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Editorial on the Research Topic

Novel Therapeutic Interventions Against Infectious Diseases: COVID-19

The research topic “Novel Therapeutic Interventions Against Infectious Diseases: COVID-19”
intends to examine, at the molecular level, the mechanisms of SARS-CoV-2 infection and their
potential inhibition through computational or experimental approaches. Drug targets for SARS-
CoV-2 infections and macromolecules responsible for the virion’s binding to the host receptor
protein are described in detail. The 15 research articles in this issue, each focusing on a different
aspect of the fight against SARS-CoV-2, use a variety of interdisciplinary approaches, including
computational chemistry, biochemical analyses, and biological activity testing. Contributing
authors have searched for novel leads from the available natural substances, new chemical
entities, and FDA-approved drugs to target SARS-CoV-2. Indari et al. present a
comprehensive update on FDA-approved drugs for repurposing, namely chloroquine,
hydroxychloroquine, remdesivir, lopinavir-ritonavir, favipiravir, ribavirin, azithromycin,
umifenovir, and oseltamivir as well as convalescent plasma therapy used as antiviral therapy
against SARS-CoV-2. Preclinical and clinical findings, treatment regimens, pharmacokinetics, and
drug–drug interactions are discussed in this review. Some clinically approved medications have
been proposed as potential anti-SARS-CoV-2 options as a result of this repurposing strategy.
Yadalam et al. performed a computational study to identify the essential oil components as SARS-
CoV-2 antivirals, especially in the pre-procedural mouth rinses for dental settings. Pre-procedural
mouth rinses are helpful in decreasing viral particles in the oral cavity, since most of COVID-19
dissemination occurs due to the virus’ presence in the mouth. Through the molecular docking and
conceptual density functional theory (DFT) approach, the antiviral efficacy of essential oil
components are studied against the receptor binding domain (RBD) of the spike protein. The
compounds cuminal, carvacrol, myrtanol, and pinocarveol were found to be highly active by
showing strong interactions with the RBD and shown to be active based on the correlation between
the structure and the activity of the compounds. They recommend these components to be
included as pre-procedural mouth rinses for dental procedures. Cai et al. has come up with a
rehabilitation strategy by applying intermittent hypoxic preconditioning (IHP) and also showed
how IHP can be a beneficial treatment strategy in the management of COVID-19. IHP, a non-drug
alternative therapy for COVID-19 management, showed beneficial effects related to the impact of
oxidative stress, inflammation, and the immune response. Li and Peng have reported the strategy
and challenges and described recent progress in identifying broad-spectrum antivirals through
drug repurposing, by classifying them into direct-acting repurposed antivirals (DARA) and host-
targeting repurposed antivirals (HTRA). In addition, they have summarized and examined the
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putative mechanisms of action of repurposed antivirals with
potential broad-spectrum effectiveness against a range of
viruses. Xiao et al. reports the potential of myricetin for the
inhibition of the main protease in SARS-CoV-2, with a 3 μM
IC50 in the enzyme assay. They also reported myricetin as
having potent effect on bleomycin-induced pulmonary
inflammation, by inhibiting the infiltration of inflammatory
cells and the secretion of inflammatory cytokines IL-6, IL-1α,
TNF-α, and IFN-γ. Rattis et al. have reviewed the therapeutic
potential of curcumin, which interferes at different time points
during the infection caused by SARS-CoV-2. This review has
strategically contributed to the relentless search for therapies
that can act on the combat of COVID-19, in addition to
providing targets for future studies using the curcumin as an
adjuvant treatment to COVID-19. Wang et al. stated the
importance of pulmonary surfactants (PS) in treating acute
respiratory distress syndrome in COVID-19. The lack of
efficacy reported so far is attributed to the insufficient
delivery of PS to the lungs; thus, research has been initiated
to investigate new drug delivery systems for improving the PS
delivery directly to the lungs. In support to that, they have
integrated the data on PS with reference to pulmonary
physiology and infection with its possible therapeutic benefit
in COVID-19 patients. Hsu et al. have found the potency of
remdesivir and cyclosporine that synergistically inhibit the
human coronaviruses OC43 (HCoV-OC43) and SARS-CoV-2
by showing inhibitory activity against HCoV-OC43 in HCT-8
and MRC-5 cells. This study, suggests that the combination of
remdesivir and cyclosporine merits further study as a possible
treatment for COVID-19 complicated by a cytokine storm. Du
et al. elucidate the add-on effect of honeysuckle for the
treatment of COVID-19 with a meta-analysis. Honeysuckle
combined with conventional therapy may be beneficial for
the treatment of COVID-19 in improving lung CT, clinical
cure rate, clinical symptoms, and laboratory indicators and
reducing the rate of conversion to severe cases. Wang et al.
highlight the role of high-density lipoprotein (HDL) in COVID-
19 by analyzing the pathophysiological characteristics of
COVID-19, the pleiotropic properties of HDL, the changes
and clinical significance of HDL, and prospect of HDL-
targeting therapy. They also suggest that the HDL level-
raising pharmacological compounds, such as cholesteryl ester
transfer protein (CETP) inhibitors and fibrates, which are
already in the preclinical research stage, may be considered
as potential treatments for patients with COVID-19. Basit et al.
have designed the short peptides and report those peptides for
blocking interactions between SARS-COV-2 and human ACE2.
The RBD is highly conserved and is also a potential target for
blocking its interaction with human cell surface receptor. For
this, they have chosen the amino acid regions 21–40 and 65–75
of ACE2 as scaffold for the de novo peptide design, and those
peptides are potentially strong candidates for the blocking of
protein–protein interactions. Kulkarni et al. 2021 have
characterized the phytocompounds from the Ulva intestinalis
L. and report its action against the SARS-CoV-2 spike

glycoprotein RBD. Some compounds, namely, 2,4-di-tert-
butylphenol (2,4-DtBP); doconexent; 4,8,13-duvatriene-1,3-
diol (DTD); retinoyl-β-glucuronide 6′,3′-lactone (RBGUL);
and retinal had showed better binding affinity for RBD.
Similarly, Kumar et al. have also identified the
phytocompounds from sesame against SARS-CoV-2 main
protease drug target through molecular docking and
dynamics. They have identified four natural metabolites
from sesame, namely, sesamin, sesaminol, sesamolin, and
sesamolinol through docking and dynamics approach with
the Mpro and reported their interactions insights. Rizvi et al.
have shown the effect of prophylactic use of intranasal oil
formulations in the hamster model of COVID-19. They have
reported the prophylactic application of two intranasal
formulations provided by the National Medicinal Plant
Board (NMPB), anu oil and til tailya, in the hamster model
of SARS-CoV-2 infection. Their molecular analysis using
mRNA expression profiling indicated the reduced
expression of pro-inflammatory cytokine genes, including
Th1 and Th17 cytokines for both the intranasal
formulations as a result of decreased viral load. Fred et al.
have performed in vitro studies on antidepressant and
antipsychotic drugs that reduce the viral infection by SARS-
CoV-2. Their results show that approved drugs of
antidepressants, including fluoxetine, citalopram, reboxetine,
and imipramine, as well as antipsychotic compounds
chlorpromazine, flupenthixol, and pimozide inhibited the
infection by pseudotyped viruses with minimal effects on
cell viability. Overall, the “Novel Therapeutic Interventions
Against Infectious Diseases: COVID-19” research topic gives
an updated summary of molecular and mechanical insights
towards identifying COVID-19 therapeutic targets for the
identification or repurposing of molecules to be used
against the virus.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Sakkiah, Singh, Lee and Selvaraj. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8520782

Sakkiah et al. Editorial: Novel Therapeutic Interventions Against COVID-19

6

https://www.frontiersin.org/articles/10.3389/fphar.2021.669642/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.675287/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.698905/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.706901/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.708636/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.708636/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.720283/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.731828/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.735768/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.744376/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.746729/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.755600/full
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


An Update on Antiviral Therapy
Against SARS-CoV-2: How Far Have
We Come?
Omkar Indari 1, Shweta Jakhmola1, Elangovan Manivannan2 and Hem Chandra Jha1*

1Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India, 2School of
Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India

COVID-19 pandemic has spread worldwide at an exponential rate affecting millions of
people instantaneously. Currently, various drugs are under investigation to treat an
enormously increasing number of COVID-19 patients. This dreadful situation clearly
demands an efficient strategy to quickly identify drugs for the successful treatment of
COVID-19. Hence, drug repurposing is an effective approach for the rapid discovery of
frontline arsenals to fight against COVID-19. Successful application of this approach has
resulted in the repurposing of some clinically approved drugs as potential anti-SARS-CoV-
2 candidates. Several of these drugs are either antimalarials, antivirals, antibiotics or
corticosteroids and they have been repurposed based on their potential to negate virus or
reduce lung inflammation. Large numbers of clinical trials have been registered to evaluate
the effectiveness and clinical safety of these drugs. Till date, a few clinical studies are
complete and the results are primary. WHO also conducted an international, multi-country,
open-label, randomized trials-a solidarity trial for four antiviral drugs. However, solidarity
trials have few limitations like no placebos were used, additionally any drug may show
effectiveness for a particular population in a region which may get neglected in solidarity
trial analysis. The ongoing randomized clinical trials can provide reliable long-term follow-
up results that will establish both clinical safety and clinical efficacy of these drugs with
respect to different regions, populations andmay aid up to worldwide COVID-19 treatment
research. This review presents a comprehensive update on majorly repurposed drugs
namely chloroquine, hydroxychloroquine, remdesivir, lopinavir-ritonavir, favipiravir,
ribavirin, azithromycin, umifenovir, oseltamivir as well as convalescent plasma therapy
used against SARS-CoV-2. The review also summarizes the data recorded on the
mechanism of anti-SARS-CoV-2 activity of these repurposed drugs along with the
preclinical and clinical findings, therapeutic regimens, pharmacokinetics, and drug-drug
interactions.

Keywords: COVID-19, SARS-CoV-2, drug repurposing, antivirals, mechanism of action, pharmacokinetics

INTRODUCTION

The coronavirus disease of 2019 (COVID-19) pandemic has changed the scenario of the entire world,
which has not been seen for a century. Influenza (H1N1 virus) outbreak of Spain that occurred in
1918 was the worst ever hit pandemic in recent history. Now, the current outbreak started inWuhan,
China, has globally spread to 219 countries and territories (WHO, 2020a). Severe acute respiratory
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syndrome coronavirus (CoV) 2 (SARS-CoV-2), a large ssRNA
virus, is the causative agent of COVID-19, which primarily
attacks the respiratory tract including associated organs.
Additionally, the virus has shown to impact various other
organs or body systems like the gastrointestinal system,
nervous system etc (Jakhmola et al., 2020a; Jakhmola et al.,
2020b; Sonkar et al., 2020). Currently new variants of

SARS-CoV-2 are reported from different regions of the world.
In December 2020, the United Kingdom variant of SARS-CoV-2
lineage B.1.1.7, now designated as Variant of Concern 202012/01
(VOC) and the South Africa variant named 501Y.V2 have been
reported to spread widely within the country and displaced the
other lineages of viruses (WHO, 2020c). By the end of first
COVID-19 pandemic year the VOC-202012/01 variant was

FIGURE 1 | Proposedmechanisms of repurposed drugs and therapies used against SARS-CoV-2 infection. SARS-CoV-2 interacts with cell surface receptors like
ACE-2 and neuropilin to gain entry inside the cell. Umifenovir may interact with SARS-CoV-2 surface glycoproteins and lipids and obstruct the interaction with the entry
receptor ACE-2. Anti-SARS-CoV-2 antibodies present in convalescent plasma may inhibit SARS-CoV-2 entry and subsequent infection transmission. Chloroquine,
hydroxychloroquine and azithromycin may elevate endosomal pH and hinder viral entry and RNA release process. Chloroquine, hydroxychloroquine and
azithromycin also shows immunomodulatory effects. Nucleoside inhibitors like remdesivir, favipiravir and ribavirin may inhibit RNA replication and suppress RNA-
dependent RNA polymerase activity. Lopinavir may fraternize with viral protease altering the proteolysis. Oseltamivir may interplay with components involved in the
exocytosis process, blocking the viral exit from the cell. Monoclonal antibodies against cytokine receptors and Corticosteroid shows anti-inflammatory actions against
exaggerated immune response. (ACE-2-Angiotensin-converting enzyme 2, TMPRSS2 Transmembrane Serine protease 2, RdRp- RNA dependent RNA polymerase,
ER- Endoplasmic reticulum, ERGIC- Endoplasmic reticulum-golgi intermediate complex. The displayed ACE-2-Spike interaction residues and RdRp structures are
based on Protein databank structure ID: 6M0J and 6M71 respectively).
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reported in 31 other countries/territories (WHO, 2020c). The
receptor-binding domain of viral spike protein is essential in
SARS-CoV-2 entry into the host cell via surface angiotensin-
converting enzyme-2 (ACE-2) (Zhou et al., 2020) (Figure 1).
Recently, another cell receptor Neuropilin-1 was found to be
involved in SARS-CoV-2 entry (Cantuti-Castelvetri et al., 2020).
The further life cycle of the virus inside the cell is similar to that of
other coronaviruses. After binding to the receptor, the
conformational change in the spike protein leads to virus
fusion with the host cell membrane. The virus may transfer
the RNA directly inside the cells or may proceed through the
endosomal pathway (Simmons et al., 2005; Li, 2016; Hasan et al.,
2020; Hoffmann et al., 2020). Upon translation of viral RNA, the
viral replicase polyprotein PP1a and PP1ab are synthesized and
cleaved into small products by viral endopeptidase (Van-
Boheemen et al., 2012; Shereen et al., 2020). RNA dependent
RNA polymerase (RdRp) produces subgenomic RNAs by
discontinuous transcription (Hussain et al., 2005; Chen et al.,
2020; Shereen et al., 2020). This further gets translated into
respective viral proteins. After processing through the
endoplasmic reticulum (ER), ER-Golgi intermediate
compartment (ERGIC), and Golgi complex the viral RNA and
proteins are assembled into virions (Lai and Cavanagh, 1997;
Song et al., 2004). These virions are transported through vesicles
and exocytosed for transmission. These steps of the viral life cycle
are lucrative virus inhibition targets for different drugs
(Figure 1).

Currently, no specific drug or vaccine is available for the
treatment of SARS-CoV-2 infected patients. Nonetheless, drug
repurposing could prove to be advantageous tactics for finding
COVID-19 treatment. Benefits of drug repurposing include cost-
effectiveness, elimination of some clinical trial steps, sooner on-
field availability, combining the candidate drugs with other
possible drugs based on prior data, and generation of new
information about the existing drugs mechanisms (Agrawal,
2015). The available knowledge of previous CoVs treatments,
genomic sequences, and protein modeling studies has helped
researchers put forward the potential COVID-19 drug
candidates. The primarily investigated drugs are either
antimalarials, antivirals, antibiotics, corticosteroids, and they
have been repurposed based on their potential either to negate
virus, reduce lung inflammation or other disease symptoms. In
particular, chloroquine (CQ) hydroxychloroquine (HCQ) and
azithromycin (AZM) are majorly used against COVID-19 as they
initially showed reasonably good in vitro and in vivo antiviral
activity against SARS-CoV, MERS-CoV and SARS-CoV-2.
Lopinavir/ritonavir (LPV/RTV), which are anti-HIV drugs,
were examined for COVID-19 as they were found to be
effective in earlier CoV outbreaks. Moreover, remdesivir
(RDV), an experimental anti-Ebola drug, was investigated for
COVID-19 and received greater attention. Based on the
appreciable preliminary data, FDA has issued EUA for CQ,
HCQ, and RDV (FDA, 2020b; FDA, 2020c; FDA, 2020d).
However, later the EUA for CQ and HCQ was revoked while
EUA for RDV was re-issued by some amendments. Similarly,
favipiravir (FPV), ribavirin (RBV), umifenovir (UFV), and
oseltamivir (OTV) having a broad-spectrum antiviral activity

were also clinically investigated against SARS-CoV-2. WHO put
forward a solidarity clinical trial, a multi-country, open-label
randomized trial, for the use of HCQ, RDV, LPV/RTV, or LPV/
RTV in combination with Interferon (IFN) β-1a against COVID-
19 (WHO, 2020b). The recent interim results of the solidarity trial
declare that all these drugs had little or no effect on overall
mortality, initiation of ventilation and duration of hospital stay in
hospitalized patients (Pan et al., 2020). So far, to treat severe and
critical COVID-19, only corticosteroids have proven effective
(WHO, 2020b). New treatment options need to be added to the
solidarity trial in the future. However, solidarity trials may have
few limitations like it was focused on worldwide outcomes of
considered treatments. Hence, if a particular drug shows
comparatively better outcome in some regions or populations
that could get neglected. Therefore, there is scope to conduct the
clinical studies involving various suitable drugs with different
treatment regimens and combinations.

In this review, we have provided updated comprehensive
information about majorly repurposed drugs which are used
as antivirals to combat SARS-CoV-2 infection. We attempted
to collate and review the studies regarding all these drugs, which
are dispersed in various distinct publications. Furthermore, we
have also summarized the data recorded on the mechanism of
anti-SARS-CoV-2 activity of these repurposed drugs along with
the preclinical and clinical findings, therapeutic regimens,
pharmacokinetics, and drug-drug interactions.

SELECTED ANTIVIRALS REPURPOSING IN
COVID-19 TREATMENTS

Chloroquine and Hydroxychloroquine
CQ and HCQ both belong to the 4-aminoquinoline chemical
class (Devaux et al., 2020) with potential antimalarial and anti-
inflammatory activities. These drugs are weak diprotic bases that
increase the endosomal pH to hinder the host-virus fusion
process (Devaux et al., 2020) (Figure 1; Table 1). In vitro
studies have shown antiviral activity of CQ on MERS and
SARS-CoV (Cong et al., 2018; Keyaerts et al., 2004). In
addition, in vivo studies suggest potent activity of these drugs
against human CoV-OC43, EV-A71, zika virus, and in vitro
activity against influenza-A (Keyaerts et al., 2009; Tan et al.,
2018; Li et al., 2017; Ooi et al., 2006). Recent in vitro studies report
CQ and HCQ effectiveness against SARS-CoV-2 (Half maximal
effective concentration (EC50) 2.71mM and 4.51mM,
respectively) in Vero E6 cells (Liu J. et al., 2020). However,
HCQ has in vitro activity with a lower EC50 for SARS-CoV-2
compared to CQ after 24h of growth (HCQ: 6.14μM and CQ:
23.90μM) (Yao X. et al., 2020). CQ treatment has demonstrated to
reduce the recovery time and improved physiological conditions
in COVID-19 patients. According to a randomized Chinese
COVID-19 controlled trial, CQ (Dose 500mg bid, 15days)
may work more efficiently than LPV/RTV (Huang M. et al.,
2020). Another study compared the low dose (450mg bid for 1day
followed by 450mg, 4days) and high dose (600mg bid, 10days) in
combination with azithromycin (AZM) and OTV which
determined that high dose CQ was associated with high
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mortality (Borba et al., 2020). A multicentre, randomized, open-
label trial from China investigated the use of HCQ (1200mg daily
for 3days, followed by a maintenance dose of 800mg daily) to
standard care. The interpretation included that the HCQ treated
group showed inadequate response compared to control (Tang
et al., 2020). The combination of HCQ and AZM resulted in early
viral clearance, as demonstrated by an open-label non-
randomized clinical trial (Gautret et al., 2020). A meta-analysis
report stated that compared to alone HCQ, the combination of
HCQ and AZM significantly increased mortality in COVID
patients (Fiolet et al., 2020). A United States based
observational study interpreted that HCQ treated patients did
not either benefit or suffer in terms of intubation or mortality
(Geleris et al., 2020). A large-scale clinical trial was conducted in
United Kingdom, a Randomized Evaluation of COVID-19
Therapy (RECOVERY Trial), to investigate various drug
candidates or therapies including HCQ against severe COVID-
19. The result demonstrated no efficacy of HCQ against COVID-
19 (Horby et al., 2020b). Surprisingly FDA issued EUA for CQ
andHCQ against COVID-19 onMarch 28, 2020 and was revoked
on June 15, 2020 (FDA, 2020b; FDA, 2020c). Major side effects of
these drugs include QT prolongations, and decreased insulin
clearance and resistance (FDA, 2020b; FDA, 2020c). The overuse
of CQ and HCQ could possibly lead to tissue injury in the liver,
retina, skeletal, and cardiac muscle cells due to their lysosomal
affinity (Satarker et al., 2020; Cohen, 2020). Therefore, studies
recommend that physicians avoid high doses and exercise
extreme caution in the compassionate use of CQ/HCQ, either
alone or in combination with other antivirals (Acharya and
Sayed, 2020). Currently 88 and 267 COVID-19 associated
clinical trials have been registered for CQ and HCQ
respectively (ClinicalTrials.gov, 2020b; ClinicalTrials.gov,
2020d).

Lopinavir/Ritonavir
LPV/RTV are approved anti-HIV drugs that specifically target
HIV protease (Chandwani and Shuter, 2008). LPV is used in
combination with RTV to elevate its half-life via cytochrome
P450 suppression (Chandwani and Shuter, 2008). LPV is
predicted to act on the viral 3-chymotrypsin-like protease
(3CLpro) (Sisay, 2020) (Figure 1; Table 1). Previous studies
have established in vitro LPV effectiveness against SARS-CoV at
4μg/ml (Chu et al., 2004). A cumulative in vivo study involving
LPV and RTV against MERS revealed the EC50 of the two drugs
as 11.6 and 24.9µM respectively with 50% cytotoxic concentration
(CC50) values >50µM (Sheahan et al., 2020). However, no in vitro
study is available of LPV/RTV against SARS-CoV-2. In China, a
clinical trial for LPV/RTV against adult hospitalized COVID-19
patients was conducted (Cao et al., 2020). The study showed no
benefit of LPV/RTV (Dose: 400mg/100mg bid, 14days) treatment
compared to standard care control groups (Cao et al., 2020).
Although LPV/RTV treated groups exhibited less serious
complications than the controls. A Japanese case-study reports
successful treatment of non-severe COVID-19 pneumonia
patients with LPV/RTV (Wada et al., 2020). Another study of
47 patients reported that LPV/RTV treatment improved
physiological condition without adverse events (Ye et al.,

2020). In the study of 120 patients, if the LPV/RTV treatment
is initiated within 10days of symptom onset, it significantly
reduces viral shedding (Yan et al., 2020). LPV/RTV along with
IFN-⍺ or RBV may improve the health of COVID-19 patients
(Yuan et al., 2020). On the contrary, another report from Taiwan
suggested that LPV/RTV treatment did not reduce the duration
of viral shedding in infected patients (Cheng et al., 2020). A
single-center, randomized, open-labeled, prospective clinical trial
conducted by Huang et al. studied the effect of LPV/RTV plus
IFN-α, LPV/RTV plus RBV plus IFN-α, and RBV plus IFN-α
treatment on COVID-19 patients. All the three regimens showed
no significant difference regarding their effectiveness against
COVID-19. LPV/RTV when given in combination with RBV
lead to more adverse events suggesting that these two drugs
should not be administered together (Huang Y.-Q. et al., 2020). A
meta-analysis study investigating randomized trials showed LPV/
RTV may reduce mortality (Huang Y.-Q. et al., 2020; Verdugo-
Paiva et al., 2020). Albeit some contradictory studies showed no
statistically significant effect on reducing the death rate (Karolyi
et al., 2020; Horby et al., 2020). A report stated the risk of
bradycardia in elderly critically ill COVID-19 patients with
RTV plasma overdose (Beyls et al., 2020). Adverse
gastrointestinal effects such as diarrhea, nausea and vomiting
have been observed in patients treated with LPV/RTV (Huang Y.-
Q. et al., 2020; LiuW. et al., 2020; Vecchio et al., 2020). Therefore,
it remains difficult to safely recommend LPV/RTV dose without
compromising the benefit of the antiviral strategy. There is an
urgency of a comprehensive pharmacokinetic/pharmacodynamic
analysis for the upcoming clinical trials in similar critically ill
COVID-19 patients (Lê et al., 2020). Currently, 90 clinical trials
have been registered for LPV/RTV for COVID-19
(ClinicalTrials.gov, 2020e).

Remdesivir
RDV is a prodrug of an adenosine triphosphate (ATP) analog and
is converted into its active form GS-441524 on administration
(Al-Tawfiq et al., 2020). It was initially proposed for the Ebola
virus that acted by viral replication inhibition through premature
termination of RNA transcription (Al-Tawfiq et al., 2020) and
hence targeting RdRp. RDV metabolites have proved useful
against yellow fever virus, Dengue virus type 2, influenza A,
parainfluenza 3, and various delta CoVs (Cho et al., 2012). The
parent nuclei of RDV is evaluated against alpha CoV (EC50 �
0.78μM), porcine delta CoV, SARS-like bat CoVs and MERS-like
bat CoVs (Murphy et al., 2018; Brown et al., 2019; Amirian and
Levy, 2020). Studies on SARS and MERS infected human airway
epithelial cells (EC50 ≈ 0.07μM) and animal models
demonstrated the viral polymerase inhibition ability of the
drug (Agostini et al., 2018). The drug is efficient at EC50,
0.77μM, and CC50 > 100μM in Vero E6 cells against SARS-
CoV-2 (Wang M. et al., 2020). Studies also revealed that RDV
targeted structurally analogous regions of SARS-CoV-2
polymerase (Lo et al., 2020). Several in-vivo reports suggested
that RDV decreased viral load, reduced pathological processes,
alleviated mild symptoms, and improved pulmonary lesions in
SARS-CoV-2 infected animals with adverse effect (Frediansyah
et al., 2020; Badgujar et al., 2020; Pruijssers et al., 2020). The
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TABLE 1 | General information of repurposed drugs used against SARS-CoV-2.

Drugs Group Mechanism
of action

Targeted
virus/disease
indication

Molecular
target

Possible
correlation

to be
used

against
COVID

19 treatment

No.
of clinical

trials
registered

Strengths Limitations

CQ
or HCQ

Antiparasitic Antiviral effect,
immuno-
modulation

Plasmodium sp.,
arthritis, CoV-OC43,
enterovirus 71, zika
virus

Altering
endosomal pH

Activity against
SARS-CoV2
and immuno-
modulatory
effect

88 and 267 Have shown
activity against
earlier outbreak
CoVs

Shown to cause QTc
prolongation,
torsades de pointes,
ventricular
arrhythmia, and
cardiac deaths

LPV/RTV HIV protease
inhibitor

Viral protease
inhibition

HIV, SARS-CoV,
MERS-CoV

Viral protease
inhibition

Binding to Mpro

protein of
SARS-CoV-2

90 Have shown
activity against
earlier outbreak
CoVs

No efficacy in
multiple clinical trials
including large scale
clinical trials, known
to cause QTc
prolongation and is
on the possible risk
of torsades de
pointes

RDV Nucleoside
analogue

Viral RNA
synthesis
termination

Ebola, SARS-CoV,
MERS-CoV, yellow
fever virus, dengue
virus type 2, influenza
A, parainfluenza 3,
and various delta
CoVs

Adenosine
analogue
competes with
dATP in RNA
synthesis

Viral replication
inhibition

78 Recently
discovered
drug active
against multiple
viruses
including delta
CoVs, SARS
and MERS
CoVs, shown
efficacy in
recent clinical
trials

Questionable safety
on long term effect
as the drug is
recently discovered,
showed no efficacy
in large scale trials,
known to cause
acute hepatotoxic
effect due to an
increase in hepatic
transaminase activity
but no effect on QTc

FPV Nucleoside
analogue

Viral RNA
synthesis
inhibition

Influenza a and B
viruses, arenavirus,
bunyavirus, flavivirus,
filoviruses and ebola
virus

Guanosine
analogue
competes with
dGTP in RNA
synthesis

Viral replication
inhibition

45 Active against
many viruses,
shown in vitro
activity against
SARS-CoV-2

Variation in FPV
plasma
concentration
between the US and
the Japanese
population, shown to
cause adverse
effects on the fetus

RBV Nucleoside
analogue

Viral RNA
synthesis
inhibition

Hepatitis C virus,
canine distemper
virus, enterovirus 71,
chikungunya virus,
semliki forest virus,
orthopoxvirus,
influenza virus, flavi-
and
paramyxoviruses

Guanosine
analogue
competes with
dGTP in RNA
synthesis

Viral replication
inhibition

15 Shows efficacy
against MERS-
CoV in animal
model and used
in earlier CoV
outbreaks

Majorly used in
combination with
other drugs and is
not effective against
reducing mortality,
shown to cause
hemolytic anemia
and worsening of
cardiac disease to
myocardial
infarctions

AZM Antibiotic Bacterial protein
synthesis
inhibition, Antiviral
effect

Bacteria, influenza
virus, dengue virus,
zika virus, ebola virus

Altering
endosomal pH

Activity against
SARS-CoV2,
immuno-
modulatory
effect and
interfere with
viral replication

122 Active against
many viruses
and shown
in vitro activity
against SARS-
CoV-2

Majorly used in
combination with
other drugs, showed
adverse events, no
efficacy in large scale
trials, shown to
cause QTc
prolongation
including ventricular
and supraventricular
arrhythmia

(Continued on following page)
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recommended dose of RDV is 200mg on Day 1 and 100mg daily
for 5days (for non-severe cases) to 10days (severe cases). A
similar dose was considered in numerous clinical trials. A
randomized, open-label, phase 3 trial investigating RDV dose
for 5days vs. 10days revealed that the treatment for 5days was
comparatively beneficial (Spinner et al., 2020). A double-blinded,
randomized, placebo-controlled trial, determined that severe
COVID-19 patients treated with RDV showed fast recovery
compared to control, though statistically insignificant (Wang
Y. et al., 2020). Moreover, the RDV administration is not
approved globally due to questionable safety. Although
SOLIDARITY trial results denote that RDV is not beneficial
against COVID-19, result of some recently completed clinical
trials are contrary. A double-blinded, randomized, placebo-
controlled trial from the United States showed that RDV
treated hospitalized patients may recover faster with
comparatively less adverse events and mortality than the
placebo group (Beigel et al., 2020). Prominent adverse
reactions were acute respiratory failure, decreased glomerular
filtration rate, lymphocytopenia, pyrexia, hyperglycemia,
increased anemia, increased creatine, and liver transaminases
(Beigel et al., 2020; FDA, 2020d). Result of multicentre clinical
trial published at the end of first year of the pandemic, showed
that RDV given in combination with baricitinib (a Janus kinase
inhibitor used to hinder intracellular signaling of cytokines) was
effective compared to RDV alone in terms of reducing recovery
time additionally speeding improvement (Kalil et al., 2020). Based
on such positive results of RDV, it has been approved to use by
various authorized platforms like FDA (Mahase and
McCullough, 2020). An interesting investigation showed that
RDV’s parent nucleotide GS-441524 is superior and less toxic
than its pro-drug form and has shown efficacy in in vivo
veterinary settings (Yan and Muller, 2020). Therefore, further
investigation regarding the use of the parent nucleotide itself
against COVID-19 should be driven with a faster pace. Currently,

78 COVID-19 associated clinical trials are registered with RDV
(ClinicalTrials.gov, 2020g).

Favipiravir
Favipiravir (FPV), an approved influenza treatment, is a
pyrazinecarboxamide derivative (Furuta et al., 2013). It also
showed efficacy against arenavirus, bunyavirus, flavivirus,
filoviruses, and Ebola virus (Furuta et al., 2017). The prodrug
after administration is transformed by host enzymes into the
ribofuranosyl triphosphate derivative (T-705-RTP), a guanine
analogue and suppresses the RdRp (Figure 1; Table 1). In vitro
effectivity of FPV against SARS or MERS viruses have not been
addressed. An in vitro study has shown inhibition of SARS-CoV-
2 by FPV (EC50 � 61.88μM; CC50 � over 400μM) (Wang X. et al.,
2020). In Japan, the approved dose of FPV against influenza is
1,600mg bid on day 1, followed by 600mg bid on days 2–5 with
associated side effects (PMDA, 2020). A Chinese open-label,
controlled study investigated the effects of FPV (Day 1;
1600mg twice and Day 2–14; 600mg bid) vs. LPV/RTV (Day
1–14; 400mg/100mg bid). The preliminary results indicated
potent FPV action and fewer adverse effects than LPV/RTV
(p < 0.001) (Cai et al., 2020). A report suggested treatment of
COVID-19 patients with FPV during times of early symptoms,
helped in reducing the SARS-CoV-2 presence in nasal secretions
(McCullough, 2020). However, previous clinical trials have
reported the variation in FPV plasma concentration between
the United States and the Japanese population (Madelain et al.,
2016). Therefore, more trials regarding global use of FPV should
be considered. In a Japanese study FPV also showed to control
inflammatory mediators and pneumonia progression in COVID-
19 patients (Yamamura et al., 2020). Severe or critical COVID-19
patients showed improvements after treating with FPV
(Takahashi et al., 2020) and FPV also led to improved lung
histology (Kaptein et al., 2020). However, in a meta-analysis
study, FVP proved to have significant clinical and radiological

TABLE 1 | (Continued) General information of repurposed drugs used against SARS-CoV-2.

Drugs Group Mechanism
of action

Targeted
virus/disease
indication

Molecular
target

Possible
correlation

to be
used

against
COVID

19 treatment

No.
of clinical

trials
registered

Strengths Limitations

UFV Broad
spectrum
antiviral

Stacking
interactions with
certain amino acid
residues, viral
glycoproteins,
lipids

Influenza-A virus,
respiratory syncytial
virus, rhinovirus type-
14, Coxsackievirus-
B3 and adenovirus
type-7

Stacking
interactions with
certain amino
acid residues,
viral
glycoproteins,
lipids

Targeting viral
proteins or
lipids and
preventing viral
entry

11 Active against
SARS-CoV and
SARS-CoV-
2 in vitro,
commonly used

No efficacy against
COVID-19, rarely
cause serious
mental/mood
changes but no
effect on QTc

OTV Neuraminidase
inhibitor

Inhibits viral
neuraminidase
enzyme

Influenza a and B
viruses

Component
involved in
exocytosis
process

Virus
exocytosis
Inhibition

20 Commonly
used drug

No efficacy against
SARS-CoV-2, rarely
cause serious
mental/mood
changes but no
effect on QTc

The strength and limitations of drug used are conclusively stated comparing the reports explained in the manuscript. QTc: corrected QT interval.
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improvement without significant differences on viral clearance
(Shrestha et al., 2020). For the use of FPV with respect to COVID-
19, 45 clinical trials have been registered (ClinicalTrials.gov,
2020c).

Ribavirin
Ribavirin (RBV), a broad-spectrum antiviral prodrug is
metabolized in host into a guanosine analog (Gish, 2006). The
drug showed antiviral efficacy against canine distemper virus,
hepatitis C virus, Enterovirus 71, Chikungunya virus, and Semliki
Forest virus, orthopoxvirus, influenza virus, flavi- and
paramyxoviruses (Elia et al., 2008; Galli et al., 2018; Li et al.,
2008; Briolant et al., 2004; Smee et al., 2001; Leyssen et al., 2005).
A study observed reduced replication of the MERS-CoV in rhesus
macaques upon treatment with IFN-α2b and RBV (Falzarano
et al., 2013). RBV in combination with LPV/RTV was used in
SARS-CoV andMERS-CoV trials (Yao T. et al., 2020). In the case
of SARS-CoV-2 infection, an in vitro study determined the EC50
of RBV as 109.50uM (Wang X. et al., 2020). A study included
RBV along with LPV/RTV and IFN-α in the treatment of
hospitalized COVID-19 patients (Hung et al., 2020). The triple
therapy was found to be beneficial to reduce disease symptoms
and virus shedding compared to groups provided LPV-RTV
alone. The dose of RBV considered was 400mg bid along with
400mg/100mg of LPV/RTV + IFN-α for 14days. A study assessed
the impact of sofosbuvir/daclatasvir (antivirals) compared to
RBV in treatment of COVID-19 patients. The mortality was
higher (33%) in COVID-19 patients treated with RBV than that
of sofosbuvir/daclatasvir (Eslami et al., 2020). A retrospective
cohort study comparing RBV vs. supportive therapy stated that
RBV did not help in reducing the mortality rate in COVID-19
patients (Tong et al., 2020). 15 clinical trials have been registered
for the use of RBV alone or in combination with other COVID-19
drugs (ClinicalTrials.gov, 2020h).

Azithromycin
Azithromycin (AZM) is a semisynthetic macrolide antibiotic
belonging to the azalide class (Ballow and Amsden, 1992). It
has bactericidal effects and targets the protein synthesis process of
bacteria. AZM has also been shown to inhibit influenza, zika,
dengue, and Ebola viruses (Damle et al., 2020; Wang M. et al.,
2020). Specifically, a study showed AZM induced reduction in
rhinovirus replication 7-fold in primary bronchial epithelial cells
without inducing cell death (Schögler et al., 2015). The in vitro
EC50 for AZM against SARS-CoV-2 was 2.12µM (EC90: 8.65µM)
following a 72-hour incubation post-infection (MOI of 0.002)
(Hughes et al., 2020). The addition of AZM with HCQ was
efficient in virus elimination in COVID-19 patients (Gautret
et al., 2020). The dose of 500mg on day 1 followed by 250mg/
day, the next 4days was used in compliment to HCQ dose of
200mg, three times/day, for 10days. Some investigations
suggested HCQ and AZM combination to be beneficial in
reducing mortality in COVID-19 patients (Bonny et al., 2020;
Arshad et al., 2020). A case report showed AZM provided with
HCQ proved to be an effective treatment approach in pregnant
women against the SARS-CoV-2 infection and associated with
reduced mortality (Sisti et al., 2020). In contrast, a report from the

United States stated that neither HCQ nor AZM separately or
together could reduce the mortality of COVID-19 patients
compared to the control group (Rosenberg et al., 2020).
Moreover, treatment of AZM and HCQ was associated with
greater changes in QTc in COVID-19 patients (Mercuro et al.,
2020). Few other studies also reported that AZM included in
treating COVID-19 patients did not provide any beneficial effect
(Rodríguez-Molinero et al., 2020; Furtado et al., 2020; Cavalcanti
et al., 2020). 122 clinical trials have been registered for the use of
AZM alone or in combination with other drugs against COVID-
19 (ClinicalTrials.gov, 2020a).

Umifenovir
Umifenovir (UFV) is an indolyl carboxylic acid widely recognized
as Arbidol (Blaising et al., 2014). It is used as a treatment and
prevention measure against influenza virus (Blaising et al., 2014).
It has direct antiviral and host-targeting action. UFV can interact
with virus protein or lipid components and may hinder different
stages of the viral life cycle (Blaising et al., 2014). In vitro analysis
of the antiviral activity of arbidol against several human
respiratory viruses, namely influenza-A virus, respiratory
syncytial virus, rhinovirus type-14, coxsackievirus-B3 and
adenovirus type-7 is demonstrated (Shi et al., 2007). Inhibition
of SARS-CoV replication on UFV treatment was demonstrated
in vitro. UFV is also known to inhibit various isolates of zika virus
in multiple cell lines (Fink et al., 2018). The inhibitory action of
the drug against SARS-CoV-2 in Vero E6 cells (MOI of 0.05) has
been demonstrated. The EC50 and CC50 were 4.11 and 31.79μM,
respectively (Wang X. et al., 2020). Briefly, the study showed
enhanced inhibitory activity at early stages compared to the post-
entry stage (Figure 1). A small-scale study suggested post-
exposure prophylaxis (PEP) use of UFV in people exposed to
COVID-19 patients (Zhang et al., 2020). Another study
determined that arbidol monotherapy was superior to LPV/
RTV against COVID-19 (Zhu et al., 2020). COVID-19
patients provided with UFV along with LPV/RTV showed
better outcomes compared to patients who received LPV/RTV
only (Deng et al., 2020). A contrary study reported that UFV was
not beneficial to improve the condition of the patient or viral
clearance (Lian et al., 2020). Moreover, another study suggested
arbidol + LPV/RTV were associated with many adverse events
(Wen et al., 2020). In most of the studies, a dose of 200mg thrice a
day was considered. According to a meta-analysis, UFV was not
effective in terms of reducing the SARS-CoV-2 elimination from
the infected patient in terms of detection in diagnostic tests and
even hospital length of stay of hospitalized patients (Huang D.
et al., 2020). There is no evidence to support the use of UFV for
improving patient-important outcomes in patients with COVID-
19. 11 registered clinical trials include UFV use in COVID-19
treatment (ClinicalTrials.gov, 2020i).

Oseltamivir
Oseltamivir (OTV) is a synthetic derivative prodrug of ethyl ester
with antiviral activity (Schade et al., 2014). It acts as a
neuraminidase inhibitor against the influenza virus and is also
effective for various avian influenza virus strains (Ward et al.,
2005). An in vitroOTV study on H5N1 influenza showed that the
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IC50 was 0.1–4.9nM (Govorkova et al., 2009). However, an in
vivo study involving H5N1 infection required a longer course and
higher dosage of OTV (Borio et al., 2018). No in vitro study
against SARS-CoV-2 is conducted for OTV. The COVID-19
originated in China during flu season, and hence earlier, many
patients received OTV treatment until the causative agent SARS-
CoV-2 was discovered. Some current clinical trials have used
OTV in combination with other major therapeutic candidates. A
study showed that the drug exhibited no positive result on
COVID-19 (Wang D. et al., 2020). 20 clinical trials have been
registered which include OTV in the treatment panel of COVID-
19 (ClinicalTrials.gov, 2020f).

OTHER POTENTIAL ANTIVIRAL DRUGS
AND THERAPIES

Convalescent Plasma Therapy
Apart from antiviral drugs another probable efficient antiviral
strategy includes the use of convalescent plasma collected from
the recovered patients containing the anti-SARS-CoV-2
antibodies. Convalescent plasma obtained from patients

recovered from COVID-19 carry receptor binding domain
specific antibodies with potent antiviral activity (Robbiani
et al., 2020). These antibodies can directly interact with SARS-
CoV-2 proteins and could block the viral entry into the cell
(Figure 1). In August 2020, FDA issued EUA for the use of
convalescent plasma in hospitalized patients (FDA, 2021a). The
samples were considered of high titer if it followed one of the
following criteria-a neutralizing antibody titer of ≥250 as per
Broad Institute’s neutralizing antibody assay, a signal-to-cut off
(S/C) of ≥12 as per Ortho VITROS IgG assay, or a level of ≥1:
2,880 in the Mount Sinai COVID-19 ELISA IgG Antibody Test
(FDA, 2021a; FDA, 2021b; FDA, 2021c). Units with low titer
should be specified and considered to use if high titer samples
were not available. The initial dose of 200ml is recommended and
further the dose is advised as per condition and requirement of
the patient. However, clinical trials have used different values of
titer or doses and generally convalescent plasma was examined
using immunoassays instead of viral neutralization assays. For
example, a study reported use of no minimum neutralizing-
antibody titer and single dose of 200–500ml plasma as per the
patient’s condition (Joyner et al., 2020a). While in an open label
phase II multicentre randomized controlled trial (PLACID Trial)

TABLE 2 | ADMET analysis of drugs repurposed against SARS-CoV-2.

Property Model
name

Predicted value Unit

CQ HCQ AZM RMD RBV LPV RTV FPV UFV OTV

Absorption Lipophilicity 4.81 3.78 1.90 2.31 −3.01 4.32 5.90 −0.99 5.17 1.28 Numeric (LogP)
Water solubility −4.249 −3.627 −4.133 −3.07 −1.71 −4.819 −3.35 −2.12 −3.98 −2.47 Numeric (log mol/L)
Caco2 permeability 1.62 1.54 −0.21 0.63 0.42 0.06 0.37 0.62 0.83 0.93 Numeric (log papp in

10–6cm/s)
Intestinal absorption (human) 89.95 90.21 45.80 71.10 54.98 65.60 69.45 91.69 88.29 74.46 Numeric (% Absorbed)
Skin permeability −2.67 −2.84 −2.74 −2.73 −2.76 −2.73 −2.73 −3.2 −2.73 −3.17 Numeric (log Kp)
P-glycoprotein substrate Yes Yes Yes Yes No Yes Yes No Yes No Categorical (Yes/No)
P-glycoprotein I inhibitor No No Yes Yes No Yes Yes No Yes No Categorical (Yes/No)
P-glycoprotein II inhibitor No No No No No Yes Yes No Yes No Categorical (Yes/No)

Distribution VDss (human) 1.33 1.07 −0.214 0.30 −0.01 −0.24 0.42 −0.21 0.72 0.04 Numeric (log L/kg)
Fraction unbound (human) 0.19 0.24 0.51 0.005 0.78 0 0 0.78 0.12 0.59 Numeric (Fu)
BBB permeability 0.349 0.07 −1.85 −2.05 −0.92 −0.83 −1.66 −0.12 0.03 −0.69 Numeric (log BB)
CNS permeability −2.19 −2.51 −3.77 −4.67 −3.75 −2.935 −3.29 −3.08 −2.19 −3.11 Numeric (log PS)

Metabolism CYP2D6 substrate Yes Yes No No No No No No No No Categorical (Yes/No)
CYP3A4 substrate Yes Yes Yes Yes No Yes Yes No Yes No Categorical (Yes/No)
CYP1A2 inhibitior No Yes No No No No No No No No Categorical (Yes/No)
CYP2C19 inhibitior No No No No No Yes No No Yes No Categorical (Yes/No)
CYP2C9 inhibitior No No No No No Yes Yes No No No Categorical (Yes/No)
CYP2D6 inhibitior Yes Yes No No No No No No Yes No Categorical (Yes/No)
CYP3A4 inhibitior No No No No No Yes Yes No Yes No Categorical (Yes/No)

Excretion Total clearance 1.09 1.15 -0.42 0.19 0.62 0.45 0.56 0.51 0.68 0.92 Numeric (log ml/min/kg)
Renal OCT2 substrate Yes No No No No No No No No No Categorical (Yes/No)

Toxicity AMES toxicity Yes Yes No No No No No No No No Categorical (Yes/No)
Max. Tolerated dose (human) −0.16 −0.09 1.02 0.15 1.01 −0.29 0.09 1.29 0.33 0.47 Numeric (log mg/kg/day)
hERG I inhibitor No No No No No No No No No No Categorical (Yes/No)
hERG II inhibitor Yes Yes No Yes No Yes Yes No Yes No Categorical (Yes/No)
Oral rat acute toxicity (LD50) 2.85 2.65 2.76 2.04 1.98 2.38 2.70 1.94 2.95 2.67 Numeric (mol/kg)
Oral rat chronic toxicity
(LOAEL)

1.02 1.40 1.99 1.63 3.09 5.94 2.23 2.02 0.73 1.09 Numeric (log mg/kg_bw/day)

Hepatotoxicity Yes Yes Yes Yes No Yes Yes No Yes No Categorical (Yes/No)
Skin sensitization No No No No No No No No No No Categorical (Yes/No)
T.pyriformis toxicity 1.55 1.06 0.28 0.28 0.28 0.28 0.28 0.09 0.29 0.10 Numeric (log ug/L)
Minnow toxicity 0.74 1.32 7.80 0.29 4.62 −1.50 1.787 3.40 −0.12 2.31 Numeric (log mM

The ADMET information about selected drugs is predicted using online server http://biosig.unimelb.edu.au/pkcsm/.
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from India, two doses of 200ml with titers ranging from 1:20 to
≥1:1,280 (from immunoassay) was used. In a Chinese trial, single
dose of median volume of 200–250ml with titer ≥1: 1:640 was
used (Li et al., 2020). Although various studies have shown
efficacy of this therapy (Ahn et al., 2020; Duan et al., 2020;
Abolghasemi et al., 2020; Hegerova et al., 2020; Xia et al., 2020),
some clinical trials have demonstrated that use of convalescent
plasma did not reduced the hospitalization duration, severity, or
mortality compared to the control groups (Simonovich et al.,
2020; Li et al., 2020; Agarwal et al., 2020). Recently completed
randomized, double-blind, placebo-controlled trial from
Argentina showed reduced disease progression in patients
treated with high titer (>1:1,000) convalescent plasma (Libster
et al., 2021). Also, another multicentre study from Poland stated
that convalescent plasma can be given as supportive therapy to
COVID-19 patients due to availability and low frequency adverse
events (Moniuszko-Malinowska et al., 2020). Another large-scale
observational analysis of patients from the United States who
received the convalescent plasma put forward the opinion that
this therapy could be beneficial if provided in early days of
symptoms onset (Joyner et al., 2020b, Effect of Convalescent
Plasma on Mortality among Hospitalized Patients with COVID-
19: Initial Three-Month Experience, 2020). The titers of
neutralizing antibodies from donor and viral titers in recipient
should be considered for providing the convalescent plasma and
further clinical outcomes should be studied for optimizing the
therapy. There is a lack of studies exclusively investigating the
effect of convalescent plasma treatment on SARS-CoV-2 infected
children or pregnant women. Additionally, the effectivity of
convalescent plasma in patients infected with new SARS-CoV-
2 variants also needs to be tested. The ongoing trials may shed
more light on efficacy of this therapy against COVID-19 patients.
However, many trials were terminated due to reduced cases in the
study region. Currently, overall 172 clinical trials have been
registered to investigate the use of convalescent plasma in
COVID-19 patients (ClinicalTrials.gov, 2021a).

New Antiviral Candidates and Other
Potential Therapies On-Board
Other than the repurposed drugs the development of anti-SARS-
CoV-2 drugs has been accelerated. Recently, a
hydroxymethylketone derivative PF-00835,231 showed potency
to block protease of SARS-CoV-2 in pre-clinical experiments
(Hoffman et al., 2020). This drug has also shown to have suitable
pharmaceutical properties and has gathered as an intravenous
therapy to cure the disease. Another drug AT-527, a purine
nucleotide prodrug, which has shown pan-genotypic efficacy
against hepatitis C infection (Good et al., 2020) has also been
considered against COVID-19 in a multinational clinical trial
(Clinical trial no. NCT04396106). Apart from antiviral drugs, the
strategies to tackle increased inflammatory responses during
COVID-19 have also been investigated in various studies.
Corticosteroids, due to their potent anti-inflammatory effects
have gained importance in this regard. Numerous studies
investigated a glucocorticoid-dexamethasone but its
importance is recently highlighted in large scale RECOVERY

trial (Horby et al., 2020a) and further gained recommendation of
its use from various platforms. The daily dose of 6mg
dexamethasone for 10days was used for hospitalized patients
and showed reduced mortality on 28th day compared to the
control groups (Horby et al., 2020a). Currently there are 45
registered clinical trials for corticosteroid use against COVID-
19 (ClinicalTrials.gov, 2021b).

PHARMACOKINETICS AND DRUG
INTERACTIONS OF SOME REPURPOSED
DRUGS
Understanding the relationship between the pharmacokinetic
properties and the therapeutic effect or side-effect of a drug is
clinically important (Takahashi, 2000). The bioavailability, volume
of distribution, protein binding, half-life, and elimination are the
key determinants of successful drug therapy. Especially in severe
COVID-19 cases, complex clinical situations may arise due to
multiple organ failure and the consequences of drug action cannot
be predicted without sufficient pharmacokinetic data (Zaim et al.,
2020; Wang T. et al., 2020). The relevant information can be
obtained from preclinical and large randomized clinical trials.
However, clinicians will continue to confront the challenge of
deciding the dosage of repurposed drugs until the
pharmacokinetics parameters are better assessed in COVID-19.
Furthermore, multi-drug therapy is unavoidable in the treatment
of COVID-19, especially for those patients with pre-existing
diseases (Jafari et al., 2020). Therefore, drug-drug interactions
(DDIs) are the major concern in clinical practice. It is too early
to precisely estimate the effect of DDIs between the experimental
drugs used to treat COVID-19 and other prescription drugs.
Similarly, the impact of DDIs on pre-existing clinical conditions
may not be clearly ruled out. Because, the currently available
COVID-19 clinical results are mostly obtained from a relatively
short-term study and was not performed in patients taking specific
drugs for pre-existing illness (Sciaccaluga et al., 2020). Moreover,
clinically significant DDIs can be rationalized in relevant studies
performed on appropriate patient populations with high accuracy.
Herein, we recapitulate the pharmacokinetics and DDIs of some
COVID-19 repurposed drugs under consideration. Additionally,
we report the in silico pharmacokinetics prediction of all
repurposed drugs discussed in this review (Table 2).

Generally, the drugs are evaluated for potential risk of DDIs
during drug development stage to determine the effect of
cytochrome P450 (CYP) and P-glycoprotein mediated
interactions (Elmeliegy et al., 2020). However, a lack of
published clinical data in this area is a major setback. Some
efforts are made to document the potential DDIs and they can
be accessed from the COVID-19 Drug Interactions site
(Liverpool COVID-19 interactions, 2021) published by the
Liverpool Drug Interaction Group and the IBM Micromedex
Drug Interaction Checking site (IBM Micromedex, 2021)
maintained by IBM Watson Health, Greenwood Village,
Colorado, United States.

Two antimalarial drugs CQ and HCQ, with or without a
macrolide antibiotic AZM, have been studied in multiple clinical
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trials for the treatment of COVID-19. QTc prolongation, Torsade
de Pointes, ventricular arrhythmia, and cardiac deaths are major
risks of CQ and HCQ. QT prolongation and potentially life-
threatening arrhythmias with HCQ therapy originate from its
pharmacodynamics action (O’Laughlin et al., 2016). CQ and
HCQ are moderate inhibitors of cytochrome P450 (CYP) 2D6,
and potential inhibitors of P-glycoprotein (P-gp) (Rendic and
Guengerich, 2020). Therefore, these drugs cause a wide range of
potential DDIs by altering the plasma concentration of several
drugs. HCQ increases the plasma concentrations of amiodaron,
dabigatran, edoxaban, cyclosporine, tacrolimus and sirolimus
and decreases the bioavailability of carbamazepine and
rifampicin with concomitant use (Liverpool COVID-19
interactions, 2021). The co-administration of HCQ with anti-
tubercular drugs such as isoniazid or ethambutol increases the
risk of peripheral neuropathy in diabetic patients. CQ and HCQ
may decrease the activity of RDV and therefore co-
administration of these drugs is not recommended. AZM is
not metabolized by cytochromes P450 and it is not a
substrate/inhibitor of CYP450. AZM is a known
P-glycoprotein (P-gp) inhibitor and, if co-administered with
P-gp substrates, it may result in increased serum levels
requiring special therapeutic dose monitoring (Scherrmann
et al., 2020).

RDV is a prodrug that inhibits viral RNA polymerases. The
metabolic stability of RDV studied in various animal models
showed that it was relatively stable in the intestine (t1/2 �
40.3–114.1min) but unstable in the liver (t1/2 < 3.9min)
(FDA, 2020a). The hepatic instability and the complete first-
pass effect prevented oral delivery of RDV. Therefore, the drug is
administered through the intravenous route (IV). The IV
administration of RDV (200mg) to healthy humans produced
AUC0-24 values of 4.8μM/h with moderate protein binding. The
in vitro metabolism studies of RDV suggest that it was
predominantly metabolized by CYP2C8, CYP2D6, and
CYP3A4. It is extensively metabolized in hepatic tissues, and
the rate of metabolism by CYP3A4 alone was estimated as 42.1%.
The elimination studies carried out in rats and monkeys showed
that kidney and bile excretion were the major routes of
elimination of RDV. It has a low potential for significant
drug-drug interactions because of its rapid clearance. However,
the antiviral activity effect of RDV is reduced when co-
administered with CQ or HCQ (COVID-19 treatment update,
FDA). It is because of the interference of CQ on the intracellular
metabolic activation of RDV. Therefore, the co-administration of
inhibitors of such CYPs can lead to a potentially high risk of toxic
effect (Cattaneo et al., 2020). In a case study it was reported that
RDV induced acute hepatotoxic effect in a male COVID-19
patient and realized the toxic effect was due to probable
interaction of P-glycoprotein (P-gp) inhibitors (Leegwater
et al., 2020). The clinical history of the patient described that
the patient was treated with the P-gp inhibitors like chloroquine
and amiodarone along with RDV. An adverse effect of an increase
in hepatic transaminase activity was also observed in the clinical
trial of RDV. RDVwas not genotoxic, and it does not impair male
fertility (Singh et al., 2020). Based on these preliminary findings,
the FDA had granted a EUA for RDV for the treatment of

COVID-19 patients (Ison et al., 2020; FDA, 2020d) and was
last reissued on October 22, 2020 with some amendments.

The combination of LPV and RTV was approved for the
treatment of HIV infection and has recently been investigated in
COVID-19 patients (Jean et al., 2020). RTV-boosted LPV (400/
100mg) was orally administered to COVID-19 patients. LPV is
predominantly metabolized by CYP3A4 isoenzyme, and RTV is a
strong inhibitor of CYP3A4 (Chen, 2005; Gregoire et al., 2020).
Therefore, RTV prevented the metabolism of LPV. The
concentrations of LPV in COVID-19 patients were extremely
high compared with HIV-infected patients. No severe adverse
events were reported in the clinical trials of LPV and RTV.
However, these two drugs can inhibit metabolism and increase
plasma levels of several drugs that may induce toxic effects. The
potentially severe DDIs were recorded for the concurrent
administration of HCQ and LPV/RTV in hospitalized
COVID-19 patients (Cattaneo et al., 2020). Cattaneo, et al.,
reported that more than fifty percent of category D based
DDIs and they are attributed to LPV/RTV. The risk of QT
interval prolongation by LPV/RTV therapy may be due to
inhibition of human ether-a-go-go related gene (hERG)
(Sciaccaluga et al., 2020). The cardiotoxicity risk ratio of LPV/
RTV is double that of HCQ and AZM (Cattaneo et al., 2020).
Furthermore, RTV is shown to increase in the bioavailability and
half-life of immunosuppressant drugs such as tacrolimus and
cyclosporine by inhibition of CYP3A (Zijp et al., 2020).

The clinical trial results of FPV showed that the peak plasma
concentration was achieved at 2h after oral administration (Du and
Chen, 2020). The plasma protein binding of FPVwas observed 54%
in humans. FPV is metabolized in the hepatic tissues majorly by
aldehyde oxidase (AO), and partly by xanthine oxidase (Gowen
et al., 2015). The metabolites of FPV are rapidly excreted by the
kidneys. Particularly, FPV is a mechanism-based AO inhibitor and
affects the action of AO in a concentration-dependent manner.
Furthermore, potential DDIs between FPV, cimetidine, and
zaleplon have been already reported (Renwick et al., 2002). The
chances of occurring DDIs between FPV and citalopram,
famciclovir, zaleplon and sulindac are higher as these drugs are
alsometabolized byAO (Du andChen, 2020). In vivo study showed
inhibitory effect of FPV on CYP2C8 isoenzyme. Therefore, more
caution was necessary with anticancer agents such as tamoxifen
(AO inhibitor) and paclitaxel (CYP2C8 substrate) (Jafari et al.,
2020). Furthermore, a clinical study showed that FPV increases the
concentrations of antidiabetic drugs such as pioglitazone or
repaglinide with concomitant use that leads to the risk of
hypoglycemia. Therefore, a great deal of attention must be paid
by clinicians in designing the therapeutic dosage regimen.

CONCLUSION

For containing the devastating scenario of COVID-19 pandemic,
the identification of potent and less toxic therapeutics for
COVID-19 is a key research priority. Current research efforts
are intensified on the evaluation of existing drugs against SARS-
CoV-2 infection. Despite several challenges in SARS-CoV-2
infection, the drug repurposing strategy has proved its
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important role in the rapid discovery of an effective treatment for
COVID-19. Only judicious evaluation of these repurposed drugs
may show real insights on its clinical effectiveness and clinical
safety in COVID-19 patients. Furthermore, it is essential to
address the issue of drug-drug interaction of the repurposed
drugs in COVID-19 patients with comorbidities (Jakhmola et al.,
2020c). In our knowledge, the present review adequately provides
all relevant information currently needed to assist clinicians and
researchers working in this area.
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Antiviral Essential Oil Components
Against SARS-CoV-2 in
Pre-procedural Mouth Rinses for
Dental Settings During COVID-19: A
Computational Study
Pradeep Kumar Yadalam1, Kalaivani Varatharajan2, K. Rajapandian2, Priyanka Chopra3,
Deepavalli Arumuganainar4, Thilgavathi Nagarathnam1, Honglae Sohn5* and
Thirumurthy Madhavan6*

1Adhiparashakthi Dental College and Hospital, Melmaruvathur, India, 2Department of Periodontics, SRM Kattankulathur Dental
College and Hospital, SRM Institute of Science and Technology, Chennai, India, 3Faculty of Dental Sciences, SGT University,
Gurugram, India, 4Ragas Dental College and Hospital, Chennai, India, 5Department of Chemistry and Department of Carbon
Materials, Chosun University, Gwangju, South Korea, 6Department of Genetic Engineering, Computational Biology Lab, School of
Bioengineering, SRM Institute of Science and Technology, Chennai, India

COVID-19 mainly spreads through cough or sneeze droplets produced by an infected
person. The viral particles are mostly present in the oral cavity. The risk of contracting
COVID-19 is high in the dental profession due to the nature of procedures involved that
produce aerosols. Along with other measures to limit the risk of infection, pre-procedural
mouth rinses are beneficial in reducing the viral particles in the oral cavity. In this study, the
antiviral efficacy of essential oil components has been determined specifically against
SARS-CoV-2 by molecular docking and conceptual DFT approach. Based on the binding
affinities of the components against the receptor binding domain of the S1 glycoprotein,
cuminal, carvacrol, myrtanol, and pinocarveol were found to be highly active. The
molecular descriptor values obtained through conceptual DFT also indicated the
above-mentioned components to be active based on the correlation between the
structure and the activity of the compounds. Therefore, pre-procedural mouth rinses
with these components included may be specifically suitable for dental procedures during
the COVID-19 period.

Keywords: COVID-19, SARS-CoV-2, pre-procedural mouth rinse, antiviral, dental, molecular docking,
conceptual DFT

INTRODUCTION

The outbreak of corona virus disease 2019 (COVID-19) inWuhan, China, has impacted the world in
several ways (Lai et al., 2020). This disease, caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has swiftly spread across 202 countries in the world due to its highly contagious
nature (Peng et al., 2020b). As per the World Health Organization (WHO) report, there have been
about 38 million confirmed cases of COVID-19, including one million deaths all over the world (as
on October 16, 2020) (https://covid19.who.int/). And in India alone, there are seven million cases
with about 100,000 deaths reported (as on October 12, 2020) (WHO Coronavirus Disease, 2020).
Despite undertaking serious measures to contain the disease globally, it is still on the rise with no
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vaccine or drug to control the same. The virus spreads through
direct contact with cough and sneeze droplets from an infected
person or by touching contaminated surfaces and further by
touching the nose or mouth (Dhand and Li, 2020). Once a person
contracts the disease, the viral particles are mostly housed in the
nasal cavity, oropharynx, nasopharynx, and salivary secretions
(Han and Ivanovski, 2020; Krajewska Wojciechowska et al.,
2020). An infected person displays symptoms such as fever,
cough, and cold, a there have been reports indicating that
asymptomatic carriers also spread the disease (Qu et al., 2020;
Yu and Yang, 2020).

The nature of dental doctors’ work mostly involves being in
close proximity with patients and exposure to saliva and blood
from aerosols generated from regular dental procedures, which
puts them at high risk of viral infection (Li et al., 2020; Meng et al.,
2020; Peng et al., 2020a). The droplets may infect the dentist if
they are large in size; otherwise, they may remain suspended in
the air and cause long-distance transmission in case of smaller
droplets (Baghizadeh Fini, 2020). Several studies suggest that
SARS-CoV-2 spike protein (1273 amino acid residues) binds to
human angiotensin converting enzyme 2 (ACE-2) and utilizes it
as a cellular entry receptor for binding and replication (Gurwitz,
2020; Verdecchia et al., 2020; Ziegler et al., 2020). The spike (S)
protein is composed of two subunits, namely, S1 and S2. The
receptor binding domain (RBD) of the S1 protein (319–541
residues) binds to the ACE-2 cell receptor, followed by fusion,
which involves the S2 protein. The RBD lies in the C-terminal
domain of the S1 protein, which has more residues that directly
interact with the ACE-2 receptor when compared to the
N-terminal domain (Huang et al., 2020). The domains of S
glycoprotein and structure of SARS-CoV-2 are depicted in
Figure 1. Hence, this region is a critical target for antibodies
or antiviral compounds. ACE-2 receptors are abundantly present

in the salivary glands and lungs (Xu et al., 2020). Therefore, dental
professionals must exercise extreme care in terms of safety to
prevent nosocomial infection. Dental societies and associations
have laid down guidelines to control the transmission of the
disease by suggesting dental professionals either completely stop
providing dental services or postpone elective treatments and
provide primary care through telemedicine services. Only
emergency treatments are permitted to be performed by
wearing personal protective equipment (PPE) and treating the
patients with pre-procedural mouth rinse (PPMR) as a
precaution to avoid any possible infection (Jevon and Shamsi,
2020; Nimbulkar et al., 2020). Recent studies have acknowledged
the effectiveness of PPMR components such as povidone-iodine,
0.12%-chlorhexidine gluconate, cetylpyridinium chloride,
chloroxylenol, benzalkonium chloride, and cetrimide/
chlorhexidine in dental care to limit the viral load prior to
treatment (Herrera et al., 2020; Meng et al., 2020). Certain
essential oil (EO) components such as menthol, thymol,
eugenol, and eucalyptol are common active ingredients in
mouth rinses (Vlachojannis et al., 2013; Alshehri, 2018).
Essential oils are a complex mixture of aromatic compounds
that are known for antimicrobial activity against a host of
microbes (Bakkali et al., 2008). The activity of these
compounds is mostly related to their structure. Previously,
numerous studies have proven the efficacy of EOs against
many viruses such as herpes simplex virus (type 1 and type 2),
influenza virus adenovirus type 3, and poliovirus (Minami et al.,
2003; Koch et al., 2008; Swamy et al., 2016; Tariq et al., 2019). The
study of synergistic activity among the EO components may lead
to better antimicrobial activity. The main advantage of using EOs
for therapy, against synthetic drugs, is that they fall under the
GRAS (generally regarded as safe) category, whereas synthetic
drugs have to undergo various levels of safety and toxicity testing,

FIGURE 1 | (A) Domains of S glycoprotein. (B) Structure of SARS-CoV-2.
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TABLE 1 | 2D structures of the ligands (EO components).

Compound name Structure Compound name Structure

α-Terpinene Carvacrol

Anethole Caryophyllene

Camphene Cinnamaldehyde

Cinnamyl acetate Citronellol

Citral Cuminal

Citronellal Estragole

Eucalyptol Limonene

Eugenol Linalool

(Continued on following page)
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which is time-consuming. EOs are generally used for therapeutic
benefits in complementary and alternative medicine (CAM) to
treat infectious, non-infectious, and psychological disorders.
Hence, in this study, we aim to identify EO components that
are comparable or better in terms of activity, in comparison with
the ones that are commonly used.

In silico techniques such as molecular docking and conceptual
DFT have been employed in this study. The EO components have
been docked to the RBD of the spike glycoprotein (S1) since this
protein is a key target for many inhibitors because of its
involvement in ACE-2 binding. The major objectives of this
study are to determine the best set of inhibitors of spike
protein based on the binding affinity calculations and to assess
the activity of the top inhibitors based on their structure–activity
relationship obtained by conceptual DFT calculations.

MATERIALS AND METHODS

Selection and Preparation of Protein
Structure
The target protein considered for this study is the RBD of the
SARS-CoV-2 S1 subunit, since it is primarily involved in
interaction with ACE-2. The 3D structure of this protein
possessing PDB ID 6M0J was retrieved from the Protein Data
Bank (http://www.rcsb.org/). Initial preparation of the protein
structure involved removal of water molecules and co-crystal
ligands such as NAG, Cl, Zn, and ACE-2 structure which was
bound to the RBD using PyMol software (http://www.pymol.org/
). The protein was further prepared for docking by adding
charges, energy minimization, fixing side chains and atom
bumps, and using PyRx virtual screening software.

TABLE 1 | (Continued) 2D structures of the ligands (EO components).

Compound name Structure Compound name Structure

Fenchol Menthol

Geraniol Myrtanol

Ocimene Sabinene

p-Cymene Sylvestrene

Pinocarveol Terpinen-4-ol

Pulegone Thujene

Thymol Zingiberene
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Subsequently, the protein was converted to the PDBQT file
format to render it readable by AutoDock Vina in PyRx
software (Trott and Olson, 2010; Dallakyan and Olson, 2015).

Selection and Preparation of Ligands
The ligands chosen for this study are the components of certain
EOs which are known to possess high antimicrobial activity
against a broad range of microorganisms. Thymol, eucalyptol,
menthol, and eugenol are widely used in most of the pre-
procedural mouth rinses used by dentists (Baptista-Silva et al.,
2020). These components are majorly present in thyme,
eucalyptus, and clove essential oils. Therefore, other essential
oil components are chosen along with these standard compounds
for comparison purposes.

The 3D structure of the ligands was obtained from the
PUBCHEM database (https://pubchem.ncbi.nlm.nih.gov/) in the
SDF (structure data file) format. PUBCHEM is a database
maintained by the NCBI, which consists of chemical and structure
information of compounds that can be freely downloaded along with
descriptive datasets. The ligandmolecules were imported to the PyRx
software using OpenBabel control (O’Boyle et al., 2011). They were
prepared by adding charges and optimized using the universal force
field (UFF). Furthermore, the ligands were also converted to the
PDBQT format, as required byAutoDockVina. The 2D images of the
ligands are presented in Table 1.

