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Editorial on the Research Topic

Eye Pain: Etiology and Therapeutic Approaches

The eye is heavily innervated by sensory nerve fibers. Corneal sensory nerves sprout from the
ophthalmic division of the trigeminal nerve, travel in the nasociliary nerve and its branches, finally
entering the cornea through the sclera and the conjunctiva. They form a stromal network supplying
different regions of the cornea: midstromal, sub-basal/subepithelial and epithelial. The receptive
fields of corneal sensory receptors are large and partially overlapping, thus resulting in poor
localization or acuity, but producing a very high level of sensitivity to external stimuli. The
central corneal nerve density is approximately 7,000 nerve endings per mm2, so that cornea
sensitivity is 300–600 times higher than skin, and 20–40 times greater than dental pulp.
Different types of corneal sensory nerves have been characterized. Approximately 20% belong to
the class of mechano-nociceptive receptors responding to mechanical stimuli and responsible for
acute sharp pain conducted through thin myelinated fibers. Some 70% are polymodal nociceptors
responding to chemical mediators, heat and irritants through slow-conducting, unmyelinated nerve
fibers. Finally, 10% are cold receptor fibers activated by cold solutions or cold air, such as it may
happen during tear film evaporation. Beside these relevant sensory functions, corneal nerves also
regulate reflex tear production and the associated blinking reflex, and contribute to the release of
trophic factors, such as substance-P, NGF, KGF, CNTF, PDGF-B, TGF-α and IL1β. In fact, iatrogenic
or traumatic damage to corneal sensory fibers may result in neurotrophic keratopathy, characterized
by epithelial cell loss and edema. Being so sensitive, the cornea is susceptible to pain. Pain protects
tissue from injury. Painful stimuli detected by nociceptors are transmitted via action potentials to
higher order centers where the pain is perceived.

Pain can be acute, when of high intensity and lasting a short time, or chronic, when its duration
reaches and extends over 3 months. Depending on the stimulus triggering pain, it can be
differentiated in nociceptive (caused by the physiological response to a noxious event) or
neuropathic, when the algic response results from a dysfunction caused by damage of the
sensory system (either the peripheral sensory nerves or the central neurons) and hardly treated
by topical analgesics when central mechanisms are involved. Chronic pain may have a neuropathic
component. Perturbations of the eye surface such as dry-eye, pterygia or conjunctivochalasis,
inflammation and infections may be triggers of eye pain. This kind of pain is typically treated by
topical antinflammatory agents and ointments, or anesthetics. When eye pain is reported out of
proportion to clinical signs, or with no apparent previous insult, neuropathic pain is suspected.

Neuropathic pain is not a reaction to noxious stimuli, rather it is the result from an insult to the
nervous system. During regeneration of damaged corneal nerves there is an increase in the
expression of ion channels involved in their excitability, which may produce spontaneous
activity and a low activation threshold. This altered activity may influence the synaptic
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connections along the sensory pathway, leading to permanent
changes at central levels. To complicate matters, the severity of
eye pain, that can be unilateral or bilateral, does not indicate how
serious the underlying cause of the discomfort is. Symptoms of
neuropathic corneal pain may include sensitivity to light and air,
foreign body sensation, burning and severe eye dryness. In fact,
symptoms of neuropathic corneal pain may sometimes be
confused with dry eye syndrome, although the signs typical of
this disease are missing. In fact, patients with neuropathic corneal
pain do not respond to usual dry eye treatments. Neuropathic
corneal pain can result from eye surgery, chronic dry eye disease
generated or aggravated by the use of preservatives in eye drops;
extended use of contact lenses; diabetes; neuralgia of the
trigeminus. It can be associated with anxiety or depression,
headache or migraine, fibromyalgia and autoimmune diseases.

Severe pain sensation and light sensitivity prevent those
afflicted with ocular neuropathic pain from performing
activities of daily living and is associated with symptoms of
anxiety and depression.

While nociceptive pain is targeted through the use of topical
therapies, neuropathic pain can be treated with oral agents or
adjunctive therapies if a neuropathic component is highly
suspected. While many studies have examined treatment
outcomes for nociceptive sources of ocular pain, fewer have
examined outcomes after treatment of neuropathic ocular
pain. Strategies to counteract neuropathic ocular pain include
ocular surface treatment, anti-inflammatory compounds, serum
containing growth factors which play a crucial role in
neuroregeneration and healing, anticonvulsants, opioid
agonists and alternative therapies.

To date, however, comprehensive understanding of the
mechanisms underlying ocular neuropathic pain is still under
exploration and efficient treatment of neuropathic eye pain has
yet to be found. The challenge is a better definition of the
molecular targets of neuropathic eye pain, and the
identification of specific therapeutic agents to be given either
as topical or as systemic treatment.

Therefore, given the relatively high frequency of eye pain, the
multiplicity of its causes (at least 22 possible causes have been
described), and the complexity of neuropathic pain, the aim of
this Research Topic has been to collect a series of recent studies
focusing on the different aspects of ocular pain, its molecular
triggers and innovative treatment strategies.

PAIN MECHANISMS AND PERCEPTION

The thresholds for subjective perception of corneal sensing
receptors to different stimuli (cold, mechanical and chemical)
applied at increasing intensities is addressed in the manuscript
presented by Jayakumar and Simpson, in order to try and dissect
patient’s processing of the stimulus in the two phases of detection
and response.

Among the several stimuli that are known to activate
peripheral terminals of trigeminal sensory neurons at the
cornea, conjunctiva and sclera, acidic stimuli have been
shown to induce the firing of polymodal nociceptors

through the activation of specific ion channels. In the
paper of Comes et al., ion channels and receptors that are
involved in acid sensing are reviewed. Because of the acid
environment in the cornea and the conjunctiva, a number of
compounds used to treat eye diseases are formulated in acidic
solutions to facilitate their solubilization and absorption
through the cornea. Despite some of the mechanisms
underlying proton sensing in the ocular surface have been
elucidated, further studies are needed to clarify the
differential role of channels or membrane receptors which
might allow to develop specific therapeutic interventions.

A review of Puja et al. describes the recent advances on the role
of molecular and cellular mechanisms contributing to peripheral
and central pain sensitization of the trigeminal pathway, together
with mechanisms underlying corneal sensory transduction and
peripheral pain sensitization in the trigeminal spinal nucleus.

The brain networks related to pain processing have been
extensively studied with functional neuroimaging over the past
20 years. Based on these observations, supraspinal mechanisms
underlying ocular pain are detailed by Pondelis and Moulton,
describing the anatomy and the physiology of the different brain
regions that receive afferent inputs from the trigeminal system. In
the case of nociception, nociceptors’ signals traveling through
supraspinal centers finally reach the cortex where the pain
sensation is generated. On the other hand, neuropathic pain is
generated by alterations in the somatosensory nervous system,
not necessarily involving peripheral receptors. Clarifying the
neural pathways at the origin of neuropathic ocular pain is
critical to understanding its mechanisms and ultimately its
treatment.

Dry eye disease is often associated with neuropathic ocular
pain. Although it is mostly generated by nociceptive stimulation
induced by alterations of tear film dynamics, chronic dryness lead
to nerve damage and induce morpho-functional changes of
corneal nerves. In this context, persistent ocular pain in the
absence of detectable signs can be considered a form of
neuropathic pain. In the paper by Bereiter et al., the authors
try to clarify the basis of ocular hyperalgesia in animal models of
dry eye disease by demonstrating that the activation of P2X7R, a
purinergic receptor expressed by non-neural cells in the
trigeminal nerve pathway, contributes to ocular hyperalgesia
and to microglia activation in both male and female animals,
an effect that is further amplified by estrogen treatment in
females.

Finally, in a preclinical study, Luna et al. using the guinea pig
model, provided the first demonstration that a unilateral lesion of
the corneal nerves affects the corneal sensitivity in both the
ipsilateral and the contralateral eye. This is in line with the
clinical finding that some patients with unilateral ocular
alteration reported discomfort and pain also in the
contralateral eye. Although the mechanisms underlying the
contralateral alteration of sensory nerves remains to be
determined, available data support the involvement of
neuroimmune interactions. These findings imply that in
preclinical and clinical studies the contralateral eye cannot be
used as a control and that in clinical practice both eyes need to be
treated also in the presence of unilateral ocular damage.
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OCULAR PAIN HANDLING

In ocular pain handling, preoperative management has been
focused to the use of musicotherapy in patients undergoing
cataract surgery, the most frequently performed surgical
procedure. In a paper by Guerrier et al., a prospective
controlled trial including 243 patients has shown that music
intervention prior to the surgery can reduce anxiety level and self-
reported pain intensity both during cataract surgery under local
anesthesia and in the early postoperative period. The underlying
mechanisms remain unclear, although molecular mechanisms
related to opioid and cytokine metabolism are discussed together
with psychophysiological mechanisms bringing to anxiety
reduction.

In an opinion article, Santarcangelo and Carli, two experts in
pain management, discuss the effectiveness of psychological
interventions focused mainly on hypnosis for disease
management. In particular, hypnotizability is used as a model
to support the view that specific psycho-physiological traits and
cognitive strategies can not only reduce pain, but also modulate
the pain-related autonomic and immune activity, induce cortical
plasticity relevant to pain control, and assist in the choice of the
most appropriated treatment.

Topical treatments have been dealt with in four different
articles. In a pilot study, Delicado-Miralles et al. investigate
the effects of F6H8, an alkane previously shown to alleviate
dry-eye associated symptoms, on a healthy ocular surface.
Through corneal surface temperature regulation, F6H8 has
been shown to increase blinking and tearing thus contributing
to alleviate dry eye disease and additional ocular pathologies.

Major efforts are aimed at developing topical therapeutic
options to treat neuropathic pain of the cornea. After
providing the criteria to distinguish patients with corneal
neuropathic pain from those with non-neuropathic ocular
discomfort that can be associated with inflammation or dry
eye disease, Nortey et al. revise the findings on the efficacy of
topical corticosteroids in patients with dry eye and corneal
neuropathic pain. In corneal neuropathic pain, serum tears
have been described to be of some help in patients
experiencing discomfort to light. In addition, topical
lacosamide has been shown to exert beneficial effects by
decreasing the hyperexcitability of corneal cold-sensitive nerve
terminals. Finally, eye drops of naltrexone, an opioid antagonist,
have been found to ameliorate corneal neuropathic problems and
their efficacy are under active investigation together with topical
encephalin modulators as potential pain therapeutics.

Nociceptive pain is targeted through the use of topical
therapies, and oral agents or adjunctive therapies can be used
if a neuropathic component is highly suspected. Treatment

outcomes for nociceptive ocular pain have been more studied
than those for neuropathic ocular pain, mostly because most
therapies are oriented against nociceptive inflammatory ocular
pain, and less have been focused against neuropathic ocular pain.
In a retrospective study involving patients with a clinically
diagnosed neuropathic ocular surface pain, Patel et al. examine
the individual response to different treatments with the aim of
studying subjective clinical responses to a number of commonly
utilized medications. The individual variability in treatment
responses points to the necessity of future research aimed to
develop diagnostic tests that can localize nervous system
abnormalities together with application of personalized
approaches that combine oral, topical or adjuvant medications.

Preclinical evidence about the efficacy of topical gabapentin on
neuropathic ocular pain is provided by Cammalleri et al. in a
rabbit model system in which eye drops with gabapentin exert
analgesic effects coupled to stimulation of tear secretion.
Secretagogue efficacy of gabapentin involves both a stimulation
of the autonomic nervous system and a direct activation of
intracellular signaling cascades, including the PKA/CREB
pathway, culminating in the increased expression of aquaporin
5 in the lacrimal gland through mechanisms that remain to be
elucidated.

In conclusion, we believe that the collection of papers that are
included in this Research Topic represent the state of the art of the
present knowledge on corneal pain, and we hope that it can be of
inspiration to those scientists who are working on this subject,
and to those who are approaching this fascinating research topic.
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INTRODUCTION

Pharmacological, physical and cognitive treatments reduce pain by addressing all pain dimensions.
Nonetheless, drugs may be ineffective, and physical activity is not always viable. In contrast,
cognitive therapies have usually good outcomes, a wide range of applicability and no side effects.
Their efficacy, however, is influenced by cognitive and psychophysiological traits. In this Opinion
article hypnotizability is used as a model to support the view that specific psychophysiological traits
and cognitive strategies can not only reduce pain, but also modulate the pain-related autonomic
and immune activity, induce cortical plasticity relevant to pain control, and assist in the choice of
the most appropriate treatment.

Hypnotizability, or hypnotic susceptibility, is a multidimensional trait stable through life
(Piccione et al., 1989) and measured by validated scales (Elkins et al., 2015) classifying highly
(highs), medium (mediums), and low hypnotizable subjects (lows). It is associated with brain
morpho-functional peculiarities (Landry et al., 2017; Picerni et al., 2019) and displays correlates in
the sensorimotor (Ibáñez-Marcelo et al., 2019; Santarcangelo and Scattina, 2019), cardiovascular
(Jambrik et al., 2004a,b, 2005; Santarcangelo et al., 2012) and cognitive-emotional domain
(Diolaiuti et al., 2019). Both highs and lows represent about 15% of the population which consists
mainly of mediums (70%).

In healthy subjects the ability to control pain through suggestions for analgesia is linearly
correlated with hypnotizability scores (Fidanza et al., 2017). Hypnotic treatments, however, are
particularly important for patients with neuropathic and musculo-skeletal pain (Castel et al., 2007;
Carli et al., 2008; Jensen et al., 2009a,b; Jensen and Patterson, 2014), which are seldom responsive
to pharmacological treatments. They have been found more effective than any other psychological
intervention (Jensen et al., 2020), although high hypnotizability predicts better outcomes also in
patients, owing to the highs’ greater high proneness to modify their bodily condition according
to suggestions, and, thus, to relax (De Benedittis et al., 1994), to their peculiar imagery abilities
(Ibáñez-Marcelo et al., 2019), and to their attitude to be deeply absorbed in their ownmental images
(Vanhaudenhuyse et al., 2019).

SUGGESTIONS FOR ANALGESIA

The suggestions for analgesia are requests to imagine that the experienced pain is out of the body
or limited to a small part of it, or that a glove prevents one to perceive any nociceptive stimulation.

They are effective on acute/procedural, post-surgery and chronic pain (Jensen and Patterson,
2014; Facco, 2016) and, as most suggestions (Green and Lynn, 2011; Santarcangelo, 2014), can be
efficaciously administered in the ordinary state of consciousness, thus not necessarily following
the induction of the hypnotic state (Derbyshire et al., 2009; Paoletti et al., 2010; Santarcangelo
et al., 2012). In highs, suggestions-induced analgesia, which can be focused on the sensory and/or
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emotional dimension of pain, is not accompanied by release of
endogenous opiates, but is sustained by the modulation of the
activity and connectivity of the pain matrix (Faymonville et al.,
2006; Casiglia et al., 2020).

Interestingly, the suggestions for analgesia have been found
effective also in healthy mediums undergoing nociceptive
stimulation (Fidanza et al., 2017) and in chronic pain patients
independently from hypnotizability (Elkins et al., 2007; Jensen,
2011; Jensen and Patterson, 2014; Mazzola et al., 2017; Facco
et al., 2018; Sandvik et al., 2020). This can be accounted for
by expectation of/motivation to analgesia (Milling et al., 2005;
Krystek and Kumar, 2016; Montgomery et al., 2018; Perri et al.,
2020) leading to placebo responses (Benedetti, 2013) which can
reduce pain and pain-related psychological symptoms in the
general population (Liossi et al., 2006; Brugnoli, 2016; Wortzel
and Spiegel, 2017; Rousseaux et al., 2020). Thus, suggestions
may induce non opioid analgesia in highs, opioid placebo
responses in lows and, probably, mixed reactions in mediums.
It is particularly interesting, in this respect, that, during hypnotic
sessions, oxytocin – the hormone promoting social relationships
and acquiescent behavior - is released in the hypnotist and
the client and that, in the latter, the lower the hypnotizability
score the larger the OXT release. A further contribution to the
hypnotist-client relation could be the level of intimacy which
has been associated with the polymorphism of the serotonin
transporter 5-HTTLPR gene. Its variant associated with greater
efficiency is not significantly associated with hypnotizability but
may enhance the experience of “rapport” independently from
it (Katonai et al., 2017). In brief, suggested analgesia occurs in
the general population, although through different mechanisms
(Santarcangelo and Consoli, 2018). In addition, in contrast to
“constructive imagery” (inducing sensory experiences in the
absence of actual stimulations), obstructive suggestions such as
analgesia and anesthesia aimed at reducing the perception of
actual sensory stimulations can be experienced also by lows if
they report mental images as vivid as highs do (Santarcangelo
et al., 2010). Thus, in lows, imagery and placebo responses could
co-operate in the response to suggestions for analgesia.

NEUROTRANSMITTERS

In the absence of explicit suggestions for analgesia,
hypnotizability related differences in pain thresholds (Hilgard,
1967; Agargün et al., 1998; Santarcangelo et al., 2013; Kramer
et al., 2014) and perceived pain intensity (Santarcangelo
et al., 2010) have been seldom reported. Several studies,
however, describe hypnotizability-related differences in genetic
polymorphisms and brain neurotransmitters content which may
be relevant to pain control in the presence of suggestions and/or
to the choice of pain treatments. In fact:

a. highs display the variant of OPMR1 receptors (A118G,
rs1799971) characterized by low sensitivity to opiates, high
consumption of opioids for post-surgery and cancer pain and
low placebo responsiveness more frequently than lows, with
mediums displaying intermediate frequencies (Santarcangelo

and Consoli, 2018). Thus, opioid treatments are not the most
appropriate in highs.

b. the Fatty-Acids- Amino-Hydrolase (FAAH) C385A
polymorphism (rs324420) responsible for endocannabinoids
(eCBs) degradation is not significantly different between
hypnotizability groups but the polymorphism frequencies
indicate a trend to higher degradation efficiency from lows
to highs (Presciuttini et al., 2020). We may hypothesize that
small differences in the eCBs content could be amplified by
the eCBs interactions with nor-adrenegic (Scavone et al.,
2013) and dopaminergic pathways (Di Filippo et al., 2008).
Thus, a contribution of the FAAH polymorphism to the highs’
ability to control pain by suggestions for analgesia should not
be excluded.

c. oxytocin (OXT), which modulates the sensory and emotional
components of pain (Poisbeau et al., 2018), can contribute to
the highs’ suggestions induced analgesia through activation
of the endogenous opioid system and by regulating the eCBs
production (Russo et al., 2012). In fact, the polymorphism
of the OXT receptor gene associated with high sensitivity
(rs53576) is more frequent in highs than in the general
population (Bryant et al., 2013).

d. brain nitric oxide (NO) promotes the release of brain
dopamine and noradrenaline (Ghasemi et al., 2019), which
are involved in pain control. According to post-occlusion
flow mediated dilation (FMD), the endothelial NO release
at peripheral level is reduced in lows and in the general
population, but not in highs (Jambrik et al., 2004a,b; Jambrik
et al., 2005). If confirmed at brain level, a continuous release
of endothelial NO might amplify the availability of nor-
adrenaline and dopamine in highs.

AUTONOMIC AND IMMUNE ACTIVITY

The autonomic and immune activity are strictly related to each
other (Pavlov et al., 2018; Walters, 2018; Blake et al., 2019;
Elkhatib and Case, 2019; Iovino et al., 2020) in that the former
modulates the immune activity (Elenkov et al., 2000; Jänig, 2014;
Martelli et al., 2014) and the latter can regulate the function of
brain autonomic centers (Elsaafien et al., 2019).

The mechanisms controlling acute inflammation and the
associated pain are quite different from those controlling
chronic inflammation and chronic pain. In particular, the pro-
inflammatory cytokines produced in response to an acute body
lesion excite the central nervous system by the activation of vagal
afferents and, after penetration through the blood brain barrier,
of brain structures which, in turn, generate anti-inflammatory
responses. The networks involved in the inflammatory inhibition
are: (a) the parasympathetic circuit, limited to vagal afferents and
efferents; (b) the parasympathetic-neuroendocrine circuit, which
is responsible for the release of corticosteroids; (c) the cytokine-
vagal-sympathetic circuit, involving noradrenergic pathways and
adrenal epinephrine (Pavlov et al., 2018). In the latter circuit, the
mechanisms inhibiting acute inflammation and pain are distinct,
triggered by specific contextual/environmental stimuli in animals
and by psychological interventions in humans (Bassi et al., 2018).
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High hypnotizability is associated with pre-eminent
parasympathetic control of heart rate during relaxation in
the awake condition with respect to lows (Santarcangelo
et al., 2012), with a further shift toward parasympathetic
tone after hypnotic induction (De Benedittis et al., 1994),
and with greater proneness to reduce sympathetic activation
during suggestions of unpleasant experiences associated with
instructions for relaxation and well-being (Sebastiani et al.,
2007). In contrast, and at variance with cortical and somatic
correlates (Santarcangelo and Consoli, 2018), the findings
of hypnotizability-related reduction of sympathetic activity
associated with suggestion-induced analgesia in healthy
subjects are inconsistent (De Pascalis et al., 2001; Paoletti
et al., 2010; Santarcangelo et al., 2013). Theoretically, however,
the autonomic peculiarities of high hypnotizable individuals
– parasympathetic prevalence - should be associated with
a more effective immune activity. Hypnotic treatments, in
fact, upregulate the expression of immune-related genes in
lymphocytes (Kovács et al., 2008), reduce salivary cortisol
(Thompson et al., 2011) and immunoglobulin A in surgical
patients with breast cancer (Minowa and Koitabashi,
2014), regulate auto-immune disorders (Torem, 2007),
human papillomavirus (Barabasz et al., 2010), and pro-
inflammatory/anti-inflammatory cytokines in elders (Sari et al.,
2017).

CORTICAL PLASTICITY

An ambitious target for chronic pain treatments should be
counteracting the disadvantageous cortical plasticity associated
with chronic pain, consisting of alteration in the brain gray
matter volume (Xiong et al., 2017; McCarberg and Peppin, 2019;
Yin et al., 2020) and in long-term potentiation in the anterior
cingulate cortex and insular cortex (Zhuo, 2020).

In chronic pain patients Transcranial Magnetic Stimulation
(TMS) and electrical direct Transcranial Stimulation (dTCS)
are efficaciously used to modulate the activity of pain-related
circuits (Klein et al., 2015; Dos Santos et al., 2018; Meeker
et al., 2020) together with vagal stimulation (Costa et al., 2019).
Theoretically, imaginatively induced analgesia could influence

cortical plasticity (Kleim and Jones, 2008) mimicking the effects
of TMS and dTCS by suggestions aimed at modulating the
activity of the pain matrix (Casiglia et al., 2020) and enhancing
the action of descending antinociceptive pathways (Beltran
Serrano et al., 2020). The highs’ stronger functional equivalence
between imagery and perception/action (Ibáñez-Marcelo et al.,
2019) and their greater cortical excitability (Spina et al., 2020), in
fact, allow them to experience pleasant situations able to buffer
the activity of the pain matrix, thus promoting the cognitive re-
appraisal of their pain condition. In addition, the activity of the
pain matrix itself can be reduced by suggestions (Faymonville
et al., 2006; Casiglia et al., 2020) and co-operate to promote
long-lasting effects. Suggestive treatment of pain, in fact, induces
long-lasting analgesic effects addressing all pain dimensions
(Dillworth and Jensen, 2010; Jensen et al., 2014). Of note, cortical
long-lasting plasticity is induced also by neutral hypnosis that is
the state experienced by highs after hypnotic induction in the
absence of specific suggestions (Jiang et al., 2017).

CONCLUSIONS

The pain matrix structure, activity and connectivity (Legrain
et al., 2011) are influenced by acute and chronic pain. Our
opinion is that that pain experience and physiology are
modulated by the physiological correlates of hypnotizability, and
that hypnotic assessment may assist in the choice of the most
appropriate pharmacological treatments (a); the suggestions for
analgesia are effective in both wakefulness and hypnosis and
can control pain in a large majority of the general population,
although through different mechanisms (b); hypnotizability is an
advantageous factor in the control of pain-related autonomic and
immune functions (c); hypnotizability-related cortical plasticity
may counteract the effects of chronic pain on the structure and
function of the pain matrix (d). In conclusion, suggestions for
analgesia should be considered for any pain patient and not only
after unsuccessful pharmacological treatments.
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Effects of Topical Gabapentin on
Ocular Pain and Tear Secretion
Maurizio Cammalleri 1, Rosario Amato1, Melania Olivieri 2, Salvatore Pezzino2,
Paola Bagnoli 1, Massimo Dal Monte1* and Dario Rusciano2

1Department of Biology, University of Pisa, Pisa, Italy, 2Sooft Italia SpA, Research Center, Catania, Italy

Neuropathic ocular pain is a frequent occurrence in medium to severe dry eye disease
(DED). Only palliative treatments, such as lubricants and anti-inflammatory drugs, are
available to alleviate patients’ discomfort. Anesthetic drugs are not indicated, because they
may interfere with the neural feedback between the cornea and the lacrimal gland,
impairing tear production and lacrimation. Gabapentin (GBT) is a structural analog of
gamma-amino butyric acid that has been used by systemic administration to provide pain
relief in glaucomatous patients. We have already shown in a rabbit model system that its
topic administration as eye drops has anti-inflammatory properties. We now present data
on rabbits’ eyes showing that indeed GBT given topically as eye drops has analgesic but
not anesthetic effects. Therefore, opposite to an anesthetic drug such as oxybuprocaine,
GBT does not decrease lacrimation, but–unexpectedly–even stimulates it, apparently
through the upregulation of acetylcholine and norepinephrine, and by induction of
aquaporin 5 (AQP5) expression in the lacrimal gland. Moreover, data obtained in vitro
on a primary human corneal epithelial cell line also show direct induction of AQP5 by GBT.
This suggests that corneal cells might also contribute to the lacrimal stimulation promoted
by GBT and participate with lacrimal glands in the restoration of the tear film, thus reducing
friction on the ocular surface, which is a known trigger of ocular pain. In conclusion, GBT is
endowed with analgesic, anti-inflammatory and secretagogue properties, all useful to treat
neuropathic pain of the ocular surface, especially in case of DED.

Keywords: neuropathic ocular pain, dry eye syndrome, corneal sensitivity, lacrimal gland, autonomous nervous
system, aquaporin 5, corneal epithelial cells, PKA/CREB pathway

INTRODUCTION

Neural regulation plays an integral role in maintaining ocular surface homeostasis by tightly
controlling lacrimal gland secretion of tear film containing water, electrolytes and a variety of
proteins (Dartt, 2009). Disruption of ocular surface homeostasis as induced by altered activity of the
feedback loop between the corneal surface and the lacrimal gland causes disturbing effects of which
ocular pain is a major component. The cornea has the densest sensory innervation in the human
body and has the potential to be a powerful producer of pain (Galor, 2019). In case of corneal injuries
the ciliary nerves innervating the cornea increase their activity, finally resulting in corneal
hypersensitivity (Joubert et al., 2019). Stimulation of corneal sensory nerves promotes lacrimal
gland secretion by the so-called tear reflex. Sensory afferents from the nerve endings on the corneal
surface stimulate efferent sympathetic and parasympathetic fibers of the facial nerve that innervate
the lacrimal gland via feedback loops between the ocular surface, lacrimal gland and brain. Activated
parasympathetic and sympathetic nerves release acetylcholine (Ach) and norepinephrine (NE),
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although other different peptides can also be involved in the
autonomic transmission (Russo, 2017). Released
neurotransmitters stimulate distinct receptors, thus triggering a
cascade of second messenger components activating ion channels
and pumps to cause electrolyte, water and protein secretion
(Dartt, 2009). Significant involvement of water channels in
regulating lacrimal fluid secretion has been demonstrated
(Delporte, 2009) with a major role played by aquaporin 5
(AQP5) in both the cornea and the lacrimal gland (Verkman,
2003). A disturbance of the neural feedback loops between the
ocular surface and lacrimal glands can contribute to corneal
diseases such as dry eye disease (DED), in which both
nociceptive and neuroptahic pain may be involved (Galor
et al., 2015).

Generally speaking, DED is a multifactorial pathology
affecting the ocular surface of the eye, associated with pain
that may arise from inflammation, reduction in the volume
and/or quality of tears, and damage to the sensitive nerve
endings located in the cornea (Galor, 2019). The treatment of
DED is palliative, using artificial tears that provide temporary
symptomatic relief, but do not address the underlying
pathophysiology of the syndrome. Ideally, a complete
treatment for neuropathic pain in DED should address tear
dysfunction and the associated inflammation, and provide an
analgesic effect to soothe the pain without reducing lacrimation.

Different drugs are commonly used to treat ocular pain,
including anti-inflammatory, anesthetic and analgesic drugs
(Jacobs, 2017). Analgesic drugs include gabapentin (GBT), a
structural analog of gamma-amino butyric acid that has been
introduced as an adjunctive therapy in epilepsy and is presently
widely used to treat several kinds of neuropathic pain. The
possibility that GBT may counteract ocular pain has been
suggested by several studies (Lichtinger et al., 2011; Pakravan
et al., 2012; Wei et al., 2015; Ongun and Ongun, 2019; Yoon et al.,
2020), since the first demonstration of systemic GBT efficacy in
providing significant pain relief in glaucomatous patients
(Kavalieratos and Dimou, 2008). At least some of the clinical
effects of GBT are due to high affinity interactions with the α2δ1
auxiliary subunit of presynaptic voltage-gated calcium channels
(Taylor and Harris, 2020). However, more work needs to be done
to fully understand the mechanisms through which GBT may
target ocular tissues, and ameliorate ocular pain. In this respect,
the recent finding that eye drops containing GBT exert major
anti-inflammatory activity in vitro and in vivo (Anfuso et al.,
2017) suggests the possibility that the analgesic effect of GBT
coupled to its anti-inflammatory properties may confer a better
ability to an eye drop formulation to treat ocular pain.

The present study stems from the consideration that
anesthetics are not best indicated to fight neuropathic ocular
pain, especially in case of dry eye, because they are expected to
blunt the nervous feedback between the cornea and the lacrimal
apparatus, thus inhibiting lacrimation. GBT, on the other hand,
being analgesic and not anesthetic, should be devoid of such
negative effects on lacrimation. Therefore, we designed in vivo
experiments in the rabbit, aimed at investigating whether GBT,
topically administered, may blunt cornea hypersensitivity
induced by formaldehyde and whether its analgesic efficacy

interferes with tear secretion regulation. Our unexpected
finding that GBT stimulates lacrimation prompted us to
address the contribution of the autonomic innervation to
GBT-associated regulation of tear production, together with
the possibility that GBT might act by regulating AQP5 levels
in the lacrimal gland. In these experiments, pretreatment with the
anesthetic drug oxybuprocaine (benoxinate: BNX), a topical
anesthetic that reduces basal lacrimation (Shiono, 1989) and is
mainly used to blunt the activity of corneal nociceptors
(Nakamachi et al., 2016), was used to evaluate whether GBT
acts indirectly through a modulation of the tear reflex or directly
onto the lacrimal gland. In addition, as corneal epithelial cells
participate in determining the final tear composition by secreting
proteins, electrolytes, and water (Santagati et al., 2005; Meng and
Kurose, 2013), further in vitro studies with primary human
corneal epithelial (HCE-F) cells were carried out to show that
GBT - but also BNX -might also directly trigger AQP5 expression
through a molecular pathway involving PKA/CREB (Wang and
Zheng, 2011).

MATERIALS AND METHODS

Animals
New Zealand albino rabbits (32 males and 37 females, body
weight 2.54 ± 0,26 kg, aged 170–190 days) were purchased from a
local supplier. Animals were kept at a temperature of 22°C and a
relative humidity of 50%. Each rabbit was kept in a single cage
and provided with standard rabbit feed and drinking water.

Cultured Cells
Primary HCE-F cells (Cristaldi et al., 2020) were seeded in
complete culture medium at a density of 5 × 105 cells/well in
a six-well plate and left to adhere overnight in the incubator at
37°C and 5% CO2. In a first set of experiments, cells were treated
in serum-free medium (SFM) with GBT at 0.01, 0.1 or 1 mg/ml
for 24 h. In rabbit corneal epithelial cells, GBT at 0.01 and 0.1 mg/
ml did not affect cell viability, which was modestly affected by
GBT at 1 mg/ml (Anfuso et al., 2017). In a second set of
experiments HCE-F cells were treated in SFM with BNX
(BP700; Sigma-Aldrich, St. Louis, MO, United States) at 0.03
or 0.15 mg/ml, either alone or in combination with 0.1 mg/ml of
GBT for 12 h. Neither GBT nor BNX affected HCE-F cell survival
at the tested concentrations. At the end of each incubation period
cells were scraped and stored at -80°C until use.

Pharmacokinetics
Thirty microliters of a GBT (sc-201481; Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, United States)
formulation made 2% in phosphate buffered saline (PBS) were
instilled twice at an interval of 2 min in each eye of six
New Zealand white rabbits. At 30, 60, and 120 min, two
animals per each time point were euthanized, and the four
eyes dissected to take separately cornea, conjunctiva and
aqueous humor. A fixed amount of acetonitrile and H2O (50:
50) solution was added to the biological samples to extract GBT.
After mechanical trituration by Ultra-turrax (cornea and
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conjunctiva) and subsequent sonication, samples were
centrifuged at 10,000 rpm for 15 min, and GBT contained in
the supernatant was quantified by HPLC/MS/MS using the
Agilent 6410-A triple quadrupole instrument equipped with a
Phenomenex Kinetex C18 column at 25°C, under isocratic
conditions using 92% of Buffer A (5 mM ammonium formate
pH � 3.0) and 8% of acetonitrile, at a flow rate of 0.1 ml/min. The
system is equipped with a positive ionizing mode ESI interface,
such that the mass transition for GBT is 172.2 → 154.2 m/z. The
operational MS parameters of the instrument were: Gas
Temperature 350°C; Gas Flow 8 L/min; Nebulizer 20 psi;
Capillary 3500 V; Collision energy 30 V; Dwell-time 70 msec;
Fragmentor 50 V. Calibration curves were made in blank tissue
extracts (cornea, conjunctiva, aqueous humor) by adding exact
amounts (between 2 and 400 ng/ml) of GBT. Values were
expressed as ng/mg of tissue.

Corneal Sensitivity
Corneas were sensitized according to a previously published
protocol (Lai et al., 2013), with some modifications.
Formaldehyde 0.5% (30 µl) was instilled in the right eyes and
1 min after application the eyes were washed with sterile saline to
remove residual formaldehyde. Left eyes were left untreated as
controls. After formaldehyde application, no evident signs of
corneal or conjunctival toxicity including signs of chemical
trauma, were observed. The corneal sensitivity was evaluated
with a Cochet-Bonnet esthesiometer (nylon thread; 0.12 mm
diameter; length variable between 5 and 60 mm; Luneau, Paris,
France). The nylon filament of the esthesiometer touched the
center of the cornea perpendicularly. A positive response was
recorded if > 5 reflexes occurred in 10 consecutive touches. The
longest filament length causing a positive result was considered
the corneal sensitivity threshold. 5 min after formaldehyde
instillation, 30 µl of sterile saline or 2% GBT were instilled in
both eyes in the corneal-limbic junction. This route of
administration was chosen because it is the intended way of
human exposure to the test formulation. At progressing times
corneal sensitivity was tested. Whether GBT might act as an
anesthetic was evaluated by comparing the effects of 30 µl of
either 2% GBT or 0.4% BNX instilled in the eyes of rabbits that
did not receive formaldehyde. The number of stimuli necessary to
induce a blinking reflex maintaining a fix length of 7.5 mm was
counted over time. In any case, the number of mechanical stimuli
applied was 10 in order to limit corneal damage.

Schirmer’s Tear Test
The secretory effect of the test compounds was evaluated after the
instillation of 30 µL of either 2% GBT or 0.4% BNX. In some
experiments, BNX was applied 15 min before GBT instillation.
Tear secretion was measured using commercially available
Schirmer’s tear test strips (Contacare Ophthalmics and
Diagnostics, Dunstable, United Kingdom), as previously
reported (Honkanen et al., 2021). Briefly, in each eye the strip
was placed in the mid portion of the lower lid at progressing times
and tear production was recorded as the length of moistened strip
at 1 min. Then, the heads of the strips were cut and stored at -80°C
until use to evaluate tear protein concentration.

Tear Protein Concentration
Tear proteins were extracted from the heads of the Schirmer’s tear
test strips by elution with 100 µl of 100 mM ammonium
bicarbonate containing 0.25% NP-40 with addition of proteinase
inhibitors (Roche Applied Science, Indianapolis, IN), as previously
described (Yu et al., 2018). Samples were incubated on a rotator
overnight at 4°C. Then they were centrifuged, and protein
concentration was measured with the Micro BCA Protein Assay
(Thermo Fisher Scientific, Waltham, MA, United States).

Tissue Harvesting
After the administration of GBT, BNX or BNX before GBT, at
progressing times rabbits were narcotized with a mixture of
ketamine (40 mg/ml) and xylazine (10 mg/ml) and sacrificed
with an overdose of Nembutal (80 mg/kg). Untreated rabbits
were sacrificed as well. Lacrimal glands, cornea and conjunctiva
were removed without removal of the eye bulb. The brain was
removed and hippocampus isolated. All tissues were rinsed in
sterile saline and stored at −80°C until use.

ELISA
Before the use, lacrimal glands were cut in smaller pieces, mixed,
and randomly divided for ELISA or Western blotting. To
determine the content of parasympathetic and sympathetic
neurotransmitters, lacrimal glands were homogenized in PBS
in the presence of proteinase inhibitors (Roche Applied
Science). Homogenates were centrifuged at 5,000 rpm for
5 min and supernatants were immediately used. Protein
concentration was measured with the Micro BCA Protein
Assay (Thermo Fisher Scientific). Ach and NE content were
evaluated by using commercially available ELISA kits,
according to the manufacturer instructions (Acetylcholine
ELISA kit, OKEH02568, Aviva Systems Biology, San Diego,
CA, United States and NA/NE ELISA kit, MBS760375,
MyBioSource, San Diego, CA, United States, respectively). Ach
and NE levels were calculated by interpolating the absorbance of
each sample against the respective calibration curves using
lyophilized Ach and NE standards available in the kits.

Quantitative Real Time PCR
To perform quantitative real time PCR (qPCR), total RNA was
extracted and purified from rabbit tissues (hippocampus, lacrimal
gland, cornea, conjunctiva) and HCE-F cells using the RNeasy
Mini Kit (Qiagen, Valencia, CA, United States). First-strand
cDNA was generated from 1 µg of total RNA (QuantiTect
Reverse Transcription Kit, Qiagen). Real-time PCR
amplification was performed with SsoAdvanced Universal
SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA,
United States) on a CFX Connect Real-Time PCR detection
system and software CFX manager (Bio-Rad Laboratories).
qPCR primer sets were chosen to hybridize to unique regions
of the appropriate gene sequence: α2δ1 (Forward: 5′-AGACCC
TTCACTGTTGTGGC-3′; Reverse: 5′-ACCCATGGAGAAGCT
GGGTA-3′); GAPDH (Forward: 5′-CCGCTTCTTCTCGTG
CAGTG-3′; Reverse: 5′-CAATGCGGCCAAATCCGTT-3′).
Samples were compared using the relative threshold cycle (Ct
Method). The increase or decrease (fold change) was determined
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relative to the hippocampus after normalization to GAPDH, used
as the housekeeping gene.

Western Blotting
Samples (hippocampus, lacrimal glands, cornea, conjunctiva, or
HCE-F cells) were homogenized in RIPA buffer containing
phosphatase and proteinase inhibitor cocktails (Roche Applied
Science) or in a nuclear and cytoplasmic extraction buffer (NE-
PER Kit, 78,833, Thermo Fisher Scientific). Protein concentration
was measured with the Micro BCA Protein Assay (Thermo Fisher
Scientific). Samples (30 µg proteins each) were run on 4–20% or
4–12% SDS-PAGE gels and proteins were then transferred on
nitrocellulose membranes. Blots were blocked for 1 h with 5%
skim milk and incubated overnight at 4°C with the primary
antibodies indicated in Table 1 using β-actin or histone H1 as
loading controls. Blots were then incubated for 1 h with HRP-
conjugated secondary antibodies (1:5,000) and developed with the
Clarity Western enhanced chemiluminescence substrate (Bio-Rad
Laboratories). Imageswere then acquired (ChemiDocXRS+; Bio-Rad
Laboratories). The optical density of the bands was evaluated (Image
Lab 3.0 software: Bio-Rad Laboratories). Protein expression level
was normalized against β-actin (non-phosphorylated targets) or total
non-phosphorylated corresponding protein (phosphorylated targets).

Statistics
Data were analyzed by the Shapiro-Wilk test to verify their normal
distribution. Statistical signiflcance was evaluated with Prism 8.0.2
(GraphPad Software, Inc., San Diego, CA, United States) using
one-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparison post-test or two-way ANOVA followed by
Bonferroni multiple comparison post-test. Data are expressed as
means ± SEM of the reported n values. Differences with p < 0.05
were considered significant. In compliance with the 3Rs principles
for ethical use of animals in scientific research, an a priori power
analysis was conducted using the software G*Power 3.0.10 (www.
gpower.hhu.de) to determine the minimum number of animals
necessary to obtain a statistical power of at least 0.80, with α � 0.05,
in the presence of a large effect size as expected in these studies.

RESULTS

Gabapentin Pharmacokinetics and Effects
on Corneal Sensitivity and Lacrimation
The distribution of GBT eye drops (2% in PBS) has been
evaluated in aqueous humor, cornea and conjunctiva.

Figure 1A shows the GBT concentration per mg of tissue,
which results always higher on the ocular surface (conjunctiva
and cornea), though slowly decreasing with time (after 120 min
there is, respectively, still 50 and 60% of the amount determined
at 30 min), while the aqueous humor contains the lowest amount,
peaking at 60 min, and then decreasing. Figure 1B illustrates the
total amount calculated per tissue. To this purpose, we have
experimentally estimated the average weight of each tissue in
rabbits of 2.5 Kg and 3 months old at 72 mg for cornea, 160 mg
for conjunctiva and 204 mg for aqueous humor, which is in line
with the expectations (Struble et al., 2014).

It is thus evident that the most part of GBT (97.7% at 30 min,
and 96.7% at 120 min) remains in the conjunctiva, from which it
can be distributed to neighboring tissues, and the cornea contains
most of the remaining amount (2.1% at 30 min, and 2.5% at
120 min).

GBT efficacy on neuropathic ocular pain is shown in
Figure 1C. Normally, in untreated healthy rabbit eyes a thread
length of 18 mm is the higher length able to induce a corneal
reflex. After corneal injury with 0.5% formaldehyde, the corneal
sensitivity increased by about 2-fold as compared to the basal
level, and rabbit eyes responded with a blinking reflex at a thread
length of about 40 mm. Control eye drops (PBS alone) did not
affect this elevated corneal sensitivity that was instead
significantly reduced by 2-fold (a response was elicited at a
thread length of about 20 mm, similar to untreated control)
after 2% GBT eye drops up to 120 min after their instillation.

In order to confirm that the analgesic effect of GBT eye drops
did not decrease lacrimation, as it could be expected from a
topical anesthetic, the effects on tear secretion of GBT eye drops
was also evaluated. As shown in Figure 1D, 2% GBT not only did
not decrease lacrimation, but–surprisingly–it significantly
increased tear secretion in respect to the basal level at both 30
and 60 min, to lose its effect at 120 min.

Figure 2 shows how corneal sensitivity is modulated by GBT
or by the administration of a classical ocular anesthetic (BNX) on
naïve corneas. BNX is known to reduce basal lacrimation (Shiono,
1989) and is mainly used to blunt the activity of corneal
nociceptors (Nakamachi et al., 2016). In this case, the thread
of the esthesiometer was kept at a fixed short length of 7.5 mm,
thus eliciting an immediate blinking reflex: one touch was already
enough to stimulate a response (Figure 2A). The instillation of
GBT did not change corneal sensitivity at this rude touch
(Figure 2B), while the instillation of the anesthetic BNX made
the cornea much less responsive to the stimulation with the short

TABLE 1 | List of antibodies used in Western blot.

Antibody Dilution Source Cat. No

Mouse monoclonal anti α2δ1 1:1,000 Thermo Fisher Scientific MA3-921
Mouse monoclonal anti-AQP5 1:500 Santa Cruz Biotechnology, Inc sc-514022
Rabbit polyclonal phosphor (Ser/Thr) PKA 1:1,000 Cell Signaling 9621S
Rabbit polyclonal anti-PKA C-alpha 1:1,000 Cell Signaling 4782S
Rabbit polyclonal anti-phospho CREB (Ser133) (87G3) 1:1,000 Cell Signaling 9198S
Mouse monoclonal anti-CREB (86B10) 1:1,000 Cell Signaling 9104S
Mouse monoclonal anti-β-actin 1:2,500 Sigma-Aldrich A2228
Mouse monoclonal anti-Histone H1 clone AE-4 1:2,000 Sigma-Aldrich 05–457
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thread, requiring more than five touchings to elicit a blinking
reflex (Figure 2C).

Gabapentin Effect on Aqueous Tear
Secretion and Protein Concentration
To investigate further this unexpected effect of GBT eye drops, a
more stringent kinetics of aqueous tear secretion and protein
concentration was carried out, in order to better evaluate the
effects of 2% GBT at different times after instillation, in
comparison to a topical anesthetic (0.4% BNX). GBT
produced a significant increase in aqueous tear secretion at
15 min, an effect which was maintained up to 90 min (white
columns in Figure 3A). This secretagogue activity of GBT

resulted in a significant decrease in protein concentration at
15 min, but basal protein levels were restored within 30 min
(white columns in Figure 3B). In line with previous findings
(Shiono, 1989), BNX reduced aqueous secretion by about 50% at
15 min, but basal levels were also recovered within 30 min (black
columns in Figure 3A). The sudden decrease in the aqueous
secretion was accompanied by an increase in protein
concentration, which also recovered its basal level within
30 min (black columns in Figure 3B). Aqueous tear secretion
and protein concentration were also measured following the
administration of BNX 15 min before the instillation of GBT.
In this protocol, pretreatment with BNX was found to prevent the
effect of GBT on both aqueous tear secretion and protein
concentration (gray columns in Figures 3A,B).

FIGURE 1 | Pharmacokinetic profile of GBT (2% in PBS) in ocular tissues and GBT analgesic effects. GBT was measured in aqueous humor, cornea and
conjunctiva at different times. For each tissue, concentration profiles derived from four samples per treatment are reported in ng/mg of tissue (A), or as total estimated
amount in each tissue (B). (C) Effects of 2%GBT on corneal pain. Longitudinal evaluation of corneal sensitivity using the Cochet-Bonnet esthesiometry in rabbits treated
with PBS or GBT after the instillation of 0.5% formaldehyde. The dotted line indicates the basal value. Differences between groups were tested for statistical
significance using one-way ANOVAwith Tukey’smultiple comparison post-test (n � 6). (D) Effects of 2%GBT in PBS on tear secretion. The dotted line indicates the basal
value. Differences vs. basal secretion were tested for statistical significance using two-way ANOVA with Bonferroni multiple comparison post-test. *p < 0.05. All data are
plotted as mean ± SEM.

FIGURE 2 | Analgesic and not anesthetic activity of topical GBT. Rabbit eyes (n � 6) were instilled with PBS (A), 2% GBT (B) or 0.4% BNX (C), and corneal
sensitivity was evaluated at different times by the number of touchings at minimal extension (0.75 mm) eliciting a blinking reflex. BL, baseline.
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To evaluate whether GBT may exert its secretagogue effect
through the α2δ1 subunit of the voltage-gated calcium channels,
which is a known target of GBT, we evaluated the expression of
α2δ1mRNA and protein in ocular tissues (lacrimal gland, cornea,
conjunctiva). As positive control, α2δ1 expression was also
evaluated in the hippocampus that is known to express this
subunit (Schlick et al., 2010). As shown in Figure 4, α2δ1 was

largely expressed in the hippocampus at both mRNA (Figure 4A)
and protein (Figure 4B) levels, whereas α2δ1 mRNA was barely
detectable in the cornea and conjunctiva (Figure 4A), with no
evident protein expression (Figure 4B). In the lacrimal gland
α2δ1 mRNA levels were about 50% lower than in the
hippocampus (Figure 4A), although a much lower protein
expression could be detected (Figure 4B). The evaluation of

FIGURE 3 | Longitudinal evaluation of aqueous tear secretion (A) and total protein concentration (B) following 2%GBT (white columns), 0.4% BNX (black columns)
or GBT after BNX pretreatment (gray columns). Data are plotted as mean ± SEM. The dotted line indicates the basal value. Differences between groups were tested for
statistical significance using two-way ANOVA with Bonferroni multiple comparison post-test. *p < 0.05 relative to basal (n � 6 eyes).

FIGURE 4 | Levels of α2δ1 in rabbit hippocampus, ocular tissues and HCE-F cells. (A) Transcript levels of α2δ1 in hippocampus, lacrimal gland, cornea and
conjunctiva as determined by qPCR. (B)Representative blots depicting levels of α2δ1 in hippocampus, lacrimal gland, cornea and conjunctiva as determined byWestern
blotting. (C) Transcript levels of α2δ1 as determined by qPCR. (D) Representative blots depicting levels of α2δ1 in HCE-F as determined by Western blotting. Data are
plotted as mean ± SEM (n � 6 hippocampus or tissue samples or n � 5 HCE-F cells).
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mRNA and protein expression of α2δ1 in HCE-F cells
demonstrated that α2δ1 is not expressed by human primary
corneal epithelial cells (Figures 4C,D).

Gabapentin Effect on Acetylcholine and
Norepinephrine Levels in the Lacrimal
Gland
As shown in Figure 5, the levels of both Ach (Figure 5A) and NE
(Figure 5B) were increased 15 min after GBT, an effect that
persisted until 120 min (white columns in Figures 5A,B). On the
contrary, BNX reduced Ach and NE levels with an effect that

persisted up to 15 and 30 min, respectively, (black columns in
Figures 5A,B). BNX pretreatment 15 min before GBT instillation
prevented the GBT-induced increase in Ach and NE over the first
15 min after which basal levels were recovered (gray columns in
Figures 5A,B).

Gabapentin Regulation of Aquaporin 5
Levels in the Lacrimal Gland
We evaluated whether the increased aqueous tear secretion
induced by GBT might involve altered expression of AQP5 in
the lacrimal gland. As shown in Figure 6, GBT progressively

FIGURE 5 | Longitudinal evaluation of Ach (A) and NE (B) levels following 2%GBT (white columns), 0.4%BNX (black columns) or GBT after BNX pretreatment (gray
columns). Data are plotted as mean ± SEM. The dotted line indicates the basal value. Differences between groups were tested for statistical significance using two-ways
ANOVA with Bonferroni multiple comparison post-test. *p < 0.05 relative to basal, (n � 6 lacrimal glands).

FIGURE 6 | Longitudinal evaluation of AQP5 levels in the lacrimal gland following 2% GBT, 0.4% BNX or GBT after BNX pretreatment. (A) Representative blots
depicting levels of AQP5 as determined by Western blotting. (B) Densitometric analysis of AQP5 levels. The expression of AQP5 was relative to the loading control
β-actin. Data are plotted as mean ± SEM. The dotted line indicates the basal value. Differences between groups were tested for statistical significance using one-way
ANOVA with Tukey’s multiple comparison post-test. *p < 0.05 relative to basal (n � 6 lacrimal glands).

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6712387

Cammalleri et al. Gabapentin Stimulates Tear Secretion

19

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


increased AQP5 levels to reach about a 2-fold increase within
120 min after instillation. BNX instillation resulted in decreased
AQP5 levels that at 120 min were still about 70% lower than the
basal level. BNX pretreatment 15 min before GBT did not prevent
the GBT-induced increase in AQP5 levels.

Gabapentin Regulation of Aquaporin 5
Levels in Human Corneal Epithelial Cells
Whether GBT affects AQP5 expression at the corneal level was
evaluated by an in vitro model of primary human corneal
epithelial cells, the HCE-F model (Cristaldi et al., 2020). As
shown in Figures 7A,B GBT treatment for 24 h at 0.01 and
0.1 mg/ml significantly increased AQP5 levels by about 55%,
while no significant effects were observed after GBT at 1.0 mg/
ml. AQP5 expression in epithelial cells is known to involve the
PKA/CREB pathway that positively regulates both expression and
localization of AQP5 (Yang et al., 2003; Kumari et al., 2012).
Whether GBT-induced upregulation of AQP5 might be coupled
to the PKA/CREB pathway was then investigated. As shown in
Figures 7A,C,D, GBT at 0.01 and 0.1 mg/ml increased PKA

phosphorylation by about 5-fold, while the phosphorylated form
of the nuclear CREB was increased by about 3-fold. GBT at
1.0 mg/ml had no effect. In Figure 8, the respective effects of GBT
and BNX on AQP5 expression were addressed. BNX
administration at 0.03 and 0.15 mg/ml resulted in increased
levels of AQP5 – similar to GBT–without significant
differences between the two concentrations. Consistent with
the increase of AQP5, BNX also elevated the amounts of
pPKA and pCREB, to levels similar to those obtained with
GBT. The association of GBT (0.1 mg/ml) and BNX (0.03 or
0.15 mg/ml) did not influence the expression of neither AQP5
nor the signaling molecules pPKA and pCREB.

DISCUSSION

We have shown that topical GBT attenuates ocular pain in a
rabbit model of corneal injury induced by formaldehyde

FIGURE 7 | Level of AQP5 and downstream mediators in HCE-F cells
treated with GBT at 0.01, 0.1 or 1 mg/ml. (A) Representative blots depicting
levels of AQP5, pPKA, PKA, pCREB, and CREB after treatment with GBT as
determined by Western blotting. (B-D) Densitometric analysis of the
respective levels. The expression of AQP5 was relative to the loading control
β-actin, while the expression of pPKA and pCREB was normalized to the level
of PKA and CREB, respectively. Data are plotted as mean ± SEM. Differences
between groups were tested for statistical significance using one-way ANOVA
with Tukey’s multiple comparison post-test. *p < 0.05 relative to control
(n � 5).

FIGURE 8 | Level of AQP5 and downstream mediators in HCE-F cells
treated with 0.1 mg/ml GBT or BNX at 0.03 or 0.15 mg/ml, either alone or in
combination. (A) Representative blots depicting levels of AQP5, pPKA, PKA,
pCREB, and CREB after treatment with GBT, BNX either alone or in
combination as determined byWestern blotting. (B–D) Densitometric analysis
of the respective levels. The expression of AQP5 was relative to the loading
control β-actin, while the expression of pPKA and pCREB was normalized to
the level of PKA and CREB, respectively. Data are plotted as mean ± SEM.
Differences between groups were tested for statistical significance using one-
way ANOVA with Tukey’s multiple comparison post-test. *p < 0.05 relative to
untreated (n � 5).
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administration to the cornea through an analgesic but not
anesthetic mechanism. However–differently from a topical
anesthetic drug such as BNX, which reduces lacrimation–GBT
rather stimulates tear secretion by exerting a regulatory role on
autonomic neurotransmission and AQP5 expression levels in the
lacrimal gland, through a mechanism that seems to be
independent from its main receptor α2δ1. Results from
in vitro experiments using HCE-F cells, a model of human
corneal epithelial cells, show that GBT treatment induces
AQP5 overexpression by involving the PKA/CREB pathway.
This suggests the possibility that, at least at the corneal level,
GBT may influence tear secretion by a direct effect on AQP5
expression.

Analgesic and Secretagogue Effects of
Gabapentin
GBT systemic administration has therapeutic efficacy for
neurological and psychiatric disorders such as epilepsy,
anxiety, and migraine, and, together with its derivatives,
belongs to the most used drugs for neuropathic pain
management (Fornasari, 2017). The main target of GBT is the
α2δ1 auxiliary subunit of presynaptic voltage-gated calcium
channels through which GBT reduces the release of multiple
excitatory neurotransmitters thus decreasing neuropathic pain
(Taylor and Harris, 2020). In addition, there is evidence that GBT
may play a role in reducing nociceptive pain (Hamidi et al., 2014;
Scuteri et al., 2020). However, the exact mechanism through
which GBT, by involving multiple players, exerts its analgesic
effect is complex and not definitively clarified (Taylor and Harris,
2020). In ocular neuropathies, systemic administration of GBT or
its analog pregabalin has been demonstrated to reduce pain
(Lichtinger et al., 2011; Pakravan et al., 2012; Wei et al., 2015;
Ongun and Ongun, 2019; Yoon et al., 2020), although its efficacy
in counteracting ocular pain in patients with DED has been
questioned (Ozmen, 2020).

The present finding that protein levels of the α2δ1 subunit of
voltage-gated calcium channels are absent in ocular tissues is not
unexpected, taking into consideration the effects of GBT observed
here. It is indeed known that the α2δ1-mediated effects of GBT
result in reduced neurotransmitter release (Taylor and Harris,
2020), while our results demonstrate increased levels of both Ach
and NE in the lacrimal gland. This finding suggests that targets
different from the α2δ1 subunit are involved in mediating the
effects of GBT (on both pain and tear secretion) when topically
applied. The additional finding that in the lacrimal gland protein
levels of the α2δ1 subunit are almost absent despite the presence
of α2δ1 transcripts is in line with similar studies (Gao et al., 2001;
Gong et al., 2001; Dolphin, 2013), suggesting that the expression
of α2δ genes may be subjected to post-transcriptional regulation.
The possibility remains that GBT may act to relieve pain on the
terminal endings that densely innervate the corneal surface
(Galor et al., 2015) and are likely to be damaged by
formaldehyde used here to induce ocular sensibilization. This
possibility will be investigated in future work. An attractive
hypothesis is that the stimulation of tear secretion by GBT
may explain at least in part its efficacy in counteracting ocular

pain, as an increase in tear secretion may improve the lubricating
effect of tears on the ocular surface. In fact, among the options
available to treat patients suffering fromDED, tear replacement is
widely used to restore the original homeostasis of the ocular
surface and to attenuate patient discomfort and pain, for instance
by reducing the friction on the ocular surface, as attrition
consequent to lubrication deficits has been recognized to
impact on ocular pain (van Setten, 2020). In this respect,
artificial tears based on hyaluronic acid have been used since
the early 1990 to alleviate dry eye signs and symptoms in DED
patients thanks to its water retention and lubricant properties
(Yang et al., 2021). On the other hand, there is evidence that
artificial tears that solely swell and absorb water show poor effects
when applied to DED patients affected by neuropathic pain
(Galor et al., 2016), suggesting that those patients without
neuropathic pain are more likely to benefit from tear
replacement. As shown for the first time by the present
results, the analgesic effect of GBT is coupled to a
secretagogue activity, an effect which is prevented by the
administration of the anesthetic BNX, at least soon after its
administration. In this respect, more work should be done to
clarify the mechanisms behind the results of their interaction, in
particular because BNX and GBT express a completely different
mode of action, with BNX able to block sodium channels and to
prevent synaptic transmission, supporting the involvement of
different downstream mechanisms modulated by BNX and GBT.

As also shown by the present findings, at 15 min after GBT
instillation there is an increase in tear secretion paralleled by a
decrease in tear protein concentration. This may be explained by
assuming that the increase in water secretion follows a faster
kinetics than the increase in protein secretion. Therefore, at
15 min the GBT-dependent increase in water secretion dilutes
tears, an effect that is no more detectable at increasing time due to
the GBT-dependent increase in protein secretion that would
parallel water secretion thus restoring a normal tear protein
concentration.

Mechanisms Underlying
Gabapentin-Associated Tear Secretion
The autonomic nervous system acts on both the cornea and the
lacrimal gland by regulating tear secretion through the release of
its main neurotransmitters of which Ach mostly influences water
secretion, while NE regulates protein secretion (Dartt, 2009). As
shown by the present results, GBT causes upregulation of both
Ach and NE levels in the lacrimal gland suggesting that GBT may
act on lacrimation through a modulation of the autonomic
neurotransmission. On the other hand, since a crude
homogenate of lacrimal glands has been used here, we cannot
be sure that NE and Ach are actually released by the autonomic
nervous system as their origin may be diverse. However, it is
unlikely that they might come, for instance, from the plasma
permeating the tissue, in which NE levels in the rabbit are about
1 ng/ml (Yokoyama et al., 1992), because, if their origin is
systemic from the blood stream, this would hardly explain the
local sudden increase (within 15 min) of both neuromodulators
elicited by GBT. If confirmed by further experiments, this would
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be the first demonstration of GBT effects on the autonomic
innervation at the level of the eye, while some interactions
between GBT and the autonomic nervous system had already
been shown (Tanabe et al., 2005; Takasu et al., 2006; Hayashida
et al., 2007; Hayashida et al., 2008).

The possibility that GBT may exert a secretagogue role is
presently unknown. The only mention about a link between GBT
and secretagogue activity (however of the inhibition type) can be
found in a case report of a patient with aquagenic wrinkling of the
palms describing ameliorative effects of GBT treatment
presumably through GBT action on sodium retention by
epidermal cells thus promoting skin drying (Emiroglu et al.,
2017).

Considering our model, the simplest explanation of the
secretagogue action of GBT is that autonomic modulation of
tear secretion involves water channels among which aquaporins
are likely to play an important role. Some information about
enhanced aqueous tear secretion and aquaporins dates back to
1997 when increased levels of AQP5 have been determined in the
lacrimal glands of mice after parasympathetic stimulation by
pilocarpine (Ishida et al., 1997). In the lacrimal gland, AQP5 is
mainly localized at acinar cells, although abundant AQP5 also
appears to be localized in the lacrimal duct system (Ding et al.,
2010). At the functional level, reduced expression of AQP5 has
been determined in the lacrimal gland of patients with Sjögren
syndrome, an autoimmune pathology characterized by extreme
eye dryness (Tsubota et al., 2001). In addition, abnormal levels of
AQP5 are present in tears of patients with dry eye indicating that
AQP5 leaks into the lacrimal fluid from damaged cells of the
lacrimal gland or the cornea (Ohashi et al., 2003). In animal
models, reduced levels of AQP5 have been measured in the
lacrimal glands of pregnant rabbits characterized by DED
(Ding et al., 2011).

Little is known on AQP5 regulation by autonomic innervation
in the lacrimal gland. Recently, in models of DED, PACAP has
been reported to induce tear secretion by promoting a PKA-
mediated upregulation of AQP5 (Nakamachi et al., 2016). Our
results suggest that AQP5 expression is a necessary, however not
sufficient condition for increased tear secretion. In fact, GBT
increases both lacrimation and AQP5 expression, whereas the
effects of BNX on lacrimation are uncoupled from AQP5
expression, since the decrease in lacrimation happens and is
concluded before AQP5 decrease. Moreover, when BNX is
given soon before GBT, the secretagogue effect of GBT
disappears despite the progressive increase of AQP5,
supporting the involvement of different targets for BNX
and GBT.

In addition to the lacrimal gland, AQP5 is also expressed in the
corneal epithelium (Raina et al., 1995) where it is responsible for
water movement to the ocular surface (Verkman et al., 2008). In
particular, deletion of AQP5 reduces corneal water permeability
(Thiagarajah and Verkman, 2002) thus causing marked tear film
hypertonicity due to its role as a major component of an
osmotically-driven water pathway that contributes to maintain
tear isotonicity (Thiagarajah and Verkman, 2002; Ruiz-Ederra
et al., 2009).

Results obtained by using HCE-F cells as an in vitro model of
corneal epithelial cells show that GBT upregulates AQP5
expression via a signaling pathway that involves the activation
of the PKA/CREB pathway, thus suggesting that GBT may affect
tear secretion also by acting at the corneal level. The stimulatory
effect of GBT on AQP5 expression and its pathway of activation
tends to decrease with the increasing amount of GBT, and peaks
at the two lower doses of 0.01 and 0.1 mg/ml, in line with what
expected for a ligand showing a hormetic-like biphasic dose
response in a ligand-receptor interaction (Calabrese, 2013).
Surprisingly, and in contrast to what observed in the lacrimal
gland, also BNX stimulates AQP5 expression in corneal epithelial
cells through the same pathway activated by GBT (PKA/CREB),
and with the samemodality (higher dose, lesser effect), suggesting
that in vivo there is an interplay between the autonomic nervous
system and the regulation of lacrimation and AQP5 expression,
while in a cell monolayer in vitro the effect is mediated only by
biochemical interactions, which apparently use the same pathway
to regulate AQP5 expression. Moreover, the association of GBT
and BNX in vitro results in no stimulation on AQP5 expression
and pathway activation. Most likely, given the fact that both
compounds impinge on the same regulatory pathway (PKA/
CREB), the association of the two might result in an
overstimulation of the system, like in the case of high doses of
GBT or BNX, finally resulting in a lesser response in terms of
activation.

In conclusion, the present data demonstrate the analgesic and
not anesthetic effect of a topical formulation of GBT as eye drops,
and for the first time show a secretagogue effect of GBT, that is
likely to involve both a stimulation of the autonomic nervous
system and a direct activation of intracellular signaling cascades,
including the PKA/CREB pathway, culminating in the increased
expression of AQP5. However, whether this effect may also
involve a modulation of ion channels remains to be
determined as no evaluation of transmembrane ion
movement/potential has been performed in the present study.
Therefore, future mechanistic investigations will be therefore
required to decipher the targets through which GBT acts to
increase tear secretion. Overall, the presence in the same
molecule of analgesic, anti-inflammatory (Anfuso et al., 2017)
and secretagogue effects suggest a useful application of GBT eye
drops in the treatment of medium/severe dry eye, in which the
algic and inflammatory components accompany tear deficiency.
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Efficacy of Preoperative Music
Intervention on Pain and Anxiety in
Patients Undergoing Cataract Surgery
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The aim of the present study was to investigate the impact of preoperative music exposure on
intra- and post-operative pain during cataract surgery. This study was conducted alongside a
prospective single-masked randomized controlled trial (ClinicalTrials.gov NCT02892825).
Patients undergoing first eye cataract surgery were included and randomly assigned to
either the intervention or control group. Patients in the intervention group had a 20-min music
session through earphones before surgery, while patients in the control groupwore earphones
without music. Anxiety level evaluated using the visual analog scale and heart rate were
collected before and after music intervention. Pain level was assessed using the Numerical
Pain Rating Scale, during the surgical procedure, prior to discharge and 7 days
postoperatively. A total of 243 patients were included: 119 in the intervention group and
124 in the control group. No significant differences in baseline characteristics, including age,
sex and rate of treated hypertension were found between the 2 groups (all p-values > 0.05). In
addition, no significantly differences were found in heart rate and anxiety level before music
intervention between the 2 groups (all p-values > 0.05). Conversely, anxiety level was
significantly lower in the music group after the intervention (respectively, 1.3 ± 1.1 vs 3.2 ±
2.2; p < 0.05). Patients in the music group reported a lower mean pain level during
surgical procedure and before discharge compared with control group (respectively, 1.2 ±
0.5 vs 2.1 ± 1.1, p � 0.03 and 0.23 ± 0.4 vs 0.81 ± 0.7, p � 0.04). No difference was
found in pain level 7 days postoperatively (0.1 ± 0.3 vs 0.2 ± 0.4, p � 0.1). A significant
correlationwas foundbetween anxiety level and intraoperative pain level (R� 0.64,p� 0.02). In
conclusion, music intervention was effective in reducing anxiety level and self-reported pain
both during surgery and in the early postoperative period.

Clinical Trial Registration: https://clinicaltrials.gov/ct2/home, identifier NCT02892825.
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INTRODUCTION

Cataract surgery represents one of the most commonly performed
procedures in the world (Pascolini and Mariotti, 2012).
Advancements in anesthesia and surgical techniques made it
possible to perform most of the procedures for cataract
extraction under topical anesthesia (Pellegrini et al., 2020;
Lundström et al., 2021). On the one hand, this achievement has
greatly reduced operating times and side effects related with local
or general anesthesia (Giannaccare et al., 2021; Lundström et al.,
2021). On the other hand, despite sedation (e.g. benzodiazepines
and opioids) which could be administered pre- and intra-
operatively, patients may experience a state of considerable
anxiety along with a certain level of pain and discomfort during
the surgical procedure (Rothschild et al., 2013; Shi et al., 2019).

Preoperative music intervention is a non-expensive and easily
applicable technique with no side effects that showed significant
beneficial effects on patients’ anxiety in different surgical
populations (Choi et al., 2018; Wan et al., 2020; Kakar et al.,
2021). In addition, music intervention has been proved to lead to
a better patient’s cooperation and a reduced intraoperative blood
pressure during surgery under topical anesthesia (Choi et al.,
2018; Fu et al., 2020; Muddana et al., 2020).

Although the underlying mechanism of music therapy remains
still unclear, it has been demonstrated that it induces molecular
changes related to opiates and cytokine processes (Stefano et al.,
2004). Different psychophysiological mechanisms have been
proposed, and in particular music would be effective in
distracting patients from the surgical procedure, mainly when
they listen to music of their preference (Gaberson, 1995; Allen
et al., 2001; Clements-Cortes and Bartel, 2018).

Previous studies demonstrated the beneficial effect of music
intervention on both anxiety and blood pressure in patients
undergoing cataract surgery (Leo et al., 2003; Wiwatwongwana
et al., 2016; Muddana et al., 2020). However, there is little
knowledge regarding the effect of preoperative music therapy
on intra- and post-operative subjective pain in this patient
population (Choi et al., 2018).

Interestingly, it has been demonstrated that pre-operative
anxiety is positively correlated with intra- and post-operative
pain level in a variety of surgical populations (Robleda et al., 2014;
Bandeira et al., 2017). Therefore, it is possible to speculate that
music intervention may result in beneficial effect on pain level in
patients undergoing cataract surgery. Thus, the aim of the present
study was to investigate the effect of music intervention on self-
reported pain intensity during first eye cataract surgery and in the
early post-operative period.

MATERIALS AND METHODS

Design and Patients
This studywas conducted between February 2017 and July 2018 at the
Ophthalmology service, OphtalmoPôle de Paris of the Cochin
Hospital (Paris, France), alongside a prospective single-masked
randomized controlled trial aiming at evaluating the effect of
music intervention on anxiety-induced hypertension during

cataract surgery performed under local anesthesia
(ClinicalTrials.govIdentifier: NCT02892825). The study was
performed in accordance with the principles of the Declaration of
Helsinki andwas approved by theComité de Protectiondes Personnes
Paris-Ile-de-France III (N°2016-A00728-43). Written informed
consent was obtained from all study subjects. Patients scheduled
for first eye cataract surgery under local anesthesia were screened
to be enrolled in the study. Exclusion criteria were hearing loss, speech
impairment, uncontrolled hypertension, psychiatric disorders,
dementia, deprivation of liberty by judicial or administrative
decision or under legal protection. Uncontrolled hypertension was
defined as a systolic blood pressure >140mmHg and/or diastolic
blood pressure >90mmHg, despite anti-hypertensive therapy, during
the pre-anesthesia examination. In addition, patients with complicated
cataract and hard nuclear cataracts with nuclear opalescence scores 5
or greater on Lens Opacities Classification System-III system were
excluded from the study (Chylack et al., 1993).

Music Intervention and Surgical Procedure
Patients were randomized using a computer-generated,
interactive web-response system (Cleanweb®, Telemedecine
technologies S.A.S, Boulogne-Billancourt, France) and assigned
to the music or the control group. After the randomization, all
patients had dedicated headphones (BOSE AE2®) positioned.
Patients in the music group were shown how to handle a
tablet interface by a trained nurse in order to choose a music
program according to their preferences (MUSIC CARE® Paris,
France). In the control group, headphones were placed on
patient’s ears, but no music was played. A sleeping mask
concealing patient’s eyes was applied to all participants. In
both groups, headphones and masks were left in place for
20 min and the headphones were removed before the surgical
procedure. Before surgical procedure, 0.03 mg/kg oral midazolam
was administered to all patients.

Cataract surgery was performed at one eye of each patient under
topical anesthesia by an experienced surgeon (ML, PRR, DM).
Topical anesthesia consisted in administration of oxybuprocaine
0.5% drops into the conjunctival sac 3 times in the 15 min
preceding surgery. The primary steps of the surgery were a self-
sealing temporal limbal 2.2 mm incision, subsequently
capsulorhexis, hydrodissection and phacoemulsification in the
capsular bag were performed. Finally, a foldable intraocular lens
was inserted in the capsular bag. Intracameral 1 mg cefuroxime
injection was administered at the end of surgery. Postoperative
topical therapy consisted of fluoroquinolone eye drops for 1 week
and dexamethasone eye drops for 1 month.

Data Collection
Data regarding age, sex, ocular and medical history including
presence of treated hypertension, and duration of surgical
procedure were collected.

