at
low level in naive CD4+ T cells and at higher levels in activated
Th and Treg cells. It is upregulated following T cell activation
within hours. Since expression of BMPR2 is not affected by T
cells activation, it is upregulation of BMPR1a which renders
activated CD4+ T cell sensitive to BMPs (119). In vitro studies
Frontiers in Immunology | www.frontiersin.org 467
using signaling inhibitors have shown that BMPs regulate
proliferation and activation of CD4+ T cells but the role of
BMPs in controlling peripheral Treg cells was not addressed (120,
121). Blockade of BMP signaling in rheumatoid arthritis patients
augmented inflammation induced by IL-17 and BMPs
ameliorated intestinal inflammation suggesting that cellular
targets of BMP signaling may include effector Th17 and Treg

cells (122–125). BMP2/4 or activin A synergized with the TGF-b
to generate inducible Treg (iTreg) cells but were not able to
completely replace TGF-b and induce Foxp3 expression (126,
127). Foxp3 enhancer, CNS1, contains canonical Smad1/5/8
binding site that partially overlaps Smad2/3 site. T cells
activated in the presence of BMPs differentiated into Th1 or
Th2 but Th17 differentiation was inhibited. BMP signaling
resulted in inhibition of Rorc and IL-17 upregulation (119).
These results were complemented by analysis of CD4+ T cells
deficient in BMPR1a (117, 119). Generation of Th17 cells in
vitro, induced by IL-6 and TGF-b, is greatly enhanced by
abrogation of the BMPR1a signaling but it still requires
presence of TGF-b. At the same time, in vitro generation of
iTreg cells is impaired, not improved, by BMPR1a deficiency,
suggesting complex interaction between BMPR1a and TGF-b
FIGURE 1 | Schematic overview of the canonical, SMAD-dependent BMP and TGF-b signaling pathway. Signaling is initiated by binding to a heteromeric complex
of type I receptors, e.g. BMPR1a, TGF-bR1, ACVRL1 or ACVR1, associated with type II receptors, e.g. BMPR2, TGF-bR2, ACVR2A/2B. Intracellular, BMP or TGF-b
responsive transcription factors, Smads become phosphorylated and associate with co-Smad4 and translocate into nucleus. This signaling pathway is controlled by
inhibitory Smad6. Once in the nucleus Smad complexes associate with transcription factors e.g. Runx2, Id1/2 or NFAT, bind regulatory regions of Smad dependent
genes and regulate transcription. The figure shows interdependence of BMP and TGF-b signaling at the level of receptor binding and Smad phosphorylation.
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signaling pathways (117). Deletion of BMPR1a gene does not
affect phosphorylation of Smad2/3 in CD4+ T cells activated for 1
hour in the presence of TGF-b, however genes mediating
responses to TGF-b signaling, including Smad3, Tsc22D1, Skil,
were differentially expressed when analyzed after 4 days (128,
129). Transcriptome analyses using RNA-seq revealed that of 72
transcription factors identified as differentially expressed
between wild type and BMPR1a deficient iTreg cells, 39
included genes identified in previous reports to support Th17
cell differentiation and 17 to support iTreg cell generation (130–
135). Transcription factors Rorc, Rxra, Batf,Maf, Ikzf2 and Ikzf4
were overexpressed in BMPR1a deficient Treg cells, while Hopx
and Foxp3 had lower expression compared to wild type Treg cells
(118). BMPR1a deficient iTreg cells also had lower expression of
Crem, Pde3b and Gpr83, genes associated with Treg phenotype
(21, 118, 136, 137). Thus, BMPR1a signaling in naive cells affects
developmental programme controlling lineage choice of iTreg

and Th17 cells and, likely, balance between these two cell subsets.
ALTERED ONTOGENESIS AND
PHENOTYPIC STABILITY OF BMPR1a
DEFICIENT TREG CELLS

Abrogation of BMPR1a signaling in mature Treg cells resulted
in increased proportion of Treg cells expressing low levels
of Foxp3, as mice aged, and significantly altered proportions of
Treg cells expressing naive (CD44lowCD62L+) and mature
(CD44+CD62Llow) phenotype. Treg cells still expressing high
levels of Foxp3, and naive phenotype, were replaced by cells
with low expression of Foxp3, and mature phenotype, and these
cells dominated peripheral Treg population in aged mice.
Acquisition of mature phenotype is associated with Treg

activation, or is evidence of cellular senescence indicating
disruption of peripheral homeostasis (138, 139). Analysis of
cell surface markers showed that BMPR1a-deficient Treg cells
expressed lower levels of CD39 and Klrg1, indicating that their
suppressor function and terminal maturation are impaired (140,
141). Phenotypic changes of the Treg population were
accompanied by gradual upregulation of CD44, and
downregulation of CD62L, on conventional CD4+ T cells in
aging mice. Progressive loss of Foxp3 expression, associated with
senescent phenotype, and increased presence of activated,
conventional T cells, are consistent with compromised Treg cell
suppressor function and unstable Treg phenotype (118).

When wild type or BMPR1a-deficient Treg cells, expressing
high levels of Foxp3, were co-transferred to lymphopenic mice,
with naive conventional CD4+ T cells, only wild type Treg cells
retained Foxp3 expression, and were able to protect recipient
mice from inflammatory bowel disease. BMPR1a-deficient Treg

cells had high expression of CCR6 and IL-23R, receptors
regulating homing and promoting differentiation of Th17 cells
or their precursors. This was associated with increased levels of
Rorc, IFN-g and IL-17 in donor BMPR1a-deficient cells (41).

Immunization of mice with BMPR1a-deficient Treg cells led
to robust activation of conventional CD4+ T cells, which
Frontiers in Immunology | www.frontiersin.org 568
expressed higher levels of activation markers, and inflammatory
cytokines IFN-g and IL-17. BMPR1a deficient Treg cells in
immunized mice had lower expression of Foxp3, CD39, 4-1BB,
and Klrg1. CD39 is an ectonuclease directly involved in Treg

suppressor function, and 4-1BB binding of galectin-9 augments
Treg function (140, 142–144). Klrg1 is upregulated on antigen
activated, highly suppressive Treg cells (141). Similarly, exacerbated
inflammatory response was observed in mice infected with
Citrobacter rodentium, a mouse model of bacterial colitis (145).
These findings indicate unstable phenotype, and decreased ability
of BMPR1a-deficient Treg cells, to control inflammation and point
to the importance of BMPs signaling to control immune
homeostasis in situ and in inflammation.
SIGNALING CIRCUITS CONTROLLED BY
BMPR1a SIGNALING

Transcriptome analyses of Treg and iTreg cells revealed that
BMPR1a gene deletion results in elevated levels of genes
promoting phenotypic plasticity and functional adaptation of
Treg lineage cells including Rorc, IRF4, Hif1a, Batf3 (Figure 2)
(118, 146, 147). This finding is consistent with observed
downregulation of Foxp3 and enhanced production of Th1/
Th17 cells in inflammatory conditions by BMPR1a-deficient
Treg cells (46, 148–150). In addition, a set of genes differentially
expressed between BMPR1a-sufficient and deficient Treg and iTreg

cells included Cdkn1a (p21Cip1) and Kdm6b (Jmjd3). Higher
levels of these genes in BMPR1a-deficient cells provided cues
how BMP signaling shapes Treg population (Figure 2).

Cdkn1a is a cell cycle inhibitor associated with cell
maturation and senescence (151). Higher expression of
Cdkn1a in peripheral BMPR1a-deficient Treg cells correlates
with decreased proliferation and renewal of this subset while
promoting maturation and senescence. Cdkn1a also controls
CD4+ T cell responses to antigen and generation of memory or
anergic cells (152). Kdm6b demethylase is an antagonist of
polycomb repressive complex 2 (PRC2) which sustains
repressive trimethylation of H3K27. Differentiation of wild
type, naive CD4+ T cells into iTreg cells is associated with
downregulation of Kdm6b. In contrast, Kdm6b expression
remains elevated when BMPR1a-deficient CD4+ T cells
when they differentiate into iTreg cells. Kdm6b is also elevated
in Treg cells directly isolated from mutant experimental mice
(118). In CD4+ T cells Kdm6b promoted proinflammatory
immune responses and enhanced cellular senescence (153).
Upregulation of Cdkn1a and Cdkn2a (p16Ink4), controlled by
Kdm6b, regulated cell cycle and inhibited reprogramming into
self-renewing pluripotent stem cells supported by BMP signaling
(88, 154, 155). Consistent with these reports, Cdkn1a expression
in T cells was found to depend on epigenetic status of DNA and
was upregulated by histone deacetylase inhibitors (156).

Mechanistic control of Treg cells by Kdm6b and BMPR1a
signaling is consistent with reports demonstrating that inhibition
of Ezh2, a H3K27 methyltransferase of the PRC2, compromised
Treg cell function in tumors and autoimmune diseases (157, 158).
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Ezh2 is induced in Treg cells upon activation, and sustains Treg

cell stability and function in inflammation (159–161). Deletion
of Ezh2 gene in Treg cells increased production of exTreg cells,
infiltration of CD8+ and effector CD4+/Treg ratio in tumors,
production of TNF-a and IFN-g (157). Altogether, BMPR1a
signaling in Treg cells modulates expression of Kdm6b, an
antagonist of Ezh2, and epigenetic landscape controlling Treg

cell plasticity.
DISCUSSION

Dysfunction of Treg cells, resulting in altered balance between
effector and Treg cells, is considered a main underlying cause of
most autoimmune diseases (162). Acquisition of effector Th cell
functions, rather than decreased proportions of Treg cells, are the
main cause of autoimmune pathologies but little is understood
how this process is controlled (163). Heterogeneity of the Treg

cell population may account for effector like properties of Treg

cells, while Foxp3 expression is retained (43, 164). In addition,
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genetic cell fate mapping, suggested that phenotypic plasticity of
the Treg cell lineage, especially in inflammatory environment,
results in the presence of different proportions of effector CD4+ T
cells that downregulate Foxp3 expression (41, 165). Finally, the
functions of Treg cells are shaped by tissue specific environmental
factors, leading to the development of specialized subsets of Treg

cells controlling tissue homeostasis and regeneration (11–
13, 166).

Foxp3 expression and development of a specific epigenetic
signature are required to sustain Treg functions (167, 168).
Abrogation of BMPR1a signaling in Treg cells led to a gradual
loss of Foxp3 expression, and was associated with upregulation of
transcription factors specific for effector Th lineages, Th1 and
Th17 cells. Molecular changes were accompanied by decreased
suppressor functions in situ and enhanced responses to
immunization or bacterial infections. These findings are
consistent with reports demonstrating that inhibition of the
BMP signaling exacerbated rheumatoid arthritis, and BMPs
treatment ameliorated renal inflammation (122, 125). Altered
transcriptional landscape in BMPR1a-deficient Treg cells was
FIGURE 2 | BMP and TGF-b signaling in Treg cell biology. BMP and TGF-b signaling regulates expression of genes essential for Treg lineage specification e.g. Foxp3,
Crem, Pde3b and Hopx. Selective abrogation of BMPR1a signaling results in altered gene expression and upregulation of Kdm6b, Cdkn1a, IL-17, Lft, Rorc and
Hif1a. Expression of proinflammatory genes is regulated by demethylation of inhibitory H3K27m3 epigenetic marks by Kdm6b demethylase.
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associated with epigenetic changes, mediated by overexpression
of the Kdm6b demethylase (118, 153). Overexpression of Kdm6b
impaired generation of iTreg cells, and promoted inflammation
by enhanced generation of Th17 cells (169, 170). Overexpression
of Cdkn1a in BMPR1a-deficient Treg cells led to acquisition of
mature, senescent phenotype and decreased proliferation of Treg

cells. This result is consistent with ealier reports of BMPs
regulating renewal and differentiation of embryonic and tissue
specific stem cells including T cell progenitors (88, 115, 155). Treg

cell senescence may be a factor in progression of chronic
autoimmune diseases (171). In summary, BMPs and BMPR1a
signaling controls critical molecular circuits, impacting both
Foxp3 expression and epigenetic landscape of Treg cells. While
little is known how BMPs may affect tissue resident Treg cells, one
could speculate that tight control of BMP secretion, maturation
Frontiers in Immunology | www.frontiersin.org 770
and stability predisposes them to perform immunoregulatory
functions and contribute to the acquisition of organ
specific features.
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Traumatic brain injury (TBI) is a devastating condition due to its long-term sequelae on
neurological functions. Inflammatory responses after TBI are critical for injury expansion
and repair. Recent research in central nervous system (CNS) disorders reveals the
importance of IL-33 and its receptor (ST2) as an alarmin system to initiate immune
responses. This study explored the role of IL-33/ST2 signaling in TBI. TBI was induced in
adult male C57BL/6J mice using a controlled cortical impact (CCI) model. We found that
the expression of IL-33 increased in the injured brain and blood, and ST2 was elevated in
the circulating and infiltrating regulatory T cells (Tregs) early after TBI. ST2 deficient mice
exhibited reduced Treg numbers in the blood and brain 5 days after TBI. The brain lesion
size was enlarged in ST2 knockout mice, which was accompanied by deteriorated
sensorimotor function 5 days after TBI. In contrast, post-TBI treatment with IL-33 (2
mg/30 g body weight, intranasal) for 3 days significantly reduced brain lesion size and
improved neurological functions 5 days after TBI. Meanwhile, IL-33 treatment increased
ST2 expression in circulating and brain infiltrating Tregs. To further explore the
involvement of Tregs in IL-33/ST2-mediated neuroprotection, Tregs were depleted by
CD25 antibody injection. The absence of Tregs significantly reduced the protective effect
of IL-33 after TBI. In vitro study confirmed that IL-33 (50 ng/ml) increased the production of
IL-10 and TGFb from activated Tregs and boosted the inhibitory effect of Tregs on T
effector cell proliferation. Taken together, this study suggests that the activation of IL-33/
ST2 signaling reduces brain lesion size and alleviates functional deficits after TBI at least
partially through regulating the Treg response. IL-33 may represent a new immune
therapeutic strategy to improve TBI outcomes.
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INTRODUCTION

Traumatic brain injury (TBI) is a devastating condition due to its
high mortality and morbidity. It has hitherto not been possible to
alleviate the long-term neurological deficits after TBI. Data from
the Centers for Disease Control report around 1.7 million TBI
patients annually (1). An estimated 5.3 million people are living
with permanent TBI-related motor and cognitive disabilities or
mood disorders in the United States (1). In addition, the
incidences of neurodegenerative diseases, including
Alzheimer’s Disease and Parkinson’s Disease increase among
TBI patients (2).

TBI is a progressive CNS injury. Pathological changes after
TBI include the acute immediate brain lesion and secondary
damages occur days or weeks after initial injury (3). Post-TBI
inflammation is a known process that contributes to the progress
of injury expansion and repair. Large amounts of immune cells,
including resident microglia, astrocytes, infi ltrating
macrophages, neutrophils and lymphocytes, are activated and
recruited to the site of injury. The activation of these cells,
although essential for debris clearance and brain repair, has to
be well-regulated to avoid unwanted side effects from the
upsurge of inflammatory factors. Recent breakthroughs in
understanding immune regulation during CNS pathology
highlight the contributions of regulatory T cells (Tregs) to
brain injury and repair through immunomodulation. Further
understanding the mechanisms of post-TBI immune responses
may identify rational therapeutic targets with a large window
of opportunity.

IL-33 belongs to the IL-1 superfamily and resides in the
nucleus of normal cells. Residential CNS cells, such as astrocytes
and neurons, release IL-33 to regulate microglial function during
brain development and in a mature normal brain (4, 5). Damages
to cells trigger the release of IL-33 from the nucleus, which
activates immune responses. Research in CNS disorders
advocates the importance of IL-33 as an alarmin protein to
initiate immune response after brain lesions. Our previous study
shows that IL-33 is released from oligodendrocytes and
astrocytes early after stroke, and the activation of IL-33
receptor, ST2, protects against acute ischemic neuronal and
oligodendrocyte loss (6, 7). The activation of IL-33/ST2
signaling also adjusts the adaptive immune responses after
brain injuries. For example, IL-33 treatment induces Th2-type
responses and reduces post-stroke inflammation (8). IL-33/ST2
signaling also expands the number of Tregs and enhances their
beneficial effects in the ischemic brain (9–11). Clinical studies
document that serum concentrations of IL-33 and soluble ST2
significantly increase in TBI patients vs. controls and correlate
with worse prognosis after TBI (12, 13). The exact role of IL-33/
ST2 signaling in TBI, however, is not thoroughly studied.

In this study, we found that IL-33 expression increased in
brain and blood, and expression of ST2 was elevated in
circulating Tregs and brain infiltrating Tregs early after TBI.
The activation of IL-33/ST2 signaling reduced brain lesion size
and improved functional performance after TBI at least partially
through regulating Treg activity. IL-33 may represent a new
immune therapeutic strategy to improve TBI outcomes.
Frontiers in Immunology | www.frontiersin.org 276
METHODS

Animals
C57BL/6J (wild-type, WT) mice were purchased from the
Jackson Laboratory (Bar Harbor, Maine). ST2 KO mice, a gift
from Dr. A. McKenzie (Medical Research Council as part of
UKRI, U.K), were bred for experimental use at the University of
Pittsburgh. Mice were maintained under a 12h – 12h light-dark
cycle with food and water provided at libitum. All animal
procedures were approved by the University of Pittsburgh
Institutional Animal Care and Use Committee and performed
following the Guide for the Care and Use of Laboratory Animals.
For Treg depletion, 300 mg anti-CD25 antibody (Thermo Fisher,
Pittsburgh, PA) was diluted in PBS and injected ip 2 days prior to
CCI. Control mice received the same amount of IgG2a
isotype antibody.

Murine Models of Traumatic Brain Injury
TBI was induced by unilateral controlled cortical impact (CCI) as
previously described (14). Briefly, mice were randomly assigned
to sham and TBI groups with different treatments. All animals
were anesthetized with 1.5% isoflurane in a 30% O2/70% N2O
mixture under spontaneous breathing. Mice were drilled with a
right parietal craniotomy (diameter of 3.5 mm; centered 0.5 mm
anterior and 2.0 mm lateral to Bregma). The CCI was produced
with a pneumatically driven CCI device (Precision Systems and
Instrumentation) using a 3 mm flat-tipped impounder (velocity,
3.75 m/s; duration, 150 ms; depth, 1.5 mm). After CCI, the skin
incision was sealed. Rectal temperature was maintained at 37°C ±
0.5°C during surgery and for up to 30 minutes after CCI using a
heating pad. Sham animals were subjected to all aspects of the
protocol (surgery, anesthesia, craniotomy, recovery) except for
CCI. CCI animal models and all outcome assessments were
performed by investigators who were blinded to the mouse
genotype and the group assignments.

Intranasal Administration of IL-33
Animals were randomly assigned to intranasally receive
recombinant IL-33 (Enzo, 2mg/30g body weight), or vehicle
control treatment at 2h, 24h, and 48h after CCI. Mice were
anesthetized as described above and placed in a supine position.
The solution was applied into each nostril 3 times (~5 ml into
each nostril for each infusion) with an interval of 5 minutes.

Behavioral Test
Adhesive Removal Test
Adhesive removal test was performed to assess tactile responses
and sensorimotor function. Adhesive tapes (2 mm × 3 mm) were
applied to forepaws contralateral to the injured hemisphere.
Tactile responses were measured by recording the time to
initially contact the paws and the time to remove the adhesive
tape. The maximum observation period was 2 minutes.

Rotarod Test
Motor coordination and balance dysfunction were tested on an
accelerating Rotarod (IITC Life Science). Mice were put on a
rotating drum with speed accelerating from 4 to 40 rpm within 5
March 2022 | Volume 13 | Article 860772
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minutes. Mice were tested 3 times with at least a 10-minute
interval. The latency to fall off the rotating rod was recorded. The
averages of three trials on the final day of training were recorded
as baseline values. The test was repeated at different time points
after surgery. Data were expressed as mean values from 3 trials.

Cylinder Test
To assess forelimb asymmetry, mice were placed individually inside
a transparent cylinder (diameter 9 cm; height 15 cm). A camera was
placed above the cylinder to videotape the full vision of the cylinder
for 15 minutes. When exploring the cylinder, mice typically exhibit
spontaneous rears contacting the cylinder wall with the right
forelimb (R), the left forelimb (L), or both forelimbs (B). Data are
expressed as asymmetry rate, calculated as (R-L)/(L+R+B) x100%.

Hanging Wire Test
The apparatus used was a stainless-steel bar (50 cm long and 2
mm diameter) supported by two vertical supports and elevated
37 cm above a flat surface. Mice were placed in the middle of the
bar and were guided to climb onto the supports within 30
seconds. Three trials were performed each day. Mice were
scored according to the following criteria: 0, fell off; 1, hung
onto the bar with two forepaws; 2, hung onto the bar with an
added attempt to climb onto the bar; 3, hung onto the bar with
two forepaws and one or both hind paws; 4, hung onto the bar
with all four paws and with tail wrapped around the bar; and 5,
escaped to one of the supports.

Foot Fault Test
Foot-fault is a measurement of forelimb coordination during
spontaneous locomotion (15). Mice were placed on a steel grid
surface (20 cm x 40 cm with a mesh size of 4 cm2) elevated 30 cm
above a flat surface. A camera was placed, and the session was
videotaped for 1 minute. The videotapes were analyzed by a
blinded investigator to count the number of total steps and the
number of foot faults made by the impaired limbs (contralateral
to lesion). Foot faults were determined when the mouse
misplaced its impaired forepaw such that the paw fell through
the grid. Data were expressed as a percentage of foot faults
among total steps.

Measurement of Tissue Loss
Animals were euthanized and perfused with saline followed by 4%
paraformaldehyde (Sigma-Aldrich) in phosphate-buffered saline
(PBS). Brains were cryoprotected in 30% sucrose in PBS. Coronal
brain sections (25 mm) were sliced on a freezing microtome
(Microm HM 450). Brain sections were subjected to crystal
violet staining. Tissue loss was determined using Image J
software by an observer blinded to group assignments. The
actual tissue loss volumes were calculated as the volume of
the contralateral hemisphere minus the non-injury volume of
the ipsilateral hemisphere.

Immunohistochemistry and Image
Analysis
Brain sections were blocked with 5% donkey serum in PBS for 1
hour, followed by overnight incubation (4°C) with the primary
Frontiers in Immunology | www.frontiersin.org 377
antibodies. After washing, sections were incubated for 1 hour at
20°C with secondary antibodies conjugated with fluorophores
(1:1000, Jackson ImmunoResearch Laboratories, Inc.).
Fluorescence images were captured with an Olympus Fluoview
FV1000 confocal microscope and FV10-ASW 2.0 software
(Olympus America). Primary antibodies used in this study
include: Goat anti-IL-33 (R&D System), mouse anti-APC
(MilliporeSigma), rabbit anti-GFAP (Dako), mouse anti-NeuN
(MilliporeSigma), and rabbit anti-Iba1 (Wako).

Flow Cytometry
Peripheral blood was collected by cardiac puncture. ACK lysis
buffer (Sigma- Aldrich) was used to lyse RBCs. Brains were
dissected and the ipsilateral hemispheres were collected. Single-
cell suspensions were prepared by using the Neural Tissue
Dissociation Kit (Miltenyi Biotec), according to the
manufacturer’s instructions. The suspension was passed
through a 70-mm cell strainer (Thermo Fisher Scientific) and
resuspended in 30% Percoll. Cells, myelin and debris were
stratified on a 30–70% Percoll gradient (GE Healthcare
BioSciences). Cells at the interface were collected and then
washed with FACS buffer (1% penicillin/streptomycin
antibiotic, 2% fetal bovine serum, 2 mM EDTA in HBSS)
before staining. Cells were first incubated with antibodies to
surface antigens for 30 minutes on ice at 4°C in the dark. After
two washes, cells were permeabilized and fixed with the
Intracellular Staining Kit (Thermo Fisher Scientific), and then
stained with fluorophore-labeled antibodies for 30 minutes on
ice in the dark. Fluorochrome compensation was performed with
single-stained UltraComp eBeads (Thermo Fisher Scientific).
Flow cytometry was performed on the BD LSRII flow
cytometer (BD Biosciences). Data analyses were performed
using FlowJo software. The following antibodies (Thermo
Fisher Scientific) were used: anti-CD4 FITC, anti-ST2 APC,
anti-CD25 PE, anti-Foxp3 Percp-cy5.5, anti-CD11b APC-cy7,
anti-Ly6G FITC, anti-CD3 ef450, anti-CD11c Percp-cy5.5, anti-
GITR PE Cy7, anti-CTLA4 BV421, and anti-F4/80 PE.

Cytokine Enzyme-Linked
Immunosorbent Assay
Blood plasma, brain lysates and cell culture media were collected.
Protein concentrations were measured with commercial ELISA
quantification kits for IL-10 and TGFb (R&D Systems) according
to the manufacturer’s instructions.

Treg Isolation and Culture
Spleens were harvested fromWT or ST2 KOmice 5d after CCI to
prepare single cell suspensions as we described (16, 17).
CD4+CD25+ Tregs were isolated using a mouse Treg isolation
kit (Miltenyi Biotec) according to the manufacturer’s
instructions. The isolation was performed in a two-step
procedure with a negative selection on CD4+ cells and a
positive selection on CD25+ cells. Isolated Tregs were
stimulated with soluble anti-CD3 (4 µg/ml), anti-CD28 (5 µg/
ml) and IL2 (100 ng/ml) for 2d in Treg culture media
(RPMI1640 containing 2mM L-Glutamine, 10%FBS, 1%
penicillin/streptomycin, 1mM pyruvate sodium, and 55 mm
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b-mercaptoethanol) and then treated with IL-33 (R&D system,
50 ng/mL) or PBS for 24h.

BrdU Proliferation
T effector cells (Teff) were plated at 2 × 105 per well in a U bottom
96-well plate in the presence of anti-CD3 and anti-CD28 to
stimulate their proliferation. IL-33 treated or PBS-treated Tregs
were added at a ratio of 1:1, 1:2, 1:4, 1:8, and 1:16 to the number of
Teff. Cells were incubated for two days. Suppression of Teff
proliferation was determined using the BrdU cell proliferation
ELISA kit (Roche) according to the manufacturer’s instructions.

Statistical Analyses
All statistical analyses were performed using GraphPad Prism
software (version 9.0.0, La Jolla, CA). The Student’s t-test was
used for comparison of two groups for continuous variables with
normal distributions. The differences in means among multiple
groups were analyzed using one-way analysis of variance
(ANOVA). Differences in means across groups with repeated
measurements over time were analyzed using the two-way
repeated measures ANOVA. When the ANOVA showed
significant differences, pairwise comparisons between means
were tested by post hoc Bonferroni multiple-comparison tests.
Results are presented as mean ± SEM. In all analyses, p<0.05 was
considered statistically significant.
RESULTS

TBI Results in Increased Expression of
IL-33 and ST2
We evaluated IL-33 expression in the brain and the blood after
CCI. Immunostaining showed that the number of IL-33+ cells
increased significantly 5d after CCI (Figures 1A, B). ELISA
results confirmed elevated IL-33 levels in the ipsilateral brain
(Figure 1C) and in the plasma (Figure 1D) 1d and 3d after CCI.
Co-labeling with cell specific markers demonstrated IL-33
protein expression mainly in APC+ oligodendrocytes in the
lesioned area (Figure 1E). Some IL-33+GFAP+ astrocytes were
noted (Figure 1E). There is no IL-33 staining in Iba1+ microglia/
macrophages or NeuN+ neurons (Figure 1E).

We then assessed changes in immune cell composition in blood
after TBI (Figure 1F). We did not see significant changes in the
numbers of CD3+ total T lymphocytes (Figure 1G), CD19+ B
lymphocytes (not shown), or CD11b+ myeloid cells (Figure 1H).
The percentages of CD11b+CD11c+ dendritic cells, CD11b+Ly6G+

neutrophils or CD11b+F4/80+ macrophages remained unchanged
among total CD11b+ myeloid cells 5d after TBI (Figure 1H).
Meanwhi le , the percentages of CD4+ T cel l s and
CD4+CD25+Foxp3+ Tregs showed no change in blood
(Figure 1G). Interestingly, the percentage of ST2+ Tregs
significantly increased in the blood 5d after TBI (Figure 1G).
There is no significant change in ST2 expression in total CD4+ T
cells (not shown).

We then assessed the infiltration of Tregs in the TBI brain.
Infiltrating Tregs were observed in the brain 3d after CCI, and
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further increased 7d after CCI. The number of ST2+ Tregs
significantly increased in the brain 7d after CCI (Figures 2A, B).
ST2 expression in infiltrating Tregs increased since 7d after CCI
(Figures 2A, B).

Taken together, these results demonstrate that IL-33 is
released in the brain and in the circulation after TBI, which is
accompanied by ST2 upregulation in circulating and brain
infiltrating Tregs.

ST2 Deficiency Enlarges Brain Lesion Size,
Exacerbates Functional Deficits, and
Reduces Treg Frequencies After CCI
We then used ST2 knockout mice to investigate the function of IL-
33/ST2 axis after TBI. ST2 KO mice exhibited enlarged brain
lesion size 5d after CCI (Figure 2C). ST2 deficiency also resulted
in deteriorated sensorimotor deficits, as revealed by the increased
time to remove an adhesive tape in the adhesive removal test
(Figure 2D), increased error rate in the foot fault test (Figure 2E),
lower score in hanging wire test (Figure 2F), reduced latency to
fall off a rotating bar in the rotarod test (Figure 2G), and higher
asymmetric rate in the cylinder test (Figure 2H). Flow cytometry
results showed no significant differences in the numbers of
circulating Tregs, as well as total T lymphocytes, CD4+ T
lymphocytes, CD11b+ myeloid cells, or CD11b+Ly6G+

neutrophils between ST2 KO sham mice and WT sham mice
(Figure S1). However, significantly reduced ST2 expression in
circulating Tregs was observed, which was accompanied by a
reduced number of Tregs in the blood in ST2 KO mice vs. wild-
type (WT) mice 5d after CCI (Figure 2I). The percentages of
CD11b+CD11c+ dendritic cells increased significantly in ST2 KO
mice after CCI (Figure 2J). The numbers of other immune cells
were similar between the two genotypes (Figure 2I, J). Consistent
with the drop in Treg numbers, the expression of IL-10
(Figure 2K) and TGFb (Figure 2L), two anti-inflammatory
cytokines released by Tregs, was significantly reduced in ST2
KO mice compared to WT mice 5d after CCI. ST2 deficiency
also reduced the numbers of brain infiltrating Tregs and ST2+

infiltrating Tregs 5d after CCI (Figure 2M).

IL-33 Treatment Reduces Brain Lesion and
Functional Deficits, and Adjusts Peripheral
Treg Responses After CCI
We then treated mice with IL-33 (2 mg/30 g body weight)
intranasally starting 2h after CCI and repeated for 2 consecutive
days (Figure 3A). In contrast to ST2 deficiency, the brain lesion
size significantly reduced in IL-33-treated mice compared to PBS-
treated mice (Figure 3B). The supplementation of IL-33 improved
sensorimotor functions in some behavioral tests including the
adhesive removal test (Figures 3C, D), the hanging wire test
(Figure 3F), and the cylinder test (Figure 3H) up to 5d after CCI.
IL-33 did not significantly improve the performance in foot fault
test (Figure 3E) or rotarod test (Figure 3G). IL-33 treatment did
not change the number of circulating Tregs 5d after TBI
(Figure 3I) but increased the percentage of ST2+ Tregs and the
expression level of ST2 on Tregs in the blood (Figure 3I). The
percentages of CD11b+CD11c+ dendritic cells, CD11b+Ly6G+
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neutrophils and CD11b+F4/80+ macrophages remained the same
among total CD11b+ myeloid cells in IL-33 and PBS-treated mice
5d after TBI (Figure 3J). IL-33 increased the levels of IL-10
(Figure 3K) and TGFb (Figure 3L) in the blood 5d after TBI.
IL-33 treatment increased the number of brain infiltrating Tregs
(Figure 3M) and ST2+ infiltrating Tregs (Figure 3N). The
expression levels of CD25, CTLA4 and GITR on infiltrating
Tregs did not show significant differences 5d after
TBI (Figure 3O).

These data suggest that IL-33 reduces brain lesion and
sensorimotor deficits after CCI and enhances anti-
inflammatory response, possibly by upregulating ST2
expression on Tregs.

Treg Is Essential for Neuroprotective
Effect of the IL-33/ST2 Signaling
Since ST2 is widely expressed in multiple types of immune cells,
we next confirmed whether Tregs are essential for the protective
effect of the IL-33/ST2 signaling early after TBI. Tregs were
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depleted by anti-CD25 injection 48 hours prior to TBI
(Figure 4A). As expected, anti-CD25 injected mice maintained
lower numbers of Tregs in the circulation regardless of IL-33
treatment 5d after CCI (Figure 4B). Treg depletion enlarged
brain lesion size and exacerbated sensorimotor deficits, and IL-
33 injection to Treg-depleted mice lost its protective effect
(Figures 4C–I). The expression of IL-10 (Figure 4J) and TGFb
(Figure 4K) remained in low levels in Treg depleted mice with or
without IL-33.

IL-33 Enhances the Production of Anti-
Inflammatory Cytokines From Tregs
and Boosts Their Suppressive Effects
on T Effector Cells
To elucidate the direct effect of IL-33 on Tregs, we isolated Tregs
from the spleens of WT and ST2 KO mice at 5d after CCI and
maintained in culture media with anti-CD3 and anti-CD28 for 2
days. Activated Tregs were then cultured for 24h with or without
IL-33 treatment. T effector cells (Teff) were used as control. As
A
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FIGURE 1 | TBI results in increased expression of IL-33 and ST2. (A) Representative images of IL-33 (green) staining in a brain slice collected 5d after CCI. More IL-33+

cells were observed in the lesioned side (ipsilateral) of the brain. The region enclosed by the red box in the left image was enlarged in the right image. Scale bar, 150 mm.
(B) Quantification of IL-33+ cells in the ipsilateral lesioned area and corresponding contralateral brain area 5d after CCI. (C, D) IL-33 protein levels were measured in
the brain lysates (C) and blood (D) collected 1 and 3 days after CCI. (E) Double staining of IL-33 (green) in APC+ oligodendrocytes (red), GFAP+ astrocytes (red), Iba1+

microglia/macrophages (red) and NeuN+ neurons (red) in ipsilateral brains 5 days after CCI. Scale bar, 40 mm. Nuclei were stained blue with 4′,6-diamidino-2-phenylindole
(DAPI). All images are representative of four animals. (F) Representative gating strategy for T lymphocytes, monocytes, neutrophils, and dendritic cells in the blood 5d after
CCI. (G) Quantification of total CD3+ T cells, CD4+ T cells, CD4+CD25+Foxp3+ Tregs, and ST2+ Tregs in blood 5d after CCI or sham operation. (H) Quantification of total
CD11b+ cells, CD11c+CD11b+ dendritic cells, CD11b+Ly6G+ neutrophils, and CD11b+F4/80+ macrophages in blood 5d after CCI or sham operation. *p < 0.05,
**p < 0.001, ***p < 0.001, Student’s t test (B, C, G, H) or one-way ANOVA and post hoc Bonferroni (D).
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shown in Figures 5A, B, there were higher levels of IL-10 and
TGFb in the conditioned media collected from Tregs compared
to Teff cells. IL-33 treatment further increased the expression of
these two cytokines. IL-33 failed to induce IL-10 or TGFb
production in ST2 KO Tregs (Figures 5A, B).

The capacity of Tregs to inhibit the proliferation of Teff cells
was measured by the BrdU cell proliferation kit (Figure 5C). IL-
Frontiers in Immunology | www.frontiersin.org 680
33-treated WT Tregs demonstrated enhanced ability to inhibit
the proliferation of Teff cells, as shown by significantly reduced
BrdU incorporation (Figure 5C).

We also measured the expression of effector molecules
CTLA4, GITR and CD25. IL-33 treatment enhanced the
expression of CTLA4 and GITR in cultured Tregs but showed
no effect on CD25 expression (Figure 5D).
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FIGURE 2 | ST2 knockout (KO) reduces Treg frequencies, enlarges brain lesion size and exacerbates functional deficits after TBI. (A) Representative gating strategy
for CD4+ T cells, CD4+CD25+Foxp3+ Tregs, and ST2+ Tregs in the WT brain after CCI. (B) Quantification of CD4+CD25+Foxp3+ Tregs, ST2+ Tregs, and median
fluorescence intensity (MFI) of ST2 in Tregs in the sham WT brain and WT brains collected 3d and 7d after CCI. n = 4/group. (C-M) Male C57/BL6 WT and ST2 KO
mice were subjected to CCI. n = 6-8/group. (C) Representative images of crystal violet-stained brain sections collected 5d post-injury in WT and ST2 KO mice. Brain
tissue loss was quantified. (D–H) Sensorimotor functions after CCI were assessed in WT and ST2 KO mice. (D) Adhesive removal test. The latency to remove the
tape from the impaired forepaw was recorded. (E) Foot fault test was quantified as foot fault rate, which is the ratio of the total number of foot faults for the left
forelimb to the total movement number of the left forelimb. (F) Hanging wire test. (G) Rotarod test. The latency to fall off the rotating rod was recorded. (H) Cylinder
test. The asymmetric rate was calculated as described in Methods. (I) Quantification of total CD3+ T cells, CD4+ T cells, CD4+CD25+Foxp3+ Tregs, and MFI of ST2
in Tregs in the blood 5d after CCI in WT and ST2 KO mice. (J) Quantification of total CD11b+ cells, CD11c+CD11b+ dendritic cells, CD11b+Ly6G+ neutrophils, and
CD11b+F4/80+ macrophages in the blood 5d after CCI in WT and ST2 KO mice. (K, L) Plasma IL-10 (K) and TGFb (L) levels were measured by ELISA 5d after CCI
in WT and ST2 KO mice. (M) Quantification of CD4+CD25+Foxp3+ Tregs and ST2+ Tregs in the brain 5d after CCI in WT and ST2 KO mice. *p < 0.05, **p < 0.01,
***p < 0.001, Student’s t test (C, I, J, K, L, M), one-way ANOVA (B) or two-way repeated measures ANOVA (D–H) and post hoc Bonferroni.
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DISCUSSION

IL-33 is known as an alarming protein that is released from
damaged cells and triggers subsequent immune responses. The
elevation of IL-33 in lesioned brains has been observed in different
Frontiers in Immunology | www.frontiersin.org 781
CNS injuries including TBI (18), stroke (6), spinal cord injury (19),
and multiple sclerosis (20). Samples from human TBI
microdialysate and brain sections show increases in IL-33 levels
early after TBI (18). Consistent with this study, we found that IL-
33 levels increased in the brain 1 and 3 days after CCI. The main
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FIGURE 3 | IL-33 treatment reduces brain lesion and functional deficits after TBI and adjusts peripheral Treg responses. (A) Experimental design. C57/BL6 mice were
treated with IL-33 (2 mg/30 g body weight) or the same volume of PBS vehicle intranasally 2h after CCI and repeated daily for 2 more days. n = 6-8/group. (B) Tissue
loss was evaluated in coronal brain sections stained by crystal violet 5d after TBI. Representative images show six crystal violet-stained brain sections, spanning from
1.10 mm anterior to bregma to 1.94 mm posterior to bregma with the same interval. (C–H) Sensorimotor function was evaluated by the adhesive removal test (C, D),
foot fault test (E), hanging wire test (F), rotarod test (G) and the cylinder test (H). (I) Flow cytometry quantification of total CD3+ T cells, CD4+ T cells, CD4+CD25+Foxp3+

Tregs, ST2+ Tregs, and MFI of ST2 in Tregs in blood 5d after CCI. (J) Quantification of total CD11b+ cells, CD11c+CD11b+ dendritic cells, CD11b+Ly6G+ neutrophils, and
CD11b+F4/80+ macrophages in the blood 5d after TBI. (K–L) Plasma IL-10 (K) and TGFb (L) levels were measured by ELISA 5d after CCI. (M–N) Quantification of
CD4+CD25+Foxp3+ Tregs (M) and ST2+ Tregs in the brain 5d after CCI. (O) Expression levels of CD25, CTLA4 and GITR in Tregs in the brain 5d after CCI. *p < 0.05,
**p < 0.01, ***p < 0.001. Student’s t test (I–N), one-way (B) or two-way repeated measures ANOVA (C–H) and post hoc Bonferroni.
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cellular sources of IL-33 in the injured CNS are diverse and seem
to be different according to specific injuries. Oligodendrocytes and
astrocytes are the main sources of IL-33 in stroke and TBI brains
(6, 18). IL-33 is mainly localized in astrocytes after spinal cord
injury (19), while being widely expressed in microglia, neurons,
oligodendrocytes and astrocytes in multiple sclerosis (20). In our
study, there is a predominant expression of IL-33 in
oligodendrocytes at the site of injury after TBI. This is
consistent with the relatively high basal level of IL-33 expression
in oligodendrocytes in a normal brain (21). Interestingly, double
staining of IL-33 with oligo2, a marker for whole lineage of
oligodendrocytes, shows less percentages of colocalization than
that in APC+ mature oligodendrocytes (not shown), suggesting
that this alarmin protein upsurges preferentially in mature
oligodendrocytes after TBI.

Previous studies about the IL-33/ST2 signaling in brain
injuries mainly focus on its effects within the CNS. Microglia/
macrophages have been identified as the main cellular targets of
IL-33 in stroke models (6, 7). In addition, approximately 50% of
the brain infiltrating Tregs express ST2 and expand in response
to IL-33 after brain ischemia (9). Consistent with these studies in
stroke models, we found reduced number of brain infiltrating
Frontiers in Immunology | www.frontiersin.org 882
Tregs in ST2 deficient mice and increased number of brain
infiltrating Tregs in IL-33 treated mice after TBI. Therefore, IL-
33/ST2 signaling is important for Treg recruitment and/or
amplification in the brain in different CNS injuries.

In addition to its central functions, a high level of IL-33 is
noted in blood early after TBI in numerous clinical reports
(12, 13, 22). The ascending serum IL-33 levels correlate with
clinical severity and could be used as a marker for risk
assessments and prognosis in TBI patients. The function of
circulating IL-33 after TBI is unknown. In this study, we found
an increase of IL-33 in the blood as early as 1d after CCI, which
remained high for at least 3 days. We further found that the ST2
expression on circulating Tregs increased after TBI and its
expression on brain infiltrating Tregs escalated with time. Our
experiments using IL-33 supplementation and ST2 KO mice
revealed the impact of this signaling axis on Treg responses after
TBI. IL-33 increases ST2 expression on circulating and
infiltrating Tregs; and ST2 expression maintains Treg numbers
in the blood and in the brain after TBI. IL-33 also enhanced the
expression of Treg activation markers CTLA4 and GITR in
cultured Tregs, but not in brain infiltrating Tregs after TBI. It
seems that some effects of IL-33 on Tregs are subdued by other
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FIGURE 4 | Treg is essential for the neuroprotective effect of the IL-33/ST2 axis. (A) Experimental design. C57/BL6 mice were treated with isotype IgG Veh (300 µg)
or anti-CD25 mAb (300 µg) 2d prior to CCI. Some anti-CD25 mAb-treated mice received IL-33 (2 mg/30 g body weight) intranasally 2h after CCI and repeated daily
for two more days. n = 6-7/group. (B) Flow cytometry confirms the reduction of Tregs in blood of CD25 Ab treated mice 5d after CCI. (C) Left: representative brain
sections of crystal violet staining show the tissue loss 5d post TBI. Right: Quantification of total volume of tissue loss. (D–I) Sensorimotor function was evaluated by
the adhesive removal test (D, E), foot fault test (F), hanging wire test (G), rotarod test (H), and the cylinder test (I). (J, K) Plasma IL-10 (J) and TGFb (K) levels were
measured by ELISA 5d after CCI. *p < 0.05, **p < 0.01, ***p < 0.001. One-way (B, C, J, K) or two-way repeated measures ANOVA (D–I) and post hoc Bonferroni.
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stimulations in a complicated in vivo environment. It has been
reported that ST2 or IL-33 deficiency has no effect on the
frequencies and total numbers of Tregs in peripheral lymph
organs in normal mice (23). In agreement of this report, we
found that the number of circulating Tregs in ST2 KO shammice
did not change compared to WT sham mice. Therefore, the
activation of IL-33/ST2 signaling axis might be a mechanism to
induce protective Treg responses under pathological conditions
including TBI but has little impact on Treg generation or
differentiation under normal conditions.

Clinical studies have shown that the number of circulating
Tregs increases transiently on the first day after TBI, followed by a
decrease on the 4th day and a rebound 7-14 days after TBI (24).
Importantly, the number of circulating Tregs correlates with
clinical recovery. TBI patients with circulating Tregs more than
4.91% of total CD4+ cell numbers in the first 14 days after TBI
exhibit better neural recovery compared to those with lower
numbers of Tregs (24). Evidence in the pre-clinical models
supports beneficial effects of Tregs in acute tissue protection after
TBI (25). Consistent with previous study, we found that depletion
of Tregs enlarged brain lesion and profoundly exacerbated
functional outcomes 5d after TBI. Indeed, we showed that IL-33
failed to provide protection to Treg-depleted mice early after TBI.
In line with this notion, Tregs have also been shown to be critical
for the beneficial effects of IL-33 in the ischemic brain (9, 11).

The IL-33/ST2 pathway may regulate Treg responses through
different mechanisms. For example, ST2 signaling in Treg cells
induces the expression of Ebi3, a component of the anti-
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inflammatory cytokine IL-35 and enhances Treg-mediated
suppression of gd T cells in the lungs (26). Another study
showed that the IL-33/ST2 signaling axis is required to
promote the production of type 2 cytokine, including IL-13
and IL-5, by Tregs in adipose tissue (27). Here, we found that
IL-33/ST2 signaling is important for the production of IL-10 and
TGFb, two anti-inflammatory cytokines that have been shown to
be protective in TBI models (28, 29) from Tregs. The lack of IL-
33/ST2 axis impaired the production of Treg-derived IL-10 and
TGFb and led to exacerbated brain lesions and neurological
deficits. Thus, the IL-33/ST2 engagement not only boosts the
number of Tregs, but also shapes the secretory profile of Tregs in
different tissues or in response to different stimulations.

Although anti-CD25 antibody is a commonly used approach
for Treg depletion, (30, 31) we are aware that one shot of anti-
CD25 cannot completely deplete all Tregs (32). Significant
reduction in the number of Tregs is observed at 5d after TBI,
which is the main time points for our endpoint evaluation.
Therefore, it is valid to use anti-CD25 as a loss of function
model to assess the effect of Tregs in acute TBI.

Since ST2 is widely expressed in many types of CNS cells and
peripheral immune cells, it is conceivable that IL-33 released
after TBI may target other types of cells to exert its protective
functions. For example, it is reported that IL-33 can recruit
microglia/macrophages to the site of injury after TBI (18). Our
previous studies in stroke model show an effect of IL-33/ST2
signaling in promoting an anti-inflammatory microglia
phenotype (6). In our study, we also noticed an increase in the
A B C
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FIGURE 5 | IL-33 enhances the production of anti-inflammatory cytokines from Tregs and boosts their suppressive effects on T effector cells. Tregs and Teff were
prepared from the spleens collected from the WT or ST2 KO mice 5d after CCI. Tregs were cultured with anti-CD3 and anti-CD28 for 2 days followed by IL-33 (50
ng/ml) or PBS treatment for 24h. (A, B) IL-10 (A) and TGFb (B) levels in conditioned media were measured by ELISA. One-way ANOVA and post hoc Sidak. (C) The
effect of Tregs on Teff proliferation was measured by BrdU incorporation. Vehicle or IL-33 treated Tregs were added at a ratio of 1:1, 1:2, 1:4, 1:8, and 1:16, to the
number of Teff. Cells were incubated for 2d. Suppression of Teff proliferation was determined using a BrdU cell proliferation kit. n = 8 per condition. (D) Flow
cytometry analysis of CTLA4, GITR and CD25. n = 4. Two-way ANOVA and post hoc Bonferroni (A–C) and Student’s t test (D). *p < 0.05, **p < 0.01, ***p < 0.001.
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number of dendritic cells in the blood of ST2 KO mice. It might
be a direct effect of IL-33 on dendritic cells as ST2 is expressed on
this cell type, or an indirect compensatory response to the
changes in Tregs (33). In addition. ST2 is shown to be
expressed in oligodendrocytes, astrocytes and neurons (34).
Therefore, the mechanisms of IL-33/ST2-afforded protection
against TBI might be multifaceted. Further studies are
warranted to elucidate a full cell-cell interaction network
initiated by the IL-33/ST2 signaling. Our studies using Treg
depleted mice and in vitro Treg cultures unequivocally confirm
Tregs as an important element in this network.

In summary, this study demonstrates that the activation of IL-
33/ST2 signaling protects against brain injury and reduces
neurological deficits after TBI through modulating Treg
responses. IL-33 treatment or other approaches that boost Treg
number or function may serve as therapeutic strategies to restrict
acute brain injury after TBI and thus improve long-term outcomes.
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Immunological tolerance plays a critical role during pregnancy as semi-allogeneic fetus
must be protected from immune responses during the gestational period. Regulatory T
cells (Tregs), a subpopulation of CD4+ T cells that express transcription factor Foxp3, are
central to the maintenance of immunological tolerance and prevention of autoimmunity.
Tregs are also known to accumulate at placenta in uterus during pregnancy, and they
confer immunological tolerance at maternal-fetal interface by controlling the immune
responses against alloantigens. Thus, uterine Tregs help in maintaining an environment
conducive for survival of the fetus during gestation, and low frequency or dysfunction of
Tregs is associated with recurrent spontaneous abortions and other pregnancy-related
complications such as preeclampsia. Interestingly, there are many parallels in the
development of placenta and solid tumours, and the tumour microenvironment is
considered to be somewhat similar to that at maternal-fetal interface. Moreover, Tregs
play a largely similar role in tumour immunity as they do at placenta- they create a
tolerogenic system and suppress the immune responses against the cells within tumour
and at maternal-fetal interface. In this review, we discuss the role of Tregs in supporting
the proper growth of the embryo during pregnancy. We also highlight the similarities and
differences between Tregs at maternal-fetal interface and tumour Tregs, in an attempt to
draw a comparison between their roles in these two physiologic and pathologic states.

Keywords: immunological tolerance, maternal-fetal interface, tumour, regulatory T cells (Tregs), immunotherapy
INTRODUCTION

Our immune system has evolved to protect us from various harmful pathogens such as viruses and
bacteria. The immune system achieves this goal by recognizing molecular patterns unique to
pathogens, mounting an inflammatory immune response, and eliminating the microorganisms
expressing these molecular patterns. An important hallmark of the immune system is its ability to
not only distinguish self- and non-self-antigens but also harmful and innocuous foreign antigens- a
phenomenon also known as immunological tolerance. A range of ‘central’ and ‘peripheral’
mechanisms render the immune system the ability to maintain the state of immunological
tolerance. These include ‘central’ deletion of autoreactive T- and B-cells during development; and
active ‘peripheral’ suppression of immuno-reactive T-lymphocytes by a unique population of
immunocytes, regulatory T cells (Tregs) (1–3).
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Tregs are a subset of CD4+ T cells that constitutively express
high levels of IL-2 receptor subunit, CD25, on their cell surface
and are classically identified as CD4+ CD25+ T cells (3, 4). The
high expression of CD25 on Treg cells allows them to act as ‘IL-2
sink’ and absorb IL-2 from the local microenvironment. This
elegant mechanism renders Tregs to inhibit IL-2 dependent
proliferation of effector T cells (Teff) and promote their
apoptosis (5). A similar IL-2 sequestration-based mechanism
has been shown to operate in Treg-mediated regulation of
natural killer (NK) cells’ function (6, 7). Another cell surface
receptor cytotoxic T lymphocyte antigen 4 (CTLA-4)- that
functions as an immune checkpoint- is known to be
constitutively expressed on Tregs and has been implicated in
Treg-mediated suppression of Teff responses (8, 9). The
differentiation, identity, and function of Tregs depend on the
expression of lineage-specifying transcription factor Foxp3 (10–
13). By virtue of their ability to dampen immune responses,
Tregs are not only critical for averting autoimmune diseases, but
they also form the cellular basis of resolution of inflammation
and tissue repair after the host response to pathogenic infection -
a phenomenon also known as immune homeostasis (4, 14–20).
Consequently, genetic perturbation of Foxp3 locus in mice leads
to loss of Tregs, and these Foxp3-mutant Scurfy mice manifest
lethal inflammation and this phenocopies the Foxp3-less disease
in humans, immune dysregulation polyendocrinopathy
enteropathy X-linked (IPEX) syndrome (13, 21–23).

Evidence gathered over the last two decades has highlighted
the role of Tregs as an important negative regulator of immune
responses in diverse physiological as well as pathological settings.
Pregnancy is one such biological process where Tregs have been
implicated to play a crucial and interesting role. During the
course of pregnancy, the fetal trophoblast cells emanating from
the growing embryo invade the uterine tissue and facilitate the
formation of placenta. The growing embryo is a semi-allogenic
entity as it derives half of its genetic information from the mother
while the other half from the father leading to the expression of
antigens that are both foreign as well as self to the mother. A
successful pregnancy necessitates that a semi-allogenic fetus is
tolerated by the maternal immune system and Tregs actively
contribute to the establishment of maternal immune tolerance
towards the developing fetus (24–26).

While pregnancy is a physiological phenomenon, tumour is a
pathological mimic in terms of tissue invasion. Tumours harbour
Tregs that facilitate their survival, and increased tumour Tregs
are often associated with a poor prognosis in many cancer types
(27–29). The similarities between the placental and tumour
microenvironment provide an exciting avenue to understand
the phenomenon of local immunosuppression. Understanding
the differences between the physiological uterine Tregs and
pathophysiological tumour Tregs can provide insights into the
development of novel therapies specifically targeted towards
tumour Tregs. In this review, we first survey the existing
literature on Tregs in pregnancy and cancer. We then attempt
to highlight the similarities and differences between Tregs from
these two physiologic and pathologic states. This information
will serve as a paradigm towards novel immunotherapy-based
Frontiers in Immunology | www.frontiersin.org 287
treatment measures for cancer during pregnancy, and we discuss
the challenges and scope of targeting Tregs for treating cancer
during pregnancy in the last section of this review.
UTERINE TREGS

The maternal decidua originating from the endometrial lining of
the uterus and fetal placenta derived from the trophectoderm of
the blastocyst constitute the maternal-fetal interface (30).
Interestingly, an extraordinarily large proportion (~40%) of the
maternal decidua is composed of immune cells, and T cells
(CD3+TCRab+) constitute ~10-20% of maternal leukocytes in
the first trimester decidua (30–32). The T cell pool at maternal-
fetal interface has cellular repertoire that can have a negative
impact on the pregnancy [T helper type 1 (Th1) cells, Th17 cells,
cytotoxic T-lymphocytes (CTLs)] as well as cells that can
positively influence the fetal growth (Tregs) (33). Hence, a
dynamic equilibrium of effector and tolerance compartments
of the T cell repertoire is essential to ensure successful
placentation and a healthy pregnancy.

On contrary to the general notion that maternal immune
responses are in suppressed state at maternal-fetal interface, it
was observed that the maternal effector T cells display the
potential to be primed by fetal alloantigens and become
activated (26, 34, 35). However, this does not result in loss of
fetus as tolerance to fetal alloantigens is induced and sustained
during pregnancy (34). These observations point towards the
establishment of temporal immune tolerance at maternal-fetal
interface during pregnancy that licences fetal cells to
paradoxically exist in the presence of maternal immune
aggression and Tregs play a key role in establishing
this tolerance.

The major event that commences the immune activities at
maternal-fetal interface is the contact of male seminal fluid with
uterine tissue after conception. This leads to infiltration of innate
immune cells like dendritic cells (DCs) that traffic paternal
antigens to the draining lymph nodes in order to expand the
population of thymic and peripheral Tregs that are further
recruited to endometrium (36–38). Additionally, male seminal
fluid contains various factors like transforming growth factor
(TGF)-b, prostaglandin E, and soluble CD38 that can skew T cell
fate commitment towards Tregs (39, 40).

Expansion of CD4+CD25+ Tregs was observed during
pregnancy in both mice (25) and humans (31, 41). During
the first and second trimester, decidual Tregs constitute a
significant proportion (10-30%) of the CD4+ T cells (25, 31),
and decline postpartum (41). Interestingly, this increase in
Treg proportion was not restricted to maternal-fetal interface
and expansion of Tregs was also observed in other peripheral
tissues of pregnant females (25). These observations suggest
that the maternal immune system undergoes a systemic
change during the period of gestation. Uterine CD4+CD25+

T cells expressed Foxp3 messenger RNA confirming their
identity as bonafide Tregs (25, 41). Maternal Tregs were also
shown to suppress an aggressive allogeneic response directed
April 2022 | Volume 13 | Article 866937

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Muralidhara et al. Tregs in Pregnancy and Tumour
against the fetus, and their absence led to immunological
rejection of the fetus (25). It was also seen that Tregs from
both pregnant and non-pregnant mice were able to infiltrate
the decidua and placenta of an abortion-prone mice model;
however, Tregs only from pregnant mice were capable of
preventing fetal rejection in vivo (42). These results suggest
that Tregs exposed to paternal alloantigens have unique
immunoregulatory properties not shared with Tregs from
non-pregnant mice. On a similar line, another study
demonstrated that frequencies of Tregs increase more in
allogeneically pregnant mice compared to syngeneically
pregnant mice and these cells contribute to a lowered
alloreactivity against paternal antigens (43).

Studies have demonstrated that depletion of Tregs either with
anti-CD25 antibodies or using Foxp3-Dtr mice promotes
maternal-fetal conflicts in allogeneic pregnant mice, but not in
syngeneic pregnant mice (44, 45). It has also been observed
that loss of Tregs or their dysfunction is associated with
several pregnancy-associated disorders such as recurrent
pregnancy loss (46) and preeclampsia (47, 48), further
emphasizing on the importance of Tregs in immune escape by
the growing embryo.
Frontiers in Immunology | www.frontiersin.org 388
Tregs exert a range of immune-suppressive, anti-inflammatory,
and vascular remodelling functions to support successful embryo
implantation in decidua (33, 49). Uterine Tregs exhibit classical
attributes of suppressive T cells like elevated expression of CD25,
CTLA-4, IL-10, and TGF-b, and prevent effector T cell responses
to fetal alloantigens (45, 50–52). Tregs also have an important role
in protection from invariant NK T (iNKT) cell-mediated
pregnancy loss (50). Tregs also support immune-suppressive
phenotype of other cell lineages like macrophages, DCs and
uterine NK (uNK) cells to aid in healthy pregnancy (33). And in
turn, cross-talk between decidual NK and CD14+ myelomonocytic
cells initiates a cascade of events promoting Treg induction and
immunosuppression (53). In brief, Tregs do not work alone, and
both regulate, and are regulated by various other cell lineages,
immunomodulatory chemokines, and molecules in ensuring a
healthy pregnancy (Figure 1A).
TUMOUR TREGS

Cancer is viewed as a group of pathological tissue abnormalities
that include abnormal cell growth and aberrant gene expression.
A

B

FIGURE 1 | Origin and mechanisms of Tregs in pregnancy and cancer. (A) After conception, the seminal fluid encounters the uterine tissue. The presentation of paternal
antigens by dendritic cells (DCs) to T cells as well as other soluble factors in the seminal fluid favour the induction of regulatory T cells (Tregs). The uterine Tregs express
markers such as CTLA-4, PD-1, and Foxp3, and expand locally in the endometrium during early pregnancy (left panel). Uterine Tregs express factors such as IL-10 which
inhibits the proliferation and function of T effector cells (Teff); TGF-b which inhibits the function of cytotoxic natural killer (NK) cells; and HO-1 which maintains decidual DCs
in an immature state. These immature DCs express higher levels of IL-10 that further supports the immune-suppressive phenotype of uterine Tregs. Tregs also induce the
expression of IDO by tolerogenic DCs (tDCs) which inhibits Teff cell function (right panel). (B) Cells in tumour microenvironment release chemokines that recruit Tregs
expressing chemokine receptors such as CCR4, CCR5 and CCR8. Tumour Tregs have thymic origin and interact with diverse cell types in the tumour microenvironment
(left panel). IL-2 is produced by Teff cells, which is sequestered by Tregs as they constitutively express IL-2 receptor subunit CD25, thus decreasing the bioavailability of
IL-2 to Teff cells and inhibiting their function. Tregs may control DCs’ activity through CTLA-4-CD80/86 axis. Tregs also produce immunosuppressive cytokines such as
IL-10, TGF-b, and IL-35 that further inhibit the function of Teff cells and antigen-presenting cells (APCs) (right panel). PGE, Prostaglandin E; TGF-b, Transforming growth
factor-b; HO-1, Heme oxygenase-1; IDO, Indoleamine 2,3-dioxygenase. Created with BioRender.com.
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The progression of cancer is reliant on the interaction between
the tumour cells and immunocytes in the surrounding tumour
microenvironment, such as tumour infiltrating lymphocytes
including Tregs and innate lymphoid cells (ILCs), myeloid-
derived suppressor cells (MDSCs), tumour-associated
macrophages (TAMs), and tolerogenic dendritic cells (54, 55).
Tumour-derived signals often lead to tumour cells evading the
immune effector cells, and it has been observed that Tregs are a
significant contributor to the immune escape by tumours (56,
57). Thus, Tregs are at crossroads of health and pathology in
pregnancy and cancer.

However, on contrary to much believed notion that
infiltration of Tregs in tumours results in poor clinical
outcomes in various cancers, the role of Tregs in colorectal
cancers has been debatable (58, 59). Saito et al. recently
demonstrated that colorectal cancers can be categorized into
two subclasses based on the degree of infiltration of non-
suppressive Foxp3lo T cells that are characterized by absence of
naive T cell marker CD45RA and secretion of inflammatory
cytokines such as IFN-g (60). A strong correlation between the
frequency of non-suppressive Foxp3lo T cells and the
transcription levels of IL-12A and TGF-b1 in colorectal cancer
tissues contributed to a better prognosis in colorectal cancer
patients. Similar results have been observed in the patients with
Hodgkin’s lymphoma, where a high number of Foxp3+ cells
correlated with longer event free survival, and relapsed samples
tended to have a lower frequency of Foxp3+ cells (61). These
results highlight the phenotypic and functional heterogeneity of
Tregs in cancer tissues and warrant a much careful analysis of
Treg subtypes in various types of cancers.

Tumour cells or infiltrating innate leukocytes release
chemokines such as CCL17 and CCL22 to promote the
migration of thymic Tregs expressing receptors such as CCR4,
CCR5, and CCR8 from the secondary lymphoid tissues to the site
of tumour (62–66). Suppressive nature of Tregs in tumours is
supported by the expression of CD25, PD-1 and CTLA-4 on
their surface which further shapes cellular architecture of
tumours in an immunological sense. For example, high levels
of Treg-intrinsic CTLA-4 may aid in suppressing dendritic cells’
activities by affecting CD80 and CD86 expression; while CD25
expression may impact effector T cell and NK cell responses by
quenching IL-2 in tumour microenvironment (67, 68). On the
other hand, tumour infiltrating myeloid cells such as DCs and
MDSCs may support recruitment and differentiation of tumour
Tregs via secretion of chemokines and cytokines such as TGF-b
(69, 70). Overall, an extensive cross-talk of tumour and immune
cells with Tregs defines the immunological nature of tumour
milieu (Figure 1B).
UTERINE VS. TUMOUR TREGS: CLOSE
OR POLES APART?

The parallels between maternal-fetal interface and tumour arise
from multiple observations- 1) Both fetus and tumour are
invasive in nature. 2) These tissues exist in a niche
Frontiers in Immunology | www.frontiersin.org 489
microenvironment. 3) Tregs support the growth of both of
these tissues (71). Remarkably, uterine and tumour Tregs also
display several similarities in their transcriptional signatures. A
recent study by Wienke et al. focused on the transcriptional
status of uterine Tregs in myometrial biopsies from maternal-
fetal interface and compared the transcriptomic profile of these
cells with peripheral blood-derived Tregs and tumour Tregs (72).
Uterine Tregs at maternal-fetal interface showed increased
suppressive capabilities compared to Tregs in circulation with
elevated levels of TIGIT, CD25, IL-10, CTLA-4, OX-40, ICOS,
PD-1 and LAG3. This signature is frequently associated with
enhanced suppressive capabilities of Tregs or a state also known
as “effector Tregs”, especially present in tissues. Not surprisingly,
uterine Tregs exhibited features of tissue imprinting with
upregulation of genes such as BATF and PRDM1 that are
unique to effector Tregs. Interestingly, tumour Tregs also
display elevated suppressive activity as well as an effector
phenotype with expression of signature genes (66, 73, 74). On
similar lines, Wienke et al. observed that the transcriptomic
landscape of uterine Tregs displays stronger overlap with that of
tumour Tregs, and hepatocellular carcinoma (HCC)-infiltrating
Tregs are closest to the uterine Tregs (72, 75). Most importantly,
uterine and tumour Tregs-specific gene signature was distant
from that of healthy tissue-derived Tregs, suggestive of their
unique capabilities (72). These results indicate that both uterine
and tumour Tregs acclimatize to the tissue microenvironment,
with their major job being active suppression of the local
immune responses.

While the similarities between uterine and tumour Tregs have
been well understood, there is still scope for further studies on
understanding the specific differences between uterine and
tumour Tregs. To gather the differences between uterine and
tumour Tregs, it is imperative to first acknowledge the
dissimilarities between the tissue microenvironment in which
these Tregs home. One fundamental difference between
maternal-fetal interface and tumour is the inflammatory milieu
of the two tissues. Cytokines such as IL-10 in the tumour
microenvironment promote a shift towards Th2 responses.
Th2 cells support neoplastic growth through limiting CTL
activity (76–78) and tumour Tregs may foster Th2 niche in
cancer (79). On the other hand, the inflammatory environment
during pregnancy is dynamic. It was observed that several pro-
inflammatory mediators are required for the chemotaxis of
trophoblast cells (80, 81). This pro-inflammatory signature
shifts to a dominant Th2 state which is required for the
maintenance of pregnancy, while parturition is associated with
a shift towards Th1 responses (82, 83). This dynamicity of Th
responses highlights the less appreciated heterogeneity of Tregs
during the course of gestation and raises the need for a
comprehensive study in this direction.

Another major difference is the type of tissue antigens that
uterine and tumour Tregs respond to and the origin of these
Tregs. During pregnancy, Tregs respond to a mix of ‘maternal
self’ and ‘paternal non-self’ antigens. While the initiation of
events promoting embryo implantation enables the infiltration
of thymic Tregs, it was observed that the decidual environment
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FIGURE 2 | Parallels and dissimilarities between uterine and tumour Tregs. (A) Uterine Tregs display several tissue adaptations which mimic tumour Tregs. Both
uterine and tumour Tregs are characterised by higher expression of BATF and PRDM1. These cells also demonstrate increased suppressive abilities with elevated
levels of IL-10 in comparison to their blood counterparts. Uterine and tumour Tregs exhibit an effector phenotype with increased expression of molecules such as
TIGIT, PD-1, OX-40, CTLA-4 and CD25. (B) A major difference between uterus and tumour microenvironment is inflammatory milieu of these two tissues. Uterine
microenvironment oscillates between T helper type 1 (Th1) and Th2 during pregnancy while tumour growth is fostered by Th2-polarised microenvironment. Uterine
Tregs respond to ‘paternal non-self’ and ‘maternal self’ antigens and expand locally. On the contrary, thymus-derived Tregs populate tumour and are exposed to
self- and neo-tumour antigens. Uterine and tumour Tregs display phenotypic and functional heterogeneity with uterine Treg subtypes being majorly immune-
suppressive while tumour Tregs being both suppressive and non-suppressive. Created with BioRender.com.
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induces extrathymic expansion of Tregs that are vital for the
maintenance of pregnancy (45, 84). On the contrary, it has
been suggested that thymic Tregs gain an upper hand in
tumour and expand in response to self- and neo-tumour
antigens (85, 86). However, there are also reports suggesting
tumour conversion of naive T cells into Treg cells, and the
question of the origin of tumour Tregs is still of significant
interest (87, 88).

The phenotypic and functional heterogeneity of uterine and
tumour Tregs adds another layer to their pre-existing
complexity. As briefly discussed earlier, two distinct
populations of non-suppressive Foxp3lo and suppressive
Foxp3hi Tregs home some cancer types such as colorectal
cancer and their relative frequency contributes to the disease
prognosis (60). Similarly, a recent study by Salvany-Celades et al.
highlighted the flavours of Tregs, namely CD25hiFoxp3+, PD-
1hiIL-10+, and TIGIT+Foxp3dim in uterine tissue during
pregnancy. These three uterine Treg populations expanded
based on different cues offered by diverse cell types at
maternal-fetal interface. Interestingly, unlike the Foxp3lo and
Foxp3hi cells in colorectal cancer, all three Treg subtypes in the
decidua showed suppressive activity on CD4+ T cells while only
CD25hiFoxp3+ population reflected consistent suppressive
activity on CD8+ T cells (84). These observations encourage us
to take a step back and have a deeper look at our understanding
of uterine and tumour Tregs. Figure 2 summarizes a head-to-
head comparison of uterine vs tumour Tregs and their
tissue microenvironment.
TARGETING TREGS FOR CANCER
TREATMENT DURING PREGNANCY:
A DOUBLE-EDGED SWORD?

The incidence of cancer during pregnancy is not uncommon. As
the mean age for pregnancy is increasing, the potential risk of
having malignancies during gestation is also increasing.
Pregnancy-associated breast cancer (PABC), melanoma, and
other cancer types have been diagnosed in women during
pregnancy or in the postpartum period (89–93). Chemotherapy
is a viable treatment option for cancer; however, chemotherapy
during the first trimester imposes an additional risk of
teratogenesis, causing irreversible harm to the fetus. Hence,
immune checkpoint inhibitors that target immunosuppressive
Tregs can be considered as an alternative therapeutic option for
cancer during pregnancy. The most common immune checkpoint
inhibitors target PD-1 and CTLA-4 pathways on leukocytes, and
both these pathways are crucial for Treg functioning and the
maintenance of pregnancy (84, 94–96). Targeting PD-1 and
CTLA-4 pathways is also aimed at restoring the function of
tumour-infiltrating lymphocytes, which is critical for efficient
anti-tumour immunity (97–100). Immunotherapies targeting these
immune checkpoint inhibitors can have negative consequences on
pregnancy as an altered ratio of immunosuppressive Tregs and pro-
inflammatory T cells is associated with pregnancy-related
complications (46, 101, 102).
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There are few case studies that evaluated the clinical outcome
of immunotherapy for cancer during pregnancy; however, the
data is dichotomous. It was observed in two independent studies
that treatment of melanoma with dual immune checkpoint
inhibitors (anti-CTLA-4 and anti-PD-1) did lead to the
delivery of healthy babies (103, 104). Similar encouraging
observations were made by another recent study and six of
seven women that received immunotherapy for melanoma had
full-term vaginal deliveries (105). However, a recent review
analysed the data from 7 different studies on the therapeutic
use of immune checkpoint inhibitors for cancer during
pregnancy. This review highlighted complications during
pregnancy (71.4%), prematurity (88.9%) and low birth weight
(1267g) following immunotherapeutic treatment of cancer (106).
These results suggest that immunotherapy for cancer may not
always be fatal for fetus but the course of gestation may involve
various pregnancy-related complications. Most importantly, the
lack of larger cohorts in these studies is a major drawback.
Hence, the efficacy and safety of current immunotherapy
regimens during pregnancy remains debatable. More extensive
studies and scientific discussion is needed before Treg-directed
immunotherapies for cancer during pregnancy can become a
norm. And, the studies highlighting differences between uterine
and tumour Tregs can open new immunotherapy based avenues
for the treatment of cancer in pregnant women.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The immunological underpinnings of Tregs at maternal-fetal
interface and in tumours have greatly enhanced our
understanding of how physiological and pathological processes
of pregnancy and cancer ensue. Uterine and tumour Tregs
display significant overlap in their transcriptional signatures;
however, future studies should focus on dissimilarities between
these Treg types. This knowledge will not only help in answering
questions on immunotherapies for cancer during pregnancy, but
may also contribute to the development of novel immunological
treatment regimens for other pregnancy-associated disorders
such as preeclampsia and recurrent pregnancy loss. Moreover,
larger cohorts will aid in evaluating novel Treg-based
immunotherapies for cancer during gestation or in
postpartum period.