Binding Site Selection and Molecular
Docking
Prior to docking, selection of the appropriate binding site for the
ligands is of paramount importance for deriving reliable inference
from docking results. One particular binding site has been well
characterized by Choudhary et al., 2020; Kulkarni et al., 2020; and
Prajapat et al., 2020. Therefore, the site on the RBD with residues
Tyr453, Arg454, Leu455, Lys458, Ser459, Ser469, Glu471, Pro491,
Leu492, Gln493, and Tyr489 was chosen for docking of ligands.
This site of the RBD of S1 protein is also involved in binding to
ACE-2.

Molecular docking is performed in silico to assess the affinity
of binding between a macromolecule and a set of small molecules
based on the scores generated by the software for every
interaction. In this study, docking was performed using
AutoDock Vina in PyRx virtual screening open source
software. AutoDock Vina is an upgraded version of AutoDock
4.0 in terms of speed and accuracy of binding mode prediction. In
the PyRx software, the protein and ligand molecules to be docked
are selected under the Vina Wizard control. The grid which
appears on the protein is modified in dimensions according to the
area around the binding site. The “Run Vina” control is selected
to start the docking process. The results can be viewed under the
“Analyze Results” tab and can also be exported in the CSV format
to the working directory.

TABLE 2 | Binding affinities of the EO components with the RBD of S protein along with the H-bond and hydrophobic interactions made with the amino acid residues. EO
components with better binding affinities are represented in bold.

Compound name Binding affinity (kcal/mol) H-bond interactions Hydrophobic interactions

α-Terpinene −4.3 — Tyr449, Tyr451, Tyr453, Leu455, Phe456, Leu461, Ile468, Thr470, Ile472
Anethole −4.8 —

Camphene −4.4 —

Carvacrol −4.9 Ser459
Caryophyllene −4.7 —

Cinnamaldehyde −4.6 Tyr473
Cinnamyl acetate −4.7 Arg454
Citral −4.0 Ser459
Citronellal −4.4 Ser459
Citronellol −4.4 Arg454
Cuminal −4.9 Arg457, Ser459
Estragole −4.7 Arg457
Eucalyptol −4.2 Lys458
Eugenol −4.9 Arg457, Phe456
Fenchol −4.6 —

Geraniol −4.6 Arg454, Phe456
Limonene −4.6 —

Linalool −4.7 Asp467, Ser469
Menthol −5.0 —

Myrtanol −5.3 Ser459, Lys458
Ocimene −4.0 —

p-Cymene −4.8 —

Pinocarveol −5.0 Ser469
Pulegone −4.8 Ser459
Sabinene −4.3 —

Sylvestrene −5.1 —

Terpinen-4-ol −4.8 Arg457, Asp467
Thujene −4.8 —

Thymol −5.4 Arg457, Phe456
Zingiberene −5.2 —
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FIGURE 2 | Docked poses of cuminal (green), carvacrol (blue), myrtanol (teal), and pinocarveol (yellow) in the binding site of the RBD of S glycoprotein. The
hydrogen bonding between ligands and amino acid residues is depicted.

FIGURE 3 | Ligands docked in the binding site of the RBD of S protein.
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Conceptual DFT
Conceptual DFT (CDFT) is a subfield of DFT (density functional
theory). This technique has been employed in this study to observe
the chemical behavior of a molecule based on the electron density
in the molecular orbitals (Geerlings and de Proft, 2008). DFT and
CDFT are mainly based on the Hohenberg–Kohn theorem
(Hohenberg and Kohn, 1964). About 10 different molecular
descriptors are calculated as a part of the CDFT study that
defines the molecular activity of the components. They are the
total energy, lowest unoccupiedmolecular orbital (LUMO), highest
occupied molecular orbital (HOMO), energy gap (ΔE), global
softness (σ), absolute hardness (η), molecular dipole moment,
electronegativity (χ), electrophilicity index (ω), and chemical
potential (μ). These descriptors can provide prominent insights
into the structure–activity relationship of molecules.

RESULTS

Molecular Docking
Docking technique essentially aids in identifying the best
inhibitors to a particular protein based on the binding
affinity scores generated for various conformations of the
docked poses. Visualization tools such as PyMol further help
in locating the ligands in the binding pocket along with the
bonds exhibited with the neighboring residues. In this case, all
30 EO components were docked in the binding site specified
during the docking run. Among them, carvacrol, cuminal,
myrtanol, and pinocarveol displayed the best binding affinity
with the spike protein with scores of −4.9 kcal/mol, −4.9 kcal/
mol, −5.3 kcal/mol, and 5.0 kcal/mol, respectively, and they
formed hydrogen bonding with residues Ser459, Arg457,
Ser469, and Lys458. Thymol, eugenol, eucalyptol, and
menthol, which were also docked for comparison purposes,
scored −5.4 kcal/mol, −4.9 kcal/mol, −4.2 kcal/mol, and
5.0 kcal/mol, respectively. Zingiberene and sylvestrene too
displayed good binding affinity with scores of −5.2 kcal/mol
and −5.1 kcal/mol, respectively, but these components did not
make any hydrogen bonds with the residues in vicinity. The
stability of all the ligands in the pocket may be attributed to

numerous hydrophobic residues present around the site. The
docking scores along with hydrogen bonding and hydrophobic
interaction information are tabulated in Table 2. It is clear from
this study that the components proposed as top inhibitors have
displayed almost similar or better activity when compared to the
EO components used in conventional PPMRs. Figure 2
illustrates the docked poses of selected inhibitors of SARS-
CoV-2 with the hydrogen bonding made by them with the
residues. Figure 3 illustrates the docked poses of all the 30
ligands in the binding pocket of the RBD of S protein.

Conceptual DFT
Optimization of the EO components was performed using
Gaussian 16 (Frisch et al., 2016) with B3LYP function (Becke,
1988) and 6-31G(d) basis set. The energies of themolecular orbitals
represented as HOMO (EHOMO) and LUMO (ELUMO) were
calculated on the basis of Fukui’s theory (Fukui, 1982). The
values of each of the descriptors were derived for the selected
EO components. The HOMO and LUMO represent the ability of
the compounds in donating and accepting electrons, respectively.
The energy gap (ΔE) is the difference in energies between two
molecules orbitals, which is given by ΔE � ELUMO–EHOMO. ΔE
essentially represents the energy needed to perform transition of
molecules from the HOMO to the LUMO, and hence, it is directly
proportional to the molecular reactivity (Mert et al., 2011). In this
study, larger ΔE values were attributed to a wide range of ELUMO

values. Table 3 provides the statistics of DFT-based molecular
descriptors of selected EO components. It can be observed from the
table that cuminal showed the lowest ΔE, whereas zingiberene
displayed the largest ΔE. It is understood that the lower the energy
gap, the higher the activity of the molecules, which can be
correlated with the transition of molecules from the HOMO to
the LUMO. Carvacrol, caryophyllene, pinocarveol, and sylvestrene
also exhibited low ΔE. The electron density maps depicting the
density of electrons in different regions of the molecules are
presented in Figure 4. Mert et al., 2011, have pointed out that
the molecular dipolemoment of a molecule is directly proportional
to its chemical reactivity. Cuminal has the highest dipole moment
with 3.84 debye, followed by pinocarveol with 1.70 debye and
myrtanol with 1.64 debye, which is higher than that of eugenol,

TABLE 3 | Statistics of DFT based molecular descriptors of selected EO components.

Compound Total
energy
(E γ)
(in eV)

Molecular
dipole

moment
(debye)

EHOMO ELUMO HOMO/
LUMO

gap (ΔE)

Absolute
hardness

(η)

Global
softness

(σ)

Electronegativity
(χ)

Chemical
potential

(μ)

Electrophilicity
index
(ω)

α-Terpinene −10631.09 0.49 −5.23 −0.26 4.97 2.49 0.20 −2.75 2.75 1.52
Carvacrol −12645.87 1.45 −5.75 0.19 5.94 2.97 0.17 −2.78 2.78 1.30
Caryophyllene −15945.58 0.35 −5.95 0.53 6.48 3.24 0.15 −2.71 2.71 1.13
Cuminal −12612.99 3.84 −6.83 −1.59 5.24 2.62 0.19 −4.21 4.21 3.39
Eugenol −14658.45 1.50 −5.72 0.08 5.80 2.90 0.17 −2.82 2.82 1.37
Menthol −12744.29 1.50 −6.90 2.01 8.91 4.45 0.11 −2.44 2.44 0.67
Myrtanol −12710.09 1.64 −6.91 1.89 8.80 4.40 0.11 −2.51 2.51 0.72
Pinocarveol −12676.80 1.70 −6.88 −1.50 5.38 3.48 0.14 −3.15 3.15 2.71
Sylvestrene −10630.83 0.35 −6.13 0.77 6.91 3.45 0.14 −2.68 2.68 1.04
Thymol −12645.82 1.45 −5.72 0.18 5.90 2.95 0.17 −2.77 2.77 1.30
Zingiberene −15835.79 0.37 −7.96 3.89 11.86 5.93 0.08 −2.04 2.04 0.35
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menthol, and thymol. Carvacrol and thymol scored 1.45 debye.
Electronegativity of a compound is an index of the ability of a
molecule to accept electrons. It is an important indicator of

efficiency of inhibition of the molecule. The lower the
electronegativity of a molecule is, the higher its efficiency of
inhibition will be. Cuminal has the lowest electronegativity

FIGURE 4 | Electron density maps of the HOMO and LUMO of selected essential oil components.
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index (–4.21). This index for other components was almost in the
range of –3.15 to –2.82. The results of conceptual DFT are in
agreement with the docking results.

DISCUSSION

Due to the sudden outbreak of COVID-19, the standard
procedures of operation had to be modified in almost every
sector, especially in the field of medicine and dentistry since
they involve frontline care givers. Dental professionals have to
exercise extra caution because of the high risk of nosocomial
infection through aerosol-generating procedures. Although
physical protection from the virus by wearing safety gear such
as PPE is recommended, an effective antiviral PPMR may ensure
safety even in case the patient is infected but asymptomatic. Recent
literature suggests numerous mouth rinses that can effectively
reduce the viral load in the oral cavity. Povidone-iodine (PVP-
I) oral rinse has been found to be effective in various studies
conducted by Tessema et al., 2020; Bidra et al., 2020; and Pelletier
et al., 2021. Mouth rinses containing 1% PVP-I exhibited a
virucidal activity higher than 99.99%, which corresponds to a
reduction of viral load greater than 4 log10. The use of PVP-I
has been contraindicated in patients with an allergy to iodine,
thyroid disease, and pregnancy. Chlorhexidine (CHX) is a broad-
spectrum antiseptic that has long been known to be effective
against herpes simplex virus (HSV), human immunodeficiency
virus (HIV), and hepatitis B virus (HBV) (Brookes et al., 2020). The
effectiveness of CHX specifically against SARS-CoV-2 has not been
well established yet. In comparison with PVP-I, hydrogen peroxide
(H2O2) has been found to be less effective by a study conducted by
Ather et al., 2020. Certain essential oil (EO) components such as
thymol, eugenol, menthol, methyl salicylate, and eucalyptol are
common major ingredients in mouth rinses recommended by the
American Dental Association (ADA) (Alshehri, 2018). The activity
of these components has been well established by several studies
against a wide array of microbes, including viruses. The main aim
of this study was to explore other components with comparable or
better activity than the existing ones by in silico methods.
Moreover, EO components are safe since they fall under the
generally regarded as safe (GRAS) category. Cuminal, myrtanol,
carvacrol, caryophyllene, pinocarveol, and sylvestrene were found
to have inhibitory effects against SARS-CoV-2. A number of recent
in silico studies have predicted the anitiviral activity of EO
components against SARS-CoV-2. Kulkarni et al., 2020,
performed a similar study with the same target protein and

found that cinnamaldehyde, anethole, thymol, and carvacrol
were highly active. Similar results were obtained by Asif et al.,
2020, and Senthil Kumar et al., 2020. Boukhatem, 2020, have
discussed how EOs could have an inhibitory effect on SARS-CoV-
2, similar to the effect they have had on other viruses. Thuy et al.,
2020, predicted that 17 compounds of garlic oil interacted with the
viral main protease (Mpro) of SARS-CoV-2. Da Silva et al., 2020,
predicted that (E,E)-α-farnesene, (E,E)-farnesol, and (E)-nerolidol
interacted with SARS-CoV-2 Mpro, thereby inhibiting viral
replication, out of 171 EO components. So far, no in vitro or in
vivo studies have established the efficacy of these compounds. This
study has resulted in predicting EO components that can increase
the efficiency of conventional PPMRs by reducing the viral load in
the oropharyngeal cavity, specifically against SARS-CoV-2.

CONCLUSION

Providing dental care treatment to patients, while reducing the risk
of highly contagious viral infection caused by SARS-CoV-2 is a
challenge for dental professionals.. Through this study, we conclude
that EO components such as cuminal, carvacrol, myrtanol,
caryophyllene, pinocarveol, and sylvestrene are good inhibitors of
the S1 glycoprotein of coronavirus by in silicomethods. Hence, these
components can be proposed to be effective antiviral ingredients of
pre-procedural mouth rinses recommended to be administered to
patients for effective reduction of viral load in the oropharyngeal
cavity. The futurology of this study indicates in vitro and in vivo
testing of the same to confirm the antiviral efficiency of the proposed
EO components, specifically against SARS-CoV-2.
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Review of practical recommendations for otolaryngologists and head and neck
surgeons during the COVID-19 pandemic. Auris Nasus Larynx 47, 544–558.
doi:10.1016/j.anl.2020.05.022

Kulkarni, S. A., Nagarajan, S. K., Ramesh, V., Palaniyandi, V., Selvam, S. P.,
and Madhavan, T. (2020). Computational evaluation of major
components from plant essential oils as potent inhibitors of SARS-
CoV-2 spike protein. J. Mol. Struc. 1221, 128823. doi:10.1016/j.
molstruc.2020.128823

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., and Hsueh, P. R. (2020). Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-
2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents
55, 105924. doi:10.1016/j.ijantimicag.2020.105924

Li, Y., Ren, B., Peng, X., Hu, T., Li, J., Gong, T., et al. (2020). Saliva is a non-
negligible factor in the spread of COVID-19.Mol. Oral Microbiol. 35, 141–145.
doi:10.1111/omi.12289

Meng, L., Hua, F., and Bian, Z. (2020). Coronavirus disease 2019 (COVID-19):
emerging and future challenges for dental and oral medicine. J. Dent. Res. 99,
481–487. doi:10.1177/0022034520914246
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COVID-19 Rehabilitation
Ming Cai1†, Xuan Chen2†, Jieling Shan3†, Ruoyu Yang4, Qi Guo1, Xia Bi1, Ping Xu4,
Xiangrong Shi5*, Lixi Chu4,6* and Liyan Wang4*

1Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China, 2School of Kinesiology,
Shanghai University of Sport, Shanghai, China, 3Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai,
China, 4College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China, 5Department of
Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States, 6Shanghai
Sunshine Rehabilitation Center, Shanghai, China

COVID-19 is a highly infectious respiratory virus, which can proliferate by invading the
ACE2 receptor of host cells. Clinical studies have found that the virus can cause dyspnea,
pneumonia and other cardiopulmonary system damage. In severe cases, it can lead to
respiratory failure and even death. Although there are currently no effective drugs or
vaccines for the prevention and treatment of COVID-19, the patient’s prognosis recovery
can be effectively improved by ameliorating the dysfunction of the respiratory system,
cardiovascular systems, and immune function. Intermittent hypoxic preconditioning (IHP)
as a new non-drug treatment has been applied in the clinical and rehabilitative practice for
treating chronic obstructive pulmonary disease (COPD), diabetes, coronary heart disease,
heart failure, hypertension, and other diseases. Many clinical studies have confirmed that
IHP can improve the cardiopulmonary function of patients and increase the
cardiorespiratory fitness and the tolerance of tissues and organs to ischemia. This
article introduces the physiological and biochemical functions of IHP and proposes the
potential application plan of IHP for the rehabilitation of patients with COVID-19, so as to
provide a better prognosis for patients and speed up the recovery of the disease. The aim
of this narrative review is to propose possible causes and pathophysiology of COVID-19
based on the mechanisms of the oxidative stress, inflammation, and immune response,
and to provide a new, safe and efficacious strategy for the better rehabilitation from
COVID-19.

Keywords: COVID-19, intermittent hypoxic preconditioning, HIF-1α, immune response, inflammatory cytokine
storm, rehabilitation

INTRODUCTION

Since the outbreak and pandemic of the highly infectious and pathogenic COVID-19, most attention
has been focused on containing transmission of the coronavirus and addressing the surge of critically
ill patients in acute care settings. However, in the future, emphasis will gradually transition to
prognosis care and rehabilitation of COVID-19 survivors. Although COVID-19 predominantly
affects the respiratory system, it’s anticipated that COVID-19 may have an adverse impact on
physical, cognitive, mental and social health status, which is a multisystem disease and frequently
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severe and often results in death (Barker-Davies et al., 2020;
Madjid et al., 2020). Rehabilitation guideline after critical illness
recommends progressive rehabilitation programmes are best
initiated within the first 30°days (post-acute phase) to have
greatest impact on recovery, including improving respiratory
function, physical exercise ability, self-care in daily living
activities, as well as psychological support, etc (Group, 2009).
Very little attention to the prognosis and rehabilitation therapy
methods or outcomes of COVID-19 patients after discharge from
acute care. So far, only one related study has been published, in
which a randomized controlled trail showed that 6°weeks
respiratory rehabilitation (2 sessions of 10 min per week) had
beneficial to the improvement of respiratory function, endurance,
quality of life, and depression following discharge from acute care
(K. Liu K.et al., 2020).

The latest epidemiological analysis pointed out a lower
incidence of COVID-19 and proposed a possible weaker
transmission rate of severe SARS-CoV-2 among high-altitude
populations (Arias-Reyes et al., 2020; Segovia-Juarez et al., 2020;
Xi et al., 2020). The typical characteristic of plateau environment
is hypobaric hypoxia, which could increase tissue oxygen delivery
and enhance oxygen utilization. Thus, it can be argued that high-
altitude residents may be somewhat tolerant to the consequences
of more hypoxemia and systemic tissue hypoxia developing as a
result of COVID-19 infection and subsequent lung injury. An
intuitive evidence is that hypoxia can reduce the incidence of
COVID-19, which may be related to the fact that hypoxia can
shorten the half-life of SARS-CoV-2 virus and induce down-
regulation of angiotensin-converting enzyme 2 (ACE2)
expression, thereby increasing the body’s resistance to viruses
(Arias-Reyes et al., 2020). Of note, recently, intermittent hypoxic
preconditioning (IHP) as a new non-drug treatment has been
used in the clinical treatment of chronic obstructive pulmonary
disease (COPD), diabetes, coronary heart disease, hypertension,
and other diseases. Many clinical studies have confirmed that IHP
can improve the cardiopulmonary function of patients, increase
blood oxygen content and the tolerance of tissues and organs to
ischemia, inhibit the overactivation of immune system, and
control acute pulmonary inflammation. Based on the many
beneficial functions of IHP, we speculate that IHP is expected
to become a new exploration in the prognosis and rehabilitation
of stable COVID-19 cases.

In this review, we briefly outlined the epidemiology,
pathological features and histopathology, inflammatory
cytokine storm and related damage of COVID-19. Then, we
mainly focused on the potential of IHP applied in rehabilitation
of COVID-19 and the prognosis based on a variety of IHP related
beneficial impacts on physiological functions, and plausible
mechanisms to better help the patients to recover and return
to society promptly and safely.

EPIDEMIOLOGY

At December 2019, the first cases of severe acute respiratory
infections of unknown origin were reported in Wuhan, China.
The causative agent was identified as a novel ß-coronavirus

SARS-CoV-2 and the disease was named COVID-19, which is
another human infectious disease caused by coronavirus. The
transmission of COVID-19 is potent and the infection rate is
high. Although the outbreak of COVID-19 is better under control
in China, the global situation is still in severe challenge and the
confirmed infected cases are continually increased. Since the
beginning of 2020, the infection has been spreading worldwide
over 215 Countries, causing 115,967,664 cases and over 2,579,775
deaths (as of 09:38 am, March 7, 2021, https://covid19.who.int/),
which led the WHO to declare COVID-19 a public health
emergency of international concern and the current situation
as a new normal for epidemic prevention and control.

The transmission of COVID-19 occurs mainly via respiratory
droplets and contact routes, the incubation period ranges from 1
to 14°days with mostly 3–7°days (Guan et al., 2020). All age
groups are susceptible, especially the elderly and those with
chronic diseases. Now most cases are asymptomatic or mild,
but they are potential sources of infection and some patients
develop severe pneumonia with acute respiratory distress, septic
shock, and multi-organ failure. In other words, asymptomatically
infected persons and patients in incubation or recovered from
COVID-19 may pose serious challenges for disease prevention
and control. The overall case fatality rate is estimated to range
from 1 to 16%, which depends on some important parameters
such as age, underlying medical comorbidities, preparedness of
health system to an outbreak, implementation of preventive
measures, and country reaction time to epidemic situation
(Verity et al., 2020).

PATHOLOGICAL FEATURES AND
HISTOPATHOLOGY

The most common symptoms of COVID-19 are fever (98%), dry
cough (76%), and myalgia or fatigue (44%) (Huang et al., 2020).
Other symptoms are sputum production, arthralgia or sore
throat, headache, nausea, vomiting or diarrhea (Borges do
Nascimento et al., 2020). Meanwhile, clinical examination
shows that severe cases are usually accompanied by obvious
hypoxemia (the oxygen saturation is less than 92%) and
hypocapnia, which is manifested by decreased arterial partial
pressure of oxygen to the ratio of inhaled partial pressure of
oxygen and lower plasma CO2 levels (Wang D. et al., 2020; Wang
M. et al., 2020). Besides, more than half of patients developed
dyspnea.

Typical pulmonary imaging findings of COVID-19 cases
include multifocal peripherally distributed ground-glass
opacities or consolidations, interlobular septal thickening,
crazy paving appearance and cystic changes. In autopsies,
immunostaining shows bilateral diffuse alveolar damage with
cellular fibromyxoid exudates, histological patterns in lung and
extrapulmonary tissues were characterized by capillary
congestion, necrosis of pneumocytes, hyaline membrane,
interstitial edema, pneumocyte hyperplasia, and reactive
atypia, which are accompanied by severe inflammatory
response (Menter et al., 2020; Xu et al., 2020). Moreover,
infiltrates express as macrophages in alveolar lumens and
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lymphocytes in the interstitium are found in the lung (Song et al.,
2020). Again, a lot of findings are suggestive for vascular
dysfunction, in lung and other tissues. Meanwhile, COVID-19
has also been shown to be harmful to the heart, some patients are
associated with cardiovascular complications such as myocardial
injury (Madjid et al., 2020), cardiac arrest (Baldi et al., 2020) and
acute heart failure (Tomasoni et al., 2020; Xu et al., 2020).
Adverse outcomes of COVID-19 are associated with
comorbidities, including hypertension, cardiovascular disease,
and lung disease.

Lipids metabolism and inflammation may play key roles in the
development of COVID-19. A recent study indicates that lipids
are important in the envelopment and transformation of
COVID-19 virus, and metabolic disorders may provide
additional possibility for the virus to invade host cells (Abu-
Farha et al., 2020). The aging associated with increasing chronic
inflammation will also destroy the effective control of the
immune system in the acute phase of COVID-19 replication
(Figliozzi et al., 2020). In addition, COVID-19 will induce
excessive inflammation, oxidative stress, abnormal immune
responses, and other cardiovascular complications. Then,
activation of immune cells will increase oxygen consumption
and reduce the supply of O2 due to vascular dysfunction, resulting
in breathing difficulties and hypoxia, and even death (Cummins
et al., 2016).

INFLAMMATORY CYTOKINE STORM AND
RELATED DAMAGE

Chest computerized tomography (CT) scans of COVID-19 show
pneumonia with abnormal findings in all cases, and the potential
mechanisms are particularly complex. Clinical and preclinical
research will have to explain many aspects that underlie the
particular clinical presentations of COVID-19. The data so far are
available to indicate that the viral infection is capable to produce
an excessive immune reaction in the host. In some cases, a
reaction takes place which as a whole is labeled an
“inflammatory cytokine storm”, including the tumor necrosis
factor a (TNF-α), IL-1β, IL-6, IL-8, IL-12, interferon-gamma
inducible protein (IP10), macrophage inflammatory protein
1A (MIP1A), and monocyte chemoattractant protein 1
(MCP1). Moreover, COVID-19 can bind the Toll-like receptor
(TLR) to induce the release of pro-IL-1β, which is cleaved into the
active mature IL-1β mediating lung inflammation, until fibrosis
(Conti et al., 2020). In the early stage of the disease, characteristic
laboratory findings of normal white blood cell (WBC) count or
mild leukopenia, marked lymphopenia, elevated inflammatory
factors (IL-2R, IL-6, TNF-α), suggest that uncontrolled
inflammatory responses may further aggravate tissue damage
in cardiovascular and other organs (Qin et al., 2020; Wu and
McGoogan, 2020). Interestingly, lymphopenia appears to be a
negative prognostic factor. The elevated neutrophil-to-
lymphocyte ratio (NLR), derived NLR ratio (d-NLR)
[neutrophil count divided by the result of WBC count minus
neutrophil count], and platelet-to-lymphocyte ratio, can be the
expression of the inflammatory storm (Yang et al., 2020).

Research has shown that peripheral proinflammatory CD4 and
cytotoxic granules CD8 T cells reduce in severe patients,
suggesting antiviral immune responses and overactivation of
T cells (Xu et al., 2020). However, the reduced T-cell numbers
is negatively correlated with IL-6 and TNF-α (Diao et al., 2020).
Additionally, the obviously increased levels of senescence
markers (PD-1, Tim-3, CTLA-4 and TIGIT) are important
signs of severe COVID-19 (Zheng H.-Y. et al., 2020).
Moreover, lymphocytes may also become depleted due to the
expression of pro-inflammatory cytokines by (not infected)
innate immune who are recruited to the lungs and trigger
hyper-inflammation, seen during the development of a
“cytokine storm” (Cron and Chatham, 2020).

Study shows that excessive inflammation will make patients
more prone to endothelial dysfunction and thrombotic diseases
in the blood circulation (Bikdeli et al., 2020). Microvascular
thrombosis in the pulmonary circulation can lead to an
increased dead space. Early pulmonary fibrosis following the
disease has been reported from Italy, which could be deficient
oxygen-related or excessive inflammation-related. Pulmonary
thrombosis has been associated with wedge-shaped infarcts in
the lungs on imaging, without the evidence of deep vein
thrombosis (Li et al., 2020). Virus also can induce cell death,
including necrosis or pyroptosis, proinflammatory cytokine
overexpression (uninfected) immune cell recruitment and
activation. And COVID-19 may also (partially) escape these
mechanisms through the induction of T cell apoptosis (Yi
et al., 2020). Pneumonia can lead to respiratory dysfunction
and hypoxaemia, which can also bring about cardiomyocyte
injury (Zheng Y.-Y. et al., 2020).

TREATMENT STRATEGIES

With the rapid increase in the global prevalence and mortality of
COVID-19, there is an urgent need to develop targeted therapies.
Specific pharmacological treatment for COVID-19 is not
currently available. Based on the previously therapeutic
experience of SARS and MERS, the potential treatments for
COVID-19 include antiviral drugs (anti-HIV drugs, anti-HBV
and anti-HCV drugs), plasma transfusion, vaccines and so on (Li
and Clercq, 2020). However, now there is no specific antiviral
treatment recommended and the effective vaccines are still on the
road. Therefore, the clinical efficacy of above drugs requires
strictly clinical trials to prove.

In these patients experiencing worsening inflammatory-
induced lung injury, there is a decrease in oxygen saturation
(<93%). This seems to be the crucial phase of the disease, from
this point onwards, there may be a rapid deterioration of
respiratory functions. The scenario is truly incredible because,
for patients who are paucisymptomatic and slightly hypoxic, the
first therapeutic approach is oxygen therapy. A significant
number of patients with pneumonia require passive oxygen
therapy. Non-invasive ventilation and high-flow nasal oxygen
therapy can be applied in mild and moderate non-hypercapnia
cases. A lung-saving ventilation strategy must be implemented in
acute respiratory distress syndrome and mechanically ventilated
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patients. Although this strategy is effective, the worsening of
respiratory failure may occur in some patients. With the drive
preserved, the next step, according to logic, is the non-invasive
ventilation (NIV). This therapy has a rapid success by increasing
the PaO2/FiO2 (Partial arterial O2 pressure, PaO2; Fraction of
inspiration O2, FiO2). In some patients, however, there is a
sudden, unexpected worsening of clinical conditions. Patients
collapse under the operator’s eyes and require rapid intubation
and invasive mechanical ventilation. However, after 24–48 h the
patient can have a rapid improvement with an increase in P/F.
Operators are therefore tempted to proceed with weaning. But
very often, after an initial success, there is a new worsening of
respiratory conditions, such as to require a new invasive therapy.
Therefore, mechanical ventilation has also been suggested for
1–2 weeks.

The treatment is symptomatic, and oxygen therapy represents
the first step for addressing respiratory impairment. Non-invasive
(NIV) and invasive mechanical ventilation (IMV) may be
necessary in cases of respiratory failure refractory to oxygen
therapy. Another clinical trial aiming to test with the use of
hyperbaric oxygen is estimated to start on April 25, 2020. The
anti-inflammatory effects, which include decreased expression of
IL-1β, IL-6 and TNF-α (Aricigil et al., 2018), could be beneficial to
mitigate ARDS associated with COVID-19 and fibrosis
development.

Although the prospective of counteracting cytokine storm is
compelling, a major limitation relies on the limited
understanding of the immune signaling pathways triggered by
COVID-19 infection. The altered identification of signaling
pathways during viral infections may help to unravel the most
relevant molecular cascades implicated in biological processes
mediating viral infections and to unveil key molecules that may
be targeted. Thus, given the key role of the immune system in
COVID-19, a deeper understanding of the mechanism behind the
immune dysregulation might give us clues for the clinical
management of the severe cases and for preventing the
transition from mild to severe stages.

COVID-19 has been related to hypoxia and inflammation
leading to endothelial dysfunction, increased permeability, and
aberrant coagulation in small and large vessels, which are the
early hallmarks of organ damage in patients. Moreover,
thrombotic complications are a relevant cause of death in
COVID-19 patients, and the interaction of SARS-CoV-2 with
ACE2 possibly implies alterations of angiotensin II plasma levels.
Therefore, the vascular system is increasingly being addressed as a
major therapeutic target for defeating COVID-19 (Escher et al.,
2020; Giannis et al., 2020).

POSSIBLE REHABILITATION STRATEGY-
INTERMITTENT HYPOXIC
PRECONDITIONING
In view of the above-mentioned pathological of COVID-19, a
non-drug alternative therapy- intermittent hypoxic
preconditioning (IHP), via increasing blood oxygen delivery
and promoting tissue oxygenation response to improve severe

dyspnea, may act as a significant effect on the prognosis and
rehabilitation treatment of COVID-19. IHP is a method by which
subjects receive exposure to short bouts (1–6 min) of moderate
hypoxia (9–12% O2), interspersed with the brief periods of
normal air (Serebrovskaya, 2002). Firstly, IHP is expected to
inhibit the overactivation of immune system, control acute
pulmonary inflammation and improve the endogenous
reparation for injured tissue, which will become a new
exploration in the rehabilitation of stable COVID-19 cases.
Secondly, IHP will be an ideal treatment measure of novel
coronavirus infection-related acute respiratory distress
syndrome. More importantly, IHP has the advantages of high
safety, easy-to-accomplish and no side effects.

IHP can trigger the body’s endogenous protective mechanism
to make the tissues and cells highly resistant to hypoxia, to relax
airways and blood vessels and to improve myocardial
contractility. Moreover, it also can increase cardiopulmonary
endurance, reduce the area of heart infarction, add blood
vessel density and coordinate blood oxygen delivery.
Therefore, it can have a strong defense and protective effect
on the subsequent longer or more severe ischemia and hypoxia
(Neubauer, 2001). Besides, it’s also effective on improving
respiratory muscle function and relieving dyspnea, alleviating
disease-related anxiety and depression, and enhancing skeletal
muscle function of upper and lower limbs (Ponsot et al., 2006;
Bao et al., 2020). Studies have confirmed that IHP can improve
the balance of the rat’s immune system by activating the defenses
of cells against oxidative stress and inflammation (Shi et al.,
2015), and IHP is also an effective measure to reduce the damage
of the cardiopulmonary system (Ding et al., 2004)

Collectively, combined with the many beneficial functions of
IHP, although there is no exact method for the treatment or
prevention of COVID-19, we propose that IHP can improve
immunity, accelerate the recovery of patients, and reduce the
occurrence of positive rejuvenation after discharge. Here, we will
explore the potential mechanisms of action of a certain model of
IHP in the cardiopulmonary system damage, vascular endothelial
dysfunction and hemodynamics of COVID-19, and explored
possible rehabilitation options for the prognosis of patients,
with a view to providing a novel and effective rehabilitation
method for the prognosis of patients, and better help the patients
to recover and return to society more promptly and safely
(Figure 1).

Possibility of Applying IHP to the
Rehabilitation of COVID-19
Hypoxia is a “double-edged sword”, mainly depending on a
variety of the concentration, frequency, and duration of
hypoxia exposure, can cause harm or benefit to the human
body. Modest hypoxia (9–16% inspired O2) and low cycle
numbers (3–15 episodes per day) most often lead to beneficial
effects, while severe hypoxia (2–8% inspired O2) and more
episodes per day (48 episodes/day) elicit progressively greater
pathology (Navarrete-Opazo and Mitchell, 2014). After the
appropriate intermittent hypoxic exposure, tissues and organs
can form a complex and active defense mechanism against the
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same or similar hypoxic environment, and develop resistance
and tolerance, thereby to prevent or reduce the damage that it
may cause (Semenza, 1999; Verges et al., 2015). This is because
that IHP has the function of stimulating the body adaptive
physiological changes in different modes of brief repeated
exposure in a (10–16% inspired O2) hypoxic environment.
In the last decade, many clinical trials have described the
powerful protective effects of IHP on the respiratory
diseases. Rozova et al. confirmed that IHP (15 min 12%
inspired O2 + 15 min 21% inspired O2/cycle, 5 cycle/d for
4 weeks) could relieve the structural damage of the lung air-
blood barrier, and promote a specific type of mitosis in lung
and heart tissues, then normalize the ultrastructure of lung and
heart (Rozova and Mankovska, 2012). Burtscher et al. believe
that the protection of IHP on chronic obstructive pulmonary
disease (COPD) and coronary heart disease (CAD) benefits
from its positive effects of increasing total hemoglobin,
enhancing lung diffusion and lung ventilation (Burtscher
et al., 2010). Vogtel et al. found that the 18 COPD patients’
exercise endurance enhances, and the functions of forced
expiratory volume in 1 s (FEV1), forced vital capacity
(FVC) and carbon monoxide diffusing capacity (DLCO)
significantly increase, when performing IHP (12–15%
inspired O2 for 15 times within 3 weeks) (Vogtel and
Michels, 2010). Even if IHP is used after brain and spinal
cord injury, it can also limit the further development of the
disease and promote the remodeling and recovery of tissue
structure and function (Baillieul et al., 2017). Many of the
previous studies have suggested that IHP has a significant
therapeutic effect on COPD and various lung pathological
changes. In addition, studies have confirmed that IHP can not
only activate hypoxia-inducible factors-1α (HIF-1α) and 5′-
AMP activated protein kinase (AMPK)/SIRTl (Sirtuin1)/
γ-coactivator 1α (PGC-1α) signaling cascade, but also can

reduce the mRNA and protein levels of ACE2, which can
significantly inhibit the number of receptors for SARS-CoV-2
virus to enter host cells, thereby to improve endothelial
dysfunction, promote cardiovascular hemodynamics, inhibit
excessive inflammation and immune response. These changes
will be provide the benefit for the recovery from heart and lung
injury and dyspnea (Zhang et al., 2009; Singh et al., 2013; Yu
et al., 2018 ; Gangwar et al., 2020), and the inhibitory effect of
HIF-1α on ACE2 provides a novel idea for using IHP to treat
COVID-19.

IHP can Enhance the Cardiopulmonary Function
It has been showed that ACE2 plays an important role in the
immune systems, and SARS-CoV-2 infects host cells through
ACE2 receptors causing COVID-19 (Li et al., 2003; Zhou P. et al.,
2020). The ACE2mRNA and protein expression levels of patients
with viral infections and complications of cardiopulmonary
injury are significantly higher than those of uncomplicated
patients, so they have a higher risk of heart disease and critical
illness (Chen et al., 2020). Moreover, ACE2 is highly expressed in
the heart and kidneys as well as on the lung alveolar epithelial
cells, which are the principal target cells for SARS-CoV-2 and the
site of dominant injury (Walls et al., 2020). It can be concluded
that ACE2-related signaling pathway may play a crucial role in
cardiopulmonary injury. It has been fully proven that IHP can
reduce and/or reverse cardiovascular damage and
cardiopulmonary dysfunction in the way of improving
cardiovascular endothelial dysfunction and hemodynamics.
This effect usually depends on the HIF-1 mediated
downstream signaling pathway. HIF-1 consists of a
constitutively expressed subunit ß and an oxygen-regulated
subunit α (or its paralogs 2α and 3α). The stability and
activity of the α subunit of are regulated by its post-
translational modifications such as hydroxylation,

FIGURE 1 | Plausible mechanisms of intermittent hypoxia preconditioning applied for COVID-19 rehabilitation. COVID-19 virus enters the body and combines with
ACE2 to produce an excessive immune reaction and to trigger “inflammatory cytokine storm,” which may initiate the pathogenesis of SARS, cardiopulmonary
hemodynamic disorder and vascular endothelial dysfunction. Application of IHP on patients may provide inhibitory effect on the levels of various proinflammatory factors
and activate HIF-1 to promote target genes to augment EPO/VEGF expression which lead to stimulate production of red blood cell and Hb and angiogenesis to
increase capacity to carry oxygen. Furthermore, activated HIF-1 may mobilize PGC-1-SIRT1/AMPK pathway and NO availability and inhibit ET-1. These factors can help
reverse the virus induced cardiopulmonary hemodynamic disorder and endothelial dysfunction. ACE2, Angiotensin-converting enzyme 2; AMPK, 5’-AMP activated
protein kinase; EPO, erythropoietin; ET, endothelin; Hb, hemoglobin; HIF, hypoxia-inducible factors; PGC, γ-coactivator; NF-B, nuclear factor-k-gene binding; SARS,
server acute respiratory syndrome; SIRT, Sirtuin; TNF-α, Tumor Necrosis Factor-α; VEGF, vascular endothelial growth factor; WBC, white blood cell. symbol indicates an
activation; symbol indicates an inhibition.
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ubiquitination, acetylation, and phosphorylation. During
normoxia, hydroxylation of two proline residues and
acetylation of a lysine residue at the oxygen-dependent
degradation domain of HIF-1α trigger its association with
pVHL, thereby reducing its stability and leading to HIF-1α
degradation (Kaelin and Ratcliffe, 2008). HIF-1 exists in all
tissues, with highly sensitive to tissue oxygen tension (Serocki
et al., 2018). In hypoxia, the αsubunit becomes stable and will be
translocated to the nucleus where HIF-α heterodimerizes with
HIF-1β. Then the HIF1α/β complex binds to the promoter
regions of target genes containing hypoxia-responsive elements
(HRE) and activates a variety of hypoxic adaptive target genes
transcription (Figure 2).

IHP-induced hypoxia-reoxygenation cycle can activate HIF-1,
thereby promoting the expression of cytoprotective proteins, such
as nitric oxide synthase (NOS), erythropoietin (EPO) and
vascular endothelial growth factor (VEGF) (Singh et al., 2013),
and then up-regulate the synthesis of NO, promote the
normalization of microvessels and improve the vasodilation
function (Korkushko et al., 2010). At the same time, it can
increase the number of red blood cells and improve the
vascular microcirculation (Connolly et al., 1989; Krantz, 1991).
Some researchers believe that the efficacy of hypoxic adaptation
will decrease as patients aging (Levine et al., 1997; Korkushko
et al., 2009). However, Korkushko et al. reported that IHP is also
well tolerated and safe for elderly patients (Korkushko et al.,
2010).

IHP can Improve the Vascular Endothelial Function
Endothelial dysfunction is a common feature of cell damage
caused by virus infection, which will lead to microvascular
dysfunction, in turn, inducing vasospasm or abnormal

vasocontraction and thrombosis of multiple major arteries
(Steinberg et al., 2012; Chen et al., 2020). Vascular endothelial
cells play key roles in regulating vascular tension and peripheral
resistance by synthesizing vascular “dilators” (NO etc.) and
vasoconstrictors (endothelin-1, ET-1, etc.). The endothelial
dysfunction is caused by the unbalanced expression of vascular
endothelial factor (Virdis et al., 2011; Lytsy et al., 2013). Gel’tser
et al. found that the severity of the disease was positively
correlated with vascular endothelial dysfunction in extra-
hospital pneumonia, which manifested as insufficient
vasodilation or even contraction, and then increased the risk
of cardiac hypoperfusion (Gel’tser and Brodskaia, 2005). Aguilar
et al. found that applying the treatment of IHP (11.7% inspired O2

+ 21% inspired O2, 4 cycles/d for 4°days) could activate the
antioxidant defense mechanisms to the improve the
cardiovascular endothelial dysfunction of adult Wistar rats
(Aguilar et al., 2018). In addition, study has shown that
activation of HIF-1α can inhibit the expression of ET-1 in
pulmonary artery smooth muscle cells and reduce pulmonary
vasoconstriction (C. C. Wang et al., 2018). Meanwhile, IHP
(4–8 h/d, 10%–12% inspired O2) can promote the expression
of inducible nitric oxide synthase (iNOS) and increase cardiac
NO synthesis ability (Coulet et al., 2003; Robinson, et al., 2011).
As hypoxia itself can promote the release of NO and other
vasodilator factors, it meets the myocardial demand for O2

better, which can lead local arterioles to dilate (Park et al.,
2015). Lyamina et al. proved that IHP (3 min 10% inspired
O2+3 min 21% inspired O2 for 4–10 cycles) was one of the
most effective ways to stimulate the synthesis of endogenous
NO, in which the antihypertensive effect was highly correlated to
the increase of NO expression level (Lyamina et al., 2011). In
addition, Mukharliamov et al. found that IHP (10 cycles/d for
5 min 10–14% inspired O2 + 5 min 21% inspired O2) combined
with antihypertensive drugs significantly reduced the systolic and
diastolic blood pressure of hypertensive (Mukharliamov et al.,
2006). Furthermore, IHP has been proved not to cause
hypertensive reaction in healthy subjects (X. Liu et al., 2017).
Faulhaber et al. found that the arterial blood pressure of mild
COPD was not be affected during IHP intervention (Faulhaber
et al., 2015). Based on these, we hypothesize that IHP can resume
the balance between the expression of NO and ET-1 in COVID-
19, so as to improve the dysfunction of the cardiopulmonary
vascular endothelium and accelerate the recovery.

IHP can Improve the Hemodynamics via Activating
HIF-1α/EPO/VEGF Signals
The evaluation of hemodynamics is a method to detect whether
the blood flow maintains the optimal oxygen delivery, to ensure
good oxygen tissue perfusion, and the hemodynamics of COVID-
19 may be changed for viral infection. After evaluating the
erythrocyte sedimentation rate and high-sensitivity C-reactive
protein (hs-CRP) level of 27 COVID-19 cases, Zhou et al. found
that the erythrocyte sedimentation rate increased in 18 cases, and
the hs-CRP expression added in all 27 cases, which are signs of
acute pneumonia or autoimmune system damage (Zhou S. et al.,
2020). Some studies also have shown that COVID-19 is
characterized by increasing pulmonary capillary pressure,

FIGURE 2 | The different effects of normoxia and hypoxiaon the HIF-1α
activity. Under normoxic condition, HIF-1 is hydroxylated by prolyl hydorylase
(PHD) to attach with von HippelLindau (pVHL) protein and then is degraded.
While in hypoxic condition, PHD is inhibited and HIF is phosphorylated
which then is translocated and become dimerises with HIF-1β in the nucleus.
The heterodimer binds to the hypoxia response element (HRE) to activate the
target genes transcription.
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which induces an increase in alveolar-capillary permeability,
accompanied by the lung compliance decrease as well as the
dead space adding, and even induces cardiopulmonary and other
multiple organs dysfunction, ultimately resulting in death.

EPO and VEGF are glycoprotein growth factors regulated by
HIF-1, and both play a variety of positive roles in coordinating
hemodynamics (Krantz, 1991; Dale et al., 2014). EPO is one of the
earliest discovered HIF-1α-regulated target proteins. It is mainly
produced in the kidney and used to increase the number of red
blood cells. The expression and secretion are closely related to tissue
oxygen (Fliser and Haller, 2007). Studies have shown that IHP
(6 min 10% inspired O2+6 min 21% inspired O2, 10 cycles) can
activate HIF-1α to up-regulate the EPO activity to provide more O2

supply for the myocardia, which in turn stimulates red blood cell
production, enhances hematopoietic function and the oxygen-
transport capacity (Jelkmann, 1992; Bin-Jaliah et al., 2010).
Törpel et al. proved that IHP (3 h, 13.5% inspired O2) could
increase the central and peripheral EPO levels, and under the same
hypoxia intensity, the EPO expression of young people is
significantly higher than that of the elders. In addition to
promoting red blood cell production, EPO also has other
physiological functions (Törpel et al., 2019). Costa et al. treated
rats with hypobaric hypoxia and found that the EPO activity was
increase induced by HIF-1α. Then, it upregulated the key
transcription factor Nrf2 (NF-E2-relatedfactor 2) to exert cellular
antioxidant and anti-inflammatory effects, which can promote the
synthesis of antioxidant enzymes and reduce the excitotoxicity of
nuclear factor kappa-B (NF-κB) induced damage in rat brain and
heart (Costa et al., 2013; Mallet et al., 2018). Animal model of
myocardial infarction shows that EPO can reduce the infarct size
and improve left ventricular function. The mechanism is mainly
through the activation of phosphoinositide-3-kinase (PI3K)/protein
kinase B (Akt) signal pathways to inhibit cardiomyocyte apoptosis,
and mobilize endothelial progenitor cells as well as inhibiting
inflammatory cell migration (Roubille et al., 2013).

VEGF, called vascular permeability factor (VPF), the gene
expression can be regulated by HIF-1α to increase angiogenesis,
improve hemodynamics, and increase the supply of energy
substances. Paula et al. found that activating HIF-1α helped to
up-regulate the VEGF gene expression for increasing the capillary
density (Rodriguez-Miguelez et al., 2015). Senger et al. expounded
that intraperitoneal injection of the purified VEGF could increase
the vascular permeability of the peritoneal wall, diaphragm, and
mesentery in vitro (Senger et al., 1983). Connolly et al. found that
VEGF could promote the growth of new blood vessels, when
injected into the healed rabbit bone graft or rat cornea (Connolly
et al., 1989). Dao et al. confirmed that VEGF with exogenous
nasal delivery could promote compensatory lung growth in mice,
which is manifested by the significant increase of lung capacity
and alveolar count (Dao et al., 2018). Fan et al. found that the
organism could mediate HIF-1α/VEGF to upregulate the anti-
oxidative stress activity during lung injury, which in turn activates
the self-protection mechanism of angiogenesis and angioplasty
(Fan et al., 2019). In addition, VEGF, cooperated with EPO, can
promote angiogenesis, accelerate blood flow, and facilitate the
transportation of nutrients and the removal of metabolic waste
(Orth et al., 2019). Therefore, we speculate that IHP via the

character of activating HIF-1α to upregulate the EPO and VEGF,
can reduce the pressure of the vascular circulatory system,
increase the efficiency of blood oxygen utilization, and
improve the cardiopulmonary circulatory function. As a result,
the COVID-19 hemodynamics will be significantly improved and
the patient prognostic recovery will be promoted.

IHP can Alleviate the Dyspnea via Rectifying
Inflammation and Lipid Metabolism Disorders
Evidence suggests that the levels of inflammatory markers, such
as IL-6, hs-CRP, immune cells, in the fifth grade level of dyspnea
is far higher than the first and second grade despite that the
inflammation is not completely related to dyspnea (Garrod et al.,
2007; Ryan et al., 2016). In addition, the disorder of lipid
metabolism may be the other important factor for dyspnea
(Gualdoni et al., 2018). Studies have confirmed that virus
infection will interfere with the lipid synthesis and the related
signal transduction in host cells. In this process, the virus
envelopes and receptors synthesize faster to for completing the
virus replication, in consequence, a series of pathological changes
occurs in the cardiopulmonary and other peripheral systems
(Murillo et al., 2015; Abu-Farha et al., 2020).

In addition to directly activating the HIF-1α signaling cascade,
evidences show that IHP can activate the AMPK/SIRT signaling
cascade, thereby activating its downstream target PGC1-α, and
promoting the dephosphorylation of NF-κB, which is then play a
potential protective role in the metabolization and the immune
response (Yu et al., 2018; Gangwar et al., 2020). As one of the
nicotinamide adenine dinucleotide (NAD+) dependent
deacetylases, SIRT1 is a key factor, which is crucial in the
regulation of metabolic transcription (H. Yang et al., 2015). Gao
et al. confirmed that the increased transcription and expression of
SIRT1 in T lymphocytes could better maintain the tolerance of
peripheral T lymphocytes, thereby regulating the immune response
(Gao et al., 2012). Considering of the close relationship between
inflammation, lipidmetabolism disorders and dyspnea, IHPmay be
a potential treatment for improving dyspnea and alleviating tissue
hypoxia. For example, in the terms of ameliorating the dyspnea,
Berezovskyi et al. performed IHP (1-2w, 3cycles/d, 15 min 12%
inspired O2+10min 21% inspired O2/cycle) on 55 patients
(6–17 years old) with bronchospasm. The results suggest that the
bronchial obstruction significantly improves along with the vital
capacity enhances and breath-hold time prolongs (Berezovskyi
et al., 2015). Serebrovska et al. confirmed that IHP (20min 12%
inspired O2+5min 21% inspired O2/cycle, four cycle/session, 5
sessions/w) has little adverse effect on the SpO2 of diabetes
(Serebrovska T. V. et al., 2019). They also found that the IHP
(3 times/d, 15 d, 6–7 min 11% inspiredO2) significantly increase the
alveolar ventilation and maximum lung ventilation of healthy
subjects in the sitting and supine positions, and also significantly
improve hypoxic ventilation response sensitivity in hyperpnea
subjects (Serebrovskaya et al., 1999).

IHP can Boost Antioxidant and Antiinflammation
Capacity of COVID-19
Gangwar et al. found that the healthy subjects may have a slight
inflammatory response in the early stage of IHP (4 h/d, 12%
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inspired O2) implementation. However, the levels of ROS in
macrophages tend to decrease, in parallel, the secretion of the
antioxidant enzyme enhances, such as glutathione at the 7th-day-
IHP treatment, which indicates that the redox homeostasis
mechanism is activated to inhibit oxidative stress and acute
inflammatory signal response (Gangwar et al., 2020). Rudyk
et al. declared that IHP could reduce the accumulation of ROS
and inhibit cell apoptosis by enhancing the mitochondria
resistance to the open of mitochondrial permeability transition
pore (mPTP) in the old rats myocardium heart (Rudyk et al.,
2004). Meanwhile, IHP can exert antioxidant protection by
inhibiting the excessive formation of reactive metabolites, such
as superoxide and peroxide nitrate, or by weakening the activity
of stress-activated protein kinase p38 (Ryou et al., 2017). In
addition to directly influencing the oxidative stress and
inflammatory injury, the IHP likely indirectly reduced these
damage via activating the HIF-1α-mediated downstream
signals. Tian et al. manifested that the IHP (3 w, 6 h/d 11.1%
inspired O2 hypoxic exposure) could promote the expression of
HIF-1α and the antioxidant ability of kidney to defense the tissue
injury in diabetic rats (Tian et al., 2016). This effect may be
attributed to the activation of the HIF-1α/VEGF/intranuclear
nuclear factor (erythroid-derived 2, Nrf2) signaling pathway, in
which the antioxidant enzymes activity enhances to reduce urine
protein, inflammatory cell infiltration and glomerular interstitial
damage (Chang et al., 2019). Based on the previous studies, we
speculate that IHP can improve the inflammation and oxidative
stress of COVID-19 by stimulating their own anti-oxidation
mechanism.

The effect of hypoxia on the innate immune system and host
defenses is controversial. Study has suggested that long-term
exposure to hypoxic condition may be harmful to the cellular
immune function and increase the risk of respiratory infections at
high altitude (Walsh and Oliver, 2016). Wang et al. found that
IHP (30 min/d 15% inspired O2, 5 d/w, 4 w) could delay the aging
of T lymphocyte subsets in the blood, reduce oxidative stress and
the production of pro-inflammatory cytokines, and then to the
greatest extent to improve immune dysfunction (Wang et al.,
2011). IHP can activate the SIRT1 to promote the deacetylation of
NF-κB and decrease its activity, thereby reducing the TNF-α and
1L-1β expression to enhance the adaptive immune response
(Schug et al., 2010).

THE POSSIBLE APPLICATION OF IHP IN
THE PROGNOSIS AND REHABILITATION
OF COVID-19
Choose the Appropriate Timing to Apply IHP
All rehabilitation should be carried out under the premise of
safety. Patient’s heart rate, arterial oxygen saturation (SaO2) and
other indicators can be used to determine whether the patient has
passed the acute phase. Due to the lack of IHP clinical
interventions for COVID-19, the specific cut-in time remains
to be further studied. In case a patient shows peripheral capillary
oxygen saturation (SpO2) < 88% or develops symptoms, such as
cardiac arrhythmia, palpitations, sweating, chest tightness, and

shortness of breath, which are deemed unsuitable for
rehabilitation by the clinician, then the rehabilitation program
should be terminated immediately. For mild and moderate cases,
rehabilitation interventions should be introduced as early as
possible. In contrast, for severe and critical cases, life-saving
measures should be prioritized when the patient’s condition is
unstable or the disease is still progressing. In such cases,
pulmonary rehabilitation interventions should be introduced
only when the patient’s condition has stabilized. In addition,
in view of safety and human resources, movement of severely or
critically ill patients should be limited to their bed or bedside.
Once discharged, patients should continue individualized
rehabilitation under the premise of strengthening protection
and prevention against other infectious diseases such as cold.
In addition, the following contraindications should be noted
during IHP intervention (Serebrovskaya and Xi, 2016): ①

acute phase of physical disease (myocardial infarction within
the last three months, unstable angina pectoris, acute ischemic
stroke within six months); ② with fever and/or acute infectious
diseases and conditions that require enhanced traditional
therapy; ③ compensated chronic renal failure, requiring
hemodialysis; ④ three-stage hypertension, frequent
hypertension; ⑤ severe peripheral blood flow disorder; ⑥

hypercapnic patient; ⑦ congenital abnormalities of the heart
and great blood vessels; ⑧ thrombosis and embolism
complications; ⑨ primary and secondary polycythemia; ⑩

personal intolerance to hypoxia; ⑪ mental or mental disorders.

Choose the Appropriate IHP Therapeutic
Options
According to the recent research on the cardiovascular protective
function of IHP, the use of IHP to improve the prognosis of
COVID-19 is traceable. Patients with chronic pulmonary
diseases, when exercising, as the interval for red blood cells to
pass through the alveolar capillaries is shortened, the ventilation
flow rate disorder increases, oxygen intake and blood oxygen
saturation decreases. IHP therapy can well make up for the
limitations of exercise therapy, not only can ensure the safety
and effectiveness of the application, but also be more convenient
for home rehabilitation. At the same time, even if the patients with
mobility impairments can get the same or even better rehabilitation
effect than exercise. Currently, however, there is no standard IHP
treatment plan clinically developed. And in recent years, IHP
intervention experiments and clinical studies also have large
differences in its related parameter settings, such as the range of
hypoxic concentration (from 12 to 18%), the duration of hypoxia
(ranging from 15 s to 12 h), the number of cycles per day (ranging
from 3 cycles to 25 cycles) etc (Serebrovskaya and Xi, 2016).
Therefore, it is so important about the strict control of IHP
intervention parameters. It also can set parameters according to
the hypoxic sensitivity and the development of its disease, such as
using the heart rate changes during the steady decline of SaO2 to
predict the individual’s adaptation to hypoxia and prognosis, and
select the best intervention plan.

Based on the above clinical research evidence, we set an IHP
plan for the prognosis and rehabilitation of COVID-19: 3–5 min
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hypoxia (10–16% inspired O2) + 5 min normoxia (21% inspired
O2) as one cycle, 6–10 cycles per day, 3–5 times a week for a total
of 8 weeks. Before the formal intervention, the patient should
undergo hypoxic preconditioning training to familiarize himself
with the treatment equipment and procedures, and at the same
time checking the tolerance of the patient and adjusting the
appropriate hypoxia concentration. During the treatment
process, real-time monitoring of the patient’s heart rate, blood
pressure, electrocardiogram, peripheral blood oxygen saturation,
lung ventilation function and other physiological indicators.
Moreover, as subjects need to inhale low-oxygen gas through a
breathing mask, considering the high infectivity of COVID-19,
after a patient finished using the device, the disposable face mask
should be replaced immediately, and the ventilation pipe and
periphery of the device should be disinfected to avoid cross-
infection. At the same time, the treatment clinic where the patient
is located should be strictly disinfected. In addition, the following
principles should be followed: patients should be evaluated
comprehensively before starting the rehabilitation program by
clinical experts. Evaluation and monitoring should be conducted
throughout the IHP rehabilitation program. As COVID-19
patients having chronic pulmonary diseases often have
excessive airway secretions, should pay attention to facilitate
sputum excretion and reduce the exhaustion due to coughing.
Meanwhile, more clinical research should be conducted to prove
the safety and efficacy of IHP therapy among COVID-19
rehabilitated phase patients, and explore individualized
treatment program.

SUMMARY AND PERSPECTIVE

Currently, evidence on the prognosis and rehabilitation of
COVID-19 patients is insufficient, especially for elderly
patients whose disease is complicated by other pathology or
comorbidity. It remains unclear whether the impairment of
multiple systemic functions is completely reversible or if the
long-term existence of the virus can cause residual physical and
mental dysfunction in these patients. Nonetheless, we believe that
IHP not only has beneficial effect on cardiovascular protection

and cardiorespiratory fitness, but also can applied as a potential
protector against inflammatory stress. Timely implementing IHP
intervention to restore the cardiopulmonary function of COVID-
19 and to recover the autoimmunity is very important. IHP
intervention program for the prognosis and rehabilitation of
COVID-19 should be based on the existing condition and
actual vital signs of the patients (such as blood cell
parameters, blood oxygen saturation, heart rate, blood
pressure, etc.) in consideration of all other underlying
disorders (such as hypertension, diabetes, COPD, etc.) to set
different intervention parameters to target the biological
mechanism mediated by HIF-1α to activate downstream signal
targets (iNOS, EPO, VEGF), and at the same time activate
AMPK/SIRT1 signaling cascade, and then reduce the tissue
and organ damage of patients, and improve the body’s
tolerance and resistance to ischemia and hypoxia. It is possible
to prevent disease or reduce the virus damage if we may take IHP
before attach of virus, which is critical to maintain strong
immune capacity, and reduce the prevalence of various
chronic diseases. The most appropriate timing and program,
the efficacy and safety of IHP for rehabilitation interventions
require large-scale clinical trials and further confirmation.
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Strategy, Progress, and Challenges of
Drug Repurposing for Efficient
Antiviral Discovery
Xinlei Li† and Tao Peng*

State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical
University, Guangzhou, China

Emerging or re-emerging viruses are still major threats to public health. Prophylactic
vaccines represent the most effective way to prevent virus infection; however, antivirals are
more promising for those viruses against which vaccines are not effective enough or
contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high
disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics,
either approved or under investigation, is becoming an attractive strategy to identify the
new directions to treat virus infections. In this review, we described recent progress in
identifying broad-spectrum antivirals through drug repurposing. We defined the two major
categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and
host-targeting repurposed antivirals (HTRA). Under each category, we summarized
repurposed antivirals with potential broad-spectrum activity against a variety of viruses
and discussed the possible mechanisms of action. Finally, we proposed the potential
investigative directions of drug repurposing.

Keywords: drug repurposing, emerging virus, antivirals, broad spectrum, COVID-19

INTRODUCTION

Since December 2019, a novel coronavirus disease 2019 (COVID-19) has rapidly spread all over the
globe to cause a pandemic (Li et al., 2020b; Zhu et al., 2020). The pneumonia causative agent was
identified to be a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
As of April 6, 2021, more than 130 million cases have been confirmed globally, including
approximately 2.85 million deaths. The still ongoing pandemic represents the most recent
example of how emerging or re-emerging human or zoonotic viruses pose a threat to public
health. These viruses include but not limited to Ebola virus (EBOV), Zika virus (ZIKV), West Nile
virus (WNV), yellow fever virus (YFV), dengue virus (DENV), henipaviruses (Nipah, Hendra),
SARS-CoV, Middle East respiratory syndrome (MERS-CoV), Lassa virus (LASV), Crimean-Congo
hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), chikungunya virus (CHIKV),
human immunodeficiency virus (HIV) and influenza A virus (IAV). We listed six viral families in
which a number of viruses have merged or remerged in recent years to have caused or potentially
cause an epidemic or pandemic, including Coronaviridae, Filoviridae, Flaviviridae, Arenaviridae,
Nairoviridae, and Orthomyxoviridae. The genome structure, important viruses, and key features
regarding virus-host interactions are summarized in Table 1.

The emerging or remerging virus outbreak has emphasized the urgent need for preventative or
treatment regimens. Vaccines are recognized as a preferred promising line of defense. However,
vaccine development is a complex process and multiple challenges are involved in light of the fact
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that the pathogens that need to be confronted may display high
genetic variability (e.g., HIV) or an identity hardly predicted in
advance (e.g., SARS-CoV-2 or ZIKV). Thus, unprecedented
demands have emerged on antivirals that can be rapidly
available in clinical practices. In the absence of a vaccine
available to use, hepatitis C virus (HCV) is supposed to be
eliminated in the use of the direct-acting antivirals, which
probably represents the first virus to be cured by antivirals.
That strengthens the promising potential of antivirals in terms
of virus treatment.

Drug repurposing (also called drug repositioning) is a strategy
for identifying new uses for approved or investigational drugs
that beyond the original indicative scope to facilitate antiviral
development. Typically, antiviral discovery development is time
and resource-consuming, which involves three major stages
including drug discovery (3–6 years), preclinical studies in

experimental animal models (about 3 years), clinical trials in
humans from phase I to III (about 5 years). Finally, if a
therapeutic succeeds to pass all the processes, it needs to get
approved by the appropriate agency. It is estimated that only 5%
of the candidate molecules are finally approved and up to 3 billion
dollars are consumed. Given that the repurposed drugs have been
proven to be safe in humans, drug repurposing likely can skip
phase I and probably the phase II clinical trials. Thus, the attrition
rate to be a novel antiviral is reduced, although the phase III trial
is still needed. Remdesivir, an adenosine analog to inhibit EBOV
RNA-dependent RNA polymerase (RdRp) (Tchesnokov et al.,
2019), is the latest example. Although remdesvir did not show
therapeutic activity against EBOV infection in a real-world phase
III clinical trial (Nakkazi, 2018), remdesivir shows potent
antiviral activity against SARS-CoV-2, SARS-CoV, and MERS-
CoV in vitro or in vivo in preclinical animal models (de Wit et al.,

TABLE 1 | Important emerging or remerging viruses.

Virus family Genome Important viruses Key features/Virus-host interactions Ref

Coronaviridae ss (+) RNA;
26–32 kb

SARS-CoV, SARS-CoV-2, MERS-CoV,
HCoV-229 E, HCoV-OC43, HCoV-NL63,
HCoV-HKU1

Enveloped viruses; case fatality rate: 30% (MERS-CoV),
10% (SARS-CoV), 3% (SARS-CoV-2); receptor: ACE2
(SARS-CoV, SARS-CoV-2); DPP4 (MERS-CoV); S
protein proteolytic cleavageby cathepsins or TMPRSS2
is necessary for infection; RNA proofreading is viable
due to the exoribonuclease activity

de Wit et al. (2016); Chen
(2020)

Flaviviridae ss (+) RNA;
9.6–12.3 kb

DENV, ZIKV, YFV, WNV Enveloped viruses; cause hemorrhagic fever, liver
damage, congenital malformations (microcephaly);
transmission by vectors like mosquitos or ticks

Mukhopadhyay et al. (2005);
Barrows et al. (2018)

Filoviridae ss (−) RNA;
19 kb

EBOV, MARV Enveloped filamentous virions can exceed to
14,000 nm in length; cause fatal viral hemorrhagic
fevers; case fatality rate: from 25 to 90%; DC-SIGN, or
integrins as attachment factor; receptor: NPC1
(EBOV)

—

Arenaviridae ss (−) RNA;
segmented

LASV, JUNV Enveloped viruses; case fatality rate: 20–30% (JUNV),
1% (LASV); entry factors: Alpha-dystroglycan, LAMP1
(LASV); cause hemorrhagic fever; virus spreads
through rodents

Jae et al. (2014); Pontremoli
et al. (2019)

Nairoviridae ss (−) RNA;
segmented

CCHFV Enveloped viruses with circular genome; case fatality
rate: 10–40% (CCHFV); virus entry is clathrin-, pH-
and cholesterol dependent; cause hemorrhagic fever;
transmission by vectors like ticks

Simon et al. (2009); Zivcec
et al. (2016)

Orthomyxoviridae ss (−) RNA;
segmented

IAV (H1N1, H2N2, H5N1, H3N2, H7N9,
. . . )

Enveloped viruses; genome reassortment is common;
case fatality rate varies, 2–3% (1918 H1N1)

Ramos and Fernandez-Sesma
(2012)

TABLE 2 | Compound library for drug repurposing.

Library Library
scale

Introduction Refs

Prestwick chemical library 1,520 99% approved drugs (FDA, EMA and other agencies) Ulferts et al. (2016)
NCATS pharmaceutical collection (or NCGC
pharmaceutical Collection)

∼3,500 2,500 approved molecules, plus about 1,000 investigational compounds Huang et al. (2011)

ReFRAME compound library ∼12,000 Containing nearly all small molecules that have reached clinical development
or undergone significant preclinical profiling, 38% of which are approved
drugs

Janes et al. (2018); Riva
et al. (2020)

Library of pharmacologically active compounds
(LOPAC), sigma

1,280 Biologically annotated collection of inhibitors, receptor ligands, pharma-
developed tools, and approved drugs

Hu et al. (2014)

NIH clinical collection 727 All have a history of use in human clinical trials and known safety profiles van Cleef et al. (2013)
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2020; Wang et al., 2020a). Two randomized phase III clinical
trials indicate that patients who received remdesivir had a shorter
time to recover (Spinner et al., 2020; Wang et al., 2020c), based
upon which the U.S. Food and Drug Administration (FDA) has
approved remdesivir for use in COVID-19 patients, less than
1 year after the outbreak of the pandemic. From the above
example, drug repurposing could significantly facilitate
antiviral development for emergency use. Given the urgent
need for therapeutics for emerging or re-emerging viruses and
a great number of approved or developmental therapeutics, drug
repurposing represents a better way for antiviral discovery. In this
review, we discussed the strategies of drug repurposing for
antiviral development, summarized the promising drug
candidates that have the antiviral potency with broad-
spectrum activity, and analyzed the possible caveats of this
strategy of drug discovery.

STRATEGIES TO DEVELOP REPURPOSED
ANTIVIRALS

A typical drug repurposing strategy comprises four steps
(Figure 1), including the identification of a candidate
therapeutic for the new indication as an antiviral; antiviral
efficiency confirmation and/or mechanistic analysis in
preclinical animal models; antiviral efficacy evaluation in
clinical trials (phase I may be not prerequisite if sufficient
safety data has already been obtained as parts of the original
indication); and approval of the novel indication by government
agencies such as the FDA, the European Medicines Agency
(EMA), Ministry of Health, Labor and Welfare (MHLW) of
Japan, and National Medical Products Administration
(NMPA) of China.

APPROACHES FOR ANTIVIRAL
REPURPOSING

The identification of the right drug for the new indication is
crucial. The major approaches involve high throughput in silico
or in vitro screening. The in silico screening is commonly used for
the identification of a compound that binds to the given target,
commonly a virally encoded protein, such as RNA-dependent
RNA polymerase (Patel and Kukol, 2017). The in vitro screening
involves the high throughput antiviral screening, leading to the

subsequent validation for the most potent candidates. These
candidates can target host proteins or viral proteins
(Kouznetsova et al., 2014; Chopra et al., 2016; Xu et al., 2016;
Li et al., 2017c). For either approach, compound libraries, in
particular those with approved molecules, are needed (Table 2).
These include the Drugbank library, NIH Clinical Compound
(NCC) Collection (van Cleef et al., 2013), the Prestwick Chemical
Library (Ulferts et al., 2016), the Library of Pharmacologically
Active Compounds (LOPAC) (Hu et al., 2014), a library of
approved drugs that were assembled by the NIH Chemical
Genomics Centre (NCGC) called the NCGC Pharmaceutical
Collection (NPC) (Huang et al., 2011), and the ReFRAME
(Repurposing, Focused Rescue, and Accelerated Medchem)
Library (Janes et al., 2018). Recently, the LOPAC and
ReFRAME drug libraries were successfully used for the
discovery of the SARS-CoV-2 antiviral candidates (Riva et al.,
2020).