Anxiety level was measured by the anesthetist using a visual
analogue scale for anxiety (VAS-A) before and after music
intervention (Facco et al., 2013). The VAS-A scale is
comprised of a horizontal line 100 mm long with the
indication “no anxiety” to the left and “worst possible anxiety”
to the right. In addition heart rate were measured using pulse
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oximetry (Onyx II 9550, NONIN, Plymouth, MI, United States)
before and after music intervention.

Pain level was evaluated by the anesthetist using a verbally
administered 0-to-10 numerical pain rating scale (NPRS), where
0 indicates “No pain” and 10 “The worst possible pain”: 1)
intraoperatively, before the insertion of the foldable intraocular
lens; 2) postoperatively, before the discharge, and 3) 7 days after
the surgery (Hjermstad et al., 2011).

Statistical Analysis
The SAS 9.4 statistical software (Copyright© 2016 by SAS
Institute Inc., Cary, NC, United States) was used for data
analysis. Continuous data were presented as mean ± standard
deviation, while categorical data were represented by number and
percentage.

Unless otherwise specified, categorical variables were compared by
a Chi-square test or Fisher’s exact test as appropriate, and continuous
variables were compared by a Student’s t test or Wilcoxon-Mann-
Whitney test as appropriate. In addition, the correlation between
preoperative anxiety level after music intervention and intraoperative
pain level was evaluatedwith Pearson correlation test. A p value<0.05
was considered statistically significant.

RESULTS

Two hundred forty-three patients were included in the study and
were randomized to receive music intervention (intervention
group: n � 119) or headphone with no music (control group:
n � 124) before cataract surgery. Demographic and baseline
characteristics of patients are reported in Table 1. There were
no statistically significant differences in age, sex distribution, and
proportion of patients with treated hypertension between the 2
groups (all p > 0.05).

All patients underwent uneventful cataract surgery and no
significant complications were registered in the post-operative
period. No difference was found in the duration of procedure
between music and control group (respectively, 16.1 ± 6.5 vs
16.5 ± 6.2, p � 0.08).

Table 2 shows anxiety level and heart rate before and after
music intervention in both groups. No significant differences were
observed in heart rate before and after music intervention between
the music and control group (respectively, 75.3 ± 7.6 vs 77.1 ±
9.4 bpm/min, and 67.3 ± 7.6 vs 68.7 ± 13.1 bpm/min, always
p > 0.05). In addition, no difference was found in anxiety level
between the 2 groups before music intervention (respectively, 3.2 ±
2.2 vs 3.3 ± 2.3, p � 0.8). Conversely, anxiety level was significantly
lower in the music group compared to control group after music
intervention (respectively, 1.3 ± 1.1 vs 3.2 ± 2.2, p < 0.001).

Table 3 shows intra- and postoperative mean pain level as well as
its classification according to the NPRS values. In particular, pain
was stratified in the following categories: 1) NPRS � 0, 2) NPRS 1-5
and 3) NPRS >5, in the 2 groups in the different timepoints
(intraoperatively, postoperatively before discharge and 1 week
after surgery). Patients in the music group reported a lower mean
intra- and postoperative (before discharge) pain level compared with
control group (respectively, 1.2 ± 0.5 vs 2.1 ± 1.1, p � 0.03 and 0.23 ±
0.4 vs 0.81 ± 0.7, p � 0.04). Conversely, no difference was found in
pain level 1 week postoperatively (0.1 ± 0.3 vs 0.2 ± 0.4, p � 0.1).

A significant correlation was found between preoperative
anxiety level after music intervention and intraoperative pain
level (R � 0.64, p � 0.02).

DISCUSSION

The aim of this randomized control trial was to investigate the
effect of preoperative music intervention on the level of pain and

TABLE 1 | Baseline characteristics of patients undergoing cataract surgery.

Characteristics Intervention group (n =
119) mean ± SD

or n (%)

Control group (n =
124) mean ± SD

or n (%)

p-value

Age (yr) 67.3 ± 10.4 68.5 ± 11.2 0.4
Sex 0.9
Female 63 (52.9) 65 (52.4)
Male 56 (47.1) 59 (47.6)
Treated hypertension 11 (9.2) 13 (10.5) 0.8

SD, Standard deviation.

TABLE 2 | Heart rate and anxiety level in the music intervention and in the control group.

Measures Intervention group (n =
119) mean ± SD

Control group (n =
124) mean ± SD

p-value

Heart rate before intervention (bpm/min) 75.3 ± 7.6 77.1 ± 9.4 0.1
Heart rate after intervention (bpm/min) 67.3 ± 7.6 68.7 ± 13.1 0.3
Anxiety level before intervention (VAS) 3.2 ± 2.2 3.3 ± 2.3 0.8
Anxiety level after intervention (VAS) 1.3 ± 1.1 3.2 ± 2.2 <0.001

SD, Standard deviation; VAS, Visual analogue scale.
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anxiety in patients undergoing first eye cataract surgery.
Interestingly, patients in the music group presented a lower
level of both anxiety and pain compared with controls. In
particular, patients who received music intervention experienced
a lower level of anxiety when they entered the operating room and,
subsequently, presented a lower level of pain, both during surgery
and in the immediate postoperative period.

Previous studies have investigated the effect of pre and peri-
operative music intervention on anxiety in patients undergoing
ophthalmic surgery, and in particular cataract surgery (Cruise et al.,
1997; Allen et al., 2001; Wiwatwongwana et al., 2016; Muddana
et al., 2020). Cruise and co-authors evaluated the effect of relaxing
music in patients undergoing cataract surgery under peribulbar
anesthesia, demonstrating an increased satisfaction in patients who
received music intervention (Cruise et al., 1997). More recently, 2
studies evaluated the effect of music intervention administrated
both, before and during cataract surgery under topical anesthesia
(Wiwatwongwana et al., 2016; Muddana et al., 2020). Both showed
that music exposure significantly reduces anxiety and blood
pressure, resulting in a better patient’s experience. The beneficial
effect of music on the preoperative anxiety has also been
demonstrated for other types of surgery. Interestingly, music has
a long-lasting effect and in particular, it was showed that 15min of
music intervention before the surgical procedure are able to lead to
an effective reduction of anxiety (McClurkin and Smith, 2016).

Several reports showed that preoperative anxiety is positively
correlated with postoperative pain, in different surgical populations
(Bayrak et al., 2019; Navarro-Gastón andMunuera-Martínez, 2020).
Indeed, it has been shown that the analgesic effect due to the musical
intervention can be helpful in reducing different types of pain,
particularly in patients who have to undergo orthopedic,
urological and general surgery procedures, and in patients who
suffer from chronic pain (Hyung, 2016).

In agreement with this data, we found that intraoperative pain was
positively correlated with preoperative anxiety level, and both were
reduced in the subjects in the music group. Previously, only one study

evaluated the effect ofmusic on pain in this peculiar patient population
(Choi et al., 2018). In particular, Choi and co-authors evaluated the
effect of Korean traditional music before and during cataract surgery,
demonstrating its effectiveness in reducing painful perception (Choi
et al., 2018). Our study supports these results and furthermore, we
showed that this also applies when the patient chooses the music he/
she prefers. Interestingly, a recent study showed that the reduction in
pain associated with music exposure is greatest when the subject
chooses the music to listen to (Howlin and Rooney, 2021). The study
also shows that it is the act of making a choice that determines the
greatest effectiveness of the procedure, empathizing the importance of
giving patients as much control as possible in music intervention
(Howlin and Rooney, 2021).

Unlike previous studies, in the present one, patients were
exposed to music only before surgery. This is because, in our
opinion, be exposed to music during the procedure could prevent
the surgeon from communicating with the patient and vice versa,
thus causing a reduction in patient compliance and maybe an
increase in anxiety. Cataract surgeons are aware that due to the
pain related with the surgical procedure under topical anesthesia,
patients can become uncooperative and make abrupt movements
that can potentially cause intraoperative complications (Zhu
et al., 2021). However, the use of topical anesthesia averts
many of the potential systemic and ocular complications
associated with regional anesthesia (Maharjan et al., 2021). For
these reasons, intraoperative pain control plays a key role for the
success of the surgical act. Music intervention is a safe,
inexpensive, and easy-to-use procedure that should be strongly
encouraged in order to improve the experience and satisfaction of
the patient undergoing cataract surgery. We identified some
limitations for the present study that deserve mentioning.
Firstly, although they are recognized as valid indicators and
are widely used in clinical trials, anxiety and pain rating scales
remain highly subjective. Secondly, the surgeon’s experience was
not evaluated, and it must be acknowledged that this information
could have helped to better understand the effect of music during

TABLE 3 | Pain score evaluated before and following cataract surgery.

Intervention
group (n = 119)

Control
group (n = 124)

p-value

Pain score

Intra-operative
Mean ± SD 1.2 ± 0.5 2.1 ± 1.1 0.03
NPRS 0 [n (%)] 78 (66%) 50 (40%)
NPRS 1–5 [n (%)] 30 (25%) 54 (44%)
NPRS >5 [n (%)] 11 (9%) 20 (16%)

Post-operative before discharge
Mean ± SD 0.23 ± 0.4 0.81 ± 0.7 0.04
NPRS 0 [n (%)] 102 (86%) 79 (64%)
NPRS 1–5 [n (%)] 17 (14%) 39 (31%)
NPRS >5 [n (%)] 0 6 (5%)

One week after surgery
Mean ± SD 0.1 ± 0.3 0.2 ± 0.4 0.1
NPRS 0 [n (%)] 108 (91%) 107 (86%)
NPRS 1–5 [n (%)] 11 (9%) 16 (13%)
NPRS >5 [n (%)] 0 1 (1%)

NPRS, numerical pain rating scale; SD, Standard deviation; n, number of patients.
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surgery. Thirdly, the cataract grading and ultrasound energy
consumption during phacoemulsification were not evaluated in the
present study. Although the duration of cataract surgery did not
change significantly between the two groups, the evaluation of these
two parameters would provide useful information to more accurately
assess the effectiveness of music intervention. Further studies
evaluating these parameters are warranted to better address this
issue. Finally, the use of midazolam may have partially hampered
the results. Although the use of the same dose of the drug in all
included patients limited the possibility of biasing the results, future
sedative-free studies are needed to confirm our findings.

In conclusion, the present study demonstrates that 20 min of
music intervention before surgery are effective in reducing
anxiety and pain sensation in patients undergoing cataract
surgery. Further studies are needed to establish the best
approach, in terms of timing, cost and technology, before this
intervention can be widely introduced in routine cataract surgery.
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Perfluorohexyloctane (F6H8) eyedrops have been recently introduced in Europe as a

product to treat dry eye disease, based on its ability to reduce tear film instability in

Meibomian gland dysfunction and evaporative dry eye disease, although its mechanism

of action is still unknown. In the present pilot study, we evaluated the effects of the

ocular instillation of a single drop of commercial F6H8 eyedrops in 20 healthy humans

(9 women/11 men), measuring: (a) Corneal surface temperature (CST) from infrared

video images; (b) tear volume using phenol red threads; (c) blinking frequency; and

(d) ocular surface sensations (cold, dryness, pricking, foreign body, burning, itching,

gritty, eye fatigue, watering eyes, and light-evoked discomfort sensations; scored using

10 cm Visual Analog Scales), before and 5–60min after F6H8 or saline treatment. CST

decreased and tearing and blinking frequency increased significantly after F6H8 but not

after saline solution. When applied unilaterally, CST decreased only in the F6H8-treated

eye. No sensations were evoked after F6H8 or saline. The corneal surface temperature

reduction produced by topical F6H8 does not evoke conscious ocular sensations but is

sufficient to increase the activity of corneal cold thermoreceptors, leading to an increased

reflex lacrimation and blinking that may relieve dry eye condition thus reducing ocular

discomfort and pain.

Keywords: ocular discomfort, ocular pain, dry eye, perfluorohexyloctane, blinking, tearing, cold thermoreceptors,

corneal surface temperature

INTRODUCTION

The ocular surface is a unique exposed mucosa that must endure environmental conditions while
maintaining its function and integrity (1). Upon their activation by environmental physical and
chemical changes acting on their peripheral nerve endings, trigeminal sensory neurons innervating
the ocular surface trigger protective responses such as blinking and tearing (2). In particular, there
is strong evidence that TRPM8-mediated activation of corneal cold-thermoreceptors constitutes
the afferent signal to the CNS for the regulation of tearing and blinking, mechanisms that allow to
maintain and distribute moistness of the eye surface (3, 4).

Dry Eye Disease (DED), a condition that affects over 10% of people worldwide (5), is
characterized by a loss of the so-called homeostasis of the tear film, that is, the disruption of
the equilibrium of the chemical composition and functions of the tear film due to one or more
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of the underlying causes of dry eye (6). Due to the multi-
etiological origin of DED, no specific treatments are available
nowadays, and there is scarce scientific evidence on their
effectiveness in the management of the disease. Artificial tears are
commonly used bymost DED patients (7) although some of them
contain preservatives that are known to produce side effects (8).

Perfluorohexyloctane (F6H8) is a semifluorinated alkane
liquid that has been used initially in ophthalmology as
a long-term vitreous substitute (9). This compound is
physically, chemically and physiologically inert, slightly
amphiphilic, colorless and laser stable with a density higher
than water, and very low surface and interface tensions
(10). In addition, as it is a non-aqueous liquid, microbial
growth is not possible and therefore, it does not need any
preservative (8).

F6H8 applied topically in DED patients reduced their dry-
eye associated symptoms in two prospective observational studies
(8, 11). As F6H8 increased tear film breakup time and lipid
layer thickness in DED patients, it has been proposed that
F6H8 could prevent the increased evaporation that causes
DED by forming an occlusive layer and reducing shearing
forces of the eyelid during blinking (8, 11). This idea is
reinforced by the observation that in rabbits, F6H8 improves
the quality grade of the tear film lipid layer measured
by hand-held interferometry (12). Additionally, in mild to
moderate DED patients F6H8 transiently increases tear film
thickness 10min after its application (13). A more recent study
showed that topical treatment with F6H8 does not induce
changes in corneal endothelium and significantly reduce corneal
staining in DED patients, supporting its effectiveness and
safety (14).

These results, together with the low surface tension of
the compound, led to conclude that the very small drop
of F6H8 (about 10 µL) spread uniformly over the ocular
surface upon application, forming a protective layer over
the tear film and preventing its evaporation. However,
the precise mechanisms that would explain the effects
of F6H8 in DED are far from being clarified and still
need investigation.

In a previous report, we found that F6H8 produces corneal
surface temperature changes in tear-deficient guinea pigs (15),
suggesting that F6H8 may be more than an inert molecule,
forming a non-water mixable thin layer over the tears and
reducing tear evaporation. We hypothesized that, in addition
to preventing evaporation, F6H8 may facilitate heat exchange
between corneal tissue and the environment, thus reducing
corneal temperature and activating TRPM8 cold-thermosensitive
channels of cold thermoreceptor nerves. In turn, the increased
activity of corneal cold nerves will lead to an increase in tearing
and blinking rate. To test this hypothesis, we have studied the
ocular sensations evoked in a group of volunteers by topical
instillation of F6H8, in parallel with its effects on tear production,
blinking frequency, and corneal surface temperature measured
by infrared thermography. Additionally, we performed a simple
experiment to investigate the temperature transmittance of F6H8
as a first approach to understand the mechanism of action of
this molecule.

MATERIALS AND METHODS

Subjects
Twenty 20 young healthy volunteers (9 women, 11 men; mean
age 24.1 ± 4.4 years, range 19–34 years) participated in this
pilot study. After signing an informed consent, volunteers were
subjected to a brief anamnesis and filled out an ocular surface
discomfort index (OSDI) questionnaire adapted to Spanish-
speaking people (16). Individuals with previous eye disease,
ocular surgery, OSDI ≥12, as well as daily contact lens users
or subjects that were receiving either ocular or systemic drugs
were excluded. Participants were instructed to not consume any
anti-inflammatory or pain-killer drug in the 48 h previous to
the experiment. All experimental procedures were carried out
according to the Spanish legal regulations and the Helsinki
Declaration, and followed the protocol UMH.INJGa.01.14
approved by the Ethics Committee of the Universidad Miguel
Hernández de Elche.

Experimental Protocols
Two different experimental protocols were carried out (Figure 1)
in the same room, under controlled temperature (24.2 ± 1.5◦C,
range 21.2–27.9◦C) and partial humidity (42.4 ± 7.9%, range
22.6–55.0%). The position of the volunteers and experimenters,
as well the distance from the face of the subject to the different
objects in the room (video camera, air conditioning outlet, door,
windows, etc.) was standardized to avoid any environmental
variation along the procedures. As F6H8 does not induce corneal
punctate (14), fluorescein corneal staining was considered not
necessary. This way, the observed effects of F6H8 were not
masked or affected by fluorescein or its excipients.

In experimental protocol 1 (Figure 1A), 13 participants
received bilaterally a single 10 µL drop of F6H8 (EvoTearsTM,
Brill Pharma S.L., Spain) or saline solution (NaCl 0.9 %, Braun
Medical, S.A.) in two different sessions (application order at
random). In experimental protocol 2 (Figure 1B), corneal surface
temperature (CST) wasmeasured in a separate group of 7 subjects
(3 women and 4 men) before and after a single 10 µL drop of
F6H8 instilled only on the right eye.

Protocol 1: F6H8 or Saline Solution Applied to Both

Eyes
Participants in protocol 1 were distributed in two different
subsets (Figure 2A). In the first subset (protocol 1A) of 7 subjects
(3 women and 4men) CST, blinking frequency and ocular surface
sensations were evaluated before and at different times (5, 15,
30, and 60min) after F6H8 or saline bilateral treatment. In the
second subset (protocol 1B) of 6 participants (3 women and 3
men), tearing was measured before and after F6H8 or saline.

Protocol 1A: CST, Blinking Rate and Ocular

Sensations
Measurement of corneal surface temperature. Surface
temperature of the ocular tissue was measured from video
images taken with an infrared thermographic video camera
(InfRec R300SR, Nippon Avionics Co. Ltd., Tokyo, Japan). The
subject sat quietly with the head in a chin rest, fixing the gaze over
the objective of the camera, placed at a fixed distance of 50 cm.
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FIGURE 1 | Representative examples of the infrared video images of both eyes taken to define the CST changes after bilateral topical application of saline or F6H8 (A)

or unilateral (right eye) topical application of F6H8 (B).

FIGURE 2 | (A) Distribution of volunteer participants among the different experimental protocols of the pilot study. In experimental protocol 1, perfluorohexyloctane

(F6H8) or saline solution were applied to both eyes, while in experimental protocol 2, F6H8 was applied only to the right eye. CST: corneal surface temperature. (B)

CST was calculated from infrared thermographic video images. Temperature values of a 1 cm2 area of the corneal surface (white circumferences) were averaged to

obtain the CST value at a defined time point. (C) Parameters measured from infrared thermographic video images of the corneal surface. Six interblink intervals were

randomly selected and analyzed to obtain the following variables: (a) CST value immediately before a blink; (b) CST value immediately after blink; (c) CST value

immediately before the next blink; (d) CST change during a blink, calculated as b-a; (e) CST change during the interblink interval, calculated as c-b; and (f) CST change

between consecutive blinks, calculated as c-a. The time between a and b was considered as the duration of the blink movement. Also, the slope of the temperature

decay during the first second of the IBI was calculated (dotted line). (D) Schematic representation of the experimental set-up used to measure the dynamics of

temperature changes of F6H8 and saline solution during temperature changes induced with a Peltier cell placed inside the liquid in a tube. Temperature was measured

with a thermocouple submerged into the liquid contained in a tube. TPelt: temperature of the Peltier cell measured with a PT100 sensor. TF6H8, TSaline and TAir:

temperature measured with a thermocouple placed inside F6H8, saline solution, or an empty container, respectively.
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Recording parameters (digital 1.6x zoom; 320 x 240 pixels; 60
frames per second; 0.96 emissivity) as well as data extraction (a
circular area of 1 cm2 -range 0.93–1.01 cm2- specifically located
over the cornea) were established using dedicated software
(InfRec Analyzer NS9500 Standard, Nippon Avionics Co. Ltd.)
(Figure 2B). Both eyes were simultaneously recorded for 1min
at different time points: before and 5, 15, 30, and 60min after
the corresponding topical treatment. At the beginning of the
1min recording, subjects kept their eyes closed for 3 s and blink
spontaneously afterwards. CST values calculated by averaging
the temperature of 1 cm2 area of both corneas at the beginning
of the last registered interblink period were considered the main
parameter to define the effects of F6H8 and saline treatments on
ocular surface temperature.

Ocular surface sensations. Immediately after the end of the
1-min IR video recordings performed before and at different
times after F6H8 or saline treatment, subjects were asked to use
separate 10 cm Visual Analog Scales (VASs; where 0 represents
no sensation and 10 is the maximal sensation the subject can
imagine) (17) to score the following sensations experienced at
the ocular surface: cold, burning, dryness, pricking, foreign body
sensation, itching, gritty, eye fatigue, watering eyes, and light-
induced discomfort.

Blinking frequency. Immediately afterwards, the number of
blinks was manually counted from direct observation of the
subjects, who did not know that their blinks were being counted
in order to avoid conditioning by the experimental situation (18).
Volunteers were asked to read aloud the letters in a LogMar chart
placed at 1m distance, from left to right and from up to down.
Blinking frequency (BF) was calculated as the number of blinks
during the duration of the task for each subject. The average time
needed to perform one complete reading of the chart was 24.6 ±
8.6 s, although depending on the subject it varied between 15 and
60 s. BF while performing this task was measured before, and at
5, 15, 30, and 60min after the corresponding topical treatment.

Protocol 1B: Tear Volume
Tear volume was assessed before and 5, 15, and 30min
after the corresponding topical treatment using phenol
red threads carefully placed during 30 s in the inferior
conjunctival sac, near the temporal canthus. Tear volume
was expressed as the length of wet thread, measured in mm using
a rule.

Protocol 2: F6H8 or Saline Solution Applied Only to

the Right Eye
CST was measured in both eyes before and at different time
points after F6H8 instillation onto the right eye only, using
the infrared thermography analysis described before. To further
define the effects of F6H8, the following parameters were
analyzed from the IR video recordings performed before, 5
and 60min after treatment, averaging the values obtained from
6 interblink periods (Figure 2C): (a) CST value immediately
before one blink; (b) CST value immediately after blink; (c)
CST value immediately before next blink. From these values,
(d) CST change during blink, (e) CST change during the
interblink interval (IBI), and (f) CST change between consecutive

blinks were calculated. Also, the slope of the temperature
decay during the first second of the IBI was calculated.
Additionally, the temperature of 1 cm2 of the eyelid skin
was measured at the different time points before and after
eyedrop treatment.

Adaptation of F6H8 and Saline Solution to
Temperature Changes
An ultrafine flexible temperature thermocouple (IT-23,
Physitemp Instruments LLC, Clifton, NJ, USA) was placed
at the bottom of an Eppendorf tube filled with 1ml of F6H8
or saline solution, or empty of liquid (n = 4 observations
per condition). Temperature was continuously recorded with
a digital thermometer (BAT-12 Microprobe Thermometer,
Physitemp Instruments LLC) (Figure 2D). Increases and
decreases of temperature inside the tube were produced by a
home-made temperature controller device whose Peltier cell was
placed inside the tube. This device allows changing temperature
between 15◦ and 50◦C although only the temperature range
close to the normal ocular surface temperature values were
explored. From a resting Peltier temperature (TPeltier) around
34◦C, temperature was increased by 3◦C in a single step at an
approximate rate of 0.030◦C·s−1. After 8min at 37◦C, a 3◦C
cooling step was induced with the Peltier at a similar cooling rate.
TPeltier and temperature of the solution (TF6H8, Tsaline, or TAir)
were recorded simultaneously and stored in a computer using
a micro1401 CED interface and Spike2 software (both from
Cambridge Electronic Devices, Ltd., Milton, Cambridge, UK) for
further off-line analysis. As in the case of human measurements,
experiments were made at a room temperature of 23–24◦C and a
partial humidity around 40%.

Data Analysis
Power analysis for paired comparison analysis (matched pairs)
was performed using Gpower∗3.1 (19), considering an effect
size of 1.5 (Cohen’s d), a power of 0.8 and an α-error of 0.05.
The minimum number of observations was established in n
= 6, so that the sample size of participants in each subset of
the experimental protocol (n = 6 or 7) was enough to achieve
statistical significance.

Statistical analyses were performed using IBM SPSS Statistics
for Windows (Version 25.0). Descriptive analysis was performed
to detect possible outliers. Data distribution was studied with
the Kolmogorov-Smirnoff test. Variances were compared using
the Levene’s test for Equality of Variances, when necessary.
Normally distributed variables were compared with the paired
Student’s t-test, ANOVA or Repeated measurements ANOVA.
Non-normally distributed parameters were compared with the
Wilcoxon’s test. Categorical variables were compared with the
χ
2 test. Unless otherwise indicated, data are presented as

mean ± standard deviation (median ± interquartile range
if non-normal). Statistical differences were accepted for p <

0.05. Graphs were made with SigmaPlot software v11.0 (Systat
Software Inc., San Jose, CA, USA).
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TABLE 1 | Ocular surface sensations reported 5 min after bilateral topical

treatment with a 10 µL drop of F6H8 or saline solution.

F6H8 Saline

Sensations Sensation

intensity

Responding

subjects

Sensation

intensity

Responding

subjects

Cold 0 (0.0) 1/7 0 (0.0) 1/7

Dryness 0 (0.0) 0/7 0 (0.0) 1/7

Burning 0 (0.0) 1/7 0 (3.2) 2/7

Pricking 0 (0.0) 0/7 0 (0.0) 0/7

Foreign body 0 (6.0) 2/7 0 (7.1) 1/7

Itching 0 (0.0) 1/7 0 (6.8) 3/7

Gritty 0 (4.8) 1/7 0 (0.0) 1/7

Eye fatigue 0 (0.0) 1/7 0 (0.0) 0/7

Tearing 0 (0.0) 0/7 0 (8.4) 2/7

Light-evoked discomfort 0 (0.0) 0/7 0 (1.3) 1/7

Data shown on each column are: median (IQR) of VAS units; number of responding/total

number of explored subjects. No significant differences were found between F6H8 and

saline-treated groups for any sensation (Wilcoxon Signed Rank test and chi square test).

RESULTS

Effects of Topical F6H8 and Saline Solution
Applied to Both Eyes
We first studied the effects of bilateral topical instillation of a
10 µL drop of F6H8 on corneal surface temperature (CST),
blinking rate and ocular surface sensations measured at different
time points after treatment in 7 seven healthy young volunteers.
Results were also compared with those obtained after bilateral
instillation of an aqueous solution (saline solution).

Ocular Surface Sensations
Sensations of cold, dryness, burning, pricking, foreign body
sensation, itching, gritty, eye fatigue, watering eyes, and light-
induced discomfort experienced by the volunteers were evaluated
before and at different times after the corresponding treatment.
Overall, no conscious ocular sensations were evoked by F6H8 or
saline treatment at any of the studied time points, being 0 the
median of the scored values. As an example, Table 1 shows the
VAS values of the ocular sensations scored 5min after bilateral
topical treatment with F6H8 or saline. In addition, no differences
in the proportion of subjects reporting any sensation were found
between F6H8 and saline treatments (Table 1), although 5 out
of the 7 subjects were able to differentiate F6H8 from saline.
Two subjects also reported blurry vision for a few seconds after
F6H8 application.

Corneal Surface Temperature
At different times after bilateral topical treatment (Figure 1A),
CST values were calculated by averaging the temperature of 1 cm2

of corneal surface (Figure 2B) in infrared thermographic images
taken immediately after eye opening (Figure 2C, parameter b,
see methods). CST was significantly decreased after F6H8 (p
= 0.001, Repeated Measurements ANOVA; p = 0.001, 0.008,
0012 at 5, 15 and 60min, respectively, in comparison with
the value before treatment, post hoc Dunnett’s test; n = 7)

(Figure 3A). In contrast, bilateral instillation of saline solution
did not modify CST at any of the different time point after
treatment (Figures 1A, 3A, inset).

Tear Volume
No significant changes in the volume of tears collected with
phenol red threads were found after saline treatment (p = 0.640,
Repeated measures ANOVA; n = 6) (Figure 3B). Tear volume
was slightly increased only at 5min after F6H8, although the
change was not statistically significant (p = 0.151, Repeated
Measurements ANOVA; n= 6).

Blinking Frequency
Bilateral application of saline did not affect blink frequency
at any studied time point (Figure 3C inset). In contrast F6H8
significantly increased BF (p = 0.004, Repeated Measurements
ANOVA; p = 0.015 and 0.008 at 5 and 15min, respectively, in
comparison with the value before treatment, post hoc Dunnett’s
test; n= 7) (Figure 3C).

Effects of Unilateral Administration of
F6H8 on CST
This set of experiments was performed to further describe the
cooling effect of F6H8. In a separate group of volunteers (n =

7, see Methods), CST was measured before and after a single
drop of F6H8 applied only onto the right eye in order to
compare the dynamics of the temperature change during the
interblink intervals (IBIs) in the treated eye, in comparison with
the untreated, fellow eye. For that purpose, the evolution of CST
values along the interblink interval was analyzed (See Methods
and Figure 2C for details).

As expected, CST values at the beginning of the IBI were
reduced after F6H8 (p = 0.001, repeated measures ANOVA; p
= 0.002 and 0.007 for the values obtained at 5 and 15min after
treatment, respectively, compared with pre-treatment values,
post hoc Dunnett’s test; n = 7) with a maximal effect 5min after
treatment (Figure 4A). On the contrary, in untreated eyes, no
significant changes of the CST values at the beginning of the IBI
were found at any explored time point (Figure 4A). The CST
values obtained at the beginning of the IBI were significantly
lower in eyes receiving F6H8 than in untreated eyes at 5 and
15min after treatment (p = 0.001 and 0.023, respectively, paired
t-test; n = 7) (Figure 4A). To define if the cooling effect was
restricted to the eye surface, we also measured the temperature
of the eyelid skin, finding that it was not significantly modified
neither in the F6H8-treated (35.01 ± 0.61◦C vs. 35.3 ± 0.44◦C,
before and 5min after, respectively; p = 0.072, paired t-test) or
untreated eye (34.98± 0.57◦C vs. 35.37± 0.53◦C; p= 0.052).

To describe in more detail the effects of F6H8 on ocular
surface temperature, the dynamics of CST change along an
IBI was studied from the infrared video images taken before
and 5min after administration (when the maximal temperature
reduction was obtained), as well as 60min after F6H8 treatment
(Figures 4B–D). In addition to starting from a lower temperature
at the beginning of the IBI (Figure 4A), the decay of temperature
during IBI was more prominent in the F6H8-treated eyes at
5min after treatment, and recovered basal values afterwards
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FIGURE 3 | Effects of topical instillation of F6H8 (red) or saline solution (insets in gray) on both eyes. (A) CST at the beginning of the last interblink interval measured

from infrared thermographic images, p = 0.001, Repeated Measurements ANOVA; **p < 0.01 Dunnett’s test n = 7. (B) Tear volume measured with phenol red

threads, no significant differences, Repeated Measurements ANOVA, n = 6. (C) Blinking frequency (BF), p < 0.005, Repeated Measurements ANOVA; *p < 0.05, **p

< 0.01, Dunnett’s test, n = 7.

(Figure 4B, red bars). This effect was not present in the untreated
eye (Figure 4B, empty bars). During the IBI, eyes treated with
F6H8 cooled faster than untreated eyes, as reflected by the faster
slope of the temperature decay during the first second (−0.078±
0.16◦C/s and −0.165 ± 0.82◦C/s, before and 5min after F6H8,
respectively; p < 0.01, paired t-test). On the contrary, the slope
of temperature decay during IBI did not change significantly in
the untreated eye (−0.061± 0.145◦C/s and−0.082± 0.101◦C/s,
before and 5min, respectively; p= 0.437).

The reduction of CST induced by F6H8 was present
immediately after its application, although the magnitude of the
cooling effect was increasing with time during the first 15min
after treatment (Figures 1B, 4A). The increasing cooling during
this time was evidenced by the significant differences obtained
when comparing CST values of consecutive blinks (Figure 4C).

We then compared CST values obtained immediately before
and after a blink to measure the magnitude of warming of
the ocular surface that occurred during the time when the
eyes were closed. This CST increase produced during blink
was significantly larger in the eyes receiving F6H8 than in the
contralateral, untreated eyes (Figure 4D). As this warming of
the ocular surface is produced by heat transference between
the vascularized palpebral conjunctiva and the avascular corneal
tissue, we speculate whether the increased warming during blink
was due to a longer duration of the eye closure in F6H8-
treated eyes. We then used the IR video recordings to measure
blink duration, finding that the duration of eye closure during
blink was not modified after F6H8 (0.59 ± 0.14ms vs. 0.65 ±

0.18ms, before and 5min after F6H8, respectively; p = 0.128,
paired t-test).

Thermal Adaptation of F6H8 and Saline
Solution to Temperature Changes
Measurements done with a thermoprobe using the experimental
setup described in Figure 2D showed that for a sustained
Peltier cell temperature (TPeltier) around 33–34◦C and a room

FIGURE 4 | Effects of topical instillation of F6H8 only on the right eye in

comparison to the untreated left eye, on CST values measured from infrared

thermographic images. (A) CST measured immediately after blink, that is, at

the beginning of the interblink interval. (B) CST change during the IBI. (C) CST

change between consecutive blinks. (D) CST change during blink. Data are

mean ± standard deviation, n = 7; *p < 0.05, **p < 0.01, ***p < 0.001, paired

t-test.

temperature around 23◦C, temperature of the saline solution
(Tsaline) placed in a tube was close to 32◦C, that is, around 1◦C
lower than TPeltier (Figure 5A). Temperature of F6H8 (TF6H8)
in this condition was around 29◦C, that is, around 4–5◦C
lower than TPeltier (Figure 5A). In this regard, TF6H8 behaved
similarly to the temperature inside the tube measured without
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any liquid (Tair), about 4◦C lower than TPeltier (Figure 5A).When
changing the Peltier temperature, the profiles of Tsaline, TF6H8,
and Tair followed the changes of TPeltier (Figure 5A), although
maintaining the difference described above. Comparison of
Tsaline and TF6H8 during ascending and descending temperature
steps showed two different hysteresis patterns (Figure 5B).
Tsaline exhibited a slower rate of either increasing or decreasing
temperature in comparison with TF6H8. Furthermore, the
warming rate and cooling rate of each substance showed that
F6H8 tended to cool down faster than saline. Moreover, under
our experimental conditions, TF6H8 cooling rate was higher
around 34◦C (Figure 5B).

DISCUSSION

During the last 5 years, perfluorohexyloctane has been used as
an alternative treatment of DED, particularly for its evaporative
form due toMeibomian gland dysfunction (MGD) (8, 11, 13, 20).
After 4–8 weeks of treatment with F6H8, MGD patients show an
increase of the tear film and the lipid layer thickness (13), and
Schirmer I test and Tear Film Break-Up Time (TFBUT) values, as
well as a reduction of OSDI scores (8, 11). These data supported
the idea that F6H8 is effective to treat evaporative forms of DED
by improving the lipid layer of the tear film, and subsequently
reducing tear evaporation and increasing tear film stability. This
is a conceivable mechanism of action, because dry eye patients
show an increased tear evaporation rate (21) and, due to its low
surface tension, the F6H8 liquid state can act as a surfactant,
forming monolayers at the water/air interphase (22, 23). F6H8
incorporation into artificial lipid systems mimicking the lipid
layer of the tear film does not affect the tear film interface
properties and restores the fluidity of these artificial lipid layers
(24). Moreover, when applied onto healthy rabbit corneas, F6H8
spreads over larger areas than saline with lower viscosity (12).
Therefore, F6H8 may contribute to restore, at least partially, the
altered tear film lipid layer in evaporative DED patient.

To the best of our knowledge our observations are the first
demonstration that, in addition, topical application of F6H8
onto the human eye decreases for several minutes the corneal
surface temperature. Five min after administration of F6H8, CST
decreased about −0.7◦C in all the studied subjects. This ocular
surface cooling occurs in parallel to an increase in tearing and
blinking frequency that cannot be associated to the activation of
the nociceptive corneal nerve fibers responsible to reflex blinking
and tearing (25, 26) because any conscious sensation was evoked
by F6H8.

The biophysical mechanism explaining the cooling effect
of F6H8 is unknown. Cooling of the ocular surface after eye
opening has been related to tear evaporation rate. Thus, the
possibility exists that the compound would increase it. However,
to the best of our knowledge tear evaporation after topical F6H8
administration has not been measured neither in evaporative
DED patients, nor in healthy eyes. Only in an experimental
model in healthy rabbit eyes in vivo, Agarwal et al. have
described an acute biphasic effect of F6H8 in the percentage of
change of tear evaporation from baseline (12). They noticed that

although tear evaporation rate slightly and transiently increased
by 5min after F6H8 instillation, it tended to decrease 60–90min
afterwards, reaching values even below baseline. As the increase
of tear evaporation occurred also after application of saline, these
authors attributed this finding to the increased tear volume and,
possibly, to the transient alteration of the tear film structure due
to the instillation itself. An alternative mechanism could be the
evaporation of the molecule itself, although F6H8 exhibits a low
evaporation rate compared with other semifluorinated alkane
molecules. When tested in vitro, <1.5% evaporated within 1 h,
and more than 50% of the initial volume remained unevaporated
after 24 h, both at 35◦C (27). However, we cannot exclude that
an increased fluid evaporation rate would explain, at least in part,
the cooling effect found after F6H8 treatment.

According to Fourier’s law of heat conduction, heat flow
is inversely proportional to the thickness of the material and
directly proportional to (a) the heat diffusion area; (b) the
temperature gradient; and (c) the specific thermal conductivity
constant of materials. In our experiments we assumed that the
temperature gradient among the inner parts of the eye globe, the
exposed area of the corneal tissue and the room environment
keep constant, and that if F6H8 would cause an increase of the
tear film thickness, this would represent a negligible increase
of the total distance among the inner parts of the eye and
the environmental air. Therefore, it can be hypothesized that a
mechanism for the cooling effect of F6H8 would be an increase
of the tear film thermal conductivity after the incorporation of
F6H8 to the outermost tear film layer. In the presence of F6H8,
we observed an increase of the ocular surface warming produced
with blink (during the time that the eye is closed) and a faster
decay of CST during the IBI. Interestingly, when measuring the
thermal adaptation of F6H8 to temperature changes in a quite
naïve experiment, we observed that the temperature measured
inside liquid F6H8 tends to be between the temperature imposed
by the Peltier cell and that of the environmental room air. Despite
the absence of experimental data on the heat transmissivity
properties of the molecule, it can be speculated that an increase
of thermal conductivity and the subsequent increase of heat loss
from the ocular surface to the environment is produced after
topical administration of F6H8. However, an effect on radiative
cooling cannot be ruled out with the present set of experiments.

In the present experiments we have not studied the time
course of F6H8 removal from the ocular surface. Despite that,
it seems reasonable that, at least partially, the compound could
be drained continuously together with tear fluid, thus explaining
the attenuation of the cooling effect of F6H8 with time. Previous
studies estimated that the basal turnover of the tear film lipid
layer occurs at an approximated rate of 1% per min in healthy
humans (28). Therefore, if F6H8 is homogeneously distributed
along the lipid layer and both are drained together, 30min after
F6H8 application it would be expected that 30% of the compound
have been removed from the front of the eye. This value could be
even higher, given that the molecule has a specific-gravity greater
than water (9, 29). Thus, when the head is in vertical position
-as in our experiments- F6H8 would tend to be accumulated
in the lower part of tear film and the inferior tear meniscus,
which could accelerate its draining. Despite deeper studies on
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FIGURE 5 | (A) Sample recordings of the temperature measured inside the tube filled with F6H8, saline or empty (air) during experimental warming or cooling in the

conditions explained in method and Figure 1D. (B) Hysteresis curves during warming (closed symbols) or cooling (open symbols) inside saline (gray) and F6H8 (red).

the spatiotemporal dynamics of F6H8 and its distribution and
removal from the ocular surface would be welcomed, existing
literature on the precorneal residence of a F6H8 drop in an
ex vivo model of porcine eye shows a rapid drop of 36% of
the substance in the precorneal space during the first 10min
after its application. Interestingly, from that moment on, F6H8
elimination slowed down and 56% is still in the precorneal space
1 h after application (27), and even tends to accumulate in the
corneal epithelium (27, 30).

The F6H8-induced cooling of the ocular surface was produced
in parallel with transient increases in tearing and blinking.
Considering the role of corneal cold-thermoreceptors on basal
tear production and blinking (3, 4), it seems conceivable that
the changes in the activity of this population of trigeminal
sensory neurons would be signaling the F6H8-induced CST
reduction, thus inducing reflex changes in tearing and blinking.
Since the classical observations by Mapstone (31), both blinking
and tearing are considered as physiologic reflex responses that
counteract the ocular surface cooling produced during eye
opening. In our experiments we found prominent and long-
lasting effects of F6H8 in blinking frequency. We also confirmed
that along a blinking cycle, the eye is closed about 6% of the time
and open about 94% of the time, a long period when the cornea
is losing heat to the environment. Blinking may counteract CST
cooling by three mechanisms: (a) passive prevention of heat
loss; (b) heat transfer from the eyelids to the ocular surface

during blink; and, (c) re-layering of the warm tear film over
the cornea (31). F6H8 increased blinking rate and reduced IBI
duration therefore reducing the time that the ocular surface is
losing heat to the environment due to the cornea-air temperature
gradient. In the same direction, a slight increase of the eye-
closure time was observed, therefore favoring the heat exchange
from the lids to the cornea. However, both processes were not
enough to counteract the net cooling effect that is possibly
related to the spreading of the compound over the whole tear
film with each blink and the subsequent F6H8 evaporation.
Increased blink and tearing rate are due to an increase in
the TRPM8-dependent activity of cold thermoreceptor neurons,
whose central axon projections have synapses with second
order neurons of the trigeminal brainstem complex (32). The
corneal nerve endings of these thermosensitive cold neurons
are activated by cooling and tear hyperosmolarity (33), and
also by the continuous oscillatory changes of temperature and
wetness produced in the front of the eyes while they are
open. Psychophysical experiments showed that a corneal cooling
between 1 and 2◦C is needed to evoke conscious sensations of
cooling, while reducing the corneal temperature beyond these
values elicits sensations of irritation (17, 25). The increased
neural activity evoked in cold thermoreceptor neurons, especially
in those belonging to the high background-low threshold subtype
(HB-LT), by the small temperature and/or osmolarity changes
produced during the interblink interval (expected to be around
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0.5◦C) is sufficient to evoke blink reflex (34), while more intense
corneal cooling recruit the low background-high threshold (LB-
HT) cold thermoreceptor endings, whose activation, together
with that of nociceptive nerve endings, is claimed to evoke
irritation and pain sensations (35). In the present experiments we
found that F6H8 reduces the corneal temperature∼1◦C and also
induces a fast and intense further cooling of the corneal surface
during the interblink interval, two times larger in F6H8-treated
eyes than in untreated or saline-treated eyes. We propose that
this corneal temperature drop produced by F6H8 increases the
firing of HB-LT cold thermoreceptor nerve endings to a level
enough to reflexively increase blinking rate and tear production,
although not enough to evoke cooling sensations arising from
the ocular surface. The absence of conscious sensations after
F6H8 may be also explained by the higher tear film stability
produced by the molecule (8, 11). The F6H8 layer formed over
the tear filmwould reduce aqueous tear evaporation and prevents
the local production of tear hyperosmolarity and drying spots
that are leading to the activation of corneal nerve endings and
development of ocular sensations of dryness and irritation (36).

In summary, we described here the unknown long-lasting
cooling effect of F6H8 when applied topically onto the healthy
ocular surface. This effect was paralleled by thermal homeostatic
responses to protect the avascular ocular surface, such as the
increase of tearing and blinking, both reflex responses driven by
the TRPM8-mediated activation of corneal cold-thermoreceptors
in response to ocular surface cooling. Besides this temperature
reduction, F6H8 increases tear film stability and thickness, which
limits the production of the local osmolarity changes underlying
the genesis of ocular sensations. As a concluding remark, F6H8
instilled onto the eye reduces corneal surface temperature enough
to increase tearing and blinking rate but not to evoke conscious
sensations of ocular discomfort. The increased tear volume more
frequently redistributed over the ocular surface helps to prevent
corneal dryness and contributes to the clinical benefits of F6H8
in DED and other ocular surface pathologies.
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After the unilateral inflammation or nerve lesion of the ocular surface, the ipsilateral

corneal sensory nerve activity is activated and sensitized, evoking ocular discomfort,

irritation, and pain referred to the affected eye. Nonetheless, some patients with

unilateral ocular inflammation, infection, or surgery also reported discomfort and pain

in the contralateral eye. We explored the possibility that such altered sensations in the

non-affected eye are due to the changes in their corneal sensory nerve activity in the

contralateral, not directly affected eye. To test that hypothesis, we recorded the impulse

activity of the corneal mechano- and polymodal nociceptor and cold thermoreceptor

nerve terminals in both eyes of guinea pigs, subjected unilaterally to three different

experimental conditions (UV-induced photokeratitis, microkeratome corneal surgery, and

chronic tear deficiency caused by removal of the main lacrimal gland), and in eyes of naïve

animals ex vivo. Overall, after unilateral eye damage, the corneal sensory nerve activity

appeared to be also altered in the contralateral eye. Compared with the naïve guinea pigs,

animals with unilateral UV-induced mild corneal inflammation, showed on both eyes an

inhibition of the spontaneous and stimulus-evoked activity of cold thermoreceptors, and

increased activity in nociceptors affecting both the ipsilateral and the contralateral eye.

Unilateral microkeratome surgery affected the activity of nociceptors mostly, inducing

sensitization in both eyes. The removal of the main lacrimal gland reduced tear volume

and increased the cold thermoreceptor activity in both eyes. This is the first direct

demonstration that unilateral corneal nerve lesion, especially ocular surface inflammation,

functionally affects the activity of the different types of corneal sensory nerves in both

the ipsilateral and contralateral eyes. The mechanisms underlying the contralateral

affectation of sensory nerves remain to be determined, although available data support

the involvement of neuroimmune interactions. The parallel alteration of nerve activity

in contralateral eyes has two main implications: a) in the experimental design of both

preclinical and clinical studies, where the contralateral eyes cannot be considered as a

control; and, b) in the clinical practice, where clinicians must consider the convenience

of treating both eyes of patients with unilateral ocular conditions to avoid pain and

secondary undesirable effects in the fellow eye.

Keywords: dry eye, sensory nerve activity, contralateral effects, corneal inflammation, corneal lesion

41

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.767967
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.767967&domain=pdf&date_stamp=2021-11-15
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mcarmen.acosta@umh.es
https://doi.org/10.3389/fmed.2021.767967
https://www.frontiersin.org/articles/10.3389/fmed.2021.767967/full


Luna et al. Nerve Activity in Contralateral Eyes

INTRODUCTION

The ocular surface (OS) is innervated by different functional
types of sensory neurons that not only evoke conscious
sensations but also contribute to corneal tissue tropism and
initiate protective motor and autonomic reflexes such as blinking
and tearing (1–7). There are two types of nociceptor fibers
innervating the cornea, namely, mechanonociceptors, which
express Piezo2 channels and respond only to mechanical
forces (8, 9), and polymodal nociceptors, which express a
diversity of ion channels, such as TRPA1, TRPV1, ASIC, and
Piezo2 that allow them to respond to a variety of stimuli
applied on their receptive field, including mechanical forces,
heating, and several irritant chemical substances (9–13). In
the conjunctiva, low-threshold mechanoreceptors that evoke
touch when stimulated have been also described (14, 15). The
selective stimulation of these two populations of nociceptors
in humans evokes sensations of irritation and pain, although
with different qualities of the sensation (6). In humans,
the selective activation of polymodal nociceptors has been
described as the sensory arm to evoke the aforementioned
protective tearing and blinking reflexes (1, 7). Additionally,
cold thermoreceptors have been described in the cornea (10,
11, 16–19). Cold thermoreceptors express TRPM8 transducing
channels and typically respond to decreases in temperature
with different thresholds: canonical cold thermoreceptors with
high background activity at normal corneal temperature and
high sensitivity to cooling, and presumed cold nociceptors, that
exhibit a low background activity and requires more intense
cooling to increase its firing rate. Their selective stimulation
in humans evokes sensations described as freshness/cold or
dryness/pain, respectively, depending on the amplitude of
temperature decrease (6). In addition, to evoke conscious
sensations, the activity of cold thermoreceptors expressing
TRPM8 channels contribute to the control of basal tearing and
spontaneous blinking (3–5, 20).

We have previously shown that after unilateral OS
inflammation or lesion, corneal sensory nerve activity and
sensations are altered in the ipsilateral eye (21–26). As in other
tissues, corneal nociceptors (specially polymodal nociceptors)
are sensitized after lesion or during ocular surface inflammation
(22–27). Nociceptor sensitization is characterized by an increase
in spontaneous activity, reduction of the response threshold,
and/or increased response to stimulation with stimuli of the
same intensity (28). Additionally, corneal nociceptors also
contribute to the inflammatory processes of the OS (a process
known as neurogenic inflammation) (29, 30) by their release of
pro-inflammatory neuropeptides as substance P and Calcitonin
Gene-Related Peptide (CGRP) (31–34). The activity of cold
thermoreceptors is decreased under inflammation (23, 24)
through the inhibition of the TRPM8 channels by inflammatory
mediators (35), and increased in chronic tear deficiency
through changes in the Na+ and K+ channel expression and/or
activity (25).

However, no previous studies have defined the changes in
the sensory nerve activity at the contralateral eye nerves after
unilateral nerve lesion or inflammation and if the putative change

in their neural activity affects sensations only or also affects
ocular tropism and protective reflexes. This is of special relevance
because previous studies suggest bilateral changes in corneal
sensitivity in patients with unilateral infectious keratitis (36), as
well as bilateral changes in corneal nervemorphology and density
in humans (37–42) and animals (43, 44).

In the present study, we recorded the impulse activity of
mechano- and polymodal nociceptor and cold thermoreceptor
nerves in guinea pigs, innervating the cornea of both eyes,
under different experimental inflammatory or injury conditions
(UV-induced photokeratitis, microkeratome surgery, and
chronic tear deficiency) affecting only one eye, to answer
the question of whether unilateral eye surface damage also
modifies the nerve activity and sensitivity of the contralateral
fellow eye. This information is important for the design
of research protocols in the future, in which the use of
contralateral eyes as controls should be excluded, and also to
determine the convenience of applying bilateral treatment when
unilateral ocular inflammation, infection, or injury affect one
of the eyes.

MATERIALS AND METHODS

Animals
Guinea pigs of both sexes, weighing 200–400 g at the beginning
of the experiment, were used. The study was performed in
accordance with the Association for Research in Vision and
Ophthalmology (ARVO) Statement for the Use of Animals
in Ophthalmic and Vision Research, the National Institutes
of Health (NIH) Guide for the Care and Use of Laboratory
Animals, the European Union Directive (2010/63/EU),
and the Spanish regulations on the protection of animals
used for research, following protocols approved by the
Ethics Committee of the Universidad Miguel Hernández
de Elche. The animals were kept in individual cages under
a controlled day–night cycle with free access to food
and water.

Experimental Groups
The animals were distributed into four groups: (a) Control: A
group of 42 animals without any experimental manipulation;
(b) Unilateral UV-irradiation: A group of 9 animals subjected to
unilateral UV irradiation of the OS; (c) Unilateral microkeratome
corneal lesion: A group of 6 animals in which unilateral corneal
nerve lesion was caused mechanically; (d) Unilateral main
lacrimal gland excision: A group of 6 animals subjected to
unilateral excision of the main lacrimal gland.

After the different experimental interventions, the animals
were allowed to recover postoperatively and then housed
individually under standard conditions in a certified animal
facility. They were inspected daily for ocular inflammation,
corneal epithelial defects or infections, as well as for abnormal
behavior, and were treated accordingly. Before euthanizing the
animal for the ex vivo electrophysiological recording of the
electrical activity of corneal sensory nerves (see below), the ocular
surface of both eyes was evaluated with a pocket slit lamp and the
tear volume was measured.
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Unilateral UV Irradiation
Under deep anesthesia (80mg/kg ketamine and 4mg/kg xylazine,
i.p.), 254 nm UV-C radiation (1,000 mJ/cm2) was delivered for
49min to one eye of the animal with a UV lamp (VL-4.C 230V
50/60Hz; Vilber Lourmat, Marne-la-Vallée, France) placed at a
distance of 17 cm from the eye. The animals were euthanized
48 h after the UV irradiation and both eyes were excised for
electrophysiological recording. In a previous work, we showed
that after the exposure to this intensity of UV radiation, mild
clinical signs of inflammation and significant changes of the
spontaneous and stimulus-evoked activity of the corneal sensory
receptors were developed in the ipsilateral eye, maximal of 48 h
after UV (24).

Unilateral Microkeratome Corneal Lesion
In the anesthetized guinea pigs (ketamine 50 mg/kg and xylazine
5 mg/kg, i.p.; topical 0.1% tetracaine, and 0.4% oxybuprocaine), a
corneal flap of 4mm diameter was cut at the mid-stromal depth
in one eye using a custom-made microkeratome (Deriva Global,
SL, Valencia, Spain) designed for the guinea pig eye (26). As the
more prominent effects on the nerve activity in the lesioned eye
were seen 24–48 h after the corneal lesion, in the present work,
the animals were euthanized 24–48 h after the corneal lesion to
study the corneal nerve activity in both eyes.

Unilateral Main Lacrimal Gland Excision
The animals were anesthetized with ketamine (90 mg/kg i.p.) and
xylazine (5 mg/kg i.p.) for the unilateral removal of the main
lacrimal gland. After performing an 8mm skin incision on the
temporal side, posterior to the lateral canthus, the fibrous capsule
of the exorbital lacrimal gland was exposed and dissected, and
the lacrimal gland was carefully excised (25). A drop of antibiotic
(3 mg/ml tobramycin) was applied onto the surgical area before
suturing the skin incision using a 6.0 braided silk suture. Before
euthanasia and ex vivo recording, animals were housed for 4–
11 weeks after surgery to fully develop corneal nerve alterations
consecutive to chronic tear deficiency (25).

Electrophysiological Recording
and Analysis
The animals were killed with an i.p. overdose of sodium
pentobarbitone, and their eyes, together with the bulbar and
tarsal conjunctiva, were enucleated. The whole eye or the excised
cornea (see below) was placed in a custom recording chamber
superfused with the following physiological solution (in mM):
133.4 NaCl, 4.7 KCl, 2.0 CaCl2, 1.2 MgCl2, 16.3 NaHCO3, 1.3
NaH2PO4, and 7.8 glucose, gassed with carbogen to a pH = 7.4.
The temperature of the perfusion solution was maintained at a
basal temperature of 34◦Cwith a homemade feedback-controlled
Peltier device. Two types of preparations were used for the ex
vivo recording of the corneal nerve activity, namely, the “whole
eye” and the “isolated cornea” preparations (23, 24, 45). The
“whole eye” preparation was particularly suitable for recording
the polymodal and mechanosensory nociceptive units in the
ciliary nerves, whereas, in the “isolated cornea” preparation, the
activity of cold-sensitive units could be more easily identified [see
(23) for a detailed schema of the preparations].

Recording Preparations

Whole Eye Preparation
The connective tissue and extraocular muscles in the back of
the eye were carefully removed to expose and isolate the ciliary
nerves traveling around the optic nerve. The eye was then
placed in a recording chamber divided into two compartments
by an elastomer-coated plastic wall (Sylgard 184; Dow Corning,
Midland,Michigan, United States). The front of the eye including
the cornea and the conjunctiva was introduced into a round
perforation made in the center of the dividing wall to which
the bulbar conjunctiva was pinned, thereby isolating the anterior
segment from the back of the eye and the ciliary nerves,
and preventing the direct exposure of the ciliary nerves to
the solutions applied onto the corneal surface. The anterior
compartment was continuously bathed with saline solution at
34◦C and the back compartment was filled with warmmineral oil.
The thin nerve filaments were teased apart from the ciliary nerve
trunks and placed on an Ag-AgCl electrode for a monopolar
recording of the unitary impulse activity of the axons innervating
the cornea. Electrical signals from the recording electrode
were fed to a 50-Hz noise eliminator (HumBug, Digitimer;
Welwyn, United Kingdom) and then amplified and filtered
(DAM50 amplifier; WPI, Sarasota, Florida, United States).
Then, the signals passed through an analog-digital converter
(CED Micro-1401; Cambridge Electronic Design, Cambridge,
United Kingdom) and were stored in a personal computer (PC)
with Spike2 software (v8.0; Cambridge Electronic Design) for the
offline analysis.

Isolated Cornea Preparation
The corneas were excised around the limbus and then pinned to
the bottom of a recording chamber continuously superfused with
a physiological solution maintained at 34◦C with a homemade
Peltier device. To record the nerve terminal impulse (NTI)
activity, a 50-µm-diameter glass micropipette filled with the
physiological saline solution was applied gently to the corneal
surface using a micromanipulator and then attached to the
cornea by slight suction with a syringe. The electrical signals with
respect to an Ag/AgCl pellet placed in the chamber were passed
through a 50Hz noise eliminator, amplified (AC preamplifier NL
103; Digitimer, Welwyn, United Kingdom), filtered (high pass
150Hz, low pass 5 kHz; filter module NL 125; Digitimer), and
then transferred to a PC with a Cambridge Electronic Design
(CED) micro-1401 acquisition system and dedicated software, to
be stored until the offline analysis.

Experimental Protocols
To study the electrophysiological activity of the corneal
polymodal nociceptors, mechanonociceptors, and cold
thermoreceptors, the following experimental protocols
were performed:

Polymodal Nociceptors and Mechanonociceptors
After recording the electrical activity for 1min to determine
the spontaneous activity of the unit, the receptive field (RF)
of the nociceptor fiber was located and mapped by mechanical
stimulation with a fine paintbrush and a suprathreshold von
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Frey hair. Then, the mechanical threshold was determined with
calibrated von Frey hairs of increasing force (range, 0.078–4
mN; Bioseb, Vitrolles, France). To ascertain its polymodality,
the chemical sensitivity was tested with a low-flow jet of 98.5%
carbon dioxide (CO2) and 1.5% air applied onto the RF for
30 s (CO2 pulse). The response to the temperature changes was
eventually tested by changing the temperature of the perfusion
solution for 30 s from 34◦C up to 45◦C (heating ramp) or down
to 20◦C (cooling ramp). At least 3min were allowed between the
different stimuli.

Cold Thermoreceptors
Nerve impulses originating at the single cold-sensitive nerve
terminals were identified by their usually regular ongoing
discharge at the basal temperature, which increased with cooling
and decreased with warming. After recording the spontaneous
activity at the basal temperature for at least 1min, a cooling ramp
from 34 to 20 ◦C was performed, followed by rewarming to 34
◦C for 3min. Then, a heating ramp to 45 ◦C was applied for 30 s
before returning to the basal temperature.

Analysis of Sensory Nerve Activity
The characteristics of the spontaneous and stimulus-evoked
impulse activity of the sensory nerves recorded in the control
eyes, inflamed/lesioned/tear deficient eyes, and in contralateral
eyes were analyzed offline using the Spike2 software. In the
present work, the following parameters were calculated to
compare the differences between the control, insulted, and
contralateral eyes:

Polymodal Nociceptors
(a) The spontaneous activity was measured for 1min at the
beginning of the recording, before any intended stimulation (in
impulses/s). (b) The mechanical threshold (in mN). (c) The
latency of the impulse discharge evoked by the CO2 pulse,
measured as the time (in s) elapsed between the onset of the
gas pulse and the beginning of the impulse response. (d) The
mean discharge rate of the response evoked by the CO2 pulse
(in impulses/s). (e) Postdischarge, the mean discharge rate (in
impulses/s) for 30 s after the end of the CO2 pulse.

Mechanonociceptors
(a) Spontaneous activity at the beginning of the recording,
before any intended stimulation (in impulses/s). (b) Mechanical
threshold (in mN).

Cold Thermoreceptors
(a) Ongoing activity measured for 1min at a basal temperature
of 34◦C at the beginning of the recording (in impulses/s). (b)
Cooling threshold, calculated as the decrease in temperature (in
◦C) during the cooling ramp from 34 to 20◦C required to increase
the mean frequency of discharge by 25% for 20 s before the ramp.
(c) Peak frequency, the maximal value of the firing frequency (in
impulses/s) reached during the cooling ramp. (d) Temperature
change needed for the peak frequency, as the temperature change
(in ◦C) is required to reach the peak frequency value during the
cooling ramp.

Tear Volume Measurement
Tearing was measured in both eyes under stable environmental
conditions (23◦C temperature; 55% humidity) using commercial
phenol red threads (Zone-Quick; Menicon, Tokyo, Japan)
without topical anesthesia (23–25), before and after inducing
the corneal insults (48 h after UV radiation, 24–48 h after the
microkeratome lesion and 4 weeks after removal of the main
lacrimal gland). The lower lid was gently pulled down, the folded
2mm end of the thread was gently placed on the nasal palpebral
conjunctiva, and the lid was then released. After a period of
30 s, the lower lid was, again, pulled down and the thread was
gently removed. The entire length of the red-stained portion
of the thread (in mm) was measured with a ruler under a
stereomicroscope with an accuracy of 0.5mm. The length of the
red thread reflects both the tear volume in the conjunctival sac
and the tear secretion over the 30 s of measurement.

Statistical Analysis of Data
The data were collected and processed for statistical analysis
using the SigmaPlot software (SigmaPlot 11.0; Systat Software
Inc, Point Richmond, California, United States). Unless
otherwise stated, the data are expressed as mean ± SEM, with
n being the number of explored units or eyes, as appropriate.
The differences between the data from the different experimental
groups were explored using a t-test or Mann-Whitney as needed.
The differences between more than two groups were tested using
one-way ANOVA or ANOVA on ranks, as needed. A P-value of
0.05 or less was considered significant.

RESULTS

Unilateral UV Irradiation-Induced Mild
Ipsilateral Inflammation, and the
Sensitization of Nociceptors and Cold
Thermoreceptor Inhibition in Both the
Ipsilateral and Contralateral Eyes
Effects on the Ipsilateral, UV-Irradiated Eye
Forty-eight hours after the unilateral ocular exposure to 1,000
mJ/cm2 UV radiation, mild inflammation of the ocular surface
(especially mild conjunctival hyperemia) could be observed
only in the ipsilateral eye. The corneal nociceptors recorded
in the ipsilateral eyes were sensitized, as reflected by the
development of spontaneous activity (present in 3.1% of the
259 mechanonociceptor units from the control eyes and 18.5%
of the 27 mechanonociceptor units recorded in the UV-
irradiated eyes; p < 0.05, Z-test) and the significant decrease
of the mechanical threshold of mechanonociceptors (0.64 ±

0.04 mN vs. 0.32 ± 0.03 mN, control vs. UV-irradiated eyes;
p < 0.01, Mann-Whitney test). The spontaneous activity of
polymodal nociceptors was significantly increased (6.6% in the
control vs. 22% in the UV-irradiated eyes; n = 152 and 41,
respectively; p < 0.01, Z-test), and also the discharge rate
evoked by chemical stimulation was significantly higher (1.9 ±

0.2 imp/s vs. 3.4 ± 0.5 imp/s, control vs. UV-irradiated; n =

110 and 45 units, respectively, p < 0.01, Mann-Whitney test),
suggesting the development of sensitization also in the polymodal
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TABLE 1 | The spontaneous activity and stimulus-evoked responses of corneal nociceptors recorded in the control eyes and the eyes contralateral to UV irradiation,

microkeratome lesion, or lacrimal gland removal (tear deficiency).

Control eyes Contralateral eyes

Uv radiation Microkeratome lesion Tear deficiency

Mechanonociceptors

Mechanical threshold (mN) 0.64 ± 0.04 0.41 ± 0.12 0.42 ± 0.06* 0.58 ± 0.18

Spontaneous activity

Present in (%) 3,1% 0% 0% 0%

Spontaneous activity (imp/s) 0.7 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

n 275 11 42 8

Polymodal nociceptors

Mechanical threshold (mN) 0.35 ± 0.03 0.35 ± 0.04 0.32 ± 0.03 0.27 ± 0.14

Spontaneous activity

Present in (%) 6.6% 25%* 12.5% 0%

Spontaneous activity (imp/s) 0.6 ± 0.3 1.1 ± 0.9 0.8 ± 0.3 0 ± 0

Response to CO2 pulse

Latency (s) 13.01 ± 0.77 10.68 ± 1.78 9.42 ± 1.85 16.80 ± 2.65

Mean discharge rate (imp/s) 1.94 ± 0.16 2.59 ± 0.47 2.12 ± 0.65 1.28 ± 0.51

Postdischarge (imp/s) 2.13 ± 0.50 2.86 ± 1.49 0.46 ± 0.15* 0.76 ± 0.39

n 167 19 17 6

*p < 0.05, t-test or Mann-Whitney or Z-test (%), differences with control eyes.

TABLE 2 | The spontaneous and stimulus-evoked activity of the corneal cold thermoreceptors recorded in the control eyes and the eyes contralateral to UV irradiation,

microkeratome lesion, or lacrimal gland removal (tear deficiency).

Control eyes Contralateral eyes

Uv radiation Microkeratome lesion Tear deficiency

Cold thermoreceptors

Ongoing activity at 34◦C

Present in (%) 100% 100% 100% 100%

Ongoing activity (imp/s) 9.0 ± 0.5 8.6 ± 2.2 6.8 ± 0.8* 12.5 ± 2.8*

Response to cooling ramp from 34 to 20 ◦C

Threshold (1◦C) −2.7 ± 0.2 −1.6 ± 0.1* −2.3 ± 0.2 −1.9 ± 0.3

Peak frequency (imp/s) 30.6 ± 1.3 24.7 ± 4.1 29.6 ± 2.2 35.4 ± 5.5

Temp. change to peak frequency (1◦C) −6.1 ± 0.4 −4.0 ± 0.5* −7.7 ± 0.9 −5.1 ± 0.6

n 67 14 24 10

*p < 0.05 t-test, differences with control eyes.

nociceptor units recorded in the UV irradiated corneas. The
spontaneous and cold-evoked activity of cold thermoreceptors
was reduced in the UV-irradiated eyes (30.6 ± 1.3 imp/s vs.
18.9 ± 1.8 imp/s, control vs. UV-irradiated; n = 67 and 19,
respectively; p < 0.001, t-test), while the cooling threshold and
temperature to reach the peak frequency were not modified (data
not shown).

Effects on the Contralateral, Non-irradiated Eye
In the contralateral eyes, no clinical signs of inflammation were
found 48 h after UV irradiation. On the contrary, the activity
of the different types of corneal nerves showed changes similar
to those observed in the ipsilateral eye, although overall to a
lesser degree. The mechanical threshold of mechanonociceptors

was slightly reduced, although the difference was not statistically
significant (Table 1). Similarly, the spontaneous activity of the
mechanonociceptors and polymodal nociceptors did not change
(Table 1). Twenty-five percent of the polymodal nociceptors
exhibited spontaneous activity, which means the frequency was
significantly higher than in the control eyes (Table 1), although
no changes were observed in their response to CO2 pulses
(Table 1).

The ongoing activity at the basal temperature and peak
response to the cooling ramps of cold thermoreceptors were
not significantly modified in the contralateral eyes (Table 2),
although the cooling threshold and the temperature change
to reach the peak frequency were significantly reduced in
comparison with the control eyes (Table 2).
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FIGURE 1 | Effects of unilateral UV irradiation, microkeratome lesion, and main lacrimal gland removal on the mechanical threshold of the mechanonociceptor units

recorded in the ipsilateral and contralateral (denoted by “Ctl” label) eyes. The data are presented as mean ± SEM. No significant differences were found between the

data from the ipsilateral and contralateral eyes inside each group, Mann-Whitney test.

Differences Between Nerve Activity and Tear Volume

of UV-Irradiated and Contralateral Eyes
When comparing the activity of the mechanonociceptors
(Figure 1), polymodal nociceptors (Figure 2), and cold
thermoreceptors (Figure 3) from the UV-irradiated and
contralateral eyes, no significant differences were found. The tear
volume was not significantly affected in neither the irradiated
nor in the contralateral eyes when compared with the control
(10.6± 0.7m, n= 42; 12.7± 1.9mm, n= 9; 11.3± 1.3mm, n=

9; control, UV-irradiated eyes and contralateral, respectively; p
> 0.05, one-way ANOVA).

Unilateral Corneal Microkeratome
Lesion-Induced Ipsilateral Inflammation
and the Sensitization of Nociceptors in
Both the Ipsilateral and Contralateral Eyes
Effects on the Ipsilateral, Microkeratome Lesioned

Eye
Twenty-four to 48 h after the unilateral corneal lesion with
the microkeratome, a mild inflammation of the ocular surface
(especially mild conjunctival hyperemia) was developed in the
ipsilateral eye. The corneal surgical lesion with a microkeratome
induced the sensitization of corneal nociceptors. The mechanical
threshold of mechanonociceptors was significantly reduced (0.64

± 0.04 vs. 0.35 ± 0.0.2 mN, control vs. lesioned eyes; n =

275 and 48, respectively; p < 0.05, Mann-Whitney test), and
the response to the CO2 pulses of polymodal nociceptors was
significantly increased (1.9 ± 0.2 vs. 3.4 ± 0.5 imp/s, control vs.
lesioned; n = 110 and 33, respectively; p < 0.01, Mann-Whitney
test). The spontaneous and stimulus-evoked activity of the cold
thermoreceptors of the contralateral eyes presented values similar
to that of the control eyes (data not shown).

Effects on the Contralateral, Non-lesioned Eye
The mechano-nociceptors of the contralateral eyes presented a
significantly lower mechanical threshold, although they did not
develop spontaneous activity (Table 1). The spontaneous and
stimulus-evoked activity of the polymodal nociceptors was not
significantly affected or slightly reduced in the contralateral eyes
(Table 1). Similarly, the spontaneous and cold-evoked activity
of the cold thermoreceptor of the eyes contralateral to the
microkeratome lesion was similar to the control or slightly
reduced (Table 2).

Differences Between Nerve Activity and Tear Volume

of Microkeratome Lesioned and Contralateral Eyes
No differences were noticed in the mechanical threshold of the
mechano-nociceptors recorded in the lesioned and contralateral
(Figure 1). Regarding polymodal nociceptors, the spontaneous
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FIGURE 2 | The effects of unilateral UV irradiation, microkeratome lesion, and main lacrimal gland removal on the ongoing activity and the response to the chemical

stimulation with carbon dioxide (CO2) of the polymodal nociceptor units recorded in the ipsilateral and contralateral (denoted by “Ctl” label) eyes. The data are

presented as mean ± SEM. *p < 0.05, **p < 0.01, t-test or Mann-Whitney, as needed, the differences between the data from the ipsilateral and contralateral eyes.

activity and postdischarge to CO2 stimulation were statistically
lower in the contralateral than the lesioned eyes (Figure 2). No
differences were found when comparing the spontaneous and
stimulus-evoked activity of cold thermoreceptors (Figure 3).

No changes in tear volume were found in the lesioned and
contralateral eyes compared with the control (10.6 ± 0.7mm, n
= 42; 7.5± 0.9mm, n= 6; 10.8± 2mm, n= 6; control, lesioned
and contralateral eyes, respectively; p > 0.05, one-way ANOVA).

Unilateral Lacrimal Gland Removal
Decreased Tear Volume and Sensitized
Corneal Cold Thermoreceptors in Both the
Ipsilateral and Contralateral Eyes
Effects on the Ipsilateral Eye
Four weeks of tear deficiency induced by the unilateral removal of
the main lacrimal gland induced signs of mild OS inflammation
only in the operated side, with mild conjunctival hyperemia in all

the operated guinea pigs and occasional mild corneal punctate
after fluorescein staining. The tear volume was significantly
reduced in the operated side and also in the contralateral eye,
although to a lesser extent (see below Differences between
the nerve activity and tear volume of the ipsilateral and
contralateral eyes for details). The mechanical threshold of the
mechanonociceptors was not modified 4 weeks after the lacrimal
gland ablation (0.64 ± 0.04 vs.0.6 ± 0.09 mN, control vs. tear-
deficient eyes; n = 167 and 27, respectively; p > 0.05, Mann-
Whitney test). The spontaneous activity did not change (0.6 ±

0.3 imp/s vs.0.6 ± 0.4 imp/s, control vs. tear-deficient eyes; n =

259 and 27, respectively) and the response to CO2 pulses (1.9
± 0.2 vs. 2.6 ± 0.5 imp/s, control vs. lesioned; n = 110 and
14, respectively) of polymodal nociceptors was slightly increased,
although the differences were not statistically significant. On the
other hand, the spontaneous activity at the basal temperature
(9 ± 0.5 vs. 14 ± 2.8 imp/s, control vs. tear-deficient eyes; n
= 67 and 8, respectively; p < 0.01, t-test) and stimulus-evoked
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FIGURE 3 | Effects of unilateral UV radiation, microkeratome lesion, and main lacrimal gland removal on the ongoing activity and the response to cooling ramps of the

cold thermoreceptor units recorded in the ipsilateral and contralateral (denoted by “Ctl” label) eyes. The data are presented as mean ± SEM. *p < 0.05, t-test or

Mann-Whitney, the differences between the ipsilateral and contralateral data inside each group.

activity (peak frequency to cooling ramps: 30.6 ± 1.2 vs. 39.6 ±

6.3 imp/s, control vs. tear-deficient; p < 0.05, t-test) of the cold
thermoreceptors of the operated side was significantly higher
than in the control eyes, with no changes in the cold response
thresholds (data not shown).