In conclusion, our understanding of immunological attributes
during health and disease has improved tremendously in recent
times and this knowledge needs to be harnessed for safer
pregnancies and treating diseases like cancer.
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Although the “lymphoid” function of regulatory T (Treg) cells is crucial for organismal
homeostasis, these cells are also known to suppress the antitumor immune response in
the tumor microenvironments. Thus, a detailed understanding of Treg cell maintenance
and function in both lymphoid organs and tumor environments may help to establish novel
methods for the reactivating antitumor immunity, while retaining necessary immune
tolerance towards self and non-hazardous antigens. Previous studies have
hypothesized that Treg cells behave similarly in lymphoid organs and in tumor
environments; however, few studies have been conducted specifically researching Treg
cell activity in tumor environments. In addition, several recent studies identified a novel
mechanism regulating Treg cell function in tumor environments. Our group has previously
described the critical roles of the Nr4a family of nuclear orphan receptors, comprising
Nr4a1, Nr4a2, and Nr4a3, in the differentiation and maintenance of Treg cells in lymphoid
organs. Subsequently, it was found that Nr4a factors help to maintain Treg cell function in
tumor environments, thereby playing a suppressive role against T cell antitumor immunity.
Importantly, there were some differences between the activities of these Nr4a factors
under these conditions, including the specific function of the COX/PGE2 axis in tumor
environments. This review was designed to investigate the role of Nr4a factors in the
regulation of Treg cell activities both in the lymphoid organs and tumor environments,
highlighting the commonalities and differences in their behaviors between Treg cells in
these two different environments.

Keywords: Treg, antitumor immunity, autoimmunity, Nr4a, PGE2
INTRODUCTION

Regulatory T (Treg) cells are a central mediator of immune homeostasis, functioning to suppress
unwanted immune reactions against self- and commensal-antigens (1). Various molecules have
been identified as factors in the generation of effective immunosuppressive Treg subsets. In addition
to the more “common” factors, including lineage-specifying transcription factor Foxp3 and
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inhibitory receptor CTLA-4, several other molecules have been
identified to be uniquely expressed in specific Treg subsets and
confer unique functions on these groups of cells. Recent studies
have found that tissue-specific transcription factors endow Treg
cells with unique functions within their corresponding tissue
environments (2). For example, Treg cells that express PPAR-g,
the central transcription factor in adipocyte differentiation,
reside in visceral adipose tissue and restore insulin sensitivity
in obese mice in the presence of PPAR-g agonists (3). It is also
important to note that Treg cell phenotypes are also known to
change in response to the tumor microenvironments (TME),
contributing to accelerated tumor growth via augmented
suppressive activity against antitumor immunity (4). A detailed
understanding of these environment-specific phenotypes has
significant clinical value, as the systemic manipulation of Treg
cell activities is expected to trigger immune-related adverse
events (irAEs).

A series of recent studies completed by our group revealed
that the “Nr4a family” of nuclear orphan receptors play critical
roles in the differentiation and maintenance of Treg cells. Nr4a
factors have the ability to induce Foxp3, and their deletion results
in a lack of Treg cell differentiation and the induction of severe
autoimmunity (5–7). Nr4a factors are also highly expressed in
mature Treg cells, where they help to maintain Treg cell lineage
stability via their activation of the Treg cell-associated genes and
repression of the Th-effector genes (8). Collectively, Nr4a factors
have been revealed to maintain immune homeostasis by shifting
the Th/Treg balance toward Treg cells. Importantly, another
recent study revealed that these Nr4a factors are also highly
expressed in tumor Treg cells, augmenting their suppressive
activity on antitumor immunity (9).

Thus, Nr4a factors sustain Treg cell activity during both
normal homeostasis and during the suppression of antitumor
immunity. Although Nr4a factors are expected to behave
similarly in Treg cells in both lymphoid organs and tumor
tissues, several differences have also been observed. A deeper
understanding of these differences are likely to facilitate the
development of novel methods for the selective disruption of
Treg cells in tumor tissues, while maintaining their function in
lymphoid organs. This review will discuss both the unique and
common molecular mechanisms governing the behaviors of
Nr4a factors in lymphoid and tumor Treg cells. In addition, we
will refer to Treg cells function in the maintenance of normal
immune homeostasis “lymphoid Treg”, while Treg cells
associated with antitumor immunity in the TME will be
referred to as “tumor Treg”.
THE NR4A FAMILY OF NUCLEAR
ORPHAN RECEPTORS

The Nr4a family of transcription factors Nr4a1, Nr4a2, and
Nr4a3 belong to the nuclear receptor superfamily, and share a
common structure, including an AF-1 transactivation domain in
the N-terminus, a highly conserved DNA-binding domain, and a
ligand-binding domain in the C-terminal portion of the protein
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(10–12). Nuclear receptors are known to be ligand-regulated;
however, several lines of evidence suggest that the Nr4a factors
are constitutively active in a ligand-independent manner. X-ray
crystallography has revealed that the ligand-binding domain of
Nr4a2 contains no cavity as a result of bulky hydrophobic
residues in the region normally occupied by the ligands (13).
Instead of regulation by ligand binding, Nr4a factors exhibit an
intrinsic conformation similar to that of ligand-bound,
transcriptionally active nuclear receptors (13). As a result, the
transcriptional activity of Nr4a factors primarily depends on
their expression levels, interaction partners, and their
posttranslational modifications (14), although some molecules
have been shown to additionally augment the basal activity of
Nr4a factors (15, 16). The regulation of Nr4a factor expression in
T cells is highly specific to the T cell receptor (TCR) signaling
pathway, showing highly limited response to non-TCR stimuli
such as cytokine signaling (17, 18). Indeed, Nr4a1-GFP mice, in
which GFP expression is synchronized with Nr4a1 expression,
have been widely utilized as tools that specifically mark antigen-
stimulated T cells (18). Nr4a factors induced by TCR stimulation
exert various tolerogenic functions in T cells, including negative
selection of self-reactive thymocytes (19–22), differentiation and
maintenance of Treg cells (5–8), repression of Th-associated
molecules (23), and the induction of hyporesponsive states
(Figures 1A, D) (24, 25).

Nr4a factors primarily exert their function by transcriptionally
regulate their target genes, as evidenced by the fact that mutant
forms of Nr4a factors that lack either transcriptional activation
domains or DNA binding domain, lack their ability to induce Treg
cells (5), or even act as dominant negatives in the negative
selection of self-reactive thymocytes (22). Increasing numbers of
transcriptional regulators have been revealed as co-factors for
Nr4a-mediated transcriptional events, including transcription
factors, chromatin activators, and chromatin repressors (14). On
the other hand, although Nr4a factors positively regulate pro-
apoptotic gene expression, including FasL, TRAIL, NDG1, NDG2,
and Bim (20, 26–28), their non-transcriptional activity has also
been reported in the induction of apoptosis. Nr4a1 has been
reported to translocate to mitochondria, whereby they convert
anti-apoptotic Bcl-2 into pro-apoptotic mediator to accelerate the
release of cytochrome c, promoting apoptosis of various types of
cells including antigen-stimulated thymocytes, in transcription
independent manner (29–33).
ROLES OF NR4A FACTORS IN TREG
CELL DIFFERENTIATION

By screening Treg cell-enriched transcription factors, our group
initially identified Nr4a factors as inducers of Foxp3 in
conventional CD4+ T cells (5). Induction of Foxp3 by Nr4a
factors is mediated by their function as transcription factors, as
the mutant forms of Nr4a factors that lacked DNA binding
ability or transactivating ability could not induce Foxp3 (5).
Subsequent studies then showed that Nr4a factors play a crucial
role in the development of thymic Treg (tTreg) cells. tTreg cells
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do not develop in mice in which all Nr4a factors are triple deleted
(Nr4a-TKO), but single knockouts of each Nr4a factor produced
normal tTreg cell populations, suggesting some degree of
redundancy in their activity (6). By lacking tTreg cell
development, Nr4a-TKO mice died soon after birth of severe
autoimmunity (6).

Our recent study revealed that Nr4a factors play important
roles in the differentiation of naive CD4+ T cells into Treg cells
also in the periphery (pTreg cells) (23). By analyzing the
differentiation of naive CD4+ T cells, Nr4a-TKO cells showed
significantly attenuated Treg cell differentiation and accelerated
Th1 and Th2 differentiation when compared with wild-type cells.
As the result of the attenuated Treg cell differentiation and the
accelerated Th2 differentiation, Nr4a-TKO naive CD4+ T cells
are more allergic than wild type ones, inducing allergic airway
inflammation in recipient lymphopenic mice. Furthermore, it
was shown that the pharmacological activation of an engineered
Nr4a molecule prevented allergic airway inflammation by
shifting the differentiation of naive CD4+ T cells from Th2 to
Treg cells (23).

As mentioned, Nr4a transcriptionally regulates Treg cell
differentiation (5–8, 23). Nr4a factors positively regulate several,
but not all, of Treg cell-associated genes during Treg cell
differentiation (7, 23). In the induction of Treg cell-associated
genes, although Nr4a factors by themselves can induce some of
their target genes, other targets seem to be dependent on the
simultaneous function of co-factors, including the Ets family of
transcription factors (23). In addition, Nr4a factors not only
function as transactivators, but also as repressors (7, 8, 23). Nr4a
factors on their own can repress several Th2 and Tfh-associated
Frontiers in Immunology | www.frontiersin.org 397
genes, including their effector cytokines IL-4 and IL-21 (7, 8, 23).On
the other hand, Nr4a factors also repress various Th2-associated
genes indirectly, by suppressing the positive feedback loop of Batf
factors, the key regulators for Th2 differentiation (23).

Collectively, Nr4a factors maintain immune homeostasis by
promoting Treg cell differentiation both in the thymus and
periphery, while suppressing Th cell differentiation, particularly
that of Th2 cells (Figures 1A, B). In doing so, Nr4a factors
promote expression of a part of Treg cell-associated genes, while
repressing Th2-associated genes, on their own or in cooperation
with other transcription factors.
ROLES OF NR4A FACTORS IN THE
MAINTENANCE OF LYMPHOID
TREG CELLS

Treg cells primarily develop from precursor thymocytes that
experience strong TCR signaling via recognition of self-antigens
with high avidity (34). Thus, developing Treg cells express high
levels of Nr4a factors (7). Expression of all three Nr4a family
member is maintained at high levels in Treg cells after their
egress from the thymus, suggesting their continuous functions in
peripheral mature Treg cells (18, 35–37). This assumption was
recently evaluated in our group by establishing a mouse model in
which all of the Nr4a family members were specifically deleted in
mature Treg cells (Foxp3Cre-Nr4a-TKO mice) (8). Treg cells in
these mice demonstrated a global reduction in Treg cell-
associated gene expression, while showing upregulation of
A

B

C

D

FIGURE 1 | Nr4a factor functions in lymphoid Treg cell differentiation and maintenance. (A) Nr4a factors function as effectors in thymocyte fate decisions according
to the avidity for self antigens. Strong avidity to self antigens induces higher amount of Nr4a factors which promotes apoptosis or Treg cell differentiation. “Death by
neglect” represents the event of cell death that happen to thymocytes that could not recognize peptide-loaded self-MHC molecules during positive selection. (B) In
the periphery, Nr4a factors promote Treg cell differentiation from naive T cells, while repressing Th1 and Th2 cell differentiation. Regulation of Th17 cells by Nr4a
factors are still in debate. (C) Nr4a factors maintain the lineage stability of Treg cells. (D) Nr4a factors promote effector T cell exhaustion and/or dysfunction.
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effector cytokine genes of Tfh and Th2 cells, including Il4 and
Il21. These Foxp3Cre-Nr4a-TKO mice also developed severe
autoimmunity with elevated serum IgE and IgG1 levels, which
are both associated with Th2-type immune reactions.
Collectively, these data suggest that Nr4a factors are critical to
the maintenance of lymphoid Treg cell integrity via their positive
regulation of the Treg-associated genes and repression of Th2
and Tfh gene expression (Figure 1C).
ROLES OF NR4A FACTORS IN THE
MAINTENANCE OF TUMOR TREG CELLS

Recently, Hibino et al. investigated the function of Nr4a factors in
tumor Treg cells (Figure 2) (9). Their investigations revealed
augmented antitumor immunity in mice in which both Nr4a1
and Nr4a2 were deleted specifically in Treg cells (Foxp3CreNr4a1fl/
flNr4a2fl/fl mice; referred to as “Foxp3CreNr4a-DcKO mice”),
suggesting that the suppressive activity of tumor Treg cells was
attenuated upon loss of Nr4a1 and Nr4a2. Accumulation of Treg
cells in tumor-draining lymph nodes (TDLN) was also inhibited in
Foxp3CreNr4a-DcKO mice, and the fractions of CD8+ T cells and
proliferatingCD8+ T cells were significantly increased in the TDLN
of Foxp3CreNr4a-DcKO mice when compared to the wild-type.
Furthermore, analysis of tumor tissues from the Foxp3CreNr4a-
DcKOmice were also characterized by increased CD8+/Treg ratios
and elevated CTL activity when compared to the wild-type mice.
Investigation of the Treg cells from both the TDLN and tumor
tissues revealed downregulation of Foxp3 and CTLA-4 in the
Foxp3CreNr4a-DcKO mice when compared with the wild-type
mice (9). Collectively, these data revealed that Nr4a factors,
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particularly Nr4a1 and Nr4a2, play important roles in the
maintenance of tumor Treg cells.
PHARMACOLOGICAL INHIBITION OF
NR4A FACTORS ATTENUATES TUMOR
TREG CELL ACTIVITY AND INDUCES
THE ANTITUMOR IMMUNE RESPONSES

In a subsequent study, Hibino et al. demonstrated that both
camptothecin (CPT) and topotecan inhibit the transcriptional
activity of Nr4a factors (9). Although CPT and topotecan have
been known as topoisomerase inhibitors (38), other topoisomerase
inhibitors did not demonstrate a similar effect, suggesting that the
suppression of Nr4a factors by CPT and topotecan is independent
of their inhibition of topoisomerase (9). CPT was found to
suppress Treg cell differentiation while promoting the induction
of IFNg+ Th1 cells in naive CD4+ T cells (9). Furthermore,
treatment of Treg cells with CPT reduced Foxp3 and other
Treg-associated genes (9). However, these effects were not
observed in Nr4a-DcKO Treg cells, indicating that CPT reduces
Foxp3 through its direct inhibition of Nr4a (9).

Hibino et al. also investigated the effects of increased Nr4a
factor expression on Treg cell characteristics. PGE2, an
enzymatic product of COX-2, has been shown to induce Nr4a2
in intestinal tumors (39, 40). Given this, it was not surprising that
treatment with PGE2 upregulated Foxp3 and Ikzf4, both direct
targets of Nr4a, in Treg cells (9). These effects were abolished in
Nr4a-DcKO Treg cells, suggesting that PGE2 upregulated Treg
cell-associated genes via induction of the Nr4a factors (Figure 2).
In contrast, SC-236, a structural analog of the clinically useful
FIGURE 2 | Nr4a factor functions in tumor Treg cells. Various tumor microenvironments are enriched for PGE2. As PGE2 has the ability to upregulate both Nr4a1
and Nr4a2, this increased PGE2 expression may augment Nr4a factor activity and increase the suppressive activity of the Treg cells on antitumor immunity.
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COX-2 inhibitor celecoxib, reduced the expression of Nr4a
factors as well as Foxp3 and Ikzf4 in tumor Treg cells.

Hibino et al. further examined the effects of these Nr4a
inhibitors on tumor Treg cells and antitumor immunity. Both
CPT-11, a less toxic prodrug of CPT, and SC-236 significantly
reduced the growth of 3LL tumor cells, which constitutively
express COX-2 and PGE2 (41), in a CD8+ T cell-dependent
manner. The antitumor effects of CPT-11 and SC-236 were also
shown to be further potentiated when used in combination (9).
In TDLNs of mice treated with CPT-11and SC-236, it was found
that Treg cell population was reduced, while the proliferating
CD8+ T cell population was increased. Treg cells in the TDLNs of
these mice exhibited attenuated expression of the Treg-signature
genes, including Foxp3 and Ikzf4, and attenuated suppression
activity (9).

Altogether, pharmacological inhibition of Nr4a factors
showed an efficient attenuation of tumor Treg cell activity and
augmented the antitumor immune responses in vivo.
COMMONALITIES AND DIFFERENCES IN
THE NR4A FACTOR MEDIATED
REGULATION OF LYMPHOID TREG
AND TUMOR TREG CELLS

As described above, Nr4a factors play important roles in both
lymphoid Treg and tumor Treg cell homeostasis and function.
Although a detailed comparison has not been done yet, the
behaviors of these Nr4a factors are hypothesized to be largely
similar between these two cell populations. This is supported by
the fact that Nr4a factors sustain Treg cell lineage, at least in part,
by positively regulating Foxp3 in both lymphoid Treg and tumor
Treg cells (8, 9). In addition, Nr4a family members exhibit a high
degree of functional redundancy in both lymphoid Treg and
tumor Treg cells, as demonstrated by the fact that none of the
single knockouts showed any substantial defects in either Treg
population (8, 9). Nr4a factors also negatively regulate Th-
associated effector molecules in both lymphoid and tumor Treg
cells (8, 9).

However, there are still some significant differences in the
behaviors of Nr4a factors between lymphoid and tumor Treg
cells. These include the fact that although Foxp3CreNr4a-DcKO
mice do not develop autoimmunity under normal homeostatic
conditions (8), they did demonstrate accelerated antitumor
immunity (9). This observation suggests that the suppressive
activity of tumor Treg cells on antitumor immunity is more
sensitive to Nr4a availability than that of the lymphoid Treg cells
on autoimmune response. Second, while the Th2- and Tfh-
associated functions are upregulated in lymphoid Treg cells
upon disruption of Nr4a function (8), deficiency of Nr4a
factors in tumor Treg cells presents with increased activation
of the Th1- and CTL-associated antitumor immune activity (9).
This observation suggests that the function of Nr4a factors in
Treg cells is influenced by their native environment. Although
experimental validations are necessary, possible mechanisms for
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this include differences in the corroborating factors and/or post-
translational modifications of Nr4a factors in response to
differences in these microenvironments. Lymphoid and tumor
Treg cells exist in vastly different microenvironments with each
occurring in niches with significantly different metabolites and
cytokines (42). Third, the expression of Nr4a factors in lymphoid
and tumor Treg cells seem to be differently regulated. Although
TCR signaling is undoubtedly the dominant positive regulator
for Nr4a in both lymphoid and tumor Treg cells (17, 18), the
COX-2/PGE2 pathway may enhance their expression in tumor
Treg cells, especially since PGE2 is strongly enriched in various
tumor microenvironments (43). In fact, Hibino et al. described
increased Nr4a expression in Treg cells from a PGE2-positive
3LL tumor environment, which was then counteracted following
inhibition of COX-2 (9). This augmented expression of Nr4a
factors by COX-2/PGE2 axis may contribute to the different
characteristics between the lymphoid and tumor Treg cells
discussed above.

Collectively, although the behavior of Nr4a factors is similar
between lymphoid and tumor Treg cells, some differences do
exist, which seem to stem from differences in their environments,
including changes in the metabolite and cytokine milieu
surrounding these cells in these two tissues. However, further
experimental validation is required.
CONCLUDING REMARKS

Treg cells are an attractive target for therapeutic reactivation of
the the antitumor immune response in various cancers.
However, the high degree of similarity between lymphoid and
tumor Treg cells makes the targeted suppression of tumor Treg
cells difficult, often causing unwanted side effects that negatively
impact the lymphoid Treg cells. Thus, studies that clarify the
differences between these two cell populations may have
significant clinical value. This review described the differences
in the behaviors of the Nr4a factors in lymphoid and tumor Treg
cells, while touching on the many overlaps between these cells.
These evaluations identify COX-2/PGE2 as an attractive target
for therapeutic intervention as this axis is exclusively augmented
in specific tumor tissues, with the PGE2-rich TME upregulating
Nr4a factors and increased stabilization of tumor Treg cells. This
means that molecules that inhibit this pathway are expected to
reactivate antitumor immunity as seen in the animal model, with
little to no effect on the lymphoid Treg cells. Molecules that
specifically inhibit Nr4a1 and Nr4a2, but not Nr4a3, are also
candidates for tumor Treg-specific inhibitors, as Foxp3CreNr4a-
DcKO mice do not develop autoimmunity but the mice do
develop augmented antitumor immunity.

Another caveat preventing effective immune response
reactivation via Treg cell inhibition is the fundamental similarity
between Treg cells and conventional T cells, including cytotoxic T
cells that mediate antitumor immunity. This is exemplified by the
fact that many chemotherapeutic agents that inhibit Treg cell
proliferation, including cyclophosphamide and cyclosporine A,
also exhibit significant toxicity against conventional T cells as well
April 2022 | Volume 13 | Article 866339

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sekiya Nr4a in Tumor Treg
(44, 45). PD-1 blockade has also been reported to not only activate
Teff cells, but also augment the immune suppressive activity of Treg
cells, leading to the progression of gastric cancer (46). Given this,
Nr4a factors surpass many other candidate targets, as they show a
repressive effects on conventional T cells by inducing their
dysfunction (24, 25).

Taken together, current data suggest that Nr4a factors are
crucial regulators of Treg cells and are attractive targets for novel
cancer immunotherapy. Thus, we suggest that a comprehensive
comparison of Nr4a factors between lymphoid Treg and tumor
Treg cells, including their cooperating partners and target genes,
should help to identify additional differences between these
settings and thus novel targets for the specific disruption of
tumor Treg cells.
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Regulatory T cells (Tregs) restrain excessive immune responses and dampen
inflammation. In addition to this classical immune suppressive role, Tregs in non-
lymphoid tissues also promote tissue homeostasis, regeneration and repair. In this
review, we outline our current understanding of how Tregs migrate to peripheral tissues
and the factors required for their maintenance at these sites. We discuss the tissue-
specific adaptations of Tregs at barrier and immuno-privileged sites and the mechanisms
that regulate their function within these organs. Furthermore, we outline what is known
about the interactions of Tregs with non-immune cells in the different peripheral tissues at
steady state and upon challenge or tissue damage. A thorough understanding of the
tissue-specific adaptations and functions of Tregs will potentially pave the way for
therapeutic approaches targeting their regenerative role.

Keywords: regulatory T cells, homing, tissue homeostasis, tissue repair, immune regulation
INTRODUCTION

Regulatory T cells (Tregs) are essential for suppressing autoreactive immune responses and
controlling the effector immune response to prevent autoimmunity and maintain tissue
homeostasis. Tregs are defined by their expression of the transcription factor Foxp3, which
confers them with their suppressive function (1). Furthermore, they are marked by constitutive
expression of the co-inhibitory receptor CTLA-4 and the high affinity IL-2 receptor a-chain CD25
and strictly depend on extrinsic IL-2 for their survival (2–4). Tregs use a wide array of mechanisms
to exert their suppressive activity, including the secretion of inhibitory cytokines, such as IL-10 and
TGF-b (5, 6), the modulation of antigen presenting cells (APCs) (7), direct cytolysis (8) as well as
metabolic disruption of the target effector cells by cytokine sequestration (8–10). In addition, non-
canonical functions, including a direct role in tissue protection and repair, have recently been
attributed to Tregs (11, 12). Tregs thus cover a broad functional spectrum and represent a
heterogenous population composed of specialized subsets that fulfill these diverse functions.

To exert their tissue protective functions, Tregs home to and localize within the peripheral tissue
niche, where they are embedded in a tissue-specific network of immune and non-immune cells. This
cellular network constantly interacts with and shapes the Treg population in the respective tissue,
while conversely the Tregs shape the tissue niche. In this review, we will outline how Tregs seed the
peripheral tissues and highlight the importance of this process for exerting their effector functions.
We will further discuss the tissue-specific adaptations of Tregs as well as their functions at barrier
and immuno-privileged sites at steady state and upon challenge or tissue damage.
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TREG HOMING

Already 20 years ago it became clear that Tregs show a high degree
of heterogeneity regarding their localization and function, when
Lehmann and colleagues subdivided the Treg population based on
its expression of CD103, the integrin aE (13). Integrin aEb7 binds to
E-cadherin, expressed on epithelial cells but not on the
endothelium, and was therefore used as a marker for
intraepithelial T cells residing in non-lymphoid tissues. Lehmann
et al. found that CD103+ Tregs express higher levels of the co-
inhibitory receptor CTLA-4, which confers them with a higher
suppressive capacity. Subsequent studies additionally used CD25 to
further segregate Tregs into phenotypically and functionally distinct
subsets. CD103-CD25+ Tregs are enriched for CCR7 and CD62L
(L-selectin) and therefore show a naïve phenotype,
whereas CD103+ Tregs express CD44, ICOS, Granzyme B (GrzB),
Integrin b1 and several chemokine receptors indicating a more
active, effector-like phenotype (14) (Figure 1). Other groups used
the expression of CD44 and CD62L to divide the Treg population
into central Tregs (CD44loCD62Lhi) and effector-like Tregs (CD44hi

CD62Llo) (15). These Treg subsets not only differ in their activation
status but also in their migratory capacity. Although both
the CD103+ CD25+ double-positive and the CD25+ single-positive
Tregs migrate towards the CCR7 ligand CCL21, CD103+ Tregs
show a higher infiltration to sites of active immune responses by
migrating towards CCL17 (CCR4 ligand), CCL20 (CCR6 ligand)
and CXCL9 (CXCR3 ligand), which are released upon
inflammation (14). In fact, only the CD103+ Tregs can effectively
and specifically infiltrate the inflamed skin after hapten 2,4-
Frontiers in Immunology | www.frontiersin.org 2103
dinitrofluorobenzene (DNFB) treatment in mice (14), a murine
model of contact hypersensitivity. Similarly, only CD103+ Tregs
constrain the development of intestinal inflammation after transfer
of CD4+ T cells into SCID mice (13). This observation suggested
that primarily the CD103+ Tregs react to inflammatory stimuli
present at peripheral tissues, while CD25+ Tregs respond to
chemokines present in lymphoid organs, allowing for a
distinction between naïve CD103-CD25+ and effector/memory-
like CD103+CD25- Tregs.

Having defined the concept of naïve and effector-like
Tregs, Siegmund and colleagues later reported that effector T cell
activation and differentiation in the lymph nodes is regulated
by CD103- CD25+ Tregs (16). This population is more
homogeneous in its expression of chemokine and homing
receptors and is found recirculating between blood and lymph
nodes, whereas the effector/memory Treg population shows a more
heterogeneous pattern reflecting its ability to migrate to different
tissues (17). Nevertheless, these are not two different Treg populations
originating from a common progenitor, but rather they represent
distinct differentiation stages. The T cell maturation process naturally
occurring in the thymus gives rise to a homogeneous
CD62L+CCR7+CXCR4lo Treg population targeted preferentially to
secondary lymphoid organs (SLOs) (18) (Figure 1). Upon antigen-
specific priming within the lymphoid organs the expression pattern of
homing and chemokine receptors is then altered (18). During the
priming phase, on day 3 after immunization, approximately 60%
of the Tregs localized in the lymph node lose the expression of CCR7
and CXCR4. In return, they gain CXCR3, CCR4, CCR6 and/or CCR8
expression, allowing them to migrate to peripheral tissues (18).
Interestingly, this shift in the chemokine receptors expression
pattern in Tregs is more pronounced than the corresponding
changes in conventional Foxp3- T cells and also precedes them.
This differential expression pattern may represent a mechanism to
ensure timely and efficient recruitment of Tregs to the peripheral sites
to help maintain tissue integrity. Indeed, Tregs already seed tissues
during development and the early post-natal periods. Importantly,
their depletion during this time period can cause alterations in tissue
structure (19), suggesting that they play an active role in shaping
peripheral tissues.

Besides the acquisition of homing receptors in lymph nodes,
recent studies showed that also the tissue phenotype of Tregs is
primed in SLOs. This phenomenon was studied in the context of
visceral adipose tissue (VAT) Tregs, which express the VAT
Treg-specific transcription factor PPARg (20). As they arise in
the thymus, Tregs are PPARg-, but within the SLOs a small Treg
population with intermediate PPARg expression emerges (21,
22). These Tregs already express some aspects of the VAT Treg
signature but only become PPARghi and acquire the full VAT
Treg phenotype and epigenetic profile once they enter the VAT
(21, 22). This two-step differentiation process was also apparent
in a study that analyzed transcriptional trajectories of single Treg
cells as they progress from SLOs to non-lymphoid tissues (23). A
subset of Tregs in the SLOs already displays tissue-like
transcriptional profiles, representing a portion of the tissue-
specific transcriptional programs as well as the chemokine
receptors that allow for homing to the respective tissues (23).
FIGURE 1 | Main markers of naïve, effector and memory Tregs. Surface
receptors expressed on Tregs are crucial to determine their migration and
residency in peripheral tissues. As depicted in the figure, markers of effector
and memory Tregs are to a large degree shared but naïve Tregs show a
clearly distinct marker profile. Illustration created with BioRender.com.
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Moreover, these intermediate differentiation stages of tissue
Tregs are shared between different Treg subsets, regardless of
their terminal tissue (22, 23). Further characterization of these
tissue Treg precursors revealed that they depend on the
transcription factor Batf for their development and, when
present in the SLOs, express Nfil3 (24). Furthermore,
acquisition of a tissue Treg phenotype goes along with the loss
of the transcription factor ID3 (25). The target tissue of these
transitional Treg subsets is determined by their antigen
specificity and hence their T cell receptor (TCR) (21). As a
consequence, Tregs seeding the VAT, skin or colon represent
clonally expanded populations that are also represented in
smaller numbers in the lymph nodes, where they are primed
before migrating to the peripheral tissue and acquiring their
tissue phenotype (21, 24, 26). Single-cell TCR-sequencing
confirmed the clonal nature of tissue Tregs as the percentage
of polyclonal TCRs decreased with the transition of Nfil3- to
Nfil3+ Tregs and was lowest in tissue-skewed Tregs also
expressing Klrg1 (24). Thus, tissue Tregs go through a two-step
differentiation process, where they acquire a partial tissue Treg
signature within the SLOs before seeding their target tissue in a
TCR-dependent manner and adopt a terminally differentiated
tissue-specific phenotype.

To ensure close proximity of Tregs and effector cells at the site
of their activation, both are directed to peripheral tissues by
tissue-specific molecules. These include CLA (cutaneous
leucocyte-associated antigen) and the integrin a4b7, directing
Tregs to the skin and the intestinal epithelium, respectively. CLA
binds E-selectin which is uniquely enriched in the endothelium
of the skin and up-regulated upon inflammation, while
a4b7 binds to MadCAM-1, and together with the chemokine
receptor CCR9, drives migration to the gastrointestinal-
associated lymphoid tissue (GALT) (27). Interestingly, a
considerable proportion of human circulating Tregs express
CLA and CCR4, indicative of their ability to recirculate and
migrate between skin and draining lymph nodes at steady-state
(28–30). In contrast, very few circulating Tregs express the gut-
Frontiers in Immunology | www.frontiersin.org 3104
homing receptors (29), suggesting that they represent a more
resident subset. But what is driving the acquisition of the tissue-
specific homing receptors? Several groups reported that tissue-
specific dendritic cells (DCs) able to migrate to draining lymph
nodes were involved in naïve T cell instruction both in vitro and
in vivo (27, 31). Gut-tropic DCs are able to convert vitamin A
captured from the diet into retinoic acid (RA), which induces the
up-regulation of CCR9 and a4b7 in T cells (32). Similarly, IL-12
and TGF-b were suggested as drivers of CLA and other homing
receptors in Tregs, such as CCR4, CCR10, P- and E-
selectin ligands favoring migration to the skin (33, 34). DCs
and soluble factors from distinct tissues can indeed induce
expression of homing receptors specific for the same tissue
in Tregs in vitro. RA promotes expression of gut-tropic
homing receptors, and Tregs treated with RA can migrate to
the gut to suppress DSS-induced colitis, an effect that was
inhibited when treated with anti-a4b7 antibodies (17). IL-12
instead induces expression of skin-homing receptors enabling
IL-12-cultured Tregs to infiltrate the inflamed foodpad (17).
However, despite several tissue-specific chemokine receptor
patterns on Tregs, some receptors are shared among different
peripheral sites, indicating a certain redundancy (see Table 1).

Interestingly, the site of antigen encounter not only has an
impact on the homing capacity of Tregs, but also influences
their function. In a peanut allergy model, different administration
routes for the immunotherapy induced functionally distinct Tregs.
These not only expressed different sets of chemokine receptors, but
also differed in their expression and dependence on the suppressive
mediators IL-10 and CTLA-4 as well as their longevity
(43). Whether the site of Treg priming also has an impact on
their non-canonical functions is still unclear. However, given that
Tregs in peripheral tissues display an enhanced ability to e.g.
produce the tissue protective factor amphiregulin (Areg), this will
be important to address and may be an interesting therapeutic
approach for pathologies marked by severe tissue-damage.

In addition to the site of priming, the chemokine expression
pattern and function of Tregs are also affected by the cytokine
TABLE 1 | Homing receptors expressed on Tregs.

Tissue Receptor Context Ref.

Skin CLA, CCR6 The majority of circulating Tregs express these receptors and can infiltrate to the skin (30)
CCR4, CCR5 Tregs migrating to skin upon Leishmania-driven infection (35)
CCR6 Microbiota-driven CCL20 in hair follicles attracts Tregs to the neonatal skin (36)

Bone
marrow

CXCR4 Tregs sense SDF-1 to migrate and infiltrate, exit due to GM-CSF gradients (37)

Liver CLEVER-1 With the help of ICAM-1 and VCAM-1 (38)
Heart CCR4 Observed in heart allograft experiments (39)
Peritoneum CCR4, CCR6,

CXCR3
Tregs isolated from peritoneum after transfer and immunization (18)

CNS CCR6, CCR8 Migration towards CCL1, CCL20 and CCL22 produced by astrocytes (40)
LFA-1 In absence of Itga4, for Treg infiltration during CNS autoimmunity (41)

Gut a4b7, CCR9 RA drives the expression of CCR9 and a4b7, targeting Tregs to mesenteric LN (17)
SLO CCR7, CD62L The acquisition of these receptors in the thymus drives Tregs to SLO (7)
Kidney CCR6 Stat3-driven CCR6 Tregs ameliorated disease score in pristane-induced lupus GN

model
(42)

Muscle CCR2 Expressed on Tregs infiltrating the injured muscle (11)
April 2022 | Volume 13 | Article 86
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environment present during an immune response. For instance,
during type 1 immune responses, Tregs up-regulate the master
transcription factor T-bet, which in turn drives CXCR3
expression, allowing them to migrate to the inflammatory sites
(44–46). CXCR3 drives recruitment of T cells to sites of ongoing
type 1 immune responses and also acts as a critical lung-homing
receptor in respiratory viral infections (47). CXCL10, the ligand
of CXCR3, is increased upon infection with different respiratory
viruses, including Influenza, SARS-CoV-1 and SARS-CoV-2
(48, 49), allowing for an efficient recruitment of CXCR3+ Tregs
to the lung and the site of the effector response. Treg-mediated
suppression is strictly dependent on their localization in close
proximity to the effector cells at the site of an ongoing immune
response. Hence, blockade of any step of the migration process
will interfere with Treg function. Nevertheless, as Treg and
effector T cell require the same molecular interaction for their
migration, any interference with Treg migration would also
interfere with migration of effector T cells into the affected tissue.

Several strategies aimed at blocking effector T cell migration
have been developed to treat autoimmune disorders. Examples
include the monoclonal antibody Natalizumab targeting the
a4b1 integrin (50) or the sphingosine-1-phosphate receptor
modulator Fingolimod, which sequesters lymphocytes in
lymph nodes (51). These therapies are successfully used in the
treatment of autoimmune disorders such as Multiple Sclerosis
(MS). While Natalizumab blocks infiltration of cells to peripheral
sites and does not alter the Treg composition in blood (52),
Fingolimod appears to sequester CD4+ Foxp3- T cells in
secondary lymphoid tissues more strongly than the Foxp3+

counterparts (53). This is due to the differential expression of
S1PRs in the different T cell populations (54). Apart from this,
signaling through S1P1R blocks the TGF-b pathway (55), which
is crucial for Treg differentiation. Hence, treatment with
Fingolimod not only removes potentially pathogenic
lymphocytes from the circulation but may also interfere with
the generation of Tregs. Another example on how defects in T
cell migration could affect the Treg compartment is P-selectin
ligand disfunction. PSGL-1-/- mice have an enhanced
susceptibility to EAE (experimental autoimmune encephalitis),
the animal model for MS, due to the importance of the P-selectin
ligand for Treg-mediated control of the autoimmune T cell
response (56). In addition to these general migratory
mechanisms, there are also some differences in the adhesion
molecules required by different T cell subsets to enter peripheral
tissues, e.g. the CNS. Th1 cells entail the integrin a4 to infiltrate
the CNS whereas Th17 cells and Tregs depend on LFA-1 in the
absence of integrin a4 (41, 57). As such, it seems likely that the
functional outcome of T cell migration blockade depends on
three key points: (i) the relative expression of the targeted
molecule in effector T cells and Tregs, (ii) their dependence on
that molecule or redundancy in targeting each population to a
specific tissue and, iii) the relative importance of Treg
recruitment for immune suppression vs. tissue protection and
regeneration in the damaged organ (as discussed in detail in the
next section). As such, the correct and timely localization of
Tregs is a key event in controlling immune activation and
Frontiers in Immunology | www.frontiersin.org 4105
maintaining tissue homeostasis. Tissue homing is essential to
bring Tregs to the site of action, where they not only perform
their immune suppressive functions, but also provide mediators
for tissue protection.
TREG FUNCTIONS IN
PERIPHERAL TISSUES

Once in the tissue, Tregs can perform a wide range of functions.
Their first and main role is to maintain homeostasis, to dampen
excessive immune responses, and in this way avoid collateral
tissue damage. Recent studies have revealed that in addition to
this indirect role in tissue protection, Tregs also actively promote
tissue maintenance, healing and regeneration (11, 58) (Figure 2).
As such, Tregs e.g. promote hair regeneration by facilitating the
function of hair follicle stem cells in the skin (59). Furthermore,
Tregs can improve the formation and remodeling of scar tissue
and reduce collagen degradation in the heart (60,
61). Similarly, Tregs interact with satellite cells to directly
promote repair and regeneration after muscle injury and to
counteract fibrosis (11, 58). This active role of Tregs in tissue
regeneration has been observed in various tissues and the
important pioneering work, describing their function in
muscle, adipose tissue and skin, has been summarized in a
number of excellent reviews [examples include (62, 63)]. Here,
we will summarize our current understanding of this non-
canonical function of Tregs in the intestine and the lung as
examples of barrier sites as well as the CNS as an immune
privileged site.

Treg Features and Function in the Gut
Barrier sites are constantly exposed to external antigens and face
the challenge of ensuring a potent immune response against
pathogens while maintaining tolerance to commensals and
harmless antigens. This challenge also extends to Tregs, which
at these sites are largely specific for microbial antigens and to a
large degree differentiate into Tregs at the barrier site itself
(23, 64, 65).

In the gut, the microbiota and the host tissue are separated by
a physical barrier of intestinal epithelial cells (IECs). An
extensive crosstalk exists between immune cells in the host
tissue and IECs that conveys information from the gut lumen
to the immune compartment and from immune cells to the IECs
and the microbiota in the gut lumen (Figure 3). Foxp3+ Tregs
that reside in the intestinal tissue are in their great majority
induced from circulating conventional T cells, but there is also a
fraction that originates in the thymus and homes to the intestine
(66). In the lamina propria of the small intestine, a Treg niche
has been characterized and some studies have addressed the
possibility that these cells migrate to and are maintained in this
organ independently from other immune system cues such as
antigen encounter (67). In vivo studies with mice lacking
peripheral MHC II expression have shown that, despite a
reduction in the total CD4+ T cell count, adult MHC II KO
mice have an increased frequency of Foxp3+ Tregs in the lamina
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propria (67). Despite the absence of MHC II, these Tregs show
high CD44 expression, indicative of an activated phenotype.
Furthermore, intestinal Tregs have a reduced expression of the
IL-2 receptor subunit CD25 and, unlike other Tregs, their
proliferation and maintenance is independent of IL-2 (15, 67).
Instead, continued ICOS signaling is important for their
maintenance (15). In addition, the alarmin IL-33, which is
constitutively expressed by epithelial cells at barrier sites (68),
acts as an intestinal survival factor for Tregs. The IL-33 receptor
ST2 is enriched on colonic Tregs and IL-33 promotes expansion
of these ST2+ Tregs (24, 69). Furthermore, IL-33 signaling also
enhances TGF-b-mediated differentiation of Tregs and thus
promotes Treg accumulation and maintenance in the inflamed
gut tissue (69).

Interestingly, IL-33 not only plays an important role as a local
survival factor for Tregs, but can also modulates their function by
inducing Areg production (12). Areg promotes tissue
regeneration by signaling through the epidermal growth factor
receptor and multiple studies have demonstrated the ability of
Tregs to produce Areg and promote tissue regeneration (11, 12,
70, 71). However, whether ST2+ Tregs in the gut also produce
Areg and exert similar tissue protective and regenerative
functions still remains to be determined. Besides Areg, which
would directly act on barrier tissues, Tregs also produce
Frontiers in Immunology | www.frontiersin.org 5106
immunomodulatory cytokines to promote homeostasis. One
such anti-inflammatory cytokine is IL-10, which plays a crucial
role in maintaining tolerance to commensal microbiota in the
gut (5). IL-10 promotes tissue integrity by dampening effector
immune responses against bacteria, viruses and parasites and
hence dampening immuno-pathology. At the same time, it can
also enable pathogen persistence, which may result in pathogen-
induced pathology (72). Selective deficiency of IL-10 in Foxp3+

Tregs results in spontaneous colitis (73), suggesting that IL-10 is
a key effector molecule for Treg-mediated tissue regeneration
and protection. This likely not only holds true for the regulation
of immune responses against microbiota, but also for those
elicited upon infection (Figure 3). Overall, intestinal Tregs
represent a highly specialized Treg subset that is essential for
limiting inflammation through its secretion of anti-inflammatory
cytokines. Furthermore, additional mediators of tissue
protection, such as Areg, may enable them to actively promote
tissue regeneration and thereby maintain tissue integrity.

Influence of the Gut Microenvironment
on Tregs
Non-canonical Treg functions are strictly associated with their
localization and tissue adaptation as well as a fine-tuned crosstalk
with the surrounding tissue. A good example of this is the gut,
FIGURE 2 | Treg functions in peripheral tissues. In addition to their main function of suppressing effector immunity, Tregs fulfill additional functions in peripheral organs.
These include control of overreactive cells and promotion of tissue repair as illustrated for the brain, lung and intestine. Illustration created with BioRender.com.
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where continuous exposure to microbe- and food-derived antigens
shapes the Treg niche to undergo a specialization driven by the
tissue and food antigens present at this site. As such, intestinal
Tregs can lose expression of Foxp3 and convert into non-
inflammatory CD4+ intestinal epithelium lymphocytes (IELs)
once they have migrated to the damaged epithelium (Figure 2).
In this environment, they can co-operate with the remaining
Foxp3+ Tregs, performing complementary roles in balancing
intestinal inflammation and promoting an anti-inflammatory
state (74). Notably, these local Tregs strictly depend on the
intestinal microenvironment, i.e. microorganism-derived signals
and defined components of the microbiota, for proper function and
development (75). In vitro studies using a reporter cell line for TCR
engagement showed that TCR activation in Tregs did not occur in
the absence of microorganism-derived antigens (64). Nevertheless,
germ-free mice have similar Treg frequencies and numbers as
specific pathogen-free mice (76). In contrast, antigen-free mice
harbor a dramatically reduced Treg population. Despite this
dramatic reduction, antigen-free mice still maintained a small
intestinal Treg population suggesting that not the entire Treg
population in the gut is induced by local antigen (76). Besides
providing antigen, commensal microorganisms in the gut also
produce metabolites, such as the short-chain fatty acid (SCFA)
butyrate, that promote Treg differentiation in vivo (77). A similar
function has been assigned to food-derived fatty acids (78, 79).
Frontiers in Immunology | www.frontiersin.org 6107
Dietary-derived SCFAs expand gut Tregs by suppressing the JNK
and p38 signaling pathways (80). Conversely, dietary long-chain
fatty acids (LCFAs) can induce Th1/Th17 differentiation, while
decreasing SCFAs in the gut (80). LCFA treatment resulted in
exacerbated autoimmune disease in the EAE model, which could
be rescued by treatment with SCFAs via differentiation of lamina
propria-derived Tregs (80). In addition to directly enhancing Treg
differentiation, SCFAs produced by the microbiota enhance TGF-
b1 production by IECs (81) (Figure 3). TGF-b1 then directly drives
the conversion of conventional T cells into Foxp3+ Tregs in
peripheral organs (82). Thus, SCFA-induced TGF-b1 production
generates an environment that also indirectly promotes Treg
induction in vivo. Specific symbionts in the mouse gut
microbiome have been found to induce a subset of Tregs that
co-expresses the transcription factor Rorg together with Foxp3 (65,
83). This Treg subset plays an important role in controlling colonic
inflammation. Intestinal Rorg+ Tregs are mostly Helios- and
express high levels of IL-10, ICOS and CTLA-4 (65, 83), which
mediate the strong suppressive capacity of these specialized Tregs.
Nevertheless, whether these microbiota-induced Tregs only
contribute to tissue homeostasis by limiting effector T cell
activation or whether they also directly promote tissue protection
and regeneration through release of tissue regenerative factors such
as Areg still needs to be investigated. However, the studies we
summarized here highlight the heterogeneity and plasticity of T
FIGURE 3 | Pathways and molecules involved in Treg function in non-lymphoid organs. Tregs which home to the brain, lung and intestine acquire phenotypic characteristics
that potentiate their function in these organs. Among these, the production of Areg and anti-inflammatory cytokines such as IL-10 and TGF-b, mediate Treg protective and
reparative action. Illustration created with BioRender.com.
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cells and Tregs in the intestine as well as the fact that these Tregs
are shaped bymicrobiota- and food-derived antigens and specialize
to limit inflammation of the intestinal tissue and potentially
participate in its renewal when damaged.

Treg Functions in the Lung
The lung represents another non-lymphoid organ where Tregs
have shown a strong involvement in tissue maintenance beyond
the canonical immune homeostasis (Figure 2). Like the gut, the
lung is highly exposed to external pathogens and
microorganisms, which can potentially cause harm. Adaptive
immune cells including Tregs colonize the respiratory tract and
like in the gut, the Tregs have to maintain the delicate balance
between allowing efficient immunity against pathogenic threats
while maintaining tissue homeostasis and integrity.

Non-classical roles of Tregs in the lung tissue are still under
investigation, but several independent studies have demonstrated
their active involvement in lung epithelium regeneration (84, 85).
Indeed, multiple studies have shown the ability of lung Tregs to
produce Areg in response to IL-33 (11, 12, 70, 71). During lung
inflammation, ST2+ Tregs exert tissue protective and regenerative
functions through Areg production. Furthermore, Foxp3+ Tregs in
the lung produce keratinocyte growth factor upon LPS
stimulation. This factor, together with Areg, induces epithelial
cell proliferation and subsequent tissue regeneration upon injury
(85) (Figure 3).

Tregs have also been studied in acute lung injury (ALI), which
leads to a progressive influx of CD3+ T cells including Tregs into
the respiratory tract. Importantly, Treg influx into the alveolar
compartment correlates with the transition from injury to
resolution and Treg infusion promotes resolution of LPS-induced
lung injury in mice, resulting in increased survival and reduced
BAL protein and cell count (84). Interestingly, Tregs directly act on
alveolar epithelial cells during the recovery phase of ALI
by enhancing their proliferation and thereby accelerating
resolution and lung tissue regeneration (86) (Figure 3).
Furthermore, IL-10-producing Tregs play an important role in
limiting type 2 inflammation in the lung. In an OVA-induced lung
inflammation model, lack of Treg-derived IL-10 results in
exacerbated immune pathology characterized by increased mucus
production, Goblet cell expansion, edema, as well as lymphocyte
and eosinophil infiltration (73). Nevertheless, Tregs can also have a
negative impact on the lung tissue by promoting fibrosis through
secretion of IL-10 and TGF-b (87). This once again highlights the
need for a fine-tuned balance to allow prevention of immune-
pathology while promoting tissue regeneration.

In addition to limiting lung pathology in settings of sterile
inflammation, Tregs also play an important role in mitigating
lung damage upon infection. Like upon injury, lung Tregs release
Areg in response to Influenza Virus infection, thereby
counteracting pathogen-induced as well as immune-mediated
pathology (12). Importantly, this tissue protective effect is
independent of the immune suppressive function of Tregs and
their classical regulatory role (12). In addition, Tregs have been
addressed in the context of SARS-CoV-2 infection and several
studies revealed that in patients with severe COVID-19, marked
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by potent cytokine storm, Tregs might be beneficial for the lung
environment, dampening the pro-inflammatory cues and
restoring tissue integrity (88) (Figure 3). On the other hand,
excessive immune regulation by Tregs may hamper an effective
immune response against SARS-CoV-2 and thereby
exacerbate disease severity (89). Of note, Tregs in COVID
patients are phenotypically distinct from Tregs observed upon
Influenza Virus and Respiratory Syncytial Virus infection (89,
90). As mentioned earlier, Tregs up-regulate CXCR3 in response
to the infection, which directs them to the lung as the site of an
ongoing immune response (44). While the recruitment of T-bet-
expressing CXCR3+ Tregs to the site of type 1 immune responses
is essential for the efficient control of these responses (44, 45), it
is still unknown whether the same Treg subset also exerts the
tissue protective functions observed upon infection (12).
Understanding the exact functions of each Treg population
will be particularly important in infectious settings in which
immune-mediated damage correlates with disease severity, such
as Influenza or COVID-19 (91, 92). In conclusion, Treg function
may contribute to pathology if they excessively limit immunity to
infection. Nevertheless, Tregs also play an important role in
limiting sterile, immune-mediated, or pathogen-induced tissue
damage by shaping the immune environment but also by acting
directly on epithelial cells.

Long-Lasting Treg Responses in
Peripheral Tissues
As discussed, the main function of Tregs at barrier sites is to
maintain tolerance where continuous environmental cues are
faced. In addition, accumulating evidence for a memory
phenotype of Tregs at these sites has emerged. A clear
phenotypical characterization of a Treg memory subset is still
lacking but, in the past years, evidence of the persistence of
memory-like Tregs in peripheral lymphoid and non-lymphoid
tissues has arisen, especially at barrier sites (93). Functional Treg
memory was assessed in the lung, where adoptive transfer of
memory but not naïve Tregs from SLOs attenuated lung
pathology following Influenza infection (94). Similarly,
memory Tregs capable of suppressing a secondary
inflammatory response upon antigen re-encounter have been
observed in pregnancy. In this context, fetal antigen-specific
Tregs persist in SLOs even beyond the pregnancy. These Tregs
re-expand following re-encounter with the same antigen in a
subsequent pregnancy and maintain fetal tolerance (95).
However, whether fetal-antigen-specific Tregs are also
maintained as a tissue-resident memory population or are only
present in SLOs still needs to be determined. Guo and colleagues
defined a subset of CD4+CD25+Foxp3+ T cells in the lamina
propria which has effector/memory-like properties and is
characterized by low expression of CD62L and CD45RB while
expressing CD44 and the chemokine receptors CCR4 and CCR9,
which are not exclusively expressed on memory cells but mark
circulating and tissue-infiltrating lymphocytes (96) (Figure 1).
However, whether these memory Tregs are maintained in the
tissue and represent a truly tissue-resident population is unclear.
Moreover, a mouse model allowing for the inducible expression
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of a self-antigen in the skin clearly showed that a memory Treg
population is maintained following antigen clearance and
contraction of the effector cytokine response (97). A follow-up
study then also identified the corresponding memory Treg subset
in humans (98). Moreover, IL-2 has been shown not to be
required for the generation of memory Tregs in the skin, while
IL-7 is essential for maintaining them at steady state in this organ
(99). While these studies showed that memory Tregs persist in
the skin, it is still unclear whether they are replenished from
SLOs or whether they represent a truly tissue-resident memory
population that is maintained locally.

The existence of memory Tregs has been explored for
decades now, but a distinct characterization of their phenotype,
maintenance, and mechanism of action in the peripheral tissue is
still missing and will require further investigation. Nevertheless, as
highlighted above, accumulating data suggest that Treg memory
may play a key role in tissue protection in peripheral organs.
However, as memory Tregs share phenotypical characteristics and
functional features with effector Tregs, further studies are needed to
clearly define their markers to allow for a clear identification of these
cells. Furthermore, it will be important to determine whether
memory Tregs residing in peripheral tissues can recirculate or
whether they are tightly restricted to the tissues and represent a
tissue-resident population.

Role of Tregs in the Central
Nervous System
In contrast to barrier tissues, the central nervous system (CNS) is
shielded from external antigens and holds immune privilege,
conferring protection from potential damage of the peripheral
immune system to this site. As such, Treg numbers in brain tissue
at steady state are very low, under 100 cells in most of the cases.
Despite this low count, Tregs are present and show a similar
phenotype as those observed at barrier sites in association with
tissue repair (Figure 2). Like barrier Tregs, CNS Tregs express the IL-
33 receptor ST2. In addition, they also express the serotonin receptor
as a tissue specific receptor and can survive and proliferate in absence
of IL-2 upon IL-33 and serotonin sensing (40).

While the CNS is well guarded from immune-mediated insults,
some pathogens may exploit the immune privilege and target the
CNS to expand. When that happens, Tregs (and other T cells) can
infiltrate the brain upon inflammation, following the CCL1 and
CCL20 gradient produced by astrocytes (40). Effector Th1 cells and
memory cells may enter the CNS through the blood-brain
barrier, while Tregs and Th17 can reach the CNS through the
choroid plexus (100), emphasizing a difference between these
subsets of CD4+ T cells. This variation in the entry site could
influence their final location, and may therefore influence their
main function and purpose as well (101, 102). After infiltration, the
main role of Tregs is to suppress ongoing immune responses and
dampen inflammation to protect neural integrity. Nevertheless,
other functions have been attributed to them, making Tregs a key
protective cell population of the nervous system (Figure 2). To start
with, Tregs can control overreactive microglia, either by reducing
their activation and cytokine secretion, by decreasing their
production of neurotoxic factors (e.g. nitric oxide, NO, and
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inducible nitric oxide synthase, iNOS) through driving a shift to
the anti-inflammatory M2 phenotype or by inducing their
apoptosis (103–105). As NO is one of the major causes of
neuronal apoptosis, this role of Tregs is crucial. On the other
hand, astrogliosis (or abnormal astrocyte growth) can also be
dampened by Tregs through the release of Areg (40) (Figure 3).
Moreover, Areg can potentiate neural stem cell proliferation (106).
Again, the fact that Areg also acts in immune privileged tissues
highlights the importance of Treg-derived Areg in tissue
protection. During sterile CNS damage as it may occur during a
stroke, Tregs can contribute to the resolution of the acute phase
either directly or by promoting macrophages to adopt a M2
phenotype (107, 108). Moreover, Treg depletion during EAE
impairs remyelination, a property that can be regained upon
Treg transfer (109), and explains why a diet restricted in SCFAs
reduces axonal damage through Treg induction, as discussed in
detail in an earlier section (80). In addition, the fact that Treg
numbers do not decrease during the remission phase, as it occurs
for CD4+ effector T cells, highlights that the role of Tregs in tissue
protection continues beyond the inflammatory phase (110).

Despite their important role in maintaining CNS homeostasis,
Tregs are a double-edged sword when it comes to CNS infection:
their proliferation and activation can dampen effector immune
responses, allowing e.g. viruses to spread in the CNS (111). On
the other hand, Treg depletion can allow excessive infiltration
and activation of effector T cells in the brain, causing strong
immune pathology and damage (112). Furthermore, Tregs have
been observed to directly act on infected innate immune cells and
drive their apoptosis via the caspase-3 and the perforin/granzyme B
pathway (61). Hence, Tregs can be involved in viral clearance from
the brain, as observed in Human Immunodeficiency Virus (HIV)
infection (113). Moreover, during HIV infection, brain-
infiltrating Tregs can potentially promote the conversion of M1 to
M2 macrophages, which adopt an anti-inflammatory phenotype,
and thereby protect the morphology of the dendrites (114). IL-10
secretion by Tregs has also been associated with neuroprotection
upon viral infection, independent from immune suppression
(115). In the case of Herpesvirus, Tregs from acute murine
cytomegalovirus (MCMV)-infected animals prevent neural
damage by restraining microgliosis and astrogliosis and can avoid
hippocampal injury and cognitive impairment (116).
Interestingly, Tregs also promote memory T cell formation in
the CNS after MCMV-infection (117). Therefore, besides acting
on effector T cells to suppress collateral T cell damage, Tregs can
actively support formation of immunological memory.
Treg depletion prior infection with the model coronavirus MHV
(mouse hepatitis virus) did not interfere with T cell
infiltration but led to increased apoptosis of neurons and myelin
loss (118), suggesting that rather than being mainly involved in T
cell suppression, CNS Tregs have a central role in tissue protection
after infection. In line with this, it is tempting to hypothesize that
brain Tregs could ameliorate the neurological symptoms derived
from COVID-19 infection (119).

All in all, the potential beneficial roles of Tregs in CNS will
depend on the circumstances. Most studies focus on the role
of Tregs in limiting effector T cell act ivation and
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immunopathology, while little is known about their direct
impact on neural cells. Regarding viral infections, we
understand that Tregs hamper viral clearance in the periphery
and may thereby facilitate virus infiltration in the CNS.
Nevertheless, depending on the type of virus, Tregs can also
promote anti-viral effects and may play a favorable role,
particularly during the late stage of encephalic disease, when
their tissue protective functions take the lead.
CONCLUSIONS

Tregs are critical for maintaining tissue homeostasis both by
inhibiting excessive immune activation and by directly interacting
with the cellular network in the tissue niche to promote tissue
renewal and repair. While a core set of features is shared between
Tregs in lymphoid organs and peripheral tissues, many non-
lymphoid tissues harbor phenotypically distinct Treg subsets with
unique functions that we are only beginning to understand.
Nevertheless, some general concepts have started emerging.

First, Treg activity is strictly dependent on their localization at
a given tissue site, which is controlled by their specificity and site
of priming, their migration to a specific tissue, and the
availability of growth and survival factors within that tissue. As
a part of their adaptation to non-lymphoid tissues, Tregs become
less dependent on IL-2 and are instead maintained by other
cytokines such as IL-7 and IL-33 or by tissue specific factors like
serotonin (40, 69, 99). Furthermore, the milieu and cellular
network present in different tissues, such as microbiota derived
factors and abundance of TGF-b at barrier sites, promote Treg
differentiation and thereby control the amount and functional
impact of Tregs at that site (65, 75, 77).
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Second, classical immune regulation by Tregs at peripheral
sites and their direct tissue protective effects rely on distinct
functional programs. While immune suppression involving co-
inhibitory receptors and the modulation of APCs come into play
during immune suppression in lymphoid tissues, suppressive
cytokines like IL-10 and TGF-b are important functional
mediators in both lymphoid and non-lymphoid organs (5). In
addition, Tregs in peripheral tissues produce Areg - and likely
also other factors still to be identified - that directly act on tissue
cells to regulate their regeneration and function (11). Whether
the classical immune suppressive and the regenerative function
of Tregs are carried out by the same Treg population still needs
to be determined. Similarly, the conditions that allow for Tregs to
acquire this regenerative capacity, which may include the site and
conditions present during their initial priming or simply the
presence of the right stimuli at the tissue site, remain unclear. A
better understanding of these processes will potentially allow for
the manipulation of Tregs in therapeutic approaches targeting
their regenerative role.
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The immune system plays a vital role in maintaining tissue integrity and organismal
homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant
challenge for the immune system: it must quickly substitute dead myocardial with fibrotic
tissue while controlling overt inflammatory responses. In this review, we will discuss the
central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes
and controlling local inflammation in the context of MI. We herein compile recent advances
enabled by the use of transgenic mouse models with defined cardiac antigen specificity,
explore whole-heart imaging techniques, outline clinical studies and summarize deep-
phenotyping conducted by independent labs using single-cell transcriptomics and T-cell
repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted
by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells
to local immune modulation in myeloid and lymphoid lineages. We also discuss how both
cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider
intriguing novel evidence on how the myocardial milieu takes control of potentially auto-
aggressive local immune reactions by shaping myosin-specific T-cell development
towards a regulatory phenotype. Finally, we examine the potential use of Treg
manipulating drugs in the clinic after MI.

Keywords: Tregs (regulatory T cells), Foxp3, myocardial infarction, heart, fibrosis, T-cells
INTRODUCTION

Heart and immune system development are closely intertwined, as leukocytes permeate the cardiac
tissue during the embryonic stage and remain there throughout life. In addition to their
housekeeping functions and recently discovered new roles (1, 2), diverse leukocyte populations
are recruited by and respond to the tissue damage elicited after (MI). These responses secure the
proper clearance of dying tissue, foster myocardial healing and thereby aid cardiac tissue recovery
(1). However, uncontrolled long-lasting immune cell activation may also lead to cardiac damage and
contribute to heart failure (HF) progression (1). Deciphering the paths and immune players
responsible for proper cardiac wound healing is therefore crucial for designing new therapeutic
strategies to improve post-MI recovery.

A growing body of evidence indicates that adaptive immune responses orchestrated by CD4+

T-cells can significantly affect myocardial repair after MI (3). While lack of CD4+ T-cell responses
hindered myocardial healing, chronic T-cell activation can contribute to HF progression as seen in
pressure overload models (4, 5). Regulatory T-cells (Tregs) have immunosuppressive and
org May 2022 | Volume 13 | Article 9140331114
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pro-healing functions that generated particular interest in
understanding their role in cardiovascular diseases (6–8). A
series of studies conducted in recent decades formally
identified Tregs as a subset of CD4+ T-cells expressing the
transcription factor Forkhead box P3 (FOXP3) that are
involved in immunosuppression and play a vital role in
maintaining immunological tolerance and overall homeostasis
(9–15).

In addition to their suppressive functions, previously
unknown Treg roles have recently been discovered based on
their location in parenchymal rather than lymphoid tissue (16).
For instance, Tregs infiltrating the visceral adipose tissue (VAT)
rely on peroxisome proliferator-activated receptor (PPAR-g) for
accumulation, phenotype and function, as VAT Tregs lacking
PPAR-g cannot restore insulin sensitivity in obese mice (17).
Similarly, Tregs can be recruited to the injured skeletal muscle
where they mediate tissue repair via amphiregulin and
interleukin-33 (IL-33) pathways (18, 19). Single-cell sequencing
of Tregs from the skin, the colon and their respective draining
lymph nodes revealed tissue-specific Treg signatures, which are
present in both lymph nodes and tissue, suggesting that local
draining tissue cues can shape Treg phenotypes (20). Therefore,
understanding the phenotype and functions of myocardial Tregs,
plus the manner in which the MI milieu influences Treg
function, may form the basis for new cell-mediated therapies
in cardiovascular diseases.

In this review, we will summarize the current knowledge on
cardiac Tregs, including the mechanisms through which Tregs
contribute to myocardial healing after infarction. We will also
address how antigen specificity plays a role in CD4 heart-specific
T-cell responses. Further, we will describe the heart-infiltrating
Treg phenotype and how it is shaped by MI’s context. Finally, we
will explore novel clinical strategies to manipulate Treg function
after MI in patients.
BIDIRECTIONAL COMMUNICATION
BETWEEN TREGS AND THE
INFARCTED MYOCARDIUM

Treg Effects in Myocardial Inflammation
and Repair After Infarction
Investigations of heart-specific T-cell responses were initially
confined to experimental models of autoimmune myocarditis, a
pathological condition in which heart-directed T-cells cause
myocardial damage (21, 22). More recently, however,
mounting evidence has suggested that the most common
myocardial diseases, namely MI and HF, can also activate
antigen-specific T-cell responses, which in turn modulate
myocardial inflammation and fibrosis (3, 23). MI is
pathologically defined as myocardial cell death due to
prolonged ischemia, which may be caused by atherosclerotic
plaque disruption, interrupted oxygen supply or increased
myocardial oxygen demand (24). MIs can be classified
temporally according to clinical features and pathological
Frontiers in Immunology | www.frontiersin.org 2115
appearance as acute (hours), healing (days) and healed (weeks)
phases (24). From the immunological perspective, MI can be
perceived as sterile tissue damage in the context of ischemia,
resulting in the prompt release of damage-associated molecular
patterns (DAMPs) and autoantigens.

During MI’s acute phase, CD4+ T-cells are recruited to the
infarct zone and heart-draining mediastinal lymph nodes. To
address the role of T-cell responses in MI outcome, Hofmann
et al. applied an experimental MI model in either CD4 knockout or
major histocompatibility complex class II (MHC-II) knockout mice,
both of which lack functional CD4+T-cell responses. In all
experimental settings, mice without CD4+ T-cell responses
showed impaired myocardial leukocyte migration, reduced
collagen deposition and unexpectedly decreased survival after
experimental MI (25). Mice carrying a transgenic T cell receptor
specific to an ovalbumin (OVA) peptide antigen (OT-II mice) also
recapitulate this phenotype (25). Unlike in autoimmune
myocarditis, CD4+ T-cell responses seen shortly after MI are
mostly salutary and seem to contribute to tissue repair. In parallel
to those findings, T-cells infiltrating the cardiac draining lymph
nodes were shown to acquire a regulatory phenotype, that depends
on TCR activation (25). Similarly, an experimental MI model in rats
led to increased cardiac tissue Treg numbers, and in vivo Treg
expansion via CD28 superagonistic antibody treatment resulted in
improved cardiac function (26). To determine the specific
contribution of Tregs to myocardial repair, Weirather et al. used
gain (CD28-superagonistic antibody) and loss (FOXP3DTR) of
function approaches in an experimental MI model (27). Tregs
were found to be necessary for proper myocardial repair, as their
depletion produced larger infarcts, exacerbated local inflammatory
responses and hampered collagen deposition, ultimately leading to
impaired survival (27). Therapeutic Treg activation favored
macrophage polarization towards a pro-healing phenotype
characterized by production of osteopontin, a cytokine known to
potentiate collagen synthesis and deposition (27, 28).
Mechanistically, canonical Treg-derived cytokines such as IL-10
and TGF-b may account for the macrophage polarization and
enhanced fibrosis observed during Treg activation (29, 30).
Analogous findings were observed in an ischemia-reperfusion
model of MI, in which Treg depletion was associated with
elevated inflammatory response, higher chemokine ligand 2
(CCL2) production and diminished fibroblast function (31).
Selectively depleting Tregs in the myocardial ischemia/reperfusion
model also resulted in aggravated injury, which could be rescued by
transferring in vitro pre-activated Tregs (32). Interestingly, Tregs’
beneficial effects required intact CD39 (Ectonucleoside triphosphate
diphosphohydrolase-1) signaling, suggesting that controlling
purinergic metabolism may be an important Treg function in
cardiovascular diseases (32). Relatedly, Borg et al. demonstrated
that lack of CD73, another ectonucleotidase that converts AMP to
adenosine, on CD4+ T-cells resulted in increased inflammatory
tonus and impaired cardiac function after ischemia/reperfusion
(33), and antagonizing C-X-C chemokine receptor type 4
(CXCR4) reduced scar size and attenuated cardiac remodeling
after MI, through mechanisms related to augmented Treg
accumulation in the infarcted region (34). Conversely, the C-C
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motif chemokine ligand 17 (CCL17) produced by C-C chemokine
receptor type 2 (CCR2) positive monocyte-derived macrophages
was shown to curtail Treg migration to the heart in a myocardial
damage model induced by angiotensin II/phenylephrine treatment
(35). Lack of epicardium transcription coactivators yes-associated
protein 1 (YAP)/tafazzin (TAZ) signaling produced profound
pericardial inflammation, fibrosis and cardiomyopathy after MI.
Interestingly, knockout mice showed less Treg infiltration at the site
of injury while controlled delivery of interferon gamma (IFN-g) to
the heart following MI restored Treg migration and decreased
fibrosis (36), suggesting a link between YAP/TAZ and cardiac
Treg function after MI. Altogether, these data suggest that CD4+

T-cells and, to a larger extent, Tregs favor acute myocardial healing
by dampening local inflammatory responses through multiple
mechanisms while fostering pro-fibrotic functions on
mesenchymal cells (Figure 1).

Previous findings suggested that CD4+ T-cell activation after
MI requires TCR activation viaMHC-II (25), but the identities of
those antigens and whether they are cardiac selective remained
elusive. By screening a peptide library of cardiac-selective
proteins that MHC-II can present, our group identified a
peptide sequence spanning the cardiac-specific part of the
myosin heavy alpha chain protein (MYHCA614-629) that drives
CD4+ T-cell responses after MI in Balb/C mice (37–39). In
adoptive transfer experiments using a transgenic TCR model
against the MYHCA antigen (henceforth termed TCR-M), we
showed that transferred TCR-M cells differentiated towards a
regulatory phenotype in the heart, acquired a unique pro-healing
gene signature in MedLNs and were associated with improved
systolic function and faster collagen deposition after MI (37). In
addition, heart recipients’ IL-17 production by CD4+ T-cells was
Frontiers in Immunology | www.frontiersin.org 3116
abrogated in TCR-M-transferred mice, while recipients’ heart
Treg numbers rose. Moreover, transferring in vitro-Treg-
expanded TCR-M cells inhibited cardiac inflammatory
responses (40). Remarkably, thymic epithelial cells do not
express the MYHCA protein in either mice or humans; thus,
central tolerance mechanisms are not functional for this antigen
and peripheral presentation plays a fundamental role (41–43).

Besides myosin-specific Treg responses, polyclonal thymic-
derived Tregs might also support cardiac repair after MI. In this
context, Xia et al. demonstrated that thymus-derived
(HeliosHighNrp-1High) Tregs infiltrated the myocardium via the
IL-33 interleukin 1 receptor-like 1(-ST2) axis and favored collagen
deposition and infarct maturation through mechanisms that
depend on expression of Secreted Protein Acidic And Cysteine
Rich (Sparc), a gene involved in collagen calcification and
extracellular matrix synthesis (44). These cells’ specificity is still
largely unknown. The fact that MYHCA, the main antigen
triggering peripheral Treg conversion in the heart, is not
expressed in the thymus could indicate that other yet unidentified
cardiac antigens might be relevant in the context of MI (Figure 1).