CATEGORIES OF REPURPOSED
ANTIVIRALS

Based on the origin and feature of the repurposed antiviral
targets, two major categories are divided: direct-acting
repurposed antiviral (DARA) and host-targeting repurposed
antiviral (HTRA) repurposing. The representative antivirals
with repurposed potentials are summarized in Figure 2.

Direct-Acting Repurposed Antiviral (DARA)
A large majority of antivirals approved by the FDA are direct-
acting antivirals (DAA) other than host-targeting agents (HTA)
(Chaudhuri et al., 2018). DARAs contain antiviral activity relying
on structural similarity or identical enzymatic activity of virally
encoded targets, particularly viral polymerase, protease, reverse
transcriptase, or viral proteins with ion channel activity. Below we
reported the advances in repurposed antivirals targeting the two
important viral enzymes, RdRp and protease.

RdRp Inhibitors
Remdesivir (GS-5734)
Remdesivir was an investigational compound in the class of
nucleotide analogs, which was originally developed to treat
Filoviridae members EBOV or Marburg infection and rapidly
pushed through clinical trials due to the EBOV epidemic in West
Africa from 2013 through 2016. However, in August 2019,

FIGURE 1 | Drug repurposing development process. DAA, direct-acting antivirals; HTA, host-targeting antivirals; FDA, Food and Drug Administration; EMA, the
European Medicines Agency; MHLW, Ministry of Health, Labor, and Welfare; NMPA, National Medical Products Administration.
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remdesivir was announced to be less effective than the other two
monoclonal antibody regimens (Mulangu et al., 2019). It has also
been found to show antiviral activity against other RNA viruses
such as Pneumoviridae member RSV (EC50 � 0.019 μM);
Paramyxoviridae Nipah virus (EC50 � 0.029 μM), Hendra
virus (EC50 � 0.055 μM), parainfluenza type three virus (EC50
� 0.018 μM), MV (EC50 � 0.037 μM) and MuV viruses (EC50 �
0.79 μM); Arenaviridae JUNV (EC50 � 0.47 μM), LASV (EC50 �
1.48 μM); some Flaviviridae viruses like Kyasanur Forest disease
virus (KFDV) (EC50 � 1.8 μM), Omsk Hemorrhagic Fever virus
(OHFV) (EC50 � 1.2 μM), Tick-borne encephalitis (TBEV)
(EC50 � 2.1 μM), and Coronaviridae including MERS-CoV
(EC50 � 0.074 μM), SARS-CoV (EC50 � 0.069 μM), and
SARS-CoV-2 (EC50 � 0.77 μM) (Warren et al., 2016; Lo et al.,
2017; Sheahan et al., 2017a; Choy et al., 2020) (Table 3). The
parent nucleoside of remdesivir, GS-441524 (1′-cyano substituted
adenine nucleoside analog or Nuc) also shows a broad-spectrum
but less effective antiviral activity against infections of
coronaviruses like MERS-CoV and feline coronavirus (Warren
et al., 2016; Pedersen et al., 2019).

Remdesivir shows prophylactic or therapeutic potency when
administrated in SARS-CoV-infected mice, in which reduced
viral load in lung and improved clinical symptoms and
respiratory function was observed (Sheahan et al., 2017a). A
similar prophylactic or therapeutic potency of remdesivir against
MERS-CoV was seen in macaques or mouse models (deWit et al.,
2020; Sheahan et al., 2020). Remdesivir efficiently inhibits SARS-
CoV-2 replication in vitro (Wang et al., 2020b), and was used as a
compassionate use in the first COVID-19 case in the
United States (Holshue et al., 2020) before large-scale clinical
studies (NCT04280705; NCT04292899; NCT04292730;
NCT04257656) were launched. One large-scale study in which
hospitalized COVID-19 patients were given remdesivir for
10 days showed significantly shortened time to recovery
(Beigel et al., 2020). Another study indicated that remdesivir

treatment in moderate COVID-19 patients for 5 days led to
symptom improvement significantly higher than the standard
care group (Spinner et al., 2020). Contrarily, a smaller scale study
only found remdesivir resulted in a marginally but numerically
faster time to clinical improvement (Wang et al., 2020c). Based
upon these clinical studies, the full and conditional use of
remdesivir in hospitalized COVID-19 patients was approved
by FDA in October 2020. Although World Health
Organization (WHO) recommends against it, based on the
interim result of the WHO Solidarity Trial.

Mechanistically, remdesivir exerts the antiviral activity
through competing with ATP that is supposed to incorporate
into viral RdRp for RNA replication. It results in delayed EBOV
and MERS-CoV RNA chain termination at the fifth and third
position, respectively after the initiation site (Warren et al., 2016;
Tchesnokov et al., 2019; Gordon et al., 2020).

Ribavirin (RBV)
RBV is on the WHO’s list of essential medicines, it is licensed to
treat RSV infection (Committee on Infectious Diseases, 1993), or
HCV infection in combination with interferon (IFN)-α or direct-
acting antivirals (AASLD-IDSA HCV Guidance Panel, 2018).
RBV is also effective against other hepatotropic viruses including
HBV(Galban-Garcia et al., 2000) and HEV (Kamar et al., 2014;
Kamar et al., 2019) in clinical studies, although no convincing
activity against HBV was obtained in cell culture systems (Isorce
et al., 2016). Ribavirin was clinically used to treat a variety of viral
hemorrhagic fevers, including Lassa fever (McCormick et al.,
1986), Crimean-Congo hemorrhagic fever (Fisher-Hoch et al.,
1995), and Hantavirus infection (Ogg et al., 2013) alone or in
combination with favipiravir, even though RBVmight be effective
only at early stages (Johnson et al., 2018; Eberhardt et al., 2019).

The clinical use of RBV as a supplement to other agents like
corticosteroid for SARS-CoV treatment was documented in
China and Canada (Peiris et al., 2003), while RBV had an

FIGURE 2 | Common viral lifecycle and broad-spectrum antiviral identification. The common viral lifecycle comprises three steps: viral entry, genome replication,
and virus assembly/release. Direct-acting antivirals (DAA,❖) and host-targeting antivirals (HTA, ■) inhibit virus replication by targeting viral protein and host molecules that
are required for virus replication, respectively.
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TABLE 3 | Approved or investigational direct-acting antivirals with repurposed potential against other virus infections.

Category Agent name Primary indication Broad antiviral activity Clinical trials Ref

Virus name EC50/
EC90 (μM)

CC50
(μM)

SI

Viral RdRp
inhibitor

Remdesivir Antiviral (EBOV, no
approval)

EBOV 0.07/0.22 (Huh7
cells)

3.7 52.86 Phase III failed Warren et al. (2016)

JUNV 0.47/2.8 N.D. N.D. Warren et al. (2016)
MERS-CoV 0.074/N.D. >10 >135 Sheahan et al.

(2017b)
SARS-CoV 0.069/N.D. >10 >144 Sheahan et al.

(2017b)
SARS-CoV-2 0.77/1.76 >100 >129.87 Approved for hospitalized COVID-19 patients Wang et al. (2020b)
RSV 0.021/0.059 6.195 395 Lo et al. (2017)
NiV 0.029/0.053 8.294 286 Lo et al. (2017)

Ribavirin Antiviral (HCV, RSV) HCV 8.4/N.D. 108 12.86 Approved Ortega-Prieto et al.
(2013)

RSV 69.5/N.D. N.D. N.D. Approved Kim et al. (2017)
HBV N.D./N.D. N.D. N.D. Phase I NCT04356677; phase II NCT04276688;

phase III NCT04392427
Isorce et al. (2016)

HEV 6.9/50.38 N.D. N.D. Todt et al. (2018)
ZIKA 23/281 N.D. N.D. Kamiyama et al.

(2017)
LASV 2.47/N.D. >50 >20 Welch et al. (2016)
EBOV 5.34/N.D. >50 >9 Welch et al. (2016)
SARS-CoV 81.9/N.D. >819 >10 Saijo et al. (2005)
MERS-CoV 66.9/86.6 N.D. N.D. Falzarano et al.

(2013a)
SARS-CoV-2 109.5/N.D. >400 3.65 Phase II/III NCT04460443, NCT04497649; phase

III NCT04392427, . . .
Wang et al. (2020b)

Favipiravir Antiviral (IAV) IAV(H1N1) 1.97/3.75 >128 >64 Approved Sleeman et al.
(2010)

LASV 29.3/43.2 >1000 >34 Oestereich et al.
(2016)

JUNV 0.79/5.0 188 239 Furuta et al. (2013)
CCHFV 6.37/10.18 >100 >15.7 Oestereich et al.

(2014b)
RVFV 5.0/32 >980 >196 Furuta et al. (2013)
Rabies 32.4/N.D. N.D. N.D. Yamada et al. (2016)
RSV N.D./36 >1600 N.D. Jochmans et al.

(2016)
EBOV 67/110 >1000 >14.9 Oestereich et al.

(2014a)
SARS-CoV-2 61.88/N.D. >400 >6.46 Phase III: NCT04425460, NCT04373733; phase

IV NCT04359615.
Wang et al. (2020b)

WNV 53/N.D. N.D. N.D. Morrey et al. (2008)
YFV 180/330 >6370 >19 Julander et al. (2009)
ZIKA 22/N.D. >637 >26 Zmurko et al. (2016)
EV-71 68.74/N.D. >1000 >14.55 Wang et al. (2016b)

Sofosbuvir Antiviral (HCV) HCV 0.032–0.13/N.D. N.D. N.D. Approved Han et al. (2019)
YFV 4.2/N.D. 381 90 de Freitas et al.

(2019)
DENV 1.4/6.4 >100 >71 Xu et al. (2017)
CHIKV 1/N.D. 402 402 Ferreira et al. (2019)
ZIKA 1.37/12.3 >200 >145 Bullard-Feibelman et

al. (2017)
HEV 1.97/N.D. >100 >51 Netzler et al. (2019)
HBV — — — Phase II NCT03312023 —

SARS-CoV-2 — — — Phase II/III: NCT04460443, NCT04443725;
phase IV NCT04498936; . . .

—

Galidesivir Antiviral (EBOV,
investigational)

EBOV 11.8/25.4 >11,800 >100 Preclinical Warren et al. (2014)
MARV 4.4/10.5 1065 242 Phase I NCT03800173 Warren et al. (2014)
SUDV 3.4/10.3 >3400 >100 Warren et al. (2014)
TBEV 0.95/N.D. N.D. N.D. Eyer et al. (2019)
YFV 14.1/46.8 >14,100 >100 Phase I NCT03891420 Warren et al. (2014)
WNV 2.33/N.D. >100 >42 Eyer et al. (2017)
DENV 32.8/89.3 >9710 >296 Warren et al. (2014)
ZIKA 3.8/18.2 N.D. N.D. Julander et al. (2017)
RVFV 41.6/98.0 >41,600 >100 Warren et al. (2014)
LASV 43.0/>100 >4300 >100 Warren et al. (2014)
RSV 11.0/25.7 >980 >89 Warren et al. (2014)
IAV(H1N1) 10.7/17 >3167 >296 Warren et al. (2014)
SARS-CoV 57.7/>95 >17,080 >296 Warren et al. (2014)
SARS-CoV-2 — — — Phase I NCT03891420 —

(Continued on following page)

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6607105

Li and Peng Drug Repurposing for Antiviral Discovery

49

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


EC50 of 81.9 μM in vitro (Saijo et al., 2005). RBV is also
effective to inhibit MERS-CoV with an EC50 ranging from
66.9 μM (16.33 μg/ml) to 169.7 μM (41.45 μg/ml) in vitro
(Falzarano et al., 2013a). RBV alongside IFN-α was reported
to reduce the hospital mortality rate from 70 to 29% in
hospitalized MERS patients at 14 days after admission
(Omrani et al., 2014). RBV also shows antiviral activity
against SARS-CoV-2 in vitro with an EC50 of 109.5 μM
(Wang et al., 2020b), while another report did not find the
favorable effect of RBV (Choy et al., 2020). The higher EC50 of
RBV against either MERS-CoV or SARS-CoV-2 may be due to
the reduced RBV uptake (Ibarra and Pfeiffer, 2009) or
inabilities to accumulate sufficient amounts of
phosphorylated RBV metabolites required for the effective
RBV antiviral actions (Shah et al., 2010). As of early
January 2021, at least seven clinical trials (phase I
NCT04335123; phase II NCT04494399; phase II
NCT04563208; phase II NCT04605588; NCT04664010;
phase II NCT04276688; phase II/III NCT04402203) have
been launched to investigate the efficacy of RBV alone or in
combination with other agents for COVID-19 treatment.

Mechanistically, at least two types of antiviral machinery may
be involved. Upon the uptake into cells, RBV is metabolized to
form a purine RNA nucleotide-like form, which interferes with
viral RNA polymerases, leading to hypermutation of RNA that
reduces the viability and is lethal to RNA viruses. RBV is also an
inhibitor of inosine-5′-monophosphate dehydrogenase
(IMPDH), which is essential for the de novo synthesis of
guanosine-5′-monophosphate (GMP). RBV structure may
interfere with the RNA capping process that relies on natural
guanosine to prevent RNA degradation. Upon the inhibition of
IMPDH, RBV can lower the intracellular pool of GTP, and DNA
virus replication is then inhibited. Alternatively, RBV has the
potential to reduce cell death, affect type 1 cytokine production or
inflammatory response, which may help combat HBV, HCV, or
LASV infection (Tam et al., 1999; Oestereich et al., 2016).

Favipiravir
Favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) was
firstly designed to inhibit influenza RdRp, despite of different
serotypes and strains of influenza A, B, or C (Furuta et al., 2013).
Favipiravir has been approved since 2014 in Japan for emergent
use to treat influenza. In addition, favipiravir has shown a broad
antiviral activity against other negative sense RNA viruses such as
RSV (Pneumoviridae, EC90 � 36 μM), CCHFV (Nairoviridae,
EC50 � 6.37 μM), LSAV (Arenaviridae, EC50 � 29.3 μM), JUNV
(Arenaviridae, EC50 � 0.79 μM), Rabies virus (Rhabdoviridae,
EC50 � 32.4 μM), EBOV (Filoviridae, EC50 � 67 μM), or positive
sense RNA viruses like SARS-CoV-2 (Coronaviridae, EC50 �
61.88 μM), Flaviviridae ZIKA (EC50 � 22 μM), WNV (EC50 �
53 μM), YFV (EC50 � 180 μM), and enterovirus EV71
(Picornaviridae, EC50 � 68.74 μM) (Morrey et al., 2008;
Oestereich et al., 2014a; Oestereich et al., 2014b; Jochmans
et al., 2016; Oestereich et al., 2016; Yamada et al., 2016;
Zmurko et al., 2016; Furuta et al., 2017; Wang et al., 2020b)
(Table 3).

A preclinical study in EBOV-infected macaques shows a
higher plasma favipiravir concentrations greater than
70–80 μg/ml or 446–509 μM were associated with reduced
viral loads and extended survival rate (Guedj et al., 2018). A
similar study in IFNAR−/−mice also shows a high dose [300 mg/
(kg/d)] of favipiravir enhances EBOV clearance and prevents a
lethal outcome (Oestereich et al., 2014a). Clinically, favipiravir
showed good tolerance in EBOV patients but no strong antiviral
efficacy (Sissoko et al., 2016), possibly due to the low median
trough drug concentrations (46 μg/ml or 293 μM at day 2 post-
treatment) (Nguyen et al., 2017). Thus, the optimal dosage and
potency of favipiravir merit further investigation.

Favipiravir exhibited antiviral activity against SARS-CoV-
2 in vitro (Wang et al., 2020b) and showed a significantly
shorter viral clearance time than the control group (4 vs.
11 days) and a higher improvement in chest imaging in a
non-randomized clinical study (Cai et al., 2020). Another

TABLE 3 | (Continued) Approved or investigational direct-acting antivirals with repurposed potential against other virus infections.

Category Agent name Primary indication Broad antiviral activity Clinical trials Ref

Virus name EC50/
EC90 (μM)

CC50
(μM)

SI

Viral protease
inhibitor

Lopinavir/
ritonavir

Antiviral (HIV) HIV (lopinavir) 0.018/N.D. N.D. N.D. Approved Masse et al. (2007)
HIV (ritonavir) 0.046/N.D. N.D. N.D Masse et al. (2007)
SARS-CoV
(lopinavir)

17.1/N.D. >32 >2 deWilde et al. (2014)

MERS-CoV
(lopinavir)

8.0/N.D. 24.4 3.1 deWilde et al. (2014)

SARS-CoV-2
(lopinavir)

26.63/N.D. 49.75 1.87 Phase III: NCT04372628, NCT04321174; phase
IV: NCT04350684, NCT0435067; . . .

Choy et al. (2020)

Rupintrivir Antiviral (HRV,
investigational)

HRV-100 0.022/0.032 N.D. N.D. Phase II completed Binford et al. (2005)
Echovirus-6 0.051/0.094 N.D. N.D. Binford et al. (2005)
CVB2 0.022/0.088 N.D. N.D. Binford et al. (2005)
CVA16/860 F 0.015/N.D. >50 >3500 Zhang et al. (2013)
EV71/695 F 0.014/N.D. >50 >3500 Zhang et al. (2013)
HCoV-229e 0.3/N.D. >500 >1500 Kim et al. (2012)
TGEV 2.5/N.D. >500 >200 Kim et al. (2012)
BOC 15.3/N.D. >500 >32 Kim et al. (2012)
Norovirus/
Norwalk

0.32/1.5 >50 >150 Rocha-Pereira et al.
(2014)
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small-sized open-label phase II/III clinical trial (NCT04434248)
also found that favipiravir enabled SARS-CoV-2 viral clearance in
62.5% of patients within 4 days, as compared to 30% of patients
on a standard of care; however, the viral clearance rate by day 10
after favipiravir administration was only marginally improved
(Ivashchenko et al., 2020). Although favipiravir has been
approved in some countries, large-scale, placebo-controlled,
double-blinded clinical trials may be still needed to further
evaluate the efficacy and safety of favipiravir.

The mechanism of action of inhibiting influenza RdRp by
favipiravir involves the conversion to the metabolite favipiravir
ribofuranosyl-5′-triphosphate (favipiravir-RTP), which further
incorporates into influenza RdRp to inhibit the polymerase
activity at nanomolar to micromolar concentrations (Furuta
et al., 2013). The inhibition of other viral RdRp by favipiravir
may involve a similar mechanism.

Sofosbuvir
Sofosbuvir that targets HCV RdRp NS5B from 15 subtypes in six
genotypes with an EC50 ranging from 0.032 to 0.13 μM is an
approved oral direct-actin antiviral to treat chronic hepatitis C
(Han et al., 2019). A cocktail treatment regimen containing
sofosbuvir and HCV protease NS3/4A inhibitors has already
been approved for pan-genotypic HCV infection. Sofosbuvir
shows antiviral effects against other virus members in
Flaviviridae family, such as ZIKA (EC50 � 4.25 μM) (Bullard-
Feibelman et al., 2017; Mumtaz et al., 2017; Sacramento et al.,
2017), DENV(Sacramento et al., 2017), CHIKV (EC50 � 1 μM)
(Ferreira et al., 2019), and YFV (EC50 � 4.2 μM) (de Freitas et al.,
2019). Strikingly, HEV, another hepatotropic virus but
evolutionally distant from HCV, was reported to be
susceptible to sofosbuvir (EC50 � 1.97 μM) (Todt et al., 2018;
Netzler et al., 2019) (Table 3). A phase II clinical trial of
sofosbuvir for HBV treatment (phase II NCT03312023) is also
under investigation. Besides, the binding residue of sofosbuvir on
coronavirus RdRp is conserved among SARS-CoV, SARS-CoV-2,
and MERS-CoV(Jacome et al., 2020), although sofosbuvir did not
exhibit the inhibitory effect against MERS-CoV RdRp in a cell-
based reporter assay (Min et al., 2020). Sofosbuvir binds to SARS-
CoV-2 RdRp and inhibits virus infection in lung and brain cells
(Elfiky, 2020a), and clinical trials have initiated in multiple
countries (phase II NCT04561063, phase II NCT04532931,
phase II/III NCT04460443; phase II/III NCT04497649; phase
III NCT04530422, phase III NCT04535869, phase IV
NCT04498936).

Galidesivir (BCX4430, Immucillin-A)
Galidesivir, an imino-C-nucleoside analog, was originally
developed to combat EBOV infection (Warren et al., 2014).
Galidesivir strongly inhibits EBOV RdRp activity in vitro and
post-exposure intramuscular administration of galidesivir
protects mice or macaques against Ebola virus or Marburg
disease (Warren et al., 2014). Currently, a phase I clinical trial
(NCT03800173) for Marburg disease is being performed.

Galidesivir was subsequently identified to exhibit broad-
spectrum antiviral effectiveness against other RNA virus
families like Flaviviridae members TBEV (EC50 � 0.95 μM),

YFV (EC50 � 14.1 μM), WNV (EC50 � 2.33 μM), DENV
(EC50 � 32.8 μM), and ZIKA (EC50 � 3.8 μM), Arenaviridae
(LASV, EC50 � 43.0 μM), Phleboviridae (RVFV, EC50 �
41.6 μM), Pneumoviridae (RSV, EC50 � 11.0 μM),
Orthomyxoviridae (IAV H1N1, EC50 � 10.7 μM), and
Coronaviridae MERS-CoV (EC50 � 68.4 μM) and SARS-CoV
(EC50 � 57.7 μM) (Warren et al., 2014; Eyer et al., 2017; Julander
et al., 2017; Westover et al., 2018; Eyer et al., 2019). Preclinical
studies showed intramuscular or intraperitoneal administration of
galidesivir in Syrian golden hamsters effectively limited systemic
RVFV infection and improved survival outcomes (Westover et al.,
2018). Galidesivir also showed anti-ZIKA activity in a lethal mouse
model even when the treatment was initiated during the peak of
viremia (Julander et al., 2017). Despite the anti-coronavirus activity
in vitro, and the predicted strong binding of galidesivir with SARS-
CoV-2 RdRp (Elfiky, 2020b), an early stage clinical showed that
treatment with galidesivir offered COVID-19 patients no benefit
compared to a placebo.

Viral Protease Inhibitor
Lopinavir/ritonavir (LPV/r)
LPV/r is a fixed-dose combination for HIV prevention and
treatment. It combines LPV with a low dose of ritonavir
(RTV), both of which are HIV protease inhibitors. In HIV-
1 NL4-3 infection system in vitro, LPV and RTV have an
EC50 of 0.018 and 0.046 μM, respectively, against HIV-1, but
LPV has a much higher potency than RTV does (EC50 �
0.015 μM for LPV vs. 0.349 μM for RTV) for HIV-2 (Masse
et al., 2007). RTV is also a very potent inhibitor of intestinal
and hepatic cytochrome P450 3A4 (Eagling et al., 1997),
which is involved in LPV catabolism. As with LPV/r,
darunavir/cobicistat (DRV/c) is also a dose-fixed
combination containing HIV protease inhibitor DRV and
CYP3A enzymatic antagonist cobicistat (Masse et al.,
2007). Low doses of RTV or cobicistat could slow down
the breakdown of HIV protease inhibitors, thereby greatly
increases its blood concentration.

Some viruses, like SARS-CoV, MERS-CoV, and SARS-CoV-
2, encode proteases, which are structurally and functionally
similar to HIV protease. LPV shows an EC50 of 17.1, 8.0, and
26.63 μM, respectively against the three coronaviruses (de
Wilde et al., 2014; Choy et al., 2020) (Table 3). LPV/r
combination shows greater anti-MERS-CoV activity than
LPV does (EC50 of 8.5 vs. 11.6 μM) in vitro (Sheahan et al.,
2020). LPV/r alongside IFN-β shows improved clinical and
pathological features in a nonhuman primate MERS model
(Chan et al., 2015), while prophylactic or therapeutic LPV/
r-IFN-β treatment only slightly improves the disease outcomes
in patients (Sheahan et al., 2020). Similarly, SARS patients
receiving LPV/r were found to have an improvement in
respiratory syndrome (Chu et al., 2004). However, the
potency of LPV/r for SARS-CoV is only effective if
administrated early but not as rescue or salvage therapy
(Chan et al., 2003). Despite of its potential for COVID-19
treatment, a randomized trial showed the hospitalized
COVID-19 patients did not benefit from LPV/r therapy
(Cao et al., 2020).
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Rupintrivir (AG-7088)
Rupintrivir is a peptidomimetic compound inhibiting viral
protease activity, it is designed to combat human rhinovirus
(HRV, belonging to family Piconaviridae) infection.
Rupintrivir shows potent in vitro activity against all 48
HRV serotypes tested, with a range of EC50s of 0.007 to
0.104 μM (Binford et al., 2005). A phase II placebo-
controlled randomized, double-blind trial experimentally
shows the biosafety and potential efficacy in volunteers
(Hayden et al., 2003). Because of a lack of efficacy in
natural HRV infection in a subsequent clinical trial, further
development of rupintrivir was suspended.

Rupintrivir has shown antiviral activity against a spectrum of
viruses that encodes 3C or 3C-like protease, for instance,
rupintrivir exhibits antiviral activities against multiple
enteroviruses, including EV71 (strain 695F, EC50 � 0.014 μM),
coxsackievirus B2 (CVB2, EC50 � 0.022 μM), CVA16 (strain
860F, EC50 � 0.015 μM) (Hung et al., 2011). Two studies show
rupintrivir exhibits cross-genotypic inhibitory activity against
either human or mouse norovirus, a member in the family
Caliciviridae, with the EC50 of 0.32 and 13 μM, respectively
(Kim et al., 2012; Rocha-Pereira et al., 2014). A molecular
modeling study shows rupintrivir is capable to bind with
SARS-CoV main proteinase 3CLpro (Anand et al., 2003);
however, rupintrivir fails to show good activity at even
100 μM, although some rupintrivir derivatives show better
potency (IC50 � 11–39 μM) (Shie et al., 2005). Rupintrivir
exerts an antiviral effect on coronaviruses including CoV-229E
(EC50 � 0.3 μM), transmissible gastroenteritis virus (TGEV,
EC50 � 2.5 μM), bovine coronavirus (BCV, EC50 � 15.3 μM)
(Table 3). Rrupintrivir also showed inhibition for SARS-CoV-2
main protease with a 50% inhibitory concentration of 68 ± 7 µM
(Vatansever et al., 2021).

Rupintrivir has poor aqueous solubility and low oral
bioavailability in animals, the hydrolyzed metabolites are
reportedly 400-fold less active than rupintrivir but
predominates the biotransformation pathway. The above
features may limit its potential clinical application.

Host-Targeting Antiviral (HTA) Repurposing
HTA repurposing identifies antivirals targeting to host proteins,
functions, or pathways, which are required for virus life cycle
including viral entry, genome replication, protein translation, and
virus assembly and release. As the entire viral life cycle cannot be
completed without cells, HTAmay exhibit broad antiviral activity
against different viruses. Based on the essential steps of a viral life
cycle, four major categories of host-targeting repurposed
antivirals (HTRA) are classified as below.

HTRA Aiming Virus Entry Step
The first step of the viral life cycle is to enter permissive cells.
Some enveloped viruses like HIV, and Nipah virus enter cells via
direct membrane fusion with the plasma membrane, resulting in
the release of nucleocapsid directly to the cytosol (Bossart et al.,
2002; Wilen et al., 2012). Bacteriophages can inject their genomes
alone into bacterial cells. Except for the aforementioned two
mechanisms, most viruses depend on an endocytic pathway to be

internalized into cells. The involved pathways include clathrin-
mediated endocytosis, caveolar/lipid raft-mediated endocytosis,
or micropinocytosis, through which viruses are internalized into
the early endosome, intermediate endosome, and then late
endosome or lysosome in a stepwise manner. Finally, the
exposure of virions either naked or enveloped to low pH and
proteolytic enzymes will trigger changes in the naked virions, or
membrane fusion between the organelle and enveloped viruses, to
help deliver the viral genome or the intact nucleocapsid into
cytosol. Aftermath, most RNA viruses replicate in different
locations within the cytosol, whereas DNA viruses continue
the journey to the nucleus.

Chlorpromazine (CPZ) and Other Dopamine Antagonists
CPZ is a phenothiazine used to treat psychotic disorders
including schizophrenia or manic-depression in adults. CPZ
can treat in children severe behavioral problems like attention
deficit hyperactivity disorder. CPZ is also indicated to treat
anxiety before surgery, nausea and vomiting, and chronic
hiccups that do not improve following other treatments
(Lopez-Munoz et al., 2005). CPZ is on the list of WHO’s
essential medicines, among the most effective and safest
medicines. CPZ antagonizes dopamine receptors, which are
divided into two classes based on which G-protein they are
coupled: the D1-like class (including D1 and D5) and the D2-
like class, which comprises D2, D3, and D4 receptors. CPZ can
bind to and block two types of dopamine receptors, in particular
D2 dopamine receptors, exerting antipsychotic activity.

CPZ has proved to inhibit clathrin-mediate endocytosis by
preventing the assembly of the clathrin-coated pit on the cell
surface (Wang et al., 1993). Thus, CPZ and other dopamine
receptor antagonists show antiviral activity against a broad
spectrum of viruses that use clathrin-mediated endocytosis to
enter cells. These viruses include HIV(Bosch et al., 2008), rubella
virus (Kee et al., 2004), human adenovirus (HAdV) (Diaconu
et al., 2010), EV71 (Hussain et al., 2011), HAV (Rivera-Serrano
et al., 2019), HEV (Yin et al., 2016a), HCV (Blanchard et al.,
2006), DENV (Carro et al., 2018), ZIKA (Persaud et al., 2018; Li
et al., 2020a), CSFV (Shi et al., 2016), CCHFV (Simon et al., 2009;
Ferraris et al., 2015b), SFV (Pohjala et al., 2011), EBOV
(Bhattacharyya et al., 2010), MERS-CoV (de Wilde et al.,
2014), and SARS-CoV (Inoue et al., 2007).

HIV can either enter cells through direct viral membrane
fusion with the plasma membrane, or cell-to-cell transmission
and viral synapses between T cells. The latter type of HIV entry is
sensitive to CPZ treatment, suggesting the involvement of
clathrin-mediated endocytosis (Bosch et al., 2008). Viruses
within Flaviviridae family, such as HCV, DENV, ZIKA, and
CSFV also enter cells dependent on clathrin-mediated
endocytosis and are susceptible to CPZ treatment (Zhu et al.,
2012; Shi et al., 2016). Cell surface FcγR was reported to be
required for antibody-dependent enhancement of DENV or
ZIKV infection (Khandia et al., 2018). Interestingly, the viral
entry mediated by FcγRII needs the formation of clathrin-coated
vesicles whilst FcγRI-dependent viral entry is independent of
clathrin (Carro et al., 2018). On the contrary, naked and
enveloped viruses may comparably be sensitive to CPZ. HAV
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and HEV had been recognized as naked viruses until recently the
membrane-trapped viral particles were identified (Feng et al.,
2013; Yin et al., 2016a). The naked and enveloped HAV or HEV
are both sensitive to CPZ treatment (Yin et al., 2016a; Rivera-
Serrano et al., 2019), suggesting the clathrin-mediated
endocytosis is equally needed. Coronaviruses such as MERS-
CoV and SARS-CoV share the same clathrin-mediated
endocytosis for virus entry. In light of this, clinical studies
have initiated (phase II/III NCT04354805; phase III
NCT04366739) to evaluate the safety and effectiveness of CPZ
for COVID-19 treatment, although observative clinical studies
have suggested that CPZ at the prescribed dose may not be
clinically effective for COVID-19 (Hoertel et al., 2021).

Sunitinib, Erlotinib (Receptor Tyrosine Kinase Inhibitors)
Sunitinib and erlotinib are inhibitors to receptor tyrosine kinases
(RTK) that play important roles in both tumor angiogenesis and
tumor cell proliferation. Sunitinib has been approved for the
treatment of cancers, such as gastrointestinal stromal cell tumor,
renal cell carcinoma, and imatinib-resistant gastrointestinal
stromal tumor; while erlotinib is licensed to treat non-small
cell lung cancer, and pancreatic cancer (Hartmann and Kanz,
2008; Neveu et al., 2015). Erlotinib is on the list of WHO’s
essential medicines.

The major antiviral mechanism of sunitinib involves the
inhibition of adaptor protein 2 (AP2)-associated protein kinase
1 (AAK1), which phosphorylates membrane trafficking adaptor
proteins AP-1 and AP-2 to enhance the binding with clathrin-
associated cargos for bidirectional transport and endocytosis
from the plasma membrane, respectively (Ricotta et al., 2002).
The inhibition of AAK1 thereby inhibits virus entry, or assembly
and release. For instance, sunitinib reportedly inhibits DENV
entry and infectious virus release but not RNA replication
(Bekerman et al., 2017). In a multiple cycle infection system,
the EC50 against DENV1 is 0.6 μM, similar EC50s (0.3–1.2 μM)
of sunitinib against other members in the family Flaviviridae
(HCV, ZIKV, other DENV serotypes) were reported (Bekerman
et al., 2017) (Table 4). Sunitinib is also effective against infections
of other viruses including EBOV (EC50 � 0.47 μM), CHIKV
(EC50 � 4.67 μM), JUNV (EC50 � 4.8 μM), HIV (EC50 �
0.8 μM), and RSV (EC50 < 0.12 μM) (Bekerman et al., 2017).
Albeit sunitinib and erlotinib combinations showed no efficacy in
murine models of DENV and EBOV infection (Bekerman et al.,
2017).

EGFR is involved in multiple virus entry processes such as
DNA viruses HBV, HPV, and RNA viruses HCV, RSV, and
porcine reproductive and respiratory syndrome virus in cell
cultures (Lupberger et al., 2011; Wang et al., 2016a; Iwamoto
et al., 2019; Lingemann et al., 2019; Mikuličić et al., 2019).
Specifically, EGFR mediates HCV entry by regulating
CD81–claudin-1 associations and viral glycoprotein-dependent
membrane fusion (Lupberger et al., 2011). EGFR reportedly
associates with sodium taurocholate cotransporting
polypeptide (NTCP), the HBV receptor on the hepatocyte cell
surface, and inhibition of EGFR dramatically impairs HBV virion
internalization (Iwamoto et al., 2019; Gan et al., 2020). However,
a recent clinical study suggests that HBV reactivation may occur

in lung cancer patients receiving erlotinib treatment (Yao et al.,
2019). Therefore, the safety and efficacy of sunitinib/erlotinib
need to be cautiously investigated.

Chloroquine (CQ) (Lysosomotropic Agents)
CQ is a medication primarily used to treat or prevent a non-
resistant malaria infection, it is also occasionally used for
amebiasis treatment. Additionally, CQ has shown anti-
inflammatory properties for the clinical management of some
autoimmune diseases such as rheumatoid arthritis and lupus
erythematosus (Rainsford et al., 2015). CQ is on the list ofWHO’s
essential medicines. The anti-malarial mechanism of action
involves the lysosomotropic feature, which allows CQ to
accumulate in an acidic digestive vacuole inside red blood
cells, where CQ binds to hemes to form a toxic product
resulting in cell lysis and ultimately parasite cell autodigestion.
Also, because of the involvement of lysosomes in the autophagy
process, the inhibition by CQ of lysosomal enzymes leads to the
accumulation of the autophagy cargos that are supposed to break
down in lysosomes, leading to the impairment of autophagy
machinery.

Due to the lysosomotropic feature, CQ or other agents like
hydroxychloroquine (HCQ) and Bafilomycin A, accumulate in
lysosomes, acidic endosomes, or trans-Golgi network vesicles to
elevate the pH and subsequently inhibit the residential hydrolase
activity (Thome et al., 2013). Such an inhibition in lysosomal
function leads to the uptake impairment of a panel of viruses.
These include HCV (Ashfaq et al., 2011), DENV (Farias et al.,
2014; Farias et al., 2015), ZIKA (Li et al., 2017b; Shiryaev et al.,
2017), CCHFV (Ferraris et al., 2015a), CHIKV (Khan et al., 2010),
MERS-CoV (Dyall et al., 2014), SARS-CoV (Keyaerts et al., 2004;
Vincent et al., 2005), and SARS-CoV-2 (Wang et al., 2020b).

CQ exerts antiviral activity against DENV infection either
in vitro (Farias et al., 2014) and in vivo in an infected monkey
model (Farias et al., 2015). However, a double-blind and placebo-
controlled trial in 307 dengue patients found that CQ does not
reduce the duration of viremia and the viral NS1 antigenemia
(Tricou et al., 2010). Although CQ shows antiviral activity against
EBOV in vitro; however, CQ fails to protect against EBOV
infection and disease pathogenesis in the in vivo guinea pig
model (Dowall et al., 2015). CQ shows antiviral activity
against some strains of HIV in vitro (Tsai et al., 1990) with an
EC50 of 0.4–0.9 μM when treated in combination with
hydroxyurea plus didanosine in a lymphocytic cell line
(Boelaert et al., 1999). And HCQ exhibits anti-HIV activity in
vivo (Sperber et al., 1995). The mechanism may involve the
inhibition of cell-to-cell transmission of HIV, which requires
clathrin-mediated endocytosis (Bosch et al., 2008), or the
inhibition of p120 production at a post-transcriptional level,
possibly by impairing hydrolases or other enzymes in acidic
vesicles (Savarino et al., 2001).

CQ shows broad and good antiviral activity against
coronavirus infection in vitro. However, no efficacy is
observed to reduce SARS-CoV virus titers in a nonlethal
mouse model (Barnard et al., 2006a). Although CQ and HCQ
had drawn a lot of attention for the treatment of COVID-19, the
safety or severe side effects of CQ or HCQ at a high dose is
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TABLE 4 | (Continued) Approved and investigational host-targeting antivirals with repurposed potential against virus infection.

Agent name Primary indication/mechanism of action Repurposed antiviral activity Clinical trials Ref

Category Virus name EC50/

EC90 (μM)

CC50

(μM)

SI Mechanism of action

Imatinib Anti-tumor; imatinib inhibits tyrosine kinase

c-Abl to block tumor cell proliferation

Virus assembly/

release inhibitor

EBOV N.D./N.D. N.D. N.D. Imatinib decreases the budding or

release

of EBOV, VacV, and DENV; imatinib also

inhibits CVB entry

Phase II: NCT04357613, NCT04346147; phase III:

NCT04394416, NCT04422678; . . .

Garcia et al. (2012)

DENV N.D./N.D. N.D. N.D. Clark et al. (2016)

MERS-CoV 17.7/N.D. >50 >2.8 Dyall et al. (2014)

SARS-CoV 9.82/N.D. >50 >5 Dyall et al. (2014)

SARS-CoV-2 4.86/N.D. 37.3 7.7 Han et al. (2021)

VacV N.D./N.D. N.D. N.D. Reeves et al. (2011)

Interferon α/β Approved for antiviral (HCV, HBV) and multiple

sclerosis treatment; IFN induces the

production of

inteferon-stimulated genes through JAK-STAT

pathway

Inhibition of multiple

targets

HCV (IFN-α) *2.5/10 >10,000 >4000 IFN exerts the broad-specrum antiviral

activity by

inducing ISG production, which may

inhibit each

step of the viral life cycle

Okuse et al. (2005)

HBV(IFN-α2) #7754/N.D. N.D. N.D. Phase I NCT03294798; phase II NCT03575208; phase

IV NCT03357822, NCT04035837; . . .

Chen et al. (2020)

HIV N.D./N.D. N.D. N.D. Phase 1/2 NCT0247143 Iyer et al. (2017)

EBOV (IFN-β) *74/N.D. N.D. N.D. McCarthy et al. (2016)

EBOV (IFN-α) *748/Ν.D N.D. N.D. McCarthy et al. (2016)

DENV *182.1/N.D. N.D. N.D. Pires de Mello et al. (2018a)

ZIKV *407.8/N.D. N.D. N.D. Pires de Mello et al. (2018b)

SARS-CoV(IFN-α) *4950/N.D. >10,000 >2 Cinatl et al. (2003)

SARS-CoV(IFN-β) *95/N.D. >10,000 >105 Cinatl et al. (2003)

MERS-

CoV(IFN-α-2b)
*58.08/

320.11

N.D. N.D. Falzarano et al. (2013a)

SARS-CoV-2 (IFN-α
or β)

*1.35 or

0.76/N.D.

N.D. N.D. Phase III: NCT04492475, NCT04320238; phase IV:

NCT04350671, NCT04254874; . . .

Mantlo et al. (2020)

Nitazoxanide Anti-parasite; nitazoxanide interferences with

the

pyruvate:ferredoxin oxidoreductase (PFOR)

enzyme-dependent electron transfer reaction

to disrupt parasite enegery metabolism

IAV (H1N1/PR8) 3.25/N.D. >163 >50 Nitazoxanide inhibits morphogenesis of

IAV and

rotavirus; post-entry steps of SeV and

RSV; HBV

DNA replication; viral protease activity of

ZIKV

or coronavirus; induce innate immune

genes

Phase II NCT03905655 Rossignol et al. (2009)

SeV 1.63/N.D. >163 >100 Rossignol (2014)

RSV 0.98/N.D. >163 >166 Rossignol (2014)

HCV 0.68/3.03 123.7 181 Korba et al. (2008)

JEV 0.39/N.D. 60 154 Shi et al. (2014)

ZIKV 1.48/4.0 77 52 Li et al. (2017c)

HIV 1.63/N.D. >100 >50 Tan et al. (2012)

HBV 0.39/2.7 >325 >833 Korba et al. (2008)

Rotavirus 6.5/N.D. >163 >25 La Frazia et al. (2013)

CHIKV 2.96/N.D. 25 8.45 Wang et al. (2016c)

MHV 1/N.D. >10 >10 Cao et al. (2015)

SARS-CoV-2 2.12/N.D. 35.53 16.76 Phase III: NCT04382846, NCT04392427; phase IV:

NCT04498936, NCT04406246; . . .

Wang et al. (2020b)

Note: N.D. not determined. # pg/ml; * IU/ml for IFN unit.
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concerned (Borba et al., 2020; Cortegiani et al., 2020), and recent
clinical studies (including WHO Solidarity trial) indicate that CQ
or HCQ has little efficacy for COVID-19 (Boulware et al., 2020).

Camostat or Nafamostat Mesylate (TMPRSS2 Inhibitor)
Camostat and nafamostat are serine protease inhibitors that
inhibit the transmembrane protease, serine 2 (TMPRSS2).
Camostat is approved in Japan for the treatment of
postoperative reflux esophagitis and chronic pancreatitis, while
nafamostat is approved for pancreatitis, an anticoagulant in
patients with disseminative blood vessel coagulation,
hemorrhagic lesions, and hemorrhagic tendencies (Jia et al.,
2005; Maruyama et al., 2011).

Camostat and nafamostat exhibit effectiveness against a broad
spectrum of viruses from different families including IAV
(Hosoya et al., 1992; Hosoya et al., 1993; Lee et al., 1996),
myxoviruses (Hosoya et al., 1992), DENV (Rathore et al.,
2019), MERS-CoV (Shirato et al., 2013), SARS-CoV (Kawase
et al., 2012), and SARS-CoV-2 (Hoffmann et al., 2020b)
(Table 4). Particularly, camostat and nafamostat are effective
to inhibit type A or B IAV replication in vitro at a micromolar
level, while showing no efficacy against other respiratory viruses
tested including RSV and parainfluenza virus (Hosoya et al.,
1992). Additionally, camostat mesylate at an ED50 (the survival
rate of influenza virus-infected chick embryos by 50%) of 0.8 μg/g
can increase the survival rate of influenza virus-infected chick
embryos (Lee et al., 1996). The mechanism of camostat antiviral
activity involves the inhibition of hemagglutinin (HA) cleavage,
which is essential for the process of IAV infection and is achieved
intracellularly or extracellularly by host proteases like TMPRSS2
(Yamaya et al., 2015).

SARS-CoV and SARS-CoV-2 both use angiotensin-converting
enzyme 2 (ACE2) as a receptor, whereas MERS-CoV utilizes
DDP4 as the receptor for entry (Li et al., 2003; Raj et al., 2013; Lan
et al., 2020). These three coronaviruses all use two mechanisms to
enter cells. One involves the direct membrane fusion at the cell
surface after the virions binding to receptors, the membrane
fusion is triggered by TMPRSS2 serine protease to generate a
cleaved form of spike (S) protein for fusion step (Kawase et al.,
2012; Shirato et al., 2013; Yamamoto et al., 2016; Hoffmann et al.,
2020a). Alternatively, these viruses enter cells through the
endocytic pathway in the absence of TMPRSS2, involving the
cleavage and priming of S protein by cysteine protease cathepsin
B/L in acidic endosomes (Simmons et al., 2005; Qian et al., 2013;
Hoffmann et al., 2020a). Inhibition of both TMPRSS2 serine
protease and cathepsin B/L cysteine protease activities are
required for full blockade of the above coronavirus infection
(Kawase et al., 2012; Hoffmann et al., 2020a), while TMPRSS2
inhibition by camostat or nafamostat only results in partial
impairment in virus entry (Kawase et al., 2012; Shirato et al.,
2013). Strikingly, camostat at a dose of 30 mg/g shows antiviral
efficacy by improving the survival rate in a lethal SARS-CoV-
infected mouse model; however, a cysteine protease inhibitor
SMDC256160 at a higher dose of 50 mg/g is no effective (Zhou
et al., 2015). The result suggests that TMPRSS2 rather than
cathepsin B/L facilitates the spread of SARS-CoV in the
infected mice. It would be of interest to evaluate the treatment

efficacy of camostat or nafamostat for SARS-CoV-2 infection,
and multiple clinical studies have been available for camostat
(phase I/II NCT04321096; phase I/II NCT04435015; phase II
NCT04353284; phase II NCT04374019; phase II NCT04470544;
phase II/III NCT04455815; phase III NCT04355052; phase IV
NCT04338906) and nafamostat (phase II/III NCT04352400;
phase II/III NCT04418128; phase II/III NCT04473053).

HTRA Targeting Virus Replication Step
After the viral genome is uncoated from nucleocapsid, viral
genome replication and protein translation occur. Positive-
sense RNA viruses, for instance, coronaviruses and
flaviviruses, directly use the viral genome as a template for
viral protein translation using host machinery. Negative-sense
RNA viruses like filoviruses and myxoviruses, need to generate
positive-sense RNA by the virally encoded polymerase, and then
protein translation is initiated. Retrovirus and HBV replication
involve one additional step, copying RNA to DNA by using
virally encoded reverse transcriptase. DNA viruses need to use a
host RNA polymerase to generate RNA from the viral DNA
genome for protein translation. A number of viruses replicate in
specific compartments, so-called replication organelles, in the
cytoplasm, involving the aberrant lipid-rich membrane
rearrangement (de Wilde et al., 2018). Specifically, some
flaviviruses or alphaviruses replicate on an architecture
composed of single-membrane spherules (den Boon and
Ahlquist, 2010); while coronaviruses or picornaviruses form
double-membrane vesicles as replicase sites (de Wilde et al.,
2013; van der Schaar et al., 2016). To facilitate viral genome
amplification, a variety of host proteins or related pathways are
required to generate a favorable environment for virus
production. These host proteins or pathways that interact with
viral proteins are ideal host-targeting antivirals with a potential
comprehensive antiviral efficacy.

Statins (HMG-CoA Reductase Inhibitors)
Statins are reversible inhibitors of 3-hydroxy-3-methylglutaryl-
CoA (HMG-CoA) reductase, a rate-limiting enzyme involved in
cholesterol biosynthesis. The statins are clinically approved to
reduce cholesterol levels to prevent primary and secondary
cardiovascular diseases. There are various forms of statins,
which include lovastatin, atorvastatin, fluvastatin, pitavastatin,
pravastatin, rosuvastatin, and simvastatin. Simvastatin is on the
list of the WHO’s essential medicines. Statins have been reported
to inhibit a panel of disparate viruses including the viruses within
the family Flaviviridae (HCV, DENV, and ZIKV) (Ye et al., 2003;
Soto-Acosta et al., 2017; Españo et al., 2019), HIV (Amet et al.,
2008), HBV (Okuyama-Dobashi et al., 2015), MV (Robinzon
et al., 2009), EBOV (Shrivastava-Ranjan et al., 2018), RSV (Gower
and Graham, 2001), EBV (Katano et al., 2004; Cohen, 2005), PRV
(Desplanques et al., 2010), SFTSV (Urata et al., 2018), and
parainfluenza (Bajimaya et al., 2017), because cholesterol
biosynthesis is required for the replication of these viruses.

Statins efficiently inhibit flaviviral replication either in cell
cultures or in animal models. Lovastatin impairs HCV RNA
replication by blocking geranylgeranylation of a host protein
required for HCV replication. Statins inhibit infectious ZIKV
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production as well as virus spread, possibly through the inhibition
at either the early stage and the post-entry steps (Españo et al.,
2019). Lovastatin impairs DENV replicase complex formation or
virus assembly (Martinez-Gutierrez et al., 2011; Soto-Acosta
et al., 2017). In addition, lovastatin, either prophylactically or
even 48 hr post-infection significantly prolongs the survival rate
of DENV-infected mice (Martinez-Gutierrez et al., 2014).
Lovastatin is able to inhibit HIV reverse transcriptase activity
(Mazière et al., 1994), HIV attachment (Giguère and Tremblay,
2004), or HIV virion release (Amet et al., 2008). However, drug-
drug interactions are reported to exist for statins and viral
protease inhibitors like HCV NS3/4A antagonists or HIV
protease inhibitors (Busti et al., 2004; Chauvin et al., 2013).
Thus, the efficacy of statins against Flavivirus or HIV infection
in the real world needs to be further assessed.

Negative strand RNA viruses are susceptible to statins.
Lovastatin shows antiviral potency in RSV-infected mice
prophylactically and prevents the illness-associated weight loss
(Gower and Graham, 2001), which is consistent with the
observation that RSV induces HMG-CoA reductase activity
and lovastatin is able to inhibit RSV replication in vitro (Ravi
et al., 2013b). Lovastatin impairs coxackie virus B3 infection
through downregulating coxsackie and adenovirus receptor
expression (Werner et al., 2014). Lovastatin inhibits hPIV
assembly and release but no other steps (Bajimaya et al.,
2017). Statins are capable of impairing EBOV glycoprotein
processing and infectious EBOV production and the
glycoprotein-induced attachment (Hacke et al., 2015;
Shrivastava-Ranjan et al., 2018). Retrospective clinical studies
found that statins may help improve the outcome in hospitalized
flu patients (Rothberg et al., 2012), although no effect was
observed in IAV-infected rodent models (Kumaki et al., 2012;
Belser et al., 2013; Glück et al., 2013).

Statins may benefit COVID-19 patients according to a
retrospective study in 13,981 COVID-19 patients (Zhang et al.,
2020). Currently, at least eight clinical trials are being on the way
to continue the investigation into the efficacy of statins for
COVID-19 (NCT04333407; phase II NCT04348695; phase II
NCT04380402; phase II/III NCT04466241; phase III
NCT04486508; phase III NCT04472611; phase III
NCT04343001; phase IV NCT02735707).

Digoxin (Ion Pump Modulator)
Digoxin is a cardiac glycoside or cardiotonic steroid, on the
WHO’s list of essential medicines. Digoxin has been used to
treat certain heart dysfunctions including atrial fibrillation, and
other heart failures (Gheorghiade et al., 2006). Digoxin has been
shown to block the Na+/K+-ATPase with an inhibitory potency
around 100–200 nM (Noel et al., 2018), resulting in elevated
intracellular Na+ level, and subsequent Ca2+ level via the sodium-
calcium exchanger. Digoxin and its analogs are reported to inhibit
a global type of viruses, including dsDNA virus adenovirus
(Grosso et al., 2017) and HSV (Dodson et al., 2007), retrovirus
HIV (Wong et al., 2018), HBV (Okuyama-Dobashi et al., 2015),
positive-sense alphavirus CHIKV, SINV, and RRV (Ashbrook
et al., 2016), negative-sense enveloped RNA virus VSV, dsRNA
naked virus reovirus (Ashbrook et al., 2016), RSV (Norris et al.,

2018), arenaviruses including LCMV, LASV, and JUNV (Iwasaki
et al., 2018), filovirus EBOV (Du et al., 2020), and coronaviruses
(Burkard et al., 2015) (Table 4).

Cardiac glycoside efficiently inhibits DNA virus replication.
Digoxin or ouabain exhibits herpes virus, such as HSV and
HCMV, at the immediate-early or early gene expression stage,
the antiviral activity replies on the inhibition in Na+/K+-ATPase
activity (Dodson et al., 2007; Su et al., 2008; Kapoor et al., 2012),
Besides, digoxin also reportedly inhibits HSV release step (Su
et al., 2008). Digoxin also inhibits HAdV DNA synthesis (Grosso
et al., 2017).

Other cardiac glycosides but not digoxin are able to inhibit
HBV infection in vitro, possibly through blocking HBV preS1
protein binding to its receptor NTCP (Okuyama-Dobashi et al.,
2015). Digoxin inhibits HIV protein expression in peripheral
blood mononuclear cells, by a mechanism involving the impaired
activity of the CLK family of SR protein kinases (Wong et al.,
2013), or the modulation of MEK1/2-ERK1/2 signaling (Wong
et al., 2018). In addition, digoxin may also negatively affect HIV
integration in T cells (Zhyvoloup et al., 2017). As digoxin exhibits
anti-HIV activity with an excellent EC50 (1.1–1.3 nM) at which it
is far below the concentration in clinical use, cardiac glycosides
merit further investigation to validate the efficacy for HIV
treatment.

Digoxin and ouabain at nanomolar inhibit JEV infection in
multiple cell culture systems, and ouabain protects against the
JEV infection-induced lethality in mice (Guo et al., 2020). The
inhibitory mechanism of digoxin or ouabain against (+) ssRNA
virus infection may involve impaired RNA replication or virus
entry (Ashbrook et al., 2016; Guo et al., 2020).

Na+/K+-ATPase is implicated in the entry process of
coronaviruses including MHV and FIPV, cardiac glycosides
like ouabain or bufalin inhibit MHV, FIPV, and MERS-CoV
infections, by inhibiting virus entry and membrane fusion steps
(Burkard et al., 2015). By contrast, cardiac glycosides inhibit
SARS-CoV-2 at the post-entry step rather than S protein-
mediated virus fusion or syncytia formation (Cho et al., 2020;
Musarrat et al., 2020). Despite the excellent antiviral activity of
cardiac glycosides against SARS-CoV-2 in vitro, no clinical trials
have been initiated. One of the possible concerns is the
association between digoxin use and increased all-cause
mortality.

Mycophenolic Acid (MPA) (IMPDH Inhibitor)
MPA, also called mycophenolate, is an immunosuppressant
approved to prevent transplant organ rejection and to treat
Crohn’s disease (van Gelder and Hesselink, 2015). MPA is a
reversible, non-competitive inhibitor of IMPDH, which is the
rate-limiting enzyme for the de novo synthesis of guanosine
nucleotides that are substrates for DNA or RNA synthesis.
MPA is more potent to inhibit type II than type I IMPDH
enzyme, the former type expresses in activated lymphocytes,
while the latter one in other most cells (Allison and Eugui,
2000). DNA or RNA virus replication replies on host
guanosine pool, thus, MPA shows a broad spectrum antiviral
activity against a variety of viruses, including HIV (Chapuis et al.,
2000), HEV (Wang et al., 2014), HBV (Gong et al., 1999), BK
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polyoma virus (Acott et al., 2009), HCV and flaviviruses (DENV,
WNV, JEV, and ZIKA) (Diamond et al., 2002; Morrey et al., 2002;
Henry et al., 2006; Sebastian et al., 2011; Ye et al., 2012; Barrows
et al., 2016; Adcock et al., 2017), orthobunyaviruses (Guama and
Tacaiuma viruses) (Livonesi et al., 2007), orthopoxviruses like
Vaccinia virus (VacV) and cowpox (Smee et al., 2001), rotavirus
(Chan et al., 2013), SINV (Scheidel and Stollar, 1991), IAV (To
et al., 2016; Cho et al., 2017; Hui et al., 2018), and MERS-
CoV(Chan et al., 2013) (Table 4).

MPA displays anti-HIV activity both in vitro and in HIV
patients (Margolis et al., 1999; Chapuis et al., 2000), and a phase II
clinical study (NCT03262441) is currently under investigation.
Additionally, MPA potentiates the antiviral effect of reverse
transcriptase inhibitors such as abacavir (Margolis et al.,
1999). The antiviral mechanisms involve the depleted
guanosine pool, as well as the induction of T cell apoptosis
(Chapuis et al., 2000).

MPA is also effective for HBV, at 31.2 μΜ (10 μg/ml, the
therapeutic concentration in serum for immunosuppressive
effect) in primary hepatocytes drastically reduces the secretion
of HBV DNA and HBsAg, as well as the intracellular cccDNA
level (Gong et al., 1999). Moreover, MPA and RBV, another
IMPDH inhibitor, enhance the anti-HBV activity of nucleoside
analogs including entecavir (Ying et al., 2000; Ying et al., 2007).

Although MPA shows anti-HCV potency in vitro or a mouse
model (Henry et al., 2006; Pan et al., 2012; Ye et al., 2012), it fails
to show antiviral efficacy in a double-blinded and placebo-
controlled clinical study (Firpi et al., 2003). MPA presents
anti-JEV activity in vitro with an EC50 of 9.68 μM (3.1 μg/ml)
and up to 75% protection against the lethal challenge of JEV in
vivo (Sebastian et al., 2011). MPA effectively dampens DENV
replication with an EC50 of 0.3 μM in vitro (Diamond et al., 2002;
Manchala et al., 2019), and similarly inhibits ZIKV with the EC50
between 0.1 and 1 μM (Barrows et al., 2016), although high
cytotoxicity was also observed (Adcock et al., 2017).

MPA inhibits human and avian-originated IAV in vitro,
including IAV-A (H1N1) (pdm09/H1/415, EC50 � 1.51 μM), A
(H3N2), A (H5N1) (Vietnam/1194/2004, EC50 � 0.94 μM), A
(H7N9) and IAV-B (To et al., 2016; Cho et al., 2017). MPA also
shows efficacy in an H5N1-infected mouse model (Cho et al.,
2017).

After a repurposed drug screening, MPA exhibited good anti-
MERS-CoV activity with an EC50 (0.53 μM), EC90 (8.15 μM),
and high SI value (>195.12) (Chan et al., 2013). MPA in
combination with IFN-β further lowers the EC50 by 1–3 times
(Chan et al., 2013). Contrarily, IMPDH inhibitors includingMPA
slightly enhance SARS-CoV replication in the lungs (Barnard
et al., 2006b). MPA enables to inhibit SARS-CoV-2 infection in
different cell cultures (Kato et al., 2020; Han et al., 2021),
however, no clinical evidence is available to show the efficacy
of MPA in COVID-19 patients.

Cyclosporine A (CsA) (Cyclophilin Inhibitor)
CsA is an immunosuppressant firstly isolated from fungus and
has been approved to treat and prevent graft-versus-host disease
in bone marrow transplantation, to prevent rejection of kidney,
heart, and liver, or to treat autoimmune diseases like rheumatoid

arthritis and psoriasis transplants (Griffiths and Voorhees, 1990;
Faulds et al., 1993). CsA was recently approved as eye drops to
treat dry eye disease (Mandal et al., 2019). CsA is on the WHO’s
list of essential medicines. The immunomodulatory mechanism
of CsA involves its binding to peptidylprolyl isomerase
cyclophilin A (CyPA). The CsA-CyPA complex is able to
inhibit the calcineurin phosphatase activity, the nuclear
translocation of the nuclear factor of activated T cells (NF-
AT), eventually block the transcription of cytokines and T cell
activation (Matsuda and Koyasu, 2000). CsA and its analog like
alisporivir (ALV) have shown a broad-spectrum antiviral
capacity against viruses, including Flaviviridae members HCV
and ZIKV (Watashi et al., 2003; Henry et al., 2006; Koizumi et al.,
2017; Dong et al., 2019), hepatotropic viruses HBV and HEV
(Wang et al., 2014; Watashi et al., 2014), HIV (Keckesova et al.,
2006; Saini and Potash, 2006; Nicolás et al., 2017), coronavirus
SARS-CoV, SARS-CoV-2, CoV-NL63, andMERS-CoV(deWilde
et al., 2011; Pfefferle et al., 2011; Tanaka et al., 2013; Carbajo-
Lozoya et al., 2014; Guisado-Vasco et al., 2020), rotavirus (Shen
et al., 2015; Yin et al., 2016b), norovirus (Dang et al., 2017), DNA
virus CMV (Abdullah et al., 2018), and IAV (Hamamoto et al.,
2013; Ma et al., 2016).

CsA inhibits HCV RNA replication and the antiviral capacity
seems independent of its immunosuppressive effect (Watashi
et al., 2003; Henry et al., 2006), as ALV, a non-
immunosuppressive CsA analog, maintains the anti-HCV
capacity (Crouchet et al., 2018). ALV in follow-up clinical
trials (phase I to III) shows a higher sustained virological
response rate than IFN and ribavirin do (Stanciu et al., 2019).
However, serious side effects were more frequent in ALV-treated
patients, the clinical studies were then halted. CyPA interacts with
flavivirus proteins and is required for viral replication (Chatterji
et al., 2009; Chatterji et al., 2010), and CsA is capable of inhibiting
the infections of DENV, WNV, and YFV(Qing et al., 2009).
Interestingly, CsA shows strong adulticidal activity against
mosquitos, although no direct anti-ZIKV activity was found in
a mosquito cell culture system (Dong et al., 2019).

CsA displays anti-HBV activity in vitro, and the inhibition is
independent of CyPA or calcineurin (Watashi et al., 2014; Phillips
et al., 2015). The inhibitory mechanism involves the block of the
interactions of NTCP, the HBV entry receptor, with HBV large
envelope protein (Watashi et al., 2014). CsA derivatives that
maintain the anti-HBV activities but lose the impact on NTCP
transporter activity have been successfully developed (Shimura
et al., 2017). CyPA interacts with IAV matrix (M) protein (Liu
et al., 2009), but CsA inhibits IAV or IBV infection at the steps of
viral replication, IAV protein translation, or virus assembly/
release, in a CyPA-independent manner (Liu et al., 2012;
Hamamoto et al., 2013; Ma et al., 2016). Further preclinical
and clinical studies for either virus infection are warranted later.

CyPA specifically binds to the nucleocapsid and Nsp1 proteins
of SARS-CoV and is detectable in the SARS-CoV particles (Chen
et al., 2005; Pfefferle et al., 2011). CsA inhibits diverse
coronaviruses including SARS-CoV, MERS-CoV, HCoV-229E,
HCoV-NL63, and MHV (de Wilde et al., 2011; Pfefferle et al.,
2011; de Wilde et al., 2013). 16 μM CsA drastically inhibits
infectious SARS-CoV production by >3log, although CsA less
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than 4 μM seems to have pro-viral activity (de Wilde et al., 2011).
CsA inhibits SARS-CoV RNA replication or post-entry steps
(Pfefferle et al., 2011; Softic et al., 2020), and the early step is also
possibly affected (de Wilde et al., 2011). Despite the encouraging
results in cell culture systems, treatment with RBV and ALV does
not protect from SARS-CoV infection in a mouse model (de
Wilde et al., 2017). 9 μM CsA treatment completely blocks the
MERS-CoV-induced cytopathology in Vero cells, and CsA in
combination with IFN-α display more effective anti-MERS-CoV
activity (de Wilde et al., 2013; Li et al., 2018). ALV displays
antiviral activity against SARS-CoV-2 with an EC50 of 0.46 μM
in vitro (Softic et al., 2020), and CsA in a cohort study showed a 4-
fold decrease in observed mortality in hospitalized COVID-19
patients (Guisado-Vasco et al., 2020). Currently, at least four
clinical trials have been in the process to evaluate the efficacy of
CsA or ALV to treat COVID-19 (NCT04451239; phase I
NCT04412785; phase II NCT04492891; phase IV
NCT04392531). More results will be available soon.

HTRA Targeting Virus Assembly/Release Step
After a sufficient viral structure protein pool is available, viral
assembly, a dynamic process driven by programmed sequential
reactions is initiated, which involves interactions between the
viral genomes and viral capsid proteins, and virus-host protein
associations. The newly assembled nonenveloped virions disrupt
the cytoskeleton to facilitate dispersal of viral progenies, whilst
enveloped viruses gain their envelope from an intracellular
organelle or plasma membrane to exit the cells by a budding
or exocytosis process, albeit the dividing line between
nonenveloped and enveloped viruses has become blurred given
that non-lytic spread mechanisms have been identified for HAV,
HEV, and some enteroviruses (Feng et al., 2013; Bird et al., 2014;
Chen et al., 2015; Yin et al., 2016a). The host endosomal sorting
complexes required for transport (ESCRT) and autophagy
machinery have emerged roles to mediate the virus release
despite the envelopment.

Imatinib (STI-571) (c-Abl Inhibitors)
Imatinib is a 2-phenyl amino pyrimidine derivative that
functions as a specific inhibitor of many tyrosine kinases,
including c-Abl, c-Kit, and platelet-derived growth factor
receptor. It replaces ATP in the enzymatically active site,
leading to the decreased activity of these tyrosine kinases.
Imatinib is a medication used to treat cancer including chronic
myelogenous leukemia, acute lymphocytic leukemia, and
gastrointestinal stromal tumors. Imatinib is on the list of
WHO’s essential medicines. c-Abl is also implicated in the
lifecycle of different viruses, and imatinib has been reported to
inhibit infection of EBOV, DENV, MERS-CoV, SARS-CoV,
coxsackievirus, and VacV (Table 4).

c-Abl1 inhibitor imatinib or nilotinib drastically decreases the
budding or release of EBOV, as the inhibition of phosphorylation
of the viral matrix protein VP40 (Garcia et al., 2012). Similarly,
imatinib significantly dampens the extracellular enveloped VacV
virion release without affecting cell-associated enveloped virions,
and imatinib shows prophylactical or therapeutic antiviral effect
in VacV-infected mice (Reeves et al., 2011). In addition, imatinib

significantly inhibits DENV replication at the post-entry steps,
reducing the production of infectious DENV (Clark et al., 2016).

Interestingly, imatinib appears to inhibit the entry step of
group B coxsackieviruses (CVBs), blocking the aggregation of
virions to the tight junction, where the virions subsequently
initiate the internalization step to finally surmount the
epithelial barrier (Coyne and Bergelson, 2006).

Imatinib or other c-Abl inhibitors nilotinib and dasatinib are
able to inhibit MERS-CoV or SARS-CoV infection (Dyall et al.,
2014). Specifically, imatinib and dasatinib show effectiveness
against both viruses, while nilotinib is only effective for SARS-
CoV (Dyall et al., 2014). Recently, imatinib was reported to
inhibit SARS-CoV-2 in stem cell-differentiated lung organoids
(EC50 � 4.86 μM) (Han et al., 2021). The detailed mechanism for
this inhibition warrants further investigation. Currently, at least
five clinical trials including three phase III studies
(NCT04394416; NCT04422678; NCT04356495) have been
carried out to investigate the treatment efficacy of imatinib for
COVID-19.

Other Agents
Other agents that are also capable of inhibiting virus assembly/
release include statins, which, as mentioned previously, inhibits
virion assembly of DENV or parainfluenza, and impairs
infectious HIV or EBOV release (Amet et al., 2008; Martinez-
Gutierrez et al., 2011; Bajimaya et al., 2017; Shrivastava-Ranjan
et al., 2018). Another example is nitazoxanide, exhibiting multiple
targeting features, can inhibit assembly/release of IAV, rotavirus,
and possibly paramyxoviruses (Rossignol et al., 2009; La Frazia
et al., 2013; Piacentini et al., 2018).

Repurposed Agents With Multiple Targets
Some repurposed agents have more than three potential targets,
either viral or host proteins. The most documented example is
IFN-α/β, which is a crucial member of innate immunity, the first
line to defend pathogens including viruses. Another instance is
nitazoxanide, which has shown a very broad antiviral efficiency,
representing divergent antiviral mechanisms for different viruses.

Interferon
Almost all viruses can induce interferon response that is mediated
by different sensors including cGAS for DNA viruses; RIG-I,
MDA5 for RNA viruses (Tan et al., 2018). These pattern
recognition receptors recognize the invaders containing
pathogen-associated molecular patterns to induce IFN, which
in turn secretes out of cells and binds to receptors to induce the
activation of JAK-STAT pathway. As a result, a broad spectrum of
interferon-stimulated genes (ISG) is induced and exert antiviral
effects through different mechanisms (Liu et al., 2013; Bailey
et al., 2014; Li et al., 2017a). Clearly, the ISG network is diverse
and complicated, each ISG functions in concert with others, in a
combinatorial or even redundant way to combat virus infection.
There are three classes of IFNs, type I, type II, and type III,
distinguished by their different receptors. The type I IFNs include
IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω; type II IFN comprises
IFN-γ; and type III IFNs refer to IFN-λ1 (IL-29), IFN-λ2 (IL-
28A), IFN-λ3 (IL-28B), and IFN-λ4 (Stanifer et al., 2019). IFN-α
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has been used for clinical purposes against HCV and HBV for a
long time, and IFN-β is approved to treat multiple sclerosis (Rice
et al., 2001; Heim, 2013; Ezzikouri et al., 2020).