Effects on the Contralateral Eye
Similar to the ipsilateral eyes, the activity of the
mechanonociceptors and polymodal nociceptors was not
significantly modified in the eyes contralateral to lacrimal gland
removal (Table 1), except for the small but significant higher
spontaneous activity of the polymodal nociceptors compared
with those of the naïve, control eyes (Table 1). Similarly, a higher
value of spontaneous activity was the only significant difference
found in the activity of the cold thermoreceptors recorded in the
contralateral eyes (Table 2).

Differences Between the Nerve Activity and Tear

Volume of the Ipsilateral and Contralateral Eyes
No significant differences were found when comparing
the spontaneous and stimulus-evoked activity of the

mechanonociceptors (Figure 1), polymodal nociceptors
(Figure 2), and cold thermoreceptors (Figure 3) recorded in the
eyes contralateral and ipsilateral to lacrimal gland removal.

As expected, according to previous work (25), 11 weeks
after the unilateral lacrimal gland excision, tear volume was
significantly decreased in both eyes (10.6 ± 0.7, 1.3 ± 0.4, 4.0 ±
1.0mm; control, ipsilateral and contralateral eyes, respectively, n
= 6; p< 0.001, ANOVA on ranks, with Dunn’s post hoc test). The
tear volume reduction was significantly larger on the ipsilateral
side than on the contralateral side (p< 0.05,Mann-Whitney test).

DISCUSSION

For the first time, the present results show the development
of the same changes in the sensory nerve activity in both eyes
after the experimental unilateral inflammation or lesion of the
OS in only one eye. Corneal nerve activity is altered in the
corneas of the contralateral side, although the magnitude of those
changes was usually smaller than in the ipsilateral side and does
not always achieve a statistically significant level. Mild corneal
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inflammation produces a sensitization of nociceptors and an
inhibition of the activity of the cold thermoreceptors (23, 24),
and the surgical lesion of corneal nerves produces a sensitization
of nociceptors (26) and only small changes in the activity of cold
thermoreceptors. Chronic tear deficiency is characterized by the
inflammation of the OS and is known to produce nerve damage
that can lead to corneal neuropathy (46). This condition also
induces the sensitization of corneal sensory nerves, being the cold
thermoreceptors the type of corneal fibers more affected by tear
deficiency (25). The present results show that even when only one
eye is primarily affected by inflammation or injury, the corneal
sensory nerves of the contralateral side do not behave like those
of the naïve eyes, as their spontaneous and/or stimulus-evoked
activity is altered in the same way as in the lesioned side, although
sometimes to a lesser degree.

In the present work, three different types of insults were
performed to only one eye of the experimental animals.
Among these three types of OS damage, the UV-induced
corneal inflammation and chronic tear deficiency induced by
lacrimal gland removal were the models that produced more
significant changes in the activity of the corneal sensory
receptors in the contralateral eye, while the corneal nerve
damage produced by the unilateral corneal surgery presented
fewer effects on the contralateral sensory nerve activity. The
level of contralateral effects seems to depend on the degree of
the inflammation induced in the ipsilateral eye, such that the
greater the inflammation in the affected eye, the greater the
contralateral effects.

The results support the idea that the contralateral effects
are mostly due to an interaction between the nervous and the
immune system as some authors have pointed out and as we will
discuss here. One possible explanation for the contralateral effects
would be the existence of innervation from the contralateral
trigeminal ganglion, the trigeminal nuclei at the brainstem,
or even at the superior levels of the central nervous system.
It was described that there are a small number of ocular
nerve fibers that travel to the contralateral trigeminal ganglion
(47) and also that the central projections of some trigeminal
ganglion neurons project to both the ipsilateral and contralateral
trigeminal brainstem nuclei (48). These information crossing
would explain, at least in part, how the altered sensory nerve
activity arising at the damaged eye would affect the activity
in the neurons processing the sensory information from the
contralateral side.

Another possible explanation is that the contralateral effects
are mediated by the existence of neuro-immune interactions.
Some authors found evidence of a sympathetic inflammatory
response in the contralateral side after unilateral inflammation or
lesion, whose results support an interaction between the nervous
and the immune system in the ocular tissues. In experimentally
induced unilateral glaucoma, there is an activation of the
macro- and micro-glia in both retinas, explained by an immune
response after the breakdown of the blood-retinal barrier of the
experimental eye (49–52).

Numerous previous works have studied the morphology and
density of corneal nerves contralateral to a unilateral infection
or injury. Almost all of them show that after unilateral damage,

there is not only a decrease in the density of the subbasal
nerves in the ipsilateral but also in the contralateral side. In
patients with unilateral herpes simplex keratitis or herpes zoster
ophthalmicus, there is a decrease in the corneal subbasal plexus
nerve density in the affected eye and also in the contralateral eye
(39, 40, 42), which explains the reduction of the contralateral
corneal sensitivity (36). Moreover, there is also a bilateral increase
in the dendritic cell density, which correlates with the decrease
of the corneal subbasal nerves (37, 38, 40, 41), as well as in the
levels of the pro-inflammatory cytokines in tears in patients with
unilateral bacterial keratitis (43, 53). Several authors have also
observed an increase of chemokines like MCP-1 in the aqueous
humor in the contralateral eye after unilateral cataract surgery
(54), although it has been suggested that the increase of MCP-1 is
produced only in diabetic patients (55). In mice, after a unilateral
surgical axotomy of the ciliary nerves or penetrating keratoplasty,
there is also a decrease in the contralateral subbasal nerves
(43, 56). After surgery, there is a bilateral release of substance P
that has been proposed to abolish the immune privilege of both
eyes (56) through disabled T regulatory cells (57). It has been
also described that after corneal alkali burn, pro-inflammatory
cytokines also increase Substance P and the expression of its
receptor in the contralateral trigeminal ganglion, which supports
the idea that substance P seems to be involved in the contralateral
propagation of inflammation through corneal sensory nerves
(30, 58).

Further supporting this, Guzman et al. (44) showed that
unilateral corneal injury affects the contralateral ocular surface
mucosa. After an injury, the sensory nerves of the OS are
damaged, thus producing a neurogenic inflammatory reflex
that is initiated in the injured eye through the activation of
polymodal nociceptive sensory nerves expressing the TRPV1
channel. Subsequently, a neurogenic reflex is produced in both
eyes, including the release of substance P that is the effector of the
contralateral inflammatory response (44). Epithelial cells, DCs,
and T cells express functional substance P receptors, and this
neuropeptide exerts numerous proinflammatory functions (59)
playing an important role in the ocular surface epithelial barrier
function and DC pathophysiology (60).

In summary, the activation and sensitization of ipsilateral
polymodal nociceptors after unilateral corneal nerve lesion
or inflammation would produce the bilateral release of the
substance P. The increase of substance P and proinflammatory
substances in the contralateral ocular surface will produce an
inflammation-like condition in the contralateral eye that would
explain the changes of nerve activity that we have found in the
present work, that is, the sensitization of corneal nociceptors
and the reduced activity of cold thermoreceptors (23, 24). In
the case of the unilateral ablation of the main lacrimal gland,
which produces mainly an increase in the activity of cold
thermoreceptors and has fewer effects on corneal nociceptors
(25), it should be noticed that despite removing the gland
of only one side, there is also a significant decrease in the
tear volume in the contralateral eye, which could contribute
to the effects observed in the activity of the contralateral cold
thermoreceptors. However, we can only speculate if there is an
immune-mediated effect on the contralateral nerves first and
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consequently, a decrease in tear volume or vice versa, that
is, the chronic reduction of tearing in the contralateral eye
led to changes in nerve activity. Although guinea pigs show
delayed epithelial wound healing in both the ipsilateral and
contralateral eyes after lacrimal gland removal in only one side
(61), we only can speculate whether it is due to the chronic
decrease in tear secretion, as no delay was observed in the
microkeratome lesioned corneas (unpublished data), where there
are no changes in tear secretion. Also, in the inflammatory
and corneal lesion models used in the present work, there
were no changes in the tear volume of either eye, although
there were significant effects on the nerve activity in the
contralateral eye, which are most probably mediated by neuro-
immune interactions. Although Fakih et al. (62) did not study
the effects on the contralateral side, in their mice models of tear
deficiency, there is also an increase in pro-inflammatory markers
and immune cells in the ipsilateral trigeminal ganglion and
trigeminal brainstem nuclei 21 days after the surgery, indicating
neuronal and microglial markers in the trigeminal brainstem
and indicating how the effects of this pathology develop
and maintains.

In conclusion, the ocular surface lesion and, especially,
inflammation affect the activity of the unilateral corneal sensory
receptors and also produces similar effects, although to a lesser
degree, in the contralateral eye. The development of changes
in the corneal nerve activity in the contralateral eye explains
the development of ocular discomfort and pain sensation in the
contralateral eye, which may not present any clinical sign. This
has to be considered not only in experimental science, because
the contralateral eye cannot be considered as a control, but also
in the clinic. Even when only one eye has been affected by
inflammation, infection, or injury, the pertinence of treating both

eyes must be considered to avoid pain and other unwanted effects
on the fellow eye.
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Proton Sensing on the Ocular Surface:
Implications in Eye Pain
Núria Comes1,2, Xavier Gasull 1,2 and Gerard Callejo1,2*

1Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona,
Barcelona, Spain, 2Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

Protons reaching the eyeball from exogenous acidic substances or released from
damaged cells during inflammation, immune cells, after tissue injury or during chronic
ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers
that innervate the ocular anterior surface. Their identification as well as their role during
disease is critical for the understanding of sensory ocular pathophysiology. They are likely
to mediate some of the discomfort sensations accompanying several ophthalmic
formulations and may represent novel targets for the development of new therapeutics
for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors
innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular
structures (eyelids), members of the TRP and ASIC families play a critical role in ocular
acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by
heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/
ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing
pain by moderate acidifications of the ocular surface. These channels, together with
TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic
keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel
expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also
present in corneal and conjunctival cells, promoting inflammation of the ocular surface after
injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion
channel families are also expressed in trigeminal neurons, however, their role in ocular pain
remains unclear to date. In this report, these and other ion channels and receptors involved
in acid sensing during ocular pathologies and pain are reviewed.

Keywords: ocular surface, pain, ion channels, protons, ocular disease

1 INTRODUCTION

Physical and chemical stimuli from the environment are sensed by sensory nerve terminals present in
the cornea and conjunctiva. Whereas the cornea lies in front of the iris and pupil, the conjunctiva
covers the posterior part of the eyelids (palpebral conjunctiva) towards the conjunctival fornix and
continues with the anterior part of the sclera until the corneoscleral limbus (bulbar conjunctiva).
Both structures are the first line of defense against potential damaging stimuli of the inner eye
structures and are covered by a tear film that moistures and lubricates the anterior ocular surface
avoiding damage of the corneal epithelium. Acidic insults can reach the ocular surface when we are in
contact with exogenous acidic substances. Besides, different infections, allergic or inflammatory
conditions can promote an acidic environment in the cornea or the conjunctiva. Moreover, many

Edited by:
Dario Rusciano,

Sooft Italia SpA, Italy

Reviewed by:
Ernest Jennings,

James Cook University, Australia
Philippe Séguéla,

McGill University, Canada

*Correspondence:
Gerard Callejo

gerard.callejo@ub.edu

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 10 September 2021
Accepted: 09 November 2021
Published: 24 November 2021

Citation:
Comes NA, Gasull X and Callejo G

(2021) Proton Sensing on the Ocular
Surface: Implications in Eye Pain.

Front. Pharmacol. 12:773871.
doi: 10.3389/fphar.2021.773871

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7738711

REVIEW
published: 24 November 2021

doi: 10.3389/fphar.2021.773871

53

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.773871&domain=pdf&date_stamp=2021-11-24
https://www.frontiersin.org/articles/10.3389/fphar.2021.773871/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.773871/full
http://creativecommons.org/licenses/by/4.0/
mailto:gerard.callejo@ub.edu
https://doi.org/10.3389/fphar.2021.773871
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.773871


ophthalmic drugs used as eyedrops are formulated in acidic
solutions to be able to solubilize or stabilize the active
compound. All these acidic stimuli activate different
mechanisms in the ocular surface, mostly ion channels
activated by protons in peripheral sensory nerves, which detect
and transduce these stimuli to higher brain areas to evoke painful
sensations and to induce protective responses. Acidic conditions
can also activate ion channels in corneal epithelial, endothelial or
conjunctival cells, thus promoting inflammatory states. The
mechanisms involved in proton sensing in these ocular
structures are reviewed in this report.

2 THE OCULAR SURFACE

2.1 Ocular Innervation
The trigeminal ganglion, through the ophthalmic nerve, provides
non-visual sensory innervation to the entire eyeball. Peripheral
axons of trigeminal neurons innervate the anterior ocular surface,
namely the cornea and conjunctiva, but also the uvea (Figure 1),
where they have a critical role in ocular inflammation (Mintenig
et al., 1995; Belmonte et al., 1997). Most of the sensory neurons
innervating the eye detect mechanical, thermal and chemical
stimuli in the noxious range to protect the eyeball, evoking
responses to minimize damage and to promote tissue repair.
Besides, Edinger-Westphal nucleus localized in the brainstem
supplies autonomic parasympathetic innervation of the eye
through the oculomotor nerve (ten Tusscher et al., 1994;
Reiner et al., 1983). The iris, the ciliary body/ciliary muscle
and parts of the iridocorneal angle (uveal trabecular meshwork
and scleral spur) are innervated by parasympathetic nerve fibers
that synapse in the ciliary ganglion, entering the ocular globe
through the short ciliary nerves. In addition, some
parasympathetic fibers arrive from the pons through the

geniculate ganglion (Petrosal). Later, they synapse in the
pterygopalatine ganglion before entering the eye (Ruskell,
1970). Furthermore, sympathetic nerve fibers from the
superior cervical ganglion innervate the eyeball through both
the long and short ciliary nerves. They innervate the ciliary body
(central stroma and stroma of the ciliary processes), the iris and
parts of the iridocorneal angle (Figure 1). Contrary, the cornea is
innervated almost exclusively by sensory fibers, lacking
autonomic innervation.

As mentioned, the ocular surface is densely innervated by
trigeminal sensory neurons (Belmonte et al., 2004; Belmonte
et al., 2011; Belmonte, 2019), most of them nociceptors (pain
sensory neurons; Figure 1). Two main types of nociceptors are
present: about 70% are polymodal nociceptors (C-fibers) that
respond to mechanical stimulation, extreme temperatures,
exogenous chemical irritants and endogenous molecules
released by tissue injury. Between 15 and 20% of the nerve
fibers are mechano-nociceptors (Aδ-fibers), activated by
noxious mechanical forces. Finally, cold thermoreceptors
constitute the third population of fibers that innervate the
cornea (10–15%), which detect changes in temperature in the
non-noxious cold range and regulate basal tearing rate among
other functions (Belmonte et al., 2004; Belmonte, 2019). Several
ion channels present in the peripheral terminals of these neurons
have been characterized and play significant roles in ocular pain
(acute, inflammatory or of neuropathic origin), including the
sensitivity to protons, as well as in other ocular sensations, such as
ocular dryness (Figure 2). A description of some of these ion
channels and receptors is detailed in the following sections.

Recent studies using next-generation sequencing techniques
have defined 11 subtypes of Dorsal Root Ganglia (DRG) sensory
neurons according to different membrane receptors, ion
channels, transcription factors and neuropeptides
characteristically and similarly expressed (Chiu et al., 2014;

FIGURE 1 | Sensory innervation of the ocular anterior segment. Diagram of the anterior part of the eye showing the different types of nerve fibers innervating the
different structures and the ocular surface. Sensory innervation is provided by the ophthalmic nerve arising from the V1 branch of the trigeminal ganglion (upper right
inset).
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Usoskin et al., 2015; Zeisel et al., 2018). The classification of these
neurons according to their gene expression patterns and the
known roles of these genes on sensory transduction and
neuronal excitability, has permitted to define different
subgroups of neurons according to their putative function.
Therefore, we can differentiate populations of low-threshold
mechanoreceptors (touch) and proprioceptors, cold
thermoreceptors, heat thermoreceptors as well as peptidergic
and non-peptidergic nociceptors activated by high threshold
mechanical, thermal or chemical stimuli (Usoskin et al., 2015;
Nguyen et al., 2017; Zeisel et al., 2018). Also, specific
subpopulations of nociceptors have been described to respond
specifically to pruritogens and can be classified as itch receptors
or pruritoceptors.

Despite most of the studies have been done in DRG neurons, a
few transcriptomic studies in the whole trigeminal ganglia have
been done (Flegel et al., 2015; Nguyen et al., 2017; LaPaglia et al.,

2018). Trigeminal neurons show a similar distribution of sensory
neuron subtypes according to their gene subpopulation markers,
which, in general, are similar to those found in the DRG, but
specific differences in gene expression are present (Flegel et al.,
2015; Nguyen et al., 2017; LaPaglia et al., 2018). A specific
transcriptomic study on ocular sensory neurons is still lacking
but evidence from different transgenic animal models or from
functional studies indicate that some of these neuronal
subpopulations of neurons identified in the DRGs or in the
TGs neurons specifically innervate different parts of the ocular
surface. Specifically, the larger population of sensory neurons
innervating the cornea are peptidergic polymodal nociceptors
(for review see Belmonte et al. (2011), Belmonte (2019)). At the
transcriptomic level, these neurons express distinctive
nociceptive markers such as the capsaicin and heat sensitive
ion channel TRPV1 (Transient Receptor Potential cation
channel subfamily V member 1), the ion channel TRPA1

FIGURE 2 | Ion channels activated or modulated by acidic stimuli in ocular sensory neurons. Ion channels expressed in trigeminal sensory neuron terminals
innervating the cornea, sclera and conjunctiva. Different types of nociceptive fibers are shown: mechano-nociceptors that respond to high threshold mechanical
stimulation; polymodal nociceptors, which can be activated by chemical, mechanical and thermal (noxious heat or cold) stimulation; cold thermoreceptors that express
TRPM8 and respond to non-noxious cold stimuli and non-peptidergic sensory neurons, involved in nociception and itch sensitivity. Solid lines indicate direct
activation by stimulus. Dashed lines indicate modulation of ion channel activity by protons. CQ, chloroquine; βA, β-alanine.
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(Transient Receptor Potential cation channel subfamily A
member 1) activated by irritant substances as well as the
neuropeptides calcitonin gene-related peptide (CGRP) and
substance P (Nguyen et al., 2017). Functional studies have
shown that corneal neurons respond to acid, hot temperatures,
mechanical stimuli and capsaicin (Chen et al., 1997; López de
Armentia et al., 2000; Cabanes et al., 2002; González-González
et al., 2017), which is in agreement with their receptor’s
expression. Thus, upon stimulation, peripheral terminals of
sensory neurons release CGRP and substance P, which are
proinflammatory neuropeptides and contribute to neurogenic
inflammation and nociceptor sensitization. Although it has not
been clearly demonstrated, it is possible that a population of Aδ-
fibers constituting “silent” nociceptors innervates the cornea and
annex ocular structures. It is thought that these sensory terminals
are only activated after local inflammation occurs and the fibers
are somehow sensitized. The cellular correlate of these fibers has
not been yet established.

Besides polymodal nociceptors, mechanonociceptor neurons
(15–20%) only respond to high threshold mechanical stimuli and
they express the mechanosensitive channel Piezo2 but do not
express neuropeptides (e.g., CGRP) or the cold-sensitive ion
channel TRPM8 (Transient Receptor Potential cation channel
subfamily M member 8), thus constituting a different
subpopulation of corneal neurons besides polymodal
nociceptors or cold thermoreceptors (Bron et al., 2014). The
last population of sensory neurons innervating the cornea are
cold thermoreceptors that express TRPM8. They provide
profound innervation of the corneal epithelium and respond
to moderate cold stimuli and to changes in osmolarity (Parra
et al., 2010; Parra et al., 2014; Quallo et al., 2015). Importantly,
these neurons are activated in ocular dryness conditions, when
temperature slightly decreases and osmolarity increases due to
tear evaporation. Their increase in firing activates a brainstem
neuronal loop that regulates basal tearing and blinking rate (Parra
et al., 2010; Parra et al., 2014; Quallo et al., 2015). At the molecular
and functional levels two populations of TRPM8 have been
identified. One presents a high expression pattern of TRPM8
and a lower threshold for activation by cold (González-González
et al., 2017; Nguyen et al., 2017), whereas the second one shows a
lower expression of TRMP8 and a higher threshold for activation
(activation at lower temperatures). This population might co-
express other channels like TRPV1 and could be functionally
similar to polymodal nociceptors (González-González et al.,
2017).

Interestingly, the conjunctiva, presents a different pattern of
innervation compared with the cornea. Two neuronal
populations innervate this structure but not the cornea: non-
peptidergic MAS-related G protein-coupled receptor member D
positive neurons (MrgprD+) and MrgprA3+ sensory neurons
(Huang et al., 2018). MrgprD+ neurons also express
lysophosphatidic acid receptors LPAR3 and LPAR5 and are
involved in mechanical pain and skin itch mediated by
β-alanine. In the eye, MrgprD+

fibers mainly innervate the
marginal conjunctiva, a region that contacts with the eye
surface during blinking (lid wiper) (Huang et al., 2018).
Conversely, MrgprA3+ fibers are enriched in medial and

lateral conjunctival areas (corners of the eye). These fibers are
also activated by histamine, serotonin, chloroquine (an MrgprA3
agonist) and NPFF (that activates MrgprC11), constituting a
common pathway for ocular itch (Huang et al., 2016; Huang
et al., 2018).

2.2 Ion Channels in Ocular Sensory Neurons
The different types of sensory neurons innervating the ocular
surface express multitude of ion channels that detect and
transduce different physical, thermal or chemical stimuli or
that participate in the electrical activity of these neurons
(Figure 2). As mentioned earlier, different members of the
Transient Receptor Potential (TRP) family of ion channels are
present ocular sensory neurons. Particularly, cold
thermoreceptors express TRPM8, activated by moderate cold
stimuli and menthol (Belmonte and Gallar, 2011). Polymodal
nociceptors express TRPV1 and TRPA1 (Belmonte et al., 1991;
González-González et al., 2017), purinergic P2X receptors as well
as members of the Acid-Sensing Ion Channels, since ASIC1 and
ASIC3 currents have been detected in corneal sensory neurons
(Callejo et al., 2015). The mechanotransducer channel Piezo2 is
present in about 30% of corneal afferent neurons (Bron et al.,
2014). Although some expression might exist in some polymodal
nociceptors, Piezo2 seems to be mostly restricted to medium- to
large-sized sensory neurons positive for neurofilament 200
(NF200) and negative for TRPV1 and CGRP, which suggests
its expression in pure mechanonociceptors conducting in the
range of Aδ-fibers rather than corneal polymodal nociceptors
(Bron et al., 2014; Fernández-Trillo et al., 2020). Moreover,
sensory-specific ablation of Piezo2 reduces the percentage of
corneal mechanosensitive neurons in vitro (Fernández-Trillo
et al., 2020). Conjunctival MrgprD+ and MrgprA3+ afferent
neurons also contain TRPV1 and TRPA1 channels that
participate in itch stimuli transduction (Huang et al., 2016).
These neuronal subpopulations also present a characteristic
expression of different ion channels involved in the generation
and propagation of action potentials (APs) and in the control of
neuronal excitability such as voltage-gated sodium (Nav1.7, 1.8,
and 1.9), calcium (Cacna1/2/3), potassium (Kcns1, Kcnip4)
channels and members of the K2P ion channel family.

Several of these channels are directly activated by protons or
modulated by them, thus constituting the transducers for acidic
stimuli in the ocular surface (Figure 2). A detailed role of each
channel is provided below.

3 PROTON-SENSING IN THE OCULAR
SURFACE

3.1 TRPV1
The vanilloid receptor TRPV1 is one of the best characterized
members of the subfamily of the thermosensitive channels TRP.
It is a non-selective cation channel permeable to Na+ and Ca2+

and its activation depolarizes nociceptive sensory neurons
(Basbaum et al., 2009). In fact, it has been mainly detected in
nociceptors of the trigeminal and the dorsal root ganglia
(Clapham, 2003) although they have been found in different
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brain regions (Tóth et al., 2005). Asmentioned before, TRPV1 is a
molecular transducer of thermal and chemical painful stimuli,
playing a significant role in nociception (Caterina et al., 1997). It
is activated by noxious heat, with a thermal threshold activation
of >42°C, low pH, voltage and capsaicin, the pungent component
responsible for the spiciness of chili peppers (Caterina et al., 1997;
Tominaga et al., 1998). TRPV1-mediated thermal sensitivity can
be modulated by a variety of components of the inflammatory
soup (Tominaga et al., 1998; Pethő and Reeh, 2012). Thus, a
variety of endogenous bioactive lipids act as positive allosteric
regulators of TRPV1 while proinflammatory agents such as
cytokines, prostaglandins, bradykinin and neurotrophins act
on their specific receptors modulating TRPV1 through
intracellular signaling pathways. TRPV1 activity is essential in
the cellular mechanisms by which tissue damage and nociceptor
persistent activation can cause acute sensitivity to noxious heat
stimuli, thermal hyperalgesia and neurogenic inflammation
(Caterina et al., 2000; Szolcsányi and Sándor, 2012). TRPV1 is
widely used as a molecular marker for a specific subset of
polymodal nociceptors, the small-diameter peptidergic C-fibers
characterized by being unmyelinated, slow-conducting and, in
most cases, expressing substance P and CGRP (Tominaga et al.,
1998).

As mentioned in the previous section, in mammals, the cornea
is mainly innervated by three types of afferent sensory neurons:
polymodal nociceptors, mechano-nociceptors and cold-sensitive
neurons. In this regard, the presence of TRPV1 in the cornea was
initially identified in heat-sensitive polymodal nociceptors by
topical application of hypertonic saline, acetic acid and
capsaicin (Belmonte and Giraldez, 1981; Belmonte et al., 1988;
Belmonte et al., 1991; Gallar et al., 1993). Specifically, about 50%
of corneal polymodal C-fibers are stimulated by capsaicin in cats
(Belmonte et al., 1991; Chen et al., 1997). Subsequently, TRPV1
channel has been detected almost exclusively in small-diameter C
axons colocalizing with CGRP and SCGII (secretogranin II)
(Kobayashi et al., 2005; Schecterson et al., 2020).

After reporting the dense innervation of the cornea by the
ophthalmic branch of the trigeminal nerve (Arvidson, 1977), the
molecular profile of corneal trigeminal neurons expressing
TRPV1 has been determined by neuronal retrograde tracing.
An important percentage of corneal afferent nerve fibers express
TRPV1 in different tested animals (González-González et al.,
2017). In guinea pig, 45% of corneal sensory fibers are positive for
TRPV1 (the molecular marker of polymodal nociceptors), 28%
are positive for Piezo2 (the putative marker of mechano-
nociceptors) whereas 8% of them express TRPM8 (a marker
of cold-sensitive neurons). In addition, no co-expression between
TRPV1 and Piezo2 has been detected in this class of nerve fibers
but 6% of TRPV1-immunoreactive neurons also expressed
TRPM8. The same study has reported that more than 90% of
TRPV1+ corneal afferents are probably polymodal nociceptors
(Alamri et al., 2015). In rat trigeminal ganglion, 37% of corneal
afferent sensory neurons has been found to express TRPV1 while
around one third of the TRPV1+ afferents express substance P
and three quarters of these co-expressed CGRP. Therefore,
TRPV1 could act in conjunction with substance P and/or
CGRP to transduce nociception in corneal sensory neurons

(Murata and Masuko, 2006). In contrast, a slightly lower
proportion (23%) of rat corneal afferents has been reported to
express TRPV1 in another study (Nakamura et al., 2007). In
addition to the different animal models used in the studies, this
variability in the proportion of sensory neurons expressing
TRPV1 could be explained because cholera toxin subunit B,
used in most of the mentioned studies, preferentially labels
neurons with large cell bodies whereas the retrograde tracer
Fluorogold used in the study led by Nakamura is known to
label small and large neurons. In addition to neuronal retrograde
tracing, immunohistochemistry and double label in situ
hybridization, the presence of TRPV1 in corneal polymodal
nociceptors has been functionally demonstrated with the
strong tearing and blinking response evoked by ocular
application of capsaicin (Gonzalez et al., 1993; González-
González et al., 2017).

The functional effect of capsaicin on TRPV1 in sensory nerve
fibers and its capacity to elicit a burning sensation in the eye
allowed to suggest that the action of capsaicin could be involved
in the perception of painful thermal stimuli in vivo (Caterina
et al., 1997). Besides, protons can positively modulate the
activation of capsaicin-sensitive sensory neurons, enhancing
the capsaicin effect (Petersen and LaMotte, 1993).
Experimentally, the stimulation of corneal polymodal
nociceptors by extracellular protons can be achieved by the
application of acidic solution (such as acid acetic solutions)
(Chen et al., 1995) or by pulses of a gas mixture with CO2

applied to the corneal surface (Belmonte et al., 1999). In the latter
case, CO2 combines with H2O in the tear film covering the cornea
resulting in carbonic acid formation which effectively decreases
the pH despite the buffering capacity of bicarbonate-containing
tears. In parallel, corneal pain has been quantified in humans as a
response to the same stimuli with CO2 demonstrating that
activation of nociceptors expressing TRPV1 by acidic pH
could be a cause of pain following tissue injury (Chen et al.,
1995). Human subjects identify burning pain and irritation
sensation experimentally caused by acidic stimulation (CO2

pulses) on the corneal surface, that it is known to recruit
polymodal sensory afferents in the cat’s cornea (Acosta et al.,
2001a).

Interestingly, TRPV1 can be a target to manage pain
perception and it could be useful after an injury or at
postoperative level (Weyer-Menkhoff and Lötsch, 2018).
Resiniferatoxin (RTX), a potent TRPV1 agonist, strongly
activates TRPV1 generating cellular toxicity resulting from an
excessive influx of calcium (Olah et al., 2001). When RTX is
administered peripherally, it produces reversible analgesia due to
the inactivation of nociceptors expressing TRPV1 (Neubert et al.,
2003). Subsequent studies have shown that RTX directly infused
into the trigeminal ganglion eliminates pain perception as well as
neurogenic inflammation. In the rat cornea, a single topical
application of RTX reduces capsaicin sensitivity producing
transient analgesia for up to 5 days with no adverse side
effects observed in histological studies (Table 1; Bates et al.,
2010). Therefore, RTX could have the potential to manage acute
pain caused by ophthalmic surgeries, and corneal conditions such
as abrasions or ulcers. For chronic pain, it remains to be
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determined whether reapplication of RTX generate longer lasting
corneal analgesia. Likewise, treatment with the TRPV1 antagonist
capsazepine, prior to allergic challenge, abolishes spontaneous
activity and sensitivity to heat of polymodal nociceptors and
reduces their firing response to a CO2-mediated acidic stimulus
(Table 1). It also attenuates the increased blinking rate found in a
model for allergic keratoconjunctivitis in guinea pig (Acosta et al.,
2013). Because the augmented blinking is considered a
nocifensive response to the eye discomfort caused by the high
chemical activation of polymodal nociceptors, TRPV1 has been
associated to ocular irritation during allergic episodes (Acosta
et al., 2013). In a similar way, an increased blinking rate to topical
capsaicin has been described in a guinea pig model of keratitis
performed by eye exposure to UV radiation (photokeratitis;
Table 1). Hence, the discomfort sensation reported by humans
after UV irradiation may be the result of sensitization of
polymodal nociceptors by the local release of inflammatory
mediators and TRPV1 activation (Acosta et al., 2014). In
addition to allergic keratoconjunctivitis and photokeratitis,
polymodal nociceptors may play a role in other pathologies
that affect the cornea like herpes simplex virus keratitis (Gallar
et al., 2010) and corneal sensitivity associated to diabetes mellitus
(Neira-Zalentein et al., 2011).

A significant number of TRPM8-expressing sensory neurons
also express TRPV1 and this channel could be involved in cold
nociception of the cornea enhancing excitability of TRPM8+ cells
(Li et al., 2019). TRPV1 could also act as a pharmacological target
for the treatment of dry eye disease (DED), characterized by tear
instability, ocular dryness, irritation, itch, pain and visual
disturbances, and commonly linked with ocular surface
inflammation (Messmer, 2015). Co-expression between TRPV1
and TRPM8 channels is increased in corneal cool cells of the

experimental rat model for DED performed by lacrimal gland
excision (LGE), that shows enhanced sensitivity to capsaicin
(Hatta et al., 2019). Besides, different studies propose that
TRPV1 could intervene in the increased nocifensive response
associated with DED in rats treated with the LGE procedure
(Bereiter et al., 2018). In this sense, mRNA expression of TRPV1,
TRPA1, ASIC1, and ASIC3 is upregulated in the ophthalmic
division of the trigeminal ganglion of a mice model of chronic
DED (Fakih et al., 2021). Interestingly, instillation of capsazepine
not only inhibits the aforementioned genetic upregulation but
also reliefs corneal neurosensory symptoms and reduces anxiety-
linked behaviors that characterize severe DED. Similarly, TRPV1
protein levels have been found increased in the trigeminal
ganglion of a rat model of DED, in which the channel is
involved in the enhanced nocifensive responses (Bereiter et al.,
2018). Taken together, TRPV1 antagonists could be potential
analgesics for DED treatment (Fakih et al., 2021). Likewise,
topical administration of tivanisiran (formerly named
SYL1001), a siRNA designed to silence the expression of
TRPV1, improves tear quality, hyperemia, ocular pain and
discomfort characteristic of DED (Moreno-Montañés et al.,
2018). Thus, Phase I and II clinical trials have already
determined the most effective doses for its therapeutic use to
alleviate DED symptoms (Benitez-Del-Castillo et al., 2016). In the
same sense, topical application of A784168, a potent antagonist of
TRPV1, diminishes the blink rate in a model of chronic tear
deficiency in guinea pig (Masuoka et al., 2020).

3.2 TRPA1
TRPA1, the only member of the subfamily of ankyrin TRP
channels described, is a voltage-dependent, non-selective
channel permeable to Ca2+, Na+, and K+. TRPA1 is expressed

TABLE 1 | Proton-sensing ion channels involved in ocular surface pathologies.

Channel Disease Treatment Effects Behavioral response Animal
model

References

TRPV1 Ocular pain Resiniferatoxin
(RTX, agonist)

Ca2+-induced cytotoxicity Reduces capsaicin-induced eye
wiping

Rat Neubert et al. (2003)

Allergic
keratoconjuntivitis

Capsazepine
(antagonist)

Abolishes nerve fiber
spontaneous activity; reduces
firing response

Attenuates eye blinking and tearing Guinea
pig

Bates et al. (2010)

Dry eye disease siRNA Tivanisiran
(SYL1001)

Not tested Improves tear quality and
hyperemia; reliefs ocular
discomfort and pain, avoid damage
to the ocular surface

Rat Moreno-Montañés et al.
(2018), Fakih et al. (2021)

Dry eye disease A784168
(antagonist)

Not tested Reduces increased eye blinking
induced by lacrimal gland excision

Guinea
pig

Benitez-Del-Castillo et al.
(2016)

Photokeratitis Capsaicin
(agonist)

Not tested Increased blinking Guinea
pig

Acosta et al. (2013)

TRPA1 Allergic
keratoconjuntivitis

HC-030031
(antagonist)

Reduces mechanical threshold;
attenuates responsiveness
to CO2

Attenuates eye blinking Guinea
pig

Bates et al. (2010)

Corneal injury and
inflammation

TRPA1−/−

Knockout mice
Decrease macrophage
infiltration; stromal
neovascularization and fibrosis

Not tested Mouse Katagiri et al. (2015)

ASIC3 Allergic
keratoconjuntivitis

APETx2 toxin
(antagonist)

Not tested Reduces allergen-induced blinking Rat Callejo et al. (2015)

Dry eye disease APETx2 toxin
(antagonist)

Not tested No effect on acid-induced blinking Rat Callejo et al. (2015)
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in sensory neurons that innervate skin, intestinal and pulmonary
epithelium, inner ear hair cells and olfactory epithelium, among
others (Basbaum et al., 2009). It has a similar main structure as
TRPV1 with some specific features such as the presence of a long-
terminal ankyrin domain including the regions that confer the
thermal and chemical sensitivity (Cordero-Morales et al., 2011)
and a TRP-like domain after the S6 transmembrane segment
instead of the standard TRPmotif. TRPA1 channel contributes to
the perception of a great variety of chemical substances that
causes pain manifested as burning, skin and eye irritation as well
as thermal and mechanical hypersensitivity (Bandell et al., 2004).
Reactive chemicals that activate TRPA1 include allyl
isothiocyanate (AITC) (the pungent compound found in
horseradish, mustard oil and wasabi), cinnamaldehyde (the
organic compound responsible for the characteristic taste and
smell of cinnamon), allicin (from garlic extract) and diallyl
disulfide (from onion) (Logashina et al., 2019). TRPA1 is also
activated in response to noxious cold temperatures (<17°C) and
endogenous agents such as reactive oxygen species (Logashina
et al., 2019). Moreover, it senses environmental irritants such as
tear gas, acrolein from air pollution and tobacco smoke and
endogenous proalgesic and proinflammatory agents (Bautista
et al., 2006; Lindsay et al., 2014). In addition, TRPA1-deficient
mice show a significant reduction in painful responses to
formaldehyde and 4-hydroxynonenal, which are aldehydes that
activate TRPA1 (Macpherson et al., 2007). Furthermore, TRPA1
has been associated to chronic itch (Wilson et al., 2013) and
hypersensitivity in different experimental models of persistent
inflammatory pain (Dai et al., 2007; Lennertz et al., 2012). Thus,
TRPA1 could have a great potential as analgesic and anti-
inflammatory target to treat pathologies such as different types
of dermatitis (Liu et al., 2013; Oh et al., 2013) and migraine
(Materazzi et al., 2013).

TRPA1 is expressed in approximately 35% of the sensory
neurons of the trigeminal ganglion (Jordt et al., 2004). In the
mouse cornea, TRPA1 channel is mainly expressed in medium-
diameter myelinated Aδ-fibers where it colocalizes with
neurofilament protein NF200 and secretogranin 3 (SCG3)
although it is also present in C-fiber nociceptive sensory
neurons (Figure 2; Kobayashi et al., 2005; Schecterson et al.,
2020). Similar to TRPV1, TRPA1-related mechanisms play a key
role in the persistent tear reduction and symptoms of ocular
discomfort observed in the rat model of DED (Katagiri et al.,
2015). In addition to this, pretreatment with a TRPA1 antagonist
(HC-030031) before the allergic challenge reduces the mechanical
threshold of polymodal nociceptors, tend to attenuate the enhanced
response de CO2 and reverse the enhanced blinking in an animal
model of allergic keratoconjunctivitis (Table 1; Acosta et al., 2013).
WithHC-030031 treatment, as well as in TRPA1−/− knockoutmice,
it has been reported a decrease in macrophage infiltration, stromal
neovascularization and corneal fibrosis in amousemodel of corneal
injury. Inhibition of the TGF-β1 signaling pathway in fibroblasts
with the loss or blockade of TRPA1 would explain, in part, its role
in corneal repair. Therefore, TRPA1 represents a potential
therapeutic target for corneal lesions and ocular infections
associated to inflammatory fibrosis that can lead to vision loss if
not treated properly (Okada et al., 2015).

3.3 Acid-Sensing Ion Channels
The Acid-Sensing Ion Channel (ASIC) family belong to the
ENaC/Degenerin (DEG) ion channel superfamily which in
rodents is composed by at least six different subunits (ASIC1a,
ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4) encoded by four
genes (accn1-4) (Kellenberger and Schild, 2015). In humans, this
ion channel family is expanded by the expression of three and two
splice variants for ASIC3 and ASIC4, respectively. However,
expression of ASIC1b mRNA has never been identified.
Evidence using x-ray crystallography (Jasti et al., 2007) and
atomic force microscopy (Carnally et al., 2008) have revealed
that functional ASIC channels are arranged as homo- and
heterotrimeric channels where specific subunit composition
confer different biophysical and pharmacological properties to
an ASIC trimer (Hesselager et al., 2004). They are voltage-
independent, ligand-gated cation channels mainly permeable
to Na+ (although ASIC1a homomers are also permeable to
Ca2+ (Waldmann et al., 1997) activated by extracellular
protons and different nonproton ligands (Kellenberger and
Schild, 2015; Vullo and Kellenberger, 2019). Not all ASIC
subunits can form proton-gated functional channels, for
instance, ASIC2b and ASIC4 do not form proton-sensitive
homomeric channels but the can interact with other ASIC
subunits modulating their ion channel properties and kinetics
in response to extracellular acidosis (Hesselager et al., 2004). All
ASIC subunits have been detected in DRG and TG neurons from
mouse and human tissues (although ASIC4 shows a weak
expression) (Zeisel et al., 2018; Nguyen et al., 2017; Flegel
et al., 2015; Hockley et al., 2019; Schuhmacher and Smith,
2016), including neurons that innervate the cornea in mice
(Figure 2; Callejo et al., 2015). Due to their ability to detect
increasing proton concentrations in the extracellular
environment, they have been involved in many physiological
and pathological processes such as synaptic plasticity, learning
and memory, fear conditioning, pain, migraine, epileptic seizures
and ischemic stroke (Wemmie et al., 2013; Deval and Lingueglia,
2015; Dussor, 2015; Kellenberger and Schild, 2015; Lee and Chen,
2018; Vullo and Kellenberger, 2019).

As mentioned above, a decrease in pH in the tear film covering
the anterior ocular surface induces a nociceptive response in
animal models and irritation and burning sensation, and to a
lesser extent stinging pain, in humans (Chen et al., 1997;
Belmonte et al., 1999; Acosta et al., 2001b; Feng and Simpson,
2003; Callejo et al., 2015). These sensations are evoked by the
activation of polymodal nociceptive fibers innervating the cornea
and conjunctiva (Chen et al., 1995; Belmonte et al., 1999). Initial
studies performed to characterize the molecular identity of acid
sensors in the cornea demonstrated that after CO2-mediated
acidic stimulation with CO2 to the cat cornea, 50% of
polymodal fibers responding to acid also responded to the
TRPV1 agonist capsaicin. These fibers were also blocked by
the TRPV1 antagonist capsazepine (Chen et al., 1997),
indicating the role of this ion channel in the detection of
proton ion concentrations in the cornea. However, the
existence of acid-sensitive polymodal fibers that do not
respond to capsaicin, suggests the functional expression of
others ion channels/receptors capable of detecting extracellular
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acidosis in the anterior ocular surface. Besides TRPV1, ASICs
have been identified as detectors of acidic stimuli in sensory
neurons innervating the cornea (Figure 2; Callejo et al., 2015).
TRPV1 and ASIC channels differ in their pH sensitivities,
whereas TRPV1 is activated at lower pH values (pH 6.4 or
below), ASIC channels can detect moderate changes in pH
(between pH 7.4 and 6). Moderate acidic stimulation (pH �
6.6) induces depolarization and action potential (AP) firing in a
subpopulation of corneal neurons in culture (Callejo et al., 2015).
This pH-evoked neuronal firing is abolished by the pretreatment
with specific ASIC antagonists such as toxins PcTx1 and APETx2,
which inhibit homomeric ASIC1a channels and ASIC3-
containing channels, respectively. It is worth mentioning that
only 14% of neurons that respond to acid are blocked by PcTx1,
whereas APETx2 abolishes the AP firing of the remaining acid
responders (86%). This difference could be explained by the
expression of different ASIC subunits in the same corneal
neuron and a wider range of inhibition of APETx2, which
blocks all ASIC3-containing channels. Accordingly, voltage-
clamp recordings of corneal neurons in response to moderate
acidic pH showed currents with biophysical and pharmacological
characteristics of homomeric ASIC1a, homomeric ASIC3 and/or
heteromeric ASIC1/3 channels. Moreover, the application of
moderate acidic solutions in the rat cornea induces nocifensive
behaviors (blinking and scratching) that can be partially
prevented with selective and non-selective ASIC antagonists
(Callejo et al., 2015). In contrast, the application of a specific
ASIC3 agonist (2-guanidine-4-methylquinazoline, GMQ), that
can activate ASIC3 at physiological pH, enhances the AP firing
rate of corneal sensory fibers and increases the blinking and
tearing rate in guinea pigs (Callejo et al., 2015). Altogether, these
data suggest that ASIC channels are important proton sensors in
the ocular surface, where they are functionally expressed, and
crucially participate in the detection of moderate acidifications
applied to the cornea and the consequent transduction to painful
sensation.

ASIC channel inhibition has been proven effective to
ameliorate pain in different animal models of inflammation,
where specific inhibition leads to a reduced nocifensive
behavior in animals after mechanical and chemical stimulation
of the inflamed tissues (Deval et al., 2008; Karczewski et al., 2010;
Walder et al., 2010; Deval et al., 2011). Particularly in the eye,
ASICs have been involved in a model of allergic
keratoconjunctivitis (Table 1; Callejo et al., 2015). In this
model, the inhibition of ASIC3-containing channels by
APETx2 did not prevent the nocifensive behaviors triggered
by the application of an acidic solution (pH 5) on the ocular
surface, however, APETx2 treatment reduced the blinking rate
of animals exposed to the allergen when a solution at
physiological pH was applied. Moreover, whole-cell
recordings of labelled TG corneal neurons derived from
these animals showed an increase in ASIC current density
that was partially inhibited by APETx2 (Callejo et al., 2015).
Taking together, these results indicate that ASIC channels play
an important role in the development of ocular inflammation
and sensitization after an allergic challenge.

3.4 Two-Pore Domain Potassium Channels
(K2Ps)
The family of K2P K+ channels was the last one identified and
described, which has 15 members grouped into six subfamilies
(TWIK, TREK, TASK, TALK, THIK, and TRESK) based on
sequence and functional similarities (Enyedi and Czirják,
2010). The first K2P channel identified was TWIK1, for
Tandem of pore domains in a Weak Inward-rectifying K+

channel. Now, this subfamily also contains TWIK2 and
KCNK7 (K2P7.1). The TREK (TWIK-RElated K+ channel)
subfamily contains TREK1, TREK2, and TRAAK (TWIK-
Related Arachidonic acid Activated K+) channels. Members of
this subfamily are activated by arachidonic acid, polyunsaturated
fatty acids (PUFAs), volatile anesthetics, and pain-related stimuli.
The TASK (TWIK-related Acid-Sensitive K+ channel) subfamily
contains TASK1, TASK3, and TASK5 (K2P15.1, KCNK15), and
these channels have the common property of being inhibited by
extracellular acidification. The TALK (TWIK-related ALkaline
pH-activated channel) subfamily includes TALK1, TALK2
(K2P17.1, KCNK17) and TASK2 and they have an important
role in sensing extracellular alkaline pH. THIK1 and THIK2
conform the THIK (Tandem pore domain Halothane-Inhibited
K+) channel subfamily and both channels are inhibited by
halothane. The last subfamily identified was TRESK (TWIK-
RElated Spinal cord K+) that has only one member, TRESK
(K2P18, KCNK18), with the lowest structural and functional
similarity to other K2P channels. This channel is the only one
in the family being regulated by the intracellular Ca2+

concentration through calcineurin-mediated dephosphorylation.
The main role attributed to K2P channels in most cell types is

the regulation of membrane potential, as they constitute the leak
of potassium through the plasma membrane. Therefore, they are
commonly refereed as leak or background potassium channels
and their function, together with the Na+/K+ pump, helps to set
the resting membrane potential. K2P channels are the main
sustained K+ conductance that establish the resting membrane
potential in neurons, influencing neuronal excitability over a wide
range of membrane potentials, especially between resting and
action potential threshold, and shaping the duration, frequency
and amplitude of the action potential. Basic biophysical
properties of this family of channels, regulation, and
interaction with other proteins are reviewed elsewhere,
including some comprehensive and extensive reviews (Enyedi
and Czirják, 2010; Busserolles et al., 2019).

Almost all K2P channels are expressed in DRG and TG
neurons but the relative expression of each channel varies
between different neuronal populations and species. In
humans, the most prevalent channels in DRG and TG are
THIK-2, TASK1 and TWIK1, followed by TREK1, TASK2 and
TRESK (Flegel et al., 2015). Other studies found TRESK as the
most expressed channel in human TG (Medhurst et al., 2001;
LaPaglia et al., 2018). In mouse and rat sensory neurons, TRESK,
TRAAK, TREK2, TREK1, TWIK1, and TWIK2 are the most
highly expressed channels although relative expression may vary
between studies. Interestingly, mutations in TRESK have been
involved in pain derived from familial migraine with aura
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(Lafrenière et al., 2010). This effect is thought to be mediated by
non-functional homomeric TRESK channels and heteromeric
TRESK/TREK1 or TRESK/TREK2 channels, which enhances
trigeminal nociceptors excitability and triggers migraine pain
(Royal et al., 2019).

As mentioned, it is known that sensory neurons in the
trigeminal ganglia express some of these channels but, at the
ocular level, no detailed characterization of the channel types
expressed in sensory neurons exist to date. Nevertheless,
transcriptomic data indicates that TRESK is enriched in TG
compared to DRGs and the presence of TREK1 and TREK2
has also been shown in the TG (Yamamoto et al., 2009; Nguyen
et al., 2017; LaPaglia et al., 2018). In particular, TREK1, TREK2
and TRAAK are expressed in small-medium diameter trigeminal
neurons (likely nociceptors) which show a significant overlap
with TRPV1 expression (Yamamoto et al., 2009). In contrast,
poor colocalization of these channels is shown with TRPV2 or
TRPM8 in trigeminal neurons, with only small colocalization of
TREK1 and TRPM8 in some cells (Yamamoto et al., 2009). In this
sense, transcriptomic studies have shown that TRPM8-positive
trigeminal neurons express TASK3 and, to a lesser extent, TREK1
(Morenilla-Palao et al., 2014). Therefore, it is likely that
nociceptive and thermoreceptive sensory neurons specifically
innervating the ocular surface present K2P expression. The
members of the TREK subfamily of channels are modulated
by changes in pH. The most studied channel, TREK1, in
addition to its activation by arachidonic acid and mechanical
stimuli, it is also modulated by changes in pH. Intracellular
acidification activates the channel and, in addition, enhances
channel activity in response to other stimuli, such as membrane
stretch (Maingret et al., 1999). Also, extracellular stimuli that
induce a decrease in intracellular pH such as bicarbonate
(HCO3

−) or CO2, produce the same effects (Chen et al., 1997;
Lee and Chen, 2018). Whether CO2 application to the ocular
surface produces an intracellular acidification in sensory nerve
terminals it is not known. Nevertheless, if this occurs, TREK1
activation would hyperpolarize the terminal, thus preventing
action potential firing. Nevertheless, extracellular acidification
strongly inhibits TREK1 and activates TREK2, another closely
related channel (Sandoz et al., 2009). These effects are due to
histidines H126 and H151 in the extracellular loop of TREK1 and
TREK2, respectively, that act as proton sensors. This extracellular
regulation of TREK1 would depolarize the cell by inhibiting its
potassium current. This might occur in the ocular surface when
acidic sensitivity is tested by application of low pH solutions or
acetic acid (Belmonte et al., 1991; Callejo et al., 2015). TRESK is
also regulated by pH and both extracellular and intracellular
acidification inhibit the channel current while alkalinization
slightly enhances the channel activity (Sano et al., 2003;
Callejo et al., 2013). Despite no clear demonstration is
available to date, it is possible that combined inhibition of
TREK1 and TRESK by extracellular acidification of the ocular
surface reduces channels activity and promotes nociceptor
terminals depolarization and firing or, at least, facilitates their
activation by other stimuli.

K2P channels TASK3, TREK1, and TASK2 have been also
found in cold-sensitive TRPM8+ sensory neurons (Morenilla-

Palao et al., 2014). The ocular surface, particularly the cornea,
present a high innervation by these neurons which, in addition to
detect changes in temperature in the cold range, are involved in
the regulation of basal tearing rate and the detection of osmolarity
changes and ocular dryness (Parra et al., 2010; Belmonte and
Gallar, 2011; Quallo et al., 2015). As mentioned before, two
subclasses can be distinguished in the population of corneal
cold thermoreceptor neurons: a larger population of low-
threshold cold thermoreceptors (high TRMP8 expression) and
a smaller population of high-threshold cold thermoreceptors (low
TRPM8 expression). This last population comprises about 30% of
the ocular cold-thermoreceptors and are silent until strong
cooling activates them, probably acting as cold nociceptors
(Belmonte, 2019). TASK3 is highly expressed in about 30% of
these neurons and its activity is highly sensitive to acidification
(Kim et al., 2000). The sensitivity of TRPM8 sensory neurons to
cold or to TRPM8 agonists (e.g., menthol) is enhanced in the
absence of TASK3 or by inhibiting the channel with an acidic
solution (pH 6). Interestingly, deletion of TASK3 in mice
eliminates the population of high-threshold cold
thermoreceptors, indicating that the channel plays a significant
role in setting the temperature threshold of these neurons.
Therefore, TASK3, together with Kv1, can be acting as a brake
in excitability, dampening the sensitivity to cold temperatures of
high-threshold, cold-sensitive nociceptive neurons (Madrid et al.,
2009; Morenilla-Palao et al., 2014). Whether a simple pH change,
without the temperature drop, can activate these neurons has not
been tested.

3.5 Other Receptors
3.5.1 Proton-Sensing G Protein-Coupled Receptors
On top of the proton-activated ion channels described above, the
sensitivity to acid has been described for other ion channels and
receptors. Several G protein-coupled receptors (GPCRs) engage
heteromeric G proteins in response to acidic stimuli and were
termed accordingly as proton-sensing GPCRs (PS-GPCRs). The
group of PS-GPCRs is formed by six receptors; the initially
described GPR4, GPR65 (TDAG8, T-cell death-associated gene
8), GPR68 (OGR1, Ovarian cancer G protein-coupled receptor 1),
and GPR132 (G2A) (Ludwig et al., 2003; Murakami et al., 2004;
Wang et al., 2004), together with the recently identified GPR31
and GPR151 (Mashiko et al., 2019). Conserved histidines
localized in their extracellular domain confer them the ability
to be activated by acidic stimuli in the pH range of 7.6–5.6
(Ludwig et al., 2003; Ishii et al., 2005), however, they also can be
modulated by other endogenous and exogenous molecules such
as lipids (Murakami et al., 2004; Wang et al., 2004) and synthetic
ligands (Ludwig et al., 2003). Upon activation they engage
different intracellular signaling pathways linked to the function
of different G proteins, including stimulation of inositol
phosphate or cAMP production. Due to their ability to sense
extracellular acidification, different studies have investigated their
role in inflammatory mouse models. The expression of GPR4,
GPR65, and GPR132 is upregulated in several mouse models of
inflammatory pain (Chen et al., 2009; Dai et al., 2017). Several
studies have shown that ablating the function of these receptors,
by pharmacological or transgenic approaches, reduces persistent
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pathological pain from inflammatory and neuropathic origin
(Dai et al., 2017; Hsieh et al., 2017; Miltz et al., 2017).
However, although their role as acid sensors and their
involvement in inflammatory conditions have been
demonstrated, their expression in sensory fibers innervating
the ocular surface has never been determined, and therefore,
their role in the detection of acidic insults and inflammatory
conditions affecting the cornea and conjunctiva remains to be
studied.

3.5.2 Purinergic P2X Receptors
Purinergic P2X receptors are another group of ion channels gated
by ATP or other purinergic derivatives, but protons act as
allosteric modulators modulating the activation and function
of these receptors (Coddou et al., 2011). The potency of
activation of P2X2 by specific agonists is enhanced 5- to 10-
fold by acidification and even small changes in extracellular pH
(7.1–7.2), enhance the response of P2X2/3 heteromeric receptors.
In contrast, acidification inhibits most of the homomeric P2X
receptors. In particular, in some studies, P2X3 is slightly inhibited
by acidification but in other P2X subtypes, acidic pH exerts a dual
effect, shifting the concentration-response curve to the right but
increasing the current amplitude and activation time constant.
Almost all P2X receptors have been detected in the trigeminal
ganglia of both human and rodent species (Manteniotis et al.,
2013; Flegel et al., 2015). P2X3 receptor is mainly expressed in
sensory ganglia and mRNA and protein is found in the cell bodies
of both small and large trigeminal sensory neurons but has the
highest level of expression among smaller neurons, specially, in
non-peptidergic IB4+ neurons (Staikopoulos et al., 2007). P2X4,
P2X5, and P2X6 also show significant levels of expression in the
trigeminal ganglia and lower levels are found for P2X1, P2X2

(Flegel et al., 2015). Despite the studies in trigeminal ganglion
neurons, and like PS-GPCRs, there is a lack of specific studies on
purinergic receptors in the sensory nerve endings innervating the
anterior part of the eye (cornea, sclera and conjunctiva) thus the
role of protons modulating purinergic signaling remains to be
properly studied.

3.6 Ion Channels in Ocular Non-Neuronal
Cells
In addition to the proton-sensing ion channels expressed in
peripheral nerves innervating the cornea or the conjunctiva,
cells from the corneal epithelium, endothelium or the
conjunctiva also express ion channels with important
functions for ocular physiology. Members of the TRP family
have also been identified in corneal cells, including TRPV1-4,
TRPM8, TRPA1, or TRPC4 (Mergler et al., 2014). TRPV1 has
been found in the epithelium, stroma and endothelium of the
cornea (Yang et al., 2013a; Mergler et al., 2014). In the epithelium,
TRPV1 activation leads to an increase in intracellular calcium
that induces inflammatory cytokine release through MAPK
(mitogen-activated protein kinase) signaling (Zhang et al.,
2007), thus it appears that TRPV1 has a significant role in
infiltration of inflammatory mediators in the corneal
epithelium and stroma. The channel has been also involved in

cell migration and proliferation, thus promoting corneal
epithelial wound healing response. Because TRPV1 is sensitive
to protons, it is likely that acidification contributes to ocular
surface inflammation though this channel, promoting the release
of interleukins and other inflammatory mediators.

4 ACIDIC SUBSTANCES AND
COMMERCIAL DRUGS

A chemical injury with an acidic substance on the ocular surface
is a medical emergency that must be evaluated and treated
immediately. The treatment is usually based on reestablishing
corneal clarity, recovering the ocular surface and avoiding
increased intraocular pressure and damage to the optic nerve
to prevent visual impairment. In contact with the cornea, acidic
substances (pH < 4) denature and precipitate proteins, and their
coagulation produces the opacity of the cornea that characterizes
severe acid burns. After the acidic injury, the recovery phase
begins in which the corneal epithelium and the stroma are
restored, inflammatory mechanisms become evident on the
ocular surface and there is stromal ulceration and corneal
scarring (Singh et al., 2013). The main early signs of an acid
burn in the eye include ocular pain and irritation, increased tear
secretion, swollen eyelids and blurred vision. TRPV1 and ASICs,
activated by low pH, are the main channels that mediate eye pain
after acid injury. Hence, decreased expression or blocking of
TRPV1 reduces pain caused by chemical injuries at the cornea
(Moreno-Montañés et al., 2018; Hatta et al., 2019). In addition to
mediate pain responses, TRPV1 is involved in the release of
proinflammatory cytokines after an injury of corneal epithelial
cells. Therefore, it is a good candidate to control eye pain in
corneal injuries and inflammatory responses in the wound
healing process (Yang et al., 2013b). As mentioned above,
TRPA1 has also been associated with corneal regeneration
after chemical injuries (Okada et al., 2015).

A number of compounds used to treat eye diseases are
formulated in acidic solutions to facilitate their solubilization
and absorption through the cornea. Ocular topical application of
these drugs can cause adverse side effects associated with
irritation and toxicity of the corneal surface (Zhang et al.,
2019). Dorzolamide hydrochloride (Trusopt® as tradename),
which is a carbonic anhydrase inhibitor indicated to treat
ocular hypertension and primary open-angle glaucoma, has a
pH value of 5.6 and usually causes ocular irritation in patients
(Konowal et al., 1999; Gordon et al., 2008). Other compounds
with low pH values used as commercial ophthalmic eye drops to
treat glaucoma are the non-selective β-blocker levobunolol
hydrochloride (Betagan®; pH 6.5) and the prostaglandin
analog latanoprost (Xalatan®, Mylan®, Travatan®, Saflutan®,
Cosopt®; pH values between 5.6 and 6.7). It is widely known
that they cause temporary burning, redness, itching and blurred
vision (Thygesen, 2018). Consistent with this, pH neutralization
in some ophthalmic compounds abolishes ocular irritation
associated with their use (Loftsson et al., 2012). In this sense,
previous studies have shown that ASICs participate in the
nociceptive responses produced by Mylan® and Betagan®, and
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probably also by Trusopt® (Callejo et al., 2015). The low pH of
this last compound, as well as its lower osmolarity and high
viscosity might involve the activation of TRPV1 and other
mechanisms, thus ASIC blockers are not sufficient to decrease
its irritative effect (Callejo et al., 2015). At this point,
identification and characterization of ion channels and the
molecular mechanisms mediating ocular discomfort caused by
ophthalmic drugs is essential to try to avoid undesirable side
effects.

5 SUMMARY

The ocular surface is a particular structure of the body greatly
exposed to external environment and to many irritative and
painful stimuli. This is probably the reason why the cornea
presents the highest sensory innervation of the body, which
allows to detect potentially damaging stimuli and to respond
accordingly with protective behaviors such as blinking or tearing.
Several mechanical, chemical or thermal stimuli are known to
activate corneal, conjunctival and scleral peripheral terminals of
trigeminal sensory neurons (particularly, nociceptors). Among
them, acidic stimuli are known induce firing of polymodal
nociceptors through activation of specific ion channels in these
neurons. Part of these responses are mediated by members of the
ASIC family, as about 2/3 of corneal sensory neurons present
ASIC-like currents. Specifically, homomeric ASIC1a, ASIC3 and
heteromeric ASIC1/3 channels have been identified (Callejo et al.,
2015). These channels are activated by moderate acidifications
(pH 7.2–6.6) that can occur in the ocular surface during
inflammation or allergic conditions, in addition to insults
from external acidic solutions. In this sense, ASIC also
contribute to nociceptor sensitization and pain during allergic
keratoconjunctivitis, as blockade of ASIC3 channels diminish
nocifensive behavior in rodent models (Callejo et al., 2015).
Interestingly, in addition to protons, other compounds such as
GMQ is able to activate ASIC3 in the ocular surface, inducing
nocifensive behaviors (blinking and tearing), as well as firing of
ocular sensory nerve fibers. Other members of the family such as
ASIC1b, ASIC2a and ASIC2b are also probably present in ocular
nociceptors, as expression has been found in the trigeminal
ganglion (Callejo et al., 2015). Nevertheless, no clear
identification in ocular sensory neurons has been provided
to date.

Another channel long involved in acid sensing is TRPV1, as
this channel is directly activated by protons (Tominaga et al.,
1998). Despite moderate acidifications (pH 6–7) enhance the
responses to capsaicin and heat, the channel needs stronger

acidifications (pH < 6) to be directly gated by protons
(Tominaga et al., 1998). These biophysical properties seem to
indicate that it is unlikely that acidification occurring during
ocular inflammation or allergy can directly activate the channel
but, certainly, can enhance its response to heat or other
compounds, thus intensifying painful sensations. In fact,
blocking TRPV1 or TRPA1 with specific antagonists or
siRNAs has been demonstrated to reduce polymodal
nociceptors activity and ocular surface irritation by exogenous
compounds or during allergic keratoconjunctivitis (Luna et al.,
2007; Acosta et al., 2013). Besides, ASICs seem more prone to
mediate the acidic responses to moderate acidifications.
Nevertheless, important exogenous acidic insults are likely to
activate both types of channels, thus a major activation of sensory
nerve terminals will be achieved.

The contribution of other channels and receptors that are
likely expressed in corneal or conjunctival nerve fibers are poorly
studied to date. Some of these, such as K2P channels can have a
significant influence in the excitability of ocular sensory fibers,
modulating their excitability and, in consequence, pain
sensitivity. Because these potassium channels are polymodal
integrators, like TRPV1 and TRPA1, different stimuli
including protons, can modulate their activity to enhance or
diminish nociceptive input.

Despite some of the mechanisms of proton sensing in the
ocular surface are becoming to be elucidated, specific studies on
the different types of channels or receptors involved are needed,
as well as the different types of sensory fibers involved.
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Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied
by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal
nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound
morphological and functional changes, leading to peripheral and central pain sensitization.
Several studies using animal models of inflammatory and neuropathic ocular pain have
provided insight about the mechanisms involved in these maladaptive changes. Recently,
the advent of new techniques such as optogenetics or genetic neuronal labelling has
allowed the investigation of identified circuits involved in nociception, both at the spinal and
trigeminal level. In this review, we will describe some of the mechanisms that contribute to
the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent
advances in the discovery of molecular and cellular mechanisms contributing to peripheral
and central pain sensitization of the trigeminal pathways will be also presented.

Keywords: cornea, trigeminal ganglion, peripheral and central sensitization, synaptic transmission, descending
modulation, ocular pain

INTRODUCTION

Ocular pain is produced by stimulation of primary sensory neurons at the eye surface or by
alterations along the ocular pain pathway. Peripheral and central sensitization at these levels is
fundamental for the development of long lasting pain perception.

At the ocular surface, the cornea represents the most innervated and sensitive tissue. Its
innervation is supplied exclusively by small myelinated and unmyelinated sensory fibers, which
are located between the different layers of the corneal epithelium, protecting cornea integrity from
potential injuries. Corneal sensory fibers are mainly associated with pain: psychophysical studies in
humans have demonstrated that corneal mechanical, chemical or thermal stimulation produces
aversive or nociceptive sensations (Kenshalo et al., 1960; Beuerman and Tanelian, 1979; Belmonte
et al., 1999), except for the purely cold sensations provoked by low-temperature stimuli of moderate
intensity (Acosta et al., 2001). Direct activation of corneal nerve terminals evokes also protective
reflexes, such as eye blinks, tear formation, endocrine and cardiovascular responses (Bereiter et al.,
1996; Boscan and Paton, 2002).

Primary afferent fibers innervating the cornea belong to the myelinated Aδ and unmyelinated C
type and run in the trigeminal nerve (ophthalmic branch, V1), whose ganglion (trigeminal ganglion,
TG) contains the somas of the primary sensory neurons. The central branches of corneal afferents
reach the trigeminal spinal nucleus (Sp5) in the brainstem, where they contact the second order
sensory neurons, represented by both projection and local circuit neurons (Figure 1A).
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Corneal nerve structure and function are adversely affected by
many ophthalmic and systemic disorders. Persistent ocular pain
can be provoked by a long-lasting noxious stimulus or damage to
the ocular surface (nociceptive pain) or can result from
abnormalities in the ocular neurosensory apparatus itself
(neuropathic pain). Persistent and abnormal activation of
corneal nociceptors can lead to pain sensitization, occurring at
peripheral and/or central sites and manifesting as spontaneous
pain, hyperalgesia (increased response to a noxious stimulus),
and allodynia (pain evoked by a normally innocuous stimulus)
(Galor et al., 2018; Guerrero-Moreno et al., 2020).

While several mechanisms of pain sensitization occurring at
the peripheral corneal afferent endings have been identified,
synaptic alterations affecting second order neurons in the
spinal trigeminal nucleus have not been fully investigated. On
the other hand, new technical approaches developed during the
last decade (such as neuronal genetic labelling and optogenetic
stimulation) have provided a better comprehension of the
trigeminal circuits involved in sensory transmission and pain
sensitization. In this review, we will outline recent advances in
understanding corneal pain processing, with particular focus on
the mechanisms leading to pain sensitization.

PERIPHERAL MECHANISMS MEDIATING
OCULAR PAIN

Types of Corneal Sensory Fibers
Nociceptors innervating the corneal surface can be classified as
mechanonociceptors, polymodal nociceptors and cold-sensitive
receptors (Gallar et al., 1993; Belmonte et al., 2004; Gonzalez-
Gonzalez et al., 2017).

Mechanonociceptors (MNs) represent about 10% of corneal
fibers (mostly Aδ type) and are activated exclusively by noxious
mechanical forces generated by external objects, presence of
foreign bodies, air pressure or distortion of epithelium layer
caused by drying ocular surface. Their thresholds are low in
comparison with the MNs in the skin: however, since their
endings are very close to corneal surface, they are probably
excited by similar actual forces (Boada, 2013). MNs respond
to mechanical stimulation mainly with a short lasting, phasic
discharge of action potentials (APs), thus encoding the dynamic
changes of the stimulus (Belmonte and Giraldez, 1981; Belmonte
et al., 1991).

A large population of corneal sensory fibers (about 40%) are
polymodal nociceptors (PNs). They respond with a strong
discharge in response to a broad spectrum of stimuli:
mechanical energy near or above noxious level, heat (>39°C)
or noxious cold, exogenous chemical liquid or gaseous irritants,
bacterial toxins. PNs can be also activated by endogenous
chemical mediators released by damaged corneal tissue or
deriving from plasma leaking from limbal vessels. Most PNs
belong to C-type fibers and generate an irregular, continuous
discharge, providing information about the intensity of the
stimulation (Belmonte and Giraldez, 1981; Belmonte et al.,
1991; Chen et al., 1997).

About 50% of corneal afferent fibers are represented by cold-
sensitive receptors (CRs), including both Aδ and C fibers. They
are activated by cooling of the corneal surface (induced by corneal
application of cold solution or cold air or by tear film
evaporation) or by the increase of tear osmolarity (Belmonte
and Giraldez, 1981; Acosta et al., 2001; Parra et al., 2014). CRs fire
tonically and contribute to maintain ocular surface wetness by
regulating basal tear flow and blinking rate (Hirata and Meng,
2010; Hirata et al., 2012). Based on their activation threshold, CRs
can be divided in low and high threshold (LT and HT). LT
receptors discharge spontaneously at rest and increase their firing
rate under small decreases of the corneal temperature below the

FIGURE 1 | Schematic representation of sensory pathways involved in
corneal pain transmission. (A) Sensory pathways conveying corneal
nociceptive input to the central nervous system. Corneal sensory input is
transmitted by corneal nociceptors, whose cell bodies are located in the
trigeminal ganglion (TG). Central terminals of nociceptors project to the spinal
trigeminal nucleus (Sp5) in the brain stem. Projection neurons in these regions
send ascending pathways to several areas, including the parabrachial nucleus
(PBN) and the thalamus, that in turn project to higher centers. (B) Principal ion
channels involved in corneal sensory transduction on the nociceptor
peripheral terminals. During peripheral sensitization, TRPV1 and TRPA1 are
usually upregulated, while TRPM8 function is enhanced in neuropathic pain
and decreased during inflammation.
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normal value (about 34–35°C), providing a sensation of cold and
dryness. HT receptors, whose activation causes a sensation of
dryness and pain, do not show spontaneous activity at normal
corneal temperature (they remain silent at temperatures >29°C)
and are activated only by strong cooling (Hirata et al., 2012;
Hirata and Rosenblatt, 2014).

Membrane Channels Involved in Corneal
Sensory Transduction
Corneal nociceptors are involved in sensory transduction, that is
mediated by several classes of ion channels, detecting different
types of nociceptive stimuli. Opening of these channels on the
nociceptor peripheral terminals generates an inflow of cations,
which mediates membrane depolarization. Supra-threshold
depolarizations, in turn, activate sodium and potassium
voltage-dependent channels, generating APs that propagate to
the neuronal soma in the TG and to the central terminals in Sp5
(Figure 1B).