Despite the above-mentioned and well-established salutary role
Tregs play during the early repair phase of MI (45, 46), it is
important to stress that Tregs sometimes change their phenotype
during chronic inflammatory conditions and negatively affect
cardiac function by fueling pro-inflammatory mechanisms. For
instance, Bansal et al. reported that Tregs lose their suppressive
function and acquire features related to TH1 polarization in chronic
ischemic HF (47). In these conditions, Tregs expressed higher TNF/
TNFR1 levels and contributed to pro-fibrotic responses that led to
adverse remodeling. During post-MI chronic stages, depleting Tregs
using a FOXP3DTR model or neutralizing anti-CD25 antibody
FIGURE 1 | Treg-mediated effects in myocardial repair and inflammation after infarction. Tregs control local immune responses through a multitude of mechanisms,
including inhibiting both canonical TH1/TH17 cytokine production and leukocyte migration. Treg cytokines (e.g. IL-10 and TGF-b) and purinergic metabolism products may
modulate macrophage polarization towards a pro-healing/reparative phenotype. In addition, Tregs contribute to fibroblast activation and steady collagen deposition in the
infarcted area.
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prevented cardiac remodeling and, interestingly, reconstituted Tregs
showed restored immunomodulatory activity (47), in sharp contrast
to early post-MI Treg depletion (27). However, in models of chronic
HF induced by stress overload, cardiac Tregs expressed high Pdcd1
levels (encoding the inhibitory receptor PD-1), suggesting they
might exert suppressive and anti-inflammatory function in this
context too (48).

How Myocardial Infarction Milieu Shapes
Treg Biology
MI provides cues that may alter/shape the phenotype of local Tregs,
which in turn may affect tissue repair through mechanisms beyond
the immune suppression seen in autoimmunity experimental
models (8, 18). Indeed, establishing a model to study cardiac-
specific T-cell responses has led to important insights on how the
stressed heart signals to T-cells and shapes Treg differentiation.

The differences between baseline and cardiac TCR-M Treg
frequency suggest that either the myocardium preferentially
recruits Tregs or its milieu induces conventional T-cells to
become Tregs. By transferring labeled conventional (CD25-) and
regulatory (CD25+) TCR-M cells we showed that the myocardium
attracts conventional TCR-M cells, which in turn gain FOXP3
expression, demonstrating that the infarcted heart favors in situ
Treg conversion (37) (Figure 2). Strikingly, the transgenic mice
bearing TCR-M cells developed spontaneous autoimmune
myocarditis via a microbiota peptide mimicry and TH17
polarization, illustrating how different contexts shape the T-cell
phenotypes (39). These data reveal that in infarcted tissue, cardiac-
specific T-cells are poised towards an induced Treg signature that
favors pro-fibrotic responses and suppresses local immune
activation. The reinforcing Treg signature in myosin-specific
Frontiers in Immunology | www.frontiersin.org 4117
CD4+ T-cells can be seen in adoptive transfer of pro-
inflammatory polarized cells. For instance, in vitro pre-
differentiated TH17 but not TH1 TCR-M cells still acquired
FOXP3 expression in the heart, albeit to a lower extent than
naïve TCR-M cells. Conversely, Treg-expanded TCR-M cells kept
FOXP3 expression in the heart, suggesting they do not become ex-
Tregs (40). More importantly, increased TCR-M Treg conversion
correlated with lower inflammatory responses in the heart,
regardless of infarct size, illustrating that cardiac Treg tonus
directly affects local inflammatory responses (40). Taken
together, these findings suggest a strong regulatory tonus
imposed in the myocardium during MI’s acute healing phase
affects T-helper cells that in turn module tissue inflammation.
Nevertheless, these findings are yet to be confirmed in further
experimental conditions and in mice with different genetic
background. While the TCR-M system has been validated in
Balb/C mice (MHC-II haplotype I-Ad, I-Ed), there are currently
no cardiac antigens mapped in the widely used C57BL/6 mouse
strain (MHC-II haplotype I-Ab) or in humans. This current lack of
tools to track heart-specific Tregs in C57BL/6 mice is an important
limitation in the field and a major roadblock to translation. The
genetic background can critically impact antigen presentation, T-
cell responses, autoimmunity predisposition, myocardial function,
amongst several other factors (49–52). Thus, future studies might
further explore this gap and expand our toolkit to dissect
myocardial T-cell responses in different mouse strains and
in patients.

The myocardial injury that follows an infarction results in
multiple layers of immune system activation (necrotic cell death,
release of DAMPs, ischemia), yet the heart seems to tame T-cell
responses and direct them toward a regulatory phenotype.
FIGURE 2 | Treg recruitment and in situ conversion during MI. After MI, cardiac autoantigens, including MYHCA, are drained to local MedLN and presented to CD4+

T-cells via the MHC-II molecule. Naturally existing thymus derived Tregs (nTreg) and conventional T-cells are activated in the MedLN after MI and migrate to the
infarcted tissue. The myocardial immune crosstalk induces myosin-specific T-cells to acquire an induced regulatory phenotype (iTreg). Both induced and naturally
occurring Tregs contribute to tissue repair by modulating local inflammatory response and fostering tissue fibrosis.
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Unlike tissues such as skin and liver, the adult heart possesses
negligible regenerative capacity, and transient functional
impairment can be life-threatening. Interestingly, the
myocardium is equipped with several immune inhibitory
receptors that can keep T-cell responses at bay under baseline
conditions (53, 54). As a result, the heart may both prevent futile
immune activation at baseline and, following injury, allow a
limited response that soon shifts to a pro-resolving phase.
Additionally, ligands, such as PD-L1, expressed by myocardial
endothelial cells and yet undiscovered targets may contribute to
in situ Treg polarization and inhibitory function (55, 56).

Defining Myocardial Tregs Based on
Single-Cell Transcriptomics
Plasticity, polarization and adaptation are key features of the
immune system, and T-cells are particularly known for adopting
distinct phenotypic states dictated by the milieu. Immunological
research has recently experienced a breakthrough with the advent of
Single-Cell RNA sequencing (ScRNAseq) technology, which allows
for unbiased, simultaneous characterization of cellular information
across thousands of individual cells. Moreover, all this information
can be tracked to TCRa/b sequences at the single-cell level, enabling
researchers to analyze the transcriptome response, evaluate clonal
expansion and eventually address expanded TCR specificity in
unprecedented detail (57). Considering the complex interplay
between Tregs and the injured myocardium, pioneering studies
sought to resolve cardiac T-cell intricacies at the single-cell level. Xia
et al. (44) combined ScRNAseq and bulk RNA sequencing to show
that cardiac Tregs clonally expand and present a unique TCR
repertoire. The same team also observed a transcriptome
signature characterized by pro-healing genes (Areg), effector
markers (Tnfrsf9) and collagen synthesis-related genes (Sparc).
Further investigation revealed that the IL-33 axis and Sparc were
necessary for the Treg-mediated improvement in cardiac function
post MI. Martini et al. (48) used ScRNAseq to map heart leukocyte
responses in a pressure-overload model. Tregs were found to be
expanded after 1 week of thoracic aortic constriction (TAC) and
were observed in two main clusters, one resembling bona fide Tregs
expressing Foxp3, Tnfrsf18 and Ctla4 and the other expressing
features of non-lymphoid and TH17-like Tregs such as Rora and
Gata3. Remarkably, both Treg clusters expressed high levels of the
checkpoint receptor Pdcd1, which may be associated with their
suppressive function. In a mouse model of MI, our team has
characterized both the endogenous (polyclonal) and myosin-
specific (TCR-M cells) T-cell responses at the single-cell level in
the heart and MedLNs. Intriguingly, TCR-Ms clustered separately
from bona fide Tregs and showed a transcriptome suggesting an
induced Treg signature (enriched for Cd200, Pou2f2, Sox4 and
Izumo1r) (40). More detailed single cell transcriptomic analyses
suggested that the TCR-M cells activated after MI differentiate into
two main Treg transcriptional states: a subset enriched for
transcripts associated to TCR activation, cell growth/cycling and
pro-fibrotic responses (Myc, Tnfrsf9, Mif and Tgfb1) and another
subset expressing high levels of immune checkpoint inhibitor
transcripts (Pdcd1, Lag3, Tigit). However, further investigation is
needed to validate these phenotypic states and eventually resolve the
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mechanisms underlying their differentiation and function (40)
(Figure 3). Overall, cardiac Treg responses stem from naturally
occurring and locally induced regulatory T-cells that have features
linked to tissue repair, extracellular matrix organization and potent
immune suppression. In addition, the molecular details of cardiac
Treg priming and recruitment to the injured heart remain largely
undiscovered and may explain the distinct phenotype myocardial
Tregs acquire after MI.
SCARRING VERSUS REGENERATION

Adult myocardial tissue has negligible regenerative capacity, but
neonatal cardiomyocytes (CM) have a short regeneration window
that lasts until shortly after birth (58, 59). Tregs may contribute to
this regenerative capacity, as depleting them during pregnancy
decreases fetal cardiomyocyte (CM) proliferation through
paracrine mechanisms (60). In addition, neonatal cardiac
regeneration is impaired in Treg-depleted mice, and Treg cell
transfer to NOD/SCID mice restores their regenerative phenotype
(61). Moreover, in zebrafish, which retain cardiac regenerative
abilities in adulthood, disrupting Tregs dampened heart
regeneration after injury. Zebrafish cardiac Tregs produce Nrg1,
a cardiomyocyte mitogen involved in heart regeneration (62).
Besides directly impacting CM proliferation, Tregs may support a
pro-tolerogenic milieu in neonates while hampering pro-
inflammatory T-cell activation. On the other hand, transplanting
neonates with adult conventional CD3+ T-cells interferes with
cardiac regeneration after MI, resulting in impaired function and
pro-fibrotic responses, dependent on IFN-g signaling (63). These
observations regarding cardiac Tregs parallel skeletal muscle
(SkM) T-cell responses after injury; in both models, Tregs
constitute up to 50% of the local CD4+ compartment, show
clonal expansion, acquire the regulatory phenotype in situ and
are necessary for proper tissue healing (18, 19, 64). Tregs in
skeletal muscle also express high levels of Helios/Nrp1 and rely on
IL-33 signaling for proper tissue homing (65). While SkM
Tregs enhance satellite cell myogenic activity that engenders
muscle regeneration, cardiac Tregs ensure proper scar
formation via collagen deposition in the post-mitotic
myocardium (19, 26, 27, 37).
TRANSLATIONAL CONSIDERATIONS

State-of-the-art therapy for infarcted patients has significantly
reduced mortality and morbidity over the years, but
understanding local immune responses in the MI context may
reveal immunological markers of progression toward HF and
further improve patient recovery. For instance, the CANTOS
(Canakinumab Anti-inflammatory Thrombosis Outcome Study)
trial demonstrated that targeting pro-inflammatory cytokines in
patients with previous MI lowers the rate of recurrent
cardiovascular events (66).

Currently, little is known about T-cell biology in infarcted
human hearts. Analyzing human cardiac autopsies showed
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increased Treg infiltration during the proliferative phase of MI
repair. In addition, PET/CT imaging using a CXCR4 probe, as a
readout for T-cell activity, revealed elevated signal in the heart
draining lymph nodes of infarcted patients compared to control
subjects, suggesting the existence of a similar MedLN-Heart T-cell
axis following MI (37, 67). A prospective study found that higher
blood Treg numbers were associated with better survival for patients
with HF with reduced ejection fraction (HFrEF), indicating Tregs
may influence HF progression (68). Similarly, other studies reported
that infarcted patients have decreased Treg numbers in their blood
and that pro-inflammatory effector T-cell expansion correlated with
the occurrence of ischemic heart disease (69, 70), though other
studies did not find a clear association (71). In HF patients with
reduced ejection fraction, lower circulating Tregs levels correlated
with higher C reactive protein and IL-6 levels and were associated
with more re-hospitalizations. However, data must be interpreted
carefully due the study’s small sample size (n:32) (72). The LILACS
trial (Low-dose interleukin-2 in Patients with stable ischemic heart
disease and acute coronary syndrome) explored the potential of
Treg expansion in patients with acute coronary syndrome, in
pursuit of therapeutically targeting Tregs in humans. Tregs have a
high density of IL-2 receptors and are known to outcompete effector
T-cells for IL-2 (73). Relatedly, low-dose IL-2 treatment induced
tolerance and promoted Treg development in the context of
autoimmune disease (74). In the LILACS trial, administering low-
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dose IL-2 (Aldesleukin) was sufficient to selectively expand Tregs
but not conventional T-cells. Furthermore, the phase 1b/2a report
determined the optimal IL-2 dose for Treg expansion and reported
no major adverse events, thus opening the door for further studies
and evaluations of the treatment’s efficacy (75, 76). Additionally, the
CAR T-cell technology that has revolutionized cancer care could be
used to treat cardiovascular diseases with known antigen. The work
conducted by Epstein’s lab showed that CD5-targeted lipid
nanoparticles carrying mRNA to reprogram lymphocytes could
transiently generate CAR T-cells against fibroblast activation
protein alpha (FAP) and consequently reduce fibrosis in a murine
hypertensive model (77). This research opens new avenues for CAR
T-cell and CAR Treg cell therapy in HF.
CONCLUDING REMARKS

With regard to the immune system, MI substantially differs from
surface/mucosal infection; MI results in abrupt release of auto-
antigens and DAMPs in a sterile environment in a vital post-
mitotic organ with low disease tolerance (53). Thus, optimal
immune responses would restore the heart’s vital function with
minimal collateral damage. We herein summarized the roles
regulatory T-cells play in such processes, illustrating their protective
functions during MI’s acute repair phase. In brief, this is achieved by
FIGURE 3 | Transcriptome of myocardial Tregs in the injured heart. Single-cell sequencing of heart and MedLN T-cells after MI (40) Delgobo et al., 2022 revealed that
TCR-M cells have an induced Treg signature characterized by effector-state Tregs expressing high levels of Tgfb1 and suppressor cells expressing several immune
checkpoint receptors (e.g. Pdcd1, Icos, Tigit). Single-cell and bulk RNA sequencing of cardiac T-cells after MI (44) Xia et al., 2020 showed Treg clonal expansion, a Treg
thymus-derived signature and the production of pro-healing transcripts such as Areg and Sparc. Single-cell sequencing of myocardial leukocytes in a pressure overload
model (48) Martini et al., 2019 demonstrated that two main Treg populations expanded one week post injury. Both bona fide Tregs and those with TH17/non-lymphoid
gene signatures were identified, and both expressed high levels of Pdcd1 immune checkpoint receptor.
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T-cells mounting pro-tolerogenic responses to cardiac antigens and
the recruitment of polyclonal Tregs to the site of injury. Further, the
infarct milieu poises cardiac-specific conventional T-cells towards a
regulatory phenotype. The persistent pro-inflammatory signals seen
in chronic disease stages may disrupt T-cell tolerance in the
myocardium. However, the molecular signals and cellular processes
promoting Treg conversion and regulatory function in the injured
myocardium remain largely elusive. Controlling Treg responses in
myocardial diseases may lead to new therapeutic interventions aimed
to restore tissue tolerance, integrity and function.
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Regulator T cells (Tregs) play pivotal roles in maintaining immune tolerance and regulating
immune responses against pathogens and tumors. Reprogramming of cellular metabolism
has been determined as a crucial process that connects microenvironmental cues and
signaling networks to influence homeostasis and function of tissue Tregs. In adaptation to a
variety of non-lymphoid tissues, Tregs coordinate local immune signals and signaling
networks to rewire cellular metabolic programs to sustain their suppressive function.
Altered Treg metabolism in turn shapes Treg activation and function. In light of the
advanced understanding of immunometabolism, manipulation of systemic metabolites
has been emerging as an attractive strategy aiming tomodulate metabolism and function of
tissue Tregs and improve the treatment of immune-related diseases. In this review, we
summarize key immune signals and metabolic programs involved in the regulation of tissue
Tregs, review the mechanisms underlying the differentiation and function of Tregs in various
non-lymphoid tissues, and discuss therapeutic intervention of metabolic modulators of
tissue Tregs for the treatment of autoimmune diseases and cancer.

Keywords: tissue Treg cells, Treg metabolism, Treg homeostasis, Treg function, metabolic signaling
INTRODUCTION

Tregs expressing forkhead box 3 (FOXP3), a specialized subset of CD4+ T cells, play crucial roles in
maintaining immune tolerance and preventing autoimmunity (1). Tregs originally develop in the
thymus, termed thymus-derived Tregs (tTregs), but may also generate at peripheral tissues known
as peripherally-derived Tregs (pTregs) (2). Aside from the divergence of their origin and location
(lymphoid and non-lymphoid tissues), tTregs and pTregs display heterogeneous T cell receptor
(TCR) repertoires recognizing diverse self- and non-self-antigens to preserve immune homeostasis
of lymphoid and non-lymphoid tissues. In terms of activation and differentiation, Tregs can be
divided into two distinct subsets: central Tregs (cTregs) and effector Tregs (eTregs) (3, 4). cTregs
express the lymphoid homing molecules CD62L and CC-chemokine receptor 7 (CCR7) and
apparently locate in the lymphoid tissues (3). In contrast, eTregs upregulate expression of
activation-associated markers such as CD44 and inducible costimulatory (ICOS) (3), which
primarily reside in non-lymphoid tissues. A growing body of evidence shows that diverse
immune signals (like TCR, co-stimulatory, and cytokine signals) in the tissue microenvironment
org June 2022 | Volume 13 | Article 9097051123
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orchestrate the differentiation and maintenance of eTregs
through activating various signaling pathways such as
mechanistic target of rapamycin (mTOR) signaling pathway
and diverse transcription factors (5, 6). Cooperation of FOXP3
with various transcription factors confers Tregs orchestrate
distinct suppressive programs targeting diverse immune
responses in a variety of non-lymphoid tissues (7). Single-cell
transcriptomic and chromatin accessibility analyses indicate that
Tregs establish unique transcriptional features in adaptation to
non-lymphoid tissues in health and disease (8–12).

Reprogramming of cellular metabolism in Tregs represents a
key process that underlies Treg functional stability and
specification in adaptation to non-lymphoid tissues (13, 14). It
is now clear that Tregs and effector helper CD4+ T cells utilize
distinct metabolic programs (15). In contrast to effector helper
CD4+ T cells that mainly use aerobic glycolysis for their
expansion and function, Tregs largely rely on mitochondrial
oxidative phosphorylation (OXPHOS) and fatty acid oxidation
(FAO) to fulfill their bioenergetic demands and suppressive
function. Dysregulation of mitochondrial metabolism and
glycolysis is detrimental for Tregs in preserving immune
homeostasis in a variety of non-lymphoid tissues (16). In
addition to intracellular metabolism, extracellular metabolites
produced in distinct tissues provide unique signals to orchestrate
functional diversification of Tregs in different non-lymphoid
tissues. It is well-established that Tregs in the visceral adipose
tissue (VAT-Tregs) display active proliferation with profound
effects on local and systemic metabolism (17). In this lipid-rich
organ, VAT-Tregs acquire unique transcriptional programs
characterized by increased capacity for lipid biosynthesis and
uptake of long-chain fatty acids (LCFAs) (17). In contrast,
colonic Tregs reside in the microenvironment with high levels
of short-chain fatty acids (SCFAs), which promote their
differentiation and suppressive function to prevent the
development of colitis (18–20). It is conceivable that diverse
immune signals and metabolites available in non-lymphoid
tissues constitute distinct physiological niches that shape the
differentiation and accumulation of eTregs via rewiring cellular
signaling and metabolic networks (6). In this review, we will first
describe and summarize key immune signals and signaling
pathways involved in regulating Treg cell metabolism and
function; Second, we will provide an overview on intracellular
metabolic programs underlying homeostasis and functional
diversification of Tregs in different non-lymphoid tissues;
lastly, we will discuss therapeutic manipulation of systemic
metabolites to modulate tissue Treg function for the treatment
of autoimmune disease and cancer.
KEY IMMUNE SIGNALS AND SIGNALING
PATHWAYS UNDERLYING TREG
METABOLISM AND FUNCTION

The development of Tregs expressing the lineage transcription
factor FOXP3 is driven by high-affinity TCR signals in the
thymus (21–23). Continuous TCR signaling is required to
Frontiers in Immunology | www.frontiersin.org 2124
sustain Foxp3 expression and suppressive function of mature
Tregs in the periphery (24, 25), in line with the notion that
continued expression of FOXP3 enforces functional integrity of
Tregs (26). Later studies indicate that TCR signaling coordinates
reprogramming of intracellular metabolism to dictate the
formation of cTregs and eTregs (27, 28), representing two Treg
subsets with distinct patterns of cell migration and tissue
localization (3). It is important to note that non-lymphoid
tissues contain high proportions of eTregs (3), implying that
microenvironmental immune signals, such as diverse antigens
and cytokines derived from the tissues, promote eTreg cell
formation and survival. Here, we will summarize and discuss
key immune signals and signaling pathways that orchestrate
homeostasis and function of tissue Tregs (Figure 1).

TCR and Co-Stimulatory/Co-Inhibitory
Signals
Continuous TCR signaling is required to sustain the generation
and function of eTregs (24). Self-antigens in non-lymphoid
tissues activate TCR signaling in eTregs (3). It is well-
established that TCR stimulation activates phosphoinositide 3-
kinase (PI3K)/protein kinase B (AKT) signaling pathway in Tregs.
PI3K catalyzes the conversion of PtdIns-4,5-P2 (PIP2) toward
PtdIns-3,4,5-P3 (PIP3), which in turn activates AKT (29). Knock-
in of kinase-inactive p110d reduces proportions of Tregs leading
to the development of colitis (30, 31). Inactivation of p110d also
impairs Treg-mediated repression of antitumor immunity (32).
As a key kinase downstream of PI3K, AKT is tightly controlled.
Tregs display less phosphorylation of AKT at serine (S) 473 with a
concomitant reduction of phosphorylated forkhead box
transcription factors (FOXOs) (33), known as the substrates of
AKT. In line with hypoactivation of AKT in mature Tregs,
FOXOs are crucial to establish and sustain suppressive function
of Tregs (34–36). Conversely, Treg-specific ablation of
phosphatase and tensin homolog (PTEN) constitutively
activates AKT at S473, which enhances phosphorylation of
FOXOs and in turn compromises their transcriptional function
(37). Consequently, PTEN-deficient Tregs show impairment of
functional stability and fail to prevent autoimmunity (38). A
further study indicated that constitutive activation of FOXO1 in
Tregs disrupt their metabolic reprogramming and mTOR
activation, causing the development of severe autoinflammation
in multiple tissues (39). These studies suggest that precise
regulation of the PI3K/AKT/FOXOs axis is crucial for tissue
Tregs in maintaining their homeostasis and function in
response to local TCR signals.

Aside from local TCR signals, tissue Tregs receive signals
derived from a variety of co-stimulatory/co-inhibitory receptors
to maintain proper function and metabolism. CD28 is the well-
known costimulatory molecules required for T cell activation. It
has been reported that CD28 plays an intrinsic role in
maintaining Treg cell homeostasis and function (40). Treg-
specific ablation of CD28 enhances homeostatic proliferation
of Tregs, suggestive of their altered reprogramming of cellular
metabolism. Loss of CD28 impairs Treg cell function, leading to
spontaneous development of inflammatory responses in the skin
and lung (40). A following study revealed that CD28 is important
June 2022 | Volume 13 | Article 909705
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to drive the differentiation of cTregs into eTregs (41). Despite
that loss of CD28 has no substantial impact on numbers of Tregs,
it impairs homing of Tregs to a variety of non-lymphoid tissues.
Tregs constitutively express the costimulatory receptor ICOS
that provides signaling to suppress accumulation and
suppressive function of Tregs in the visceral adipose tissue
(42). In contrast, co-inhibitory receptors mediate signals to
restrain Treg metabolism and function. An emerging study
showed that the co-inhibitory receptor programmed death-1
(PD-1) suppresses Treg cell activation and function through
altering metabolic fitness (43). Specific depletion of PD-1 in
Tregs potentiates their suppressive function and ameliorates the
progression of experimental autoimmune encephalomyelitis
(EAE) (43). In line with the observation, blockade of PD-1
signaling enhances proliferation and suppressive function of
intratumoral Tregs, facilitating cancer immunoevasion (44). In
addition, Tregs constitutively express glucocorticoid-induced
TNFR-related protein (GITR) (45, 46), a member of the TNF
receptor crucial to regulate the function of both effector T cells
Frontiers in Immunology | www.frontiersin.org 3125
and Tregs during immune responses (47). Although GITR
deficiency does not affect homeostasis and suppressive function
of Tregs at steady state (48, 49), GITR stimulation on Tregs by
agonistic GITR-specific antibody or GITR ligand (GITRL)
neutralizes their suppressive capacity to facilitate effector T cell
activation and inflammatory responses (45, 46, 50). It has been
reported that binding of GITR to GITRL, which is highly
expressed in tumors, impairs Treg cell survival and function
and consequently enhances antitumor immune responses (45,
51–53). Given that GITRL is frequently expressed in various
non-lymphoid tissues, the interaction of GITR/GITRL likely
modulates homeostasis and function of tissue Tregs. It is
conceivable that diverse TCR and co-stimulatory/co-inhibitory
signals constitute a complex network shaping metabolic and
functional fitness of tissue Tregs.

Cytokine Signals
Distinct cytokines have been involved in maintaining
homeostasis and function of Tregs in non-lymphoid tissues
FIGURE 1 | Immune signaling pathways involved in the regulation of Treg cell metabolism and adaptation to non-lymphoid tissues. Microenvironmental antigens, co-
stimulators, TLRs, and cytokines orchestrate key immune signaling pathways to reprogram cellular metabolism of Tregs in adaptation to non-lymphoid tissues. The
PI3K signaling pathway senses the immune signals derived from TCR, co-stimulatory receptors, co-inhibitory receptors, and TLRs, which in turn activates mTOR
complexes to orchestrate reprogramming of cellular metabolism via various transcription factors. TCR and co-stimulation activates LKB1 signaling pathway that
restricts STAT4 function and promotes stabilization of b-catenin and metabolic reprogramming of Tregs in maintaining immune homeostasis of multiple non-lymphoid
tissues. In response to TCR and co-stimulatory signals in the tissue microenvironment, Tregs coordinate a variety of transcription factors that upregulate expression
of the genes involved in diverse metabolic programs, including lipid biosynthesis, mitochondrial metabolism, glycolysis, FAO, and AA metabolism. Cytokines existed
in various tissues sustain homeostasis and accumulation of tissue Tregs through different transcription factors. VAT-Treg cell accumulation is dependent upon TCR,
FOXP3, and IL-33 signaling through activation of GATA3, IRF4, and BATF. IL-7 is required to maintain homeostasis and function of skin-Tregs. TCR, T cell receptor;
FAO, fatty acid oxidation; AA, amino acids; VAT, visceral adipose tissue.
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(54). IL-2 is originally identified as a growth factor that promote
expansion and function of effector T cells (55). Tregs
constitutively express high levels of the IL-2 receptor CD25
that promotes expansion and function of Tregs. In lymphoid
organs, IL-2 selectively maintains homeostasis and function of
cTregs, instead of eTregs (3). Several lines of evidence show that
a low dose of IL-2 expands and activates Tregs in vivo to improve
the treatment for a variety of autoimmune diseases (56–58). In
line with these observations, the IL-2-signal transducer and
activator of transcription 5 (STAT5) axis has been recently
determined as a key pathway responsible for Treg expansion in
vivo (59). Blockade of IL-2 signaling in Tregs leads to
accumulation of eTregs (59). IL-7 is a growth factor crucial for
homeostatic survival and proliferation of naive CD4+ T cells.
Accumulating evidence indicates that IL-7 plays an important
role in regulating homeostasis and function of Treg cells in
tissues. IL-7-transgenic mice and administration of IL-7 enhance
expansion of Tregs in vivo (17). Using a mouse model of
inducible self-antigen expression in skin, a study provided the
evidence showing that IL-7 is required to maintain homeostasis
and function of skin Tregs (60). In line with the notion, a recent
study showed that IL-7 enhances survival and expansion of
eTregs and consequently promotes immune tolerance to skin
allografts (61). The cytokine IL-33 has been shown to sustain
expansion and function of Tregs in a variety of non-lymphoid
tissues., a receptor of IL-33. IL-33 promotes expansion and
differentiation of VAT-Tregs expressing high levels of the IL-
33 receptor ST2. Deletion of ST2 or administration of IL-33
impairs or promotes proliferation of VAT-Tregs (62),
respectively. Tregs lacking ST2 compromise their suppressive
function in preventing inflammatory responses in the adipose
tissue (62). Upon IL-33 stimulation, Basic Leucine Zipper ATF-
Like Transcription Factor (BATF) cooperates with interferon
regulatory factor 4 (IRF4) to drive transcriptome required to
maintain homeostasis and function of VAT-Tregs (62).
Furthermore, IL-33-dependent regulation of tissue Tregs has
been involved in modulating inflammatory responses under
various immune conditions. Lung inflammation induced by
acute lung injury is restrained by IL-33-stimulated ST2+ Tregs
(63). IL-33 enhances expansion and function of skin Tregs in
preventing immune responses against skin allografts (64). A
recent study revealed that Treg-specific ablation of ST2
exacerbates the progression of EAE (65). Specific blockade of
ST2 in Tregs the disease progression (65), indicative of an
intrinsic role of IL-33 in Tregs. These studies indicate that
diverse cytokines available in the microenvironment are crucial
to sustain survival and expansion of tissue Tregs and enhance
their function in suppressing inflammatory responses in non-
lymphoid tissues.

mTOR Signaling Pathway
mTOR is an evolutionarily conserved serine/threonine kinase,
which exists in two mTOR complexes, mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2), distinguished by
the essential components regulatory associate protein of mTOR
(RAPTOR) and RAPTOR insensitive companion of mTORC2
(RICTOR) (66), respectively. As a central regulator of cell growth
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and metabolism, mTOR signaling pathway is crucial for
homeostatic proliferation, metabolic reprogramming, activation,
and suppressive function of Tregs (67). Specific ablation of
RAPTOR in Tregs abolishes activation of mTORC1 and
consequently compromises their proliferation, activation,
metabolic reprogramming as well as suppressive function (68).
Raptor-deficient Tregs fail to prevent inflammatory responses in
multiple tissues (68). A following study provided the evidence
directly indicating that Treg-specific ablation of mTOR disrupts
expansion and suppressive function of eTregs, leading to profound
inflammation in a variety of non-lymphoid tissues (69). Antigen-
experienced Tregs utilize specific amino acids to sustain mTORC1
activation, metabolic reprogramming, and suppressive function
(70). Akin to the effects of mTOR deficiency, blockade of
availability of these amino acids compromises the generation and
function of eTreg cells and impairs their accumulation in non-
lymphoid tissues (70). In contrast to the effects of RAPTOR/
mTORC1 deficiency on Tregs, loss of RICTOR in Tregs has no
substantial impact on their homeostasis and suppressive function at
steady state (68). Activation of Treg mTORC2 is tightly regulated by
the tumor suppressor PTEN. Treg-specific deletion of PTEN
preferentially elevates mTORC2 activation (38), which impairs
functional stability of Tregs and consequently promotes the
development of autoimmune disorders in multiple tissues (38).
Depletion of RICTOR in PTEN-deficient Tregs restores the
impaired stability and prevents autoimmunity, implying a
therapeutic effect of mTORC2 inhibition. Mice with FOXP3
deficiency develop the scurfy phenotype characterized by
profound autoimmunity and inflammation multiple tissues. It is
worthy to note that deletion of RICTOR/mTORC2 in FOXP3-
deficient Tregs partially restores their augmented aerobic glycolysis
and OXPHOS and functional defects (71). Thus, precise regulation
of mTORC1 and mTORC2 activation is crucial for Tregs to
maintain metabolic fitness and functional stability. Targeting
mTORC2 in Treg cells represents an attractive strategy for the
treatment of autoimmune diseases.

LKB1 Signaling Pathway
The serine-threonine kinase liver kinase B1 (LKB1) was originally
identified as a tumor suppressor that inhibits mTOR activation
and regulates energy metabolism through activating AMP-
activated protein kinase (AMPK) and other kinases (72). It was
recently identified as a key regulator of Treg cell metabolism and
function. Upon TCR stimulation, Tregs show increased
phosphorylation of LKB1, deletion of which does not enhance
mTOR activation (73). Tregs lacking LKB1 shows impairment of a
variety of metabolic programs including mitochondrial OXPHOS
and FAO (73, 74), associated with compromised survival function.
LKB1-deficient Tregs fail to prevent TH2-biased inflammatory
responses in a variety of non-lymphoid tissues (73, 74). Genetic
deletion of AMPKs has no substantial impact on Tregs (73–76),
suggesting that other kinases downstream of LKB1 enforce Treg
cell metabolism and function. LKB1 regulates metabolic
reprogramming and suppressive function of Tregs through
different mechanisms. LKB1 suppresses expression of exhaustion
markers including PD-1 through sustaining b-catenin activation
(73). Blockade of PD-1 on LKB1-deficient Tregs partially restores
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their functional defects (73). It has also been shown that Tregs
need LKB1 to limit STAT4 activation to enforce their expression
of FOXP3 and suppressive function (75). Furthermore, LKB1-
deficient Treg cells display increased levels of intracellular
cholesterol and the isoprenoid geranylgeranylpyrophosphate
(GGPP), indicative of enhanced mevalonate pathway, which
impairs Treg cell stability and function (76). It is of great
interest to investigate how LKB1 coordinates various metabolic
programs and epigenetic modification to orchestrate functional
stability and specification of Tregs in maintaining immune
tolerance of non-lymphoid tissues.
METABOLIC SIGNALING IN THE
REGULATION OF TREG CELL
HOMEOSTASIS AND FUNCTION

Appropriate reprogramming of cellular metabolism is crucial to
maintain survival and function of Tregs. The lineage transcription
factor FOXP3 of Tregs has been shown to promote OXPHOS and
Frontiers in Immunology | www.frontiersin.org 5127
FAO via upregulating components of all the mitochondrial electron
respiratory complexes while repressing anabolic metabolism (77,
78). A growing body of evidence reveals that metabolites derived
from diverse metabolic programs modulate signaling and
transcriptional networks in Tregs. Here we summarize key
metabolic programs and metabolites underlying Treg cell
homeostasis and function (Figure 2).

Mitochondrial OXPHOS and FAO
Mitochondrial respiratory chain complexes play pivotal roles in
support of mitochondrial OXPHOS and FAO in Tregs.
Suppression of mitochondrial respiratory complex 1 by the
small molecule rotenone impairs suppressive function of Tregs
(79). Mice with Treg-specific depletion of rieske iron-sulfur
protein (RISP), an essential subunit of mitochondrial complex
III, spontaneously develop profound inflammation in multiple
tissues (80). RISP deficiency disrupts mitochondrial OXPHOS of
Tregs and elevates concentrations of intracellular metabolites 2-
hydroxyglutarate (2-KG) and succinate, which enhance the
methylation of the conserved non-coding sequence 2 (CNS2)
in the Foxp3 locus, by suppressing the ten-eleven translocation
FIGURE 2 | Metabolic signaling in the regulation of Treg homeostasis and function. Extracellular and intracellular metabolites regulate Treg homeostasis and function in
various non-lymphoid tissues. Reduced production of ATP activates LKB1 signaling pathway that promotes mitochondrial FAO and OXPHOS and mevalonate pathway
producing GGPP, which enhances FOXP3 expression and Treg function. Uncontrolled production of mitochondrial ROS induces Treg apoptosis that facilitates tumor
immunoevasion. Increased concentration of cellular NAD+ enhances function of the deacetylase SIRT1 that destabilizes FOXP3 protein and compromises Treg function.
Tregs take up microenvironmental LCFAs and SCFAs via different receptors. FABP5 binds to LCFAs and transfers them to mitochondria in Tregs. Inactivation of FABP5
activates cGAS-STING to promote expression of IL-10 and type I interferons and Treg function. SCFAs suppress activity of HDACs and thereby maintain acetylated
FOXP3 and enhance Treg stability. Vitamin D3 metabolite 1,25(OH)2VD3-receptor complex binds to VDRE region to enhance Foxp3 gene expression. Distinct amino acids
differentially regulate activation of mTOR, which can augment glycolysis to suppress FOXP3 expression via Myc or evoke TFAM function to restrain methylation of CNS2.
Activated Tregs elevate uptake of transferrin, which can be converted to reductive iron to facilitate the generation of lipid peroxides. GCLC catalyzes the synthesis of GSH
crucial for maintaining cellular redox homeostasis. It functions as a substrate for GPX4 to prevent the accumulation of lipid peroxides in Tregs and subsequent ferroptosis.
Ferroptotic Tregs enhance production of pro-inflammatory cytokines such as IL-1b. GGPP, geranylgeranylpyrophosphate; ROS, reactive oxygen species; NAD,
nicotinamide adenine dinucleotide; LCFAs, long chain fatty acids; SCFAs, short chain fatty acids; HDAC, histone deacetylase; VDRE, vitamin D response element; CNS2,
conserved non-coding sequence 2; GCLC, glutamate cysteine ligase catalytic subunit.
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(TET) family of DNA demethylases (81). A later study showed
that Treg-specific ablation of COX10, a key component of
complex VI, impairs mitochondrial OXPHOS and the
generation and function of effector Tregs (82). By fueling
mitochondrial OXPHOS, FAO provides Tregs with an
adequate supply of energy and regulates their differentiation,
survival, and function (83, 84). A variety of receptors have been
recently shown to mediate uptake of free fatty acids in Tregs,
including G protein‐coupled receptors (GPCRs), CD36, fatty
acid‐binding protein (FABP), and fatty acid transport protein
(FATP) (85, 86). Intracellular LCFAs need to be transported
into mitochondria for FAO, which is catalyzed by the rate-
limiting enzyme carnitine palmitoyltransferase 1A (CPT1A).
Although the CPT1A inhibitor etomoxir has been shown to
compromise Treg OXPHOS and function, Treg-specific ablation
of CPT1A has no obvious impact on mitochondrial OXPHOS,
FAO, and function (82, 87). It is of great interest to further
investigate the mechanisms linking mitochondrial FAO and
OXPHOS in Tregs.

Several lines of evidence indicate that mitochondrial
OXPHOS regulates the adaptation of Tregs to non-lymphoid
tissues via different molecular mechanisms. Mitochondrial
transcription factor A (TFAM) is crucial to regulate
mitochondrial DNA replication, transcription, and packaging
as well as mitochondrial respiration. Treg-specific depletion of
TFAM has no substantial impact on Tregs in lymphoid tissues,
while it markedly reduces the differentiation and accumulation
of Tregs in a variety of non-lymphoid tissues (81). TFAM-
deficient Tregs display impaired OXPHOS and suppressive
function (69, 81), associated with hypermethylation of the
Treg-specific demethylation region (TSDR) of the Foxp3 locus
(81). It is worth to note that multiple histone/protein
deacetylases (HDACs) have been implicated in regulating Treg
cell expansion in vivo and function (88). In comparison to
conventional CD4+ T cells, Tregs markedly enhance expression
of HDAC9 upon TCR stimulation. Genetic depletion of HDAC9
in Tregs improves mitochondrial OXPHOS through increasing
expression of peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC1a) and sirtuin-3 (SIRT3) (79). Further
studies revealed that Treg-specific depletion of HDAC6 and
HDAC11 also sustains their suppressive function (89, 90).
Sirtuin1 (SIRT1), a class III histone/protein deacetylase, is
activated by increased ratio of NAD+ to NADH, which reduces
expression of FOXP3 and compromises Treg function (91).
Mitochondrial integrity and OXPHOS can be actively regulated
by fatty acid binding proteins (FABPs), a family of lipid
chaperones that promote lipid uptake and intracellular lipid
trafficking. An emerging study revealed that genetic ablation of
fatty acid binding protein 5 (FABP5) in Tregs compromises
mitochondrial OXPHOS and integrity, leading to release of
mitochondrial (mt) DNA into cytoplasm (86). Released
mtDNA activates cyclin GMP-AMP synthase (cGAS)-cGAS-
stimulator of interferon genes (STING)-dependent type I IFN
signaling to enhance IL-10 production and function of FABP5-
deficient Tregs (86). These studies imply that mitochondrial
metabolism and homeostasis intersects with signaling networks
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and epigenetic machineries to modulate accumulation and
function of Tregs in non-lymphoid tissues.

Glycolysis
An initial study showed that glycolytic metabolism underlies the
differentiation and function of effector CD4+ helper T cells but
not FOXP3+ Tregs (83). Compared to effector CD4+ helper T
cells, Tregs have less expression of glucose transporter 1 (Glut1).
Specific depletion of Glut1 in Tregs blocks their glucose uptake
without affecting their suppressive function (92). However,
several lines of evidence indicate that glycolysis is required for
FOXP3 splicing and regulation of Treg migration and function
under different immune conditions. The glycolytic enzyme
enolase-1 promotes selective splicing variant of FOXP3
containing exon 2 (FOXP3-E2) in transforming growth factor
b (TGFb)-induced human iTregs upon suboptimal TCR
stimulation in vitro (93), which regulates Treg suppression of
immune responses (93). A recent study highlighted that
glucokinase (GCK) regulates Treg cell migration (94).
Proinflammatory factors induce GCK-mediated glycolysis in
activated Tregs and thereby drive their migration to the
inflamed site (94). Interestingly, the PI3K-AKT-mTORC2 axis,
but not mTORC1, evokes GCK-dependent glycolysis to support
Treg cell migration under inflammatory conditions. In the tumor
microenvironment (TME), activated Tregs coordinate active
glycolysis and fatty acid biosynthesis to fuel their robust
proliferation and enhanced suppressive function (95). In light
of these studies, it is conceivable that Tregs integrate diverse
immune signals in the tissue microenvironment to modulate
glycolytic metabolism in support of their migration and
functional fitness.

It is worthy to note that uncontrolled glycolysis is detrimental
to Treg cell stability and function. Hypoxia-inducible factor-1
alpha (HIF-1a)-dependnent glycolysis promotes the
differentiation of TH17 cells and concomitantly suppresses
Treg cell generation (96). Several lines of evidence indicate that
Treg glycolysis is tightly regulated by various molecular
mechanisms. The tumor suppressor PTEN functions as a key
metabolic checkpoint in restraining glycolysis and mTORC2
activation in Tregs (38, 97). Loss of PTEN impairs Treg cell
stability and function in preventing autoimmune responses in
multiple tissues (38, 97). Autophagy has been determined as a
key regulator of Treg cell activation and function (98). Treg-
specific deletion of autophagy related (ATG) 5 and ATG7, crucial
components of autophagy, enhances glycolysis and mTOR
activation and consequently promotes profound inflammation
in a variety of non-lymphoid tissues (98). Moreover, an emerging
study showed that a coactivator of neuronal precursor cell-
expressed developmentally downregulated 4 (Nedd4)-family E3
ubiquitin ligase interacting protein 1 (Ndfip1) sustains functional
stability of Tregs to prevent inflammatory responses in various
tissues (99). Similar to PTEN-deficient Tregs, Tregs lacking
Ndfip1 also display enhanced glycolysis and impaired
functional stability, while elevating mTORC1 activation (99). A
recent study provided evidence indicating that Toll like receptor
(TLR) signaling pathways modulate glycolytic activity and
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functional integrity of Tregs (100). TLR1 and TLR2 agonists
enhance Glut1-mediated glycolysis and Treg expansion, while
reducing FOXP3 expression and Treg function. These studies
imply that precise regulation of glycolysis is crucial for Tregs in
maintaining their homeostasis and function in non-
lymphoid tissues.

Lipid Biosynthesis
Accumulating evidence indicates that proper lipid biosynthesis is
crucial to ensure Treg cell expansion and functional fitness.
Biosynthesis of mevalonate by 25-hydroxycholesterol or 3-
hydroy-3-methygltary-CoA reductase (HMGCR) represents a
key mechanism coupling Treg cell expansion and suppressive
function (68). Blockade of mevalonate biosynthesis in Tregs
represses their proliferation and expression of the Treg
signatures ICOS and cytotoxic T-lymphocyte associated protein
4 (CTLA4), leading to the failure in preventing inflammatory
responses in a variety of non-lymphoid tissues (68). A recent study
revealed that mevalonate pathway is also activated by LKB1
signaling pathway, which promotes intracellular cholesterol
homeostasis and thereby potentiates Treg cell stability (76). It is
interesting to note that LKB1 coordinates multiple metabolic
programs including lipid biosynthesis and FAO in Tregs (73, 74)
and enforces the suppression of allergic inflammation (73–75),
suggestive of beneficial effects of lipid biosynthesis on Treg cell
function. In line with the notion, intratumoral Tregs have been
shown to elevate lipid biosynthesis in facilitating tumor
immunoevasion (42). Treg-specific deletion of sterol-regulatory-
element-binding proteins (SREBPs) abolishes fatty acid synthase
(FASN)-dependent lipid biosynthesis, which selectively potentiates
antitumor immunity without inducing systemic autoimmune
disorders (42). It is worthy to note that precise regulation of
lipid synthesis is also required to sustain Treg cell functional
specification. A recent study provided the evidence indicating
that uncontrolled biosynthesis of triglycerides disrupts the
function of Tregs in repressing allergic inflammation (101). The
transcription factor BATF in Tregs inhibits expression of genes
involved in triglyceride biosynthesis. BATF-deficient Tregs show
increased levels of intracellular triglycerides. Blockade or elevation
of triglyceride metabolism rescues or exacerbates the defective
function of BATF-deficient Tregs (101). These studies suggest that
proper coordination of biosynthesis of specific lipid species and
distinct suppressive programs is important for Tregs in dictating
outcomes of different immune responses. Targeting lipid
biosynthesis of Tregs represents an attractive strategy for
improving the immunotherapy of autoimmune disease and cancer.

Amino Acids
Amino acids have been identified as immune modulators in
shaping the differentiation of Tregs. Tryptophan is a well-
documented amino acid involved in the regulation of Treg cell
generation and function. The enzyme indoleamine-pyrrole 2,3-
dioxygenase 1 (IDO1) expressed by DCs and tumor cells converts
tryptophan to kynurenin, which promotes the generation and
function of Tregs through the aryl hydrocarbon receptor and
other mechanisms (102–106). Emerging evidence indicates that
selected amino acids preferentially support the generation and
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function of eTregs via sustaining mTORC1 activation (70). TCR
stimulation enhances intracellular concentrations of various
amino acids in Tregs, while not all amino acids affect their
function and mTOR activation. Arginine (Arg) or the
combination of Arg and leucine (Leu) promotes the generation
of eTregs through activating mTORC1 dependently of the
complex Ras-related GTP binding A/B (RagA/B) (70), which
are Rag GTPases mediating translocation of mTORC1 to
lysosomal membrane upon amino acid signaling (107). Mice
with Treg-specific ablation of RagA/B spontaneously develop
severe inflammation in various tissues (70). These findings are
in line with the notion that sustained mTOR activation is
indispensable for eTreg generation and accumulation in non-
lymphoid tissues (68, 69). In contrast, deprivation of Leu alone or
glutamine (Gln) or deficiencies of their receptors does not impair
the differentiation and proportions of Tregs (108, 109). Non-
essential amino acid serine (Ser) supports clonal expansion and
function of effector T cells (110). However, Tregs actively restrain
uptake or biosynthesis of Ser through glutamate-cysteine ligase
catalytic subunit (GCLC) (111), a key enzyme that catalyzes
biosynthesis of glutathione (GSH). Treg-specific ablation of
GCLC elevates intracellular concentrations of Ser that reduces
FOXP3 expression with a concomitant increase of mTOR
activation in Tregs, leading to their failure in preventing
inflammatory responses in multiple organs (111). In line with
the observation, suppression of the cystine/glutamate antiporter
solute carrier (SLC)7A11 in human Tregs reduces levels of cellular
GSH, associated with increased production of reactive oxygen
species (ROS) and diminished mTOR activation (112). Reduced
expression of SLC7A11 impairs proliferative capacity of Tregs
from the patients with relapsing-remitting multiple sclerosis
(RRMS). These findings indicate that distinct amino acids
intersect with mTOR signaling pathway to modulate the
proliferation and generation of eTregs. It is conceivable that
diverse amino acids existing in various non-lymphoid tissues
differentially affects homeostasis and accumulation of tissue Tregs.

Lipid Peroxidation
Upon TCR engagement, activated Tregs reprogram cellular
metabolism with increased reliance on mitochondrial
OXPHOS and FAO. Enhanced mitochondrial OXPHOS in
Tregs potentially elevates the generation of mitochondrial ROS
that can disrupt intracellular redox homeostasis (79, 113) and
trigger the generation and accumulation of lipid peroxides (114).
Various mechanisms have been determined in regulating Treg
ROS production, while little is known about the function and
role of lipid peroxidation in Tregs. A recent study showed that
the glutathione peroxidase plays a pivotal role in neutralizing
lipid peroxides generated in activated Tregs and preventing their
ferroptosis, an iron-dependent non-apoptotic cell death (115).
Despite that Treg-specific ablation of glutathione peroxidase 4
(GPX4) does not affect homeostatic survival of Tregs, TCR
stimulation markedly elevates accumulation of toxic lipid
peroxides and induces ferroptosis in GPX4-deficient Tregs (115).
Ferroptotic GPX4-deficient Tregs release proinflammatory
cytokines including IL-1b, which promotes TH17 cell responses
(115). It is worthy to note that Treg-specific ablation of GPX4
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compromises survival of intratumoral Tregs without affecting
splenic Tregs from the tumor-bearing mice. Consequently, mice
with GPX4-deficient Tregs display reduced tumor burden and
concomitantly enhanced antitumor immunity, without showing
overt systemic autoimmunity (115). Thus, GPX4 serves as a
metabolic checkpoint in preventing accumulation of toxic lipid
peroxides and consequent ferroptosis in activated Tregs. The role of
GPX4 in regulating homeostasis and function of tissue Tregs needs
to be further investigated.

Crosstalk of various metabolic programs shapes the fate
decision and function of effector T cells and Tregs in dictating
the outcome of different immune responses. Pyruvate
dehydrogenase kinase 1 (PDHK1) inhibits the function of
pyruvate dehydrogenase (PDH) that converts pyruvate to acyl-
CoA to fuel mitochondrial OXPHOS. Th17 cells highly express
PDHK1 that selectively promotes aerobic glycolysis and
represses OXPHOS, leading to reduced generation of Tregs.
Repression of PDHK1 enhances Tregs and alleviates the
pathogenesis of autoimmune diseases (84). On the basis of
high glycolytic capacity, Th17 cells utilize glucose-derived
acetyl-CoA to fuel de novo fatty acid synthesis via acetyl-CoA
carboxylase 1 (ACC1). Suppression of ACC1 blocks this
glycolytic-lipogenic metabolic pathway, leading to reduced
Th17 differentiation and enhanced Treg generation (116).
Elevated glycolysis in Tregs frequently compromises their
mitochondrial OXPHOS and functional stability leading to
inflammatory and autoimmune disorders (38, 97, 100). It is
important to note that crosstalk of glycolysis and lipid
biosynthesis exhibits different effects on the function of Tregs
in the tumor microenvironment. Emerging evidence showed that
intratumoral Tregs enhance glucose uptake to fuel fatty acid
synthesis and OXPHOS in support of energetic demands for
their expansion and function (95). It is conceivable that dynamic
crosstalk of diverse metabolic programs in Tregs confers their
homeostasis and functional fitness in various non-lymphoid
tissues and immune conditions.
DIVERSIFICATION OF TREG
CELL METABOLISM AND
FUNCTIONAL ADAPTATION TO
NON-LYMPHOID TISSUES

Maintaining homeostasis and function of Tregs is indispensable
to prevent immune dysregulation over the lifetime. Crosstalk
between microenvironmental cues and cellular metabolic
networks shapes homeostasis and functional fitness of Tregs.
Here we will discuss the mechanisms by which tissue Tregs
integrate local immune signals and signaling networks to
orchestrate metabolic reprogramming and diverse suppressive
programs in adaptation to non-lymphoid tissues.

Visceral Adipose Tissue
VAT-Tregs play crucial roles in repressing chronic inflammation
in the visceral adipose tissue. In comparison to Tregs in
lymphoid organs, VAT-Tregs acquire unique features related
Frontiers in Immunology | www.frontiersin.org 8130
to lipid metabolism and leukocyte migration (17). Peroxisome
proliferator-activated receptor gamma (PPARg), a crucial
regulator of peroxisome-mediated FAO, is highly expressed in
VAT-Tregs. PPARg promotes expression of the genes involved
in lipid metabolism, such as CD36, which is a receptor
facilitating the import of fatty acids. Treg-specific ablation of
PPARg significantly reduces proportions of VAT-Tregs, without
affecting compartment of Tregs in other organs (17).
Importantly, loss of PPARg impairs the function of VAT-Tregs
in limiting insulin resistance of high-fat diet (HFD)-
administrated mice (17). Several recent studies provided
insights into the mechanisms underlying the differentiation
and accumulation of Tregs in the visceral adipose tissue. The
accumulation of VAT-Tregs need TCR signals derived from
MHCII-presented antigens, which are dispensable for their
homeostatic proliferation (117). In contrast, administration of
the cytokine IL-33 provokes a robust expansion of VAT-Tregs.
Conversely, blockade of ST2 decreases the accumulation of
VAT-Tregs (117). Further investigation revealed that TCR
signaling enhances expression of PPARg in Tregs (62), while
IL-33 drives expansion and accumulation of VAT-Tregs through
activating MyD88 signaling pathway to induce BATF- and IRF4-
dependent transcriptome (62). In line with the notion, a recent
study proposes a two-stage, two-site model to further
demonstrate the mechanism underlying acquisition of the
distinctive VAT-Treg phenotype (118). By generation of VAT-
specific TCR transgenic mice and PPARg reporter mice, the
Mathis group identified a unique subset of splenic Tregs that
express low level of PPARg and acquire a part of the VAT-Treg
signature (118). To develop the definitive VAT-Treg phenotype,
those cells need to migrate to adipose tissue and receive
microenvironmental cues. VAT-specific TCR transgenic mice
provide evidence indicating that specific antigens in the adipose
tissue are indispensable for accumulation of VAT-Tregs, but not
conventional T cells (118). Further, Treg-specific ablation of the
IL-33 receptor ST2 diminishes proportions of VAT-Tregs and
their FOXP3 expression, but not those in other tissues. IL-33
plays an intrinsic role in driving homeostatic proliferation of
VAT-Tregs (118). In light of the rescue effect of IL-33 on VAT-
Tregs from obese mice (117, 119), therapeutic administration of
IL-33 may enhance the expansion and function of VAT-Tregs in
obesity patients. Additionally, other microenvironmental cues,
such as IFNa (112), sex hormones (120), and insulin (121),
orchestrate homeostasis and function of VAT-Tregs in
regulating adipose tissue inflammation and insulin sensitivity.

Skin
The Skin barrier functions as the first line of defense against
external pathogens. Skin Tregs play crucial roles in preserving
immune tolerance and sustaining tissue repair in skin (122) and
hair regeneration (123). Genetic deletion of Tregs frequently
causes profound dermatitis with massive infiltration of T cells in
skin (124). Several lines of evidence indicate that homeostasis
and function of skin Tregs are regulated through various
mechanisms. In comparison to Tregs in lymphoid tissues, skin
Tregs secret high levels of the anti-inflammatory cytokine IL-10
(125). Treg-specific deletion of IL-10 does not affect homeostasis
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of skin Tregs, while it fails to restrain the skin inflammation
upon dinitrofluorobenzene (DNFB) challenge (125). It has been
appreciated that IL-7 facilitates expansion and function of skin
memory Tregs. Antigen‐specific memory Tregs in the skin
display higher levels of the IL-7 receptor a chain CD127 than
those of splenic Tregs (60) (126),. Blockade of IL-7 singling
diminishes accumulation of memory Tregs in skin (60).
Moreover, skin Tregs highly express the IL-33 receptor ST2
compared to splenic Tregs (127). ST2 deficiency impairs
homeostasis and accumulation of skin Tregs (127), while
administration of IL-33 enhances their expansion. It is
important to note that a large proportion of skin Tregs
expressing GATA-binding protein 3 (GATA-3), the type 2
lineage transcription factor (127–129). Stimulation of TCR
signals and IL-33 induces expression of GATA-3 in skin
Tregs, which promotes expression of TH2-associated genes to
maintain immune homeostasis (127) (130),. Mice with Treg-
specific deletion of GATA-3 spontaneously develop a
lymphoproliferative disease characterized by TH2-biased
inflammation in skin and gut (128, 131, 132). Thus, a diverse
range of cytokines sustains homeostasis and functional
specification of Tregs in the skin.

Aside from extrinsic effects of local cytokines on skin Tregs,
various metabolic programs play intrinsic roles in regulating the
adaptation of Tregs to the skin. Human skin Tregs selectively
express arginase 2 (ARG2), a mitochondrial enzyme that
catalyzes hydrolysis of arginine to ornithine and urea (133).
Reduction of ARG2 is associated with impaired function of skin
Tregs from psoriatic skin. Overexpression of ARG2 in Tregs
enhances their suppressive capacity and accumulation in skin
(133). Interestingly, enhanced expression of ARG2 suppresses
mTOR signaling in Tregs, which may in turn promote
mitochondrial OXPHOS and FAO in skin Tregs (133). The
physiological relevance of ARG2 in regulating homeostasis and
function of skin Tregs remains to be further investigated.
Additionally, 1,25(OH)2D3 (VitD3), a biologically active
metabolite of vitamin D, favors expansion and function of skin
Tregs though inducing a specialized subset of dermal dendritic
cells (134). Tregs derived from VitD3-primed DCs acquire the
capabilities of trafficking to skin and suppressing skin
inflammation (134, 135). Further, TX527, a vitamin D analog,
enhances suppressive function of human Tregs and polarizes
conversion of naive T cells into Tregs, independently of DCs.
TX527 promotes migration of human Tregs to skin and their
suppression of skin inflammation (135). Collectively, these
studies indicate that skin Tregs integrate a wide range of
cytokine and TCR signals to orchestrate GATA3-dependent
and independent programs in control of skin immune
homeostasis. It is of great interest to investigate metabolic
mechanisms underlying skin Treg homeostasis and function at
steady state and under immune challenges.

Intestine
Diverse signals influence homeostasis and function of intestinal
Tregs to balance pro-inflammatory and anti-inflammatory
responses in the gastrointestinal tract. Intestinal Tregs
comprise tTregs and peripherally-induced Treg (pTreg) cells,
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discriminated by their differential expression of Helios and
neuropilin 1 (NRP1) (136–138). Cooperation of tTreg and
pTregs is crucial to prevent inflammatory responses against
harmless dietary antigens and commensal microorganisms
(139). Several lines of evidence indicate that microbial and
dietary antigens dictate the differentiation and maintenance of
intestinal antigen-specific pTregs. Colonic Tregs display
heterogeneous repertoires of TCRs, which differ from those
used by tTregs and effector CD4+ T cells (140). Transgenic
expression of TCRs cloned from colonic Tregs on immature
thymocytes, followed by adoptive transfer, promotes the
differentiation and accumulation of pTregs in the colon, but
not in the thymus (140). Importantly, the numbers of colonic
Tregs are significantly reduced in germ-free mice and antibiotic-
treated mice (136), without diminishing Tregs in the small
intestines (136, 141). Later studies revealed that dietary
antigens drive the differentiation and accumulation of
intestinal Tregs (142). Naive CD4+ T cells from transgenic
mice of intestinal TCRs preferentially differentiate into pTregs
in the small intestine, upon oral exposure to the cognate antigens
(143, 144). Thus, persistent TCR signals derived from dietary
components and commensal microbiota play indispensable roles
in maintaining homeostasis and function of antigen specific
Tregs in the gastrointestinal tract.

Local cytokines produced by intestinal Tregs and epithelial
cells (IECs) influence Treg cell homeostasis and function.
Intestinal Tregs constitutively produce a variety of cytokines
including IL-35, TGFb, and IL-10, in response to diverse
antigens derived from commensal microbiota and diets in the
gastrointestinal tract. Treg-specific ablation of these cytokines
impairs their function in restraining the development of
inflammatory-bowel disease (125, 145, 146). The alarmin IL-33
has been shown to regulate homeostasis and accumulation of
colonic Tregs expressing ST2. IECs constitutively express IL-33
at steady state, which is notably upregulated under inflammatory
conditions (147). IL-33 promotes the differentiation and
function of colonic Tregs through inducing GATA3
phosphorylation and activation colonic ST2+ Tregs. The IL-33-
ST2 axis has been also involved in the regulation of tumor-
infiltrating Tregs in colorectal cancer (CRC). A recent study
showed that IL-33 promotes function and accumulation of
intratumoral Tregs to facilitate immunoevasion of colorectal
cancer (148). Genetic ablation of ST2 reduces Treg infiltration
and consequently potentiate antitumor immunity to restrain the
progression of CRC.

In addition to local antigens and cytokines in the gut,
metabolites derived from dietary components and commensal
microbes provide crucial signals to shape the differentiation and
homeostasis of intestinal Tregs (140). Short chain fatty acids
(SCFAs), such as butyrate, propionate and acetate, are products
of dietary fiber fermented by specific species of gut bacteria (136,
149). These SCFAs provide key metabolic signaling that
underlies homeostasis and function of colonic Tregs through
different molecular mechanisms. Butyrate promotes the
differentiation and function of colonic Tregs (19, 20, 150),
ameliorating the pathogenesis of colitis in Rag1-deficient mice
adoptively transferred with CD4+ CD45RBhi T cells.
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Mechanistically, it represses activity of HDACs and thereby
enhances histone H3 acetylation in the promoter and CNS
regions of the FOXP3 locus (19, 150). Similarly, propionate,
but not acetate, inhibits activity of HDACs to promote the
differentiation and function of Tregs (19, 150). Several G
protein-coupled receptors have been shown to mediate
butyrate-induced differentiation and accumulation of colonic
Tregs, including free fatty acid receptor 2 (FFAR2, also known
as G protein-coupled receptor 43 (GPR43)), GPR109A, and the
FFAR2-FFAR3 heteromeric receptor (20, 151, 152).

It is worthy to note that intestinal bile acids (BAs) produced
by hepatocytes have been recently shown to modulate
homeostasis and function of Tregs expressing retinoic acid
receptor-related orphan receptor g (RORg) in the colon (153).
Despite the importance of RORg-expressing Tregs in preventing
intestinal inflammation (154, 155), elevation of glycolysis can
convert them to pathogenic Tregs in facilitating the progression
of CRC (156). MondoA is a transcription factor that suppresses
glycolysis of colonic Tregs through inducing thioredoxin-
interacting protein (TXNIP). Deletion of MondoA in Tregs
augments their glycolysis and conversion to IL-17-producing
Tregs, which promote CRC progression (156). Thus, food
antigens, commensal microbiota, intestinal cytokines, and
metabolites constitutes complex networks to orchestrate
functional diversity and metabolic fitness of intestinal Tregs in
maintaining the balance between protective immunity and
immune tolerance in the gastrointestinal tract.
METABOLIC MODULATION OF TISSUE
TREGS FOR IMMUNOTHERAPY

Given the importance of local nutrients to tissue Tregs,
manipulating dietary components has been considered as an
attractive strategy targeting Treg cell metabolism and function
for immunotherapy. Pre-clinical studies have shown that
alteration of certain metabolites in diet effectively influences
the differentiation and function of tissue Tregs and improves
the treatment for autoimmune diseases and cancer. A variety of
vitamins acquired from diet and their metabolites have been
shown to promote the suppressive function of Tregs. Vitamin A
and its metabolite retinoic acid promotes generation and
maintenance of Tregs in the small intestine (144, 157).
Vitamin D3 is metabolized to 1,25-dihyroxyvitamin D3
(1,25D) that enhances FOXP3 expression (158). A recent study
revealed that mice fed with diets containing vitamin D or 1,25D
have increased numbers of colonic RORg+ Tregs with augmented
function in repressing dextran sodium sulfate-induced colitis
(159). It has been appreciated that vitamin B9 (also known as
folic acid) derived from both diets and commensal microbes
promotes Treg cell function. Tregs express high levels of the
vitamin B9 receptor (folic acid receptor 4; FR4) that sustains
their suppressive function in preventing graft rejection or
facilitating tumor immunoevasion (160). Vitamin B9 is also
required for maintaining survival of colonic Tregs through
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elevating Bcl2 expression (161). Feeding mice with a vitamin
B9-deficient diet selectively reduces numbers of colonic Tregs
and predisposes mice to trinitrobenzene sulfonic acid (TNBS)-
induced colitis (161).

Accumulating evidence highlights that systemic SCFAs and
LCFAs play important roles in shaping homeostasis and function
of tissue Tregs. Several lines of evidence indicate that systemic
SCFAs affect the suppressive function of tissue Tregs in
autoimmune diseases and cancer. An emerging clinical study
showed that amounts of the SCFA propionic acid are significantly
reduced in serum and feces of patients with multiple sclerosis
(MS), an autoimmune and neurodegenerative disease (162). The
MS patients supplemented with propionic acid display increased
proportions of intestinal Tregs, with a concomitant reduction of
TH1 and TH17 cells. Supplementation of propionic acid also
rectifies mitochondrial function of Tregs from MS patients
(162). In contrast, augment of serum SCFAs reduces efficacy of
the immune checkpoint inhibitor in cancer patients. High levels
of serum butyrate and propionate render patents with metastatic
melanoma resistant to CTLA-4 blockade (163). Mice
supplemented with butyrate-containing water display elevated
levels of serum butyrate and increased accumulation of Tregs in
the blood and the tumor draining lymph nodes (163).
Importantly, butyrate-supplemented mice exhibit reduced
antitumor immunity and increased resistance to CTLA-4
blockade (163). Moreover, oleic acid is a monounsaturated 18-
carbon LCFA considered as one of the most abundant free fatty
acids in various tissues. Emerging evidence indicates that MS
patients display reduced concentrations of oleic acid in the blood
(164). Oleic acid rectifies impaired mitochondrial OXPHOS
metabolism and functional defects of tissue Tregs from MS
patients (164). The effects of oleic acid supplementation on the
development of MS patients remain to be further investigated.
Thus, manipulating systemic metabolites may differentially
modulate metabolism and function of tissue Tregs to influence
the therapeutic outcome of various immune-related disease.
CONCLUSIONS

It is well accepted that Tregs in non-lymphoid tissues exhibit
heterogeneity in their transcriptomes, TCR repertoires,
requirements of growth and survival factors, and functional
mechanisms. Precise coordination of extracellular milieu and
intracellular reprogramming of signaling and metabolic
networks is required for tissue Tregs to sustain their
homeostasis and suppressive function. In light of advanced
understanding of the intersection between cellular metabolism
and signaling networks in Treg cell function, manipulating
systemic metabolites represents a promising strategy to
modulate function of tissue Tregs for the treatment of various
autoimmune diseases and tumors. Existing studies have shown
that specific antigens and growth factors in the tissue
microenvironment function as key regulators of tissue Tregs.
However, little is known about the mechanisms of how these
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factors orchestrate metabolic rewiring of Tregs in adaptation to
different non-lymphoid tissues and how distinct tissue
metabolites influence homeostasis and function of local Tregs.
Given that those factors constitute complex networks in Tregs
and among other types of cells in tissues, scRNA-seq of the
whole-tissue may provide insight into the identification of novel
signaling and metabolic mechanisms involved in the regulation
of Treg cell homeostasis and function in tissues. It is important to
note that signals derived from other types of cells can shape the
suppressive function of tissue Tregs. Cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) in
combination with scRNA-seq holds promise to identify key
types of cells and factors that regulate tissue Tregs.
Additionally, exploring metabolic profiles in tissue Tregs and
distinct tissues may identify novel metabolites that can be
manipulated to modulate homeostasis and function of tissue
Tregs under different immune conditions.
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The human gastrointestinal tract has an enormous and diverse microbial community,
termed microbiota, that is necessary for the development of the immune system and
tissue homeostasis. In contrast, microbial dysbiosis is associated with various
inflammatory and autoimmune diseases as well as neurological disorders in humans by
affecting not only the immune system in the gastrointestinal tract but also other distal
organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that
function as a gatekeeper for immune activation and are essential for peripheral
autoimmunity prevention. Tregs are crucial to the maintenance of immunological
homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-
lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and
distinct function. The gut microbiota has an impact on Tregs development, accumulation,
and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed
towards gut microbes, which supports the host–microbiota symbiotic interaction in the
gut. Recent studies have indicated that Tregs interact with a variety of resident cells in
central nervous system (CNS) to limit the progression of neurological illnesses such as
ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract
and CNS are functionally connected, and current findings provide insights that Tregs
function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells.
The purpose of this study is to explain our current knowledge of the biological role of
tissue-resident Tregs, as well as the interaction along the gut-brain axis.

Keywords: regulatory T cell, microbiota, gastrointestinal tract, central nervous system, gut–brain axis, neuroimmune
INTRODUCTION

The gastrointestinal (GI) tract and central nervous system (CNS) are constantly in communication
with one another through a bidirectional link termed as the ‘gut-brain axis’. The gut-brain axis is a
complex inter-organ communication network, comprised of CNS, the peripheral nervous system
(PNS), the intestinal immune system, and commensal microbiota that contributes to the regulation of
CNS function, development, and host behavior (Figure 1) (1). The human intestine contains a wide
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and diversified microbial ecology, in which the microbiota has
enormous effects on host’s physiology and pathology, implicating
its roles in health and disease (2). The gut microbiota is crucial for
the physiological function of the host including food digestion,
development, protection against pathogens, and immune system
education (3–5). In contrast, microbial imbalance (dysbiosis) in
the gut has been related to several inflammatory disorders such as
inflammatory bowel disease (IBD) and various peripheral
autoimmune diseases (6–9). Importantly, numerous studies have
also shown a link between dysbiosis in gut microbiome and a
variety of neurological disorders, suggesting potential of intestinal
inflammation by dysbiosis for neuropathology through
modulation of the gut-brain axis (6, 10). However, despite
recent advances in the field (11–16), little is known about how
signaling from the gut microbiota to the brain governs CNS
pathophysiology, and vice versa and the mechanisms underlying
these complex interactions require elucidation.

Forkhead box P3 (FOXP3) + regulatory T cells (Tregs) are a
subset of CD4+ T cells that operate as a checkpoint for
immunological activation and are required to prevent systemic
autoimmunity. The major function of Tregs in the intestine is to
regulate inflammation. While Tregs can be recruited from the
thymus to the intestine, the majority of Tregs in the gut are
peripherally differentiated from FOXP3-negative conventional
CD4+ T cells in order to induce tolerogenic responses to
microbiota and dietary antigens (17, 18). Notably, the
dysregulation of Tregs has a role in the development of chronic
inflammatory disorders such as IBD (18, 19). Along with
regulating immunological tolerance in barrier tissues, Tregs are
Frontiers in Immunology | www.frontiersin.org 2139
critical for tissue homeostasis and remodeling in other organs,
including the CNS, which has long been considered an immune-
privileged site (Figure 1) (20, 21).