IFNs have been explored clinically to treat different virus
infections including EBOV (Rhein et al., 2015; Konde et al.,
2017; Fanunza et al., 2018; Lee et al., 2019), DENV (Pires deMello
et al., 2018a), ZIKA (Ngono and Shresta, 2018; Caine et al., 2019),
MERS-CoV, SARS-CoV, and SARS-CoV-2 (Cinatl et al., 2003;
Tan et al., 2004; Kindler et al., 2016; Haji Abdolvahab et al., 2021).
A clinical study suggests that IFN-β-1a facilitates EBOV viral
clearance and enhances survival rate (Konde et al., 2017),
consistent with cell culture data that EBOV is sensitive to
IFN-α or β (McCarthy et al., 2016). AG129 mice that are
deficient in interferon a/β/γ signaling are more susceptible to
all four serotypes of DENV (Sarathy et al., 2015; Milligan et al.,
2017), suggesting the importance of IFN for DENV control.
Similarly, IFN-α/β receptor (IFNAR)-deficient mice are highly
susceptible to ZIKV infection (Lazear et al., 2016), and IFN-α
considerately inhibits ZIKV infection in vitro alone or in
combination with favipiravir (Pires de Mello et al., 2018b).
Moreover, IFN-λ protects the female reproductive tract against
ZIKV infection in mice (Caine et al., 2019).

IFNs enable to inhibit SARS-CoV or MERS-CoV in cell
cultures (Cinatl et al., 2003; Falzarano et al., 2013a), and show
potency in macaques infected with SARS-CoV or MERS-CoV
(Haagmans et al., 2004; Falzarano et al., 2013b). A retrospective
cohort study in MERS-CoV patients shows that IFN-α-2a plus
RBV results in a significant survival rate at 14 days than control
supportive care (Omrani et al., 2014). However, the same
treatment regimen did not benefit MERS patients in another
clinical study (Al-Tawfiq et al., 2014). A preliminary,
uncontrolled study shows that IFN plus corticosteroids are
associated with better disease outcomes in SARS patients
compared to corticosteroid treatment alone (Loutfy et al.,
2003). Interestingly, a dual role of IFN for SARS pathology in
mice was recently reported, while delayed IFN response correlates
with severe lung immunopathology and reduced survival rate,
early IFN administration ameliorates immunopathology
(Channappanavar et al., 2016). IFN-α or IFN-β efficiently
inhibits SARS-CoV-2 infection in vitro (EC50 1.35 and
0.76 IU/ml, respectively) (Mantlo et al., 2020). However, the
Solidarity clinical trials launched by WHO concluded that IFN
does not affect overall mortality in hospitalized COVID-19
patients. In spite of that, multiple clinical studies are still in
progress to evaluate the efficacy of IFNA for COVID-19 including
four phase III (NCT04492475; NCT04320238; NCT04324463;
NCT04315948) and five phase IV (NCT04350671;
NCT04254874; NCT04350684; NCT04291729; NCT02735707)
trials.

Nitazoxanide
Nitazoxanide is licensed in the United States to treat parasite
infection-induced diarrhea (Ortiz et al., 2001) due to the
interference with the pyruvate: ferredoxin oxidoreductase
(PFOR) enzyme-dependent electron transfer reaction which is
essential to anaerobic energy metabolism. Nitazoxanide reduces
IAV-induced duration of clinical symptoms and viral shedding in

a double-blind, randomized, and placebo-controlled phase IIb/III
clinical trial (Haffizulla et al., 2014). A phase III clinical trial
(NCT01610245) is then initiated. The mechanism of action of
nitazoxanide against IAV infection involves the inhibition in the
maturation of viral hemagglutinin (HA) at the post-translational
stage, thus impairing HA intracellular trafficking and insertion
into the host plasma membrane (Rossignol et al., 2009). Besides,
nitazoxanide is found to clinically effective to treat infections of
adenovirus (Esquer Garrigos et al., 2018), rotavirus (Rossignol
and El-Gohary, 2006; Teran et al., 2009), HBV (Rossignol and
Keeffe, 2008), and HCV (Rossignol et al., 2008; Elazar et al., 2009;
Rossignol et al., 2010). In addition, nitazoxanide enables to
inhibition of other viral infections in vitro including HIV (Tan
et al., 2012), JEV (Shi et al., 2014), ZIKV (Cao et al., 2017; Li et al.,
2017c), feline calicivirus (Fumian et al., 2018), rubella virus
(Perelygina et al., 2017), CHIKV(Wang et al., 2016c),
paramyxovirus SeV and RSV(Piacentini et al., 2018),
coronavirus MHV, MERS-CoV, and SARS-CoV-2 (Cao et al.,
2015; Rossignol, 2016; Wang et al., 2020b).

Different antiviral mechanisms are involved for nitazoxanide in
the context of different virus infections. Nitazoxanide prohibits
SeV or RSV fusion step after entry into cells (Piacentini et al., 2018),
HBV DNA replication and viral protein synthesis (Korba et al.,
2008), viral RNA replication or protein processing of HCV, ZIKV,
or MHV (Rossignol and Keeffe, 2008; Cao et al., 2015; Li et al.,
2017c), viral morphogenesis of IAV or rotavirus (Rossignol et al.,
2009; La Frazia et al., 2013). Nitazoxanide also triggers innate
immune genes, like IRF1, RIG-I, or PKR, to combat norovirus or
EBOV replication (Dang et al., 2018; Jasenosky et al., 2019).

HBV or HCV is susceptible to nitazoxanide treatment. An
open-label small-scale clinical trial shows the preliminary efficacy
of nitazoxanide in treating chronic hepatitis B (Rossignol and
Keeffe, 2008). A further phase II clinical study (NCT03905655) is
currently instigated. Clinical trials in hepatitis C patients show the
improved SVR rate when treated alone or in combination with
IFN and/or RBV (Rossignol et al., 2008; Elazar et al., 2009;
Rossignol et al., 2010).

Nitazoxanide has potent antiviral activity against coronavirus.
Nitazoxanide emerges as one of the most potent antivirals against
MHV after drug repurposing screening (Cao et al., 2015), similar
activity is observed for MERS-CoV (Rossignol, 2016) or SARS-
CoV-2 (Wang et al., 2020b). A preliminary clinical study suggests
the potential efficacy of nitazoxanide for COVID-19 treatment
(Rocco et al., 2021). Currently, at least 18 clinical trials have been
launched to test the antiviral efficacy in COVID-19 patients
including five phase III (NCT04382846; NCT04392427;
NCT04343248; NCT04359680; NCT04486313) and three
phase IV (NCT04498936; NCT04406246; NCT04341493)
clinical studies (Table 4).

CHALLENGES AND PERSPECTIVE

Currently, most of the approved antivirals are used to treat
infections of HIV, HCV, HBV, and IAV, very few novel
antivirals for recently emerging viruses including SARS-CoV-2,
MERS-CoV, EBOV, ZIKV, and DENV. Drug repurposing has
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played a crucial role in pushing the approved or investigational
therapeutics through clinical trials, because of higher success rate,
less investment, and faster approval.

Drug repurposing is not risk-free, the success rate is reported
around 30%. There are still a lot of hurdles before the repurposed
drug is approved. Even though repurposed drugs could be
exempted from phase I clinical trial, which mainly focuses on
the drug safety evaluation, drug safety still represents one of the
biggest concerns for repurposing. For instance, the safety of the
drug that has been evaluated in a group of participants for the
original indication does not necessarily guarantee safety in
another group of people. In this scenario, drug safety may
need to re-evaluate. Moreover, the dosing regimen of the
repurposed drug validated previously may be different in new
indications. A major obstacle to successful repurposing attributes
to the higher effective concentrations in the new indication than
those in the original indications. It suggests that greater harm and
less benefit may be instigated. To overcome the obstacle, cocktail-
based combinatorial regimens that contains at least two
repurposed drugs targeting different steps of the viral lifecycle
would be beneficial. In addition, drug-drug interactions may be
another challenge when a repurposed drug has to use in
combination with other drugs and no drug-drug interaction
data is available. Thus, drug safety issue needs to be carefully
appraised and addressed if necessary.

Apart from the safety issue, the intellectual property barrier is
another important issue that needs to address. Commonly, drug
repurposing focuses on drugs for which the patents on the
original indication have been expired. For the off-patent
generic drugs, a new method-of-use patent can be obtained for
the new indication. However, enforceability or market exclusivity
can be a major issue, as other company-manufactured generic
drugs may be prescribed as off-label use for the new indication,
which would be hardly prohibited. That may reduce the profit
and financial incentive for drug repurposing. The off-label use
can be limited if a new formulation or dosing regimen is required
for the novel indication so that it cannot be easily fulfilled with the

available generic versions of the drug. On the other hand, with the
appropriate licensing, repurposing of drugs that are still covered
by existing patent property is also achievable, even though many
repurposed uses of patent drugs have been reported in the
literature, which may limit the ability to gain the new patent
protection. The reliable and novel evidence to support the new
indication of the repurposed drug is a necessity to obtain the
granted patents. Other challenges include self-medication,
misuse, drug shortage, and price hike of the drugs with
potential repurposed indications (Mallhi et al., 2020a; Mallhi
et al., 2020b). The misuse of repurposed drugs would be
devastating and should be discouraged particularly during a
pandemic. The availability and affordability of these
repurposed agents should also be vigilantly monitored.

With more approaches to address the safety, efficacy, and
patent issues by deploying recombination therapies and
reinforcing collaboration and negotiation, drug repurposing
for a novel, efficient, and broad-spectrum antiviral
development would strengthen the efforts to combat the
emerging and re-emerging viruses.
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GLOSSARY

BOC bovine coronavirus

CCHFV Crimean-Congo hemorrhagic fever virus

CHIKV chikungunya virus

CVA16 Coxsackievirus A16

CVB1 Coxsackievirus B1

DENV dengue virus

EBOV Ebola virus

EBV Epstein-Barr virus

EV71 enterovirus 71

FIPV feline infectious peritonitis virus

HBV hepatitis B virus

HCoV-229E human coronavirus 229E

HCV hepatitis C virus

HEV hepatitis E virus

HIV human immunodeficiency virus

hPIV human parainfluenza virus

HRV human rhinovirus

HSV herpes simplex virus

HuNoV human Norovirus

IAV influenza A virus

JEV Japanese encephalitis virus

JUNV Junin virus

KFDV Kyasanur Forest disease virus

LASV Lassa virus

LCMV lymphocytic choriomeningitis virus

MARV Marburg virus

MERS-CoV Middle East respiratory syndrome

MHV murine hepatitis virus

MuV Mumps virus

MV Measles virus

OHFV Omsk Hemorrhagic Fever virus

PRV pseudorabies virus

RRV Ross River virus

RSV respiratory syncytial virus

RVFV Rift Valley fever virus

SARS-CoV severe acute respiratory syndrome
coronavirus

SARS-CoV-2 severe acute respiratory syndrome coronavirus-2

SFTSV Severe fever with thrombocytopenia syndrome virus

SFV Semliki Forest virus

SINV sindbis virus

SUDV Sudan virus

TBEV Tick-borne encephalitis (TBEV)

TGEV transmissible gastroenteritis virus

VZV varicella zoster virus

WNV West Nile virus

YFV yellow fever virus

ZIKV Zika virus
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Curcumin as a Potential Treatment for
COVID-19
Bruna A. C. Rattis1,2, Simone G. Ramos1 and Mara R. N. Celes1,2*

1Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil, 2Department of
Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil

Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread
throughout the world leading to high mortality rates. Despite the knowledge of
previous diseases caused by viruses of the same family, such as MERS and SARS-
CoV, management and treatment of patients with COVID-19 is a challenge. One of the best
strategies around the world to help combat the COVID-19 has been directed to drug
repositioning; however, these drugs are not specific to this new virus. Additionally, the
pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2
modulates the different systems in the host remains unidentified, despite recent
discoveries. This complex and multifactorial response requires a comprehensive
therapeutic approach, enabling the integration and refinement of therapeutic responses
of a given single compound that has several action potentials. In this context, natural
compounds, such as Curcumin, have shown beneficial effects on the progression of
inflammatory diseases due to its numerous action mechanisms: antiviral, anti-
inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other
effects of curcumin make it a promising target in the adjuvant treatment of COVID-19.
Hence, the purpose of this review is to specifically point out how curcumin could interfere at
different times/points during the infection caused by SARS-CoV-2, providing a substantial
contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.

Keywords: curcumin, COVID-19, SARS-CoV-2, new therapies, ACE2

INTRODUCTION

Coronavirus disease 19 (COVID-19/2019-nCoV) is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The clinical manifestation of COVID-19 range from asymptomatic
upper respiratory tract infection to critical illness and pneumonia associated with acute respiratory
distress syndrome (ARDS) (Guan et al., 2020). The main risk factors associated with greater severity
and mortality caused by COVID-19 include hypertension, diabetes mellitus, cardiovascular disease
(CVD), advanced age, and obesity (Simonnet et al., 2020; Wu and McGoogan, 2020; Zhou et al.,
2020).

SARS-CoV-2 is an enveloped β-coronavirus composed of four structural proteins: spike (S),
envelope (E), membrane (M), and nucleocapsid (N) proteins (Chen et al., 2020). Entry of the virus
into the host cell occurs through the cleavage of protein S into two subunits (S1 and S2) where SARS-
CoV-2 develops a multibasic site at the S1-S2 boundary, which is cleaved by furin to form protein S
for processing by TMPRSS2 (Hoffmann et al., 2020). The amino-terminal S1 subunit contains a
receptor-binding domain (RBD) that is responsible for binding to the cell surface receptor,
angiotensin-converting enzyme 2 (ACE2) (Wrapp et al., 2020; Xia et al., 2020). The membrane-
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anchored S2 subunit is composed of the fusion peptide (FP),
heptapeptide repeat sequences 1 and 2 (HR1/HR2),
transmembrane domain (TM), and cytoplasmic domain. These
components are responsible for viral fusion and cell invasion
(Huang Y. et al., 2020; Xia et al., 2020). After the RBD domain is
attached to ACE2, the S2 subunit changes its conformation and
moves closer to the viral envelope and cell membrane for viral
fusion and entry (Huang Y. et al., 2020). In the host, ACE2 is
widely expressed in the lungs, heart, liver, vascular endothelium,
kidneys, and gut. It is an important regulator of the renin-
angiotensin-aldosterone system (RAAS), and promotes the
conversion of angiotensin I (Ang I) to Ang (1–9) and Ang II
to Ang (1–7) (D’ardes et al., 2020; Gheblawi et al., 2020). Ang
(1–7) has an important physiological role and promotes
vasodilation, including anti-hypertrophic, anti-inflammatory,
anti-oxidant, anti-thrombotic, and anti-fibrotic effects (Imai
et al., 2005; Kuba et al., 2005; Chung et al., 2020; D’ardes
et al., 2020). The conversion of Ang II to Ang (1–7) regulates
the concentration of Ang II-mediated by ACE2. When available,
Ang II binds to the ATR1 receptor, thereby promoting harmful
pro-inflammatory effects, such as hypertrophy, oxidative stress,
and vasoconstriction (Imai et al., 2005; Kuba et al., 2005; Chung
et al., 2020; D’ardes et al., 2020). Therefore, the negative
regulation of ACE2, promoted by the binding of SARS-CoV-2,
results in increased levels of Ang II (Imai et al., 2005; Kuba et al.,
2005; D’ardes et al., 2020).

The current drugs approved by the Food and Drug
Administration (FDA) for the treatment of patients with
COVID-19 prior to the writing of this manuscript are:
Fresenius Medical, multiFiltrate PRO System and multiBic/
multiPlus Solutions (Fresenius Medical Care); Fresenius Kabi
Propoven 2% (Fresenius Kabi USA, LLC.); REGIOCIT
replacement solution that contains citrate for regional citrate
anticoagulation (RCA) of the extracorporeal circuit (Baxter
Healthcare Corporation); COVID-19 convalescent plasma
(Office of the Assistant Secretary for Preparedness and
Response US Department of Health and Human Services);
remdesivir (Veklury) (Gilead Sciences, Inc.); bamlanivimab
(Eli Lilly and Company); baricitinib (Olumiant) in
combination with remdesivir (Veklury) (Eli Lilly and
Company); REGEN-COV (casirivimab and imdevimab)
(Regeneron Pharmaceuticals); bamlanivimab and etesevimab
(Eli Lilly and Company); and Propofol-Lipuro 1% (B. Braun
Melsungen AG), as obtained from the regulators database
(https://www.fda.gov/).

Drug repurposing has been viewed as a promising strategy for
combating COVID-19. Several factors, such as molecular
recognition, binding affinity, and interactions, are calculated
during computational drug design and development. Virtual
screening was performed with approximately 3,410 drugs
approved by the FDA. However, remdesivir was yet to be
approved at the time, but has since been analyzed (Beck et al.,
2020). The aforementioned and other studies suggested that
remdesivir is a potential antiviral agent against SARS-CoV-2,
following the demonstration of its affinity to target sites of the
virus, including RNA-dependent RNA polymerase (RdRP),
helicase, 3-to -5 exonuclease, 2-O-ribose methyltransferase,

and endoRNAse from SARS-CoV-2 and SARS-CoV-2 main
protease (Mpro, also called 3CLpro) (Beck et al., 2020; Elfiky,
2020). Following this methodology, curcumin displayed
promising results, making it a strong candidate for in vitro
and in vivo studies against SARS-CoV-2.

Natural compounds based on medicinal plants and traditional
Chinese medicine (TCM) formulas with antiviral action against
coronavirus have been investigated. These compounds presented
several targets against SARS-Cov and Middle East Respiratory
Syndrome (MERS), such as (1) spike (S) glycoprotein, (2) papain-
like protease (PLpro), and (3) nucleocapsid (N) proteins. Among
these compounds, including the specific viral targets, are
ginsenoside-Rb1 (1), hirsutenone (2), tanshinones I–VII (2),
with anti-SARS-CoV action, and resveratrol (3) with anti-
MERS activity (Wu et al., 2004; Park et al., 2012; Park et al.,
2012; Lin et al., 2017). Numerous therapeutic effects of the natural
polyphenol, curcumin, have been reported, including potential
chemotherapeutic, antioxidant, antiviral, antibacterial, and anti-
inflammatory properties (Paciello et al., 2020). Clinical studies
have demonstrated the effects of nanoencapsulated curcumin in
patients with COVID-19. In the aforementioned study, a
significant reduction in clinical manifestations of COVID-19
(fever, cough, and dyspnea) was observed in the group treated
with nanocurcumin (patients with mild and severe disease)
(Tahmasebi et al., 2020; Valizadeh et al., 2020). In addition,
nanocurcumin reduced the mortality rate of these patients.
However, the mortality rate of the placebo group was
significantly higher than that of the two groups (patients with
light and severe disease) treated with nanocurcumin (Tahmasebi
et al., 2020; Valizadeh et al., 2020). Currently, another study
involving patients with COVID-19 treated with
nanoencapsulated curcumin is ongoing (Hassaniazad et al.,
2020). Therefore, this manuscript provides a review of the
biological effects of curcumin in diseases that arise following
SARS-CoV-2 infection.

IN SILICO MODELS PREDICTING THE
ANTIVIRAL EFFECTS OF CURCUMIN
AGAINST SARS-COV-2
The antiviral effects of curcumin have been widely explored, and
the viruses to which curcumin has antiviral action are shown in
Figure 1. Curcumin prevents the binding of the influenza A virus
(IAV) (Chen et al., 2010; Ou et al., 2013), dengue virus
(Balasubramanian et al., 2019), zika virus, and chikungunya
virus (Mounce et al., 2017) to host cells. Curcumin inhibits
the entry of the hepatitis C virus (HCV) (Chen et al., 2012;
Anggakusuma et al., 2014), human norovirus (HuNoV) (Yang
et al., 2016), viral hemorrhagic septicemia virus in fish (VHSV)
(Jeong et al., 2015), and bovine herpesvirus 1 (BHV-1) (ZHU
et al., 2015). Furthermore, the curcumin hinders viral genome
replication and transcription of the respiratory syncytial virus
(RSV) (Obata et al., 2013; Yang et al., 2016) and Japanese
encephalitis virus (JEV) (Dutta et al., 2009), and interferes
with the translation and assembly of the Epstein-Barr virus
(EBV) (Hergenhahn et al., 2002), human cytomegalovirus
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(HCMV) (Lv et al., 2014a; Lv et al., 2014b), and human
immunodeficiency virus (HIV) (Gupta et al., 2011; Ali and
Banerjea, 2016). In vitro analyses revealed the antiviral action of
curcumin against the SARS-CoV virus in Vero-E6 cells; this natural
polyphenol could inhibit viral replication at concentrations of
3–10 µM (Wen et al., 2007). Based on such data regarding
antiviral activity, researchers using in silico prediction models
evaluated the potential of curcumin against the binding proteins
of SARS-CoV-2 and its cellular receptors.

The SARS-CoV-2 S glycoprotein is responsible for the
interaction between the virus and the host cell, promoting
fusion and internalization of the virus via the ACE2 receptor.
Thus, both the S glycoprotein and ACE2 are potential targets for
the treatment of COVID-19. In silico analysis showed that
curcumin has a high-affinity for interaction with the S
glycoprotein through the establishment of six hydrogen bonds
(Maurya et al., 2020). In this study, curcumin obtained higher
scores than the control compounds, such as nafamostat and
hydroxychloroquine (Maurya et al., 2020). In addition,

curcumin displayed an affinity for ACE2. Moreover, docking
results showed that curcumin interacted with the active site of the
protein, in addition to forming two hydrogen bonds (Maurya
et al., 2020). Similarly, curcumin demonstrated a better affinity
for ACE2 than the control compounds, such as captopril and
hydroxychloroquine (Maurya et al., 2020).

The transmembrane protein serine protease 2 (TMPRSS2)
facilitates the entry of SARS-CoV-2 from the spike protein
(Hoffmann et al., 2020). In silico analyses focusing on
TMPRSS2 showed that curcumin forms four hydrophobic
interactions and an H-bond with TMPRSS2 (Motohashi et al.,
2020). These findings corroborated results of in vitro studies
where curcumin treatment led to the downregulation of
TMPRSS2 in prostate cancer cells (Zhang et al., 2007;
Thangapazham et al., 2008).

The main protease (Mpro) of SARS-CoV-2 is indispensable in
maturation and viral replication, and is a promising target in the
treatment of SARS-CoV-2. The proteins that are matured by
Mpro include RNA-dependent RNA polymerase (RdRp, Nsp12)

FIGURE 1 | Antiviral effects of curcumin. Curcumin prevents cell infection and viral replication in the SARS-CoV, influenza A virus (IAV), zika virus, chikungunya virus,
hepatitis C virus (HCV), human norovirus (HuNoV), viral hemorrhagic septicemia virus in fish (VHSV), bovine herpesvirus 1 (BHV-1), respiratory syncytial virus (RSV),
Japanese encephalitis virus (JEV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), and human immunodeficiency virus (HIV).
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and helicase (Nsp13), which depend on the cleavage of Mpro (Rut
et al., 2020). Inhibition of Mpro prevents viral replication; thus,
compounds with inhibitory effects on Mpro have become
attractive targets for the treatment of COVID-19 (Zhang S.
et al., 2020; Anand et al., 2003). To identify compounds with
potential binding to Mpro, an in-silico study using docking was
carried out to evaluate a series of compounds, including the drugs
currently used in the treatment of COVID-19. In this study, two
compounds with a high affinity for Mpro were used as controls:
N3 and O6K (HUYNH; WANG; LUAN, 2020). Among the
compounds tested, including chloroquine, entecavir,
hydroxychloroquine, and remdesivir, curcumin surprisingly
formed the most stable complex with SARS-CoV-2 Mpro, and

the affinity score was comparable to that of the N3 control
(Huynh et al., 2020).

The entry of SARS-CoV-2 through the endosome requires an
endosomal environment with an acidic pH that is promoted by
the endosomal proteases, cathepsin B and L, and ion channels,
particularly the vacuolar ATPase pump (V-ATPase), which is
crucial in regulating endosomal pH (Aslam and Ladilov, 2020;
Khan et al., 2020). Curcumin has been shown to be a potential pH
controlling agent, decreasing the expression of V-ATPase, which
causes an increase in pH in tumor cells (Vishvakarma et al.,
2011).

In vitro results of the antiviral action of curcumin on SARS-
CoV and the data from in silico analyses reinforce the hypothesis

FIGURE 2 | Potential curcumin targets as antiviral and anti-inflammatory in SARS-CoV-2 infection. The first antiviral effect of curcumin against SARS-CoV-2 is its
potential for preventing the binding of viral S protein to the ACE2 receptor and initiate the host cell infection process (1). After penetrating the host cell via endosomes, the
virus begins the replication process that requires an acid endosomal environment to initiate the proteolytic process of viral proteins and subsequent release to the
external environment. Curcumin acts by inhibiting the Endosomal acidification (2) and processing of the viral proteins (Mpro), necessary for viral release (3,4).
Further, the inhibition of ACEmediated by curcumin (5) prevents the increase of Ang II levels. Curcumin inhibits NF-κB (6) through the inhibition of different pathways. The
binding of PAMPs, DAMPs, and cytokines that leads to IkB phosphorylation and proteasomal degradation is one of those pathways that cause NF-κB activation.
Curcumin prevents both IkB phosphorylation and p65 subunit from the NF-κB (8), which consequently prevents NF-κB activation. The activation of ADAM17 by the
AngII-ATR1 axis promotes the interaction between EGF and EGFR receptor, which promotes the activation of the PI3K/AKT/mTOR axis resulting in NF-κB activation.
Curcumin acts as a potential inhibitor for mTOR (9), preventing the NF-κB pathway activation. ADAM17-mediated signaling also triggers the release of soluble interleukin
6-receptor, forming a complex with IL-6 (sIL-6R-IL-6) that binds to glycoprotein gp130. This complex binding (sIL-6R-IL-6+gp130) activates the signal transduction
pathways responsible to induce the activators of transcription 3 (STAT3). Activation of STAT3 results in activation of NF-κB, which can be prevented by the curcumin (10).
The NF-κB activation induces a protein complex formation, knowns as inflammasome, which can lead to cell death through pyroptosis, a pathway to cell deathmediated
by the activation of caspase-1. However, curcumin can cause the inhibition of inflammasome formation (11) by the inhibition of NF-κB. Abbreviations: TMPRSS2,
transmembrane protease, serine 2; ACE1, angiotensin-converting enzyme 1; ACE2, angiotensin-converting enzyme 2; Mpro, main protease; PAMPs, pathogen-
associatedmolecular pattern; DAMPs, damage-associatedmolecular patterns; ANG I, angiotensin I; Ang II, angiotensin II; ATR1, angiotensin II (AII) receptor 1; ADAM17,
a disintegrin andmetalloproteinase 17; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; IL-6R, interleukin 6 receptor; sIL-6R, soluble Interleukin 6
receptor; gp130, glycoprotein 130; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; STAT3, signal transducers and
activators of transcription; NF-κB, factor nuclear kappa B.
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of the potential activity against SARS-CoV-2. Thus, this review
aims to encourage evaluation of the effect of curcumin on cells
infected by SARS-CoV-2 and the replication of the virus using
in vitro and in vivomodels, and in randomized clinical trials. The
possible interaction sites of curcumin with SARS-CoV-2 in the
host cells are shown in Figure 2.

EFFECTS OF CURCUMIN IN THE
COVID-19-INDUCED INFLAMMATORY
PROCESS
The inflammatory process of COVID-19 is complex and
multifactorial. Patients with the severe form of the disease can
be affected by a hyperinflammatory condition called a cytokine
storm, highlighting the need for anti-inflammatory treatment to
alleviate the hyperactivation of the immune response, which
induces this cytokine storm. Focusing on the anti-
inflammatory action of curcumin, two studies were conducted
with patients with COVID-19. In the first study, the research
group investigated the modulation of pro-inflammatory
cytokines by nanocurcumin. Patients with COVID-19 showed
high mRNA expression and secretion of cytokines, IL-1β, IL-6,
TNF-α, and IL-18, but showed a significant reduction in IL-6 and
IL-1β after treatment with nanocurcumin (Valizadeh et al., 2020).
Subsequently, exploring the modulatory mechanisms of
nanocurcumin, the researchers demonstrated that the number
of Th17 cells, gene expression, and serum Th17-mediated factors
level (IL-17, IL-21, IL-23, and GM-CSF) were significantly
reduced in both stages of the disease in the group of patients
with COVID-19 treated with nanocurcumin (Tahmasebi et al.,
2020).

Despite the rapid scientific progress regarding the
pathophysiology of COVID-19, the precise mechanisms that
trigger the exacerbated inflammatory response observed in
some of the patients have not yet been completely elucidated.
However, several hypotheses attempt to explain such changes.
The nuclear factor-kappa B (NF-κB) pathway is directly involved
in this inflammatory process and can stimulate the production of
pro-inflammatory cytokines when activated. Recent findings led
to concerns regarding the overstimulation of the NF-κB pathway
and its potential contribution to the emergence of cytokine
storms. Studies have shown that NF-κB can be activated
directly by SARS-CoV-2 from Toll-like receptors (TLRs) and
RAAS system components (Mahmudpour et al., 2020). In such
situations, the SARS-CoV envelope (E) and nucleocapsid (N)
proteins were shown to be directly related to NF-κB activation
(Liao et al., 2005; DeDiego et al., 2014). Consequently, when this
protein was deleted in a genetically modified virus, a reduction in
NF-κB activation was observed (DeDiego et al., 2014).

Activation of the AngII-AT1R axis causes NF-κB activation
(Crowley and Rudemiller, 2017). The AngII-AT1R axis is directly
involved in the pro-inflammatory response by acting on the main
pathways that lead to the release of cytokines and chemokines.
The increase in AngII stimulates the phosphorylation of the NF-
κB p65 subunit, leading to its activation and the subsequent
release of cytokines (IL-6, IL-1ß, IL-10, and TNF-α) (Ruiz-Ortega

et al., 2001; Skurk et al., 2004). The AngII-AT1R axis activates
disintegrin and metalloprotease 17 (ADAM17), processing the
membrane form of IL-6Rα to its soluble form (sIL-6Rα) through
epidermal growth factor (EGFR). The sIL-6Rα-IL-6 complex
leads to gp130-mediated STAT3 activation (Eguchi et al.,
2018; Murakami et al., 2019), with STAT3 being essential for
the complete activation of the NF-κB pathway, in conjunction
with the main pathway stimulator, IL-6 (Murakami et al., 2019).
The cytokines, TNF and IL-1, also trigger signals that cause the
translocation of NF-κB to the nucleus by activating genes
involved in the production of inflammatory mediators
(Crowley & Rudemiller, 2017). Curcumin blocks STAT3-
mediated NF-κB activation, and the consequent reduction in
pro-inflammatory cytokines disrupts the positive feedback
between pro-inflammatory cytokines and NF-κB (Alexandrow
et al., 2012; Rahardjo et al., 2014; Ma et al., 2015; Yadav et al.,
2015).

NF-κB is inactive in the cell cytoplasm because of its association
with the IκB protein complex. In the presence of stimuli (PAMPs,
DAMPs, and cytokines), IκB undergoes phosphorylation and
proteasomal degradation that dissociates the NF-κB complex,
allowing NF-κB to translocate into the nucleus, leading to the
expression of chemokines and pro-inflammatory cytokines (Solt
andMay, 2008). Curcumin acts by inhibiting the phosphorylation of
IκB through inhibiting translocation and the consequent activation
of NF-κB (Karunaweera et al., 2015; Wang et al., 2018;
Cheemanapalli et al., 2019). Owing to NF-κB inhibition, there is
a reduction in the production of inflammatory cytokines, such as IL-
1α, IL-6, and TNF-α (Rahardjo et al., 2014; Ma et al., 2015; Yadav
et al., 2015).

Viral infections commonly activate inflammasomes. SARS-
CoV has been shown to express at least three proteins that
activate the NLRP3-type inflammasome (NOD-, LRR-, and
pyrin domain-containing protein 3): envelope protein (E),
Open Reading Frame-3a (ORF3a), and Open Reading
Frame-8b (ORF8b) (Nieto-Torres et al., 2015; Chen et al.,
2019; Shi et al., 2019). Protein E and ORF3a stimulate NF-κB
signaling, thereby promoting the release of pro-inflammatory
cytokines, such as IL-1β, IL-8, and IL-18, and priminf NLRP3
expression to reach the functional level (Kanzawa et al., 2006;
DeDiego et al., 2014; Siu et al., 2019). The amino acid sequence
of protein E is 94.7% conserved in SARS-CoV and SARS-CoV-
2, indicating the possibility of inflammasome activation in
patients with COVID-19 (Chan et al., 2020; Lu et al., 2020). A
recent study demonstrated that active caspase-1 (Casp1p20),
IL-1β, IL-18, IL-6, and lactate dehydrogenase (LDH) were
increased in the serum of patients with COVID-19, and that
Casp1p20 and IL-18 are products derived from
inflammasomes (Rodrigues et al., 2021). The researchers
also found active inflammasome NLRP3 in peripheral blood
mononuclear cells (PBMCs) and in the tissues of deceased
patients at autopsy. The levels of IL-18 and Casp1p20 were
higher in patients who had severe disease, indicating a worse
prognosis (Rodrigues et al., 2021). Therefore, the regulation of
NF-κB by curcumin inhibits the formation of inflammasomes,
specifically NLRP3, decreasing the secretion of IL-1β and IL-18
(Yin et al., 2018).
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Another regulator of NF-κB is the mammalian target of
rapamycin (mTOR) pathway. mTOR is comprised of two
complexes, mTORC1, which is sensitive to rapamycin
inhibition through the Raptor protein that is associated
with mTORC1, and mTORC2, which is associated with
Rictor protein, and has low sensitivity to rapamycin (Saxton
and Sabatini, 2017). In lipopolysaccharide sepsis models, the
inhibition of mTOR by rapamycin resulted in decreased
phosphorylation of the p65 subunit of NF-κB, with a
consequent reduction in cytokines and pro-inflammatory
chemokines, such as IL-1β, IL-18, IL-6, TNF-α, MCP-1, and
led to the reduced expression of the NLRP3 inflammasome
(Temiz-Resitoglu et al., 2017; Jia et al., 2019). Although
rapamycin is already used as an immunosuppressant in the
treatment of transplant patients, it has numerous adverse
effects and is associated with a high cost. Curcumin is a
potential target inhibitor of the mTOR pathway and can
promote the inhibition of both the mTORC1 and mTORC2
complexes (Beevers et al., 2009). Curcumin at low doses was
found to suppress the mTORC1-Raptor interaction, leading to
inhibition of the mTORC1 complex. Curcumin also promoted
interruption of the mTORC2-Rictor interaction at higher
doses, thereby inhibiting mTORC2 (Beevers et al., 2006;
Beevers et al., 2009; Johnson et al., 2009).

The anti-inflammatory mechanisms of curcumin have been
extensively investigated in clinical studies of several inflammatory
diseases, such as Crohn’s disease, ulcerative proctitis, ulcerative
colitis, irritable bowel syndrome, rheumatoid arthritis,
postoperative inflammation, gastric ulcer, Helicobacter pylori
infection, and idiopathic inflammatory orbital pseudotumor
(Gupta et al., 2013). Evaluating the mechanisms of action
of curcumin already described in both experimental and
clinical trials, which can potentially benefit patients with
dysregulated immune responses in COVID-19, seems to be
an innovative strategy. The mechanisms of action of
curcumin and its potential effects on COVID-19 are showed
in Figure 2.

CURCUMIN IN HEMOSTATIC DISORDERS

A growing number of studies have reported thromboembolic
events in patients hospitalized due to COVID-19. High D-dimer
levels are considered to be a common marker for increased
thrombotic propensity and poor prognosis (Paliogiannis et al.,
2020; Zhou et al., 2020). Increased platelet activation and
viral RNA detectable in the blood are associated with platelet
hyperactivity, leading to abnormal blood clotting. These causes
have been associated with thromboembolic prognosis in
patients with COVID-19 (Zhang L. et al., 2020). The
following signs of hypercoagulability have been observed in
these patients: prolonged prothrombin time (PT), activated
partial thromboplastin time (APTT), and elevated levels of
D-dimer and other fibrin degradation products (FDP) (Tang
et al., 2020). In such cases, antithrombin (AT) activity has been
reported to be lower than normal (Tang et al., 2020). Human
platelets express ACE2 and TMPRSS2 receptors. SARS-CoV-2

binds to these receptors and promotes platelet activation (Zhang
L. et al., 2020).

Endothelial cells express the necessary receptors for SARS-
CoV-2 to bind and infect cells, causing cell damage and apoptosis.
Damage to the vascular endothelium exposes pro-coagulating
factors, such as collagen and von Willebrand factor (vWF), and
stimulates the release of tissue factor (TF) (Grobler et al., 2020;
Iba et al., 2020). Platelets express specific receptors for these
molecules, including glycoprotein VI (GPVI) which binds to sub-
endothelial collagen, and glycoprotein (GP) Ib-IX-V which binds
to vWF (Falati et al., 1999; Grobler et al., 2020). In addition,
activated platelets express P-selectin, which binds to monocytes
and circulating neutrophils via the PSGL-1 receptor, causing
activated monocytes to express TF and activated neutrophils
(McFadyen et al., 2020). Curcumin exerts a critical antiplatelet
effect, preventing platelet adhesion to the vascular endothelium
and subendothelium, in addition to reducing the expression of
P-selectin and GP VI (Zhang et al., 2008; Mayanglambam et al.,
2010).

Activated neutrophils release extracellular neutrophil traps
(NETs). This process is accompanied by cell death (NETosis)
and can exacerbate the inflammatory response (Schönrich and
Raftery, 2016; Bonaventura et al., 2018). NETs can contribute to
the formation of clots and thrombi via platelet-dependent or
independent pathways. The latter can cause total blood vessel
occlusion, resulting in organ damage (Jiménez-Alcázar et al.,
2017; Gómez-Moreno et al., 2018). Studies have shown that
defects in NET degradation cause partial or total obstruction
of blood vessels in the lungs (Jiménez-Alcázar et al., 2017).
Furthermore, analyses of lung tissue collected at autopsy from
patients with acute respiratory distress syndrome and sepsis
revealed the presence of NET components in the observed
clots (chromatin and myeloperoxidase), indicating that NETs
can form intravascular clots in humans (Jiménez-Alcázar et al.,
2017). The products released from NETs can also be cytotoxic to
endothelial cells, leading to the recruitment of more NETs, which
contributes to a thrombo-inflammatory response (Gómez-
Moreno et al., 2018). Curcumin treatment, both in vitro and
in vivo, was demonstrated to inhibit the function of NETs and
reduce neutrophilic infiltration in a murine air pouch model
induced by LPS (Antoine et al., 2013). In addition, the reduction
in expression of P-selectin promoted by curcumin may be a key
mechanism in the reduction of NETS; this is because platelets use
P-selectin to bind to neutrophils, thereby promoting neutrophilic
activation (Zhang et al., 2008; McFadyen et al., 2020).

In endothelial cells associated with the airways, the increased
concentration of Ang II causes TF to be upregulated, with
consequent activation of the pro-coagulant response
(Nishimura et al., 1997). TF is expressed after vascular injury
or activation of endothelial cells. Inflammatory mediators, such as
TNF-α and IL-1β, are important inducers of TF in endothelial
cells (Pendurthi et al., 1997). When expressed, TF serves as a
receptor for factor VIIa, and the binding of factor VIIa to TF
initiates the coagulation cascade. This leads to thrombin
generation and sequential clot formation with the deposition
of fibrin protofibrils (Hergenhahn et al., 2002; Butenas et al., 2008;
D’Alessandro et al., 2018; Sathler, 2020).
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Treatment of human endothelial cells with curcumin inhibited
the expression of TF induced by TNF-α, LPS, and thrombin
(Pendurthi et al., 1997). Curcumin was also found to inhibit
platelet aggregation induced by arachidonic acid, adrenaline, and
collagen (Srivastava et al., 1995). These findings corroborate those
of another study that revealed the inhibition of platelet agonists,
viz. epinephrine-induced platelet aggregation, platelet-activating
factor (PAF), and arachidonic acid, with curcumin (Shah et al.,
1999). Furthermore, curcumin has been shown to inhibit the
formation of thromboxane A2 (TXA2) by platelets (Shah et al.,
1999). Platelet aggregation is stimulated by TXA2 produced by
active platelets, and promotes the activation of other platelets.
Pretreatment of platelets with curcumin inhibited platelet
aggregation induced by the calcium ionophore A-23187,
following curcumin interfering with the mobilization of
intracellular Ca2+, which is essential for platelet aggregation
(Shah et al., 1999). Curcumin has also been shown to decrease
the levels of D-dimers, circulating platelets, and inhibit diesel
exhaust particles (DEP) (Nemmar et al., 2012).

Curcumin administration in an in vivo model of
disseminated intravascular coagulation (DIC) reduced the
circulating levels of TNF-α, preventing the consumption of
peripheral platelets and plasma fibrinogen (Chen et al., 2007).
Curcumin also reduced the deposition of fibrin in the renal
glomeruli, a characteristic finding of DIC with curcumin
(Chen et al., 2007). In a clinical study, a 10 mg curcumin
injection administered for 15 days was sufficient to reduce
plasma fibrinogen levels (Ramirez Boscá et al., 2000).

Procoagulant and pro-thrombotic events are recurrent in
patients with COVID-19 and can cause significant damage.
Curcumin, a well-tolerated natural compound, is a promising
candidate for studies in the context of COVID-19 disorder
hemostatic. In fact, several in vitro and in vivo studies have
reported its anticoagulant and antithrombotic effects. Therefore,
the mechanisms described in the management of other diseases
can be reused for new studies regarding hemostatic disorders
induced by SARS-CoV-2 deserving further investigation. The
molecular mechanisms underlying the targets of curcumin

FIGURE 3 | Curcumin as a Potential antithrombotic in hemostatic disorders induced by SARS-CoV-2. Pro-inflammatory cytokines and Ang II elevated levels can
induce the production of tissue factor (TF) by the endothelial cells, initiating the coagulation cascade. Curcumin decreases pro-inflammatory cytokines (1) and inhibits TF
expression (2) in the vascular endothelium, avoiding the activation of the coagulation cascade. The affinity of curcumin by the SARS-CoV-2 protein S and ACE2 binding
can prevent the infection and activation of endothelial cells (3). During the activation of the coagulation cascade, fibrinolysis can occur, generating D-dimers.
Curcumin treatment decreases fibrin deposition and D-dimer levels formation (4). Lesions of the endothelial cells can expose the subendothelial collagen, which can be
recognized by the platelet’s receptor (GP-VI), leading to platelet cell activation. Curcumin can inhibit the GP-VI receptor, reducing and/or abolishing the platelet activation
by binding to collagen (5). The interaction of platelets with monocytes through binding the P-selectin-PSGL-1 receptor promotes monocyte activation, causing an
increase of TF expression. Curcumin inhibits this interaction by inhibiting P-selectin in platelets (6). The mobilization of intracellular calcium mediates platelet aggregation.
Curcumin prevents calcium-mediated platelet aggregation (7). Besides, curcumin inhibits the thromboxane A2 (TXA2) generation (9) released by activated platelets to
stimulate other platelet activation. Thus, curcumin inhibits platelet aggregation (10). Abbreviations: TNF-α, tumor necrosis factor alpha; IL-1β, interleukin 1 beta; Ang II,
angiotensin II; GPVI, glycoprotein VI; vWF, Von Willebrand factor; GPIb-IX-V, glycoprotein (GP) Ib-IX-V; PSGL-1, P-selectin glycoprotein ligand-1; AA, arachidonic acid;
TXA2, thromboxane A2; TP, thromboxane receptor.
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involved thrombotic and coagulant disorders caused by COVID-
19 are illustrated in Figure 3.

CURCUMIN AS A POTENTIAL AGENT
AGAINST PULMONARY IMPAIRMENT

Alveolar type II (ATII) cells are the primary target of SARS-CoV-
2 infection, triggering the apoptotic death of target cells and
subsequent infection of adjacent ATII alveolar cells (Mason,
2020). The inflammatory process, together with cellular damage,
results in the appearance of multinucleated giant cells and a fibrin-
rich hyaline membrane, which causes diffuse alveolar damage that
can progress to acute respiratory distress syndrome (ARDS)
(Dushianthan et al., 2011). In a model of lung injury induced
by benzo (a) pyrene (BaP), curcumin reduced the death of ATII
cells and decreased the levels of pro-inflammatory cytokines (TNF-
α, IL-6, and C-reactive protein) in serum (Almatroodi et al., 2020).

In more severe cases, patients with COVID-19 may require
mechanical ventilation (MV) (Fan et al., 2020). However,
inadequate MV can worsen pulmonary pathology. Ventilator-
induced lung injury (VILI) causes lung expansion conversion into
biochemical signals, resulting in increased activation of
inflammatory cells (Silva et al., 2015). Experimentally, it has
been shown that curcumin reverses the damage caused by
VILI, reducing edema and lung injury. This effect was found
to be mediated by the inhibition of NF-κB and the
reestablishment of the redox balance from recovery of total
antioxidative capacity (Wang et al., 2018).

High levels of circulating NETs have been detected in
intubated patients with COVID-19 (Middleton et al., 2020). A
correlation between severity and NETs has been established,
suggesting that NETs contribute to COVID-19-related lung
injury. In addition, platelet colocalization with citrullinated
histone H3+ and NETs indicated the presence of NETosis in
pulmonary microthrombi of patients who died of COVID-19
(Middleton et al., 2020). In the lungs, NETs have a cytotoxic effect
on epithelial cells, endothelial cells, and connective tissue, which
can aggravate pulmonary pathology (Saffarzadeh et al., 2012). In
sepsis and ARDS, NETs cause cell damage and microthrombi,
potentially resulting in multiple organ dysfunction and death
(Czaikoski et al., 2016; Lefrançais et al., 2018; Papayannopoulos,
2018). In experimental studies involving ARDS due to
polymicrobial sepsis (CLP), curcumin decreased the apoptosis
of lung cells and attenuated the severity of lung injury. IL-17A acts
on ATII cells causing them to release CXCL-1, in turn inducing
neutrophil aggregation. Curcumin treatment reduced the levels of
IL-17A and neutrophils in the lungs (Chai et al., 2020).

Regulatory T cells (Tregs) are essential regulators of the
inflammatory process and generate an adequate immune
microenvironment through their anti-inflammatory and anti-
apoptotic functions (Lin et al., 2018). Curcumin induces the
differentiation of naïve CD4+ T cells to Tregs by regulating
the expression of IL-10 (Chai et al., 2020). IL-10 is an anti-
inflammatory cytokine that promotes macrophage
reprogramming from an inflammatory profile (M1) to a
repeating profile (M2) by suppressing the mTORC1 complex.

M2 macrophages decrease the inflammatory process and
stimulate tissue repair in sepsis-induced LPA (Ip et al., 2017).
Macrophages with the M1 phenotype are essential for controlling
viral replication. However, limiting immunopathological
reactions through the M2 phenotype is essential (Sang et al.,
2015). In a COVID-19 study, severely ill patients showed a higher
frequency of type M1 macrophages than patients with moderate
infection or healthy control subjects who presented higher
frequencies of type M2 macrophages (Liao et al., 2020).
Curcumin promotes a decrease in M1 and an increase in M2
macrophages in septic lungs, indicating its potential effect on
macrophage polarization (Chai et al., 2020).

In an in vivo model of lung injury mediated by
cyclophosphamide, treatment with curcumin reduced lung
injury and restored the oxidant-antioxidant balance by
reducing lipid peroxidation (Ashry et al., 2013). In LPS-
induced acute lung injury (ALI), treatment with curcumin
decreased pulmonary edema, increased PaO2, and improved
lung function (Cheng et al., 2018). ALI can be a consequence
of hemorrhagic shock and resuscitation (HSR). Animals
subjected to HSR and treated with curcumin showed a
reduction in the levels of reactive oxygen species, TNF-α, and
neutrophilic infiltrates. Such finding indicates that the treatment
provided a protective pulmonary barrier function (Yu-Wung Yeh
and Wang, 2020). ALI and ARDS studies in animals with sepsis
showed that treatment with curcumin attenuated lung damage
and decreased proinflammatory cytokine levels (Xiao et al., 2012;
Xu et al., 2013; Liu et al., 2017).

Although clinical studies have not reported the direct effects of
curcumin on respiratory impairment, the decrease in clinical
manifestations (fever, cough, and dyspnea) in patients with
COVID-19 is a promising indicator that encourages further
investigations (Tahmasebi et al., 2020; Valizadeh et al., 2020).
Many clinical trials have established the therapeutic potential of
curcumin, either as a single agent or in combination with other
drugs in various diseases, owing to its effect on diverse cell signaling
pathways. The possible curcumin action sites that can be targeted after
SARS-CoV-2-induced changes in the lungs are illustrated in Figure 4.

CARDIOPROTECTIVE EFFECTS OF
CURCUMIN

Clinical reports involving some of the first patients with COVID-
19 from the Wuhan province of China showed that 5 of the 41
patients had changes in levels of highly sensitive cardiac troponin
I (hs-cTnI), indicating myocardial injury (Huang C. et al., 2020).
Interestingly, some patients sought medical assistance after
cardiac symptoms (palpitations and chest tightness) rather
than the classic symptoms of COVID-19 (fever and cough)
(Deng et al., 2020; Stefanini et al., 2020). In children, COVID-
19 can cause a hyperinflammatory syndrome similar to Kawasaki
disease (Riphagen et al., 2020).

Underlying CVD significantly increases the mortality rate of
patients with COVID-19. One study showed that patients with
COVID-19, CVD, and increased troponin T levels had a
mortality rate of 69.4%; however, the mortality rate of patients
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with COVID-19 with increased levels of troponin T without CVD
was 37.5% (Guo et al., 2020).

The cardiac events reportedly caused by COVID-19 include acute
myocardial injury, heart failure, acute coronary syndrome, infarction,
and arrhythmia (Lang et al., 2020; Amirfakhryan and Safari, 2021).
The hypotheses surrounding cardiovascular involvement in COVID-
19 involve direct infection of cardiac cells by SARS-CoV-2, injury
mediated by the inflammatory process, reduced oxygen supply,
hypoxia, microthrombi, and stress cardiomyopathy (Lang et al.,
2020; Amirfakhryan and Safari, 2021). Histopathological analysis
of the heart of a patient with COVID-19 revealed cardiac tissue with a
fibrin thrombus in a perforating vein associated with myocardial
infarction, myocardial necrosis (transmural), and neutrophilic
infiltrates (Rapkiewicz et al., 2020).

In experimental models of sepsis, curcumin proved to be
effective at improving the survival parameters, reducing
hypovolemia levels observed in the late phase of sepsis,
suppression of hyperglycemia in the acute phase, and
attenuation of hypoglycemia in the late stage (Silva et al.,

2017). Curcumin also attenuated heart damage induced by
sepsis; improved cardiac function and body temperature (Yang
et al., 2013); and reduced troponin I levels and the product of lipid
peroxidation, suggesting its reduction of oxidative damage (Yang
et al., 2013).

The restoration of blood flow in the ischemic myocardium can
exacerbate tissue injury and result in a poorly adaptive tissue process
(Vinten-Johansen et al., 2005; Prasad et al., 2009). First, oxidative
stress activates metalloproteinases (MMPs) that promote
degradation of the extracellular matrix (ECM). This results in the
progressive expansion of the infarction, thinning of the ventricular
wall, and dilation of the chamber (Wang et al., 2012). The cure for
the infarction involves deposition of collagen, forming a fibrotic and
non-functional scar. In an experimental model of ischemia and
reperfusion, treatment with curcumin reduced ECM degradation by
MMPs and increased the synthesis of collagen and the accumulation
of myofibroblasts (Wang et al., 2012). Consequently, there was an
improvement in cardiac function, reduced left ventricle dilation, and
increased wall thickness (Wang et al., 2012).

FIGURE 4 | Potential curcumin in cell damage caused by SARS-CoV-2 in the lung and heart. Curcumin promotes differentiation from naïve CD4+T-cell to Tregs
through the modulation of IL-10 (1). The cytoprotective role of curcumin decreases the death of type II alveolar cells (ATII) with a consequent decrease in the release of
DAMPs (2). Curcumin also mediates macrophages’ polarization, decreasing the population of inflammatory macrophages M1 to macrophages M2 that participate in the
resolving and reparative process (3). The presence of Th17 cells promotes the activation of ATII cells through IL-17. In turn, activated ATII cells release a
chemoattractant for neutrophils that causes neutrophil aggregation. Curcumin decreases IL-17 levels with a consequent decrease in neutrophil aggregates. The
anticoagulant and antithrombotic effects of curcumin can have protective effects on the heart, decreasing the heart attack risk (5). The anti-inflammatory action of
curcumin can prevent damage to cardiomyocytes caused by an excess of inflammatory mediators, known as a cytokine storm (6). Its affinity for protein S and ACE2 can
prevent the direct infection of cardiomyocytes by SARS-CoV-2 (7). Abbreviations: ATII, alveolar type II cells; Tregs, regulatory T cells; Th17, T helper 17 cells; CXCL-1,
chemokine ligand 1; NET, neutrophil extracellular traps.
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An increased number of studies evaluating post-COVID-19
sequelae warns of cardiovascular symptoms, such as chest pain
and palpitations (Schneider, 2020; Carvalho-Schneider et al., 2021;
Halpin et al., 2021; Huang et al., 2021; Vallejo et al., 2021). The
cumulative incidence of thrombosis (2.5% at 30 days after discharge),
including segmental pulmonary embolism, intracardiac thrombus,
thrombosed arteriovenous fistula, and ischemic stroke, were reported
in a single-center study in the United States with 163 patients (Patell
et al., 2020). The 6-month post-evaluation of COVID-19 showed that
patients suffer from long-term sequelae of the disease, including
venous thromboembolic diseases (cardiovascular and
cerebrovascular events) (Huang et al., 2021). Currently, there are
no reports of curcumin in cardiac changes resulted from COVID-19.
However, based on data published on other diseases and cardiac
disorders, we hypothesize that curcumin may be a promising agent in
preventing cardiovascular damage caused by SARS-CoV-2 infection,
as summarized in Figure 4.

CONCLUSION

Due to the uncountable mechanisms of action addressed in this
and other reviews, it has been reinforced that curcumin could
serve as an adjuvant drug in COVID-19 treatment (Babaei et al.,
2020; Manoharan et al., 2020; Roy et al., 2020; Soni et al., 2020;
Zahedipour et al., 2020; Saeedi-Boroujeni et al., 2021;
Thimmulappa et al., 2021). The multiplicity of
pathophysiological responses induced by SARS-CoV-2
highlights the need for a combination of different drugs as a
treatment strategy (i.e., there is no single "magic pill" for the cure
of COVID-19). Curcumin is a well-tolerated natural compound
in humans, even at high concentrations (Dhillon et al., 2008;
Kanai et al., 2011; Gupta et al., 2013). Thus, its combination with
drugs that are already approved for use appears logical. Curcumin
is a well-tolerated natural compound in humans, even at high
concentrations (Dhillon et al., 2008; Kanai et al., 2011; Gupta
et al., 2013). Thus, its combination with drugs that are already
approved for use appears logical. The first results from the studies
regarding the effect of curcumin in patients with COVID-19 are
promising. However, several questions need to be answered: 1)

Does curcumin prevent SARS-CoV-2 infection of the host cells?
2) Does curcumin treatment attenuate respiratory and
cardiovascular system commitment? 3) Is the curcumin able to
reestablish hemostatic homeostasis?

Despite the absence of specific studies addressing the mechanism
of action of curcumin in the treatment of COVID-19, currently, the
world is experiencing an uncommon situation, which has led
researchers and physicians to evaluate the available knowledge to
the other diseases, in an attempt to designmore promising pathways
against SARS-CoV-2. In conclusion, this review strategically
contributes to the relentless search for therapies that can act on
combat of COVID-19, in addition to providing targets for future
studies using the curcumin as an adjuvant treatment to COVID-19.
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Myricetin Inhibits SARS-CoV-2 Viral
Replication by Targeting Mpro and
Ameliorates Pulmonary Inflammation
Ting Xiao1,2†, Mengqi Cui1,2†, Caijuan Zheng1†, Ming Wang1†, Ronghao Sun1†, Dandi Gao1,2,
Jiali Bao1,2, Shanfa Ren1,2, Bo Yang3, Jianping Lin1, Xiaoping Li3, Dongmei Li 1*,
Cheng Yang1,2* and Honggang Zhou1,2*

1State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug
Research, Nankai University, Haihe Education Park, Tianjin, China, 2Tianjin Key Laboratory of Molecular Drug Research, Tianjin
International Joint Academy of Biomedicine, Tianjin, China, 3Department of Thoracic Surgery, Tianjin First Central Hospital, Nankai
University, Tianjin, China

The coronavirus disease 2019 (COVID-19) has spread widely around the world and has
seriously affected the human health of tens of millions of people. In view of lacking anti-
virus drugs target to SARS-CoV-2, there is an urgent need to develop effective new
drugs. In this study, we reported our discovery of SARS-CoV-2 Mpro inhibitors. We
selected 15 natural compounds, including 7 flavonoids, 3 coumarins, 2 terpenoids, one
henolic, one aldehyde and one steroid compound for molecular docking and enzymatic
screening. Myricetin were identified to have potent inhibit activity with IC50 3.684 ±
0.076 μM in the enzyme assay. The binding pose of Myricetin with SARS-CoV-
2 Mpro was identified using molecular docking method. In the binding pocket of
SARS-CoV-2 Mpro, the chromone ring of Myricetin interacts with His41 through π-π
stacking, and the 3’-, 4’- and 7-hydroxyl of Myricetin interact with Phe140, Glu166and
Asp187 through hydrogen bonds. Significantly, our results showed that Myricetin has
potent effect on bleomycin-induced pulmonary inflammation by inhibiting the infiltration
of inflammatory cells and the secretion of inflammatory cytokines IL-6, IL-1α, TNF-α and
IFN-γ. Overall, Myricetin may be a potential drug for anti-virus and symptomatic
treatment of COVID-19.

Keywords: COVID-19, SARS-CoV-2, 3CLpro (Mpro), myricetin, pulmonary inflammation

INTRODUCTION

The new type of coronavirus pneumonia is called COVID-19, which is a viral respiratory disease
caused by the SARS-CoV-2 infection (Mittal et al., 2020; Wang et al., 2020). COVID-19 caused a
global health emergency and was declared a pandemic by the World Health Organization (Ciotti
et al., 2019; Kumar et al., 2020). The spread of COVID-19 brought great harm and social impact
(Tandon, 2020). As of December 1, 2020, the cumulative number of confirmed cases has near to
70 millions all over the world. The overall mortality reaches about 2.19% (Cucinotta and Vanelli,
2020). Based on the data from the Chinese National Reporting System, as of February 20, 2020, 80%
of the reported confirmed cases were without pneumonie, or had mild to mode rate pneumonia;
about 15% had severe pneumonia (Park, 2020). Although some mild patients can heal on their own,
there are still many patients who progress rapidly in the later stages, and develop into acute
respiratory distress syndrome and fibrosis (Ozma et al., 2020). And now, there are still no specific
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medicines and effective therapeutic methods. Therefore, there is
an urgent need to developing specific drugs for COVID-19.

SARS-CoV-2 is a single positive-stranded RNA virus, it
contains about 30,000 basic group and 14 open reading frames
(ORFs), which can coding replicases, four structural proteins
(Spike, Envelope, Membrane and Nucleocapsid protein), 16 non-
structural proteins (NSPs) and nine accessory proteins (Boopathi
et al., 2020; Mittal et al., 2020; Sarma et al., 2020). NSPs play an
important role in the replication and transcription cycle of the
virus. NSP5 is the main protease of SARS-CoV-2, also called
3CLpro, it is essential for viral polyproteins processing and
maturation (Anand et al., 2003; Jin et al., 2020; Liu et al.,
2020; Zhang et al., 2020), therefore, it is recognized as an
important potential drug target (De Clercq and Li, 2016).

Natural products (NPs) received great attention by scientific to
discover potential drugs for the treatment of various diseases,
such as cancer (Cragg et al., 1997), HIV (Kurapati et al., 2015),
malaria (Clark, 1996) and cardiovascular disease (Mashour et al.,
1998). And recently, a large of studies reported the screening
result of NPs as anti-SARS-CoV-2 inhibitors based on in-silico
drug discovery approaches (Ibrahim et al., 2020; Joshi et al., 2020;
Li et al., 2020), but there are few reports on the directly inhibition
of enzyme activity. We identified Myricetin as a potent inhibitor
of SARS-CoV-2 Mpro from 15 NPs by molecular docking and
enzymatic assay in this study. Myricetin also exhibit potent anti-
inflammation effect on bleomycin-treated mice. It suggests that
Myricetin might be a promising candidate for COVID-19
therapy.

METHOD

Drugs and Reagents
The 15 test compounds were mainly obtained from Pusi
Biotechnology Co. Ltd. (Chengdu, China). The enzyme activity
inhibitor screening kit was purchased from Beyotime
Biotechnology (Shanghai, China).

Molecular Docking
The crystal structure (PDB ID: 6LZE) of SARS-CoV-2 Mpro,
which was resolved by Dai et al. (Dai et al., 2020), was extracted
from the RCSB Protein Data Bank (PDB). Then, the protein
structure was prepared using the Protein Preparation Wizard
module in Schrodinger 2017 (Bhachoo and Beuming, 2017) to
remove all crystallographic water molecules, correct side chains
with missing atoms, add hydrogen atoms and assign protonation
states and partial charges with the OPLS_2005 force field. The
Protein Preparation Wizard module of Schrödinger was applied
to add hydrogen. The protonation states for the hydroxyl, Asn,
Gln, and His were optimized using the ProtAssign module of
Schrödinger. After that, the protein structure was minimized until
the root-mean-square deviation (RMSD) of the nonhydrogen
atoms reached less than 0.3 Å. The structures of the 15 natural
compounds and 17 chemical compounds were prepared using the
LigPrep module of the Schrodinger 2017 molecular modeling
package to add hydrogen atoms, convert 2D structures to 3D,
generate stereoisomers and determine the ionization state at pH

7.0 ± 2.0 with Epik. Using the prepared receptor structure, a
receptor grid was generated around the original ligand site of the
crystal structure. Then, the 15 natural compounds and 17
chemical compounds were docked to the receptor using the
Glide XP protocol.

Protease Activity Assay
Enzyme activity inhibitor screening adopts fluorescence
resonance energy transfer method. The protease assays were
performed in 96-well black flat-bottomed plates with a final
volume of 100 μl. The SARS-CoV-2 Mpro, at a final
concentration of 0.3 μM was pre-incubated for 5 min at 37°C
with different compounds, at a final concentration of 50 μM in
the assay buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 1%
glycerol, PH7.3). The FRET substrate, Dabcyl-
KTSAVLQSGFRKME-Edans (Jin et al., 2020), is added at a
final concentration of 20 μM to the enzymatic reaction
mixture for 10 min at 37°C. The blank control well consists of
93 μl assay buffer, 5 μl DMSO and 2 μl Substrate. Enzyme activity
control well contains of 92 μl assay buffer, 1 μl Mpro, 5 μl DMSO
and 2 μl Substrate, sample wells are 92 μl assay buffer, 1 μl Mpro,
5 μl compound and 2 μl Substrate. After incubating at 37°C for
5 min in the dark, the fluorescence signals (excitation/emission,
340 nm/490 nm) of released EDANS were measured using a
multiscan spectrum (Thermo, United States). The results were
plotted as dose inhibition curves using nonlinear regression with
a variable slope to determine the IC50 values by GraghPad
Prism 7.0.

Molecular Dynamics Simulation
To investigate the stability of Myricetin inside the active site of
SARS-CoV-2 Mpro, molecular dynamics (MD) simulation was
performed on the binding complex of SARS-CoV-2 Mpro with
Myricetin obtained from the molecular docking. The MD
simulation was carried out using the PMEMD module of
AMBER18. The AMBER FF14SB force field (Maier et al.,
2015) was used for SARS-CoV-2 Mpro and the GAFF force
field (Wang et al., 2004) was used for Myricetin. The binding
complex was neutralized by adding sodium counterions and was
solvated in a rectangular box of TIP3P water molecules, with a
minimal distance of 12 Å from the protein to the box boundary.
The system was subject to energy minimization for 10,000 steps.
Next, the complex was gradually heated from 0 to 310 K, followed
by equilibration for 5 ns using NVT ensemble, and the protein
and ligand were constrained with a force constraint of
50 kcal mol−1·Å−2. Then, the system was equilibrated for 30 ns
using the NPT ensemble with constraint force constant gradually
decreased and finally removed for the productionMD simulation.
The production MD at 310 K was kept running 100 ns to obtain a
stable MD trajectory. During the MD simulation, a 12 Å
nonbonded interaction cutoff was used, the SHAKE algorithm
integration was used to constrain covalent bonds that involved
hydrogen atoms and the particle mesh Ewald (PME) method was
applied to treat long-range electrostatic interactions. The frames
were saved every 5000 steps for analysis. Binding free energy
between the SARS-CoV-2 Mpro and Myricetin was calculated
with the MM-GBSA method.
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TABLE 1 | List of drug molecular docking and primary FRET assay against SARS-CoV-2 Mpro.

Flavonoids compounds

Formononetin(1) Myricetin(2) Vitexin(3) Genistin(4)
docking score (−5.988) docking score (−8.473) docking score (−8.359) docking score (−7.934)

Diosmetin(5) Pinocembrin(6) Cimifugin(7)
docking score (−7.761) docking score (−6.748) docking score (−6.578)

Coumarins compounds

Byakangelicin(8) Toddalolactone(9) Bengenin(10)
docking score (−7.177) docking score (−6.527) docking score (−6.143)

Terpenoid

Betulinic acid(11) Oleuropein(12)
docking score (−3.623) docking score (−10.33)

Henolic compound Aldehyde compound Steroid

Ellagic acid(13) docking score (−7.222) 3,4,5-Trihydroxybenzaldehyde(14)
docking score (−3.828)

Cinobufotalin(15) docking score (−4.24)
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Cytotoxicity Assay
BEAS-2B cells were cultured at 37°C with 5% CO2 in a humid
atmosphere. BEAS-2B cells were maintained in 96-well plates at
5× 104 cells/ml, and were cultured with serially twice diluted
Myricetin for 48 h. 15 μl MTT reagent was added in each well of
96-well plate, Cell viability was measured after 4 h of culture at
37°C. The resulting formazan crystals were dissolved with 120 μl
of DMSO solution. The value of OD was measured at a
wavelength of 570 nm by using Thermo Scientific™
Multiskan™ FC (New York, NY, United States). These
experimental results were repeated at least three times.

Animals and Bleomycin Administration
Male C57BL/six mice (6–8 weeks, 20–25 g) were purchased from
Charles River Laboratory (Beijing, China). All animal feeding and
testing procedures comply with the criteria approved by the
Institutional Animal Care and Use Committee (IACUC) of
Nankai University (Permit No. SYXK 2014-0003). Mice were
exposed to a controlled temperature (22–26°C), humidity (60 ±
2%)and a 12 h cycle of light and dark, giving them free access to
food and water.

Mice were intratracheal injected with bleomycin (BLM). In
short, mice were anesthetized by intraperitoneal injection of

1% pentobarbital sodium, followed by intratracheal injection
of 2.5 U/kg bleomycin (BLM, China Hanfai Manufacturing
Co., LTD.) with sterile insulin syringe. After injection, the mice
were immediately raised and gently flapped to evenly
distribute the liquid in the lungs. In the control group, the
same method was used to inject the same amount of normal
saline (0.9% NaCl), the 30 mice were randomly divided into six
groups, with five mice in each group: control group, BLM
model group, BLM + pirfenidone (PFD) group (200 mg/kg),
BLM + Myricetin group (25 mg/kg), BLM + Myricetin group
(50 mg/kg), BLM + Myricetin group (100 mg/kg). Pirfenidone
was used as positive control. The drug Pirfenidone or
Myricetin was given daily intragastric administration
1–7 days after BLM injury, the control group and BLM
model group were given the same amount of normal saline.
Mice were euthanized on the eighth day after administration to
assess pulmonary inflammation.

Bronchoalveolar Lavage Fluid
The lungs were laved with PBS to collect bronchoalveolar lavage
fluid (BALF), underwent lavage through a blunt needle attached
to a syringe, which worked as a trachea cannula in the airway.
Bronchoalveolar lavage fluid (BALF) was collected by washing the

FIGURE 1 | Screening of natural compounds against SARS-CoV-2 Mpro and the inhibitory activity of Myricetin in vitro. (A). 50 μM compound was pre-incubated
with 0.3 μMSARS-CoV-2Mpro at 37°C for 10 min, and then 20 μMFRET substrate was added to the reaction mixture to initiate the reaction. The excitation wavelength is
340 nm and the emission wavelength is 490 nm for fluorescencemeasurement. Results Inhibition rate (%) � (RFU100% enzyme activity control-RFU sample)/(RFU100%
enzyme activity control-RFU blank control) × 100%. The results are average ± standard deviation of three repeats. (B) The inhibitory assay of Myricetin show
efficient inhibition for Mpro. Error bars: mean ± S.D. of three independent replicates.
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lung through a tracheal intubation. The lungs were washed twice
times, and each time 1 ml PBS was used,rinse once and twice for
the second time. The BALF was centrifuged at 3,000 rpm for
10 min and collected the supernatant and stored at −80°C. The
supernatant was used for inflammatory factor analysis. The
precipitated cells were resuspended with 1 ml red blood cell
lysis buffer. H&E staining was performed on each suspension
smear, and cell classification and count were performed.
Neutrophils, macrophages and lymphocytes were counted
under an optical microscope using standard morphological
standards.

Histological Examination
The left lung was fixed with 10% paraformaldehyde for 24 h, the
excess tissues were removed and embedded in paraffin. Lung
sections were prepared (4 µm), hematoxylin -eosin (H&E)
staining (Zsbio, China) for histological examination.