Corneal transduction of mechanical stimuli is mainly
performed by PIEZO2 channels, large membrane proteins with
a homotrimeric propeller-shaped structure, comprising a central
ion-conducting pore module and three peripheral
mechanosensing blades with 38 transmembrane domains.
Mechanical activation of this channel generates a cationic
current, that depolarizes excitable cells (Coste et al., 2010;
Coste et al., 2012). PIEZO2 is mainly activated by innocuous
mechanical forces and is expressed in dorsal root ganglia (DRG)
and TG sensory neurons, in tactile epithelial Merkel cells, and in
the sensory endings of proprioceptors (Woo et al., 2014; Woo
et al., 2015). Accordingly, mice carrying a conditional deletion of
PIEZO2 in sensory neurons or inMerkel cells show severe deficits
in tactile discrimination and movement coordination, while
responses to mechanical nociceptive stimulation are unaffected
or only partially diminished (Woo et al., 2014; Woo et al., 2015;
Murthy et al., 2018). Recent experimental evidence suggests that
PIEZO2 is also involved in different forms of mechanoceptive
sensitization, such as mechanical allodynia, generated by
inflammation or nerve injury (Murthy et al., 2018; Szczot
et al., 2018).

In the cornea, PIEZO2 is expressed by pure MN sensory
neurons and by a subpopulation of PNs (Bron et al., 2014;
Fernandez-Trillo et al., 2020). In sensory-specific PIEZO2
knock out mice, electrophysiological responses to mechanical
stimulation of corneal MNs and PNs were significantly reduced
and the eye blink reflex was impaired (Fernandez-Trillo et al.,
2020). The expression of highly sensitive mechanotransducing
channels like PIEZO2 on corneal nociceptors is critical for the
early detection of low-intensity mechanical stimuli, potentially
harmful to the corneal epithelium.

PIEZO2 has been also identified as the principal
mechanotransduction channel for proprioception (Woo et al.,
2015), however strong evidence is lacking that corneal trigeminal
afferents and extraocular muscle spindles contribute to
proprioception (Weir et al., 2000; Rao and Prevosto, 2013).
Nevertheless, it was suggested that the primary afferents of
extraocular muscle spindles initiate the corneal reflex (Bratzlavsky,

1972). Under neuropathic cornea disease, somatosensory PIEZO2
channels could be microinjured mechano-energetically and could
alter genetically preprogrammed reflexes with longitudinal central
nervous system consequences. The repetitive reinjury of PIEZO2
channels could cause chronic pain even in the absence of secondary
harsher tissue injury (Sonkodi et al., 2021a; Sonkodi et al., 2021b).

Both TRPV1 and TRPA1 channels, belonging to the transient
receptor potential (TRP) family of ion channels, are involved in
corneal pain transduction. All TRP channels possess a tetrameric
structure, where each monomer consists of six transmembrane
domains (S1-S6). A pore loop, located between S5 and S6, forms
the permeation pathway to cations. In the cornea, peptidergic
PNs highly express TRPV1, that is directly activated by heat,
protons, and high osmolarity (Murata and Masuko, 2006; Zhang
et al., 2007; Hegarty et al., 2014; reviewed in: Mergler et al., 2014;
Luo et al., 2021). A subpopulation of PNs present the TRPA1
channels, responding to exogenous irritants, toxins, chemicals,
strong cold, and endogenous agents (such as ROS and lipid
peroxidation products) (Acosta et al., 2014; Schecterson et al.,
2020). In DRG neurons heteromeric interactions between TRPV1
and TRPA1 have been reported (Akopian, 2011). Interestingly,
physical association between TRPA1 and TRPV1 is regulated by
the membrane adaptor protein Tmem100: when this protein is
present, TRPV1 mediated inhibition on TRPA1 is reduced. This
leads to the potentiation of TRPA1 activity, contributing to
persistent pain (Weng et al., 2015). Although the co-
expression of TRPV1 and TRPA1 in corneal sensory neurons
is still debated (Gonzalez-Gonzalez et al., 2017; Schecterson et al.,
2020), the presence of TRPV1-A1 complexes in corneal afferents
could play an important role in pain transduction and
sensitization. Beside TRPV1 and TRPA1, other channels are
involved in sensory transduction in corneal PNs. These
include ASICs (acid-sensing ion channels, opened by protons)
and P2x (purinergic ionotropic receptors binding ATP)
(Belmonte et al., 2015; Belmonte, 2019).

TRPM8 channel, another member of the TRP receptor family,
is highly expressed by corneal CRs, where it is sensitive to
dynamic downward shifts of temperature and to moderate
osmolarity increases (Parra et al., 2010; Parra et al., 2014;
Quallo et al., 2015). Additional channels contributing to cold
transduction include background potassium channels, closed by
cooling of the corneal surface, thereby inducing membrane
depolarization and AP firing (Viana et al., 2002) and
potassium Kv1 channels, whose opening sets the threshold of
CR activation and counteracts the cold-induced response in PNs
(Madrid et al., 2009).

Molecular Mechanisms of Peripheral Pain
Sensitization
Beside sensory transduction in acute ocular pain, corneal
nociceptors are also involved in several forms of peripheral
sensitization, which develop during prolonged exposure to
painful stimuli. Peripheral sensitization is defined as the
increased responsiveness and reduced threshold of nociceptive
neurons in the periphery of the sensory system, induced by local
inflammation or by peripheral nerve injury.
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In the cornea, several conditions can lead to tissue
inflammation: infections caused by bacteria, viruses or fungi;
eye injuries; exposure to irritant chemicals or ultraviolet radiation
(UV); tear evaporation and hyperosmolarity in dry eye disease
(DED). Damaged corneal tissue and immune cells release several
molecules and inflammatory mediators, such as ATP, H+,
Substance P (SP), Neurokinin A, Tumor necrosis factor alpha
(TNF-α), prostaglandin E2 (PGE2), and interleukins (ILs), which
interact with membrane receptors/channels of nociceptor ending
membrane. This may lead to the opening and/or modifications of
ion channels involved in sensory transduction (directly or by
activating intracellular pathways), depolarization of nerve
endings, increase of nociceptor excitability, and spontaneous
firing. Consistently, several electrophysiological studies have
demonstrated that peripheral corneal nerves sensitize
whenever exposed to inflammatory milieu or to DED
conditions (Gallar et al., 2007; Kurose and Meng, 2013; Parra
et al., 2014).

Peripheral sensitization is observed also in case of damage to
corneal nerve fibers, leading to neuropathic pain. Corneal nerve
injuries can be generated by several factors or disorders, including
photorefractive surgeries, DED, cornea abrasion, chemicals,
radiations, diabetes, autoimmune diseases (such as the
Sjögren’s syndrome), fibromyalgia, herpes zoster, and systemic
medications. Injury of the corneal nerve induces initially a
reduced or total loss of sensitivity of the damaged area,
determining insensitivity or higher threshold to natural stimuli
in the injured axons (Beuerman and Schimmelpfennig, 1980; Lee
et al., 2002; Gallar et al., 2004; Cho et al., 2019). The subsequent
regeneration of some damaged axons determines the formation of
neuromas (i.e. axons surrounded by connective tissue and
immune cells) and accumulation of ion channels in the neural
stumps (Lisney andDevor, 1987; Devor et al., 1993). This can lead
to an aberrant function of the peripheral nerve endings,
generating spontaneous impulse bursts in absence of
stimulation (ectopic activity) and/or paroxysmal firing in

response to mild mechanical and chemical stimuli (Rivera
et al., 2000; Luna et al., 2021).

Molecular mechanisms of sensitization involving ion channels
and receptors expressed by peripheral trigeminal fibers have been
thoroughly investigated by using several animal models of ocular
pain (Table 1) (reviewed in Belmonte et al., 2015, Belmonte, 2019;
Goto et al., 2016; Andersen et al., 2017; Guerrero-Moreno et al.,
2020). We will present here some of the most recent studies,
which have added interesting insight to this topic.

TRPV1 and TRPA1 channels undergo important changes
during persistent corneal pain. De novo channel expression,
increase of membrane trafficking and channel phosphorylation
have been reported in corneal pain of both inflammatory and
neuropathic origin, causing the potentiation of channel function
and the increase of membrane depolarization. In an experimental
model of keratitis induced by ultraviolet (UV) radiation,
nocifensive responses produced by application of capsaicin
and AITC (TRPV1 and TRPA1 agonists, respectively) were
potentiated in irradiated eyes compared to controls (Acosta
et al., 2014). In a rat model of DED (the excision of the
lacrimary glands), TRPV1-mediated effects on ongoing activity
and sensitivity to heat of corneal nociceptors were increased
(Hatta et al., 2019). Finally, the upregulation of TRPV1, TRPA1,
ASIC1, and ASIC3mRNAwas detected in the ophthalmic branch
of the trigeminal nerve in a mouse model of severe DED caused
by the excision of Harderian and extraorbital lacrimal glands
(Fakih et al., 2021).

Voltage-dependent sodium channels (Nav) are actively
involved in corneal nociceptor sensitization: perfusion with
amitriptyline (a Nav channel blocker) was less effective in tear-
deficient mice, suggesting the occurrence of changes in the
expression of these channels induced by ocular dryness
(Masuoka et al., 2018). In guinea pig excised eyes, previously
subjected to a corneal surgical lesion, AP discharges of PNs were
increased in response to chemical corneal stimulation (CO2

application) (Luna et al., 2021). Similarly, removal of the main

TABLE 1 | Summary of experimental approaches used to induce and study ocular pain in animals.

Experimental procedure Ocular pain model References

Chemical (saline, mustard oil, capsaicin, CO2 application),
thermal, mechanical or electrical corneal stimulation

Acute corneal pain Lasagni-Vitar et al. (2021), Bereiter and Bereiter (1996), Meng and
Bereiter (1996), Martinez and Belmonte (1996), Meng et al.
(1997), Meng et al. (1998), Hirata et al. (2000), Hirata et al. (2004),
Khalilzadeh and Saiah (2017)

Acetic acid application to ocular surface Corneal irritation and acute corneal
pain.

Martinez and Belmonte (1996)

Topical application of benzalkonium chloride Ocular surface inflammation Byun et al. (2020)
Alkali burn (NaOH application on cornea) Inflammatory and neuropathic pain Xiang et al. (2017)
Corneal ultraviolet irradiation Photokeratitis

Corneal inflammation
Tashiro et al. (2010); Acosta et al. (2014).

Endotoxin/Lipopolysaccharide (LPS) on cornea surface Uveitis
Intraocular inflammation

Bereiter et al. (2005)

Excision of lacrimal glands Dry eye disease (DED)
Inflammatory and neuropathic pain

Rahman et al. (2015), Hatta et al. (2019), Li et al. (2019), Fakih
et al. (2019), Fakih et al. (2021)

Corneal surgical lesion Corneal refractive surgery.
Inflammatory and neuropathic pain.

Luna et al. (2021)

Controlled cutting of stromal nerve fibers Corneal nerve damage.
Neuropathic pain.

Zhang et al. (2012)
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lachrymal gland in guinea pigs enhanced the ongoing AP firing
and the responses to cooling of corneal CRs. These effects were
mediated by the increase of the sodium currents and the decrease
of potassium currents in TG neurons (Kovacs et al., 2016). In a
different study, acute treatment of corneal nociceptor endings
with the pro-inflammatory substances TNF-α and IL-1β
increased the functional availability of Nav channels at the
terminal. This caused a shift of the spike initiation zone
toward the axonal end, increasing the nociceptor excitability.
Interestingly, the same effect on the spike initiation zone was
observed in an animal model of photokeratitis induced by UV
exposure (Goldstein et al., 2019).

TRPM8 channels undergo different changes depending on the
type of corneal injury (Belmonte, 2019). TRPM8 function in
mouse cold sensitive corneal fibers was inhibited by perfusion of
inflammatory mediators (such as bradykinin, PG, histamine),
which caused a reduction of ongoing cold-evoked impulse
activity, recorded in vitro (Zhang et al., 2012). In contrast,
corneal nerve injury increased the functional expression of
TRPM8 in CRs, enhancing their cold sensitivity and causing a
rise in the ongoing firing activity and basal tearing (Piña et al.,
2019). Removal of lacrimatory gland in mice enhanced the
TRPV1 expression in corneal TRPM8+ fibers, leading to
increased AP firing in response to cold and to cold allodynia
(Li et al., 2019).

Corneal nociceptor terminals express neuropeptides, in
particular SP and CGRP (calcitonin-gene-related peptide)
(Murata and Masuko, 2006). Following corneal injury,
performed through superficial epithelial abrasion, CGRP
expression in peripheral nociceptor terminal was upregulated
(Hegarty et al., 2018). Release of SP and CGRP exerts a
proinflammatory action (defined as “neurogenic
inflammation”), by promoting the release of other
inflammatory mediators, cell chemotaxis, and plasma
extravasation. Consistently, ocular surface inflammation in
rats, induced by topical application of 0.1% benzalkonium
chloride, enhanced the expression of SP in trigeminal neurons
(Byun et al., 2020), while ablation of the SP gene Tac1 or blockade
of SP receptor NK1 reduced ocular nociceptive responses in mice,
induced by saline application (5 M NaCl) on corneal surface
(Lasagni Vitar et al., 2021).

A recent study suggests that cornea epithelial cells actively
participate to peripheral pain sensitization. Indeed, TRPV-4
channels expressed on these cells can act as osmotic and
thermal sensors: heat or cell swelling, induced by cell
hypotonicity, trigger the opening of these channels,
determining calcium influx, ATP release and modulation of
corneal sensory fibers (Lapajne et al., 2020).

CENTRALMECHANISMSOFOCULARPAIN

Eye Pain Processing in the Trigeminal
Spinal Nucleus (Sp5)
Corneal sensory input is transmitted from peripheral terminals
through the TG and along the central terminals to the brain stem.
Initial processing of the sensory information occurs in the

trigeminal spinal nucleus (Sp5), located in the medulla
oblongata. This nucleus consists of three subnuclei (oralis,
interpolaris, caudalis), the most caudal of which, the
subnucleus caudalis, extends into the cervical spinal cord. Two
regions are particularly involved in the processing of corneal pain:
the transition between the subnuclei interpolaris and caudalis
(Vi/Vc) and the junction between the subnucleus caudalis and the
upper cervical spinal cord (Vc/C1) (Marfurt and Del Toro, 1987)

FIGURE 2 | Modulation and sensitization of sensory input in the spinal
trigeminal nucleus (Sp5). (A) Corneal sensory input is processed in Sp5,
mainly at the transition between the subnuclei interpolaris and caudalis (Vi/Vc)
and at the junction between the subnucleus caudalis and the upper
cervical spinal cord (Vc/C1). Sp5 activity is controlled by descending
modulation, comprising serotoninergic pathways. Serotoninergic neurons are
located in rostral ventral medulla (RVM) and are activated by projection
neurons in periaqueductal grey area (PAG). (B) Hypothetical mechanisms
sustaining central ocular pain sensitization in Sp5. Persistent corneal
nociceptive input may induce a general increase of synaptic excitation (mostly
mediated by glutamate and peptides) and a decrease of synaptic inhibition
(mediated by GABA and glycine). As reported for several forms of spinal and
trigeminal pain, glutamate receptors could be potentiated by increased
phosphorylation and participate to plasticity phenomena, such as wind-up
and LTP. Synaptic inhibition could be depressed through changes of chloride
equilibrium potential, LTD, neuronal loss, decrease of transmitter release, and
presynaptic facilitation. Furthermore, a switch in the function of serotoninergic
modulation from anti-to pro-nociceptive could contribute to the
hyperexcitability state. Further studies are needed to confirm these
mechanisms in the ocular pain system.
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(Figure 2A). Beside receiving sensory inputs from several cranio-
facial structures, these areas are also connected to each other by
intersubnuclear projections (Nasution and Shigenaga, 1987;
Jacquin et al., 1990).

Ocular stimulation (mechanical, chemical or electrical)
activates trigeminal nerve sensory fibers, carrying information
to Vi/Vc and Vc/C1 neurons: corneal stimulation or intravitreal
capsaicin induced a bimodal distribution of the cFos gene
expression (a marker for intense neural activation), showing a
rostral peak in Vi/Vc and a caudal peak in Vc/C1 (Lu et al., 1993;
Strassman and Vos, 1993; Bereiter and Bereiter, 1996; Martinez
and Belmonte, 1996; Meng and Bereiter 1996).

In vivo electrophysiological recordings from Vi/Vc and Vc/C1
in rats have identified different subpopulations of neurons,
exhibiting specific properties in response to cornea
stimulation. In general, neurons receiving a corneal input are
for the vast majority nociceptor-specific, activated either by
corneal nociceptors only or by convergent corneal and
cutaneous nociceptors (Meng et al., 1997; Meng et al., 1998;
Hirata et al., 1999; Hirata et al., 2004).

In the Vi/Vc, two neuronal classes have been described:

- Type I: include both corneal specific units and neurons
receiving also convergent cutaneous inputs. A late excitation is
evoked in these neurons in response to corneal stimulation
by CO2.
- Type II: represented only by neurons with convergent
corneal and cutaneous inputs. These units are subjected to
strong feedforward inhibition, since they respond to corneal
stimulation with an inhibitory phase followed by late
excitation. This class includes also neurons responding to
acute changes of moisture status of ocular surface,
importantly involved in the reflex of lacrimation.

Differently from Vi/Vc, all Vc/C1 neurons belong only to the
Type I class and show convergent receptor fields.

Responses evoked by corneal electrical stimulation in Vi/Vc
and Vc/C1 neurons are differently modulated by opioids: while all
Vc/C1 units are inhibited bymorphine, the responses of many Vi/
Vc neurons are enhanced by μ receptor (MOR) agonists (Meng
et al., 1998; Hirata et al., 1999). Interestingly, local administration
of morphine to Vc/C1 region increased the responses to CO2 in
Vi/Vc, confirming the presence of intersubnuclear connections
that could contribute to opioid analgesia in corneal pain (Meng
et al., 1998; Hirata et al., 2000).

All these results demonstrate that the ophthalmic division of
the trigeminal nerve provides a dual sensory representation of the
cornea in the Sp5. As pointed out by Bereiter et al. (2000), this
redundancy may be explained by different roles played by Vi/Vc
and Vc/C1 regions in the sensory elaboration of corneal pain. The
properties of Vc/C1 corneal neurons (excitation in response to
cornea stimulation, inhibition by opioids) are common to other
areas along the pain neuraxis and are consistent with a role of this
region in the sensory-discriminative aspects of ocular pain. On
the other hand, the heterogeneous responses of Vi/Vc corneal
neurons to cornea stimulation and to opioids, together with the
exclusive presence of neurons sensitive to the ocular moisture

status, would suggest the involvement of this area in more
specialized ocular functions, such as reflex control of tear
formation and eye blinks, and in the recruitment of anti-
nociceptive pathways. Consistently, single unit recordings from
rat spinal trigeminal nucleus have identified in Vi/Vc two neuron
types importantly involved in the initiation of the eye blink reflex
(Henriquez and Evinger, 2007).

Second order neurons in Vi/Vc and Vc/C1 project to various
brain regions including the bilateral parabrachial nuclear complex
(PBN) (Cechetto et al., 1985; Panneton et al., 1994; Mitchell et al.,
2004; Aicher et al., 2013; Aicher et al., 2014) and the posterior and
medial contralateral thalamus (Dado and Giesler, 1990; Hirata
et al., 2000; Guy et al., 2005; Saito et al., 2017). Other projections
from Vi/VC and Vc/C1 neurons reach the periaqueductal gray
(PAG), rostral ventral medulla, hypothalamus, and insular cortex
(Bereiter et al., 2000; Sessle et al., 2000; Xiang et al., 2017). Recent
anatomical and functional studies have reported that cornea
stimulation activates a high number of Vc projection neurons
directly targeting the PBN area, while ascending pathways to the
thalamus seem to rely to more complex, polysynaptic circuits
(Aicher et al., 2013; Aicher et al., 2014; Saito et al., 2017).

Neurons in PBN project to multiple brain regions, including
central amygdala, hypothalamus, PAG, and ventrolateral
medulla, which are considered to be involved in affective pain,
autonomic and homeostatic control, and descending pain
modulation (Gauriau and Bernard, 2002; Chiang et al., 2019).
From the thalamus, information is sent to the somatosensory
cortex (responsible for the sensory-discriminative aspects of pain)
and to the limbic cortical areas (such as anterior cingulate cortex,
insula and prefrontal cortex), involved in the affective/emotional
components of pain. Brain imaging experiments performed on
human subjects have described the “pain matrix” activated by
ocular pain, which include numerous areas located in the cortices
(insular, anterior cingulate, somatosensory and prefrontal
cortex), in the thalamus, and in several subcortical centers
(Moulton et al., 2009; Moulton et al., 2012; Tang et al., 2018).

Mechanisms of Central Sensitization in Sp5
Similarly to peripheral terminals, also corneal nociceptor central
terminals and Sp5 secondary neurons undergo plastic changes
during long-lasting pain stimulation (Figure 2B). Peripheral
sensitization, due to persistent inflammation or injury to the
corneal nerve, and the subsequent increased afferent input to Sp5,
can lead to central pain sensitization over time (Ebrahimiadib
et al., 2020; Guerrero-Moreno et al., 2020). Evidence of central
sensitization to corneal pain, expressed by an increased response
of Sp5 neurons to cornea stimulation and the enlargement of
cutaneous receptor fields, has been reported in rats in presence of
endotoxin-induced uveitis (Bereiter et al., 2005), after corneal
heating (Pozo and Cervero, 1993), in a model of photokeratitis
(Tashiro et al., 2010), and after removal of exorbital gland
(Rahman et al., 2015). In a model of cornea alkali burn, ERK
phosphorylation (a marker of neuronal activation) was detected
in mouse Vc/C1 and in higher brain areas belonging to the
corneal neuropathic pain matrix (Xiang et al., 2017).

Beside neurons, central sensitization produces profound
modifications also in Sp5 glial cells, as observed in various
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models of oro-facial pain: under trigeminal nerve injury, orofacial
inflammation or migraine, several molecules are released from
primary afferents, contributing to microglia and astrocyte
activation (reviewed in Shinoda et al., 2019; Ye et al., 2021).
Activated microglial cells and astrocytes release various pro-
inflammatory cytokines (IL-1β, TNFα, and IL-6), chemokines
(such as CCL-2), nerve growth factors (BDNF), and
“gliotransmitters” (such as ATP, glutamate and peptides), that
act on nearby glial cells and neurons, leading to an exacerbation
of pain. In particular, astrocytes contribute to oro-facial pain
central sensitization through several mechanisms: 1) increased
phosphorylation of astrocytic Jun-N-terminal kinase (JNK) (Lin
et al., 2019); 2) decrease of glutamate uptake, due to disfunction of
the excitatory aminoacid transporter 2 (EAAT2) and/or of Na+/
K+ ATPase pump (Isaksen et al., 2016; Zhou et al., 2019); 3)
enhancement of synthesis and release of glutamine, a precursor of
glutamate (Chiang et al., 2008); 4) increase of release of D-serine, a
co-agonist of the NMDA receptor (Dieb and Hafidi, 2013); 5)
potentiated function of astrocytic gap-junctions, which allow the
propagation of calcium waves and the release of various
gliotransmitters (Wang et al., 2014). A mechanism of
microglia-astrocyte communication has been recently
described: in the neuropathic pain model of infraorbital nerve
injury, microglial cells release the complement component C1q,
contributing to the activation of astrocytes in Sp5 and the
induction of persistent orofacial pain (Asano et al., 2020).

Two recent studies indicate that glial cells play a critical role
also in central sensitization to corneal pain. Ocular inflammation,
induced in mice by topical instillations of benzalkonium chloride,
was associated with microglia activation and enhancement of
phosphorylated p38 MAPK specifically in these cells (Launay
et al., 2016). Furthermore, upregulation of pro-inflammatory (IL-
6, IL-1β), neuronal (ATF3, cFos) and glial (Iba1 and GFAP)
markers was detected in both Vi/Vc and Vc/C1 in a mouse model
of DED (Fakih et al., 2019). Interestingly, a higher
immunoreactivity of the protein Piccolo (associated with the
presynaptic zone and the secretion of synaptic vesicles) was
also detected in the same study, suggesting a role of
presynaptic plasticity in the sensitization of the nociceptive
responses.

Glutamatergic Synaptic Transmission in Sp5 and
Plasticity
In the spinal cord dorsal horn, pain sensitization is associated
with maladaptive changes of the synaptic activity, which increase
the efficacy of excitatory transmission and/or reduce the impact
of synaptic inhibition (Gradwell et al., 2020). In the trigeminal
nuclei similar mechanisms have been proposed, involving
glutamatergic, GABA- and glycinergic transmission. Early
electrophysiological studies had identified glutamatergic
AMPA and NMDA receptors (AMPARs and NMDARs),
together with GABA and glycine receptors, as the major
synaptic receptor types involved in excitatory and inhibitory
synaptic transmission in Sp5 (Hamba et al., 1998; Onodera
et al., 2000; Takuma, 2001; Han et al., 2008).

The role of glutamate receptors in excitatory transmission at
Sp5 and the intrinsic properties of neurons receiving these

glutamatergic inputs have been extensively investigated in the
superficial laminae (I- and II) of the subnucleus caudalis (Vc). Vc
lamina I neurons are considered to be both modality specific and
WDR (wide dynamic range) (Renehan et al., 1986; Meng et al.,
1997; Hirata et al., 1999). Neurons expressing the NK1 receptor
are believed to represent projection neurons sending their axons
to higher brain regions, similarly to what reported in spinal cord
dorsal horn (Li et al., 2000; Sedlaceck et al., 2007; Luz et al., 2019).
Neurons located in the Vc lamina II of cats and rats have also
been functionally classified from in vivo recordings as WDR or
nociceptor specific. Their electrophysiological characterization
has revealed the presence of four different firing patterns: tonic,
phasic, delayed, and single spiking (Davies and North, 2009). The
use of fluorescent reporter mice allowed to correlate the tonic
firing pattern prevalently to VGAT expressing GABA- and
glycinergic neurons (inhibitory interneurons), while the
delayed firing was most common in somatostatin/TdTomato
neurons (predominantly excitatory interneurons), consistently
with findings in spinal cord dorsal horn (Pradier et al., 2019).

Unmyelinated C and thinly myelinated, small-diameter Aδ
primary afferent fibers are reported to be the major input to Vc
laminae I-II neurons (Jacquin et al., 1986; Ambalavanar and
Morris, 1992; Crissman et al., 1996). Excitatory synapses between
nociceptive primary afferents and Vc neurons are primarily
mediated by the activation of AMPARs and NMDARs (Grudt
and Williams, 1994; Onodera et al., 2000).

New technical approaches, such as opto- and chemogenetics,
are importantly contributing to the understanding of synaptic
circuit organization in the spinal cord and trigeminal nuclei. In a
recent study, optogenetic stimulation of primary afferent fibers,
expressing TRPV1 and channelrhodopsin 2, evoked in mouse Vc
glutamatergic mono- or polysynaptic responses, exhibiting
different properties depending on the neuron type (Pradier
et al., 2019). A similar experimental approach could be
utilized also in the study of Sp5 synaptic circuits involved in
corneal pain transmission. Early studies had demonstrated that
the activation of such circuits strongly relies on glutamatergic
receptors, since administration of AMPAR and NMDAR
antagonists to Sp5 significantly decreased the c-Fos expression
induced by corneal stimulation (Bereiter and Bereiter, 1996;
Bereiter et al., 1996).

Glutamatergic receptors are critically involved in central
sensitization in several forms of cranio-facial pain. NMDARs
contribute to neuroplastic changes induced in adult rats by
neonatal capsaicin treatment or by tooth pulp nociceptive
stimulation (Chiang et al., 1997; Chiang et al., 1998). Dural
application of an inflammatory soup (a model of migraine)
enhanced phosphorylation of the NMDAR subunits NR1 and
NR2B (Maneepak et al., 2009; Wang et al., 2018), while
phosphorylation of the AMPAR subunit GluR1 is involved in
neuron sensitization associated with dry tongue (Nakaya et al.,
2016). Interestingly, release of SP from corneal CRs was increased
in a mouse model of DED and the effect was mediated by
sensitized TRPV1 channels (Li et al., 2019). SP release at the
CR central terminals may amplify the excitation induced by
glutamatergic transmission, leading to central sensitization and
cold allodynia.
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Several forms of synaptic plasticity, such as wind-up, long-
term potentiation (LTP) and long-term depression (LTD), have
been reported to contribute to central pain sensitization,
requiring the activation of glutamate receptors (Sandkűhler
and Gruber-Schoffnegger, 2012; Zhuo, 2017). In the Vc
subnucleus, NMDARs play a critical role in the generation of
wind-up, a form of short-term plasticity consisting of the increase
in the total C-fiber mediated responses after repeated electrical
stimulation (Luccarini et al., 2001; Woda et al., 2004). LTP can be
generated in the same region by high frequency conditioning
stimulation of C fibers: this mechanism, which seems to be
mainly due to the activation of metabotropic glutamate
mGluR5 receptors, could contribute to the persistent increase
of neuron excitability observed in orofacial pain sensitization
(Hamba et al., 2000; Liang et al., 2005). Recent experimental
evidence has shown that LTD can be induced in Vc neurons
following optogenetic stimulation of TRPV1-expressing
nociceptive afferents and the subsequent activation of
postsynaptic NMDARs (Pradier et al., 2018). Analogously to
what observed in the spinal cord dorsal horn (Kim et al.,
2015), a prevalence of LTD at synapses between primary
afferent fibers and inhibitory neurons could be involved in
disinhibition of synaptic circuits and increased sensitivity to
nociceptive stimulation.

In an acute brain stem slice preparation, ascending and
descending excitatory and inhibitory synaptic connections
between Vi e Vc have been described, mediated by glutamate
and by GABA or glycine, respectively. Interestingly, synaptic
plasticity occurs also at these intersubnuclear connections: at Vi
excitatory synapses, theta burst stimulation of ascending
pathways from Vc generated LTD, that was converted in LTP
in the absence of inhibitory transmission (Song and Youn, 2014).

Inhibitory Synaptic Transmission
As already mentioned, inhibitory transmission in Sp5 is mainly
mediated by GABA, acting on both GABAA and GABAB

receptors, and by glycine. Numerous studies have
demonstrated that GABAergic and glycinergic neurons (about
30% of the total Vc neurons) inhibit Sp5 neuronal activity by both
phasic and tonic activation (Grudt and Henderson, 1988;
Matthews et al., 1988; Ginestal and Matute, 1993; Kondo
et al., 1995; Takeda et al., 2000; Avendano et al., 2005; Han
and Youn, 2008).

As shown by Hirata et al. (2003), corneal pain signaling in Sp5
is under strong GABAergic inhibition: microinjections of the
GABAA agonist muscimol into the Vi/Vc decreased nociceptive
responses at Vc/C1, while local injections of muscimol at
recording sites (at both Vi/Vc and Vc/C1) inhibited
nociceptive transmission in all tested units.

Alterations in GABA- and glycinergic transmission play a key
role in central pain sensitization. In the spinal cord dorsal horn,
several mechanisms have been proposed for explaining the
induction of disinhibition occurring during chronic pain. They
include: 1) decrease of the number of GABA and glycinergic
neurons; 2) reduction of GABA/glycine release and/or increased
activity of their transporters; 3) decreased excitatory drive to
inhibitory interneurons; 4) depolarization shift of chloride

equilibrium potential (ECl) in both primary afferent terminals
and postsynaptic neurons (reviewed in: Gradwell et al., 2020;
Comitato and Bardoni, 2021). Some of these mechanisms have
been identified also in the trigeminal nuclei, contributing to
synaptic disinhibition in chronic cranio-facial pain.
Pharmacological blockade of GABAA receptors (GABAARs)
enhanced Sp5 neuron responses to orofacial mechanical
stimulation, together with an expansion of receptive fields
(Takeda et al., 2000). Following the transection of the inferior
alveolar nerve, the number of neurons expressing the vesicular
GABA transporter (VGAT) significantly decreased after seven
days (Okada-Ogawa et al., 2015). Chronic constriction injury of
rat infraorbital nerve (CCI-IoN) enhanced spontaneous activity
of WDR neurons in Vc and decreased the tactile thresholds in all
neurons. The development of mechanical allodynia was
associated with a reduction of inhibition during paired-pulse
stimulation and a decreased immunoreactivity to GAD65 (a
marker of GABAergic neurons) (Martin et al., 2010). Similarly,
CCI-IoN caused in Vc neurons the downregulation of two
additional GABA neuron markers, GAD67 and parvalbumin.
Intracisternal injections of vigabatrin, a blocker of the catabolic
enzyme GABA transaminase, alleviated pain behaviour and
restored normal GABA cell marker expression in allodynic Vc
(Dieb and Hafidi, 2014).

Chloride equilibrium potential (ECl) in primary afferent fibers
and second order sensory neurons is set by the balance between
the activity of two chloride transporters, NKCC1 (that
accumulates Cl− into the cell) and KCC2 (extruding Cl−).
Upregulation of NKCC1 and/or downregulation of KCC2
causes the accumulation of Cl− inside the neuron, a shift of
ECl toward more depolarized potentials, and the conversion of
GABA from inhibitory to excitatory transmitter (Guo and Hu,
2014; Comitato and Bardoni, 2021). Studies about modifications
of chloride transporters in Sp5 under chronic pain conditions
lead to controversial results. In the CCI-IoNmodel changes in ECl
were modest and transient and did not persist during the late
phase of neuropathic pain (Castro et al., 2017). In contrast,
peripheral inflammation induced by a formalin injection into
the vibrissa pad produced downregulation of KCC2, causing Cl−

accumulation inside Vc neurons (Wu et al., 2009). Similar effects
have been obtained after transection of the inferior alveolar nerve
in rats (Okada-Ogawa et al., 2015). These data indicate that
alterations in the chloride transporter expression and function in
trigeminal nuclei are heterogeneous and may depend on the pain
model considered.

In spinal cord dorsal horn, GABAARs are involved in
presynaptic inhibition of primary afferent terminals. The
relative abundance of the NKCC1 transporter over KCC2 in
dorsal root ganglion neurons sets their ECl value around -30 mV.
Thus, opening of GABAARs on primary afferent central terminals
causes a membrane depolarization that inactivates voltage-
dependent channels and decreases glutamate release (Guo and
Hu, 2014; Betelli et al., 2015). Since KCC2 mRNA is lacking in
trigeminal primary neurons, a similar mechanism of presynaptic
inhibition may occur also in trigeminal nuclei (Toyoda et al.,
2005). Under chronic pain conditions, an increase of terminal
depolarization, mediated by GABAARs, could turn presynaptic

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7643968

Puja et al. Sensitization Mechanisms in Eye Pain

75

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inhibition into facilitation, by inducing AP firing and increase of
glutamate release. In the rat CCI-IoN model the upregulation of
NKCC1 in TG primary neurons and the downregulation of KCC2
in Vc neurons were reported (Wei et al., 2013). This was
associated with an excitatory action of GABAARs at both pre-
and postsynaptic sites, leading to the increase of neuron
excitability and possibly to presynaptic facilitation.

Descending Modulation of Sp5: Role of
Serotonin
Beside the GABA- and glycinergic system, an important role in
synaptic inhibition of Sp5 neurons is exerted by descending
modulatory pathways (Figures 2A,B). Second-order neurons in
the Sp5 receive descending inputs from several regions of the
central nervous system, such as the rostral ventral medulla or
locus coeruleus, which modulate nociceptive and sensory inputs.
RVM and the locus coeruleus, in turn, receive inputs from several
brain regions, including amygdala, midbrain PAG, hypothalamus,
and habenula. Descending modulation to trigeminal nuclei can be
either inhibitory or facilitatory: while the inhibitory action is prevalent
in physiological conditions, imbalance of inhibitory and facilitatory
modulation in favour of facilitation, under tissue or nerve injury, can
lead to chronic pain (Chung et al., 2020; Mills et al., 2020).

Descending facilitation is prevalently driven by the serotoninergic
system, originating in the RVM from the nucleus raphe magnus
(NRM) and its surrounding reticular formation, and projecting onto
second-order neurons in trigeminal nuclei and spinal cord dorsal
horn (Kwiat and Basbaum, 1992; Sugiyo et al., 2005; Okubo et al.,
2013). Both Vi/Vc and Vc/C1 regions show dense serotoninergic
innervation (Steinbusch et al., 1981) and receive projections from the
NRM (Beitz, 1982). The involvement of serotonin in descending
facilitation has been demonstrated in different models of oro-facial
pain:mechanical hyperalgesia induced bymasseter inflammationwas
relieved by the lesioning of RVM or by depletion of serotonin in
RVMneurons (Sugiyo et al., 2005; Chai et al., 2012). In a recent study,
chemogenetic silencing of RVMneurons, projecting toVc, attenuated
spontaneous and bite evoked pain in the same pain model (Chung
et al., 2020). In the neuropathic CCI-IoN model, activation of
serotoninergic receptors caused sensitization of TRPV1 channels
and hyperactivity of TRPV1 positive afferent fibers (Kim et al., 2014).

Serotoninergic pain modulation in both spinal cord and Sp5 is
achieved by activating heterogenous receptors (5-HTRs), ranging
from 5-HT1 to 5-HT7 (Millan, 2002; Bardoni, 2019). Most of
these receptors are G protein-coupled receptors, whereas only the
5-HT3 subtype is a cationic channel.

In naive animals, serotonin seems to exert a prevalent
inhibitory action on Vc neurons: serotonin administration on
mouse brainstem slices hyperpolarizes most neurons, by binding
to 5-HT1(A) and 5-HT2 receptors (Yin, 2011). Furthermore,
activation of 5-HT1R subtypes 1A and 1B/D, expressed on
primary afferent terminals, inhibits glutamate release in rat
brainstem slices (Jennings et al., 2004; Choi et al., 2013).

In pathological conditions, other 5-HTR subtypes seem to be
involved in the facilitation of pain transmission, contributing to
central sensitization in trigeminal nuclei. 5-HT2ARs, expressed
on Vc PKCγ+ neurons (a subpopulation of excitatory

interneurons), contribute to the development of inflammation
induced mechanical allodynia by enhancing the density of
synaptic spines (Alba-Delgado et al., 2018). Activation of 5-
HT3Rs sensitizes TRPV1 receptors on central primary afferent
terminals (Kim et al., 2014) and contributes to the maintenance of
secondary hyperalgesia in a model of rat trigeminal nerve injury
(Okubo, 2013). Finally, 5-HT7Rs induce the depolarization of a
subpopulation of Vc neurons in the slice preparation (Yang et al.,
2014), possibly increasing the excitability of Sp5 neurons under
chronic pain conditions.

Serotoninergic modulation of cornea responsive units in Sp5
has been scarcely investigated. An in vivo study performed on rats
has shown that NRM stimulation inhibits corneal evoked
responses in Vi/Vc and Vc/C1 (Meng et al., 2000), confirming
that transmission of corneal nociception in Sp5 is under control
of the descending pathways. A recent study has described the
involvement of habenular complex in the descending control of
corneal pain: nociception induced by corneal application of saline
can be inhibited by administration to habenula of morphine or
lidocaine. Pre-treatment of the NRM with the 5-HT3 antagonist
ondansetron prevented the effect of morphine on habenula,
confirming the modulatory role played by this area on
serotoninergic pathways (Khalilzadeh and Saiah, 2017).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

During the last decades, numerous molecular biology,
behavioural and electrophysiological studies have clarified
several mechanisms occurring during corneal sensory
transduction and peripheral pain sensitization. Morphological
and electrophysiological analysis of trigeminal ganglion cells has
also provided valuable insight about the functional properties of
trigeminal primary neurons and their interactions with glial cells
(Goto et al., 2016; Bista and Imlach, 2019).

Despite this progress, the characterization of the neural
circuits and synaptic mechanisms involved in eye pain
signaling at the spinal trigeminal nucleus is still largely
incomplete. In the spinal cord, major advances have been
obtained during the last decade in the understanding of the
dorsal horn circuitry and plasticity. Using opto-and
chemogenetic techniques, genetic labelling of neurons and
advanced imaging technologies, it has been possible to
selectively activate specific neuronal populations in vitro and
in vivo and identify their role in somatic sensory transmission. In
the brain stem, however, these high level technical approaches
have been employed only very recently and many aspects of the
synaptic network organization and function in trigeminal nuclei
are still unknown.

As outlined in this review, persistent ocular pain produces
both peripheral and central sensitization. Many questions still
remain unanswered about the maladaptive changes occurring
under chronic eye pain, especially those related to central
sensitization in the Sp5 (Figure 1). First of all, the
involvement of glutamate receptors in the different forms of
synaptic plasticity (wind-up, LTP and LTD) during inflammatory
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and/or neuropathic corneal pain has not been investigated. The
induction and maintenance of LTP at synapses with excitatory
Sp5 neurons and/or LTD at inhibitory interneurons could play an
important role in ocular pain sensitization.

Furthermore, results obtained in other models of cranio-facial
pain suggest that a reduction in the efficacy of the GABA- and
glycinergic inhibitory system may be critical also in chronic eye
pain. However, the mechanisms responsible for Sp5 disinhibition
in the different models of ocular pain still need to be clarified.

Finally, the role of descending modulation is not well defined:
although a facilitatory role of serotoninergic pathways has been
proposed in models of inflammatory and neuropathic eye pain,
limited information is available about the circuits and receptors
involved.

Based on these considerations, the acquisition of a better
understanding of central processes mediating eye pain is an
urgent need. A better knowledge of the cellular and molecular
mechanisms involved in ocular pain sensitization will allow the
identification of new players in pain transmission and the
development of more effective pharmacological approaches,
devoid of central side effects, for the treatment of the different
forms of chronic ocular pain.
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GLOSSARY

AITC allyl isothiocyanate

AP action potential

ASIC acid-sensing ion channel

ATF-3 cyclic AMP-dependent transcription factor

BDNF brain-derived neurotrophic factor

C1 upper cervical spinal cord

CCL-2 chemokine (C-C motif) ligand 2

CC-IoN constriction injury of rat infraorbital nerve

CGRP calcitonin-gene-related peptide

CR cold-sensitive receptor

DED dry eye disease

DRG dorsal root ganglia

GAD67 glutamate decarboxylase 67

GFAP glial fibrillary acidic protein

IBA1 ionized calcium binding adaptor molecule 1

IL interleukin

MAPK mitogen-activated protein kinase

MN mechanonociceptor

NRM nucleus raphe magnus

PAG periaqueductal gray

PBN parabrachial nucleus

PG prostaglandin

PKC protein kinase C

PN polymodal nociceptor

RVM rostral ventral medulla

SP substance P

Sp5 trigeminal spinal nucleus

TG trigeminal ganglion

TNF-α tumor necrosis factor–alpha

TRPA1 transient receptor potential ankyrin 1

TRPV1 transient receptor potential cation channel subfamily V member 1

UV ultraviolet radiation

Vc subnucleus caudalis

VGAT vesicular GABA transporter

Vi subnucleus interpolaris

WDR wide dynamic range
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Strategies in Individuals With Chronic
Ocular Surface Pain With a
Neuropathic Component
Sneh Patel 1,2, Rhiya Mittal 1,2, Elizabeth R. Felix3, Konstantinos D. Sarantopoulos4,
Roy C. Levitt 4,5,6 and Anat Galor1,2*

1Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States, 2Surgical Services, Miami
Veterans Affairs Medical Center, Miami, FL, United States, 3Department of Physical Medicine and Rehabilitation, University of
Miami Miller School of Medicine, Miami, FL, United States, 4Department of Anesthesiology, Perioperative Medicine and Pain
Management, University of Miami Miller School of Medicine, Miami, FL, United States, 5John T. MacDonald Foundation
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States, 6John P. Hussman
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Background: Dysfunction at the ocular system via nociceptive or neuropathic
mechanisms can lead to chronic ocular pain. While many studies have reported on
responses to treatment for nociceptive pain, fewer have focused on neuropathic ocular
pain. This retrospective study assessed clinical responses to pain treatment modalities in
individuals with neuropathic component ocular surface pain.

Methods: 101 individuals seen at the University of Miami Oculofacial Pain Clinic from
January 2015 to August 2021 with ≥3months of clinically diagnosed neuropathic pain
were included. Patients were subcategorized (postsurgical, post-traumatic, migraine-like,
and laterality) and self-reported treatment outcomes were assessed (no change, mild,
moderate, or marked improvement). One-way ANOVA (analysis of variance) was used to
examine relationships between follow up time and number of treatments attempted with
pain improvement, and multivariable logistic regression was used to assess which
modalities led to pain improvement.

Results: The mean age was 55 years, and most patients were female (64.4%) and non-
Hispanic (68.3%). Migraine-like pain (40.6%) was most common, followed by postsurgical
(26.7%), post-traumatic (16.8%) and unilateral pain (15.8%). The most common oral
therapies were α2δ ligands (48.5%), the m common topical therapies were autologous
serum tears (20.8%) and topical corticosteroids (19.8%), and the most common adjuvant
was periocular nerve block (24.8%). Oral therapies reduced pain in post-traumatic
(81.2%), migraine-like (73%), and unilateral (72.7%) patients, but only in a minority of
postsurgical (38.5%) patients. Similarly, topicals improved pain in post-traumatic (66.7%),
migraine-like (78.6%), and unilateral (70%) compared to postsurgical (43.7%) patients.
Non-oral/topical adjuvants reduced pain in postsurgical (54.5%), post-traumatic (71.4%),
and migraine-like patients (73.3%) only. Multivariable analyses indicated migraine-like pain
improved with concomitant oral α2δ ligands and adjuvant therapies, while postsurgical
pain improved with topical anti-inflammatories. Those with no improvement in pain had a
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shorter mean follow-up (266.25 ± 262.56 days) than those with mild (396.65 ± 283.44),
moderate (652 ± 413.92), or marked improvement (837.93 ± 709.35) (p < 0.005). Identical
patterns were noted for number of attempted medications.

Conclusion: Patients with migraine-like pain frequently experienced pain improvement,
while postsurgical patients had the lowest response rates. Patients with a longer follow-up
and who tried more therapies experienced more significant relief, suggesting multiple trials
were necessary for pain reduction.

Keywords: ocular surface pain, cornea, dry eye disease, nociceptive pain, neuropathic pain, sensitization, central
mechanisms, peripheral mechanisms

INTRODUCTION

The International Association for the Study of Pain (IASP)
defines pain as a “an unpleasant sensory and emotional
experience associated with, or resembling that associated with,
actual or potential tissue damage.” (IASP Terminology, 2020)
Ocular surface pain, one form of pain that is estimated to affect
5–30% individuals ≥50 years worldwide (Mehra et al., 2020), is
often characterized by patients as “dryness”, “burning”, “aching”,
or “tenderness”, among other terms. While ocular surface pain
was initially lumped under the heading of “dry eye disease”, it is
now recognized that pain can exist independently from tear
dysfunction. Ocular surface pain can result from pathology at
a number of sites including ongoing nociceptive issues at the level
of the ocular surface and neuropathic mechanisms at the level of
peripheral (e.g. cornea) or central nerves (Yu et al., 2011). In
addition, nociceptive and/or neuropathic issues can occur in
isolation or occur as part of a wider systemic disease (e.g.
Sjögren’s, fibromyalgia, migraine) (Galor et al., 2016a; Diel
et al., 2020). Beyond its prevalence, ocular surface pain is
often chronic and is a major cause of disability and morbidity
through its negative impact on quality-of-life via impaired social,
physical, and mental functioning, leading to decreased
productivity (Mertzanis et al., 2005; Patel et al., 2019).

Ocular surface pain is mediated via molecular and electrical
signaling across activated neural pathways at various levels.
Furthermore, while physiologic and neural processes are
involved in the propagation of the pain signal, complex non-
neural mechanisms, such as emotional and psychological factors,
also play a role in the sensation of pain. Specifically, fast tear
evaporation, corneal epithelial erosions, and ocular surface
inflammation are common abnormalities that may contribute
to chronic ocular surface pain. In addition, insults at the level of
peripheral nociceptors (e.g. cornea and conjunctivae) or central
nerves (e.g. trigeminal subnucleus caudalis, thalamus, or higher
centers), can contribute to pain, including nerve injury associated
with infection, trauma, chemical exposure, and metabolic
disorders (Mehra et al., 2020). Finally, neuro-inflammatory,
behavioral, cognitive and emotional mechanisms play a
significant role in the perception and maintenance of pain and
its manifestations, adding to the complexity of diagnosis and
treatment of this common form of chronic pain.

As such, when approaching an individual with ocular surface
pain, it is important to obtain a thorough history and complete

ocular and neurologic examination for all potential
contributors to this form of chronic pain. The examination
typically begins with an evaluation of ocular surface
abnormalities as potential sources for nociceptive pain.
These include testing for tear film abnormalities (e.g.
decreased tear production, high or unstable tear osmolarity,
presence of inflammatory mediators), abnormal anatomy (e.g.
conjunctivochalasis, pterygium), trauma and toxicity (e.g.
topical glaucoma medications) as well as coexisting
conditions (Mehra et al., 2020). Neuropathic pain is a
clinical diagnosis and several findings suggest its presence,
including symptoms out of proportion to signs of disease
(Ong et al., 2018), a symptoms profile of sensitivity to wind
and light (the ocular equivalents of hyperalgesia and
allodynia) (Kalangara et al., 2017), abnormal corneal
sensitivity (Galor et al., 2020), and persistent pain despite
treatment of ocular surface abnormalities (Galor et al.,
2016b). Furthermore, a centralized neuropathic component
is suggested if pain persists despite placement of topical
anesthesia on the ocular surface (Crane et al., 2017a), or
when individuals report pain to light touch around the eye
(consistent with presence of tactile allodynia or secondary
hyperalgesia) (Timmerman et al., 2014). Overall, this
complexity highlights the need for patient-centered,
comprehensive, multidisciplinary approach and multimodal
therapies to best address chronic ocular surface pain. This
area of study represents untapped potential in ophthalmology
and pain medicine, as creating new ways of precisely
diagnosing and categorizing a patient’s pain could lead to
novel pathways for guiding therapeutic decision-making.

Generally, nociceptive pain is targeted through use of
topical therapies, while neuropathic pain can be treated
with oral agents or adjunctive therapies if treatment of
nociceptive pain fails and/or a neuropathic component is
highly suspected. While many studies have examined
treatment outcomes for nociceptive sources of ocular pain
(Dermer et al., 2020; Mittal et al., 2021), fewer have examined
outcomes after treatment of neuropathic ocular pain.
Furthermore, available literature typically report on the
effects of one therapeutic modality in a limited number of
patients (Ozmen et al., 2020). To improve our fund of
knowledge, this study examined clinical data from a cohort
of individuals with a presumed neuropathic component to
their chronic ocular surface pain, with the aim of studying
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subjective clinical responses to a number of commonly utilized
medications.

MATERIALS AND METHODS

Study Population
We identified 124 individuals who sought care at the University
of Miami Oculofacial Pain Clinic (Bascom Palmer Eye Institute
and/or the University of Miami Pain Management Clinic)
between January 2015 and August 2021 and whose medical
records contained a diagnosis of ocular pain (International
Classification of Diseases 10 [ICD10], code H57.XX). Patients
were included if they had unilateral or bilateral pain for a duration
≥3 months, with a presumed neuropathic component. The
diagnosis of neuropathic ocular pain was made clinically by
the treating physician based on the presence of one or more
pain features that included: sensitivity to wind and light (Crane
et al., 2017b; Kalangara et al., 2017), symptoms out of proportion
to ocular surface signs (Ong et al., 2018), abnormal corneal
sensitivity (Spierer et al., 2016), persistent pain after topical
anesthetic (Crane et al., 2017a), and cutaneous allodynia
around the eye. Exclusion criteria included individuals whose
pain lasted <3 months, or whose pain resolved with treatment of
nociceptive sources of pain (e.g. topical anti-inflammatory agents,

surgical correction of anatomic abnormality, etc.). After
consideration of these criteria, 101 individuals remained in the
study for analysis. This retrospective review was approved by the
University of Miami Institutional Review Board and followed the
tenets of the Declaration of Helsinki.

Data Collection
For each subject, electronic medical record information was
collected including demographics (age, gender, race,
ethnicity) and clinical (past ocular, medical, and surgical
history) variables. Additionally, co-morbid conditions
particularly those related to chronic systemic pain (e.g.
fibromyalgia, peripheral neuropathy, trigeminal neuralgia,
migraine) were recorded, as was information regarding
prior or current ocular pain treatments, including the use
of oral neuromodulators (e.g., α2δ ligands, tricyclic and
serotonin-norepinephrine reuptake inhibitors [SNRI]),
topical ocular therapies (e.g., anti-inflammatory therapies,
autologous serum tears), and non-oral/topical adjuvant
treatments (e.g., trigeminal nerve stimulation [TNS] and
interventional procedures (botulinum toxin injection,
steroid-anesthetic based periocular nerve block, or
sphenopalatine or superior cervical ganglion block).
Time to follow up from first to last visit was also calculated
in days.

TABLE 1 | Demographics, medical comorbidities, and pain characteristics, by population and by pain subgroup.

All patients;
n (%)

Postsurgical pain;
n (%)

Post-traumatic pain;
n (%)

Migraine-like pain;
n (%)

Unilateral pain;
n (%)

101 (100%) 27 (26.7%) 17 (16.8%) 41 (40.6%) 16 (15.8%)

Demographics

Age (mean, SD; years) 55 (17) 54 (18) 53 (18) 52 (17) 61 (15)
Gender, female 65 (64.4%) 17 (63.0%) 14 (82.4%) 25 (61.0%) 9 (56.3%)
Race, White 93 (92.1%) 24 (88.9%) 16 (88.9%) 39 (95.1%) 14 (87.5%)
Ethnicity, Hispanic 31 (30.7%) 8 (29.6%) 5 (29.1%) 11 (26.8%) 7 (43.8%)

Medical Comorbidities

Chronic joint pain 28 (27.7%) 1 (3.7%) 7 (41.2%) 15 (36.6%) 5 (31.3%)
Fibromyalgia 8 (7.9%) 2 (7.4%) 0 (0) 4 (9.8%) 2 (12.5%)
Migraine 25 (24.8%) 6 (22.2%) 2 (11.8%) 16 (39.0%) 1 (6.3%)
Peripheral neuropathy 4 (4.0%) 3 (11.1%) 0 (0) 0 (0) 1 (6.3%)
Trigeminal neuralgia 7 (6.9%) 2 (7.4%) 0 (0) 2 (4.9%) 3 (18.8%)
Herpetic neuralgia 5 (5.0%) 0 (0) 2 (11.8%) 2 (4.9%) 1 (6.3%)

Ocular History

Pain >1 year 93 (92.1%) 24 (88.9%) 17 (100%) 38 (92.7%) 14 (87.5%)
Post-LASIK 9 (8.9%) 9 (33.3%) 0 (0) 0 (0) 0 (0)
Post-PRK 2 (2.0%) 2 (7.4%) 0 (0) 0 (0) 0 (0)
Post-CE/iol 5 (4.9%) 5 (19.0%) 0 (0) 0 (0) 0 (0)

Pain Triggers and Descriptors

Photophobia 50 (49.5%) 11 (40.7%) 3 (17.6%) 36 (87.8%) 0 (0)
Cutaneous Allodyniaa 20 (19.8%) 4 (14.8%) 7 (41.2%) 7 (17.1%) 2 (12.5%)
Paresthesia (tingling) 9 (8.9%) 2 (7.4%) 0 (0) 6 (14.6%) 1 (6.3%)
Foreign Body Sensation 10 (9.9%) 3 (11.1%) 4 (23.5%) 2 (4.9%) 1 (6.3%)
Dull pain 4 (4.0%) 0 (0) 2 (11.8%) 1 (2.4%) 1 (6.3%)
Throbbing/Shooting pain 20 (19.8%) 7 (25.9%) 1 (5.8%) 9 (22%) 3 (18.8%)

aPain on light touch of the skin around the eye.
SD � standard deviation; LASIK � laser-assisted in situ keratomileusis; PRK � photorefractive keratectomy; CE/iol � cataract extraction and intraocular lens.
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Ocular Pain Characteristics and Pain
Groups
Data on pain characteristics was collected including temporality,
location (unilateral vs bilateral), descriptors (e.g., squeezing,
burning, throbbing, pressure, foreign body sensation), and
triggers (sensitivity to light or photophobia, cutaneous
allodynia). Based on pain history and characteristics, patients
were placed into one of four subcategories. The Postsurgical Pain
group included those who developed ocular pain after undergoing
surgery (e.g. refractive, cataract, other procedure). The Post-
Traumatic Pain group included individuals whose pain began
after a non-surgical trauma (chemotherapy, radiation, traumatic
brain injury). The Migraine-like Pain group included individuals
with bilateral pain that started spontaneously and was
accompanied by photophobia, with many of these individuals
having co-morbid migraine or headache syndromes. The
Unilateral Pain group included individuals with spontaneous
unilateral pain that did not start after surgery and was not
typical for trigeminal neuralgia but none-the-less had
neuropathic qualities, as outlined above.

Treatment Outcomes
Treatment outcomes were determined by examining patient
subjective responses after starting a given pain modulating
therapy (e.g., comparison to an established baseline pain level),
graded on a scale of “no change” (no change), “mild
improvement” (some alleviation of symptoms), “moderate
improvement” (great improvement but persistence of minor

symptoms), or “marked improvement” (resolution or near-
resolution of pain).

Statistical Analyses
Analyses were performed using SPSS 22.0 (IBM SPSS Statistics
for Windows, 2013). Descriptive statistics were used to
summarize demographic and clinical information within the
population and each pain subcategory. Information on
response to treatment (improvement in pain with treatment)
was collected in a binary (yes or no) and scaled (none, mild,
moderate, or marked improvement) fashion, and compared
between ocular pain subgroups as outlined above. One-way
ANOVA (analysis of variance) was utilized to examine
differences in mean clinical follow-up time as well as number
of attempted oral, topical, and adjuvant medications across pain
improvement groups (none, mild, moderate, or marked). Finally,
individual multivariable logistic regressions models were created
for each pain subgroup using the binary variable ‘Clinical
Improvement in Pain’ as the outcome to assess which
modalities were clinically effective when utilized concomitantly.

RESULTS

Study population and Demographics
The study population consisted of 101 individuals who met
inclusion and exclusion criteria. The mean age was 55 years,
and most patients were female (64.4%), white (92.1%), and non-

TABLE 2 | Utilized Oral, Topical, and Adjuvant Therapies, by Population and by.

All patients
(n, % of

population

Postsurgical
(n, % of

subgroup)

Post-traumatic
(n, % of

subgroup)

Migraine-like
(n, % of

subgroup)

Unilateral
(n, % of

subgroup)

Oral Agents 90 (89.1%) 26 (96.3%) 16 (94.1%) 37 (90.2%) 11 (68.8%)
Pregabalin/Gabapentin 49 (48.5%) 16 (59.3%) 11 (64.7%) 17 (41.5%) 6 (37.5%)
TCA (amitriptyline) 9 (8.9%) 3 (11.1%) 3 (17.6%) 0 (0) 3 (18.8%)
SNRI (duloxetine) 17 (16.8%) 5 (18.5%) 3 (17.6%) 6 (14.6%) 2 (12.5%)
Anticonvulsant (topiramate) 9 (8.9%) 3 (11.1%) 1 (5.9%) 3 (7.3%) 2 (12.5%)
Acetaminophen 17 (1.8%) 5 (18.5%) 3 (17.6%) 7 (17.1%) 2 (12.5%)
Any NSAIDa 32 (31.7%) 6 (22.2%) 7 (41.2%) 12 (29.3%) 7 (43.8%)
Any muscle relaxantb 32 (31.7%) 1 (3.7%) 2 (11.8%) 26 (63.4%) 2 (12.5%)
Any opioid agonist/antagonistc 15 (14.9%) 3 (11.1%) 3 (17.6%) 5 (12.2%) 4 (25%)

Topical Agents 52 (51.5%) 16 (59.3%) 12 (70.6%) 14 (34.2%) 10 (62.5%)
AST 21 (20.8%) 8 (29.6%) 5 (29.4%) 3 (17.1%) 5 (31.3%)
Topical corticosteroid 20 (19.8%) 3 (11.1%) 3 (17.6%) 6 (14.6%) 8 (50%)
Topical cyclosporine, lifitegrast 18 (17.8%) 7 (25.9%) 2 (17.6%) 6 (14.6%) 3 (18.8%)
Topical tacrolimus 9 (8.9%) 1 (3.7%) 3 (17.6%) 3 (7.3%) 2 (12.5%)

Adjuvant Agents 39 (38.6%) 11 (40.7%) 7 (41.2%) 15 (36.6%) 6 (37.5%)
TNS 16 (15.8%) 5 (18.5%) 1 (5.9%) 9 (22%) 1 (6.3%)
Peri-ocular nerve block 25 (24.8%) 9 (33.3%) 5 (29.4%) 6 (14.6%) 5 (31.3%)
Ganglion block 6 (5.9%) 1 (3.7%) 1 (5.9%) 1 (2.4%) 3 (18.8%)
Botulinum injection 11 (10.9%) 0 (0) 0 (0) 10 (24.4%) 1 (6.3%)

aIbuprofen, Diclofenac, Meloxicam, celecoxib.
bBaclofen, Cyclobenzaprine.
cTramadol, Naltrexone, Oxycodone.
TCA � tricyclic antidepressant; SNRI � serotonin-norepinephrine reuptake inhibitor; NSAID �Non-Steroidal Anti-Inflammatory Drug; AST � autologous serum tears; TNS � trigeminal nerve
stimulation.
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Hispanic (68.3%). Several systemic comorbidities were noted,
including chronic joint pain (27.7%), migraine (24.8%), and
fibromyalgia (7.9%). All individuals fit into one of the ocular pain

subcategories, with migraine-like pain (40.6%) being most common,
followed by postsurgical pain (26.7%), which most often occurred
after refractive surgery, and finally post-traumatic pain (16.8%) and
unilateral pain (15.8%). The most common pain descriptor was
throbbing/shooting pain (19.8%), and many individuals reported
photophobia (49.5%) as a pain trigger, as well as pain to light touch
around the eye (cutaneous allodynia, 19.8%) (Table 1).

Subjective Response to Various Treatment
Modalities Across Pain Subgroups
A variety of modalities were attempted (Table 2). The most
common oral medications were α2δ ligands (48.5%), non-
steroidal anti-inflammatory drugs (NSAIDs, 31.7%), and
serotonin-norepinephrine reuptake inhibitors (SNRIs, 16.8%).
Oral medications were commonly paired with topical therapy,
such as autologous serum tears (AST, 20.8%) and/or a topical
anti-inflammatory (e.g. topical steroid [19.8%], cyclosporine or
lifitegrast [17.8%], or less commonly tacrolimus [8.9%]). Finally,
a minority of patients received adjuvant therapies, like trigeminal
nerve stimulation (TNS, 15.8%), steroid-anesthetic based
periocular nerve block (24.8%), and/or botulinum toxin
injections (10.9%).

Figure 1 and Table 3 (and Supplementary Tables 1–4,
Appendix) outline response to therapy, by pain subgroups. At
least one oral medication reduced pain to a mild or greater degree
in the majority of post-traumatic (81.2%), migraine-like (73%),
and unilateral pain (72.7%) groups but in the minority of

FIGURE 1 | Pain response to various treatment strategies in patients with neuropathic pain, by underlying cause.

TABLE 3 | Proportion of medications that led to improvement in pain, by pain
subgroup.

Pain improvement in response to treatment

None (n; % of taking) Any (n; % of taking)

Postsurgical (n � 27)
Any medication 16 (59.3%) 11 (40.7%)
Oral medications 16 (61.5%) 10 (38.5%)
Topical medications 9 (56.3%) 7 (43.8%)
Adjuvant therapies 5 (45.5%) 6 (54.5%)

Post-traumatic (n � 17)
Any medication 4 (23.5%) 13 (76.5%)
Oral medications 3 (18.8%) 13 (81.3%)
Topical medications 4 (33.3%) 8 (66.7%)
Adjuvant therapies 2 (28.6%) 5 (71.4%)

Migraine-like (n � 41)
Any medication 11 (26.8%) 30 (73.2%)
Oral medications 10 (27%) 27 (73%)
Topical medications 3 (21.4%) 11 (78.6%)
Adjuvant therapies 4 (26.7%) 11 (73.3%)

Unilateral (n � 16)
Any medication 5 (31.3%) 11 (68.7%)
Oral medications 3 (27.3%) 8 (72.7%)
Topical medications 3 (30%) 7 (70%)
Adjuvant therapies 0 (0%) 6 (100%)

n � number in the group.
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postsurgical pain patients (38.5%). Marked improvement with
oral medications was most frequently noted in migraine-like
patients (21.6%) compared to the other groups (postsurgical
15.4%, post-traumatic 12.5%, unilateral 0%). In a similar
manner, topical medication more frequently led to a subjective
improvement in pain in the post-traumatic (66.7%), migraine-
like (78.6%), and unilateral (70%) groups compared to the
postsurgical group (43.7%). Again, marked improvement was
most common in the migraine-like group (21.4%) followed by the
postsurgical group (18.8%), then the post-traumatic (8.3%) and
unilateral (0%) groups. Finally, the use of one or more adjuvants
reduced pain to a mild or greater degree in 54.5% of the postsurgical,
71.4% of the post-traumatic, 73.3% of the migraine-like, and 0% of
the unilateral groups. Marked improvement in pain after adjuvant
use was most common in the migraine-like group (20%) followed by
the postsurgical group (11.1%), while in the other two groups these
therapies did not lead to marked improved of pain (0%, each).

Relationship Between Subjective Pain
Improvement and Follow-Up Time
Next, the relationship between follow-up time (days between
initial and most recent visit) and number of medications
attempted across patients with differing subjective responses to
treatment were examined. Individuals who experienced no
improvement had a shorter follow up time (mean � 266.25
days, SD � 262.56, range � 897) compared to those with mild
(mean � 396.65, SD � 283.44, range � 1227), moderate (mean �
652, SD � 413.92, range � 1342), or marked (mean � 837.93, SD �
709.35, range � 2,222) improvement in pain. Via ANOVA, there
were significant differences in mean follow-up between those
with improvement and those without (p < 0.005). Subgroup
testing also indicated that follow-up time for those with none
or mild improvement in pain were non-significantly different,
while those with moderate or marked improvement in pain had
significantly longer follow-up periods with a clinician. Analyses
further showed that patients who experienced improvement in
pain tried more medications, suggesting that multiple trials were
necessary to achieve increasing pain control (Table 4).

Multivariable Analysis of Effects of Multiple
Treatments on Subjective Pain
Improvement and Pain Triggers
Utilizing stepwise multivariable logistic regression analyses, we
examined relationships between various treatments (independent

variables) to any improvement in pain (dependent variable) in
our pain subgroups. In postsurgical patients, topical
cyclosporine/lifitegrast remained associated with improvement
in pain (odds ratio (OR) � 1.31, 95% confidence interval (95%CI)
1.03–1.33, p � 0.04). Several treatments were predictive of pain
improvement in the migraine-like group, including oral α2δ
ligands (OR � 2.74, 95%CI 2.73–2.96, p � 0.02), muscle
relaxants (OR � 1.36, 95%CI 1.33–1.37, p < 0.005), and TNS
(OR � 1.20, 95%CI 1.19–1.21, p < 0.005). Examining these
relationships with respect to pain triggers, in individuals with
photophobia, oral α2δ ligands (OR � 2.18, 95%CI 1.78–2.21, p �
0.05) and muscle relaxants (OR � 1.32, 95%CI 1.31–1.34, p <
0.005) remained in the model, while in individuals with
cutaneous allodynia, oral α2δ ligands (OR � 1.79, 95%CI
1.76–1.80, p < 0.005) and topical cyclosporine/lifitegrast (OR �
1.13, 95%CI 1.11–1.18, p < 0.005) remained in the model.

DISCUSSION

To summarize, we examined subjective responses to various
therapies in individuals with chronic ocular surface pain with
a neuropathic component. We found that despite the
heterogeneity of patients, all fit into one of four pain
subgroups, and that responses to treatment varied across
groups, although there was significant variability within the
groups. Overall, individuals with migraine-like pain reported
the most frequent pain improvement (73.2%), generally with a
combination of oral (α2δ ligands) and adjuvant (TNS) therapies,
while the postsurgical group had the lowest overall response rate
(40.7%) to the various therapies. This highlights the need for
further studies to investigate other, more appropriate therapies to
target the pain in the latter population. Furthermore, we found
that the likelihood and degree of pain improvement increased
with longer follow up time and with the number of medications
utilized, indicative of inter-individual variability that necessitated
multiple trials of medications to find a combination that led to
clinical improvement. Given this current reality, it is essential to
appropriately counsel patients on the trial-and-error approach
and time frame needed to achieve clinical improvement in order
to avoid early termination of care (Goyal and Hamrah, 2016).

We used various therapies in multiple compartments (oral,
topical, adjuvant) due to the multiple potential locations of nerve
dysfunction in our patient population (Mehra et al., 2020).
Beyond nociceptive causes, peripheral (corneal) nerve
abnormalities may contribute to pain in some individuals

TABLE 4 | Population-wide Differences in Mean Follow-up Time and Medications Attempted Between Different Categories of Clinical Improvement with Treatment.

None Mild Moderate Marked p-value

FU time (days), mean ± SD 266.25 ± 262.56 396.65 ± 283.44 652 ± 413.92 837.93 ± 709.35 <0.005
Number oral meds tried, mean ± SD 1.36 ± 1.05 1.62 ± 0.85 1.67 ± 1.24 1.70 ± 0.90 0.02
Number of topical meds tried, mean ± SD 1.09 ± 1.12 1.13 ± 1.03 1.33 ± 1.05 1.30 ± 1.14 <0.005
Number of adjuvant meds tried, mean ± SD 0.44 ± 0.74 0.68 ± 0.84 0.73 ± 0.88 0.8 ± 0.67 <0.005
Number of any meds tried, mean ± SD 3.05 ± 1.50 3.32 ± 1.22 3.67 ± 1.63 3.71 ± 1.42 0.05

FU � follow-up; SD � standard deviation.
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(Galor et al., 2018a). Confocal microscopy is one tool that can
detect corneal nerve abnormalities (e.g. density, length,
tortuosity) in individuals with chronic ocular surface pain
(Patel et al., 2020; Patel et al., 2021). In one study of 16
individuals with presumed corneal neuropathic pain (9 of 16
due to postsurgical pain after refractive surgery]), low nerve count
(10.5 ± 1.4 vs 28.6 ± 2.0 nerves/frame; p < 0.0001) and length
(10,935.5 ± 1264.3 vs 24,714.4 ± 1056.2 μm/mm2; p < 0.0001)
were noted compared to 12 healthy controls. Treatment with AST
(20%; mean duration 3.8 ± 0.5 months, range 1–8 months)
decreased pain in all individuals (mean 3.1 ± 0.3 vs baseline
9.1 ± 0.2; 0–10 scale; p < 0.0001) and increased nerve count (to
15.1 ± 1.6; p < 0.0001) and length (to 17,351.3 ± 1395.6 μm/mm2;
p < 0.0001) (Aggarwal et al., 2019). Overall, in our study, 62.5% (5
of 8) of postsurgical patients had mild or greater improvement
with serum tears, with three of 5 (60%) reporting marked
improvement.

In addition to corneal nerve abnormalities, peripheral
(trigeminal non-corneal) afferents may contribute to chronic
ocular surface pain (Galor et al., 2018a). Several strategies can
be used to address these potential abnormalities, including TNS,
nerve blocks, and botulinum toxin (Mehra et al., 2020). TNS is a
non-pharmacological approach that is often used in patients with
migraine; the device generates impulses at the supratrochlear and
supraorbital branches of trigeminal V1 via an adhesive electrode
on the head (Zayan et al., 2020; Mehra et al., 2021). Supporting
the use of TNS in patients with comorbid migraine and ocular
pain, an American study of 18 individuals with severe ocular pain
who utilized TNS for 6 months (3.7 ± 1.9 sessions/week at month
1, 2.7 ± 2.3 sessions/week at month 6) noted lower ocular pain
intensity scores at 6 months compared to baseline (3.8 ± 3.5 to
2.7 ± 3.0, p � 0.02, a 31.4% reduction in pain). On subgroup
analyses, individuals with comorbid migraine (n � 10) had a
better response than those without co-morbid migraine, but all
individuals experienced pain improvement to at least a moderate
level (∼31.4%). Interestingly, pain improvement with TNS took
time, with significant differences first noted 3 months after
initiation of therapy (Mehra et al., 2021). A similar pattern
emerged in a randomized placebo controlled study of TNS in
migraine, highlighting that nerve modulatory therapies take time
to translate into improvements in clinical manifestations (Chou
et al., 2018). These findings are similar to our current study,
where 66.7% (6 of 9) of individuals with migraine-like pain
experienced pain improvement with TNS (33.3% mild, 33.3%
moderate or greater).