Recent research demonstrated that Tregs interact with a diverse
range of resident cells in the CNS, resulting in a powerful
neuroprotective effect in neuronal diseases (22, 23). The CNS-
resident Tregs participate in controlling the neuroinflammatory
response and neuroplasticity, associated with ischemic stroke,
Alzheimer’s disease (AD), and Parkinson’s disease (PD).
However, the characteristics of CNS-resident Tregs are poorly
understood since the limited numbers of Tregs in CNS under
homeostatic conditions (20, 24). Despite the established function
of Tregs in each specific organ, the numerous mechanisms
along the gut-brain axis remain poorly understood in health and
disease. Thus, increasing our understanding of tissue-resident
Tregs activity in the settings of inflammation and homeostasis
may help improve therapy options for persons suffering not only
from inflammatory disorders in barrier tissues, but also from
neuroinflammatory illnesses.

This article discusses the induction, maintenance, trafficking,
and activity of Tregs to maintain homeostasis in non-lymphoid
tissues (intestine and brain) and suggest Tregs as the critical
regulator of immune homeostasis along the gut-brain axis.

TREGS IN THE INTESTINE

The intestine, including the small intestine and the colon, is the
largest immune organ which is responsible for food digestion,
nutrient absorption, and protecting the host against harmful
FIGURE 1 | Schematic overview showing the interaction between the GI tract and the CNS through the ‘gut-brain axis’. The central nervous system is connected with the
intestine by the peripheral nerves for reciprocal interaction and tissue homeostasis in which immune cells including Tregs are involved in this entangled inter-organ communication.
Immunological factors, produced by gut immune cells, can regulate the nerves innervating to the intestine, eventually affecting the CNS function. In the opposite direction,
neurological factors such as neurotransmitters can act on the gut immune system. Furthermore, the gut microbiome can modulate the gut-brain axis by microbe-derived
molecules. In these processes, Tregs may act as a critical regulator of pathophysiology along the gut-brain axis. (All figures in the review were created with BioRender.com).
June 2022 | Volume 13 | Article 916066
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pathogens while maintaining immune tolerance to innocuous
microbial or dietary stimuli (25). Tregs found in the intestine
differ from those residing in other tissues with tissue-specific
characteristics and activities. While Tregs in lymphoid organs
mainly express self-antigen specific T cell receptors (TCRs),
substantial number of intestinal Tregs have a set of TCRs
specific for intestinal antigens which is essential to suppress
immune responses against harmless dietary antigens and
commensal microorganisms (26, 27). Intestinal specific cues
have potential influence for the development, migration, and
maintenance of Tregs in GI tract (28). Certain microbiota
members, in particular, supply antigens and immunoregulatory
small molecules that affect intestinal Tregs on a constant basis
(28). Thus, understanding the development and maintenance of
intestinal Tregs reveals critical information regarding host-
microbiota interactions in health and disease context (28).

Tregs constitute more than 30% of the lamina propria (LP)
CD4+ T cells in the colon and 20% of LP CD4+ T cells in the
small intestine (28). Tregs, generated in the thymus, are
characterized by the expression of IKAROS family zinc finger
2 (HELIOS) and Neuropilin-1 (NRP1). Interestingly, compared
with Tregs in lymphoid tissues, HELIOS+NRP1+ Tregs constitute
only 30% to 35% of the colonic Tregs in both mouse and human,
suggesting peripherally derived Treg cells (pTregs) are the main
population in the GI tract (27, 29–32). In small intestine, where is
the primary site of nutritional absorption with abundant dietary
antigens, the retinoic acid-related orphan receptor gamma-t
(RORgt) negative pTregs are highly abundant that are
responsible for maintaining immune tolerance against dietary
antigens (Figure 2) (33). Around 50% of LP Tregs are dietary
antigen specific RORgt- pTregs, whereas only 15% of Tregs are
RORgt+HELIOS- Tregs that are primarily responsible for
intestinal microbiota in small intestine (29). RORgt+ but not
RORgt- Tregs were diminished in antibiotics-treated mice,
whereas the deprivation of dietary antigens led to severe
reduction of NRP1low pTregs due to the specific depletion of
RORgt– pTregs in the small intestine, suggesting while the
microbial antigens are essential for the induction of RORgt+

pTregs, the induction of RORgt- Tregs requires exposure to
dietary antigens (33). Indeed, mice lacking NRP1lowRORgt–

Tregs became more susceptible to food allergy (33).
On the other hand, the RORgt+ Tregs, which are highly

abundant in the colonic LP, have unique roles to restrain
intestinal inflammation, triggered by gut microbiota (34). In
the colon, HELIOS−RORgt+FOXP3+ pTregs are the main source
of Interleukin(IL)-10, which is necessary for maintaining
intestinal homeostasis (Figure 2) (28). RORgt expression is
essential for the pTregs to control commensal induced
inflammation, while the Tregs-specific ablation of Rorgt causes
hyper-production of the pro-inflammatory cytokines such as IL-
17 and IFN-g in FOXP3- conventional CD4+ T cells (Figure 2)
(29) . The transcription factor c-MAF, encoded by
musculoaponeurotic fibrosarcoma (Maf) gene, is important for
maintaining the immune tolerance to bacter ia by
RORgt+FOXP3+ Tregs, supported by Tregs-specific deletion of
c-Maf resulting in impaired IL-10 production and induction of
Frontiers in Immunology | www.frontiersin.org 3140
bacteria-specific inflammatory T-helper 17 cells (Th17). This
suggests a central role of c-MAF in the proper function of colonic
RORgt+ Tregs (35). Moreover, Tregs-specific c-Maf deficiency
has shown to trigger gut dysbiosis together with immune
alteration with enhanced IgA-producing plasma cells and IL-
17a/IL-22-producing Th17 in intestine indicating a key role of c-
MAF in Tregs to maintain the homeostatic relationship between
host and microbiota (36). In addition to the induction of
tolerance against gut commensals, microbiota-dependent
activation of the RORgt+ Tregs population is required for
protection against food allergy (37).

A distinct colonic Tregs subpopulation is defined as the GATA-
binding-protein (GATA)3+ HELIOS+ Tregs, which are mainly
derived from thymus and play the key immunosuppressors
during intestinal inflammation (Figure 2) (38). GATA3
expression is not necessary for the maintenance and proper
function of Tregs at steady state, but essential for the
accumulation of Tregs at inflamed sites during inflammation (39).
Additionally, deletion of Gata3 in Tregs results in spontaneous
inflammation and intestinal pathologies with aging in mice (40, 41).
Colonic GATA3+ HELIOS+ Tregs have been shown to express the
IL-33 receptor ST2 (IL1RL1) which enable Tregs to expand in
response to the alarmin IL-33 during inflammation (39). IL-33/ST2
engagement signals into Tregs to promote serine phosphorylation of
GATA3 together with IL-2 and TCR engagement (Figure 2). This,
in turn, increases the expression of St2 and Foxp3, thus regulating
the proliferation and maintenance of Tregs (Figure 2) (42).
Furthermore, expression of OX40 by the GATA3+ST2+HELIOS+

Tregs subpopulation is essential for the accumulation of Tregs in the
colon, as well as for the restriction of effector T cells in naïve T cell
transfer model of colitis (Figure 2) (43).

Even though the colon harbors mainly pTregs, single-cell and
high-throughput sequencing of the TCR repertoires of FOXP3+

Tregs revealed that the majority of the dominant TCRs are
shared by colonic and thymic Tregs (44). This suggests that a
vast majority of colonic Tregs might be of thymic origin,
supported by the crucial roles of thymic Tregs (tTregs) to
mediate the tolerance against intestinal antigens (44). A more
recent study shows that early life colonization of bacteria in the
intestine leads to the transport of microbial antigens from the
intestine to the thymus by CX3CR1+ dendritic cells (DCs), hence
promoting the development of microbiota-specific T
lymphocytes (45). Further studies are needed to clarify whether
microbiota-specific Tregs are induced in the thymus as well.
Overall, these findings suggest that the colonic Tregs, which
include both pTregs and tTregs, contribute together to maintain
intestinal homeostasis.
MICROBIAL REGULATION OF INTESTINAL
TREGS

The microbiota is crucial for the maturation of the immune
system during early life (46). The “window of opportunity”
theory suggests that the interaction between the microbiota
and the host immune system during a critical developmental
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period might have long-lasting implications for disease
susceptibility in later life (47, 48). During this time-window,
goblet cell function as passages to facilitate the delivery of
microbial antigens from the intestinal lumen to the CD103+ LP
DCs for Tregs development (49). A transient depletion of the
Tregs during weaning period (4 weeks of age) results in enhanced
susceptibility to inflammatory pathology later in life (50),
suggesting the unique roles of Tregs at early developmental
stage by microbiota to maintain tissue homeostasis later in life.

Studies using germ free (GF) mice revealed the necessity of
microbiota for intestinal Tregs homeostasis. GF mice present a
decreased frequency of RORgt+ Tregs compared to specific-
pathogen-free (SPF) mice which can be rescued by colonization
with Clostridium species (51), altered Schaedler flora (ASF) (52),
or Bacteroides fragilis (53). RORgt+FOXP3+ Tregs mediate the
tolerance to a pathobiont, Helicobacter hepaticus, through
Frontiers in Immunology | www.frontiersin.org 4141
restriction of pro-inflammatory Th17 in a transcription factor c-
MAF-dependent manner (35). Several studies have revealed the
regulatory role of the bacteria-derived metabolites, particularly
short-chain fatty acids (SCFAs) (54–57) and bile acids (BAs) (58–
60) in Tregs differentiation (Figure 2). SCFAs induce the
differentiation of Tregs via T cell intrinsic upregulation of the
Foxp3 expression via either through inhibition of histone
deacetylases (HDACs) at transcriptional level via G protein-
coupled receptor (GPR) 43 (61), or by promoting histone
acetylation in the conserved noncoding sequence region 1
(CNS1) of the Foxp3 genomic locus (56). Moreover, SCFAs
enhance GPR15 expression, which in turn induces Tregs
accumulation in the colon (61, 62). However, a recent study
proposed conflicting results, showing minor effects of dietary
supplementation with SCFAs to promote pTregs induction
neither in mesenteric lymph nodes nor the colonic LP, which
FIGURE 2 | The three main subsets of FOXP3+ Tregs are controlled by host and environmental factors in the intestine. 1) The FOXP3+ RORgt- Tregs are present
mainly in the small intestine, mainly induced by dietary antigens. GATA3+ Tregs are thymic origin Tregs with high level of ST2, thus these cells can respond to IL-33,
secreted from IECs in response to tissue damage. Moreover, OX40 expression on GATA3+ Tregs supports the accumulation of Tregs in the colon and OX40 is
required for the Tregs-mediated restriction of effector T cells (Teff). 2) RORgt+ Tregs constitute the main colonic Tregs subset, promoted by the microbiota. SCFAs,
secondary BAs and AhR ligands can induce Tregs differentiation, however the effect of these metabolites on different Tregs subsets are not known, except a recent
finding showing that BAs induce RORgt+ Tregs. 3) CD103+ DCs induce the differentiation of Tregs in a TGF-b-dependent manner and suppress Th17 cells. These
functions of DCs are regulated by aVb8 integrin-mediated activation of latent TGF-b1 and RALDH-mediated metabolizing of vitamin A into RA. ILC3s, triggered by
microbe-activated macrophages, promote Tregs in the intestine through IL-2 or CSF2 production. These microbiota induced Tregs, either through microbial
metabolites or other immune cell types are essential for the maintenance of immune homeostasis. 4) The crosstalk between intestinal epithelium and Tregs are
essential for intestinal homeostasis. Tregs can interact directly with ISCs via MHCII molecule and promote ISCs renewal by IL-10 signaling. IECs-derived IL-18 is an
important regulator of Treg-mediated suppression of intestinal inflammation.
June 2022 | Volume 13 | Article 916066

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choi et al. Tregking From Gut to Brain
might be explained by a ceiling effect related to the SCFA-
producing microbiota frequency (63). Moreover, the bile acid
metabolite, isoallolithocholic acid (isoalloLCA) promotes Tregs
differentiation in a Foxp3 CNS3-dependent manner through the
production of mitochondrial reactive oxygen species (59). To the
contrary, 3-oxolithocholic acid binds directly to RORgt and
inhibits Th17 differentiation. One study revealed that
isoalloLCA, produced by Bacteroidetes species in the gut,
regulates the nuclear hormone receptor NR4A1 to promote the
differentiation of naïve T cells to Tregs by enhancing Foxp3
transcription (64). Similarly, the secondary bile acid, 3b-
hydroxydeoxycholic acid, induces the generation of colonic
RORgt- Tregs via a Foxp3 CNS1-dependent manner in DCs-
intrinsic the farnesoid X receptor activity suggesting an
interaction between bile acid and nuclear receptor (58).
Furthermore, colonizing GF mice with Bacteroides species
promotes RORgt+ Tregs in the colon via the vitamin D receptor
(VDR) in a BAs-dependent manner (60). While the mice fed
minimal diet developed severe dextran sodium sulfate-induced
colitis, the BA supplementation increased the numbers of RORgt+

Tregs and alleviated the disease. Moreover, Tregs-specific VDR
deficiency worsened the DSS-induced colitis. Overall suggesting
both BAs and VDR have a protective role in chemical-induced
colonic inflammation by modulating RORgt+ Tregs (60). Finally,
tryptophan metabolites are important components of intestinal
immune tolerance by Tregs via aryl hydrocarbon receptor (AhR)
(Figure 2) (65). Intestinal Tregs express Ahr at higher levels
compared to Tregs in the spleen or lymph nodes (66). In a T
cell transfer model of colitis, the suppressive effect of Tregs on
intestinal inflammation was diminished by the specific depletion
of Ahr in Tregs (66). Whole-body Ahr deficiency acutely
attenuates the expression of GPR15 both in effector memory T
cells and in Tregs (67). Like SCFAs, AhR upregulates GPR15
expression together with FOXP3 in Tregs. Conversely, RORgt acts
as an antagonist of AhR DNA binding to the Gpr15 locus in T
lymphocytes to suppress Gpr15 transcription (68). Overall, these
findings highlight the role of the microbial metabolites in
controlling host immune responses by acting on intestinal Tregs.
CROSSTALK BETWEEN INTESTINAL
TREGS AND OTHER IMMUNE
POPULATIONS

Tregs communicate with various immune cell types in a
cooperative way to maintain immune tolerance. In the gut,
antigen presenting cells (APCs) interact with conventional
CD4+ T cells and promote the development of pTregs
(Figure 2). Intestinal APCs, expressing the chemokine receptor
CX3CR1, induce Tregs differentiation while limiting T effector
cell expansion against soluble antigens and the microbiota itself
in IL-10 dependent manner (Figure 2) (69). CD103+ DCs of the
intestinal LP can similarly present luminal antigens by capturing
them to extend their dendrites to the lumen through the
intestinal epithelium (Figure 2) (70). DCs have control over
the TGF-b-dependent differentiation of naïve T cells, promoting
Frontiers in Immunology | www.frontiersin.org 5142
Tregs but suppressing Th17 via integrin aVb8-mediated
activation of latent TGF-b1 and retinal dehydrogenase
(RALDH)-mediated metabolizing of vitamin A into retinoic
acid (RA) (Figure 2) (71–74). Interestingly, stromal cells in the
intestinal LP can upregulate RA from DCs in an RA- and
granulocyte-macrophage colony-stimulating factor-dependent
manner. In turn, stromal cell-primed DCs enable to induce
Tregs (Figure 2) (75). RORgt+ type 3 innate lymphoid cells
(ILC3s) are another immune cell type in the intestine that
regulates FOXP3+ Tregs differentiation (Figure 2). The
crosstalk between IL-1b-secreting macrophages and Colony
stimulating factor 2 (CSF2)-producing RORgt+ ILC3s has been
proposed a mechanism of Tregs regulation by ILC3s in the
intestinal mucosa. The gut microbiota induces IL-1b production
by macrophages to enhance colonic Tregs frequency by
upregulating ILC3s-derived CSF2 (Figure 2) (76). IL-2,
produced by ILC3s as a response to the APC-derived IL-1b
upon microbial stimulation, is essential for Tregs maintenance
and immune tolerance. In addition, IL-2-producing ILC3s are
important for the oral tolerance of dietary antigens in the small
intestine, while the decrease of IL-2 production from ILC3s is
associated with lower Tregs frequencies in Crohn’s disease
(Figure 2) (77). Reciprocally, both Tregs and Th17 have
control over ILC3s in the intestine (Figure 2) (78). In the
absence of CD4+ T cells, ILC3s displayed a comprehensive and
persistent phosphorylation of Signal transducer and activator of
transcription 3 (STAT3), as an outcome of hyper-production of
IL-22 by ILC3s in response to microbiota (78). Adoptive T cell
transfer experiments revealed that Tregs can inhibit ILC3s
activation by reducing IL-23, produced by CCR2+ monocytes
and monocyte-derived DCs, whereas Th17 lower the bacterial
burden, thus limiting ILC3s activation (78). In agreement with
these results, another study using anti-CD40-driven colitis model
showed that Tregs exert a protective function by reducing IL-22
secretion from ILC3s via the suppression of production of IL-23
and IL-1b in CX3CR1+ macrophage by latent activation gene 3
(LAG3)-major histocompatibility complex class II (MHCII)
engagement (79).
INTERACTIONS BETWEEN INTESTINAL
TREGS AND INTESTINAL EPITHELIAL
CELLS

Communication between the immune and non-immune cell
populations has recently drawn considerable attention in
intestinal health and disease (80–83). The intestinal epithelium
forms a barrier between microbes and host to coordinate the
crosstalk between the gut microbiota and the mucosal immune
cells, while epithelial cells also respond to immune and microbial
stimuli (84). Tregs maintain the epithelial barrier integrity in the
intestine by promoting intestinal stem cell (ISC) renewal via IL-
10, whereas effector T cell subsets induce ISC differentiation, as
demonstrated by organoid studies (Figure 2) (83). Accordingly,
in vivo Tregs deficiency results in a reduced ratio of ISCs to
differentiated intestinal epithelial cells (IECs) (83). By facilitating
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the direct interaction between IECs and T cells, the expression of
MHCII on intestinal epithelial cells likely contributes to T cell
cytokine-mediated ISC renewal and differentiation. A lack of
MHCII in IECs reduced the levels of surface MHCII on the
intestinal mononuclear phagocytes and the proportion of
HELIOS– microbial-responsive Tregs in the small intestine,
suggest ing a communicat ion network between the
mononuclear phagocytes, IECs, and Tregs (85). IECs-specific
MHCII deficiency led a slight reduction of Tregs frequency in the
colon LP during steady state (86). A recent study reported that
mice lacking IECs-intrinsic MHCII have expanded commensal-
specific cBir1+ CD4+ T cells, specifically recognizing bacterial
flagellin. In a fungal commensal model, mice colonized with
Candida albicans-2W1S+ displayed increased numbers of C.
albicans-specific 2W1S+ CD4+ T cells in the large intestine
upon IEC-specific MHCII deficiency (87). Deletion of IEC-
intrinsic MHCII expression altered the ratio of Tregs to Th17
in both commensal-specific cBir1+CD4+ T cell and C. albicans-
2W1S+ commensal models (87). Collectively, these studies
indicate that the disruption of epithelial MHCII-T cell
interaction modulates microbiota-specific immune responses in
the intestine.

Tregs-IECs interactions occur not only via MHCII but also
through cytokine signaling (88). In the colon, IECs participate in
the regulation of CD4+ T cell homeostasis via IL-18 production
(Figure 2) (88). In the homeostatic condition, IECs-derived IL-
18 is dispensable for Tregs differentiation, but Tregs-mediated
suppression of intestinal inflammation requires IL-18/IL-18R1
signaling in the T cell-transfer colitis model (88). Another
member of the IL-1 family, IL-33, is constitutively expressed in
epithelial cells, including IECs (89). In the inflamed colon,
epithelial IL-33 levels are elevated (42). After being released
from IECs upon tissue damage, IL-33 promotes Tregs function
and adaptation to the inflammatory environment through ST2
signaling (42). IL-23 inhibits Tregs responsiveness to IL-33,
implying that the balance between IL-33 and IL-23 might be a
key regulator of intestinal Tregs homeostasis (42). The clear
evidence indicates a reciprocal interaction between IECs and
intestinal Tregs for intestinal homeostasis; nevertheless, there is
still much to learn about the crosstalk of Tregs with IECs, as well
as other non-immune populations in the intestine.
TREGS IN THE CENTRAL NERVOUS
SYSTEM

Previously, the CNS was considered an immune-privileged site
due to a lack of lymphatic vasculature and the presence of the
blood-brain barrier (BBB) (90). This view led to undervalue the
roles of immune system in CNS; however, it has been revisited in
light of the recent identification of functional lymphatic vessels
(91) and immune cells including T cells in the meninges (90).
Furthermore, T cells have found in the brain parenchyma of
healthy mice, though small numbers (about ~2,000 CD4+ T cells
and ~150 Tregs in the entire brain) (92). Post-mortem human
studies also identified T cells in the pathological (93) and healthy
Frontiers in Immunology | www.frontiersin.org 6143
(92) brain. T cells are actively involved in the pathologies of CNS
disorders and injuries by infiltrating into the CNS (94). Though
often neglected due to their scarcity, recent studies have
enlightened the essential roles of T cells in CNS physiologies.
For instance, meningeal T cell-derived IFN-g regulates neuronal
connectivity, promoting an inhibitory current in cortical gamma
aminobutyric acid (GABA)ergic neurons (95). A recent study
showed that brain-resident CD4+ T cells are required for the
maturation of microglia (92). The existence of Tregs in the CNS
implies their potential roles in CNS homeostasis (92). Here, we
discuss the characteristics of CNS-resident Tregs and provide an
overview of how Tregs interact with other CNS cells, such as
neurons and glial cells.
ORIGIN AND ENTRY OF TREGS INTO THE
CENTRAL NERVOUS SYSTEM

Blood-derived T cells can migrate into the CNS through at least
three major routes: to the perivascular space through the BBB,
through the subarachnoid space in the meninges, and to the
cerebrospinal fluid (CSF) across the choroid plexus (96).
However, T cell entry into the brain parenchyma is limited by
the glia limitans between the perivascular space and parenchyma,
and by epidermal cells between the CSF space and parenchyma
(97). In inflammatory conditions, the number of infiltrating T
cells, including Tregs, increases due to exacerbated permeability
or disruption of the BBB and the blood-CSF barrier (98). In
addition, the altered chemokines niche actively participate to
recruit T cells in the insulted brain region (97). In particular, in
the middle cerebral artery occlusion (MCAO) model of stroke,
the infiltration of Tregs into the infarcted brain region is driven
by chemokines such as CCL1 and CCL20 (22).

Like other tissue-resident Tregs, CNS Tregs require TCR
recognition specific to antigen in the CNS, in both physiological
(92) and pathological conditions (22). Studies using OT-II
transgenic mice, which express ovalbumin-specific TCR,
demonstrated no OT-II Tregs in the brains of these mice (22, 92).
Furthermore, in the experimental autoimmune encephalomyelitis
(EAE) model, Tregs in the CNS showed over-representation of
specific Vb8 TCR, suggesting oligoclonal expansion of Tregs against
self (or potentially brain specific) antigens in CNS (99). This is
different from conventional CD4+ T cells in CNS, which require
peripheral activation (92). In agreement with this, TCR sequencing
of Tregs in brain revealed several overlapping TCR clones, especially
TCRa across individual mice, which suggests the shared antigens in
CNS Tregs (22). Tregs can proliferate inside the CNS as well. For
instance, Tregs in CNS can actively proliferate in the EAE model
(99), and the amplification of brain Tregs is dependent on cytokines
such as IL-2 and IL-33 in the MCAOmodel (22, 100). Interestingly,
the neurotransmitter serotonin also exerts a proliferative effect on
brain Tregs through a serotonin receptor signaling (22).

From the perspective of the gut-brain axis, it has been
proposed that the gut microbiome can affect the homing of T
cells, including Tregs, into the CNS. When SPF mice were co-
housed with dirty pet shop mice, CD4+ T cells but not Tregs
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significantly increased in brain (92). One study with T cells
expressing a photoconversion fluorescent protein showed the
migration of intestinal T cells to the cervical lymph nodes and
meninges after ischemic stroke (101), implying a role for gut-
resident T cells in CNS pathogenesis.

One possible hypothesis is that gut microbiota-derived
molecules may act as antigens in brain, which are necessary for
Tregs trafficking to the CNS (22, 92). The ‘molecular mimicry’
hypothesis has been investigated in various nervous autoimmune
disease models, such as EAE (102) and a model for Guillain–
Barré syndrome (GBS) (103). The mono-colonization of
Lactobacillus reuteri, which possesses peptides that potentially
mimic myelin oligodendrocyte glycoprotein (MOG), exaggerated
EAE symptoms than those of GF (102). The structure of
lipooligosaccharide (LOS) on Campylobacter jejuni is similar to
Ganglioside GM1, and GM1-like LOS sensitized rabbits show
pathology similar to GBS such as flaccid paralysis (103).
Furthermore, an adenosine triphosphate-binding cassette
transporter of Clostridium perfringens shared sequence
homology with Aquaporin-4 (AQP4) (104), of which
autoantibodies are pathogenic for neuromyelitis optica
spectrum disorders (NMOSD) (105). Indeed, strains of C.
perfringens are abundant in patients with NMOSD (104).
Further studies are required to address the involvement of the
gut microbiome in the actions of CNS-resident Tregs.
CHARACTERISTICS OF CNS-RESIDENT
TREGS

Due to the small number of CNS-resident Tregs in homeostatic
conditions, their characteristics are not well investigated. Brain-
resident Tregs are highly distinct from blood Tregs in adult mice,
with elevated expression of activation markers including CD44,
Frontiers in Immunology | www.frontiersin.org 7144
CTLA4, and ICOS, and expression of residency markers such as
ST2 and CD69 (92). Parabiosis of FoxpThy1.1Cd45.1 mice with
Foxp3Thy1.1Cd45.2 mice showed the presence of CD69+ Tregs in
host brain tissue after approximately 7 weeks, in contrast to the
rapid exchange of blood Tregs (92).

Several studies with stroke models have found that T cells,
including Tregs, infiltrated into the infarcted brain region
(Figure 3). In the healthy brain, the infiltrated Tregs showed
activated phenotypes (CD44hi/CD62Llo) and expressed high
levels of canonical Tregs markers such as PD-1, CTLA4, GITR,
and CD103 (22, 106). Transcriptome analysis of brain-infiltrated
Tregs showed a profile similar to those of other tissue Tregs such
as visceral adipose tissue and muscle (107, 108), with the
expression of Il-10, amphiregulin (Areg), Klrg1, Pparg, and
WNT signaling-related genes (22). In both healthy and
pathological conditions, CNS-resident Tregs are mostly
positive for HELIOS suggesting thymic origin (22, 92, 106). In
addition, CNS-resident Tregs may acquire CNS-specific
phenotypes, as do other tissue-resident Tregs. Interestingly,
after stroke, brain-resident Tregs express several neuropeptides
such as neuropeptide Y (Npy) and preproenkephalin (Penk), and
neuronal receptors including serotonin receptor type 7 (Htr7)
and arginine vasopressin receptor (Avpr1a) (22). This indicates
potential interaction between Tregs and other cells in the
nervous system. Comparison between blood and brain
infiltrating Tregs show that various cytokines (Spp1, Il10) and
trophic factors (Igf1, Osm) are also increased in brain Tregs
(106). However, as most of these studies were performed in
pathological conditions, determining whether these unique
characteristics of CNS-resident Tregs can be generalized to
brain homeostasis in health and disease will require further
investigation. Moreover, the clarification of environmental
signals and cellular mechanisms used by Tregs for CNS
homeostasis may be essential to understand the role of CNS-
resident Tregs.
FIGURE 3 | Characteristics of CNS-resident Tregs and their interaction with other CNS cells. T cells including Tregs exist in the meningeal space and the brain parenchyma
in both physiological and pathological conditions. In disease status, Tregs interact with CNS cells such as neural stem cells (NSCs), oligodendrocytes, microglia, astrocytes,
and neurons to modulate the pathology of CNS insults. CNS-resident Tregs express a high level of Treg markers such PD-1 along with neuronal receptors including 5-HT7.
CCN3, cellular communication network factor 3; SPP1, osteopontin; AREG, amphiregulin; SIRPa, signal regulatory protein alpha; 5-HT7, serotonin receptor 7; ST2, interleukin-
1 receptor-like 1; PD-1, programmed cell death 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; GITR, glucocorticoid-induced TNFR-related protein.
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TREGS INTERACT WITH CENTRAL
NERVOUS SYSTEM-RESIDENT CELLS

In general, immunomodulatory functions of Tregs are exerted by
interacting with other immune cells. The unique characteristics of
CNS-resident Tregs imply to regulate various CNS processes by
interacting with CNS-resident cells via distinctive mechanisms
other than classical Tregs functions. In this section, we will discuss
how CNS-resident Tregs interact with each cell type and how they
can regulate CNS function in heath and disease (Figure 3).

Astrocyte
Astrocytes are one type of glial cells that regulate a variety of
physiological properties, such as the production of neurotrophic
factors and the regulation of neuronal development and
neuronal synapses (109, 110). In pathological conditions,
astrocytes become reactive and often neurotoxic (111). The
neuroprotective role of brain Tregs has been studied by
repressing neurotoxic astrogliosis. In the context of traumatic
brain injury, peripheral T cells are infiltrated into the brain to
trigger astrogliosis that is exacerbated in diphtheria toxin-
inducing Tregs-depleted mice (112).

In the stroke mouse model, glial fibrillary acidic protein
(GFAP)+ astrocytes and CD4+ T cells, especially Tregs, are
accumulated at the ischemic injury site at 14 days after
MCAO, and this stockpile of astrocytes significantly increased
upon Tregs-depletion (22). AREG was abundantly produced by
brain Tregs than splenic Tregs, which are known for wound
healing and tissue repair (113). Astrogliosis in the brain of
MCAO mice was diminished by transferring wild-type (WT)
Tregs but not Areg-deficient (Areg-/-) Tregs (22). Furthermore,
IL-6 expression by microglia and astrocytes was reduced in WT
but not Areg-/- Tregs-transferred mice. This indicates that brain
Tregs produce AREG to suppress the neurotoxic astrogliosis by
suppressing IL-6 production from astrocytes (22). IL-33-ST2
signaling played the key roles for Tregs infiltration into the brain
that result in increased expression of AREG and epidermal
growth factor receptor (EGFR) at MCAO (100). As neurotoxic
astrogliosis is harmful in many other CNS injuries (111), it would
be interesting to determine whether the Tregs-mediated strategy
is applicable in other CNS diseases. Astrocyte-producing
molecules can affect CNS resident Tregs vice versa. Co-
culturing astrocytes with splenic T cells showed that astrocytes
help to sustain FOXP3 expression in Tregs through IL-2/STAT5
signaling (114). Recently, a study reported higher circulating
Tregs and serum IL-10 level at 48 and 72 hours after stroke onset
in patients (115). To further identify the association of Tregs
frequency with clinical outcomes, stroke patients are divided into
two groups based on disease outcome (good vs. poor based on
modified Rankin scale) and found the poor clinical outcomes
with a higher infection risk especially in patients with lower
Tregs frequency at 48 hours after stroke (115).

Despite the lack of clear mechanisms for the interaction
between Tregs and astrocytes in brain, these studies imply
therapeutic potential of Tregs to control astrocytes that should
be further investigated in future.
Frontiers in Immunology | www.frontiersin.org 8145
Microglia
Microglia are resident macrophages in the brain, which compose
about 6% to 18% of the human brain neocortical cells (116, 117).
Not like other CNS cells, microglia are originated from the yolk sac
during the embryonic period (118) and maintain brain
homeostasis and neuronal development via various cytokine
signaling (119, 120). In the brain, IL-10 from T cells and natural
killer cells (NKs) prevents deleterious microglial hyperactivation
following peripheral endotoxin challenge (121). Likewise, IL-10
from Tregs modulates the alternative (M2) microglial polarization
to ameliorate the outcome of intracerebral hemorrhage (122).
In addition, FOXP3+ Tregs are expanded under co–cultured
condition with MHCII+CD40dimCD86dimIL-10+ microglia,
stimulated by low dose IFN-g/MOG, resulting in mitigating the
EAE severity (123).

Microglia are involved along with astrocytes in the context of
inflammation. In murine stroke model, brain Tregs secrete
osteopontin (SPP1) to promote tissue-regenerative microglial
reactions for brain repair through the Integrin beta-1 (ITGB1)
receptor, expressed on microglia (106). Cerebral Tregs secrete
higher level of IL-10 than splenic Tregs, which has the key role to
control the LPS-induced inflammation in microglia (114).
Furthermore, co-culture of Tregs with microglia, promotes the
expression of various factors linked with brain repair and anti-
inflammatory processes in microglia (106).

In neurodegenerative diseases, Tregs have shown their
potential to delay disease progress by modulating microglial
function. Amyotrophic lateral sclerosis (ALS), which is
characterized by the selective destruction of motor neurons,
involves lymphocyte infiltration into the CNS and activation of
microglia in mice and human (124, 125). In the superoxide
dismutase 1 (SOD1) transgenic mouse, which is a murine
model for ALS, Tregs suppressed the cytotoxic microglial
factors such as NOX2 and iNOS in IL-4 dependent
mechanism (126). Indeed, compared with healthy individual,
Tregs from ALS patients express lower level of Foxp3 mRNA
together with the impaired suppressive function that are
positively correlated with progressive rate and severity of ALS
disease (124).

In an AD mouse model (APP/PS1), the depletion of Tregs
exacerbated cognitive dysfunction, accompanied by reducing the
recruitment of microglia toward the amyloid beta plaques and
lingered disease-related gene expression profile, and behavioral
impairments, which were rescued by enhancing Tregs with low-
dose IL-2 treatment (127). Indeed, circulating Tregs were
significantly reduced in patients with mild cognitive
impairment (128). Moreover, in a Parkinson’s disease (PD)
mouse model, neurotoxic microglial activation was ameliorated
by adoptive transfer of Tregs (129).

The significance of Treg-microglia interaction in conditions
other than CNS damage or neurodegenerative illness is an
interesting subject. Severe neuroinflammation is often observed
in the brain with schizophrenia (130) or stress-induced
depressive disorder (131, 132) in human and mice (133).
Given that psychosis is accompanied with inflammatory
responses in microglia, it is hypothesized that Tregs may
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contribute to the regulation of the microglial-induced
inflammatory responses in mental disorders.

Oligodendrocyte
Oligodendrocytes are myelinating glial cells that support neuronal
signals and produce the insulating sheath covering axons in the
CNS (134). If remyelination fails, the damaged myelin leads to
irreversible axonal loss and demyelinating diseases like multiple
sclerosis. In a lysolecithin induced demyelinated mouse model,
Tregs promoted oligodendrocyte differentiation and
remyelination by producing communication network factor 3
(CCN3), a growth regulatory protein (21). On the other hand,
Th17 have shown to inhibit oligodendrocyte maturation and
survival through IL-17 (135). Further studies are necessary to
understand the intercommunication between Tregs and
oligodendrocyte for brain homeostasis.

Neuron
There is limited evidence that Tregs directly affect neurons;
however, in an 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine
(MPTP) induced-PD mouse model, adoptive transfer of Tregs
attenuated behavioral change, the inflammatory reaction in the
brain, and the loss of tyrosine hydroxylase-positive dopaminergic
neurons in the substantia nigra (136), partially due to direct
interaction between Tregs and dopaminergic neurons via CD47
and SIRPa, respectively (137). On the other hand, neurological
molecules can govern the response of CNS-infiltrated Tregs (133).
Neurons, co-cultured with T cells, produced TGF-b1 and B7
molecule, to convert encephalitogenic T cells to TGF-
b1+CTLA4+ Tregs which potentially inhibit disease progression
upon transferring into EAE model mice (138).

Neural Stem Cells
Following an insult to the CNS, de novo neurogenesis to replace
the damaged neuron is important for functional recovery (139).
Neural stem cells (NSCs), localized in specific regions of the adult
brain, such as the subventricular zone and the dentate gyrus of
the hippocampus, can replenish new neurons (140). Considering
the unique roles of Tregs for the regulation of stem cells in skin
(141), it is plausible that Tregs participate the regulation of
neural stem cells in brain. Indeed, depletion of Tregs via anti-
CD25 treatment led to impaired neurogenesis after stroke in a
mouse model (142). Moreover, the transferring of activated
Tregs enhanced NSCs proliferation in the subventricular zone
(SVZ), which was mediated by IL-10 produced by Tregs (143).

Given the role of Tregs in pathological conditions, further
study is necessary to determine whether Tregs interact with NSCs
for neurodevelopment or homeostatic adult neurogenesis. In mice,
lymphocytes are found in the brain during the perinatal period
(92, 144), implying their role in brain at developmental stages. It is
worth mentioning that a subset of B cells, B-1a cells, are involved
in oligodendrogenesis during brain development (144). The EGFR
ligand AREG, which is mainly produced by tissue Tregs, might be
one candidate for regulating NSCs by Tregs in brain, as EGFR
signaling is important for NSCs to maintain their proliferative
capacity during cerebral cortex development (145). Furthermore,
AREG acts as the mitogen for adult NSCs (146).
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CROSSTALK BETWEEN INTESTINAL
TREGS AND THE NERVOUS SYSTEM

Neurons in the PNS innervate various organs in the body. It has
been implied that neuronal signaling can regulate the immune
system in other organs, as immune cells are known to express
several receptors for neurotransmitters and neuropeptides (11,
65, 147). Consistently, a line of human studies shows the
dysregulation of the immune system in neurological diseases.
In particular, the imbalance of Th17 and Tregs in the peripheral
immune system have been reported in patients with autism
spectrum disorder (148, 149), epilepsy (150), PD (151), and
schizophrenia (152). The gut and brain communicate with each
other, and their close association implies reciprocal control
between the nervous system and intestinal immunity. Focusing
on Tregs, we cover the new discoveries and perspectives on the
regulation of intestine Tregs by neuronal signals and vice
versa (Figure 4).
NEURONAL SIGNALING REGULATES
INTESTINAL TREGS

The GI tract is innervated by various peripheral neuronal cells –
sympathetic, parasympathetic, and sensory neurons (153) – that
regulate various physiological functions. PNS neurons can directly
innervate into the GI tract or deliver neuronal signals through the
ganglia, which are a collection of neuronal cell bodies in the
periphery (153–155). Efferent sympathetic and parasympathetic
neurons convey signals from the brain to the gut. Sympathetic
neurons are originated from the spinal cord and project to the
prevertebral ganglia and pelvic ganglia. Parasympathetic neuron
cell bodies are located in the dorsal motor nucleus of the vagus
nerve in the hindbrain or in the lumbosacral spinal cord, and they
project to the pelvic ganglia or directly to the GI tract (154, 155).
Afferent sensory neurons originating from nodose/jugular ganglia
and dorsal root ganglia are pseudo-unipolar neurons that extend
into both the peripheral organs such as the gut and the CNS.
Afferent neurons convey information from the gut to the brain
(153), but also can signal to the gut by releasing neuropeptides
(156). Besides the external innervations, the GI tract has an
independent nervous system known as the enteric nervous
system (ENS), connected with external neurons conveying
signals from the CNS (157).

Although the exact mechanism is not well understood,
neuronal signals can regulate intestinal Tregs (Figure 4). Indeed,
vagus nerve stimulation increased frequency of intestinal Tregs
(158), but vagotomy reduced the number of Tregs in the colon,
particularly HELIOS−RORgt+ pTregs (11). Neurotransmitters and
neuropeptides, released from the nerve terminal, have been
proposed as the potential mechanisms for the regulation of T
cell plasticity in the GI tract. Cholinergic parasympathetic neurons
produce acetylcholine (159). In addition, nicotinic and muscarinic
classes of acetylcholine receptor expressed on T cells regulate T cell
differentiation in vitro (160). Vasoactive intestinal peptide (VIP) is
a neuropeptide, known for its anti-inflammatory function,
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produced by neurons in PNS (161) and ENS neurons (162). VIP
induces proliferation of CD4+CD25+ Tregs producing IL-10 and
TGF-b in lymph node and spleen (163), which has potent
therapeutic effect in inflammatory disorders including EAE
(164) and collagen-induced arthritis (165). Calcitonin gene-
related peptide (CGRP), a pain-related neuropeptide, mainly
released from sensory neurons (166), increases differentiation of
Tregs in a model of EAE (167). On the other hand, substance P, a
mediator for pain neurotransmission secreted at the end of
sensory neuron nerve (168), was shown to impair Tregs
function in murine dry eye disease model through the
neurokinin 1 receptor, expressed on Tregs (169). Other signaling
molecules, such as cytokines, produced by neuronal cells, may also
regulate intestinal Tregs. For example, ENS neuron-derived IL-6
regulates RORgt+ Tregs differentiation (170) and epithelial-derived
IL-18 regulates Tregs function in a colitis model (88).
Furthermore, high level of cytokine, chemokine, and their
receptors are detected in ENS neurons (171, 172). Overall, these
findings suggest various neuron-derived messenger molecules are
involved in the regulation of intestinal Tregs and homeostasis.

Besides signaling through the receptors expressed on Tregs,
neuronal signaling can indirectly regulate intestinal Tregs via
other intestinal immune cells. For instance, the neurotransmitter
acetylcholine, produced by enteric neurons, activates muscarinic
acetylcholine receptors (mAchR) on colonic APCs, such as
CX3CR1+ mononuclear phagocytes and CD103+ DCs to
promote pTregs differentiation via aldehyde dehydrogenases (11).

As discussed, not only neuronal signaling would enables to
modulate intestinal Tregs in various pathological conditions, but
also local tissue Tregs may modulate the function of peripheral
neurons. This has been studied in murine pain model such as
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chronic constriction injury, in which spontaneous pain recovery
after the injury was delayed in Tregs-depleted mice (173, 174).
While these studies do not give direct evidence of Tregs on
peripheral nerves, this is enough to suggest the essential roles of
inflammation for the repair and function of an innervated nerve.
MICROBIOME AND INTESTINAL TREG IN
THE GUT-BRAIN AXIS

As discussed, the microbiome is an important regulator of
immune system. Several studies have shown that the gut
microbiome can regulate neurons innervating the GI tract,
which, in turn, may lead to the modulation of intestinal Tregs.
This entanglement potentially influences CNS activity and
behavior via signaling through the gut-brain axis. For example,
GF mice show more anxiolytic and anti-social behavior pattern
than SPF mice (175). In addition, recent studies indicate that the
microbiome regulates transcriptome and neural activity of
organ-innervated neuron. The activity of gut-innervated
sympathetic neurons is increased in GF or antibiotics-treated
mice as shown by staining with c-FOS, indicating direct
regulation of neuronal activity by commensal microbiota (13).
In RNA-sequencing based transcriptome analysis with myenteric
neurons from GF and SPF mice, Ahr expression is significantly
increased depending on the microbiome that regulates intestinal
peristalsis (176). Moreover, the gut microbiota induced neuronal
maturation in the colonic myenteric plexus of GF mice,
colonized with a normal microbiota, via serotonin type 4 (5-
HT4) receptor signaling (177). Regulation of neurons, involved
FIGURE 4 | Possible model of crosstalk between intestinal Tregs and gut-innervating neurons. External neuronal cells from the peripheral nervous system innervate
to the intestine, and neurons in the enteric nervous system exist in the colonic myenteric and submucosal plexus. Neuronal factors, released from the nerve terminal,
are involved in the regulation of intestinal Tregs. A neurotransmitter acetylcholine (Ach) activates colonic antigen presenting cells, which may support the development
of pTregs in the intestine. Vasoactive intestinal peptide (VIP) enhances the proliferation of Tregs and calcitonin gene-related peptide (CGRP) promotes the
differentiation of Tregs. Cytokines such as IL-6, produced by neuronal cells, regulate the induction of RORgt+ Tregs. It is expected that Tregs-derived molecules can
signal to neuronal cells to modulate their function, which have to be further elucidated.
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in the gut-brain axis by the gut microbiome, plausibly modulates
the immune composition and function in the GI tract, including
Tregs. An intestinal organ culture system showed that Tregs-
inducing Clostridium ramosum (C.ramosom) altered
neurotransmitter expression in gut, which regulated RORgt+

Tregs (178). In the reverse, gut-innervating nociceptor neurons
not only produced CGRP but also shaped the composition of gut
microbiota such as segmented filamentous bacteria (SFB) to
promote host defense against Salmonella in the small intestine
(156). Altogether, these studies suggest the essential roles of gut
microbiome for the proper regulation of gut-brain axis via Tregs.

CONCLUSION AND PERSPECTIVE

In recent years, emerging studies have shown the role of Tregs in
regulating pathophysiological condition along the gut-brain axis.
Given the functional diversity and heterogeneity of gut-resident
Tregs as described in this article, it is well-demonstrated that
intestinal Tregs are crucial for the maintenance of immune
homeostasis and tolerance to luminal antigens along with
pathogens. In addition, CNS-resident Tregs, which interact with
various CNS cells including neurons, glial cells, neural stem cells,
etc. govern brain homeostasis (Table 1). Since present knowledge
about CNS-resident Tregs is limited in pathological or
inflammatory conditions in which most of CNS T cells are
actively infiltered from peripheral immune system, it remains to
be clarified whether Tregs in the CNS, despite their limited
number, have physiological roles in the homeostatic state.

As discussed in this review, the communication between the
CNS, the GI tract, and the microbiota is essential for the exquisite
control linking emotional and cognitive centers of the brain with
peripheral intestinal/immunological functions, known as ‘gut-brain
axis’. Although the mechanisms of this inter-organ interaction are
now being elucidated, many aspects remain unknown. Neuronal
innervations into the GI tract can regulate local immune responses
through neuro- (neurotransmitters and neuropeptides) as well as
immunological- (cytokines and chemokines) messengers.
However, it is still primitive to elucidate the importance of
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neuroimmunological functions with detailed mechanisms in health
and disease. Considering the differences in Tregs populations and
proportion along the intestinal tract, one interesting question is
whether neuronal innervation is directly or indirectly involved in this
divergence and the neuro-/immunological meaning of this
distinction (171). In the other way around, the immune cells in
the GI tract, including Tregs, may also regulate the neurons
innervating along the GI tract, which could modulate neuronal as
well as intestinal functions (179, 180). Further understanding the
regulation of gut-brain axis by Tregs may give a better
comprehension of inter-organ communication between CNS and
other organs. In a manner similar to the gut-brain axis, recent
research reveals that microbial products in the lungs can likewise
alter brain function and disease pathology, known as the lung-brain
axis (181). This suggests that not just gut but multiple organs might
be potentially communicated with neurological compartment for
tissue homeostasis. Because Tregs are present in nearly all organs, the
role of long-range communications for inter-tissue homeostasis and
the manner in which Tregs engage in this process are important
questions that must be addressed in the future.
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TABLE 1 | Interaction of Tregs with tissue-resident cells and its physiological outcomes in the CNS and the intestine.

Region Target cell Physiological outcome Reference

CNS Astrocyte Diminishment of astrogliosis in MCAO stroke mouse model by transferring wild-type Tregs via AREG signaling on Tregs (22)
Strengthened Foxp3 expression in Tregs through IL-2/STAT5 signaling by in vitro co-culturing with astrocytes (114)

Microglia Inhibition of inflammatory response (TNFa, IL-6, IFN-g) of LPS-stimulated microglia and pathology of intracerebral hemorrhage
via IL-10 signaling

(114, 122)

Enhancement of brain reparative microglial reactions by secreting SPP1 and through the ITGB1 signaling in the stroke mouse
model

(106)

Suppression of cytotoxic microglial factors NOX2 and iNOS through IL-4 mediated mechanism in ALS mouse model (126)
Improvement of cognitive function and disease pathology in APP/PS1 AD mouse model and MPTP-induced PD mouse model
by inducing Tregs through suppression of microglial responses

(127, 129)

Oligodendrocyte Promoting oligodendrocyte differentiation through CCN3 signaling (21)
Neuron Reduction of inflammatory cytokine expression and 5-TH dopaminergic neuron loss in MPTP induced-PD mouse model by

adoptive transfer of Tregs
(136)

Suppression of EAE disease progression by transferring of Tregs, co-cultured with neurons (138)
Stem cell Induction of NSC proliferation in adult mouse SVZ through transplantation of active Tregs via IL-10 signaling (143)

Intestine External neuron
(Vagus nerve)

Increased Tregs in mesenteric lymph node by vagus nerve stimulation but reduced Tregs and RORgt+ pTregs by vagotomy (11, 158)

Enteric neuron Enhanced differentiation of Treg into RORgt+ Tregs by IL-6 secreted from ENS (170)
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Colorectal cancer (CRC) is a heterogeneous disease with one of the highest rates of
incidence and mortality among cancers worldwide. Understanding the CRC tumor
microenvironment (TME) is essential to improve diagnosis and treatment. Within the
CRC TME, tumor-infiltrating lymphocytes (TILs) consist of a heterogeneous mixture of
adaptive immune cells composed of mainly anti-tumor effector T cells (CD4+ and CD8+
subpopulations), and suppressive regulatory CD4+ T (Treg) cells. The balance between
these two populations is critical in anti-tumor immunity. In general, while tumor antigen-
specific T cell responses are observed, tumor clearance frequently does not occur. Treg
cells are considered to play an important role in tumor immune escape by hampering
effective anti-tumor immune responses. Therefore, CRC-tumors with increased numbers
of Treg cells have been associated with promoting tumor development, immunotherapy
failure, and a poorer prognosis. Enrichment of Treg cells in CRC can have multiple causes
including their differentiation, recruitment, and preferential transcriptional and metabolic
adaptation to the TME. Targeting tumor-associated Treg cell may be an effective addition
to current immunotherapy approaches. Strategies for depleting Treg cells, such as low-
dose cyclophosphamide treatment, or targeting one or more checkpoint receptors such
as CTLA-4 with PD-1 with monoclonal antibodies, have been explored. These have
resulted in activation of anti-tumor immune responses in CRC-patients. Overall, it seems
likely that CRC-associated Treg cells play an important role in determining the success of
such therapeutic approaches. Here, we review our understanding of the role of Treg cells
in CRC, the possible mechanisms that support their homeostasis in the tumor
microenvironment, and current approaches for manipulating Treg cells function in cancer.

Keywords: colorectal cancer, CRC, T regulatory cells, Treg, tumor microenvironment, immunotherapy,
immunometabolism, tumor infiltrating cells
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INTRODUCTION

Colorectal cancer (CRC) is the third most diagnosed cancer
worldwide, and the second main cause of cancer-related death
(1). The main causes of high mortality are late diagnosis and high
relapse after treatment, with 70% of patients only being
diagnosed when the tumor has metastasized to distant organs
such as liver (20%-70%) and lung (10%-20%) (2, 3). CRC
patients are a heterogeneous group, where differences at the
molecular and genetic level influence clinical outcomes and
response to therapy (4, 5). Seventy percent of CRC is of mostly
sporadic origin, while 20-30% of cases are familial. From these,
approximately one-third are caused by highly penetrant
inherited mutations that have been well characterized, so-
called hereditary CRC. The etiology of the remaining familial
cases is not completely understood but is often associated with
lower-penetrance suscept ibi l i ty genes and specific
polymorphisms regulated by environmental, or other genetic
inherited factors, that when co-inherited increase cancer risk (6–
8). Additionally, intestinal inflammatory responses related to
inflammatory bowel diseases (IBDs) can result in the
development of CRC (9). Prolonged and severe inflammation
often correlates with increased cancer risk (10). Colorectal polyps
or adenomas arise from the epithelial cells lining the colon and
are considered precursors to tumor development. During the
initiation of CRC, epithelial cells acquire genetic and epigenetic
modifications increasing the risk of malignant transformation
and conferring a selective advantage. These can increase in size
and the degree of dysplasia eventually leading to the
development of dysplastic adenomas that subsequently evolve
to adenoma-carcinoma (4, 5). The immune response can
recognize and target tumor-specific and tumor-associated neo-
antigens thereby arresting CRC development. Here, CD8+
cytotoxic T lymphocytes (CTLs) play an essential role, with the
cooperation of CD4+ helper T (Th) cells. However, CRC tumors
can manipulate the tumor microenvironment (TME), promoting
cancer outgrowth through regulation of immune infiltration, and
generating an immunosuppressive and inflammatory
environment. In this way, the TME plays a key role in
modulating the plasticity of tumor cells and providing immune
escape mechanisms (11–14).
THE CRC TUMOR MICROENVIRONMENT
AND TUMOR-INFILTRATING
LYMPHOCYTES

The TME includes malignant tumor cells together with immune
cells, stromal cells, endothelial cells, extracellular matrix (ECM),
cytokines, chemokines, and other soluble mediators (14–17).
Cancer development in general, and CRC progression in
particular, are linked with the complex role that the immune
response plays in the early stages of tumor development (15, 18–
20). The immune system has a multi-faceted role in CRC
development (15) and has a substantial impact on patient
outcome (18). Tumor-infiltrating immune cells (TIICs) include
Frontiers in Immunology | www.frontiersin.org 2155
adaptive immune cells (T cells and B cells), natural killer (NK)
cells, macrophages, and additional innate cells such as myeloid-
derived suppressor cells (MDSCs) (14, 21, 22). TIICs directly
participate in the generation and maintenance of an actively
suppressive anti-tumor immune response supporting CRC
progression (23). MDSCs secrete cytokines and express
immunosuppressive molecules at their surface that can inhibit
T cells, B cells, and NK cells while promoting Treg cells and
tumor-associated macrophages (TAMs) (24, 25). The most
enriched population of TIICs are tumor-infi ltrating
lymphocytes (TILs) that promote inflammation and are often
used to evaluate disease prognosis (26, 27). TILs are a
heterogeneous mixture of lymphocytes composed mainly of
anti-tumor effector T cells (CD4+ and CD8+ subpopulations)
and immunosuppressive Treg cells (27, 28). The balance between
these two populations is critical in anti-tumor immunity. In
general, while tumor antigen-specific T cell responses are
observed, tumor clearance frequently does not occur,
highlighting the important role of immunosuppressive Treg
cells (29, 30). Since tumors can directly shape TIICs
populations and function, this interplay provides the capacity
to escape immunosurveillance (15, 18). TILs are also associated
with the molecular classification of CRC tumors, and with
patient prognosis and immunotherapy responses (21, 23, 31).
CRC-tumors composed of mainly anti-tumor T cells, particularly
type 1 helper T cells (Th1) and cytotoxic CD8+ T cells, correlate
with favorable prognosis and survival (32, 33). In contrast,
increased accumulation of Treg cells is generally associated
with CRC progression and metastasis, immunotherapy failure,
and a poorer prognosis, although this correlation is not definitive
(34–40). Understanding the dynamics between CRC tumors and
immune cells in the TME is essential to improve both diagnosis
and treatment.
FOXP3+ REGULATORY T CELLS

FOXP3+ regulatory T cells, hereafter termed Treg cells, are
essential in the maintenance of immunological homeostasis
and self-tolerance (41–43). They can have broad suppressive
activity, secreting immunomodulatory cytokines and cytolytic
molecules allowing them to regulate immune responses (44).
Treg cells have been well-studied due to their capacity to regulate
the function of a wide variety immune cells including
lymphocytes, dendritic cells (DCs), and macrophages (42). The
depletion or reduction of Treg cells is associated with beneficial
anti-tumor immune responses and eradication of microbes
during chronic infections (45, 46). The concept of Treg cells as
suppressor T cells was first proposed in the 1970s (47–49) and
was later further defined as a subpopulation of approximately
10% of peripheral CD4+ T-cells expressing the IL-2 receptor
alpha-chain (CD25) (50). However, the use of CD25 to identify
Treg cells is problematic since it is a general marker of activated
T-cells (51, 52). Subsequently, in a breakthrough for the field, the
forkhead box P3 transcription factor (Foxp3) was found to be an
additional marker of Treg cell ontogeny (53–57). Subsequent
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studies in both mice and humans identified FOXP3 is a master
regulator of both Treg cell development and function (58, 59).
Naïve CD4+ T cells can transiently upregulate CD25 and FOXP3
expression upon activation (60) and human Treg cells are usually
characterized by the expression of FOXP3, CD25, and the low
expression of the IL-7 receptor alpha chain, CD127 (61).

In the thymus, tTreg cell differentiation is driven by strong T
cell receptor (TCR)-mediated recognition of self-antigens (62,
63). In secondary lymphoid organs, peripheral Treg cells (pTreg)
can differentiate from naïve or effector CD4+ T cells through
TCR stimulation in the presence of TGF-b and IL-2, inducing
FOXP3 expression (63–65). The pTreg cell TCR repertoire
recognizes foreign-antigens, as opposed to tTreg that are
biased towards self-recognition (66, 67). Furthermore, the
expression of transcription factor Helios and the cell-surface
glycoprotein neuropilin-1 (Nrp1) can be used to distinguish
tTreg that highly express both factors from pTreg that poorly
express them. However, pTreg can also upregulate Helios and
Nrp1 under inflammatory conditions, or in response to certain
activation signals such as IL-2 stimulation (68–70).

FOXP3-expressing CD4+ T cells can be further subdivided
into two main subsets: central Treg cells (cTreg cells) and effector
Treg cells (eTreg cells). However, in humans, activated Teff cells
can transiently express FOXP3 and secrete pro-inflammatory
cytokines (IL-17, IL-2, and IFNg), however they are considered
to be non-suppressive (71, 72). cTreg cells are recent thymic
emigrants that have not yet been activated and exhibit a naïve
phenotype (CD45RA+ FOXP3lo) with low suppressive activity.
Frontiers in Immunology | www.frontiersin.org 3156
They are enriched in lymphoid tissues where they express
lymphoid-tissue homing molecules including CD62Lhigh,
CD44low and CCR7, and are dependent on IL-2 for
maintaining their quiescent state (73). In secondary lymphoid
organs, cTreg cells undergo further differentiation upon TCR
engagement to become eTreg cells (CD45RA- FOXP3hi). These
cells proliferate, further and develop into highly suppressive cells,
upregulating activation markers, immunosuppressive cytokines,
chemokines, and their receptors. They subsequently migrate to
non-lymphoid tissues, downregulate lymphoid-tissue homing
molecules (CD62Llow, CD44high) and acquire a tissue-specific
transcriptional signature associated with their role in each
location (63, 74, 75). eTreg cell suppressive function correlates
with co-expression of FOXP3 and lineage-specific transcription
factors common the Teff cells population (Table 1).

Histone post-translational modifications and DNA
methylation patterns are intimately associated with the
differentiation and function of Treg cells (76–78). FOXP3
transcription is epigenetically controlled through regulation of
its promoter and several intronic enhancers, termed conserved
non-coding DNA sequences (CNS) 0–3 (77, 79). The
demethylation status of CNS1 and CNS2 is regulated by TGF-
b and IL-2 and associated with the stable expression of Foxp3
(80–82). TET1/2 methylcytosine dioxygenases demethylate
CNS1/2 thereby stabilizing Foxp3 expression and other Treg
cell signature genes including Cd25, Nrp1, and Il1rl1 (82). Mice
with CNS1‐deficiencies can generate tTreg cells but not pTreg
cells, leading to a deficiency of colonic Treg cells, development of
TABLE 1 | Treg cells subtypes.

Characterize by Localization Function

Ontogeny tTreg cells CD45RA+ FOXP3lo

Helioshi Nrp1 hi
Thymus tTreg cell TCR repertoire recognizes self-

antigens
pTreg cells CD45RA- FOXP3hi

Helioslo/- Nrp1 lo/-
Secondary lymphoid organs pTreg cell TCR repertoire recognizes tissue

specific and foreign antigens
Function cTreg cells CD45RA+ FOXP3lo CD25lo

CD62Lhi CD44lo

CCR7hi, secondary lymphoid
tissue homing molecule

Leave the thymus to lymphoid tissues,
enriched in secondary lymphoid organs

Naïve phenotype with low suppressive activity
Control autoimmune reactions and induce
transplant tolerance

eTreg cells CD45RA- FOXP3hi CD25hi

CD62Llo CD44hi

CCR7lo

Activation molecules: ICOS and
OX-40
Inhibitory molecules: CTLA, PD-
1, TIGIT and LAG-3
Effector molecules: IL-10, TGF-b,
IL-35

Originated in secondary lymphoid organs
and migrate to non-lymphoid tissues

Highly suppressive cells
Maintain immune homeostasis

OX-40+ and ICOS+ Treg cell: secrete high
levels of suppressive cytokines such as IL-10
CTLA+, PD-1 and TIGIT+ Treg cell: impair
dendritic cell function preventing Teff activation

eTreg cell
subtypes

Th1-like
Treg cells

T-bet+ IFNg+
CXCR3, migration to inflamed
tissue mediated by Th1 cells

Inflammatory loci in non-lymphoid tissues Inflammatory autoimmunity
Secrete IFNg and suppress Th1 and Th17 pro-
inflammatory immune response

Th2-like
Treg cells

Gata3+ IRF4+ IL4+
CCR8, recruitment to inflamed
tissue mediated by Th2 cells

Inflammatory loci in non-lymphoid tissues Secrete IL-4 and IL-13 and suppress Th2-
mediated response

Th17-like
Treg cells

RORgt+ IL-17+
CCR6, recruitment to inflamed
tissue mediated by Th17 cells

Inflammatory loci in non-lymphoid tissues Oral tolerance
Mucosal immunity, maintain homeostasis and
tolerance to commensal microbiota
Secrete anti-inflammatory IL-10 to inhibit
pathogenic Th17 cell responses
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aggressive inflammation in the mucosa, and spontaneous colitis
(77, 83, 84). For tTreg cell stability, Foxp3 expression alone is
insufficient and additionally requires genome-wide CpG
hypomethylation driven by TCR stimulation (85).

The mechanisms by which Treg cells modulate immune
suppression have been the subject of many studies (43, 44, 86).
In general, Treg cells exert their immunosuppressive function
through three main mechanisms. Firstly, Treg cells repress the
immune response of effector immune cells by secreting
immunomodulatory cytokines and cytotoxic molecules.
Secondly, Treg cells express immune checkpoint receptors by
which they interact and suppress Teff cells or antigen-presenting
cells. Furthermore, Treg cells interfere with the metabolism of
effector cells thereby affecting their function.
TISSUE-RESIDENT INTESTINAL
TREG CELLS

Over the last decade, it has become clear that Treg cells undergo
tissue-specific adaptation in non-lymphoid tissues and acquire
context-dependent tissue-specific gene signatures (75, 87, 88). As
described above, cTreg cells express lymphoid tissue homing
molecules involved in trafficking to secondary lymphoid organs.
In these secondary organs, tissue-specific self-antigens ormicrobial
antigens recognized by cTreg cells lead to their differentiation to
eTreg cells, upregulating activation markers (CD44hi), effector
molecules (CTLA4, GZMB, KLRG1), chemokines and their
receptors (CCR4), and immunosuppressive cytokines (IL-10)
(75, 89). Upon TCR stimulation, the upregulation of homing
receptors, including chemokine receptors and adhesion
molecules, further directs the migration and localization of the
eTreg cells to non-lymphoid peripheral sites in response to specific
stimuli (89).

Tissue-resident eTreg cells are found in almost all peripheral
tissues where they adapt to environmental cues and exhibit a
tissue-specific transcriptional adaptation associated with their
function (88, 90). They are specialized in controlling peripheral
immune homeostasis by acquiring a combination of homing
receptors, transcription factors, immune-regulatory
mechanisms, and a specific TCR repertoire (74). eTreg cells
not only dampen immune responses but also promote the
regeneration and repair of injured tissue or stimulate stem cell
differentiation (91, 92). In the intestinal tract, the majority of the
immunoregulatory processes occur in the mucosal lamina
propria (LP). Among the total CD4+ T-cell population in the
LP, 10-15% in the small intestine and 25-35% in the large
intestine are Treg cells. To maintain intestinal immune
homeostasis, Treg cells control immune responses against
innocuous food and microbial antigens (75, 93). Colonic pTreg
cells are mainly directed towards microbial antigens, as
highlighted in studies using germ-free mice, where a reduced
number of colonic Treg cells was observed compared to specific
pathogen-free (SPF) mice (94). Some colonic eTreg cells
originate from tTreg cells and are characterized by expression
Frontiers in Immunology | www.frontiersin.org 4157
of the transcription factors Gata3, Helios, and Nrp1 (95).
However, most eTreg cells result from the conversion of CD4
+Foxp3− T cells to pTreg cells expressing the nuclear hormone
receptor RORgt, with low Helios or Nrp1 expression (96).
Control of Foxp3 expression in pTregs generated in the
digestive-system lymphoid-tissue has been attributed to
regulation of CNS1 (77). CNS1 contains binding sites for
several transcription factors including NFAT, Smad, and
retinoic acid receptor (RAR) and retinoid X receptor (RXR)
whose binding promotes Foxp3 expression. TCR stimulation
activates NFAT, while TGF-b signaling activates Smad3 whose
association with CNS1 contributes to histone acetylation and
enhancer activation. This synergistic binding of NFAT and Smad
to CNS1 is essential for Foxp3 expression (83).

Transcriptional and functional analysis of both murine and
human colonic Treg cells has defined two specialized subsets
based on the expression of transcription factors and cell surface
markers. One population, the FOXP3+ GATA3+ Helios+ Nrp1+
Treg cells are similar to so-called Th2-like eTreg cells. GATA3 is
a canonical Th2 transcription factor with a fundamental role in
controlling Treg cell fate and accumulation in tissues during
inflammation. It is expressed in Treg cells homing to barrier sites
such as skin and intestine, constituting one-third of the colonic
Treg cells (97). Most of the GATA3+ Treg cells also express IL-
1RL1 (also known as ST2), whose expression is GATA3-
dependent. ST2 binds to tissue-danger signal IL-33, which is
elevated in the colon after inflammation-driven tissue damage.
The IL-33-ST2 pathway is crucial for Treg cell homing and
accumulation in the intestine, along with high expression of the
intestinal-homing receptors CCR9 and a4b7. In a positive
feedback loop, IL-33 induces the recruitment of GATA3 to the
il1r1 enhancer and foxp3 promoter, resulting in increased
FOXP3 and ST2 expression establishing the eTreg cell
transcriptional program. GATA3+ ST2+ Treg cells also secrete
amphiregulin, a tissue-remodeling factor that mediates tissue-
regeneration, and IL-10, a cytokine that supports intestinal stem
cell renewal, restraining their proliferation and aberrant
differentiation (98–100). In this way, Treg cell accumulation
l im i t s t i s s u e damag e by a r ap i d adap t a t i on t o
tissue inflammation.

A second, larger proportion of eTreg cells express FOXP3+
RORgt+ Helios- Nrp1- and are classed as Th17-like Treg cells.
RORgt Treg cells constitute 40-60% of total colonic Treg cells
(96, 101) and are normally directed against microbiota,
constraining intestinal immune responses (94, 102). Recently,
RORgt expression in colonic Treg cells has been associated with
maintenance of Foxp3 expression during colitis (103). Deletion
of RORgt was found to lead to an upregulation of T-bet and IFN-
g, loss of Foxp3 expression, and severe intestinal inflammation in
mice. T-bet deletion in RORgt knockout animals was found to
restore Foxp3 expression and immunosuppressive function
during inflammation. These results suggest that RORgt, by
suppressing T-bet expression, promotes Foxp3 expression and
thereby Treg cell function (103). Moreover, RORgt expression
correlates with upregulation of immunosuppressive receptors
including PD-1, ICOS, and CTLA4, the nucleotidases CD39 and
July 2022 | Volume 13 | Article 903564
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CD73, and secretion of high amounts of anti-inflammatory
cytokines including IL-10 and TGF-b. This transcriptional
reprogramming enhances regulatory function to restrain
inflammatory responses critical for controlling chronic
inflammation (96, 101, 104).

Taken together, these findings illustrate a range of Treg cell
phenotypes and functions in the intestinal mucosa, with
remarkable flexibility to maintain tissue homeostasis. While
transcriptional analysis of mice colonic Treg cells identified
Gata3+Helios+ and RORgt+ Helios− subpopulations, in humans
this is less clear. GATA3+ Treg cells have been described in
blood, however, they have not yet been identified in human
intestine (97). RORgt+ Treg cells are present in comparable levels
in biopsies from healthy colonic LP and patients with Crohn’s
disease (96). Furthermore, RORgt+ Treg cells are elevated both in
blood and tissues of IBD patients, and in the blood and tumors of
CRC patients during different stages of the disease (105, 106).
TUMOR-INFILTRATING TREG CELLS
AND CRC

Since the observation of a population of immunosuppressive
CD4+ T-cells in sarcoma tumor-bearing mice (107), a steadily
increasing number of studies has demonstrated an important
role for Treg cells regulating anti-tumor immunity (108–110).
Treg cells can account for more than 50% of all CD4+ T cells in
the TME of solid tumors including gastric (111), lung (112),
breast (113), ovarian (114), cervical (115), melanomas (116) and
hepatocellular (112) cancer. As already mentioned, high
numbers of TI-Treg cells is often associated with poor
prognosis and low survival rates (117, 118). In CRC, increased
numbers of FOXP3+ T cells correlate with both, improved (30,
71, 117, 119–121) or worsened prognosis and overall survival
(122). This discrepancy may be explained by the difficulties in
defining the identity of suppressive FOXP3+ Treg cells at the
tumor site. In line with this, analysis of TILs in human CRC
identified two heterogeneous subpopulations of FOXP3+ T-cells
associated with patient outcome (123). Better prognosis was
associated with increased infiltration of non-suppressive
FOXP3lo non-Treg cells (CD45RA- FOXP3lo). These were
found to generate a strong pro-inflammatory environment
through the secretion of inflammatory cytokines such as TGF-
b, IL-12, and TNF-a. In contrast, increased numbers of
suppressive CD45RA- FOXP3hi eTreg cells correlate with
poorer outcomes and lower disease-free survival (123).

The percentage of Treg cells, as a proportion of CD4+ T cells,
infiltrating the TME in CRC is significantly higher compared to
healthy colon (124). While some studies support the concept that
TI-Treg cells may originate from tTreg cells that migrate and/or
expand in the TME, others support in situ generation of pTreg
cells (28, 125–127). TI-Treg cells expressing Helios have also been
identified suggesting their thymic origin in human CRC (128).
Studies analyzing CD4+ TCR repertoires in murine solid tumor
models have demonstrated largely distinct TCR repertoires in
Frontiers in Immunology | www.frontiersin.org 5158
Foxp3+ and Foxp3− CD4+ T cells. This suggests that increased
numbers of TI-Treg cells is due to the in situ proliferation of Treg
cell clones in tumors, and not conversion of CD4+ T cells to Treg
cells (129, 130). Consistent with these findings, additional studies
of TCR repertoires support that TI-Treg cells have little overlap
with conventional CD4+ T-cells in murine models of prostate
cancer (131) or human breast cancer (128). In CRC patients, Teff
and Treg cells have been shown to develop distinct TCR
repertoires against tumor-associated antigens, leading to specific
tumor-associated antigen responses. Treg cells have high
specificity for a limited repertoire of tumor antigens and exert
their immunosuppressive function against Teff cells to damp their
responses. Since the repertoire of antigens that Teff and Treg cells
can detect is different, this provides the potential for therapeutic
approaches that identify peptides that can stimulate anti-tumor T-
cell but not Treg cell responses (132). A recent study
characterizing the TCR repertoires of TI-Treg cells in human
metastatic gastrointestinal melanoma, and ovarian cancers showed
a significant overlap with circulating Treg cells but not with
conventional CD4+ T cells found in either tumor or blood (133).