ELISA Detection
The supernatant of BALF was used to detect the concentration of
inflammatory factors including IL-1α, IFN-γ, IL-6, TNF-α and
IL-4 using enzyme-linked immunosorbent assay (ELISA) kits
(Jianglai biotech, shanghai, China) in accordance with the
manufacturer’s protocol.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7.0
software. Differences between experimental and control group

were assessed by Student’s t test. Significant differences among
multiple groups were detected by one-way ANOVA. P <0.05 was
considered as statistically significance, *P <0.05, **P <0.01,
***P <0.001, NS: nonsignificant.

RESULTS

Molecular Docking
We docked the 15 natural compounds and 17 chemical
compounds to the crystal structure of SARS-CoV-2 Mpro. The
2D structures of the 15 natural compounds and the
corresponding Glide XP docking scores are listed in Table 1
and the 2D structures of the 17 chemical compounds and the
corresponding Glide XP docking scores are listed in
Supplementary Table S1. Among them, four compounds (i.e.
Myricetin, Vitexin, Genistin and Oleuropein) show docking
scores lower than −8.0, which indicates that these compounds
might have effective inhibition on SARS-CoV-2 Mpro activity.

Fluorescence Resonance Energy Transfer
(FRET)-Based Screening Assay
The selected 15 natural compounds belong to 6 different
categories, 7 compounds are flavonoids, 3 compounds are
coumarins. 2 compounds is terpenoid, one is henolic, one is
aldehyde and one is steroid. We screened these 15 natural
compounds and 17 chemical compounds by fluorescence
resonance energy transfer enzymatic assay at a final
concentration of 50 µM (Figure 1A and Supplementary
Figure S3). We identified that Myricetin has effective
inhibition on enzymatic activity, the inhibition rate reached
97.79%, but, other compounds did not show obvious
inhibitory activity, including Oleuropein, Vitexin and Genistin
with low molecular docking scores.

Myricetin Inhibit the SARS-CoV-2 Mpro

Activity and Its Structural Basis
Given the encouraging results from the primary screening, we
then further characterized the inhibitory activity of Myricetin in a
dose gradient and the Myricetin inhibited SARS-CoV-2 Mpro

with 50% inhibitory concentration values (IC50) of 3.684 ±
0.076 μM (Figure 1B). As the positive control, Ebselen
inhibited Mpro with IC50 of 0.5417 ± 0.0306 μM
(Supplementary Figure S4). We measured the cell toxicity of
Myricetin to BEAS-2B cell, after treated with Myricetin for 48 h,
Myricetin had no cytotoxicity within 50 μM (Supplementary
Figure S2). We also identified the structural basis of Myricetin
and Mpro. To investigate the stability of Myricetin inside the
active site of SARS-CoV-2 Mpro, we performed 100 ns MD
simulation on the binding complex of SARS-CoV-2 Mpro with
Myricetin. The revealed binding mode of Myricetin with SARS-
CoV-2 Mpro is depicted in Figure 2, and the interaction details
betweenMyricetin and SARS-CoV-2Mpro over time are shown in
Supplementary Figure S5. The calculated RMSD shows the
stability of the system (Supplementary Figure S5A). RMSF

FIGURE 2 | The binding mode of Myricetin in SARS-CoV-2 Mpro.
Hydrogen bonds and π-π interactions betweenMyricetin and SARS-CoV-2Mpro

are represented by dashed lines.
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shows fluctuations are at the N-terminal and C-terminal ends of the
protein (Supplementary Figure S5B). The chromone ring of
Myricetin interacts with the imidazole side chain of His41
through π-π stacking (with the centroids distance of ∼6.1 Å,
Supplementary Figure S5C). The 3’− and 4’−hydroxyl of
Myricetin form hydrogen bonds with the backbone oxygen of
Phe140 and the side chain carboxyl oxygen of Glu166 (with the
hydrogen bond lengths of ∼2.3 Å and ∼2.0 Å, Supplementary
Figures S5D,E). The 7-hydroxyl of Myricetin forms a hydrogen
bondwith the backbone oxygen of Asp187 (with the hydrogen bond
length of ∼2.4 Å, Supplementary Figure S5F). These values
indicate that Myricetin maintains its position in the binding
pocket of SARS-CoV-2 Mpro. The binding free energy of

Myricetin with SARS-CoV-2 Mpro is −32.98 kcal/mol calculated
using the MMGBSA method. We also performed docking and MD
simulation for the control drug Ebselen in the same binding pocket
of Myricetin (i.e. the Cys145 site). The binding pose of Ebselen in
the Cys145 pocket is shown in Supplementary Figure S6A. The
benzisoselenazolone ring and the benzene ring of Ebselen interact
with the imidazole side chain of His41 through π-π stacking (with
the centroids distance of ∼4.8 and ∼5.4 Å, Supplementary Figures
S6B,C) in this pocket, and the binding free energy is only
−17.68 kcal/mol. Fortunately, we found that the crystal structure
of Ebselen bound to SARS-CoV-2 Mpro was just deposited in the
protein data bank quite recently (PDBID: 7BFB). In this
structure, Ebselens covalently bind to SARS-CoV-2 Mpro

FIGURE 3 |Myricetin reduces the inflammatory response in BLM-treated mice. (A) Dosing regimen in BLM-induced inflammatory model. (B–C)H&E staining of left
lung tissues (B, Scale: 50 μm) and inflammatory cells in BALF (C, Scale: 20 μm) of each group. (D) Total number of cells from BALF in each group. (E) Counts
of macrophages in BALF. (F) Counts of lymphocytes in BALF. (G) Counts of Neutrophiles in BALF. (H–K) The expression of inflammatory factors including IL-6, IL-1α,
TNF-α and IFN-γ in BALF were detected by ELISA. Data are shown as mean ± SD. # represent the difference between NaCl and BLM-treated group, ##P < 0.01,
###P < 0.001, ####P < 0.0001. * represent the difference between BLM-treated and treatment group, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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through four binding sites, e.g. the Cys44 site, the Cys145 site,
the Cys156 site and the Cys300 site. The aforementioned
binding mode (in Supplementary Figure S6A) only reflects
the binding of Ebselen in the Cys145 site. The molecular size of
Ebselen is small, it can easily reach these four Cys sites in SARS-
CoV-2 Mpro. Moreover, the sulfydryl group of Cys is quite
active, when Ebselen enters the active site, they will react quickly
and form the covalent complex. These provide the structural
basis for Ebselen having lower IC50 than other ligands.

Myricetin Reduced the Inflammatory
Response in Bleomycin-Treated Mice and
Macrophage
To study the anti-inflammatory effect of Myricetin on lung
injury, a BLM-induced lung injury model was established. The
drug was administered continuously for 7 days, and pirfenidone
was used as a positive control (Figure 3A). The results of H&E
staining in lung biopsy showed that Myricetin significantly
improved the infiltration of inflammatory cells in BLM
damaged lung tissue (Figure 3B). In the BALF of BLM-treated
mice, the total number of inflammatory cells and the number of
different inflammatory cells were significantly up-regulated,
while the number of inflammatory cells in Myricetin-treated
mice was significantly down-regulated in a dose dependent
manner. The effect of high dose Myricetin (100 mg/kg) is
similar to that of the positive drug pirfenidone (Figures
3C–G). In addition, the expression levels of inflammatory
factors such as IL-6, TNF-α,IFN-γ and IL-1α in BALF were
measured, and the results showed that Myricetin significantly
inhibited the expression levels of inflammatory factors (Figures
3H–K). These data showed that Myricetin reduced lung
inflammation in BLM-induced mice.

DISCUSSION

The popularity of coronavirus disease 2019 (COVID-19) has
given rise to an urgent need for new therapy strategies (Wu et al.,
2020). At present, there is no available specific drugs targeting
SARS-CoV-2 (Luo et al., 2020), but new drug candidates targeting
the SARS-CoV-2 Mpro to inhibit the viral replication are being
explored with the X-ray crystal structure was reported (Garg and
Roy, 2020; Jin et al., 2020; Ma et al., 2020; Zhang et al., 2020).
Now, a large number of compounds have been screened by
structure-based virtual screening, including FDA approved
drug libraries (Kandeel and Al-Nazawi, 2020), drug candidates
in clinical trials (Mahanta et al., 2020) and other
pharmacologically active compounds (Vijayakumar et al.,
2020). Lopinavir and nelfinavir (Costanzo et al., 2020; Reiner
et al., 2020), the FDA approved antiretroviral drug used against
HIV, showed excellent binding affinity with the Mpro through
virtual screening and in silico studies. However, it were proved
that they have no inhibitory activity at 20 μM by FRET-based
assay (Hung et al., 2020), which reflecting the fact that no benefit
was observed in patients with severe COVID-19. Tens of
thousands of phytochemicals and Chinese medicinal agents,

such as flavonoids, garlic, naturally occurring coumarin
derivatives and green tea polyphenols, have been determined
to have higher affinity than some marketed drugs and may be
promising candidates, but their usefulness for targeting Mpro

needs experimental validation and clinical manifestation (Ghosh
et al., 2020; Joshi et al., 2020; Li et al., 2020).

We compared the binding affinity of 15 natural compounds,
contain of flavonoids, coumarins, terpenoids, henolic, aldehyde
and steriod compounds, with SARS-CoV-2 Mpro through virtual
analysis. Oleuropein, Myricetin and vitexin have high affinity
with Mpro, however, only Myricetin exhibit significant inhibition
with IC50 3.684 ± 0.076 μM by FRET-based assay. Structurally,
Myricetin can interact with His41 through π-π stacking and form
hydrogen bonds with Phe140, Glu166 and Asp187 in the catalytic
center of SARS-CoV-2 Mpro. This result indicates that the anti-
viral activity test based on experiments are necessary for
developing more effective and reliable anti-SARS-CoV-2 drugs.

COVID-19 is an inflammatory disease caused by SARS-CoV-2
(Zhu et al., 2020). Excessive inflammation is central to a poor
prognosis, and associated with inflammatorymediators such as IL-
6 and lactate dehydrogenase (LDH) (Conti et al., 2020; Rodrigues
et al., 2021). Here, we further evaluated the effect of Myricetin on
pulmonary inflammation with bleomycin treated mice. The results
showed that Myricetin can effective inhibit the infiltration of
inflammatory cells and the secretion of inflammatory factors in
the lung, especially lymphocytes and IL-6.

CONCLUSION

In a word, Myricetin may be an potential candidate drug for
COVID-19 therapy by both anti-SARS-CoV-2 and anti-
inflammation. Small-molecule bioactive natural products could
be a useful source of SARS-CoV-2Mpro inhibitors and an effective
first line of defense against COVID-19.
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The Role of Pulmonary Surfactants in
the Treatment of Acute Respiratory
Distress Syndrome in COVID-19
Shengguang Wang1†, Zhen Li1†, Xinyu Wang1, Shiming Zhang1, Peng Gao1* and
Zuorong Shi2*

1School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China, 2School of Chinese Medicine,
Shandong University of Traditional Chinese Medicine, Jinan, China

Lung alveolar type-II (AT-II) cells produce pulmonary surfactant (PS), consisting of proteins
and lipids. The lipids in PS are primarily responsible for reducing the air-fluid surface tension
inside the alveoli of the lungs and to prevent atelectasis. The proteins are of two types:
hydrophilic and hydrophobic. Hydrophilic surfactants are primarily responsible for
opsonisation, thereby protecting the lungs from microbial and environmental
contaminants. Hydrophobic surfactants are primarily responsible for respiratory
function. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the
lungs through ACE-2 receptors on lungs and replicates in AT-II cells leading to the
etiology of Coronavirus disease – 2019 (COVID-19). The SARS-CoV-2 virus damages the
AT-II cells and results in decreased production of PS. The clinical symptoms of acute
respiratory distress syndrome (ARDS) in COVID-19 patients are like those of neonatal
respiratory distress syndrome (NRDS). The PS treatment is first-line treatment option for
NRDS and found to be well tolerated in ARDS patients with inconclusive efficacy. Over the
past 70°years, a lot of research is underway to produce natural/synthetic PS and
developing systems for delivering PS directly to the lungs, in addition to finding the
association between PS levels and respiratory illnesses. In the present COVID-19
pandemic situation, the scientific community all over the world is searching for the
effective therapeutic options to improve the clinical outcomes. With a strong scientific
and evidence-based background on role of PS in lung homeostasis and infection, few
clinical trials were initiated to evaluate the functions of PS in COVID-19. Here, we connect
the data on PS with reference to pulmonary physiology and infection with its possible
therapeutic benefit in COVID-19 patients.
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INTRODUCTION

Human pulmonary surfactant (PS) is an endogenous lipoprotein
complex produced naturally in the lungs. PS forms a layer on the
alveolar epithelium and is responsible in reducing surface tension
at the air-fluid interface on the alveolar surface (Agassandian and
Mallampalli, 2013). The reduced alveolar surface tension will
allow the expansion of alveoli and allows gas exchange (Seadler et al.,
2020). Human PS contains phospholipids, mainly
dipalmitoylphosphatidylcholine (DPPC), and surfactant proteins-
A, B, C, and D. The PS is present as a barrier when inhaled
particle and noxious agents come in contact with it and enhances
the clearance of particles. PS also participate in host defense against
infections and inflammation. The loss or deficiency in endogenous
surfactant is implicated with respiratory disorders (Wert et al., 2009).
During the gestation period, the production of endogenous lung
surfactant results in lowering alveolar surface tension and stabilizes
the alveoli to prevent the lung from collapsing at resting
transpulmonary pressures. Premature infants are highly likely to be
PS deficient, which causes increased surface tension leading to lung
collapse and results in neonatal respiratory distress syndrome (NRDS).
NRDS is associated with fast breathing, increased heart rate and

apoxia, which in certain cases may lead to death (Khawar and
Marwaha, 2021). PS therapy is currently the first-line treatment
for NRDS.

During the COVID-19 pandemic, patients admitted in
intensive care units are mainly those with clinical symptoms
of acute respiratory distress syndrome (ARDS). The severe acute
respiratory syndrome coronavirus (SARS-CoV)-2-induced lung
injury in COVID-19 patients may lead to respiratory failure.
Emerging evidence on respiratory mechanisms suggests that
clinical symptoms of ARDS in COVID-19 patients resemble to
those of NRDS caused by surfactant deficiency.

In this review, we connect the current understanding of the
pathophysiology of lungs in COVID-19 patients with the possible
role of PS in circumventing ARDS symptoms in COVID-19
patients.

PULMONARY SURFACTANT IN LUNG
HOMEOSTASIS

PS is an important biosurfactant in human. PS lines the alveoli
and terminal bronchioles, thereby protecting the lungs from

FIGURE 1 | Lung pulmonary surfactant (PS) (A) Relative precent of various components in PS (B) Representative structure of PS (C) Molecular representation of
surfactant protein (SP)-A (D) Molecular representation of SP-B (E) Molecular representation of SP-C (F) Molecular representation of SP-D. DPPC, dipalmitoyl
phosphatidylcholine; NL, neutral lipid; PC, phosphatidylcholine; PG, phosphatidylglycerol; PL, phospholipid; SP, surfactant protein.
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atelectasis (Han and Mallampalli, 2015). PS is synthesized in type
II alveolar epithelial cells, stored in lamellar bodies, and is
secreted via exocytosis into the alveolar lumen. PS is a
complex mixture comprising 90% lipids and 10% surfactant
proteins by weight. The lipids are made of DPPC (36%),
unsaturated phosphatidylcholine (PC; 32%),
phosphatidylglycerol (PG; 8%), cholesterol (7%), other
phospholipids (PL; 4%) and other neutral lipids (NL; 3%). The
surfactant proteins consist of plasma protein (3%), surfactant
protein (SP)-A (5%), SP-B (0.7%), SP-C (0.8%) and SP-D (0.5%)
as depicted in Figure 1A) (Bernhard, 2016).

The PS lipids forms a monolayer at the air-fluid interface,
reduces the surface tension to a minimum of <10 mN/m and
thus, prevents the collapse of alveoli and maintains the alveolar
stability (Sunde et al., 2017). The main active component of PS
lipids is DPPC.

The SPs are classified into hydrophilic SPs (SP-A and SP-D)
and hydrophobic SPs (SP-B and SP-C; Figures 1C–F). The details
of SPs and PS lipids are provided in Table 1 (Wang et al., 2020).
SP-A and SP-D are highly ordered collagen-like oligomeric
glycoprotein belonging to collectin family. These two SPs are
part of innate immune response and protect the lungs against
inhaled chemicals and microorganisms via stimulating
phagocytosis by alveolar macrophages. They are also involved
in surfactant metabolism. SP-A is the most abundant SP and
accounts for 2–3% w/w of total SPs. It does not have any effect on
surface tension at air-fluid interface in alveoli. However, it
enhances the phospholipid absorption process to the air-fluid
interface, regulates the PS secretion by AT-II cells, binds specific
carbohydrate moieties found on lipids and on the surface of
microorganisms and prevents the inhibition of surfactant
function by plasma proteins which are leaked into the alveolar

TABLE 1 | Characteristics and details of pulmonary surfactant proteins and surfactant lipids.

Name Size Chemistry Major functions Ref

SP-A 28–36 kDa Hydrophilic Involved in facilitating phagocytosis, inhibition of phospholipase A2

activity and maintaining surfactant integrity during lung injury
[1]

Octadecameric glycoprotein,
acidic

SP-B 8 kDa Hydrophobic. Involved in decreasing the surface tension and enhancing
adsorption of PL at air-water interface. Deficiency results in severe
respiratory failure

[2]
Disulfide linked homodimer with 79
amino acids (AA)

SP-C 4.2 kDa Hydrophobic. Involved in stabilizing phospholipids, increasing the viscosity of air-
water interfacial film

[2]

α-helical protein with 35 AA Deficiency results in minimal effect on respiratory function
SP-D 43 kDa Hydrophilic. Dodecameric

glycoprotein with 4 trimmers
Involved in regulating surfactant metabolism and promotes
phagocytosis by alveolar cells

[3]

1,2-Dipalmitoyl-sn-glycero-3-
phosphatidylcholine

734.05 gmol-
1

PC16:0/16:0, C40H80NO8P Involved in the generation of near-zero surface tension [3]

1-Palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC)

760.09 gmol-
1

PC 16:0/18:1 Involved in making the membrane fluid at body temperature [3,4]
C42H82NO8P

1-Palmitoyl-2-palmitoleoyl-sn-glycero-3-
phosphocholine (PPPC)

732.04 gmol-
1

PC 16:0/16:1, C40H78NO8P Involved in regulating respiratory rate and surface dynamics of
surfactant

[3,4]

1-Palmitoyl-2-myristoyl-sn-glycero-3-
phosphocholine

706 gmol-1 PC16:0/14:0, C38H76NO8P Involved in regulating respiratory rate and alveolar macrophages
function to improve protection

[4,5]

1,2-Dipalmitoyl- sn-glycero-3-
phosphoglycerol (DPPG)

722.98 gmol-
1

C38H75O10P Involved in reducing permeability of benzo [a]pyrene [4,5]

1-Palmitoyl-2-oleoyl-sn-glycero-3-
phosphoglycerol (POPG)

749.02 gmol-
1

C40H77O10P The most abundant PG in human pS. Enhances fluidization of film,
inhibits macrophage proinflammatory responses and antiviral

[4,5]

Phosphatidylserine 792.09 gmol-
1

C42H82NO10P Involved in determining the cellular and subcellular distribution of
quinidine

[2,4]

PE 299.22 gmol-
1

C9H18NO8P Involved in stabilizing membrane protein by initiation of lateral
pressure and curvature stress

[2,4]

Phosphatidylinositol 334.21 gmol-
1

C9H19O11P Involved in increasing the rate of alveolar fluid clearance and
stabilization of surfactant mono layer

[4,6]

Cholesterol 386.66 gmol-
1

C17H46O Involved in increasing the surfactant fluidity [4,7]

Note: AA, amino acid; DPPC, dipalmityl phophotidylcholine; PE, phosphatidylethanolamine; PS, Pulmonary surfactant; SP, surfactant protein; C, Carbon; H, Hydrogen: O, Oxygen; p,
Phosphorus; N, Nitrogen.
References.
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space (Echaide et al., 2017). The encoded protein may also be
involved in surfactant metabolism. SP-B and SP-C are
apolipoproteins comprising of 1–2% w/w of total SPs (Echaide
et al., 2017). These are involved in the spreading of the surfactant
layer at the air-fluid interface and thus reduce the surface tension
(Weaver and Conkright, 2001). The SP-B enhances the rate of
spreading and increases the stability of monolayers.

PULMONARY SURFACTANT DEFICIENCY/
DYSFUNCTION

In anticipation of birth during gestation period, the alveoli start
producing PS in 24th week and reaches to the peak production in
34th week. The endogenous cortisol stimulates the production of
PS during gestation. Premature infants, especially those born
before 34th weeks, have immature lungs and are deficient in pS.
These infants have difficulty in breathing and develop a condition
called NRDS (Nogee, 2019). Pregnant women who are at the risk
of premature delivery are given betamethasone for 48 h before
delivery to improve the lung maturity and reduce the risk of
developing NRDS. The genetic disorders comprising the
mutations in SP-B and SP-C are reported to cause surfactant
dysfunction, leading to the development of NRDS. Observational
studies suggested that humans with ARDS have altered PS
composition and its functions. AT-II epithelial cells are
reported to be the primary site of influenza virus replication.
Mice infected with influenza virus have shown lower amounts of
phosphatidylcholine and alters the metabolism of PS, which are
attributed to the development of ARDS (Woods et al., 2016).

The effects of SP deficiencies or dysfunctions is paramount in the
pathogenesis of neonatal respiratory diseases (Verlato et al., 2018). In
neonates, SP-A is critical in lung immune system while SP-B is
important in sustaining respiratory physiology. It was also
substantiated that there is a significant lack of surfactant protein
found in preterm newborns with RDS or had experienced failure in
extubation than that of newborns with normal functioning lungs
(Ballard et al., 2019). It is also known that polymorphisms of SP-A, B
and D showed association with idiopathic pulmonary fibrosis and
various other pulmonary diseases. Chang et al. reported that SP-A
+186A/G and SP-B 1580C/T polymorphisms results in the elevated
risk of preterm NRDS; on the other hand, polymorphisms of SP-B
–18A/C, SP-D Met11 ThrT/C, and Ala160 ThrG/A genes are not
associated to the risk of NRDS (Chang et al., 2016).

The beneficial use of surfactant protein as a treatment in
neonates with RDS has been a breakthrough and has been studied
in-depth for neonatal medicine in the past 3 decades (Speer et al.,
2013). Thus, it is logical to hypothesize that restoration of PS does
improve the lung function (Echaide et al., 2017) and circumvent
the symptoms of NRDS in infants and ARDS in adults.

APPLICATIONS OF PULMONARY
SURFACTANT

The primary application of pulmonary surfactants is in the
treatment of NRDS in premature infants. However, the studies

did not demonstrate significant benefit of pulmonary surfactants
in ARDS. Meta-analysis of randomized controlled trials for the
effect of surfactant in adult patients with ARDS (Ballard et al.,
2019) revealed neither improvements in the mortality nor
improvement in oxygenation. Marcel Filoche et al. proposed
that insufficient delivery of PS to the lungs in adults could be
the reason for showing the efficacy in adults (Speer et al., 2013).
One of the postulations put forward to explain the observed
differences in clinical efficacy of PS in NRDS and ARDS is that in
case of NRDS, the surfactants are administered well in advance
before the RDS becomes severe in infants who are at the risk of
developing NRDS. Thus, it is worth to explore the option of
checking the efficacy of PS in early stages of ARDS. However, this
approach requires the identification of patients who are at the
stage of developing ARDS. Thus, identification of PS levels in
serum would predict the occurrence of ARDS.

The clinical efficacy of PS is also being actively investigated in
other pulmonary diseases such as asthma and pneumonia (Choi
et al., 2020). One study reported that PS improved lung function
in an acute asthma exacerbation but not in stable asthma (Tepper
et al., 2012). One study reported the administration of PS
improved oxygenation in Gram-negative lobar pneumonia and
in HIV-infected patients with P. carinii pneumonia or RSV
pneumonia (Han and Mallampalli, 2015). Another study
reported that PS improved the pulmonary function in adult
patient with stable chronic bronchitis (Agudelo et al., 2020).
In addition, PS is reported to decrease the cytokine release,
synthesis of inflammatory mediators, lymphocyte proliferation,
immunoglobulin production, and expression of adhesion
molecules. Another study reported PS improves the anti-
inflammatory effect of amikacin. All the above observations
suggest the possible role of surfactants in modulating the
immune responses in pulmonary diseases.

The SP-A and SP-D are reported to bind to viruses (influenza
A, human immunodeficiency virus (HIV), respiratory syncytial
virus (RSV), SARS-CoV) and inhibit their activity of the viruses
through viral neutralization, agglutination, and enhanced
phagocytosis (Cañadas et al., 2020).

THERAPEUTIC PULMONARY
SURFACTANTS

There are two types of therapeutic PS: natural and synthetic.
Natural PS are derived from animals while synthetic PS contain
peptides that mimic SP-B and SP-C. Therapeutic PS are the first-
line treatment option for NRDS (Whitsett, 2014; Hentschel et al.,
2020). The natural therapeutic PS are being sourced from bovine,
porcine, and human amniotic fluid. Currently the use of human
amniotic fluid for sourcing therapeutic PS are halted mainly
because of non-availability and cost. The advantage of natural
surfactants is that they contain surfactant-associated proteins and
thus results in better spreading and lung defense properties.

Due to the difficulties in sourcing animal derived surfactant,
well-defined synthetic surfactants were developed. Initially, the
synthesis of artificial SP-B and SP-C used for the treatment of
neonatal RDS was indeed challenging. It was also reported that
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synthetic surfactant containing only one protein has not found
success (Johansson and Curstedt, 2019). Both synthetic and
natural surfactants are found to be effective in RDS with
natural surfactants containing SP-B and SP-C are found to be
superior in clinical efficacy.

To date, the list of natural surfactants, and synthetic
surfactants developed for the treatment of respiratory
infections are shown in Table 2. First generation synthetic
surfactants were prepared in combination of DPPC with either
egg phosphatidylglycerol (ALEC®) or hexadecanol and tyloxapol
(Exosurf®) (Zhang et al., 2011). However, the first-generation
surfactants do not contain either SP-B or SP-C peptide mimics,
thus limiting their clinical efficacy. The second-generation of
synthetic surfactants contain either SP-B (Surfaxin®) or SP-C
(Venticute®) peptide (Bae et al., 2016). The second-generation of
synthetic surfactants are found to be clinically effective,
suggesting the presence of SP-B and SP-C in surfactants are
essential.

Colfosceril palmitate is a first generation commercially
available artificial surfactant (Law et al., 2014; Sardesai et al.,
2017). At present, it is under the state of cancellation in the post-
marketing stage because of adverse effects. In addition to being
useful in RDS, it has also shown to significantly reduce the risk of
pneumothoraces, pulmonary interstitial emphysema and
mortality, bronchopulmonary dysplasia, intraventricular
hemorrhage and patent ductus arteriosus. Sinapultide, also
known as KL4 peptide, mimics human SP-B. It is
administered as its aqueous dispersion with the phospholipids.
Lucinactant is a synthetic surfactant containing sinapultide, and
lipids, DPPC, palmitoyloleoyl phosphatidylglycerol (POPG) and
a palmitic acid. Pumactant is another synthetic surfactant
containing naturally occurring phospholipids DPPC and PG.

Calfactant is a natural pulmonary surfactant from calf lungs
containing phosphatidylcholine, SP-B and SP-C. Beractant is
another natural pulmonary surfactant from bovine lungs
containing phosphotidylcholine, triglycerides, fatty acids, SP-B
and SP-C. Portactant alfa is another natural pulmonary surfactant

from porcine lungs containing phosphatidylcholine,
dipaImitoylphosphatidylcholine, SP-B and SP-C.

PULMONARY SURFACTANTS IN COVID-19

SARS-CoV-2 enters the body through lungs via binding of viral
spike protein with angiotensin converting enzyme 2 (ACE-2)
receptor (Mason, 2020). After entry, SARS-CoV-2 is postulated to
destroy type II alveolar cells, the site for the synthesis of
pulmonary surfactants, resulting in decreased production of
pS. Decreased surfactant production causes atelectasis and
reduced the pulmonary compliance. The patients with
Coronavirus disease 2019 (COVID-19) are presented with
clinical symptoms which are very similar to those observed in
NRDS (Nieman et al., 2018; Schousboe et al., 2020) for which
deficiency in PS is the primary cause (Figure 2). Decreased
concentration of PS, altered composition of PS and mutations
in PS are reported to be the critical factors in COVID-19
mortality (Weiskirchen, 2020). Mirastschijski et al. has
suggested to include pulmonary surfactants therapy in the
early stages together with standard ARDS care. Preliminary
observations from lung autopsies of COVID-19 patients found
that pulmonary surfactant increased blood oxygenation, reduced
pulmonary edema, and ameliorated the excessive inflammatory
reaction (Mirastschijski et al., 2020). In addition, PS is reported to
have the ability to recognize the SARS-CoV-2 spike protein and
thereby activate the macrophages for phagocytosis (Matera et al.,
2020). This evidence motivated the interventional clinical trials to
investigate the clinical effectiveness of PS in COVID-19 patients.

Gattinoni et al. (Gattinoni et al., 2020) has classified COVID-
19 patients into two different groups; one group develops acute
respiratory distress syndrome (ARDS) with low compliance and
another group develops non-ARDS with normal compliance.
Gene expression studies on lung biopsy cells in COVID-19
patients have confirmed the downregulation of pulmonary
surfactant proteins and their metabolism which has provided a

TABLE 2 | Clinical trials on pulmonary surfactants for the treatment of ARDS in COVID-19 patients.

Surfactant Dose Administration
route

Study type Primary purpose NCT number

Poractant alfa 50 mg/kg only once Bronchial fibroscopy Interventional Treatment using Curosurf
®
in adult acute respiratory distress

syndrome due to COVID-19
NCT04384731

Poractant alfa 30 mg/kg once a day
for 3 days

Endotracheal
intubation

Interventional Treatment using poractant alfa - curosurf for SARS-cov-19
ARDS (Covid-19)

NCT04502433

Bovine lung extract
surfactant

50 mg/kg once a day
for 3 days

Endotracheal
intubation

Interventional Treatment using London’s exogenous surfactant study for
COVID-19 (LESSCOVID)

NCT04375735

Bovine lung extract
surfactant

150 mg twice a day for
5 days

Inhalation Observational Treatment using Surfactant-BL in adult ARDS due to
COVID-19

NCT04568018

Lucinactant 80 mg Injection Interventional Treatment by assessing the safety and preliminary tolerability
of lyophilized lucinactant in adults with Covid-19

NCT04389671

COVSurf N/A N/A Interventional Treatment using delivery of the surfactant to the lungs NCT04362059
Exogenous
surfactant

Inhalation Interventional Evaluation of the effect of exogenous surfactant through
nebulizer mask on clinical outcomes in Covid-19 patients

NCT04847375

Biological: AT-100
(rhSP-D)

75 or 150 mg once a
day for 7 days

Intratracheal
administration

Interventional Treatment: Safety study on AT-100 in treating adults with
severe COVID-19 infection

NCT04659122

Note: N/A, Not applicable; ARDS, Acute Respiratory Distress Syndrome; NCT, National Clinical Trials.
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scientific base to advocate further studies on investigating the
usefulness of surfactant therapy in COVID-19 patients (Islam
and Khan, 2020). Clinical trials are underway to determine the
association of SP-D levels (NCT04618861) and SP genetic
variants (NCT04650191) with severity of COVID-19 infection
(Surfactant Protein D Levels in Covid-19 Infection: Case-Control
Study; Surfactant Protein Genetic Variants in COVID-19
Infection) and the results are not yet available.

Peter et al. (Schousboe et al., 2020) has postulated that
COVID-19 patients with pulmonary surfactant deficiency
develop symptoms resembling neonatal respiratory distress
syndrome (NRDS). A clinical trial (NCT04609488) is
underway to determine the levels of surfactant proteins in
COVID-19 patients to delineate the association between
surfactant deficiency and progression of COVID-19 disease.

Lung surfactant therapy is a standard, safe and effective
therapy for the treatment of ARDS in neonates, however
clinical trials on recombinant SP-C based surfactant was found
to be ineffective in the treatment of ARDS in adults (Spragg et al.,
2004). The natural surfactants, compared to synthetic surfactants,
are reported to be superior in improving the blood oxygenation
and shortening the ventilation time in infants (Ainsworth et al.,
2000; Been and Zimmermann, 2007). These observations suggest
that early administration of natural surfactant to COVID-19
patients might be beneficial to improve the pulmonary
function (Mirastschijski et al., 2020).

A recent review article by Francesco et al. (Cattel et al., 2021)
has highlighted the potential use of exogenous surfactants early in
the treatment of COVID-19 ARDS. Kumar et al. (Kumar, 2020)
has proposed an innovative hypothesis that co-aerosolized
exogenous pulmonary surfactant and ambroxol can be a
potential therapeutic option for the treatment of COVID-19
ARDS. The hypothesis was made based on reported evidences
on beneficial effects of exogenous surfactants (Davidson et al.,
2006; Dushianthan et al., 2012; Zhang et al., 2013; Meng et al.,
2019) and ambroxol (Malerba and Ragnoli, 2008; Paleari et al.,
2011; Kantar et al., 2020) in the treatment of ARDS. However, this
hypothesis is yet to be tested. A prospective observational cohort
study revealed that autoimmunity in severe COVID-19 patients is
mediated through binding of immunoglobulin A (IgA) antibodies
to human surfactant protein B (SP-B) and surfactant protein C
(SP-C) leading to reduced levels of pulmonary surfactant
(Sinnberg et al., 2021).

Abbas et al. (Abbasi et al., 2021) has made a serendipitous
observation that non-invasive ventilation improved the survival
of mice with bacterial pneumonia and the improved survival is
associated with the expression of surfactant protein A.Majority of
the COVID-19 patients are also reported to be co-infect with
other pathogens (Hughes et al., 2020; Jiang et al., 2020; Kim et al.,
2020; Roh et al., 2021) and many research papers (Floros and
Phelps, 2020; Tekos et al., 2020; Xu et al., 2020) have highlighted
that SP-A variants have shown beneficial effects in the treatment
of ARDS in COVID-19 patients under different scenarios. Thus,
in an opinion article by Abbs et al. (Abbasi et al., 2021), the team
has expressed that non-invasive ventilation using high-flow nasal
cannula (HFNC) may be beneficial for COVID-19 patients which

FIGURE 2 | Pathological changes in the lung alveolus during COVID-19
(A) Normal alveolus is wrapped with capillaries containing red blood cells.
Oxygen in the alveolus is exchanged with carbon dioxide in the capillaries. The
alveolus surface contains alveolar Type I and Type II cells. Type I cells enables
gas exchange. Type II cells secrete pulmonary surfactant (PS). PS lines the alveolus
andprevent it fromcollapsing (B) In amoderately infected lung, Alveolar Type II cells
are inflamed resulting in reduced pulmonary surfactant. Surface tension and
pressure increase inside the alveolus affecting the gas exchange. Vasodilation of
the capillary occurs resulting in the release of inflammatory cytokines and
accumulation of protein-rich fluid inside the alveolus (C) In severely infected lung,
the alveolar type II cells becomemore inflamed thereby resulting in complete loss of
pulmonary surfactant. Scar tissue on the alveolar surface began to form. The
release of inflammatory cytokines is increased, and more protein-rich fluid
accumulate inside the alveolus. The oxygen/carbon dioxide exchange is greatly
hindered and thus patients in this stage must undergo intubation as an aid to
breathe.
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warrants further laboratory and clinical studies to confirm
(Abbasi et al., 2021).

A clinical study (Choreño-Parra et al., 2021) has concluded
that serum SP-D level is high only in pandemic influenza A
(H1N1) but not in COVID-19. However, contradicting to this
study, another clinical study (Kerget et al., 2020) has concluded
that human SP-D levels is higher in individuals with COVID-19
compared to those without COVID-19. The contradictory results
from these two studies may be due to differences in the
population demographics, and objectives of the study. Thus,
more clinical studies are warranted to confirm the association
between SP-D levels and progression of COVID-19 infection.

In a case study of a 48-year-old-male non-smoker COVID-19
patient with comorbidities of hyperlipidemia and prediabetes
(Heching et al., 2021), it is reported that administration of
surfactant (Calfactant) directly to the lungs has improved
oxygenation. This observation rises a hope that surfactant therapy
would be beneficial for treatingARDS inCOVID-19 and thuswarrant
further detailed investigations to confirm the therapeutic efficacy of
surfactants in COVID-19 patients.

The recombinant fragment of human lung surfactant protein
D (rfhSP-D) is reported to be more potent than remdesivir, an
antiviral, in inhibiting the replication and infectivity of SARS-CoV-2
and the activity is found to mediated through down regulation of
RdRp gene expression (Hsieh et al., 2021; Madan et al., 2021).

Computational fluid dynamics simulation studies (Kitaoka
et al., 2021) using 3D human airway models has predicted
that wedge instillation of pulmonary surfactant from
subsegmental bronchi is better than conventional method to
deliver the effective concentration of pulmonary surfactant to
the lungs to protect them from COVID-19 infection.

Hideyuki has put forward a hypothesis (Takano, 2020) based
on cumulative scientific evidences that pulmonary surfactants or
synthetic surfactants or surfactant production stimulants may be
effective for either prophylaxis or treatment for COVID-19.
However, this hypothesis is yet to be tested and validated in clinic.

CLINICAL TRIALS ON PULMONARY
SURFACTANTS IN COVID-19 PATIENTS

Based on the data retrieved from https://clinicaltrials.gov/,
accessed on June 15, 2021, the details of on-going clinical
trials in surfactants related to COVID-19 are provided in
Table 3. Three surfactant products: poractant alfa, bovine lung
extract surfactant (BLSE), and lucinactant are in phase I/II trials
to test their efficacy in improving the clinical outcomes of ARDS

in COVID-19 patients. There are two trials that are underway on
poractant alfa using two different routes of administration:
bronchial fibroscopy and endotracheal intubation. Another
two trials are underway on BLSE using two different routes of
administration: endotracheal intubation and inhalation. As for
lucinactant, one trial is underway, and it is administered via
injection only. In addition, two trials are going on to determine
the levels of surfactants present in the lungs and serum of
COVID-19 patients with the objective of finding the
association between the surfactant levels and ARDS symptoms.
Lastly, one clinical trial is underway to determine the efficacy of
new drug delivery system directly to the lungs using COVsurf.

CONCLUSION

SARS-CoV-2 uses ACE-2 receptor on lungs for entry and alveolar
type II cells for replication. Infection with SARS-CoV-2 causes
ARDSwhichmay lead to respiratory failure. AT II cells are the sites of
pulmonary surfactant production. Lack of PS is the principal cause for
NRDS and viral infections are known to reduce PS levels in lungs. PS
therapy is the mainstay for NRDS treatment across the world for
many years. The results from clinical trials on the efficacy and safety
PS in adults with ARDS were not significant in terms of clinical
outcomes but they were proven to be safe. The lack of efficacy is
attributed to the insufficient delivery of PS to the lungs and thus
research has been initiated to investigate new drug delivery systems for
improving the PS delivery directly to the lungs. Serum PS levels were
found to be low in COVID-19 patients and ARDS clinical symptoms
in COVID-19 were found to be like those of NRDS. The science of
pulmonary surfactant has come a long way since it was discovered in
the 1950s andprovides very strong theoretical evidence suggesting that
PS could play a role in COVID-19 treatment. In the current COVID-
19 pandemic crisis, researchers and health care workers across the
globe have been working hard to find a solution to end the pandemic.
Few clinical trials are in progress to test the efficacy of three pulmonary
surfactants in improving the clinical outcomes in COVID-19 patients,
to determine the association between surfactant levels and severity of
ARDS in COVID-19 patients, and new drug delivery systems for
improved and safe delivery of PS in COVID-19 patients.
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TABLE 3 | List of natural and synthetic surfactant proteins.

Trade name Surfactant Type

Curosurf® Porcine surfactant Natural
Survanta® Modified version of bovine surfactant Natural
ALEC® Combination of DPPC and egg phosphatidylglycerol Synthetic
Exosurf® Combination of DPPC with hexadecanol and tyloxapol Synthetic
Surfaxin® SP-B analog KL4 Synthetic
Venticute® Recombinant human surfactant protein C Synthetic
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The Role of High-Density Lipoprotein
in COVID-19
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The current Coronavirus disease 2019 (COVID-19) pandemic has become a global
challenge. Managing a large number of acutely ill patients in a short time, whilst
reducing the fatality rate and dealing with complications, brings unique difficulties. The
most striking pathophysiological features of patients with severe COVID-19 are
dysregulated immune responses and abnormal coagulation function, which can result
in multiple-organ failure and death. Normally metabolized high-density lipoprotein (HDL)
performs several functions, including reverse cholesterol transport, direct binding to
lipopolysaccharide (LPS) to neutralize LPS activity, regulation of inflammatory
response, anti-thrombotic effects, antioxidant, and anti-apoptotic properties. Clinical
data shows that significantly decreased HDL levels in patients with COVID-19 are
correlated with both disease severity and mortality. However, the role of HDL in
COVID-19 and its specific mechanism remain unclear. In this analysis, we review
current evidence mainly in the following areas: firstly, the pathophysiological
characteristics of COVID-19, secondly, the pleiotropic properties of HDL, thirdly, the
changes and clinical significance of HDL in COVID-19, and fourthly the prospect of HDL-
targeting therapy in COVID-19 to clarify the role of HDL in the pathogenesis of COVID-19
and discuss the potential of HDL therapy in COVID-19.

Keywords: COVID-19, SARS-CoV-2, lipoproteins, HDL, angiotensin-converting enzyme 2

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), outbroke in Wuhan in late 2019 (Guan W.-J. et al., 2020; Wang et al., 2020a; Huang
C. et al., 2020; Hui et al., 2020; Lu et al., 2020). It has since spread worldwide (Albarello et al., 2020;
Giunta et al., 2020; Young et al., 2020). By June 30, 2021, more than 180 million people have been
infected with SARS-CoV-2, and nearly four million have died globally (WHO, 2021a). The COVID-
19 pandemic has become a significant burden on global healthcare systems. Patients with COVID-19
with underlying metabolic dysfunction, such as type 2 diabetes and non-alcoholic fatty liver disease,
have a higher risk of poor outcomes (Guan W.-j. et al., 2020; Mahamid et al., 2020; Ji et al., 2021). A
decline in total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels
in patients with COVID-19 has been observed in several studies, including our previous research
(Wei et al., 2020a; Wang et al., 2020b). Our data also shows that among the several lipids named
above, only HDLwas associated with the severity of COVID-19 (Wang G. et al., 2020). In this review,
we aim to analyze the available evidence about how HDL dysfunction is associated with infection,
including a focus on COVID-19.
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SARS-COV-2

SARS-CoV-2 is a positive-sense, single-stranded RNA virus,
surrounded by an envelope (Han et al., 2020; Kočar et al.,
2021). SARS-CoV-2 is reported to share 79.6% homology with
SARS-CoV (Zhou F. et al., 2020). The highly pathogenic CoVs,
including Middle East Respiratory Syndrome (MERS) CoV,
SARS-CoV-1, and SARS-CoV-2, mainly invade the lower
respiratory tract through the upper respiratory tract and result
in fatal pneumonia (Han et al., 2020).

SARS-CoV-2 entry into susceptible host tissue cells depends
on the host cell angiotensin-converting-enzyme 2 (ACE2)
receptor via the spike (S) protein, followed by S protein
cleaving and membrane fusion (Chambers et al., 2020). ACE2
is widely expressed in human tissues, including in lung alveolar
epithelial cells, small intestinal epithelial cells, vascular
endothelial cells and smooth muscle cells within the lung,
kidney, intestines, and other organs (Kočar et al., 2021).

PATHOPHYSIOLOGICAL
CHARACTERISTICS OF COVID-19

COVID-19 causes significant infection-related morbidity and
mortality. There have been about 33 million positive cases and
nearly 600 thousand deaths in America (WHO, 2021b), while in
China, there have been about 118 thousand positive cases and
about five thousand deaths (WHO, 2021c). A recent meta-
analysis of 212 studies from 11 countries/regions involving
281,461 individuals showed about 22.9% of patients with
COVID-19 had severe disease and 5.6% patients die (Li
J. et al., 2021). The most striking pathophysiological feature of
patients with severe COVID-19 is a dysregulated immune
response, characterized by lymphopenia and a cytokine storm,
which results in acute respiratory distress syndrome, hepatic
dysfunction, multiple-organ failure, and ultimately death.
Abnormal coagulation function is also a prominent feature in
severe COVID-19 cases (Beltrán-García et al., 2020; José et al.,
2020; Song et al., 2020; Zafer et al., 2021).

Dysregulated Immune Responses
SARS-CoV-2 may activate both innate and adaptive immune
responses in patients, including lymphopenia, cytokine release
syndrome, and abnormal activation of macrophages and their
complement system (Jamal et al., 2021). Lymphopenia, involving
a drastic reduction in T-cells and B cells (Qin et al., 2020a; Tan
et al., 2020; Xu et al., 2020), is a common feature in patients with
severe COVID-19. This is possibly triggered by SARS-CoV-2-
induced activation of apoptosis in lymphocytes (Xiong et al.,
2020).

Patients with COVID-19 have also shown monocyte/
macrophages morphological and physiological changes. These
monocytes were characterized by mixed M1/M2 polarization,
relatively elevated CD80+ and CD206+ expression, and higher
secretion of interleukin (IL)-6, IL-10, and tumor necrosis factor
(TNF)-α (Zhang D. et al., 2021). Macrophages infiltrated into the
lungs of patients with COVID-19 were mostly type 1 (Yao et al.,

2020). Monocytes obtained from patients with COVID-19 were
shown to express ACE2 receptors, suggesting SARS-CoV-2 may
directly infect and affect monocytes andmacrophages in COVID-
19 (Zhang Y. et al., 2021). Additionally, cytokine storms were
common in patients with severe COVID-19. Patients exhibited
increased cytokine secretion, particularly IL-2, IL-4, IL-6, IL-10,
TNF-α, and interferon (IFN)-γ (Qin et al., 2020b). The possible
causes of this cytokine release syndrome could be a dysregulated
immune response incapable of controlling the production of
excessive amounts of cytokines and chemokine.

The complement system was also considered to play a pivotal
role in COVID-19. A recent study showed that complement
components of the classical (C1q, C4d) and alternative (Factor H,
C3d) pathways were deposited in the lungs of people with
COVID-19, indicating the activation of complement system in
COVID-19 (Satyam et al., 2021). Early clinical reports indicates
that C3 inhibition therapy holds potential anti-inflammatory
properties in COVID-19 (Mastaglio et al., 2020; Satyam and
Tsokos, 2020) and anti-complement C5 therapy in patients with
severe COVID-19 lead to a drop in inflammatory markers and a
successful recovery (Diurno et al., 2020; Satyam and Tsokos,
2020).

Abnormal Coagulation
Abnormal coagulation function is also a prominent feature in
severe COVID-19 cases. Severe COVID-19 was associated with
widespread activation of the coagulation system, corroborated
by elevated activated partial thromboplastin time (APTT) and
prothrombin time (PT) along with markedly elevated D-dimer
levels (Tang et al., 2020; Zhou P. et al., 2020). Severe
endothelial injury and widespread thrombosis with
microangiopathy are evident in lungs from patients with
COVID-19 (Ackermann et al., 2020). Possible causes
include a direct attack by the virus on the endothelial cells
via ACE-2 receptors (Ackermann et al., 2020), and cytokine
storms such as TNF and IL-6, which are potent activators of
the tissue factor (TF)-dependent coagulation cascade (Tijburg
et al., 1991; Kerr et al., 2001).

COMPOSITION, METABOLISM AND
FUNCTION OF HDL

HDL is a type of lipoprotein with an extremely heterogeneous
composition, density, and particle size, containing cholesterol,
phospholipids, triglycerides, and apolipoproteins. It was first
isolated from blood in the 1960s by ultracentrifugation.
Among all types of human plasma lipoproteins, HDL, mainly
synthesized in the liver and small intestine, has the highest
density and smallest volume in the circulatory system.
Apolipoprotein A-I (ApoA-I) is the main structural protein
component of HDL, and other protein components such as
serum amyloid A (SAA), lecithin cholesterol acyltransferase
(LCAT), paraoxonase-1 (PON-1) and cholesterol ester transfer
protein (CETP) also participate in the metabolic process of HDL
(Gordon et al., 1989; Ginsberg, 1998; Tosheska Trajkovska and
Topuzovska, 2017).
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Reverse Cholesterol Transport
Normally metabolized HDL has various functions. The most
important and well characterized function is the regulation of
reverse cholesterol transport. During the formation and
maturation of HDL, its main functional protein, ApoA-I,
continuously binds to free cholesterol in tissue cells, and is
then transported to the liver. Thus, cholesterol is excreted
from the body’s tissue cells through a series of transport and
transformation processes, which reduces the cholesterol level in
the body and delays the occurrence and progression of coronary
heart disease (Gordon et al., 1989; Rader, 2003; Tosheska
Trajkovska and Topuzovska, 2017).

Direct Binding to Lipopolysaccharide and
Neutralizing LPS Activity
LPS is the chief component of the outer membrane of Gram-
negative bacteria. Numerous studies have found that HDL
prevents systemic endotoxemia by binding and neutralizing LPS
(Parker et al., 1995), which is considered to be the main mechanism
of HDL’s antimicrobial effect (Ulevitch et al., 1979; Freudenberg
et al., 1980). Early studies have shown that HDL can prevent the
activation of peripheral blood monocytes and macrophages by LPS,
and reduce the synthesis and secretion of inflammatory cytokines
such as TNF-α and IL-1β (Levine et al., 1993). In vivo studies have
shown that the initiation of intravenous infusion of recombinant
HDL prior to induction of endotoxemia in healthy volunteers
significantly reduced TNF, IL-6, and IL-8 levels, as well as
reducing endotoxin-induced clinical symptoms and leukocyte
activation (Pajkrt et al., 1996). A recent study showed that,
compared with normal mice, ApoA-I (the main component of
HDL) knockout mice showed increased production of
inflammatory cytokines, decreased ability to neutralize and clear
LPS, and reduced survival (Guo et al., 2013). In addition to binding
and neutralizing LPS, HDL also promotes LPS clearance, mainly
binding with SR-B1 and mediating LPS intake. It has been reported
that in LPS-induced endotoxemia and cecal ligation and puncture
(CLP) sepsis models in vitro, SR-B1 gene deletion mice showed
decreased endotoxin clearance (Cai et al., 2008; Guo et al., 2009).

Regulation of Inflammatory Response
HDL may also be a key regulator of inflammatory response. In-
vitro cell experiments show that HDL inhibits a subset of LPS-
stimulated macrophage genes that regulate the type I interferon
response via microarray analysis (Suzuki et al., 2010). HDL also
down-regulates the expression of Toll-like receptor (TLR)-
induced pro-inflammatory cytokines through the
transcriptional regulator activating transcription factor 3
(ATF3) (De Nardo et al., 2014). Transgenic mice with 2-fold-
elevated plasma HDL levels had lower plasma cytokine levels, and
improved survival rates in an endotoxemia mouse model (Levine
et al., 1993).

Anti-Thrombotic Effects
HDL can act as a regulator of platelet and coagulation responses
in a variety of ways. Numerous epidemiological studies have
established an inverse correlation between HDL levels and the

risk of thrombosis (Sharrett et al., 2001; Deguchi et al., 2005;
Lüscher et al., 2014), and many studies have explored the
mechanisms involved. HDL stimulates NO and prostacyclin
production in endothelial cells which are both inhibitors of
platelet activation (Van Sickle et al., 1986; Yuhanna et al.,
2001; Calabresi et al., 2003). Endothelial cells express TF after
thrombin-induction in acute coronary syndromes, and HDL
presents an atheroprotective effect by inhibiting thrombin-
induced human endothelial TF expression (Viswambharan
et al., 2004). HDL, mainly ApoA-I, also protects endothelial
cells against oxidized LDL (oxLDL) and prevents its apoptosis
(Suc et al., 1997). Additionally, purified HDL enhances
inactivation of coagulation factor Va by activated protein C
(APC) and protein S (Griffin et al., 1999). ApoA-I also
neutralizes the procoagulant properties of anionic
phospholipids, and incorporation of ApoA-I in anionic
vesicles prevents the formation of the prothrombinase
complex (Oslakovic et al., 2009; Oslakovic et al., 2010).

Antioxidant and Anti-Apoptotic Properties
HDL can prevent intracellular reactive oxygen species (ROS)
production, triggered by oxLDL or H2O2, thereby inhibiting the
subsequent proteasome activation, and NF-kappa B activation
(Robbesyn et al., 2003). HDL exerts a protective effect against
oxidative damage induced by copper ions (Ferretti et al., 2003).
Additionally, PON-1 is an HDL-associated esterase, which
protects lipoproteins against oxidation. It is demonstrated that
PON-1-deficient mice were susceptible to oxidative stress and
HDL isolated from these mice were unable to prevent LDL
oxidation (Shih et al., 1998).

HDL was shown to have the capacity to inhibit apoptosis of
endothelial cells induced by oxLDL (Suc et al., 1997). HDL also
prevented caspase-3 and caspase-9 activation, as well as apoptotic
alterations of the plasma membrane (Nofer et al., 2001). In
addition, HDL reduced cardiomyocyte apoptosis in a mouse
model of myocardial ischemia/reperfusion (Theilmeier et al.,
2006).

HDL CHANGES DURING HUMAN
INFECTION

Changes in Levels or Functions of HDL
Levels and functions of HDL changed significantly in patients
infected with different pathogens. Multiple studies show HDL
decreased in many infections, including sepsis, nosocomial
infections, dengue, Helicobacter pylori infection, and HIV
infection (Canturk et al., 2002; van Leeuwen et al., 2003;
Chien et al., 2005; Rose et al., 2006; Jia et al., 2009; Aragonès
et al., 2010; Baker et al., 2010; Zou et al., 2016; Cirstea et al., 2017;
Tanaka et al., 2017; Barrientos-Arenas et al., 2018). The
explanations includes decreased HDL synthesis, over-
consumption of HDL particles, or HDL redistribution from
intravascular to extravascular space (Pirillo et al., 2015; Tanaka
et al., 2020a; Cao et al., 2020). Infection not only leads to a
decrease in HDL levels, but also affects its function. HDL from
HIV+ individuals has reduced antioxidant function (Angelovich
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et al., 2017), modified HDL metabolism, and reduced
functionality of reverse cholesterol transport (Rose et al.,
2008). In mice models, HDL loses its anti-inflammatory
properties after acute influenza infection (Van Lenten et al.,
2001).

Relationship Between HDL, Susceptibility of
Infection and Outcome
Low serum HDL levels seem to be associated with a higher risk of
infectious diseases, including sepsis (Shor et al., 2008; Grion et al.,
2010), nosocomial infection after surgery (Delgado-Rodriguez
et al., 1997; Canturk et al., 2002), and in-hospital infection in
patients with acute ischemic stroke (Rodríguez-Sanz et al., 2013).
Furthermore, a prospective population-based cohort study
involving more than 100,000 patients showed a U-shaped
association of HDL with the risk of infectious disease, and
that both high and low levels of HDL were related with a high
risk of infection (Madsen et al., 2018). In addition, mortality rates,
intensive care unit (ICU) stay, and length of hospital stay, all
increased among septic patients with lower levels of HDL or
ApoA-I (Chien et al., 2005; Montero-Chacón et al., 2020). Low
HDL level at admission was also associated with severe sepsis
(Grion et al., 2010). Lower HDLmay herald a bad outcome, while
higher levels of HDL seem to have a protective effect toward
infection.

Therapeutic Strategy Targeting HDL in
Infection
Due to the important role of HDL in infection, therapeutic
strategy targeting HDL is considered as a possible new
approach to the treatment of infection. Reconstituted HDL
was shown to reduce inflammation and bacterial burden,
attenuate organ injury and improve survival in experimental
septic models (Levine et al., 1993; McDonald et al., 2003;
Tanaka et al., 2020b; Tanaka et al., 2020c). Trypanosome lytic
factor, as a minor subfraction of HDL, ameliorates Leishmania
infection, possibly due to the ability to selectively damage
pathogens in phagolysosomes (Samanovic et al., 2009). CETP
is a key regulator of HDL levels. Its gain-of-function variant was
significantly associated with an increased risk of mortality in
sepsis (Trinder et al., 2019). CETP inhibitor Anacetrapib
preserved levels of HDL and ApoA-I and increased the
survival rate in CLP sepsis models (Trinder et al., 2021).

ASSOCIATION BETWEEN HDL AND
COVID-19

Alteration of HDL Level in Patients With
COVID-19
A large number of studies have shown a close correlation of HDL
with COVID-19, which were summarized in Table 1. The serum
HDL level in patients with COVID-19 was lower than that in
healthy controls (Huang et al., 2021). A genome-wide association
study (GWAS) summary analysis of 7362 COVID-19 participants

from the United Kingdom Biobank, showed that individuals with
a lower level of HDL were more vulnerable to SARS-CoV-2
infection (Zhang D. et al., 2021). A clinical observational study
also found that lower HDL levels were related to a higher risk of
SARS-CoV-2 infection (Aung et al., 2020), while higher HDL
levels were associated with a lower risk of SARS-CoV-2 infection
(Ho et al., 2020).

Changes of HDL Function in Patients With
COVID-19
In addition to HDL levels, the composition and functions of HDL
in COVID-19 were also changed. ApoA-I and PON-1 were less
abundant in patients with COVID-19, whereas, using proteomic
analyses, SAA and alpha-1 antitrypsin were found to be higher
(Begue et al., 2021). HDL from patients with COVID-19 showed
less protection in TNF-α treated endothelial cells (Begue et al.,
2021). Generally, patients with diabetes and elderly patients
showed a higher extent of glycation (Kawasaki et al., 2002;
Park and Cho, 2011). Glycated HDL showed much lower
antivirus activity against SARS-CoV-2 than that of native
HDL, which may explain why older patients and patients with
underlying conditions such as diabetes are more likely to develop
severe illness and death in COVID-19 (Cho et al., 2021).

Relationship of HDL With the Outcomes of
Patients With COVID-19
Additionally, HDL or ApoA-I levels were significantly lower in
severe, critically ill and mortality groups compared to patients
with mild COVID-19 (Wang et al., 2020b; Huang C. et al., 2020;
Ouyang et al., 2020; Xie et al., 2020; Zhang Q. et al., 2020; Hilser
et al., 2021; Li J. et al., 2021; Turgay Yıldırım and Kaya, 2021).
This suggests that HDL is associated with COVID-19 severity and
risk of death (Tanaka et al., 2020b; Hu et al., 2020; Wang et al.,
2020; Wei X. et al., 2020; Zhang B. et al., 2020). During ICU
hospitalization in patients with COVID-19, in cases of bacterial
superinfection, low HDL concentrations were also found to be
correlated with higher mortality (Tanaka et al., 2020c).
Significantly, in patients with severe COVID-19, a gradual
increase of HDL levels during hospitalization could suggest a
path to gradual recovery (Qin et al., 2020a). Moreover, HDL levels
influenced the virus shedding duration in patients with COVID-
19 (Ding et al., 2020) and may predict the risk of hospitalization
for COVID-19 (Hamer et al., 2020; Lassale et al., 2021). This data
strongly suggests that high HDL levels might be beneficial in
patients with COVID-19 through its antiviral activity.

The Possible Mechanism of HDL Action in
COVID-19
Lipid metabolism plays an essential role during SARS-CoV-2
infection. Cholesterol is widely shown to interact with SARS-
CoV-2 S protein (Kočar et al., 2021). The accumulation of lipids
was observed in SARS-CoV-2 infected cells, both in vitro and in
the lungs of patients of COVID-19 (Nardacci et al., 2021). In a cell
experiment in vitro, HDL showed an obvious antiviral effect on
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SARS-CoV-2 via cytopathic effect (CPE) and inhibition activity
tests (Cho et al., 2021). Although HDL is believed to play a
protective role in infection, some studies have come to the
opposite conclusion. Several studies showed HDL facilitated
SARS-CoV-2 infection. It was found that HDL significantly
increased cell-surface SARS-CoV-2-S binding, viral entry and
replication in vitro through SR-B1. Blockade of the cholesterol-
binding site on SARS-CoV-2 or treatment with HDL SR-B1
antagonists, inhibits HDL-enhanced SARS-CoV-2 infection
(Wei et al., 2020a). Another study showed that pretreatment
of 293T cells with an HDL antagonist, in the presence of HDL,
strongly inhibited the entry of SARS-CoV-2 into host cells (Wei
et al., 2020). It suggested that the down-regulation of HDL levels
in patients with COVID-19 may be due to HDL consumption
during viral invasion, and HDL or SR-B1 could be treatment
targets for COVID-19. However, future studies will need to
explore the molecular nature of the interaction between HDL
and SARS-CoV-2.

Additionally, clinical data showed influencing the
inflammatory response may be one of the mechanisms of
HDL involvement in the pathophysiology of COVID-19.
Severe COVID-19 is considered to be a sepsis induced by
SARS-CoV-2 (Colantuoni et al., 2020; Lin, 2020; Shenoy,
2020), which is characterized by excessive inflammation and
multiple-organ failure. It is reported that a marked increase in
inflammatory factors occurs in COVID-19, including C-reactive
protein (CRP), IL-6, TNF-α, etc. (Song et al., 2020; Zafer et al.,

2021). ApoA-1 and HDL levels were shown to be negatively
correlated with CRP and IL-6 levels in patients with COVID-19
(Hu et al., 2020; Sun et al., 2020), suggesting that the increased
inflammatory response related to reduced HDL levels is one of
the pathogenic mechanisms of COVID-19.

Moreover, apoptosis, oxidative stress and abnormal blood
coagulation are all involved in the pathophysiological process
of COVID-19 (Tang et al., 2020; Cizmecioglu et al., 2021; Mehri
et al., 2021), and multiple studies demonstrated HDL had anti-
thrombotic, anti-apoptotic and anti-oxidative effects (Tanaka
et al., 2020a), which offers a possibility that HDL may also
regulate these pathways in COVID-19. However, further
research is needed to confirm these conclusions.

Therapeutic Strategy of COVID-19 Through
Targeting HDL
Until now effective therapeutic interventions for COVID-19 are
limited. Drug repurposing could identify potential treatments in a
short time, which has become an important approach to explore
therapeutic agents for COVID-19 (Kost-Alimova et al., 2020). As
many studies have found that HDL is closely linked to COVID-
19, some related randomized controlled trial (RCT) studies
remain ongoing (Table 2). Omega-3 polyunsaturated fatty
acids (PUFAs) improve lipid metabolism by reducing
triglyceride and increasing HDL (Yanai et al., 2018), which
enhance patient’s immune function and reduce inflammatory

TABLE 1 | Changes in HDL levels in patients with COVID-19.

Author Country Number of
patients

Time point Comparison of HDL levels

Wang (Wang et al. (2020a) China 228 Within 24 h after
admission

COVID-19 patients vs healthy control: median, 0.78 vs 1.37 mmol/L,
p < 0.001
Severe vs non-severe patients: median, 0.69 vs 0.79 mmol/L, p �
0.032

Huang (Huang et al. (2021) China 218 The 1st day of admission COVID-19 patients vs healthy control: mean, 1.02 vs 1.52 mmol/L,
p < 0.05
Severe vs non-severe patients: mean, 0.83 vs 1.15 mmol/L, p < 0.05

Zhang (Zhang B. et al. (2020) China 74 Not known Severe vs non-severe patients: median, 0.92 vs 1.08 mmol/L, p �
0.021

Xie (Xie et al. (2020) China 62 Not known Severe vs non-severe patients with CVD: median, 1.1 vs 1.4 mmol/L
Severe vs non-severe patients without CVD: median, 1.1 vs
1.3 mmol/L

Hu (Hu et al. (2020) China 114 On admission COVID-19 patients vs healthy control: mean, 1.08 vs 1.27 mmol/L,
p < 0.001
Severe vs non-severe patients: median, 1.01 vs 1.21 mmol/L, p <
0.001

Wei (Wei et al. (2020b) China 597 Not known Mild vs severe vs critical patients: median, 50 vs 50 vs 36 mg/dL,
p < 0.05

Tanaka (Tanaka et al. (2020a) France 48 Upon ICU admission Alive vs dead patients on day 28: median, 0.6 vs 0.5 mmol/L, p �
0.036

Huang (Huang W. et al. (2020) China 2,623 At admission Critical vs non-critical patients: median, 0.86 vs 0.95 mmol/L, p <
0.001

Sun (Sun et al. (2020) China 99 Within 24 h of admission Mild vs severe: median, 1.18 vs 0.94, p < 0.001
Ouyang (Ouyang et al. (2020) China 107 Last result Survivors vs non-survivors: average, 1.07 vs 0.79 mmol/L, p � 0.006
Li (Li Y. et al. (2021) China 424 Not known Survivors vs non-survivors: median, 0.9 vs 0.8, p � 0.001
Turgay (Turgay Yıldırım and Kaya
(2021)

Turkey 139 At admission Survivors vs non-survivors: median, 44.0 vs 28.5 mg/dL, p < 0.001

Abbreviations: HDL, high-density lipoprotein; COVID-19, Coronavirus disease 2019.
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responses (Ni et al., 2020; Sorokin et al., 2020). Subsequently, as it
is considered to have a positive role in the treatment of COVID-
19, it has become the most studied lipid-regulating drug in
COVID-19. Statins, including Atorvastatin, Rosuvastatin, and
Simvastatin also showed HDL-increasing capacity (Jones et al.,
2003; Miller et al., 2004; Rosenson, 2005; Sasaki et al., 2013), and
are one of the current research hotspots of COVID-19. Moreover,
RCT studies on the effects of two classic HDL-increasing drugs,
CETP inhibitor Dalcetrapib and Fenofibrate, in patients with
COVID-19, are also underway. Other HDL-raising
pharmacological compounds such as LCAT, have been also
considered as potential therapies for COVID-19 (Sorokin
et al., 2020).

CONCLUSION

COVID-19 has spread globally and caused significant morbidity
and mortality. Patients with severe COVID-19 are characterized
by a dysregulated immune response and abnormal coagulation
function, which results in organ dysfunction and ultimately
death. HDL possesses several well-documented functions,
including regulating immune response, neutralizing
endotoxins, anti-oxidation, anti-apoptosis, and anti-thrombosis
formation. Multiple studies showed that HDL level, composition
and functions were greatly changed in COVID-19 and lower
HDL level was correlated with higher risks of severity and
mortality, indicating that high HDL levels might be beneficial
in COVID-19. HDL level-raising pharmacological compounds

such as CETP inhibitors and fibrates are considered to be
potential treatments for patients with COVID-19, and they are
already in the preclinical research stage. Until now, there are still
relatively few studies on the mechanisms about the protective role
of HDL in COVID-19. Notably, many studies related to sepsis
support that increasing the levels of HDL in septic patients may
be a feasible treatment target. However, simply increasing the
level of HDL does not seem to be enough to restore the function
of HDL. Therefore, we still need to comprehensively understand
the mechanism of HDL action in COVID-19 and improve new
strategies for the treatment of patients with COVID-19, by
further in-depth study on the composition, structure, and
function of HDL in COVID-19.
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Remdesivir and Cyclosporine
Synergistically Inhibit the Human
Coronaviruses OC43 and SARS-CoV-2
Hsing-Yu Hsu1†, Cheng-Wei Yang1†, Yue-Zhi Lee1†, Yi-Ling Lin2†, Sui-Yuan Chang3†,
Ruey-Bing Yang2, Jian-Jong Liang2, Tai-Ling Chao3, Chun-Che Liao2, Han-Chieh Kao3,
Szu-Huei Wu1, Jang-Yang Chang1, Huey-Kang Sytwu4, Chiung-Tong Chen1 and
Shiow-Ju Lee1*

1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, 2Institute of
Biomedical Sciences, Academia Sinica, Taipei, Taiwan, 3Institute of Clinical Laboratory Sciences and Medical Biotechnology,
College of Medicine, National Taiwan University, Taipei, Taiwan, 4National Institute of Infectious Diseases and Vaccinology,
National Health Research Institutes, Miaoli, Taiwan

Remdesivir, a prodrug targeting RNA-dependent-RNA-polymerase, and cyclosporine, a
calcineurin inhibitor, individually exerted inhibitory activity against human coronavirus OC43
(HCoV-OC43) in HCT-8 and MRC-5 cells at EC50 values of 96 ± 34 ∼ 85 ± 23 nM and
2,920 ± 364 ∼ 4,419 ± 490 nM, respectively. When combined, these two drugs
synergistically inhibited HCoV-OC43 in both HCT-8 and MRC-5 cells assayed by
immunofluorescence assay (IFA). Remdesivir and cyclosporine also separately reduced
IL-6 production induced by HCoV-OC43 in human lung fibroblasts MRC-5 cells with EC50

values of 224 ± 53 nMand 1,292 ± 352 nM, respectively; and synergistically reduced it when
combined. Similar trends were observed for SARS-CoV-2, which were 1) separately
inhibited by remdesivir and cyclosporine with respective EC50 values of 3,962 ± 303 nM
and 7,213 ± 143 nM by IFA, and 291 ± 91 nM and 6,767 ± 1,827 nM by a plaque-formation
assay; and 2) synergistically inhibited by their combination, again by IFA and plaque-
formation assay. Collectively, these results suggest that the combination of remdesivir
and cyclosporine merits further study as a possible treatment for COVID-19 complexed with
a cytokine storm.