Combination nerve blocks, consisting of a local anesthetic
acting as a sodium channel inhibitor (for prevention of ectopic
action potential generation) and long-acting corticosteroid (for
potentiation of effect and additional mechanisms), have been
commonly used to treat pain in an isolated anatomical area due to
neuralgia (pain arising from a nerve) (Scholz et al., 1998; Galor
et al., 2018a). In a case series of 11 subjects with chronic ocular
pain with a presumed neuropathic component (3 migraine-like,
seven postsurgical, two post-traumatic, 1 unilateral), seven
experienced pain relief after nerve blockade (4 ml of 0.5%
bupivacaine with 1 ml of 80 mg/ml methylprednisolone
acetate), varying from hours to 7 months. This intervention

was most effective in individuals with postsurgical (5 of 6) and
unilateral pain (1 of 1) compared to the other pain types (0 of two
migraine-like, 0 of one post-traumatic) (Small et al., 2020). Our
current results reinforce these findings but in our study, all pain
group types had a reasonable frequency of response to therapy,
with any improvement noted most frequently in the post-
traumatic (5 of 5), migraine-like (5 of 6), and unilateral (5 of
5) groups, followed by the postsurgical (4 of 9) group. Per our
results, individuals in the postsurgical and migraine-like pain
groups most frequently experienced moderate or greater relief (3
moderate or greater, each).

Botulinum toxin injection is another adjuvant therapy often
applied to chronic ocular pain, being most frequently utilized in
patients with migraine, with studies generally reporting a mild to
moderate improvement in ocular symptoms after treatment
(Johnson, 2007; Diel et al., 2018; Venkateswaran et al., 2020a).
For example, an American study of 76 patients with chronic
migraine who received BoNT-A toxin injections (100–150 U)
reported a significant decrease in interictal photophobia scores
(3.37 ± 2.54 from 4.89 ± 2.97, p < 0.001, range 0–10) after
treatment (mean FU of 30.5 ± 7.65 days, range 19–56 days) (Diel
et al., 2019). A similar reduction in interictal photophobia (5.27 ±
2.73 from 7.91 ± 2.05, p < 0.001, range 0–10) was noted in another
American study of 117 patients with chronic migraine who
received BoNT-A toxin injection (Diel et al., 2018). The
migraine BoNT-A has been modified and used in individuals
with neuropathic ocular pain but without a history of migraine.
Four individuals treated with one session of BoNT-A (35 U given
across seven forehead sites) reported a decrease in photophobia
severity (3.25 ± 0.4 from 4.8 ± 0.4, range 0–5) and ocular
discomfort (2.25 ± 1.0 from 4.5 ± 0.6, range 0–5) at 1 month
follow-up (Venkateswaran et al., 2020b). In our current study,
eight of 10 migraine-like pain patients who received botulinum
toxin injections reported a subjective improvement in ocular pain
(4 mild, four moderate). In addition, one patient in the unilateral
pain group also experienced mild improvement in pain with the
modified BoNT-A protocol.

A centralized component to pain may be suspected when
chronic ocular surface pain is accompanied by photophobia, by
cutaneous allodynia, and/or persistent pain after anesthesia
applied onto ocular surface (Digre and Brennan, 2012). For
individuals with centralized nerve pain, oral medications are a
first line treatment. Commonly used oral neuromodulating
agents include α2δ ligands (gabapentin or pregabalin), SNRIs
(duloxetine), and TCAs (nortriptyline) (Patel et al., 2020). Such
agents have a slow onset of action, with clinical effects often
becoming apparent weeks to months after initiation (Mehra et al.,
2020), something that further highlights the need for longer
follow-up times and persistent therapies. Several case series
have examined the effects of oral medications on chronic
ocular surface pain–for example, in a case series of eight
individuals (n � 4 postsurgical), gabapentin (starting 300 mg
daily, escalation to 600–900 TID) and pregabalin (starting
75 mg daily, escalation to 150 mg BID) led to complete relief
in two subjects (NRS � 0 on a 0–10 scale), marked relief in three
subjects (NRS ≤2), and mild relief in one subject (NRS � 10 to 7),
while two had no improvement in pain. Interestingly, the two
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subjects who noted complete relief were on concomitant SNRI
(duloxetine; starting 20 mg, escalation to 60 mg daily) (Small
et al., 2020). These findings are similar to our analyses, which
indicated that a similar proportion of individuals in the
postsurgical pain group had mild or greater improvement to
an α2δ ligand (n � 6 of 10; 60%), four of which had a marked
improvement in pain.

A similar effect has been noted with TCAs. A British study
examined 25 individuals with peripheral neuropathic pain
(neuropathic symptoms and IVCM findings e.g. presence of
microneuromas) who were treated with nortriptyline (10–25mg
starting dose, escalation to 100 mg daily). Pain levels 4 weeks post-
treatment were ∼60% lower than pre-treatment (NRS; 3.80 ± 2.39
vs 6.36 ± 2.18, p < 0.0001). Overall, 84% of subjects (n � 21)
reported pain improvement [28%with >50% improvement (n � 7),
40% with 25–50% improvement (n � 10), and 32% with <25%
improvement (n � 8)] (Ozmen et al., 2019). Because this study did
not break down its population by etiology, and due to the low
proportion of individuals utilizing TCAs in our population,
comparisons to this study are difficult. Nonetheless, in our
study, improvement in pain was rated as mild or moderate in
five of nine individuals who attempted a TCA (n � 3 post-
traumatic and n � 2 unilateral).

Low dose oral opioid antagonists (low dose naltrexone) have
also been studied in centralized pain, with effects attributed to
antihyperalgesia (Jackson et al., 2021) (transient blockade of µ-
and δ opioid receptors) as well as reduced neuroinflammation
(antagonistic binding to the Toll-like receptor-4) (Bostick et al.,
2019). An American study of 59 patients (n � 14 postsurgical)
with centralized neuropathic ocular pain (defined by presence of
neuropathic symptoms, IVCM findings, and/or persistent pain
after topical anesthetic) examined the effects of naltrexone 4.5 mg
nightly (mean 14.87 ± 11.25 months) on chronic ocular surface
pain. Overall, a 49.2% improvement in pain was noted from
baseline (3.23 ± 2.60 from 6.13 ± 1.93, p < 0.001, range 0–10)
(Dieckmann et al., 2021). While we grouped individuals utilizing
any opioid agent into one category, naltrexone was the most
common agent used; 15 individuals attempted any opioid
medication in our population, and improvement in pain was
seen in 10 of these patients (n � 3 post-traumatic, n � 3 migraine-
like, n � 4 unilateral).

Finally, while less frequently studied, dysfunction at the
autonomic nervous system may contribute to chronic ocular
surface pain (Galor et al., 2018b). Along with the trigeminal
nerve’s sensory input, the sympathetic nervous system (SNS)
projects fibers to the cornea from the superior cervical ganglion,
while the parasympathetic nervous system (PSNS) sends fibers from
the ciliary ganglion (Galor et al., 2018b). Autonomic dysfunction
contributes to a variable degree to chronic pain conditions, like
fibromyalgia (Janzen and Scudds, 1997), cluster headaches (Costa
et al., 2000; Pipolo et al., 2010), and complex regional pain syndrome
(Quevedo et al., 2005). In patients with parasympathetic or
sympathetic contributors to pain, sphenopalatine ganglion or
superior cervical ganglion blocks respectively, and/or nerve
stimulation as well as intrathecal delivery of analgesic agents have
been used with some success. In particular, one case report of a
patient with intractable post-refractive surgery (LASIK) pain was

treated initially with a trigeminal nerve stimulator and later on with
intrathecal bupivacaine-fentanyl delivery. The patient has reported
stable pain since 2014 with >50% (moderate) pain relief for over a
year (Hayek et al., 2016). In our study, six individuals (n � 3
unilateral vs. n � 1 postsurgical, post-traumatic, migraine-like
each) received a block at the aforementioned ganglia, and all
patients experienced improved pain except one postsurgical
patient; among those who improved, the blocks most commonly
led to mild (n � 3) and marked (n � 2) improvement in pain.

As with all studies, our findings must be considered bearing in
mind the study limitations, which included a retrospective
evaluation of multiple therapies in a wide range of individuals
with chronic ocular surface pain from varied etiologies. Yet, this
weakness is also a strength considering its originality, as prior
studies have only examined the effect of one therapy in a particular
patient population. In reality, the majority of patients with chronic
ocular surface pain will receive a number of oral, topical, and
adjuvant therapies that often work concomitantly. Another
limitation is sample size considerations, especially when
examining pain subgroups (e.g. unilateral). As such, future
studies with larger populations are needed to validate the
findings of our study. Furthermore, unaccounted confounders
may have affected our data, such as emotional and psychosocial
contributors to pain (Lamb et al., 2010; Otis et al., 2013; Patel et al.,
2019). Other studies have demonstrated that targeting these aspects
with a variety of therapies, such as cognitive behavior therapy,
acupuncture, and exercise, can reduce pain intensity beyond
medical therapy alone (Mehra et al., 2020) and as such, these
factors should be examined in future studies. This is particularly
pertinent to our findings, since cognitive modification and positive
counseling may enhance compliance and motivate patients to
remain compliant and persistent in maintaining their continuity
of care and follow ups for as long as necessary to find an efficacious
treatment approach. Finally, comparison to other studies is limited
considering the varying populations and pain assessments utilized.

CONCLUSION

Despite the study’s limitations, our study presents clinical
outcomes in a wide range of patients with chronic ocular
surface pain, treated with a variety of oral, topical, and adjuvant
therapies. Overall, there was individual variability in treatment
response, although some trends were noted by pain subgroup. One
likely contributor to variability is our inability to pinpoint the
location(s) of nervous system dysfunction (peripheral corneal,
peripheral non-ocular, central, autonomic) for each patient.
Even in patients with suspected central pain, the optimal
combination of oral, topical, and adjuvant therapies is not
known. In our population, some patient who failed treatment
with an α2δ ligand, subsequently reported subjective pain
reduction with a TCA or topiramate. This points to the
necessity of a trial-and-error approach, which is currently
widely utilized when treating individuals with chronic ocular
surface pain. Our findings point to needed areas of future
research, including the development of diagnostic tests that can
localize nervous system abnormalities, and then application of
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personalized approaches that target these abnormalities with
medications or other therapies that provide faster acting pain
relief than currently available neuromodulators.
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Topical Therapeutic Options in
Corneal Neuropathic Pain
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Purpose of Review: Corneal neuropathic pain can be difficult to treat, particularly due to
its lack of response to standard dry eye therapies. We describe a variety of topical
therapeutic options that are available to treat corneal neuropathic pain with a significant or
primary peripheral component. We also describe possible mechanisms of action for such
topical therapies.

Recent Findings: Topical corticosteroids and blood-derived tear preparations can be
helpful. Newer therapies, including topical lacosamide and low-dose naltrexone are
emerging therapeutic options that may also be considered.

Summary: Corneal neuropathic pain with a significant peripheral component may be
managed with a variety of topical therapeutic options.

Keywords: corneal neuropathic pain, neuropathic ocular pain, low-dose naltrexone, lacosamide, sub-basal corneal
nerve plexus, serum tears

INTRODUCTION

Corneal neuropathic pain has perplexed ophthalmologists particularly because of its symptomatic
masquerade as dry eye disease. Indeed, some patients with corneal neuropathic pain may have dry
eye findings that are compatible with evaporative and/or aqueous deficient dry eye disease. However,
these patients fail to respond to dry eye treatments (Galor et al., 2015a; Galor et al., 2016). Some
patients may even be suspected of malingering or of having somatic symptom disorders. Patients
often have seen a variety of ophthalmologists for second, third, or more opinions. While corneal
neuropathic pain can certainly exist in the setting of aqueous sufficient and deficient dry eye, the
common clinical situation encountered is a relatively unremarkable ocular surface examination in a
person complaining of significant ocular discomfort (the so-called “pain without stain” patient)
(Rosenthal et al., 2009). Increasing awareness of the existence of corneal neuropathic pain, a distinct
clinical entity from aqueous sufficient and aqueous deficient dry eye disease, can benefit patients by
advancing them on a more directed course to more specifically addresses their discomfort (Craig
et al., 2017). Management of neuropathic pain, however, continues to be a challenge, in part, due to a
lack of comparative clinical trials identifying the most effective treatment strategies. Often,
determining whether there is a primarily peripheral or a primarily central component of
neuropathic pain (or perhaps, mixed) can identify routes of therapy that may be most
efficiacious (Rosenthal et al., 2009; Rosenthal and Borsook, 2012; White et al., 2014; Dieckmann
et al., 2017; Ozen et al., 2017). In patients exhibiting a significant peripheral component of corneal
neuropathic pain or discomfort, topical therapeutic approaches may be of benefit (Asbell, 2006;
Mondy et al., 2015; Chen et al., 2019; Siedlecki et al., 2020). This paper will use both the terms “pain”
and “discomfort” to describe the subjective complaints of patients suffering from corneal
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neuropathic pain. Some patients point out that they do not
experience “pain” per se, but rather a sensation that is often
difficult to define but is, nevertheless, uncomfortable.

The nerves within the cornea stem from branches of the
nasociliary nerve which itself is a branch of the ophthalmic
division of the trigeminal nerve also known as the first
division of the fifth cranial nerve. Nasociliary nerve branches
enter the peripheral cornea radially before traveling anteriorly to
penetrate Bowman’s layer and forming the sub-basal nerve
plexus. Ocular surface pain and corneal neuropathic pain is
initiated by these peripheral nerves and their free endings
located within the cornea (Mehra et al., 2020). Other pain
nerve fibers, called nociceptor fibers, variably respond to
different stimuli. Mechanoreceptors are responsible for the
sharp pain that is felt upon mechanical stimulation such as an
object coming in contact with the cornea. Polymodal receptors
respond to mechanical, thermal, pH, and chemical changes
within the environment, and are associated with burning and
stinging pains. Cold thermoreceptors respond to changes in
temperature and tear osmolarity, and can be associated with
ocular surface discomfort that may be generated with evaporative
tear (Rosenthal and Borsook, 2012; Cho et al., 2019; Mehra et al.,
2020). Because of its peripheral location in the cornea, the sub-
basal nerve plexus is the peripheral-most component to efferent
and afferent corneal neuropathic pain. However, there is also a
significant central component to corneal neuropathic pain, which
involves first- and second-order nerve input to the thalamus and,
ultimately, the cortex with additional modulation from the
thalamus and amygdala (Rosenthal and Borsook, 2012; Mehra
et al., 2020).

Our group at the Proctor Foundation at the University of
California San Francisco serves as a major tertiary center for the
evaluation and management of patients with corneal neuropathic
pain. Herein, we discuss the topical (eye drop) therapeutic
options that are suggested for patients with a component of
peripheral corneal neuropathic pain. Our experience has been
that patients with peripheral corneal neuropathic pain are very
motivated to understand what eye drop therapies may be of
potential benefit to them. While there are a variety of eye drops
that can be used in corneal neuropathic pain, no randomized
controlled trials comparing one class of eye drop to another in
corneal neuropathic pain currently exists. Commercially available
and compounding pharmacy-only available drops are reviewed.
To ensure a comprehensive review, we searched for topical (eye
drop) therapeutics in PubMed using search terms, “neuropathic
pain”, “ocular pain”, and “eye pain” and evaluated the results if

the abstracts described topical therapeutics. A total of 204 records
were screened and 182 records were excluded. Of the 22 reports
assessed for eligibility, additional records were excluded due to
focusing on post-operative treatments (4), focusing on systemic
treatments (2), and a lack of relation to neuropathiic ocular pain
(6). Ten studies were included in this review. Our group’s
experience in topical therapy was also included (Table 1).

ASSESSMENT OF CORNEAL
NEUROPATHIC PAIN

The assessment of corneal neuropathic pain involves 1)
identifying the presence of subjective ocular pain and, if
possible, 2) identifying features that align with a neuropathic
phenotype. Questionnaires and in vivo confocal microscopy can
be helpful in distinguishing patients with corneal neuropathic
pain from those with non-neuropathic ocular discomfort that can
be associated with dry eye disease. Patients may have features of
both an aqueous sufficient or aqueous deficient dry eye disease in
addition to frank corneal neuropathic pain.

Questionnaires that are specific for ocular pain can be easily
self-administered in the clinical setting or administered by staff
and include the Ocular Pain Assessment Survey (OPAS) and the
Neuropathic Pain Symptom Inventory modified for ocular pain
(NPSI-Eye) (Qazi et al., 2016; Farhangi et al., 2019).

Prior to 2016, there was no standardized and validated way of
assessing ocular pain intensity and aggravating factors. The OPAS
was a major step forward in identifying, anatomically locating
and quantifying the intensity ocular pain. Comprised of 27
questions, spanning a gold-standard visual analog system of
quantifying pain intensity (Wong-Baker FACES pain rating
scale), aggravating factors, and quality of life features, the
OPAS is not only comprehensive but useful in monitoring
response to therapy (Qazi et al., 2016). The NPSI attempts to
identify neuropathic-specific ocular pain symptoms, including
burning sensation (Bouhassira et al., 2004; Farhangi et al., 2019).
The identification of specific neuropathic pain features is
important because such patients may be less apt to respond to
artificial tears, which may be helpful in patients with non-
neuropathic ocular discomfort (Galor et al., 2015b).

Following questionnaires, a critical component of the clinical
examination is determining a patient’s subjective response to
topical anesthetic. Complete improvement in discomfort or pain
is in keeping with a primarily peripheral corneal neuropathic pain
process. If some component of discomfort persists, this may

TABLE 1 | Topical therapeutic options available as eye drops for peripheral corneal neuropathic pain.

Topical therapies Mechanism of action

Corticosteroids Anti-inflammatory properties can decrease the density of dendritic cells
Blood-derived tear preparations Autologous or allogenic tear promote corneal epithelial cell health and are associated with fewer features of neuropathy of

sub-basal nerve plexus
Lacosamide Amino acid molecule that decreases hyperexcitability of corneal cold-sensitive nerve terminals
Low-dose naltrexone Opioid antagonist known for its effects on bodily neuropathic pain
Enkephalin modulators A relatively new therapy that acts as a neuropeptide inhibitor with effects on modulating pain
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suggest that there is a component of the pain that is central while
a complete lack of response to topical anesthetic suggests that the
discomfort is primarily central. For those corneal pain processes
that have at least some component of a peripheral phenotype,
topical pain modulatory therapies may be of benefit. Herein, we
discuss a variety of topical therapeutic options that are available
to clinicians for managing peripheral corneal neuropathic pain.

Topical Corticosteroids
In both dry eye disease and neuropathic ocular pain,
inflammatory cells may mediate a component of the
discomfort experienced by patients. Antigen-presenting cells,
including dendritic cells, can be found within the corneal
epithelium and stroma, and are important players in the
complex immune functions and responses exhibited by the
cornea in both processes (Hamrah et al., 2003). Compared to
control patients, in vivo corneal confocal microscopy
demonstrates a higher density of dendritic cells in patients
with dry eye and corneal neuropathic pain (Kheirkhah et al.,
2015; Shetty et al., 2016a; Nicolle et al., 2018). Moreover, in some
cases, particularly in aqueous deficient dry eye disease, dendritic
cells may be larger and be composed of more individual dendrites
than in aqueous sufficient dry eye disease (Kheirkhah et al., 2015).
Nicolle et al. (2018) To counterbalance this, endogenous peptides,
known as enkephalins, serve to mitigate pain. Moreover, notable
effects on in vivo confocal microscopy show a decrease in density
of dendritic cells after treatment (Villani et al., 2015). Dendritic
cells may express inflammatory cytokines and enzymes that
degrade neuropeptides, thereby augmenting corneal
nociceptors which are involved in initiating the perception of
pain (Shetty et al., 2016a; Shetty et al., 2016b; Khamar et al., 2019).
Indeed, it is hypothesized that dendritic cell signaling may be
involved in mediating and enhancing nociceptive properties in a
variety of dry eye, corneal neuropathic pain, and systemic
neuropathy diseases and syndromes (Klitsch et al., 2020).
Animal models of dry eye disease have demonstrated that
dendritic cells can secrete a variety of proteins that activate
downstream chemokines and cytokines that can modulate
inflammation on the ocular surface (Gandhi et al., 2013;
Zhang et al., 2014). Topical corticosteroids have well known
anti-inflammatory effects. Thus, decreasing the density of
dendritic cells with topical corticosteroids is one approach that
may help in cases of corneal neuropathic pain where confocal
microscopy identification of sub-basal dendritic cells is a
predominant feature (Villani et al., 2015).

Blood-Derived Tear Preparations
Blood-derived tear preparations contain various growth factors,
vitamins, and cytokines and could be considered more similar to
natural tears than commercially available over-the-counter
artificial tear products. Such tear preparations can be derived
from a patient’s own serum as autologous serum tears, from
platelet rich plasma, or from allogeneic sources, such as donor
cord blood (Tsubota et al., 1999a; Wu et al., 2021). Serum has
been shown to promote the differentiation of corneal and
conjunctival epithelial cells to express mucins (Gipson et al.,
2003). This allows for the migration of corneal epithelial cells in a

dose-dependent fashion and may, in part promote corneal
epithelial health by stimulating expression of other growth
factors and receptors (Phan et al., 1987; Tsubota et al., 1999a;
Tsubota et al., 1999b; Geerling et al., 2001). A healthy corneal
epithelium helps protect the sub-basal nerve plexus.

There has been some debate about the efficacy of autologous
serum tears for dry eye disease. An extensive review by the
Cochrane Database Group to identify randomized controlled
trials evaluating the efficacy of autologous serum tears
compared to artificial tears did not find significant evidence of
a long-term durable benefit of autologous serum tears (Pan et al.,
2017; Aggarwal et al., 2019). However, some studies have found in
pain associated with dry eye, cord blood is superior to placebo
(Campos et al., 2020). In non-randomized, observational series,
platelet rich plasma drops helped to alleviate pain in corneal
surgery-related corneal trauma (Alio et al., 2018).

Neuropathic ocular pain, which is distinctly different from
aqueous deficient or sufficient dry eye disease, may benefit from
blood-derived tear preparations that studies of general dry eye
disease have not been powered to detect. Indeed, in patients with
dry eye disease, serum tears have been shown to decrease basal
epithelial cell density on confocal microscopy (Mahelkova et al.,
2017). While some studies using serum tears in dry eye disease
did not identify significant changes in the number of Langerhans
cells or activated keratocytes or in the features of the sub-basal
nerve plexus, other studies found that corneal nerve morphology
improved with fewer neuropathic features using blood-derived
tear products (Giannaccare et al., 2017; Mahelkova et al., 2017).
The average concentration of serum growth factors vary
according to patients who suffer from numerous systemic
disease as comparted to healthy subjects with only ocular
surface disease. This may be one reason explaining some
therapeutic variability of serum tears in different patient
populations (Ripa et al., 2020; Siedlecki et al., 2020).

In corneal neuropathic pain, serum tears have been described
to be helpful in patients experiencing discomfort to light
(photoallodynia) (Aggarwal et al., 2015). Autologous serum
has been shown to decrease findings of sub-basal corneal
nerve beading and neuromas (Aggarwal et al., 2015). In
addition, serum tears have been associated with an
improvement in other nerve metrics (as assessed by semi-
automated quantification by ImageJ analysis) including total
nerve length, nerve number, decrease in nerve reflectivity, and
decrease in nerve tortuosity (Aggarwal et al., 2019). Such
improvements in nerve metrics have also been correlated with
an improvement in ocular pain by patients, suggesting that the
resolution of neuropathic features is associated with an
improvement in corneal nerve function (Aggarwal et al.,
2019). Fresh frozen plasma and platelet-enriched plasma have
similar purported benefits as serum tears and are worthy of future
inverstigation with regard to ocular neuropathic discomfort/pain
(Wang et al., 2021).

Topical Lacosamide
Lacosamide (C13H18N2O3, molecular weight 250.29 g/mol,
pubchem.ncibi.hlm.nih.gov accessed August 1, 2021) is an
amino acid molecule that was originally developed as an
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antiepileptic medication. Its main mechanism of action is to
selectively enhance the slow inactivation (as opposed to the fast
inactivation) of voltage-gated sodium channels (Errington et al.,
2008; Niespodziany et al., 2013; Rogawski et al., 2015).
Lacosamide also binds with the collapsin-response mediator
protein-2 (CRMP-2), involved in modulating neurite
outgrowth, which is important in establishing new neuronal
projections in developing neurons as well as in regenerating
nerves (Wilson and Khanna, 2015; Wang et al., 2018).

While corneal pain is sensed by mechano-nociceptors and
polymodal nociceptors, cold thermoreceptors also play a role in
the perception of ocular pain and discomfort (Belmonte and
Gallar, 2011). Modulation of cold thermoreceptors, then, has
been a potential therapeutic target. Topical lacosamide, in an ex
vivo model, has been shown to decrease the hyperexcitability of
corneal cold-sensitive nerve terminals (Kovács et al., 2016). In an
aqueous deficient animal model (in which the lacrimal glands had
been extirpated), the hyperexcitability as measured by the nerve
terminal impulses in corneal cold-sensitive nerve terminals was
decreased (Kovács et al., 2016).

Lacosamide 1% is produced from preservative-free Vimpat
(UCB Inc., Smyrna, Georgia) 10 mg/ml 20 ml vial. It is important
to note that Vimpat is a Schedule 5 drug and all state and federal
laws and regulations regarding controlled substances must be
followed when prescribing and dispensing this drug. The
compounding of lacosamide 10 mg/ml is an aseptic transfer
from the injection vial to the droptainers or dispensing
devices. When assigning a beyond use date, pharmacies must
follow corresponding state and United States Pharamcopeia
(USP) General Chapter 797 regulations. According to USP
General Chapter 797, a beyond use date of 14 days refrigerated
may be assigned. The package insert for Vimpat states that it is
not to be frozen. The product Vimpat 20 mg/20 ml is available
through drug wholesalers only as packs of 10. It is important to
find a pharmacy that is willing to make the initial investment in
order to stock the medication for compounding use.

Topical Low-Dose Naltrexone
Naltrexone (C20H23NO4, molecular weight 341.4 kg/mol,
pubchem.ncibi.hlm.nih.gov accessed August 1, 2021) is an
opioid antagonist that was originally developed as a
therapeutic for opioid and alcohol addiction, typically at oral
doses from 50 to 100 mg daily. Low-dose naltrexone (typically in
doses from 1 to 5 mg daily) has been used for treating bodily
neuropathic pain (Younger and Mackey, 2009; Metyas et al.,
2018). Ultra-low-dose naltrexone (doses below 1 mg daily) may
also be used (Toljan and Vrooman, 2018).

Naltrexone is noted to have effects on opioid receptors
(commonly described with mu-opioid receptors as well as
others) and non-opioid receptors. A non-opioid receptor that
seems to be associated with the functionality of naltrexone as it
pertains to pain modulation is the Toll-like receptor, which is
found on macrophages and microglia. Microglia are involved in
pain through the binding of a protein, high mobility group box 1,
HMGB1) which binds to Toll-like receptors 2 and 4 (Watkins
et al., 2007). Toll-like receptor expression has been noted to be
upregulated in neuronal injury (Owens et al., 2005). Microglia

may then increase the expression of tumor necrosis factor-alpha
(TNF-alpha) and other inflammatory mediators via Toll-like
receptor as well as NF-ΚB signaling, indicating a close
relationship between inflammation and pain (Nadeau and
Rivest, 2000; Thibeault et al., 2001). Ultimately, glial activation
is thought to enhance neuroexcitability, which may be associated
with the increased perception of pain (Watkins et al., 2007).
Naltrexone has been shown to inhibit the IL-6 and TNF-alpha
that is produced after Toll-like receptors have interacted with
their cognate ligands, which can thereby mitigate pain in animal
models (Grace et al., 2015; Cant et al., 2017).

Models of ocular surface injury (penetrating trauma or alkali
injury) have been associated with retinal damage and inflammation
within the brain by virtue of microglial and macrophage activation
(Ferrari et al., 2014; Paschalis et al., 2018). This has suggested that
modulation of ocular surface neuropathy can be beneficial in a wide
array of conditions. Indeed, oral low-dose naltrexone has been
described to be beneficial to patients with a central component of
neuropathic ocular pain. Patients treated with oral low-dose
naltrexone as monotherapy or as part of a multimodal
therapeutic approach was assocated with a decrease in their mean
visual analog pain score as well as decrease in their mean quality of
life score as assessed by the OPAS (Dieckmann et al., 2021). Topical
low-dose naltrexone has been used in a diabetic murine model
demonstrating improvements in corneal nerve sensitivity to a
filament (von Frey) similar to that used to test human corneal
sensation (Cochet-Bonnet enesthesiometer) (Zagon et al., 2014).

Interest in naltrexone’s potential to ameliorate corneal
neuropathic problems, such as ulcerations and delayed re-
epithelialization, have led to interest in producing contact
lenses that would allow for the ability to deliver a more
constant level of low-dose naltrexone to the cornea’s sub-basal
nerve plexus (Alvarez-Rivera et al., 2019).

Presently Naltrexone, as an eye drop, requires specialty
compounding. Naltrexone eye drops are reconstituted from active
pharmaceutical ingredient powder because a commercial product
does not currently exist. This preparation is considered high-risk
compounding because pharmacies start the process with non-sterile
powder and sterilize the solution viamembrane filtration as the final
step. Naltrexone HCl USP powder is dissolved in sodium chloride
0.9% sterile injection and preserved with benzalkonium chloride
solution (though a preservative-free formulation can be prepared as
well). The pHmay range from 4.5 to 6.2. The solution is drawn up in
a luer lock syringe and sterile filtered into droptainers or dispensing
devices. For this type of preparation, USP General Chapter 797
allows a Beyond Use Date of 3 days refrigerated or 45 days frozen.
Strengths of naltrexone ophthalmic solution range from 0.001 to
0.2%. The compounding of high-risk preparations is performed in
an InternationalOrganization for Standardization (ISO) 7 ante room
and the final filtering and packaging is done in an ISO 5 laminar
flow hood.

Topical Enkephalin Modulators: Future
Targets
Because the neuropeptides known as enkephalins can modulate
pain, there has been interest in utilizing this pathway as a
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potential pain therapeutic. Enkephalins are associated with an
analgesic effect, but their action is relatively short-lived due to the
presence of enzymes that rapidly degrade these neuropeptides.
Endogenous inhibitors of enkephalin enzymes do exist and are
present in foreign body models of ocular pain (Ozdogan et al.,
2020; Lasagni Vitar et al., 2021). Thus, pharmacologic inhibition
of such enzymes may be a therapeutic target. In one study, the
topical administration of PL265, an inhibitor of enkephalinase, in
a murine model of corneal pain reduced corneal mechanical and
chemical hypersensitivity (Reaux-Le Goazigo et al., 2019).
Targeting corneal mu-opioid receptors with agonists may be
another therapeutic target as suggested in murine models
(Joubert et al., 2020).

DISCUSSION

There has been substantial progress in the development of tools
that can identify corneal neuropathic pain (Qazi et al., 2016;
Farhangi et al., 2019). The identification of ocular pain and
neuropathic pain features with the OPAS and NPSI
questionnaires is an important step forward in better
distinguishing patients that are less likely to respond to
lubrication like their typical dry eye counterparts. However,
significant challenges remain, particularly regarding treatment
of corneal neuropathic pain. In vivo confocal microscopy can be
helpful in identifying dendritic or other inflammatory cells, which
may suggest a role for a brief course of topical corticosteroids.
Autologous blood-derived products are a reasonable first-line

approach given their association with improvement in comfort
and features of neuropathy on in vivo confocal. If there is a
significant peripheral component, consideration can be made for
other topical therapies such as lacosamide or low-dose naltrexone
drops compounded through a specialty pharmacy. While
longitudinal comparative studies demonstrating the most
effective topical treatment strategies have yet to be performed,
it is reassuring that a variety of topical therapeutic options exist
for patients with a peripheral component of corneal neuropathic
pain and discomfort. A concerted effort on the part of both
ophthalmologists and patients offer the possibility of future
randomized controlled trials that can provide high-quality
evidence for managing corneal neuropathic pain.
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Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic

ocular conditions previously thought to be exclusively peripheral in nature. Isolating

individual causes of centralized chronic conditions and differentiating them is critical

to understanding the mechanisms underlying neuropathic eye pain and ultimately its

treatment. Though few functional imaging studies have focused on the eye as an

end-organ for the transduction of noxious stimuli, the brain networks related to pain

processing have been extensively studied with functional neuroimaging over the past 20

years. This article will review the supraspinal mechanisms that underlie pain as they relate

to the eye.

Keywords: pain, eye, neuroimaging, fMRI, supraspinal, brain, brainstem, ocular

INTRODUCTION

Ophthalmology as a clinical field has a preoccupation with what can be seen, particularly for
patients presenting with eye pain. The patient reports eye pain as a symptom, and the clinician
collects the available data to reach a diagnosis. Data come in the form of patient reports, medical
history, professional acumen, and clinical findings, such as those obtained with a slit lamp exam of
the anterior and posterior segment or specialized equipment that provide intensely magnified views
of ocular structures. Despite the ever-expanding options for precise clinical evaluation, pain is no
guarantee of a physically observable sign of tissue damage. Pain is subjective by its very nature, and
similar inputs can result in bewildering and wildly inconsistent pain responses. However, modern
functional neuroimaging tools have allowed scientists to investigate this symptom in the context of
the inner workings of the brain.

Pain serves as a crucial system to avoid bodily injury and damage. Pain accomplishes this
function by creating strong, memorable disincentives for potentially damaging activity as well
as protective reflexes and convalescence-promoting behaviors to prevent or limit damage. As
defined by the International Association for the Study of Pain (IASP), it is “an unpleasant sensory
and emotional experience associated with, or resembling that associated with, actual or potential
tissue damage” (1). Pain is an attention-demanding, conscious state that takes precedence over
other processes (2, 3). Ocular pain can be debilitating and serves to protect a critically important
sensory apparatus.

Much as visual processing involves numerous brain regions, pain perception is generated
by an amalgam of signals and modifications carried by a wide network of brain regions and
pathways. These regions work in delicate balance with each other and are influenced by individual
neurobiological variation, resulting in an inherently subjective experience (3). The transduction
of noxious information travels along multiple pathways to the brain and is processed during
its transmission from the periphery as well as at the highest cortical levels. The diverse inputs
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from the numerous supraspinal processing areas are eventually
integrated. The result is the multidimensional perception of
pain, with its intensity, unpleasantness, emotional connotation,
and more.

Conceptualization of Pain
Pain has been categorized into three distinct, concurrent
dimensions: affective-motivational, sensory-discriminative,
and cognitive-evaluative (4). The sensory and discriminative
dimensions are related to the location, characteristics, intensity,
and timing of a stimulus that evokes pain. The affective and
motivational aspects of pain are highly intertwined with emotion
and constitute the unpleasant aspects of pain that give rise to
behavioral responses. The cognitive and evaluative dimension
is the means by which the brain is able to comprehend and
contextualize the consequences of injury or pain, anticipate pain
based on memory, and inhibit or facilitate painful sensation
(5, 6). Multiple distinct brain regions and networks underlie
these discrete aspects of pain and their flavoring of the pain
experience (7–10).

Nociceptive vs. Neuropathic Pain
Nociception is the physiological encoding and detection of
noxious stimuli by the central and peripheral nervous systems
(11). Though they are often concurrent, nociception and pain
can occur independently, and the terms are not directly
interchangeable. Nociceptive transduction can take place during
the sensation of itch, which itself is not painful; likewise, pain can
exist untethered from peripheral noxious input, as with phantom
limb pain (12).

Nociceptive pain “arises from actual or threatened damage to
non-neural tissue and is due to the activation of nociceptors”
(13), a detection and warning system for the presence of intense
stimuli. The transfer of nociceptive signals through supraspinal
centers to the cortex generates pain, that is, triggers avoidance
reflexes, unpleasant sensations, and a negative emotional state.
This multifaceted experience overrides most ongoing processes
and diverts attention to the detection of, and withdrawal from, a
noxious stimulus (2).

Pain may persist over long periods of time and can serve
a beneficial purpose by reporting the extent of injury and
progression of tissue repair while promoting convalescent
behavior (14). To facilitate this, after injury the central nervous
system can establish long-lasting sensitivity to peripheral inputs,
which may help to prevent further harm during recuperation
(15, 16). These changes do not always resolve after injury and
sometimes cannot be clearly linked to disease as the source.
Pain recurring or persisting for longer than 3 months is defined
as chronic and may be the consequence of underlying disease
(chronic secondary pain) or exist without a clear cause or insult
(chronic primary pain) (17, 18).

Neuropathic pain is “a result of a lesion or disease of
the somatosensory nervous system” and may be peripheral
or central in nature (13). As part of the repair process after
peripheral nerve injury, both damaged and healthy primary
nerve fibers (but not their peripheral receptors) may fire action
potentials spontaneously; the resulting ectopic pain is a natural

consequence of healing but is nevertheless considered peripheral
neuropathic pain (16, 19). In the case of centralized neuropathic
pain, the complex balance of supraspinal mechanisms underlying
the CNS’s signaling and modulatory capacity can become
disrupted and manifest pain without significant peripheral
instigation (14, 16).

Organizational Summary
The primary aim of this review will be to describe the
functionality and role of brain structures related to pain
processing in the context of human neuroimaging (20). We
will first briefly summarize how the peripheral nervous system
encodes and transmits ocular nociceptive signals to the central
nervous system by major ascending pathways. We then will
focus on neuroimaging of supraspinal structures related to pain.
Finally, we will explore sensitization in these circuits and briefly
discuss their manifestation at the network level.

SENSORY INNERVATION OF THE
ANTERIOR SEGMENT

The eye contains a host of sensitive tissue, with the cornea
being the most densely innervated in the body (21). Nociceptors
within these areas are largely offshoots of the ophthalmic
division of the trigeminal nerve, but other pathways and sensory
modalities contribute to nociception and processing of the
full spectrum of sensory inputs to the anterior segment and
eye. These peripheral pathways have been more thoroughly
described previously (22, 23). The healthy cornea is exclusively
innervated by large-diameter, myelinated A-delta nerve fibers
and small-diameter, unmyelinated C-fibers (22, 24). The three
primary classes of corneal sensory afferents are polymodal
nociceptors, mechanonociceptors, and cold thermoreceptors,
each of which preferentially responds to various sensory stimuli.
The polymodal C-fibers are the most abundant and can detect
a wide range of stimuli, including mechanical, thermal, and
chemical. Cold receptors respond to thermal changes and consist
of either A-delta or C-fibers, while specific mechanoreceptors
are exclusively A-delta fibers and activate upon mechanical
stimulation alone. These same classes of peripheral sensory
afferents have also been identified in the episclera, bulbar
conjunctiva, iris, and ciliary body, while non-corneal ocular
tissue, especially the eyelids, may have numerous additional
types of low-threshold mechanoreceptors (21, 22, 24, 25).
The trigeminal system is also responsible for the innervation
of both meningeal and dural vessels, and information from
peripheral receptors in these areas travels alongside other sensory
information through trigeminal pathways (26, 27).

Several peripheral sensors in the anterior of the eye
contain melanopsin, a photopigment that offers a light
transduction mechanism that may lead to pain perception.
With a peak wavelength sensitivity of 480 nm, melanopsin-based
photoreception can occur in intrinsically photosensitive retinal
ganglion cells (ipRGCs) and is increasingly implicated as a source
for light-induced pain (28–32). These ipRGCs can generate
their own signal independent of rod and cone involvement
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in response to light absorption yet can additionally receive or
relay input from classical RGCs and support cells (33–36). In
addition to ipRGCs, melanopsin has been found in a variety of
other tissue in mammals and humans, including expression and
prospective inherent photosensitivity in the cornea, iris, ciliary
body projections, certain vasculature, and trigeminal neurons
themselves (36–40). These peripheral melanopsin-containing
populations can generate a light-response without traversing the
optic nerve (26, 27, 40, 41).

Nociceptive Pathways
Peripheral receptors in the anterior segment are conventionally
the gateway for nociceptive transduction that leads
to the experience of pain. The transfer of peripheral signals
to the brain is facilitated by a number of pathways, including the
trigeminothalamic pathway, the parabrachial nucleus pathway,
and the melanopsin pathway.

In health, and in conjunction with their respective peripheral
afferents, these pathways supply the brain with vital information
regarding the health of the eye and serve as a broad and fine-
tuned detection mechanism for the prevention of ocular damage.
However, damage to this network can result in dysfunction of
peripheral neurons, intermediaries between them and the brain,
or cortical areas themselves—all resulting in pain (22). Likewise,
maladaptive sensitization of these same critical nociceptive
pathways can lead to unduly painful outcomes for patients.
Even after direct insults to the peripheral fibers of these nerves
are healed, pain can persist. Often this persistent pain involves
a central component of the nociceptive pathway that can be
difficult to detect, let alone resolve.

Trigeminothalamic Pathway
Ocular nociceptive and sensory information travel from
peripheral sites through primary fibers of the ophthalmic
trigeminal nerve to the ipsilateral trigeminal ganglion, where
the neuronal bodies are somatotopically organized along with
the other trigeminal branches. First-order neurons synapse to
second-order neurons in the pons at the trigeminal brainstem
nuclear complex (TBNC). The synapses of nociceptive and
thermosensory neurons are located in the spinal trigeminal
nucleus caudalis (spVc) transition zones. From the medullary
dorsal horn, nociceptive information travels along groups of
neurons to either the contralateral thalamus or the ipsilateral
parabrachial nuclei (22).

The trigeminal connections to the thalamus are involved
in the sensory-discriminative and affective-motivational
components of pain (4). From the TBNC, second-order neurons
destined for the thalamus leave the subnucleus caudalis,
decussate, and subsequently enter the contralateral anterior
trigeminothalamic tract (lemniscus). The neurons then ascend to
synapse with tertiary neurons in the medial and somatosensory
(lateral) thalamic nuclei (42). Nociceptive information from
the thalamus is then relayed to higher brain regions where it
is further processed, eventually resulting in pain perception
(22, 43, 44) (Figure 1A).

Parabrachial Nucleus Pathway
The nociceptive inputs that pass through the parabrachial
nuclei (PBN) are involved in the affective-motivational and
autonomic components of pain. The parabrachial nuclei are
a bilateral grouping of neurons located in the brainstem
at the junction of the dorsolateral pons and midbrain,
surrounding the superior cerebellar peduncle (45). The PBN
receive afferent input from second-order trigeminal neurons in
the spVc (46). The PBN pass the information to the central
nucleus of the amygdala, the hypothalamus, periaqueductal
gray and RVM, and onto parts of the spino-parabrachial
pathway, which innervates the anterior cingulate (ACC)
and insular (IC) cortices via the thalamus (47). These
findings in non-human primates have been reproduced in
humans, where noxious stimuli to the orofacial region produce
increased BOLD fMRI signal intensity in the spV and
subsequently several other supraspinal regions, including the
PBN (48).

In addition to acting as a conduit for peripheral nociceptive
information, the PBN have a wide array of functions,
such as autonomic modulation (49), and are involved
in pain processing, mostly as a key supraspinal region
for encoding the affective component of pain (50). The
PBN also play a role in pain modulation, as the region is
implicated in some forms of endogenous analgesia (48),
and low-frequency deep brain stimulation of the PBN
provides meaningful pain relief, although these findings
are intertwined with stimulation of other, more canonical
analgesia-associated brain regions in certain cases (51)
(Figure 1B).

Melanopsin Pathway
Light information from ipRGCs is largely transmitted through
the optic nerve until reaching target destinations in the
brain. The three primary tracts that project to the brain are
the retino-thalamo-cortical pathway, the retino-midbrain
pathway, and the retino-hypothalamic tract. The retino-
thalamo-cortical pathway is a direct connection between
ipRGC populations and the pulvinar nuclei within the posterior
thalamus (26, 52, 53). The retino-midbrain-parasympathetic
(or retinomesencephelatic) pathway brings photic signals
from the retina directly to the olivary pretectal nucleus in the
midbrain (54). The retinohypothalamic tract extends through
the optic nerve before synapsing to several areas, with the
major target being the suprachiasmatic nucleus (36). This
tract can be subdivided into three broad types of innervation:
afferents leading to hypothalamic neurons directly, referred to
simply as the retinohypothalamic tract; the retino-hypothalamo-
parasympathetic tract, which innervates the superior salivatory
nucleus in the brainstem; and the retino-hypothalamo-
sympathetic tract, which connects to the intermediolateral
nucleus in the spine (54).

The melanopsin involvement in light detection in ipRGCs,
anterior segment structures, and nociceptive neurons has led to
the exploration of pain enhancement by light along these and the
trigeminal nociceptive pathways (26, 27, 40, 55–58).
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FIGURE 1 | Nociceptive pathways. (A) The path of afferent signal transmission from the periphery to the cortex through major projections of the trigeminothalamic

pathway. Reprinted/adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Trigeminothalamic Tract Projections. In: Schmidt

R., Willis W. (eds) Encyclopedia of Pain by Ke Ren, Copyright (2007). DOI: https://doi.org/10.1007/978-3-642-28753-4_4626. (B) Decreased brainstem fMRI activity,

including PB, during endogenous analgesia. Red/yellow indicates regions where fMRI responses to noxious stimuli demonstrated a signal decrease following

conditioned pain modulation. Decreased activation was noted in the SRD, SpVc, and the trigeminal nerve along with the PB. On the left, myelin-stained sections are

displayed alongside corresponding MRI images of the brainstem. Reprinted from NeuroImage, Vol 124(Part A), AM Youssef, VG Macefield, LA Henderson, Pain

inhibits pain; human brainstem mechanisms, p54–62, Copyright (2020), with permission from Elsevier. DOI: https://doi.org/10.1016/j.neuroimage.2015.08.060. PrV,

principal sensory nucleus; SpV, spinal trigeminal nucleus; Vo, subnuclei oralis; Vi, subnucleus interpolaris; Vc, subnucleus caudalis; PB, parabrachial nucleus; SRD,

subnucleus reticularis dorsalis; SpVc, spinal trigeminal nucleus caudalis; V, trigeminal nerve; Compas: S, superior; I, inferior; R, right; L, left.

CENTRAL REPRESENTATION OF PAIN

Pain is a complex and multifaceted experience and, as such,
a large number of cortical and subcortical supraspinal areas
are involved in the interpretation of noxious stimuli and the
resultant sensation of pain. The supraspinal areas most likely
to be activated in response to a wide variety of noxious
stimuli are the thalamus, secondary somatosensory cortex,
anterior/mid-cingulate cortex, and the insula (7, 8, 10). In
addition to these areas, studies with differing parameters and
means of noxious stimulation have found additional brain
regions that are involved in pain under certain conditions,
including the primary somatosensory cortex, amygdala, lateral
prefrontal cortex, primary and supplementary motor areas,
pre-supplementary motor area, basal ganglia, cerebellum, and
brainstem (10) (Figures 2A,B).

Distinct aspects of pain are transmitted through separate
nuclei in the thalamus to higher brain structures and have
been grouped into a classification scheme of medial and lateral
pain systems based on the organization of innervation to and
from the nuclear groupings (42). The lateral pain system is
associated with the sensory-discriminative components of pain,
and routes information from somatotopically arranged lateral

thalamic nuclei (ventral posterior and posterior, including VPM)
to the somatosensory cortices and posterior insula (42, 59–61).
The medial pain system, underlying the affective-motivational
pain dimension, processes and transfers pain information
from non-somatotopically-organized medial dorsal, midline, and
intralaminar thalamic nuclei to the cingulate cortex, prefrontal
cortex, amygdala, and hypothalamus, and their subsequent
projections to descending modulatory areas (42, 60, 62). As pain
is an incredibly salient experience, many of these brain regions
are involved not just in nociception, but also in attention and
motor-response networks (9, 63) (Figure 2C).

Primary Somatosensory Cortex
The primary somatosensory cortex (SI, Figure 3) receives input
from multiple thalamic nuclei, including lateral thalamic regions
associated with processing sensory-discriminative aspects of
noxious stimulation. SI is involved in multiple aspects of
sensory encoding and integration, from non-noxious heat,
proprioception, pressure, type and quality of touch to painful
nociception (64–67). Beyond the thalamic connections, SI has
dense cortico-cortical connections to multiple other areas,
especially the secondary somatosensory cortex and insula, as
well as other sensory regions, such as the visual cortex (68–70).
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FIGURE 2 | Pain-related areas in the brain and brainstem. (A) A meta-analysis of pain neuroimaging studies defines a set of brain regions consistently active across

222 experiments from 200 reports, including bilateral activity in the secondary somatosensory cortex, insular cortex, midcingulate cortex, and thalamus. Voxel values

(Continued)
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FIGURE 2 | increase from 1 to 15 with increasing convergence across 15 total main effects meta-analyses that each reflect pain-related activation. Reprinted from

Neuroscience & Biobehavioral Reviews, Vol 112, A Xu, B Larsen, EB Baller, JC Scott, V Sharma, A Adebimpe, AI Basbaum, RH Dworkin, RR Edwards, CJ Woolf, SB

Eickhoff, CR Eickhoff, TD Satterthwaite, Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI

meta-analysis, p300–23, Copyright (2020), with permission from Elsevier. https://doi.org/10.1016/j.neubiorev.2020.01.004. (B) Schematic of brain areas related to the

processing of the multidimensional experience of pain. Each region is color coded to correspond to its hypothesized dimension of pain, while hatch-marks indicate

processing associated with pain-related movement. Thick black borders indicate regions located more lateral to the midline. Relative size of each region is roughly

proportional for structures larger than SII. (C) Attention to different features of a painful stimulus can shift activation patterns. Focusing on the unpleasantness of pain

vs its location results in different patterns of brain activation when examined by PET, providing evidence that the unique dimensions of pain may be processed in

separate brain areas. Reprinted from the European Journal of Neuroscience, Vol 21(11), B Kulkarni, DE Bentley, R Elliott, P Youell, A Watson, SW Derbyshire, RS

Frackowiak, KJ Friston, AK Jones, Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems, p3133-42,

Copyright (2005), with permission from John Wiley and Sons. DOI: https://doi.org/10.1111/j.1460-9568.2005.04098.x. SI, primary somatosensory cortex; SII,

secondary somatosensory cortex; MCC, midcingulate cortex; ACC, anterior cingulate cortex; Ins, Insular Cortex; Amyg, amygdala; PFC, prefrontal cortex; M1,

primary motor cortex; SMA, supplementary motor area; pSMA, pre-supplementary motor area; BG, basal ganglia; Cereb, cerebellum; PAG, periaqueductal gray; PB,

parabrachial nuclei; RVM, rostral ventromedial medulla; spV, spinal trigeminal nucleus; Thal, thalamus; OFC, orbitofrontal cortex; pACC, perigenual cingulate corex;

IPC, inferior parietal cortex.

FIGURE 3 | Primary somatosensory cortex. (A) Brain areas active during pain: primary somatosensory cortex (SI) highlighted. (B) Functional imaging during exposure

to bright light while in a photophobic state results in significant activation along the rostral face portion of the SI somatotopic map, contralateral to the site of corneal

abrasion. SI activity is no longer present after symptoms resolve, while bilateral M1 and some bilateral SMA activation, associated with blinking, is seen in both

conditions. Reprinted from PLOS ONE, Vol 7(9), EA Moulton, L Becerra, P Rosenthal, D Borsook, An approach to localizing corneal pain representation in human

primary somatosensory cortex, e4463, Copyright (2012) Moulton et al., under the Creative Commons Attribution License (CC-BY). DOI: https://doi.org/10.1371/

journal.pone.0044643SI, primary somatosensory cortex; M1, primary motor cortex; A, anterior; L, left; P, posterior; R, right.

The varied and often direct interconnections between these
regions and SI are thought to support the role of SI in
multisensory integration and actions (69–71). SI is divided
into four subregions—Brodmann Areas 3a, 3b, 1, and 2—each
suspected of containing a separate mirrored somatotopic map
(72, 73). Areas 3a and 3b form one functional parcellation of SI,
while areas 1 and 2 form the other; differences in connectivity to
thalamic nuclei, other SI subregions, and multiple cortical areas,
including motor and frontal cortex, suggest further divisions of
function that remain to be explored (74).

Like the TBNC, the face representations in SI are
somatotopically organized in an “onion-skin or dermatomal”
model, wherein rostral areas are represented inferior and lateral
to caudal areas (44, 68, 75). Although the representation of
the eye has not been extensively mapped, an fMRI case study
localized corneal pain within the rostral-most representation of
the face (76).

SI nociceptive responses have been related to the sensory-
discriminative aspect of pain, specifically the quality, location,
and intensity of stimulus contralateral to the side in which
cortical activation is observed, as described by many
neuroimaging and lesion studies (64, 66, 77–79). These findings
are consistent with direct electrophysiological recordings in
primates (65, 67, 80–82).

Research into SI in multiple forms of pain, hyperalgesia,
and allodynia describe not only functional changes but related
structural changes, including somatotopic reorganization and
altered gray matter (75, 83–89). These altered patterns of
gray matter density and BOLD signal in the somatosensory
cortex are often found during investigations of trigeminal
neuropathy and chronic pain (90–93). The changes in neuron
excitability, inhibition, or synaptic transmission in the primary
somatosensory cortex can affect the perception of pain by
its influences on other connected cortical and limbic areas
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as well as subsequent altered interpretation of peripheral
input (16, 94–97).

Recent investigations into the expression of pain on the
face have found another relationship between SI and pain (98).
The facial expression of pain can be measured for clinical and
research purposes, and one method of quantification is through
the Facial Action Coding System (FACS) in which non-verbal
pain communications are described in Action Units (AUs).
AUs are a small set of facial movements shown to consistently
occur during pain that can include opening of the mouth and
constriction of the muscles around the eyes, among others (99,
100). While AUs are highly variable between individuals in pain,
the contraction of the orbicularis oculi muscle surrounding the
eyes, a specific AU, is found consistently across subjects and in
both acute and chronic pain (99). The sensory-discriminative
component of pain is closely associated with orbicularis oculi
contraction AU (101), while other AUs are linked to the
affective component. The orbicularis oculi AU is mirrored by
SI activations that correspond somatotopically to the site of
painful stimulus and may serve a protective role by narrowing
the eye aperture to shield the eye while preserving vision in
dangerous and painful conditions (98). Pain affect-associated
AUs are largely thought to be involved in communicating pain
to others. Coordinated muscle contractions correspond to SI
activity, and contribute toward SI responses observed with ocular
pain (98).

Despite many investigations, the role of SI in pain is not
fully understood, as activation is not consistently seen across
many neuroimaging meta-analyses (7, 8, 10). Focal SI lesions
in patients transiently decrease pain sensitivity (102, 103), and
direct electrode stimulation of SI does not elicit pain (104).
Increasingly, SI is viewed as an area for signal integration
from multiple afferent sources, with the diverse classes of
fiber inputs combining their transmissions and modifying them
intracortically. The resulting signal may be greater or less than
expected due to anatomical variability between subjects, non-
noxious peripheral inputs, cognitive and attentional factors, and
mixed excitatory and inhibitory processes (7, 10, 67, 105).

Secondary Somatosensory Cortex
The secondary somatosensory cortex (SII, Figure 4) receives
nociceptive and innocuous somatosensory information from
the thalamus simultaneously by separate but parallel neuronal
connections to the pathway leading from thalamus to the SI
(106–108). The region also has significant connectivity with the
inferior parietal cortex and SI as well as other connections with
the intraparietal sulcus, Broca’s region, primary motor cortex,
and pre-motor cortex (109). SII is more frequently activated
than SI in response to noxious stimuli and is one of the
most consistently activated brain regions to painful stimuli,
along with the thalamus, medial cingulate cortex (MCC), and
insula (7, 8, 110). Like SI, SII is involved in the processing of
nociceptive afferent input in humans, and likewise has a role in
the sensory-descriptive aspect of pain in the lateral pain system
(7, 8, 104, 111–113). SII has reduced spatial resolution and
receptive field size when compared with SI; unlike SI it has a role
in processing other, “high-order” aspects of stimulus including

attention, learning, memory, and rare or novel stimuli (113–
115). SII is further activated when observing others in physical
pain, and even in social-rejection related distress (116, 117).
While SI activity is closely associated with the intensity of pain,
SII activity is minimal for low-intensity thermal stimuli and
increases quickly after exposure to high-intensity stimuli (118).
However, note that both SI and SII also respond to pleasant
brushing (119) and innocuous heat (105), indicating that activity
in these regions is not specific to pain.

SII is frequently divided into four subregions that are
loosely homologous to primate areas, termed OP1 (S2); OP2
(parietoinsular vestibular cortex); OP3 (ventral somatosensory
area); and OP4 (parietal ventral area) (OP = operculum
parietale) (109, 120, 121). Nomenclature of these areas can
lack consistency and clarity; notably OP1 is often termed
“S2” or “area SII,” leading to some confusion in the literature
between the subregion and the overall SII (109). Of these
regions, OP1 and OP4 are the most widely studied and are
considered somatosensory areas; both subregions contain a
complete somatotopic map mirrored along the anatomical
border separating them (122). OP1 is considered an integrative
area that may facilitate higher-order complex somatosensory
processing, while OP4 has greater associations with action
control and sensory-motor integration (109).

Activation in SII is bilateral, and this activity increases as the
stimulus intensity becomes more painful, which may include
engagement of additional SII subregions (113, 118, 123–125).
The bilateral activation of SII is non-symmetrical and shows
greater activation contralaterally, compared to ipsilaterally (124,
126). This difference reflects the non-equal inputs to the
ipsilateral and contralateral SII—contralateral SII is innervated
by thalamic nuclei and SI, while ipsilateral SII receives input from
contralateral SII and ipsilateral thalamic nuclei (124, 126–128).
SII is implicated in identifying, discriminating between, and
directing attention to stimuli, cognitively recognizing the painful
nature of nociceptive activation, and integrating it with higher-
level processes such as learning and memory (61, 109, 115,
118). Some evidence in experiments involving painful stimuli
further suggest SII plays a role in processing pain-related emotion
that may also include the detection and storage of emotion-
laden information regarding potentially damaging stimuli (61).
Abnormal pain processing as well as functional and anatomical
changes are found in SII in a variety of painful conditions, and
SII may be a target for future interventions (129–133).

Cingulate Cortex
The modern view of the cingulate cortex is a four-region
model composed of the Anterior-, Mid-, and Posterior Cingulate
Cortex (ACC, MCC, PCC) and the Retrosplenial Cortex
(RSC), based on synaptic and functional differences in both
primates and humans (134–136). Functional imaging studies
in pain have helped affirm the existence of the MCC as a
separate functional region rather than a transition area or
subsection of the ACC or PCC. Taken together the cingulum
as a whole participates in a broad array of somatosensory,
emotional, and motor processes, however, fMRI recordings
of painful stimuli find consistent activations in the MCC

Frontiers in Medicine | www.frontiersin.org 7 February 2022 | Volume 8 | Article 768649106

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

FIGURE 4 | Secondary somatosensory cortex. (A) Brain areas active during pain: secondary somatosensory cortex (SII) highlighted. (B) fMRI recordings during

nociceptive and non-nociceptive stimulation in SI, SII, and Thalamus. The consistent time courses across all three regions suggest parallel information processing in

the primary and secondary somatosensory cortices, along with associated activations in the thalamus. Reprinted from The Journal of Neuroscience, Vol 31(24),

(Continued)
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FIGURE 4 | M Liang, A Mouraux, GD Iannetti, Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and

secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data, p8976–85, Copyright (2011) Liang et al.,

under the Attribution-Non Commercial-Share Alike 3.0 Unported License (CC BY-NC-SA). DOI: https://doi.org/10.1523/JNEUROSCI.6207-10.2011white dots,

activation maxima for each subject within a given region; red dots, activation maxima across the group within a given region.

FIGURE 5 | Cingulate cortex. (A) Brain areas active during pain: midcingulate cortex (MCC) and anterior cingulate cortex (ACC) highlighted. (B) High frequency

electrode stimulation across 1789 cingulate sites can elicit varying subjective and behavioral responses segregated into functional fields organized rostrocaudally

along the cingulum. F Caruana, M Gerbella, P Avanzini, F Gozzo, V Pelliccia, R Mai, RO Abdollahi, F Cardinale, I Sartori, GL Russo, G Rizzolatti, Motor and emotional

behaviours elicited by electrical stimulation of the human cingulate cortex, Brain, Copyright (2018), Vol 141(10), p3035–3051, by permission of Oxford University Press.

DOI: https://doi.org/10.1093/brain/awy219. (C) Conjunction (top panel) and contrast (bottom panels) analyses of brain regions activated during chronic neuropathic

and experimental pain reveal different patterns of activation, implicating several regions as potential actors in chronic pain- including the ACC. Conjunction analysis of

both conditions showed activations in the ACC, MCC, SII, insula, thalamus, and supplementary motor area. Experimental - chronic neuropathic pain analysis (red box)

resulted in activations in the MCC, anterior and posterior insula, and SMA. Chronic neuropathic - experimental pain (green box) revealed significant ACC, SII, and mid

insular activations. Reprinted from NeuroImage, Vol 58(4), U Friebel, SB Eickhoff, M Lotze, Coordinate-based meta-analysis of experimentally induced and chronic

persistent neuropathic pain, p1070–80, Copyright (2011), with permission from Elsevier. DOI: https://doi.org/10.1016/j.neuroimage.2011.07.022.

more so than other areas of the cingulum (7, 10, 136–138)
(Figure 5).

Mid-cingulate Cortex
MCC receives projections from medial and intralaminar
thalamic nuclei, including it in the medial pain system,
but is also connected to other cingulate regions as well
as the insula, amygdala, parietal cortex, striatum, spinal

cord, motor, and pre-motor cortices, and many of these
pathways are reciprocal (135, 139, 140). The MCC is further
divided into anterior (aMCC) and posterior (pMCC) regions
(136, 141) and partly contains two of the three cingulate
motor zones (or premotor areas) (142). The anterior rostral
cingulate zone (RCZa) and the posterior rostral cingulate zone
(RCZp) are both somatotopically organized, containing face-
and eye-related fields as well as limb motor representations
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(142). These premotor areas are heavily connected to other
brain motor centers, are involved in coordinated emotionally
charged or context-dependent movements, such as rubbing or
wincing, and are active in a variety of reward and innocuous
nociceptive stimuli responses in addition to painful ones
(66, 136, 139, 143, 144).

The RCZa is likely within the aMCC and displays strong
functional connectivity with the prefrontal cortex, implicating
the involvement of cognitive processes (145, 146). The aMCC
receives relatively more medial thalamic nuclei innervation than
the pMCC as well as a direct input from the amygdala and is
active during fear (135, 139). Further functional and anatomical
connections arise from the primary motor cortex and insula, and
primate studies reveal other connections to the periaqueductal
gray and spinothalamic system (145, 147). The same sites in the
aMCC are activated by pain and itch and are also involved in
dopaminergic reward systems (136, 139, 148). Further, activation
is found in the aMCC in the expectation of pain and itch relief
as well as pain empathy (136). Functional activity during pain,
cognitive control, negative affect, and motor control all overlap
in the aMCC, implicating it as being involved in sensorimotor
integration that subsequently guides behavior (145, 147). In the
context of pain, the aMCC can cognitively assess, experience, and
anticipate pain and integrate negative affect into its output (136,
139, 147). The sensorimotor integration allows for a premotor
signal that alters behavior and motor response selection based
on context provided by numerous systems, with pain resulting in
enhancement of specific avoidance and nocifensivemotor actions
(136, 139). The aMCC is also involved inmonitoring the resulting
action triggered by its pre-motor signal, sustaining it, and the
reward coding of the selected behavior, participating in feedback-
mediated decision making (136, 149, 150). Fear can produce
many of the same movement activities as pain in the aMCC, and
has a similar dynamic in autonomic areas of the ACC, which
has led to the classification of fear as a premotor pain signal by
some (148).

Conversely, activation in the RCZp in the pMCC is strongly
associated with that in the motor cortex and more weakly
with the prefrontal cortex (136, 146). The pMCC has more
extensive input from the parietal lobe than the aMCC does but
no connections to the amygdala and almost no activation in
emotion studies (136, 139). Scratching an itch and orienting
the eyes to focus on potentially noxious visual targets both
show activation in pMCC, and more severe stimuli, or threat
of stimuli, result in larger responses (66, 136). Multisensory
information from the parietal connections is used by the
pMCC to capture attention, guide quick and precise reflexive
movements, and orient the body toward impending or realized
external multisensory stimuli, including painful ones (136, 139,
140, 144).

Anterior Cingulate Cortex
The anterior cingulate cortex (ACC) stores emotionally-valenced
memory, has a role in autonomic processes, and serves to
integrate these two functionalities (139). The ACC receives
medial thalamic innervation, although less so than the aMCC,

the orbitofrontal cortex, amygdala, and parahippocampal gyrus
(42, 139, 151). Through its OFC connections and downstream,
descending pain modulatory sites, the ACC has also been
implicated in pain inhibition and facilitation (151, 152). Pain
relief from intervention in the ACC usually manifests as a
reduction in the perceived unpleasantness or associated distress,
highlighting its role in the medial pain system and affect (153).
The ACC is often parcellated as two areas: the pregenual (pACC)
and the subgenual (sACC) (148, 154, 155).

Activity in pACC is associated with happiness and related
memories are stored there (135, 148). Activation in the region
by positive memories and events represent reward values that
are related to experienced pleasure and show robust functional
connectivity to areas of the medial orbitofrontal cortex with
similar positive associations and reward (148, 155). The pACC
has projections to the facial region of the motor nucleus and
is heavily involved in emotion and internal state expression
through these projections and the anterior rostral cingulate zone
(135, 139). Emotional awareness, common value scaling, and cost
assessment are also functions carried out by the pACC, and the
subregion can helpmake decisions involving reward/punishment
tradeoffs (135, 139, 148). Opioid receptors are dense in the
ACC, and the application of naloxone negates activity in the
pACC during nociception, showing the key role of this area in
antinociceptive processes (156).

sACC activity is maximal during negatively valenced stimuli
and events, and the subregion stores memories associated with
sadness (139, 148, 157). Fear also results in notable activation of
the sACC (148). Like the pACC, the sACC receives OFC inputs
but from the punishment-related and negatively associated lateral
orbitofrontal cortex (148, 151). The sACC is strongly connected
to the amygdala, lateral hypothalamus, PAG, and parabrachial
nucleus (139, 148), and these outputs underscore the role this
region plays as an integrative autonomic center (139, 148, 158).
Enhanced sACC activity is found in numerous pain studies and
is associated with reduced pain; diversion, placebo, habituation,
pain adaptation, expectancy, and reward all seem to function
through the activation of brainstem descending pain pathways
initiated by the ACC (148, 151, 155).

ACC is activated in pain neuroimaging experiments far less
frequently than the MCC, likely due to the fact that ACC
activation is seen when the stimulus or pain is intense enough
to engage descending pain control systems (152). Significant
confusion surrounds cingulate pain neuroimaging, often due to
the evolving subregional nomenclature (famously, dACC is not
the same as aMCC), and the work of many meta-analyses has
been devoted to reclassifying data to fit the new models (136,
148). Thus, over time, the ACC has “lost” some of its presumed
functioning in pain as those nociceptive activations are correctly
reassigned to other cingulate regions (148).

Insular Cortex
The insula (Ins: Figure 6) receives direct nociceptive input from
thalamocortical pathways in primates and is a core region
activated in essentially all painful experimental conditions,
including a wide variety of exteroceptive and interoceptive
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FIGURE 6 | Insular cortex. (A) Brain areas active during pain: insula (Ins) highlighted. (B) Topographic organization of connectivity (anatomical and FC) of the insula

and other brain regions is arranged along a rostro-caudal gradient wherein anterior insular regions show strong connections to the anterior cingulate cortex,

dorsolateral prefrontal cortex, and inferior parietal lobules (red) and the posterior insula with somatosensory regions and the parietal operculum (blue). Similarities in

connectivity profiles in adjacent insular regions suggest that, rather than discrete subunits, the topographic distribution of connections is better appreciated as a

spatially continuous and gradually changing gradient. Displayed as a gradient in graph form, this type of spatial connectivity analysis is referred to as a connectopy

map. FC,functional connectivity- temporally synchronized low-frequency fluctuations in BOLD signal between regions that indicate they are connected in their

functions. Such areas may or may not have direct anatomical connections. Reprinted from Nature: Scientific Reports, Vol 22(1), D Vereb, B Kincses, T Spisak, F

Schlitt, N Szabo, P Farago, K Kocsis, B Bozsik, E Toth, A Kiraly, M Zunhammer, T Schmidt-Wilcke, U Bingel, ZT Kincses, Resting-state functional heterogeneity of the

right insula contributes to pain sensitivity, p22945, Copyright (2021) Vereb et al., under the Creative Commons Attribution License (CC-BY). DOI: https://doi.org/10.

1038/s41598-021-02474-x. (C) Operculo-insular areas (including insula and SII) respond to a wide variety of somatosensory, and painful, stimuli. Anatomically

defined region of interest analyses with fMRI indicate varied functional overlap/segregation between a variety of stimuli delivered to the left hand. Reprinted from

NeuroImage, Vol 60(1), L Mazzola, I Faillenot, FG Barral, F Mauguiere, R Peyron, Spatial segregation of somato-sensory and pain activations in the human

operculo-insular cortex, p409–18., Copyright (2012), with permission from Elsevier. DOI: https://doi.org/10.1016/j.neuroimage.2011.12.072. PreCG,precentral insular

gyrus; ASG,anterior short gyrus; MSG,middle short gyrus; posterior- PostCG,postcentral insular gyrus; Ig1,insular lobe granular area 1; Ig2,insular lobe granular layer

2; Id1,insular lobe dysgranular area 1; SII subunits: OP1, OP2, OP3, OP4 (OP, operculum parietale).

stimuli (10, 159). The insula is the only brain region that
evokes pain when directly stimulated, including pain around
the eye (104, 113, 160). The insula is divided into three
subregions: the anterior, middle, and posterior; different regions
of the insula play a role in sensory, affective, and cognitive
aspects of perception (10, 161). Most resources refer to discrete
insula subdivisions, and experiments are often designed around
this fact. However, recent investigation has suggested the
region may be better appreciated as a gradually changing
topographical gradient of functional and anatomical connections
along the rostrocaudal axis. While discrete subunits are described
throughout this manuscript, selecting small/discrete subregions
of interest for analysis may provide significant results that may
not reflect the totality of activations or connectivity in a given
brain region (162, 163).

Anterior insula (AI) is involved in processing emotion,
including empathy, and activation of this subregion is found
in affective processing (161, 164). AI has strong functional
and anatomical connections with the thalamus and cognitive
and emotional parts of the prefrontal cortex as well as the
amygdala and some cingulate regions, particularly the ACC,
and can have increased or decreased functional associations
with these areas in chronic pain (163, 164). The strongest
connections to the prefrontal cortex are to the dorsolateral
prefrontal cortex, as well as areas associated with cognitive-
evaluative processing and outcome anticipation (orbitofrontal
cortex) and with the regulation of emotions and cognitive

pain modulation (ventrolateral prefrontal cortex) (163, 164).
Expectation and behavioral avoidance of a negative outcome
activate AI, and the region is thought to impose emotional states
that are informed by the evaluation of affective events (161,
164). The evaluation of the saliency of various insular inputs,
attention, and the engagement of relevant brain regions and their
triggered affective and emotional responses (including affective
and cognitive pain modulation) are major functions of the AI
(10, 161, 164–166). The AI has also been closely tied to autonomic
function (167), and neural activity in this area has been correlated
with the dynamic magnitude of pupillary dilation (168).

The mid insular (MI) area has connections to SI and SII
(sensory-discriminative) as well as the ventrolateral prefrontal
cortex (affective-emotional-cognitive), and diverse outputs to
the orbitofrontal and premotor cortices, parietal and temporal
brain regions, and the inferior frontal gyrus (164). Based on
the diversity of input and output, the MI is viewed as a
hybrid medial/lateral pain system area that integrates the diverse
components of pain (164).

Posterior insular (PI) regions are thought to process
interoceptive, somatosensory, visceral, and pain stimuli (7, 161,
164, 165). PI has its strongest connections to SII (structural
and resting state analyses) and SI (structural) along with other
somatosensory areas, and has some resting state association with
the pMCC as well (163, 164). Activations in PI are found as
stimuli progress from innocuous to painful in intensity with
little activation in the absence of noxious input. Thalamic nuclei,
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FIGURE 7 | Amygdala. (A) Brain areas active during pain: Amygdala (Amyg)

highlighted. (B) MRI imaging of amygdala subunits displayed in a series of

(Continued)

FIGURE 7 | coronal slices. Reprinted from Human Brain Mapping, Vol 35(2),

LE Simons, EA Moulton, C Linnman, E Carpino, L Becerra, D Borsook. The

human amygdala and pain: Evidence from neuroimaging, p527-38, Copyright

(2012), with permission from John Wiley and Sons. DOI: https://doi.org/10.