TI-Treg cells generally exhibit CpG hypomethylation patterns
required for the induction of Foxp3 expression and generation of
stable, functional Treg cells (78, 85, 134). In colonic RORgt+
Treg cells, the CNS2 region, also referred to as the major Treg-
specific demethylated region (TSDR), is significantly
demethylated (101, 135). In CRC tumors, TSDR demethylation
has been associated with STAT5 and TET2, and the expression of
both is upregulated in CRC tumor-infiltrating CD4+ T cells.
Here, STAT5 and TET2 coordinately bind the FOXP3-TSDR,
promoting DNA hypomethylation and FOXP3 expression (136).
Analysis of the FOXP3-TSDR demethylation rates (TSDR-
DMRs) in Treg cells from CRC tumors and adjacent healthy
colon samples demonstrated higher TSDR-DMRs demethylation
in TI-Treg cells (137). In another study utilizing 130 paired
samples of CRC tumor tissue and adjacent healthy colonic
mucosa samples, significantly higher TSDR-DMRs and
increased FOXP3 mRNA and protein expression were also
observed in TI-Treg cells (138). These observations provide an
explanation for increased FOXP3 expression in CRC tumor-
infiltrating Treg cells compared to healthy colon tissue.

The CRC TME can also promote the conversion of CD4+ T-
cells to TI-Treg cells through a variety of ways, for example
increasing the availability of TGF-b (Figure 1C) (139). Other
mechanisms associated with the differentiation of CD4+ T cells
to Treg cells include the increased expression of indoleamine
2,3-dioxygenase (IDO) in mouse and human CRC TME. IDO
converts tryptophan to kynurenine, which can bind the
aromatic hydrocarbon receptor (AhR) in CD4+ T cells
thereby promoting Foxp3 expression (140, 141). Treg cells
localize to the CRC TME through their expression of specific
chemokine receptors. These include: CC chemokine receptor 4
(CCR4), attracted to inflammatory loci by the ligands CCL22 or
CCL17 produced by CRC tumor cells or macrophages (142);
CCR5, highly expressed in TI-Treg cells and associated with
Treg cell recruitment towards the ligands CCL3, and CCL4
expressed by CRC tumor cells (34, 143); CCR6, involved in
July 2022 | Volume 13 | Article 903564
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migration to the TME in response to CCL20 produced by
tumor-associated macrophages (144, 145); CCR8, exclusively
expressed by TI-Treg cells (146) and CCL1, expressed by
tumor-infiltrating myeloid cells (128). Taken together,
multiple mechanisms are involved in the increased numbers
of Treg cells in the context of CRC. This can involve
accumulation in the TME by chemotaxis and clonal
expansion by recognition of tumor-associated antigens.

TI-Treg cells are more proliferative and have a more activated
immunosuppressive phenotype when compared to Treg cells
from healthy tissue or peripheral blood (147). Helios, associated
with Treg cell thymic origin, is highly expressed in CRC Foxp3hi
TI-Treg cells which also co-express activation markers such as
ICOS and OX-40, and inhibitory molecules such as PD-1,
CTLA-4, TIM-3 (Figure 1G), and CD39 that mediate their
highly suppressive phenotype (Figure 1F) (148). CD39 is an
ectonucleotidase that catalyzes the generation of adenosine from
ATP, negatively regulating immune responses (149). A recent
Frontiers in Immunology | www.frontiersin.org 6159
study comparing CRC tumors and healthy colon tissues
identified three clusters of Treg cells differentially expressing
CD39. The subgroups with the highest and intermediate
expression of CD39 were found in the tumor, while the
subgroup with the lowest expression was found in healthy
colon tissue. Higher expression of CD39 correlated with poorer
outcome (150).

In the context of CRC, the most significantly enriched TI-
Treg cell population has a Th17-like profile. IL-17+ TI-Treg cells,
originated from memory CCR6+ T cells, cTreg cells, or the
transdifferentiation of Th17-to-Treg cells, accumulate in colitis
inflamed tissue and are associated with CRC progression (151–
153). These cells maintain transcriptional and epigenetic
signatures of both Th17 cells (Folr4, GARP, Itgb8, Pglyrp1,
Il1rl1 and Itgae) and Treg cells (Foxp3, Tigit and Icos) (135,
153). IL-17+ TI-Treg cells also acquire RORgt expression
contributing to local inflammation by producing IL-17, IL-2,
IL-6, TNF and IFN-g, in combination with the capacity to inhibit
FIGURE 1 | Role of TI-Treg cells in the TME. TI-Treg cells produce (A) VEGF to promote dysregulated angiogenesis associated with tumor progression and TGF-b
that, (B) promote the conversion of fibroblast to cancer-associated fibroblasts (CAFs), and (C) the conversion of CD4+ T-cells to Treg cells promoting their
accumulation in the TME. TI-Treg cells also regulate anti-tumor immune responses by producing (D) inhibitory cytokines, such as IL-10, TGF-b and IL-35, inhibiting
Teff cells, NKs and APCs, the last two are also inhibited through membrane-bound TGF-b, and (E) cytotoxic molecules such as granzymes and perforin that can
directly kill Teff cells and APCs. TI-Treg cells also (F) disrupt Teff cell intracellular metabolism impairing their function by depleting IL-2 in the TME. They express CD39
and CD73 ectonucleotidases that covert ATP and ADP into adenosine, which can engage adenosine receptor A2A on the surface of Teff cells, increasing intracellular
cAMP and disrupting their metabolism and function. cAMP also binds to APCs and macrophages inducing tolerogenic myeloid-derived suppressor cells (MDSCs)
and tumor-associated macrophages (TAMs) that further impact Teff cells. Furthermore, adenosine can also bind A2A in Treg cells promoting the intracellular
accumulation of cAMP that can be transferred through gap junctions to Teff cells interfering with their metabolism. Among different molecules that participate in the
suppression process, Treg cells highly express (G) immune checkpoint receptors that bind their corresponding ligand in APCs and differently regulate their function
(increasing the release of inhibitory cytokines or the upregulation of IDO) promoting an immunosuppressive TME.
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T cell immunity, thereby driving initiation of tumorigenesis (105,
106, 153–156). RORgt expression is increased and promoted by
Wnt signaling. In healthy colonic Treg cells, TCF-1 and FOXP3
co-bind to the enhancer regions of pro-inflammatory genes such
as Rorc (RORgt), Il17a (IL-17) and Ifng (IFNg), repressing their
expression. However, in CRC RORgt+ TI-Treg cells, sustained
Wnt and/or TCR signaling leads to nuclear translocation of b-
catenin where it binds to TCF-1 facilitating the transcription of
pro-inflammatory genes. Increased numbers of pathogenic b-
catenin(hi) RORgt+ TI-Treg cells correlates with the progression
from IBD to CRC in humans and in murine colitis-associated
dysplasia models (105, 157). CRC-associated Treg cells have
decreased TCF-1 expression and increased Th17 expression
signatures compared to normal tissues. Reduced TCF-1 activity
in Treg cells increases their immunosuppressive function against
T cell proliferation, but at the same time promotes their pro-
inflammatory activity, promoting tumor growth in polyp-prone
mice (158). Conversely, the specific ablation of RORgt in Foxp3+
Treg cells of polyp-prone mice improves anti-tumor responses
and reduces polyposis (106, 159).

Epigenetic modifications at the promoter regions of TI-Treg
cell genes promote immunosuppressive function and support
tumor immune evasion. Expression levels of immune
checkpoint proteins such as PD-1, CTLA-4, TIM-3 and
TIGIT, and checkpoint ligands including PD-L1 and galectin-
9 are higher in peripheral blood or tumor tissue for CRC
patients, compared with blood or colon tissue from healthy
donors (160, 161). Increased DNA hypomethylation at the
promoters of CTLA-4 and TIGIT in TI-Treg cells, compared
to healthy colon tissue, correlates with increased expression of
TETs. Moreover, the distribution of the repressive histone
modifications H3K27me3 in CTLA-4 and TIM-3, and
H3K9me3 in PD-1, TIM-3 and TIGIT, is lower in TI-Treg
cells correlating with higher expression of these immune
checkpoint receptors (160). RORgt+ Treg cells retain a
suppressive phenotype through hypomethylation of Treg-
specific signature genes including Foxp3, Ctla-4, Gitr, Eos,
and Helios (135, 151, 152, 154). Their immunosuppressive
activity in the TME is thought to occur through the release of
factors such as TGF-b (Figure 1D), which is upregulated in
around 80% of the RORgt+ TI-Treg cells. A smaller proportion
also expresses IL-10 (Figure 1D), and they can also release IL-6,
IL-4, IFN-g, and TNF-a (106, 154). RORgt+ TI-Treg cells can
also co-express the BLIMP1 transcription factor identified as
the primary regulator of IL-10 expression in the colon,
suppressing inflammation-driven CRC (162). BLIMP1+ TI-
Treg cells have been associated with longer disease-free
survival in CRC patients (163). In summary, RORgt has an
important role in the balance between suppressive Treg cells
and pathogenic RORgt+ Treg cells that can contribute to an
inflammatory and immunosuppressive environment that can
promote both CRC tumor development and immune evasion.

The majority of TI-Treg cells express co-inhibitory receptors
such as LAG-3 and TIM-3 that can modulate T cell responses
(Figure 1G) (164). LAG-3+ Treg cells have increased IL-10 and
TGF-b production and are enriched both in the TME and
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peripheral blood of CRC patients (165). TIM-3+ Treg cells
have been associated with multiple cancers including CRC and
have a role in regulating immune responses by driving T cell
inhibition or exhaustion. They express CD39/CD73 (Figure 1F),
IL-10, and TGF-b (Figure 1D) and upregulate the expression of
checkpoint receptors (Figure 1G), such as CTLA-4, PD-1, and
LAG-3 (166–170). CRC tumors implanted in TIM-3 deficient
mice have a reduced infiltration of Treg cells, reduced CD8+ Teff
cell exhaustion, and slower tumor growth (170). LAG-3+TIM-3+
TI-Treg cells are also enriched in CRC tumors compared to
healthy colon, with increased TGF-b and IL-10 release, and
upregulation of CTLA-4 expression compared to LAG-3−TIM-3
− TI-Treg cells. In addition, LAG-3+TIM-3+ TI-Treg cells can
reduce macrophage expression of MHC class II, CD80/CD86,
and TNF-a and increase IL-10 secretion thereby supporting
immunosuppression (171).

Additional CRC-related Treg cell subsets have been
described, although less is known about their functional
relevance. TI-Treg cells producing IL-35 have been
identified in CRC patients (Figure 1D); however, their origin,
phenotype, and function remain to be defined. IL-35 has
immunosuppressive activity both in vitro and in vivo,
inhibiting Teff cell proliferation and inducing conversion to IL-
35-producing Treg cells (172–174). Studies with CRC patients
and mouse models found increased TI-Treg cell numbers
correlated with high levels of IL-35 expression in serum and
TME (173–176). Latency-associated peptide (LAP) non-
covalently binds to TGF-b and forms a latent TGF-b complex
inhibiting the interaction with its cognate receptors on immune
ce l l s (177) . LAP+ TI-Treg are funct iona l ly more
immunosuppressive than LAP- TI-Tregs, and their numbers
increase with CRC progression and the metastatic stage (178,
179). A study of 42 CRC patients concluded that LAP+ TI-Treg
cells were increased in the peripheral blood and tumor tissue of
patients compared to healthy colon controls. These Treg cells
upregulated effector molecules including tumor necrosis factor
receptor II, granzyme B, perforin, Ki67, and CCR5 that further
support their immunosuppressive function. LAP+ TI-Treg cells
can direct cell-mediated cytotoxicity through the expression of
perforin and granzyme B, thereby also suppressing Teff cells
(Figure 1E) (178).

Taken together, Treg cell plasticity and heterogeneity provide
a broad range of mechanisms to temper anti-tumor immune
responses and promote immune evasion. It is therefore
important to accurately characterize Treg cell populations to
improve the diagnosis and outcome of CRC patients and more
specifically target TI-Treg cells.
THE TME PROMOTES TREG CELL
METABOLIC REPROGRAMMING

The reprograming of energy metabolism is one of the hallmarks
of cancer whereby tumors can influence the immunosuppressive
TME. In CRC, this already takes place at the colon adenoma
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stage (180) where CRC initiation, proliferation, invasion, and
metastasis are closely associated with the metabolic crosstalk
between tumor cells, the TME, and the microbiota (181). CRC
tumor cells reprogram their metabolism in order to fulfill their
excessive energy and nutrient needs, relying on aerobic
glycolysis, glutaminolysis, and fatty acid synthesis. As a result
of the rapid proliferation of tumor cells and the immaturity of
tumor vasculature, the TME is characterized by hypoxia, acidity,
and nutrient deficiency including glucose, glutamine, and
tryptophan, with enrichment of lactate and kynurenine (182,
183). These metabolic changes hamper effective Teff cell
activation and proliferation, which themselves rely on aerobic
glycolysis. In contrast, this harsh metabolic environment
promotes the recruitment and differentiation of Treg cells
(184). FOXP3 is a central regulator of TI-Treg cell metabolic
adaptation, driving a distinct metabolic profile compared to Teff
cells. TI-Treg cells are less dependent on glycolysis, increasing
FA-oxidation (FAO) and oxidative phosphorylation
(OXOPHOS) to support their differentiation and function
(185, 186). In CRC, as in other solid tumors, TI-Treg cells
utilize these alternative metabolic pathways to produce energy,
Frontiers in Immunology | www.frontiersin.org 8161
proliferate and perform their immunosuppressive functions
(187–189).

Accumulation of lactate (Figure 2A), the end-product of
tumor cell glycolysis, affects the TME through multiple
mechanisms. Treg cells can metabolically adapt to increased
lactate in the TME, utilizing it as a carbon source for intracellular
metabolism. TI-Treg cells upregulate pathways related to the
metabolism of lactate such as lactate dehydrogenase (LDH), and
the lactate transporter MCT1 (SLC16A1) (190, 191). FOXP3
directly alters T cell metabolism to maintain Treg cell
suppressive function in lactate-rich environments (185). By
binding to the MYC promoter, FOXP3 can suppress c-myc
expression, a transcription factor regulating glycolytic gene
expression, thereby suppressing glycolysis. FOXP3 also
influences LDH activity, promoting the conversion of lactate to
pyruvate and increasing oxidative phosphorylation (OXPHOS),
and the NAD : NADH ratio. These adaptations permit Treg cells
to differentiate and work effectively under conditions of low-
glucose and high lactate as found in the TME (185).

Besides lactate, TI-Treg cells also rely on fatty acids
(Figure 2B), utilizing lipid metabolism to meet both their
B

C

A

FIGURE 2 | Metabolic reprogramming of TI-Treg cells in CRC TME. CRC tumor cells have a high glucose uptake generating pyruvate through glycolysis. Pyruvate is
converted to acetyl-CoA or lactate that is secreted creating (A) a lactate-rich TME. TI-Treg cells adapt to these metabolic stresses present in the TME. TI-Treg cells
can take up lactate through the MCT1 transporter that is subsequently converted to pyruvate by LDH and further to acetyl-CoA. Moreover, CRC tumor cells fuel the
tri-carboxylic acid (TCA) cycle in the mitochondria for FA synthesis creating a (B) fatty acid-rich TME. TI-Treg cells can take up FA from the TME through the fatty
acid transporter CD36. The CPTR1A transporter drives FA uptake into the mitochondria where it is oxidized by fatty acid oxidation (FAO) to acetyl-CoA. Acetyl-CoA
fuels the TCA cycle in the mitochondria for de novo fatty acid synthesis that can be accumulated intracellularly or exported to the TME. The TME has (C) low
availability of essential amino acids, particularly glutamine, that is consumed by tumor cells, and tryptophan, that is catabolized to kynurenine by IDO highly
expressed by Treg cells.
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energy demands and immunosuppressive function through
FAO-driven OXPHOS (185, 186). Fatty acids stimulate the
AMPK pathway, inhibiting mTOR signaling and promoting
mitochondrial FAO (186). TI-Treg cells also upregulate SREBP
transcription factors in order to adapt to the TME. SREBPs
regulate the expression of genes required for de novo synthesis of
lipids by fatty acid synthase (FAS), promoting the functional
maturation of TI-Treg cells. SREBP-deficient Treg cells show
decreased expression of PD-1 and have been associated with an
effective anti-tumor immune response and reduced tumor
growth (192). PD-1 signaling in TI-Treg cells can also promote
FAO by upregulating palmitoyltransferase-1A (CPT1A), an
importer of fatty acids to the mitochondria (193). A study in
CRC, among other solid tumors, showed that high levels of fatty
acids in the TME are an essential energy source for TI-Treg cells
(188). TI-Treg cells also increase intracellular lipid accumulation
through increases in fatty acid synthesis (188). In a CRC murine
model, TI-Treg cells were found to upregulate CD36, an FA-
importer, increasing FA uptake and FAO (194). This metabolic
flexibility allows TI-Treg cells to thrive and supports their
suppressive activity in the TME under conditions of high
concentrations of tumor-derived lipids (195).

Under homeostatic conditions, amino acids regulate the
activation of mTORC1 which is important for the functional
fitness of eTreg cells (196, 197). However, the TME generally
has low availability of many amino acids (Figure 2C),
particularly glutamine. Reduced levels of glutamine, with the
subsequent reduction of glutamine catabolism, stimulates the
conversion of CD4+ T cells to Treg cells during Th1
polarization in vitro (198, 199). In addition, the TME often
has high levels of amino acid-degrading enzymes such as IDO.
IDO is expressed by both tumor cells and Treg cells and, as
already mentioned, catabolizes tryptophan to kynurenine,
binding to AhR in Teff cells and promoting the Treg cell
differentiation (200–205). High IDO expression by CRC cells
and tryptophan depletion in the TME has been associated with
tumor immune evasion and increased Treg infiltration in
CRC (206).

Other metabolites abundant in the TME include retinoic
acid (RA) and adenosine. RA can act as a cofactor to induce
Foxp3 expression and promote the conversion of CD4+ T cells
into Treg cells while inhibiting the generation of Th17 cells. In
the intestine, CD103+ DCs can generate RA from vitamin A
and drive Treg cells differentiation in the presence of TGF-b
(207, 208). A colitis-associated CRC murine model treated
with RA showed an increased frequency of TI-Treg cells in the
tumor and reduced inflammation (209). Adenosine levels are
increased in response to hypoxia and chronic inflammation,
both characteristics of CRC. Treg cells can produce adenosine
by CD39/CD73 action but can also respond to it by engaging
the adenosine receptors (A2A AR) (Figure 1F). A2A

engagement promotes the intracellular accumulation of
cAMP and, subsequently, the activation of the cAMP
response element-binding protein (CREB) that drives the
expression of anti-inflammatory cytokines, including IL-10
and TGF-b (210, 211).
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Despite the metabolic challenges present in the TME
such as low glucose and amino acid availability, high lactate
and lipid concentration, acidity, and hypoxia, TI-Treg cells
show a remarkable ability to engage unique metabolic
reprogramming, compared to other Teff cells, to support
their bioenergetic and functional needs. Understanding the
TI-Treg cell metabolic reprogramming potentially provides
novel therapeutic approaches for targeting in the control
CRC pathogenesis.
THERAPEUTIC APPROACHES TO TARGET
TREG CELLS IN CRC

Modulating TI-Treg cell function offers an important strategy
to improve therapeutic responses for a wide variety of tumors.
A variety of approaches are currently under development
including Treg cell depletion, suppressing their activity,
impeding the i r recrui tment , and prevent ing the i r
differentiation within the TME. The challenge presented is
to specifically target TI-Treg cells without affecting other Treg
populations, thereby diminishing the risk of developing
unwanted autoimmune responses. In the past decade, the
efficacy of checkpoint inhibitors to block immune
checkpoint receptors or their ligands has greatly benefited
the survival of patients with solid tumors (212–216). As
discussed earlier, CRC TI-Treg cells express immune
checkpoint receptors including PD-1, CTLA-4, TIM-3, and
the NTPDase CD39 that regulate their immunosuppressive
phenotype and support tumor cells in escaping immune
surveillance (Figure 1G) (148, 217). A variety of humanized
monoclonal antibodies developed against these receptors have
been evaluated in CRC patients in order to alter TI-Treg cells
numbers and functionality (Table 2).

PD-1 is highly expressed in TI-Treg cells and plays a role in
their homeostasis and function. PD-1 signaling also promotes
FAO to support their bioenergetics needs in the TME (193). PD-1-
expressing Treg cells are considered a critical element in tumor
immune evasion and progression of CRC (225). PD-1, expressed
on tumor cells and Treg cells, can bind its ligand PD-L1 on Teff
cells activating inhibitory signals that interfere with the TCR signal
transduction thereby blocking anti-tumor immune responses
(226, 227). Humanized monoclonal anti-PD-1 antibodies
(mAbs) block interaction with PD-L1 and can thereby benefit
the anti-tumor immune response (217, 228). Recently, it has been
demonstrated that the balance of PD-1 expressing CD8+ Teff cells
and eTreg cells in the TME is relevant in predicting the efficacy of
anti-PD-1 mAbs (229), although how PD-1 signaling promotes
Treg cell suppressive function is unclear. A study in CRC patients
showed that anti-PD-1 mAb therapy has a better outcome for
patients with high numbers of PD-1+ CD8+ T cells compared to
non-responders that have higher numbers of eTreg cells. In line
with these previous results, a CRC murine model demonstrated
the capacity of anti-PD-1 mAbs to restore the effector function of
PD-1+ CD8+ T cells and promote tumor regression (230). Clinical
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trials have investigated the possibility of using humanized anti-
PD-1 monoclonal antibodies for the treatment of CRC patients
(Table 2). Promising clinical results with the first mAb against
PD-1, pembrolizumab (MK-3475, SCH 900475) and, later,
nivolumab (BMS-936558, MDX-1106, ONO-4538) in CRC
patients lead the U.S. Food and Drug Administration (FDA) to
approve them for the treatment of refractory metastatic CRC that
still progressed after prior treatment with chemotherapeutics (212,
231). The diverse outcomes observed in CRC patients treated with
different anti-PD-1 mAbs can be explained according to the
Frontiers in Immunology | www.frontiersin.org 10163
subtype of CRC tumor. Unfortunately, few studies have reported
responses regarding the targeting of TI-Treg cells by these
antibodies in CRC patients. However, based on current
knowledge it is likely that anti-PD-1 mAbs target Treg cells and
in this way support activation of an anti-tumor immune response.

Treg cells express high levels of cytotoxic T lymphocyte
antigen 4 (CTLA-4) in a FOXP3-dependent manner. CTLA-4
binds and inhibits B7 molecules (CD80 and CD86) on the
surface of APCs such as DCs with higher affinity than their
CD28 co-stimulatory signal. This results in the induction of
TABLE 2 | CRC clinical trials potentially targeting Treg cell populations.

Clinical trial Antibody target n CRC patients and
tumor type

Response
to treat-
ment

PFS OS Comments and references

NCT01876511
(Phase II)

anti-PD-1 pembrolizumab (MK-3475,
SCH 900475)

10 metastatic MSI CRC
patients
11 metastatic MSS
CRC patients

40% MSI
ORR
0% MSS
ORR

78% MSI
11%
MSS

This findings drove FDA-approval for the
treatment of unresectable, metastatic MSI-
H and dMMR (218)

NCT00441337
(Phase I)

anti-PD-1 nivolumab (BMS-936558,
MDX-1106, ONO-4538)

14 metastatic MSI or
MSS CRC patients

1 MSI CR
≥ 21 months

Followed up in: NCT02060188
(phase II) (219)

NCT02060188
(Phase II)

anti-PD-1 nivolumab 74 refractory metastatic
dMMR/MSI-H CRC
patients

23 patients
PR
31% ORR
69% DCR ≥

12 weeks

50%
≥ 12
months

73%
≥ 12
months

This findings drove FDA-approval for the
treatment of refractory MSI-H/dMMR CRC
(212)

anti-PD-1 nivolumab in combination with
anti-CTLA-4 ipilimumab (IgG1 isotype)

119 refractory
metastatic
dMMR/MSI-H CRC
patients

55% ORR
80% DCR ≥

12 weeks

71%
≥ 12
months

85%
≥ 12
months

Combination therapy improves therapeutic
efficacy for dMMR/
MSI-H CRC (220)

NCT00313794
(Phase II)

anti-CTLA-4 tremelimumab (CP-675,206
or ticilimumab)

47 refractory metastatic
CRC patients
Subtype not
determined

45
response-
evaluable
patients

2%
15
months
before
relapse

45%
≥ 6
months

No clinically meaningful but interesting for
combinational approaches (221)

NCT02870920
(Phase II)

anti-CTLA-4 tremelimumab and anti-PD-
L1 durvalumab

180 pre-treated-
refractory MSS or
proficient MMR CRC
patients

1.8
months

6.6
months

Combination therapy improves the OS and
quality of life of patients with advanced
refractory CRC but not dMMR CRC (222)

NCT03101475
(Phase II)

anti-CTLA-4 tremelimumab and anti-PD-
L1 durvalumab

Currently, 22 metastatic
CRC patients

Ongoing clinical trial

NCT02794571
(Phase I)

anti-TIGIT (MTIG7192A) as monotherapy
or in combination with anti-PD-L1
atezolizumab

Recruiting advanced
incurable tumors,
including CRC patients

Ongoing clinical trial

NCT01968109
(Phase I/IIa)

anti-LAG-3 relatlimab (BMS-986016) as
monotherapy or in combination with anti-
PD1 nivolumab

Recruiting advanced
solid tumors including
CRC patients

Ongoing clinical trial

NCT03156114
(Phase I)

anti-LAG-3 miptenalimab (BI 754111) as
monotherapy or in combination with anti-
PD-1 ezabenlimab (BI 75409111)

Recruiting advanced
solid tumors including
metastatic CRC
patients

Ongoing clinical trial

NCT02608268
(Phase I/II)

anti-TIM-3 (MBG453) with anti-PD-1
spartalizumab (PDR001)

6 metastatic CRC
patients

2 partially
responded

Ongoing clinical trial
(223)

NCT02817633
(Phase I)

anti-TIM-3 (TSR-022) as monotherapy or
in combination with anti- PD-1
dostarlimab (TSR-042)

Recruiting advanced
solid tumors including
CRC patients

Ongoing clinical trial

NCT02705105
(Phase I/II)

anti-CCR4
mogamulizumab as monotherapy or in
combination with anti- PD-1 nivolumab

29 MSS CRC patients 0 ORR with
monotherapy
1 ORR with
combination
therapy

No enhanced efficacy of the combination
therapy compared to monotherapy with
nivolumab (224)
PFS, progression-free survival; OS, overall survival; MSI, microsatellite instability tumors; MSS, microsatellite stable tumors; dMMR, different mismatch-repair; ORR, overall response rate;
PR, Partial response; CR, Complete response; DCR, disease control rate; BSC, best supportive care.
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immunological tolerance (230). Murine CRC models have
shown that anti-CTLA4 mAbs induce a potent immune
response, rejection of the tumor, and significantly prolonged
survival (232). Humanized anti-CTLA-4 mAbs such as
ipilimumab (IgG1 isotype) and tremelimumab (IgG2 isotype)
have been tested in multiple clinical trials with solid tumors
(233–235). The anti-tumor mechanism of these anti-CTLA-4
mAb was first attributed to preventing interaction of CTLA-4
with its ligand B7 allowing APCs to present antigens and
activate anti-tumor T cells response. Recently, it has been
shown that anti-CTLA-4 mAbs also deplete TI-Treg cells, but
not pTreg cells in secondary lymphoid organs. This selective
Treg cell depletion depends on their ability to activate Fc
receptors on tumor-associated macrophages or NK cells that
can subsequently phagocytose or kill Treg cells (234, 236–241).
The use of anti-CTLA-4 (IgG2a isotype) in two murine
subcutaneous CRC tumor models demonstrated successful
reduction of TI-Treg cells together with the expansion of
CD8+ Teff cells promoting anti-tumor activity (238). The use
of anti-CTLA-4 mAb in clinical trials for patients with
metastatic CRC, overall, has shown improved therapeutic
efficacy in combination with anti-PD-1 mAbs compared to
anti-CTLA-4 mAb monotherapy (Table 2) (212, 220, 222).
Currently, the dual combination of checkpoint inhibitors is
being evaluated in various phase II clinical trials for metastatic
CRC patients, for example, durvalumab, an anti-PD-L1 mAb,
and tremelimumab, an anti-CTLA-4 mAb (NCT03101475).
There have been no specific reports on anti-CTLA-4 mAb
targeting TI-Treg cells in these CRC patients, but again it is
likely that TI-Treg cell function and numbers are impacted.
Anti-CTLA4 mAbs have also been shown to have a T-cell
intrinsic mechanism of action that enhances the proliferation of
Teff and Treg cells in response to self-antigens as shown in
human and mouse models (130, 242, 243).

Novel immune checkpoint targets such as TIGIT, LAG-3
and TIM-3 are currently under pre-clinical investigation and
are being evaluated for their safety profiles in phase I trials
(244, 245). In CRC, these receptors are highly expressed on
TI-Treg cells compared to healthy colon tissue (150). TIGIT is
a co-inhibitory molecule, a member of the CD28 family,
expressed preferentially in T cells and NK cells. TIGIT
competes with the co-stimulatory receptor CD226 in T-cells
to bind CD155 on APCs which become tolerogenic, cannot
activate T-cells, and release IL-10 inhibiting of Teff cell anti-
tumor responses (246–248). A phase I clinical trial
(NCT02794571; Genentech) utilizing humanized anti-TIGIT
mAb (MTIG7192A) as monotherapy or in combination with
anti-PD-L1 mAb (atezolizumab) is ongoing in advanced or
metastatic tumors including CRC (Table 2). LAG-3 is
expressed on activated CD4+ and CD8+ T cells (249), Tregs
(250), a subpopulation of natural killer (NK) cells (251), B
cells (252), and plasmacytoid dendritic cells (pDCs) (253).
The LAG-3 co-inhibitory receptor can bind stable peptide-
MHC-II complexes impairing DC function, maturation, and
proliferation. LAG-3 can also induce the production of IDO,
impairing Teff cell and DC proliferation, but promoting eTreg
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cell differentiation (165, 230, 254, 255). In CRC patients,
LAG-3+ Treg cells have been identified in both TILs and in
peripheral blood (165). Currently, there are two ongoing
clinical trials that aim to investigate the efficacy of anti-
LAG-3 mAb alone or in combination with anti-PD-L1 mAb
in patients with advanced solid tumors including CRC
(Table 2). The rationale behind this combinational
treatment is to synergistically restore T cell activation and
enhance antitumor immunity.

TIM-3 is another immune checkpoint molecule expressed
on innate immune cells such as DCs and NK cells (256). pTreg
cells do not normally express TIM-3, however, TIM-3+ TI-
Treg cells have been identified in the TME where they exert an
inhibitory role against Teff cell responses mainly by driving
their exhaustion (166–168, 257). This suggests a therapeutic
advantage over other checkpoint receptors, such as CTLA-4
and PD-1, due to expression predominantly on TI-Treg cells.
For CRC patients, the combination therapy anti-TIM-3 mAb
and anti-PD-1 mAb has already been tested showing partial
response (Table 2) (223). An ongoing Phase 1 clinical trial
using a humanized anti-TIM-3 mAb (TSR-022) aims to
evaluate first the dosage and, then, the anti-tumor capacity
of the antibody in advanced solid tumors (NCT02817633).
For CRC patients, anti-TIM-3 was administrated as
monotherapy or in combination with an anti-PD-1 mAb,
dostarlimab (TSR-042) (Table 2).

As already discussed, TI-Treg cells express high levels of
CD39/CD73 ectonucleotidases that convert ATP to adenosine, a
potent suppressor of tumor immunity (Figure 1f) (258). CD39+
TI-Treg cells have been found to play an important role during
CRC tumor growth (150) and inhibition of CD39 enzymatic
activity has been evaluated in a CRC hepatic-metastatic murine
model. Here, CD39+ Treg cells modulate NK reactivity against
the tumor, and targeting CD39 was found to both inhibit Treg
cell activity in vitro and reduce tumor growth in vivo (259).
Adoptive reconstitution of either wild-type or CD73-deficient
Treg cells has been performed in Treg cell-depleted mice
implanted with CRC-tumors. Only mice reconstituted with
wild-type Treg cells effectively support tumor growth,
suggesting a possible therapeutic benefit of targeting CD73-
Treg cells (260).

CCR8 expression can discriminate between Treg cells
infiltrating CRC and other solid tumors, from those found in
secondary lymphoid organs (261). In solid tumors, CCR8
expressing cells migrate in response to CCL1 ligand secreted by
cancer-associated fibroblasts (CAFs), M2-polarized tumor-
associated macrophages and Treg cells (262–264). Murine tumor
models including colorectal adenocarcinoma have been used to
evaluate the efficacy of targeting CCR8+ Treg cells in the TME.
Administration of monoclonal antibodies targeting either the
receptor or ligand reduces the number of TI-Treg cells without
affecting the pTreg cells, reinforcing the anti-tumor immune
response (265). CCR4+ TI-Treg cells also contribute to the
CRCTME, and CCR4 expression is increased in TI-Treg
cells compared to those of healthy colon tissue (266).
Mogamulizumab is an anti-CCR4 mAb that has been used in
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clinical trials for the treatment of solid tumors with the aim of
depleting TI-Treg cells. It has been evaluated as monotherapy
(NCT01929486) or in combination with other targeted therapies
such as anti-PD-1 mAb (nivolumab) (NCT02705105). Dose,
safety, and efficacy for combination therapy has been assessed in
114 patients with locally advanced or metastatic solid tumors,
including 29 MSS-CRC patients. The result showed no enhanced
efficacy of the combination therapy compared to monotherapy
with nivolumab. In the case of the CRC patients, only one out of
the 29 showed ORR, similar to previously reported results of
single-nivolumab treatment where none responded (224). Further
evaluation of chemotaxis receptor-targeting therapeutics may
provide more selective therapeutic strategies avoiding targeting
pTreg cells.

Other broader strategies effective in Treg cell depletion include
drugs such as cyclophosphamide (CY). The administration of low-
dose CY, a chemotherapeutic agent used to treat cancer, seems to
predominantly affect Treg cells over other effector cells (Teff cells or
NKs), as has been demonstrated in a variety of human cancers and
animal models. Low-dose CY can lead to a reduction in Treg cell
numbers, upregulation of pro-inflammatory cytokines, and boosts
the innate antitumor immune response (267–270). In CRC murine
and rat models, the efficacy of low-dose CY, inhibiting Treg cells, in
combination treatment with mycobacterium bovis Bacillus
Calmette–Guérin (BCG) has been evaluated. BCG has TLR-
agonist activity and increases the capacity of DCs to mediate an
efficient anti-tumor immune response. The combination therapy
resulted in tumor regression with Treg cell depletion in the blood
and lymphoid organs but also decreased the number of TI-Treg
cells (271). The synergistic combination of IL-12 gene therapy in
mice with subcutaneous CRC, pre-treated with low-dose CY, was
found to induce a potent anti-tumor effect. Combined treatment
reduced the number of MDSCs and increased the anti-tumor DC
responses and the number of IFN-g-secreting CD4+ T cells (272,
273). Depletion of Treg cells by low-dose CY also results in
significant anti-tumor responses in advanced chemotherapy-
resistant solid cancers (268). In a randomized clinical trial with
inoperable metastatic CRC patients, low-dose CY treatment
resulted in delayed tumor progression associated with an increase
in IFNg+ anti-tumor T-cell responses, and reduction of Treg cells,
B cells, and NK cells (274, 275).

Refinement of combinational therapies targeting Treg cells
while promoting anti-tumor immune responses is clearly a
promising approach to treat CRC more effectively. However, it
remains critical to consider CRC subtypes, and to specifically
target TI-Treg cells, rather than systemically depleting all Treg or
other Teff cells. These are issues that still require proper
evaluation when considering new therapeutic strategies.
FUTURE DIRECTIONS

CRC FOXP3+ TI-Treg cells are a heterogeneous immune
population with specific gene signatures and distinct functional
properties. The phenotype and function of Treg cells are both
modulated and exploited by the TME to promote immune
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evasion, tumor progression, and resulting in poor prognosis.
Knowledge concerning Treg cell adaptation to the TME is
invaluable in designing therapeutic strategies to target TI-Treg
cells. However, it remains hard to specifically target Treg cells in
the context of the TME. This is compounded by the difficulty
of studying Treg biology in vivo or developing valid models
for evaluating immune cell-TME interactions in vitro.
Immunotherapy approaches can stimulate anti-tumor immune
responses of effector cells or inhibit immunosuppressive
mechanisms. Refinement of combinational therapies targeting
Treg cells together with promoting Teff cell anti-tumor immune
responses provides promising strategies to treat CRC more
effectively. However, Treg cell-directed immunotherapy for
CRC patients has several limitations. To start with, the
different CRC molecular subtypes likely have a critical role in
determining the success of certain therapeutic approaches. Due
to CRC heterogeneity, treatment stratification to the tumor
subtype will l ikely be required. Moreover, a better
understanding of the (sub)phenotypes and functional diversity
of CRC TI-Treg cells is still needed. This is essential to avoid
compromising immune hemostasis and thereby developing
unwanted side effects. Utilizing bivalent antibody approaches
may help relieve the problem of specifically targeting only TI-
Treg cells, as long as appropriate tumor markers are also
available (276). Importantly, the expression of therapeutic
targets on both TI-Treg cells and Teff cells does not necessarily
prevent their application. Differential expression levels and
dynamic expression profiles can still provide preferential Treg
cell depletion in the context of the TME. Besides antibody-based
immunotherapy approaches, the application of small molecule
inhibitors remains an avenue of active exploration to disable TI-
Treg cells. For example, FOXP3 protein stability is maintained by
both active acetylation and deubiquitination, and inhibiting
these processes effectively disables Treg cell function (277,
278). As already discussed, Treg cells can thrive in the altered
metabolic environment of the TME. Increasing our
understanding of the metabolic interactions between
infiltrating T cells and tumor cells may help to expose an
Achille’s heel that can be used to inhibit TI-Treg cell function
more specifically. Combining such approaches with checkpoint
inhibitor therapy may help drive the differentiation of anti-
tumor effector T cells, at the expense of Treg cells, which are
then free to reduce tumor progress ion. S imi lar ly ,
understanding the contribution of epigenetic mechanisms to
the control of Treg cell suppressive capacity is also relevant.
Particularly as several small-molecule epigenetic modifiers
are FDA approved and utilized in the clinic (279).
Hypomethylating agents, inhibitors of histone deacetylases,
and bromodomain inhibitors are all relevant in this context.
For example, both the bromodomain inhibitor JQ1, and the
HDAC6 inhibitor ricolinostat were found to attenuate Treg cell
suppressive function, facilitate immune-mediated tumor
growth arrest, and lead to prolonged survival of mice with
lung adenocarcinomas (280).

Taken together, these studies further highlight the potential of
not only targeting Treg cell markers but also Treg cell biology, in
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developing novel approaches to effectively re-activate anti-tumor
immunity in CRC.
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Regulatory T cells (Tregs) are normally born in the thymus and activated in secondary
lymphoid tissues to suppress immune responses in the lymph node and at sites of
inflammation. Tregs are also resident in various tissues or accumulate in damaged tissues,
which are now called tissue Tregs, and contribute to homeostasis and tissue repair by
interacting with non-immune cells. We have shown that Tregs accumulate in the brain
during the chronic phase in a mouse cerebral infarction model, and these Tregs acquire
the characteristic properties of brain Tregs and contribute to the recovery of neurological
damage by interacting with astrocytes. However, the mechanism of tissue Treg
development is not fully understood. We developed a culture method that confers brain
Treg characteristics in vitro. Naive Tregs from the spleen were activated and efficiently
amplified by T-cell receptor (TCR) stimulation in the presence of primary astrocytes.
Furthermore, adding IL-33 and serotonin could confer part of the properties of brain
Tregs, such as ST2, peroxisome proliferator-activated receptor g (PPARg), and serotonin
receptor 7 (Htr7) expression. Transcriptome analysis revealed that in vitro generated brain
Treg-like Tregs (induced brain Tregs; iB-Tregs) showed similar gene expression patterns
as those in in vivo brain Tregs, although they were not identical. Furthermore, in
Parkinson’s disease models, in which T cells have been shown to be involved in
disease progression, iB-Tregs infiltrated into the brain more readily and ameliorated
pathological symptoms more effectively than splenic Tregs. These data indicate that iB-
Tregs contribute to our understanding of brain Treg development and could also be
therapeutic for inflammatory brain diseases.

Keywords: astrocyte, IL-33, Parkinson’s disease, serotonin, tissue Tregs
INTRODUCTION

Regulatory T cells (Tregs) normally account for about 5%–10% of CD4+ T cells and are present in
the lymphoid tissues and at inflammation sites. However, Tregs have recently been shown to
accumulate in a steady or inducible manner in a variety of non-lymphoid tissues, including fat,
muscle, skin, lung, intestine and brain (1). These tissue Tregs recognize self-antigen characteristic of
org July 2022 | Volume 13 | Article 9600361174
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tissues and have a limited T-cell receptor (TCR) repertoire.
Tissue Treg gene expression analysis in various organs has
uncovered a phenotype that is different from that of lymphoid
tissue depending on the organ (1–3). Common features of tissue
Tregs include higher expression of genes such as Il10, Il1rl1
(encoding the IL-33 receptor ST2), Pparg, Areg (amphiregulin, a
type of ligand for the epidermal growth factor [EGF] receptor),
and Klrg1, Ctla4, Tigit, Gata3, Batf, and Irf4 as well as lower
expression of Lef1, Tcf7, and Bcl2 compared with lymphoid
Tregs (2).

The localized microenvironment may play an important role
in the tissue-specific Treg phenotypes. Single-cell RNA
sequencing (scRNAseq) technology has revealed that tissue
Tregs gradually acquire their properties in the associated
lymph nodes and become mature tissue Tregs within tissues
(4, 5). Analysis of transgenic mice with TCRs that are highly
abundant in adipose Tregs showed that adipose Tregs at the
priming phase in lymphoid tissues express low levels of
peroxisome proliferator-activated receptor g (PPARg) infiltrate
into adipose tissues to become the final mature adipose Tregs
that express high levels of PPARg (6).

Skeletal muscle Tregs have also been well studied, and Areg
has been shown to be a Treg-derived repair factor for muscle
damage (7). Tregs in muscle tissue express high levels of the IL-
33 receptor, ST2, and IL-33 has been shown to promote muscle
Treg accumulation (8). In the kidney, CCR4+GATA3+Tregs
accumulate during the chronic phase of renal injury and
promote recovery of renal function by suppressing Th1 in the
injured region induced by basement membrane antibodies (9).
Furthermore, PPARg agonists increase renal Treg levels and
accelerate recovery from renal injury (9).

Using an experimental cerebral ischemia–reperfusion model
(middle cerebral artery occlusion; MCAO) for stroke, we and
others have shown that Tregs accumulated during the chronic
phase, 2 weeks after disease onset (10, 11). Brain Tregs, similar to
other tissue Tregs, are Helios+ tTregs with a special TCR
repertoire and high CTLA-4, PD-1, Areg, and ST2 expression.
Similar to other tissue Tregs, TCR signaling, IL-2, and IL-33 are
essential for proliferation in the brain. Additionally, brain Tregs
also express several neural-related genes, particularly serotonin
receptor 7 (Htr7), which increases cAMP levels. Serotonin
stimulated proliferation of brain Tregs and improved
neurological symptoms via Htr7. As a mechanism of recovery
from neurological symptoms, brain Tregs suppress excessive
astrocyte activation, which is called astrogliosis, by secreting
Areg (10). Another recent study showed that Treg cell-derived
osteopontin acts via integrin receptors in microglia to enhance
microgl ial repair activity , which in turn promotes
oligodendrocyte neogenesis and white matter repair (11).
Increasing the number of Treg cells by administering IL-2:IL-2
antibody complexes after stroke improved the white matter
status and restored neurological function in the long-term,
suggesting that Tregs could be a therapeutic target of neural
recovery after stroke (11).

In neurodegenerative diseases such as Parkinson’s disease,
antigen-specific Tregs have also been reported to interact with
Frontiers in Immunology | www.frontiersin.org 2175
glial cells, thereby suppressing neuroinflammation and
promoting neuronal survival (12). A vasoactive intestinal
peptide agonist has been shown to increase Treg activity
thereby suppressing inflammatory microglia and increasing
survival of dopaminergic neurons (13).

Although studies of tissue Tregs have made remarkable
progress in recent years, the molecular mechanisms of their
development remain unclear. Molecules that facilitate tissue Treg
development and specific tissue antigens are largely unknown. In
this study, we attempted to generate brain Tregs in vitro to
elucidate the induction mechanism of brain Tregs. We found
that co-culturing astrocytes and adding several cytokines and
bioactive substances facilitated brain Treg-like differentiation.
Furthermore, brain Treg-like cells obtained by this method
efficiently infiltrated and suppressed inflammation in the brain.
This study provides the basis for elucidating the developmental
mechanism of tissue Tregs and their clinical application.
RESULTS

Treg Expansion and Activation by
Co-Culturing with Primary Astrocytes
First, we hypothesized that Treg activation and proliferation are
required for tissue Treg development, because tissue Tregs are
thought to be related to effector Tregs (14). When Tregs from
mouse spleen were cultured in vitro in the presence of IL-2 and
anti-CD3/CD28 antibodies, Tregs did not proliferate well and
majority of them died in culture within 3 to 6 days (data not
shown). Since brain Tregs are expected to interact with tissue
nonimmune glial cells, we first co-cultured splenic Tregs with
slices of brain sections. However, Tregs did not proliferate (data
not shown). Therefore, we co-cultured splenic Tregs with
primary brain cells, astrocytes, and microglia. Primary
astrocytes and microglia were obtained from neonatal mouse
brain as reported (15–17).

We evaluated the activation stage of Tregs using CD25,
Foxp3, and ST2 (a marker of tissue Tregs) expression as well
as proliferation. We found that co-culture with microglia or with
both astrocytes and microglia resulted in Treg activation but low
proliferation, whereas co-culture with astrocytes alone resulted
in proliferation as well as strong Treg activation. Next, we added
cytokines and bioactive substances to the Tregs and astrocyte co-
culture. Significant upregulation of CD25 and Foxp3 expression
was observed when IL-2, IL-4, IL-33, brain-derived neurotrophic
factor (BDNF), Areg, and serotonin were added to the co-culture
system (Figures 1A, B, and Table 1). Among factors we
examined, IL-4 most strongly upregulated ST2 expression but
had a negative effect on cell proliferation. Conversely, IL-33 and
serotonin had a positive effect on proliferation but these factors
alone showed little effects on ST2 expression (Table 1). However,
combination of IL-33 and serotonin upregulated ST2
expression (Figure 1C).

Next, we performed co-cultures in the presence of combined
factors that promoted Treg activation and proliferation. Among
July 2022 | Volume 13 | Article 960036
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combinations of factors listed in Table 2 in co-culture with
astrocytes, the combination of IL-2, IL-33, and serotonin most
efficiently promoted proliferation and induced ST2, KLRG1, and
Htr7 expression, which are characteristic of brain Tregs
(Figures 1A–D, and Table 2). While no induction was
observed in the co-culture with microglia. Only IL-4 induced
Areg expression, but IL-33 and serotonin did not have this effect
(Table 2). All these data suggest that IL-2 and TCR signals were
sufficient for CD25 and Foxp3 expression and proliferation,
however, IL-4 or IL-33 and astrocytes were required for ST2,
KLRG1, and Htr7 expression. Although PPARg agonists were
shown to increase tissue Tregs in vivo, we did not observe any
strong effects in vitro (Table 2).

Lastly, we performed more detailed analyses of these
combinations (Table 3). IL-4 upregulated ST2 and Areg
expression, but we excluded it because IL-4 suppressed Treg
cell proliferation and did not yield the required number of cells
for the experiment. IL-33 and serotonin combination induced
brain Treg-like cells, as determined by ST2 and Htr7 expression.
However, adding IL-33 and serotonin did not strongly induce
Areg, Ccr6, and Il10 (Table 3). Co-culture with microglia or
Frontiers in Immunology | www.frontiersin.org 3176
microglia plus astrocytes or slices of brain sections did not
induce markers such as Gata3, ST2, or KLRG1 (Table 3). We
concluded that co-culture of splenic Tregs with primary
astrocytes in the presence of anti-CD3/CD28 antibodies, IL-2,
IL-33 and serotonin is the most preferable condition to induce
brain Treg-like characters in vitro.

Tregs Co-Cultured With Astrocytes in the
Presence of IL-33 and Serotonin Can
Generate Brain Treg-Like Cells In vitro
Next, we examined whether Tregs induced brain Treg-like Tregs
in a co-culture that included these factors with astrocytes in the
absence of or in contact with astrocytes. First, we examined Treg
activation and ST2 expression when Tregs and astrocytes or
microglia were separated using a transwell during co-culture
(Figures 1E, F). Treg activation and ST2 expression were not
observed without direct contact between Tregs and astrocytes.
When the astrocyte or microglia culture supernatant (CM,
conditioned medium; ACM, CM from astrocytes; and MCM,
CM from microglia) was used instead of an astrocyte/microglia
cell layer, but proliferation, activation, and induction of ST2 in
A B

D

E F

C

FIGURE 1 | Co-culture of Tregs with primary astrocytes and microglia in vitro. (A–D) Tregs alone or co-cultured with astrocytes or microglia in the presence of
indicated cytokines (20 ng/mL) or serotonin (10 mM) in the presence of IL-2 and anti-CD3/CD28 antibodies for 6 days. The Foxp3 and CD25 expression was
analyzed using FACS (A), Foxp3+Treg cell number was estimated (B), and ST2 and KLRG1 expression was analyzed using FACS (C, D). The left panels [all
cytokines and serotonin are (-)] are shown as before co-culture. (E, F) Effect of transwell on the activation (E) and ST2 expression (F) of Treg under co-culture with
astrocytes. In (C, D, F), Blue fines were without first antibody, Red lines were with first antibody, and overlapping regions were shown in gray. * P<0.05 ** P<0.01.
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Tregs were not observed (Supplementary Figures 1A, B). In co-
cultures with astrocytes, adding additional MCM did not further
increase CD25, Foxp3, and ST2 (Supplementary Figures 1C, D).
These results indicate that contact with astrocytes is necessary for
Tregs to be induced into brain Treg-like property in vitro.

Characterization of In Vitro Generated
Brain Treg-Like Cells
On the basis of the above results, we further characterized in vitro
generated brain Treg-like cells (iB-Treg cells), which were
induced through co-culture with astrocytes under several
conditions; only in the presence of IL-2 and anti-CD3/28
antibodies (iB-Tregs (A)); co-culture with astrocytes in the
Frontiers in Immunology | www.frontiersin.org 4177
presence of IL-2, IL-33, serotonin, and anti-CD3/28 antibodies
(iB-Treg (B)); or co-culture with astrocytes in the presence of IL-
2, IL-33, serotonin, and anti-CD3/28 antibodies as well as the
CCR8-ligand CCL1 and CCR6-ligand CCL20 (iB-Treg (C)).
Chemokines, CCL1 and CCL20 were included with an
expected increase in their receptors, CCR6 and CCR8. Treg
activation (CD25 and Foxp3 expression) and proliferation were
markedly observed in all culture systems (Figures 2A, B).
Among brain Treg markers, ST2, KLRG1, and CCR8 were
expressed in iB-Tregs (B) and iB-Tregs (C), while CCR6 was
decreased compared with splenic Tregs. Adding CCL1 and
CCL20 had no significant effect on the properties of iB-Tregs
(Figure 2C). Gene expression analysis revealed that Gata3,
TABLE 2 | The effect of cytokine and factor combinations on Treg activation, proliferation, and expression of brain Treg markers.

Cells Astrocytes Microglia

Reagents IL-2 (20 ng/ml) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

IL-4 (20 ng/ml) 〇 〇 〇 〇

IL-33 (20 ng/ml) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Serotonin (10 mM) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

BDNF (20 ng/ml) 〇 〇

Amphiregulin (20 ng/ml) 〇 〇 〇 〇

Pioglitazone (1 mg/ml) 〇 〇 〇

CCL20 (20 ng/ml) 〇 〇

CCL1(20 ng/ml) 〇 〇

Proteins ST2 + - + + - + + - - -
KLRG1 - - - + - + + - - -

mRNA Areg + - ++ - - - - - - -
Htr7 + ++ + + - ++ + - ++ +

Activation (CD25high hCD2high) + + + + - + + - + +
Proliferation - + - - - + + - + +
July 2022 |
 Volume 13 |
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Splenic Tregs were co-cultured with astrocytes or microglia for 6 days in the presence of factor combinations (o). Brain Treg markers ST2 and KLRG1 were analyzed using FACS, and Areg
and Htr7 were analyzed using qPCR. Treg activation (Foxp3high and CD25 high expression) and proliferation were also analyzed. -, no increase; +, positive; ++, highly positive.
TABLE 1 | The effect of various factors on Treg activation and proliferation.

Astrocytes Microglia

Reagents Activation Proliferation Protein Activation Proliferation Protein
(CD25high hCD2high) (Cell number) (ST2) (CD25high hCD2high) (Cell number) (ST2)

IL-2 (20 ng/ml) ++ - - + - -
IL-1b (20 ng/ml) + - - + - -
1L-4 (20 ng/ml) ++ - + + - -
1L-6 (20 ng/ml) + - - + - -
IL-10 (20 ng/ml) + - - + - -
IL-33 (20 ng/ml) ++ + - + + +
TNFa (20 ng/ml) + - - + - -
EGF (20 ng/ml) + - - + - -
TSLP (20 ng/ml) + - - + - -
M-CSF (20 ng/ml) + - - + - -
BDNF (20 ng/ml) ++ - - + - -
Amphiregulin (20 ng/ml) ++ - - + - -
PGE2 (IpM) + - - - - -
Pioglitazone (1 mM) + - - + - -
Serotonin (10 mM) ++ + - + + -
LPS (500 ng/ml ) + - - + - -
Vitamin A (25 nM) + - - + - -
Vitamin C (10 mg/ml) + - - + - -
Splenic Tregs were co-cultured with astrocytes or microglia for 3 days in the presence of the indicated factors and then examined for Treg activation (Foxp3high and CD25 high expression),
proliferation, and ST2 expression.
-, no expression; +, positive; ++, highly positive (see FACS data in Figure 1).
hCD2 means Foxp3.
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Pparg, Il1rl1, Klrg1, Ccr8, Htr7, Penk (Proenkeohalin gene), and
Ednrb (Endothelin receptor type B gene) expression levels were
elevated in iB-Tregs (B) and (C) (Figure 2D). Therefore, adding
CCL1 and CCL20 had no synergistic effect on the properties of
iB-Tregs.

To compare the characteristics of iB-Tregs with in vivo brain
Tregs, total RNA-seq analysis and principal component analysis
(PCA) of Tregs were performed (Figure 3A). We confirmed that
iB-Tregs are different from splenic Tregs and are similar to brain
Tregs that are isolated from brains of mice with cerebral
infarction or experimental autoimmune encephalomyelitis
(EAE) (Figure 3A). Similar to quantitative polymerase chain
reaction (qPCR) results shown in Figure 2D, heat map analysis
revealed that individual brain Treg markers such as Gata3,
Pparg, Il1rl1, Klrg1, Penk, and Htr7 were more highly
expressed in iB-Tregs (B) and (C) than in spleen Tregs, which
is similar to that of ischemic brain Tregs (Figures 3A, B). These
data indicate that iB-Tregs share many of the brain Treg
properties, even though they are not completely identical to
brain Tregs.

iB-Tregs Preferentially Migrate Into the
Brain and Ameliorate Symptoms in a
Parkinson’s Disease Model
We then examined the effects of iB-Tregs after in vivo transfer.
First, we examined the infiltration of Tregs into the brain of mice
using a cerebral infarction model. After transferring iB-Tregs (A,
B, and C) into T cell-deficient mice with induced cerebral
infarction, we measured the number of Tregs infiltrating into
the brain and the ST2 expression level. As shown in Figure 4A,
iB-Tregs, especially B-type iB-Tregs, tended to infiltrate the
injured brain more efficiently than splenic Tregs and showed
highest ST2 expression. Although the differences in the number
Frontiers in Immunology | www.frontiersin.org 5178
of iB-Tregs were not statistically significant, we confirmed that
iB-Tregs, especially, iB-Treg (B), tended to accumulate more
efficiently than splenic Tregs (Figure 4B).

In EAE, Treg transfer has been shown to improve clinical
scores (18). As expected, B- and C-type iB-Tregs had a greater
therapeutic effect than splenic Treg and A-type iB-Treg
(Supplementary Figures 2A, B). Unfortunately, the number of
cells that infiltrated the brain was too small to judge whether B-
and C-type iB-Tregs infiltrate into the brain more efficiently than
splenic Tregs or A-type iB-Tregs. This may be because T cells in
the spinal cord are more important for EAE symptoms than
those in the brain (19).

Next, we used a Parkinson’s disease model in which the
neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) is adminis tered to cause degenerat ion of
dopaminergic neurons. T cells, especially Th17 cell, have been
reported to be involved in neurodegeneration, and Tregs inhibit
symptoms of the disease model (20–22). As previously reported,
T-cell removal by X-ray irradiation followed by MPTP
administration reduced T-cell infiltration into the brain and
suppressed the decrease of tyrosine hydroxylase (TH)-positive
dopaminergic neurons in the substantia nigra, the increase in the
number of a-synuclein phosphorylation, and the increase in
microglial activation (Iba1+ cells), all of which are indicators of
neurodegeneration (Supplementary Figures 3A–G).

Then, iB-Treg transfer was performed in wild-type mice on
day 3 after MPTP administration (Figure 5A). Although we
could not definitely conclude the brain infiltration efficiency due
to very low number of infiltrated T cells, it was very clear that
transferred Foxp3+hCD2+ iB-Tregs was accumulated in the brain
more efficiently than splenic Tregs (Figure 5B and
Supplementary Figure 3H). Next, we evaluated the motor
coordination using the rotarod performance test for
TABLE 3 | Expression of brain Treg markers by the indicated combination of cytokines.

Ceils Treg Astrocytes Microglia Astrocytes Microglia Brain sections

IL-2 (20 ng/ml) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Reagents Serotonin (10 mM) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

IL-4 (20 ng/ml) 〇 〇 〇 〇 〇

IL-33 (20 ng/ml) 〇 〇 〇 〇 〇

Activation (CD25high hCD2high) - - - - + + + + + + + + + + + + + + + +
Proliferation - - - - + + - + - + - + - - - - - - - -
Proteins ST2 - - + - - - + + - - - - - - + - - - - -

KLRG1 + + + + - - + + - - - - - - - - - - - -
CCR6 - - - - - - - - - - - - - - - - - - - -
CCR8 - - - - + + + + + + + + + + + + + + + +

mRNA Areg - - - - - - - - - - - - - - - - - - - -
Htr7 - - - - + + - ++ - + - ++ - - - - - - - -
Gata3 - - + - + - - ++ - - + - - - - - - - - -
Pparg - - - - - + ++ + - - + - + + + + + + + ++
Il1rl1 - - + - - - + ++ - - - - - - + - - - - -
Klrg1 + + ++ + - - + ++ - - - - - - - - - - - -
Ccr6 - - - - - - - - - - - - - - - - - - - -
Ccr8 - - - - + - - ++ - - + ++ - - - - - - - -
Il10 - - - - - - - - - - - - - - - - - - - -
Ednrb - - - - + + + ++ + + + ++ + + + + ++ + + +
July 2022 |
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Splenic Tregs were co-cultured with astrocytes, microglia, or both or with brain sections in the presence of indicated factors (o) for 6 days. Treg activation (Foxp3high and CD25 high

expression), proliferation, and protein expression of ST2, KLRG1, CCR6, and CCR8 were determined using FACS and Areg and other brain Treg marker genes were measured using
qPCR, -, no increase; +, positive; ++, highly positive.
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Parkinson-related symptoms 7 days after MPTP administration.
The motor dysfunction induced by MPTP was restored by the
transfer of Tregs (Figure 5C). This recovery of motor
dysfunction was more pronounced in iB-Tregs compared with
splenic Tregs, and it was also more pronounced in iB-Tregs (B)
and iB-Tregs (C) than in iB-Tregs (A). Inhibition of
dopaminergic neuronal degeneration and inflammation in the
substantia nigra measured by microglial activation and
phosphorylated a-synuclein expression were also more
pronounced in B- and C-type iB-Tregs compared with splenic
Tregs and iB-Tregs (A) (Figure 5D). These data strongly support
Frontiers in Immunology | www.frontiersin.org 6179
our proposal that the astrocyte co-culture system, in the presence
of IL-33 and serotonin, can generate genetical and functional
brain Treg-like cells in vitro.
DISCUSSION

Tissue Tregs, which are naturally resident in various organs or
accumulate in damaged tissues, have been extensively studied in
recent years. It has been shown that tissue Tregs gradually
acquire their characters in their lymph nodes and then become
mature tissue Tregs within tissues (4–6, 23). However,
environmental factors that are necessary for tissue Treg
development remain to be elucidated. In this study, we
attempted to generate tissue Tregs, especially brain Tregs, in
vitro. To the best of our knowledge, no in vitro methods to
A B

D

C

FIGURE 2 | Characterization of in vitro-generated iB-Tregs. SP-Tregs were
co-cultured i) with astrocytes in the presence of IL-2 and anti-CD3/CD28
antibodies [iB-Treg (A)]; ii) with astrocytes in the presence of IL-2, IL-33,
serotonin and anti-CD3/CD28 antibodies [iB-Treg (B)]; or iii) with astrocytes in
the presence of IL-2, IL-33, serotonin, CCL1, CCL20, and anti-CD3/CD28
antibodies [iB-Treg (C)] for 6 days. Blue fines were without first antibody, Red
lines were with first antibody, and overlapping regions were shown in gray
(C). Then CD25/Foxp3 (hCD2) expression (A) was analyzed using FACS and
the number of cells after co-culture was determined (B). Expression of the
indicated tissue Treg markers were analyzed using FACS (C) and RT-qPCR
(D). * P<0.05 ** P<0.01.
A

B

FIGURE 3 | Comparison of gene expression between brain Tregs and iB-
Tregs. The three iB-Treg (A–C) conditions were described in Figure 2. Total
RNA of Tregs from spleen, ischemic brain, EAE brain or EAE spinal cord (SC),
or iB-Tregs after 6 days of co-culture was isolated, and sequenced. (A) PC
analysis (SP-Treg, Ischemia-Treg, iB-Treg (A), iB-Treg (B), iB-Treg (C), NC,
EAE.Br and EAE.SC). (B) heatmap analysis [SP-Treg, Ischemia-Treg, iB-Treg
(A), iB-Treg (B) and iB-Treg (C)] for representative brain Treg genes.
July 2022 | Volume 13 | Article 960036
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induce tissue Tregs have been reported to date. Using a mouse
cerebral infarction model, we showed that brain Tregs are
activated and proliferate in both cervical lymph nodes and in
the brain through the action of IL-2, IL-33, and serotonin (10).
Brain Tregs have also been shown to interact with astrocytes and
regulate astrogliosis through Areg. On the basis of this evidence,
we hypothesized that Tregs mature into brain Tregs by receiving
signals from the microenvironment of the brain tissue. We,
therefore, co-cultured brain Tregs with brain cells such as
astrocytes and microglia. At first, we thought that microglia,
which also function as antigen-presenting cells expressing class II
major histocompatibility complex (MHC), could stimulate Tregs
that recognize antigens presented on class II-MHCs. However,
Tregs did not proliferate in co-culture with microglia and many
died. The reason that microglia cells can inhibit Treg
proliferation is unknown, but we speculate that they may
secrete growth inhibitory or cytotoxic factors such as IL-6 and
kynureine (24). On the other hand, Tregs proliferated
significantly and expressed activation markers of Tregs such as
Foxp3 and CD25 at high levels when they were co-cultured with
astrocytes. Astrocytes activated Tregs in an adhesion-dependent
manner. Integrins and transforming growth factor b (TGF-b) are
likely candidates as activators (25). Retinoic acid may be involved
in Foxp3 expression, since retinaldehyde dehydrogenases are
shown to be expressed in primary astrocytes (26). We found that
some notch genes were expressed on Tregs and Jag1 was
Frontiers in Immunology | www.frontiersin.org 7180
expressed on astrocytes. Therefore, it is possible that Jag1 on
astrocytes is involved in induction of Treg proliferation. In
addition, several semaphorins, such as Sema4a, Sema5b, and
Sema6d, were highly expressed on astrocytes, and on the other
hand, semaphorin receptors, including Neuopillin-1 (Nrp1),
which has been shown to be important for Treg survival (27),
were highly expressed on Tregs. Thus, Semaphorin signaling
may also be involved in an adhesion-dependent manner.

However, co-culture with astrocytes alone did not induce
expression of tissue Treg signature genes such as GATA3,
PPARg, KLRG1, and ST2. Therefore, we added various
cytokines and bioactive substances to the co-culture system
A

B

D

C

FIGURE 5 | Therapeutic effects of iB-Tregs on a Parkinson’s disease model.
(A) Parkinson’s disease model protocol. After 2 days of training, MPTP (20
mg/kg body weight) was administrated four times every 2 h and Tregs
(1×106) were injected intravenously on day 3 after MPTP treatment and
analyzed on day 7. (B–D) MPTP-induced inflammation and injury of the
substantia nigra. (B) Infiltrated T cells and Treg cells in the brain of MPTP-
treated mice were analyzed using FACS, and the fraction of Foxp3+hCD2+

cells in the brain were estimated. (C) The rod test score for MPTP-treated
mice in control, PBS-transfected (PBS), splenic Treg-transfected (SP-Treg),
and iB-Treg-transfected (A–C) groups. (D) Dopaminergic neurons were
stained with anti-TH antibody, activated microglia cells were stained with anti-
Iba1(Iba1) antibody, and neural damage was stained with anti-p-aSynuclein
antibody, and the images were quantified. * P<0.05 ** P<0.01.
A

B

FIGURE 4 | Infiltration of iB-Tregs into the injured brain. CD3-deficient mice
with ischemic brain injury were generated using the MCAO model, as
described. Splenic and lymph node Tregs (SP, LN-Treg) or iB-Tregs (A–C)
after 6 days of co-culture (5 × 105 cells/mice N=3-4) were transferred into the
CD3-deficient mice on day 5 after stroke onset. Seven days later, ST2
expression (A) and cell number (B) of Foxp3+Tregs in the brain were analyzed
using FACS. Data are presented as the average of three independent
experiments.
July 2022 | Volume 13 | Article 960036
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and showed that IL-4 was the most potent inducer of GATA3,
PPARg, and ST2. However, IL-4 strongly inhibited Treg
proliferation in the co-culture system and did not induce
KLRG1 expression. We are skeptical that IL-4 is actually
involved in the development of brain Tregs because IL-4
expression was barely detectable in the brain in vivo in our
stroke experiments. On the other hand, IL-33 is a reasonable
candidate because IL-33 is known to be involved in proliferation
and maturation of almost all tissue Tregs. We also found that
serotonin alone induces Htr7 expression, which is characteristic
of brain Tregs but not in other tissue Tregs (10). Although the
molecular mechanism is currently unknown, Htr7 signals may
have a positive feedback induction mechanism. Further study is
needed to clarify the complex mechanism of brain Treg
induction in vitro.

iB-Tregs that were generated using our method showed a
gene expression pattern that was similar, but not identical, to
that of brain Tregs. The expression of CCR6, which is
important for brain infiltration, was somewhat decreased,
and the expression of Areg, which is an important tissue
repair factor, was also low. It is likely that the iB-Tregs
generated using the current method are early brain Tregs
that are similar to those generated in cervical lymph nodes.
Thus, further development and maturation in the brain may
be necessary to become mature brain Tregs. Identification of
maturation factors in the brain is important for the future
generation of complete brain Tregs in vitro. Another
important issue is that the TCR specificity of iB-Tregs. iB-
Tregs expanded by anti-CD3 antibodies may not specifically
recognize brain antigens. This may be a reason why the
infiltration efficiency into the brain was lower than expected
when iB-Tregs were transferred into brain disease models. To
obtain complete brain Tregs in the future, it is important to
identify and isolate TCRs that are specific for brain antigens
and introduce them into iB-Tregs.

We expected that iB-Tregs (C) work better than iB-Tregs (B) due
to higher chemokine receptor genes expression. However, Htr7 and
Ccr6 expression is rather lower in iB-Tregs (C) than in iB-Tregs (B).
We have shown that deletion of Htr7 and Ccr6 in Tregs markedly
reduced their ability to infiltrate and proliferate in the brain after
cerebral infarction (10). Therefore, iB-Tregs (B) are closer to brain
Tregs present in ischemic brain. On the other hand, iB-Tregs (C)
seem to ameliorate Parkinson’s disease model more efficiently than
iB-Treg (B), although serotonin is considered to be therapeutic to
Parkinson’s disease. We notice that Penk expression is higher in iB-
Tregs (C) than in iB-Treg (B). Penk overexpression in neurons has
been shown to ameliorate Parkinson’s disease (28). Therefore, it is
ideal to generate iB-Tregs expressing functional genes present in
both iB-Tregs (B) and (C) to ameliorate symptoms in
Parkinson’s disease.

Despite such limitations, a method to generate a large
number of brain-specific Tregs in vitro may be important
for developing new therapies against brain inflammatory
diseases. For example, naïve Treg transfer or Treg
upregulation by IL-2/IL-2 antibody complexes have been
reported to alleviate symptoms of cerebral infarction models
Frontiers in Immunology | www.frontiersin.org 8181
(11, 29). If we can use iB-Treg transfer for brain infarction, the
therapeutic effects may be higher than those of naïve Tregs.
Tregs were reported to play important regulatory roles in the
neurological symptoms of neurological diseases. In this study,
we demonstrated that iB-Treg transfer more effectively
ameliorates Parkinson’s disease than conventional Tregs.
Bra in Tregs may a l so be therapeut i c for var ious
cerebrospinal diseases such as spinal cord injury, multiple
sclerosis, and neurodegenerative diseases including as
Alzheimer’s disease. Using our experimental system, it is
difficult to distinguish whether iB-Tregs function inside the
brain or in the secondary lymphoid organs. For clinical
application, it is necessary to consider gene expression
differences in tissue Tregs between mice and humans. For
example, human tissue Tregs in several organs do not express
ST2 (30). Considering such differences in gene expression of
tissue Tregs, it is extremely important to examine cytokines
and other s t imul i for human iB-Treg generat ion .
Nevertheless, our study proposes that induction of mature
brain-specific Tregs may be a novel therapeutic approach to
alleviate symptoms in stroke and other CNS diseases.
MATERIALS AND METHODS

Mice
C57BL/6J mice were purchased from Tokyo Laboratory Animals
Science Co., Ltd. (Tokyo, Japan). Foxp3-hCD2 and Cd3ϵ−/− mice
were described previously (10, 31, 32). Mice, aged 8–12 weeks
and weighing 20–30 g were used under co-housing conditions in
specific pathogen-free facilities. Animal experiments were
performed in strict accordance with the recommendations in
the Guidelines for Proper Conduct of Animal Experiments of the
Science Council of Japan. All experiments were approved by the
Animal Research Committee and Ethics Committee of Keio
University and Kyushu University.