Keywords: COVID-19, cyclosporine, IL-6, IL-8, OC43, remdesivir, SARS-CoV-2, synergistic

INTRODUCTION

COVID-19 has affected more than 176.887 million people in 194 countries and caused over 3.84
million deaths (as of 2021-06-18 https://www.cdc.gov.tw/) since its emergence at the end of 2019.
This disease is caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2), and disease progression is usually complexed with a cytokine storm and/or organ
dysfunction (McElvaney et al., 2020).

Interleukin-6 (IL-6) and other cytokines are increased in patients with COVID-19, and IL-6 was also
found to be a hallmark predictor for COVID-19 progression. (Chen et al., 2020; McElvaney et al., 2020;
Yang et al., 2020). Tocilizumab, a monoclonal antibody against IL-6 receptor (IL6-R) is an
immunosuppressive drug originally developed for the treatment of rheumatoid arthritis (Scott, 2017)
and systemic juvenile idiopathic arthritis (De Benedetti et al., 2012), but is currently under development as
an alternative therapy for COVID-19 patients who are at risk of a cytokine storm (Rosas et al., 2021).
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Recently, preliminarily data showed tocilizumab to be associated
with significant clinical improvement and a reduction in mortality
(Klopfenstein et al., 2020; Toniati et al., 2020; Xu et al., 2020).
Therefore, mitigation of the cytokine storm that occurs in COVID-
19 patients is a sound therapeutic strategy.

Remdesivir targets SARS-CoV-2 itself, inhibiting viral RNA-
dependent-RNA-polymerase (RdRp) (Gordon et al., 2020;
Pruijssers et al., 2020) and was the first approved treatment for
COVID-19, although its efficacy is restricted to a shortening in the
time to recovery of hospitalized patients (Beigel et al., 2020).
Nonetheless, COVID-19 symptoms and mortality can be
ameliorated by anti-inflammatory or immunomodulatory agents
(Fatima et al., 2020; Tomazini et al., 2020). Thus, the combination
treatment of remdesivir with existing anti-inflammatory or
immunomodulatory agents may exert an especially therapeutic
effect COVID-19 patients and merits further exploration.

The repurposing of existing drugs to take advantage of their
known safety profiles and associated commercial supply chains is an
important strategy to expedite the discovery of effective and safe
COVID-19 treatments. Moreover, the combination of existing drugs
with remdesivir may also improve its effectiveness. SARS-CoV-2
related experiments are regulated and can only be performed in
biosafety-level-3 (BSL-3) or higher laboratories, but the number,
resources, and capacities of such laboratories are very limited.
Therefore, we used the alternative coronaviruses swine
transmissible gastroenteritis virus and human flu coronavirus
OC43 (HCoV-OC43) as SARS-CoV-2 surrogates, to assay drugs
for anti-viral activity prior to testing with SARS-CoV-2 itself. About
230 prescription drugs covered by Taiwan Health Insurance were
screened, cyclosporine, an immunosuppressant widely used to
prevent organ transplant rejection (Beauchesne et al., 2007; Wu
et al., 2018), was found to significantly reduce infection by
coronaviruses. Cyclosporine was first isolated from the fungus
Tolypocladium inflatum (T. inflatum) in soil samples by scientists
from the Norwegian Sandoz Pharmaceutical Company in 1969
(Beauchesne et al., 2007) (Yang et al., 2018). It is a lactam
comprising 11 amino acids (including a D-amino acid) and is
synthesized by ciclosporin synthetase, in contrast to most
peptides that are synthesized by the ribosomes (Yang et al.,
2018). Cyclosporine suppresses the activity of the immune system
by inhibiting the activity and growth of T cells (Liddicoat and
Lavelle, 2019) as well as IL-6 production (Stephanou et al., 1992;
Iacono et al., 1997; Golling et al., 2009). NF-κB suppression by
cyclosporine inhibits the production of proinflammatory cytokines
(Meyer et al., 1997; Du et al., 2009; Jerkins et al., 2020).

Herein, we examine the inhibitory activities of combined
treatments of remdesivir and cyclosporine against IL-6 cytokine
production and the HCoV-OC43 and SARS-CoV-2. The results
obtained suggest a potential regimen for combating COVID-19
complexed with a cytokine storm.

MATERIALS AND METHODS

Chemicals and Antibodies
DMSO (D1435, ≥99.5%), crystal violet (C0775, dye content
≥90%), and methylcellulose (#M0387) were purchased from

Sigma-Aldrich (St. Louis, MO, United States); remdesivir (GS-
5734) (S8932, 99.3%, HPLC) and cyclosporine A (cyclosporine)
(S2286, 99.6%, HPLC) from Selleckchem (Houston, TX,
United States); Goat anti-human IgG-Alexa Fluor 488
(A11013), Hochest 333258 (H3569), and DAPI (D1306) from
Invitrogen (Thermo Fisher Scientific, Waltham, MA,
United States); and 10% formaldehyde solution from
Marcon™ Chemicals (#H121-08). The antibody against
nucleocapsid (N) protein of HCoV-OC43 (Mab9013) was
purchased from Merck Millipore (Burlington, MA,
United States), and fluorescein isothiocyanate (FITC)-
conjugated anti-mouse immunoglobulin (#55499) from MP
Biomedicals (Irvine, CA, United States). Anti-SARS-CoV-2 N
protein antibodies were provided by Dr An-Suei Yang of the
Genomics Research Center, Academia Sinica.

Cell Lines, Virus, Western Analysis and
Immunofluorescence Assay for
HCoV-OC43
Human colon adenocarcinoma cell line HCT-8 (ATCC® CCL-
244™) and human lung fibroblasts cell lineMRC-5 (ATCC® CCL-
171™) were obtained from American Type Culture Collection
(ATCC), passaged within 6 months of receipt, and established as
stocks in the cell bank at an early passage, to ensure cell line-specific
characteristics. The subsequent 4th to 20th passages of HCT-8 cells
and 7th to 16th passages of MRC-5 cells were used in this study.
Heat inactivated premium grade fetal bovine serum (FBS) from
VWR Life Science Seradigm (Radnor, PA, United States) was used
to culture MRC-5 cells and FBS from Biological Industries Inc.
(Cromwell, CT, United States) was used for the HCT-8 cell culture
to obtain optimal culture conditions. HCoV-OC43 (ATCC®
VR1558™) was grown and propagated in HCT-8 cells cultured
with DMEM and 2% FBS. Time course experiments for the
detection of HCoV-OC43 N protein with the antibody
Mab9013, western blot [as described (Yang et al., 2020)], and
IFA were performed with the samples at the indicated time points.
For compound treatment studies, HCT-8 or MRC-5 cells were
seeded in 96-well plates and then cultured in DMEM or MEM
medium containing 2% FBS, respectively. Cells were pretreated
with serial dilutions of remdesivir and cyclosporine at the indicated
concentrations for 0.5 h prior to HCoV-OC43 infection at an MOI
of 0.05. At 30 h.p.i., the resulting adherent cells were then fixed with
4% formaldehyde, permeabilized with 100% methanol, and
subsequently subjected to IFA analyses with an antibody against
HCoV-OC43 N protein (Mab9013) and FITC-conjugated anti-
mouse immunoglobulin (#55499) (green), and the EC50 values
determined as described (Yang et al., 2020). CC50 values were
determined by staining nuclei blue with Hoechst dye and then
determining relative cell viability using the number of nuclei in the
vehicle control as 100%. Fluorescent signals were detected and
quantified using the ImageXpress Micro XLS Widefield High-
Content Analysis System (Molecular Device). The fluorescent
signal was normalized with cell viability to calculate the
infection rate that no compound treatment was set at 100%.
Synergy scores for combined treatments were calculated using
SynergyFinder (https://synergyfinder.fimm.fi/).
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FIGURE 1 | Single or combined treatment of remdesivir and cyclosporine profoundly reduced HCoV-OC43 infection as assayed by immunofluorescence (IFAs) in
human HCT-8 colorectal carcinoma cells. (A) Time course of HCoV-OC43 N protein expression in infected HCT-8 cells. Western analysis and IFA were performed
against an antibody against HCoV-OC43 N protein (Mab9013) with the samples at the indicated time points. (B) Single treatments of remdesivir and cyclosporine
reduced HCoV-OC43 infection in HCT-8 cells in a dose dependent manner. (C–E)Combined treatments of remdesivir and cyclosporine synergistically reduced the
HCoV-OC43 infection in HCT-8 cells. IFAs were performed with an antibody against N protein (green) of HCoV-OC43 in HCoV-OC43 (0.05 MOI) infected HCT-8 cells at
30 h.p.i. treated with vehicle (0.5% DMSO) or compounds as indicated. Nuclei (blue) were counter stained with Hoechst dye and used to determine the relative cell
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FIGURE 1 | viability by using the number of nuclei in vehicle control as 100% (Supplementary Figure S1). The fluorescent signal was normalized with cell viability to
calculate the infection rate that no compound treatment was set at 100%. HCT-8 cells were seeded the day before compound treatment or HCoV-OC43 infection. The
tested compounds were added to the wells 1 h prior to the addition of HCoV-OC43 at an MOI of 0.05 and the resulting cultures incubated for an additional 30 h at 37°C.
AVE ±SD of three independent experiments are shown (A, B, D) The statistical significance was evaluated using one-way ANOVA followed by Tukey’s multiple
comparison test. * and ** denote statistical significance of p < 0.05, and p < 0.01 respectively. IFA images shown are representative of three independent experiments
(C). Shown inhibition % (AVE) and synergy scores (AVE ± SD) are from three independent experiments (E) analyzed via SynergyFinder (https://synergyfinder.fimm.fi/).

FIGURE 2 | Single or combined treatments of remdesivir and cyclosporine profoundly reduced HCoV-OC43 infection in human fetal lung fibroblast MRC-5 cells
assayed by IFA. (A) Single treatments of remdesivir and cyclosporine reduced HCoV-OC43 infection in MRC-5 cells in a dose dependent manner. (B–D) Combined
treatments of remdesivir and cyclosporine synergistically reduced the HCoV-OC43 infection in MRC-5 cells. IFAs were performed with an antibody against N protein
(green) of HCoV-OC43 in HCoV-OC43 (0.05 MOI) infected MRC-5 cells at 30 h.p.i. treated with vehicle (0.5% DMSO) or compounds as indicated. Nuclei (blue)
were counter stained with Hoechst dye and used to determine the relative cell viability by using the number of nuclei in vehicle control as 100% (Supplementary Figure
S2). The fluorescent signal of IFA was normalized with cell viability to calculate the infection rate that no compound treatment was set at 100%. MRC-5 cells were seeded
the day before compound treatment or HCoV-OC43 infection. Tested compounds were added to the wells 1 h prior to the addition of HCoV-OC43 at an MOI of 0.05.
The resulting cultures were then incubated for an additional 30 h at 37°C. AVE ± SD of three independent experiments are shown (A and C). The statistical significance
was evaluated using one-way ANOVA followed by Tukey’s multiple comparison test. * and ** denote statistical significance of p < 0.05, and p < 0.01 respectively. IFA
images shown are representative of three independent experiments (B). Shown inhibition % (AVE) and synergy scores (AVE ± SD) are from three independent
experiments (D) analyzed via SynergyFinder (https://synergyfinder.fimm.fi/).
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Cell Line, Virus, IFA, and Plaque Assay for
SARS-CoV-2
For IFA used in the SARS-CoV-2 study, Vero E6 cells (BCRC
number: 60476; derived from ATCC CRL-1586) were passaged
within 6 months of receipt and the 4th–15th passages used. Cells
were pretreated with each compound at the indicated concentration for
1 h at 37°C and then adsorbedwith SARS-CoV-2 (TCDC#4) (sequence
available on the GISAID website) at 100 PFU (MOI � 0.01) for 1 h at
37°C as described (Yang et al., 2020). The virus-containing supernatants
were removed and then fresh medium containing each compound at
the indicated concentrations added to the cells. After incubation for
1 day, cells were fixed and immunostained with anti-SARS-CoV-2 N
protein antibody (provided byDrAn-Suei Yang) plus anti-human IgG-
Alexa Fluor 488 (A11013, Invitrogen) (green). Nuclei were counter-
stained with DAPI (blue); the number of nuclei in vehicle control (no
compound treatment) was defined as 100%; and then relative cell
viability and CC50 values were determined. The fluorescent signal was
quantified by high-content imaging and the infection rate and EC50

values calculated using normalized values with respective cell viability;
the infection rate was defined to be 100% for samples where no
compound was added. For combined treatments, the synergy scores
were calculated by SynergyFinder (https://synergyfinder.fimm.fi/).

Plaque assays for SARS-CoV-2 were performed as described
(Yang et al., 2020). Briefly, Vero E6 cells were seeded 1 day before
infection with SARS-CoV-2 for 1 h at 37°C. Subsequently, viruses
were removed and the infected cells were covered with overlay
media containing 1% methylcellulose (Sigma, cat #M0387) and
the test compounds at the indicated concentrations. At 5–7 days
post infection, cells were fixed overnight, the overlay media was
removed, the resulting cells were stained with crystal violet, and
the plaques were counted. Plaque numbers were corrected by
plaque size: for a plaque size 50% smaller than the vehicle control,
the plaque counted for 0.5 plaque; for a plaque size 75% smaller

than the vehicle control, the plaque counted for 0.25 plaque. The
percentage of inhibition was calculated as [1–(VD/VC)] × 100%,
where VD and VC refer to the virus titer in the presence and
absence of the test compound, respectively. The cell viability was
determined as described (Kuo et al., 2021) by measurement of
relative alkaline phosphatase activity; viability was defined to be
100% for samples where no compounded was added.

Interleukin 6 Cytokine Measurement
IL-6 cytokine levels in the culture supernatants of HCoV-OC43
infected MRC-5 cells at 30 h.p.i. were detected and quantified.
Test supernatants were diluted to the requisite concentrations
using human IL-6 enzyme-linked immunosorbent assay kits
(ARG80110) from arigo Biolaboratories Corp. (Hsinchu,
Taiwan) per the manufacturer’s recommendations.

Drug Combination Study
Viral inhibition by remdesivir, cyclosporine, and their combinations as
measured by IFA or plaque assay was assessed by a drug dose-
response matrix. Average synergy scores were obtained via the online
tool SynergyFinder (https://synergyfinder.fimm.fi/). ZIP synergy
scores were calculated and plotted from three independent
experiments. The interaction between two drugs was considered
antagonistic for ZIP synergy scores of less than −10; likely to be
additional for scores between −10 and 10; and synergistic for ZIP
synergy scores of greater than 10.

Statistical Analysis
The statistical significance between the two groups was evaluated
using one-wayANOVA followed byTukey’smultiple comparison test
in GraphPad Prism (version 8) software; The two-tailed unpaired
Student’s t test was used evaluated the dose effect of single drug
treatment on IL-6 production. * and ** denote statistical significance of
p < 0.05, and p < 0.01 respectively.

TABLE 1 | Antiviral activities and IL-6 reduction of remdesivir and cyclosporine against HCoV-OC43 and SARS-CoV-2. Shown are AVE ± SD from three independent
experiments.

CoV Cell line Assay EC50 (nM)

Remdesivir Cyclosporine

HCoV-OC43 HCT-8 Viral activity by IFA 96 ± 34 2,920 ± 364
HCoV-OC43 MRC-5 Viral activity by IFA 85 ± 23 4,419 ± 490
SARS-CoV-2 Vero E6 Viral activity by IFA 3,962 ± 303 7,213 ± 143
SARS-CoV-2 Vero E6 Viral plaque formation 291 ± 91 6,767 ± 1827
HCoV-OC43 MRC-5 IL-6 by ELISA 224 ± 53 1,292 ± 352

TABLE 2 | The synergistic inhibition of HCoV-OC43, SARS-CoV-2, and IL-6 production by remdesivir and cyclosporine. Synergy scores were calculated and analyzed by
SynergyFinder, ZIP method. Shown synergy scores are AVE ± SD from three independent experiments.

CoV Cell line Assay Synergy score Most
synergistic area score

HCoV-OC43 HCT-8 Viral activity by IFA 26.7 ± 5.4 43.1
HCoV-OC43 MRC-5 Viral activity by IFA 14.8 ± 4.1 19.8
SARS-CoV-2 Vero E6 Viral activity by IFA 25.0 ± 2.5 65.5
SARS-CoV-2 Vero E6 Viral plaque formation 43.7 ± 14.9 46.2
HCoV-OC43 MRC-5 IL-6 by ELISA 13.0 ± 5.7 25.8
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RESULTS

Inhibitory Effects of Remdesivir and
Cyclosporine, Alone and in Combination, on
HCoV-OC43 in Human HCT-8 Colorectal
Carcinoma Cells and Human MRC-5 Fetal
Lung Fibroblast Cells (IFA)
As shown in Figure 1A, the replication of OC43 in infected HCT-
8 cells rose with time over a period of 48 h as examined by western

analysis and IFA. To investigate the anti-coronaviral effects
of remdesivir and cyclosporine, human colorectal carcinoma
cells HCT-8 and human fetal fibroblast cells MRC-5 were
infected by HCoV-OC43 at an MOI of 0.05 and incubated at
various concentrations of the indicated compounds for 30 h.
As shown in Figures 1B, 2A and Table 1, remdesivir and
cyclosporine inhibited HCoV-OC43 in a dose dependent
manner with EC50 values of 96 ± 34 nM and 2,920 ±
364 nM in HCT-8 cells and 85 ± 23 nM and 4,419 ±
490 nM in human MRC-5 fetal lung fibroblast cells,
respectively.

The combined effects of remdesivir and cyclosporine against
HCoV-OC43 were also investigated at various concentrations of
each (Figures 1C, 2B). The results revealed that these two drugs
exerted a significantly synergistic effect when administered in
combination (Figures 1D, 2C), with synergy scores of 26.7 ± 5.4
and 14.8 ± 4.1, and most synergistic area scores of 43.1 and 19.8
against HCoV-OC43 in HCT-8 and MRC-5 cells respectively, as
assayed by IFA (Figures 1C, 2B) and analyzed by SynergyFinder
(Figures 1E, 2D; Table 2).

FIGURE 3 | Reduction of IL-6 levels by single and combined treatments of remdesivir and cyclosporine in HCoV-OC43 infected human MRC-5 fetal lung fibroblast
cells. (A) IL-6 production induced by HCoV-OC43 infection in MRC-5 cells over 3 days. (B) Dose dependent reduction of IL-6 levels by remdesivir and cyclosporine
treatments in HCoV-OC43 infected MRC-5 cells at 30 h.p.i. Shown are the AVE ± SD from three independent experiments (A–C) The two-tailed unpaired Student’s t test
was used evaluated the dose effect of single drug treatment on IL-6 production. (C and D) Synergistic reduction of IL-6 levels produced by HCoV-OC43 infected
MRC-5 cells treatment with the combination of remdesivir and cyclosporine. MRC-5 cells were seeded the day before compound treatment or HCoV-OC43 infection.
The tested compounds were added to the wells 1 h prior to the addition of HCoV-OC43 at an MOI of 0.05. The resulting cultures were then incubated for an additional
30 h (B–D), or as indicated (A), at 37°C. Subsequently, the culture supernatants were subjected to detection and quantitation of IL-6 by ELISA. AVE ± SD from three
independent experiments (A–C) are shown; The statistical significance was evaluated using one-way ANOVA followed by Tukey’s multiple comparison test. * and **
denote statistical significance of p < 0.05, and p < 0.01 respectively (B and C). Shown inhibition % (AVE) and synergy scores (AVE ± SD) are from three independent
experiments (D) analyzed via SynergyFinder (https://synergyfinder.fimm.fi/).

TABLE 3 | IL-6 production in human colorectal carcinoma HCT-8 and human fetal
lung fibroblast MRC-5 cells with or without HCoV-OC43 infection at 30 h.p.i.
Shown are AVE ± SD from three independent experiments.

Cell line HCoV-OC43 infection IL-6 quantitative range

HCT-8 − <minimum 1.5 pg/ml
HCT-8 + minimum 1.5 pg/ml
MRC-5 − 303 ± 66 pg/ml
MRC-5 + 18,186 ± 1,895 pg/ml
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FIGURE 4 | Single or combined treatments of remdesivir and cyclosporine profoundly reduced SARS-CoV-2 infection of Vero E6 cells assayed by IFA. (A) Single
treatments of remdesivir and cyclosporine reduced SARS-CoV-2 infection of Vero E6 cells in a dose dependent manner. (B–D) Combined treatments of remdesivir and
cyclosporine synergistically reduced SARS-CoV-2 infection in Vero E6 cells. IFAs were performed with antibody against SARS-CoV-2 N (green) and DAPI staining (blue)
for the Vero E6 host live cells. Vero E6 cells were treated with each compound at the indicated concentrations for 1 h at 37°C. The cells were adsorbed with SARS-
CoV-2 (TCDC#4) at MOI � 0.01 for 1 h at 37°C. After virus adsorption, the cells were washed with PBS and fresh medium with each compound added at the indicated
concentrations and then incubated for 1 day. The cells were fixed with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100. The cells were stained with anti-
SARS-CoV-2 N protein antibody and anti-human IgG-Alexa Fluor 488 (green). Nuclei were counter stained with DAPI (blue) and used to determine the relative cell viability
by using the number of nuclei in vehicle control as 100% (Supplementary Figure S3). N protein expression was measured using a high-content image analysis system
(Molecular Devices). The fluorescent signal was normalized with cell viability to calculate the infection rate that no compound treatment was set at 100%. EC50 and CC50

values were calculated by Prism software. Shown are the AVE ± SD from three independent experiments (A andC) * and ** denote statistical significance of p < 0.05, and
p < 0.01 respectively. Shown results of IFA are representative of three independent experiments (B). Shown inhibition % (AVE) and synergy scores (AVE ± SD) are from
three independent experiments (D) analyzed via SynergyFinder (https://synergyfinder.fimm.fi/).
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FIGURE 5 | Single or combined treatment with remdesivir and cyclosporine synergistically reduced infectious SARS-CoV-2 viral loads as determined by plaque
formation assays. (A) Single treatment of SARS-CoV-2-infected Vero E6 cells with remdesivir and cyclosporine reduced the number of plaque-forming units in a dose
dependent manner. (B) Combined treatment of SARS-CoV-2-infected Vero E6 cells with remdesivir and cyclosporine significantly decreased plaque formation caused
by SARS-CoV-2. (C and D) Combined treatment of SARS-CoV-2-infected Vero E6 cells with remdesivir and cyclosporine synergistically reduced SARS-CoV-2
viral loads. Plaque assays were performed in triplicate using 24-well tissue culture plates. Vero E6 cells were seeded in DMEMwith 10% FBS and antibiotics 1 day before
infection. SARS-CoV-2 was added to the cell monolayer for 1 h at 37°C. Subsequently, viruses were removed and the cell monolayer was washed once with PBS before
covering with overlay media containing 1% methylcellulose (Sigma, cat#M0387) and the test compounds at indicated concentrations for 5–7 days. The cells were fixed
with 10% formaldehyde solution (MarconTM Chemicals, cat #H121-08) overnight. After removal of overlay media, the cells were stained with crystal violet and the plaques
were counted. The percentage of inhibition was calculated as [1–(VD/VC)] × 100%, where VD and VC refer to the virus titer in the presence and absence of the test
compound, respectively. The inhibition in plaque formation results shown are representative of three independent experiments, each in triplicate (B). Cell viability was
determined as described (Kuo et al., 2021) by measurement of relative alkaline phosphatase activity; viability in the absence of compound treatment was set as 100%.
AVE ± SD of three independent experiments were shown (A and C); The statistical significance was evaluated using one-way ANOVA followed by Tukey’s multiple
comparison test. * and ** were used to denote the statistical significance for p < 0.05, and p < 0.01 respectively (C). Shown inhibition % (AVE) and synergy scores (AVE ±
SD) are from three independent experiments (D) analyzed via SynergyFinder (https://synergyfinder.fimm.fi/).
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Inhibitory Effects of Remdesivir and
Cyclosporine, Alone and in Combination, on
IL-6 Cytokine Production in HCoV-OC43
Infected Human MRC-5 Fetal Lung
Fibroblast Cells
Since IL-6 is a pivotal biomarker in COVID-19 disease
progression (Henry et al., 2020; McElvaney et al., 2020), we
examined IL-6 levels in HCoV-OC43-infected and -uninfected
HCT-8 and MRC-5 cells. Greater than 20,000 pg/ml of IL-6 was
found to be produced by HCoV-OC43-infected MRC-5 cells over
the course of 3 days (Figure 3A); IL-6 levels in uninfected MRC-5
cells were very low (Figure 3A; Table 3). However, IL-6 was not
detected in the culture supernatants of HCoV-OC43-infected or
uninfected HCT-8 cells (Table 3). Therefore, the effects of
remdesivir and cyclosporine on IL-6 cytokine production were
examined in HCoV-OC43-infectedMRC-5 cells at 30 h.p.i. over a
time period equivalent to the time needed for the HCoV-OC43-
infected human MRC-5 fetal lung fibroblast cells to produce
18,186 ± 1,895 pg/ml of IL-6 (Table 3).

As shown in Figure 3B and Table 1, remdesivir and
cyclosporine separately reduced IL-6 production in MRC-5
cells infected with HCoV-OC43 at 30 h.p.i. in a dose
dependent manner, with EC50 values of 224 ± 53 nM and
1,292 ± 352 nM, respectively. Similarly, the combined effects
of remdesivir and cyclosporine on HCoV-OC43-induced IL-6
production were investigated at varying concentrations of each.
The results showed that these two drugs exerted a significantly
synergistic reduction of IL-6 production by HCoV-OC43-
infected MRC-5 cells when administered in combination
(Figure 3C), with a synergy score of 13.0 ± 5.7 and a most
synergistic area score of 25.8, as assayed by ELISA and analyzed
by SynergyFinder (Figure 3D; Table 2).

Inhibitory Effects of Remdesivir and
Cyclosporine, Alone and in Combination, on
SARS-CoV-2 in Vero E6 Cells
We further examined whether the combination of remdesivir
and cyclosporine could synergistically inhibit SARS-CoV-2.
Two disparate assays (IFA and plaque formation) were
performed to examine the single and combined inhibitory
effects of remdesivir and cyclosporine on SARS-CoV-2 in
Vero E6 cells.

As shown in Figure 4A and Table 1, remdesivir and
cyclosporine exhibited dose-dependent SARS-CoV-2 inhibition
with respective EC50 values of, 3,962 ± 303 nM and 7,213 ±
143 nM in Vero E6 cells at 1 day post-infection (d.p.i.) with an
antibody against SARS-CoV-2 N protein. The combined effects of
remdesivir and cyclosporine against SARS-CoV-2 were then
investigated at various concentrations of each. The results
revealed that the inhibitory effects of these two drugs against
SARS-CoV-2 in Vero E6 cells, as assayed by IFA at 1 d.p.i.
(Figure 4B), were significantly synergistic (Figure 4C) with a
synergy score of 25.0 ± 2.5 (analyzed by SynergyFinder) and a
most synergistic area score of 65.5 (Figure 4D and Table 2).

A plaque formation assay was also undertaken, to examine the
combined effect of remdesivir and cyclosporine on the SARS-
CoV-2 infectious dose at 5–7 d.p.i. in Vero E6 cells (Figure 5).
The plaque formation assay is traditionally used to determine the
infectious virus dose–the number of plaque-forming units in a
virus sample. Plaque formation in culture plates of SARS-CoV-2-
infected confluent Vero E6 cells took 5–7 days. Plaques were
counted manually and the numbers corrected based on the sizes
of plaques as described in Methods. Remdesivir and cyclosporine
were again found to separately inhibit SARS-CoV-2 in a dose
dependent manner with respective EC50 values of 291 ± 91 nM
and 6,767 ± 1,827 nM (Figure 5A; Table 1). Their combined
inhibitory effect was found to be significantly synergistic as
shown in Figures 5B,C, with a synergy score of 43.7 ± 14.9
and a most synergistic area score of 46.2 analyzed by
SynergyFinder (Figure 5D; Table 2).

CONCLUSION AND DISCUSSIONS

Remdesivir is a prodrug which is metabolized into a nucleoside
triphosphate that irreversibly bonds with the RdRp of
SARS-CoV-2, blocking viral transcription after cell entry
(Shannon et al., 2020; Hanafin et al., 2021). It is used
clinically for the treatment of COVID-19 patients, but its
efficacy is limited (Beigel et al., 2020; Goldman et al., 2020;
Spinner et al., 2020) and its mechanism of action does not
address the cytokine storm that also accompanies the disease
progression of COVID-19 (McElvaney et al., 2020). Blockade of
key pathogenic cytokines in COVID-19 patients should
ameliorate disease progression and exert viral inhibition.
Elevated IL-6 levels in COVID-19 patients play an important
role in disease progression and severity (Henry et al., 2020;
McElvaney et al., 2020), and the IL-6 inhibitor tocilizumab is a
potential alternative therapy for COVID-19 patients
experiencing a cytokine storm (Klopfenstein et al., 2020;
Toniati et al., 2020; Xu et al., 2020). However, more
controlled clinical trials are needed to confirm its efficacy
and safety (Campochiaro et al., 2020; Lan et al., 2020; Stone
et al., 2020).

Simultaneous reduction of coronaviral loads and mitigation of
the cytokine storm may constitute an efficacious treatment of
severe COVID-19. Herein, we identified the immunosuppressant
cyclosporine by screening for inhibitors of HCoV-OC43, and
found that it exerted a significantly synergistic inhibitory effect
against HCoV-OC43 and SARS-CoV-2 in combination with
remdesivir (Figures 1, 2, 4, 5; Tables 1, 2). These drugs also
reduced coronavirus IL-6 production synergistically, when used
in combination (Figure 3; Tables 2, 3). Whereas cyclosporine
reduces IL-6 via down-regulation of its production (Stephanou
et al., 1992; Iacono et al., 1997) (which contributes to its anti-viral
activity), remdesivir targets coronaviral RdRp (Gordon et al.,
2020; Pruijssers et al., 2020) to reduce viral loads and thereby
reducing IL-6 production. In combination, these drugs are
capable of profoundly reducing coronaviral loads and IL-6
production in a synergistic manner. Furthermore, the doses of
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cyclosporine (3.6–4.8 mg/kg) which correspond to the measured
EC50 values (3–4 μM) or lower, when in combination with
remdesivir, are actually lower than those in current clinical use
(∼15 mg/kg for the initial dose and 5–10 mg/kg for the
maintenance doses), which result in cyclosporine plasma
concentrations of 250–1000 ng/ml (Novais Sandimmune®,
https://www.rxlist.com/sandimmune-drug.htm#side_effects).
Similarly, the EC50 values of remdesivir herein are also equivalent
or lower than those in current clinical use (100–200 mg) (Grein
et al., 2020). Thus, the cyclosporine and remdesivir levels
measured in this study are of clinical significance.

The synergy of the combinations of remdesivir with
itraconazole (an anti-fungal), fluoxetine (Schloer et al., 2021)
(an anti-depressant), or calcium-channel blocker diltiazem
(Pizzorno et al., 2020) respectively was reported, but the
effects were only marginal [synergy scores ∼12 analyzed by
SynergyFinder (Pizzorno et al., 2020; Schloer et al., 2021)]. On
the other hand, Janus kinases (JAKs) play a critical role in the
cytokine storm of severe COVID-19 patients (Luo et al., 2020) and the
combined treatment of remdesivir with the JAK inhibitor baricitinib
was found to further reduce recovery time and improve the clinical
status of severe COVID-19 patients compared to remdesivir alone
(Kalil et al., 2020). Therefore, the synergistic effect of the combined
treatment of remdesivir and cyclosporine in reducing coronaviral load
and IL-6 levels identified hereinmerits further study for application in
moderately or severely ill COVID-19-patients whose SARS-CoV-2
infection is complexed with a cytokine storm, as well as other
applicable conditions identified in the future.

These results validate our strategy of treating COVID-19 with
two drugs–one to address viral load, and the other cellular factors.
The search for other combined treatments for patients with
different progressive and pathogenic stages of COVID-19
merit further exploration.
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To date, the current COVID-19 pandemic caused by SARS-CoV-2 has infected 99.2
million while killed 2.2 million people throughout the world and is still spreading widely. The
unavailability of potential therapeutics against this virus urges to search and develop new
drugs. SARS-CoV-2 enters human cells by interacting with human angiotensin-converting
enzyme 2 (ACE2) receptor expressed on human cell surface through utilizing receptor-
binding domain (RBD) of its spike glycoprotein. The RBD is highly conserved and is also a
potential target for blocking its interaction with human cell surface receptor. We designed
short peptides on the basis of our previously reported truncated ACE2 (tACE2) for
increasing the binding affinity as well as the binding interaction network with RBD.
These peptides can selectively bind to RBD with much higher affinities than the cell
surface receptor. Thus, these can block all the binding residues required for binding to cell
surface receptor. We used selected amino acid regions (21–40 and 65–75) of ACE2 as
scaffold for the de novo peptide design. Our designed peptide Pep1 showed interactions
with RBD covering almost all of its binding residues with significantly higher binding affinity
(−13.2 kcal mol−1) than the cell surface receptor. The molecular dynamics (MD) simulation
results showed that designed peptides form a stabilized complex with RBD. We suggest
that blocking the RBD through de novo designed peptides can serve as a potential
candidate for COVID-19 treatment after further clinical investigations.

Keywords: COVID-19, SARS-CoV-2, RBD, designed peptide, s glycoprotein

INTRODUCTION

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the enveloped and positive-
stranded RNA virus (Muralidharan et al., 2021). SARS-CoV-2 was emerged and started causing
coronavirus disease 2019 (COVID-19). Hence, it is the utmost public health emergency at present
with no treatment available so far, with an urgent need of potent drug against COVID-19
(Muralidharan et al., 2021). Currently, SARS-CoV-2 has affected the whole world and possibly
it can re-emerge in the future with some virus beneficial mutations which might lead to more-worst
outcome. Coronaviruses use spike (S) glycoprotein to attach and fuse with host cells, followed by
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entry into the cell. The interaction between the receptor-binding
domain (RBD) of S protein and the human angiotensin-
converting enzyme 2 (ACE2) happens while the S protein is in
the pre-fusion conformation. The binding of the S protein in pre-
fusion conformation with ACE2 triggers the cleavage of the S
protein in two large domains: the N-terminal domain that
remains attached to ACE2 and the C-terminal domain which
folds in the so called post-fusion conformation (6-helix bundle
fusion core) determining host-cell invasion (viral membrane
fusion process) (Mercurio et al., 2021). A recent study has
diagnosed SARS-CoV-2 in serum, urine and fecal samples
with a low detection rate (Kim et al., 2020; Wang et al., 2020).
Although it is challenging to determine whether the urinary tract,
bladder or blood cells are also infected by SARS-CoV-2, virtual
screening of RBD with cell surface receptor can raise the
possibility of fecal/urine-respiratory infection.

Interestingly, the SARS-CoV-1 and -2 bind with cell surface
receptor through RBD (a highly conserved region of S protein)
(Singh et al., 2020), which suggests this domain a suitable target
for drug designing (Lizbeth et al., 2020). The structural insights of
SARS-CoV-2 and ACE2 interactions have been extensively
studied (Lan et al., 2020; Yan et al., 2020). The RBD residues
critical for interaction with ACE2 are located at position 417, 458,
493–498, and 500–502 (Chan et al., 2020; Lan et al., 2020; Yan
et al., 2020; Basit et al., 2021). This suggests that almost similar
binding residues of RBD are used to interact with cell surface
receptor. The overall sequence of RBD is highly conserved with
more than 99.9% homology with worldwide sequences of RBD
reported (Basit et al., 2021). Structural elucidation has also
confirmed the highly conserved nature of RBD (Lan et al.,
2020). Blocking the binding residues of RBD can impede the
SARS-CoV-2 to infect the human cells (Huang et al., 2020). The
interactions between RBD and cell surface receptor have been
extensively elucidated (Chan et al., 2020; Wan et al., 2020; Yan
et al., 2020), which can be exploited to design peptide-based
inhibitors targeting binding residues of RBD. Several studies have
reported peptides for blocking the fusion of SARS-CoV-2 RBD
with human cell surface receptor and for targeting the HR1
domain, which have shown successful inhibitory effects (Du
et al., 2009; Xia et al., 2019; Han and Kral, 2020; Karoyan
et al., 2021). Previous studies have shown that the residues of
ACE2 at position 21–40 and 76 are optimal for binding with RBD
(Huang et al., 2020; Basit et al., 2021). There are several other
peptides reported for blocking RBD of SARS-CoV-2 and SARS-
CoV-1 (Han et al., 2006; Chan et al., 2020). However, these
peptides may not cover all the binding residues of RBD.
Engineering the optimal regions of ACE2 and expanding their
binding interaction network can significantly block the infection
of SARS-CoV-2 into human cells. De novo protein design is a
novel approach used to optimize the binding interface of protein-
protein interactions by mutating the residues into favorable
mutants which provide new binding interactions with
increased binding affinity and preserved secondary structure
(Chevalier et al., 2017). Recently, Huang et al. (2020),
redesigned the previously reported two natural peptides from
ACE2 through EvoDesign (Pearce et al., 2019) and produced a
hybrid peptide with improved binding affinity for RBD and

showed interactions with residues Y453, F456, Y473, A475,
N487, and Y489 of RBD.

In the current study, we aimed to design peptides on the basis
of our previously reported truncated ACE2 (tACE2) (Basit et al.,
2021) by using EvoDesign, a de novo peptide design approach, to
increase not only the binding affinity but also extend the binding
interaction network with RBD. We have selected two regions of
ACE2 (21–40 and 65–75) as a template for de novo peptide design
(Wan et al., 2020). We designed two peptides, Pep1 and Pep2 for
binding with RBD and determined their binding affinity and
complex stability through protein-protein docking and molecular
dynamics (MD) simulations. The present study will open a new
path for designing therapeutic peptides against COVID-19.

MATERIALS AND METHODS

Designing COVID-19 Therapeutic Peptides
The three-dimensional (3D) structure (protein data bank [PDB]
ID: 6m17) of RBD of SARS-CoV-2 S glycoprotein was obtained
from PDB database. Two peptides (Pep1 and Pep2) were deigned
against the binding residues at position 417, 453, 458, 493–498,
and 500–505 of RBD (Yan et al., 2020). The amino acid position
21–40 of tACE2 binds with the binding residues 493–498 and
501–505 of RBD (Basit et al., 2021), while 65–75 amino acid
region of tACE2 interacts with binding residues 417, 453. and 458
of RBD (Lizbeth et al., 2020). Therefore, we selected these two
fragments of ACE2 from amino acid position 21–40 and 65–75 as
scaffold1 and scaffold2, respectively, for de novo peptide design to
further enhance their binding affinity for RBD. The 3D structure
of the scaffold peptides were produced through I-TASSER (Yang
et al., 2015) and optimized for energy minimization through
FoldX (Schymkowitz et al., 2005). The optimized scaffold
structures were submitted as template to EvoDesign server
(https://zhanglab.ccmb.med.umich.edu/EvoDesign/) using
interface design. The template modeling-score (TM-score) >0.
5 indicates that the designed peptide has similar fold to that of
scaffold while the value < 0.2 correspond to those of randomly
chosen unrelated proteins (Pierce et al., 2014). EvoDesign outputs
the top 10 sequences selected from the largest clusters. The top
ten designed sequences obtained for each peptide was sorted
based on TM-score, sequence identity and lowest free energy. The
sequence with the lowest free energy was considered as favorable
design. However, we selected Pep1 and Pep2 from their
corresponding top 10 sequences based on their Z-score and
HADDOCK-score calculated by HADDOCK server (https://
wenmr.science.uu.nl/haddock2.4/). The 3D models of the
designed peptides were produced through I-TASSER (Yang
et al., 2015). The selected designed peptides were analyzed for
their fold similarity through template modeling alignment (TM-
align) (Zhang and Skolnick, 2005).

Docking of RBD With Designed Peptides
Protein-protein docking of the designed peptides with RBD was
performed through HADDOCK, a flexible protein-protein
docking tool (van Zundert et al., 2016). The structures of
designed peptides were optimized before docking for amino
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acid side chain clashes and energy minimization by using FoldX
(Schymkowitz et al., 2005). HADDOCK performs protein-
protein docking by retrieving information from experimentally
determined protein-protein complexes. The energy function used
by HADDOCK consists on combination of interaction energies
and HADDOCK-score, which is a combination of non-bonded
intermolecular interactions (Vangone et al., 2017). All the
generated docking poses were analyzed through PyMOL
(Schrodinger, 2010). The best docked complex of RBD with
designed peptides were selected on the basis of HADDOCK-
score and were further analyzed for binding affinity ΔG (kcal
mol−1) and complex stability by using an online protein binding
energy prediction server (https://bianca.science.uu.nl/prodigy/),
PRODIGY (Xue et al., 2016). Dissociation constant Kd (M) was
determined as previously described (Basit et al., 2021). The
peptides-RBD docked complexes with higher binding affinity
were subjected to MD simulation to further confirm complex
stability.

Determination of RBD-Peptide Complex
Stability Through MD Simulation
MD simulation of RBD in complex with designed peptides (Pep1
and Pep2) was performed through GROMACS 5.0.4 (Van Der
Spoel et al., 2005; Abraham et al., 2015) using CHARM 27.0 force
field (Huang and MacKerell, 2013). The protein complex was
solvated in TIP3P cube box water model (volume: 596.38 nm3

and density: 994.63 g L−1) to provide an aqueous environment
with a total 55,386 water molecules. The protein complex was
centered in the box with a distance of at least 1.0 nm from the
simulation box edge, while 1.0 nm distance between the atoms
with non-bonded interactions was maintained. To neutralize the
total charge of the system, one Cl− ion was added to the box
followed by energy minimization to remove conflict between the
atoms (Ross et al., 2018). The system now containing 3141
protein atoms in addition to one Cl− ion and 55,386 water
molecules, was subjected to energy minimization using
steepest descent method for 20,000 steps and then equilibrated
through canonical ensemble (NVT: moles (N), volume (V) and
temperature (T)) and isothermal-isobaric ensemble (NPT: moles
(N), pressure (P) and temperature (T)) at constant temperature
(300 K) and pressure (1 bar), respectively for 100 ps. Particle
Mesh Ewald (PME) with grid spacing 0.16 nm were used for
long-range electrostatics (Huang and MacKerell, 2013). MD
simulation was then run for 100 ns at 300 K. Root mean
square deviation (RMSD), root mean square fluctuation
(RMSF)and radius of gyration (Rg) plots were produced
through gnuplot (http://www.gnuplot.info/).

RESULTS AND DISCUSSION

De Novo Design of Inhibitory Peptides
Against RBD
RBD of spike glycoprotein mediates the entry of SARS-CoV-2
into the human respiratory cells by interacting with cell surface
receptor ACE2 (Lan et al., 2020). Therefore, blocking the

interaction residues of RBD might block its interaction with
ACE2, hence making it unable to infect human cells. The
RBD of SARS-CoV-2 and SARS-CoV-1 is highly conserved (Li
et al., 2020) and mainly uses residues 417, 453, 458, 490, 493–495,
498, 501, and 502 for binding to ACE2 (Lan et al., 2020; Yan et al.,
2020). Therefore, blocking the binding residues of RBD through
inhibitory peptides can potentially block entry of SARS-CoV-2
into the human cells and can also be useful against future
pandemic if caused by newly emerged coronaviruses due to
the conserved nature of RBD (Lan et al., 2020). Thereby,
targeting the RBD to block its interaction with ACE2 is ideal
choice for SARS-CoV-2 drug discovery. At present, much
research has been focused on non-invasive routes such as
nasal, pulmonary, oral, ocular, and rectal for administering
peptides (Ibraheem et al., 2014). Unfortunately, the widespread
use of peptides as drugs is still faced by many obstacles such as
low bioavailability, short half-life in the blood stream, in vivo
instability, and numerous other problems. In order to overcome
these hurdled and improve peptide drug efficacy, various
strategies have been developed such as permeability
enhancement, enzyme inhibition, and protection by
encapsulation (Ibraheem et al., 2014).

Previously, we targeted these nine residues of RBD to be
blocked through tACE2 (Basit et al., 2021). However, the
current study involved re-designing the binding interface of
tACE2 to produce shorter peptide with more binding affinity
and covering all the binding residues of RBD (Fosgerau and
Hoffmann, 2015). Short therapeutic peptides have gain interest
because they have many advantages, such as low molecular
weight, selectivity for a specific target, cells with minimal
toxicity (Ellert-Miklaszewska et al., 2017). Furthermore, the
use of chimeric peptides encompassing disease-targeting and
cell-penetrating elements can increase specificity and efficacy
of drug delivery together with reducing toxicity (Ellert-
Miklaszewska et al., 2017).

The RBD binding residues 490, 493–495, 498, 501, 502 are
clustered at one region (region1) while 417 and 458 are clustered
at the other region (region2). Therefore, either two peptides can
block these two regions or single peptide with extended binding
network can hinder interaction between RBD and cell surface
receptor.

The residues of ACE2 at amino acid position 21–40 (scafold1)
and 65–75 (scafold2) were re-designed and produced 10 de novo
sequences for each scaffold. Two best sequences (Pep1 and Pep2)
were selected from top-10 de novo sequences produced by
EvoDesign from scaffold1 and scaffold2, respectively. The TM-
score 0.61 of Pep1 (those of Pep3-10) indicate its similar fold to
that of scaffold1, while Pep2 TM-score was 0.16 indicating its
different fold than the scaffold2 structure. The Lower RMSD of
Pep1 (0.58 Å) is in agreement with its TM-score, while Pep2
showed RMSD 2.12 Å, which indicate slight deviation of
secondary structure from its scaffold (Figure 1). Similarly, the
amino acid sequence of Pep1 showed 30% similarity while Pep2
showed 20% similarity with its corresponding native sequence
(Table 1). The designed peptides with high similarity to their
native sequence usually exhibit higher binding affinity towards its
partner protein (Huang et al., 2020). We further investigated the
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binding pattern and affinity of the designed peptides for RBD
through protein-protein docking.

Protein-Protein Docking
To test the binding properties, protein-protein docking of the
designed peptides with RBD was performed through
HADDOCK. The HADDOCK-scores (the more negative the
better binding affinity) of Pep1 and Pep2 were −119 and −111,
respectively, when docked with RBD. The HADDOCK-score of
Pep1 is greater than that of the intact ACE2 (−111) dockedwithRBD
(Basit et al., 2021). The docking RMSD of Pep1 and Pep2 in complex
with RBDwere 0.6 and 0.8, respectively, showing the high likelihood
of the docked complexes with native one (Vangone et al., 2017).

Our docking results showed that nine residues Ala2, Lys7,
Ans10-Asp14, Ser16, and Phe20 of Pep1 interact with Arg403,
Lys417, Tyr453, Lys458, Gln493-Gly496, Gln498, Thr500,
Asn501, and Tyr505 residues of RBD (Figures 2A–C), while
Leu67-Asp69, Thr72 and Glu75 of Pep2 interact with Arg404,
Lys417, Tyr495 and Tyr 505 of RBD (Figures 2D,E). Similarly,
seven residues of wild type tACE2 scaffold (Glu23, Glu24, Lys31,
His34, Glu35, Glu37, and Asp38) showed binding interactions
with Seven residues (Tyr453, Lys458, Asn487, Tyr489, Gln498,
Thr500 and Gly502) of RBD (Supplementary Figure S1). These
results confirm that Pep1 not only cover 11 the binding residues
of RBD involved in interaction with human ACE2 (Table 1) but
also other residues at position 403, 417, and 493–498, that may

FIGURE 1 | Superimposed models of de novo designed peptides showing comparison of their secondary structures to those of two scaffolds (selected amino acid
regions [21–40 and 65–75] of ACE2) structure. (A) The Pep1 (red) superimposed on tACE2 showed almost similar secondary structure with C-α backbone RMSD 0.58 Å
to the wild type tACE2. However, the changes (arrows) in positions of Pep1 residues’ R groups with respect to scaffold (blue) were observed, as shown the Phe20 side
chain of ACE2 is moved 11.2 Å away from the Phe20 side chain of Pep1, which provide a favorable position for binding with Lys458 of RBD of SARS-CoV-2 spike
glycoprotein. (B) The Pep2 (pink) showed notable different secondary structure composition from scaffold (dark blue) with C-α backbone RMSD 2.12 Å.

TABLE 1 | Summary of the de novo designed peptides produced by using ACE2 as scaffold.

Designed peptide Sequence TM-scorea Sequence identity
(%)

RMSDb Binding affinity
(kcal mol−1)

Number of
binding residues

in RBD
covered by
the designed

peptide

tACE2 fragment (scaffold1) I21EEQAKTFLDKFNHEAEDLF40 — — — −10.2 7
Pep1 EAAAKAKLSNENHDNSTVSF 0.61 30 0.58 −13.2 11
tACE2 fragment (scaffold2) A65GDKWSAFLKE75 — — — −7.6 3
Pep2 PCLGDQATVAE 0.16 20 2.12 −9.2 3
Pep3 EEAAKTTLANENSDNCFLSF 0.68 40 0.68 −12.8 10
Pep4 EQAAKATLANENSDNGFLSF 0.64 30 0.51 −11.2 9
Pep5 ESAAKAQLRQEDTENAAVMY 0.60 30 0.58 −11.8 8
Pep6 EAAAKSILSNENNDNSTASF 0.62 25 0.60 −10.92 7
Pep7 EENSCSFLAALFSEASCQSK 0.65 30 0.48 −11.8 8
Pep8 EFQQGCFISAADNCQSEISY 0.50 20 0.55 −11.5 8
Pep9 EKLTYSALQAEKTSSSPQSG 0.58 10 1.8 −10.8 6
Pep10 EHHAASKLMGIDQESAMIAL 0.61 20 0.78 −12.3 8

aTemplate modeling-score (TM-score) indicates the fold similarity between two structures (each peptide and ACE2). A TM-scores >0.5 correspond to almost similar fold while the value <
0.2 indicate randomly chosen unrelated proteins.
bRoot mean square deviation (RMSD) calculated by TM-align shows the structural variations of two superimposed structures (each peptide and ACE2).
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involve in interaction with human receptors, making this peptide
ideal for further clinical investigation for its therapeutic potential.

Previous studies have shown that binding residues of RBD are
located at two distinct position, region1 (490, 493–495, 498, 501,
502) and region2 (417 and 458) (Lan et al., 2020; Basit et al.,
2021). Interestingly, our de novo designed peptide Pep1 showed
binding with region1 as well as region2 residues (Figure 2C). The
superimposition of docked Pep1 with its scaffold showed that

redesigning moved the Phe20 into the favorable position for
interaction with Lys458 of RBD, while mutation Ala16Ser results
in interaction with Lys417 of RBD (Figures 1, 2C). Both of these
residues are located at region2 and reported to be critical for
interaction with RBD (Lan et al., 2020). The superimposition of
designed peptides Pep3-10 with scaffold showed average RMSD
0.2 A˚, suggesting their almost similar C-α backbone with
deviation in R group positioning (Supplementary Figure S2).

FIGURE 2 | Structural analysis of the designed peptides (Pep1 and Pep2) in complex with RBD of SARS-CoV-2 spike glycoprotein. (A) Pep1-RBD complex shows
the positioning of designed peptide Pep1 (red) in the binding interface of RBD (blue). (B) Pep1 comprises on a single helical structure (red) showing their interactions with
the RBD binding residues shown in green. (C) The residues of Pep1 involved in binding interactions with RBD residues (green). (D) Pep2-RBD complex shows the
positioning of Pep2 (pink) at the binding interface of RBD (blue). (E) The residues of Pep2 involved in binding interactions with RBD residues (yellow). All interactions
are denoted by black lines.
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The de novo design approach created optimum mutation which
increased binding network of the designed peptide Pep1, resulting
in successful blocking of the RBD binding residues required for
interaction with human cell surface receptor.

Binding Affinity of Designed Peptides for
ACE2
We further determined the binding affinity of the designed
peptides for RBD and complex stability. The binding affinity
showed by Pep1 for RBD was −13.2 kcal mol−1 at 36°C as
optimum temperature which is greater than the binding
affinity of wild type tACE2 (−10.7 kcal mol−1) (Basit et al.,
2021) and scaffold tACE2 (−11.2 kcal mol−1). It seems that the
favorable mutations and side chain rearrangement resulted in
dramatic increase in binding affinity of Pep1 for RBD. The
binding affinity of other designed peptides (Pep3-10) with
RBD was found lower than Pep1 and almost higher than the
scaffold (Table 1). We further determined the dissociation
constant Kd values of peptide-receptor complexes. The Pep1-
RBD complex showed Kd value 3.9 × 10−10 M, which is lower than
the previously reported Kd values of inhibitory peptide (P8: 2.4 ×
10−9 M) proposed for S protein of SARS-CoV-2 (Karoyan et al.,

2021) and wild type tACE2-RBD complex (Basit et al., 2021). The
smaller Kd value indicates high stability and strong binding
affinity between protein-protein complex (Johnson et al.,
2007). The lower Kd value of Pep1-RBD complex suggest that
the designed peptide Pep1 are tightly bound to the corresponding
region of RBD. Binding affinity of Pep2-RBD complex was found
lower than the Pep1-RBD complex. This indicates that region
21–40 of tACE2 has important role in binding with RBD.

MD Simulation Showed Stability of
Designed Peptides-RBD Complex
To investigate the structural stability and dynamic behavior of the
designed peptides in complex with RBD, we performed MD
simulation of the RBD in complex with Pep1 and Pep2. The
docking conformation with lowest energy was subjected to MD
simulation. To investigate structural stability of the complex,
RMSD plot of the complex backbone was produced. The RMSD
values of Pep1-RBD complex remained 0.2–0.25 nm initially for
40 ns and then increased up to 0.4–0.5 nm for 60–100 ns of MD
run. Similarly, the RMSD values of Pep2-RBD complex remained
0.3–0.4 nm during initial 90 ns while slightly increased up to
0.95 nm during 90–100 ns (Figure 3A). In general, the RMSD

FIGURE 3 | (A) RMSD plot of the Pep1-RBD complex (red) and Pep2-RBD complex (blue) backbone atoms. (B) Root mean square fluctuation (RMSF) plot
showing fluctuation of residues side chains of RBD in complex with Pep1 (red) and Pep2 (blue). (C) Radius of gyration (Rg) plot of Pep1-RBD (red) and Pep2-RBD
complex (blue).
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≤0.3 nm during a 20 nsMD run indicates strong complex stability
(Rao et al., 2007; Rani et al., 2016). Overall, a uniform lower
RMSD of Pep1-RBD complex indicates that Pep1 bind more
tightly to RBD than the Pep2. The RMSD value of Pep1-RBD
complex is also lower than the previously reported therapeutic
peptide (peptide inhibitor 4: 0.8 nm) for SARS-CoV-2 treatment
(Han and Kral, 2020). RMSF determined in the docked
complexes shows residues flexibility. The high RMSF values
indicate the mobility of residue side chains in relation to their
average position (Muralidharan et al., 2021). The RMSF plot of
Pep1-RBD complex shows that the residues of RBD at position
358, 417, and 490–500 showing lower fluctuation (nm) than the
Pep2-RBD complex. The overall RMSF value of Pep1-RBD
complex is less than 0.2 nm in region 1 & II window, which is
lower than the RMSF value (0.35 nm) of RBD when bound to
intact ACE2 (Basit et al., 2021). The residues involved in binding
interaction with lower RMSF values indicates the most stable
region of the complex (Ardalan et al., 2018). The lower RMSF
values of RBD binding residues indicate that Pep1 form a stable
complex with RBD, as RMSF value < 0.4 nm reveals complex
stability (Maqsood et al., 2020).

Rg value was determined to describe the structural integrity
and folding behavior of the designed peptides in complex with
RBD. A low Rg value reveals better structural integrity and
folding behavior (Bhowmick et al., 2020; Chatterjee et al.,
2020). Pep1-RBD complex showed a uniform and stable Rg
value between 1.80–1.84 nm throughout a 100 ns MD run,
while the Rg value of Pep2-RBD complex increased to 2.23 nm
during 90–100 ns. The overall Rg values for both peptides
remained between 1.80–1.84 nm during 0–89 ns, which is
lower than the Rg value (2.2 nm) showed by intact ACE2-RBD
complex (Basit et al., 2021), which indicates structural integrity of
Pep1-and Pep2-RBD complex (Figure 3C). Overall, the MD
simulation results suggests that the de novo designed peptides
form a stabilized complex with RBD and propose their potential
to block the SARS-CoV-2 spike glycoprotein for interaction with
human cell surface receptor.

CONCLUSION

SARS-CoV-2 infects human cells through their receptor binding
domain of its spike glycoprotein by interacting with cell surface
receptor, ACE2. The de novo peptide design opens a new path for
producing more potential therapeutic peptides that can mask the
RBD critical residues required for interaction with human cell

surface receptor, making the SARS-CoV-2 unable to infect human
cells. Our de novo designed peptides covering 11binding residues of
RBD with increased binding affinity and complex stability. A
stabilized interactions network was shown by Pep1and Pep2.
The designed peptides can be tested experimentally for their
binding affinity towards spike glycoprotein, followed by
analyzing their potential to inhibit the targeted human cell line
from SARS-CoV-2 pseudoparticles infection, live virus infection
inhibition in cell culture, followed by assessment of its potential
inhibitory activity in animal model of infection.
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Add-On Effect of Honeysuckle in the
Treatment of Coronavirus Disease
2019: A Systematic Review and
Meta-Analysis
Xu-Qin Du1,2, Li-Peng Shi1,2*, Wen-Fu Cao1,2,3*, Zhi-Wei Chen1,2, Biao Zuo1,2 and
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Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China, 3Department of Chinese
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Background: The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread to
become a global emergency since December 2019. Chinese herbal medicine plays an
important role in the treatment of COVID-19. Chinese herbal medicine honeysuckle is an
extremely used traditional edible and medicinal herb. Many trials suggest that honeysuckle has
obtained a good curative effect for COVID-19; however, no systematic evaluation on the clinical
efficacy of honeysuckle in the treatment of COVID-19 is reported. This study aimed to evaluate
the efficacy and safety of Chinese herbal medicine honeysuckle in the treatment of COVID-19.

Methods: Seven electronic databases (PubMed, EMBASE, Cochrane Library, China
National Knowledge Infrastructure, China Science and Technology Journal Database,
Wanfang Database, and China Biology Medicine) were searched to identify randomized
controlled trials (RCTs) of honeysuckle for adult patients (aged ≥ 18 years) with COVID-19.
The Cochrane Risk of Bias Tool was applied to assess the methodological quality of trials.
Review Manager 5.3 software was used for data analysis.

Results: Overall, nine RCTs involving 1,286 patients were enrolled. Our meta-analyses
found that combination therapy of honeysuckle and conventional therapy was more
effective than conventional therapy alone in lung computed tomography (CT) [relative
risk (RR) � 1.24, 95% confidence interval (95%CI) (1.12, 1.37), P < 0.0001], clinical cure
rate [RR � 1.21, 95%CI (1.12, 1.31), P < 0.00001], and rate of conversion to severe cases
[RR � 0.50, 95%CI (0.33, 0.76), P � 0.001]. Besides, combination therapy can improve the
symptom score of fever, cough reduction rate, symptom score of cough, and inflammatory
biomarkers (white blood cell (WBC) count; C-reactive protein (CRP)) (P < 0.05).

Conclusion: Honeysuckle combined with conventional therapy may be beneficial for the
treatment of COVID-19 in improving lungCT, clinical cure rate, clinical symptoms, and laboratory
indicators and reducing the rate of conversion to severe cases. Besides, combination therapy
did not increase adverse drug events. More high-quality RCTs are needed in the future.
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INTRODUCTION

Since December 2019, coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has become a public health emergency of
global concern (Sattler et al., 2020). As of May 6, 2021, more
than 154.815 million confirmed cases and more than 3.236
million deaths had been reported globally (World Health
Organization (WHO), 2021). Thus, there is an urgent need to
prevent and treat COVID-19.

Through a series of prevention and medical treatment
measures, the COVID-19 epidemic in China has been
effectively controlled by May 6, 2021, with 103,731 confirmed
cases and 98,392 cured cases (World Health Organization
(WHO), 2021; National Health Commission of the people’s
Republic of China, 2021). Chinese herbal medicine plays an
important role in the treatment of COVID-19 in view of no
specific drugs approved for COVID-19. Chinese herbal medicine
honeysuckle is an extremely used traditional edible-medicinal
herb (Li et al., 2021). Pharmacological studies have already
proved honeysuckle’s ideal clinical therapeutic effects on
inflammation and infectious diseases (Li et al., 2021). Also, it
is reported that honeysuckle can effectively alleviate clinical
symptoms of COVID-19 (Hu et al., 2020; Zhang et al., 2020)
and inhibit SARS-CoV-2 replication (Zhou et al., 2020).

At present, there are only few trials on the treatment of
COVID-19 with honeysuckle (Hu et al., 2020; Zhang et al.,
2020), but many trials on the treatment of COVID-19 used
Chinese herbal medicine including honeysuckle as the main
components (Ai et al., 2020; Ding et al., 2020; Duan et al.,
2020). These trials suggest that honeysuckle has obtained a
good curative effect for COVID-19 (Hu et al., 2020; Zhang
et al., 2020). Presently, there is no systematic evaluation report
on the clinical efficacy of honeysuckle in the treatment of
COVID-19. This review aimed to critically evaluate the
effectiveness and safety of honeysuckle for COVID-19.

METHODS

The preferred reporting item for systematic review and meta-
analysis (PRISMA) Evaluation Scale was used for reporting the
results of this review (Moher et al., 2009). The protocol for this
review is available in PROSPERO (https://www.crd.york.ac.uk/
prospero/, registration number is CRD42020224312).

Database and Search Strategies
The following seven databases were retrieved, including PubMed,
EMBASE, Cochrane Library, China National Knowledge
Infrastructure (CNKI), China Science and Technology Journal
Database (VIP), Wanfang Database, and China Biology Medicine
(CBM), from December 2019 to May 2021. There was no
language restriction. The grouped keywords used as search
strategy were as follows: (“traditional Chinese medicine” OR
“Chinese herbal medicine” OR “honeysuckle” OR “lonicera”
OR “jinyinhua”) AND (“coronavirus disease 2019” OR
“COVID-19” OR “novel coronavirus pneumonia” OR “SARS-

CoV-2”) AND (“clinical trial” OR “randomized controlled trial”
OR “randomised controlled trial” OR “lin chuang yan jiu”). The
grouped keywords could be modified according to different
databases.

Potentially eligible trials were obtained by manually searching
the reference lists of published reviews and meta-analyses. We
also retrieved the unpublished papers on honeysuckle for
COVID-19.

Inclusion and Exclusion Criteria
We considered the following inclusion criteria: 1) study design:
randomized controlled trials (RCTs); 2) participants: adult
patients (aged ≥ 18 years) diagnosed with COVID-19; the
diagnostic criteria of COVID-19 refer to “ Diagnosis and
Treatment Guideline for COVID-19 (Trial 8th Edition) ”
(National Health Commission of the people’s Republic of
China, 2020); 3) interventions: patients in the treatment group
were treated with honeysuckle alone or a combination treatment
of honeysuckle and controls; the dose of honeysuckle was 5–30 g,
along with a duration range of 5–15 days; the form and dosage of
honeysuckle were included in the study description; 4) control:
patients in the control group were treated by any conventional
therapy or placebo; 5) outcomes: lung computed tomography
(CT) was the primary outcome. High-resolution CT was used to
observe changes in the lung field before and after treatment. The
secondary outcomes included clinical cure rate, viral nucleic acid
testing, rate of conversion to severe cases, clinical symptoms (e.g.,
fever, cough, and fatigue), inflammatory biomarkers [e.g., white
blood cell (WBC) count, lymphocyte (LYM) count, and
C-reactive protein (CRP)], and adverse drug events (e.g.,
adverse events rate, diarrhea, and liver damage).

We considered the following exclusion criteria: 1) study
design: non-RCTs, such as retrospective studies, observational
studies, case reports, and cross-over studies; non-RCTs were
excluded due to potential high risk of bias and confounding;
2) participants: patients with a suspected diagnosis of COVID-19;
3) repeated data studies; 4) reviews.

Two reviewers independently screened the trials from seven
databases according to the eligibility criteria. Duplicate publications
were removed. Through reading the title, abstract, and full text,
reviewers excluded the non-RCTs and irrelevant trials. Two
reviewers independently extracted data according to the eligibility
criteria. Any disagreements were consulted by a third reviewer.

Data Collection
The following information was documented in the data
extraction tables: basic characteristics (e.g., the title, first
authors’ name, publication date, intervention schedule of
treatment and control groups, and treatment duration),
participant characteristics (e.g., age, gender, and sample size),
outcome measures, and adverse drug events.

Quality Assessment
The methodological quality was independently evaluated by two
reviewers according to the Cochrane Collaboration’s tool
(Higgins and Green, 2014). There were seven items of risk of
bias (ROB): random sequence generation, allocation
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concealment, blinding of participants and personnel, blinding of
outcome assessment, incomplete outcome data, selective
reporting, and other biases. Each item was assessed at low
ROB, high ROB, or unclear ROB. Any disagreements between
reviewers were resolved by consultation with a third reviewer.

Statistical Analysis
Review Manager 5.3 software (the Cochrane Collaboration, 2014)
was used to perform the quantitative synthesis. Relative risk (RR)
was used for the dichotomous variables. Mean difference (MD) or
standard mean difference (SMD) was used for the continuous
variables. Confidence intervals (CIs) were set as 95%.
Heterogeneity was tested with the χ2 test and the I2 statistical
value. Assuming that the p-value from the χ2 test was more than
0.10 or I2 ≤ 50%, a fixed-effect model was used to assess the
differences between two groups; otherwise, a random-effects
model was applied. A subgroup analysis of the primary outcome
was performed according to the clinical classification of COVID-19.
Subgroup analyses of viral nucleic acid testing and rate of conversion
to severe cases were performed according to the Chinese herbal
medicine component. Sensitivity analysis was conducted by the
leave-one-out method (Panahi et al., 2015). When the number of
trials on an outcome measure was larger than ten, a funnel plot

analysis was performed to evaluate the reporting bias (Liu et al.,
2020). Statistically significant results were defined by p < 0.05.

RESULTS

Study Selection
The flowchart of study selection is shown in (Figure 1). A total of
nine eligible trials were included (Fu et al., 2020a; Ai et al., 2020;
Ding et al., 2020; Duan et al., 2020; Fu et al., 2020b; Hu et al., 2020;
Yu et al., 2020; Zhang et al., 2020; Hu et al., 2021). One article was
published online in English (Hu et al., 2021), and the rest were
reported online in Chinese.

Study Characteristics
The characteristics of included trials are listed in Table 1. All the
trials were conducted in China in 2020, among them, two studies
were multicentered trials (Hu et al., 2020; Hu et al., 2021) and seven
were single-centered trials (Ai et al., 2020; Ding et al., 2020; Duan
et al., 2020; Hu et al., 2020; Yu et al., 2020; Zhang et al., 2020; Hu
et al., 2021). The sample size of the included trials ranged from 65 to
295 (total 1,286). The treatment duration ranged from 5 to 15 days.
Patients in the treatment group were treated with combination

FIGURE 1 | The flowchart of study selection.
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therapy of honeysuckle and controls. Control groups used
conventional therapy. In each trial, conventional therapy in the
treatment group was identical to the control group. Two trial
intervention groups were Chinese medicine compound drugs
(Pneumonia No. 1 formula and Qingfei Touxie Fuzheng recipe)
(Ai et al., 2020; Ding et al., 2020). And the other trials were Chinese
patent medicine (Duan et al., 2020; Fu et al., 2020a; Fu et al., 2020b;
Hu et al., 2020; Yu et al., 2020; Zhang et al., 2020; Hu et al., 2021).
Conventional therapy included oxygen therapy, drugs, and
symptomatic therapies. The drugs used in the control group were
arbidol, lopinavir, interferon-α, and ribavirin. Two trial control

groups did not provide specific therapy medicine (Duan et al.,
2020; Hu et al., 2021).

Description of Honeysuckle
The description of honeysuckle in each trial is shown in Table 2.
Honeysuckle was used in the dosage formulations of granules
(55.55%) (Ai et al., 2020; Duan et al., 2020; Fu et al., 2020a; Fu
et al., 2020b; Yu et al., 2020), decoction (11.11%) (Ding et al.,
2020), oral liquid (22.22%) (Hu et al., 2020; Zhang et al., 2020),
and capsule (11.11%) (Hu et al., 2021). The component of oral
liquid (Hu et al., 2020; Zhang et al., 2020) is only honeysuckle.

TABLE 1 | The characteristics of included trials.