1002/hbm.22199. (C) A meta-analysis of functional neuroimaging studies

reporting amygdala involvement, including 24 experimental and 17 clinical pain

studies, emphasizes the participation of the amygdala in pain. The

associations between laterobasal activation and clinical pain, as well as the

centromedial/superficial regions and experimental pain, support previously

reported anatomic and functional parcellations of the amygdala. White

triangles,increased signal activation vs controls reported; black

dashes,decreased signal activation vs controls reported. Reprinted from

Human Brain Mapping, Vol 35(2), LE Simons, EA Moulton, C Linnman, E

Carpino, L Becerra, D Borsook et al., The human amygdala and pain:

Evidence from neuroimaging, p527–38, Copyright (2012), with permission

from John Wiley and Sons. DOI: https://doi.org/10.1002/hbm.22199.

insula, SI, and SII together comprise the lateral pain system
and sensory-discriminative pain; however, lateral thalamic nuclei
have been shown to have low connection probability to PI, in
contrast to many primate tracing studies.

While most other cortical areas are activated by distinct
components of pain, insula appears to have sub-regions dedicated
to processing and integrating a wide array of intero- and
exteroceptive information as well as the focusing of cognitive
and perceptive attention to the most salient of these inputs
(161, 164–166, 169). Insular lesions can result in pain asymbolia,
wherein patients recognize the presence of pain but are devoid
of proper emotional and motor responses and may not react
to visual or auditory threats (170). The inappropriate reaction
to pain caused by insular damage highlights the importance of
the region in serving to join the sensory and limbic systems
and correctly process and integrate the affective-motivational
component of pain with the other dimensions (170). While
multiple studies have looked into the role of the insula in pain,
as indeed it is the most consistently activated region in pain-
related neuroimaging studies (7, 10, 171), the insula is also
part of a prospective sensory salience network (172). As other
regions in the brain have the capacity for multimodal sensory
integration and can be active during painful stimulation, the
question remains as to whether activations in insula truly reflect
the various dimensions of pain or whether they process saliency
and focus attention to particularly salient stimuli (173).

Amygdala
The amygdala (Amyg: Figure 7) is directly involved in emotional
processing (174) and has a major role in aversive, fear-based
learning and negative affect, as well as motivation and reward
learning (175–178). The amygdala is a highly interconnected
region of the brain, with dense afferent and efferent connections
extending widely (178, 179). Nuclei of the amygdala are typically
divided into superficial, laterobasal, and centromedial groupings
based on cytoarchitecture and diffusion-tensor imaging studies
(180–182). The superficial division is largely concerned with
olfactory processes; however, some studies have found functional
connectivity associations with other limbic regions that imply
a potentially larger role in affect (178, 183). The laterobasal
and centromedial groups are important for the transmission of
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nociceptive signals and, through their diverse connections to
other brain regions, are implicated in emotional and affective-
motivational components of pain, as well as the cognitive-
evaluative dimension (178).

The laterobasal division has extensive innervation from
numerous modalities, including nociceptive input via the
somatosensory thalamus and multiple cortical and subcortical
areas, such as hippocampus, ACC, and insula (184, 185).
Laterobasal amygdala is involved in associative learning, as
with fear-based classical conditioning, thereby giving sensory
information emotional significance, and as such is important
in anxiety and fear related to pain (178, 186). Additionally,
the laterobasal nuclei group has connections with parts of
the striatum as well as prefrontal and frontal cortices, which
contribute to pain memory and expectation, important parts of
the cognitive-evaluative component of pain and the anticipation
of pain (178, 187, 188).

The amygdala’s centromedial nuclei are a major target of
excitatory and inhibitory sensory input from other amygdala
nuclei groups and they also receive nociceptive information
from the medullary dorsal horn, cingulate cortex, and insula
as well as the lateral parabrachial nucleus complex (47, 179).
This information is projected to the nearby bed nucleus of the
stria terminalis, hypothalamus, PAG, striatum, and several other
brainstem regions (178, 179, 184). The connectivity between the
amygdala and these areas underlies its significance in generating
behavioral responses to painful stimuli as well as modulating
the subsequent emotional, autonomic, behavioral, and endocrine
pain responses (178, 185).

Prefrontal Cortex
Prefrontal cortex (PFC: Figure 8) is critical for cognitive
control (the manipulation of information in pursuit of a goal)
and can represent abstract information and complex rules
that subsequently inform thoughts, emotions, and actions. It
participates in high-order, intelligent planning and problem
solving, emotion generation and regulation, and other executive
functions (189–191). PFC is believed to be organized in
a hierarchal rostro-caudal axis, in which posterior areas
are involved in control of short-term and concrete action
representations while complex, longer-term representations
occur in progressively more anterior areas as information and
control selection become increasingly abstract (146, 189, 192).
Painful stimuli can engage many of these high-order processes,
and multiple areas of PFC are involved in pain processing
(190). In PFC, nociceptive signals are gathered with other
contextual information (e.g., memories and emotions) into a
unified, processed perception that then modulates peripheral
nociception by its projections to the PAG (190).

The parcellation and nomenclature of PFC subregions
is not consistent in the literature; cytoarchitectonic areas
(e.g., Brodmann) can be assigned to different subregions
depending on the study. Likewise, some subregion divisions
can include functionally and anatomically distinct areas that
may be referred to differently between studies and across
disciplines (191, 193). A unified systematic nomenclature and

parcellation may help ease the difficulties in investigating large-
scale, integrative PFC functionality (191). The challenges and
shortcomings in nomenclature are not unique to PFC—as
neuroimaging techniques become more sophisticated it seems
clear that establishing common representations and analysis
methodologies throughout the brain can serve to advance
the field (194–196). In this review, PFC is divided into
orbitofrontal cortex (OFC), medial prefrontal cortex (MPFC),
lateral prefrontal cortex (LPFC), and anterior prefrontal cortex
(APFC), each with its own internal functional parcellations; the
pACC, sACC, and aMCC are also often considered functionally
to be part of the PFC (191).

LPFC activity is found frequently in neuroimaging of pain
and cognitive control, and the subregion can be divided into
dorsolateral and ventrolateral prefrontal cortex (DLPFC, VLPFC)
(10, 189, 191, 197). DLPFC is also involved in executive function,
ranging from attention, decision making, and emotional
regulation to working memory and reward/value coding (197).
DLPFC is a part of several brain networks, is widely involved in
top-down process control and modulation, and has a similar role
in the context of pain—cognitive/attentional modulation of pain,
reducing emotional pain-responses, placebo analgesia, and other
forms of pain suppression (197–199). Many of these phenomena
engage circuits involving VLPFC and the ACC, to which DLPFC
is interconnected, and are thought to be involved in the initiation
ofmodulatory signaling to downstream effectors in the brainstem
(6, 197). Pain detection and spatial discrimination are other
implicated functions, as DLPFC activation has been observed
in the response to, and anticipation of, painful nociceptive
stimulation (190, 197). DLPFC is a site of integration between
pain transmission, cognitive expectation, and evaluation of
the resultant pain; the results of this processing lead to pain
modulation and context-informed behavioral response to painful
stimulation (197). Many investigations have found associations
between DLPFC activation and enhanced pain in experimentally
sensitized nociceptive circuits as well as abnormal anatomical and
functional states in chronic pain (190, 197, 198).

VLPFC is innervated by AI, shows activation during pain
anticipation, and is functionally associated with cognitive pain
control systems (ACC, PAG, and RVM) (198, 200). VLPFC also
shows increased activity in painful stimulation with activation
often seen during placebo analgesia and other forms of signal
manipulation, potentially contributing to pain modulation by
reappraisal of the estimated threat an aversive stimulus represents
(198, 201, 202). The delineation and initiation of functional
process between the LPFCs by neuroimaging is complicated by
close connections between the two regions (DLPFC and VLPFC),
their dual involvement in expectation and emotion-regulation,
and shared inverse association between pain-expectant cognitive
processes and catastrophizing (201). Likewise, both DLPFC and
VLPFC have been found to function abnormally in some cases of
chronic pain (190, 198, 201).

MPFC, often divided into dorsomedial and ventromedial
subregions, has a prominent role in aversive learning, processes
the affective and cognitive components of pain, and functionally
includes portions of the ACC and MCC (191, 203). Considered
together, projections in primate tracings and supporting fMRI
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FIGURE 8 | Prefrontal cortex. (A) Brain areas active during pain: prefrontal cortex (PFC) highlighted. (B) Enhanced activation of ventral/orbitofrontal cortex (VOFC) and

dorsolateral prefrontal cortex (DLPFC) during experimentally induced heat allodynia compared to equally intense heat pain stimuli. This difference demonstrates the

nuanced response of the PFC in pain processing in different contexts. The basal ganglia were also found significantly more active in allodynia. Reprinted from J

Lorenz, S Minoshima, KL Casey, Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation, Brain, Copyright (2003), Vol 126(5),

p1079–91, by permission of Oxford University Press. DOI: https://doi.org/10.1093/brain/awg102. VOFC, ventral/orbitofrontal cortex; DLPFC, dorsolateral prefrontal

cortex; LAT, lateral; MED, media; SUP, superior; dm, dorsomedial.

functional studies have found connections from MPFC to the
PAG, comprising a large portion of the overall input to the
critical pain modulatory region (190). Additional tracts are seen
between the MPFC, amygdala, thalamus, hypothalamus, and
rostral ventromedial medulla, providing a potential way that
emotion (i.e., fear) can influence pain modulation as well as
function in empathy toward pain or suffering (190). Cognitive
inhibition of emotional and pain responses, including motor and
facial expression such as orbicularis oculi contraction, is thought
to be learned and can occur through coordinated activations
in the MPFC, basal ganglia, and cingulate regions that can be
disrupted as the perception or suggested intensity of sensory-
discriminative pain increases (98, 191). MPFC connections to
parietal areas underlie the processing of emotionally-valenced
visual stimuli that affect associated nociceptive signaling, a form
of cognitive pain modulation (190).

OFC, containing medial and lateral subdivisions, has
connections to many pain-processing areas, including the insula,
ACC, and somatosensory cortex, and shows increased activation
during exposure to uncontrollable and unpredictable pain and
its accompanying sensitization as well as to the fear of pain
(191, 202, 204). OFC processes negative and punishment-related
aspects of stimuli as well as the context-dependent value of a
reward (204, 205). In the presence of both pain and reward,
functional coupling between OFC and other cerebral pain
centers is disrupted, resulting in higher-order signal modulation
and pain inhibition (205). Like other parts of PFC, many studies
have revealed alterations of this area in chronic pain, although
OFC changes may not only reflect the modulation of nociceptive
signaling but instead interactions between pain and reward
(190, 205).

APFC, like other prefrontal regions, has been related to
many functions including reward and conflict, working memory,
risk and decision making, and pain (206, 207). This area
has also been found to be involved in essentially all salient
stimuli that may require behavioral response (206). APFC has
reciprocal connections to the other PFC subregions, the parietal,
insular, and anterior temporal cortices, multiple thalamic nuclei,
and numerous other subcortical regions in tracer studies
in primates, strongly supported by structural and functional
associations in human neuroimaging (206, 207). APFC has a
medial and lateral division (mAPFC and lAPFC), which have
functionally distinct processes (206, 207). lAPFC in pain is
thought to be involved in high-level cognitive sensory and
emotional nociceptive signal integration and may modulate
pain through its input to the descending antinociceptive circuit
(206). On the other hand, mAPFC may have a role in
memory-based aversive processing, both past and ongoing,
and general stress response while its connections to the
medial pain system highlight a potential role in emotional and
motivational components of pain (206). Together, APFC regions
perform high-level cognitive evaluation of pain, historical and
present, and the results of that processing are used to guide
behavior (206).

Primary Motor Area, Supplementary Motor
Area, and Pre-supplementary Motor Area
Primary motor cortex (M1), supplementary motor area (SMA),
and pre-supplementary motor area (Pre-SMA) are critical areas
for the planning and execution of motor output in response
to sensory input, and their activation is found in many pain
studies (7, 8, 10) (Figure 9). The motor areas have dense

Frontiers in Medicine | www.frontiersin.org 14 February 2022 | Volume 8 | Article 768649113

https://doi.org/10.1093/brain/awg102
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

FIGURE 9 | Motor Areas. (A) Brain areas active during pain: primary motor area (M1), supplementary motor area (SMA/SMA-proper), pre-supplementary motor area

(pSMA/pre-SMA) highlighted. (B) Functional activations associated with pain processing (painful heat: red) and motor control (force production: blue) overlap (green) in

the SMA, pSMA, and aMCC, and display increased activation when simultaneously processing both conditions. Further results of the same group-level conjunction

analysis describe overlap in pain and motor processes in the anterior insula and basal ganglia (putamen), reinforcing a dynamic established previously in the literature.

Pain processes were established by painful thermal stimulation to the right hand; motor control processes were established by participants gripping a force transducer

with their right hand. Reprinted from G Misra, SA Coombes, Neuroimaging Evidence of Motor Control and Pain Processing in the Human Midcingulate Cortex,

Cerebral Cortex, Copyright (2014), Vol 25(7), p1906–19, by permission of Oxford University Press. DOI: https://doi.org/10.1093/cercor/bhu001.

innervation between themselves and are heavily connected to
the corticospinal tract, parietal cortex, cerebellum, and thalamus
(208). The collection of motor and motor planning areas are
implicated in behavioral and some reflex responses to pain as well
as the anticipation of pain (98, 145, 209).

Pain impacts muscle contraction and coordination and
interferes with motor-skill learning (210). Many pain-related
motor area activations are thought to be involved in pain-
initiated movement or the suppression of pain reflexes and are
involved in affective/motivational pain responses (8, 42). The
pre-SMA and SMA show activity in similar regions in both pain
processing and motor function as well as during the execution
of visually guided movement (145). Additionally, emotion can
influence motor system responses, and the system may itself
code and store emotional context along with motor-processes;
activation of the motor system can be seen before and during
interaction with an unpleasant stimulus (209, 211). Pain and/or
the expectation of pain may alter excitability in motor areas,
causing inhibition of certain motor actions, such as further
interaction with a negative stimulus; conversely, positively
associated stimuli may facilitate motor activities leading to
increased interactions (211, 212).

Motor cortex intra- and transcranial stimulation has
repeatedly been shown to relieve pain in certain neuropathic
conditions, but the mechanism behind this phenomenon is
not fully understood (213, 214). Multiple hypotheses exist

and may not be exclusionary, involving modulation and
regulation of signals to PFC, cingulate cortices, thalamus,
brainstem, basal nuclei, and spinal cord (214, 215). The altered
excitation of nerve fibers by activation of opioid-releasing
structures throughout the brain, active reappraisal of the
emotional component of pain, and potential regulation of
peripheral feedback imbalances may all contribute to pain
relief (214–216).

Basal Ganglia
The basal ganglia (BG, Figure 10) are a group of subcortical
forebrain nuclei that are highly connected to the cortex,
brainstem, and thalamus and are best known for dopaminergic
involvement in motor systems and movement control (217–
219). BG are involved with planning learned motor behavior
execution, directing voluntary movement, and coordinating
context-dependent movement (220). BG nuclei include globus
pallidus, substantia nigra, striatum, and subthalamic nucleus
(219, 221). Striatum is separated into ventral and dorsal
subdivisions—the ventral is closely associated with the limbic
system and is partially comprised of the nucleus accumbens,
while the dorsal striatum consists of caudate nucleus and
putamen (219, 221). The striatum is the main input area of the
BG and is innervated almost globally by the cortex; these diverse
inputs are organized into sensorimotor, cognitive, and affective
functional regions with overlap that may reflect integration of
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FIGURE 10 | Basal ganglia. (A) Brain areas active during pain: basal ganglia (BG) highlighted. (B) The basal ganglia participate in pain processing, from acute pain

and chronic pain (cold and brush neuropathic allodynia) to morphine-induced analgesia, as revealed by pain-related patterns of fMRI BOLD activity. Upper panels: BG

parcellations are color-coded and highlighted in coronal sections organized from anterior to posterior. Bottom panels: red areas indicate increased fMRI BOLD

activation and blue areas indicate decreased activation. phMRI, pharmacological MRI- wherein pharmacological agents/drugs (in this case morphine) are used as

stimuli to induce hemodynamic changes that are subsequently assessed by fMRI. Reprinted from Molecular Pain, Vol 6(27), D Borsook, J Upadhyay, EH Chudler, L

Becerra, A key role of the basal ganglia in pain and analgesia–insights gained through human functional imaging, Copyright (2010) Borsook et al, under the Creative

Commons Attribution License (CC-BY). DOI: https://doi.org/10.1186/1744-8069-6-27.

cortical information (217, 219). Globus pallidus contains major
output nuclei that connect widely to other BG nuclei as well
as several thalamic nuclei and midbrain structures (219). One
such structure is the superior colliculus, in which BG has a
non-looped connection that supports a role in regulating eye
movements and behaviors resulting in orientation toward a
stimulus (219).

BGs role has expanded beyond movement alone to include
cognitive and emotional activity, skill and habit learning,
perception, procedural memory, planning, language, and
attention (218, 219, 221, 222). This diverse functionality extends
to pain processing, where BG are suggested to participate in the
affective-motivational, sensory-discriminative and cognitive-
evaluative components of pain as well as some analgesic effects
and are critical participants in the behavioral resultants of chronic
pain (221). Of the BG, the regions most consistently activated in
experimental pain the caudate, pallidus, and putamen subregions
(10). Caudate is believed to involve pain avoidance behavior and
behavioral reinforcement that may include pain (221). Pallidus
encodes repertoires of behavior, and deep brain stimulation
of this area causes pain inhibition (221). Putamen activates
bilaterally while also contralaterally representing somatotopic
nociceptive information and potentially playing a role in pain
modulation (220, 221). BG have an important role in managing
context-dependent movement and, through extensive thalamo-
cortical-BG loops, modulate the integration of the diverse
components of the pain experience and influence resultant
movement behaviors (221).

Cerebellum
The cerebellum (Cereb: Figure 11) is best known for
coordinating movement (223). This basic understanding
has evolved, as interrogation of the cerebellum has revealed
integrative and diverse functionality, from memory and learning
to the processing of somatosensory input. The cerebellum
has many supraspinal projections that are routed through the

brainstem and has reciprocal connections to cortical structures
involved in both sensorimotor processing and cognitive
functions (224, 225). In addition to supraspinal input, direct
afferent pathways pass nociceptive information from peripheral
sources through midbrain nuclei to the cerebellum (225, 226).
Some evidence suggests a somatotopic organization for these
peripheral afferent inputs, while cerebellar regions receiving
supraspinal input may be non-somatotopically organized and
provide a means for emotional and cognitive information to
affect cerebellar sensory-motor processes (227). The cerebellum
can be divided into separate functional regions based on
anatomic, neuroimaging, and resting state studies. These studies
describe anterior cerebellar connections to sensorimotor-related
cortical regions, which support motor functions and posterior
cerebellar circuits to cognitive and associative cortical regions,
which in turn may function in motor planning, nociception or
memory (225, 226).

While not observed in all pain neuroimaging studies (10), the
cerebellum is often active during pain (7, 8, 226). The cerebellar
response to pain is most frequently seen in activation of the
anterior vermis and posterior hemispheres, and similar activity
in the posterior hemispheres is observed in the neuroimaging of
emotion and evocative pictures, particularly those with aversive
connotation (226, 228). These same regions may be activated
in response to the anticipation of a painful stimulus as well
as the stimulus itself (227). Activation of posterior cerebellar
regions has been functionally inversely correlated to limbic
areas involved in emotional processing (228), and damage to
these regions has been linked to disrupted pain affect (229).
A positive functional relationship is found between pain and
sensorimotor areas, such as M1, SII, AI, and the PAG. The
cerebellar pain response may be related to motor planning
and reflexes as well as to the activation of a corticocerebellar
aversive network that modulates sensitivity to negative events
by connectivity to cognitive and emotional brain regions
(225, 228).
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FIGURE 11 | Cerebellum. (A) Brain areas active during pain: cerebellum (Cereb) highlighted. (B) Cerebellar activation likelihood estimation (ALE), derived from

meta-analysis of 56 experimental and 20 pathological pain studies, illustrates that fMRI activity is frequently present in specific cerebellar foci during pain. Reprinted

from Brain Research Reviews, Vol 65(1), EA Moulton, JD Schmahmann, L Becerra, D Borsook, The cerebellum and pain: Passive integrator or active participator?,

p14–27, Copyright (2010), with permission from Elsevier. DOI: https://doi.org/10.1016/j.brainresrev.2010.05.005. C, activation contralateral to painful stimuli; I,

activation ipsilateral to painful stimuli; Cr I, Crus I; III-VI, cerebellar hemispheric lobules III through VI.

Brainstem
The brainstem (Figure 12) is a critical integrative relay between
ascending inputs from primary afferents as they proceed to
supraspinal areas and descending modulatory influences from
supraspinal areas themselves (49). The ascending sensory system
traverses the medulla, pons, and midbrain enroute to the
cerebral cortex, and is modified in transit at the primary afferent
synapse (i.e., spVc) as well as other brainstem regions (49, 230).
Descending modulation of ascending sensory transmission is
triggered by cortical and subcortical messaging to brainstem
structures that can enhance or suppress the afferent signal
depending on context (49, 231). That context comes in the
form of situational input from amygdala, cerebellum, PFC, ACC,
hypothalamus, and thalamus, which all exert “top down” pro-
or antinociceptive, analgesic-mediated influence on brainstem
nuclei; these circuits are referred to as the descending pain
modulatory system (49, 230, 231). Bidirectional signal control is
important for context-dependent pain modulation—depression
of pain and antinociceptive signaling may be necessary to enact
escape despite painful injury, while pronociceptive modulation
promotes vigilance and protection of damaged tissue (231).

Nuclei associated with pain processing and descending
modulation are situated throughout the brainstem. Within
the midbrain lies the periaqueductal gray (PAG) and nucleus
cuneiformis (NCF); within the pons is the parabrachial nuclei,
locus coeruleus (LC), and dorsal and medial raphe nuclei; and
within the medulla is the rostral ventromedial medulla (RVM),

ventrolateral medulla, subnucleus reticularis dorsalis (SRD), and
spV (49, 230).

PAG is a critical site in which ascending sensory and
descending modulatory pathways interact and is part of the
endogenous pain inhibitory system (232). In addition to pain
processing and control, PAG participates in the expression of
anxiety, analgesia, fear, cardiovascular function, vocalization,
and reproductive behaviors (232). Diffusion tensor imaging
tractography has shown PAG connections to PFC, ACC,
cerebellum, hypothalamus, thalamus, nucleus accumbens,
and amygdala as well as the pre- and postcentral gyri and
lower brainstem nuclei, such as RVM and medullary dorsal
horn (49, 232). PAG consists of four longitudinal, columnar
subnuclei parallel to and surrounding the mesencephalic
aqueduct: the dorsolateral (dlPAG), dorsomedial (dmPAG),
lateral (lPAG), and ventrolateral (vlPAG) subdivisions (232). The
subdivisions seem functionally segregated, with stimulation of
lPAG and dlPAG eliciting elevated blood pressure along with
active emotional coping strategies and behavioral responses
(fight or flight), while vlPAG stimulation results in decreased
blood pressure and passive responses (quiescence) (49, 232).
Functional resting state connectivity investigations have shown
additional associations and corroborated many connections
identified with primate and human tract tracing, including
ACC, AI, cerebellum, dorsal putamen, hippocampus, globus
pallidus, and ventromedial medulla; these investigations
have also revealed negative connectivity between LPFC,
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FIGURE 12 | Brainstem. (A) Brain areas active during pain: periaqueductal gray (PAG), parabrachial nuclei (PB), rostral ventromedial medulla (RVM), spinal trigeminal

nucleus (SpV) highlighted. (B) Schematic of brainstem nuclei associated with pain processing. Reprinted from PAIN Reports, Vol 4(4), V Napadow, R Sclocco, LA

Henderson, Brainstem neuroimaging of nociception and pain circuitries, p e745, Copyright (2019) Napadow et al., under the Creative Commons Attribution License

(CC-BY). DOI: https://dx.doi.org/10.1097%2FPR9.0000000000000745. (C) Axial slices containing brainstem nuclei from Figure. 12(B) arranged to compare the

spatial resolution and quality of anatomical and functional MRI data at different magnetic field strengths (7 Tesla and 3 Tesla). Advances in imaging techniques and

technologies promise to advance neuroimaging investigation of the brainstem as subtle differences in increasingly fine and detailed structures can be appreciated by

MRI. Reprinted from PAIN Reports, Vol 4(4), V Napadow, R Sclocco, LA Henderson, Brainstem neuroimaging of nociception and pain circuitries, p e745, Copyright

(2019) Napadow et al., under the Creative Commons Attribution License (CC-BY). DOI: https://dx.doi.org/10.1097%2FPR9.0000000000000745. (D) fMRI activations

in the medulla, pons, and midbrain in response to brief noxious thermal stimulation, comprising activation of ascending nociceptive pathways and descending pain

modulation, highlighting the dense and complex pain circuitry present in the brainstem. Myelin-stained ex-vivo axial sections are displayed to the right of

corresponding sagittal and axial MRI slices. Reprinted from NeuroImage, Vol 124(Part A), AM Youssef, VG Macefield, LA Henderson, Pain inhibits pain; human

brainstem mechanisms, p54-62, Copyright (2020), with permission from Elsevier. DOI: https://doi.org/10.1016/j.neuroimage.2015.08.060. DRN, dorsal raphe

nucleus; DRt, dorsal reticular nucleus; LC, locus coeruleus; MRN, median raphe nucleus; NCF, nucleus cuneiformis; NGc, nucleus gigantocellularis; NRM, nucleus

raphe magnus; NTS, nucleus tractus solitarii; PAG, periaqueductal gray; PBN, parabrachial nucleus; RVM, rostral ventromedial medulla; SpV, spinal trigeminal

nucleus; VLM, ventrolateral medulla; SpVc, spinal trigeminal nucleus caudalis; SRD, subnucleus reticularis dorsalis; dlPons, dorsolateral pons; PAG, periaqueductal

gray; SN, substantia nigra.
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PI, and post-central and occipital gyri (232). In addition
to functional and anatomical differences, animal studies
have found fundamentally different methods of analgesia
in the subregions— vlPAG is opioid-mediated while lPAG
(which receives somatotopically arranged spV nociceptive
projections) and dlPAG are non-opioid mediated (230, 232).
Supporting these findings in animals, electrical stimulation of
PAG results in analgesia that is abolished when naloxone is
administered (233).

PAG has diverse brain innervation, participates in afferent
sensory transmission, and, after integrating its numerous inputs,
is a principal effector of the descending pain modulation
system by means of its projections to the RVM and other
brainstem nuclei (49, 230). RVM carries out bidirectional pro-
and anti-analgesic modulation through projections to other
brainstem areas, dependent on signaling from dense connections
with the PAG (49, 230). RVM receives projections from parts
of LC, PBN, and thalamus in addition to those from PAG, and
is the lowest “common relay” of descending pain modulation
pathways, subsequently sending outputs to Vc, Vi/VC, and
SpV (234).

RVM can inhibit incoming noxious signals through the
activation of OFF class neurons or facilitate nociception via ON
class neurons and, at rest, the counteracting neuronal activities
are thought to be balanced (230). Most information on specific
cell function comes from animal studies, as the intermingled
anatomy of RVM cell populations cannot be differentiated by
neuroimaging (49). However, neuroimaging and resting state
studies have shown increased functional coupling between vlPAG
and RVM as well as RVM and multiple subnuclei of spV in
patients with trigeminal neuropathy (230, 235). Animal studies
of the ventrolateral medulla and NCF have reported ON/OFF cell
populations, similar to those of RVM, with presumably similar
functions in afferent regulation and, like the PAG, the NCF
participates in ascending signal transmission and has projections
to RVM (49).

Another PAG coordinated area involved in nociceptive
modulation is LC, which has reciprocal connections to both
vlPAG and spV in primate tracings (49, 230). LC regulates
attention and mood through noradrenergic inputs to the brain
while also playing a role in pain processing, such as in cognitive-
mediated distraction analgesia (49). Resting state examination in
painful trigeminal neuropathy has found increased resting state
connectivity strength between LC and RVM, suggesting altered
noradrenergic and opioid system interactions in neuropathic
pain (230). Further, LC connections with the nucleus accumbens
and ACC are implicated in reward signaling from pain relief,
and functional connectivity between these areas is disrupted
in chronic pain. The same investigation additionally found
decreased connectivity between LC and vlPAG and increased
LC connection strength with SRD; these results support animal
models in which LC is thought to inhibit signaling in spV
through direct projections and facilitate signals indirectly
through connections to SRD. SRD is also involved in analgesia
produced by inhibition of one stimulus by a second (conditioned
pain modulation) and achieves pain inhibition by suppressing
nociceptive input in spV (48, 49).

Pain-related activation in the brainstem is less commonly
found in neuroimaging studies than in many brain areas, despite
the documented activity in pain and nociception throughout
(7, 10). The small and complex anatomy of brainstem nuclei
and susceptibility to physiological noise and other distortions
maymask activation along withmany other technical limitations,
while in other cases the intensity of experimental stimuli may not
be great enough to engage the descending pain systems (49, 236).

Thalamus
The thalamus (Thal: Figure 13) receives and passes along
information from peripheral sources to the cortex, and every
region of the cortex has reciprocal connections back to
thalamus (237). Thalamus receives direct sensory input from
numerous sources, including the trigeminothalamic tract and
its connections to the ventroposteromedial (VPM) nucleus and
medial nuclei, and is involved in multiple dimensions of the pain
experience (238–240). Historically the thalamus was viewed as
a relay site based on this widespread connectivity, but evidence
continues to mount that it has a role in aggregating, processing,
and integrating information from functional brain networks
as well as mediating cortico-cortical connections (237, 241–
243). In a view of the brain as a complex network of semi-
independent modules, thalamus plays a key role in multimodal
information processing by serving as an information-sharing
nexus for cortical functional networks as well as structurally
maintaining the modular organization of the brain network as
a whole (237, 243–245).

Thalamus is composed of first-order nuclei and higher-order
nuclei, which are discriminated based on the composition of their
innervation—primarily ascending afferents and subcortical areas
(first-order) or primarily cortical connections (higher-order)
(237, 241, 242). Higher-order thalamic nuclei, through their
extensive and reciprocal cortico-thalamo-cortical connections,
allow for indirect interactions between areas of the cortex;
first-order nuclei function more as a relay of modality-
specific information to appropriate brain regions, but a role
in information exchange between functionally disparate brain
networks has been suggested as well (237).

Thalamus is widely activated in experimental pain and shows
altered functionality in many forms of pain (7, 10, 246). Thalamic
activation in response to nociceptive pain is often bilateral,
another indication that the role of the thalamus goes beyond
purely sensory signal transmission (7, 10). Attentional processes
also increase bilateral thalamic activity, suggesting that the
thalamus is involved in both discriminative and attentional
networks (7).

Structural differences in thalamic gray and white matter
are readily observable in numerous chronic pain studies, with
evidence showing these changes may either be pre-existing or
develop after exposure to pain over time (63, 247). Abnormal
thalamic activation is a common finding in pain studies as well,
as is aberrant spontaneous activity and accompanying burst
discharge (246, 248, 249). Changes in thalamic perfusion are
highly correlated with pain states, especially hypoperfusion, and
deafferentation is one proposed explanation for reduced thalamic
blood flow (250). However, deafferentation does not explain
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FIGURE 13 | Thalamus. (A) Brain areas active during pain: Thalamus (Thal) highlighted. (B) An examination of resting state fMRI data finds that participants with

orofacial pain, experimentally induced by orthodontic separators, have significantly different patterns and intensity of spontaneous neural activity (red=increased,

blue=decreased) compared to controls; differences such as these support the notion that the thalamus has a greater role in somatosensory processing than simply

relaying afferent signals. Reprinted from Frontiers in Neurology, Vol 11, Y Jin, H Yang, F Zhang, J Wang, H Liu, X Yang, H Long, F Li, Q Gong, W Lai, The Medial

Thalamus Plays an Important Role in the Cognitive and Emotional Modulation of Orofacial Pain: A Functional Magnetic Resonance Imaging-Based Study, p589125,

Copyright (2021) Jin et al., under the Creative Commons Attribution License (CC-BY). DOI: https://doi.org/10.3389/fneur.2020.589125. (C) The same orofacial pain

participants from (B) were also found to have a widespread and significant reduction (yellow areas) in resting state functional connectivity between the medial

thalamus and other brain areas, emphasizing the comprehensive brain-wide interconnections of the thalamus and its engagement in pain processing. Reprinted from

Frontiers in Neurology, Vol 11, Y Jin, H Yang, F Zhang, J Wang, H Liu, X Yang, H Long, F Li, Q Gong, W Lai, The Medial Thalamus Plays an Important Role in the

Cognitive and Emotional Modulation of Orofacial Pain: A Functional Magnetic Resonance Imaging-Based Study, p589125, Copyright (2021) Jin et al., under the

Creative Commons Attribution License (CC-BY). DOI: https://doi.org/10.3389/fneur.2020.589125.

similar findings in patients with fibromyalgia or the fact that
perfusion is often found to return to normal rates after treatment
in several pain conditions (250–252). Further, a recent study
of multiple sclerosis found thalamic hypoperfusion to precede
atrophy of the thalamic nuclei (253).

PAIN AS IT RELATES TO OCULAR
PATHOLOGY AND DISRUPTED SYSTEMS

Neuroimaging has revealed a signature of pain in the brain—a
network pattern of regions activated when pain is experienced
(9, 248, 254). Neuroimaging techniques have also provided
a way to assess tissue thickness and gray matter density of
these regions as well as their response to stimulus. Identifying
the nervous system’s endogenous methods of change, which
may subsequently result in altered structures and functional
dynamics, is key to understanding how these systems can
misalign and play a role in chronic pain (63).

An important feature of the nociceptive system is its capacity
for plasticity, that is, for the neurons themselves to alter
their structure and function (15). Repeated or intense noxious
nociception can result in sensitization “increased responsiveness
of nociceptive neurons to their normal input and/or recruitment
of a response to normally subthreshold inputs” (13), a synaptic
plasticity that leads to signal amplification resulting in pain
from normally innocuous stimuli (16). When filling an adaptive
role, pain amplified in this manner helps an organism stay
vigilant to the threat of further damage, and neuron thresholds
normalize sometime after the initiating stimulus has been
resolved (16).

Peripheral Sensitization
Peripheral sensitization can occur when nociceptive neurons
display increased responsiveness due to reduced activation
thresholds and enhanced membrane excitability (13, 14, 16)
and has been described previously in relation to the eye (23).
The sensitized terminals of nociceptive neurons subsequently
respond to stimulation that would normally be sub-noxious
(allodynia) and have amplified and prolonged pain responses to
noxious input (primary hyperalgesia) (14, 16, 19). Inflammatory
pain is a common form of peripheral sensitization, initiated
by the presence of inflammatory mediators, the release of
which can be a consequence of nociceptive activity (2, 14,
44). Typically, once inflammation resolves the system returns
to its previous balance, although the sensitized state can be
maintained by ongoing inflammatory mediator release, thereby
potentially causing neuropathic pain at the site of former injury
(16, 19). Non-inflammatory causes of peripheral sensitization
exist as well, as in the case of deafferentiation in postherpetic
neuralgia, and the spontaneous and heightened activation of
nociceptors, whatever the cause, is an important contributor
to inducing sensitization in other portions of the nociceptive
pathways (2, 14).

Peripheral sensitization alone cannot explain the severe level
of pain in many cases. Clinical testing of abnormal pain, such as
a proparacaine challenge in neuropathic corneal pain, can detect
pain with a central origin; a component of pain that persists when
the peripheral nociceptors have been silenced (255). Damage to
underlying nerves transmitting the signal from the periphery is
sometimes the cause, as when trigeminal neuropathic conditions
cause pain amplification (22, 255). However, the changes
observed in peripheral sensitization cannot account for several
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phenomena, including the temporal summation of pain, tactile
allodynia, and the generation of pain by innocuous input from
non-injured tissue (15, 256).

Central Sensitization
In normal somatosensory sensation, low-intensity stimuli
activate A-beta primary afferent nerves to produce non-
painful sensations, despite close proximity to nociceptive
pathways as the signals travel centrally to the cortex
(2). The specific functional coupling of primary sensory
neurons to their normal ascending pathways as well as the
modularity of these parallel sensory and nociceptive circuits
are determined by synaptic strength and the function of
inhibitory neurons. Most input into neurons is subthreshold, but
these connections are plastic, and departure from the normal
balance of excitation and inhibition can cause exaggerated and
abnormal pain.

Central sensitization is classified as “increased responsiveness
of nociceptive neurons in the central nervous system to
their normal or subthreshold afferent input. This may include
increased responsiveness due to dysfunction of endogenous
pain control systems” (13). Molecular, cellular, and anatomical
changes can contribute to functional alterations in ocular central
pain pathways, from the level of trigeminal brainstem to
thalamus and up through cortical endpoints (13, 16, 22, 44,
84). Altered responsiveness in central sensitization is caused by
enlarged receptive field sizes, increased membrane excitability,
alteration of temporal firing dynamics, facilitated synaptic
efficacy, or reduced inhibition in the neuronal circuitry of
the ocular somatosensory system (16, 44). Sensitization of
central neurons is often use-dependent, in which repeated
activation triggers the change in synaptic functioning, and
can be divided into either homosynaptic or heterosynaptic
potentiation (15, 16).

Homosynaptic potentiation occurs when repeated use of a
synapse facilitates subsequent activation in the same pathway,
amplifying future instances of the same input (16, 257). This
process is not unique to central sensitization in pain. Long Term
Potentiation (LTP), the presumed hippocampal mechanism of
memory, is a result of persistent homosynaptic facilitation (16).
Windup is a transient form of homosynaptic potentiation in
which the delivery of identical, repetitive, low-frequency noxious
input results in each additional stimuli generating a larger action
potential (and greater pain), but synaptic excitation returns to
baseline within seconds after stimulation has ceased (16). Central
sensitization remains autonomous for hours after induction and
manifests after the triggering stimulus, unlike windup, which
occurs during stimulation (256). Abnormal activity that triggers
central sensitization by repeated nociceptive pathway use (i.e.,
peripheral sensitization, windup, or ectopic bursts) can cause
an LTP-like homosynaptic effect (16). Future engagement of
the system is facilitated, and the strengthening of synapses
leads to an increase in the frequency and size of postsynaptic
action potentials in TBNC (16, 44, 84). Homosynaptic functional
alterations in central sensitization are contributors to primary
hyperalgesia, along with peripherally sensitized areas (16).

Heterosynaptic potentiation occurs when activity in a synapse
of a pathway enhances signaling in nearby, uninvolved synapses
in the neuron (16). Enhancement of nearby synapses underpins
the generation of pain by non-nociceptive stimuli; these
heterosynaptic changes are the cause of sensitivity and pain
spreading to uninjured areas (secondary hyperalgesia) as well
as pain resulting from the activation of low-threshold input
(allodynia) (16). In addition to the enhancement of transmission
between trigeminal neuron axons and the TBNC, evidence of
synaptic plasticity has been found in ACC, amygdala, PFC, and
the PAG (19).

Central sensitization is a long-lasting endogenous process
triggered by nociceptor input that eventually resolves when
no abnormal signaling is present but can be maintained by
low levels of stimulation (2). Ongoing ectopic pain (as can
manifest after LASIK) or persistent peripheral sensitization (such
as inflammatory dry eye disease) thus can have a role in
both the generation and maintenance of central sensitization,
altering the central nervous system response to stimulus for
as long as the nociceptive signals persist (12, 44, 84, 257).
The eventual de-escalation of the heightened pain response and
reset of synaptic excitability is thought to be accomplished by
inherent compensatory responses in descending painmodulatory
pathways (44, 258). Damage or dysfunction in ascending
pathways and descending pain modulatory processes can lead
to pathological chronification of the hyper-responsive state,
regardless of peripheral input. Long term maintenance of
a sensitized state can be found underlying several painful
craniofacial conditions and an out-of-balance descending system,
especially one that promotes descending pain facilitation, can
contribute to or sustain long term centralized neuropathic pain
(6, 13, 14, 16, 234, 259).

Reorganization of Functional Networks
Supraspinal areas associated with pain are functionally
intertwined in their activity, allowing changes in one structure
to affect larger groupings of brain areas, casting doubt on some
previous models of the pain-stimulus relationship (260–262).
Identifying differences in structure and function in one
supraspinal area may explain larger-scale patterns of change
across the brain, highlighting the inherent connectivity between
brain regions that work in concert.

Synchronized rhythmic fluctuations of activity in the brain
measured as fMRI signal oscillations indicate the transfer
of information between regions and give insight into how
supraspinal areas are joined together as part of a network
(245, 263, 264). While beyond the scope of this review, these
network interactions are one of the largest areas of focus in
modern pain research (262, 265). Network relationships can be
quantified, and differences can be seen in many disease and
pain states (9, 266). These altered structural, functional, and
network-associative changes in neuronal processing centers can
result in amplified pain beyond the afferent signal transmitted
by the periphery, leading to hyperalgesia, allodynia, and even
spontaneous pain (63, 262, 266–269).
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FIGURE 14 | Consistent patterns of chronic pain.The ACC, PFC, and IC consistently display decreased grey matter in chronic pain conditions, along with impaired

white matter health (FA) and opioid receptor binding. Chronic pain is also associated with reductions in N-acetyl aspartate in the ACC and PFC, while studies in

rodents have found increased inflammation in these regions as well. Reprinted with permission from Springer Nature Customer Service Centre GmbH: Springer

Nature, Nature Reviews Neuroscience, Vol 14, Cognitive and emotional control of pain and its disruption in chronic pain, MC Bushnell, M Ceko, LA Low, p502–11,

Copyright (2013). DOI: https://doi.org/10.1038/nrn3516. Grey arrows, pain pathways; Black arrows, descending pathways; FA,functional anisotropy: a measure of

molecule diffusion that serves as an index of white matter integrity; Opioids, opioid receptor binding: a marker of the ability to bind opioids and a way to analyze the

health of descending pain systems; NAA, N-acetyl aspartate: a marker of neuronal viability. ACC, anterior cingulate cortex; PFC, prefrontal cortex; IC, insular cortex;

S1, primary somatosensory cortex; S2, secondary somatosensory cortex; SPL, superior parietal lobe; BG, basal ganglia; AMY, Amygdala; PAG, periaqueductal gray;

PB, parabrachial nuclei; RVM, rostral ventromedial medulla.

Neuroimaging Supraspinal Eye Pain-
Qualifications and Clinical Adaptation
Neuroimaging in clinical ophthalmology is often limited
to interrogating CNS causes of vision loss, nystagmus,
ptosis, proptosis, diplopia, ophthalmoplegia, or optic nerve
abnormalities. These may or may not be accompanied by
pain (270). When pain is present it can be debilitating as
the eye, and craniofacial region as whole, is subject to some
of the most frequently diagnosed and intense pain conditions
(234). As the eye is a critical sensory structure, the associated
pain can come with intense psychological, emotional/affective
components (234). The most common cause of neurological
eye pain is migraine, followed by primary headaches, and
trigeminal pain conditions, however, most neurological disorders
can lead to referred eye pain (271). In the majority of these
cases neuroimaging is not recommended unless a lesion or
other underlying pathology mimicking these conditions is
suspected (271). Similarly neuroimaging in patients with normal
ophthalmic examinations as a pain diagnostic often does not
provide a clear answer to symptoms, and applying experimental
results to clinical pain realities often finds a much less direct
relationship between pain and stimulus (271, 272).

The variability of pain activations between individuals can
be extreme, even in an individual it is difficult to predict pain,
as numerous brain regions modify sensory input along with
psychological and attentional processes (6, 272). Further, no
brain networks or regions associated with pain are exclusively
pain related and most painful situations also engage other
networks and processes, like attention, emotion and salience; the
resulting overlap in brain regions active in pain and other salient
experiences makes pain-specific imaging biomarkers difficult
to determine (261, 272–274). Even chronic pain-associated
processes and abnormalities are not pain-specific and have been
observed in other conditions such as anxiety and depression
(272, 273). Thus, despite evidence that certain regions are reliably
activated in response to noxious stimulation, the adoption of
brain imaging as a direct facsimile for pain, an inherently
subjective experience, is not established (272, 273, 275).

In addition to the overlap in regional and network functions,
multiple factors can influence painful stimuli-induced activations
that may affect the ability to directly translate experimental work
into the clinic and thus hinder the adoption of neuroimaging as a
formal standard of care. Biological sex has a significant effect on
pain-related brain activations, as studies have reported variance
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in experienced and anticipatory pain between women and men,
along with differential activations in the ACC, insula, and parietal
and somatosensory cortices, among other areas (275, 276). Other
factors contributing to variation in the neuroimaging of pain,
although not an exhaustive list, include the duration of the
painful stimulus, type of pain, mechanisms of pain, and type
of disease underlying the pain; different patterns of activation
can be observed in allodynia and hyperalgesia compared to
normal individuals, mechanical and thermal pain have stronger
or weaker activations in some brain areas when compared, and
different diseases may have no functional similarities aside from
increased pain thus making the results extremely specific to each
condition and not widely appliable (272, 275). Despite these
issues, some studies have found patterns of differential activations
and even structure in some brain areas that are consistent
across conditions (6) (Figure 14), however, other analyses find
no consistent abnormalities in fMRI responses to painful stimuli
in chronic pain patients- likely due to a combination of factors
described above and many other uncorrected differences in
experimental criteria that must be accounted for to achieve
meaningful clinical translation (20, 277). While concrete and
universal pain imaging biomarkers are yet to be established,
neuroimaging has identified key brain regions involved in acute
pain and established that CNS function is disturbed in chronic
pain (272, 274).

CONCLUSION

The principles for supraspinal encoding of eye pain are akin
to those observed in the rest of the body. Pain is a subjective
experience that engages a concert of multidimensional processes
throughout the brain. Different areas encode distinct aspects of
sensory and emotional processes as well as the cascade of reactive
autonomic, cognitive, reflexive, and modulatory mechanisms
relevant to protective behaviors and adaptation. In relation to
eye pain, the brain receives afferent input from the trigeminal
system, which it also modulates using descending cortico-
medullary feedback and feed-forward loops. Further active areas
of investigation include the transformation of acute pain to
chronic pain, improved characterization and differentiation of
brain networks in chronic pain conditions, sex differences in the
processing of pain, interactions between the immune system and
brain regions, and patient stratification for targeted therapies for
specific chronic pain conditions (278).

AUTHOR CONTRIBUTIONS

EM conceived of and directed the manuscript. NP drafted the
initial manuscript. NP and EM wrote the final manuscript.
All authors contributed to the article and approved the
submitted version.

REFERENCES

1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al.
The revised International Association for the Study of Pain definition of
pain: concepts, challenges, and compromises. Pain. (2020) 161:1976–82.
doi: 10.1097/j.pain.0000000000001939

2. Woolf CJ. What is this thing called pain? J Clin Invest. (2010) 120:3742–4.
doi: 10.1172/JCI45178

3. Baliki MN, Apkarian AV. Nociception, pain, negative moods, and behavior
selection. Neuron. (2015) 87:474–91. doi: 10.1016/j.neuron.2015.06.005

4. Melzack R, Casey KL. Sensory, motivational, and central control
determinants of pain: a new conceptual model. The skin senses.

(1968) 1:423–43.
5. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B,

et al. Distraction modulates connectivity of the cingulo-frontal cortex and
the midbrain during pain–an fMRI analysis. Pain. (2004) 109:399–408.
doi: 10.1016/j.pain.2004.02.033

6. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain
and its disruption in chronic pain. Nat Rev Neurosci. (2013) 14:502–11.
doi: 10.1038/nrn3516

7. Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses
to pain. A review and meta-analysis. Neurophysiol Clin. (2000) 30:263–88.
doi: 10.1016/S0987-7053(00)00227-6

8. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain
mechanisms of pain perception and regulation in health and disease. Eur J
Pain. (2005) 9:463–84. doi: 10.1016/j.ejpain.2004.11.001

9. Geuter S, Reynolds Losin EA, Roy M, Atlas LY, Schmidt L, Krishnan A, et al.
Multiple brain networks mediating stimulus-pain relationships in humans.
Cereb Cortex. (2020) 30:4204–19. doi: 10.1093/cercor/bhaa048

10. Xu A, Larsen B, Baller EB, Scott JC, Sharma V, Adebimpe A, et al. Convergent
neural representations of experimentally-induced acute pain in healthy
volunteers: a large-scale fMRI meta-analysis. Neurosci Biobehav Rev. (2020)
112:300–23. doi: 10.1016/j.neubiorev.2020.01.004

11. Woolf CJ, Ma Q. Nociceptors–noxious stimulus detectors. Neuron. (2007)
55:353–64. doi: 10.1016/j.neuron.2007.07.016

12. Dieckmann G, Borsook D, Moulton E. Neuropathic corneal pain and dry
eye: a continuum of nociception. Br J Ophthalmol. (2021) 2020:318469.
doi: 10.1136/bjophthalmol-2020-318469

13. IASP. International Assocation for the Study of Pain Terminology. (2017).
Available online at: https://www.iasp-pain.org/resources/terminology/
(accessed January 5, 2022).

14. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response
of the nervous system to damage. Annu Rev Neurosci. (2009) 32:1–32.
doi: 10.1146/annurev.neuro.051508.135531

15. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain.
Science. (2000) 288:1765–9. doi: 10.1126/science.288.5472.1765

16. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain
hypersensitivity by central neural plasticity. J Pain. (2009) 10:895–926.
doi: 10.1016/j.jpain.2009.06.012

17. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al.
A classification of chronic pain for ICD-11. Pain. (2015) 156:1003–7.
doi: 10.1097/j.pain.0000000000000160

18. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic
pain as a symptom or a disease: the IASP Classification of Chronic Pain for
the International Classification of Diseases (ICD-11). Pain. (2019) 160:19–
27. doi: 10.1097/j.pain.0000000000001384

19. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic
pain phenotype to reveal neural mechanisms. Neuron. (2012) 73:638–52.
doi: 10.1016/j.neuron.2012.02.008

20. Moayedi M, Salomons TV, Atlas LY. Pain neuroimaging in humans:
a primer for beginners and non-imagers. J Pain. (2018) 19:961e1–21.
doi: 10.1016/j.jpain.2018.03.011

21. Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves:
structure, contents and function. Exp Eye Res. (2003) 76:521–42.
doi: 10.1016/S0014-4835(03)00050-2

22. Belmonte C, Acosta MC, Merayo-Lloves J, Gallar J. What causes eye
pain? Curr Ophthalmol Rep. (2015) 3:111–21. doi: 10.1007/s40135-015-
0073-9

23. Belmonte C. Pain, dryness, and itch sensations in eye surface disorders
are defined by a balance between inflammation and sensory nerve

Frontiers in Medicine | www.frontiersin.org 23 February 2022 | Volume 8 | Article 768649122

https://doi.org/10.1097/j.pain.0000000000001939
https://doi.org/10.1172/JCI45178
https://doi.org/10.1016/j.neuron.2015.06.005
https://doi.org/10.1016/j.pain.2004.02.033
https://doi.org/10.1038/nrn3516
https://doi.org/10.1016/S0987-7053(00)00227-6
https://doi.org/10.1016/j.ejpain.2004.11.001
https://doi.org/10.1093/cercor/bhaa048
https://doi.org/10.1016/j.neubiorev.2020.01.004
https://doi.org/10.1016/j.neuron.2007.07.016
https://doi.org/10.1136/bjophthalmol-2020-318469
https://www.iasp-pain.org/resources/terminology/
https://doi.org/10.1146/annurev.neuro.051508.135531
https://doi.org/10.1126/science.288.5472.1765
https://doi.org/10.1016/j.jpain.2009.06.012
https://doi.org/10.1097/j.pain.0000000000000160
https://doi.org/10.1097/j.pain.0000000000001384
https://doi.org/10.1016/j.neuron.2012.02.008
https://doi.org/10.1016/j.jpain.2018.03.011
https://doi.org/10.1016/S0014-4835(03)00050-2
https://doi.org/10.1007/s40135-015-0073-9
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

injury. Cornea. (2019) 38(Suppl.1):S11–24. doi: 10.1097/ICO.00000000000
02116

24. Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Surv
Ophthalmol. (2014) 59:263–85. doi: 10.1016/j.survophthal.2013.09.002

25. Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, Goazigo R-
L. Morphological and functional changes of corneal nerves and their
contribution to peripheral and central sensory abnormalities. Front Cell

Neurosci. (2020) 14:436. doi: 10.3389/fncel.2020.610342
26. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al.

A neural mechanism for exacerbation of headache by light. Nat Neurosci.
(2010) 13:239–45. doi: 10.1038/nn.2475

27. Okamoto K, Tashiro A, Chang Z, Bereiter DA. Bright light
activates a trigeminal nociceptive pathway. Pain. (2010) 149:235–42.
doi: 10.1016/j.pain.2010.02.004

28. Digre KB, Brennan KC. Shedding light on photophobia. J Neuroophthalmol.

(2012) 32:68–81. doi: 10.1097/WNO.0b013e3182474548
29. Katz BJ, Digre KB. Diagnosis, pathophysiology, and treatment

of photophobia. Surv Ophthalmol. (2016) 61:466–77.
doi: 10.1016/j.survophthal.2016.02.001

30. Wu Y, Hallett M. Photophobia in neurologic disorders. Transl Neurodegener.
(2017) 6:26. doi: 10.1186/s40035-017-0095-3

31. Albilali A, Dilli E. Photophobia: when light hurts, a review. Curr Neurol

Neurosci Rep. (2018) 18:62. doi: 10.1007/s11910-018-0864-0
32. Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O,

Beldzik E, Smyk MK, et al. Melanopsin: from a small molecule
to brain functions. Neurosci Biobehav Rev. (2020) 113:190–203.
doi: 10.1016/j.neubiorev.2020.03.012

33. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al. Melanopsin
cells are the principal conduits for rod-cone input to non-image-forming
vision. Nature. (2008) 453:102–5. doi: 10.1038/nature06829

34. Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF.
Melanopsin expressing human retinal ganglion cells: Subtypes, distribution,
and intraretinal connectivity. J Comp Neurol. (2017) 525:1934–61.
doi: 10.1002/cne.24181

35. Nasir-Ahmad S, Lee SCS, Martin PR, Grunert U. Melanopsin-expressing
ganglion cells in human retina: Morphology, distribution, and synaptic
connections. J Comp Neurol. (2019) 527:312–27. doi: 10.1002/cne.24176

36. Do MTH. Melanopsin and the intrinsically photosensitive retinal
ganglion cells: biophysics to behavior. Neuron. (2019) 104:205–26.
doi: 10.1016/j.neuron.2019.07.016

37. Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC, et al. Melanopsin
signalling in mammalian iris and retina. Nature. (2011) 479:67–73.
doi: 10.1038/nature10567

38. Semo M, Gias C, Ahmado A, Vugler A. A role for the ciliary marginal zone
in the melanopsin-dependent intrinsic pupillary light reflex. Exp Eye Res.

(2014) 119:8–18. doi: 10.1016/j.exer.2013.11.013
39. Sikka G, Hussmann GP, Pandey D, Cao S, Hori D, Park JT, et al. Melanopsin

mediates light-dependent relaxation in blood vessels. Proc Natl Acad Sci USA.
(2014) 111:17977–82. doi: 10.1073/pnas.1420258111

40. Matynia A, Nguyen E, Sun X, Blixt FW, Parikh S, Kessler J, et al. Peripheral
sensory neurons expressing melanopsin respond to light. Front Neural

Circuits. (2016) 10:60. doi: 10.3389/fncir.2016.00060
41. Dolgonos S, Ayyala H, Evinger C. Light-induced trigeminal sensitization

without central visual pathways: another mechanism for photophobia. Invest
Ophthalmol Vis Sci. (2011) 52:7852–8. doi: 10.1167/iovs.11-7604

42. Kulkarni B, Bentley DE, Elliott R, Youell P, Watson A, Derbyshire SWG,
et al. Attention to pain localization and unpleasantness discriminates the
functions of the medial and lateral pain systems. Eur J Neurosci. (2005)
21:3133–42. doi: 10.1111/j.1460-9568.2005.04098.x

43. Borsook D, Burstein R, Becerra L. Functional imaging of the human
trigeminal system: opportunities for new insights into pain processing
in health and disease. J Neurobiol. (2004) 61:107–25. doi: 10.1002/neu.
20085

44. Rosenthal P, Borsook D. The corneal pain system. Part I: the missing piece of
the dry eye puzzle. Ocul Surf. (2012) 10:2–14. doi: 10.1016/j.jtos.2012.01.002

45. Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM.
Parabrachial complex: a hub for pain and aversion. J Neurosci. (2019)
39:8225–30. doi: 10.1523/JNEUROSCI.1162-19.2019

46. Aicher SA, Hegarty DM, Hermes SM. Corneal pain activates a
trigemino-parabrachial pathway in rats. Brain Res. (2014) 1550:18–26.
doi: 10.1016/j.brainres.2014.01.002

47. Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial
nucleus in the old world monkey. Exp Neurol. (2000) 165:101–17.
doi: 10.1006/exnr.2000.7450

48. Youssef AM, Macefield VG, Henderson LA. Pain inhibits pain;
human brainstem mechanisms. Neuroimage. (2016) 124:54–62.
doi: 10.1016/j.neuroimage.2015.08.060

49. Napadow V, Sclocco R, Henderson LA. Brainstem neuroimaging
of nociception and pain circuitries. Pain Rep. (2019) 4:e745.
doi: 10.1097/PR9.0000000000000745

50. Raver C, Uddin O, Ji Y, Li Y, Cramer N, Jenne C, et al. An amygdalo-
parabrachial pathway regulates pain perception and chronic pain. J Neurosci.
(2020) 40:3424–42. doi: 10.1523/JNEUROSCI.0075-20.2020

51. Young RF, Tronnier V, Rinaldi PC. Chronic stimulation of the Kolliker-Fuse
nucleus region for relief of intractable pain in humans. J Neurosurg. (1992)
76:979–85. doi: 10.3171/jns.1992.76.6.0979

52. Maleki N, Becerra L, Upadhyay J, Burstein R, Borsook D. Direct optic
nerve pulvinar connections defined by diffusion MR tractography in
humans: implications for photophobia. Hum Brain Mapp. (2012) 33:75–88.
doi: 10.1002/hbm.21194

53. Panorgias A, Lee D, Silva KE, Borsook D, Moulton EA. Blue light
activates pulvinar nuclei in longstanding idiopathic photophobia: a case
report. NeuroImage: Clinical. (2019) 24:102096. doi: 10.1016/j.nicl.2019.
102096

54. Noseda R, Lee AJ, Nir R-R, Bernstein CA, Kainz VM, Bertisch SM, et al.
Neural mechanism for hypothalamic-mediated autonomic responses to
light during migraine. Proc Nat Acad Sci USA. (2017) 114:E5683–E92.
doi: 10.1073/pnas.1708361114

55. Noseda R, Copenhagen D, Burstein R. Current understanding of
photophobia, visual networks and headaches. Cephalalgia. (2019) 39:1623–
34. doi: 10.1177/0333102418784750

56. Ksendzovsky A, Pomeraniec IJ, Zaghloul KA, Provencio JJ,
Provencio I. Clinical implications of the melanopsin-based non–
image-forming visual system. Neurology. (2017) 88:1282–90.
doi: 10.1212/WNL.0000000000003761

57. Burstein R, Noseda R, Fulton AB. The neurobiology of photophobia.
J Neuro Ophthalmol. (2019) 39:94. doi: 10.1097/WNO.000000000000
0766

58. Delwig A, Chaney SY, Bertke AS, Verweij J, Quirce S, Larsen DD,
et al. Melanopsin expression in the cornea. Vis Neurosci. (2018) 35:e004.
doi: 10.1017/S0952523817000359

59. Ab Aziz CB, Ahmad AH. The role of the thalamus in modulating pain.
Malays J Med Sci. (2006) 13:11–8.

60. Yen CT, Lu PL. Thalamus and pain. Acta Anaesthesiol Taiwan. (2013)
51:73–80. doi: 10.1016/j.aat.2013.06.011

61. Orenius TI, Raij TT, Nuortimo A, Naatanen P, Lipsanen J,
Karlsson H. The interaction of emotion and pain in the insula and
secondary somatosensory cortex. Neuroscience. (2017) 349:185–94.
doi: 10.1016/j.neuroscience.2017.02.047

62. Vogt BA, Sikes RW. The medial pain system, cingulate cortex, and parallel
processing of nociceptive information. Prog Brain Res. (2000) 122:223–35.
doi: 10.1016/S0079-6123(08)62141-X

63. Davis KD, Moayedi M. Central mechanisms of pain revealed through
functional and structural MRI. J Neuroimmune Pharmacol. (2013) 8:518–34.
doi: 10.1007/s11481-012-9386-8

64. Coghill RC, Gilron I, Iadarola MJ. Hemispheric lateralization
of somatosensory processing. J Neurophysiol. (2001) 85:2602–12.
doi: 10.1152/jn.2001.85.6.2602

65. Kenshalo DR, Iwata K, Sholas M, Thomas DA. Response properties
and organization of nociceptive neurons in area 1 of monkey
primary somatosensory cortex. J Neurophysiol. (2000) 84:719–29.
doi: 10.1152/jn.2000.84.2.719

66. Moulton EA, Keaser ML, Gullapalli RP, Greenspan JD. Regional intensive
and temporal patterns of functional MRI activation distinguishing
noxious and innocuous contact heat. J Neurophysiol. (2005) 93:2183–93.
doi: 10.1152/jn.01025.2004

Frontiers in Medicine | www.frontiersin.org 24 February 2022 | Volume 8 | Article 768649123

https://doi.org/10.1097/ICO.0000000000002116
https://doi.org/10.1016/j.survophthal.2013.09.002
https://doi.org/10.3389/fncel.2020.610342
https://doi.org/10.1038/nn.2475
https://doi.org/10.1016/j.pain.2010.02.004
https://doi.org/10.1097/WNO.0b013e3182474548
https://doi.org/10.1016/j.survophthal.2016.02.001
https://doi.org/10.1186/s40035-017-0095-3
https://doi.org/10.1007/s11910-018-0864-0
https://doi.org/10.1016/j.neubiorev.2020.03.012
https://doi.org/10.1038/nature06829
https://doi.org/10.1002/cne.24181
https://doi.org/10.1002/cne.24176
https://doi.org/10.1016/j.neuron.2019.07.016
https://doi.org/10.1038/nature10567
https://doi.org/10.1016/j.exer.2013.11.013
https://doi.org/10.1073/pnas.1420258111
https://doi.org/10.3389/fncir.2016.00060
https://doi.org/10.1167/iovs.11-7604
https://doi.org/10.1111/j.1460-9568.2005.04098.x
https://doi.org/10.1002/neu.20085
https://doi.org/10.1016/j.jtos.2012.01.002
https://doi.org/10.1523/JNEUROSCI.1162-19.2019
https://doi.org/10.1016/j.brainres.2014.01.002
https://doi.org/10.1006/exnr.2000.7450
https://doi.org/10.1016/j.neuroimage.2015.08.060
https://doi.org/10.1097/PR9.0000000000000745
https://doi.org/10.1523/JNEUROSCI.0075-20.2020
https://doi.org/10.3171/jns.1992.76.6.0979
https://doi.org/10.1002/hbm.21194
https://doi.org/10.1016/j.nicl.2019.102096
https://doi.org/10.1073/pnas.1708361114
https://doi.org/10.1177/0333102418784750
https://doi.org/10.1212/WNL.0000000000003761
https://doi.org/10.1097/WNO.0000000000000766
https://doi.org/10.1017/S0952523817000359
https://doi.org/10.1016/j.aat.2013.06.011
https://doi.org/10.1016/j.neuroscience.2017.02.047
https://doi.org/10.1016/S0079-6123(08)62141-X
https://doi.org/10.1007/s11481-012-9386-8
https://doi.org/10.1152/jn.2001.85.6.2602
https://doi.org/10.1152/jn.2000.84.2.719
https://doi.org/10.1152/jn.01025.2004
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

67. Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. Role of
primary somatosensory cortex in the coding of pain. Pain. (2013) 154:334–
44. doi: 10.1016/j.pain.2012.10.021

68. Blatow M, Nennig E, Durst A, Sartor K, Stippich C. fMRI reflects functional
connectivity of human somatosensory cortex. Neuroimage. (2007) 37:927–
36. doi: 10.1016/j.neuroimage.2007.05.038

69. Borich M, Brodie S, Gray W, Ionta S, Boyd L. Understanding
the role of the primary somatosensory cortex: Opportunities
for rehabilitation. Neuropsychologia. (2015) 79:246–55.
doi: 10.1016/j.neuropsychologia.2015.07.007

70. Henschke JU, Noesselt T, Scheich H, Budinger E. Possible anatomical
pathways for short-latency multisensory integration processes in
primary sensory cortices. Brain Struct Function. (2015) 220:955–77.
doi: 10.1007/s00429-013-0694-4

71. Ro T, Ellmore TM, Beauchamp MS. A neural link between feeling and
hearing. Cereb Cortex. (2013) 23:1724–30. doi: 10.1093/cercor/bhs166

72. Grefkes C, Geyer S, Schormann T, Roland P, Zilles K. Human somatosensory
area 2: observer-independent cytoarchitectonic mapping, interindividual
variability, and population map. Neuroimage. (2001) 14:617–31.
doi: 10.1006/nimg.2001.0858

73. Sánchez-Panchuelo R-M, Besle J, Mougin O, Gowland P, Bowtell R,
Schluppeck D, et al. Regional structural differences across functionally
parcellated Brodmann areas of human primary somatosensory cortex.
Neuroimage. (2014) 93:221–30. doi: 10.1016/j.neuroimage.2013.
03.044

74. Ngo GN, Haak KV, Beckmann CF, Menon RS. Mesoscale hierarchical
organization of primary somatosensory cortex captured by
resting-state-fMRI in humans. Neuroimage. (2021) 235:118031.
doi: 10.1016/j.neuroimage.2021.118031

75. Maihofner C, Schmelz M, Forster C, Neundorfer B, Handwerker
HO. Neural activation during experimental allodynia: a functional
magnetic resonance imaging study. Eur J Neurosci. (2004) 19:3211–8.
doi: 10.1111/j.1460-9568.2004.03437.x

76. Moulton EA, Becerra L, Rosenthal P, Borsook D. An approach to localizing
corneal pain representation in human primary somatosensory cortex. PLoS
ONE. (2012) 7:e44643. doi: 10.1371/journal.pone.0044643

77. Porro CA. Functional imaging and pain: behavior,
perception, and modulation. Neuroscientist. (2003) 9:354–69.
doi: 10.1177/1073858403253660

78. Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in
human primary somatosensory cortex reflect pain perception. PLoS Biol.

(2007) 5:e133. doi: 10.1371/journal.pbio.0050133
79. Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI. Fine-grained

nociceptive maps in primary somatosensory cortex. J Neurosci. (2012)
32:17155–62. doi: 10.1523/JNEUROSCI.3059-12.2012

80. Kenshalo DR, Isensee O. Responses of primate SI cortical neurons to
noxious stimuli. J Neurophysiol. (1983) 50:1479–96. doi: 10.1152/jn.1983.50.
6.1479

81. Kenshalo DR, Chudler EH, Anton F, Dubner R. SI nociceptive neurons
participate in the encoding process by which monkeys perceive the
intensity of noxious thermal stimulation. Brain Res. (1988) 454:378–82.
doi: 10.1016/0006-8993(88)90841-4

82. Willis WD, Zhang X, Honda CN, Giesler GJ. A critical review of the
role of the proposed VMpo nucleus in pain. J Pain. (2002) 3:79–94.
doi: 10.1054/jpai.2002.122949

83. Borsook D, Becerra L, Fishman S, Edwards A, Jennings CL,
Stojanovic M, et al. Acute plasticity in the human somatosensory
cortex following amputation. Neuroreport. (1998) 9:1013–7.
doi: 10.1097/00001756-199804200-00011

84. Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, et al. Trigeminal
neuropathic pain alters responses in CNS circuits to mechanical (brush)
and thermal (cold and heat) stimuli. J Neurosci. (2006) 26:10646–57.
doi: 10.1523/JNEUROSCI.2305-06.2006

85. Peyron R, Schneider F, Faillenot I, Convers P, Barral F-G, Garcia-
Larrea L, et al. An fMRI study of cortical representation of mechanical
allodynia in patients with neuropathic pain. Neurology. (2004) 63:1838–46.
doi: 10.1212/01.WNL.0000144177.61125.85

86. Maihöfner C, Handwerker HO, Neundörfer B, Birklein F. Patterns of
cortical reorganization in complex regional pain syndrome. Neurology.

(2003) 61:1707–15. doi: 10.1212/01.WNL.0000098939.02752.8E
87. DaSilva AF, Granziera C, Snyder J, Hadjikhani N. Thickening in the

somatosensory cortex of patients with migraine. Neurology. (2007) 69:1990–
5. doi: 10.1212/01.wnl.0000291618.32247.2d

88. Vartiainen N, Kirveskari E, Kallio-Laine K, Kalso E, Forss N. Cortical
reorganization in primary somatosensory cortex in patients with unilateral
chronic pain. J Pain. (2009) 10:854–9. doi: 10.1016/j.jpain.2009.02.006

89. Kairys AE, Schmidt-Wilcke T, Puiu T, Ichesco E, Labus JS, Martucci K,
et al. Increased brain gray matter in the primary somatosensory cortex
is associated with increased pain and mood disturbance in patients with
interstitial cystitis/painful bladder syndrome. J Urol. (2015) 193:131–7.
doi: 10.1016/j.juro.2014.08.042

90. DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D.
Colocalized structural and functional changes in the cortex of
patients with trigeminal neuropathic pain. PLoS ONE. (2008) 3:e3396.
doi: 10.1371/journal.pone.0003396

91. Gustin SM, Peck CC, Cheney LB, Macey PM, Murray GM, Henderson LA.
Pain and plasticity: is chronic pain always associated with somatosensory
cortex activity and reorganization? J Neurosci. (2012) 32:14874–84.
doi: 10.1523/JNEUROSCI.1733-12.2012

92. Youssef AM, Gustin SM, Nash PG, Reeves JM, Petersen ET, Peck
CC, et al. Differential brain activity in subjects with painful trigeminal
neuropathy and painful temporomandibular disorder. Pain. (2014) 155:467–
75. doi: 10.1016/j.pain.2013.11.008

93. Rutland JW, Huang K-H, Gill CM, Villavisanis DF, Alper J, Verma G, et al.
First application of 7-T ultra–high field diffusion tensor imaging to detect
altered microstructure of thalamic-somatosensory anatomy in trigeminal
neuralgia. J Neurosurg. (2019) 133:839–47. doi: 10.3171/2019.6.JNS19541

94. Schmidt-Wilcke T, Leinisch E, Ganssbauer S, Draganski B, Bogdahn U,
Altmeppen J, et al. Affective components and intensity of pain correlate with
structural differences in gray matter in chronic back pain patients. Pain.
(2006) 125:89–97. doi: 10.1016/j.pain.2006.05.004

95. Hashmi JA, Baliki MN, Huang L, Baria AT, Torbey S, Hermann KM,
et al. Shape shifting pain: chronification of back pain shifts brain
representation from nociceptive to emotional circuits. Brain. (2013)
136:2751–68. doi: 10.1093/brain/awt211

96. Kim W, Kim SK, Nabekura J. Functional and structural plasticity in the
primary somatosensory cortex associated with chronic pain. J Neurochem.

(2017) 141:499–506. doi: 10.1111/jnc.14012
97. Urien L, Wang J. Top-down cortical control of acute and chronic pain.