Primary Neonatal Mouse Brain Cultures
Primary mouse glial cells were prepared as previously described
(15–17). Briefly, neonatal mouse brains were excised and the
meninges were removed. The isolated brains were minced,
treated with trypsin and DNase I, and the cell fraction was
passed through a 100 µm cell strainer followed by seeding into
poly-L-lysine-coated T75 flasks. Cells were cultured in a CO2

incubator for overnight in DEME medium containing 10% FCS
supplemented with 4 mM L-glutamine. After 10–20 days, the
microglia fraction was collected by gently rotating the flasks and
floating cells were seeded (2×106 cells) into T25 flasks. After
incubation for 3 h in a CO2 incubator, attached cells were washed
with serum-free DMEM medium and further cultured for
overnight in the serum free medium. Astrocytes were cultured
in an air shaker at 37°C for 1 day with shaking (130 times/min),
washed with PBS, and further cultured in a CO2 incubator for 24
h with DEMEmedium containing 10% FCS supplemented with 4
mM L-glutamine. The cells were then trypsinized, passed
July 2022 | Volume 13 | Article 960036
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through a cell strainer (100 µm), seeded (2×106 cells) into T25
flasks, and cultured in a CO2 incubator for 1 week. Astrocytes
accounted for more than 90% of the total.

Co-Culture With Tregs
Tregs were isolated from the spleen and lymph nodes of
Foxp3-hCD2 knock-in mice as described previously (9).
hCD2+ T cells were isolated using EasySep Mouse APC-
Positive Selection kit (VERITAS) using FITC-conjugated
anti-mouse CD4 monoclonal antibody (mAb) (RM4-5;
eBioscience™), APC-conjugated anti-hCD2 mAb (RPA-
2.10; eBioscience™), and Fixable Viability Dye eFluor™ 780
(eBioscience™) to exclude dead cells. Tregs were further
sorted using a cell sorter (SH800; SONY Biotechnology).
Tregs and glial cells were co-cultured using the method
described below. The culture medium was removed from the
semi-confluent glial cells culture, and the Treg cells (1.0 × 106/
well) were then added and cultured in the presence of 2-
mercaptoethanol (×1000 dilution), anti-CD3 antibody (2 mg/
mL), anti-CD28 antibody (2 mg/mL), and IL-2 (20 ng/mL) for
3–6 days. Half of the medium was changed every 2 days. Anti-
CD3 and anti-CD28 antibodies were added only on the first
day. Various cytokines were added at the indicated
concentrations described below. To prepare the CM, semi-
confluent astrocytes or microglia (2×105/well) in 24 well
dishes were washed three times using serum-free medium,
cu l tu red in DEME med ium conta in ing 10% FCS
supplemented with 4 mM L-glutamine for 24 h, collected in
sterile tubes, and stored at −25°C until use. CM (0.5 mL/well)
was added to the 0.5 mL Treg culture in 24-well dishes.

All cytokines were purchased from Peprotech, and CCL20
and CCL1 were purchased from BioLegend. Final
concentrations were indicated as follows: IL-2 (20 ng/mL),
IL1-b (20 ng/mL), IL-4 (20 ng/mL), IL-6 (20 ng/mL), IL-10
(20 ng/mL), IL-33 (20 ng/mL), tumor necrosis factor a (20 ng/
mL), EGF (20 ng/mL), TSLP (20 ng/mL), macrophage–
colony-stimulating factor (20 ng/mL), BDNF (20 ng/mL),
Areg (20 ng/mL), CCL20 (20 ng/mL), and CCL1 (20 ng/
mL). All the following chemicals were from Sigma-Aldrich:
prostaglandin E2 (1 mM), pioglitazone hydrochloride (1 mg/
mL), LPS (500 ng/mL), Vitamin A (25 nM), Vitamin C (10 mg/
mL), and serotonin hydrochloride (10 mM).

FACS and Quantitative PCR Analysis
Co- cu l t u r ed c e l l s i n fla sk s we r e co l l e c t ed w i t h
ethylenediaminetetraacetic acid, centrifuged, and resuspended
with MACS buffer. After treatment with Fc blockers (anti-CD16/
32 antibody) at 4°C for 30 min, cells were washed and stained
with the indicated antibodies at 4°C for 30 min for FACS
analysis. For qPCR, hCD2+ T cells were isolated using auto-
MACS (Miltenry) and analyzed using real time (RT)-qPCR (Bio-
Rad), as reported previously (9, 33). For total cell RNA
sequencing (RNAseq) analysis, hCD2+ T cells were also
isolated using the auto-MACS, and total RNA was purified
using a MagMAX mirVana Total RNA Isolation Kit
(Thermo Fisher).
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The following antibodies for FACS were purchased from
eBioscience™: rat BV480- conjugated anti-mouse CD196
(CCR6), rat BV480- conjugated IgG2a, k isotype control,
PerCP-eFluor 710-labeled anti-IL-33R (ST2) mAb (RMST2-
33), rat PerCP-eFluor 710-labeled IgG2b kappa isotype control
(eB149/10H5), PE-Cyanine7-labeled anti-KLRG1 mAb (2F1),
PE-Cyanine7-labeled Syrian hamster IgG isotype control, rat
biotin-conjugated anti-mouse CD198 (CCR8) mAb, rat biotin-
conjugated k isotype control antibody, PerCP-eFluor™ 710
conjugated streptavidin, APC-conjugated anti-CD4 mAb
(RM4-5), APC, rat BV480- conjugated anti-mouse CD19 mAb,
rat BB515-labeled anti-CD11b mAb, PE-conjugated anti-Foxp3
mAb, PE-conjugated anti-CD25 (PC61.5) mAb, rat BB700-
labeled anti-mouse CD8a mAb, and PE-Cyanine7-conjugated
CD45 mAb (30-F11).

Parkinson’s Disease and Other Brain
Disease Models
A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
solution (100 µL) was injected intraperitoneally at 20 mg/
kg body weight four times every 2 h, as described in a
previous report (12). Three days after the last injection,
Tregs were adoptively transferred into MPTP-treated
recipient mice (n=5–7 mice). Seven days after MPTP
injection, mice were sacrificed and the brains were
processed for immunohistochemical analysis. To assess the
effect of MPTP on behavior, the rotarod test was performed
to measure motor coordination (34). The acceleration mode
(2–16 rpm for at least 2 min) and constant velocity mode (16
rpm for 5 min) were performed as training periods for 2 days
before MPTP administration. In the real rotarod test, the rod
was rotated in the constant velocity mode (16 rpm) and the
time until the mice fell from the rod was measured. EAE and
cerebral infarction models were performed as previously
described (35, 36).

Mouse Model of Ischemic Stroke
Male mice, aged 8–12 weeks and weighing 20–30 g, were used for
focal brain ischemia experiments (10). There was no significant
difference in weight or age between wild-type mice and any of the
knockout groups. We used a transient MCAO model that was
constructed using an intraluminal suture. The method of
inducing this transient suture MCAO model was previously
described (10). The mice were anaesthetized with isoflurane in
a mixture of 70% nitrous oxide and 30% oxygen. During the
MCAO procedure, the head temperature was kept at 36°C using
a heat lamp. Sixty minutes after MCAO, the brain was re-
perfused by removing the intraluminal suture.

Immunohistochemical Staining of
the Brain
Frozen midbrain sections (20 µm thick) were prepared using a
cryostat and stored at −20°C until staining. After air-drying for
20 min, sections were fixed with 3.7% formalin for 5 min and
treated with 0.1% TritonX-100 for 5 min. The sections were
blocked for 50 min at room temperature using blocking solution
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(0.2% skim milk). The first antibodies were anti-TH antibody
(GeneTex, GTX113016), rabbit anti-Iba1 antibody (Wako; 019-
19741), and anti-phosphorylated a-synuclein antibody
(pSer129) (GeneTex, GTX54991), and they were diluted in
blocking solution and then treated with the tissue sections
overnight at 4°C. The next day, the sections were washed with
PBS and reacted with the fluorescently labeled second antibodies
diluted in blocking solution and incubated overnight at 4°C.
After washing with PBS, the sections were sealed with an
encapsulant and observed and photographed with a BZ-X700
fluorescence microscope (Keyence). Quantification of striatal TH
was performed using BZ-H4A quantification software.

FACS Analysis of T Cells from the Brain
and Spinal Cord
Brains and spinal cords were removed frommice, incubated with
collagenase D and DNase I in a shaker (200 rpm) for 30 min at
37°C, and then centrifuged at 2000 rpm for 20 min in 30%/70%
Percoll. After centrifugation, the intermediate layer was collected
and resuspended in MACS Buffer. FACS analysis was then
performed as described (10).

RNA Sequencing
Library preparation was used NEBNext PolyA stranded Ultra II
Directional RNA Library Prep (New England BioLabs, MA) by
Azenta. The libraries were sequenced on Illumina HiSeq 1500
sequencers (Illumina, San Diego, CA). Sequence reads in
FASTQ format was applied to FastQC (v0.11.4) to assess
sequence quality. For adapter trimming, Trim Galore! (v0.6.0)
was used. The sequence reads (SP-Treg, Ischemia-Treg, iB-Treg
(A), iB-Treg (B), iB-Treg (C), NC, EAE.Br and EAE.SC) were
mapped to mouse reference genome GRCm38/mm10 from
Ensembl (release 102) using HISAT2 (version 2.2.1). The
mapped reads were counted for genes using featureCounts
(v.2.0.0). These data were further normalized using the
DESeq2 R package (v.1.30.1) and an rlog (regularized
logarithm) transformation was applied (37). PCA was
performed on these data. The SP-Treg, Ischemia-Treg, iB-
Treg (A), iB-Treg (B) and iB-Treg (C) data were extracted
from the transformed data and heat maps were generated using
the ggplot2 R package (v.3.1.1).

Statistical Analysis
The results are expressed as the mean ± SD from three to five
independent experiments. The Student’s t-test was used to
evaluate whether there was a significant difference between the
two groups. In all cases, P values less than 0.05 were considered
significant (* P<0.05, ** P<0.01).
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Supplementary Figure 1 | Effect of conditioned medium from astrocyte and
microglia on Treg activation and ST2 expression. (A, B) Tregs were cultured in the
presence or absence of AMC (conditioned medium from astrocytes) or MCM
(conditioned medium from microglia) for 3 days in the presence of IL-2 and IL-4.
Foxp3, CD25, and ST expression in Tregs was analyzed using FACS. (C, D) Tregs
were co-cultured with astrocytes in the presence or absence of MCM for 3 days in
the presence of IL-2 and IL-4. Foxp3, CD25, and ST2 expression in Tregs was
analyzed using FACS.

Supplementary Figure 2 | Therapeutic effects of iB-Tregs in an EAE model.
Tregs (1×106) were injected intravenously on day 16 after EAE onset and analyzed
until day 21 (A). Clinical scores for EAE in control, PBS-transfected (PBS), SP-Treg-
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transfected (SP-Treg), and iB-Treg-transfected (A–C) mice are shown in (B).
* P<0.05

Supplementary Figure 3 | Establishment of a Parkinson’s disease model by
MPTP administration. (A, B) Rotarod test protocol. After 2 days of training,
MPTP (20 mg/kg body weight) was administration four times every 2 h, and
analysis took place on day 7. The rod was rotated in a constant velocity mode
(16 rpm), and the time (s) until the mice fell from the rod was measured (latency
Frontiers in Immunology | www.frontiersin.org 11184
to fall). (C–E) The effect of X-ray irradiation on MPTP-induced inflammation
and injury of the substantia nigra (C). Dopaminergic neurons were stained with
anti-TH antibody, activated microglia cells were stained with anti-Iba1
antibody, and neural damage was stained with anti-p-aSynuclein antibody
(D), and the images were quantified in (E). T cell infiltration into the brain of
MPTP-treated mice was analyzed using FACS (F–H) Infiltrated T cells and
Treg cells in the brain of MPTP-treated mice were analyzed using FACS.
* P<0.05 ** P<0.01
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Treg cells have been initially described as gatekeepers for the control of

autoimmunity, as they can actively suppress the activity of other immune

cells. However, their role goes beyond this as Treg cells further control

immune responses during infections and tumor development. Furthermore,

Treg cells can acquire additional properties for e.g., the control of tissue

homeostasis. This is instructed by a specific differentiation program and the

acquisition of effector properties unique to Treg cells in non-lymphoid tissues.

These tissue Treg cells can further adapt to their tissue environment and

acquire distinct functional properties through specific transcription factors

activated by a combination of tissue derived factors, including tissue-specific

antigens and cytokines. In this review, we will focus on recent findings

extending our current understanding of the role and differentiation of these

tissue Treg cells. As such we will highlight the importance of tissue Treg cells

for tissuemaintenance, regeneration, and repair in adipose tissue, muscle, CNS,

liver, kidney, reproductive organs, and the lung.

KEYWORDS

regulatory T cells, Treg cells, tissue homeostasis, FoxP3, tissue Treg cells,
nonlymphoid tissues, tissue repair
Introduction

Regulatory T cells (Treg cells) are a specialized subpopulation of the CD4+ T cell

lineage which play an indispensable role in maintaining immune homeostasis, inducing

peripheral tolerance, and controlling inflammation (1). While initial work focused on the

identification of general functional properties of Treg cells, in the past years, distinct

effector Treg cell populations within non-lymphoid organs have been described (2)

(Figure 1). Treg cells in the periphery can adopt specialized differentiation programs

resulting in the acquisition of tissue-specific phenotypes, propelling tissue-specific Treg
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cell functionality. This goes along with the development of a

transcriptional effector Treg cell program. As we describe below,

this program has commonalities across different tissues, but also

has peculiarities specific for each tissue. These tissue-specific

properties are often instructed by the respective tissue and as

such have been described as being hijacked by Treg cells to adapt

to the tissue microenvironment.

While we acknowledge the existence of CD8+ Treg cells in

mice and humans which might also be indispensable within

tissues (3–6), this review will focus on CD4+ Treg cells and

further elucidate the important role of Treg cells in non-

lymphoid tissue physiology and pathophysiology while largely

excluding their contribution to the control of autoimmunity,

infections, and tumorigenesis.
Development of Treg cells

T cell progenitors develop in the bone marrow from

multipotent hematopoietic stem cells and migrate to the

thymus where rearrangement of the T cell receptor (TCR)

genes occurs. Subsequently, thymic Treg cell development

takes place. The classical model for Treg cell development in

the thymus comprises two steps: intermediate-strength TCR

signaling that promotes surface expression of the interleukin

(IL)-2 receptor subunit CD25, followed by IL-2/IL-15 signaling

that induces expression of the lineage-defining transcription

factor forkhead box P3 (FoxP3) (7). FoxP3 subsequently

orchestrates the epigenetic and transcriptional landscape

required for the acquisition of the classical Treg cells
Frontiers in Immunology 02
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phenotype. An alternative scenario involves the induction of

low expression of FoxP3 upon TCR stimulation, followed by

similar cytokine signaling to complete Treg cell differentiation

(7). Independent of the exact molecular pathway, thymus-

derived Treg cell development further depends on the avidity

and affinity of the molecular interactions of the TCR with

antigen within the major histocompatibility complex (MHC)

requiring a higher affinity to self-antigens then CD25-negative T

cells (8–11). Moreover, co-stimulation via the CD28 - CD80/

CD86 axis promotes the expression of appropriate FoxP3 levels,

necessary for the subsequent upregulation of the Treg cell-

associated gene expression program including upregulation of

cell-surface molecules like cytotoxic T lymphocyte antigen 4

(CTLA-4) and glucocorticoid-induced tumor necrosis factor

receptor family-related receptor (GITR) (12, 13).

Besides thymic Treg cells, a second population of Treg cells

with specific properties can be generated in the periphery. These

peripherally induced Treg cells develop from naïve CD4+ T cells

upon antigen stimulation in the presence of cytokines such as

transforming growth factor beta (TGF-b) and IL-2 but require

absence of pro-inflammatory cytokines (14–17). Particularly,

TGF-b promotes the transcription of FoxP3 (18, 19) with

factors such as retinoic acid further supporting the induction

of FoxP3 expression and its stabilization through demethylation

of enhancer elements at the FoxP3 locus. IL-2 facilitates this

TGF-b-mediated differentiation of Treg cells by directly

promoting Treg cell survival and expansion (20–22) and

inhibiting T helper (Th)17 cell development at the same time

(23, 24). While TGF-b-mediated T cell differentiation mainly

leads to Treg cell development under homeostatic conditions,
FIGURE 1

Overview of tissue-specific Treg cells throughout the body. Treg cells reside within different non-lymphoid tissues where they contribute to
tissue maintenance and repair.
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pro-inflammatory conditions characterized by the additional

presence of e.g., IL-6 favor Th17 over Treg cell differentiation

(17, 25, 26).
Naïve versus effector Treg cells

In analogy to conventional CD4+ T cells (Tconv cells), Treg

cells exiting the thymus display a naïve phenotype, expressing

lymphoid tissue-homing receptors such as L-selectin and C-C

chemokine receptor type 7 (CCR7). Upon encountering their

cognate (self-)antigen, TCR stimulation induces transcriptional

changes that drive naïve-like thymus-derived Treg cells

circulating in secondary lymphoid organs to differentiate into

effector Treg cells (eTreg cells) (27) (Figure 2). Such eTreg cells

possess high proliferation rates and superior suppressive

functions, manifested by increased expression of surface

markers such as Killer Cell Lectin Like Receptor G1 (KLRG1)

and CTLA-4, and enhanced release of IL-10 (27). Furthermore,

these eTreg cells gain the function to migrate into peripheral

tissues and locally control immune and tissue homeostasis.

Over the last years, increasing evidence supports a

hierarchical program of transcription factors governing this
Frontiers in Immunology 03
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differentiation process. Besides FoxP3, expression of the

transcription factors PR domain zinc finger protein 1

(PRDM1, also known as Blimp-1) and interferon regulatory

factor 4 (IRF4) have been identified as key steps for the

differentiation, function, and homeostasis of eTreg cells (28).

Expression of both transcription factors results in high

expressions of CD103, CD44, inducible costimulator (ICOS),

GITR, CD38, and CD69, as well as IL-10 production consistent

with an eTreg cell phenotype (28). This more general eTreg cell

program is complemented through tissue specific adaptations as

outlined below.
Tissue Treg cell precursors in secondary
lymphoid organs

A critical question concerning eTreg cells in non-lymphoid

tissues involves their developmental origin. Specifically, studies

explored whether tissue Treg cell precursors egress from the

thymus in a state that enables them to directly home to their

tissue destination, or whether they undergo gradual maturation

in secondary lymphoid organs (SLOs) before completing their

adaptation in the tissue of residence.
FIGURE 2

Common transcriptional, phenotypic, and functional characteristics of tissue-specific Treg cells. Naive Treg cells in secondary lymphoid organs can
undergo T cell receptor (TCR)-dependent activation, which initiates a gradual transcriptional programming trajectory. Specifically, activated Treg cells
downregulate canonical markers of naive T cells, such as CD62L, and upregulate expression of genes related to T cell activation (e.g. CD69, CD44), self-
renewal (e.g. ID-3), as well as typical non-lymphoid tissue Treg cell marker (e.g. PPARg). Such Treg cell precursors possess the capacity to further
differentiate into tissue-specific Treg cells. These cells migrate into non-lymphoid tissues along chemokine gradients (e.g. CCL2/CCR2 for the VAT)
where they locally control immune and tissue homeostasis. Once in the tissue, Treg cells further undergo transcriptional as well as metabolic
adaptations to the assigned tissue microenvironment, resulting in a tissue-specific effector phenotype. The contribution of effector Treg (eTreg) cells to
tissue regeneration and repair has been identified as a common characteristic in various non-lymphoid tissues such as VAT, muscle, or the kidneys
where this effect is mainly dependent on IL-33 and amphiregulin. Furthermore, common eTreg cell modules (e.g. KLRG1, ICOS, or CTLA-4) are shared
between different tissues. Controlling inflammation is one of the main functions of Treg cells and has also been described in tissue-settings by
mechanisms such as the release of suppressive cytokine or metabolic disruption of the target cells. OXPHOS, oxidative phosphorylation; TCF7,
transcription factor 7.
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Under steady-state conditions, T cells do not exclusively

exhibit a naïve state; rather, antigen-experienced T cells are still

generated without overt perturbation of homeostasis (29).

Similarly, Treg cells in SLOs do not uniformly display a naïve

phenotype. Yang et al. (30) reported that Treg cells in spleen and

peripheral lymph nodes are classified into three subsets based on

the expression of CD62L and T cell factor-1 (TCF-1), which

promote the longevity and self-renewal of naïve and memory T

cells. The TCF-1+CD62L+ subset represented 45-60% of

lymphoid-tissue Treg cells, and expressed markers of naïve,

quiescent T cells (e.g., Myb, Satb1). Conversely, TCF-1-

CD62L- Treg cells, representing <20% of the lymphoid-tissue

Treg cell pool, were characterized by an eTreg cell phenotype,

with i.e., increased expression of Icos, Ctla4, Il10, among other

genes (30). These findings suggest that naïve Treg cells are

instructed in lymphoid tissues to gradually adopt an eTreg cell

program before their migration to non-lymphoid tissues.

Further supporting this notion is a study by Li et al.

identifying a small subset of splenic Treg cells expressing low

levels of Pparg (31). Indeed, Pparg encodes peroxisome

proliferator-activated receptor gamma (PPARg), a critical

transcription factor for adipocyte differentiation as well as for

the generation and function of Treg cells in visceral adipose

tissue (VAT) (32). This PPARg-low Treg cell subset displayed a

more activated phenotype compared to their PPARg-negative
counterparts in the spleen (31). Importantly, PPARg-low Treg

cells exhibited an enhanced capacity to give rise to mature tissue

Treg cells compared to splenic PPARg-negative Treg cells (31).

Further characterization of splenic PPARg-low Treg cell

precursors revealed that they comprise two subpopulations

with distinct transcriptional landscapes (33). Specifically, one

of the precursor subsets expressed higher amounts of transcripts

encoding chemokine receptors and integrins, whereas the

second precursor subset upregulated the expression of Treg

cell maturation and activation markers such as Klrg1 and

Pdcd1, among others. Moreover, clonal overlap between both

splenic PPARg-low Treg cells and Treg cells resident in adipose

tissue, skin, and liver, suggested that such splenic Treg cells give

rise to at least a fraction of the respective pools of tissue Treg

cells (33). In summary, these data support a model, where

PPARg-negative splenic Treg cells gradually develop into

PPARg-low tissue Treg cell precursors, which in turn

eventually differentiate into tissue Treg cells. (Figure 2).

Consistent with the notion of a common PPARg-expressing
precursor in the spleen, Delacher et al. found that chromatin at

the genomic Pparg locus remains accessible in several non-

lymphoid tissue Treg cells (34). Such observations of

chromatin accessibility at the genomic Pparg locus hinted at

shared epigenetic reprogramming events preceding the

specification of the different tissue Treg cells. Based on the

expression of KLRG1 and the transcription factor nuclear

factor interleukin 3 (NFIL3), the authors subdivided splenic

Treg cells into largely naïve KLRG1-NFIL3-Treg cells, and two
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subpopulations of Treg cell precursors. The population of

NFIL3+ KLRG1- splenic precursors first needed to upregulate

KLRG1 before subsequently giving rise to at least a fraction of

the non-lymphoid tissue Treg cells in a basic leucine zipper

transcription factor (BATF)-dependent fashion (34). In a follow-

up study the same group confirmed these findings using single-

cell chromatin accessibility data moreover showing a similar

Treg cell signature in humans (35). In addition to BATF, CCR8

was identified as a marker for tissue-like Treg cells in human

peripheral blood which, based on TCR-sequencing and

pseudotime-based developmental trajectory analyses, were

proposed as circulating Treg cell precursors for tissue-resident

Treg cells in human fat and skin (35).

In addition, Sullivan et al. demonstrated that low expression

of the transcription factor inhibitor of DNA binding (ID)-3

marks tissue Treg cell precursors in SLOs (36). Splenic Treg cells

progressively downregulated ID-3 and upregulated ID-2 as they

transitioned from a naïve state to an increasingly mature effector

phenotype. In line with this observation, tissue Treg cells were

found to express low levels of ID-3 (36).

Taken together, recent evidence supports that the transition

from a naive phenotype to the full tissue Treg cell program is

initiated already in SLOs, yet the differentiation and full

adaptation to the tissue microenvironment only occurs once

Treg cells have migrated into their assigned tissue (Figure 2).
Specific properties of tissue Treg
cells in adipose tissue

One of the best studied tissues to understand the events

necessary for this instruction of tissue properties in Treg cells

and their role for the maintenance of homeostasis in a non-

lymphoid tissue is the adipose tissue. The adipose tissue can be

classified into white adipose tissue (WAT), where fatty acids are

deposited, and brown adipose tissue, which is more prone to

thermogenesis (37). WAT is found either subcutaneously or in

the abdominal viscera (37). Apart from being an energy store,

VAT is characterized by a chronic, low-grade inflammation,

particularly in male mice (38). Such VAT inflammation is

exacerbated in the context of obesity, where it drives insulin

resistance and glucose intolerance (39). Indeed, an increased

VAT volume is a strong correlate of different parameters of

metabolic disorders (40). VAT inflammation itself is mediated

by different subsets of myeloid cells and Th1 effector T cells as

well as adipocytes, releasing an array of proinflammatory

cytokines and effector molecules (41, 42).

The physiologic mechanism through which mice limit

inflammation in the VAT is exerted by a special population of

tissue Treg cells residing in the VAT (39). Such VAT Treg cells

modulate the inflammatory milieu as well as insulin sensitivity

and, hence, glucose tolerance (38, 39). Over the last years, a large

number of studies investigating VAT Treg cells have uncovered
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phenotypic and transcriptional features that are peculiar to this

unique Treg cell population.

The fraction of eTreg cells among total CD4+ T cells in the

VAT is age-dependent and reaches a fraction of ~50% in 20-30

week-old male mice, substantially higher than in other lymphoid

and non-lymphoid tissues (43). In addition, the TCR repertoire

of VAT Treg cells exhibits a greater frequency of shared

clonotypes than Treg cells in lymphoid tissues, indicating that

the increase in Treg cells in VAT is caused by an antigen-driven

clonal expansion of Treg cells (39, 44). This supports the notion

that a specific population of Treg cells, most likely PPARg-low
splenic Treg cells, migrates into the VAT and occupies a specific

niche where Treg cells can reside over longer periods of time and

expand after antigenic stimulation.

By virtue of the proinflammatory environment in the VAT,

Treg cells are recruited to the VAT along chemokine gradients, e.g.,

the chemokine (C-C motif) ligand 2 (CCL2)/CCR2 axis as Treg

cells preferentially express CCR2 (38, 39). TCR signaling by

oligoclonal Treg cells in the VAT plays a crucial role in their

subsequent maturation and acquisition of the canonical VAT Treg

cell phenotype. Specifically, TCR signaling in the VAT induces the

expression of the transcription factors IRF4 and BATF, which, in

turn, elicit the IL-33 receptor, ST2 (45) and enforce expression of

the transcription factor PPARgwhich is critical for the development

and function of VATTreg cells (32). Meanwhile, stromal cells in the

VAT release IL-33, which acts on Treg cell-expressed ST2 to induce

VAT Treg cell expansion (38). Mature ST2+ VAT Treg cells exhibit

a Th2-like phenotype, expressing the prototypical Th2 cell

transcription factor GATA3, and releasing IL-13 and IL-5, in

addition to IL-10 (46). Together, the interplay of these factors

and the signals received by the surrounding microenvironment

result in the canonical VAT Treg cell signature comprising, among

others, ST2, CCR2, KLRG1, and IL-10 (38, 46). Further, VAT Treg

cells adapt to their tissue of residence by upregulating the expression

of genes encoding lipid-metabolizing enzymes, such as Pcyt1a

(encoding choline-phosphate cytidylyltransferase) and Dgat1

(encoding diacylglycerol O-acyltransferase 1) (32). Notably, ST2+

Treg cells do not constitute the entire VAT Treg cell compartment;

instead, 20% of the VAT Treg cell population comprises of an

interferon-gamma (IFNg)-dependent C-X-C chemokine receptor

type 3 (CXCR3)+ Treg cell subset (31, 47, 48). The exact molecular

determinants and the population dynamics of such CXCR3+ VAT

Treg cells remain to be elucidated.

These data, together with additional experimental evidence,

supported the idea that the IL-33/ST2 axis is responsible for the

recruitment and expansion of Treg cells in the VAT and the

development of the VAT Treg cell phenotype (45) and that VAT

Treg cells act upon their surroundings via secretion of IL-10 (46).

Two recent studies have now provided fresh perspectives

concerning VAT Treg cell biology, namely the necessity for Treg

cell-intrinsic ST2 signaling for VAT Treg cell development and/or

maintenance, and the impact of IL-10 released by VAT Treg cells

on organismal physiology. On the one hand, deletion of ST2
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selectively in Treg cells did not result in decreased numbers of

VAT Treg cells or altered expression of KLRG1 and GATA3 (46,

49). Instead, Treg cell-specific ST2 deficiency reduced the capacity

of VAT Treg cell to secrete IL-5 and IL-13 (49). Furthermore, ST2-

deficiency in Treg cells did not abrogate their expansion in response

to IL-33 administration, questioning the hypothesis that IL-33/ST2

is acting in a Treg-cell intrinsic fashion. However, the authors

compared mice lacking both Il1rl1 alleles to Il1rl1fl/+ heterozygous

mice and not wild-type animals, where IL-33-driven Treg cell

expansion might be greater than in Il1rl1 single-deficient mice

(49). On the other hand, Beppu et al. reported that Treg cell-derived

IL-10, whose expression is driven by the transcription factor Blimp-

1 (38), promotes high-fat diet-induced obesity (50). This was

explained by the finding that IL-10 suppresses the differentiation

of adipocyte precursors into beige adipocytes, impeding

thermogenesis and promoting obesity (50). This suggests that the

beneficial role that VAT Treg cells play in guarding against insulin

resistance is IL-10-independent. Taken together, these studies

highlight that the role and function of VAT Treg cells is still not

fully understood and warrants further investigations to unravel the

intricate dependencies between the local interplay of cells in the

given tissue microenvironment.

However, the vast majority of the aforementioned studies

were carried out in male mice. A recent study has now shown

that VAT Treg cells exhibit a substantial sexual dimorphism

(38). Treg cells were more abundant in VAT of male mice and

expressed larger amounts of ST2, KLRG1, CCR2, IL-10, as well

as Blimp-1 and PPARg. The distinct differentiation states of Treg

cells in VAT of male and female mice were shaped by sex

hormones in a Treg cell-extrinsic fashion (38). Specifically,

instead of acting directly on Treg cells, testosterone stimulated

the production of pro-inflammatory mediators, including CCL2,

and IL-33 by VAT stromal cells in male mice (38). Conversely,

estrogen limited the release of such mediators in VAT of female

mice. CCR2-expressing Treg cells were recruited to the CCL2-

rich male VAT, where they expanded in situ by virtue of locally-

produced IL-33 acting on Treg-expressed ST2 (38). Taken

together, the pronounced inflammatory state of the male VAT

facilitates Treg cell residence in VAT to mitigate inflammation

and insulin resistance.

In addition to the aforementioned transcriptional regulators

and surface receptors, recent studies have illuminated additional

signaling pathways that control VAT Treg cell abundance and

phenotype. Germline deletion of ICOS was associated with an

increased number of VAT Treg cells, which exhibited a more

pronounced effector phenotype (48) including higher expression

of CTLA-4 and KLRG1. Such accumulation of Treg cells was

mirrored by a reduced frequency of Th1 cells and a reciprocal

increase of Th2 cells. Remarkably, lack of ICOS signaling

resulted in an increased IL-10 production by effector CD4+ T

cells in the VAT (48). In addition, male mice deficient in ICOS

signaling and exposed to HFD exhibited a greater increase in

ST2 and KLRG1 expressing eTreg cells in the VAT compared to
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WT mice, along with an accumulation of Th2-polarized effector

CD4+ T cells and ameliorated insulin sensitivity (48).

Amplification of eTreg cells in the VAT in the absence of

ICOS was in disagreement with observations made for Treg

cells in lymphoid and other non-lymphoid tissues in the same

mice, where Treg cells were reduced in numbers and showed a

naive-like phenotype. Hence, one can conclude from this study

that ICOS signaling serves to limit eTreg expansion specifically

in VAT.

Functionally, recent work could identify VAT-specific

immunosuppressive programs. Hydroxyprostaglandin

dehydrogenase (HPGD) is an enzyme that mediates the

metabolism of prostaglandin E2 (PGE2) into 15-keto PGE2,

which mediates an immunosuppressive effect on Tconv cells

(51). Expression of HPGD is higher in Treg cells compared to

Tconv cells and is greater in VAT Treg cells compared to other

lymphoid and non-lymphoid tissue Treg cells. Notably, HPGD

expression is at least partially dependent on FoxP3 and PPARg.
Hpgd-deficient Treg cells retain the transcriptional and

phenotypic hallmarks of unperturbed Treg cells. However,

Treg-specific Hpgd deficiency in the context of aging or diet-

induced obesity resulted in a VAT-specific expansion of

functionally impaired Treg cells (51). Consequently, mice

harboring Hpgd-deficient Treg cells exhibited an increased

infiltration of natural killer (NK) cells and inflammatory

CD11c+ myeloid cells in the VAT, which culminated in VAT

inflammation and an impaired metabolic profile corresponding

to reduced insulin sensitivity. These data support that VAT Treg

cells not only are transcriptionally distinct but also can use

tissue- and context-specific means to exert their function within

a given non-lymphoid tissue.

A recent single-cell RNA-seq (scRNA-seq) study has further

extended our understanding of VAT Treg cell heterogeneity.

Employing a multimodal analysis of adipose tissue Treg cells

characterizing their transcriptome, chromatin accessibility, and

TCR repertoire, the authors could describe that VAT Treg cells

can be broadly classified into two main subsets based on the

expression of ST2 and the surface nucleotidase CD73 (44).

Notably, the CD73-expressing Treg cells were distinct from

the Th1-like CXCR3+ Treg cells described above. Rather, the

CD73-expressing Treg cell cluster was marked by a naïve

phenotype, a reduced expression of effector Treg cell

molecules, and a less diverse TCR repertoire compared to the

ST2-expressing Treg cell cluster. CD73-expressing Treg cells

represent a less differentiated state and trajectory analysis and

functional data support that the CD73-expressing Treg cells

convert into ST2-expressing Treg cells, a transition that is

dependent on insulin signaling. Indeed, insulin signaling

promoted the expression of PPARg , which, in turn,

downregulated CD73 and upregulated ST2 expression (44).

One potential reason as to why a CXCR3-expressing subset

was not identified in this study is the coarse clustering employed

by the authors, given that CXCR3+ Treg cells only represent a
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minority in the VAT, and thus would potentially require further

subclustering for its detection.

In summary, Treg cells in the VAT represent a vital tool in

controlling local and systemic inflammation and promoting

insulin sensitivity. They are recruited to the inflammatory

environment of the VAT and are then shaped by the tissue

microenvironment. VAT Treg cells possess peculiar features

compared to other tissue Treg cells with respect to the role of

ICOS signaling in their maintenance and sexual dimorphism. In

the future, the ongoing characterization of this unique Treg cell

population may allow for their precise targeting to prevent and

treat metabolic disorders.

Functions of tissue Treg cells for
muscle homeostasis and
tissue repair

In 2013 Burzyn et al. for the first time described a small

population of skeletal muscle-specific Treg cells. These cells

possess unique transcriptional features with genes upregulated

that are important for Treg cell-mediated suppressive functions,

such as Ctla4, Klrg1, Il10, Gzmb, Tim-3, Ccr2, Il1rl1, and Areg, as

well as genes related to mitotic cell cycle pathways (52–54).

Based on high expressions of Helios and Neuropilin-1 (Nrp-1), a

thymic origin of this muscle-specific Treg cell population was

suggested (53). In response to a cardiotoxin-induced skeletal

muscle injury, this Treg cell fraction in mice increased by clonal

expansion in the inflamed tissue (53, 55). DiSpirito et al.

furthermore confirmed that the Treg cell response after muscle

injury is a dynamic process which is marked by specific shifts in

the Treg cell transcriptome (54), highlighting the importance

and need of longitudinal studies throughout the course of

regeneration to better capture these dynamic changes and

learn about their importance for Treg cell function during

muscle repair.

Muscle injury in general starts with the destruction of muscle

fibers, cell death, and infiltration of pro-inflammatory immune cells

followed by the activation, proliferation, and differentiation of

myogenic stem cells, called satellite cells, promoting tissue repair

and regeneration (56). Thereby a shift from pro-inflammatory to

anti-inflammatory responses occurs. Interestingly, Treg cells

accumulation is most prominent during this shift and is induced

in a TCR-dependent manner (53, 57, 58). Similar to the recruitment

of Treg cells into VAT, IL-33-ST2 signaling has been proposed as a

key pathway necessary for the migration of Treg cells into skeletal

muscle. First evidence for this came from the observation of high

expression of ST2 on muscle Treg cells and impaired muscle

regeneration upon Treg cell-specific deletion of ST2 (55). In such

a scenario, the alarmin IL-33 is released by fibro/adipogenic

progenitor cells and local mesenchymal stromal cells which are

associated with neural structures proposing a crosstalk between the

immune and nervous system (55, 59). Furthermore, old mice were
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shown to secrete lower amounts of IL-33 uponmuscle injury, which

resulted in a diminished Treg cell fraction within skeletal muscle, as

well as impaired muscle repair. This age-dependent distortion of

tissue homeostasis could be restored by IL-33 supplementation,

further supporting the protective function of Treg cells within

skeletal muscle (55). Generally, Treg cell contribution to muscle

healing includes macrophage polarization into a pro-regenerative

phenotype and direct stimulation of satellite cell proliferation via

amphiregulin (53, 55, 57, 60). The importance of Treg cells for

muscle tissue homeostasis has been further highlighted by several

additional studies which showed that genetic deletion or

pharmacological abrogation of Treg cells in mice resulted in

delayed muscle healing, increased fibrosis, and prolonged

inflammation (53, 55, 57, 60)

One additional function of Treg cells in skeletal muscle has

been unraveled through studies in the mdx mouse model. This is

a murine model of the human disease Duchenne muscular

dystrophy characterized as a hallmark by chronic muscle

inflammation (61). Comparable to the acute muscle injury, an

increase in Treg cells was detected in necrotic lesions of mdx

mice. The Treg cells expressed higher levels of KLRG1, GITR,

programmed cell death protein 1 (PD-1), and IL-10, reflecting

an activated phenotype (53, 55, 57, 60), supporting the notion

that, also in chronic muscle damage and inflammation, tissue-

specific Treg cells are required to contain tissue inflammation.

Recently, the importance of PD-1 for muscle-Treg cell

expansion and function could be established using a skeletal

muscle contusion mouse model (62). Another factor shaping the

Treg cell population within the skeletal muscle is adenosine

triphosphate (ATP), which earlier had been shown to be

inhibitory to Treg cell stability and suppressive function (63).

During the course of muscle injury, necrotic muscle fibers and

immune cells release ATP activating the purinergic P2X

receptors on Treg cells leading to their inhibition. The

blockage of this pathway in mdx mice resulted in enriched

Treg cells within the skeletal muscle and attenuated injury

progression (64). As observed during acute muscle injury,

pharmacological Treg cell expansion in mdx mice reduced

muscle injury and severity of inflammation, while Treg cell

depletion exacerbated the damage (53, 55, 57, 60).

Summarizing these findings, skeletal muscle harbors a unique

Treg cell population which is important for tissue repair and

regeneration with further potential aspects e.g., during obesity or

other challenges of muscle tissue not yet sufficiently explored.

Besides skeletal muscle, Treg cells have also been described

in the cardiac muscle. Such heart tissue Treg cells adopt a

specific program helping to maintain tissue homeostasis

through dampening chronic inflammation. This has been best

studied in heart failure, which is characterized by structural

abnormalities and cardiac dysfunction leading to reduced

peripheral organ perfusion (65). Myocardial infarction,

ischemia/reperfusion injury, as well as myocardial fibrosis may
Frontiers in Immunology 07

192
directly lead to heart failure and findings from these

ethiopatholigically connected diseases will be summarized here.

Myocardial infarction is marked by low oxygen delivery to the

myocardial tissue resulting in cardiomyocyte death. During the

tissue repair process cells from the innate immune system,

especially neutrophils and monocytes/macrophages, infiltrate the

damaged tissue initializing local inflammation. On the other side,

Treg cells enrich in the infarcted myocardium, partly mediated via

CCR5, promoting tissue regeneration (66–69). Treg cells thereby

diminish the infiltration of pro-inflammatory cells, mediate

macrophage polarization into an anti-inflammatory tissue-

repairing phenotype, and directly promote cardiomyocyte

proliferation (66–68, 70–72). A recent study by Xia et al.

performed RNA-seq of Treg cells seven days post myocardial

infarction, revealing a Treg cell subtype being present in the heart

that is consistent with a tissue Treg cell phenotype also found in

skeletal muscle and skin, characterized by genes such as Ctla4, Areg,

Klrg1, and Il1rl1 (68). These cells further upregulated genes which

have been mainly described in the context of collagen biosynthesis,

wound healing, and extracellular matrix organization, confirming

acquisition of a tissue-regenerative function of the tissue Treg cells.

Moreover, Treg cells present in the infarcted myocardium have

been shown to be actively-recruited and thymus-derived,

HelioshiNrp-1hi Treg cells that further expand within the tissue in

an IL-33-ST2-dependent manner (68).

Myocardial ischemia/reperfusion injury follows myocardial

infarction and may lead to additional damage. In mouse models

a rapid Treg cell infiltration of the heart post reperfusion was

described (68, 73, 74). While not further characterized on a

transcriptional level, it is conceivable to assume that these eTreg

cells will have a highly similar tissue-instructed phenotype.

Functionally, adoptive transfer of in vitro-activated Treg cells

attenuated the myocardial ischemia/reperfusion injury in a

CD39-dependent manner. Such Treg cells promoted

cardiomyocyte survival and inhibited neutrophil infiltration,

highlighting one exemplary pathway how tissue homeostasis

can be achieved by tissue Treg cells (73).

Myocardial fibrosis occurs as a consequence to cardiomyocyte

injury further decreasing cardiac function. Adoptive transfer of Treg

cells has been shown to ameliorate the extent offibrosis inmice (75–

78). Conversely, in neonatal mice, where the heart can transiently

regenerate after injury, Treg cell depletion following heart

cryoinfarction resulted in reduced cardiomyocyte proliferation

and enhanced fibrosis (78). Transcriptomic analysis of Treg cells

during the regenerative phase after cryoinfarction depicted an

upregulation of chemotaxis and repair-related genes such as Ccl24

and Areg (78) further supporting a regenerative Treg cell phenotype

being present in the heart. Taken together, these data clearly

highlight the importance of a muscle-specific program in Treg

cells being recruited into both skeletal and cardiac muscle after

injury where these eTreg cells subsequently exhibit a tissue

reparative function.
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Beyond their role in cardiac muscle repair after myocardial

infarction, tissue Treg cells have also been implicated in the context

of atherosclerosis, which is one of the main risk factors for

myocardial infarction and stroke and is characterized by chronic

sterile inflammatory remodeling of the arterial wall (79, 80). This

subsequently results in plaque formation inside of arteries that

consists of lipids and immune cells such as macrophages, dendritic

cells (DCs), or T cells (81) but low frequencies of Treg cells (82–85).

The first evidence for atheroprotective functions of Treg cells was

reported in mouse studies with either pharmacological depletion of

Treg cells using anti-CD25 antibodies (86, 87) or temporal FoxP3-

specific diphtheria toxin-targeted (FoxP3DTR) (88) depletion of Treg

cells in mouse models for atherosclerosis, namely in apolipoprotein

E–deficient (ApoE–/–) or low-density lipoprotein receptor–deficient

(Ldlr–/–) mice. In these mice Treg cell deficiency was associated with

elevated lesion development (86–88). Conversely, ApoE–/– mice

supplemented with Treg cells via adoptive transfer showed

attenuated lesion formation and immune cell infiltration (89, 90).

Elucidating the exact suppressive mechanism exerted by Treg cells

in atherosclerosis, Lin et al. studied macrophage foam-cell

formation, a hallmark of atherosclerosis, in presence or absence

of Treg cells (91). It could be shown that Treg cells ex vivo decrease

lipid accumulation and promote an anti-inflammatory phenotype

of co-cultured macrophages. Requirements for this protective effect

were both direct cell-cell contact as well as soluble factors, like the

anti-inflammatory cytokines IL-10 and TGF-b. The importance of

IL-10 and TGF-b for attenuating atherosclerosis was subsequently

confirmed by additional studies (92–96). However, Treg cells are

not the exclusive source for these cytokines, other cell types such as

DCs or type 1 regulatory T (Tr1) cells need to be taken into

consideration as contributors to this atheroprotective mechanism.

In the context of regression of atherosclerotic lesions, Sharma et al.

further characterized Treg cell subtypes involved in disease

development and resolution using scRNA-seq of CD45+ aortic

cells. Based on the expression of Nrp-1, Treg cells from progressing

plaques were identified as thymus-derived, while Treg cells in

regressing plaques were mainly induced in the periphery, had a

higher activation status, and an altered metabolism (87). It remains

open, what factors cause this change, is the migration into the tissue

altered or is this change dependent on tissue-antigens being

presented and what functional impact has this altered Treg cell

phenotype for the local tissue environment. A recent study in

ApoE–/–mice by Shao et al. shed some further light on the Treg cells

involved in atherosclerosis demonstrating that IL-35 promotes a

subset of CCR5+ Treg cells, which are characterized by elevated

expression of immunosuppressive genes such as TIGIT, Pdcd1,

Ctla4, Adora2a, Lag3, Havcr2, and Il10. This tissue Treg cell

population is important for the prevention of the formation of

atheroscerotic lesions (97). Taken together, these studies could

unravel the importance of Treg cells within the context of

atherosclerosis and demonstrate that the eTreg cells mainly

exhibit atheroprotective properties. Current data suggests

however, that this activity is carried out by different Treg cell
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subsets over the course of the disease which warrants further

investigations to better understand the impact of these subtypes

of Treg cells. Important first steps would be to characterize these

cells on a transcriptional and functional level to align findings with

current knowledge on eTreg cell properties.
Role of Treg cells for CNS
development and homeostasis

While the contribution of Treg cells to tissue homeostasis in

adipose tissue and muscle have been well documented over the

last decade, focus has shifted to the role of Treg cells for tissue

homeostasis in other not as-well studied organ systems, such as

the central nervous system (CNS). Several studies over the last

few years have reshaped our perception of the immune cell

composition in the CNS. Single-cell profiling revealed that the

brain immune cell landscape is heterogeneous and comprises

several subsets of myeloid and lymphoid cells (98) under steady-

state and pathophysiological conditions beyond autoimmunity

and infection. Recent work has described that Tconv cells but

also Treg cells can take up residency in the brain parenchyma at

steady state, where they contribute to the maturation of

microglia and hence to brain homeostasis (99). In addition,

CD4+ T cells have been described in the meninges, particularly

in the dura, and implicated in the modulation of cognition and

behavior (100). In young adult mice, Treg cells represent ~10%

of the CD4+ T cell population in both the brain parenchyma and

dura (99, 101). The majority of brain Treg cells were

characterized by an eTreg cell phenotype, expressing elevated

amounts of CD73, CD39, and lymphocyte-activation gene 3

(LAG3), and displayed similar suppressive capacity in vitro

compared to their splenic counterparts (102). Interestingly,

astrocytes were found to maintain FoxP3 expression in Treg

cells and promoted Treg cell survival in an IL-2/Signal

transducer and activator of transcription 5 (STAT5)-

dependent fashion (102). Much like the expansion of Treg

cells in peripheral tissues of old mice (103), meningeal Treg

cells likewise increase in frequencies and numbers in the dura of

old mice (101). Systemic depletion of Treg cells, including in the

dura and deep cervical lymph nodes, mitigated the cognitive

impairment exhibited by old mice, hence indirectly implicating

Treg cells in age-related cognitive deficits (101).

A number of studies have characterized brain Treg cells in

the context of ischemic stroke (104–107). Treg cells infiltrate the

brain following the induction of stroke and increase in numbers

particularly at later time points (day >7 post-stroke induction)

compared to the acute and subacute phases (3-7 days) post-

stroke induction (105, 107). Treg cells in the ischemic brain, but

not in peripheral tissues, were highly proliferative 7-14 days after

ischemia (105); they localized close to and within the infarcted

area, where they contact resident and infiltrating MHC-II+
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myeloid cells (104, 105). Brain Treg cells are recruited to the

ischemic brain via chemokines such as CCL1 and CCL20 which

act on CCR6 and CCR8 expressed by Treg cells (106).

Subsequently, Treg cells are expanded in a ST2-dependent

fashion, with IL-33 released from injured glia acting on ST2

expressed by Treg cells (106). In addition to typical markers of

tissue Treg cells (106, 107), brain Treg cells in the ischemic brain

exhibited context-dependent gene expression, in the shape of

serotonin receptor Htr7 (106), In line with this finding, Treg cell

expansion was dependent on serotonin in the ischemic brain

(106). Treg cell depletion resulted in an enhanced disruption of

white-matter integrity, reduced capacity for remyelination, and

impaired neurological recovery (106, 107). Of note, Treg cell

depletion did not aggravate motor functions of mice in the acute

phases of stroke (105, 107), suggesting a restorative potential of

Treg cells at later time points rather than an anti-inflammatory

effect during the early phases of injury. Mechanistically, Treg

cells mediate their reparative functions on remyelination and

oligodendrogenesis by modulating microglial gene expression

profiles rather than inhibiting pro-inflammatory effector T cell

response (107). Specifically, a Treg cell-microglia crosstalk

mediated by Treg cell-bound osteopontin and microglia-

expressed integrin subunit beta 1 (Itgb1) was shown to be

instrumental for promoting a reparative program in microglia

(107). Another mode of action of Treg cells in ischemic stroke

has recently been described as they can mitigate the stroke-

associated astrogliosis in an amphiregulin-dependent fashion

and suppress the induction of a neurotoxic gene expression

program in astrocytes (106). Evidence also exists for a role of

Treg cells in the context of intracerebral hemorrhage (ICH).

Treg cells increased in the spleen and brain of mice following

ICH induction, albeit to a greater extent in the brain, compared

to sham-operated mice (108). Treg cell depletion two days before

the induction of ICH was associated with aggravated

neuroinflammation, hematoma volume, neuronal death, and

motor impairment, suggesting that Treg cells also mediate

tissue integrity and protection in this setting (108).

Brain Treg cells have also been investigated in another

context of tissue injury, namely traumatic brain injury (TBI)

(109). TBI elicited a greater expression of IL-33 by astrocytes and

oligodendrocytes. This was accompanied by an increased

infiltration of ST2+ Treg cells into the brain, particularly on

day 7 post-TBI. Mice with constitutive Il1rl1 deletion exhibited

reduced numbers of circulating and brain-infiltrating Treg cells,

a reduction that was correlated with worsened histopathological

findings and neurological impairment (109). Conversely, IL-33

treatment was associated with increased ST2+ Treg numbers in

the brain and ameliorated neuropathological and behavioral

scores (109). Importantly, IL-33 administration to Treg cell-

depleted mice did not lead to neurological improvements

observed in IL-33-treated Treg-sufficient mice (109). Hence,

IL-33 release from injured neural cells promotes a recovery

program mediated by ST2+ Treg cells.
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Furthermore, Treg cells mitigate neuropathic pain

preferentially in female mice (110). Intrathecal administration

of colony-stimulating factor 1 (CSF-1), and subsequent

microglia activation, precipitates neuropathic pain specifically

in male mice. In female mice, intrathecal CSF-1 delivery was

associated with an expansion of Treg cells (and NK cells) in the

meninges lining the spinal cord. Systemic depletion of Treg cells

in female mice followed by intrathecal CSF-1 injection resulted

in microglia adopting a transcriptional landscape similar to the

state observed in male mice, together with the induction of pain

in such female mice, highlighting a sex-specific protective

function of CNS Treg cells in female animals (110). Another

example of sexual dimorphism of brain Treg cells was observed

in the setting of hypoxia-induced encephalopathy in neonates

(111). Brain Treg cells were more numerous in the brains of

female mice 24 hours post induction of hypoxia, expressing the

chemokine receptors CCR4 and CXCR4. Depletion of Treg cells

in female mice exacerbated neuropathology as well as motor and

behavioral impairments (111). Strikingly, Treg depletion in male

neonatal mice mitigated neuronal injury and motor and

cognitive deficits. Mechanistically, Treg cells from female mice

exhibited greater suppressive capacity of effector T cells, and

their depletion resulted in enhanced microglial and endothelial

cell activation in female but not male mice (111).

Beyond their role for acute injury and repair, Treg cells have

also been implicated in the context of neurodegeneration. In 6

week-old amyloid precursor protein/presenilin 1 (APP/PS1)

mice as model for cerebral amyloidosis, transient depletion of

Treg cells impaired microglial clustering around amyloid b (Ab)
plaques and aggravated cognitive decline, whereas IL-2

administration induced Treg cell expansion and ameliorated

cognition (112). In contrast, Treg cell depletion in 5 month-old

5x Familial Alzheimer’s Disease (FAD) mice, as a second model

of cerebral amyloidosis, enhanced myeloid cell trafficking to the

brain and improved cognitive function (113). While it would be

tempting to speculate on a protective role for Treg cells in

neurodegeneration, these opposing results which may be

attributed to the different age - and hence different extent of

disease progression - at which Treg cells were depleted showcase

that there still exists a knowledge gap on the role of Treg cells in

the context of neurodegeneration that has to be addressed over

the upcoming years.

As discussed in previous sections, tissue Treg cells and their

molecular machinery adopt tissue- and context-specificities.

Similarly, it is conceivable that two common tissue Treg cell

markers, ST2 and ICOS, modulate brain Treg cells as so far

already demonstrated in the context of stroke but also CNS

autoimmunity and infection. Besides their identification as

crucial for repair after brain injury, ST2+ Treg cells in the

brain have been recently characterized in the context of CNS

autoimmunity, namely mice developing experimental

autoimmune encephalomyel i t is (EAE), a model of

autoimmune neuroinflammation. Conditional deletion of ST2
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in Treg cells resulted in increased frequency and absolute

number of Treg cells in the CNS of EAE mice (49). Despite

this change in frequency, deletion of ST2 in Treg cells resulted in

more severe EAE manifestations; moreover, gamma-delta T cells

were more numerous and secreted more IL-17A but less IFNg
after depletion of ST2 in Treg cells. Therefore, although the

frequency and absolute number of Treg cells were higher in mice

lacking ST2 expression in Treg cells, the authors suggested that

the lack of signaling via ST2 seemed to impede the modulation

of pathogenic, IL-17-producing gamma-delta T cells by Treg

cells further highlighting the importance of ST2 for function and

proper positioning of Treg cells in the CNS (49). ICOS was also

implicated as a regulator of the maintenance of brain Treg cells.

Using a model of brain Treg cell expansion, namely chronic

infection with the parasite Toxoplasma gondii (114), ICOS

deficiency abrogated the increased proportion of Treg cells

otherwise observed in chronically infected wild type mice (47).

This is in line with data demonstrating a reduced frequency of

Treg cells in the spleen and most non-lymphoid tissues in ICOS-

deficient mice at steady state, with the notable exception of VAT,

as discussed above. A functional consequence of the impaired

Treg cell expansion in the brain of chronically infected mice

could not be inferred due to the use of non-conditional ICOS

deficient mice, hence affecting - in addition - Tconv cell

responses. Still, these data support that both ST2 and ICOS

contribute vitally in shaping the CNS Treg cell phenotype.

Collectively, these studies highlight a tissue reparative role

for CNS Treg cells following tissue injury-induced innate

inflammation, but also a detrimental role in aging and later

stages of cerebral amyloidosis. In line with findings from other

tissues, the data also suggest that core aspects of the program of

CNS tissue Treg cells molecularly and functionally overlap with

tissue Treg cells from other tissues while still adopting context-

specific features as e.g., expression of Htr7 showcases.
Hepatic Treg cell and their
contribution to liver homeostasis

The liver is another organ in which Treg cells have been

implicated in health and disease. Under homeostatic conditions,

Treg cells represent 4-8% of the hepatic CD4+ T cell

compartment in young adult mice (115, 116). We will cover

here how hepatic Treg cells in neonates are shaped by the gut-

liver axis and how Treg cells orchestrate tissue remodeling upon

liver injury in adulthood. For a more thorough overview of Treg

cell implication in liver health and disease, the reader is referred

to the following reviews (117–119).

Treg cell recruitment into the liver can be observed already

quite early after birth. Specifically, Treg cells represent 15% of

the CD4+ T cell compartment in the mouse liver during the first

2 weeks of age, a frequency that drops to <5% in young adult
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mice. This increase of liver Treg cells in neonates was mediated

by the combination of TGF-b signaling and intestinal

colonization by microbiota and subsequent transient MyD88

signaling secondary to colonization (120). Depletion of Treg

cells during postnatal week 2 resulted in increased systemic

levels of pro-inflammatory cytokines, but surprisingly tissue

injury was most pronounced in the liver compared with other

non-lymphoid tissues (121). Indeed, such abrogation of Treg cell

expansion in neonates and the ensuing hepatic tissue injury,

precipitated a dysregulated glucose metabolism in the liver,

leading to impaired mouse growth (121). Consistent with

other non-lymphoid tissue Treg cells, liver Treg cells

comprised more effector and less naïve Treg cells compared to

their splenic counterparts. In addition, liver Treg cells in

neonatal mice displayed higher proliferation rates in

comparison to splenic Treg cells, however hepatic Treg cells

also showed higher apoptosis rate (121), indicating that the

population of hepatic Treg cells is highly active but only short-

lived. Transcriptional characterization of hepatic Treg cells

revealed that canonical features of other tissue Treg cells,

namely the expression of ST2, KLRG1, PPARg, as well as lipid
metabolism enzymes, were also found in liver but not in spleen

Treg cells (121). Furthermore, similar to e.g., VAT, one-third of

the liver Treg cell pool was characterized by a Th1-like

transcriptome and phenotype, suggesting that also in the liver

several different tissue Treg cell populations can exist and might

be associated with distinct functional properties.

Following neonatal expansion of hepatic Treg cells and their

subsequent contraction, the diminished pool of adult Treg cells

also has important roles for liver homeostasis. Hepatic Treg cells

establish and maintain tolerance to non-pathogenic foreign

antigens, such as nutrients, delivered from the gut via the

portal circulation (122). Indeed, dietary antigen-specific

hepatic Treg cells produce elevated amounts of IL-10 upon

encountering their cognate antigens and prevent mounting of

a cytotoxic CD8+ T cell response against such antigens (122).

This is in stark contrast to splenic Treg cells which are unable to

upregulate IL-10 under the same conditions, highlighting again

the specific features Treg cells gain when differentiating towards

an effector phenotype in a tissue.

Similar to their orchestrating role in sterile inflammation in

the VAT, hepatic Treg cells have also been implicated in the

context of non-alcoholic steatohepatitis (NASH). High-fat and

high-carbohydrate diets, which can induce NASH, were

associated with an increased number and proliferation rate of

Treg cells in the liver (123). This was mirrored by increased

fractions of IFNg and TNFa expressing T cells in the total

hepatic CD4+ T cell compartment (123). Notably, adoptive

transfer of Treg cells to mice post-feeding them a high-fat,

high-sugar diet exacerbated liver steatosis and liver cell injury

(123, 124). This is in contrast to an earlier study documenting a

detrimental impact on liver injury upon Treg cell depletion

(125). Important differences between these studies include the
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duration during which mice received a high-fat diet and the

genetic background, demonstrating that additional work is

needed to understand how tissue Treg cells contribute to tissue

repair in NASH.

In addition, hepatic Treg cells mitigate the course of chronic

inflammation-induced liver fibrosis. Induction of chronic

inflammation in the liver by administration of carbon

tetrachloride (CCl4) resulted in an increased proportion of

Treg cells in the liver but not in lymphoid tissues (126). In

line with the findings from other tissues, hepatic Treg cells in

CCl4-treated mice exhibited an elevated expression of ST2,

consistent with an enhanced release of IL-33 upon cell injury.

In addition, Treg cell depletion combined with CCl4 treatment

favored the establishment of a profibrotic environment in the

liver, characterized by an elevated Th2/Th1 cell ratio and an

increased infiltration of Ly6C+CCR2+ myeloid cells, culminating

in exacerbated liver fibrosis (126). Conversely, Treg cell

depletion without CCl4 only resulted in acute liver injury

without the development of fibrosis. Importantly, and unlike

e.g., muscle or brain tissue Treg cells (106), Treg cell-mediated

hepatic tissue protection was amphiregulin-independent,

highlighting the context dependence of Treg cell-mediated

tissue repair. Finally, a recent study has implicated the IL–33/

ST2 axis in the resolution of heightened hepatic inflammation in

the context of LPS-induced sepsis (127), namely that IL-33

released from injured liver cells recruits ST2+ Treg cells, which

then facilitate the resolution of inflammation.

Taken together, hepatic Treg cells follow a dynamic

trajectory of seeding and residing in the liver during young

age. Liver Treg cells share common features with other subsets,

both transcriptionally and functionally, including recruitment

and expansion via the IL-33/ST2 axis as well as tissue repair

function, while at the same time exhibiting context-specific

functionalities, as evidenced by the induction of tolerance to

dietary antigens.
Contribution of tissue Treg cells to
kidney homeostasis

Under steady state conditions, the murine kidney houses

different subsets of T cells, with the majority of them exhibiting a

phenotype of antigen-experienced, tissue-resident T cells (128).

The fraction of Treg cells among the renal CD4+ T cell

population in young adult mice was estimated to be 4-15%

(128–131), although studies varied in the sex of mice used and

the employment of transcardiac perfusion to eliminate

circulating leukocytes. In fact, studies in rats point to a greater

number of Treg cells in female rat kidneys compared to male rats

(132). Of note, kidney-related sex discrepancies were previously

reported, with females being more likely to survive following an

acute kidney injury (133), and less likely to develop

hypertension, as discussed below.
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A large number of studies have investigated the protective

role of Treg cells in the context of acute kidney injury (AKI).

Two prominent models for AKI, which primarily precipitates an

innate immune cell response, are cisplatin administration and

ischemia-reperfusion injury (IRI). Cisplatin directly induces

renal epithelial cell death, with subsequent release of danger-

associated molecular patterns (DAMPs) that engage toll-like

receptors (TLRs) on renal parenchymal cells. Such engagement

stimulates the production of pro-inflammatory cytokines and

the recruitment of a plethora of immune cells to the kidneys

(134). On the other hand, ischemic renal injury followed by

reperfusion of the kidney induces a largely similar sequence of

events as observed with cisplatin nephrotoxicity (135). In line

with their well-known role in tissue repair, renal Treg cells

modulate renal tissue fibrosis in the context of IRI. do Valle

Duraes et al. compared the renal CD4+ T cell compartment in

two IRI models of divergent outcomes, where the ischemic

kidney either restores its normal function and architecture

(“regeneration” model) or develops tissue fibrosis (133). Renal

Treg cells expanded in both IRI models compared to control

mice, with a more pronounced expansion, particularly at later

time points post-injury. Treg cells from both AKI contexts as

well as unchallenged mice exhibited an overlap in the expression

of the core tissue Treg cell signature (e.g., Areg, Itgae (encoding

CD103), Ctla4, Tnfrsf4), whereas the expression of Il1rl1 and

Klrg1 were largely confined to Treg cells from injured kidney.

Importantly, Treg cells from fibrotic kidneys were marked by the

expression of genes associated with inflammation and apoptosis

(e.g., Junb, Id2, Gata3), whereas Treg cells in regenerating

kidneys upregulated the expression of genes associated with

angiogenesis (e.g., Nrp-1, Vegfa). Thus, the underlying tissue

injury and ensuing inflammatory milieu dictated variable Treg

cell expression profiles and functions (133). Finally, expansion of

renal Treg cells by means of IL-2 and IL-33 administration prior

to AKI induction mitigated the development of renal tissue

damage and fibrosis and the extent of body weight loss, although

it was not assessed whether this translated into preserved renal

function (133). It is important to note that male and female mice

were used in the fibrosis and regeneration models, respectively,

with the different sexes potentially contributing to the variable

extent of inflammation observed in the two models (133). In an

additional study, amplification of Treg cells, systemically and in

the kidneys by virtue of IL-2 and IL-33 co-administration before

IRI induction mitigated the severity of tubular injury and

myeloid cell infiltration into the kidneys and rescued renal

functions (136). A confounding factor in this context is the

concurrent expansion of innate lymphoid cell (ILC)2 by the

same cytokines; hence the protective effect of IL-2/IL-33 against

IRI might not be exclusively mediated by Treg cells (136). In the

context of cisplatin-induced AKI, Treg cell depletion prior to

cisplatin administration aggravated tubular injury and

deteriorated renal clearance (137). Conversely, Treg cell

transfer mitigated the course of cisplatin-induced renal injury
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by inhibiting the cisplatin-driven innate immune activation

(137). Notably, Treg cell-mediated protection against cisplatin

nephrotoxicity was IL-10-independent (138). Further, Treg cell

recruitment to and maintenance in renal tissue following

cisplatin administration was dependent on TLR9 signaling,

which modulates the expression of adhesion molecules CD44

and CD11a by Treg cells, facilitating their recruitment to the

kidneys (139). This was nicely demonstrated by the fact that

TLR9-deficient Treg cells were not impaired in their capacity to

suppress Tconv cells ex vivo, produce IL-10 or TGF-b, or express
CTLA-4 and CD73. Taken together these data support the

notion that Treg cells in the kidney after AKI mainly have a

protective function and contribute to functional tissue repair and

maintenance of kidney function after tissue damage.

Renal Treg cells were also characterized in a mouse model of

glomerulonephritis, where antibodies targeting glomerular

basement membrane proteins are transferred into mice.

Glomerulonephritis induced in this fashion was associated

with a long-term amplification of kidney Treg cells post injury.

Treg cell depletion 21 days post-disease induction resulted in

further impairment of renal function with a concomitant

increase in Th1 cells (140). Kidney-infiltrating Treg cells

displayed a molecular profile resembling that of other non-

lymphoid tissue Treg cells, namely the expression of ST2,

KLRG1, PPARg, and IL-10 (140). In particular, GATA3-

expressing Treg cells represented the majority of Treg cells

found in the kidney post induction of glomerulonephritis and

expressed higher amounts of Treg cell effector molecules

compared to GATA3-negative Treg cells. Administration of

the PPARg agonist pioglitazone increased the fraction of

GATA3-expressing cells among kidney Treg cells without

altering the total number of Treg cells. Co-transfer of disease-

inducing Tconv cells into T cell-deficient mice with either wild-

type Treg cells or Treg cells lacking GATA3 emphasized a

critical role for GATA3 in controlling kidney injury through

affecting the differentiation of tissue Treg cells in the

kidney (140).

The kidney controls systemic blood pressure, and one

mechanism of such control is by regulating electrolyte

absorption and clearance. Early studies using adoptive Treg

cell transfer experiments have implicated Treg cells in the

renal control of blood pressure (141, 142). Focusing on

endogenous renal Treg cells, female rats exhibited greater

frequencies of renal Treg cells compared to male rats, both in

unchallenged as well as hypertensive rats. Induction of

hypertension in rats was associated with a reduced frequency

of renal Treg cells compared to sex-matched controls,

particularly in female rats. Consequently, depletion of Treg

cells resulted in an elevation of blood pressure only in female

rats (132). This increased number of Treg cells in the kidneys of

female spontaneously hypertensive rats (SHR) was not a

reflection of a more frequent systemic Treg cell population in

female rats, as assessed in the spleens of male and female SHR
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(143). Instead, such differences in renal Treg cells across sexes

emanated from a greater recruitment of Treg cells to the kidneys

of female mice, since surgical removal of the spleen led to a

reduction in renal Treg cells and increases in blood pressure in

male and female SHR (143). In line with the observed increase of

Treg cells in the kidney in hypertension, mice receiving a high-

salt diet exhibited an increased number of Treg cells in the

kidneys and small intestine, which was accompanied by an

elevated number of Tconv cells (131). From in vitro studies

showing that high-salt levels induced the expression of retinoic

acid receptor-related orphan receptor gt (RORgt) in Treg cells

with a concomitant reduction in the expression of FoxP3 and

Helios and the observation that the Treg cells in this model in

vivo mainly expressed RORgt one might conclude that in this

model the function of Treg cells might also be altered. Indeed,

Helios-negative Treg cells, which represent a minority among

thymic Treg cells, are more likely to adopt a Th17-like

phenotype supporting altered function of these cells in high-

salt diet-induced hypertension in the kidney. However, these

transcriptional alterations neither drove the expression of IL17a

nor mitigated the functional fitness of Treg cells (131). Without

additional studies further addressing this question in more

detail, the functional role of these Treg cells remains open.

Taken together, these studies provide evidence on a largely

beneficial role for renal Treg cells in varying contexts of renal

tissue injury, whereby Treg cells suppress inflammation and

promote tissue repair. They also implicate Treg cells in blood

pressure control, a vital process of which the kidney is a

central regulator.
Tissue Treg cells in
reproductive organs

To date little is known about Treg cells in the reproductive

tract. Most studies have focused on pregnancy as Treg cells play

a crucial role for pregnancy success, providing immunological

tolerance to the fetus (144). To support this, Treg cells expand in

the endometrium and decidua induced by elevated human

chorionic gonadotropin (hCG) levels after fertilization (145),

peak during the second trimester, and finally decrease towards

birth (146). Salvany-Celades et al. further investigated the

phenotype of Treg cells in the decidua during pregnancy,

suggesting the existence of three distinct Treg cell subtypes:

CD25hiFoxP3+HELIOS+ Treg cells, PD-1hiIL-10+ Treg cells and

TIGIT+FoxP3dim Treg cells, whereby mainly the PD-1hiIL-10+

Treg cell subset actively contributed to effector T cell

suppression (147). The great importance of Treg cells in

preventing maternal inflammatory responses during pregnancy

can be further hypothesized based on reduced decidual Treg cell

proportions in spontaneous abortion patients (148, 149) and

miscarriage cases (150, 151). In line with these findings, infertile
frontiersin.org

https://doi.org/10.3389/fimmu.2022.954798
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Malko et al. 10.3389/fimmu.2022.954798
women show reduced endometrial FoxP3 mRNA expression

(152). Besides playing an important role in the endometrium

during homeostasis and pregnancy, Treg cells have also been

described in endometriosis. Endometriosis is a gynecological

disease associated with the implantation and development of

ectopic endometrial tissues partly mediated by alterations in the

normal immune response (153). Several human studies

addressed the presence of Treg cells in eutopic and ectopic

endometrium showing an overall tendency towards an

expansion of Treg cells in endometriosis lesions (154–156).

Depending on the grade of severity, a further elevation was

observed in women with more severe endometriosis (157, 158).

To further elucidate the importance of Treg cells for disease

progression, Tanaka et al. temporarily depleted Treg cells in a

murine model of endometriosis using FoxP3DTR mice which

resulted in elevated number and weight of endometrial lesions,

suggesting that the tissue Treg cells have a protective role (159).