First
author

Type of
COVID-19

Sample
size (M/F)

Age (yrs) Intervention Control Duration Outcome measures

Ai et al.
(2020)

Nonsevere T:55 (24/
31) C:43
(17/26)

T:57.4 ± 21.3 C:50.8 ± 23.5 Pneumonia No.1
formula (1 dose/d)
+ conventional
therapy

Conventional therapy
including arbidol, lopinavir/
tonavir, chloroquine, and
symptomatic treatment

12 days Clinical cure rate,
inflammatory biomarkers,
and adverse events

Ding
et al.
(2020)

Mild/
moderate/
severe

T:51 (39/
12) C:49
(39/10)

T:57.4 ± 21.3 C:50.8 ± 23.5 Qingfei Touxie
Fuzheng recipe
(1 dose/d) +
conventional
therapy

Conventional therapy
including interferon-α,
ribavirin, quinolones and/or
third-generation
cephalosporins, and
symptomatic treatment

10 days Lung CT, clinical
symptoms, inflammatory
biomarkers, and adverse
events

Duan
et al.
(2020)

Mild T:82 (39/
43) C:41
(23/18)

T:51.99 ± 13.88 C:50.29 ± 13.17 Jinhua Qinggan
granule (1 dose/
time, tid) +
conventional
therapy

Conventional therapy
including antiviral, anti-
infection, and other
symptomatic treatments

5 days Clinical symptoms and
adverse events

Fu et al.
(2020a)

Mild/
moderate

T:32 (17/
15) C:33
(19/14)

T:43.26 ± 7.15 C:43.68 ± 6.45 Toujie Quwen
granule (1 dose/
time, bid) +
conventional
therapy

Conventional therapy
including abidor tablets,
moxifloxacin tablets, and
ambroxol tablets

10 days Lung CT, clinical cure
rate, rate of conversion to
severe cases, clinical
symptoms, inflammatory
biomarkers, and adverse
events

Fu et al.
(2020b)

Moderate T:37 (19/
18) C:36
(19/17)

T:45.26 ± 7.25 C:44.68 ± 7.45 Toujie Quwen
granule (1 dose/
time, bid) +
conventional
therapy

Conventional therapy
including abidor tablets and
ambroxol tablets

15 days Clinical cure rate, rate of
conversion to severe
cases, clinical symptoms,
inflammatory biomarkers,
and adverse events

Hu et al.
(2020)

Moderate T:100 (49/
51) C:100
(55/45)

T:47.00 ± 14.06 C:49.28 ± 11.14 Jinyinhua oral liquid
(120 ml/time, tid) +
conventional
therapy

Conventional therapy
including interferon-α,
lopinavir/tonavir tablets, and
symptomatic treatment

10 days Lung CT, virus nucleic
acid testing, rate of
conversion to severe
cases, and adverse
events

Hu et al.
(2020)

Mild/
moderate

T:142 (79/
63) C:142
(71/71)

T:50.4 ± 15.2 C:51.8 ± 14.8 Lianhua Qingwen
capsule (6 g, tid) +
conventional
therapy

Conventional therapy
including oxygen therapy,
antiviral medications, and
symptomatic therapies

14 days Lung CT, clinical cure
rate, virus nucleic acid
testing, rate of conversion
to severe cases, clinical
symptoms, and adverse
events

Yu et al.
(2020)

Mild/
moderate

T:147 (82/
65) C:148
(89/59)

T:48.27 ± 9.56 C:47.25 ± 8.67 Lianhua Qingwen
granule (6 g, tid) +
conventional
therapy

Conventional therapy
including abidor tablets,
moxifloxacin tablets, and
ambroxol tablets

7 days Lung CT, clinical cure
rate, rate of conversion to
severe cases, clinical
symptoms
inflammatory biomarkers,
and adverse events

Zhang
et al.
(2020)

Moderate T:80 (50/
30) C:40
(23/17)

T:53.4 ± 13.70 C:52.0 ± 14.10 Jinyinhua oral liquid
(60 ml/time, tid) +
conventional
therapy

Conventional therapy
including interferon-α,
lopinavir, tonavir tablets, and
symptomatic treatment

10 days Rate of conversion to
severe cases, clinical
symptoms, and adverse
events
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Honeysuckle is one component of Chinese herbal medicine in
other dosage formulations.

METHODOLOGICAL QUALITY

The results of the ROB assessment are shown in Table 3. In
general, there was insufficient information available in all trials
included in this study. The risks of bias of included trials were
mostly “unclear risk.”

Results of the Meta-Analysis
Four trials (Ding et al., 2020; Duan et al., 2020; Hu et al., 2020; Yu
et al., 2020) reported lung CT. Compared with conventional
therapy alone, combination therapy of honeysuckle and
conventional therapy exhibited a significant improvement on
lung CT [4 trials, n � 744, RR � 1.24, 95%CI (1.12, 1.37), I2 � 11%,
p < 0.0001] (Figure 2A). Subgroup analysis revealed that

combination therapy could better improve the lung CT of
nonsevere COVID-19 [3 trials, n � 644, RR � 1.22, 95%CI
(1.10, 1.35), I2 � 25%, p � 0.0002] (Figure 2A).

Five trials (Ai et al., 2020; Fu et al., 2020a; Fu et al., 2020b; Yu
et al., 2020; Hu et al., 2021) demonstrated the clinical cure rate.
The results showed that clinical cure rate in the combination
treatment groups was higher than the control groups [5 trials, n �
815, RR � 1.21, 95%CI (1.12, 1.31), I2 � 19%, p < 0.00001]
(Figure 2B).

Three trials (Hu et al., 2020; Zhang et al., 2020; Hu et al., 2021)
described viral nucleic acid testing. Compared with the control
groups, no statistical difference on viral nucleic acid testing was
identified [3 trials, n � 532, RR � 1.06, 95%CI (0.98, 1.15), I2 � 0%,
p � 0.15] (Figure 3A). Subgroup analysis suggested no statistical
difference between honeysuckle alone (p � 0.32) and Chinese
herbal medicine formula (p � 0.28) (Figure 3A).

Six trials (Fu et al., 2020a; Fu et al., 2020b; Hu et al., 2020;
Yu et al., 2020; Zhang et al., 2020; Hu et al., 2021) reported
rate of conversion to severe cases. We found that
combination therapy could significantly reduce the rate of
conversion to severe cases [6 trials, n � 965, RR � 0.50, 95%CI
(0.33, 0.76), I2 � 0%, p � 0.001] (Figure 3B). Subgroup
analysis showed that there was a significant difference
between honeysuckle alone (p � 0.04) and Chinese herbal
medicine formula (p � 0.01) (Figure 3B).

Six trials (Ding et al., 2020; Duan et al., 2020; Fu et al., 2020a; Fu
et al., 2020b; Yu et al., 2020; Zhang et al., 2020) described clinical
symptoms of fever, cough, and fatigue. Meta-analyses revealed that
combination therapy could better improve the symptoms
reduction rate and symptom score than conventional therapy
(Table 4). As shown in Table 4, combination therapy could
significantly improve the symptom score of fever, cough
reduction rate, symptom score of cough, and symptom score of
fatigue (p < 0.05). However, there was no significant difference in

TABLE 2 | The description of honeysuckle in each trial.

References Honeysuckle and Chinese
herbal medicine

Components

Ai et al. (2020) Pneumonia No.1 formula (granule) Honeysuckle 15 g, Lianqiao 30 g, Qingdao 10 g, Huangqi 45 g, Shancigu 20 g, Huangqin 10 g, Daqingye
10 g, Chaihu 5 g, Chantui 10 g, Qianhu 5 g, Chuanbeimu 10 g, Zhebeimu 10 g, Wumei 30 g, Xuanshen 10 g,
Fuling 30 g, and Taizishen 15 g

Ding et al. (2020) Qingfei Touxie Fuzheng recipe
(decoction)

Honeysuckle 30 g, Lianqiao 15 g, Mahuang 6 g, Shigao 20 g, Kuxingren 10 g, Lugen 30 g, Yiyiren 30 g,
Jiangcan 10 g, Chantui 10 g, Huzhang 15 g, Jianghuang 10 g, Baishaoyao 10 g, Taizishen 20 g, and
Gancao 15 g

Duan et al. (2020) Jinhua Qinggan granule Honeysuckle 10 g, Shigao 10 g, Mahuang 10 g, Kuxingren 10 g, Huangqin 10 g, Lianqiao 10 g, Zhebeimu
10 g, Zhimu 10 g, Niubangzi 10 g, Qinghao 10 g, Bohe 10 g, and Gancao10 g

Fu et al. (2020a) Toujie Quwen granule Honeysuckle 15 g, Lianqiao 30 g, Shancigu 20 g, Huangqin 10 g, Daqingye 10 g, Chaihu 5 g, Qinghao 10 g,
Chantui 10 g, Qianhu 5 g, Chuanbeimu 10 g, Zhebeimu 10 g, Wumei 30 g, Xuanshen 10 g, Huangqi 45 g,
Fuling 30 g, and Taizishen 15 g

Fu et al. (2020b) Toujie Quwen granule Honeysuckle 15 g, Lianqiao 30 g, Shancigu 20 g, Huangqin 10 g, Daqingye 10 g, Chaihu 5 g, Qinghao 10 g,
Chantui 10 g, Qianhu 5 g, Chuanbeimu 10 g, Zhebeimu 10 g, Wumei 30 g, Xuanshen 10 g, Huangqi 45 g,
Fuling 30 g, and Taizishen 15 g

Hu et al. (2020) Jinyinhua oral liquid Honeysuckle 10.8 g
Hu et al. (2020) Lianhua Qingwen capsule Honeysuckle, Lianqiao, Mahuang, Kuxingren, Shigao, Banlangen, Mianma, Guanzhong, Yuxingcao,

Huoxiang, Dahuang, Hongjingtian, menthol, and Gancao
Yu et al. (2020) Lianhua Qingwen granule Honeysuckle, Lianqiao, Mahuang, Kuxingren, Shigao, Banlangen, Mianma, Guanzhong, Yuxingcao,

Huoxiang, Dahuang, Hongjingtian, menthol, and Gancao
Zhang et al. (2020) Jinyinhua oral liquid Honeysuckle 5.4 g

TABLE 3 | Risk of bias.

References A B C D E F G

Ai et al. (2020) L U U U L U U
Ding et al. (2020) L U U U L U U
Duan et al. (2020) L U U U L U U
Fu et al. (2020a) L U U U L U U
Fu et al. (2020b) L U U U L U U
Hu et al. (2020) L U U U L U U
Hu et al. (2020) L U U L L U U
Yu et al. (2020) L U U U L U U
Zhang et al. (2020) U U U U L U U

A, random sequence generation (selection bias); B, allocation concealment (selection
bias); C, blinding of participants and personnel (performance bias); D, blinding of
outcome assessment (detection bias); E, incomplete outcome data (attrition bias); F,
selective reporting (reporting bias); G, other biases; L, low risk; H, high risk; U, unclear.
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fever reduction rate and fatigue reduction rate between the
combination treatment and control groups (p > 0.05).

Five trials (Ai et al., 2020; Ding et al., 2020; Fu et al., 2020a; Fu
et al., 2020b; Yu et al., 2020) reported inflammatory biomarkers.
We found that combination therapy was beneficial for WBC
count [3 trials, n � 433, MD � 0.38, 95%CI (0.31, 0.44), I2 � 22%,
p < 0.00001], LYM count [4 trials, n � 531, MD � 0.23, 95%CI
(0.05, 0.41), I2 � 97%, p � 0.01], and CRP level [4 trials, n � 533,
MD � −12.95, 95%CI (−21.18, −4.01), I2 � 98%, p � 0.004] to
return to normal. And these differences were statistically
significant (p < 0.05) (Table 5).

All included trials reported adverse drug events. The
common adverse drug events of combination therapy were
nausea and vomiting, inappetence, diarrhea, headache, renal
dysfunction, and abnormal liver function. As shown in Table 6,
there was no significant difference in adverse events rate,
diarrhea, and abnormal liver function between the

combination treatment and control groups (p > 0.05).
Additionally, inappetence, nausea and vomiting, headache,
and renal dysfunction were reported in one trial (Hu et al.,
2021), and no statistical difference was identified in both
combination treatment and control groups.

Sensitivity Analysis
Sensitivity analysis revealed a small change in the effect amount,
and a significant difference in lung CT, clinical cure rate, rate of
conversion to severe cases, symptom score of fever, cough
reduction rate, symptom score of cough, WBC count, and
CRP. Sensitivity analysis indicated that the above results were
robust.

Publication Bias
As the number of trials in any comparative outcome measure was
less than ten, we did not assess the publication bias.

FIGURE 2 | Forest plot of the effects of combination therapy for outcomes of (A) lung CT and (B) clinical cure rate.
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DISCUSSION

Summary of Findings
In our study, it was found that Chinese herbal medicine
honeysuckle could provide additional benefit for the clinical
outcomes of COVID-19. This finding was consistent with
similar studies (Ang et al., 2020; Xiong et al., 2020). Similar

studies have shown that, compared with conventional therapy,
Chinese herbal medicine had better effects and fewer adverse
drug events (Ang et al., 2020; Xiong et al., 2020). Facing such a
severe COVID-19 epidemic, Western countries should pay high
attention to the curative effect of Chinese herbal medicine.

Honeysuckle is one of the most widely used traditional
Chinese herbal medicines. It is used as an antiviral,

FIGURE 3 | Forest plot of the effects of combination therapy for outcomes of (A) viral nucleic acid testing and (B) rate of conversion to severe cases.
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immunomodulator, anti-inflammatory, hepatoprotectant, and
nephroprotectant (Miao et al., 2019; Bai et al., 2020; Fang et al.,
2020; Alekhya Sita et al., 2019). Honeysuckle is predicted to
suppress SARS-CoV-2 replication (Lee et al., 2021).
Honeysuckle extracts can inhibit the replication of influenza
viruses H1N1, H3N2, and the oseltamivir-resistant mutant
strain H1N1-H275Y (Li et al., 2020). Honeysuckle
polysaccharides can regulate nonspecific immunity (Zhou
et al., 2018) and inhibit the expression of inflammatory
factors TNF-α and IL-1β (Bai et al., 2020). Neochlorogenic
acid from Lonicera can prevent excessive macrophage-
mediated responses associated with acute and chronic
inflammatory disorders (Park et al., 2018). Lonicera caerulea
L. polyphenols (LCPs) can alleviate LPS-induced liver injury by
suppressing the nuclear translocation of NF-κB p65 and
activation of the MAPK signaling pathway (Li et al., 2020).
Luteolin is a pharmacologically active component normally
found in honeysuckle, which exhibits antioxidant activity and
nephroprotective activity (Alekhya Sita et al., 2019).

In our study, honeysuckle combined with conventional
therapy was superior to conventional therapy alone in
improving clinical symptoms, imaging, and laboratory
indexes. Compared with conventional therapy alone,
combination therapy of honeysuckle and conventional
therapy could improve symptom score of fever, cough

reduction rate, and symptom score of cough. We found that
combination therapy could improve lung CT, increase WBC
count, and reduce CRP level. This is related to the fact that
honeysuckle can affect the immune response and production of
inflammatory cytokines (Zhou et al., 2018; Bai et al., 2020).
Immunopathological changes, including diminished
lymphocytes and elevated cytokines, are important drivers of
disease progression and death in coronavirus infections (Tang
et al., 2020). Cytokine storm is uncontrolled overproduction of
inflammation markers with elevated levels of IL-6, IL-1β, and
TNF-α (Coperchini et al., 2020; Kempuraj et al., 2020). This
leads to acute lung injury, acute respiratory distress syndrome
(ARDS), and widespread tissue damage resulting in multiorgan
failure and death (Ragab et al., 2020; Caricchio et al., 2021). In
our study, we also found that combination therapy had
improvements in clinical parameters including clinical cure
rate and rate of conversion to severe cases.

Safety issues should be another concern when honeysuckle
combined with conventional therapy is used for COVID-19
patients. In our study, all included trials reported adverse drug
events. Compared with conventional therapy alone, combination
therapy of honeysuckle and conventional therapy did not increase
adverse drug events. This is related to the fact that honeysuckle
exhibits hepatoprotective and nephroprotective activity (Alekhya
Sita et al., 2019; Li et al., 2020).

TABLE 6 | Comparison of adverse drug events between the treatment group and control group.

Outcome measure No. of
trials

Samples Statistical method Effect estimate p-value

Total Events/intervention Events/control

Adverse events rate 5 755 96/412 80/343 RR (random) 95%CI 1.72(0.44, 6.74) 0.44
Diarrhea 4 655 37/361 19/294 RR (random) 95%CI 2.43(0.20, 29.33) 0.49
Abnormal liver function 2 384 34/193 35/191 RR (fixed) 95%CI 0.97(0.64, 1.47) 0.88

TABLE 5 | Comparison of inflammatory biomarkers between the treatment group and control group.

Outcome measure No. of
trials

Samples Statistical method Effect estimate p-value

WBC count 3 433 MD (fixed) 95%CI 0.38(0.31, 0.44) < 0.00001
LYM count 4 531 MD (random) 95%CI 0.23(0.05, 0.41) 0.01
CRP 4 533 MD (random) 95%CI −12.95(−21.18, −4.01) 0.004

TABLE 4 | Comparison of clinical symptoms between the treatment group and control group.

Outcome measure No. of
trials

Samples Statistical method Effect estimate p-value

Total Events/intervention Events/control

Fever cases 3 296 171/185 90/111 RR (random) 95%CI 0.11 (−0.10, 0.33) 0.31
Cough cases 3 260 135/167 56/93 RR (fixed) 95%CI 1.37 (1.15, 1.65) 0.0006
Fatigue cases 2 163 98/116 32/47 RR (random) 95%CI 1.20 (0.85, 1.69) 0.3
Symptom score of fever 3 433 — — RR (random) 95%CI −0.62 (−0.79, −0.45) < 0.00001
symptom score of cough 3 433 — — RR (random) 95%CI −1.18 (−1.34, −1.03) < 0.00001
Symptom score of fatigue 3 433 — — RR (random) 95%CI −0.60 (−1.04, −0.17) 0.007
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Strengths and Limitations
This study is to our knowledge the first systematic review and
meta-analysis for the effectiveness and safety of honeysuckle
combined with conventional therapy in adult patients with
COVID-19. It could help to respond to the current public
health emergency. Another advantage could be that only
randomized studies are included. Our study was also
performed in accordance with Cochrane Handbook and
PRISMA checklist to draw quantitative conclusions with
scientific and rigorous methods. In addition, we conducted a
subgroup analysis and sensitivity analysis. It meant that our
meta-analysis results were more robust.

However, our review had several limitations. Merger
statistical analysis of some outcomes had unexplained
heterogeneity. Most of the included trials had deficiencies in
methodology design, including hidden allocation, blinding, and
selective reporting. Publication bias was unclear. The drugs used
in the control group were different. However, we did not
perform subgroup analyses. The treatment duration ranged
from 5 to 15 days. We also did not perform subgroup
analyses according to treatment duration.

CONCLUSION

In conclusion, honeysuckle combined with conventional therapy
may be beneficial for the treatment of COVID-19 in improving
clinical symptoms, lung CT, laboratory indicators, and clinical
cure rate and reducing the rate of conversion to severe cases.
Besides, combination therapy did not increase adverse drug

events. However, considering the poor methodology of
included trials, more high-quality trials are needed to evaluate
the efficacy of honeysuckle in the treatment of COVID-19 in the
future.
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Glycoprotein Receptor-Binding
Domain
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South Korea

Coronavirus disease-2019 (COVID-19) has caused a severe impact on almost all aspects
of human life and economic development. Numerous studies are being conducted to find
novel therapeutic strategies to overcome COVID-19 pandemic in a much effective way.
Ulva intestinalis L. (Ui), a marine microalga, known for its antiviral property, was considered
for this study to determine the antiviral efficacy against severe acute respiratory syndrome-
associated Coronavirus-2 (SARS-CoV-2). The algal sample was dried and subjected to
ethanolic extraction, followed by purification and analysis using gas chromatography-
coupled mass spectrometry (GC-MS). Forty-three known compounds were identified and
docked against the S1 receptor binding domain (RBD) of the spike (S) glycoprotein. The
compounds that exhibited high binding affinity to the RBD of S1 protein were further
analyzed for their chemical behaviour using conceptual density-functional theory (C-DFT).
Finally, pharmacokinetic properties and drug-likeliness studies were carried out to test if
the compounds qualified as potential leads. The results indicated that mainly phenols,
polyenes, phytosteroids, and aliphatic compounds from the extract, such as 2,4-di-tert-
butylphenol (2,4-DtBP), doconexent, 4,8,13-duvatriene-1,3-diol (DTD), retinoyl-
β-glucuronide 6′,3′-lactone (RBGUL), and retinal, showed better binding affinity to the
target. Pharmacokinetic validation narrowed the list to 2,4-DtBP, retinal and RBGUL as the
possible antiviral candidates that could inhibit the viral spike protein effectively.

Keywords: SARS-CoV-2 spike S1 subunit, Ulva intestinalis L., phytochemicals, GC-MS, COVID-19, molecular
docking, ADMET studies, conceptual DFT

INTRODUCTION

COVID-19, a contagious viral disease caused by SARS-CoV-2, was declared as a public health
emergency of international concern by the World Health Organization (WHO) on 30 January 2020,
and as a pandemic on March 11, 2020 (Ge et al., 2020). According to the recent pandemic situation
report released by the WHO, SARS-CoV-2 has infected nearly 180 million individuals, causing about
four million deaths. Being a positive, single-stranded RNA virus of size 50–200 nm and genome size
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of 29.9 k ribonucleotides, it is the most recent member included
in the Betacoronavirus genus of the Orthocoranavirinae
subfamily of coronaviruses (Lu et al., 2020). The viral genome
was found to encode twelve main proteins, of which two, the spike
glycoprotein and the main protease (Mpro) have gained attention
as potential COVID-19 drug targets (Pavlova et al., 2021). The
availability of structural details of these two proteins has
accelerated computational studies. The thermodynamically
favoured irreversible inhibition of Mpro by Michael acceptors
has been studied by computational methods such as molecular
dynamics and density functional theory (Poater 2020; Ramos-
Guzmán et al., 2021; Zanetti-Polzi et al., 2021). The covalent and
non-covalent binding free energies of Mproinhibitors have been
studied to aid in rational drug discovery and design for targeted
antiviral therapy (Awoonor-Williams and Abu-Saleh, 2021).
Several experimentations suggest that SARS-CoV and SARS-
CoV–2 have a sequence identity of approximately 79 percent,
and both variants use angiotensin converting enzyme 2 (ACE2) as
their cellular receptor. Similarly, some studies suggest that the
infectivity rate varies with amino acid change in the spike protein,
and the adsorption of S protein on gold nanoparticles was
completely dependant on the size of the core nano-gold (Bette
et al., 2021; Yokoyama and Ichiki, 2021). The spike glycoprotein
is comprised of two subunits, the S1, which has the receptor
binding domain, and the S2, which facilitates membrane fusion
and endocytosis of the virus (Walls et al., 2020). Several studies
have shown that SARS-CoV-2 utilizes the S1 protein to bind to the
functional receptor human ACE2 (hACE2) at the RBD. The same
mechanism was used for viral entry by SARS-CoV too. Eventually
S2 protein aids in fusion of viral particles in the host. The
receptor-binding motif (RBM) in RBD is the main functional
motif and is composed of two regions (region 1 and region 2) that
form the interface between the S protein and hACE2. The region
outside the RBM in RBD also plays an important role in
maintaining the structural stability of the RBD (Li et al., 2003;
Yi et al., 2020; Zhou et al., 2020).

The current challenge faced by the health sector is the
resistance and insensitivity of the virus to existing drugs, and
those drugs that have an edge over the virus were found to have
some detrimental side effects. Drugs such as hydroxychloroquine
and chloroquine (FDA-approved drugs that are effective against
malaria, lupus, and rheumatoid arthritis) were found to hamper
this viral infection, but the risks of developing cardiovascular and
renal disorders were found in many of its consumers (FDA,
2020). Also, the recovery rate fluctuated from region to region, in
fact, from person to person, with varying degrees of side-effects,
forcing the WHO to halt the solidarity trial of
hydroxychloroquine a few months after the COVID-19 outbreak.

In silico techniques play an important role in accelerating
research to identify potential leads against SARS-CoV-2.
Molecular docking, molecular dynamic simulation and drug
repurposing are the strategies currently practiced for drug
development against COVID-19 (Acharya et al., 2020).
Molecular dynamic simulation studies futher help to
substantiate the reciprocity between the protein and the
ligand. Such tools can be exploited for drug developmental
studies which further aid in lead optimization with increased

specificity and selectivity (Raudah et al., 2020). Various herbs and
plant-based compounds are being tested for possible antiviral
activity against SARS-CoV-2 (Anand et al., 2021). Ui, also called
gutweed or grass kelp, a common but often unnoticed macro alga,
was mainly studied for its anti-microbial and anti-cancer
properties in vitro, however, few studies were published on its
anti-viral activity (Morán-Santibañez et al., 2016; Klongklaew
et al., 2020). It is a member of the Ulvaceae family, which belongs
to the Chlorophyta (green seaweed) division (Class: Ulvophyceae,
Order: Ulvales). It is found to be a euryhaline and thus can grow
even in freshwaters, exclusively in nutrient-rich niches such as in
water bodies that receive industrial and farm discharges, and low
tidal zones. These tubular algae can reach up to 0.3 m in length,
with a thickness of about 0.02 m, and exhibit a perennial
isomorphic biphasic reproductive cycle. Considering its
abundance in the Coromandel coastline of South India, and its
possible action against viruses such as the measlesMorbillivirusin
Vero cell lines (Morán-Santibañez et al., 2016),Uiwas considered
as the source of phytochemicals that can serve as possible lead
compounds against the S protein RBD of SARS-CoV-2.

MATERIALS AND METHODS

Sample Collection and Preparation
The alga Ui were collected from the Olaikuda area (Gulf of
Mannar) situated near North Mandapam, Rameswaram, Tamil
Nadu, India, with the help of the Central Marine Fisheries
Research Institute, Mandapam, and Rajendra Kumar Algae
Project Center, Mandapam. The algal sample was washed
thoroughly with water to remove dirt and debris and packed
safely in polythene zip-lock bags. Upon reaching the laboratory it
was dried using a tray drier (Figures 1A,C), mainly to
concentrate the extract, preserve the hydrolabile compounds,
and prevent the growth of bacteria and mold.

Isolation and Identification of
Phytochemicals
Phytochemical extraction was performed by Soxhlet extraction.
The dried sample (∼60 g) was pulverized using a mortar and
pestle (Figures 1B,D), and transferred into a thimble in the
extraction tube. The extraction solvent used was 95% ethanol
(100 ml). The all-glass Soxhlet apparatus was set up according to
the standard protocol and was run for 6 h at 78°C using an
isomantle. The extract was analyzed for the phytochemicals using
a 7890B GC coupled with a 5977Amass selective detector (MSD).
The chromatographic column used for GC was HP-5MS of
dimensions 30 m × 250 μm × 0.25 μm (length, inner diameter,
and film thickness, respectively). It is a bonded, cross-linked, and
solvent-rinsable non-polar column made of (5%-phenyl)-
methylpolysiloxane, with a capillary tubing made of fused
silica (Agilent Technologies, Santa Clara, CA). The volume of
the sample injected was 1 μl and the flow rate of the carrier gas
(helium) was 1.0 ml.min−1 with a split ratio of 1:1. The injection
port temperature was 250°C. The system started with a 2 min-
hold at 50°C, then ramped 3°C per minute until the temperature
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reached 270°C. The system was on hold at this temperature for
20 min. Simultaneously, the separated samples were fed
automatically to the MSD at an interface temperature of
280°C. The electron ionization was performed at 70 eV, and
the scan range of the system was 40–700 m/z. The total run
time of the process was 95 min. The retention indices of the
compounds were determined relative to trichloromethane, the
standard compound selected for data analysis. Further, the
compounds were identified by comparing their mass spectra
with the data in NIST-14 Mass Spectral Data Library.

Preparation of Ligands and Target
The three-dimensional chemical structures of the identified
phytochemicals were obtained from PubChem (https://pubchem.

ncbi.nlm.nih.gov/). These were then saved as SDF files. The energy
minimization and format conversion of these structures were
performed in PyRx software (Dallakyan and Olson 2015). The
default energy minimization parameters were the universal force
field and the conjugate gradient algorithm. Once energy
minimization was completed, the structures were rewritten as
PDBQT files. The target protein used in this study was S1 receptor
binding domain of the spike (S) glycoprotein. The three-dimensional
structure of RBD was retrieved from a complex of ACE2 and RBD
(PDB ID: 6M0J) from the Protein Data Bank (RCSB-PDB; https://
www.rcsb.org/). As thefirst step, the optimization of protein structures
was performed using AutoDock Tools by deleting chain A, water
molecules, and co-crystal ligands. The missing atoms were then
repaired, and polar hydrogens were added. Charges were

FIGURE 1 | Samples of U. intestinalisused for Soxhlet extraction using ethanol. (A) Tray-dried sample (B) powdered form of tray-dried sample. (C) Freeze-dried
sample (D) powdered form of freeze-dried sample.
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FIGURE 2 | RBD of S1 protein represented as (A) surface, and (B) chain. The magnified view of the RBD (C) shows the possible interacting residues (green) in
<5.0 Å vicinity with ACE2.

FIGURE 3 | Chromatogram showing the results of GC-MS. The chromatogram was plotted against retention time in minutes (X-axis), and signal abundance
(Y-axis). The collected fractions were fed automatically into an MS.
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distributed and minimized over the protein structure. The structure
was then saved in PDBQT format.

Active Site Prediction and Grid Box
Parameters
An active site is defined as a groove or pocket of an enzymatic or
non-enzymatic protein which facilitates ligand binding or
biochemical reactions (Pravda et al., 2014). The characteristics
of the active site are mainly determined by the active site residues
(Srinivasan, 2020), and various studies have characterized the

possible active site residues of RBD of S1 subunit of spike protein
(Figure 2). Tyr449, Tyr453, Arg454, Lys458, Ser459, Ser469,
Glu471, Phe486, Asn487, Tyr489, Leu492, Gln493, Gly496,
Gln498, Thr500, Asn501, Gly502, and Tyr505 were the
reported active site residues (Lan et al., 2020; Kulkarni et al.,
2020; Prajapat et al., 2020). These residues were further validated
using the ‘Zone’ function in UCSF Chimera software (https://
www.cgl.ucsf.edu/chimera/). The zone parameter was set to “<5.
0 Å from currently selected atoms” (Ashraf et al., 2014), where the
currently selected atoms were the atoms of chain A. The mean of
the X, Y, and Z coordinates of the final atom of each interacting

TABLE 1 | GC-MS data of the phytochemicals present in Ui extract.

Peak No(s) Retention time(s) (min) Compound aPeak Area (%)

1 3.747 Methylglyoxal 0.237
3 4.317 Furfural 1.110
4 5.804 DMSO 0.445
5 13.560 TAA 0.327
6 15.320 Azulene 2.135
7 21.180 Damascone 0.422
8, 13 22.456, 28.577 Cetene 0.877
9 24.922 Myristyl chloride 0.253
10 26.062 Cyclosativene 0.342
11 26.322 2,4-DtBP 1.902
12 26.793 Dihydroactinolide 0.355
14 31.005 8-Heptadecene 2.164
15 31.600 3-DOCH 0.265
16, 27 33.483, 38.513 Palmitic acid 8.207
17, 18 34.090, 35.292 9-Octadecene 9.082
19 35.465 TMHA 0.761
20, 22, 23, 33, 34 35.924, 36.382, 36.952, 41.301, 41.896 Phytol 21.404
21 36.085 HIP 1.134
24 37.212 CMBA 0.904
25, 41 37.349, 43.680 1-Heptatriacotanol 0.740
26 37.497 Methylpalmitate 0.237
28 39.158 Ethylpalmitate 4.206
29 39.443 Butanoic acid 2.250
30 39.814 Paullinic acid 0.428
31, 37 40.632, 42.738 Doconexent 0.524
32 41.078 Allyl stearate 0.445
35 42.057 DTD 0.734
36 42.552 Retinal 1.201
38 42.986 Ethyllinolelaidate 0.866
39 43.135 Ethyllinolenate 1.095
40 43.259 Ethylelaidate 0.658
42 43.990 Icosapent 0.782
43, 50 44.968, 49.677 2-Monopalmitin 13.139
44 47.992 EEBOD 0.293
45 48.165 MHDTE 0.447
46 48.264 BOD4E 0.606
47 48.487 1-Monolinolein 1.059
48, 55 48.648, 52.625 BOD3E 2.347
49 49.094 BTES 7.174
51 50.197 RBGUL 0.487
52 50.928 DPPP 4.517
53 52.266 Oxymesterone 2.362
54 52.452 Propyllinoleate 0.619

aValues indicate the mean relative peak area. For compounds identified with more than one retention time, this value was presented to be a summation of the individual mean relative
peak areas.
DMSO: Dimethyl sulfoxide; TAA: Tert-amyl alcohol; 2,4-DtBP: 2,4-Di-tert-butylphenol; 3-DOCH: 3-(6,6-Dimethyl-5-oxohept-2-enyl)cycloheptanone; TMHA: 3,7,11,15-
Tetramethylhexadecylacetate; HIP: Hept-3-yl isobutyl ester of phthalic acid; CMBA: Cholestan-3-ol, 2-methylene- (3β,5α)-; DTD: 4,8,13-Duvatriene-1,3-diol; EEBOD: 3-Ethyl-5-(2-
ethylbutyl)octadecane; MHDTE: Methyl 4,7,10,13-hexadecatetraenoate; BOD4E: Butyl 6,9,12,15-octadecatetraenoate; BOD3E: Butyl 9,12,15-octadecatrienoate; BTES: But-3-enyl
tridecyl ester of sebacic acid; RBGUL: Retinoyl-β-glucuronide 6′,3′-lactone; DPPP: Di-n-2-propylpentylphthalate.
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TABLE 2 | List of selected compounds identified from Ui extract with their two-dimensional chemical structures.

Compound Structure Compound Structure

2,4-DtBP DPPP

3-DOCH DTD

Azulene Furfural

CMBA HIP

Cyclosativene Icosapent

Damascone Oxymesterone

(Continued on following page)
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residue highlighted by UCSF Chimera was calculated and applied
as the dimension of the grid-box center. The grid size was
manually adjusted to cover the interacting residues. Further,
the values of these coordinates were saved as a configuration
text file which was later used for docking.

Molecular Docking and Target-Ligand
Visualization
Molecular docking is an in silico approach which is used to
predict the conformational binding energy of ligands to a
preferred target using matching and scoring algorithms
(Leach et al., 2006). In this experiment, we have used
AutoDockVina (Trott and Olson, 2010) in PyRx software as
the docking tool, The optimal binding energy of the ligands
was obtained based on least root mean square deviation

(RMSD) for each conformers of a particular ligand, and
arranged in ascending order to select the best ligand(s) for
further calculating the chemical behaviour using C-DFT and
pharmacokinetic analyses. PyMOL (https://pymol.org/), an
open-source molecular visualization software was used to
identify the polar contacts (H-bonds) between the ligand
and the interacting active site residue, and develop printable
figures of this interaction. To analyze hydrophobic
interactions between the ligand and residues, another
visualization software, BIOVIA Discovery Studio Client
2020 (https://discover.3ds.com/discovery-studio-visualizer-
download) was used.

Conceptual DFT Analysis
Conceptual Density-functional theory (C-DFT) is a
computational method to predict chemical behaviour of

TABLE 2 | (Continued) List of selected compounds identified from Ui extract with their two-dimensional chemical structures.

Compound Structure Compound Structure

Dihydroactinolide RBGUL

Doconexent Retinal

FIGURE 4 | (A) The binding pose of 2,4-DtBP (red) in RBD of S1 protein. (B) The hydrogen bonds (yellow) formed between 2,4-DtBP and the interacting residues,
Gly496 and Asn501 are also shown.
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the compounds (Poater et al., 2010; Domingo et al., 2016).
Density-functional theory(DFT) has been developed from
Hohenberg-Kohn theorem, which is an in-silico quantum
mechanical modeling strategy used to determine the
properties of a many-electron systems, using spatially-
dependent electron density functionals (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). C-DFT, a sub-field of
DFT, helps to analyze the molecular orbital energies of
conformers and can give rise to cues for understanding the
structure-activity relationship of the molecule (Parr and Yang,
1989; Geerlings et al., 2003; Sarkar and Chattaraj, 2021a;
Sarkar and Chattaraj, 2021b). To describe the orbital
properties of a molecule, ten different molecular
descriptors, known as the global reactivity descriptors and
its derivatives, were considered viz. total energy (Eγ; in eV),

molecular dipole moment (Dp; in Debye units), the energy of
the lowest unoccupied molecular orbit (LUMO) (ELUMO; in
eV), the energy of the highest occupied molecular orbit
(HOMO) (EHOMO; in eV), energy gap (ΔE; in eV), absolute
hardness (η; in eV), global softness (σ; in eV−1),
electronegativity (χ), chemical potential (μ; in eV), and
global electrophilicity index (ψ; in eV−1) (Chattaraj et al.,
2003; Chattaraj et al., 2006). These molecular descriptors
are calculated based on the electron density of molecules
using Fukui’s molecular orbital theory (Fukui 1982; Ayers
and Parr, 2000). ELUMO and EHOMO are the primary and
the most important descriptors which determine the ability
of a molecule to accept or donate electrons. Dp is the measure
of the total polarity of a system. It is also a positive indicator of
the reactivity of the molecule. It was found that the higher the

TABLE 3 | | The binding affinities of selected phytochemicals from Ui extract on SARS-CoV-2 spike RBD with the interacting amino acid residues contributing towards
hydrogen bonds and hydrophobic interactions. The top five high scoring compounds have been highlighted (bold).

Compound Binding affinity (kcal.mol−1) Hydrogen bond interactions Hydrophobic (pi) interactions

2,4-DtBP −5.3 Gly496, Asn501 Arg403, Tyr505

3-DOCH −5.3 − Tyr505
Azulene −5.1 − Arg403, Tyr505
CMBA −6.4 − Tyr505
Cyclosativene −5.3 − −

Damascone −5.2 − Tyr505
Dihydroactinolide -5.3 − −

Doconexent −5.0 Gly496, Asn501 Arg403, Tyr495, Phe497, Tyr505

DPPP −4.8 Asn501 Tyr449, Tyr505

DTD −6.0 Gly496 −

Furfural −3.8 Arg454, Ser469, Glu471 Arg457, Lys458, Glu471
HIP −5.2 − Tyr505
Icosapent −4.8 Gln498 Arg403, Tyr453, Tyr495, Phe497, Tyr505
Oxymesterone −6.7 − Tyr505

RBGUL −7.0 Gln493 Phe490

Retinal −5.9 Thr500 −

FIGURE 5 | (A) The binding pose of doconexent (magenta) in RBD of S1 protein. (B) The hydrogen bonds (yellow) formed between doconexent and the interacting
residues, Gly496 and Asn501 are also shown.
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Dp, the greater the reactivity of the molecule (Roy et al., 2006;
Mert et al., 2011). The derived descriptors of ELUMO and
EHOMO are ΔE, η, σ, χ, μ, and ψ, which also account for the
ability of the molecule to interact and contribute to electron
sharing or transfer with the target by transiting from HOMO
to LUMO. For example, if ΔE is found to be less, the molecule
can easily transit from HOMO to LUMO (Chattaraj and Roy,
2007; Bostan et al., 2012). It represents the chemical reactivity
and kinetic stability of the molecule; if χ is found to be less, the
inhibitory effect of the ligand is higher (Zhan et al., 2003). As
the first step in determining these descriptors, the selected
ligands were optimized using the Becke-3-parameter, Lee-
Yang-Parr (B3LYP) function (Becke 1988; Lee et al., 1988)
with 6-311G(2d, p) basis set in Gaussian-16 software (http://
gaussian.com/gaussian16/) (Frisch et al., 2016). B3LYP is the
most popular functional used in molecular quantum

mechanical modeling and is derived from a defined set of
atomic/molecular energies and potentials.

Pharmacokinetic and Drug-Likeliness
Analyses
The drug-likeliness and pharmacokinetic properties such as
Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) of the selected ligands were predicted.
The Drug Likeliness Tool (DruLiTo; http://www.niper.gov.
in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html), an
open-source drug-likeness software developed by the
Department of Pharmacoinformatics, National Institute of
Pharmaceutical Education and Research (NIPER), Punjab,
India was used to analyze drug likeliness by checking whether
the ligands violate any of Lipinski’s Rule of Five (RO5), or

FIGURE 6 | (A) The binding pose of DTD (blue) in RBD of S1 protein. (B) The hydrogen bond (yellow) formed between DTD and the interacting residue, Gly496, is
also shown.

FIGURE 7 | (A) The binding pose of RBGUL (cyan) in RBD of S1 protein. (B) The hydrogen bond (yellow) formed between RBGUL and the interacting residue,
Gly493, is also shown.
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would pass the Ghose and Veber filters. A reliable online tool
for pharmacokinetic predictions of small molecules, pkCSM
(http://biosig.unimelb.edu.au/pkcsm/), was used to predict
the ADMET properties of the ligands (Pires et al., 2015), in
which the canonical or isomeric SMILES of the ligands from
Pub Chem were given as input.

RESULTS

Chemical Composition of Extract
The GC-MS data of the Ui ethanolic extract showed 55 peaks
(Figure 3), and on comparison with NIST-14 library, 43 known
phytochemicals were identified (Table 1). The phytochemical
class analysis revealed that 18 phytochemicals were simple

carboxylic acids, fatty acids, or their derivatives (palmitic acid,
HIP, methylpalmitate, ethylpalmitate, butanoic acid, paullinic
acid, doconexent, allyl stearate, ethyllinolelaidate,
ethyllinolenate, ethylelaidate, icosapent, MHDTE, BOD4E,
BOD3E, BTES, DPPP, and propyllinoleate), seven belonged to
terpenoid class (damascene, cyclosativene, dihydroactinolide, 3-
DOCH, phytol, CMBA, and oxymesterone), three (6.98%)
each were aldehydes and its derivatives (methylglyoxal,
furfural, and retinal), alcohols and its derivatives (TAA, 1-
heptatriacotanol, and DTD), alkene hydrocarbons and its
derivatives (cetene, 8-heptadecene, and 9-octadecene), and
alkane hydrocarbons and its derivatives (myristyl chloride,
TMHA, and EEBOD), two were monoglycerides (2-
monopalmitin and 1-monolinolein), and one each were an
organosulfur compound (DMSO), an aromatic hydrocarbon

FIGURE 8 | (A) The binding pose of retinal (orange) in RBD of S1 protein. (B) The hydrogen bond (yellow) formed between retinal and the interacting residue,
Thr500, is also shown.

FIGURE 9 | (A) The binding poses of the selected compounds from U. intestinalisextract in one of the active binding pockets of RBD of S1 protein. (B) The pocket
residues interacting with the compounds are highlighted in green.
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(azulene), a phenol (2,4-DtBP), and a glycoside (RBGUL). The
peak corresponding to HIP showed the highest signal
abundance of >2.8×107, however, the mean relative peak
area of phytol (21.404%) was found to be the widest,
followed by 2-monopalmitin, 9-octadecene, palmitic acid,
and other compounds. The details of the GC-MS analysis
such as peak number(s), retention time(s), and mean
relative peak area are presented in Table 1.

Molecular Docking
Hydroxychloroquine, the control ligand, showed a binding
affinity of −5.7 kcal.mol−1 with the optimized structure of
RBD. Twenty-one (48.84%) compounds had binding
energies ranging from −4.0 kcal.mol−1 to −4.8 kcal.mol−1.
Out of the 43 compounds, only 16 were considered for
studying their molecular interaction (Tables 2, 3).
Interaction analysis revealed that furfural had three
hydrogen bonds interacting with Arg454, Ser469, and
Glu471, but its binding energy was -3.8 kcal mol−1.
Considering hydrophobic interactions, icosapent interacted
with Arg403, Tyr453, Tyr495, Phe497, and Tyr505. The
binding energy of this molecule was −4.8 kcal.mol−1. Out of
these 16 compounds, only the best five compounds (2,4-DtBP,
doconexent, DTD, RBGUL, and retinal) were considered for
C-DFT, drug-likeliness studies using DruLiTo, and ADMET
properties using pkCSM. The criteria used for this selection
was mainly their relative lower binding energy. The
conformations were visualized using PyMOL software and
depicted in Figures 4–9.

Estimated Descriptors of Conceptual DFT
The molecular descriptors were calculated after optimization, based
on the FMO theory (Table 4). The total energy of the compounds is
the total electron energy of the ground state. Lower the total energy,
higher is their stability. RBGUL displayed the lowest total energy
with value −41.84 × 103 eV. Molecular orbital energies such as
HOMO energy (EHOMO) and LUMO energy (ELUMO) were
calculated and analyzed (Table 5). Retinal showed the least
energy gap with an energy difference of 3.04 eV. The energy gap
of RBGUL (ΔE � 3.20 eV) was also found to be close enough to that
of retinal. The maximum Dp was also shown by retinal (Dp � 6.33
Debye units). Considering derived descriptors, the most
electronegative compound in the selected list was retinal (χ �
3.82). The electronegativity of RBGUL (χ � 3.67) was found to
be highly similar to that of retinal. Absolute hardness and Global

softness are criterions of overall stability of the system and also they
are supporting parameters of electronegativity. In our study Retinal
and RBGUL showed acceptable values of absolute hardness, 1.52 and
1.60 and softness, 0.33 and 0.31, respectively. Chemical potential of
compounds is the negative value of electronegativity values, which is
also an indication of high chemical activity. Therefore in this case
too, retinal and RGBUL exhibited high chemical potential. High
electrophilicity of retinal (4.80) and RBGUL (4.21) suggests their
elevated likeliness to accept electrons. According to the above
findings, RBGUL, and retinal were considered good inhibitors of
S1 RBD of SARS-CoV-2.

Prediction of Pharmacokinetic Properties
and Drug-Likeliness
The drug-likeliness prediction from DruLiTo and ADMET results
from pkCSM are presented in Table 6. Evaluation of drug-likeliness
showed that 2,4-DtBP satisfied and passed through the Lipinski’s
RO5, Ghose, and Veber filters, whereas other ligands violated atleast
one of the three parameters. Absorption properties revealed that all
ligands were readily absorbed intestinally. 2,4-DtBP, doconexent,
DTD, and retinal showed no interference with the P-glycoprotein
system, however, RBGUL was found to be both a substrate and an
inhibitor in the system. Skin permeability prediction showed that
2,4-DtBP was slightly permeable. Distribution properties showed
that these compounds have tendencies to cross the blood-brain
barrier (BBB) and central nervous system (CNS). Metabolic
properties revealed that no ligand escaped the cytochrome P450
(CYP) system of the liver completely. Amongst the five selected
ligands, DTD and RBGUL showed minimum interference with
the system (acted as CYP2C19 inhibitor and CYP3A4
substrate, respectively). Considering excretion and toxicity
properties, no ligand acted as renal OCT2 substrate, and
human ether-à-go-go-related gene (hERG)-I protein
inhibitors. The compounds passed the Ames toxicity test,
indicating their inability to be a mutagen and thus a
carcinogen. However, hepatotoxicity was predicted with
doconexent, RBGUL, and retinal. Except for RBGUL, all
other selected ligands showed skin sensitization too.

DISCUSSION

Medicine has started to change from completely “synthetic” to
“semi-herbal” in the last couple of decades. Due to the lack of

TABLE 4 | | Statistics of the conceptual DFT-global reactivity descriptors and their derivatives of the best phytochemicals.

Compound Total
energy,

Eγ×10
3(eV)

Dipole
moment(Debye)

ELUMO(eV) EHOMO(eV) Energy
gap
(ΔE)

Absolute
hardness(η)

Global
softness(σ)

Electro
negativity

(χ)

Chemical
potential

(μ)

Electro
philicity
index
(ψ)

2,4-DtBP −16.92 1.32 0.16 −5.68 5.85 2.92 0.17 2.76 -2.76 1.30
Doconexent −27.43 1.04 0.17 −6.32 6.49 3.24 0.15 3.08 -3.08 1.46
DTD −25.39 2.64 −0.03 −6.11 6.09 3.04 0.16 3.07 -3.07 1.55
RBGUL −41.84 3.61 −2.07 −5.27 3.20 1.60 0.31 3.67 -3.67 4.21
Retinal −23.24 6.33 −2.30 −5.34 3.04 1.52 0.33 3.82 -3.82 4.80
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effective treatment and management strategies to treat COVID-
19, alternative therapies are being explored. Conventional drug
development process involves elaborate and time-consuming
protocols, and they seldom produce drugs on demand. To
increase the complexity, the causative agent, SARS-CoV-2, is a
virus with high mutability and variable reproduction number
(Rahman et al., 2020) that is slightly greater than its pathological
cousins, SARS-CoV and MERS-CoV (Liu et al., 2020). Due to

these facts, it is challenging to develop drugs against this virus
presently. However, drugs could be developed against conserved
regions of its genome or proteins encoded from these regions,
such as spike glycoprotein or main protease, and intense research
is being conducted world-wide, for the same. Drug repurposing is
the most accepted strategy considered in this approach. Using in
silico techniques, commercially available drugs are docked with a
target protein, and the screened drug could be made available for

TABLE 5 | Electron density maps of LUMO and HOMO of the top phytochemicals.

Compound Optimized structure LUMO HOMO

2,4-DtBP

Doconexent

DTD

RBGUL

Retinal

The red blobs represent the negative charge-dense regions and the green blobs represent the positive charge-dense regions of the molecule.
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patients within a much shorter period because the clinical profile
of the drug has been already established. Some drugs repurposed
against SARS-CoV-2 were Remdesivir, Favipiravir, Ribavirin,

Lopinavir, Ritonavir, Darunavir, Tocilizumab, type I and type
II interferons, chloroquine, hydroxychloroquine, arbidiol and
statins (Singh et al., 2020). Though it is a fast-paced approach,

TABLE 6 | Molecular and ADMET properties of the selected ligands by DruLiTo and pkCSM online tool.

Property 2,4-DtBP Doconexent DTD RBGUL Retinal

Drug-likeliness

Molecular mass (Da) 206.17 328.24 306.26 458.23 284.21
LogP 4.279 8.833 5.228 5.067 6.335
No. of H-bond acceptors 1 2 2 7 1
No. of H-bond donors 1 1 2 2 0
Atom molar refractivity 69.37 111.27 96.24 125.44 95.7
No. of atoms 37 56 56 67 49
TPSA (Å2) 20.23 37.3 40.46 102.29 17.07
No. of rotatable bonds 2 14 1 7 5
Violation of Lipinski’s Rule No Yes Yes Yes Yes
Pass through Ghose Filter Yes No Yes Yes No
Pass through Veber Filter Yes No Yes Yes Yes

Absorption

logS (log mol/L) −3.924 −6.098 −4.709 −4.62 −6.888
Caco2 permeability (logP app in 10−6 cm/s) 1.666 1.145 1.636 0.759 1.53
Human intestinal absorption (% absorbed) 92.034 92.98 92.426 72.172 94.747
LogKp −2.301 −2.731 −2.779 −2.897 −2.491
P-glycoprotein substrate No No No Yes No
P-glycoprotein-I inhibitor No No No Yes No
P-glycoprotein-II inhibitor No No No Yes No

Distribution

Human VDss (log L/kg) 0.611 −0.709 0.11 0.017 0.506
Human fraction-unbound (Fu) 0.044 0.001 0.256 0.211 0.04
LogBB 0.478 −0.203 0.4 −0.088 0.664
LogPS −0.848 −1.169 −2.865 −3.051 −1.863

Metabolism

CYP2D6 substrate No No No No No
CYP3A4 substrate Yes Yes No Yes Yes
CYP1A2 inhibitor Yes Yes No No Yes
CYP2C19 inhibitor No No Yes No No
CYP2C9 inhibitor No No No No No
CYP2D6 inhibitor No No No No No
CYP3A4 inhibitor No No No No No

Excretion

Total clearance (log mL/min/kg) 0.759 2.264 1.376 0.861 1.563
Renal OCT2 substrate No No No No No

Toxicity

Ames toxicity No No No No No
Human MRTD (log mg/kg/day) 0.42 −0.98 0.483 −0.142 −0.341
hERG-I protein inhibitor No No No No No
hERG-II protein inhibitor No No No No Yes
ORAT-LD50 (mol/kg) 2.351 1.459 1.673 1.913 1.564
ORCT-LOAEL (log mg/kg_bw/day) 1.696 3.208 2.002 2.579 1.065
Hepatotoxicity No Yes No Yes Yes
Skin sensitization Yes Yes Yes No Yes
T. pyriformistoxicity (log μg/L) 1.572 0.451 1.348 0.285 1.515
Minnow toxicity (log mM) 0.006 −1.765 0.528 0.373 −0.56

logP: Octanol-water partition coefficient; TPSA: Total polar surface area; logS: measure of water solubility; logKp: measure of skin permeability; VDss: volume of distribution; logBB:
measure of BBB permeability; logPS: measure of CNS permeability; OCT2: organic cation transporter 2; ORAT-LD50: oral rat acute toxicity-lethal dose 50; ORCT-LOAEL: oral rat chronic
toxicity-lowest dose causing observed adverse effects.
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in vitro and in vivo studies are required to fully understand its
mechanism in the human body, especially when the stakes of
comorbid symptoms are high with this disease.

The undesirable side-effects of synthetic drugs has attracted
researchers, and scientists towards developing plant-based
medicines. Various compounds obtained fromt extracts of
plants that belong to families such as Lamiaceae, Fabaceae,
Geraniaceae, Rosaceae, Asteraceae, Rutaceae and
Malvaceaehave been reported to exhibit antiviral activity
against SARS-CoV-2 and certain other viruses too (Drevinskas
et al., 2018; Denaro et al., 2020; Siddiqui et al., 2020). The top
compounds identified as potent antivirals in our study have been
previously reported to have exhibited a wide array of functions.
2,4-DtBP is a lipophilic phenol foundmostly in higher plants. The
phenol and its analogs were reported to have anti-oxidant, anti-
inflammatory, anti-cancer, and anti-microbial properties.
Considering their anti-viral activities, they reduced the growth
of Coxsackievirus B-3 and Herpes Virus type-2 (Zhao et al.,
2020). Our study revealed that 2,4-DtBP binds to S1 RBD of
SARS-CoV-2 with a binding energy of −5.3 kcal.mol−1, and
interacted with Gly496 and Asn501 by hydrogen bonds and
Arg403 and Tyr505, hydrophobically. Doconexent is a fatty
acid which is rich in docosahexaenoic acid (DHA), is a
compound with high anti inflammatory properties which is
commercially produced from certain microalgae (Milledge, 2011).
It has been repurposed to treat cancer andCOVID-19 (Li et al., 2020;
Singhal et al., 2020; Stanly et al., 2020). Retinal is a vitamin A
aldehyde in the most absorbable form. Many studies have pointed
the role of vitamins which include retinal, in managing COVID-19
(Michele et al., 2020; Morais et al., 2020; Gröber and Holick, 2021).
DTD is a macrocyclicditerpene, primarily isolated from the Tobacco
plant (Nicotianatabacum). It was found to be a major constituent in
the oil extract from the aerial parts of Hercules’ all-heal
(Opopanaxchironium) (Maggio et al., 2013) and has a structural
similarity with cembrene (Roberts and Rowland, 1962). Though
DTD was not studied for its clinical properties, it was found that
cembrenoid derivatives showed anti-cancer properties in vitro
(Jassbi et al., 2017). With a binding affinity of −6.0 kcal.mol−1

against SARS-CoV-2, it proved to be a good inhibitor of the
virus. RBGUL has similar properties to retinoic acid, and retinol.
It was proposed to be a valuable therapeutic compound for the
treatment of dermatological conditions and certain cancers, and also
a dose-dependent teratogen (Barua, 1997). In our study, RBGULwas
found to be the best inhibitor of SARS-CoV-2, compared to the other
compounds with good binding affinity to the virus (−7.0 kcal.mol−1).

In silico techniques occupy a prominent role in early drug
discovery process. A quantitative computational study of the
interaction between a particular protein target and a set of ligands,
provides a fair idea as to which of the ligands may have an effect on
the protein in vitro. Screening a large number of compounds against a
particular target to narrow down the number of compounds to be
tested in vitro is easily achievable by bioinformatics techniques.
Molecular docking aids in assessing and visualizing the
interactions between the ligands and protein. Similarly, the C-DFT
study performed by calculating global molecular descriptors based on
DFTprovides a quantum level understanding of the ligands and helps
to construct the relationship between their electronic properties and

biological activity. It can also be used to understand the quantitative
structure-activity relationship and performpharmacophoremodeling
to design effective drugs out of the existing, according to the target.
RBGUL and retinal show similar electron density in the orbitals
except that the structures look inverted, suggesting that the inhibitory
action of both compoundsmay be similar. They were also considered
as highly active compounds as they showed lowΔE, which helps in an
easy transition from HOMO to LUMO. Comparing the results of
docking and C-DFT, the compounds with higher electronegativity
showed better activity. Thus it can be comprehended that smallerΔE,
highDp, and low electronegativity are essential for the inhibitory effect
of a molecule. However, compared to RBGUL, retinal had more
disadvantages based on the pharmacokinetic predictions. Besides
RBGUL, 2,4-DtBP is also a potential candidate against RBD of
SARS-CoV-2, considering its less adverse effects. That being said,
the most recommended inhibitors against RBD would be 2,4-DtBP
and RBGUL. More studies on these phytochemicals can reveal their
efficacy, thus validating the results of this experiment.

CONCLUSION

Phytochemicals obtained from Ui extract were docked with the
SARS-CoV-2 RBD to ascertain if it exhibited antiviral activity, and
also to screen for the compounds that are responsible for the
activity. Through this study, we conclude that RBGUL, 2,4-DtBP
and Retinal could be used as potent inhibitors against the RBD of
coronavirus based on the molecular docking, C-DFT and
ADMET studies. However, further studies involving in vitro
and in vivo testing is essential to confirm the antiviral
efficiency of the compounds against SARS-CoV-2.
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Inhibition Potencies of
Phytochemicals Derived from Sesame
Against SARS-CoV-2Main Protease: A
Molecular Docking and Simulation
Study
Anuj Kumar1, Dwijesh Chandra Mishra1, Ulavappa Basavanneppa Angadi 1*, Rashmi Yadav2,
Anil Rai1 and Dinesh Kumar1

1Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, NewDelhi, India, 2Division of
Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India

The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has now spread across the
nations with high mortality rates and multifaceted impact on human life. The proper
treatment methods to overcome this contagious disease are still limited. The main
protease enzyme (Mpro, also called 3CLpro) is essential for viral replication and has
been considered as one of the potent drug targets for treating COVID-19. In this
study, virtual screening was performed to find out the molecular interactions between
36 natural compounds derived from sesame and the Mpro of COVID-19. Four natural
metabolites, namely, sesamin, sesaminol, sesamolin, and sesamolinol have been ranked
as the top interacting molecules to Mpro based on the affinity of molecular docking.
Moreover, stability of these four sesame-specific natural compounds has also been
evaluated using molecular dynamics (MD) simulations for 200 nanoseconds. The
molecular dynamics simulations and free energy calculations revealed that these
compounds have stable and favorable energies, causing strong binding with Mpro.
These screened natural metabolites also meet the essential conditions for drug
likeness such as absorption, distribution, metabolism, and excretion (ADME) properties
as well as Lipinski’s rule of five. Our finding suggests that these screened natural
compounds may be evolved as promising therapeutics against COVID-19.

Keywords: COVID-19, main protease, sesame, natural compounds, molecular docking, molecular dynamics
simulations, therapeutics

INTRODUCTION

The ongoing pandemic eruption due to the worldwide spread of coronavirus disease (COVID-19) is
caused by the novel virus strain severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2;
previously named 2019-nCoV) (Wu et al., 2020b). This viral disease is an unprecedented global
public health care threat (Jamwal et al., 2020). The first case of COVID-19 disease was originated
fromWuhan, Hubei Province, China, and quickly spread across 219 countries and territories around
the world with high mortality rates in immunocompromised patients (Enayatkhani et al., 2020;
Mackenzie and Smith, 2020; Xu et al., 2020). Based on the recommendations of the Emergency
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Committee, theWorld Health Organization (WHO) has declared
this respiratory infectious disease as a Public Health Emergency
of International Concern (PHEIC) on 30 January, 2020 and a
pandemic on 11 March, 2020 (Shi et al., 2020; Yu et al., 2020). As
on 10 July 2021, this contagious disease had led to more than
185,291,530 confirmed cases and 4,010,834 fatalities (https://
covid19.who.int/), with the number of cases increasing
abruptly across the globe. At present, India is fighting hard
against the second wave of COVID-19. The ongoing pandemic
has now initiated taking a toll on India’s economy. A large
population of India is facing disproportionately higher rates of
COVID-19 infection, morbidity, and mortality. As of 10 July
2021, the total COVID-19 caseload has now soared to 30,752,950
with 405,939 deaths (https://covid19.who.int/table). India is the
most severely affected Asian country. The ongoing pandemic has
been considered more dreadful than the previous global
outbreaks, namely, SARS-CoV (2002–2003) and Middle East
respiratory syndrome (MERS) (2012–present) (de Wit et al.,
2016; Gupta et al., 2020; Wang et al., 2020b; Wu and
McGoogan, 2020; Yuan et al., 2020). Based on previous
investigations, the fatality rate of SARS-CoV and MERS has
been calculated as 10 and 35%, respectively (Lee et al., 2004;
Cheng et al., 2007). It has been well-reported that COVID-19
affects the lower respiratory tract of the body, which causes
pneumonia and affects the gastrointestinal system, kidney,
heart, and central nervous system. Fever, cough, diarrhea, and
tiredness have been considered the most common symptoms
(Chen et al., 2020a; Tang et al., 2020), while aches and pains, sore
throat, conjunctivitis, headache, loss of taste or smell, a rash on
skin, or discoloration of fingers or toes are the less common
symptoms of this infectious disease (Backer et al., 2020; Rothe
et al., 2020; Russell et al., 2020; Verdoni et al., 2020; Yu and Yu,
2020).

The coronaviruses have been recognized as a large enveloped
positive-sense single-strand RNA viruses from Nidovirales
(order) of the Coronaviridae family and subfamily
Coronavirinae (Raj et al., 2021; Shamsi et al., 2021). This
subfamily is classified into four genera including alpha-, beta-,
gamma-, and deltacoronavirus (α-, β-, c-, and δ-CoV) based on
evolutionary methods (Hulswit et al., 2016). In view of previous
reports, coronaviruses have been considered as highly evolving
viruses, with a high rate of mutation and genomic recombination
(Chen et al., 2020b). In the past, six species of human coronavirus
associated with different respiratory tract diseases have been
reported, which include HCoV-NL63, HCoV-229E, HCoV-
OC34, HCoV-HKU1, SARS-CoV, and MERS-CoV (Arden
et al., 2005; Woo et al., 2005; Su et al., 2016). The novel strain
SARS-CoV-2 has been characterized as the seventh strain of the
human coronavirus. Based on the significant nucleotide sequence
similarity with SARS and MERS coronaviruses, the International
Committee on Taxonomy of Viruses (ICTV) coined the
nomenclature of SARS-COV-2 (Hasan et al., 2020). The ICTV
taxonomically placed the SARS-COV-2 in the genus
Betacoronavirus (Helmy et al., 2020; Wang et al., 2020b).

The genome size of SARS-CoV-2 is ∼29.9 kb (29,903
nucleotides) (Wu et al., 2020a). The first whole-genome
sequencing data for SARS-CoV-2 (∼30 kb) were submitted to

the Genbank with the accession number MN908947 and isolated
from Wuhan (Wu et al., 2020a). The genome of SARS-CoV-2
encodes approximately 13–15 open reading frames (ORFs) which
are flanked by 5′ and 3′ UTRs (Chen et al., 2020b; Elfiky and
Azzam, 2020; Gordon et al., 2020). These ORFs constitute a
replicase assembly during the replication process of the central
dogma of molecular biology and encode 27 distinct structural and
non-structural proteins (NSPs) (Liu et al., 2021; Shamsi et al.,
2021). The 5′ end of the SARS-CoV-2 genome encodes 16 NSPs
(Nsp1-16) and constitutes the replicase/transcriptase complex
(RTC). These 16 proteins are conserved in all SARS viruses and
play a critical role in a set of biological processes such as viral
replication, assembly, and immune response modulation (Shamsi
et al., 2021). The 3′ end of the viral genome encodes four conical
structural proteins including E (envelope protein), M (membrane
protein), N (nucleocapsid protein), and S (spike protein), and
nine putative accessory factors. The main protease enzyme (Mpro

also called 3CLpro) is essential for viral replication and has been
considered as one of the potent drug targets for treating COVID-
19 (Joshi et al., 2020; Khan et al., 2020; Kumar et al., 2020; Pant
et al., 2020; Wu et al., 2020a; Zhang et al., 2020). In cooperation
with other components, this important enzyme also helps in the
transcription of the viral RNA. Mpro is a key enzyme that
exclusively cleaves the polyproteins (pp1a and pp1ab) which is
essential for the assembly of virus drugs (Jin et al., 2020). The
molecular mass of Mpro is 33,797 Da with length of 306 amino
acid residues and structurally possesses the three functional
domains, namely, domain I (8–101 residues), domain II
(102–184 residues), and domain III (201–306 residues) (Jin
et al., 2020; Khan et al., 2020). Among them, domains I and II
have an antiparallel β-barrel structure, while domain III
represents a group of five α-helices organized as a large
antiparallel cluster. Domain III is connected to domain II by a
15-residue-long loop region (185–200 residues). The active site is
composed of a catalytic dyad having Cys145 and His41 residues
(Khan et al., 2020). The functional role of Mpro in the viral
replication highlights its importance that can be used to identify
the potential drug therapeutics against COVID-19 (Ullrich and
Nitsche, 2020). Solved crystal structures of Mpro provide a
platform to develop and design the antiviral drugs to combat
COVID-19 (Jin et al., 2020; Zhang et al., 2020). In response to the
COVID-19 outbreak, several studies have been performed using
integrated bioinformatics and molecular modeling approaches
for the screening of novel natural metabolites as potential drug
targets against Mpro (Chikhale et al., 2020a; Kumar et al., 2020;
Maurya and Sharma, 2020; Rout et al., 2020; Tripathi et al., 2020;
Mishra et al., 2021; Romeo et al., 2021; Tock et al., 2021). But no
effective method has been developed yet to prevent and treat the
COVID-19 disease in a significant manner. In addition to the
aforementioned approaches, several other viral protease
inhibitors like remdesivir, hydroxychloroquine, chloroquine,
lopinavir, ritonavir, oseltamivir, and fapilavir have been
explored as repurposed drugs for COVID-19 treatment
(Chang et al., 2016; Chang et al., 2020; Contini, 2020; Das
et al., 2020; Elfiky, 2020; Gonzalez–Paz et al., 2020; Islam
et al., 2020; Khan et al., 2020; Sinha et al., 2020; Wahedi et al.,
2020; Abdelli et al., 2021). The antimalarial drug named as
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chloroquine has been proposed as the potential inhibitor of Mpro

activity (Ou et al., 2021). In a recent follow-up study, Pathak et al.
(2021) explored the potential of rifampicin and letermovir as
repurposed drug candidates against COVID-19. On the contrary,
several studies reported the severe adverse effects of these repurposed
drugs in different countries (Sultana et al., 2020;Wang et al., 2020a).
Therefore, it is imperative to discover natural compound–based
drug targets that could serve as potential inhibitors of different
SARS-CoV-2 proteins and aid in controlling viral replication to
enhance efficacy in COVID-19 treatment.

Sesame (Sesamum indicum L.) is an herbaceous annual plant
cultivated for its edible seed, oil, and flavorsome value, belonging
to the order Tubiflorae, family Pedaliaceae with many common
names including gingelly, til, and benne seed (Bhat et al., 2014;
Pathak et al., 2019). This oil crop is regarded as “queen of
oilseeds” because of its property of resistance to oxidation and
rancidity (Dalibalta et al., 2020). Sesame is widely cultivated in the
tropical parts of Africa and Asia, India being one of the major
producers with Myanmar, China, and Sudan (Majdalawieh et al.,
2017). A plethora of nutrients including proteins, carbohydrates,
antioxidants, lignans, tocopherols, phytates, phytosterols, and
polyunsaturated fatty acids are exclusively found in sesame
(Nagendra Prasad et al., 2012; Kumar et al., 2018; Pathak et al.,
2019). These bioactive compounds possess certain medicinal
properties like hepatoprotective, hypoglycemic, antihypertensive,
anti-estrogenic, and anticancer (Kumar and Singh, 2014;
Majdalawieh et al., 2017). Active ingredients of sesame have also
been investigated as potential inhibitors of Parkinson’s disease (PD)
(Kappo et al., 2016). There are very few reports available for the
screening of sesame-derived compounds against main protease of
COVID-19. So far, only one compound of sesame, namely, sesamin
has been well-explored against COVID-19 using in silico approach.
Kodchakorn et al. (2020) investigated the potential of sesamin
along with other herbal medicines (andrographolide, anthocyanin-
b-D-glucoside, capsaicin, curcumin, cyanidin, cyanidin-3-O-
glucoside, and hesperidin) against the Mpro of SARS-CoV-2
using molecular docking. Docking complexes of these
nutraceuticals with Mpro were further validated for their atomic
stability using molecular dynamics (MD) simulations on 50 ns, and
suggested that the screened compounds may be considered for
coprotection and treatment against COVID-19. In a recent study,
Pandey and Verma (2020) also studied the potential of sesamin and
four other dietary components (galangin, ellagic acid, capsaicin,
and epicatechin) as structural inhibitors of SARS-CoV-2 Mpro

using the molecular docking approach. In a very recent study,
Allam et al. (2021) reported seven sesame-derived natural
compounds (sesamin, sesamolin, pinoresinol, hydroxymatairesinol,
spicatolignan, ferulic acid, and vanillic acid) as potential inhibitors
against three proteins of SARS-CoV-2 including Mpro, papain-like
protease (PLpro), and the RNA-dependent RNA polymerase
(RdRp) using the molecular docking analysis followed by MD
simulations on 50 ns for representative complexes. However, there
is no significant evidence of docking results evaluation available
for MD simulations on high nanosecond scale (up to 200 ns)
to understand the inhibitory mechanism of all sesame-derived
compounds against the SARS-CoV-2 proteins. Despite the
medicinal importance of sesame, all bioactive molecules derived

from this important medicinal plant have not been well-explored in
a significant manner yet for the treatment of COVID-19. With the
fruitful utilization of molecular modeling methods including
molecular docking and MD simulations, sesame-derived
bioactive compounds may be utilized to design the alternative
natural compound–based effective therapeutics against COVID-19.