Psychosom Med. (2019) 81:851–8. doi: 10.1097/PSY.0000000000000744
98. Kunz M, Chen JI, Rainville P. Keeping an eye on pain expression

in primary somatosensory cortex. Neuroimage. (2020) 217:116885.
doi: 10.1016/j.neuroimage.2020.116885

99. Kunz M, Meixner D, Lautenbacher S. Facial muscle movements
encoding pain-a systematic review. Pain. (2019) 160:535–49.
doi: 10.1097/j.pain.0000000000001424

100. Ekman P, Friesen WV. Manual of the facial action coding system (FACS).
Trans. ed. Vol. Palo Alto, CA: Consulting Psychologists Press (1978).
doi: 10.1037/t27734-000

101. Kunz M, Lautenbacher S, LeBlanc N, Rainville P. Are both the sensory and
the affective dimensions of pain encoded in the face? Pain. (2012) 153:350–8.
doi: 10.1016/j.pain.2011.10.027

102. Russell WR. Transient disturbances following gunshot wounds of the head.
Brain. (1945) 68:79–97. doi: 10.1093/brain/68.2.79

103. Marshall J. Sensory disturbances in cortical wounds with special
reference to pain. J Neurol Neurosurg Psychiatry. (1951) 14:187–204.
doi: 10.1136/jnnp.14.3.187

104. Mazzola L, Isnard J, Peyron R,Mauguiere F. Stimulation of the human cortex
and the experience of pain: Wilder Penfield’s observations revisited. Brain.
(2012) 135:631–40. doi: 10.1093/brain/awr265

105. Moulton EA, Pendse G, Becerra LR, Borsook D. BOLD responses
in somatosensory cortices better reflect heat sensation than pain.
J Neurosci. (2012) 32:6024–31. doi: 10.1523/JNEUROSCI.0006-
12.2012

Frontiers in Medicine | www.frontiersin.org 25 February 2022 | Volume 8 | Article 768649124

https://doi.org/10.1016/j.pain.2012.10.021
https://doi.org/10.1016/j.neuroimage.2007.05.038
https://doi.org/10.1016/j.neuropsychologia.2015.07.007
https://doi.org/10.1007/s00429-013-0694-4
https://doi.org/10.1093/cercor/bhs166
https://doi.org/10.1006/nimg.2001.0858
https://doi.org/10.1016/j.neuroimage.2013.03.044
https://doi.org/10.1016/j.neuroimage.2021.118031
https://doi.org/10.1111/j.1460-9568.2004.03437.x
https://doi.org/10.1371/journal.pone.0044643
https://doi.org/10.1177/1073858403253660
https://doi.org/10.1371/journal.pbio.0050133
https://doi.org/10.1523/JNEUROSCI.3059-12.2012
https://doi.org/10.1152/jn.1983.50.6.1479
https://doi.org/10.1016/0006-8993(88)90841-4
https://doi.org/10.1054/jpai.2002.122949
https://doi.org/10.1097/00001756-199804200-00011
https://doi.org/10.1523/JNEUROSCI.2305-06.2006
https://doi.org/10.1212/01.WNL.0000144177.61125.85
https://doi.org/10.1212/01.WNL.0000098939.02752.8E
https://doi.org/10.1212/01.wnl.0000291618.32247.2d
https://doi.org/10.1016/j.jpain.2009.02.006
https://doi.org/10.1016/j.juro.2014.08.042
https://doi.org/10.1371/journal.pone.0003396
https://doi.org/10.1523/JNEUROSCI.1733-12.2012
https://doi.org/10.1016/j.pain.2013.11.008
https://doi.org/10.3171/2019.6.JNS19541
https://doi.org/10.1016/j.pain.2006.05.004
https://doi.org/10.1093/brain/awt211
https://doi.org/10.1111/jnc.14012
https://doi.org/10.1097/PSY.0000000000000744
https://doi.org/10.1016/j.neuroimage.2020.116885
https://doi.org/10.1097/j.pain.0000000000001424
https://doi.org/10.1037/t27734-000
https://doi.org/10.1016/j.pain.2011.10.027
https://doi.org/10.1093/brain/68.2.79
https://doi.org/10.1136/jnnp.14.3.187
https://doi.org/10.1093/brain/awr265
https://doi.org/10.1523/JNEUROSCI.0006-12.2012
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

106. Dum RP, Levinthal DJ, Strick PL. The spinothalamic system targets motor
and sensory areas in the cerebral cortex of monkeys. J Neurosci. (2009)
29:14223–35. doi: 10.1523/JNEUROSCI.3398-09.2009

107. Liang M, Mouraux A, Iannetti GD. Parallel processing of nociceptive and
non-nociceptive somatosensory information in the human primary and
secondary somatosensory cortices: evidence from dynamic causal modeling
of functional magnetic resonance imaging data. J Neurosci. (2011) 31:8976–
85. doi: 10.1523/JNEUROSCI.6207-10.2011

108. Frot M, Magnin M, Mauguiere F, Garcia-Larrea L. Cortical representation
of pain in primary sensory-motor areas (S1/M1)–a study using
intracortical recordings in humans. Hum Brain Mapp. (2013) 34:2655–68.
doi: 10.1002/hbm.22097

109. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, et al.
Anatomical and functional connectivity of cytoarchitectonic areas
within the human parietal operculum. J Neurosci. (2010) 30:6409–21.
doi: 10.1523/JNEUROSCI.5664-09.2010

110. LeeMassonH, Op de BeeckH, Boets B. Reduced task-dependentmodulation
of functional network architecture for positive versus negative affective touch
processing in autism spectrum disorders. Neuroimage. (2020) 219:117009.
doi: 10.1016/j.neuroimage.2020.117009

111. Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation
in a patient with a postcentral lesion. Pain. (1999) 81:211–4.
doi: 10.1016/S0304-3959(99)00012-3

112. Bentley DE, Watson A, Treede RD, Barrett G, Youell PD, Kulkarni B, et al.
Differential effects on the laser evoked potential of selectively attending
to pain localisation versus pain unpleasantness. Clin Neurophysiol. (2004)
115:1846–56. doi: 10.1016/j.clinph.2004.03.010

113. Mazzola L, Isnard J, Mauguiere F. Somatosensory and pain responses
to stimulation of the second somatosensory area (SII) in humans. A
comparison with SI and insular responses. Cereb Cortex. (2006) 16:960–8.
doi: 10.1093/cercor/bhj038

114. Disbrow E, Roberts T, Krubitzer L. Somatotopic organization of
cortical fields in the lateral sulcus of Homo sapiens: evidence for SII
and PV. J Comp Neurol. (2000) 418:1–21. doi: 10.1002/(SICI)1096-
9861(20000228)418:1<1::AID-CNE1>3.0.CO;2-P

115. Chen TL, Babiloni C, Ferretti A, Perrucci MG, Romani GL, Rossini PM,
et al. Human secondary somatosensory cortex is involved in the processing of
somatosensory rare stimuli: an fMRI study. Neuroimage. (2008) 40:1765–71.
doi: 10.1016/j.neuroimage.2008.01.020

116. Keysers C, Kaas JH, Gazzola V. Somatosensation in social perception. Nat
Rev Neurosci. (2010) 11:417–28. doi: 10.1038/nrn2833

117. Kross E, Berman MG, Mischel W, Smith EE, Wager TD. Social rejection
shares somatosensory representations with physical pain. Proc Natl Acad Sci
USA. (2011) 108:6270–5. doi: 10.1073/pnas.1102693108

118. Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler
A. Differential coding of pain intensity in the human primary and
secondary somatosensory cortex. J Neurophysiol. (2001) 86:1499–503.
doi: 10.1152/jn.2001.86.3.1499

119. Sailer U, Triscoli C, Häggblad G, Hamilton P, Olausson H, Croy I.
Temporal dynamics of brain activation during 40 minutes of pleasant
touch. Neuroimage. (2016) 139:360–7. doi: 10.1016/j.neuroimage.2016.
06.031

120. Eickhoff SB, Amunts K, Mohlberg H, Zilles K. The human parietal
operculum. II Stereotaxic maps and correlation with functional imaging
results. Cereb Cortex. (2006) 16:268–79. doi: 10.1093/cercor/bhi106

121. Eickhoff SB, Schleicher A, Zilles K, Amunts K. The human parietal
operculum. I Cytoarchitectonic mapping of subdivisions. Cereb Cortex.

(2006) 16:254–67. doi: 10.1093/cercor/bhi105
122. Eickhoff SB, Grefkes C, Zilles K, Fink GR. The somatotopic organization

of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex.

(2007) 17:1800–11. doi: 10.1093/cercor/bhl090
123. NiddamDM, Yeh TC,Wu YT, Lee PL, Ho LT, Arendt-Nielsen L, et al. Event-

related functional MRI study on central representation of acute muscle
pain induced by electrical stimulation. Neuroimage. (2002) 17:1437–50.
doi: 10.1006/nimg.2002.1270

124. Frot M, Mauguiere F. Dual representation of pain in the operculo-
insular cortex in humans. Brain. (2003) 126:438–50. doi: 10.1093/brain/
awg032

125. Ferretti A, Babiloni C, Gratta CD, Caulo M, Tartaro A, Bonomo L,
et al. Functional topography of the secondary somatosensory cortex for
nonpainful and painful stimuli: an fMRI study.Neuroimage. (2003) 20:1625–
38. doi: 10.1016/j.neuroimage.2003.07.004

126. Schnitzler A, Ploner M. Neurophysiology and functional neuroanatomy
of pain perception. J Clin Neurophysiol. (2000) 17:592–603.
doi: 10.1097/00004691-200011000-00005

127. Forss N, Narici L, Hari R. Sustained activation of the human
SII cortices by stimulus trains. Neuroimage. (2001) 13:497–501.
doi: 10.1006/nimg.2000.0700

128. Olausson H, Ha B, Duncan GH, Morin C, Ptito A, Ptito M, et al. Cortical
activation by tactile and painful stimuli in hemispherectomized patients.
Brain. (2001) 124:916–27. doi: 10.1093/brain/124.5.916

129. Lim M, Roosink M, Kim JS, Kim HW, Lee EB, Son KM, et al.
Augmented pain processing in primary and secondary somatosensory
cortex in fibromyalgia: a magnetoencephalography study using intra-
epidermal electrical stimulation. PLoS ONE. (2016) 11:e0151776.
doi: 10.1371/journal.pone.0151776

130. Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have
we learned and where are we going? Future Neurol. (2014) 9:615–26.
doi: 10.2217/fnl.14.57

131. Wanigasekera V, Mezue M, Andersson J, Kong Y, Tracey I. Disambiguating
pharmacodynamic efficacy from behavior with neuroimaging: implications
for analgesic drug development. Anesthesiology. (2016) 124:159–68.
doi: 10.1097/ALN.0000000000000924

132. Nascimento SS, Oliveira LR, DeSantana JM. Correlations between brain
changes and pain management after cognitive and meditative therapies: a
systematic review of neuroimaging studies. Complement Ther Med. (2018)
39:137–45. doi: 10.1016/j.ctim.2018.06.006

133. Holmes SA, Upadhyay J, Borsook D. Delineating conditions and
subtypes in chronic pain using neuroimaging. Pain Rep. (2019) 4:768.
doi: 10.1097/PR9.0000000000000768

134. Vogt BA, Vogt L. Cytology of human dorsal midcingulate and
supplementary motor cortices. J Chem Neuroanat. (2003) 26:301–9.
doi: 10.1016/j.jchemneu.2003.09.004

135. Vogt BA. Regions and subregions of the cingulate cortex. Cingul Neurobiol
Dis. (2009) 1:31.

136. Vogt BA. Midcingulate cortex: structure, connections, homologies,
functions and diseases. J Chem Neuroanat. (2016) 74:28–46.
doi: 10.1016/j.jchemneu.2016.01.010

137. Kwan CL, Crawley AP, Mikulis DJ, Davis KD. An fMRI
study of the anterior cingulate cortex and surrounding medial
wall activations evoked by noxious cutaneous heat and cold
stimuli. Pain. (2000) 85:359–74. doi: 10.1016/S0304-3959(99)0
0287-0

138. Caruana F, Gerbella M, Avanzini P, Gozzo F, Pelliccia V, Mai R, et al. Motor
and emotional behaviours elicited by electrical stimulation of the human
cingulate cortex. Brain. (2018) 141:3035–51. doi: 10.1093/brain/awy219

139. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus.
Nat Rev Neurosci. (2005) 6:533–44. doi: 10.1038/nrn1704

140. Frot M, Mauguiere F, Magnin M, Garcia-Larrea L. Parallel processing
of nociceptive A-delta inputs in SII and midcingulate cortex in
humans. J Neurosci. (2008) 28:944–52. doi: 10.1523/JNEUROSCI.2934-
07.2008

141. Vogt BA, Berger GR, Derbyshire SW. Structural and functional dichotomy
of human midcingulate cortex. Eur J Neurosci. (2003) 18:3134–44.
doi: 10.1111/j.1460-9568.2003.03034.x

142. Amiez C, Petrides M. Neuroimaging evidence of the anatomo-functional
organization of the human cingulate motor areas. Cereb Cortex. (2014)
24:563–78. doi: 10.1093/cercor/bhs329

143. Rolls ET. The anterior and midcingulate cortices and reward. Cingul

Neurobiol Dis. (2009) 2009:192–206.
144. Vogt BA, Sikes RW. Cingulate nociceptive circuitry and roles in pain

processing: the cingulate premotor pain model. Cingul Neurobiol Dis.
(2009) 2009:312–39.

145. Misra G, Coombes SA. Neuroimaging evidence of motor control and pain
processing in the human midcingulate cortex. Cereb Cortex. (2015) 25:1906–
19. doi: 10.1093/cercor/bhu001

Frontiers in Medicine | www.frontiersin.org 26 February 2022 | Volume 8 | Article 768649125

https://doi.org/10.1523/JNEUROSCI.3398-09.2009
https://doi.org/10.1523/JNEUROSCI.6207-10.2011
https://doi.org/10.1002/hbm.22097
https://doi.org/10.1523/JNEUROSCI.5664-09.2010
https://doi.org/10.1016/j.neuroimage.2020.117009
https://doi.org/10.1016/S0304-3959(99)00012-3
https://doi.org/10.1016/j.clinph.2004.03.010
https://doi.org/10.1093/cercor/bhj038
https://doi.org/10.1002/(SICI)1096-9861(20000228)418:1<1::AID-CNE1>3.0.CO;2-P
https://doi.org/10.1016/j.neuroimage.2008.01.020
https://doi.org/10.1038/nrn2833
https://doi.org/10.1073/pnas.1102693108
https://doi.org/10.1152/jn.2001.86.3.1499
https://doi.org/10.1016/j.neuroimage.2016.06.031
https://doi.org/10.1093/cercor/bhi106
https://doi.org/10.1093/cercor/bhi105
https://doi.org/10.1093/cercor/bhl090
https://doi.org/10.1006/nimg.2002.1270
https://doi.org/10.1093/brain/awg032
https://doi.org/10.1016/j.neuroimage.2003.07.004
https://doi.org/10.1097/00004691-200011000-00005
https://doi.org/10.1006/nimg.2000.0700
https://doi.org/10.1093/brain/124.5.916
https://doi.org/10.1371/journal.pone.0151776
https://doi.org/10.2217/fnl.14.57
https://doi.org/10.1097/ALN.0000000000000924
https://doi.org/10.1016/j.ctim.2018.06.006
https://doi.org/10.1097/PR9.0000000000000768
https://doi.org/10.1016/j.jchemneu.2003.09.004
https://doi.org/10.1016/j.jchemneu.2016.01.010
https://doi.org/10.1016/S0304-3959(99)00287-0
https://doi.org/10.1093/brain/awy219
https://doi.org/10.1038/nrn1704
https://doi.org/10.1523/JNEUROSCI.2934-07.2008
https://doi.org/10.1111/j.1460-9568.2003.03034.x
https://doi.org/10.1093/cercor/bhs329
https://doi.org/10.1093/cercor/bhu001
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

146. Loh KK, Hadj-Bouziane F, Petrides M, Procyk E, Amiez C. Rostro-caudal
organization of connectivity between cingulate motor areas and lateral
frontal regions. Front Neurosci. (2017) 11:753. doi: 10.3389/fnins.2017.00753

147. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ.
The integration of negative affect, pain and cognitive control in the cingulate
cortex. Nat Rev Neurosci. (2011) 12:154–67. doi: 10.1038/nrn2994

148. Vogt BA. The cingulate cortex in neurologic diseases: history,
structure, overview. Handb Clin Neurol. (2019) 166:3–21.
doi: 10.1016/B978-0-444-64196-0.00001-7

149. Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B. Cytology and receptor
architecture of human anterior cingulate cortex. J Comp Neurol. (2008)
508:906–26. doi: 10.1002/cne.21684

150. Holroyd CB, Ribas-Fernandes JJF, Shahnazian D, Silvetti M, Verguts
T. Human midcingulate cortex encodes distributed representations
of task progress. Proc Natl Acad Sci USA. (2018) 115:6398–403.
doi: 10.1073/pnas.1803650115

151. Rolls ET, Cheng W, Gong W, Qiu J, Zhou C, Zhang J, et al. Functional
connectivity of the anterior cingulate cortex in depression and in health.
Cereb Cortex. (2019) 29:3617–30. doi: 10.1093/cercor/bhy236

152. Peyron R, Quesada C, Fauchon C. Cingulate-mediated approaches
to treating chronic pain. Handb Clin Neurol. (2019) 166:317–26.
doi: 10.1016/B978-0-444-64196-0.00017-0

153. Boccard SG, Fitzgerald JJ, Pereira EA, Moir L, Van Hartevelt TJ, Kringelbach
ML, et al. Targeting the affective component of chronic pain: a case series of
deep brain stimulation of the anterior cingulate cortex. Neurosurgery. (2014)
74:628–35. doi: 10.1227/NEU.0000000000000321

154. Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR. Human cingulate cortex:
surface features, flat maps, and cytoarchitecture. J Comparat Neurol. (1995)
359:490–506. doi: 10.1002/cne.903590310

155. Rolls ET. The cingulate cortex and limbic systems for emotion,
action, and memory. Brain Struct Funct. (2019) 224:3001–18.
doi: 10.1007/s00429-019-01945-2

156. Schoell ED, Bingel U, Eippert F, Yacubian J, Christiansen K, Andresen H,
et al. The effect of opioid receptor blockade on the neural processing of
thermal stimuli. PLoS ONE. (2010) 5:e12344. doi: 10.1371/journal.pone.
0012344

157. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA,
et al. Reciprocal limbic-cortical function and negative mood: converging
PET findings in depression and normal sadness. Am J Psychiatry. (1999)
156:675–82.

158. Vogt BA, Derbyshire SW. Visceral circuits and cingulate-mediated
autonomic functions. Cingul Neurobiol Dis. (2009) 2009:219–36.

159. Dostrovsky JO, Craig AD. Cooling-specific spinothalamic neurons in the
monkey. J Neurophysiol. (1996) 76:3656–65. doi: 10.1152/jn.1996.76.6.
3656

160. Ostrowsky K, Magnin M, Ryvlin P, Isnard J, Guenot M,
Mauguiere F. Representation of pain and somatic sensation in
the human insula: a study of responses to direct electrical cortical
stimulation. Cereb Cortex. (2002) 12:376–85. doi: 10.1093/cercor/12.
4.376

161. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB, A. link between
the systems: functional differentiation and integration within the human
insula revealed by meta-analysis. Brain Struct Funct. (2010) 214:519–34.
doi: 10.1007/s00429-010-0255-z

162. Cerliani L, Thomas RM, Jbabdi S, Siero JC, Nanetti L, Crippa A, et al.
Probabilistic tractography recovers a rostrocaudal trajectory of connectivity
variability in the human insular cortex.HumBrainMapp. (2012) 33:2005–34.
doi: 10.1002/hbm.21338

163. Veréb D, Kincses B, Spisák T. et al. Resting-state functional heterogeneity
of the right insula contributes to pain sensitivity. Sci Rep. (2021) 11:22945.
doi: 10.1038/s41598-021-02474-x

164. Wiech K, Jbabdi S, Lin C, Andersson J, Tracey I. Differential
structural and resting state connectivity between insular subdivisions
and other pain-related brain regions. Pain. (2014) 155:2047–55.
doi: 10.1016/j.pain.2014.07.009

165. Brooks JC, Nurmikko TJ, Bimson WE, Singh KD, Roberts N. fMRI of
thermal pain: effects of stimulus laterality and attention. Neuroimage. (2002)
15:293–301. doi: 10.1006/nimg.2001.0974

166. Craig AD. How do you feel–now? The anterior insula and human awareness.
Nat Rev Neurosci. (2009) 10:59–70. doi: 10.1038/nrn2555

167. Ruggiero DA, Mraovitch S, Granata AR, Anwar M, Reis DJ. A role of insular
cortex in cardiovascular function. J Comp Neurol. (1987) 257:189–207.
doi: 10.1002/cne.902570206

168. Kucyi A, Parvizi J. Pupillary dynamics link spontaneous and task-evoked
activations recorded directly from human insula. J Neurosci. (2020) 40:6207–
18. doi: 10.1523/JNEUROSCI.0435-20.2020

169. Isnard J, Magnin M, Jung J, Mauguiere F, Garcia-Larrea L. Does the
insula tell our brain that we are in pain? Pain. (2011) 152:946–51.
doi: 10.1016/j.pain.2010.12.025

170. Berthier M, Starkstein S, Leiguarda R. Asymbolia for pain: a
sensory-limbic disconnection syndrome. Ann Neurol. (1988) 24:41–9.
doi: 10.1002/ana.410240109

171. Peyron R, Fauchon C. Functional imaging of pain. Rev Neurol. (2019)
175:38–45. doi: 10.1016/j.neurol.2018.08.006

172. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded:
a salience detection system for the body. Prog Neurobiol. (2011) 93:111–24.
doi: 10.1016/j.pneurobio.2010.10.005

173. Moayedi M. All roads lead to the insula. Pain. (2014) 155:1920–1.
doi: 10.1016/j.pain.2014.07.023

174. Costafreda SG, Brammer MJ, David AS, Fu CH. Predictors of amygdala
activation during the processing of emotional stimuli: a meta-analysis
of 385 PET and fMRI studies. Brain Res Rev. (2008) 58:57–70.
doi: 10.1016/j.brainresrev.2007.10.012

175. LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol.

(2003) 23:727–38. doi: 10.1023/A:1025048802629
176. Murray EA. The amygdala, reward and emotion. Trends Cogn Sci. (2007)

11:489–97. doi: 10.1016/j.tics.2007.08.013
177. Sehlmeyer C, Schoning S, Zwitserlood P, Pfleiderer B, Kircher T, Arolt

V, et al. Human fear conditioning and extinction in neuroimaging: a
systematic review. PLoS ONE. (2009) 4:e5865. doi: 10.1371/journal.pone.00
05865

178. Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D. The
human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp.

(2014) 35:527–38. doi: 10.1002/hbm.22199
179. McDonald AJ. Cortical pathways to the mammalian amygdala. Prog

Neurobiol. (1998) 55:257–332. doi: 10.1016/S0301-0082(98)00003-3
180. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, et al.

Cytoarchitectonic mapping of the human amygdala, hippocampal region
and entorhinal cortex: intersubject variability and probability maps. Anat
Embryol. (2005) 210:343–52. doi: 10.1007/s00429-005-0025-5

181. Solano-Castiella E, Anwander A, Lohmann G, Weiss M, Docherty C,
Geyer S, et al. Diffusion tensor imaging segments the human amygdala
in vivo. Neuroimage. (2010) 49:2958–65. doi: 10.1016/j.neuroimage.2009.
11.027

182. Solano-Castiella E, Schafer A, Reimer E, Turke E, Proger T, Lohmann G,
et al. Parcellation of human amygdala in vivo using ultra high field structural
MRI. Neuroimage. (2011) 58:741–8. doi: 10.1016/j.neuroimage.2011.
06.047

183. Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, et al.
Functional connectivity of the human amygdala using resting state fMRI.
Neuroimage. (2009) 45:614–26. doi: 10.1016/j.neuroimage.2008.11.030

184. LeDoux J. The amygdala. Curr Biol. (2007) 17:R868–74.
doi: 10.1016/j.cub.2007.08.005

185. Neugebauer V, Galhardo V, Maione S, Mackey SC. Forebrain
pain mechanisms. Brain Res Rev. (2009) 60:226–42.
doi: 10.1016/j.brainresrev.2008.12.014

186. Pare D, Quirk GJ, Ledoux JE. New vistas on amygdala networks in
conditioned fear. J Neurophysiol. (2004) 92:1–9. doi: 10.1152/jn.00153.2004

187. Stefanacci L, Amaral DG. Some observations on cortical inputs to the
macaque monkey amygdala: an anterograde tracing study. J Comp Neurol.

(2002) 451:301–23. doi: 10.1002/cne.10339
188. Price JL. Comparative aspects of amygdala connectivity. Ann N Y Acad Sci.

(2003) 985:50–8. doi: 10.1111/j.1749-6632.2003.tb07070.x
189. Blumenfeld RS, Nomura EM, Gratton C, D’Esposito M. Lateral prefrontal

cortex is organized into parallel dorsal and ventral streams along the rostro-
caudal axis. Cereb Cortex. (2013) 23:2457–66. doi: 10.1093/cercor/bhs223

Frontiers in Medicine | www.frontiersin.org 27 February 2022 | Volume 8 | Article 768649126

https://doi.org/10.3389/fnins.2017.00753
https://doi.org/10.1038/nrn2994
https://doi.org/10.1016/B978-0-444-64196-0.00001-7
https://doi.org/10.1002/cne.21684
https://doi.org/10.1073/pnas.1803650115
https://doi.org/10.1093/cercor/bhy236
https://doi.org/10.1016/B978-0-444-64196-0.00017-0
https://doi.org/10.1227/NEU.0000000000000321
https://doi.org/10.1002/cne.903590310
https://doi.org/10.1007/s00429-019-01945-2
https://doi.org/10.1371/journal.pone.0012344
https://doi.org/10.1152/jn.1996.76.6.3656
https://doi.org/10.1093/cercor/12.4.376
https://doi.org/10.1007/s00429-010-0255-z
https://doi.org/10.1002/hbm.21338
https://doi.org/10.1038/s41598-021-02474-x
https://doi.org/10.1016/j.pain.2014.07.009
https://doi.org/10.1006/nimg.2001.0974
https://doi.org/10.1038/nrn2555
https://doi.org/10.1002/cne.902570206
https://doi.org/10.1523/JNEUROSCI.0435-20.2020
https://doi.org/10.1016/j.pain.2010.12.025
https://doi.org/10.1002/ana.410240109
https://doi.org/10.1016/j.neurol.2018.08.006
https://doi.org/10.1016/j.pneurobio.2010.10.005
https://doi.org/10.1016/j.pain.2014.07.023
https://doi.org/10.1016/j.brainresrev.2007.10.012
https://doi.org/10.1023/A:1025048802629
https://doi.org/10.1016/j.tics.2007.08.013
https://doi.org/10.1371/journal.pone.0005865
https://doi.org/10.1002/hbm.22199
https://doi.org/10.1016/S0301-0082(98)00003-3
https://doi.org/10.1007/s00429-005-0025-5
https://doi.org/10.1016/j.neuroimage.2009.11.027
https://doi.org/10.1016/j.neuroimage.2011.06.047
https://doi.org/10.1016/j.neuroimage.2008.11.030
https://doi.org/10.1016/j.cub.2007.08.005
https://doi.org/10.1016/j.brainresrev.2008.12.014
https://doi.org/10.1152/jn.00153.2004
https://doi.org/10.1002/cne.10339
https://doi.org/10.1111/j.1749-6632.2003.tb07070.x
https://doi.org/10.1093/cercor/bhs223
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

190. Ong WY, Stohler CS, Herr DR. Role of the prefrontal
cortex in pain processing. Mol Neurobiol. (2019) 56:1137–66.
doi: 10.1007/s12035-018-1130-9

191. Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the
prefrontal cortex: an integrative review. Psychol Bull. (2017) 143:1033–81.
doi: 10.1037/bul0000096

192. Badre D. Cognitive control, hierarchy, and the rostro–caudal
organization of the frontal lobes. Trends Cogn Sci. (2008) 12:193–200.
doi: 10.1016/j.tics.2008.02.004

193. Samara Z, Evers EAT, Goulas A, Uylings HBM, Rajkowska G, Ramaekers
JG, et al. Human orbital and anterior medial prefrontal cortex: intrinsic
connectivity parcellation and functional organization. Brain Struct Funct.

(2017) 222:2941–60. doi: 10.1007/s00429-017-1378-2
194. Eickhoff SB, Yeo BTT, Genon S. Imaging-based parcellations of the human

brain. Nat Rev Neurosci. (2018) 19:672–86. doi: 10.1038/s41583-018-0071-7
195. Bijsterbosch J, Harrison SJ, Jbabdi S, Woolrich M, Beckmann C,

Smith S, et al. Challenges and future directions for representations
of functional brain organization. Nat Neurosci. (2020) 23:1484–95.
doi: 10.1038/s41593-020-00726-z

196. Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber
J, Johannesson M, et al. Variability in the analysis of a single
neuroimaging dataset by many teams. Nature. (2020) 582:84–8.
doi: 10.1038/s41586-020-2314-9

197. Seminowicz DA, Moayedi M. The dorsolateral prefrontal cortex in acute and
chronic pain. J Pain. (2017) 18:1027–35. doi: 10.1016/j.jpain.2017.03.008

198. Wiech K, Ploner M, Tracey I. Neurocognitive aspects of pain perception.
Trends Cogn Sci. (2008) 12:306–13. doi: 10.1016/j.tics.2008.05.005

199. Krummenacher P, Candia V, Folkers G, Schedlowski M, Schonbachler G.
Prefrontal cortex modulates placebo analgesia. Pain. (2010) 148:368–74.
doi: 10.1016/j.pain.2009.09.033

200. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN.
Prefrontal-subcortical pathways mediating successful emotion regulation.
Neuron. (2008) 59:1037–50. doi: 10.1016/j.neuron.2008.09.006

201. Loggia ML, Berna C, Kim J, Cahalan CM, Martel MO, Gollub RL,
et al. The lateral prefrontal cortex mediates the hyperalgesic effects of
negative cognitions in chronic pain patients. J Pain. (2015) 16:692–9.
doi: 10.1016/j.jpain.2015.04.003

202. Wiech K, Kalisch R, Weiskopf N, Pleger B, Stephan KE, Dolan
RJ. Anterolateral prefrontal cortex mediates the analgesic effect of
expected and perceived control over pain. J Neurosci. (2006) 26:11501–9.
doi: 10.1523/JNEUROSCI.2568-06.2006

203. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD.
Functional grouping and cortical-subcortical interactions in emotion: a
meta-analysis of neuroimaging studies. Neuroimage. (2008) 42:998–1031.
doi: 10.1016/j.neuroimage.2008.03.059

204. Brascher AK, Becker S, Hoeppli ME, Schweinhardt P. Different
brain circuitries mediating controllable and uncontrollable pain.
J Neurosci. (2016) 36:5013–25. doi: 10.1523/JNEUROSCI.1954-15.
2016

205. Becker S, Gandhi W, Pomares F, Wager TD, Schweinhardt P. Orbitofrontal
cortex mediates pain inhibition by monetary reward. Soc Cogn Affect

Neurosci. (2017) 12:651–61. doi: 10.1093/scan/nsw173
206. Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: collating,

integrating and high level processing of nociception and pain. Prog

Neurobiol. (2018) 161:1–22. doi: 10.1016/j.pneurobio.2017.11.004
207. Moayedi M, Salomons TV, Dunlop KA, Downar J, Davis KD. Connectivity-

based parcellation of the human frontal polar cortex. Brain Struct Funct.

(2015) 220:2603–16. doi: 10.1007/s00429-014-0809-6
208. Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA,

Salek-Haddadi A, et al. Combined functional MRI and tractography to
demonstrate the connectivity of the human primary motor cortex in vivo.
Neuroimage. (2003) 19:1349–60. doi: 10.1016/S1053-8119(03)00165-4

209. Dube JA, Mercier C. Effect of pain and pain expectation on primary
motor cortex excitability. Clin Neurophysiol. (2011) 122:2318–23.
doi: 10.1016/j.clinph.2011.03.026

210. Neige C, Lebon F, Mercier C, Gaveau J, Papaxanthis C, Ruffino
C. Pain, no gain: acute pain interrupts motor imagery processes

and affects mental training-induced plasticity. Cereb Cortex. (2021).
doi: 10.1093/cercor/bhab246

211. Nogueira-Campos AA, Saunier G, Della-Maggiore V, De Oliveira LA,
Rodrigues EC, Vargas CD. Observing grasping actions directed to emotion-
laden objects: effects upon corticospinal excitability. Front Hum Neurosci.

(2016) 10:434. doi: 10.3389/fnhum.2016.00434
212. Mercier C, Leonard G. Interactions between pain and the motor cortex:

insights from research on phantom limb pain and complex regional pain
syndrome. Physiother Can. (2011) 63:305–14. doi: 10.3138/ptc.2010-08p

213. Garcia-Larrea L, Peyron R. Motor cortex stimulation for neuropathic
pain: from phenomenology to mechanisms. Neuroimage. (2007) 37:S71–9.
doi: 10.1016/j.neuroimage.2007.05.062

214. Mo JJ, Hu WH, Zhang C, Wang X, Liu C, Zhao BT, et al.
Motor cortex stimulation: a systematic literature-based analysis of
effectiveness and case series experience. BMC Neurol. (2019) 19:48.
doi: 10.1186/s12883-019-1273-y

215. Henssen D, Kurt E, van Walsum AVC, Kozicz T, van Dongen R,
Bartels R. Motor cortex stimulation in chronic neuropathic orofacial pain
syndromes: a systematic review and meta-analysis. Sci Rep. (2020) 10:7195.
doi: 10.1038/s41598-020-64177-z

216. Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan
JD. Non-invasive motor cortex neuromodulation reduces secondary
hyperalgesia and enhances activation of the descending pain modulatory
network. Front Neurosci. (2019) 13:467. doi: 10.3389/fnins.2019.00467

217. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S,
Bergman H, et al. Goal-directed and habitual control in the basal ganglia:
implications for Parkinson’s disease. Nat Rev Neurosci. (2010) 11:760–72.
doi: 10.1038/nrn2915

218. Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the
cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol
Rev. (2010) 117:541–74. doi: 10.1037/a0019077

219. Nelson AB, Kreitzer AC. Reassessing models of basal ganglia
function and dysfunction. Annu Rev Neurosci. (2014) 37:117–35.
doi: 10.1146/annurev-neuro-071013-013916

220. Bingel U, Glascher J, Weiller C, Buchel C. Somatotopic representation of
nociceptive information in the putamen: an event-related fMRI study. Cereb
Cortex. (2004) 14:1340–5. doi: 10.1093/cercor/bhh094

221. Borsook D, Upadhyay J, Chudler EH, Becerra L, A. key role of the basal
ganglia in pain and analgesia–insights gained through human functional
imaging.Mol Pain. (2010) 6:27. doi: 10.1186/1744-8069-6-27

222. Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D. Reward
circuitry activation by noxious thermal stimuli. Neuron. (2001) 32:927–46.
doi: 10.1016/S0896-6273(01)00533-5

223. Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al.
Consensus paper: the role of the cerebellum in perceptual processes.
Cerebellum. (2015) 14:197–220. doi: 10.1007/s12311-014-0627-7

224. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal
cortex of a nonhuman primate. J Neurosci. (2003) 23:8432–44.
doi: 10.1523/JNEUROSCI.23-23-08432.2003

225. Stoodley CJ, Schmahmann JD. Functional topography of the
human cerebellum. Handb Clin Neurol. (2018) 154:59–70.
doi: 10.1016/B978-0-444-63956-1.00004-7

226. Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum
and pain: passive integrator or active participator? Brain Res Rev. (2010)
65:14–27. doi: 10.1016/j.brainresrev.2010.05.005

227. Michelle Welman FHS, Smit AE, Jongen JLM, Tibboel D, van der Geest JN,
Holstege JC. Pain experience is somatotopically organized and overlaps with
pain anticipation in the human cerebellum. Cerebellum. (2018) 17:447–60.
doi: 10.1007/s12311-018-0930-9

228. Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L,
Borsook D. Aversion-related circuitry in the cerebellum: responses to
noxious heat and unpleasant images. J Neurosci. (2011) 31:3795–804.
doi: 10.1523/JNEUROSCI.6709-10.2011

229. Silva KE, Rosner J, Ullrich NJ, Chordas C, Manley PE, Moulton
EA. Pain affect disrupted in children with posterior cerebellar tumor
resection. Ann Clin Transl Neurol. (2019) 6:344–54. doi: 10.1002/
acn3.709

Frontiers in Medicine | www.frontiersin.org 28 February 2022 | Volume 8 | Article 768649127

https://doi.org/10.1007/s12035-018-1130-9
https://doi.org/10.1037/bul0000096
https://doi.org/10.1016/j.tics.2008.02.004
https://doi.org/10.1007/s00429-017-1378-2
https://doi.org/10.1038/s41583-018-0071-7
https://doi.org/10.1038/s41593-020-00726-z
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1016/j.jpain.2017.03.008
https://doi.org/10.1016/j.tics.2008.05.005
https://doi.org/10.1016/j.pain.2009.09.033
https://doi.org/10.1016/j.neuron.2008.09.006
https://doi.org/10.1016/j.jpain.2015.04.003
https://doi.org/10.1523/JNEUROSCI.2568-06.2006
https://doi.org/10.1016/j.neuroimage.2008.03.059
https://doi.org/10.1523/JNEUROSCI.1954-15.2016
https://doi.org/10.1093/scan/nsw173
https://doi.org/10.1016/j.pneurobio.2017.11.004
https://doi.org/10.1007/s00429-014-0809-6
https://doi.org/10.1016/S1053-8119(03)00165-4
https://doi.org/10.1016/j.clinph.2011.03.026
https://doi.org/10.1093/cercor/bhab246
https://doi.org/10.3389/fnhum.2016.00434
https://doi.org/10.3138/ptc.2010-08p
https://doi.org/10.1016/j.neuroimage.2007.05.062
https://doi.org/10.1186/s12883-019-1273-y
https://doi.org/10.1038/s41598-020-64177-z
https://doi.org/10.3389/fnins.2019.00467
https://doi.org/10.1038/nrn2915
https://doi.org/10.1037/a0019077
https://doi.org/10.1146/annurev-neuro-071013-013916
https://doi.org/10.1093/cercor/bhh094
https://doi.org/10.1186/1744-8069-6-27
https://doi.org/10.1016/S0896-6273(01)00533-5
https://doi.org/10.1007/s12311-014-0627-7
https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003
https://doi.org/10.1016/B978-0-444-63956-1.00004-7
https://doi.org/10.1016/j.brainresrev.2010.05.005
https://doi.org/10.1007/s12311-018-0930-9
https://doi.org/10.1523/JNEUROSCI.6709-10.2011
https://doi.org/10.1002/acn3.709
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

230. Mills EP, Di Pietro F, Alshelh Z, Peck CC, Murray GM, Vickers ER, et al.
Brainstem pain-control circuitry connectivity in chronic neuropathic pain. J
Neurosci. (2018) 38:465–73. doi: 10.1523/JNEUROSCI.1647-17.2017

231. Bingel U, Tracey I. Imaging CNS modulation of pain in humans. Physiology.
(2008) 23:371–80. doi: 10.1152/physiol.00024.2008

232. Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D.
Neuroimaging of the periaqueductal gray: state of the field. Neuroimage.

(2012) 60:505–22. doi: 10.1016/j.neuroimage.2011.11.095
233. Hosobuchi Y, Adams JE, Linchitz R. Pain relief by electrical stimulation of the

central gray matter in humans and its reversal by naloxone. Science. (1977)
197:183–6. doi: 10.1126/science.301658

234. Chichorro JG, Porreca F, Sessle B. Mechanisms of craniofacial pain.
Cephalalgia. (2017) 37:613–26. doi: 10.1177/0333102417704187

235. Wilcox SL, Gustin SM, Macey PM, Peck CC, Murray GM, Henderson LA.
Anatomical changes at the level of the primary synapse in neuropathic pain:
evidence from the spinal trigeminal nucleus. J Neurosci. (2015) 35:2508–15.
doi: 10.1523/JNEUROSCI.3756-14.2015

236. Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges
and opportunities for brainstem neuroimaging with ultrahigh field MRI.
Neuroimage. (2018) 168:412–26. doi: 10.1016/j.neuroimage.2017.02.052

237. Hwang K, Bertolero MA, Liu WB, D’Esposito M. The human thalamus
is an integrative hub for functional brain networks. J Neurosci. (2017)
37:5594–607. doi: 10.1523/JNEUROSCI.0067-17.2017

238. Craig AD. Pain mechanisms: labeled lines versus convergence
in central processing. Annu Rev Neurosci. (2003) 26:1–30.
doi: 10.1146/annurev.neuro.26.041002.131022

239. DaSilva AF, Becerra L, Makris N, Strassman AM, Gonzalez RG, Geatrakis
N, et al. Somatotopic activation in the human trigeminal pain pathway. J
Neurosci. (2002) 22:8183–92. doi: 10.1523/JNEUROSCI.22-18-08183.2002

240. Lenz FA, Weiss N, Ohara S, Lawson C, Greenspan JD. The role
of the thalamus in pain. Suppl Clin Neurophysiol. (2004) 57:50–61.
doi: 10.1016/S1567-424X(09)70342-3

241. Sherman SM. The thalamus is more than just a relay. Curr Opin Neurobiol.

(2007) 17:417–22. doi: 10.1016/j.conb.2007.07.003
242. Sherman SM. Thalamus plays a central role in ongoing cortical functioning.

Nat Neurosci. (2016) 19:533–41. doi: 10.1038/nn.4269
243. Worden R, Bennett MS, Neacsu V. The thalamus as a blackboard

for perception and planning. Front Behav Neurosci. (2021) 15:633872.
doi: 10.3389/fnbeh.2021.633872

244. Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically
modular organization of brain networks. Front Neurosci. (2010) 4:200.
doi: 10.3389/fnins.2010.00200

245. Bertolero MA, Yeo BT, D’Esposito M. The modular and integrative
functional architecture of the human brain. Proc Natl Acad Sci USA. (2015)
112:E6798–807. doi: 10.1073/pnas.1510619112

246. Tracey I, Mantyh PW. The cerebral signature for pain perception and
its modulation. Neuron. (2007) 55:377–91. doi: 10.1016/j.neuron.2007.
07.012

247. Moayedi M, Weissman-Fogel I, Salomons TV, Crawley AP, Goldberg MB,
Freeman BV, et al. Abnormal gray matter aging in chronic pain patients.
Brain Res. (2012) 1456:82–93. doi: 10.1016/j.brainres.2012.03.040

248. Tracey I. Neuroimaging of painmechanisms.Curr Opin Support Palliat Care.
(2007) 1:109–16. doi: 10.1097/SPC.0b013e3282efc58b

249. Jin Y, Yang H, Zhang F, Wang J, Liu H, Yang X, et al. The medial thalamus
plays an important role in the cognitive and emotional modulation of
orofacial pain: a functional magnetic resonance imaging-based study. Front
Neurol. (2020) 11:589125. doi: 10.21203/rs.3.rs-50244/v1

250. Garcia-Larrea L, Maarrawi J, Peyron R, Costes N, Mertens P, Magnin M,
et al. On the relation between sensory deafferentation, pain and thalamic
activity in Wallenberg’s syndrome: a PET-scan study before and after motor
cortex stimulation. Eur J Pain. (2006) 10:677–88. doi: 10.1016/j.ejpain.2005.
10.008

251. Di Piero V, Jones AKP, Iannotti F, Powell M, Perani D, Lenzi GL, et al.
Chronic pain: a PET study of the central effects of percutaneous high cervical
cordotomy. Pain. (1991) 46:9–12. doi: 10.1016/0304-3959(91)90026-T

252. Williams DA, Gracely RH. Biology and therapy of fibromyalgia. Functional
magnetic resonance imaging findings in fibromyalgia. Arthritis Res Ther.
(2006) 8:224. doi: 10.1186/ar2094

253. Doche E, Lecocq A, Maarouf A, Duhamel G, Soulier E, Confort-Gouny
S, et al. Hypoperfusion of the thalamus is associated with disability in
relapsing remitting multiple sclerosis. J Neuroradiol. (2017) 44:158–64.
doi: 10.1016/j.neurad.2016.10.001

254. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-
based neurologic signature of physical pain. N Engl J Med. (2013) 368:1388–
97. doi: 10.1056/NEJMoa1204471

255. Dieckmann G, Goyal S, Hamrah P. Neuropathic corneal pain:
approaches for management. Ophthalmology. (2017) 124:S34–47.
doi: 10.1016/j.ophtha.2017.08.004

256. Woolf CJ. Central sensitization: implications for the diagnosis and treatment
of pain. Pain. (2011) 152:S2–S15. doi: 10.1016/j.pain.2010.09.030

257. Ji R-R, Kohno T,Moore KA,Woolf CJ. Central sensitization and LTP: do pain
andmemory share similarmechanisms?Trends Neurosci. (2003) 26:696–705.
doi: 10.1016/j.tins.2003.09.017

258. Sprenger C, Bingel U, Buchel C. Treating pain with pain: supraspinal
mechanisms of endogenous analgesia elicited by heterotopic
noxious conditioning stimulation. Pain. (2011) 152:428–39.
doi: 10.1016/j.pain.2010.11.018

259. Ossipov MH, Morimura K, Porreca F. Descending pain modulation and
chronification of pain. Curr Opin Support Palliat Care. (2014) 8:143.
doi: 10.1097/SPC.0000000000000055

260. Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J
Neurophysiol. (2013) 109:5–12. doi: 10.1152/jn.00457.2012

261. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. (2015)
38:86–95. doi: 10.1016/j.tins.2014.11.006

262. Zheng W, Woo C-W, Yao Z, Goldstein P, Atlas LY, Roy M, et al. Pain-
evoked reorganization in functional brain networks. Cereb Cortex. (2020)
30:2804–22. doi: 10.1093/cercor/bhz276

263. Damoiseaux JS, Rombouts S, Barkhof F, Scheltens P, StamCJ, Smith SM, et al.
Consistent resting-state networks across healthy subjects. Proc Nat Acad Sci

USA. (2006) 103:13848–53. doi: 10.1073/pnas.0601417103
264. Raichle ME. The restless brain. Brain Connect. (2011) 1:3–12.

doi: 10.1089/brain.2011.0019
265. Lee J-J, Kim HJ, Ceko M. Park B-y, Lee SA, Park H, et al. A neuroimaging

biomarker for sustained experimental and clinical pain. Nat Med. (2021)
27:174–82. doi: 10.1038/s41591-020-1142-7

266. Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cogn Sci. (2017)
21:100–10. doi: 10.1016/j.tics.2016.12.001

267. Spisak T, Kincses B, Schlitt F, Zunhammer M, Schmidt-Wilcke T,
Kincses ZT, et al. Pain-free resting-state functional brain connectivity
predicts individual pain sensitivity. Nat Commun. (2020) 11:1–12.
doi: 10.1038/s41467-019-13785-z

268. Pfannmöller J, Lotze M. Review on biomarkers in the resting-state
networks of chronic pain patients. Brain Cogn. (2019) 131:4–9.
doi: 10.1016/j.bandc.2018.06.005

269. Zhang Y, Mao Z, Pan L, Ling Z, Liu X, Zhang J, et al. Frequency-
specific alterations in cortical rhythms and functional connectivity
in trigeminal neuralgia. Brain Imaging Behav. (2019) 13:1497–509.
doi: 10.1007/s11682-019-00105-8

270. Costello F, Scott JN. Imaging in neuro-ophthalmology. Continuum Lifelong

Learn Neurol. (2019) 25:1438–90. doi: 10.1212/CON.0000000000000783
271. Szatmáry G. Neuroimaging in the diagnostic evaluation of eye pain. Curr

Pain Headache Rep. (2016) 20:1–10. doi: 10.1007/s11916-016-0582-8
272. Davis KD, Flor H, Greely HT, Iannetti GD, Mackey S, Ploner M,

et al. Brain imaging tests for chronic pain: medical, legal and ethical
issues and recommendations. Nat Rev Neurol. (2017) 13:624–38.
doi: 10.1038/nrneurol.2017.122

273. Davis KD. Legal and ethical issues of using brain imaging to diagnose pain.
Pain Rep. (2016) 1:577. doi: 10.1097/PR9.0000000000000577

274. Martucci KT, Mackey SC. Neuroimaging of pain: human evidence and
clinical relevance of central nervous system processes and modulation.
Anesthesiology. (2018) 128:1241–54. doi: 10.1097/ALN.0000000000002137

275. Alomar S, Bakhaidar M. Neuroimaging of neuropathic pain: review of
current status and future directions. Neurosurg Rev. (2018) 41:771–7.
doi: 10.1007/s10143-016-0807-7

276. Moulton EA, Keaser ML, Gullapalli RP, Maitra R, Greenspan JD. Sex
differences in the cerebral BOLD signal response to painful heat stimuli.

Frontiers in Medicine | www.frontiersin.org 29 February 2022 | Volume 8 | Article 768649128

https://doi.org/10.1523/JNEUROSCI.1647-17.2017
https://doi.org/10.1152/physiol.00024.2008
https://doi.org/10.1016/j.neuroimage.2011.11.095
https://doi.org/10.1126/science.301658
https://doi.org/10.1177/0333102417704187
https://doi.org/10.1523/JNEUROSCI.3756-14.2015
https://doi.org/10.1016/j.neuroimage.2017.02.052
https://doi.org/10.1523/JNEUROSCI.0067-17.2017
https://doi.org/10.1146/annurev.neuro.26.041002.131022
https://doi.org/10.1523/JNEUROSCI.22-18-08183.2002
https://doi.org/10.1016/S1567-424X(09)70342-3
https://doi.org/10.1016/j.conb.2007.07.003
https://doi.org/10.1038/nn.4269
https://doi.org/10.3389/fnbeh.2021.633872
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1073/pnas.1510619112
https://doi.org/10.1016/j.neuron.2007.07.012
https://doi.org/10.1016/j.brainres.2012.03.040
https://doi.org/10.1097/SPC.0b013e3282efc58b
https://doi.org/10.21203/rs.3.rs-50244/v1
https://doi.org/10.1016/j.ejpain.2005.10.008
https://doi.org/10.1016/0304-3959(91)90026-T
https://doi.org/10.1186/ar2094
https://doi.org/10.1016/j.neurad.2016.10.001
https://doi.org/10.1056/NEJMoa1204471
https://doi.org/10.1016/j.ophtha.2017.08.004
https://doi.org/10.1016/j.pain.2010.09.030
https://doi.org/10.1016/j.tins.2003.09.017
https://doi.org/10.1016/j.pain.2010.11.018
https://doi.org/10.1097/SPC.0000000000000055
https://doi.org/10.1152/jn.00457.2012
https://doi.org/10.1016/j.tins.2014.11.006
https://doi.org/10.1093/cercor/bhz276
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1089/brain.2011.0019
https://doi.org/10.1038/s41591-020-1142-7
https://doi.org/10.1016/j.tics.2016.12.001
https://doi.org/10.1038/s41467-019-13785-z
https://doi.org/10.1016/j.bandc.2018.06.005
https://doi.org/10.1007/s11682-019-00105-8
https://doi.org/10.1212/CON.0000000000000783
https://doi.org/10.1007/s11916-016-0582-8
https://doi.org/10.1038/nrneurol.2017.122
https://doi.org/10.1097/PR9.0000000000000577
https://doi.org/10.1097/ALN.0000000000002137
https://doi.org/10.1007/s10143-016-0807-7
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pondelis and Moulton Supraspinal Mechanisms Underlying Ocular Pain

Am J Physiol Regulat Integr Comparat Physiol. (2006) 291:R257–R67.
doi: 10.1152/ajpregu.00084.2006

277. Xu A, Larsen B, Henn A, Baller EB, Scott JC, Sharma V, et al. Brain
responses to noxious stimuli in patients with chronic pain: a systematic
review and meta-analysis. J Am MedA ssoc Netw Open. (2021) 4:e2032236.
doi: 10.1001/jamanetworkopen.2020.32236

278. Price TJ, Basbaum AI, Bresnahan J, Chambers JF, De Koninck Y, Edwards
RR, et al. Transition to chronic pain: opportunities for novel therapeutics.
Nat Rev Neurosci. (2018) 19:383–4. doi: 10.1038/s41583-018-0012-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Pondelis and Moulton. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 30 February 2022 | Volume 8 | Article 768649129

https://doi.org/10.1152/ajpregu.00084.2006
https://doi.org/10.1001/jamanetworkopen.2020.32236
https://doi.org/10.1038/s41583-018-0012-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Multiple Criterion and Multiple
Stimulus Signal Detection Theory
Analysis of Corneal Painful and Cool
Pneumatic Stimuli
Varadharajan Jayakumar* and Trefford Simpson

School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, ON, Canada

Purpose: To evaluate the detectability of pneumatic corneal stimuli and response bias
using multi-stimuli multi-criterion signal detection theory (MSDT).

Methods: Thirty-six participants were recruited using convenience sampling. A Waterloo
Belmonte esthesiometer was used to deliver cold, mechanical, and chemical stimuli to the
center of the cornea at three separate study visits. The stimulus type was assigned
randomly to each visit at the start of the study. The threshold (baseline for detection theory
experiment) for the assigned stimulus type was obtained using the ascending method of
limits. In the cold and mechanical MSDT experiments, 100 trials (80 signal (20 each for 4
intensities) and 20 catch trials) were presented in randomized order, and participants
responded with a 5-point confidence rating to each trial. In the chemical MSDT
experiments, 50 trials (20 signal trials each for two intensities and 10 catch trials) were
presented, and responses were provided using 4-point confidence ratings. Detection
theory indices were calculated individually and as groups, which were then analyzed using
mixed models and paired t-tests.

Results: Detectability (da) and the area under the curve (Az) were significantly different
between stimulus intensities within each stimulus type (all p < 0.001) but were not different
between the stimulus types. Receiver operating characteristics (ROC) curves were
separable between the scaled intensities for all stimulus types, and no overlaps were
observed in the z-ROC space. The log-likelihood ratio (lnβ) depended on stimulus intensity
and psychophysical criterion for all stimulus types.

Conclusion: It is feasible to use MSDT for analyzing ocular surface sensory processing
and the theory provides insight into the possible bias associated with the use of pneumatic
stimuli. With noxious and non-noxious pneumatic stimulation, detectability and criteria vary
systematically with stimulus intensity, a result that cannot be derived using classical
psychophysics and this highlights the importance of signal detection theory and its
approaches in studying ocular surface pain and thermal processing.

Keywords: cornea, pain, psychophysics, human, signal detection theory
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INTRODUCTION

The corneal neurons are classified into Aδ-fibers (thinly
myelinated and fast conducting) and C-fibers (unmyelinated
and slow conducting) based on the thickness of the myelin
sheath surrounding them and their conduction velocities,
which transmits impulses from cornea to trigeminal ganglion
and farther to the brain for pain processing (Tanelian and
Beuerman, 1984; Belmonte et al., 1991; MacIver and Tanelian,
1993a; Gallar et al., 1993; Chen et al., 1995; Kovács et al., 2016).
Three types of corneal receptors (polymodal nociceptors,
mechano-nociceptors, and cold receptors) have been identified
electrophysiologically in non-primates, which detect the signal
and transmit impulses either through Aδ or C-fibers (Belmonte
and Giraldez, 1981; Tanelian and MacIver, 1990; MacIver and
Tanelian, 1993b; Belmonte et al., 1997; Müller et al., 2003). The
cold thermo-receptors and polymodal nociceptors transduce
signals conducted through the C-fibers, while the mechano-
nociceptors transduce information for the fast-conducting Aδ-
fibers’ rapid response to painful mechanical stimuli (MacIver and
Tanelian, 1993a; MacIver and Tanelian, 1993b; Belmonte et al.,
2004). Since there is no systematic neurophysiological
examination on the effects of human corneal stimulations, the
presence of receptors/channels in the human cornea has been
evaluated psychophysically (Feng and Simpson, 2004; Jayakumar
and Simpson, 2020). Feng and Simpson (2004) have identified
multiple corneal psychophysical channels in the human cornea.
Our previous report using signal detection theory (SDT) showed
favorable evidence in our data toward both the nerve conduction
and nociception hypotheses (Jayakumar and Simpson, 2020).

The detection of the human ocular surface stimuli is complex
due to the interdependence of the components of the ocular
surface sensory processing system (both within and between the
cornea and conjunctiva) (Feng and Simpson, 2004; Feng and
Simpson, 2005). Detection thresholds estimated using classical
psychophysical methods have been used as a measure of ocular
surface sensory processing, even though they have been found to
vary (Murphy et al., 1996; Acosta et al., 2001; Feng and Simpson,
2003; Golebiowski et al., 2005; Situ et al., 2008; Golebiowski et al.,
2011). Variable observer’s decision criteria are a major influence
on threshold measurements (Swets, 1961; Gescheider, 1997) and
these may lead to biased decisions by observers. Examples
producing these biases include time of the experiment,
previous experience and training, instruction characteristics,
signal probability, stimulus intensity, or presumed tolerability
to pain (Swets, 1961; Chapman, 1977; Rollman, 1977; Vision,
1985; Gescheider, 1997; Macmillan and Creelman, 2005). Only 1
experimental investigation of ocular surface sensory and decision
criteria derived using signal detection theory (SDT) has ever been
published (Jayakumar and Simpson, 2020). In it, we showed
among other things, that there was a shortcoming in
understanding the criteria used by participants because the
simple yes-no experiment was designed to examine only the
single criterion used by each subject (Jayakumar and Simpson,
2020).

The yes-no SDT experiment involved a detection task, in which
participants detected the presence of a signal (supra-threshold

stimulus) against the background noise. The yes-no SDT
experiment demonstrated the feasibility of using one-interval two
response (yes-no) design SDT to analyze the ocular surface sensory
processing (OSSP) of pneumatic stimuli. However, there were a few
limitations in the experiment that needed to be addressed, such as
the assumption of fixed criterion, detection indices obtained only for
a single intensity, and longer experiment duration if we need to test
each intensity separately in a similar protocol. Yes-no SDT assumes
that participants use a single criterion throughout the experiment
when responding “Yes” or “No” to a trial, similar to the assumed
single (and fixed) criterion in a classical psychophysical method but
with the ability to estimate bias (Green et al., 1974; Gescheider, 1997;
Macmillan and Creelman, 2005). However, if the participants vary
their criterion during the experiment, the variation cannot be
distinguished/evaluated due to the two-response design. Pay-off
matrices or changes in instructions provided before the
experiment have been reported in the literature to control/alter
the criterion assumed by the participants (Green et al., 1974;
Gescheider, 1997; Macmillan and Creelman, 2005). However,
these restrict the participants from choosing their criterion
independently during the experiment. Also, in a normal/clinical/
experimental environment, the cornea receives multiple stimuli of
different types and intensity at the same time. For example, in a
clinical environment, participants may have to detect the stimuli of
different intensities while they are already experiencing discomfort
from the pre-existing dry eyes or factors such as drafts and dry air
conditioning (Mendell and Smith, 1990; Wolkoff et al., 2005). These
limitations make the yes-no one-interval SDT design less efficient,
but the flexibility of SDT is that the same experiment could be
conducted with variable criteria and multiple stimuli instead of a
single stimulus intensity yes-no design. SDT experiments with
variable criteria are usually referred to as multi-criterion or rating
SDT experiment and in rating SDT experiments, instead of reporting
a yes/no detection response, participants rate their confidence with
which they detected a signal compared to the background noise
(Green et al., 1974; Gescheider, 1997; Stanislaw and Todorov, 1999;
Falmagne, 2002; Macmillan and Creelman, 2005; Wickens, 2010).
Each level is then “converted” to a yes-no design to obtain different
criteria adopted by the participants during the experiment, which
will be similar to conducting multiple yes-no experiments with
different pay-off matrices. Either ends of the rating scale (1 and
5, if 1-5 rating scale is used) represent the most conservative or most
lax criteria used by the participants during the experiment, but
participants can independently choose and vary their criterion
during the experiment (Green et al., 1974; Gescheider, 1988;
Stanislaw and Todorov, 1999; Wickens, 2010). Also, the detection
indices may be estimated for multiple intensities within a single
rating SDT experiment and here we refer to this as multi-stimulus
rating SDT (MSDT). (Green et al., 1974; Gescheider, 1988).

MSDT experiments with pneumatic stimuli have never been
conducted to examine OSSP. In the only previously reported
OSSP study using MSDT, detectability of thermal waterjet
corneal stimuli was obtained from rating responses, but the
results were reported as though the experiment was conducted
as a yes-no SDT experiment (Beuerman and Rozsa, 1985). MSDT
has been used in many other areas such as audition, memory, and
pain (Clark and Mehl, 1973; Green et al., 1974; Gescheider, 1988;
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Belmonte et al., 1997; Macmillan and Creelman, 2005;
Weidemann and Kahana, 2016). We initiated a series of signal
detection theory approaches to understanding OSSP because of
its similarity to somatic pain processing instead of using the
trigeminal pathway, and signal arising from similar pain
receptors (Millodot, 1984; Müller et al., 1995; Belmonte and
Cervero, 1997; Müller et al., 2003; Belmonte et al., 2015;
Belmonte et al., 2017).

According to the International Association for the Study of
Pain, pain is an “unpleasant sensory and emotional experience
associated with actual or potential tissue damage or described in
terms of such damage” (Bonica, 1979; Merskey, 1994), and
recently Williams and Craig (2016) defined pain as “a
distressing experience associated with actual or potential tissue
damage with sensory, emotional, cognitive, and social
components.” Studies have found that psycho-social entities
such as anxiety, fear, personality, confidence, decision-making,
self-esteem, and stress affect the perception of painful stimuli
(Leventhal and Everhart, 1979; Frenkel et al., 2009; de Visser et al.,
2010). Similar issues have been suggested in the literature of
corneal sensitivity (Millodot, 1984), but have never been
addressed before.

According to SDT, to elicit a response for a given trial, the
sensory process first detects the stimulus and this is then
followed by the decision process (influenced by multiple
factors) that shifts the response either in favor of signal or
noise (Green et al., 1974; Wickens, 2010). Both the sensory and
decision process can be measured simultaneously and
independent of each other using SDT. So, the aim of this
experiment was to evaluate the feasibility of using MSDT to
understand the OSSP of corneal pneumatic stimuli. This paper
is primarily a technical report dealing with a complex issue
affecting the psychophysical measurement of ocular surface
sensing.

METHODS

Forty-one participants were recruited in the study using
convenience sampling from the students and staff
community of the University of Waterloo. The study was
conducted according to the guidelines of the Declaration of
Helsinki and ethics approval was obtained from the University
of Waterloo, Office of Research Ethics (Waterloo, Ontario,
Canada). Informed consent was obtained from each
participant and participants were allowed to discontinue at
any stage of the study. The ocular surface was screened for any
active signs of inflammation or infection. There were only soft
contact lens wearers in this study and the lens wearers were
instructed not to wear their contact lenses on the day of their
study visits. The visits were scheduled to occur at the same time
of the day (±30 min) to reduce diurnal variation affecting the
measurement.

Sample Size
Since this MSDT experiment using ocular surface stimuli has
never been performed before (Jayakumar and Simpson, 2020),

we used the data from our Yes-No experiment (Jayakumar and
Simpson, 2020) to calculate the sample size for this experiment
using the gpower 3.1.9.6. The estimated sample size needed
was 8 (two-sided pair t-test, alpha = 0.05, beta = 0.8) with effect
size of 1.17 based on the mean ± SD of cold and mechanical
stimuli.

Stimulus Characteristics
The stimulus types used in this experiment were mechanical,
chemical, and cold (or cool, room temperature). A Waterloo
Belmonte pneumatic esthesiometer was used to deliver each
stimulus to the center of the anterior corneal surface. The
mechanical stimulus was medical air, heated to 50°C (converts
to 33°C at the corneal surface) at the nozzle, and the cold
stimulus was a room-temperature medical air. The flow rate of
the stimulus was either increased or decreased to alter the
intensity of the output, depending on the response provided by
the participants. In the case of the chemical stimulus, the flow
rate of the stimulus was kept constant at half of the mechanical
threshold to remove any mechanical effect influencing the
judgment. The ratio of carbon dioxide mixing with the medical
air was changed at a given flow rate to produce a chemical
stimulus. The % CO2 in the stimulus defines the intensity of the
chemical sensation induced. The flowmeters in the control box
of the esthesiometer regulate the flow of medical air and CO2 to
the desired concentration and flow. The temperature of the
chemical stimuli was the same as the mechanical stimuli. The
preparation and delivery of the stimulus were automated using
the custom software according to the psychophysical
procedure conducted. Each stimulus type was randomly
assigned to one of the three study visits at the start of the
first study visit. Each visit was approximately 1 h long and was
separated by at least a day to avoid fatigue effects and allow
‘recovery’ of the ocular surface and the pain processing system.

Ascending Method of Limits to Determine
Threshold
Though it is an MSDT experiment, the detection thresholds
were calculated to use as a baseline for the following MSDT
experiment. At the start of the visit, detection thresholds for
the assigned stimulus were measured using the ascending
method of limits (AMOL). An average of three measures
was considered as a threshold. The duration of the chemical
stimulus was 2 s, and mechanical and cold stimuli were 3 s
long. The inter-stimulus interval for cold and mechanical
stimuli was 10 s; for chemical stimuli, the inter-stimulus
interval was 30 s (to enable purging of the stimulus in
preparation for the subsequent stimulus). The oral
instructions were provided by the examiner before the start
of the experiment, followed by the automated audio prompts
for each trial. The training was provided. Participants were
advised to blink between each trial. Participants responded
yes/no to each trial using the button box and the responses
were recorded in the software. If the difference in detection
thresholds between 3 measures was larger than 15 ml/min or
15%, the experiment was repeated another day. If the
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thresholds were still variable, the participants were excluded
from the study.

Detectability Experiments
The signal intensities for the MSDT experiments were scaled
based on their respective corneal detection thresholds and the
signals (in the analysis and report) were referred based on relative
intensity to the threshold (Figure 1). The scaled intensities were
described later in the methods. Instructions for the detectability
experiment were accompanied by a short demonstration of the
trial sequence. ‘Neutral’ instructions were scripted and delivered
to all participants at the start of the experiment, to minimize
examiner induced bias and variability. The stimulus probabilities
and feedbacks, indicating the correctness of the response were not
provided to the participants. Instead, audio feedback confirmed
each button press. Participants rated each trial using the button
box and the number of button presses was stored as the rating for
each trial. Participants were advised to blink between stimulus
presentations.

Cold and Mechanical Detectability
Experiments
The cold and mechanical MSDT experiments consisted of 100 trials
with random presentations of a signal or a noise stimulus (Figure 1).
Each experiment consisted of four signal intensities of 20 trials each
and a noise stimulus of 20 trials. The signal intensities (scaled based on
detection thresholds) were a sub-threshold (0.5× threshold), a
threshold, and two supra-threshold (1.5× and 2× threshold)
intensities. The noise stimulus was a catch trial with no stimulus.
If the estimated threshold for cold or mechanical stimulus was
between 15ml/min and 20ml/min, a flow rate of 10ml/min was
used as the intensity of the sub-threshold stimulus. If the threshold
was below 15ml/min, the trials involving sub-threshold stimulus were
replacedwith the blanks (catch trials) as the flow rate of 50% threshold
would be well below the esthesiometer’s reliable output range of
10–200ml/min. On a given trial, either a signal (one of the four scaled
stimulus intensities) or a noise (blank stimulus) trial was randomly
presented, and the instructions for the noise trials were exactly the
same as the signal trials.

FIGURE 1 | Flow chart of the MSDT experiment. The order used in this example is cold (first visit), chemical (second visit), and mechanical (third visit) stimuli. +For
chemical threshold measurement, mechanical threshold was measured first followed by the chemical threshold with half of the mechanical threshold as the flow rate of
chemical stimuli. * 50 trials were used only for chemical MSDT experiments.
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The inter-stimulus interval and presentation time was the
same as the threshold experiment. A confidence rating scale of 5
ratings was used by the participants to respond to each trial
(Table 1). Breaks were provided after 50 trials by default or
whenever participants pause the experiment using a button box.

Chemical Detectability Experiment
In order to keep the duration of this phase of experimentation
approximately the same as those for mechanical and cold, we
used the following protocol: The chemical MSDT experiment
consisted of 50 trials with random presentations of either a signal
or a noise stimulus (Figure 1). There were two signal intensities
(the threshold and the 2x threshold) of 20 trials each and 10 noise
trials. Unlike cold and mechanical MSDT experiments, the noise/
catch trials for chemical stimuli were not completely blank
stimuli; instead, a medical air stimulus with 0% CO2 was
added at the same flow rate as signal trials. A confidence
rating of 4 ratings was used by the participants to respond to
each trial (Table 2). Breaks were provided after 25 trials by default
or whenever participants pause the experiment using a
button box.

Data Analysis
The rating data for each participant was exported to a Microsoft
Excel spreadsheet. The RscorePlus software (v.5.6.1)49 was used
to calculate the detection theory parameters. These were based on
assumptions of Gaussian signal and noise distributions. The
RscorePlus data input file had the information on the number
of rating categories, the number of signals (including catch trials),
participant id, commands specific for SDT analysis along with the
response frequency for each rating category. The commands
included code for collapsing data in case of unsuccessful
analysis, treatment of zero frequencies, and type of the SDT
experiment. For this study, the SDT indices were calculated with
an SINT (single-interval experiment paradigm) SDT protocol
and zero frequencies were replaced with 1/number of rating
categories to eliminate errors due to zero frequencies. The hit
rate (HR) and false alarm rate (FAR) were calculated by
cumulating the rating responses of n ratings for (n-1) decision
criteria similar to the yes-no procedure. The HR and FAR were
used in the calculation of detection theory parameters such as
detectability (d’ or da) and criteria. The outputs included the
detection theory parameters for each signal and formatted

datasheet for creating detection theory graphs using R. The
equations used in calculating each detection theory parameter
as provided by the software manual are listed below (Harvey,
2010):

d’ � z(HR) − z(FAR) (Equal variancemodel)
da �

�����
2

1 + b2

√
.(z(HR) − b.z(FAR)) (Unequal variance model)

Az � z−1[da

√2
]

c � −0.5 (z(HR) + z(FAR))
ln(β) � [z(FAR)2] − [z(HR)2]

2

The da provides the distance between the means of signal +
noise distribution and noise distributions indicating the ability of
subjects to detect signal from the background noise. The da and d’
are numerically the same if the variance of the Gaussian
distribution of noise and signal + noise are the same (Harvey,
2010; Harvey, 1992). The Az provides the area under the curve
estimate for each signal. The criteria (c and lnβ) give independent
bias indices for each stimulus intensity used inside the MSDT
experiment. The receiver operating characteristics (ROC) curves
were plotted for individual and cumulated (grouped) data. The
cumulated data ROC curves were plotted using the rating data
obtained by adding the response frequencies of each stimulus
rating category across all the participants within the group as
though a single participant received all the trials (Figure 2). For
example, all 3600 trials (720 catch and 2880 signal trials) for
mechanical stimuli were received by a single participant
compared to 100 trials each by 36 participants. The R
programming codes provided in the RscorePlus software
package (Harvey, 2018) were used in plotting the ROCs,
zROCs, and Gaussian distributions.

To analyze the bias between the types of stimuli, the multiple
criterion data from the rating dataset were collapsed to a single
criterion yes-no type analysis due to the difference in the rating
scales between the stimulus types used by the participants to
respond to the trials. The ratings were accumulated based on
“liberal” and “strict” criteria. In the case of the “liberal criterion”,
a rating of 1 (definitely “no” there was no signal presented) was
used as the frequency of “no” responses and ratings of more than

TABLE 1 | The confidence rating scale used by the participants to respond to a mechanical or a cold stimulus trial.

1 2 3 4 5

Definitely “No” signal was not
presented

Probably “No” signal was not
presented

Not sure/
uncertain

Probably “Yes” a signal was
presented

Definitely “Yes” signal was
presented

TABLE 2 | The confidence rating scale used by the participants to respond to a chemical stimulus trial.

1 2 3 4

Definitely “No” signal was not presented Probably “No” signal was not presented Probably “Yes” a signal was presented Definitely “Yes” a signal was presented
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1 were accumulated as the frequency of “yes” responses which
would be similar to criterion 1 from the rating analysis. In the case
of the ‘strict criterion’, a rating of 5 (definitely “yes” there was a
signal) was used as the frequency of “yes” response (rating 4 for
chemical stimuli) and the ratings of less than 5 were cumulated as
the frequency of “no” responses which would be similar to
criterion 4 (criterion 3 for chemical) from the rating analysis.

The detection theory indices were analyzed using a mixed-
model analysis of variance (mixed-model ANOVA) (“lmerTest”
package (Kuznetsova et al., 2017)) and paired sample t-test in R.
The post-hoc/contrast analysis for the mixed models was
performed using the “psycho” package (Makowski, 2018a).
Several R packages were used in sorting, rearranging and
analyzing data, and in creating and exporting graphs (Lemon,
2006; Wickham, 2007; Wickham and Winston, 2011; Xie, 2012;
Hope, 2013; Bates et al., 2015; Wickham, 2016; Kuznetsova et al.,
2017; Makowski, 2018b; Pinheiro et al., 2019; Wickham and
Henry, 2019; Wickham and readxl, 2019; Kassambara, 2020;
Wilke, 2020; Harrell, 2021; Manuilova and Andre
Schuetzenmeister, 2021; Revelle, 2021; Wickman et al., 2021).
An alpha value of p ≤ 0.05 was assumed to be significant in all the
analyses conducted.