In contrast to these findings, Xiao et al. showed in a recent study

that Treg cell depletion by anti-CD25 antibody treatment

reduced the weight of lesions in mice (160). Despite the

discrepancies in outcome, these findings showcase that tissue

Treg cells have importance for tissue homeostasis in the

endometrium and warrant further investigations to better

understand their contributions to tissue maintenance

and regeneration.

Besides their role in the endometrium, also in the endocervix

elevated levels of FoxP3+CTLA-4+ Treg cells have been

described and support a protective role of Tregs cells also for

the endocervix, as their numbers are negatively correlated to

pro-inflammatory cytokines levels in the tissue and contribute to

reduced genital tract inflammation (161).

In the mammary gland the tissue is reorganized during the

different reproductive stages (162). This is reflected in alterations

of the immune cell landscape which resembles other mucosal

tissues. In the nulliparous mammary gland, Treg cells are almost

absent and only slightly increase during pregnancy and lactation.

Only after lactation and weaning, an extension of RORgt+

FoxP3+ Treg cells has been reported (162). This could be

caused by the epithelial cell death occurring during this period

which will lead to increased self-antigens being released which

these tissue Treg cells might counterbalance and further support

tissue repair.

Similar to the protective function of Treg cells in other female

reproductive organs, a role for tissue Treg cells for ovary gland

homeostasis/physiology has been suggested (163). While their

functional and transcriptional phenotype has not been addressed

so far in greater detail, current data support a protective function

as in a murine model for premature ovarian insufficiency adoptive

transfer of Treg cells could alleviate ovarian cell apoptosis in a

protein kinase B (Akt) signaling-dependent manner (164).

Several reports have also established the presence of Treg

cells in the testis under homeostatic conditions (165–167).

Similarly to other non-lymphoid tissues, Treg cells in the testis
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express CD25 and FoxP3 (168), feature a memory phenotype,

and produce TGF-b (169). Functionally, these eTreg cells are

characterized by their recognition of spermatic antigens

preventing proliferation of auto-reactive Tconv cells in vitro

(169), suggesting that these eTreg cells recognize and suppress

reactivity against antigens from the seminiferous tubules in vivo.

This finding is supported by recent data that could show that in

the testis non-sequestered germ cell antigens can egress from

seminiferous tubules and after entering the interstitium

contribute to the induction of Treg cells (170). This

observation clearly challenges the prevailing view that all germ

cell neo-antigens are sequestered from the immune system and

will not be presented under homeostatic conditions. Treg cells

induced against these antigens are exerting suppression against

auto-reactive Tconv cells maintaining a tolerogenic environment

(169, 170).

Taken together these data further support that tissue Treg

cells are present within the reproductive tract and exert

suppression even against germ-line antigens, however their

transcriptional make-up and unique peculiarities are so far not

defined and need to be assessed in more detail. Similarly, how

Treg cells impact e.g., the different phases of the menstrual cycle

or the menopause are not investigated so far.
Overview of tissue Treg cell function
at surface barriers

The gastrointestinal tract, skin, and lung are the main

surface barriers protecting the hosts against infection. Treg

cells exhibit different functions within these tissues with the

overall goal to maintain homeostasis. We will highlight here

several recent findings and refer the reader to more exhaustive

reviews for a thorough discussion of Treg cell function and more

general aspects of tissue Treg cell biology in gut, skin, and lung

(2, 171–177).

In the gut two distinct Treg cell phenotypes can be observed:

GATA3-expressing Treg cells (178) and RORgt-expressing Treg

cells (179). RORgt+ Treg cell differentiation is dependent on c-Maf

(180, 181) and occurs in the periphery in response to microbiota

and food antigens (171, 179, 182–184). RORgt+ Treg cells control

local inflammatory responses as well as the microbiota balance

(180). In contrast, GATA3+ Treg cells are thymus-derived and

support tissue repair in an IL-33-dependent pathway (185), similar

to other ST2-expressing tissue Treg cell populations. Recently,

another thymic-derived Treg cell population in the

gastrointestinal tract has been described which is characterized by

the expression of the transcription factor Zbtb20 (186). These cells

are highly active (marked by elevated expressions of CD44, KLRG1,

TIGIT, GITR, and ICOS), secrete IL-10, and expand in response to

inflammation. In general, gut Treg cells are responsible for the

maintenance of tolerance against food-antigens and microbial
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products, as well as the mucosal barrier while being able to

contribute to tissue repair through the expression of amphiregulin.

Also in the skin, Treg cells have been described and

contribute to tissue homeostasis. Recently, Miragaia et al.

followed up on the question of tissue adaptation of Treg cells

in barrier tissues such as colon and skin using single-cell

transcriptomics (187). Analysis of the scRNA-seq data

supported the idea of a lymph node-to-tissue developmental

axis based on the pseudotime trajectory analysis of the Treg cell

compartment (187). In addition, a core tissue Treg cell signature

could be established from Treg cells isolated from non-lymphoid

tissues marked by genes of the TNFRSF-NF-kB signaling

pathway as well as genes associated with an effector phenotype

such as Klrg1, Cd44, or Il10. Comparison with transcriptome

data from gut Treg cells revealed that these cells resemble the

GATA3+ Treg cells found in the gastrointestinal tract and are the

main population of skin Treg cells (187). Developmentally, it

could be shown that Treg cells accumulate in the skin during the

neonatal period of life exhibiting an elevated expression of the

transcription factor GATA3 (188, 189). Skin-resident Treg cells

promote immune tolerance to commensal bacteria (188),

contribute to tissue repair mediated via the epidermal growth

factor receptor (EGFR) (190), and facilitate hair regeneration by

promoting anagen induction via Jagged1 (191) supporting again

a role of tissue Treg cells for repair and regeneration under non-

inflammatory conditions.

Similar to the other surface barrier organs, the lung harbors a

thymus-derived Treg cell population characterized by Nrp-1,

Helios, GATA3, ST2, and TIGIT expression (192). IL-33 via

interaction with ST2 is an important mediator for these cells. It is

not only required for their suppressive phenotype, but as

recently shown by Kanno et al., IL-33 is also involved in the

regulation of Treg cell metabolism. IL-33 thereby induces the

expression of Acyl-CoA synthetase (Acsbg1), an enzyme

important for fatty acid oxidation in the mitochondria, which

further promotes the resolution of IL-33-induced airway

inflammation (193). While this finding clearly suggests that

factors governing tissue Treg cell biology can impact the

metabolism of Treg cells, the metabolic requirements of tissue-

resident Treg cells are largely unknown. Moreover, recent data

stress the importance to study these aspects in vivo using genetic

model systems. This is e.g. highlighted by studies where

pharmacological inhibition of fatty acid transport into

mitochondria via the enzyme carnitine palmitoyltransferase 1

(CPT1) by etomoxir was shown to decrease Treg cell

development in vitro (194), while genetic FoxP3-specific Cpt1a

ablation resulted in similar Treg cell numbers with unchanged

FoxP3 expression levels compared to wild type controls (195).

Given the discrepancies between the experimental systems used,

it will be important in the future to also study the metabolism of

tissue Treg cells in greater detail in its tissue context to evaluate

its importance for tissue Treg cell differentiation and function.
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One leading pathology causing lung tissue damage is chronic

obstructive pulmonary disease (COPD) resulting in chronic

inflammation and tissue remodeling leading to severe airflow

limitations. Numbers of Treg cells in lung tissues or

bronchoalveolar lavage samples from COPD patients are

decreased in comparison to healthy controls (196–198). This

observation could be confirmed in mice which were exposed to

cigarette smoke further revealing an additional imbalance in the

Th17/Treg cell ratio (199–201). Unfortunately, so far data is

missing on the exact role and phenotype of tissue Treg cells

in COPD.

More research has been performed on the involvement of

tissue Treg cells in acute lung injury (ALI). ALI is usually defined

by an uncontrolled inflammatory response followed by a

resolution and regeneration phase which is to a certain degree

facilitated by Treg cells. Intratracheal lipopolysaccharide (LPS)

induces alveolar epithelial damage and is therefore used as a

common mouse model for ALI. Using this model, D’Alessio

et al. described an enrichment of Treg cells in the lung during the

resolution phase. Abrogation of Treg cells delayed the resolution

of the lung injury while adoptive transfer of Treg cells into Rag-

1-/- animals facilitated the repair accompanied by decreased pro-

inflammatory cytokines, increased neutrophil clearance, and

elevated TGF-b levels (202). Treg cells contribute via different

mechanisms to the resolution phase. For example, Treg cells

directly promote epithelial proliferation in an CD103-dependent

manner (203). Moreover, Treg cells produce growth factors

promoting wound healing: keratinocyte growth factor and

amphiregulin, both factors are known to further stimulate

epithelial proliferation (204). Amphiregulin thereby serves a

central role for the Treg cell-mediated tissue repair. Arpaia

et al. identified amphiregulin-producing Treg cells by elevated

expressions of CD44, GITR, CTLA-4, KLRG-1, PD-1, and

CD103 highlighting their effector phenotype (205).

Interestingly, amphiregulin expression in Treg cells was not

required for their suppressive function and its production was

independent of TCR-engagement. Instead, amphiregulin

expression relied on the IL-1 family cytokines IL-18 and IL-33

(205). The alarmin IL-33 has been additionally shown as an

important factor for the resolution of inflammation by the

induction of IL-10 and IL-13 and reduction of pro-

inflammatory responses in ALI (206). CD73-dependent

generation of adenosine by Treg cells was discovered to be

another functional pathway for Treg cell-mediated resolution

of lung injury (207). Transcriptional analysis of Treg cells from

the lung during resolution of ALI revealed a distinct

transcriptomic profile compared to splenic Treg cells marked

by upregulation of genes such as Areg, Il1rl1, Il18r1, Itgae, Ctla4,

Icos, and Il10 confirming the previously described mechanisms

for resolution of ALI while at the same time recapitulating

several common characteristics of tissue Treg cells (208). In

some patients ALI can lead to pulmonary fibrosis defined by
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extracellular matrix protein deposition within the lung tissue.

On one hand, Lo Re et al. described a pro-fibrotic function of

Treg cells directly stimulating fibroblast proliferation and

collagen deposition in a platelet-derived growth factor–B

(PDGF-B)-TGF-b-dependent manner using a silica (SiO2)-

induced mouse model for fibrosis (209). On the other hand,

Garibaldi et al. showed that Treg cells reduce the C-X-C Motif

Chemokine Ligand 12 (CXCL12)/CXCR4-mediated recruitment

of fibrocytes to the lung thereby ameliorating fibrosis after LPS

injury in Rag-1-/- mice (210). These two studies again

demonstrate the difficulties in characterizing tissue Treg cell

function as the discrepancies of these two studies may result

from differences in the experimental system and time points of

analysis. Therefore, to better understand the exact contribution

of tissue Treg cells to pulmonary fibrosis further studies

are warranted.

Taken together, also in barrier organs, tissue Treg cells

contribute to tissue homeostasis and repair, with recent single-

cell data further helping to understand the developmental

pathways towards acquisition of the transcriptional tissue Treg

cell program.
Concluding remarks and future
perspectives

In the past years, there has been a steadily growing interest in

understanding the contribution of Treg cells to non-lymphoid

tissue homeostasis. Recent work has revealed the existence of

tissue-specific Treg cells with an effector phenotype which play

profound roles in tissue maintenance, regeneration, and repair.

While the regenerative function is shared across different tissues,

unique tissue-specific Treg cell properties have been identified.

This can be nicely exemplified by the distinct transcriptional

signatures characterizing the different tissue Treg cells. While

they share common effector Treg cell gene modules, Treg cells in

each tissue also express tissue-specific programs instructed by

the tissue microenvironment and available growth factor milieu.

Although we have begun to understand many aspects of

tissue Treg cell biology, certain aspects remain to be described in

greater detail to build a comprehensive model of the plethora of

tissue Treg cells. This includes further work on the origin of Treg

cells within different tissues and the developmental steps leading

to tissue Treg cells differentiation, including the specific TCR

repertoire required within each tissue. Furthermore, their

transcriptional and metabolic adaptations to the new tissue

microenvironment, which is governed by e.g., availability of

oxygen and nutrients or communication with resident cells will

be important to describe and understand. Despite the difficulties,

technological advances such as single-cell technologies provide

new opportunities in answering these remaining questions.
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Recently, sex discrepancies have been described for tissues

such as VAT (38), CNS (110, 111), or the kidneys (133, 143)

revealing a knowledge gap that needs to be addressed in future

investigations. This is particularly evident from the findings in

VAT where sex hormones actually influence Treg cell

differentiation and phenotype. If this finding can also be

confirmed for other tissues, we will need to revisit some of the

current concepts of the role of tissue Treg cells for tissue

homeostasis. Similarly, differences for Treg cell accumulation

within peripheral tissues throughout life have been detected

(103). Characterizing Treg cell phenotypes as well as functional

properties in both sexes at different ages in non-lymphoid tissues

would be therefore required to further current paradigms of tissue

Treg cell biology. Generally, such variations in the experimental

layout may explain existing contradictory observations and a

deeper transparency in the experimental outline of the

conducted studies would be important for better data comparison.

Finally, this review outlined the importance of tissue-specific

Treg cells in non-lymphoid tissue physiology with a deeper

insight into different pathophysiological conditions. The

translation of the wealth of data from animal studies into

humans will be an important next step in the future. This

could help to identify properties which are required for Treg

cells in a given tissue and could as such be harnessed to equip

chimeric antigen receptor (CAR)-Treg cells with these

properties to use them in a therapeutic setting (211).
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during zebrafish caudal
fin regeneration
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The role of T cells in appendage regeneration remains unclear. In this study, we

revealed an important role for regulatory T cells (Tregs), a subset of T cells that

regulate tolerance and tissue repair, in the epimorphic regeneration of

zebrafish caudal fin tissue. Upon amputation, fin tissue-resident Tregs

infiltrate into the blastema, a population of progenitor cells that produce new

fin tissues. Conditional genetic ablation of Tregs attenuates blastemal cell

proliferation during fin regeneration. Blastema-infiltrating Tregs upregulate

the expression of igf2a and igf2b, and pharmacological activation of IGF

signaling restores blastemal proliferation in Treg-ablated zebrafish. These

findings further extend our understandings of Treg function in tissue

regeneration and repair.

KEYWORDS

Tregs, blastema, fin regeneration, growth factors, zebrafish
Introduction

The ability to regenerate appendages after amputation varies greatly among species.

Unlike mammals, fish and urodele amphibians fully restore lost appendages such as

caudal fin and limbs at any stage of their lifetime (1–4). The restoration of appendages is

mediated through epimorphic regeneration, which involves the formation of a cluster of

undifferentiated cells, called the blastema, underneath the wound epidermis that covers

the damaged tissue (1, 2, 5–7). During the appendage regeneration, blastemal cells

vigorously proliferate and differentiate into all cell types that consist of appendage tissue,

such as skin, bone, muscle, nerves, and blood vessels, and eventually restore the lost
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appendage tissue (7–11). Recent studies have identified

molecular signals required for the blastemal cell proliferation

(12–16). Inflammatory signals and innate immune cells such as

macrophages have also been suggested to play critical roles in the

appendage regeneration (17–22).

The caudal fin of zebrafish has been recognized as a standard

model for appendage regeneration research (23, 24). Moreover,

the zebrafish possesses an adaptive immune system comprising

of T cells and B cells (25–30), which makes this model useful to

study the role of adaptive immune cells during appendages

regeneration. Although innate immune cells have been

investigated in the zebrafish fin regeneration (31–35), the

functional role of adaptive immune cells in epimorphic fin

regeneration remains unclear. Using a transgenic cell ablation

model and genetic mutants, here we have identified a novel role

of Tregs in caudal fin regeneration, whereby Tregs promote

blastemal cell proliferation by producing Igf2a and Igf2b in a fin-

specific manner. This study extends our understanding of the

non-immunological function of Tregs in tissue regeneration

and repair.
Materials and methods

Zebrafish

Ekkwill (EK) or EK/AB mixed background zebrafish were

outcrossed, and the both sexes were used in this study. The

following published transgenic strains were used: TgBAC

(foxp3a:TagRFP)vcc3, TgBAC(lck:EGFP)vcc4, TgBAC(foxp3a:

TagCFP-NTR)vcc5 (36, 37). All transgenic strains were analyzed

as hemizygote conditions. The zebrafish carrying the foxp3avcc6

allele was described previously (36). During all experimental

procedures, the fish density was maintained at 3–5 fish/L. The

zebrafish husbandry and all experiments were performed

according to the institutional and national animal ethics

committee guidelines.
Injury procedures

Zebrafish at 4-12 months of age were used for caudal fin

amputation experiments. Caudal fin amputation was performed

using a stereozoom microscope as described previously (2, 12).

The amputation plane was set at 5 mm proximal from the cleft in

the experiments for quantification of segmentation or at 2 mm

proximal from the cleft in the other experiments.
RT-PCR

Total RNA was extracted using TRIzol reagent, and cDNA

was subsequently synthesized with SensiFAST™ cDNA
Frontiers in Immunology 02
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Synthesis Kit (BIOLINE). qRT-PCR was performed using a

LightCycler 480 system (Roche). For semi-qRT-PCR, genes of

interest were amplified using a PrimeSTAR GXL kit (Clontech,

Palo Alto, CA, USA). The amount of cDNA was normalized

according to actb2/b-actin2 amplification in qRT-PCR and

semi-qRT-PCR experiments. The primers used in this study

are listed in Supplementary Table S1.
Antibodies

The following primary antibodies were used in this study:

anti-active Caspase-3 (rabbit; Abcam, Cambridge, UK), anti-

GFP (chicken; Abcam, Cambridge, UK), anti-tCFP (rabbit;

Evrogen, Moscow, Russia), anti-tRFP (rabbit; Evrogen,

Moscow, Russia), and anti-H3P (rabbit; Millipore, USA). The

following secondary antibodies were used in this study: Alexa

Fluor 488 donkey anti-rabbit IgG(H+L), Alexa Fluor 488 goat

anti-chicken IgY(H+L), and Alexa Fluor 555 donkey anti-rabbit

IgG(H+L) (Life Technologies, USA).
Imaging

Wholemount images of caudal fins were taken by a stereo-

fluorescence microscope (Olympus, Japan). Fish were

anesthetized by tricaine and were laid on a petri dish filled

with aquarium water, followed by fluorescent exposure. For

time-lapse imaging, images were manually taken every 20 min.

Sample drift was corrected manually on Photoshop CS5 (Adobe)

utilizing pigments as guides. EdU was detected using either

Click-iT EdU Alexa 488 or Alexa 555 Imaging kit (Life

Technologies, USA). The fluorescence-stained samples were

imaged using either a Zeiss AXIO imager M1 microscope

(Carl Zeiss AG, Oberkochen, Germany) or a Zeiss LSM 710

confocal microscope (Carl Zeiss AG).
In situ hybridization

In situ hybridization in fin tissue sections was performed

using RNAscope probes (Advanced Cell Diagnostics, Hayward,

CA) . Regenerated fin t i s sues were fixed wi th 4%

paraformaldehyde for 24 hours at 4°C and equilibrated in 30%

sucrose for another 24 hours, embedded in a Tissue freezing

medium (TFM; Leica Biosystems, Wetzlar, Germany), and

cryosectioned to 10 µm. Fin sections were washed twice with

PBS for 5 min to remove TFM, followed by incubation in

hydrogen peroxide for 10 min at room temperature, boiling in

target retrieval for 5 min. After target retrieval, slides were briefly

washed with distilled water and incubated for 5 min at 40°C with

Protease Plus. After the pretreatments in fin sections, the

manufacturer’s protocol for RNAscope 2.5 HD Detection Kit-
frontiersin.org
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Red (Advanced Cell Diagnostics) was followed to hybridize the

igf2a probe and detect the signals. Immunostaining using an

anti-tRFP antibody was performed following the detection of

igf2a mRNA signals. After the RNAscope assay and fin sections

were incubated with primary antibody anti-tRFP overnight at

4°C. The igf2a RNA probe used in this study was designed and

synthesized by Advanced Cell Diagnostics.
Drug administrations

For Treg cell ablation experiments, foxp3a:NTR fish were

placed in a small beaker of aquarium water containing 0.2%

dimethyl sulphoxide (DMSO) and 15 mM freshly dissolved Mtz

(M1547; Sigma, St. Louis, MO, USA). Fish were maintained in

the dark and in this media for 10-12 hours (overnight), rinsed

with fresh aquarium water, and returned to a recirculating

aquatic system. For regeneration experiments, this treatment

cycle was repeated for three consecutive days before fin

amputation and afterward continued every other day until the

collection of regenerated fins (Figure 2A). For the IGF-activator

NBI-31772 treatment, the fish were placed in a small beaker

filled with 30 ml of aquarium water containing 10 µl DMSO as a

negative control or the same amount of 30 mM NBI-31772

dissolved in DMSO (final conc. 10 µM) for overnight. For the

cell proliferation assay, adult zebrafish were intraperitoneally

injected with 50 µl of 10 mM EdU once 30 min before the

collection of regenerated fin tissues.
Flow cytometry and cell sorting

To prepare caudal fin cell suspension, the fin blastema was

dissected, and placed into a microcentrifuge tube containing

0.9× PBS with 1 mg/ml collagenase type 2 (Worthington

Biochemical, Lakewood, NJ, USA), and incubated for 30 min

at room temperature with gentle pipetting every 10 min.

Dissociated cells were washed and re-suspended in ice-cold

staining buffer. To prepare the cell suspensions from the

kidney, spinal cord, and retina, the tissues were dissected in

ice-cold 0.9× PBS with 5% fetal bovine serum (staining buffer)

and placed on a cell strainer (40 µm; Falcon 2340). Next, the pool

of individual soft tissues was pushed through the strainer with a

syringe plunger. To prepare a cardiac cell suspension, the

ventricle was dissected, placed into a microcentrifuge tube

containing 0.9× PBS with 1 mg/ml collagenase type 2

(Worthington Biochemical, Lakewood, NJ, USA), and

incubated for 40 min at room temperature with gentle

pipetting every 10 min. Dissociated cells were washed and re-

suspended in ice-cold staining buffer. Peripheral blood was

obtained by puncturing the heart of the caudal fin of

amputated fish. The collected blood was treated with ACK red

blood cell lysing buffer (Gibco, Grand Island, NY, USA) and
Frontiers in Immunology 03
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suspended in ice-cold staining buffer. FACS analysis was

performed on a LSRII SORP (BD Biosciences, San Jose, CA,

USA), and cell sorting was performed on a FACSAria IIu (BD

Biosciences). Data were analyzed using FlowJo software

(Treestar, Ashland, OR, USA). Dead cells, defined as those

positively stained with DAPI (4’,6-diamidino-2-phenylindole),

and doublet cells were excluded from all analyses and sorting.

Cells in the lymphoid fraction were sorted in two sequential

steps and collected directly during the second sort into a

microcentrifuge tube containing 1 ml of TRIZOL reagent

(Invitrogen) for subsequent RT-PCR analysis.
Quantification of cells from microscopic
images

All images for quantification were taken using a Zeiss AXIO

imager M1 microscope with a 10× objective (Carl Zeiss AG).

Treg cells were quantified in foxp3a:RFP fish by taking red

fluorescence images of the regenerated caudal fin blastema

areas (1388 × 278 pixels) and manually counting RFP+ cells

using ImageJ software (US National Institutes of Health,

Bethesda, MD, USA). The results from six selected sections

were averaged to determine the number of RFP+ cells in each

caudal fin.

To quantify proliferating blastemal cells, images of the fin

blastema were taken at 4 dpa using Zeiss AXIO imager M1

microscope and areas (1024 × 1024 pixels). The numbers of

either EdU+ and H3P+EdU+ cells were manually counted using

ImageJ software. The number of H3PSox2+PCNA+EdU+ cells

from twelve sections was analyzed to determine the number of

proliferating blastemal cells in each regeneration time point. To

quantify caudal fin regeneration length, images of the amputated

fin, including the proximal area, were taken at 1, 2, 3, 4, 5, 7, and

10 dpa (1600 × 1200 pixels), and the length of regenerated

blastema from the fin amputation plane was manually measured

using ImageJ software. Fin blastema cells undergoing apoptosis

were quantified as described above, except that the numbers of

Edu+Caspase-3+ cells were counted in amputated fins.
Results

In order to visualize Tregs during caudal fin regeneration, we

used a Treg-specific reporter line, TgBAC(foxp3a:TagRFP)vcc3

(hereafter foxp3a: RFP), in which the expression of red

fluorescent protein (TagRFP) is controlled by bacterial

artificial chromosome containing forkhead box P3a (foxp3a)

gene (37). A few foxp3a: RFP+ cells were found in the

unamputated caudal fin (Figure 1A). After amputation of the

caudal fin, the number of foxp3a:RFP+ cells was increased in the

regenerating fin tissue, which peaked at 4 days post-amputation

(dpa) and decreased to an uninjured fin level at 10 dpa
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(Figures 1A, B). Reverse transcriptase-quantitative polymerase

chain reaction (RT-qPCR) analysis showed a similar temporal

pattern of foxp3a expression in regenerating fin tissues

(Supplementary Figure S1A).

Tregs were shown to mobilize to damaged tissues through

the bloodstream during the regeneration of the heart, spinal

cord, or retina in zebrafish (37). However, we did not detect a

significant increase of foxp3a:RFP+ cells in peripheral blood after

fin amputation (Supplementary Figure S1B), suggesting that

Tregs unlikely mobilize to the regenerating fin through the

bloodstream. To examine whether fin-resident Tregs

contribute to fin regeneration, we performed time-lapse
Frontiers in Immunology 04
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imaging of foxp3a:RFP fin after amputation (Figures 1C−G).

In the uninjured fin, foxp3a:RFP+ cells did not show any

evidence of directional migration during the period of imaging

(Figures 1C, D). In contrast, in the injured fin, foxp3a:RFP+ cells

were increased in the regenerating fin tissue (Figure 1C) with

clear migratory paths directed to the amputation plane

(Figure 1D). These data suggest that fin-resident Treg cells

respond to injury and migrate to the site of regeneration of

damaged fin tissues.

We next examined the function of Tregs during fin

regeneration using the transgenic line TgBAC(foxp3a:TagCFP-

NTR)vcc5 (hereafter foxp3a:NTR) (37), in which a fusion protein
FIGURE 1

Amputation-induced infiltration of Tregs in the regenerating caudal fin tissue. (A) Spatio-temporal distribution of foxp3a:RFP+ Treg cells in the
distal part of unamputated, 4 and 10 days post amputation (dpa) regenerating caudal fins. Dotted lines show the plane of amputation. Yellow
box indicates the distal tip of unamputated fin or regenerating fin blastema. Bar, 200 µm. (B) Quantification of foxp3a:RFP+ cells in
unamputated, 3, 4, 5, 7 and 10 dpa fins (mean ± SEM, n = 8, *P < 0.01, **P < 0.001, Mann–Whitney U test). (C) Time-lapse images of foxp3a:RFP
+ cells in unamputated or 24 hours after amputation (hpa) of caudal fin. Dotted lines demarcate the distal tip, the bone, the blastema, and
amputation planes. Bar, 20 µm. (D, F) Higher magnification fields of C in unamputated and 24 hpa fin respectively. foxp3a:RFP+ cells at 0 min
and 80 min are indicated by green and magenta, respectively. Colored arrows correspond to the migratory tracks of each foxp3a:RFP+ cells in
unamputated (D) and 24 hpa fin (F). Bar, 20 µm. (E, G) Combinatorial overlay of the 6 individual tracks of foxp3a:RFP+ cell in (D, F), respectively,
and which were plotted after aligning their starting positions. Each crawling tracks display a migratory path for individual Treg cells. The traces
shown in (D, F) are repositioned to the center to define the migratory path distance of each dot. Bar, 20 µm.
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FIGURE 2

Tregs are required for blastemal proliferation during caudal fin regeneration. (A) Experimental scheme for Mtz application in foxp3a:NTR fish to
achieve Treg cell-specific ablation and study caudal fin regeneration. Three continuous days of overnight treatment of Mtz were performed
before the initiation of caudal fin amputation at day 0. (B) Brightfield microscopic images of caudal fins show the rate of fin regeneration after 5
and 10 dpa in wild-type and Treg cell ablated fish. (C) Rate of fin regeneration length was quantified in the wild-type fish against the Treg
ablated fish. The average length of wild-type 10 dpa was considered as 100% length of fin regeneration (mean ± SEM, n = 7, Student’s T-test).
(D, E) Confocal images of fin blastema at 4 dpa after EdU labeling indicates the foxp3a:RFP+ cells are spatially localized in close proximity of
EdU+ blastemal cells (D) and sometimes they are also directly in contact with the EdU+ blastemal cells (E). EdU was injected intraperitoneally 30
mins before the collection of fin tissue. (F) The wholemount preparation of 4 dpa fin with EdU and H3P immunostaining in wild-type and after
Treg cell ablation. (G) Quantification of H3P+ cells in the 4 dpa fin blastema of wild type and Treg ablated fish (mean ± SEM, n = 12, Mann–
Whitney U test). *P < 0.01; **P < 0.001; Mtz, metronidazole; NTR, nitroreductase; Scale Bars, 50 mm.
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FIGURE 3

Blastemal cell proliferation during caudal fin regeneration is regulated by Treg cells-derived pro-regenerative factors. (A) qRT-PCR analysis of
growth factors expression in 4 dpa fin blastema of wild-type and foxp3a:NTR fish after Mtz treatment. (mean ± SEM, n = 5, Student’s T-test). (B)
RT-PCR analysis of growth factors expression (found significant decrease after Treg cell ablation) from purified foxp3a:RFP+ cells from
unamputated and 4 dpa fin blastema. The 4 dpa fin blastema tissue was used as control. (C) Expression analysis of igf2a and igf2b in purified
foxp3a:RFP+ cells from kidney marrow, unamputated fin and 4 dpa fin blastema. (mean ± SEM, n = 5, Student’s T-test). (D) In situ hybridization
using RNAscope and immunofluorescence against TagRFP showing igf2a mRNA expression within infiltrated foxp3a:RFP+ cells of a 4 dpa fin
blastema. (E) RT-PCR analysis of growth factor expression of purified foxp3a:RFP+ cells from kidney, 7 days post injured (dpi) spinal cord, 4 dpi
retina, 7 dpi heart, and 4 dpa fin blastema tissues show tissue-specific growth factor secretion pattern of Treg cells. (F) The wholemount
preparation of 4 dpa fin with EdU and H3P immunostaining in Treg ablated fish and fish with NBI-31772 application after Treg ablation. EdU was
injected intraperitoneally at 30 min before fin tissue collection. (G) Quantification of H3P+ cells in unamputated and 4 dpa fin blastema of wild-
type, Treg ablated fish, and fish with NBI-31772 application after Treg ablation (mean ± SEM, n = 8-9, Mann–Whitney U test). *P < 0.01; **P <
0.001; ***P < 0.0001; ns, not significant; Mtz, metronidazole; NTR, nitroreductase; Sacle Bars, 50 mm.
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of bacterial nitroreductase (NTR) and cyan fluorescent protein

(TagCFP) is specifically expressed in Tregs. The NTR converts

the pro-drug metronidazole (Mtz) to a cytotoxic agent in

eukaryotic cells (38), and thus Tregs can be conditionally

ablated in foxp3a:NTR fish with Mtz administrations. After the

establishment of the fin-Treg depletion protocol (Supplementary

Figures S2A−G), we analyzed the effect of Treg depletion on fin

regeneration. We found a significant decrease in the outgrowth

of regenerated fin tissue after Treg depletion (Figures 2B, C). But

continuous observation of regenerated fin tissue growth until 10

dpa after Treg cells depletion revealed no obvious difference

between WT and foxp3a:NTR fish (Figure 2C).

One of the most critical events in zebrafish fin regeneration

is the proliferation of blastemal cells and which occurs during

the outgrowth offin tissue (1, 39, 40). The proliferating blastemal

cells in the regenerating fin blastema can be detected by EdU

labeling after fin amputation of EdU injected foxp3a:RFP fish.

Interestingly, we observed Tregs in the blastema of 4 dpa fin are

localized in close vicinity of EdU+ cells (Figure 2D), and

sometimes they are associated directly with the EdU+

blastemal cells (Figure 2E), suggesting Tregs may have a role

in blastemal cell proliferation. Thus to find out the basis behind

the aberrant/reduced growth of regenerated fin after ablation of

Treg cells, we looked at the rate of blastemal cell proliferation by

H3P (Phospho-histone H3) immunostaining in EdU injected

foxp3a:NTR fish. We found a significant reduction of blastemal

cell proliferation at 4 dpa fin blastema after depletion of Treg

cells compared to Mtz treated WT as measured by quantification

of H3P+ cells (Figures 2F, G). Whereas, at the same time point (4

dpa) the number of dying/apoptotic cells and the expression of

pro-survival genes in the blastema tissue remained unchanged

after Treg cells depletion (Supplementary Figures S2E−G).

Taken together, these data suggest Tregs are the essential

regulator of fin regeneration, at least for the early stages, by

promoting the proliferation of blastemal cells.

Tregs are increasingly known to regulate tissue repair and

regeneration by providing growth factors in damaged tissues (37,

41, 42). Thus, to explore the mechanism behind the impaired

blastemal cell proliferation in the absence of Tregs, we looked at

the expression of known growth factors/signaling molecules

directly influencing blastemal cell proliferation (12–16, 32, 43)

after depletion of Treg cells. We have found that Treg cell

depletion in 4 days of regenerated fin specifically reduced the

expression of igf2a, igf2b, wnt8a, and raldh2 (Figure 3A). To

further investigate whether Tregs are the direct source of these

growth factors, we performed gene expression analysis of

particular growth factors from purified foxp3a:RFP+ cells from

4 dpa fin blastema and the unamputated fin (Figure 3B). The

Treg cell-specific expression of igf2a and igf2b was detected by

qRT-PCR analysis, and among them, igf2a was predominantly

expressed from the regenerated fin-derived Tregs (Figure 3C).

To confirm the igf2a expression from fin-derived Tregs, we

performed a high-resolution in situ hybridization by RNAscope
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assay and detected the igf2a expressing foxp3a:RFP+ cells at the

blastemal tissue of 4 dpa fin (Figure 3D).

To confirm whether the organ-specific secretary phenotype

of Tregs also persists during zebrafish fin regeneration akin to

our previous findings (37, 44, 45), we compared the igf2a and

igf2b expression of fin blastema-derived Tregs with the injured

spinal cord, retina, and heart derived Tregs. Strikingly, the gene

expression of the pro-regenerative factors for the spinal cord

(ntf3), the retina (igf1), and the heart (nrg1) was not detectable in

the Tregs purified from fin blastema (Figure 3E). However, the

expression of igf2a and igf2b were highly enriched in the fin

blastema-derived Tregs (Figure 3E), suggesting that Tregs

produce Igf2a and Igf2b to regulate blastemal proliferation. To

examine the role of Tregs-derived Igf2a and Igf2b in blastemal

proliferation, we exogenously administered the IGF signaling

activator, NBI-31772, in Treg cells-ablated 4 dpa fin. The H3P+

blastemal cells were significantly increased in Treg cells-ablated

4 dpa fin after the treatment offish with NBI-31772 compared to

DMSO treatment, and the blastemal cell proliferation was

restored similar to WT level (Figures 3F, G). Together, our

results indicate that Tregs acquire a specific secretory phenotype

in the regenerating fin tissue that activates IGF signaling to

promote blastemal proliferation.

To determine whether the expression of igf2a and igf2b are

regulated by the transcription factor Foxp3a, we used an

established zebrafish mutant line, foxp3avcc6 (hereafter,

foxp3a−/−) (36). We found that the expression of igf2a and

igf2b was not detectable in Tregs purified from the injured

foxp3a−/− fin tissues (Supplementary Figure S3F), indicating

that the expression of igf2a and igf2b are directly regulated by

transcription factor foxp3a. The lack of igf2a and igf2b

expression resulted in the significant blastemal proliferation

and fin growth in foxp3a−/− fish irrespective of a similar

number of infiltrations of Tregs in 4 dpa fin blastema

compared to WT (Supplementary Figures S3A−E). Moreover,

as expected, the expression of pro-inflammatory genes tnfa,

ifng1-1, and il6 were also elevated in regenerating fin tissue of

foxp3a−/− fish (Supplementary Figure S3G) compared to wild-

type. These findings are consistent with our previous observation

(37) that the secretion of pro-regenerative factors from Tregs is

controlled by the transcription factor Foxp3a.
Discussion

The formation of the blastema is a characteristic feature of

epimorphic regeneration (2, 3, 46). In this study, we found that

zebrafish Tregs regulate epimorphic fin regeneration by

promoting blastemal cell proliferation. Consistent with our

previous finding during spinal cord, retina, and heart

regeneration in zebrafish, Tregs are also accumulated during

fin regeneration. However, unlike those accumulated in the

damaged spinal cord, retina, and heart, Tregs in the
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regenerating fin tissue are not mobilized through circulation but

from the skin tissue nearby the fin amputation plane

(Figure 1C). Future study is necessary to determine whether

this is a unique mechanism for fin regeneration or whether the

skin is a reservoir of Tregs that mobilize to damaged tissues

in zebrafish.

Tregs accumulated in the injured fin tissue produce a unique

set of pro-regenerative factors, Igf2a and Igf2b, to promote

blastemal proliferation. In mammals, Tregs are also known to

accumulate in the damaged skin tissue and promote repair by

producing paracrine factors including Areg (41, 47–51). Tregs

may have an ancestral and universal role in producing pro-

regenerative factors in the response to tissue damage, and this

mechanism could be targeted to enhance regeneration and

repair of damaged tissues in humans.

The mechanism by which zebrafish Tregs acquire a tissue-

specific secretory phenotype during regeneration remains

unclear. Further studies with single-cell transcriptomics and

epigenomics might explain the detailed molecular mechanism

by which zebrafish Tregs modulate the tissue-specific expression

of trophic and mitogenic factors in response to local injury

niche. Decoding the molecular mechanism by which zebrafish

Tregs acquire a tissue-specific pro-regenerative function may

provide novel implications for future regenerative therapies

targeting human Tregs.
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The expanding impact of T-regs
in the skin
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Chung-Ching Chu3, Haarshaadri Jayaprakash1,
Amitabha Majumdar4 and Colin Jamora1*

1IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for
Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine
(inStem), Bangalore, Karnataka, India, 2School of Chemical and Biotechnology, Shanmugha Arts,
Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India,
3Unilever Research & Development Shanghai, Shanghai, China, 4Unilever Research & Development
Bangalore, Bangalore, India
As the interface between the body and the environment, the skin functions as

the physical barrier against external pathogens and toxic agents. In addition, the

skin is an immunologically active organ with a plethora of resident adaptive and

innate immune cells, as well as effector molecules that provide another layer of

protection in the form of an immune barrier. A major subpopulation of these

immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-

regs). The canonical function of T-regs is to keep other immune cells in check

during homeostasis or to dissipate a robust inflammatory response following

pathogen clearance or wound healing. Interestingly, recent data has uncovered

unconventional roles that vary between different tissues and we will highlight

the emerging non-lymphoid functions of cutaneous T-regs. In light of the

novel functions of other immune cells that are routinely being discovered in the

skin, their regulation by T-regs implies that T-regs have executive control over

a broad swath of biological activities in both homeostasis and disease. The

blossoming list of non-inflammatory functions, whether direct or indirect,

suggests that the role of T-regs in a regenerative organ such as the skin will

be a field ripe for discovery for decades to come.

KEYWORDS

skin, skin immunology, skin disease, regulatory T (Treg) cells, inflammation, innate
immunity, adaptive immunity
Skin as an immune organ

The skin is an immunologically active organ that harbors multiple immune effector

molecules and cells which belong to both innate and adaptive branches of immunity.

Apart from its role as a physical barrier protecting the body from the external

environment, the skin through the activity of immune cells and molecules, forms the

first line of natural immunological defence against infection (1).
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The skin is a multi-layered structure, and each layer contains

cells and effector molecules that contributes towards the

mounting of an immune response and hence infection

protection. The epidermis for example contains Langerhans

cells and T cells, which, can be found in the stratum basale

and stratum spinosum. Apart from this, the dermis harbours

dendritic cell (DC) subsets, including dermal DCs and

plasmacytoid DCs (pDCs), and T cell subsets, including CD4+

T helper 1 (TH1), TH2 and TH17 cells, gd T cells natural killer T

(NKT) cells and Tregs.

In addition to the immune cells linked to an adaptive

immune response, innate immunity activators are also present

in the skin. Key innate immune activators present in the skin

layers are the TLRs, NLRs, cytokines, chemokines, antimicrobial

peptides, and lipids. In addition, macrophages, mast cells and

fibroblasts and keratinocytes are also present in the skin tissue.

All these acts in a concerted fashion and they co-ordinate a

strong immune response against invading pathogens. Skin

keratinocytes also produce antimicrobial peptides and lipids as

a part of its natural innate immune response against pathogens.

The production of things like antimicrobial peptides (AMPs)

and lipids (AMLs) forms a part of a natural and evolutionarily

conserved defence mechanism of eukaryotic cells against

bacteria and viruses. AMPs and AMLs prevent microbial

infection of skin by direct killing of the pathogen, recruitment

of host immune cells and modulation of cytokine production (2).

The optimal regulation of this skin resident immune system

and its effectors molecules (AMPs, AMLs) is thus important for

skin health and hygiene and maintenance of such an activity is

driven by the efficient crosstalk between the skin cells, immune

cells and effectors and the microbes. In the following sections of

this review, we will cover in the key role played by the immune

cells in maintaining this with a focus on the role of the Tregs.
Cyclical regulation of cutaneous
immune cells under homeostatic
conditions

Most of the T regulatory cells isolated from human skin

expresses CCR4. It is also shown that a good percentage of

peripheral blood CD4+ CD25hi FOXP3+ T-regs express

cutaneous lymphocyte antigen (CLA). These cells were shown

to be capable of immunosuppressing activated CD3+ T cells

suggesting that they might be recruited to maintain immune

tolerance in human skin in homeostatic conditions (3). FACS

analysis of healthy human skin have shown that a major portion

of T-regs in human skin are memory T-regs as they express

CD45RO. These cells were at one point activated due to the

expression of CTLA-4. There are reduced number of T-regs in

fetal skin compared to adult skin. Immunofluorescence analysis

have shown that in human skin, T-regs reside close to follicular
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epithelium compared to interfollicular dermis whereas

conventional T cells are distributed throughout the dermis.

More T-regs are present in the areas where there is high

density of hair like the scalp. Memory T-regs are non-

migratory as they lacked CCR7 (4).

Under homeostatic conditions, the hair follicles undergo

cycles of growth (anagen), regression (catagen) and quiescence

(telogen) throughout life (Figure 1). In rodents, hair growth

commences in the embryo and continues postnatally followed by

catagen and telogen phases. The early growth phase is called

morphogenesis and it starts from the anterior and progresses to

the tail in rodents. Interestingly, unlike rodent hair follicles that

cycle synchronously for the first two cycles (5, 6), the hair

follicles in human skin cycle independently from the adjacent

hair follicle. The stem cells in various niches of the hair follicle

proliferate and differentiate to maintain the hair follicle unit, and

requires communication between the epithelial compartment

and the mesenchymal compartment (17). The hair follicles and

the dermal white adipose tissue (dWAT) expand during anagen

and shrink during the catagen and telogen stages.

dWAT is layer of white adipose tissue which resides in the

dermal layer skin under the fibroblasts and above the muscle

layer panniculus carnosus (18). Well know function of dWAT is

the thermoregulation but recent studies have unearthed

importance of dWAT in antimicrobial peptide secretion (19),

wound healing, and hair follicle cycling (7, 20). Similar to the

dynamics of the hair follicle and dWAT, many resident immune

cells cycle in both numbers and activity in the skin (Figure 1).

This concurrent cycling between immune cells with the different

cutaneous structures suggests that there may be a regulatory and

functional link between them. For instance, macrophages cycle

in sync with the hair follicle. By IF and FACS analysis of murine

back skin, it was shown that macrophages gradually increase in

number after the commencement of the anagen phase and

attains a peak at mid telogen, followed by a significant

decrease in the late telogen phase due to apoptosis and

migration (8). Interestingly, these changes in macrophage

number along with their release of Wnt7b and Wnt10a during

apoptosis are necessary for induction of the anagen phase of the

hair follicle (8). During the late anagen phase, an increased

number of a subset of macrophage-like cells expressing FGF5

was observed (9, 10). These cells then migrate to the lower

dermal region where they interact with the FGFR1 on dermal

papillae to induce the regression of hair follicle marking the

beginning of catagen phase.

Similar to macrophages, mast cells numbers and

degranulation of its stored cytokines also in sync with the hair

follicle cycle (Figure 1). The mast cell population accumulates

towards the end of anagen and just before catagen and decrease

in numbers during telogen. Around 70% of mast cells at very

early anagen are degranulated whereas only 5.8% are

degranulated in telogen skin (11, 12). It has been shown that

mast cell degranulation is essential for HF cycling, primarily in at
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the anagen phase (12) through its secretion of factors such as

adrenocorticotropic hormone, and Substance P (13).

In addition to the innate immune cells, some adaptive

immune cells also cycle under homeostatic conditions in the

skin. CD4+ and CD8+ T cells, expressing the ab TCR,

spontaneously appear in the early neonatal skin (6). In the

epidermis of murine dorsal skin, the highest number of CD4+

T-cells are observed at postnatal day 3 followed by a gradual

decline in number. CD8+ T cells are the prime T cell population

in the epidermis, whereas the CD4+ T cell population dominates

the dermis (6). Analysis of murine skin by immunofluorescence

staining over different stages of the hair cycle has shown that

CD4+ T cells and CD8+ T cells are higher in number in the

anagen skin when compared to telogen skin. In both depilation

and cyclosporin induced hair cycling, the higher number of these

T-cells in anagen vs telogen is exaggerated. As with innate

immune cells, this trend is opposite with respect to T-regs in
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skin (6, 14–16). Interestingly, despite the cyclic fluctuations in

the number of these cells, the ratio of CD4+/CD8+ T-cells

remains constant in steady state (6).

Recently new roles of T-regs in regulating the homeostasis of

various skin compartments that undergo cyclical rounds of

regeneration have been reported. For instance, T-regs

themselves undergo cyclic changes in numbers as well as in

activation markers (such as; CD25, ICOS, Ki67, CTLA-4, and

GITR) with respect to the cyclic changes in hair follicle, dWAT

and other immune cells (Figure 1) (16). Consistent with their

immune suppressive activities, cutaneous T-regs are generally

higher when innate and adaptive immune cells numbers and

activity are low and vice versa. It is also interesting to note that

only the T-regs in close proximity to the hair follicle stem cell

region showed an active (amoeboid) morphology. On the other

hand, T-regs further away from the hair follicle showed a more

spherical morphology indicative of a lack of activity. This could
FIGURE 1

Different compartments of the skin cycle under homeostatic conditions (Arbitrary levels). The hair follicle is well known to undergo regenerative
cycles of anagen (growth), catagen (regression) and telogen (resting phase). Immune cells and dermal white adipose tissue (dWAT) cycle
synchronously with respect to different stages of hair follicle. Most of the immune cells follow a similar trend where they increase in number
during anagen and decline with catagen and telogen. Interestingly, T-regs cycle in the opposite fashion – T-regs are more in number in the
telogen phase than anagen or catagen. This could signify a possible regulatory relationship between these different cell types though
mechanisms governing this cyclical behavior are yet to be defined. (5–16).
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indicate spatial differences in T-reg activity and function with

respect to other cells within the skin (16). We expect that the

increasing use of single cell analysis will facilitate the further

understanding of novel roles of T-regs during cyclic regeneration

of the skin.
Introduction to cutaneous T-regs

Given its role as a master regulator of other immune cells, T-

regs may play an executive role in the cellular dynamics of other

immune cells thereby contributing to the cyclic changes in the

skin directly or indirectly. The discovery of T-regs was reported

in the mid-90’s as a subpopulation within the pool of CD4+CD25+ T-

cells. CD25 was established as a marker of T-regs (21), with a lot of

skepticism, since activated T effector (T-eff) cells highly express CD25.

However, the skepticism started to dissipate with the discovery of

CD45RB expression on T-regs, which helped to distinguish the T-regs

from the T-eff cells (22). Finally, the discovery of a new specific marker

forkhead box transcription factor FOXP3 in 2003 settled the debate

over the unambiguous existence of T-regs (CD4+ CD25+ FOXP3+ T-

regs). The expression of FOXP3 is both necessary and sufficient for T-

reg immune suppressive activity (23–26) and its absence leads to

development of severe lymphoproliferative autoimmune disease in

mice (Scurfy mouse) and in humans (IPEX syndrome) (27, 28). On a

cautionary note, recent studies show that the FOXP3 can be expressed

in various mammalian cell types during embryonic stages and only

becomes restricted to T-regs in adults. Thus, it is difficult to perform

lineage tracing experiments in embryogenesis using FOXP3 alone to

understand T-reg development in the skin (29).

These T-regs, referred to as natural T-regs (nT-regs), arise

from the thymus where they acquire the ability to distinguish self

from non-self-antigens (30, 31). Studies from thymectomized

mice, which develop lymphoproliferative disease, demonstrated

that the transfer of healthy CD4+ cells (which includes both T-

eff and T-regs) prevented the development of this phenotype.

This study also revealed that IL2 is important in the maturation

of T-regs by stabilizing FOXP3 expression. Later it was found

that CD4 T cells can be induced to become T-regs (induced T-

regs or iT-regs) in the peripheral tissues as well as in vitro

cultures by secreted factors such as retinoic acid and TGF beta

(32–34).

T-regs are a heterogenous group of cells both in lymphoid

and non-lymphoid tissues. Single cell analysis of mouse T-regs

from these two groups of tissues suggested that skin T-regs

resembled colonic T-regs (35), though interpretations should be

predicated on the low number of cells captured. Nevertheless,

the sequencing data revealed that the chemokine receptors Ccr4,

Ccr8, and Cxcr4 were upregulated in both colon and skin T-regs,

while Ccr6 was specific to the skin T-regs. They also found

shared expression of genes in the skin and colonic T-regs such as
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Gata3, Il1rl1, Tnfrsf4, Rora (35). More than 95% of T-regs in

adult skin express CD45RO, which indicates that the cells have

previously encountered an antigen outside the thymus (36). Skin

T-regs have higher levels of the T-reg activation markers such as

CTLA4, CD25, ICOS and Foxp3 compared to T-regs in

peripheral blood. A switch in expression (either up or down)

of 812 genes was discovered along the brachial lymph node to

skin migration. Initially, T cell migration and glycolytic process

help in the adaptation of T-regs in skin followed by cell

proliferation; cytokine production and fatty acid homeostasis.

The adaptation of T-regs in mouse skin was conserved in human

skin T-regs as well.

There is evidence that suggest that T-regs express the

transcription factors of the target cells they are attempting to

suppress. For example, M.A. Koch et al., showed in 2009 that in

response to interferon-g, mouse T-regs upregulated the T helper

1 (Th1)-specifying transcription factor T-bet, which is required

for the homeostasis and function of T-reg cells during Th1-

mediated inflammation (37). Similarly, it was observed that

interferon regulatory factor-4 (IRF4), a transcription factor

essential for T helper-2 effector cell differentiation, endows

mouse T-regs with the ability to suppress T helper-2 responses

(38). Moreover, deletion of the transcription factor STAT3

(transcription factor required for T helper-17 differentiation)

frommouse T-regs resulted in the development of fatal intestinal

inflammation (39). Single cell RNA sequencing of skin T-regs

revealed that mouse T-regs preferentially expressed high levels T

helper-2 associated transcription factor aka GATA3 during

homeostasis. GATA3 deletion from mouse T-regs resulted in

exacerbation of T helper-2 cytokine secretion and fibrosis in the

skin (40). Fibrosis is the manifestation of chronically activated

fibroblasts that secrete excessive amounts of ECM and leads to

an increase in the dermal layer. Moreover, in mouse models of

atopic dermatitis, retinoid-related orphan receptor a (RORa) in
skin T-regs is important for restraining allergic skin

inflammation (41).

More recently, single cell RNA-sequencing on isolated T-

regs from the skin and skin draining lymph nodes (SDLN) of

mice revealed a transcriptionally distinct feature of skin T-regs

(42). As compared to the SDLN T-regs, skin T-regs are

transcriptionally enriched in pathways associated with TGFb
and integrin signalling. In addition, there was a significant

increase in the expression of receptor-ligand pairs that link to

T-reg-epithelial cell crosstalk. The distinct transcriptomic

signature implies a preferential interaction of skin T-regs with

the skin epithelium to exert tissue specific functions. Further

stratifying T-reg populations into those derived from the dermis

and the epidermis revealed strong transcriptomic homogeny

between the two T-reg populations. However, there was a

notable preferential expression of Itgb8 gene, which form the

TGFb activating integrin avb8, in the epidermal T-regs.
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Epidermal T-regs also showed increased SMAD2/3

phosphorylation in response to TGFb stimulation as compared

to those of the dermis and SDLN. The TGFb – integrin avb8
axis plays a major role in tissue repair/remodelling in the context

of injury and skin pathology (43). Interestingly, while skin T-reg

was shown to facilitate epidermal barrier repair (44), activation

of latent TGF-b in T-regs via the TGF-b/avb8 pathway was

shown to delay epithelial repair efficiency. Instead, the TGF-b/
avb8 pathway elicited innate immune protection against

Staphylococcus aureus infection. This implies the functional

heterogeneity of tissue T-regs and the potential effect of tissue

cytokine milieu on non-lymphoid T-reg responses. The exact

mechanism of how skin T-regs balance the kinetics of tissue

repair and pathogen defense in anatomically distinct areas of the

skin remain to be elucidated.

Though similar to colonic T-regs, skin T-regs have unique

features which may imply tissue specific functions. For example,

the mice skin exclusively consists of T-regs that are lacking Id3

(the inhibitors of DNA binding 3) when compared to lymphoid

T-regs. The Id3 negative cutaneous T-regs express inhibitory

markers and probably more suppressive (45). Another molecule,

arginase 2, has been shown to be preferentially expressed in

healthy human skin T-regs compared to the skin T-effs or

circulating T-regs. Arginase 2 increases in human T-regs in

metastatic melanoma, and reduces in T-regs from psoriatic skin.

Decreased levels of arginase 2 renders T-regs dysfunctional to

suppress T-eff cells and vice vera. Arginase 2 helps T-regs to

maintain tissue T-reg signatures, to regulate inflammation and

enhance metabolic fitness (46). ARG2 expression in Tregs was

shown to attenuate mTOR activity with time after Treg activation.

In 2011, the Abbas lab unraveled how chronic or repeated

exposure to self-antigen within tissues leads to an attenuation of

pathological autoimmune responses. Using a model of

cutaneous self-antigen expression, it was found that self-

antigen specific T-regs migrate out of the thymus. Further T-

regs activate, proliferate, and differentiate into more potent

suppressors in the SDLN and then migrate to the skin to

mitigate autoimmune and skin inflammation. A subset of T-

regs also confer a memory phenotype and are maintained for

long periods with enhanced suppression capacity (47). These

results are consistent with reported differences between the skin

resident T-regs and those that have migrated into the tissue. For

example, half of the T-regs in an inflamed mice ear are migratory

and have been shown to have higher levels of CTLA4 and Nrp1

and lower levels of CD25 and CD39 when compared to the

resident T-regs (48). The diversity in gene expression and

function points to the varying potential of T-regs in

suppressing inflammation. Important questions arise from

these observations: 1. Does the diversity of T-reg subsets

suggest that they perform multiple non-overlapping functions

in the skin? and 2. Are some of those cutaneous functions

associated with the non-immune cells?
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Trafficking of cutaneous T-regs

As an example of its role as an immunological barrier, the

human skin contains more T cells than the bloodstream. It is

estimated that there are around 1 million T cells per square

centimeter and 10 billion T cells in the entire skin (49). T-regs

represent around 20% of the tissue resident CD4+ T cells in

human skin and 20-60 percent in the mouse skin (4, 16, 41).

Where do these T cells come from and how do they migrate to

the skin?

The cutaneous migration of T-regs is important as the

inability of T-regs to home to the skin is permissive of

dermatitis and cutaneous inflammation (50). T-regs enter the

skin is after post-natal day 6 (51), indicating that these cells are

not required for the embryonic and early development this

organ. However, there is a peak in the number of T-regs at

post-natal day 13 when roughly 80 percent of CD4+ T cells are

T-regs, which have migrated from the thymus (51). The

significance of this peak is linked to the tolerance of

commensal microbes (51). Following this peak there is a dip

in the number of T-regs and a second peak at post-natal day 23.

The importance of this second wave of T-regs is its association

with the proliferation of hair follicle stem cells and subsequent

growth of the hair follicle (16). Further, in steady state human

skin resident memory T-regs reside in the epidermis and in the

follicular epithelium in proximity to dermal dendritic cell

(DDC) (52). It would thus be important to determine if there

is an increase in a specific type of T-regs (nT-regs vs. iT-reg)

given their differential representation in other organs in

physiology and disease. Moreover, whether the cyclical

changes observed in T-regs and T-cells in the skin is due to

interconversion between natural and induced subtypes is yet to

be addressed.

The migration of T-regs into the skin from the thymus and

lymph nodes is guided by signals arising from the tissue resident

cells and the corresponding expression of their cognate receptors

on the T-regs. One class of migratory signals is the chemokine and

chemokine receptor. The CCR4 chemokine receptor is robustly

expressed by skin-homing T cells and the CCR4 ligand, TARC

(Thymus and activation-regulated chemokine) is expressed by the

endothelial cells of the cutaneous vasculature (53). Upon genetic

ablation of CCR4 expression in T cells, homing of T cells to the

skin is prevented (54). Cutaneous T-regs have also been shown to

express CCR4, thus loss of CCR4 in T-regs, confers to them a

competitive disadvantage with other CCR4 expressing T-cells to

migrate into the skin and lungs. This leads to lymphocytic

infiltration and severe inflammation in the skin (55).

Upon reaching the skin through the vasculature, cell

adhesion molecules on the T-regs aid in binding the cell to the

endothelium and promote extravasation. Surface expression of

the ligands for E and P selectins found on endothelial cells is

required for the exit of the T-regs from the circulation (3, 56). In
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a model of contact hypersensitivity, rolling of endogenous T-regs

in dermal postcapillary venules was dependent on overlapping

contributions of P- and E-selectin. However, after a repeated

challenge, T-regs but not conventional CD4+ T cells became P-

selectin independent. This was also supported by the reduced

capacity of T-regs to bind P-selectin. Inhibition of E-selectin

during a repeated challenge resulted in exacerbation of

inflammation. This report suggested that there is a dynamic

molecular shift in T-regs: the initial migration requires both P-

and E-selectin whereas repeated challenge requires only E-

selectin (57). The a-1,3-fucosyltransferase VII (FuT7) enzyme

is responsible for catalyzing the formation of the carbohydrate

determinants of E- and P-selectin. Consistent with this, the loss

of FuT7 also reduced T-reg cell accumulation in the mouse skin,

resulting in selective onset of severe cutaneous inflammation

(50). Additionally, layilin (a C-type lectin-like receptor) is

preferentially and highly expressed on a subset of activated

Tregs in human skin (58). Layilin is induced by TCR-

mediated activation (by IL-2 or TGF-b) and facilitates Treg

adhesion in skin. Moreover, Layilin expression on T-regs limits

their suppressive capacity (58).

Under homeostatic conditions, microbial-epithelial

interactions also contribute to the migration of T-regs into the

skin. The commensal bacteria of the skin microbiome play

important roles in maintaining homeostasis (59). The

tolerance of the skin commensal microbes is maintained by

the cutaneous T-regs as they accumulate in the skin at postnatal

days 6–13 (51). In the absence of this microbial interaction (such

as the case of germ-free mice), a 20 percent reduction in the

number of neonatal skin T-regs was reported (60). Furthermore,

the microbiome induces the expression of CCL20 in the hair

follicle cells and T-regs possess the receptor for CCL20 (i.e.,

CCR6) which aids in their retention near the hair follicle (60).

CCR6 is a G protein-coupled receptor expressed on immature

DCs, innate lymphoid cells, T-regs, Th17 cells and B cells (61).

In human oral squamous cell carcinoma, CCR6 expressing T-reg

were more suppressive with higher FOXP3 expression compared

to CCR6 negative T-regs (62). Human skin T-regs express high

levels of the memory markers such as CD27 and BCL-2,

suggesting that they are effector memory T-regs (4). The

expression memory markers can be a result of the interaction

of T-regs with the skin microbiome.
Unconventional roles of cutaneous
T-regs: Barrier function and
wound healing

The functional importance of cutaneous T-regs in

supporting skin barrier integrity was shown in mouse models

where T-regs were selectively impaired in their ability to migrate
Frontiers in Immunology 06

221
to the skin. These mutant mice spontaneously developed visible

dermatitis accompanied by a dense dermal infiltration of

leukocytes and thickening of the epidermis (50, 55). Even in

the absence of immunogenic foreign antigens, the lack of

constitutive cutaneous T-reg migration can results in

progressive immune responses. This can result from the

mounting of an immune response from self-antigens, or from

the skin’s own microbiome or the environment, which normally

do not elicit a strong inflammatory response.

It is increasingly recognized that the skin microbiome is an

integral part of the skin barrier that influence many aspects of

skin health (63) and shape the cutaneous innate and adaptive

immunity (64). An important method by which the skin

microbiome contributes to homeostatic immunity is via

regulating the immigration of T-regs into the skin to establish

tolerance (51). While early skin colonization of commensal is

critical for establishing commensal-specific immune tolerance

(51), skin T-regs are also involved in regulating commensal-

specific T cell responses in relation to local immunity and tissue

remodeling (65). Harrison et al. reported that Foxp3+ T-regs are

localized in closed proximity to S. epidermidis-induced CD8+ T

cells in murine epidermis. Reduced level of skin T-regs through

conditional deletion of GATA-3 in Treg cells were shown to

selectively unleash type-2 cytokines by commensal-specific,

RORgt-committed type-17 cells. which may be licensed by

alarmins associated with tissue damages (65). This data

suggests a potential role of skin T-reg in regulating

commensal-specific T cell plasticity, allowing the cells to exert

pleiotropic immunity and tissue repair functions, while

preventing tissue predisposition to inflammation.

In addition, recent insights have revealed the unconventional

roles of immune cells, in not only protecting the wound site from

infection but actively promoting restoration of tissue homeostasis.

Upon breaching of the physical barrier of the skin the wound

healing program is initiated and is comprised of three sequential

and overlapping phases: inflammation, proliferation, and

remodeling. The early phase of the wound repair process is the

inflammatory phase, which is rapidly launched by damage-

associated molecular patterns (DAMPs) and chemokines

released by the cells in wound areas that recruit and activate

innate immune cells and later adaptive immune cells. These

immune cells are critical to fending off infections but they must

be tightly regulated to avoid secondary damage to the tissue.

Though regulated by different chemokines produced from

numerous cell sources in the skin, it is tempting to speculate

that different T-reg sub-populations may also contribute to the

sequential appearance and activity of the innate and adaptive

immune cells during the wound healing process. This is based

on the correlation with the sequential recruitment of T-regs in

the wound healing program. For instance, CD25+ T-regs are

increased at an early-stage post wounding (day 3) while ICOS+

and CTLA4+ T-regs are increased at later stages (Day 7) (66).
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Interestingly, early ablation of T-regs (2 day prior to wounding

up to 5 days post wounding) leads to significantly slower

wound closure rates. However, depletion of these cells at

later stages (post wounding day 5 to 10) had no effect on

wound closure kinetics (66). The early ablation of T-regs in the

wounded skin leads to exacerbated production of IFNg (66),

which increases monocyte differentiation to M1 (pro-

inflammatory) macrophages as well as their accumulation

(67). A functional consequence of accumulating the M1

macrophage is a delay in the wound healing program (68).

There are additional instances in which T-regs impact the

wound healing program. For example, upon depletion of T-

regs in the wounded mice, the suppression of the immune

responses is absent which leads to impaired barrier restoration

(44). T-reg cells were shown to preferentially suppress early

accumulation of IL-17A CD4+ T cells at the site of injury. In

these settings, the T-reg mediated control of IL-17-CXCL5-

neutrophil axis of inflammation is absent which in turn

prevents the differentiation of hair follicle stem cells into the

epithelial keratinocytes to aid in reepithelialization (44).

Notably, in their model, absence of Treg cells compromised

epidermal barrier repair upon injury but did not alter skin barrier

integrity under homeostatic condition.

Differentiation of dermal fibroblast into myofibroblasts

(ECM producing activated fibroblast) is another key event in

tissue regeneration which requires tight regulation. In this

context, T-regs prevent Th2 responses in the skin to suppress

myofibroblast activation and thus chronic reduction of T-regs

leads to increased TH2 cytokine production in skin, leading to

persistent fibroblast activation and fibrosis (40). In a recent

study in 2021, the number of IL-10+ and TGF-b+ T-regs were

shown to increase after the topical application of 4% sodium

dodecyl sulfate mediated skin barrier disruption in the mice

(69). IL-10+ and TGF-b+ T-regs might play roles in suppressing

inflammation and/or facilitate the barrier repair. Altogether,

these observations highlight the importance of cutaneous T-

regs as an integral component in maintaining skin immune

homeostasis, thereby sustaining a healthy skin barrier function

and support/regulating tissue regeneration (Figure 2)

The reparative roles of T-regs are not only limited to the skin

as it has also been reported to promote healing in the lungs and

muscle (70, 71). A distinct population of T-regs can help in

muscle repair by promoting satellite cell function and muscle

repair by amphiregulin. A similar mechanism was reported in

lung tissue repair by amphiregulin belonging to the same family

of EGFR (70). Although there are very few T-regs in the brain,

recent work (72) suggests that these cells play a role in restoring

neurological homeostasis after ischemic stroke. These anecdotes

suggest that we have just scratched the surface of understanding

the full extent the role of T-regs in tissue repair throughout

the body.
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Hair follicle cycling

Hair follicles are “mini-organs” that undergo continuous

cycles of regeneration. Interestingly, an emerging area of interest

is the regulation of hair follicles by immune cells. At telogen

stage, T-regs localize near the hair follicle stem cell niche known

as the bulge region. In the well-established model of depilation-

induced hair follicle regeneration, it was found that T-regs

preferentially express the Notch ligand, Jagged1, which

activates the Notch target genes transcripts on the hair follicle

stem cells to initiate the transition from telogen to anagen

(growth) stage. Subcutaneous administration of microbeads

coated with Jag1-Fc was able to partially rescue HFSC

activation and induction of anagen in the absence of Tregs.

The result of Notch and Jagged1 interaction results in the

proliferation and differentiation of hair follicle stem cells (16).

More recently, it was reported that glucocorticoid signaling in T-

regs is important in stimulating TGFb3 production that can

signal to the nearby hair follicle stem cells to enter anagen (73).

Altogether these findings suggest that T-regs have direct

unconventional functions in the skin to regulate the

regeneration of the hair follicles (Figure 2).
Impact of T-regs via its regulation of
other immune cells with
unconventional functions in the skin

Other components of the skin undergo cyclic regeneration

such as the dermis, adipose tissue, and epidermis, and it is

tempting to propose that the cyclical nature of T-regs likewise

regulates these processes either directly or through their

modulation of other immune cell activities. It is well established

that T-regs suppress various immune cells from generating an

autoimmune response or ameliorating the inflammatory activity

after infection or injury or antibody response. Thus, T-regs can

function at a secondary level to control adaptive immune cells that

in turn have novel functions in the skin (Figure 2).
Non-classical functions of adaptive
immune cells

CD4+ and CD8+ T-cells are present in the skin at lower

frequencies than macrophages, but during wound healing,

infection, or autoimmunity, the numbers of T cells skyrocket.

T cells have been found to affect numerous cells of the skin

including dermal fibroblasts, keratinocytes, and hair follicles

during pathological conditions (74, 75). The interaction of T
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cells with different compartments and cell types in the skin can

be through the secretion of various cytokines. For example, some

cytokines mediate interactions between the T-cells and

fibroblasts- thereby affecting the activation status of the former:
Fron
• IL22 is a cytokine produced by subsets of T cells and has

been linked to fibroblast function during wound healing.

Both in vivo and in vitro evidence has revealed that IL22
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in wounds displays severe defects in the dermal

compartment and inhibits the ability of fibroblasts to

produce ECM and differentiate into myofibroblasts (76).

• Similarly, in the GVHD-SSc mice that exhibit fibrotic

skin, it was found that ICOS+ TFH-like (Inducible T-cell

co-stimulator+ T Follicular Helper-like) cells produce

IL21 and MMP 12, which cause activation of fibroblasts

that lead to the pathology. Upon administration of anti-
B

A

FIGURE 2

T-regs are at the center of many processes in the skin. (A) T-regs play a direct role in hair follicle cycling by promoting transition from telogen
to anagen stage. Loss of T-regs also results in a decrease in dWAT thickness. (B) T-regs establish immune tolerance and prevent microbiome
specific inflammation. T-regs also promote wound healing by suppressing IL17-CXCL5-neutophil axis to promote hair follicle stem cell (HFSC)
migration. T-regs prevent excessive inflammation (IFNg and M1 macrophages) to prevent delayed wound healing.
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ICOS antibody or IL21 neutralization in GVHD-SSc,

skin fibrosis was reduced (77).

• IL13 secreted by CD8 T cells has been shown to increase

the ECM production from dermal fibroblasts (78).

Similarly, when conditioned media from CD8+ CD28-

T cells isolated from patients with the skin fibrotic

disease scleroderma was added to dermal fibroblasts,

there was an increase in collagen and fibronectin

production. This effect was inhibited by the pre-

treatment of IL13 antibody suggesting IL13 production

from CD8 T cells causes activation of fibroblasts (79).

• TGFb is a well-known cytokine that causes fibroblast

activation and can be produced by various cell types in

the skin. Conditioned media collected from the CD4 T

cells from the skin of burn wound patients had

significantly higher TGFb levels compared to the

normal subjects. Upon treatment of this conditioned

media on fibroblasts, an increase in cell proliferation,

collagen synthesis, smooth muscle actin levels, and

collagen contraction was observed (80).
Interestingly, depletion of T-regs leads to an increase in Th2

cytokine production in the skin and the spontaneous activation

of fibroblasts, which results in dermal fibrosis (40). T-reg

depletion in the bleomycin-induced fibrosis model likewise

exacerbated the fibrotic phenotype. Specific deletion of the

transcription factor GATA3 in T-regs phenocopied the

depletion of T-regs in terms of Th2 cytokine production and

enhanced fibrosis. Moreover, antibody neutralization of IL4, the

primary cytokine associated with Th2 type inflammation,

augmented the fibrotic phenotype.

A major question in fibrogenesis is the source of these

activated fibroblasts. Using a lineage tracing technique in

bleomycin-treated mice, John Varga’s group demonstrated that

the dermal adipocytes undergo an adipose to mesenchymal

transition (AMT) (81). The resulting adipose-derived

fibroblasts were actively producing collagens and contributing

to fibrogenesis. This is consistent with observations in the

fibrotic skin of both mouse and patients with scleroderma

where an increase in the dermal layer is accompanied by a

decrease in the dWAT layer (81–86). Interestingly, the study

mentioned above by Rosenblum’s group (40), also noticed a

decrease in the dWAT layer upon depletion of T-regs and was

more pronounced upon bleomycin treatment. These reports

imply a possible role of T-regs in the regulation of the dWAT

layer. The histologic images of the skin section of the scurfy

mice, which has complete loss of immunosuppressive activity of

T-regs – display loss of dWAT, a phenotype that is often

overlooked (87–91). In addition, the transient loss of T-regs

also results in a decrease in the dWAT layer and an increase in
tiers in Immunology 09
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the thickness of the fascia layer (92). In summary these data

suggest that the T-regs in the skin prevent spontaneous

inflammation, development of fibrosis, loss of dWAT layer

and thickness of fascia layer. Nevertheless, questions remain

about the role(s) that T-regs or Th2 inflammation play in the

regulation of dWAT, whether these signals mediate an AMT in

vivo, and if there more direct roles that T-regs can play, as

reported in the case of hair follicle stem cells (16).

In addition to T-cell-derived cytokines, B cells have been

shown to activate fibroblast in a contact-dependent manner. Co-

culturing experiments revealed that B cells are capable of

stimulating collagen secretion by dermal fibroblasts which is

enhanced by B-cell activating factor (BAFF) (93). Likewise, a co-

culture of circulating B cells and dermal fibroblasts isolated from

SSc patients induced IL-6, TGF-b1, CCL2, and collagen

secretion, as well as alpha-SMA, TIMP1, and MMP9

expression in dermal fibroblasts (93). Similarly, upon antibody

mediated depletion of B cells in the Tight Skin model of systemic

sclerosis, there was a significant reduction of fibrosis (94).

Altogether, these results suggest that CD4 T+, and CD8 T+

can activate fibroblast via secreted factors and B cells achieve a

similar response in a contact-dependent manner.

The thickening of the epidermal layer (epidermal

hyperplasia) because of increased proliferation of the

keratinocytes is a hallmark of the wound healing program as

well as one of the major signs of diseased skin during

pathological inflammation. The coincident observation of

epidermal hyperplasia and inflammation suggest causal

relationship. In fact, in vitro studies on epithelial keratinocytes

suggests that IL22, which is often sourced from T-cells, can

enhance the proliferative and migratory capacity of epidermal

keratinocytes while their differentiation is repressed (95, 96).

Further, it was reported that a subpopulation of lesional psoriatic

T lymphocytes can enhance the proliferation of keratinocytes in

vitro (97). Apart from the proliferation of keratinocytes

apoptosis is associated with the pathogenesis of eczematous

disorders. T cell infiltration leads to keratinocyte apoptosis by

Fas ligand and Fas receptor interaction and increases

susceptibility to INF-g mediated apoptosis (98). Another mode

of inducing keratinocyte apoptosis is through the secretion of

granzyme B from CD8 T cells (99). These results suggest that T

cells can cause both proliferation and apoptosis of keratinocytes

in different settings.

These findings suggest that T-regs have non-classical roles

owing to their regulation of T and B-cells that are themselves

increasingly recognized for unconventional activities (Figure 2).

Given the heterogeneity of each of these cell types, it is likely that

they will exhibit diverse activities, and many more novel

cutaneous functions will be uncovered in both physiological

and pathological scenarios.
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Non-classical functions of Innate
immune cells

In addition to the adaptive immune cells, the innate

immune cells likewise impact homeostasis of various

compartments of the skin. These innate immune cells are

also regulated by T-regs and form another indirect link

between T-regs and skin homeostasis (Figure 2). Langerhans

cells (LCs) perform barrier functions by forming tight

junctions with keratinocytes in the epidermis and scout the

surroundings for potential pathogens (100). They are also

involved in scavenging apoptotic keratinocytes, a process

necessary for the maintenance of immune tolerance in the

epidermis (101) Under stress, specific regions of the HF secrete

different cytokines that differentially influence LC activity. The

S1P1 + bulge cells secrete CCL8 to prevent the influx of LC

during stress thereby protecting the stem cell niche. The

isthmus and infundibular regions of the hair follicle recruit

LCs by the production of CCL2 and CCL20. In fact, it was

shown that in the absence of HF stem cells, Langerhans cells do

not repopulate the epidermis after LC depletion signifying the

cross-talk between HFs and the LC population (102). Studies

on human skin have shown that skin resident memory T-regs

residing in the epidermis and in the follicular epithelium are in

close proximity to CD1a+ LC and CD1c/BDCA 1+ dermal

dendritic cell (DDC) population in steady-state (52). As T-regs

are also in close proximity to the hair follicle stem cell region, it

would be interesting to ascertain whether they also influence

LC indirectly via hair follicles or directly by cell-cell contact.

T-regs regulate macrophages mainly through IL10, which

is crucial for immune tolerance (103, 104). T-regs are also

capable of inducing macrophage apoptosis by the Fas/Fas

ligand pathway during septic shock (105). Therefore, its effect

on macrophages endows T-regs with the ability to influence

hair follicle cycling since macrophages have been shown to be

responsible for the induction of hair follicle anagen phase and

regression phase by producing different cell signaling

molecules such as Wnt and FGF (9, 106). As mentioned

previously, apoptosis of macrophages releases Wnt7b and

10a and induces anagen phase of the hair cycle. Consistent

with this, inhibition of macrophage apoptosis or Wnt

signaling, results in a delay in the entry of the hair follicle

into anagen (8). Additionally, oncostatin M (OSMR), released

by a subset of TREM2+ macrophages during the telogen

phase, contributes to the maintenance of hair follicle stem

cell quiescence during the telogen phase (107). Consequently,

ablation of OSMR beta or STAT5 can lead to early anagen

induction. Interestingly, there is an inverse correlation of T-

regs and macrophages during the hair cycle suggesting that T-

regs indirectly regulates this follicular regenerative process

through its control of macrophages. However, the direct link
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between T-regs and macrophages in the skin and their effect

on hair follicle cycling remains to be established.

Another interaction that has thus far been reported only in

inflammatory conditions is the crosstalk between T-regs and

mast cells. In these scenarios T-regs have a dual effect on mast

cells. T-regs can inhibit mast cell degranulation and also

stimulate the production of IL-6, a cytokine with pleiotropic

effects ranging from mediating local and systemic inflammation,

tumorigenesis and autoimmune diseases (108). Role of Mast

cells (MC) in hair follicle homeostasis came to light from a study

in lesional alopecia areata (109). It was reported that MCs in

alopecia areata switch from immune-inhibitory to pro-

inflammatory phenotype suggested by the decreased TGFb1,
IL-10 and increased Tryptase immunoreactivity. Further, upon

cyclosporine stimulated and depilation induced anagen, MC

degranulation was observed during the early stages of anagen.

The secretome of mast cells which contain numerous cytokines

such as ACTH (adrenocorticotrophic hormone), substance 48/

80, and the neuropeptide substance P were all able to induce

anagen in mice skin (110). Similarly, induction of anagen was

significantly delayed by MC degranulation inhibitors. However,

the direct connection between T-regs and mast cells in the skin

and their effect on hair follicle cycling remains to be established.

In a mouse skin transplantation model where anti-CD154 and

donor-specific transfusion (DST) was used to induce tolerance, a

marked link between MCs and T-regs was observed through IL-

9. IL 9 is a mast cell growth factor that can enhance the survival

of primary MC, and induce the production of inflammatory

cytokines, mast cell proteases, and high-affinity IgE receptors

(FceR1 alpha). Upon activation, T-regs up-regulated IL9

production and a higher level of IL 9 was observed in tolerant

grafts as opposed to rejected grafts. This tolerance could be due

to the suppression of alloreactive CD8 T cells via the T-reg-IL9-

MC axis (111, 112).

Future prospective

As discussed above, perturbations in T-regs or its

downstream effectors often results in skin phenotypes in mice.

This correlates with many human skin diseases (Figure 3) that

are accompanied by changes in T-reg numbers or activity such

as scleroderma (113–116), alopecia (117–119), psoriasis (120–

123), atopic dermatitis (27, 124, 125) and vitiligo (126–128).

Likewise, diabetic patients have compromised T-regs (129–131)

which likely contributes to their chronic non-healing wounds.

The status of T-regs in inflammatory conditions and their utility

in combating scenarios such chronic wounds is largely unknown

and an area that is ripe for investigation. As the major node of

regulation of the immune responses in various tissues including

skin, it is not too surprising that many cutaneous diseases are

marked by perturbations in T-regs or its downstream effectors,
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thereby suggesting a causal role in pathogenesis. The role of T-

regs in human diseases has been extensively covered elsewhere

(132, 133), so we will only give a brief overview of this topic.

Though there is a debate about whether the number of T-

regs are altered in the fibrotic skin disease scleroderma, it is clear

that these cells are dysfunctional (134, 135). In the case of

alopecia areata, in which the hair follicles lose their immune

privilege and are targeted by CD8+ T-cells, the number of T-regs

are reduced (118) and unable to perform suppressive functions

in-vitro (136). Genome-wide association studies (GWAS) in

alopecia revealed single-nucleotide polymorphisms (SNPs) in

regions encoding Treg signature genes such as CD25, the ikaros

family member Eos (IKZF4), cytotoxic T-lymphocyte antigen 4

(CTLA-4) and Foxp3 (117, 119). These SNPs can possibly render

T-regs dysfunctional. Dysfunctional T-regs have also been

reported in psoriatic plaques which are unable to suppress

TH17 responses (122). Further studies have revealed that T-

regs in psoriasis can differentiate into IL-17 producing cells (137,

138). Similarly, T-regs can produce TH2 cytokines and

contribute to the progression of atopic dermatitis (139). Tregs
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have also been shown to attenuate skin inflammation in several

mouse models of atopic dermatitis (41, 140, 141). These results

strongly suggest role of T-regs in various skin pathologies and

likelihood of therapeutic window for many inflammatory skin

diseases. For example, IL-2 treatment to boost T-regs have

shown promising results of hair regeneration in patients with

alopecia areata (142). Similarly, IL-2 mediated augmentation of

T-regs reduces skin fibrosis in some patients suffering from

graft-versus-host disease (GVHD) (143, 144). Interestingly,

autologous hematopoietic stem cell transplantation which led

to increase in the number of T-regs (along with higher

expression of CTLA-4 and GITR on Tregs) resulted in clinical

improvement in systemic sclerosis patients (145).

In the last two decades the unconventional roles of T-regs in

skin and other tissues have been unraveled in both physiology and

disease. Given the phenotypic diversity of T-regs and the ability to

control both the innate and adaptive arms of immunity, we expect

in the next few years a plethora of new and exciting functions of T-

regs would be uncovered. The increased understanding of the

diverse activities of T-regs will also open novel avenues for
FIGURE 3

Overview of T-regs in human skin pathologies. A hub and spoke diagram summarizing the potential impact of T-regs and cytokines influencing
the niche disease state.
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therapeutic intervention of many common inflammatory skin

diseases. Lastly, development of T-reg based immunotherapies

could potentially improve the quality of life in patients suffering from

skin inflammatory pathologies.
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FOXP3+ regulatory T (Treg) cells play critical roles in establishing the

immunosuppressive tumour microenvironment, which is achieved and

dynamically maintained with the contribution of various stromal and immune

cell subsets. However, the dynamics of non-lymphoid FOXP3+ Treg cells and the

mutual regulation of Treg cells and other cell types in solid tumour

microenvironment remains largely unclear. In this review, we summarize the

latest findings on the dynamic connections and reciprocal regulations of non-

lymphoid Treg cell subsets in accordancewith well-established and new emerging

hallmarks of cancer, especially on the immune escape of tumour cells in solid

tumours. Our comprehension of the interplay between FOXP3+ Treg cells and key

hallmarks of cancer may provide new insights into the development of next-

generation engineered T cell-based immune treatments for solid tumours.

KEYWORDS

regulatory T Cells, FOXP3+, tumour microenvironment, immune escape, immune
metabolism
Introduction

Tumour is a leading cause of death and a significant barrier to the increasing life

expectancy worldwide (1, 2). It remains largely an incurable disease, urging us to explore

the mystery of the tumour tissue microenvironment. Although the comprehensive

mechanisms for tumour progression are still unclear, we have known for more than one

decade that the insufficient anti-tumour immunity is caused by regulatory T (Treg) cell-
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mediated immunosuppression (3). Hanahan and Weinberg have

previously published landmark reviews on The Hallmarks of

Cancer to gather and categorize the knowledge of cancer into

several hallmarks, leading to a systematic understanding of cancer

occurrence and development as well as guiding the research

direction in past decades (4, 5). In 2022, Hanahan has added

four proposed emerging hallmarks and enabling characteristics,

“unlocking phenotypic plasticity,” “nonmutational epigenetic

reprogramming,” “polymorphic microbiomes,” and “senescent

cells” in addition to the ten well-established ones, including

“sustaining proliferative signaling,” “deregulating cellular

metabolism,” “resisting cell death,” “genome instability and

mutations,” “inducing or accessing vasculature,” “activating

invasion and metastasis,” “tumour-promoting inflammation,”

“enabling replicative immortality,” “avoiding immune

destruction” and “evading growth suppressors” (6). In this

review, we are going to discuss the potential connection

between non-lymphoid FOXP3+ regulatory T cell dynamics and

the new emerging and well-established hallmarks of cancer,

especially on the immune escape of solid tumours.

Treg cells, also known as suppressor T cells, are a

subpopulation of T cells that modulate the immune system (7).

The lineage determining transcription factor, FOXP3 forms a

large molecular complex with multiple transcription factors and

enzymatic subunits to dynamically regulate the development and

function of regulatory T cells (8–14). FOXP3+ Treg cells play

essential roles in maintaining immune homeostasis in healthy

people (15). However, tumour-infiltrating Treg cells have strong

immunosuppressive function, which may promote the immune

escape of cancer cells and the occurrence and development of

tumours (16, 17). Meanwhile, the tumour-derived factors may

also mutually modulate the induction, migration, and

immunosuppressive function of FOXP3+ Treg cells (17).
Mechanisms of FOXP3+ Treg
cell-mediated immune homeostasis
and anti-tumour immunity in solid
tumour microenvironment

Tumour progression is not only related to the anabolic

metabolism of tumour cells themselves, but also to the

extracellular matrix in the tumour microenvironment (TME).

Within TME, stromal cells maintain tissue homeostasis which

favours the growth of tumours, while Treg cells dominate the

formation of immunosuppressive TME, resulting in the failure

of launching effective anti-tumour responses (18). Although the

ablation of Treg cells can eradicate tumours rapidly, severe

autoimmune and inflammatory complications are developed

due to the loss of Treg cell function (19). During the

development of tumours, Treg cells proliferate and undergo

functional maturation, which are promoted by metabolites
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produced by tumour cells. Therefore, a deep understanding of

underlying mechanisms of FOXP3+ Treg cells mediated

immune homeostasis and anti-tumour immunity is required

for developing more effective anti-tumour immunotherapies.

The main function of Treg cells is to maintain the immune

balance and promote tissue homeostasis. In the tumour

microenvironment, Treg cells have multiple functions and

could suppress the anti-tumour response through several

mechanisms. Treg cells express immune inhibitory receptors

and ligands such as CTLA-4, PD-1, and PD-L1 (20). In addition,

Treg cells can express high-affinity IL-2 receptor subunit CD25,

which may deplete the pro-inflammatory factor IL-2 in TME

(21). Treg cells also express cell surface ectonucleotidases CD39

and CD73, which degrade extracellular ATP into adenosine,

leading to the functional immunosuppression of target cells (22).

FOXP3+ Treg cells may also secrete anti-inflammatory factors

(TGF-b, IL-10, and IL-35), perforins, and granzymes to inhibit

or kill T cells, NK cells, and antigen-presenting cells (23). Blimp1

in Treg cells affects the growth rate of tumours dependent on the

expression of Eomesodermin (Eomes), and causes changes in

CD45 cells’ type I interferon in TME, resulting in the changes of

the downstream angiogenic related genes, MHC I and MHC II

molecules, and antigens, thereby altering the activity of tumour

immune cells and immunogenicity of the tumour (24).
An updated view of FOXP3+
Treg cells and solid
tumour microenvironment

This review will focus on the functional regulation of

tumour-infiltrating FOXP3+ Treg cell dynamics in accordance

with well-established and new emerging cancer hallmarks in

order to provide a more comprehensive understanding of the

mutual regulation between FOXP3+ Treg cell dynamics and

solid tumour progression (as shown in Figure 1).
FOXP3+ Treg cells and the
new hallmark: Nonmutational
epigenetic reprogramming

Douglas Hanahan has proposed “nonmutational epigenetic

reprogramming” as one of the emerging hallmarks of cancer (6).

It has been reported that epigenetic changes within TME, such as

excessive alteration of DNA methylation, histone modification,

chromatin accessibility, and posttranslational modification,

significantly contribute to the development and progression of

malignant tumours (6).

Malignant cells apply epigenetic modifications to

dysregulate the expression of certain ligands and affect the

immunosuppressive ability of Treg cells. One persuasive
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2022.982986
example is in lymphoma. Pharmacologic inhibition/blockade of

Histone deacetylase (HDAC) 11 enhances the expression of

OX40L in Hodgkin lymphoma (HL) cells, and the HDAC

inhibitor-induced OX40L inhibits the immunosuppressive

function of interleukin 10 (IL-10)-producing Treg cells and

alters cytokine secretion of HL cells to favour a Th1- and

Th17-type response (25). Moreover, studies have reported that

OX40 triggers the inhibition of FOXP3 gene expression and the

TGF-b–induced conversion of CD4+ naive T cells into CD4+

CD25+ FOXP3+ Treg cells (26, 27).

Cancer epigenetic reprogram also modulates Treg cell

functions via PD-L1 expression. The interaction between PD-1

and PD-L1 negatively impacts the functions of effector and

immunosuppressive T cells. Thus, blocking PD-1/PD-L1 may

reactivate anti-tumour T cell immunity, thereby inhibiting

tumour growth. Both HDAC inhibitors and DNA-

methyltransferase-targeted inhibitors may increase PD-L1
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expression in various tumours (28–31). Combination of

epigenetic modulators with anti-PD-1/PD-L1 antibodies

emerges as promising therapeutics for cancer treatment (29,

32–34). Our recent study has found that gallic acid, a small

molecule compound found in traditional Chinese medicine,

when combined with anti-PD-1 antibody, significantly

dampen tumour- infiltrating FOXP3+ Treg cell function by

impairing PD-1/PD-L1 signaling and Foxp3 stability in

colorectal cancer (CRC) model (35). By inhibiting the

inducible expression of PD-L1, the metabolic molecule L-5-

hydroxytryptophan could also stimulate anti-tumour immunity

(36). In Treg cells, the PD-1/PD-L1 axis inhibits the

phosphorylation of ZAP70 and AKT through phosphorylation

of SHP2, which are well established in CD8+ T cells (37–39).

Interaction between malignant cells and Tregs is mediated in

part through PDL1 and PD1 and epigenetic mechanisms

modulated PD-L1 expression level (31, 40). The increase of
FIGURE 1

The schematic representation of the associations between FOXP3+ Treg cells and eight cancer hallmarks. Over the past decades, our
understanding of cancer has evolved tremendously. Recently, Hanahan and Weinberg have categorized and summarized knowledge of cancers
into 14 hallmarks, including 10 well-estlabished hallmarks (grey) and 4 new emerging hallmarks (green). Here we briefly introduce the
connection between Treg cells dynamics and the feature of eight either well-established or new emerging cancer hallmarks including 1)
nonmutational epigenetic reprogramming, 2) Avoiding immune destruction, 3) tumour-promoting inflammation, 4) polymorphic microbiomes,
5) activating invasion & metastasis, 6) inducing or accessing vasculature, 7) senescent cells, and 8) deregulating cellular metabolism. As very few
papers have reported the association of Treg cells with the remaining hallmarks and thus will not be included.
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PD-L1 by malignant cells enhances PD-L1 and PD-1

interactions, which might inhibit both effector T cells and Treg

cells, suggesting the epigenetic inhibition might affect anti-

tumour immune response. Therefore, the balance of PD-1

expressed by effector T cells and Treg cells in TME, might be

considered in the combination of PD-1/PD-L1 blockage and

epigenetic inhibition (41).

Enhancer of zeste homologue 2 (EZH2) is a histone H3K27

methyltransferase of the polycomb repressor complex 2 (PRC2)

(42). Blockade of this epigenetic regulator dramatically represses

tumour via a T cell-dependent mechanism. EZH2 inhibition,

either pharmacologically or genetically, destabilizes FOXP3

expression in Treg cells and specifically reprograms tumour-

infiltrating Treg cells through driving the expression pro-

inflammatory genes (e.g., IL-2) while inhibiting key

immunosuppressive genes such as IL-10 and TGF-b (43). Treg

cell reprogramming toward pro-inflammatory activities is

critical for the efficacy of anti-tumour immune responses and

enhancing immunotherapy.
FOXP3+ Treg cells and the immune
escape of cancer

The induction and recruitment of immunosuppressive

Treg cells is one of the critical processes involved in the

acquisition of immune escape in cancer. First, cancer cells

can establish immunosuppressive microenvironment by

recruiting Treg cells into the tumour through multiple

mechanisms. Specific combination of chemotactic molecules

and their receptors are engaged in this process. CCR8,

exhibiting chemotaxis to CCL1 (44), is a selectively

upregulated molecule in intratumoural Treg cells (45, 46). In

mouse and human tumour tissues, CCR8+ Treg cells account

for 30% -80% of total tumour-infiltrating Treg cells, while that

accounts for less than 10% in other tissues (47). Increased

Helios+ CCR8+ Treg cell frequency in pancreatic ductal

adenocarcinoma (PDAC) is associated with an invasive

phenotype and poor survival (48). Anti-CCR8 monoclonal

antibodies and anti-CCR8 antibody with Fc-dependent

ADCC (antibody dependent cellular cytotoxicity) selectively

depletes tumour-infiltrating Treg cells due to significantly

increased CCR8 expression by the activated Treg cells in

TME, resulting in a durable anti-tumour immune response

without deleterious autoimmunity and the anti-tumour effects

can be synergized with PD-1 blockers (47, 49, 50). CCR4, binds

to CCL22 and CCL17, is another crucial chemokine receptor

mediating Treg cells trafficking into the TME (51, 52).

Increased CCR4 expression is observed in activated Treg

cells. Inhibition of CCR4 has been shown to reduce Treg

cells accumulation, potentiate anti-tumour immune activity,

sensitize tumours to PD-1 blockade and improve survival (53–

56). CCL5, activated by cancer FOXP3, is responsible for
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FOXP3 + Treg cells infiltration in pancreatic ductal

adenocarcinoma (57). Moreover, CCR5-dependent Treg cell

recruitment is reportedly in colon cancer and melanoma (58,

59). Beyond the traditional chemotactic mediators, recent

studies have also demonstrated that the G protein-coupled

receptor 15 (GPR15), an unconventional chemokine receptor,

directs the infiltration of Treg cells into the colon and

subsequently promotes immune evasion of colorectal

cancer (60).

Second, Treg cells may also accumulate in tumour to

mediate immunosuppression by conversion of conventional

CD4 T (Tconv) cells to Treg cells. Specific cytokines and

growth factors in TME are capable to initiate this process.

Indoleamine 2,3-dioxygenase (IDO) expressed by cancer cells

directly amplifies Treg cells by transforming CD4+CD25-T cells

to CD4+CD25+ Treg cells (61). Tumour-derived TGF-b, IL-10,
and vascular endothelial growth factor (VEGF) promote the

expansion of natural Treg (nTreg) cells assisted by antigen-

presenting cells (APCs) in a tolerogenic manner (62). Tumour-

infiltrating Treg cells directly promote tumour immune evasion

in multiple ways. One of the most important mechanisms is the

expression of checkpoint suppressor molecules such as CTLA-4,

PD-1, TIM-3, LAG-3, and TIGIT (17, 63). Treg cells function to

bind and block corresponding ligands on APCs through these

co-inhibitory receptor molecules, thereby inhibiting the

maturation and function of APCs. CTLA-4 is constitutively

expressed on Treg cells. Compared to CD28, CTLA4 has a

higher affinity for CD80/CD86 (64). Once bound, Treg cells

can reduce APCs’ expression of CD80/CD86 via CTLA-4–

dependent trogocytosis (65–67). This CD80/CD86 reduction

on APCs also upregulates free PD-L1 on APCs (67).

Treatment with CTLA-4 blockers significantly enhances anti-

tumour immunity (68). LAG3 expressed by Treg cells can inhibit

the expression of MHC II in dendritic cells (DCs) (69). However,

it has been demonstrated that the primary fuction of MHC II in

LAG-3 immunosuppression is actually mediated by the

fibrinogen-like protein 1 FGL1 (70).

Additionally, Treg cells express high levels of CD39 and

CD73. These two ecto-nucleotidases contribute to the

conversion of ATP released from apoptotic Treg cells into

adenosine (71). This directly inhibits the growth of effector T

cells and the function of dendritic cells through the adenosine

A2A receptor (A2AR) (71). CD39 and CD73 expression in Treg

cell are increased in human cancers (72). Blockade of adenosine

A2A receptor has been shown to significantly reduce Treg cells

and boosts the anti-tumour activity (73). Targeting CD39 by

antisense oligonucleotide also represents a promising

strategy (74).

FOXP3+ Treg cell-mediated immunosuppression is also

executed by the release of multiple immunosuppressive

cytokines. IL-10, IL-35, and TGF-b (75, 76) inhibit the

function of APCs and Teff cells, while granzymes and perforin

directly kill NK and CD8+ T cell (77, 78). Recent studies have
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also given special attention to T regulatory cells-derived

extracellular vesicles and their ability in generating immune

tolerance through effector T cells and DCs (79–81). Finally, Treg

cells express a higher level of IL-2R a chain (CD25) and can

compete with effector T cells for limited IL-2 in TME (82, 83),

thereby robbing essential cytokine for the survival of effector T

cells. All the above-mentioned studies further provide the

mechanistic basis for FOXP3+ Treg cells promoted immune

escape of cancer (as shown in Figure 2).
FOXP3+ Treg cells and
tumour-promoting inflammation

The inflammatory response could help our body to remove

the necrotic tissue and tumours, so it was once considered as a

beneficial anti-tumour immune response. However, subsequent

studies have demonstrated that the inflammatory process in

TME can also lead to the emergence of tumour invasive

metastasis, angiogenesis and other tumour-promoting features

(84). FOXP3+ Treg cells may play an important role in

regulating the balance of tumour inflammation. Traditionally,

Treg cells are believed to be the main anti-inflammatory cells in

humans, which suppress the function of immune cells and

reduce the inflammatory response, resulting in a poorer

prognosis in cancer patients. However, more recent studies
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have revealed the existence of different tissue resident FOXP3+

Treg cell subsets in CRC, in contrast to the classical Treg cell

immunosuppressive function, can also exhibit a pro-

inflammatory response profile and thus influence the

development and progression of CRC (85). Saito and

colleagues have grouped CRCs into two types, based on the

proportion of FOXP3(lo) non-suppressive T cells (85). FOXP3

(lo) Treg cells are distinguished from FOXP3 (+) T cells in the

absence of the naïve T cell marker CD45RA, FOXP3 instability,

and enhanced secretion of inflammatory cytokines (e.g., IFN-g)
by the FOXP3(lo) Treg subset (85). CRCs patients with

abundant FOXP3(lo) Treg cell infiltration are predicted to

have better survival. Mechanistically, Fusobacterium

nucleatum, and possibly other intestinal bacteria mediate

tumor tissues’ production of inflammatory cytokines (e.g., IL-

12, TGF-b, and TNF-a) (85–90), thereby affecting the

heterogeneity of tumour-infiltrating Treg cells in CRCs and

facilitating the expansion of pro-inflammatory FOXP3(lo)

non-Treg cells that, in turn, enhances anti-tumour immunity

and inhibits tumour formation (85).

In Colitis-Associated Colorectal Cancer (CAC), inflammation

is a key driving factor in tumourigenesis and progression. Under

extensive pro-inflammatory conditions, FOXP3+ Treg cells may

be redirected to a Th17 response by inflammatory cytokine IL-6

together with TGF-b (91). In particular, FOXP3+IL-17A+ T cells

accumulate in the colon of patients with ulcerative colitis and
FIGURE 2

Mechanisms for FOXP3+ Treg cells to mediate the immune escape of solid tumours. Several mechanisms of Treg cells have been reported to
help tumour to avoid immune destruction. For instance, Treg cells can promote the formation of immune suppressive microenvironment. Treg
cells express chemokine receptors (e.g., CCR4, CCR8, CCR5, GPR15) and are recruited to the tumour site by chemokines produced by diverse
cells within TME. Treg cells secreted immunosuppressive cytokines, TGF-b, and VEGF, which not only promote the conversion of Tconv cells to
Treg cells, but also suppress Teff cells and APCs function. Treg cells constitutively express CTLA-4, while downregulate the expression of CD80/
CD86 in APCs (through trans-endocytosis), thereby depriving co-stimulatory signals to responder T cells. Meanwhile, Treg cells inhibit the
function of DCs through LAG-3 and MHC II interactions. For metabolic adaptation, Treg cells could converse ATP to adenosine by CD39 and
CD73, which directly inhibits A2AR mediated Teff cells function. Cells within TME could also be killed by Treg cells secreted granzyme and
perforin. CCL, C-C motif chemokine ligand; CCR, C-C motif chemokine receptor; GPR, G protein-coupled receptor; Tconv, conventional CD4
T cell; TGF, transforming growth factor; IL, interleukin; VEGF, vascular endothelial growth factor; CTLA-4, cytotoxic T-lymphocyte associated
protein 4; MHC, major histocompatibility complex; FGL1, fibrinogen like 1; Teff, effector T cell; A2AR, adenosine A2A receptor; LAG-3,
lymphocyte activating 3.
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CACs. CAC patients with higher FOXP3+ Treg cell levels have a

poor prognosis (92). Treg cells co-expressing the transcription

factors FOXP3 and IL-17A-related transcription factor RORgt in
the dysplastic areas of IBD patients (93). Tumour-infiltrating

FOXP3+RORgt+ Treg cells suppress FoxO3 in DCs, leaving IL-

6 expression uncontrolled. At the same time, high IL-6 level

stimulates STAT3 activation and proliferation of dysplastic cells

(93–96). RORgt inhibition in FOXP3+RORgt+ Treg cells

suppresses IL-17A production and prevents inflammatory

cytokine-induced destabilization of FOXP3 expression induced

by pro-inflammatory cytokines (97). Also, inhibition of RORgt
increases Th17-like Treg cells’ production of IL-10, thereby

enhancing the inhibition of myeloid inflammatory factors (97).

Our recent studies in a colitis-associated colorectal mouse model

have shown that the inhibition of the MondoA-TXNIP regulatory

axis attenuates the immunosuppressive function of Treg cell and

induces Treg cells’ expression of Th17 signature genes in a

glycolytic metabolic pattern, thus further promoting Th17-type

inflammation in the colorectal TME (98). IL-17A expressing Treg

cells may cause CD8+ T cell exhaustion by IL-17A, which could

accelerate colorectal carcinogenesis and tumour progression.

Notably, the use of IL-17A-blocking antibodies could slow the

progression of AOM-DSS-induced colorectal cancer and reduce

the susceptibility to colorectal cancer in MondoA-deficient mice.

Combined treatment with anti-IL-17A and anti-PD-1 antibodies

further reduces the size of colorectal tumours in animal model.

Interestingly, it has been found that GPR15 expression on T cells

also enhanced IL-17 secretion. Gene expression analysis shows

that GPR15+ Treg cells have a Th17-like phenotype, leading to the

production of IL-17 and TNF-a in AOM/DSS mouse model (60).

Interestingly, during tumour development, CD4+T cells may

progressively transdifferentiate into IL-17A+ FOXP3+ and ex-

Th17 IL-17A- FOXP3+ T cells (99). FOXP3-expressing subsets

possess immunosuppressive function. IL-33, induced in

transformed epithelial cells of CRC, is an important trans-

differentiation regulator. IL-33/ST2 signaling suppresses IL-

17A production and potentially promotes the conversion of

IL-17-producing CD4+ T cell types to IL-17-negative (RORgt−)
ST2+ FOXP3+ Treg cells, modifying the inflammatory signals

within the tumour microenvironment to promote CRC (100).

Taken together , the pro- inflammatory tumour

microenvironment, whether intrinsic or induced, may influence

the phenotype and function of Treg cells, which consequently,

exert anti- or pro-tumourigenic inflammatory responses.
FOXP3+ Treg cells and the new hallmark
of cancer: Polymorphic microbiomes

The “Polymorphic microbiomes” is listed as a new hallmark

of cancer (5). Although increasing evidence has shown

microbiomes play critical roles in carcinogenesis, and the

immune system is closely associated with microbiomes, the
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relationship among tumour, Treg cells, and microbiome is still

largely unclear (101).

The association between Treg cells and microbiomes is

mainly explored in colorectal cancer, for large proportion of

microorganisms reside in the human gastrointestinal system

(102). The immune-suppressive capacity of tumour-infiltrating

Treg cells and the M2 subset of tumour-associated macrophages

(TAM) are closely correlated with intestinal microbiota in

colorectal cancer patients (103). FOXP3+ Treg cells could

intervene in the protective process of fecal microbiota

transplanted colitis-associated colon cancer mice model (104).

GPR109a signaling could also induce the differentiation of IL-

10-producing Treg cells (105). The combination of Lactobacillus

acidophilus lysate and anti-CTLA-4 therapy could enhance anti-

tumour immunity in a mouse model of colon cancer,

accompanied with increased CD8 + T cells and effector

memory T cells , but decreased Treg cel ls and M2

macrophages (106).

Apart from CRC, Treg cells and microbiomes also engage in

other cancers. High blood butyrate and propionate levels affect

anti-CTLA-4 therapy efficacy in mouse model and melanoma

patients, along with increased Treg cell proportions, reduced DC

and effector T cell activation, and lower responses to IL-2 (107).

Probiotics modulate the gut microbiome composition to produce

anti-inflammatory metabolites and promote the differentiation of

anti-inflammatory IL-10-producing Treg cells, which may help to

against hepatocarcinoma (108). Selected Bacteroides spp. (such as

B. fragilis, B. thetaiotaomicron) can modulate colonic RORgt+
Treg cells through the bile acid receptor VDR (vitamin D3

receptor), which may be of great significance in treating

gastrointestinal and hepatic cancers (109).

FOXP3+ Treg cells may also facilitate carcinogenesis

induced by several microbiomes. In gastric, mycobacterial

infection could aggravate Helicobacter pylori-induced gastric

preneoplastic pathology via inducing Treg cells (110).

Moreover, intratumour microbes are thought to create a

tolerogenic program with lower proportions of tumour-

infiltrating lymphocytes (TILs) but increased Treg cells in

various types of cancers including colorectal, pancreatic,

breast, and lung cancers (111–118).
FOXP3+ Treg cells and the
classic hallmarks of cancer:
metastasis and invasion

As invasion and metastasis are classical cancer markers,

emerging evidence suggests Treg cells also play a role in

promoting tumour metastasis via multiple manners (5, 119).

The levels of FOXP3+ Treg cells are strongly associated with

cancer metastasis in various human cancers (120). An Increasing

ratio of Treg/Th2 can promote the metastasic progression of

hepatocellular carcinoma (121). FOXP3+ Treg cell levels in the
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peripheral blood of NSCLC patients increase with tumour stage

and peak in metastatic patients (117). Increased FOXP3+ Treg

cells have also been linked to a higher risk of metastasis in other

cancers, including breast, ovarian, prostate, thyroid, gastric,

colorectal, and skin cancers (114, 115, 118, 119).

The underlying mechanisms that contribute to the increase

of tumour-infiltrating FOXP3+ Treg cells could be categorised

into three major pathways. Firstly, organs susceptible to be

invaded and metastasized tend to contain more FOXP3+ Treg

cells (120). For instance, lung tissue could induce more Treg cells

through the upregulation of prolyl-hydroxylase (PHD) proteins

and a local reduction of HIF1a, which are correlated with

increased intrapulmonary metastasis (122). On the other hand,

bone marrow has a relatively hypoxic environment, which

contributes to higher Treg cell frequency during bone

metastasis of tumours (123). FOXP3+ Treg cells also promote

osteogenesis by suppressing osteoclast differentiation and

function, a process that may favour the bone metastasis of

prostate cancer (124). Secondly, the tumour locus can recruit

Treg cells to build an immune-suppressive environment for

tumour progression and metastasis. For instance, elevated

levels of PGE2 in TME could lead to the recruitment of

FOXP3+ Treg cells, which increase the risk of bone metastasis

(125). Inhibition of the CXCL12/CXCR4 axis in combination

with IDO1 blockage could reduce Treg cell and bone metastasis

in breast cancer model (126). After the occurrence of tumour

metastasis, breast cancer cells could stimulate lung tissue to

secrete CCL17 and CCL22, which attract CCR4-positive Treg

cells to accumulate in lung tissue, and thus facilitating lung

metastasis of breast cancer (127). Thirdly, Treg cells can

promote tumour invasion and metastasis directly. Tan et al.

have found Treg cells to express a higher level of RANKL than

Tconvs and stimulated pulmonary metastasis of human RANK

(+)breast cancer cells, and blocking this pathway can reduce the

frequency of pulmonary metastasis (128). Oh et al. have

reported, in mouse model, increased invasive and metastatic

potential of melanoma owing to the direct contact between

melanoma cells and Treg cells. Elevated TGF-b produced by

Treg cells induces the epithelial-to-mesenchymal transition

(EMT), leading to increased lung metastasis (129).
FOXP3+ Treg cell function
in tumour angiogenesis

Inducing angiogenesis is thought to be one of the

mechanism to meet the demand of nutrients and oxygen of

cancer and evacuate metabolic wastes and carbon dioxide from

TME (5). Recent studies suggest that FOXP3+ Treg cells may

also play a functional role in tumour angiogenesis directly or

indirectly to promote carcinogenesis (130–133).

FOXP3+ Treg cells can intervene in cancer angiogenesis in

two ways: through the VEGF pathways or the modulation of
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other immune cells with inflammatory cytokine release (134).

VEGF family is closely related to blood vessel formation (135).

Multiple studies reported the association between FOXP3+ Treg

cells and VEGF in cancer patients and in vivo tumour animal

models (136–142). Hypoxia-induced CCL28 may recruit

intratumoural FOXP3+ Treg cells, which can upregulate

VEGFA levels to promote angiogenesis directly in ovarian

cancer (138) and breast cancer (142).

In addition to VEGF pathways, Treg cells can induce cancer

angiogenesis via regulating other immune cell functions. For

example, Casares et al. reported a reduction of Treg cells levels

can induce IFN-g produced by effector CD4 T cells to decrease

tumour angiogenesis and enhance anti-tumour response (143).

Beatty et al. also emphasized the critical role of IFN-gamma-

dependent inhibition of tumour angiogenesis by tumour-

infiltrating CD4+ T cells (144).

On the contrary, cancer angiogenesis could conversely exert

an effect on tumour-infiltrating FOXP3+ Treg cells. Numerous

clinical studies have demonstrated that antiangiogenic therapy,

blocking VEGFR, used in human cancers is associated with a

reduction of tumour-infiltrating FOXP3+ Treg cells (145–147).

VEGF could promote FOXP3+ Treg cell migration and its

immunosuppressive function, but the detailed mechanisms

underlying VEGFR blocking therapy and tumour-infiltrating

FOXP3+ Treg cells reduction are still unclear (148–150).
FOXP3+ Treg cells and the
newly proposed hallmark of
cancer: Cell senescence

Senescent cells are recently proposed as a new and emerging

hallmark of cancer (6). Cell senescence is an irreversible cell

cycle arrest caused by various factors including: telomere

shortening, DNA damage, cellular stress, and oncogenes’

activation (151, 152). In solid tumour tissues, the senescence

of immune cells (e.g.,macrophages and effector T cells) is

associated with increased tumour malignancy, while the

senescence of cancer cells is linked to the suppression of

cancer progression (151, 152).

FOXP3+ Treg cells have recently been reported to induce

effector T cell senescence by metabolic competition (153). The

senescent T cells are characterized by the elevated expression of

senescence-associated b-galactosidase (SA-b-gal), decreased
expression of CD27 and CD28, and acquired immune

suppressive capacities via the production of TGF-b and IL-10

(153–157). Tumour-infiltrating FOXP3+ Treg cells exhibit

higher glycolysis, which hastens glucose consumption and

reduces glucose availability within TME (158). Low

concentrations of glucose alone can significantly induce the

senescence of both CD4+ and CD8+ T cells (153). The

induction of T cell senescence, by FOXP3+ Treg cells

mediated glucose insufficient, is initiated via the activation of
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the AMP-activated protein kinase (AMPK) (159). The activated

AMPK increases the phosphorylation of p53, facilitates the

accumulation of p21WAF1, promotes the expression of p27,

inhibits the activities of telomerase, and reduces the expression

of key components in the Toll-like receptor signalosome (160,

161). In addition, the accumulation of cyclic adenosine

monophosphate (cAMP), the metabolic product of Treg cells,

is also an important inducer of T cell senescence (159). Treg cells

are able to transfer cAMP into T cells via tight junctions,and the

elevated intracellular level of cAMP in T cells triggers the nuclear

kinase ataxia-telangiectasia mutated (ATM) protein associated

DNA damage, which ultimately leads to T cell senescence (159,

162). Persistent DNA damage signaling provokes the secretion

of senescence-associated inflammatory cytokines, IL-2, IL-6, IL-

8, TNF-a, and IFN-g, which induce more T cell senescence

within the suppressive TME (as shown in Figure 3) (159). The

accumulation of immune suppressive cells enables tumour cells

to escape from anti-tumour immune responses (163). However,

the effect of Treg cells in inducing the senescence of tumour cells

is yet to be illustrated.
Metabolic connection between
FOXP3+ Treg cells and cancer cells
in the tumour microenvironment

Although immune receptors, signaling proteins, and

transcription factors have participated in T cell responses,

cellular metabolism has been recognized as one of the core

determining factors for the survival, proliferation, and function
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of T cells. In general, immunosuppressive FOXP3+ Treg cells are

more dependent on b-oxidation than glycolysis, compared with

effector T cells (164, 165). However, lactic acid may provide

metabolic support to tumour-infiltrating FOXP3+ Treg cells in

highly glycolytic TME (166, 167). The ablation of lactate

transporter MCT1 in B16 melanoma inoculated Slc16a1f/f

Foxp3cre mice leads to decreased tumour growth, indicating the

immunosuppressive function of Treg cells may be closely related

to their ability of ingesting lactate acid (167). Tumour-infiltrating

FOXP3+ Treg cells may convert lactic acid to pyruvate, which is

then converted into malic acid and citric acid that ultimately

participates in the tricarboxylic acid cycle (167). Further study has

shown that a high lactic acid environment allows effector Treg

(eTreg) cells to use MCT1 to uptake lactic acid, which upgrades

the level of PD-1, leading to the functional and phenotypic

changes of eTreg cells (166). In trials comparing the effects of

high glycolysis tumours with low glycolysis tumours on CTLA-4

immunotherapy, the therapeutic effect of low glycolysis tumours is

found to be more pronounced (168). Our recent studies have also

found that the deletion of the MondoA-TXNIP transcriptional

regulatory axis allows Treg cells to increase the expression and cell

membrane localization of glucose transporter Glut1 for stronger

glucose uptake and glycolytic metabolic capacity (98). Inhibiting

mitochondria is liable to weaken Treg cells function (169–172). In

Treg cells, the loss of mitochondrial transcription factor A

(TFAM) is important for mitochondrial respiratory chain

activity, impairs the accumulation and cell lineage stability of

the tumour-infiltrating Treg cells, and thus, inhibits tumour

growth (169, 170). Eliminating Treg cell-specific mitochondrial

complex III increases DNA methylation, as well as enhances the
FIGURE 3

Mechanisms for FOXP3+ Treg cells to induce T cell senescence in the tumour microenvironment. The direct transfer of cAMPs, by Treg cells via
cell junctions, induces the senescence of naïve and effector T cells. The induced senescent T cells cease the expression of CD27 and CD28 but
increase the secretion of pro-inflammatory cytokines. Thus, those senescent T cells exhibit immunosuppressive features and argument the
immunosuppression within TME. So far, no study of direct effect of tumour-associated Treg cells on tumour cell senescence has been found.
However, Treg cells might mediate the senescence of tumour cells indirectly. For instance, the Treg cells induced senescent T cells exhibit
unique SASP, which is characterized by augmented release of cytokines, chemokines, proteases, and metabolic wastes. The accumulation of
these molecules as well as low glucose availability, caused by hyper-glycolysis of Treg cells, create a stress environment, thus may facilitate
thesenescence of tumour cells. cAMP, cyclic adenosine monophosphate; IL, interleukin; TNF, tumour necrosis factor; IFN, interferon; TME,
tumour microenvironment; SASP, senescence-associated secretory phenotype.
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accumulation of metabolites 2-hydroxyglutaric acid (2-HG) and

succinic acid, thereby inhibiting Treg cells function (172).

FOXP3+ Treg cells lacking transcription factor c-Myc have

disrupted mitochondrial oxidative metabolic process, which

decreases the accumulation and functional activation of Treg

cells (171). In addition, there are other pathways related to the

metabolic regulation of tissue-resident FOXP3+ Treg cells. For

instance, glucose metabolism and glycolysis are selectively

inhibited by TLR8 activation in tumour-infiltrating Treg cells

(158). Moreover, CD36 expression on tumour-infiltrating Treg

cells may mediate the uptake of long-chain fatty acids. Although

the knockout of CD36 reduces FOXP3+ Treg cells within

tumours, the preservation of peroxisome proliferation activation

receptor-b (PPAR-b) signal-dependent mitochondrial

adaptability leads to the inhibition of tumour growth (173).

Inhibition of fatty acid binding protein 5 (FABP5) leads to

changes in mitochondria that enhance the inhibitory capacity of

FOXP3+ Treg cells (174). Besides, redox homeostasis is thought to

modulate development and function of Treg cells (175, 176).

Previous studies have demonstrated that increased Treg cells in

tumour sites may be attributed to their increased antioxidative

capacity (177, 178). Furthermore, scientists have also paid more

attention to the association between Treg cells and redox

homeostasis in TME. Thomas-Schoemann et al. have shown

arsenic trioxide could increase anti-tumor immune response by

decreasing Treg cell numbers. This Treg cell reduction is mediated

by oxidative and nitrosative stress (179). Wang et al. have

demonstrated that antioxidant protein thioredoxin (TRX)

enhances Treg cell infiltration in melanoma, which in turn

decreased anti-tumor immune reactions. Recently, Xu et al.

have reported that glutathione peroxidase 4 (Gpx4) could

prevent Treg cells from lipid peroxidation and ferroptosis in

regulating immune homeostasis and anti-tumor immunity (180).
Conclusion and prospective

FOXP3+ Treg cells in the tumour microenvironment are

regulated at multiple levels, which include Treg cell instability

(181–183), Treg cell plasticity (184, 185), and tissue Treg cell

specificity (186–188). Tissue-resident Treg cells maintain tissue

homeostasis and improve tissue repair to prevent inflammation-

induced cancer generation. While, within TME, Treg cells

repress the anti-tumour immune responses. Treg cells also

influence other hallmarks of tumour through cytokines or or

other ligands to activate multiple signal pathways, for example,

TGF-b is shown to promote tumour metastasis. Tumour cells

recruit Treg cells through chemokines, cytokines, and metabolic

regulation. Single-cell sequencing and FACS data indicate that in

the tumour site there are different Treg cell subsets showing

different functions, cytokine expression, and relationships with

patient prognosis.
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The efficacy of immunotherapy with immune checkpoint

antibodies or engineered T cells, especially CAR-T cells, is also

regulated by the tumour-infiltrating Treg cells. Several new

strategies may be developed in the future to treat tumour by

targeting Treg cells. First, develop dual-antibodies to suppress

the function of tumour-infiltrating Treg cells; second, generate

CAR-T cells resistant to the suppression of Treg cells; and last

but not least, convert the suppressive Treg cells into Th1 or

Th17-like Treg cells, which may improve their anti-tumour

activity. Our understanding of the mutual regulation between

tumour-infiltrating FOXP3+ Treg cells and the key hallmarks in

solid tumours will provide new clues for generating engineered T

cells to cure cancer patients.
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Regulatory T cells (TREG) and their roles in immune system with respect to
immunopathological disorders. Acta Med (Hradec Kralove) (2010) 53:73–7.
doi: 10.14712/18059694.2016.63

8. Bin Dhuban K, d’Hennezel E, Nagai Y, Xiao Y, Shao S, Istomine R, et al.
Suppression by human FOXP3+ regulatory T cells requires FOXP3-TIP60
interactions. Sci Immunol (2017) 2(12):eaai9297. doi: 10.1126/sciimmunol.aai9297

9. Kwon H-K, Chen H-M, Mathis D, Benoist C. Different molecular complexes
that mediate transcriptional induction and repression by FoxP3. Nat Immunol
(2017) 18:1238–48. doi: 10.1038/ni.3835

10. Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, et al. FOXP3
ensembles in T-cell regulation. Immunol Rev (2006) 212:99–113. doi: 10.1111/
j.0105-2896.2006.00405.x

11. Li B, Samanta A, Song X, Iacono KT, Brennan P, Chatila TA, et al. FOXP3 is
a homo-oligomer and a component of a supramolecular regulatory complex
disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol (2007)
19:825–35. doi: 10.1093/intimm/dxm043

12. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al.
Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1.
Nature (2007) 446:685–9. doi: 10.1038/nature05673

13. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, et al.
Transcription factor Foxp3 and its protein partners form a complex regulatory
network. Nat Immunol (2012) 13:1010–9. doi: 10.1038/ni.2402

14. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al.
FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell
(2006) 126:375–87. doi: 10.1016/j.cell.2006.05.042

15. Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional
regulation. Cell Mol Immunol (2015) 12:558–65. doi: 10.1038/cmi.2015.10

16. Chen B-J, Zhao J-W, Zhang D-H, Zheng A-H, Wu G-Q. Immunotherapy of
cancer by targeting regulatory T cells. Int Immunopharmacol (2022) 104:108469.
doi: 10.1016/j.intimp.2021.108469

17. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor
microenvironment: New mechanisms, potential therapeutic strategies and future
prospects. Mol Cancer (2020) 19:116. doi: 10.1186/s12943-020-01234-1

18. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-
promoting cell type. Cell Cycle (2006) 5:1597–601. doi: 10.4161/cc.5.15.3112

19. Sharma P. Primary, adaptive, and acquired resistance to cancer
immunotherapy. Cell (2017) 168(4):707–23. doi: 10.1016/j.cell.2017.01.017

20. Park HJ, Park JS, Jeong YH, Son J, Ban YH, Lee B-H, et al. PD-1 upregulated
on regulatory T cells during chronic virus infection enhances the suppression of
CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+
T cells. J Immunol (2015) 194:5801–11. doi: 10.4049/jimmunol.1401936

21. Kim J-H, Kim BS, Lee S-K. Regulatory T cells in tumor microenvironment
and approach for anticancer immunotherapy. Immune Netw (2020) 20:e4.
doi: 10.4110/in.2020.20.e4

22. Rueda CM, Jackson CM, Chougnet CA. Regulatory T-Cell-Mediated
suppression of conventional T-cells and dendritic cells by different cAMP
intracellular pathways. Front Immunol (2016) 7:216. doi: 10.3389/
fimmu.2016.00216

23. Grover P, Goel PN, Greene MI. Regulatory T cells: Regulation of identity
and function. Front Immunol (2021) 12:750542. doi: 10.3389/fimmu.2021.750542

24. Dixon ML, Luo L, Ghosh S, Grimes JM, Leavenworth JD, Leavenworth JW.
Remodeling of the tumor microenvironment via disrupting Blimp1+ effector treg
Frontiers in Immunology 10

240
activity augments response to anti-PD-1 blockade. Mol Cancer (2021) 20:150.
doi: 10.1186/s12943-021-01450-3

25. Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu Y-J, Younes A.
HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin
lymphoma. Blood (2011) 117:2910–7. doi: 10.1182/blood-2010-08-303701

26. So T, Croft M. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven
conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol (2007)
179:1427–30. doi: 10.4049/jimmunol.179.3.1427

27. Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, et al. OX40
costimulation turns off Foxp3+ tregs. Blood (2007) 110:2501–10. doi: 10.1182/
blood-2007-01-070748

28. Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C. HDAC3 inhibition
upregulates PD-L1 expression in b-cell lymphomas and augments the efficacy of
anti-PD-L1 therapy. Mol Cancer Ther (2019) 18:900–8. doi: 10.1158/1535-
7163.MCT-18-1068

29. Hicks KC, Fantini M, Donahue RN, Schwab A, Knudson KM, Tritsch SR,
et al. Epigenetic priming of both tumor and NK cells augments antibody-
dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab
against multiple carcinoma cell types. Oncoimmunology (2018) 7:e1466018.
doi: 10.1080/2162402X.2018.1466018

30. Hua S, Gu M, Wang Y, Ban D, Ji H. Oxymatrine reduces expression of
programmed death-ligand 1 by promoting DNA demethylation in colorectal
cancer cells. Clin Transl Oncol (2021) 23:750–6. doi: 10.1007/s12094-020-02464-x

31. Que Y, Zhang X-L, Liu Z-X, Zhao J-J, Pan Q-Z, Wen X-Z, et al. Frequent
amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1
blockade combination in soft tissue sarcoma. J Immunother Cancer (2021) 9(2):
e001696. doi: 10.1136/jitc-2020-001696

32. Llopiz D, Ruiz M, Villanueva L, Iglesias T, Silva L, Egea J, et al. Enhanced
anti-tumor efficacy of checkpoint inhibitors in combination with the histone
deacetylase inhibitor belinostat in a murine hepatocellular carcinoma model.
Cancer Immunol Immunother (2019) 68:379–93. doi: 10.1007/s00262-018-2283-0

33. Ny L, Jespersen H, Karlsson J, Alsén S, Filges S, All-Eriksson C, et al. The
PEMDAC phase 2 study of pembrolizumab and entinostat in patients with
metastatic uveal melanoma. Nat Commun (2021) 12:5155. doi: 10.1038/s41467-
021-25332-w

34. Tu K, Yu Y, Wang Y, Yang T, Hu Q, Qin X, et al. Combination of
chidamide-mediated epigenetic modulation with immunotherapy: Boosting
tumor immunogenicity and response to PD-1/PD-L1 blockade. ACS Appl Mater
Interfaces (2021) 13:39003–17. doi: 10.1021/acsami.1c08290

35. Deng B, Yang B, Chen J, Wang S, ZhangW, Guo Y, et al. Gallic Acid induces
T-helper-1- like treg cells and strengthens immune checkpoint blockade efficacy. J
Immunother Cancer (2022) 10(7):e004037. doi: 10.1136/jitc-2021-004037

36. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-
hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1
inducible expression. J Immunother Cancer (2022) 10(6):e003957. doi: 10.1136/
jitc-2021-003957

37. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T Cell
costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition.
Science (2017) 355:1428–33. doi: 10.1126/science.aaf1292

38. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, et al.
Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent.
Science (2017) 355:1423–7. doi: 10.1126/science.aaf0683

39. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A,
Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory
microclusters that directly inhibit T cell receptor signaling by recruiting
phosphatase SHP2. J Exp Med (2012) 209:1201–17. doi: 10.1084/jem.20112741

40. Kumar S, Sharawat SK. Epigenetic regulators of programmed death-ligand 1
expression in human cancers. Transl Res (2018) 202:129–45. doi: 10.1016/
j.trsl.2018.05.011

41. Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura H, Takeuchi
Y, et al. The PD-1 expression balance between effector and regulatory T cells
predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol (2020)
21:1346–58. doi: 10.1038/s41590-020-0769-3

42. DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D,
et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of
regulatory T cell identity after activation. Immunity (2015) 42:227–38.
doi: 10.1016/j.immuni.2015.01.007

43. Wang D, Quiros J, Mahuron K, Pai C-C, Ranzani V, Young A, et al.
Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer
immunity. Cell Rep (2018) 23:3262–74. doi: 10.1016/j.celrep.2018.05.050
frontiersin.org

https://doi.org/10.1002/cncr.33587
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/eji.202048992
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.14712/18059694.2016.63
https://doi.org/10.1126/sciimmunol.aai9297
https://doi.org/10.1038/ni.3835
https://doi.org/10.1111/j.0105-2896.2006.00405.x
https://doi.org/10.1111/j.0105-2896.2006.00405.x
https://doi.org/10.1093/intimm/dxm043
https://doi.org/10.1038/nature05673
https://doi.org/10.1038/ni.2402
https://doi.org/10.1016/j.cell.2006.05.042
https://doi.org/10.1038/cmi.2015.10
https://doi.org/10.1016/j.intimp.2021.108469
https://doi.org/10.1186/s12943-020-01234-1
https://doi.org/10.4161/cc.5.15.3112
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.4049/jimmunol.1401936
https://doi.org/10.4110/in.2020.20.e4
https://doi.org/10.3389/fimmu.2016.00216
https://doi.org/10.3389/fimmu.2016.00216
https://doi.org/10.3389/fimmu.2021.750542
https://doi.org/10.1186/s12943-021-01450-3
https://doi.org/10.1182/blood-2010-08-303701
https://doi.org/10.4049/jimmunol.179.3.1427
https://doi.org/10.1182/blood-2007-01-070748
https://doi.org/10.1182/blood-2007-01-070748
https://doi.org/10.1158/1535-7163.MCT-18-1068
https://doi.org/10.1158/1535-7163.MCT-18-1068
https://doi.org/10.1080/2162402X.2018.1466018
https://doi.org/10.1007/s12094-020-02464-x
https://doi.org/10.1136/jitc-2020-001696
https://doi.org/10.1007/s00262-018-2283-0
https://doi.org/10.1038/s41467-021-25332-w
https://doi.org/10.1038/s41467-021-25332-w
https://doi.org/10.1021/acsami.1c08290
https://doi.org/10.1136/jitc-2021-004037
https://doi.org/10.1136/jitc-2021-003957
https://doi.org/10.1136/jitc-2021-003957
https://doi.org/10.1126/science.aaf1292
https://doi.org/10.1126/science.aaf0683
https://doi.org/10.1084/jem.20112741
https://doi.org/10.1016/j.trsl.2018.05.011
https://doi.org/10.1016/j.trsl.2018.05.011
https://doi.org/10.1038/s41590-020-0769-3
https://doi.org/10.1016/j.immuni.2015.01.007
https://doi.org/10.1016/j.celrep.2018.05.050
https://doi.org/10.3389/fimmu.2022.982986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2022.982986
44. Barsheshet Y, Wildbaum G, Levy E, Vitenshtein A, Akinseye C, Griggs J,
et al. CCR8+FOXp3+ treg cells as master drivers of immune regulation. Proc Natl
Acad Sci U.S.A. (2017) 114:6086–91. doi: 10.1073/pnas.1621280114

45. Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, et al.
Transcriptional landscape of human tissue lymphocytes unveils uniqueness of
tumor-infiltrating T regulatory cells. Immunity (2016) 45:1135–47. doi: 10.1016/
j.immuni.2016.10.021

46. Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, et al.
Regulatory T cells exhibit distinct features in human breast cancer. Immunity
(2016) 45:1122–34. doi: 10.1016/j.immuni.2016.10.032

47. Kidani Y, Nogami W, Yasumizu Y, Kawashima A, Tanaka A, Sonoda Y,
et al. CCR8-targeted specific depletion of clonally expanded treg cells in tumor
tissues evokes potent tumor immunity with long-lasting memory. Proc Natl Acad
Sci USA (2022) 119(7):e2114282119. doi: 10.1073/pnas.2114282119

48. Yi G, Guo S, Liu W, Wang H, Liu R, Tsun A, et al. Identification and
functional analysis of heterogeneous FOXP3+ treg cell subpopulations in human
pancreatic ductal adenocarcinoma. Sci Bull (2018) 63:972–81. doi: 10.1016/
j.scib.2018.05.028

49. Campbell JR, McDonald BR, Mesko PB, Siemers NO, Singh PB, Selby M,
et al. Fc-optimized anti-CCR8 antibody depletes regulatory T cells in human tumor
models. Cancer Res (2021) 81:2983–94. doi: 10.1158/0008-5472.CAN-20-3585

50. van Damme H, Dombrecht B, Kiss M, Roose H, Allen E, van Overmeire E,
et al. Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits
antitumor immunity and synergizes with anti-PD-1 therapy. J Immunother Cancer
(2021) 9(2):e001749. doi: 10.1136/jitc-2020-001749

51. Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators:
chemokines in control of T cell traffic. Nat Immunol (2008) 9:970–80.
doi: 10.1038/ni.f.213

52. Jorapur A, Marshall LA, Jacobson S, Xu M, Marubayashi S, Zibinsky M,
et al. EBV+ tumors exploit tumor cell-intrinsic and -extrinsic mechanisms to
produce regulatory T cell-recruiting chemokines CCL17 and CCL22. PloS Pathog
(2022) 18:e1010200. doi: 10.1371/journal.ppat.1010200

53. Gao Y, You M, Fu J, Tian M, Zhong X, Du C, et al. Intratumoral stem-like
CCR4+ regulatory T cells orchestrate the immunosuppressive microenvironment
in HCC associated with hepatitis b. J Hepatol (2022) 76:148–59. doi: 10.1016/
j.jhep.2021.08.029

54. Kurose K, Ohue Y, Sato E, Yamauchi A, Eikawa S, Isobe M, et al. Increase in
activated treg in TIL in lung cancer and in vitro depletion of treg by ADCC using an
antihuman CCR4 mAb (KM2760). J Thorac Oncol (2015) 10:74–83. doi: 10.1097/
JTO.0000000000000364

55. Maeda S, Motegi T, Iio A, Kaji K, Goto-Koshino Y, Eto S, et al. Anti-CCR4
treatment depletes regulatory T cells and leads to clinical activity in a canine model
of advanced prostate cancer. J Immunother Cancer (2022) 10(2):e003731.
doi: 10.1136/jitc-2021-003731

56. Marshall LA, Marubayashi S, Jorapur A, Jacobson S, Zibinsky M, Robles O,
et al. Tumors establish resistance to immunotherapy by regulating treg recruitment
via CCR4. J Immunother Cancer (2020) 8(2):e000764. doi: 10.1136/jitc-2020-
000764

57. Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, et al. Cancer-FOXP3
directly activated CCL5 to recruit FOXP3+ Treg cells in pancreatic ductal
adenocarcinoma. Oncogene (2017) 36:3048–58. doi: 10.1038/onc.2016.458

58. Chang L-Y, Lin Y-C, Mahalingam J, Huang C-T, Chen T-W, Kang C-W,
et al. Tumor-derived chemokine CCL5 enhances TGF-b-mediated killing of CD8
(+) T cells in colon cancer by T-regulatory cells. Cancer Res (2012) 72:1092–102.
doi: 10.1158/0008-5472.CAN-11-2493

59. Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, et al.
Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-
dependent recruitment of regulatory T cells favoring tumor growth. J Immunol
(2012) 189:5602–11. doi: 10.4049/jimmunol.1201018

60. Adamczyk A, Pastille E, Kehrmann J, Vu VP, Geffers R, Wasmer M-H, et al.
GPR15 facilitates recruitment of regulatory T cells to promote colorectal cancer.
Cancer Res (2021) 81:2970–82. doi: 10.1158/0008-5472.CAN-20-2133

61. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, et al.
Modulation of tryptophan catabolism by human leukemic cells results in the
conversion of CD25- into CD25+ T regulatory cells. Blood (2007) 109:2871–7.
doi: 10.1182/blood-2006-07-036863

62. Zhou G, Levitsky HI. Natural regulatory T cells and de novo-induced
regulatory T cells contribute independently to tumor-specific tolerance. J
Immunol (2007) 178:2155–62. doi: 10.4049/jimmunol.178.4.2155

63. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The
surface protein TIGIT suppresses T cell activation by promoting the generation of
mature immunoregulatory dendritic cells. Nat Immunol (2009) 10:48–57.
doi: 10.1038/ni.1674

64. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell
Res (2017) 27:109–18. doi: 10.1038/cr.2016.151
Frontiers in Immunology 11

241
65. Gu P, Gao JF, D’Souza CA, Kowalczyk A, Chou K-Y, Zhang L. Trogocytosis
of CD80 and CD86 by induced regulatory T cells. Cell Mol Immunol (2012) 9:136–
46. doi: 10.1038/cmi.2011.62

66. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM,
et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic
function of CTLA-4. Science (2011) 332:600–3. doi: 10.1126/science.1202947

67. Tekguc M, Wing JB, Osaki M, Long J, Sakaguchi S. Treg-expressed CTLA-4
depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting
cells. Proc Natl Acad Sci USA (2021) 118(30):e2023739118. doi: 10.1073/
pnas.2023739118

68. Pai C-CS, Simons DM, Lu X, Evans M, Wei J, Wang Y-H, et al. Tumor-
conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-
related toxicity. J Clin Invest (2019) 129:349–63. doi: 10.1172/JCI123391

69. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory
T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC
class II. J Immunol (2008) 180:5916–26. doi: 10.4049/jimmunol.180.9.5916

70. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-like
protein 1 is a major immune inhibitory ligand of LAG-3. Cell (2019) 176:334–
347.e12. doi: 10.1016/j.cell.2018.11.010

71. Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, et al. Oxidative stress
controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade
resistance in tumor. Nat Immunol (2017) 18:1332–41. doi: 10.1038/ni.3868

72. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Lenzner DE, Jackson EK,
et al. Increased ectonucleotidase expression and activity in regulatory T cells of
patients with head and neck cancer. Clin Cancer Res (2009) 15:6348–57.
doi: 10.1158/1078-0432.CCR-09-1143

73. Ma S-R, Deng W-W, Liu J-F, Mao L, Yu G-T, Bu L-L, et al. Blockade of
adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory
T cells in head and neck squamous cell carcinoma. Mol Cancer (2017) 16:99.
doi: 10.1186/s12943-017-0665-0

74. Kashyap AS, Thelemann T, Klar R, Kallert SM, Festag J, Buchi M, et al.
Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity. J
Immunother Cancer (2019) 7:67. doi: 10.1186/s40425-019-0545-9

75. Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe
GM, Yano H, et al. Interleukin-35 limits anti-tumor immunity. Immunity (2016)
44:316–29. doi: 10.1016/j.immuni.2016.01.013

76. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer
immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol
(2019) 16:356–71. doi: 10.1038/s41571-019-0175-7

77. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al.
Granzyme b and perforin are important for regulatory T cell-mediated suppression
of tumor c learance . Immuni ty (2007) 27 :635–46. doi : 10 .1016/
j.immuni.2007.08.014

78. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ.
Human T regulatory cells can use the perforin pathway to cause autologous target
cell death. Immunity (2004) 21:589–601. doi: 10.1016/j.immuni.2004.09.002

79. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova
T, et al. MicroRNA-containing T-Regulatory-Cell-Derived exosomes suppress
pathogenic T helper 1 cells. Immunity (2014) 41:503. doi: 10.1016/
j.immuni.2014.08.008

80. Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, et al.
CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T
cells contributes to their regulatory function. Eur J Immunol (2013) 43:2430–40.
doi: 10.1002/eji.201242909

81. Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al.
Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci
Rep (2018) 8:6065. doi: 10.1038/s41598-018-24531-8

82. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+
regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+
T cells. Nat Immunol (2007) 8:1353–62. doi: 10.1038/ni1536

83. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for
interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol (2005) 6:1142–
51. doi: 10.1038/ni1263

84. Mair F, Erickson JR, Frutoso M, Konecny AJ, Greene E, Voillet V, et al.
Extricating human tumour immune alterations from tissue inflammation. Nature
(2022) 605:728–35. doi: 10.1038/s41586-022-04718-w

85. Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, et al.
Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of
colorectal cancers. Nat Med (2016) 22:679–84. doi: 10.1038/nm.4086

86. Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, et al. gdT17 cells promote the
accumulation and expansion of myeloid-derived suppressor cells in human
colorectal cancer. Immunity (2014) 40:785–800. doi: 10.1016/j.immuni.2014.03.013

87. Chung L, Orberg ET, Geis AL, Chan JL, Fu K, DeStefano Shields CE, et al.
Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via
frontiersin.org

https://doi.org/10.1073/pnas.1621280114
https://doi.org/10.1016/j.immuni.2016.10.021
https://doi.org/10.1016/j.immuni.2016.10.021
https://doi.org/10.1016/j.immuni.2016.10.032
https://doi.org/10.1073/pnas.2114282119
https://doi.org/10.1016/j.scib.2018.05.028
https://doi.org/10.1016/j.scib.2018.05.028
https://doi.org/10.1158/0008-5472.CAN-20-3585
https://doi.org/10.1136/jitc-2020-001749
https://doi.org/10.1038/ni.f.213
https://doi.org/10.1371/journal.ppat.1010200
https://doi.org/10.1016/j.jhep.2021.08.029
https://doi.org/10.1016/j.jhep.2021.08.029
https://doi.org/10.1097/JTO.0000000000000364
https://doi.org/10.1097/JTO.0000000000000364
https://doi.org/10.1136/jitc-2021-003731
https://doi.org/10.1136/jitc-2020-000764
https://doi.org/10.1136/jitc-2020-000764
https://doi.org/10.1038/onc.2016.458
https://doi.org/10.1158/0008-5472.CAN-11-2493
https://doi.org/10.4049/jimmunol.1201018
https://doi.org/10.1158/0008-5472.CAN-20-2133
https://doi.org/10.1182/blood-2006-07-036863
https://doi.org/10.4049/jimmunol.178.4.2155
https://doi.org/10.1038/ni.1674
https://doi.org/10.1038/cr.2016.151
https://doi.org/10.1038/cmi.2011.62
https://doi.org/10.1126/science.1202947
https://doi.org/10.1073/pnas.2023739118
https://doi.org/10.1073/pnas.2023739118
https://doi.org/10.1172/JCI123391
https://doi.org/10.4049/jimmunol.180.9.5916
https://doi.org/10.1016/j.cell.2018.11.010
https://doi.org/10.1038/ni.3868
https://doi.org/10.1158/1078-0432.CCR-09-1143
https://doi.org/10.1186/s12943-017-0665-0
https://doi.org/10.1186/s40425-019-0545-9
https://doi.org/10.1016/j.immuni.2016.01.013
https://doi.org/10.1038/s41571-019-0175-7
https://doi.org/10.1016/j.immuni.2007.08.014
https://doi.org/10.1016/j.immuni.2007.08.014
https://doi.org/10.1016/j.immuni.2004.09.002
https://doi.org/10.1016/j.immuni.2014.08.008
https://doi.org/10.1016/j.immuni.2014.08.008
https://doi.org/10.1002/eji.201242909
https://doi.org/10.1038/s41598-018-24531-8
https://doi.org/10.1038/ni1536
https://doi.org/10.1038/ni1263
https://doi.org/10.1038/s41586-022-04718-w
https://doi.org/10.1038/nm.4086
https://doi.org/10.1016/j.immuni.2014.03.013
https://doi.org/10.3389/fimmu.2022.982986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2022.982986
targeting of colonic epithelial cells. Cell Host Microbe (2018) 23:421. doi: 10.1016/
j.chom.2018.02.004

88. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al.
Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-
mediated tumour growth. Nature (2012) 491:254–8. doi: 10.1038/nature11465

89. Ling Z, Shao L, Liu X, Cheng Y, Yan C, Mei Y, et al. Regulatory T cells and
plasmacytoid dendritic cells within the tumor microenvironment in gastric cancer
are correlated with gastric microbiota dysbiosis: A preliminary study. Front
Immunol (2019) 10:533. doi: 10.3389/fimmu.2019.00533

90. Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, et al.
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