RESULTS

The mean (±SD) age group of the participants was 30 ± 7.44
(range: 19–50) years. Five participants were discontinued at
different stages of the study: Three discontinued due to
variable detection thresholds obtained while repeating the
AMOL and 2 participants discontinued due to high
threshold. As mentioned earlier, the detection theory
indices for all participants were calculated in two formats:
1) calculated using the cumulated rating data (for each rating)
and 2) calculated from each participant’s rating data. The
average detection thresholds for cold, mechanical, and
chemical stimuli were 26 ± 2.10 (ml/min at room
temperature), 29 ± 2.25 (ml/min at corneal temperature),
and 25 ± 2.30 (%).

Comparisons of detection theory indices between stimulus
types follow.

Detectability
The average (±SE) da of each stimulus type and intensity are listed
in Table 3. As mentioned earlier in the methods, the stimuli for
detection theory experiments were scaled based on the threshold
and the term “threshold” in detection theory experiments is used
to indicate the intensity of the stimulus and not the outcome of
the experiment. Since the detection theory parameters for the
chemical sub-threshold and 1.5x threshold intensity stimuli were
not evaluated, the statistical analyses were conducted
independently for each intensity level between stimulus types.
A paired sample t-test was conducted to compare the da between
cold and mechanical stimuli of sub-threshold and 1.5x threshold
intensity. The da’s of both sub-threshold and 1.5x threshold
intensity were not significantly different between the stimulus
types (p > 0.05). On the other hand, a mixed-model analysis was
conducted to compare the da’s between the stimulus types of
thresholds and 2× threshold intensity. The da’s of the threshold
intensity stimuli were not significantly different between the
stimulus types [F (2, 70) = 2.988, p = 0.057], though the box
plot showed a higher da for chemical stimuli in comparison to
cold and mechanical stimuli (Figure 3). The da’s of the 2×
threshold intensity were not significantly different between
stimulus types. A similar analysis for the Az also showed
similar comparisons as the da.

Within Stimulus Comparisons
Cold Stimulus
The ROC curves plotted using the cumulated ratings showed a
good separation in the da between the scaled stimulus
intensities (Figure 4). The ROC curve of cold sub-threshold
intensity stimuli was inverted, indicating a negative da. The
z-ROC curves for all stimuli were almost parallel to the chance
line and only the z-ROC of the sub-threshold intensity stimuli
was below the chance line similar to the ROC curve. The slopes
of the supra-threshold z-ROC were less than 1, but the curves
did not cross each other or other curves within the stimulus

FIGURE 2 | Example for the cumulated ratings to calculate group detection indices and draw group ROC curves.
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type. A mixed-model analysis was conducted to compare the da of
the cold stimuli between the intensities. A significant main effect of
stimulus intensity [F (3,130) = 29.91, p < 0.001] was observed for da
between the cold stimulus intensities (Figure 5). The contrast
analysis showed that the da of each intensity was significantly
different from the other. Similarly, the analysis of the area under

the curve was also found to be significantly different between the
intensities [F (3, 94.96) = 129.91, p < 0.001].

Chemical Stimulus
The ROC for the cumulated ratings of all participants showed
good separation between the das of the threshold and 2x threshold
intensity chemical stimuli (Figure 6). The slope of the z-ROC of
the 2× threshold intensity stimuli was parallel to the chance line,
whereas the slope was slightly less than 1 for threshold intensity
stimuli. A paired sample t-test was conducted, and a significant
difference was observed between the da’s of the threshold (0.97 ±
0.12) and 2× threshold (1.88 ± 0.16) intensity stimuli; t (35) =
−5.93, p < 0.001 (Figure 7). Similarly, the Az was also significantly
different between the two stimulus intensities [t (35) = −5.41, p <
0.001] (Figure 7).

Mechanical Stimulus
Similar to the cold and chemical stimuli, there was good
separation between the ROC curves of different stimulus
intensities (Figures 8, 9). The slopes of z-ROC were less
than one and the z-ROC of sub-threshold intensity crossed
the chance line. The mixed-model analysis showed that the
da’s of the mechanical stimuli were significantly different
between the intensities used in the experiment [F (3,100.92)
= 66.46, p < 0.001] (Figure 9). Az showed a similar significant
main effect of the intensities [F (3,100.63) = 60.96, p < 0.001]
(Figure 9).

TABLE 3 | Average (±SE) da for all three stimulus types and stimulus intensities.

SDT Parameters Stimulus intensity Cold (non-noxious) Mechanical (noxious) Chemical (noxious)

Detectability (da) (mean ± SE) Sub-threshold −0.15 ± 0.13 0.10 ± 0.14 NA
Threshold 0.66 ± 0.12 0.68 ± 0.11 0.97 ± 0.12
1.5× threshold 1.33 ± 0.17 1.57 ± 0.17 NA
2× threshold 1.90 ± 0.17 2.08 ± 0.19 1.88 ± 0.16

FIGURE 3 | Comparison of da between stimulus intensities and
stimulus types.

FIGURE 4 | ROC and Gaussian distribution for the cold stimuli. The green line represents the sub-threshold stimuli followed by orange (threshold), purple (1.5×
threshold), and pink (2× threshold). The black line (S0) in density functions represent the noise distribution.
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Criterion
Both c and lnβ were analyzed in this experiment but only the
results for lnβ are discussed due to the length of the
manuscript.

Cold Stimulus Criterion lnβ
Mixed-model analysis of lnβ also showed a significant main
effect of psychophysical criterion [F (3,95.94) = 15.34, p <
0.001] and stimulus intensity [F (3,104.83) = 32.50, p <
0.001]. A significant interaction was also observed between
the psychophysical criterion and intensity [F (9,285.85) =
51.59, p < 0.001] (Figure 10).

Mechanical Stimulus Criterion lnβ
There were significant main effects of psychophysical criterion [F
(3,105) = 49.44, p < 0.001] and stimulus intensity [F (3,101.64) =
7.56, p < 0.001] as well as a significant interaction between the
stimulus intensity and psychophysical criterion [F (9,304.08) =
38.38, p < 0.001] (Figure 10).

Chemical Stimulus Criterion lnβ
A significant main effect of psychophysical criterion was observed
[F (2,70) = 52.10, p < 0.001] along with a significant interaction
between the stimulus intensities and psychophysical criterion [F
(2,70) = 19.68, p < 0.001]. However, lnβ was not significantly
different between stimulus intensities (Figure 10).

FIGURE 5 | The da and Az transducer functions for cold stimuli. Each horizontal axis is stimulus intensity and in the left-hand panel, the y-axis is detectability (da) and
in the right-hand panel, the y-axis is area under the curve (Az). The points are the means and error bars are the SE of the estimates.

FIGURE 6 | ROC and Gaussian distribution for the chemical stimuli. The orange line represents the threshold stimuli followed by pink (2x threshold). The density
functions in black (s0) represent the noise distribution.
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DISCUSSION

The primary purpose of this experiment was to determine the
feasibility of conducting an MSDT experiment using painful and
cooling pneumatic ocular surface stimuli. We have shown that
SDT may be used in a yes/no experiment, but there were
drawbacks, some of which might be overcome if multiple
stimulus intensities and participants using multiple criteria
were possible (Jayakumar and Simpson, 2020). We showed
that this more complex experimental design was feasible:
Participants were able to concentrate during the experiments
and were very well-behaved sensory (Az and da) and criteria
(here, lnβ) metrics were reliably derivable (Jayakumar and
Simpson, 2020). Because of the results reported here,
additional predictor variables related to patient anxiety and
decision making could be studied and their effects on d’ and
lnβ evaluated1.

There were several results indicating the internal validity of the
data we found. Although this paper is primarily about the
feasibility of signal detectability (and in signal detection
theory, “thresholds” do not exist), the detection thresholds
(used in deriving stimulus intensities for the MSDT
experiments) obtained in this study were consistent with
previous studies that measured corneal detection thresholds
as a primary outcome measure (Feng and Simpson, 2003; Situ
et al., 2008; BasuthkarSundarRao and Simpson, 2014;
Jayakumar et al., 2015; Alabi and Simpson, 2020). In
addition, the MSDT data for pneumatic stimuli used in this
study followed the assumptions of SDT, which were evident in

the ROC curves and Gaussian distributions reported in the
results (Figures 4, 6, 8). The ROC curves obtained were well
behaved (with low residuals for each ROC line) for all stimulus
types and the curves (both in ROC and z-ROC space) for
intensities within each stimulus type did not overlap,
indicating independent detectabilities for the scaled
intensities. The z-ROC curves were almost parallel to the
chance (45°) line, indicating the adherence of the obtained
data to 1) Gaussian assumptions and 2) approximately equal
variance in basic signal detection theory. The das calculated
were similar using both cumulated rating data method and the
average of the individual detectabilities (Table 4). This
similarity in the da between the two methods indicates that
the group detectability can be computed either from individual
da’s or from group averaged da’s for ocular surface stimuli
scaled based on detection thresholds. These results collectively
point to the feasibility and internal (and face) validity of using
MSDT (with intensities scaled based on detection thresholds)
in analyzing the OSSP of the pneumatic stimuli.

Another metric of experimental feasibility is the number of
participants who could not complete the experimental protocol. It
is not useful if a substantial proportion of participants cannot do
the experiments, even if the data from (a smaller number of)
participants are well behaved. Two participants could not
complete all the experiments due to their high baseline
detection thresholds, and three participants could not
complete due to variable detection thresholds. Neither of these
groups of participants could not be used because of the signal
detection theory aspects of the experiments: They were excluded
because of the preliminary results, so considering the complex
and noisy nature of the OSSP system, the results were very
promising and clearly indicate the feasibility of these study
methods.

FIGURE 7 | The transducer function for da and Az of chemical threshold and 2x threshold stimuli. Each horizontal axis is stimulus intensity and in the left-hand panel,
the y-axis is detectability (da) and in the right-hand panel, the y-axis is area under the curve (Az). The points are the means and error bars are the SE of the estimates.

1Ocular Surface Sensory Processing and Signal Detection Theory, September 2021,
A PhD thesis presented by Varadharajan Jayakumar to the University of Waterloo.
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Detection Theory Indices
The da (obtained from ROC using cumulated data) of all three
stimulus types (the intensities of which were scaled based on
their respective detection thresholds), showed a systematic
increase with increase in the intensity of the stimuli. Such
behavior of these transducer functions was, of course,
expected: Similar increases in the average da have been
observed in the transducer functions in other senses (e.g.,
vision) (Nachmias, 1972). In addition, in this experiment,
although 2 of the 3 stimuli were nociceptive (mechanical and
chemical), as is apparent in Figures 5, 7, 9, there were no
differences between nociceptive and non-nociceptive
transducer functions.

lnβ showed a relatively complex dependency on the
psychophysical criterion and stimulus intensity, especially as
participant criterion increased. This complexity is somewhat
scientifically problematic, because, ideally, one might prefer bias
metrics should be approximately independent of stimulus intensity
and the interaction is a further complication. What this does,
however, is highlight the problem with psychophysical methods
that do not derive any criterion metric, such as traditional
Fechnerian methods. Detection thresholds combine sensory and
decision components, and they cannot be disambiguated. If, as we
show in our experiment, there are complex relationships between
intensity and criteria, then methods that cannot disentangle these 2
are more difficult to interpret.

Detectability
Stimulus detectability may be derived in several ways: Using each
hit rate (saying a stimulus was present when it was) and false
alarm rate (saying a stimulus was present when it was not) the
equations from individual/group data in the introduction may be
used. Using collections of hit rate and false alarm rate for each
criterion used, one might derive ROC curves from which
detectability may also be derived. In this work there were
consistent results that made it clear that it did not matter
what approach was used. The transducer functions and the
ROC curves all strongly pointed to the same conclusion that
there was a clear separation of threshold scaled stimuli for both

painful and cold corneal stimulation, again, pointing to the utility
of a reliable SDT detection metrics being obtainable using the
experimental design selected, as well as providing compelling
evidence of the external validity of our data. The results are
perfectly in line with several aspects of signal detection theory
that predict how detectability scales with intensity and how
criteria shift along ROC (iso-detection) curves.

We hypothesised that da derived using corneal pneumatic
stimuli would be different between the intensities and also, on the
basis of our earlier work (Tanelian and Beuerman, 1984), between
the stimulus types (nocimetric and non-nocimetric). SDT
proposes the sensory process as a continuous output,
detectability, that is a function of the separation of a noise
distribution and a signal-plus-noise distribution, unlike the
threshold theory that defines the stimulus as always detectable
once it crosses a threshold (and not detectable below threshold)
(Wickens, 2010). The change in the detectability with stimulus
intensity was evident in our experiment for each of the three types
of stimuli, something reported previously in other senses, e.g.,
(Tanner and Swets, 1954; Stromeyer et al., 1982; Stromeyer et al.,
1984). Since other ocular MSDT studies are not available for
comparison within the ocular somatosensory system, the human
response to similarly scaled stimulation might need to be
examined indirectly. Alabi and Simpson (Alabi, 2018; Alabi
and Simpson, 2019; Alabi and Simpson, 2020) observed a
dose-effect increase in the autonomic responses such as
redness, pupillary response, and accommodation for
pneumatic stimuli. Situ et al. (Situ and Simpson, 2010) also
reported an increase in the tearing response (using tear
meniscus height measurement) and these taken together point
to similar monotonic scaling of the human psychophysiological
response to painful and cooling corneal stimulation. We and
others have contributed reports of increases in ratings of
attributes of ocular surface stimulation with increasing
stimulus intensity in humans (Chen et al., 1995; Belmonte
et al., 1999; Acosta et al., 2001; Feng and Simpson, 2004; Situ,
2010; Wu et al., 2015; Situ et al., 2019). Our detectability results,
although with stimuli that are ‘circum-threshold’ or slightly
suprathreshold are, therefore, in line with other work in

FIGURE 8 | ROC, zROC, and Gaussian distribution for the mechanical stimuli. The green line represents the sub-threshold stimuli followed by orange (threshold),
purple (1.5x threshold), and pink (2x threshold). The black line (S0) in density functions represent the noise distribution.
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humans that show physiological and perceptual responses to the
stimuli we used without the complication of the effect of
participants’ criteria.

Figure 2 shows that there is a systematic increase in d’ with
increase in stimulus intensity. A cursory understanding might
suggest that this is nothing more than suprathreshold scaling [say
a manifestation of Stevens Power Law (Wickham and Henry,
2019)]. This is not that simplistic: In a suprathreshold scaling
experiment, an observer reports some value (derived using
magnitude estimation or another form of scaling) that
matches the subjective (perceived) intensity of the stimulus.
This has 2 components, an intensity component and a
criterion component. SDT methods enable a separation of this
scalar value into a vector with 2 pieces, the sensory and the
decision component. Detectabilty is one of those components and
is not “simply” related to a suprathreshold score, because it
acknowledges (and is mathematically derived from) the
experimental fact that it (d’) includes scores related to the
absence as well as the presence of the stimulus. The
interpretation that this then somehow is just the same as the
suprathreshold scaling ignores another primary observation we
made: The decision component also is a function of stimulus
intensity (in a more complicated way as is shown by the
interaction with stimulus intensity in Figure 9). Finally, we
used a subthreshold stimulus for mechanical and cooling
stimuli, that when using conventional suprathreshold methods
could simply not be feasible since it would not be perceived by the
observer for themajority of the stimulus presentations. Because of
the multiple criterion method used, this extremely low stimulus
intensity did not detract from what was feasible experimentally
and so detectability and criteria metrics were derived as expected
from SDT. Finally, it should be pointed out how badly behaved
some suprathreshold scaling functions actually are, with many

saturating and inverted perceived intensity vs. stimulus intensity
functions, illustrating that suprathreshold scaling methods used
do not always result in outcomes that are as might be predicted
physiologically.

Physiological Interpretations
These results were almost perfectly in accordance with signal
detection theory. The basic physiological implications are therefore
fairly direct. The distribution of firing frequency of quiescent sensory
neurons is Gaussian and against that distribution, decisions about
sensory stimulation are made–is the Gaussian distribution of firing
frequency of the stimulated (ocular surface) neuron (or system of
neurons) different from that when there is no noise. In the context of
the effect of a drug on the eye that alters this process, there are a
number of ways to affect the outcome. In the first place, the
distribution of the noise could be altered, either by reducing
spontaneous firing or changing (reducing) the variance of the
noise distribution. In these instances, a criterion stimulus would
be more detectible (something not necessarily desirable if the eye is
already uncomfortable). If it were desirable to reduce the effect of a
painful/unpleasant stimulus, the drug could affect the stimulated
distribution by reducing the firing frequency or altering the firing
frequency variability so that detectability was lowered. Another
possibility is to alter the decision so that the detectability is
unchanged, but the firing frequencies are interpreted in a more
conservative way, say, so that the observer patient is either less likely
to call a criterion stimulus a stimulus (i.e., report that it is absent) or
be less certain about the presence of a painful/uncomfortable
stimulus. This is not to say that different from the interpretation
of work on placebos using signal detection theory (Clark, 1969;
Rollman, 1977; Allan and Siegel, 2002). This, of course, would imply
more central acting and not peripheral acting pharmacological
activity. This dichotomy of action based on detection theory is in

FIGURE 9 | The transducer function for da and Az of mechanical stimuli. Each horizontal axis is stimulus intensity and in the left-hand panel, the y-axis is detectability
(da) and in the right-hand panel, the y-axis is area under the curve (Az). The points are the means and error bars are the SE of the estimates.
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FIGURE 10 | Loglikelihood ratio for cold, mechanical, and chemical stimulus. Each horizontal axis is stimulus intensity and vertical axis is lnβ. The points are the
means and error bars are the SE of the estimates. The lines indicate different criteria.

TABLE 4 | Comparison of da obtained using cumulated and individual rating data.

Stimulus type Stimulus intensity da using cumulated
rating data

Average da calculated
from the da

of each participant

Cold Sub-threshold −0.46 −0.15 ± 0.13
Threshold 0.40 0.66 ± 0.12
1.5× threshold 1.17 1.33 ± 0.17
2× threshold 1.77 1.90 ± 0.17

Mechanical Sub-threshold 0.03 0.10 ± 0.14
Threshold 0.55 0.68 ± 0.11
1.5× threshold 1.43 1.57 ± 0.17
2× threshold 2.11 2.08 ± 0.19

Chemical Threshold 0.87 0.97 ± 0.12
2× threshold 1.99 1.88 ± 0.16
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line with the model of pain processing being a combination of a
sensory/intensity dimension with an affective motivational
modulation aspect (Williams and Craig, 2016). The simple clinical
relevance of both the sensory and criteria metrics is however yet to be
explored, as this work was a test of basic detection theory concepts. In
particular, the measurement of bias is important, but more testing is
also needed to evaluate ways to control/manipulate bias before it can
be routinely applied in clinical measurements.

Limitations
There were a few instruments and psychophysical method
related limitations in this experiment. The instrument related
limitations were the Belmonte esthesiometer’s stimulus range
and the time taken to prepare the chemical stimuli. The
Waterloo Belmonte esthesiometer has a reliable stimulus
flow rate range of 10–200 ml/min. In addition, the
maximum concentration of added CO2 in chemical stimuli
can be only 100%. Since the MSDT experiment has stimuli of
intensities at the detection threshold, as well as sub-threshold
(0.5x detection threshold) and supra-threshold (1.5x and 2x
detection threshold) levels, limitations arose when the scaled
intensities fell outside the stimulus range available. For
example, if the participant had a high chemical detection
threshold of 70%, both supra-threshold intensities (105 and
140%) are outside the physical range of concentrations
possible. Similarly, if the participant had a high mechanical
detection threshold of 115 ml/min, the 2× supra-threshold
(230 ml/min) stimuli would be outside the stimulus range
available from the Waterloo Belmonte instrument. The 2 of
41 participants with these high detection thresholds were
excluded from the experiment.

Another limitation of our esthesiometer was the time taken
between chemical stimuli to purge the esthesiometer delivery
tubes for each subsequent stimulus. To keep each stimulus-type
experiment approximately the same duration, we used fewer
chemical intensities and fewer chemical trials and were then
able to keep an approximately constant stimulus probability
across nocimetric and non-nocimetric stimulus types. The
number of ratings were also reduced to minimize rating
categories with no responses. A therefore unavoidable
(obvious) consequence of these changes was observed in the
analysis when detection indices were compared between stimulus
types due to the difference in the number of ratings and number
of intensities between stimulus types. Although complicating the
inferences that could be made because of the unbalanced design,
this did not influence our ability to compare stimulus types,
however.

The training was provided to participants to familiarize them
with the experimental set-up, the audio prompts during the

experiment, and how to use the response button box.
Participants were also instructed about different intensities
before the MSDT trials. Because of the inclusion of (separate)
anxiety measurement (Wickham, 2016) between experiments,
feedback was not provided after each response; part of the
experiment was to monitor anxiety change during the
experiment. Future work may be needed to evaluate the exact
effect of more extensive training and the effects of perceptual
learning on the sensory and decision metrics used in this
experiment as well as whether feedback would affect the
results reported here.

In conclusion, we showed 1) MSDT is feasible for analyzing
ocular surface sensory processing and 2) detectability and bias
may be reliably extracted when using pneumatic stimuli.
Specifically, detectability (da) of scaled threshold intensities
systematically increases and the bias psychophysical criterion
(lnβ) systematically varies with stimulus intensity. In humans,
during ocular surface processing of noxious and non-noxious
pneumatic stimulation, detectability and criteria vary
systematically with stimulus intensity, a result that cannot
be derived using classical psychophysics.
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Title: P2x7 Receptor Activation and
Estrogen Status Drive
Neuroinflammatory Mechanisms in a
Rat Model for Dry Eye
David A. Bereiter*, Mostafeezur Rahman, Fabeeha Ahmed, Randall Thompson,
Nhungoc Luong and Julie K. Olson

Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States

Dry eye disease (DED) is recognized as a chronic inflammatory condition with an
increase in tear osmolarity and loss of tear film integrity. DED is often accompanied by
adverse ocular symptoms which are more prevalent in females than males. The basis
for ocular hyperalgesia in DED remains uncertain; however, both peripheral and central
neural mechanisms are implicated. A model for aqueous deficient DED, exorbital gland
excision, was used to determine if activation of the purinergic receptor subtype 7,
P2X7R, expressed by non-neural cells in peripheral and central trigeminal nerve
pathways, contributed to persistent ocular hyperalgesia. Densitometry of trigeminal
brainstem sections revealed increases in P2X7R, the myeloid cell marker Iba1, and the
inflammasome, NLRP3, of estradiol-treated DED females compared to estradiol-
treated sham females, while expression in DED males and DED females not given
estradiol displayed minor changes. No evidence of immune cell infiltration into the
trigeminal brainstem was seen in DED rats; however, markers for microglia activation
(Iba1) were increased in all groups. Isolated microglia expressed increased levels of
P2X7R and P2X4R, IL-1β (Ιnterleukin-1β), NLRP3, and iNOS (nitric oxide synthase).
Further, estradiol-treated DED females displayed greater increases in P2X7R, IL-1β
and NLRP3 expression compared to untreated DED females. Orbicularis oculi muscle
activity (OOemg) evoked by ocular instillation of hypertonic saline (HS) was recorded as
a surrogate measure of ocular hyperalgesia and was markedly enhanced in all DED
groups compared to sham rats. Systemic minocycline reduced HS-evoked OOemg in
all DED groups compared to sham rats. Local microinjection in the caudal trigeminal
brainstem of an antagonist for P2X7R (A804598) greatly reduced HS-evoked OOemg
activity in all DE groups, while responses in sham groups were not affected. Intra-
trigeminal ganglion injection of siRNA for P2X7R significantly reduced HS-evoked
OOemg activity in all DED groups, while evoked responses in sham animals were not
affected. These results indicated that activation of P2X7R at central and peripheral sites
in trigeminal pain pathways contributed to an increase in ocular hyperalgesia and
microglia activation in DED males and females. Estrogen treatment in females further
amplified ocular hyperalgesia and neuroimmune responses in this model for aqueous
deficient DED.
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INTRODUCTION

Dry eye disease (DED) is a chronic inflammatory condition
that is influenced by multiple intrinsic and external factors
(Craig et al., 2017; Pflugfelder and Paiva 2017). Persistent
adverse symptoms are the main reasons patients seek medical
attention for DED (Rosenthal et al., 2009; Galor et al., 2015)
which can range from a sense of ocular dryness to severe pain
(Begley et al., 2001; Kalangara et al., 2017). Management of
ocular symptoms in moderate to severe cases of DED is often
inadequate (Asbell and Spiegel 2010; Williamson et al., 2014;
Siedlecki et al., 2020). Although considerable progress has
been made in the diagnosis of DED (Wolffsohn et al.,
2017), the neural mechanisms that mediate ocular
hyperalgesia are not well defined. It is widely accepted that
most chronic pain conditions involve both peripheral and
central neural mechanisms (Baron et al., 2013; Grace et al.,
2021); however, studies concerned with the mechanisms of
adverse symptoms in DED have emphasized peripheral factors
(Belmonte et al., 2017). Peripheral biomarkers alone are not
sufficient to predict the intensity of adverse ocular symptoms
(Bron et al., 2014; Sullivan 2014) suggesting that CNS as well as
peripheral neural mechanisms are involved.

Neuroimmune interactions are critical for the maintenance
of inflammatory and neuropathic pain (Ji et al., 2016; Hore and
Denk 2019). Tear hyperosmolarity is a prominent diagnostic
feature of DED which is thought to trigger ocular infiltration of
immune cells in a “vicious cycle” resulting in chronic
inflammation (Baudouin et al., 2013). Tears of DED
patients contain elevated levels of pro-inflammatory
cytokines and adenosine triphosphate (ATP) (Guzman-
Aranguez et al., 2017; Willcox et al., 2017). ATP released
from injured cells enhances inflammation and immune
responses through activation of the purinergic receptors
such as P2X7R (Burnstock 2016; Di Virgilio et al., 2017).
Disruption of P2X7R markedly reduces behavioral
correlates of inflammatory and neuropathic pain in animals
(Chessell et al., 2005), while mutations of the P2X7R gene
significantly influence pain intensity in humans (Sorge et al.,
2012; Kambur et al., 2018). P2X7R is highly expressed by
several immune cell types, while expression by neurons
remains controversial (Kaczmarek-Hajek et al., 2018). In the
trigeminal sensory system, P2X7R is expressed by satellite glia
which surround trigeminal ganglion (TG) neurons
(Nowodworska et al., 2017; Inoue and Tsuda, 2021) and by
microglia in the trigeminal brainstem (Ito et al., 2013). The
threshold concentration of ATP necessary for P2X7R
activation is higher than for other ionotropic purinergic
receptors consistent with a role during moderate to severe
inflammatory conditions. P2X7R activation is critical for
assembly of the inflammasome, NLRP3, which through
caspase-1 activation is necessary for IL-1β production and
release by glia and immune cells (Burnstock 2016; Di Virgilio
et al., 2017).

Women are diagnosed with DED more often and display
more severe ocular symptoms than men (Sullivan et al., 2017;
Vehof et al., 2018); however, the basis for sex differences in
symptomatic DED remains unresolved. In an animal model for
aqueous deficient DED, female mice displayed greater
nociceptive and anxiety-like behaviors than males (Mecum
et al., 2020). Estrogen status has long been recognized as a
contributing factor for sex differences in pain behavior
(Amandusson and Blomqvist 2013). While sex differences
in microglia activation have been reported (Guneykaya
et al., 2018), the relative contributions of activated
microglia in male and female animals to pain processing are
not well defined (Sorge et al., 2015; Taves et al., 2015; Lopes
et al., 2017; Fernandez-Zafra et al., 2019). The present study
tested the hypothesis that elevated estrogen status in
ovariectomized (OvXE) female rats is a significant factor in
mediating microglia activation and evoked orbicularis oculi
muscle activity (OOemg) in a model for aqueous deficient
DED. These results demonstrated that activation of P2X7R at
peripheral and central sites in trigeminal pain pathways played
a significant role in mediating neuroimmune responses and
ocular hyperalgesia in DED.

MATERIALS AND METHODS

Animals. A total of 288 adult male, ovariectomized female
(OvX) and estradiol-treated OvX female (OvXE) rats
(250–350 g, Sprague-Dawley, Harlan, Indianapolis, IN) were
used in these experiments. OvXE rats were given a single bolus
injection of estradiol (E2, 30 μg/kg, sc) the day before tissue
collection or muscle recording to simulate the proestrus surge
in estrogens in normal cycling rats (Naftolin et al., 1972). The
estrogen status of female rats was determined on the day of the
experiment by vaginal cytology. Vaginal lavage samples from
OvX rats contained small nucleated leukocytes, while samples
from OvXE rats displayed mainly large nucleated epithelial
cells consistent with low and high estrogen conditions,
respectively. Animals were housed in pairs and given access
to food and water ad libitum. Climate and lighting were
controlled (25 ± 2°C, 12:12-h light/dark cycle, light on at 7:
00 a.m.). The animal protocols were approved by the
Institutional Animal Care and Use Committee of the
University of Minnesota (United States) and according to
guidelines set by The National Institutes of Health Guide
for the Care and the Use of Laboratory Animals (PHS Law
99-158, revised 2015).

Exorbital gland excision. Rats were anesthetized with
isoflurane (5%) and the overlying masseter muscle was
exposed. A small skin incision was made over the masseter
muscle to remove the left exorbital gland. The wound margin
was treated with 2% xylocaine gel and the incision was closed
with absorbable sutures. The gland was exposed in sham rats
but was not removed. Carprofen (25 mg/kg, i.p) was given as a
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single dose after surgery. Rats survived for 2 or 14 days after
gland removal for experiments that involved tissue collection
and cellular and molecular analyses. Orbicularis oculi muscle
recording was preformed 14 days after surgery.

Tear Volume and Orbicularis Oculi Muscle
Electromyography (OOemg) Recording.
Rats were anesthetized with urethane (1.2–1.5 g/kg, ip) and
spontaneous tear volume was measured by the increase in wet
length of phenol red thread (ZONE-QUICK, Menicon INC., San
Mateo, CA) at 14 days after surgery. The thread was gently placed
in contact with the cornea/conjunctiva at its inferior-lateral edge
and tear volume was measured over 2 min. Following tear volume
measurement, a cannula was positioned in the left femoral artery
to monitor mean arterial blood pressure and was maintained at
90–110 mmHg. Wound margins were infiltrated with 2%
lidocaine and body temperature was kept at 38°C with a
heating blanket. Rats were allowed to breathe spontaneously.
The rat was placed in a stereotaxic frame and Teflon-coated
copper wires (0.12 mm diameter) were implanted by a 26-gauge
needle near the center of the upper and lower OO muscles,
proximal to the lid margins, and grounded by a wire inserted in
the neck muscle and at least 1 h elapsed before recording began
(Rahman et al., 2017).

OOemg activity was sampled at 1,000 Hz, amplified (x10 k),
filtered (bandwidth 10–300 Hz), displayed and stored offline
(ADInstruments, Colorado spring, CO, United States). OOemg
activity was recorded continuously for 6 min from 3 min before
(baseline activity) until 3 min after stimulus onset. Recorded
activity was rectified and stored as 1 s bins for off-line
analyses. Total OOemg activity was calculated initially from
the raw signal and the integrated area under the curve (AUC)
for the 3 min epoch (μV-s per 3 min) sampled after each stimulus
minus the 3 min epoch recorded immediately prior to
stimulation. Ocular surface stimulation consisted of instillation
of normal saline (0.15M NaCl) and hypertonic saline (HS) in
concentrations of 1 and 2.5 M NaCl. Previously we determined
that HS-evoked total OOemg activity consisted mainly (>90% of
total) of a period of long duration activity (>200 ms) and a minor
contribution from short duration (<200 ms) and that total
OOemg activity was a valid measure of ocular hyperalgesia in
a rat model for DED (Rahman et al., 2017; Bereiter et al., 2018).

Effects of Drug Treatments on OOemg
Activity
OOemg and systemic minocycline. The non-specific anti-
inflammatory agent and glial cell inhibitor, minocycline,
was given systemically (40 mg/kg, ip) for 4 days prior to
recording (four to five rats per group). At 14d after gland
removal (4 days after the onset of minocycline treatment) rats
were prepared for OOemg recording as detailed above. OOemg
activity was evoked by ocular instillation of normal saline
(0.15M) followed by increasing concentrations of HS (1.0,
2.5 M) applied at 30 min intervals. Each solution remained
on the eye for 3–4 min before rinsing with artificial tears.

Although the highest osmolar concentrations of HS used in
this study was greater than that reported to evoke pain
sensation in humans (Liu et al., 2009) or squint-like
behavior in conscious rats (Yorek et al., 2016) (600–1,000
mOsm (by sucrose) versus 900-2200mOsM (by NaCl),
respectively), we found that brief repeated application of
these higher HS concentrations did not induce
desensitization or tachyphylaxis of evoked OOemg activity.

OOemg and local inhibition of purinergic P2X7R in trigeminal
brainstem. Rats were prepared for OOemg recording (10 rats per
group) as noted above. Next the dorsal surface of the caudal
brainstem was exposed surgically to allow microinjection of the
selective P2X7 receptor antagonist, A804598 (10 μM, 0.2µL,
Tocris) into trigeminal subnucleus caudalis (Vc) ipsilateral to
the ocular stimulus. OOemg activity was evoked by ocular
instillation of 2.5 M NaCl before drug injection. After 20 min
A804598 or vehicle (PBS) was injected into Vc and 2.5M NaCl
was applied to the ocular surface at 10, 30 and 50 min after drug
injection. Drugs were prepared fresh each day. In separate
animals, A804598 (10 mg/kg, sc) was given daily for 4 days
and then the trigeminal brainstem was removed to determine
the effects of drug treatment on markers for microglia activation
in sham and 14 days DED rats.

OOemg after intra-trigeminal ganglion (TG) injection of
siRNA for P2X7R. Rats were anesthetized with pentobarbital
sodium (50 mg/kg, i.p) and maintained with isoflurane
(1–2%). The animals were placed in a stereotaxic apparatus,
the scalp was exposed, and a hole was drilled into the left
parietal bone (3.5–4 mm anterior to the auricle and 3–4 mm
lateral to the midline, and 8 mm below the cortical surface).
The siRNA solution (600 μg, 200 nL, Stealth RNAi for P2X7R,
RSS-310828 #83546611, validated by Invitrogen, Carlsbad,
CA) or the Stealth RNAi negative control (#12935112, lot
857,979, Invitrogen), was injected into the left TG ~10 days
after exorbital gland removal via a 33-gauge needle inserted
through a 26-gauge guided cannula positioned stereotaxically
and was kept in position at least 10 min after the injection to
minimize leakage. The wound margin was closed with sutures
and povidone-iodine solution was applied to the wound area.
A single dose of carprofen (25 mg/kg, i.p) was injected in each
animal to minimize post-surgical pain. Animals survived for
3 days after the intra-trigeminal ganglion injection
(i.e., 10 days after gland removal). OOemg activity was
evoked by ocular instillation of normal saline (0.15M)
followed by increasing concentrations of HS (1.0, 2.5 M)
applied at 30 min intervals. Each solution remained on the
eye for 3–4 min before rinsing with artificial tears. At end of
the recording session the TG and spinal trigeminal brainstem
(Vsp) were removed and prepared for protein analyses by
western blot. P2X7R protein levels were measured in TG
samples to confirm transcription knockdown, while Iba1
was measured in Vsp samples to assess the effects on
microglia actvation.

Immunohistochemistry. Male, OvX and OvXE rats (sham,
2 days, 14 days-post surgery, four rats per group) were
anesthetized with pentobarbital (70 mg/kg) and then
perfused with phosphate buffered saline (PBS) followed by
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4% paraformaldehyde (PFA). The caudal brainstem was
removed and placed in PFA overnight at 4°C. Transverse
tissue sections were cut at 30µm on a vibratome and free-
floating sections were blocked for 1 h (PBS, 0.1% Triton X-100,
1% donkey serum) and then incubated overnight at 4°C with
primary antibodies (Ab) at 1:1,000 dilution for microglia (Iba-
1, MABN92, Millipore), P2X7R (APR004, Alomone), NLRP3
(orb101128, Biorbyt) and GFAP (ABnova MAB10760, Walnut,
CA, 1:500). Sections were washed in PBS (3 × 5 min) and
incubated in secondary Ab (donkey antirabbit IgG biotin,
AP182B, Millipore) for 90 min. Staining was visualized by
Vector ABC compound (ABC kit, PK-4000, peroxidase
standard) for 1 h at room temperature and color developed
with diaminobenzidine tetrahydrochloride (peroxidase
substrate, SK-4100) for 90 s. Sections were washed, air dried
and mounted. Stained sections from sham and 14d DED rats
were analyzed by light microscopy (Olympus BX51) at 10X
magnification and quantified by densitometry (4 sections/rat)
using ImageJ software. Controls for immunohistochemistry
were processed by incubating sections without primary
antibodies. Sections were analyzed ipsilateral to exorbital
gland removal without prior knowledge of treatment.
Immunofluorescence. Briefly, representative examples of
trigeminal brainstem tissues were paraffin embedded and
cut at 20 µm on a microtome. Sections were dewaxed,
hydrated and stained with primary antibodies at a 1: 300
dilution: anti- P2X7 Cell Signaling # 13,809, Danvers, MA;
anti-Iba-1, Millipore #MABN92, Temecula, CA; anti- NLRP3/
Cryopyrin, Biorbyt #101128, St. Louis, MO). Sections were
rinsed and incubated with appropriate secondary antibodies at
1:500 dilution: anti rabbit CY5 or anti-mouse CY2, Jackson
Immunoresearch #s 711-175-152 and 715-226-151, West
Grove, PA. Images were captured using a Zeiss LSM700
confocal microscope with 40 × objective.

Western Blot. Aliquots of protein (20 µg) were run on 4–20%
polyacrylamide gels, transferred to 0.45 µm membranes, and
incubated with anti- P2X7R antibody (1-1,000 dilution, Cell
Signaling, #13809, Danvers, MA. Anti- GAPDH was used as
normalizing antibody (1, 1:000 dilution, Sigma Chemical, #
WH0002597M1, St. Louis MO). Secondary antibodies were
IRDye 800CW anti-mouse and IRDye 680RD anti-rabbit, 1-
15,000 dilution, LICOR, Lincoln NE. Membranes were scanned
on LICOR Odyssey infrared scanner.

Flow cytometry.Rats were anesthetized and perfused through the
heart with PBS, and the spinal trigeminal brainstem (Vsp), which
included subnucleus oralis (Vo), interpolaris (Vi) and caudalis (Vc)
regions, was dissected (3 rats per group). The tissue samples were
minced and digested with collagenase type IV (Invitrogen) and
DNAse (Invitrogen) for 30min at 37°C. The tissue was then
dissociated through nylon mesh before the mononuclear cells
were separated on a 70/30 percoll gradient. The mononuclear
cells were washed with FACS buffer (PBS with 5% normal goat
serum) and blocked with antibody to CD16/32 (BD Bioscience) at
4°C for 30 min and then incubated for 45 min at 4°C with
fluorescently labeled antibodies specific for CD45, CD11b, CD8,
and CD4. The cells were analyzed on a FACScalibur (BDBioscience)
based on live cells. The CD45 intermediate CD11b+ cells were

resident microglia, and the CD45 high cells were analyzed to
determine the number of macrophage (CD11b+), CD4+ T cells,
and CD8+ T cells.

Cell sorting. Rats were perfused with PBS, and the Vsp,
which included Vo, Vi and Vc subnuclei, was dissected. The
brainstems were used in Neural Tissue Dissociation Kit (P)
following the protocol. The resulting cells were separated on a
70/30 percoll gradient. The mononuclear cells were incubated
with CD11b+ microglia MicroBeads (Miltenyi) and separated
on a column to obtain a specific population of microglia. The
isolated microglia were >99% pure based on flow cytometric
analysis.

RNA isolation and quantitative real time PCR (qRT-PCR).
RNA was isolated from microglia using SV Total RNA
Isolation kit which contains a DNAse reaction (Promega).
First strand cDNA was generated from 1 μg of total RNA using
oligo (dT)12-18 primers and Advantage for RT-PCR kit in a
final volume of 100 μL (Clontech). qRT-PCR was conducted in
triplicate with Rotor-Gene SYBR green RT-PCR kit (Qiagen).
Briefly, 0.5μM primers, 1X SYBR Green reagent, and 2μL of
cDNA were combined in 10μL reactions. The primers were
specific for β-actin, IL-1β, TNFα, NLRP3, iNOS, BDNF, and
TLR4. qRT-PCR was conducted on a Rotor-Gene Qiagen Q
instrument using hot start with cycle combinations, 40 cycles:
95°C for 15s; 60°C for 20s; 72°C for 15s, followed by a melt from
75 to 95°C. Quantitation of the mRNA was based on standard
curves derived from cDNA standards for each primer pair.
Specific mRNA expression was normalized to β-actin
expression.

Experimental Design and Statistical
Analysis
Figure 1 Flow cytometry data were collected from three rats
per group. The percentages in the quadrants were based on
total mononuclear cells isolated from the trigeminal brainstem
using flow cytometry software by FCS Express. Figures 2, 3, 5.
Densitometry data was calculated from four sections per rat (4
rats per group) and expressed as percent positive area. Sections
were analyzed without prior knowledge of treatment. Values
were compared by one-way analysis of variance (ANOVA)
corrected for repeated measures (GraphPad Prism v. 9) on one
factor and individual group differences assessed by Tukeys or
by Neuman-Keuls. The data were presented as mean ± SEM.
Figures 4, 6, 9. Microglia were isolated from the Vsp (8 rats per
group). Significant differences were determined by one-way
ANOVA and Bonferroni’s multiple comparison test based on
values from sham rats of the corresponding treatment group.
The data were presented as mean ± SEM. Figures 7, 8, 10.
Total OOemg activity was assessed by two-way ANOVA
(GraphPad Prism v. 9) and corrected for repeated measures
on one factor. Significant treatment effects were assessed by
Tukey’s or Newman-Keuls after ANOVA. The data were
presented as mean ± SEM and the significant level set at
p < 0.05, n = 5-6 rats per group. Sample size was based on
results from previous studies (Rahman et al., 2017; Bereiter
et al., 2018), which we calculated would provide 80% power at
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p < 0.05. Three female rats were excluded from further analysis
due to low blood pressure at the time of recording. The
experiments used sham and DED rats and selected in
random order. Figure 11. Protein levels for Iba1 were
quantified in Vsp samples from OvX rats by densitometry
(4 rats per treatment group) and analyzed by ANOVA.

RESULTS

Tear Volume After Exorbital Gland Removal
Male, OvX and OvXE rats displayed no signs of ocular hyperemia
or inflammation and gained weight normally over the 14 days
after exorbital gland excision. Although fluorescein staining was

FIGURE 1 | Peripheral immune cells do not infiltrate the brainstem during DED. Male, OVX, andOVXE rats had the left exorbital gland removed or were sham treated
(A,D,G) (3 rats per group). At 2 days (B,E,H) and 14 days (C,F,I) post-surgery, rats were perfused with PBS and brainstem tissue was dissociated with trypsin and
collagenase prior to separation on a 70/30 percoll gradient. The mononuclear cells were incubated with fluorescently labeled antibody for CD45 and CD11b. The cells
were analyzed by flow cytometry gating on live cells. The infiltrating monocytes/macrophage identified as CD45highCD11b+ and microglia identified as
CD45intermediateCD11b+. The percentage in each quadrant is based on total mononuclear cells isolated from the brainstem. These dot plots represent data from one of
three independent repeated experiments. The total number of microglia (CD45intermediateCD11b+) (J) and monocytes/macrophage (CD45HighCD11b+) (K) were
calculated for each of the three experiments and combined in the graphs (J,K). N = 3 rats per group.
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FIGURE 2 |Microglia are activated in the Vsp during DED and express Iba-1. Male, OVX, and OVXE 14 days DED rats (B,D,F) and sham rats (A,C,E)were perfused
with 4%PFA, fixed and brainstem sections stained with anti-Iba1 (red) and dapi (blue). Themicrographic examples are of trigeminal subnucleus caudalis (Vc). Scale bar =
80 µm. (G)Densitometry was conducted on light microscopy-stained sections from Vo, Vi, Vc regions using ImageJ on four sections per rat with four rats/group (mean ±
SEM). Abbreviations: Ms, male sham; Md, male DED; OvXs, OvX sham; OvXd, OvX DED; OvXEs, OvXE sham; OvXEd, OvXE DED. *p < 0.05, **p < 0.01 versus
sham group. (H) Shaded areas represent regions of trigeminal brainstem that were sampled. N = 4 rats per group.
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FIGURE 3 |Microglia express P2X7R in the Vsp during DED. Male, OVX, and OVXE 14 days DED rats (B,D,F) and sham rats (A,C,E) were perfused with 4% PFA,
fixed and brainstem sections stained with anti-Iba1 (red) and dapi (blue). The micrographic examples are of trigeminal subnucleus caudalis (Vc). Scale bar = 80 µm. (G)
Densitometry was conducted on Vo, Vi, Vc regions using ImageJ (mean ± SEM). Abbreviations: Ms, male sham; Md, male DED; OvXs, OvX sham; OvXd, OvX DED;
OvXEs, OvXE sham; OvXEd, OvXE DED. *p < 0.05 versus sham group. (H) Shaded areas represent regions of trigeminal brainstem that were sampled. N = 4
sections per rat and four rats/group.
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not performed here, others have used very similar methods for
exorbital gland excision and reported no significant change in
staining for at least 4 weeks (Meng et al., 2015). Resting tear
volume was measured in 90 rats (sham, n = 45; DED, n = 45). At
14 days after surgery, the tear volume across all DED groups
averaged 8.6 ± 0.2 mm/2 min (mean ± SEM) ipsilateral to gland
removal and 19.3 ± 0.2 mm/2 min (mean ± SEM) in the
contralateral eye (F1,88 = 423, p < 0.001). In sham rats, tear
volume averaged 18.9 ± 0.2 mm/2 min from the left and right
eyes. There were no significant sex differences in tear volume for
sham or DED groups (p > 0.1).

Microglia Activation in the Trigeminal
Brainstem During DED
To determine whether DED was associated with an infiltration of
immune cells into the trigeminal brainstem, the spinal trigeminal
nucleus (Vsp), which included subnucleus oralis (Vo),
interpolaris (Vi) and caudalis (Vc), was dissected from male,
OvX, and OvXE rats at 2 days or 14 days post-surgery or
following sham surgery. After dissociation the mononuclear
cells were isolated and then incubated with fluorescently
labeled antibodies to CD11b and CD45 prior to analysis by
flow cytometry. Peripheral immune cells express high levels of
CD45 while microglia express intermediate levels of CD45.
CD11b is present on peripheral monocytes/macrophage and
microglia. No infiltrating immune cells (CD45 high cells) were
seen in samples from sham groups based on CD11b+ and CD45
intermediate expression. Similarly, samples collected at 2 days or
14 days from DED male, OvX, and OvXE rats also had only
resident microglia in the brainstem and no evidence of infiltrating
immune cells (Figure 1).

Immunohistochemistry (IHC) and densitometry was used to
determine if resident microglia in the Vsp were activated in DED
rats. The Vsp was removed from sham and 14 days DED male,
OvX and OvXE rats. The tissue was fixed, sectioned, stained with
anti-Iba-1 and analyzed by confocal microscopy and
densitometry for activation of microglia (Figure 2). Overall
treatment effects indicated differences between sham and DED
rats (F5,22 = 3.11, p < 0.05). Individual comparisons revealed that
microglia at Vo, Vi and Vc levels of Vsp from OvXE rats had a
higher expression of Iba1 at 14 days post-surgery compared to
OvXE sham rats (p < 0.05), while only marginal changes were
seen in OvX and males at 14 days post-surgery (Figure 2G).
These results suggested that high estrogen status and loss of tear
volume interact to enhance microglia activation in the Vsp.

Purinergic P2X7 receptors (P2X7R) are primarily expressed by
microglia, the predominant immune competent cell in the CNS,
and bind ATP released by injured or stressed neurons to promote
expression of cytokines and effector molecules. The effect of DED
on P2X7R expression in the Vsp was determined by IHC and
densitometry of light microscopy-stained sections (Figure 3G).
Note that the fluorescent-stained sections in Figure 3 represent
examples only. Overall treatment effects indicated a significant
difference for P2X7R between sham and DED rats (F2,22 = 3.25,
p < 0.025). Individual comparisons revealed that P2X7R at Vo
and Vc from OvXE rats had a higher expression at 14 days post-

surgery compared to OvXE sham rats (p < 0.05), while P2X7R
expression was not significantly different between OvXE and
either OvX or males at 14 days post-surgery (Figure 3G). The
expression levels of P2X7R in Vsp subnuclei of OvX and male
DED rats were not significantly different from the corresponding
sham groups. To determine whether gland removal specifically
affected microglia expression of purinergic receptor subtypes,
microglia were isolated from whole Vsp from male, OvX, and
OvXE rats at 2 and 14 days post-surgery and from sham controls
by cell sorting and then analyzed for the expression of P2X7R and
P2X4R by real-time PCR (Figure 4). The expression of P2X4R
was increased in 2 days and 14 days DED rats in all the groups

FIGURE 4 | Microglia express purinergic receptors in an estrogen
dependent manner during DED. Male, OVX, and OVXE rats had the left
exorbital gland removed or were sham treated and at 2 and 14 days post-
surgery, rats were perfused with PBS, trigeminal brainstem was
removed and tissue dissociated prior to separation on a 70/30 percoll
gradient. The mononuclear cells were incubated with fluorescently labeled
antibody for CD45 and CD11b. The microglia were sorted on a cell sorter
based on CD45intermediateCD11b+ cells. The isolated microglia were lysed,
RNA isolated, converted to cDNA, and analyzed by real time PCR for
expression of (A) P2X4, (B) P2X7. Significant differences were determined by
one-way ANOVA and Bonferroni’s multiple comparison test (*p < 0.001)
based on sham rat microglia for the corresponding group (mean ± SEM).N = 8
rats per group. Data presented as mean ± SEM.
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FIGURE 5 |Microglia have increased NLRP3 expression in the brainstem during DED. Male, OVX, and OVXE 14 days DED rats (B,D,F) and sham rats (A,C,E)were
(Continued )
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with the highest level seen under high estrogen conditions
(OvXE) (Figure 4A). Similarly, P2X7R expression was
increased at 2 days in all DED groups and at 14 days post-
surgery in OvX and OvXE, with OvXE rats displaying the
highest level of expression (Figure 4B). Overall, microglia
displayed increased expression of the purinergic receptors
P2X4 and P2X7 at 2 days post-surgery and remained elevated
in 14 days DED OvX and OvXE rats. Notably, P2X7R expression
was highest in the OvXE group at both 2 and 14 days after gland
removal.

Microglia become activated to express cytokines and effector
molecules in response to stimuli from their environment. P2X7R
is critical for nucleotide-binding domain-like receptor 3 (NLRP3)
inflammasome assembly and subsequently for mature IL-1β
release. To determine the effect of reduced tear volume on
NLPR3 expression Vsp tissue sections from the Vo, Vi, and
Vc regions were examined by immunohistochemistry (Figure 5).
Overall treatment effects indicated differences between sham and
DED rats (F5,21 = 3.72, p < 0.025). Individual comparisons
revealed that microglia at Vo and Vc levels of Vsp from OvXE
rats had a higher expression of NLRP3 at 14 days post-surgery
compared to sham rats (p < 0.05), while NLRP3 was only
marginally increased in OvX and males at 14 days post-
surgery (Figure 5G). To determine whether microglia
activated during DED express pro-inflammatory cytokines and
effector molecules, which may promote neuroinflammation
associated with pain, microglia were isolated from the
trigeminal brainstem at 2 and 14 days post-surgery. Microglia
were analyzed by real-time PCR for the expression of the pro-
inflammatory cytokines, IL-1β and TNFα; inducible nitric oxide
(iNOS) and brain-derived neurotrophic factor (BDNF); NLRP3
inflammasome; and Toll-like receptor 4 (TLR4) (Figure 6). An
increase in NLRP3 expression by isolated microglia was seen at 2-
and 14-day post-surgery in all groups, while the OvXE group had
the highest level of expression (Figure 6A). Microglia displayed
increased expression of IL-1β at 2 and 14 days DED in male,
OVX, and OVXE groups, with greatest increase in expression in
OvXE rats (Figure 6B). Microglia displayed a marked increase in
the expression of effector molecule, iNOS, at 2 and 14 days DED
in all the groups, with the highest increase observed in microglia
from OvXE rats (Figure 6C). Toll-like receptor 4 (TLR4)
expression on microglia was increased at 2 days DED and at
14 days DED with the highest expression in OvXE rats
(Figure 6D). Although microglia also displayed significant
increases the expression of tumor necrosis factor alpha
(TNFα) and BDNF during DED, the overall expression levels
were low (Figures 6E,F). The increase in NLRP3 expression was
associated with the increased expression of IL-1β during DED.
Densitometry analyses for GFAP, a marker for astrocytes,
revealed no change in expression in DED rats
(range = 3.95–5.33% area) compared to sham animals

(range = 2.55–4.71% area) (F5,22 = 1.49, p > 0.1). Overall,
these results revealed that microglia became activated in the
trigeminal brainstem during DED to express cytokines and
effector molecules which promote neuroinflammation.

Inhibition of Microglia or P2X7R Activation
Reduces OOemg Activity
Three approaches were used to determine if inhibiting the
activation of microglia or P2X7R affected ocular hyperalgesia
as seen by changes in orbicularis oculi muscle electromyography
(OOemg) evoked by HS. Systemic minocycline. In the first
approach, the non-selective glial cell inhibitor, minocycline,
was administered systemically daily for 4 days (40 mg/kg)
prior to recording and OOemg activity was evoked by
instillation of hypertonic saline (HS) in sham and 14 days
DED rats. As seen in Figure 7A, males displayed significant
increases in HS-evoked OOemg under sham (F2,38 = 14.7, p <
0.001) and DED conditions (F2,38 = 94.7, p < 0.001). Minocycline
did not affect the OOemg responses in sham males (F1,9 = 0.15,
p > 0.1), whereas evoked responses in DED males were greatly
reduced (F1,10 = 14.44, p < 0.001). As seen in Figure 7B, OvX
females also displayed significant increases in HS-evoked OOemg
under sham (F2,36 = 14.8, p < 0.001) and DED conditions F2,36 =
121, p < 0.001). Minocycline did not affect the OOemg responses
in sham OvX females (F1,9 = 3.2, p < 0.1), whereas the responses
in DED OvX females were greatly reduced (F1,9 = 14.75, p <
0.001). Similarly, OvXE females displayed significant increases in
HS-evoked OOemg under sham (F2,36 = 12.1, p < 0.001) and DED
conditions (F2,36 = 205, p < 0.001, Figure 7C). Unexpectedly,
minocycline treatment caused a small increase in HS-evoked
OOemg responses in sham OvXE females compared to untreated
OvXE females (F1,9 = 12.6, p < 0.01); however, OOemg responses
in DED OvXE females were greatly reduced (F1,9 = 42.18, p <
0.001), although responses remained elevated compared to
untreated OvXE females. These data indicated that
minocycline significantly reduced HS-evoked OOemg activity
in males as well as in females under low and high estrogen
conditions in DED rats.

Local microinjection of a specific antagonist for P2X7R. The
specific antagonist for P2X7R, A804598 (10 μM, 0.2 µL), was
injected into the Vc ipsilateral to exorbital gland excision. As seen
in Figure 8A, A804598 markedly reduced HS-evoked OOemg in
males (F7,72 = 16.97, p < 0.001), whereas responses in sham
animals were not affected. As seen in Figure 8B, HS-evoked
OOemg was markedly reduced in OvX females (F7,72 = 27.38, p <
0.001) and the reduction in evoked OOemg after Vc injection of
A804598 was restricted to DED animals, while responses in sham
animals were not affected. Similarly, HS-evoked OOemg was
markedly reduced in OvXE DED rats (F7,72 = 50.73, p < 0.001),
whereas the evoked responses in sham animals was not affected

FIGURE 5 | perfused with 4% PFA, fixed and brainstem sections stained with anti-Iba1 (red) and dapi (blue). The micrographic examples are of trigeminal
subnucleus caudalis (Vc). Scale bar = 80 µm. (G) Densitometry was conducted on light microscopy-stained sections at Vo, Vi, Vc regions using ImageJ on four sections
per rat with four rats/group (mean ± SEM) Abbreviations: Ms, male sham; Md, male DED; OvXs, OvX sham; OvXd, OvX DED; OvXEs, OvXE sham; OvXEd, OvXE DED.
*p < 0.05 versus sham group. (H) Shaded areas represent regions of trigeminal brainstem that were sampled. N = 4 rats per group.
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(Figure 8C). The magnitude of the drug-induced inhibition of
evoked OOemg was significantly greater for OvXE DED animals
compared to that seen for male or OvX females (F5,180 = 34.4, p <
0.001).

To determine whether A804598 would reduce microglia
activation in DED or in sham male, OvX, and OvXE rats were

administered A804598 (10 mg/kg/day × 4 days, sc) and at 14 days
post-surgery, microglia were isolated from the trigeminal
brainstem. Isolated microglia were analyzed for the expression
of purinergic receptors, P2X4R and P2X7R, IL-1β, NLRP3, and
iNOS, by real-time PCR (Figure 9). A804598 significantly
reduced the expression of P2X4R and P2X7R by isolated

FIGURE 6 |Microglia express inflammatory cytokines and effector molecules in an estrogen dependent manner during DED. Male, OVX, and OVXE rats had their
exorbital glands removed or sham treated. At 2 days and 14 days post-surgery, brainstem tissue was prepared and analyzed by real time PCR as in Figure 4 for
expression of: (A) IL-1β, (B) NLRP3, (C) iNOS, (D) TLR4, (E) TNFα, and (F) BDNF. p < 0.001 versus sham group. N = 8 rats per group.
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microglia in all DED groups. The expression of P2X4R and
P2X7R in OvX and OvXE DED groups was reduced to sham
levels, whereas male DED rats displayed smaller reductions
compared to sham males. The P2X7R antagonist also
decreased the expression of IL-1β, NLRP3, and iNOS by
microglia in male, OvX, and OvXE DED rats. These results
demonstrated that inhibition of the P2X7R reduced the
activation of microglia in male, OvX, and OvXE DED rats.

Transcriptional inhibition of P2X7R in TG reduces HS-evoked
OOemg activity. The third approach addressed the role of
peripheral P2X7R in ocular hyperalgesia. In the TG P2X7R is
expressed mainly by satellite glia that surround neurons. To
determine the effect of local peripheral inhibition of P2X7R,
siRNA for P2X7R was microinjected into the left TG and 3 days
later (i.e., 11 days after surgery) HS-evoked OOemg activity was

FIGURE 7 | Minocycline reduces HS-evoked OOemg activity in DED
males and females. Minocycline (40 mg/kg/day, sc, X 4 days) significantly
reduced the enhanced HS-evoked OOemg activity recorded 14 days after
exorbital gland removal. Test stimuli = ocular instillation of NaCl (0.15,
1.0, 2.5 M). Test stimuli applied at 30 min intervals. (A) Males; (B) OvX; (C)
OvXE. Open bars = sham; open shaded bars = sham +minocycline; open red
bars = 14 days DED; red shaded bars = 14 days DED + minocycline. *p <
0.05, **p < 0.01, ***p < 0.001 versus 0.15 M NaCl; b = p< 0.01; c = p< 0.001
versus pre-drug. Sham, n = 5-6 rats per group; DED, n = 6 per group. Data
presented as mean ± SEM.

FIGURE 8 | Local inhibition of P2X7R in Vc reduces HS-evoked OOemg
activity during DED. The selective P2X7R antagonist (A804598) was
microinjected (10 μM, 0.2 µL) into the Vc of sham and 14 days DED rats
30 min prior to the test stimulus (ocular instillation of 2.5 M NaCl). (A)
Males, (B)OvX females, (C)OvXE. Gray bars = sham; red bars = 14-day DED.
*p < 0.01, p < 0.001 versus 0.15 M NaCl; b = p< 0.01, c = p< 0.001 versus
pre-drug. N = 10 rats per group.
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recorded. As seen in Figure 10A, siRNA for P2X7R caused a
significant reduction in HS-evoked OOemg in male DED rats,
while responses in sham males were not affected (F3,16 = 20.39,
p < 0.001). Similarly, siRNA injection in OvX females caused a
significant reduction in HS-evoked OOemg in DED rats, whereas

responses in sham OvX females were not different from non-
injected rats (F3,16 = 20.38, p < 0.001, Figure 10B). As seen in
Figure 10C, there was a marked reduction in HS-evoked OOemg
responses in OvXE DED rats after siRNA injection, whereas
responses in sham OvXE rats were similar to non-injected sham

FIGURE 9 | Inhibition of P2X7 reduces inflammatory cytokine expression in microglia. Male, OVX, and OVXE rats had the left exorbital gland removed and were
administered P2X7 inhibitor (A804598, 10 mg/kg, sc X 4 days) or untreated. At 14 days post-surgery, rats were perfused with PBS and microglia were isolated and
analyzed as in Figure 4. (A) P2X4, (B) P2X7, (C) IL-1β, (D) NLRP3 and (E) iNOS. **p < 0.01 versus sham group. N = 8 rats per group. Data presented as mean ± SEM.
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OvXE rats (F3,16 = 44.38, p < 0.001). Note also that siRNA
injection in all DED groups significantly reduced the OOemg
responses to 1 M NaCl, an osmolar concentration similar to that
found at the center of the ocular surface in severe DED patients
(Liu et al., 2009). Knockdown of P2X7R was confirmed by
western blot analyses. Intra-TG injection of siRNA markedly
reduced P2X7R protein levels in the TG of DED males compared
to vehicle injected DEDmales (0.137 ± 0.003 versus 1.589 ± 0.245
relative intensity, F1,6 = 43.2, p < 0.001). Similarly, TG injection of

siRNA in DED OvXE females was greatly reduced compared to
vehicle injected OvXE females (0.009 ± 0.001 versus 0.213 ± 0.027
relative intensity) (F1,6 = 53.43, p < 0.0001). To determine the
effect of intra-TG injection of siRNA for P2X7R on microglia
activation in trigeminal brainstem, Vsp tissues were collected
from OvX females for western blot analyses of Iba-1 (Figure 11).
These results demonstrated that intra-TG injection of siRNA for
P2X7R in DED rats caused amarked reduction in protein levels of
Iba-1 compared to vehicle injected DED OvX females (0.098 ±
0.003 versus 0.605 ± 0.053, mean ± SEM, relative intensity) (F1,6 =
89.14, p < 0.0001).

DISCUSSION

The present study used a rat model for aqueous deficient DED to
address two unresolved issues concerning ocular hyperalgesia and
the contribution of neuroimmune responses. First, does
activation of P2X7R in trigeminal pain pathways play a role in
ocular hyperalgesia and immune cell activation? Secondly, does
estrogen status play a significant role in ocular hyperalgesia and
immune cell activation? These results revealed that activation of
P2X7R in the TG and Vsp contributed to enhanced ocular
surface-evoked nociceptive behavior and neuroimmune
function in DED rats. Estrogen treatment further enhanced
ocular hyperalgesia and microglia activation in a P2X7R-
dependent manner in female DED rats.

Tear hyperosmolarity and loss of tear film integrity are
diagnostic features of DED (Baudouin et al., 2013; Craig et al.,
2017; Willcox et al., 2017). Exorbital gland excision is a valid
model for aqueous deficient DED which results in a ~40%
reduction in tear volume (Fujihara et al., 2001; Meng et al.,
2015; Rahman et al., 2015; Mecum et al., 2019) and elevates
levels of pro-inflammatory molecules in the anterior eye segment
(Joossen et al., 2016), consistent with clinical signs seen in DED
patients (Na et al., 2012; Nicolle et al., 2018). A challenge for
preclinical studies of ocular pain is the ability to measure
behaviors that can be reasonably interpreted as eye pain in
humans. Several methods have been used to estimate chronic
ocular hyperalgesia in animals: spontaneous and evoked eyeblink
rates, palpebral opening and forelimb eye wiping to ocular surface
stimulation (de Castro et al., 1998; Bates et al., 2010; Yorek et al.,
2016; Fakih et al., 2019; Mecum et al., 2020). Recently, we
reported that HS-evoked OOemg activity was a reliable
surrogate for ocular hyperalgesia in anesthetized male rats

FIGURE 10 | Knockdown of peripheral P2X7R by siRNA injection into
TG reduces HS-evoked OOemg in DED rats. siRNA for P2X7R inhibits TMJ-
evoked OOemg activity in: (A) male, (B) OvX and (C) OvXE females 3 days
prior to recording. Note that responses to HS-evoked OOemg
responses in sham rats were not affected. Open bars = sham; open shaded
bars = sham + siRNA: Open red bars = 14 days DED; open red shaded bars =
14-day DED + siRNA. *p < 0.05, **p < 0.01 versus 0.15 M NaCl stimulation;
a = p< 0.05, b = p< 0.01 siRNA treated versus untreated rats. N = 5 rats per
group. Data presented as mean ± SEM.

FIGURE 11 | Knockdown of peripheral P2X7R in TG by TG reduces Iba-
1 protein in brainstem of DED rats. Example of western blot for total protein for
Iba1 in OvX rats based on 20 µg loading samples. Lanes 1-4 = sham; lanes 5-
8 = 14-day DED rats.
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(Rahman et al., 2017). HS-evoked long duration, squint-like
OOemg activity that was enhanced in DED rats, corresponded
well to cornea-evoked eye wiping behavior and involved TRPV1
activation, results that were consistent with the notion of HS-
evoked OOemg as a nociceptive behavior (Bereiter et al., 2018).

The initiation and maintenance of nociceptive behavior in
preclinical studies of DED likely involves peripheral and central
neural mechanisms. In the periphery hyperosmolar stress induces
an increase in ATP levels in the tears of DED patients which is the
preferred nucleotide for activation of P2X7R (Guzman-Aranguez
et al., 2017). P2X7R is closely linked to inflammation and is
necessary for NLRP3 inflammasome assembly and the
production and release of proinflammatory cytokines such as
IL-1β (Di Virgilio et al., 2017). P2X7R is expressed by satellite glia
that surround TG neurons and mediates crosstalk between
neurons and non-neural cells in the TG (Belzer et al., 2011;
Nowodworska et al., 2017). The present study found that
microinjection of siRNA for P2X7R into the TG markedly
reduced HS-evoked OOemg activity and Iba-1 expression by
microglia in trigeminal brainstem of DED rats. P2X7R also is
expressed by corneal and conjunctival epithelial cells (Minns
et al., 2016) and NLRP3 suggesting that increased levels of
proinflammatory cytokines derive from multiple sources in
DED (Zheng et al., 2014). P2X7R also is expressed by goblet
cells and is critical for mucin secretion suggesting a role in
mechanical transduction by corneal nociceptors (Puro 2021).
Loss of lubrication at the ocular surface leads to increased
friction during lid wiping and subsequent enhanced corneal
nociceptor activation during periods of increased blinking (van
Setten 2020). These data suggest that loss of tear film integrity
induces P2X7R activation in the eye and TG which, through
increased secretion of proinflammatory molecules, contributes to
ocular symptoms and neuroimmune responses in DED. It
noteworthy that P2X7R requires a higher concentration of
ATP for activation and displays limited desensitization
compared to other purinergic receptor subtypes suggesting the
contribution to DED symptoms and ocular surface homeostasis
may be greatest under conditions of moderate to severe
inflammation.

Microglia are resident immune cells in the CNS and play a
critical role in maintenance of chronic pain (Chen et al., 2018;
Inoue and Tsuda 2018). Although microglia display rapid and
persistent activation following even brief periods of nociceptor
activity (Hathway et al., 2009; Gruber-Schoffnegger et al., 2013),
the mechanisms for microglia involvement in chronic pain are
not completely known. We confirmed that the expression of
P2X7R and Iba-1 derived from resident microglia and not from
infiltrating monocytes by flow cytometry and cell sorting followed
by qRT-PCR analyses. These results agreed with previous
preclinical studies of neuropathic and inflammatory pain in
which spinal cord samples were analyzed flow cytometry and
found no evidence of monocyte infiltration (Denk et al., 2016;
Lopes et al., 2017; Fernandez-Zafra et al., 2019). In the present
study, isolated microglia also expressed elevated levels of P2X4R
in Vsp tissue samples at 2 and 14 days after exorbital gland
removal. Although P2X7 and P2X4 do not normally form
heterotrimers, immunoprecipitation studies indicate

interaction of purinergic subtypes may act to influence
immune cell function (Boumechache et al., 2009; Sakaki et al.,
2013; Perez-Flores et al., 2015). Thus, it cannot be excluded that
P2X4 as well as P2X7 may have contributed to the increase ocular
hyperalgesia and expression of proinflammatory cytokines in this
model of DED. Given the differences in threshold concentrations
of nucleotides necessary to activate P2X4 and P2X7, microglia
that express both subtypes could be expected to respond to a
greater range of concentrations and patterns of molecular signals
following nociceptor stimulation (Kato et al., 2016). P2X7R
activation in microglia induces multiple downstream signaling
pathways and is sufficient to cause long-term potentiation of
dorsal horn neurons (Chu et al., 2010; Kronschlager et al., 2016).
iNOS expression also was markedly increased in isolated
microglia from Vsp tissue samples which was consistent with
the involvement of glutamatergic pathways (Freire et al., 2009;
Gruber-Schoffnegger et al., 2013).

The second goal of this study was to determine whether
estrogen status played a significant role in ocular hyperalgesia
and neuroinflammation in DED. These results strongly
indicated that acute estrogen treatment in ovariectomized
female rats enhanced HS-evoked OOemg activity and the
expression of P2X7R in the Vsp. Densitometry of Vsp tissue
sections revealed that Iba-1, NLRP3 and P2X7R positive areas
were greater in Vc of OvXE DED groups than in sham OvXE
rats. The Vc receives a significant direct input from TG neurons
that supply the ocular surface (Marfurt and del Toro 1987;
Marfurt and Echtenkamp 1988; Panneton et al., 2010). The Vc
also displayed a high number of estrogen receptor positive
neurons compared to other portions of the Vsp (Bereiter et al.,
2005; VanderHorst et al., 2005). Estrogen treatment in DED
rats induced significantly higher levels of expression by isolated
microglia from whole Vsp samples for P2X7R, P2x4R, NLRP3,
IL-1β, TLR4 and iNOS compared to sham OvXE rats or to OvX
or male animals. This suggested an interaction between
estrogen treatment and loss of tear volume which increased
the level of inflammatory molecules compared to either
treatment alone. P2X7, together with P2X4 and Toll-like
receptors (TLRs), mediates assembly of the NLRP3
inflammasome which leads to activation of caspase-1 and
cleavage of pro-IL-1β into mature IL-1β. Although TNFα
and BDNF expression also were increased in isolated
microglia of DED rats, these expression levels were much
lower than for other pro-inflammatory molecules. To
determine if P2X7R activation in the Vsp altered ocular
hyperalgesia in an estrogen-dependent manner, the selective
P2X7R antagonist, A804598, was microinjected into the Vc in
DED and sham rats. These results revealed a significant
reduction in HS-evoked OOemg in all DED groups and only
minor changes in sham animals. To determine whether the
A804598-induced reduction in HS-evoked OOemg activity in
DED rats depended on P2X7R, the drug was administered
systemically for 4 days prior to tissue collection. Isolated
microglia displayed significant reductions in P2X7R, P2x4R,
NLRP3, IL-1β and iNOS in all DED groups. These data
suggested that P2X7R activation was necessary for enhanced
ocular hyperalgesia in DED.
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Several studies have reported that intrathecal injection of
minocycline reduced mechanical hyperalgesia in males but not
female rodents in nerve injury and arthritic pain models (Sorge
et al., 2015; Mapplebeck et al., 2018; Fernandez-Zafra et al., 2019). By
contrast, we found that systemic minocycline reduced HS-evoked
OOemg activity of DED rats of both sexes. Several methodological
differences may have contributed to this discrepancy. First, our DED
model did not involve direct nerve injury, but rather resulted in
changes in tear film integrity and corneal sensitivity that developed
over several days (Meng et al., 2015). Second, previous studies applied
minocycline as a single intrathecal injection, while we administered
minocycline systemically in four daily doses. Interestingly, in a model
for bone cancer which also develops slowly, intrathecal
administration of minocycline effectively reduced mechanical
hyperalgesia in female rats (Yang et al., 2015). Lastly, we cannot
exclude that estrogen treatment given as a single injection to OvX
female rats the day before OOemg recording or tissue collection may
have led to results that may have differed from those seen in normal
cycling female rats.

These data indicated that P2X7R activation in peripheral and
central sites in the trigeminal pain pathway was a significant factor in
mediating enhanced ocular hyperalgesia and neuroinflammation in
this model for aqueous deficient DED. Estrogen status likely played a
significant role in mediating the magnitude of evoked OOemg
activity and markers for neuroinflammation in DED.
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