Keeping this in view, in the present study, we have undertaken
a thorough attempt to investigate the inhibition potencies of 36
phytochemicals from sesame against Mpro of SARS-CoV-2 using
the molecular docking approach. Four natural metabolites,
namely, sesamin, sesaminol, sesamolin, and sesamolinol, were
further subjected to conformational stability using MD
simulations followed by free energy calculations. The
knowledge generated in the current study encourages and
suggests that the sesame-derived phytochemicals have enough
potential of being effective in treatment of COVID-19.

MATERIALS AND METHODS

A flowchart depicting the pipeline involved in the identification
of interaction between sesame-derived bioactive molecules and
Mpro is presented in Figure 1.

Ligand Selection
An extensive literature survey was conducted to prepare a library
of sesame-derived natural compounds reported with therapeutic
potential. Chemical structures of 36 phytochemicals
(Supplementary Table S1) were obtained from the PubChem
database (Kim et al., 2020) in a Spatial Data File (SDF) format. All
these molecules were optimized prior to molecular docking using
a set of AutoDock tools (Morris et al., 2009). Each and every
molecule embedded in thse library was prepared with the
addition of polar hydrogens and Gasteiger charges calculation.
For the docking purpose, the molecules were saved in a pdbqt
format using PyRx Open Babble tools (O’Boyle et al., 2011).

Preparation of Receptor
The crystal structure of the Mpro of SARS-CoV-2 in a complex
with Z45617795 (PDB ID: 5R7Y) was attained from the RCSB-
Protein Data Bank (Berman, 2000; Burley et al., 2018) for docking
purposes. This protein crystal structure was solved by the
PanDDA analysis group (https://www.rcsb.org/structure/
5R7Y). Preprocessing of the Mpro of SARS-CoV-2 was carried
out by removing water atoms and heteroatoms, and adding polar
hydrogen atoms and Kollman charges on it using AutoDockTools
version 1.5.6. Swiss-pdb Viewer (Guex and Peitsch, 1997) was
employed to structure optimization and energy minimization.
The clean geometry module available in the Discovery Studio
platform was utilized for the side chain correction.

Virtual Screening Based on Molecular
Docking
In a search for a drug against COVID-19, we performed a site-
specific docking screen for the Mpro of SARS-CoV-2 against
the prepared library of sesame-derived natural compounds
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containing 36 compounds. AutoDock Vina program was
employed for virtual screening. The grid box was created with
the size of 70 Å × 70 Å × 70 Å, with a total of 50 genetic run. For
the purpose of docking, amino acid residues such as Thr24,
Thr26, Asn119, Phe140, Gly143, Cys145, His163, His164,
Glu166, Gln189, and Thr190 were considered as active sites, as
earlier reported by Khan et al. (2020) and Kumar et al. (2020).
Other parameters were set as default while docking process. The
carmofur (CID_2577) compound was selected as the positive
control (Jin et al., 2020) for docking process. After docking, the
top ranked compounds (based on docking score, number of
hydrogen bonds, and specificity) (Table1) were chosen and
visually inspected using PyMol and Discovery Studio (DeLano,
2002).

Drug-Likeness and Absorption,
Distribution, Metabolism, and Excretion
Profiling
The automated Swiss ADME server (Daina et al., 2017) was
employed to calculate the drug-likeness attributes of screened
molecules. Different molecular properties such as molecular
weight, number of hydrogen bond accepters, number of
hydrogen bond donors, number of rotatable bonds, molar

refractivity, bioavailability score, synthetic accessibility, TPSA,
and solubility were calculated with utilizing Lipinski’s rule of five
(Lipinski, 2004) and Veber’s rule (Veber et al., 2002).

Molecular Dynamics Simulations
In order to assess the stabilities of docking conformation
complexes of the four bioactive compounds sesamin,
sesaminol, sesamolin, and sesamolinol with SARS-CoV-2 Mpro,
MD simulations were performed using GROMOS9643a1 force
field embedded in GROMACS 5.1.1 package installed on Linux-
based workstation (Abraham et al., 2015; Kutzner et al., 2019).
For the MD simulations, we followed the protocol previously
described by Gajula et al. (2016) and Jee et al. (2017). The
automatic PRODRG server was employed to prepare the
topology files of ligand molecules (Schüttelkopf and van
Aalten, 2004). The docking complexes were solvated in a
dodecahedron box. In order to make the whole system
neutral, the appropriate Na+ ions were added to the system.
The steepest descent algorithm was applied to perform the energy
minimization of the prepared system with 50,000 iteration steps
and cutoff up to 1,000 kjmol−1 with a primary goal of reducing the
steric clashes during simulations. The long-range electrostatic
interactions were calculated by using particle mesh Ewald (PME)
truncation method (Abraham and Gready, 2011). Prior to a

FIGURE 1 | Representation of pipeline utilized in the present study to identify the inhibitors of Mpro of SARS-CoV-2 using an extensive molecular modeling
approach.
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production run, the process of equilibrium was completed in two
phases. In the first phase, equilibration was established with a
constant number of particles, volume, and temperature (NVT),
with each step 2 femtosecond (fs). The second phase was
performed with a constant number of particles, pressure, and
temperature NPT, with the ensemble at 300 K. After determining
the coordinates, LINCS algorithm was considered to constrain
the covalent bonds involving hydrogen atoms (Hess et al., 1997;
Hess, 2007). Temperature was regulated inside the box using
V-rescale, a popular Berendsen temperature coupling method.
Finally, a production run of 200 ns was run with each step of 2 fs.

Trajectory Analysis
After the successful completion of MD simulations, trajectories
were analyzed using a set of tools implemented in GROMACS
package. The gRMS tool of GROMACS was utilized to calculate
the root-mean-square deviation (RMSD) variation in protein
backbone, while the overall root-mean-square fluctuation (RMSF)
in the atomic positions of protein C backbone was generated by using
the grmsf module. The gyrate, gmxsasa, and g h bond tools were
employed to estimate the radius of gyration (Rg), solvent accessible
surface area (SASA), and hydrogen bonds, respectively.

Molecular Mechanic/Poisson–Boltzmann
Surface Area Binding Free Energy
Calculations
The Molecular Mechanic/Poisson–Boltzmann Surface Area
(MM/PBSA) was performed on g mmpbsa script program to
calculate the binding free energy of interactions between the

docking complexes (Kumari et al., 2014; Aldeghi et al., 2017).
After the simulation of docking complexes, all the trajectories of
200 ns were used for MM/PBSA-based binding free energy analysis.
The major energy components such as binding energy (kJ/mol), van
der Waals energy (DEvdW), electrostatic energy, polar solvation
energy, and SASA energy all together contributed to calculate the
MM/PBSA relative binding affinity. The MM/PBSA method–based
binding free energy of the protein–ligand systems were calculated
using the following equation:

ΔGMMPBSA � 〈Gcomplex − Gprotein − Gligand〉complex,

where Gcomplex represents the total free energy of the docking
complex, and Gprotein and Gligand depict the total free energies of
the isolated protein and ligand in the solvent, respectively.

RESULTS AND DISCUSSION

Molecular Docking
Molecular docking is one of the most applied methods in the
process of computer-aided drug design (CADD) to identify potential
inhibitors against various pathogens. With this revolutionary method,
an immense amount of energy, time, and costs of the drug discovery
process can be saved to screen the large drug libraries for the discovery
of potential drug compounds (Wadood et al., 2013; Yu andMacKerell,
2016). There is no effective cure for COVID-19 so far; therefore,
identification of potential drug compounds is required on an urgent
basis. In the present study, we screened an in-house library of sesame-
derived bioactive molecules against Mpro of SARS-CoV-2 using a
molecular docking approach. In total, 36 natural compounds

TABLE 1 | List of top four natural compounds shortlisted based on binding energy score as a result of virtual screening.

S.
No.

Compound 2D structure Binding energy
(kcal/mol)

Molecular interactions

1 Mpro (active site residues) Thr24, Thr26, Asn119, Phe140, Gly143, Cys145, His163, His164, Glu166, Gln189, and Thr190

2 Sesamin (CID_72307) −6.7 Hydrogen bond: ASN151 (5.46 Å), SER158 (4.38 Å), and
ARG298 (6.05 Å)
Carbon–hydrogen bond: ASP295 (5.38 Å)
Alkyl: VAL104 (5.27 Å)
Pi–sigma: VAL104 (4.29 Å)

3 Sesaminol (CID_94672) −6.6 Hydrogen bond: ARG105 (6.59 Å), ASN151 (5.39 Å), and
ARG298 (6.05 Å)
Carbon–hydrogen bond: ASP295 (5.27 Å)
Pi-Sigma: VAL104 (4.30 Å)

4 Sesamolin
(CID_131801617)

−6.4 Hydrogen bond: ARG105 (6.03 Å), GLN110 (4.52 Å), and
SER158 (4.08 Å)
Pi–sigma: VAL104 (4.89 Å)

5 Sesamolinol (CID_443019) −6.1 Hydrogen bond: SER158 (4.10 Å)
Carbon–hydrogen bond: ILE106 (4.45 Å), and GLN110 (5.21 Å)
Pi–sigma: VAL104 (5.04 Å)
Alkyl: VAL202 (5.45 Å), and ILE249 (5.21 Å)
Pi-Alkyl: HIS246 (5.26 Å)
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(Supplementary Table S1) were docked into the binding pocket of
Mpro. The docking results demonstrated that out of 36 selected natural
compounds used in the present study, four bioactive molecules,
namely, sesamin, sesaminol, sesamolin, and sesamolinol were
found to have a higher binding energy of −6.7, −6.6, −6.4, and
−6.1 kcal/mol−1, respectively, than the positive control compound
carmofur whose binding energy was determined to be −5.2 kcal/
mol−1. These four natural compounds (sesamin, sesaminol, sesamolin,
and sesamolinol) ranked as top interacting with Mpro based on the
affinity of molecular docking, number of hydrogen bonds and
compound specificity.

The 2D structures, binding score, and details of interactions of
the top four screened compounds are displayed in Table 1.
Docking complexes of these natural metabolites with Mpro

have been considered for further evaluation using MD
simulations and MM/PBSA energy calculations. Discovery

studio and PyMOL programs were employed to prepare the
two- and three-dimensional plots of molecular interaction
networks, respectively. After visualizing the 2D and 3D
interaction plots, it was observed that the sesamin compound
formed hydrogen bonds with three residues, namely, Asn151
(5.46 Å), Ser158 (4.38 Å), and Arg298 (6.05 Å). This compound
was found to have one carbon–hydrogen (C–H) bond with
Asp295 (5.38 Å), alkyl bond with Val104 (5.27 Å), and
Pi–sigma bond with Val104 (4.29 Å) residue. It also manifests
van der Waals (VdW) interaction with six residues including
Arg105, Ile106, Gln110, Thr111, Thr292, and Phe294 (Figure 2).

In the case of sesaminol, three residues, namely, Arg105
(6.59 Å), Asn151 (5.39 Å), and Arg298 (6.05 Å), formed the
hydrogen bonds. Residues Asp295 (5.27 Å) and Val104
(4.30 Å) interacted via C–H bond and Pi–sigma, respectively.
Five residues including Ile106, Gln110, Thr111, Thr292, and

FIGURE 2 | 2D and 3D representation of molecular interaction between the Mpro of COVID-19 (PDB ID: 5R7Y) and sesamin compound (CID_72307): (A) 3D
structure presentation of sesamin; (B) Molecular docking complex of a crystal structure of Mpro with sesamin molecule, docked using AutoDock implemented in PyRx
package; (C) close view of pocket with sesamin structure in the stick model colored by atom types, yellow dashed lines represent the hydrogen bond networks; (D) 2D
representation of different types of interactions with sesamin including van derWaals, conventional hydrogen bond, carbon hydrogen bond, Pi–sigma, and alkyl; (E)
hydrophobicity surface representation of the overall structure of Mpro in complex with Sesamin; and (F) pocket view of sesamin binding with Mpro and the representation
of residues involved in hydrogen bond donor acceptor. The docking complex of Mpro with sesamin was rendered in different CPK using UCSF Chimera, Discovery
Studio, and PyMol.
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Phe294 manifest VdW interaction (Figure 3A). As shown in
Figure 3B, sesamolin molecule exhibits the hydrogen bond with
three residues, namely, Arg105 (6.03 Å), Gln110 (4.52 Å), and
Ser158 (4.08 Å), and one Pi–sigma with Val104 (4.89 Å). VdW
interaction with residues Phe8, Lys102, Phe103, Thr111, Asn151,
Thr292, and Phe294 was also formed. In the sesamolinol
molecule, one residue Ser158 (4.10 Å) formed hydrogen bond
(Figure 3C). Several other residues formed other types of
molecular interactions such as Ile106 (4.45 Å), Gln110 (5.21 Å)
(C–H bond), Val104 (5.04 Å) (Pi–sigma), Val202 (5.45 Å), Ile249
(5.21 Å) (alkyl), His246 (5.26 Å) (Pi–alkyl), and residues Arg105,
Gln107, Asn151, Asp245 demonstrated VdW interactions.

Consistent with previous studies which reported the potential
inhibitors of Mpro (Park et al., 2015; Aanouz et al., 2020; Bello
et al., 2020; Chikhale et al., 2020b; Krupanidhi et al., 2020;
Matveeva et al., 2020; Muhammad et al., 2020; Tripathi et al.,
2020; Mitra et al., 2021; Prasanth et al., 2021; Varadharajan et al.,
2021), in our study, screened four compounds (sesamin,

sesaminol, sesamolin, and sesamolinol) were found to be
tightly fit into the binding pocket of the Mpro of COVID-19.
In previous studies, the potential of herb-derived natural
compounds have been explored to inhibit the Mpro of
COVID-19 using integrated bioinformatics and molecular
modeling approaches (Kumar et al., 2020; Suravajhala et al.,
2020; Gunda et al., 2021; Mishra et al., 2021). Three natural
metabolites, namely, ursolic acid, carvacrol, and oleanolic acid
have been reported as the potential inhibitors of Mpro of COVID-
19. The molecular docking study of ursolic acid, carvacrol, and
oleanolic acid with the Mpro protein demonstrated the binding
energy of −5.9, −4.0, and −6.0 kcal/mol, respectively (Kumar
et al., 2020). The ursolic acid formed a strong hydrogen bond
with Ser46 residues, while the docking study of carvacrol and
oleanolic acid with the Mpro protein exhibits hydrogen bonding
with Gly143 and Gln189 residues of the active site, respectively. In
a recent study, Gunda et al. (2021) proposed the natural xanthone
compounds as promising drug inhibitors against the Mpro of

FIGURE 3 | 2D and 3D representation of docking complexes: (A) Mpro and sesaminol complex; (B) Mpro and sesamolin complex; (C) Mpro and sesamolinol
complex visualized using UCSF Chimera and Discovery Studio.
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COVID-19 based on their significant antiviral power, which is
well-documented in literatures. In a recent follow-up study,
Mishra et al. (2021) explored a set of natural compounds to
investigate their binding potential to the Mpro of COVID-19.
Based on the docking and MD simulations, the four natural
compounds, namely, amentoflavone, guggulsterone, puerarin, and
piperine have been reported as antiviral compounds against the
Mpro of COVID-19. The binding affinity of these natural metabolites
with Mpro protein confirms the results of the present study.

Several compounds of sesame possess the natural antibacterial,
antifungal, antiviral, and anti-inflammatory properties, and lignans
such as sesamin, sesaminol, sesamolin, and sesamolinol are good
examples (Uncu et al., 2015; Dravie et al., 2020). Sesamin is
exclusively found in the sesame plant, and its antioxidant,
antibacterial, antiviral, and antifungal activities are well-
reported. Kodchakorn et al. (2020) identified that sesamin
interacts with the Mpro of SARS-CoV-2 and affects the thermal
stability of Mpro using in silico methods, providing evidence for
sesamin as a structural inhibitor against the Mpro of SARS-CoV-2.
Other studies also indicated that the sesamin compound might
interact with amino acid residues Ser144, Cys145, Gln189, and
Gln192 and showed significant interactions with effective residues
His41, Met49, and Met165 of the Mpro of COVID-19 (Pandey and
Verma, 2020). In a follow-up study, Allam et al. (2021) explored
the sesamin and sesamolin compounds along with other natural
compounds against Mpro, PLpro, and RdRp proteins. Sesamin was
found to be interacted with Mpro with three residues including
Gln189, Thr190, and His41, while the sesamolin molecule was
reported to interact with two amino acid residues, namely, Gln189
and Thr190. Our results may support the previous findings on the
inhibitory effect of sesamin and sesamolin against the Mpro of
COVID-19. Previous reports demonstrated the docking results
only for few compounds including sesamin and sesamolin but did
not consider all compounds of sesame reported in the literature,
which have significant medicinal properties as well. In the present
study, we explored the potential of 36 sesame-derived natural
compounds against the Mpro of COVID-19, and based on the
docking results, the four natural compounds were selected, namely,
sesamin, sesaminol, sesamolin, and sesamolinol for further
evaluation using MD simulations on 200 ns. The previous
studies lack the evidence of docking results evaluated using MD
simulations on high ns scale. The screened natural compounds
based on the present study were also well-studied for their central
role in different biological activities. Several in vitro and in vivo
studies illustrate the neuroprotective role of sesamin against
cerebral ischemia (Chung et al., 2010; Dar and Arumugam,
2013). Also, this major lignin compound has demonstrated other
biological activities such as antihypertensive, atherosclerosis,
thrombosis, antidiabetic, anticancer, cardiovascular, and anti-
inflammatory (Kumar et al., 2018; Dalibalta et al., 2020). Of
note, sesamin has been previously shown to be effective against
swine flu (influenza type A H1N1) through in silico and in vitro
studies (Fanhchaksai et al., 2015). This compound was established
as a novel inhibitor of pro-inflammatory cytokines, IL-1β and TNF-
α. Sesaminol is one type of sesame lignan compound commonly
found in sesame seeds andwell known for its strong antioxidant and
anticancer properties (Miyahara et al., 2001; Watanabe et al., 2017). T
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Using in vitro and in vivo models, Kaji et al. (2020) reported the
preventive effect of sesaminol on a neurodegenerative disease
named as Parkinson’s disease (PD). Sesamolin, the second major
lignan, found in sesame oil has been regarded as a natural
therapeutic agent because of its various therapeutic properties
(Michailidis et al., 2019). Free radical scavenging activity of
sesamolin provides protection to neuronal hypoxia (Park et al.,
2010). Sesamolinol has also been considered the important lignin
compound due to its various biological activities (Grougnet et al.,
2011). The present study reported bioactive molecules (sesaminol,
sesamolin, and sesamolinol) which are established as potential
inhibitors of Mpro having enough bibliographical research support.

Evaluation of Drug Likeness
Prior to conducting MD simulation analysis, we evaluated the
pharmacokinetic properties of the screened compounds of sesame.
The ADME results of the shortlisted molecules calculated using
SWISSADME server are shown in Table 2. Sesamin, sesaminol,
sesamolin, and sesamolinol have the following molecular weights,
respectively: 354.35, 370.35, 370.35, and 372.37 g/mol; these four
natural compounds have a molecular weight ≤500 g/mol, which
indicated that these screened natural compounds may easily be
transported, diffused, and absorbed by the body (Lipinski et al.,
2001; Lipinski, 2004).The LogP values of sesamin, sesaminol,
sesamolin, and sesamolinol molecules were found to have 2.79,
2.37, 2.74, and 2.56, respectively, which are in accordance with
Lipinski’s rule of five. For these four compounds, the number of
hydrogen bond donors was less than five, which meets the criteria of
ADME as the number of H bond donors should be ≤5. The ADME
analysis revealed that sesamin, sesaminol, sesamolin, and sesamolinol
molecules present the following values of the topological polar surface
(TPSA): 55.38, 75.61, 64.61, and 75.61 Å2. The range of lower TPSA
values represents the acceptable results, as described by Ahuja et al.
(2021) and Singh et al. (2021) in previous studies. It has been noted
that the natural compounds derived from sesame are better behaved
than the co-crystallized molecule. These screened molecules also
validate Veber’s rule which state the oral bioavailability of drug-like
compounds. These four metabolites, namely, sesamin, sesaminol,
sesamolin, and sesamolinol have the molar refractivity values 90,
92.02, 91.52, and 93.98, respectively; these compounds also present
the scores of the synthetic accessibility (SA): 4.12, 4.31, 4.43, and
4.50, respectively. SA is one of the important parameters of
synthesis during the process of drug designing (Ertl and
Schuffenhauer, 2009). The predicted SA score of these screened
compounds was <10, which suggested that these compounds can
be easily synthesized. Taken together, the drug-likeness analysis
indicated that these sesame-derived natural metabolites possess
favorable pharmacokinetic properties, and thus can be considered
drug-like molecules.

Conformation of Stability of Docking
Complexes for Natural Compounds and
SARS-CoV-2 Mpro by Molecular Dynamics
Simulations
In order to determine the structural stability of docking
complexes, MD simulations were run with the most stable

docked models on 200 ns. Based on docking scores, hydrogen
bonds, and compound specificity, four docking complexes,
namely, sesamin, sesaminol, sesamolin, and sesamolinol were
subjected to MD simulations. High binding energy scores of
docking complexes allowed for the estimation of the amino acid
residue interactions over time. The RMSD, RMSF, SASA, and Rg
plots were calculated to evaluate the stability of simulated
systems.

Root-Mean-Square Deviation
The RMSD is a most commonly used quantitative method to
evaluate the stability of the docking complexes and measures the
conformational stability perturbations within the protein
backbone during MD simulations on different nanosecond
scales (Sargsyan et al., 2017). In order to investigate the
stability of the ligand molecules to the protein, all the ligand
and backbone RMSDs were graphically measured. As evident
from Figure 4A, the protein backbone of Mpro showed constant
stability throughout the simulation with a range between 0.37 and
0.47 nm. The average RMSD values for complexes with sesamin,
sesaminol, sesamolin, and sesamolinol were ∼0.37, ∼ 0.38, ∼ 0.31,
and ∼0.38 nm, respectively. Likewise, the control (blue) element
also showed the average value of RMSD to be around 0.47 nm.
The complex with sesaminol (yellow) and sesamolinol (cyan)
displayed higher simulation trajectory after ∼50 ns than the
complex with sesamin (red) and sesamolin (green). The
compound sesamolin has shown two fluctuations throughout
the simulations on 200 ns time scale. The first stable
conformation was noted between 25 and 100 ns, and the
second stable conformation was found between 110 and
200 ns. The RMSD constant was at ∼0.25, and a large
fluctuation was observed between 10 and 25 ns. However,
there was no significant effect of this fluctuation was found on
the protein structure. Sesamolinol showed slight changes in the
starting period of simulation between 2 and 25 ns. After 25 ns,
sesamolinol was found to be constant at ∼0.35 throughout the
simulations. It may be because of the binding region size and loop
presence at the pocket site. All the four ligand molecules shared
the almost similar trend of stability and RMSD values with small
conformational changes. As depicted in Figure 4B, the calculated
ligand RMSD plot is the conformation of the measured protein
backbone; RMSD plot shows the stability of target compounds
throughout the simulation with fluctuation in sesamolinol at
starting point between 5 and 15 ns on ∼0.50 nm. In the same
plot, the sesamolin compound also showed the fluctuation
between 160 and 170 ns on ∼0.25 nm. Based on the minimal
fluctuations and low difference in values depicted in the protein
backbone and ligand RMSD plots, it can be predicted that
protein–ligand complexes were stable and comparable to
solved structures. The docked pose of our ligands is fixed in
the active region, same as the crystal structure ligand Z45617795,
which is quite acceptable in protein–ligand interaction (Table 1).
The RMSDs of our ligands with heavy atoms are similar to crystal
structure resolution which is higher than 1.65 Å and is accurately
ordered and exactly fitted in the electron density map. Therefore,
RMSDs obtained from MD simulation also showed the structure
stability during simulation (each ligand has remained constant
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FIGURE 4 | RMSD analysis. (A) Backbone RMSD plot of docking complexes; and (B) ligand RMSD plot of complexes [Mpro
– sesamin complex (red), Mpro

–

sesamolin complex (green), Mpro
– sesaminol complex (yellow), Mpro

– sesamolinol complex (cyan), and control (blue)].

FIGURE 5 |Calculated RMSF plot of docking complexes[Mpro
– sesamin complex (red), Mpro

– sesamolin complex (green), Mpro
– sesaminol complex (yellow), Mpro

– sesamolinol complex (cyan), and control (blue)].
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and has a constant range of RMSDs). From these observations, we
assume that our ligand RMSDs (0.25–1 nm) showed similar
stability as crystal ligand pose has in resolutions.

Root-Mean-Square Fluctuation
In order to determine the individual residue flexibility of the
system with the time, RMSF was calculated, in which high
fluctuation score indicates more flexibility and unstable bonds,
while a low score reflects well-structured regions in the
protein–ligand complexes (Gajula et al., 2016). The RMSF of
alpha-carbon atoms of all system was investigated and is given in
Figure 5. All the five systems (control, Mpro–sesamin,
Mpro–sesaminol, Mpro–sesamolin, and Mpro–sesamolinol
complexes) demonstrated almost a similar pattern of
fluctuation across the whole structure during simulation. The
average RMSF values of control, Mpro– sesamin, Mpro– sesaminol,
Mpro– sesamolin, and Mpro– sesamolinol complexes were ∼0.25,
∼0.20, ∼0.23, ∼0.21, and ∼0.35 nm, respectively. These values
revealed that all the subjected docking complexes exhibit
relatively less conformation fluctuation than the control
system. These less fluctuations of the docking complexes
suggested that the residues distributed across the active site of
Mpro interact with sesamin, sesaminol, sesamolin, and
sesamolinol in a significant manner.

Hydrogen Bond Analysis
Hydrogen bonds play an essential role in establishing molecular
interactions of biological systems. The molecular interaction
between Mpro and sesame-derived bioactive molecules was
explored by the secondary structure changes, which is, in turn,
regulated by a number of hydrogen bonds. For selected
complexes (Mpro– sesamin, Mpro– sesaminol, Mpro– sesamolin,
and Mpro– sesamolinol), a number of formed hydrogen bonds
were calculated throughout the MD simulation on the scale of
200 ns. The number of hydrogen bonds and hydrogen bond
distribution is represented in Figure 6. In complex with
sesaminol (yellow) and sesamolinol (cyan), the numbers of

hydrogen bonds were three, with few conformations showing
up to 4 hydrogen bonds throughout the simulations. Sesamin
(red) and sesamolin (green) have a constant range of hydrogen
bonds between two and three in whole simulation. These results
showed that the screened natural metabolites were able to
maintain a strong interaction with a pocket site and suggested
that all four docking complexes were stable throughout the
simulation.

Radius of Gyration, and Solvent Accessible
Surface Area Analysis
MD trajectories corresponding to four complexes (Mpro–
sesamin, Mpro– sesaminol, Mpro– sesamolin, and Mpro–
sesamolinol) were further investigated with the aid of Rg and
SASA analysis. Rg was calculated with a primary goal to
determine the compactness of the system with the time. As
depicted in Figure 7A, the Rg values of all four systems with
control were reported as 2.08–2.15 nm throughout the
simulation. Rg value analysis affirms the stability of each
system and suggested that the binding of screened natural
phytochemicals does not induce structural changes during
whole simulation. During simulation, SASA values were
calculated to measure the receptor exposed to the solvents. It
is well-documented that a higher SASA value reflects the
expansion of protein volume during MD simulation (Kumar
et al., 2020). Always, a low fluctuation is expected during
whole simulation. Interaction with ligand compounds may
influence SASA and sometimes affect the protein structure in
a significant manner. The calculated SASA values showed
between 130 and 148 nm2, reflecting that the binding of
sesamin, sesaminol, sesamolin, and sesamolinol does not affect
the folding of protein (Figure 7B). The calculated SASA values
for these ligand compounds are the consent of previous reports
(Kumar et al., 2020; Mishra et al., 2021) and suggested that all of
the four complexes were stable after the binding of sesamin,
sesaminol, sesamolin, and sesamolinol to the Mpro active site.

FIGURE 6 | Hydrogen bond analysis of docking complexes [Mpro
– sesamin complex (red), Mpro

– sesamolin complex (green), Mpro
– sesaminol complex (yellow),

and Mpro
– sesamolinol complex (cyan)].
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Estimation of Binding Free Energy
The average free binding energy of selected complexes (Mpro–
sesamin, Mpro– sesaminol, Mpro– sesamolin, and Mpro–
sesamolinol) was calculated by using a python script
MmPbSaStat.py embedded in g_mmpbsa package. The
molecular mechanic/Poisson–Boltzmann surface area (MM/
PBSA) is one of the popular and accurate methods to estimate
the ligand binding affinities in the protein system. To calculate the
binding free energy, we have utilized the steps previously
described (Gajula et al., 2016; Jee et al., 2017). The MM/
PBSA-based binding energy score extracted after the
systematical calculation is provided in Table 3. The

cumulative sum of different energies such as van der Walls,
electrostatic, polar solvation, and SASA is presented as the
final binding energy. All types of the energy significantly
contributed to the molecular interaction between the ligand
compounds and Mpro. The evaluated binding free energy of
screened molecules exhibited as sesamin (−145.511 ± 17.054 kJ/
mol), sesamolin (−211.240 ± 14.034 kJ/mol), sesaminol (−149.078 ±
9.043 kJ/mol) and sesamolinol (−199.110 ± 15.881 kJ/mol). The
negative values of the binding energy reflect that the targeted
compound favorably interact with the receptor protein. As
compared with other screened compounds, the sesamolin
(−211.240 ± 14.034 kJ/mol) showed the maximum negative

FIGURE 7 | Rg and SASA analysis. (A) Predicted Rg plot of docking complexes; and (B) SASA plot of selected complexes [Mpro
– sesamin complex (red), Mpro

–

sesamolin complex (green), Mpro
– sesaminol complex (yellow), Mpro

– sesamolinol complex (cyan), and control (blue)].

TABLE 3 | Calculated total binding energy, van der Waals energy, electrostatic energy, polar solvation energy, and SASA energy of the docking complexes.

Complex Binding energy
(kJ/mol)

van der
Waals energy

(ΔEvdW) (kJ/mol)

Electrostatic energy
(ΔElec), (kJ/mol)

Polar solvation
energy (ΔG

polar) (kJ/mol)

SASA energy
(kJ/mol)

Sesamin −145.511 ± 17.054 −185.239 ± 12.497 −1.331 ± 2.720 56.328 ± 10.084 −15.269 ± 0.859
Sesamolin −211.240 ± 14.034 −244.688 ± 13.232 −2.394 ± 2.452 53.429 ± 6.865 −17.587 ± 0.839
Sesaminol −149.078 ± 9.043 −158.179 ± 8.593 −1.087 ± 1.785 24.598 ± 4.487 −14.410 ± 0.870
Sesamolinol −199.110 ± 15.881 −233.811 ± 13.828 2.162 ± 2.619 51.381 ± 7.632 −18.842 ± 0.954

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 74437612

Kumar et al. Sesame Compounds Against COVID-19

172

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


binding energy. The MM/PBSA results clearly suggest that
sesamolinol (−199.110 ± 15.881 kJ/mol) possessed the second least
binding energy. These natural compounds with the maximum
negative binding energy and better binding affinity could be
utilized as potential inhibitors against the Mpro of COVID-19.

CONCLUSION

The inhibition of Mpro protein represents a promising strategy
for controlling viral replication leading to discovery of potential
drug candidates. The current extensive study concludes four
phytochemicals, namely, sesamin, sesaminol, sesamolin, and
sesamolinol as potential inhibitors against the Mpro of SARS-
CoV-2. The integrated molecular docking and MD simulation
study revealed that these bioactive molecules form a very stable
complex with Mpro that shows excellent binding affinities higher
than other sesame-derived molecules. Docking complexes of these
natural metabolites with Mpro showed a stable conformation on
200 ns, which is further supported by the results of binding
free energy. Moreover, the proposed potential inhibitors also
meet the criteria of drug likeness based on Lipinski’s rule of five
and ADME properties. The inhibitory effect of these sesame-
derived natural compounds against the Mpro of SARS-CoV-2
may also be further validated using a plethora of in vitro and in
vivo experiments. The current study suggested that the screened
phytochemicals (sesamin, sesaminol, sesamolin, and sesamolinol)
have shown enough potential to inhibit the Mpro and may be
utilized as effective drug candidates for the development of new
treatment against COVID-19 infection.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral
entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19).
Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory
failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the
upper respiratory tract are of interest. Herein, we report the prophylactic application of two
intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and
til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation
of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body
weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis
revealed a reduction in lung pathology in the Anu oil group as compared to the control
infected group. However, the til tailya group did not show a significant reduction in lung
pathology. Furthermore, molecular analysis using mRNA expression profiling indicated
reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17
cytokines for both the intranasal formulations as a result of decreased viral load.
Together, the prophylactic intranasal application of Anu oil seems to be useful in
limiting both viral load and severity in SARS-CoV2 infection in the hamster model.

Keywords: COVID-19, intranasal, herbal, AYUSH, prophylactic

INTRODUCTION

Since the first report of Coronavirus Disease (COVID-19) in Wuhan in December 2019, a number of
COVID-19 incidences have exploded around the globe leading it to be declared a pandemic by the WHO
(Chen and Li, 2020; Wang et al., 2020) (https://www.ecdc.europa.eu/en/geographical-distribution-2019-
ncov-cases). As of September 6, 2021, the total number of coronavirus infection incidenceswas 221,846,104
with around 4,586,516 deaths globally, with 441,075 mortalities in India alone. The majority of the
coronavirus cases are asymptomatic and do not require aggressive treatment. However, an estimated 13.8%
of the infected individuals are at risk of developing a severe form of COVID-19, which could be
characterized by either one or all of the following COVID-19 symptoms: respiratory distress, high fever,
loss of taste and smell, and diarrhea (Chen and Li, 2020;Wang et al., 2020). In addition, up to around 6%of
COVID-19 cases end up with respiratory failure due to cytokine storm, cardiovascular complications, and
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multiple organ failure (https://www.who.int/emergencies/diseases/
novel-coronavirus-2019) (Guan et al., 2020; Wang et al., 2020). As
is known for other respiratory viruses, SARS-CoV2 initially infects
the upper respiratory tract and then rapidly spreads to the lower
respiratory tract (Chen and Li, 2020). During an active infection, the
virus can be transmitted and spread from both symptomatic and
asymptomatic individuals via respiratory droplets generated through
coughing, sneezing, or hyperventilation via the airborne route
(Gandhi et al., 2020; Guan et al., 2020).

Global health research has primarily focused on vaccine
development against COVID-19, with active vaccination being the
current strategy to protect COVID-19–related mortalities (Poland
et al., 2020a; Dong et al., 2020). Given the emergence of new SARS-
CoV2 variants, the protective efficacy of vaccines could be reduced;
hence, therapeutics that may prevent viral entry, replication, and
transmission are highly desirable. In line with this, pharmacological
agents such as intranasal delivery of TLR2/6 agonist or lipopeptide
agents, intranasal administration of neutralizing antibodies, and
intranasal gene therapy are currently being explored as potential
strategies to inhibit the host–pathogen interaction and limit the
infection (Hassan et al., 2020; Boiardi and Stebbing, 2021; Ku
et al., 2021; Kunzelmann, 2021; Proud et al., 2021; Vries et al.,
2021). For example, intranasal corticosteroid spray for the recovery of
the sense of smell is under clinical trials for COVID-19 patients
(Abdelalim et al., 2021). Since pharmaceutical drugs may have many
off-target effects, therapeutics based on herbal extracts have recently
gainedmuch attention (Matveeva et al., 2020;De Pellegrin et al., 2021;
Jan et al., 2021; Li et al., 2021). Here, we evaluated the efficacy of two
ayurvedic intranasal (herbal) oil formulations, Anu oil and til tailya
(Duraipandi and Selvakumar, 2020), in hamster SARS-CoV2
challenge model.

Sesame oil (til tailya, TT) is the oil derived from a plant (Sesamum
indicum) which is a classical ayurvedic medicine mentioned in
Charak Samhita (https://niimh.nic.in/ebooks/ecaraka/). On the
other hand, a classical ayurvedic medicine, Anu tailya was used by
Maharishi Charak more than 5,000 years ago for therapeutic
purposes. Anu oil consists of extracted oils from several important
medicinal plants like nāgarmothā (Cyperus scariosus), jīvantī
(Leptadenia reticulata), sweta candana (Santalum album), jala
(Pavonia odorata), Pr

_
śniparn

_
ī (Uraria picta), bela (Aegle

marmelos), devdāru (Cedrus deodara), dāruharidrā (Berberis
aristata), tejpatra (Cinnamomum tamala), dālacīnī (Cinnamomum
verum), kamala kes

_
ara (Nelumbo nucifera), sevya (Chrysopogon

zizanioides), vid
_
añga (Embelia ribes), utpala (Nymphaeanouchali),

anantmūla (Hemidesmus indicus), tila tailya (Sesamum indicum),
mulet

_
hī (Glycyrrhiza glabra), plawa (Cyperus platyphyllus), agarū

(Aquilaria agallocha), satāvarī (Asparagus racemosus), br
_
hatī

(Solanum indicum), kan
_
t
_
akārī (Solanum surattense), surbhi

(Pluchea lanceolata), sālaparn
_
ī (Desmodium gangeticum), trut

_
i

(Elettaria cardamomum), ren
_
ukā (Vitex agnus-castus), and

ajadugdha (Duraipandi and Selvakumar, 2020; see the enclosed
supplement information). Here, we report that intranasal
instillation of both til tailya and Anu oil limited the viral entry
and replication in the lungs associated with SARS-CoV2 infection in
hamsters. However, Anu oil but not til tailya was able to rescue the
lung pneumonitis and injury partly due to suppression of
inflammatory cytokine response.

MATERIALS AND METHODS

Sesame oil and Anu oil (a polyherbal medicine) used in the study
were prepared as per pharmacopoeial standards and were provided
by the National Medicinal Plant Board (NMPB) for the study.

Animal Ethics and Biosafety Statement
6- to 9-week-old golden Syrian hamsters were acclimatized in
biosafety level-2 (BSL-2) for 1 week and then infected in the
animal BSL3 (ABSL-3) institutional facility. The animals were
maintained under the 12-h light and dark cycle and fed a standard
pellet diet and water ad libitum. All the experimental protocols
involving the handling of virus culture, and animal infection were
approved by RCGM, institutional biosafety, and IAEC Animal Ethics
Committee (IAEC/THSTI/105).

Virus Culture and Titration
SARS-related coronavirus 2, isolate USA-WA1/2020 virus was
grown and titrated in vero E6 cell line cultured in Dulbecco’s
modified Eagle medium (DMEM) complete media containing
4.5 g/L D-glucose, 100,000 U/L penicillin–streptomycin, 100 mg/L
sodium pyruvate, 25 mM HEPES, and 2% FBS. The stocks of the
virus were plaque purified at the THSTI IDRF facility inside ABSL3
following institutional biosafety guidelines.

SARS-CoV2 Infection in Golden Syrian
Hamster and Ayush Herbal Extracts Dosing
Regime
6- to 9-week-old golden Syrian hamsters were procured from CDRI
and quarantined for 1 week at the small animal facility (SAF), THST
before starting the experiment. The animals were then randomly
divided into five groups containing five animals/group, namely,
uninfected (UI), infected (I), and two infected groups receiving til
tailya (TT) or Anu oil (AO) as therapeutic interventions,
respectively. One group received intranasal installation of Anu
oil, while the other group received intranasal installation of til
tailya (50 ul/nostril/day) starting 5 days before infection and
continued till 4 days postinfection (DPI). On the day of the
challenge, intranasal administration of Anu oil and til tailya was
carried out 30 min before infection. On the day of the challenge, the
animals were shifted to ABSL3. Intranasal infection with live SARS-
CoV2 105PFU/100 μl or with the DMEM mock control (for
uninfected control group) was established with the help of a
catheter under mild anesthetized by using ketamine (150mg/kg)
and xylazine (10 mg/kg) intraperitoneal injection inside the ABSL3
facility. All the experimental protocols involving the handling of
virus culture and animal infection were approved by the RCGM,
Institutional Biosafety and IAEC Animal Ethics Committee.

Gross Clinical Parameters of SARS-CoV2
Infection
All infected animals were euthanized after 4 days post-infection at
ABSL3. Changes in body weight were observed each day post-
challenge and plotted as percent change in the body weight. Post-
sacrifice, the lungs and spleen of the animals were excised and imaged
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for gross morphological changes. The left lower lobe of the lung was
fixed in 10% formalin and used for histological analysis. The
remaining part of the lung’s left lobe was homogenized in 2ml
TRIzol solution for viral load estimation. The spleen was
homogenized in 2ml of TRIzol solution. The TRIzol samples
were stored immediately at −80°C until further use. Blood of the
animals was drawn through direct heart puncture, and serum was
isolated and stored at -80°C until further use.

Viral Load
For viral load, estimated lungs were homogenized in TRIzol
reagent (Invitrogen), and their supernatant was collected after
centrifugation at 4,000 rpm for 15 min at 4°C. Thereafter, RNA
was isolated by TRIzol–choloform method, and RNA yield was
quantitated by nano-drop; 1 µg of total RNA was then reverse-
transcribed to cDNA using the iScript cDNA synthesis kit (Biorad;
#1708891) (Roche). Diluted cDNAs (1:5) were used for qPCR by
using the KAPA SYBR® FAST qPCR Master Mix (5X) Universal
Kit (KK4600) on the Fast 7,500 Dx real-time PCR system (Applied
Biosystems), and the results were analyzed with SDS2.1 software.
In brief, 200 ng of RNA was used as a template for reverse
transcription polymerase chain reaction (RT-PCR). The CDC-
approved commercial kit was used for the SARS-CoV-2 N gene: 5′-
GACCCCAAAATCAGCGAAAT-3′ (forward), 5′-TCTGGTTAC
TGCCAGTTGAATCTG-3′ (reverse). The hypoxanthine–guanine
phosphoribosyltransferase (HGPRT) gene was used as an
endogenous control for normalization through quantitative RT-
PCR. The relative expression of each gene was expressed as fold
change andwas calculated by subtracting the cycling threshold (Ct)
value of hypoxanthine–guanine phosphoribosyltransferase
(HGPRT-endogenous control gene) from the Ct value of the
target gene (ΔCT). The fold change was then calculated
according to the formula POWER(2,-ΔCT)*10,000 (Malik et al.,
2017).

qPCR
RNA from spleen samples was isolated as described earlier for
the lung samples, and cDNA was prepared. Thereafter, the
relative expression of each gene was expressed as fold change

and was calculated by subtracting the cycling threshold (Ct)
value of hypoxantine–guanine phosphoribosyltransferase
(HGPRT-endogenous control gene) from the Ct value of
target gene (ΔCT). Fold change was calculated according to
the formula POWER(2,-ΔCT)*10,000 (Malik et al., 2017; Rizvi
et al., 2021a). The list of the primers is provided as follows in
Table 1

Histology
The lung of the euthanized animals was fixed in 10% formalin
solution and then embedded in paraffin. Sample embedded
paraffin blocks were then cut into 3-µm fine sections and
mounted on silicone-coated glass slides. The slides were then
stained with hematoxylin and eosin dye, as previously described
(Rizvi et al., 2018). Each stained sample was then analyzed and
captured at ×40 magnification. Assessment for the histological
score was carried out through blind scoring for each sample by a
professional histologist.

Statistical Analysis
Results from the experiments were analyzed and plotted by using
GraphPad Prism 7.0 software. The graph for percent change in
body weight, gene expression, and lung histology scores were
compared and analyzed by using the Student t-test or one-way
ANOVA, with n � 5 samples per group. The p-value of less than
0.05 and was considered as statistically significant.

RESULTS

Prophylactic Use of Intranasal Instillation of
Ayush Oil Formulations Prevents
SARS-CoV2 Infection and Associated Gross
Clinical Parameters
SARS-CoV2 infection in hamsters peaks in 4–5 days and is
characterized by a reduction in body weight and appearance
of pneumonitis in the lungs and splenomegaly (Imai et al., 2020;
Sia et al., 2020; Rizvi et al., 2021b; Chan et al., 2020). These
defined gross clinical parameters were recorded for all the groups,

TABLE 1 | Primer sequences.

Gene Forward Reverse

HGPRT GATAGATCCACTCCCATAACTG TACCTTCAACAATCAAGACATTC
Tryptase β2 TCGCCACTGTATCCCCTGAA CTAGGCACCCTTGACTTTGC
Chymase ATGAACCACCCTCGGACACT AGAAGGGGGCTTTGCATTCC
muc1 CGGAAGAACTATGGGCAGCT GCCACTACTGGGTTGGTGTAAG
Sftpd TGAGCATGACAGACGTGGAC GGCTTAGAACTCGCAGACGA
Eotaxin ATGTGCTCTCAGGTCATCGC TCCTCAGTTGTCCCCATCCT
PAI-1 CCGTGGAACCAGAACGAGAT ACCAGAATGAGGCGTGTCAG
IFNy TGTTGCTCTGCCTCACTCAGG AAGACGAGGTCCCCTCCATTC
TNFa AGAATCCGGGCAGGTCTACT TATCCCGGCAGCTTGTGTTT
IL13 AAATGGCGGGTTCTGTGC AATATCCTCTGGGTCTTGTAGATGG
IL17 A ATGTCCAAACACTGAGGCCAA GCGAAGTGGATCTGTTGAGGT
IL10 GGTTGCCAAACCTTATCAGAA ATG TTCACCTGTTCCACAGCCTTG
IL6 GGACAATGACTATGTGTTGTTAGAA AGGCAAATTTCCCAATTGTATCCAG
CXCL10 TGGAAATTATTCCTGCAAGTCA GTG ATC GGC TTC TCT CTG GT
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that is, uninfected control (UI), infected control (I), and infected
hamsters receiving either Til tailya (TT) or Anu oil (AO)
intranasal formulations (50 µl/nostril/day). Treatment of TT

and AO was started 5 days before SARS-CoV2 live virus
challenge and was continued till the end of the experiment,
that is, 4 days postinfection (dpi), as presented schematically

FIGURE 1 | Effect of intranasal instillation of Anu oil and til tailya on gross clinical parameters and lung viral load in SARS-CoV2 infected hamsters. (A) Schematic
outlines the study design. Prophylactic treatment regime was adopted for Anu oil (AO) and til tailya (TT) with each animal receiving (50 µl/nostril/day) intranasal instillation
of Anu oil, til tailya, or mock control 5 days before challenge and then continued till after infection till end point (i.e., 4 days postinfection). One group was challenge and
received live infection (I); the other group of animals was unchallenged healthy control (UI). On the day of challenge, the animals were given intranasal oil-instillation
30 min prior to challenge with SARS-CoV2. (B andC) Line graph showingmean% change in body weight post-infection ±standard error mean (SEM). (D and E) Images
of the excised lungs showing gross morphology with pneumonitis region (dark red patches). (F and G) Images of excised spleen indicating changes in the spleen length.
(H) Bar graph showing mean fold reduction in lung viral load ±SEM as compared to the infected (I) control. *p < 0.05, **p < 0.01, ****p < 0.0001 (t-test).
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in the study design (Figure 1A). In line with the earlier published
reports, a decrease in the body weight of SARS-CoV2–infected
hamsters was observed with 5–8% body weight reduction on
4 days dpi. Hamsters receiving TT or AO, before SARS-CoV2
infection, did not lose body weight as observed in the SARS-
CoV2–infected group (Figures 1B,C). SARS-CoV2 infection in

the hamster model is characterized by lung inflammation,
pneumonitis, and cytokines release (Afrin et al., 2020; Chen
and Li, 2020; Moore and June 2020). To further understand
the lung-associated pathologies, gross morphological changes of
the excised lungs were compared between healthy, SARS-
CoV2–infected, and SARS-CoV2–infected plus oil formulated

FIGURE 2 | H&E–stained lung sections showing histopathology and its assessment. (A) images of H&E-stained lungs at ×40 magnification showing regions of
pneumonitis (blue arrow), bronchitis (red arrow), epithelial injury (green arrow), and inflammation (purple arrow) along with their (B) histological score for pneumonitis,
inflammation, lung injury, alveolar epithelial cells, bronchitis, and overall disease score for different groups UI, I, TT, and AO on day 4 postinfection. *p < 0.05, **p < 0.01,
***p < 0.001 (one-way ANOVA).
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groups. There was a reduction in the regions of pneumonitis in
the excised lungs of the AO group, but not the TT group, as
compared to infection control (Figures 1D,E). As reported
earlier, splenomegaly is one of the critical parameters
indicating active infection (Rizvi et al., 2021b). Thus, we tested
the splenomegaly between different groups and found that AO,
but not TT, showed inhibition in splenomegaly as compared to
the SARS-CoV2–infected hamsters (Figures 1F,G). We also
evaluated the lung viral load at four dpi and calculated the
fold reduction in viral load in AO- and TT-treated groups as
compared to the SARS-CoV2–infected groups. Our data indicate
that compared to the SARS-CoV2–infected group, viral loads in
AO- and TT-treated groups were ∼3- and ∼2-fold less,
respectively (Figure 1H). Together, these data indicated that
prophylactic use of intranasal instillation of TT and AO
resulted in decreased lung viral load with the AO group,
showing better protection in gross clinical parameters.

Prophylactic Use of Anu Oil Reduces
SARS-CoV2–Induced Lung Pathology in
Hamsters
Since gross clinical parameters and lung viral load data suggested
protection from SARS-CoV2 infection in AO and TT groups, we
set out to study the mitigation of pulmonary pathologies such as
lung injury, alveolar epithelial injury, bronchitis, pneumonitis,
and inflammation using histological analysis (Bao et al., 2020; Lee
et al., 2020; Leng et al., 2020; Rizvi et al., 2021b). Hematoxylin and
eosin (H and E)–stained lung data showed a reduction in alveolar
epithelial injury, inflammation, and pneumonitis in SARS-
CoV2–infected AO-treated hamsters as compared to SARS-
CoV2–infected hamsters. There was no sign of bronchitis in
SARS-CoV2–infected AO-treated hamsters with overall
significant mitigation in the disease score as compared to
SARS-CoV2–infected hamsters (Figures 2A,B). Hamsters
treated with TT however showed little or no improvement in
lung injury and overall disease score as compared to the infected
control (Figures 2A,B). Together, lung pathology associated with
SARS-CoV2 was found to be resolved in the AO group but not in
the TT group, with around 1.5-fold rescue in disease index in the
AO group as compared to the infected control group.

Prophylactic Use of Anu Oil Prevent Lung
Injury in Hamsters Associated With
SARS-CoV2 Infection
Lung histology data indicated overall improvment in histological
changes of SARS-CoV2–infected AO-treated groups as compared
to SARS-CoV2–infected group. These data compelled us to
explore the mechanism involved in the rescue of lung
pathologies. Injury to the pulmonary region is characterized
by elevated expression of surfactant D (sftp-D), increased
mucus (muc-1) secretion, and increased expression of eotaxin,
which promotes infiltration of granulocytes and mast cells and an
increased risk of pulmonary thrombosis as seen in COVID-19
patients (Crouch, 2000; Guo et al., 2001; Prabhakaran et al., 2003;

Xie et al., 2017; Chatterjee et al., 2020). We observed elevated
levels of sftp-D, muc-1, eotaxin, muc-1, chymase, tryptase, and
plasmonigen activator inhibitor-I (PAI-1: a key factor for lung
fibrosis) in the lungs of infected hamsters (Figures 3A–C).
However, prophylactic intranasal use of AO in SARS-
CoV2–infected hamster significantly reduced the mRNA
expression of these lung injury genes and genes that are
required for chemotaxis of granulocytes and function of mast
cells (Figures 3A,B). Prophylactic use of AO in SARS-
CoV2–infected hamsters did not reduce PAI-1 expression
(Figure 3C). In contrast to AO, TT data showed no reduction
in lung injury as compared to infected control (Figure 3A).
Surprisingly, there was a marked increase in mast cell markers
in the TT group as compared to the infected control (Figure 3B).
Overall, consistent with our lung histology data, a profound
reduction in the expression of lung injury genes and mast cell
markers as compared to the infected control was observed in AO-
treated groups.

AO and TT Treatment Inhibits the
Expression of SARS-CoV2–Induced
Pro-Inflammatory Cytokines
COVID-19–related respiratory distress is associated with
inflammation in the lungs. The increase in lung inflammation
is characterized by the secretion of pro-inflammatory cytokines in
COVID-19 patients (Iwasaki and Yang, 2020;Mathew et al., 2020;
Moore and June 2020; Verity et al., 2020). Cytokine expression
data from splenocytes indicate elevated expression of Th1
cytokines (IFNγ and TNFα), Th2 cytokine (IL-4, IL-13), Th17
cytokine (IL-17 A), and various other pro-inflammatory
cytokine-like IL-6 and IL-13 in SARS-CoV2–infected group as
compared to uninfected hamsters (Figures 4A–D). However,
there was not much change observed in anti-inflammatory
cytokine IL-10 expression as compared to the challenge
control group. Prophylactic intranasal installation of AO and
TT in SARS-CoV2–infected hamsters resulted in the reduction in
Th1 and Th17 cell cytokines, together with pro-inflammatory
cytokine expression (Figures 4A,B,D). However, surprisingly,
only TT but not AO was able to reduce the Th2 cytokine gene
expression (Figures 4A,C). Furthermore, we found an elevated
IFN-gamma secretion in both AO- and TT-treated animals
(Figures 4A,C). Since C-X-C motif chemokine ligand 10
(CXCL10), a chemoattractant, is an important mediator of
IFN-gamma response and is secreted by various immune cells,
we evaluated the mRNA expression of CXCL10 from treated
(AO/TT) vs challenge (I) samples (Zhang et al., 2020). As
compared to the challenge control group, neither the AO nor
TT group did not show significant changes (Figures 4B,D).
Together, we show that AO and TT reduced the pro-
inflammatory cytokines.

Anu Oil Intranasal Formulation Shows More Protective
Efficacy Against SARS-CoV2 Infection in Hamsters as
Compared to Til Tailya Intranasal Formulation
We summarize the finding of our study and provide the first
evidence that intranasal formulation such as Anu oil and til tailya
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limits viral entry and replication. However, only Anu oil but not
til tailya was effective in reducing the SARS-CoV2–associated
pulmonary pathologies and lung injuries, even though both AO
and TT were effective in reducing the pro-inflammatory cytokine
response in hamsters (Figure 5).

DISCUSSION

Advances in vaccine development against SARS-CoV2 Wuhan
strain and aggressive vaccination strategy have significantly
reduced the SARS-CoV2 infection and COVID-19 deaths
worldwide (Dong et al., 2020; Poland et al., 2020a, 2020b).
However, the recent rise in variant strains that show high
transmission and disease severity is of concern, primarily, due
to the reduced efficacy of virus neutralization in vaccinated
individuals for some variant strains (Garcia-Beltran et al.,
2021; Planas et al., 2021; Supasa et al., 2021). Therefore,
therapeutic options are paramount in combating COVID-19.

Although several repurposed drugs are currently being used
for the treatment of COVID-19 patients, they have limited
efficacy. Herbal medicines or medicines derived from herbal
extracts offer a safer alternative therapy due to their prolonged

human use, acceptability with lesser side effects (Matveeva et al.,
2020; Jan et al., 2021; Li et al., 2021). Recently, Chinese traditional
medicine has gained popularity due to its antiviral efficacy in
in vitro and animal models of SARS-CoV2 (Ling, 2020; Xiong
et al., 2020; Yang et al., 2020; Jan et al., 2021; Lee et al., 2021). In
India, going back to more than 3,000 years, ayurvedic medicines
are considered useful for both lifestyle disorders and infectious
conditions. The word ayurveda is derived from two Sanskrit
words ayur (life) and veda (knowledge) (Subrahmanya et al.,
2013; Banerjee et al., 2020; Girija and Sivan, 2020; Golechha,
2020; Joshi and Puthiyedath, 2020; Rastogi et al., 2020). In the
present study, we investigated antiviral activity of two oil
formulations, namely, til tailya and Anu oil against SARS-
CoV2. Due to immiscibility of these oil formulations with
culture medium, it was not possible to test them in vitro for
their antiviral activity using VeroE6 cell line.

Therefore, in the current study, we describe the efficacy of
prophylactic use of two intranasal ayurvedic oil formulations
using the hamster model for SARS-CoV2 challenge. Hamsters are
one of the best small animal models for SARS-CoV2 infection
which mimics the viral entry and replication of the upper and the
lower respiratory tract of humans (Sia et al., 2020; Rizvi et al.,
2021b). Hamsters receiving Anu oil or til tailya intranasally before

FIGURE 3 | Changes in mRNA expression of genes involved in lung injury upon AO or TT intranasal administration in hamsters infected with SARS-CoV2. Relative
mRNA expression profiling was carried out in UI, I, TT, and AO lung samples for (A) lung injury genes (B)mast cell activation markers (C) thrombosis factor. Mean ± SEM.
**p < 0.01, ***p < 0.001, ****p < 0.0001 (one-way ANOVA).
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SARS-CoV2 infection showed reduced weight loss. Lung
histology data corroborated with the gross parameter findings
showed lesser SARS-CoV2–related histopathology in Anu
oil–treated hamsters, while there was little or no protection in
the til tailya group. It has been shown earlier that even low dose of
intranasal SARS-CoV2 infection in hamsters could result in
pneumonitis and lung pathologies (Rizvi et al., 2021b). It
might be possible that even though both til tailya and Anu oil
could limit the entry of SARS-CoV2 and replication, only Anu
oil–treated group exhibited a greater reduction in the lung viral
load (around three folds). Expectedly, the Anu oil group also
showed lesser lung injury than the til tailya group. Pulmonary
damage and pneumonitis have been reported as the major causes
of respiratory failure in patients suffering from a severe form of
SARS-CoV2 infection (Moore and June 2020). Prophylactic use
of Anu oil showed significant reduction in the overall disease
index as compared to the infected control, suggesting some
degree of protection against SARS-CoV2–induced lung injury
and pathology. The reagents and antibodies specific to hamster

CD molecules and signaling proteins were commercially not
available, thus limiting the scope of finding the molecular
mechanisms and cellular characterization of the protective
response. We therefore carried out mRNA expression profiling
to assess the role of cytokines and chemokines involved in the
inflammatory response and lung injury parameters. mRNA
expression data suggest that Anu oil intervention also reduced
the expression of lung injury markers and lung inflammation,
indicating that Anu oil was able to protect against the pulmonary
damage caused by SARS-CoV2 infection. Finally, we studied the
expression of cytokines to understand if intranasal formulation
could help prevent the inflammatory cytokine response within
the lung. Interestingly, both Anu oil and til tailya were able to
limit the expression of pro-inflammatory cytokines as compared
to the infected hamsters.

Taken together, in the current study, using the hamster SARS-
CoV2 model, we report that prophylactic intranasal treatment
with Anu oil and til tailya reduced the lung viral load. However,
SARS-CoV2–related pulmonary pathologies were prevented only

FIGURE 4 | Immuno-modulatory effect of TT and AO on cytokine expression in splenocytes. Relative mRNA expression profiling was carried out in UI, I, TT, and AO
splenocytes samples for (A) T helper cell cytokines for TT samples. (B) pro-inflammatory and anti-inflammatory cytokines for TT samples. (C) T helper cell cytokines for
AO samples. (D) pro-inflammatory and anti-inflammatory cytokines for AO samples. Bar graph showing mean ± SEM. ns � non-significant **p < 0.05 **p < 0.01, ***p <
0.001, ****p < 0.0001 (one-way ANOVA).
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in Anu oil–treated hamsters as demonstrated by
histopathological lung injury scores and expression of injury
markers and inflammatory cytokines. Although the chemical
constituents of Anu oil and til tailya remain to be investigated.
The protection against SARS-CoV2 infection and related
pathologies seem to be in part due to the significant reduction
in the viral entry and replication in the upper respiratory tract.
This preclinical study in the hamster model points to the
prophylactic potential of intranasal Anu oil in COVID and
necessitates further studies to understand its observed effect.
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Antidepressant and Antipsychotic
Drugs Reduce Viral Infection by
SARS-CoV-2 and Fluoxetine Shows
Antiviral Activity Against the Novel
Variants in vitro
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Repurposing of currently available drugs is a valuable strategy to tackle the consequences
of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs
on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand
these studies and test some of these compounds against newly emerged variants. Several
antidepressants and antipsychotic drugs with different primary mechanisms of action were
tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection
by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds
were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage
of SARS-CoV-2 and the variants of concern, B.1.1.7, B.1.351, and B.1.617.2. Several
clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as
well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the
infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of
several of these drugs was verified in Calu-1 cells against the B.1 lineage of SARS-CoV-2.
By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine,
known as anesthetic at high doses, and its derivatives as well as MAO and
phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity
in the pseudovirus model. Furthermore, fluoxetine remained effective against
pseudoviruses with common receptor binding domain mutations, N501Y, K417N, and
E484K, as well as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) variants of SARS-
CoV-2. Our study confirms previous data and extends information on the repurposing of
these drugs to counteract SARS-CoV-2 infection including different variants of concern,
however, extensive clinical studies must be performed to confirm our in vitro findings.
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INTRODUCTION

Coronaviruses, members of the enveloped RNA virus family
Coronaviridae (Lai & Cavanagh, 1997), are known to infect
multiple species ranging from birds to mammals (To et al.,
2013). In humans, in addition to four coronaviruses causing
common colds, high level of pathogenicity of viruses from this
family, such as severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV), were observed in epidemics that emerged in 2003
and 2012, respectively (Tang et al., 2015). The pandemic that
started in December 2019 in Wuhan, China, caused by SARS-
CoV-2 infection, and the dramatic increase in the number of
infected people and death due to COVID-19, has shifted the
efforts of scientists towards investigating this virus more closely
(F. Wu et al., 2020; Zhou et al., 2020). Autopsies of patients who
died from COVID-19 have reported the spread of virus to lungs,
kidneys, liver, heart, brain, and blood (Puelles et al., 2020). Taken
together, severity of cases and high infectivity of the virus requires
more attention and effort towards controlling the global epidemic
and developing treatment options.

The spike protein (S protein) localized to the viral envelope has
been annotated as one of the critical parts of this group of viruses
because of its role in attachment and fusion to host target cells (Li
et al., 2005). Angiotensin-converting enzyme 2 (ACE2) located on
the surface of the target cells is recognized by S protein of SARS-CoV
and SARS-CoV-2 (Li et al., 2003;Walls et al., 2020;Wang et al., 2020;
Hoffmann, et al., 2020b). A distinct location, the receptor-binding
domain (RBD), in S protein is important for binding to ACE2 (Li
et al., 2005; Wan et al., 2020). ACE2-binding alone may allow the
viral entry to target cells, however, proteolytic processing of S protein
by transmembrane protease/serine subfamilymember 2 (TMPRSS2)
has been shown to enhance viral entry (Shulla et al., 2011;
Hoffmann, et al., 2020b). Recent data on SARS-CoV-2 also
suggest that the S protein cleavage by furin proprotein convertase
(Hoffmann, et a., 2020a; Johnson et al., 2021) and binding of the
C-end of the S1 to the cellular receptor neuropilin-1 can also increase
infectivity (Cantuti-Castelvetri et al., 2020; Daly et al., 2020).
Lysosomal enzyme Cathepsin L has been shown to regulate
priming of SARS-CoV-2 S protein for the entry of viral RNA
genome into the host cytoplasm (Ou et al., 2020). Although
many key players facilitating viral entry and the routes of
infection have been identified since the emergence of COVID-19,
effective drugs that can alleviate or eliminate the viral infection
remain to be found.

A number of SARS-CoV-2 variants of concern have been
identified, including B.1.1.7 lineage (alpha) (Rambaut, 2020),
B.1.351 lineage (beta) (Tegally et al., 2020), B.1.1.28 lineage and
the descendent P1 lineage (gamma) (Voloch et al., 2020; Faria et al.,
2021; PAOLA, 2021), and one of the recent ones, B.1.617 and its
sub-linage B.1.617.2 (delta) (Cherian et al., 2021; Mlcochova et al.,
2021). Several common and critical mutations in the RBD of S
protein have been detected in these variants which can affect the
ACE2 affinity (Khateeb et al., 2021). A common RBD mutation,
N501Y, is shared by alpha, beta, and gamma, while K417N and
E484K are found in beta and gamma (Khateeb et al., 2021). The
delta variant contains a non-RBD mutation, D614G, shared by

alpha and gamma variants, as well as an RBD mutation, E484Q,
which is similar to E484K in other variants (Khateeb et al., 2021).
These mutations detected in the RBD domain of spike have been
associated with antibody neutralization (Gu et al., 2020; Starr et al.,
2020; Alenquer et al., 2021; Nelson et al., 2021;Wibmer et al., 2021;
Greaney, et al., 2021a; Greaney, et al., 2021b). Moreover, they have
also put the currently available vaccines and vaccine candidates
under dispute (Fontanet et al., 2021).

The strategy of drug repurposing has been used as a method of
searching novel treatments for virus-related diseases (Dyall et al.,
2014; Mercorelli et al., 2018; Serra et al., 2021). A pre-clinical
study has shown that the antidepressant drugs, such as sertraline,
paroxetine, and clomipramine, can reduce the Zaire Ebola virus
(EBOV) entry to target cells (Johansen et al., 2015). Recently, a
number of studies presented evidence supporting the effects of
antidepressant drugs and related psychoactive drugs as antiviral
compounds against SARS-CoV-2 (Carpinteiro et al., 2020;
Drayman et al., 2020; Schloer et al., 2020; Yang et al., 2020;
Zimniak et al., 2021). In line with preclinical studies, the
treatment of COVID-19 patients with fluoxetine, escitalopram,
and venlafaxine for 20 days has been found to reduce the risk of
intubation or death by COVID-19 (Hoertel, et al., 2021b).
Treatment of COVID-19 patients with fluvoxamine for
2 weeks was also effective to decrease the development of
clinical deterioration (Lenze et al., 2020). A follow up
randomized controlled trial which was performed with higher
number of patients has reached to the same conclusion about
fluvoxamine that this compound helps with the reduction of
hospitalization risk due to COVID-19 (Reis et al., 2021). Another
study reported that the prevalence of COVID-19 was higher in
health care professionals compared to patients in psychiatric
ward of a hospital in Paris, which prompted the authors to
suggest that the consumption of chlorpromazine protects
against COVID-19 (Plaze et al., 2020a; Plaze et al., 2020b).

In the present study, we addressed if the psychoactive drugs can be
used to reduce SARS-CoV-2 infection of host cells in vitro. We show
that pharmacologically diverse antidepressant drugs, as well as several
antipsychotics were able to reduce the infection by pseudotyped
viruses harboring SARS-CoV-2 S protein. Treatment of human lung
epithelial cell line Calu-1 infectedwith the B.1 lineage of SARS-CoV-2
with these drugs was also successful in reducing the amount of
infectious virus. Moreover, infection by pseudotyped viruses carrying
N501Y, K417N, or E484K single point mutations or triple mutation
(N501Y/K417N/E484K) in the spike protein was shown to be
reduced by fluoxetine. Fluoxetine was also effective against the
variants of SARS-CoV-2, B.1.1.7 (alpha), B.1.351 (beta), and
B.1.617.2 (delta) in Calu-1 cells.

MATERIALS AND METHODS

Ethical Statement
Not applicable, all the experiments were performed using cells.

Drugs
Fluoxetine (#H6995, Bosche Scientific), citalopram (#C505000,
Toronto Research Chemicals), paroxetine (#2141, Tocris),
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fluvoxamine (#1033), venlafaxine (#2917, Tocris), reboxetine
(#1982, Tocris), imipramine (#I7379-5G, Sigma–Aldrich),
clomipramine (#C7291, Sigma–Aldrich), desipramine (#3067,
Tocris), phenelzine (#P6777, Sigma–Aldrich), rolipram
(#R6520, Sigma–Aldrich), ketamine (#3131, Tocris), 2R, 6R-
Hydroxynorketamine and 2S, 6S-Hydroxynorketamine (#6094
and #6095, respectively, Tocris), carbamazepine (#4098, Tocris),
chlorpromazine (#C8138, Sigma–Aldrich), flupenthixol (#4057,
Tocris), and pimozide (#0937, Tocris) were investigated in this
study. The compounds were dissolved in dimethyl sulfoxide
(DMSO) that was also used as a vehicle in all the experiments.
Concentrations tested (Table 1) were selected based on earlier
in vitro studies from our research group (Fred et al., 2019;
Casarotto et al., 2021) and other laboratories (Johansen et al.,
2015).

Cell Lines
TMPRSS2 (NM_001135099.1) and ACE2 (AB046569.1) cDNAs
were sequentially transfected into HEK293T cells using lentiviral
vectors. The positive colonies were selected by blasticidin or
puromycin resistance for TMPRSS2 and ACE2, respectively.
The viral vectors were generated by transfecting
HEK293T cells using polyethylenimine with the packaging
vector pCMV-dR8.91 and the vesicular stomatitis virus (VSV-
G) envelope expression vector pMD2.G (#12259, Addgene) with
either pLenti6.3/V5-DEST-TMPRSS2 (from UH Biomedicum
Functional Genomic Unit) or pWPI-puro [modified from,
#12254, Addgene, (Zhao et al., 2019)] expressing ACE2
(cDNA from Dr. Markku Varjosalo). Six hours after
transfection, media was replaced with fresh Dulbecco’s
Modified Eagle Medium (DMEM) containing high glucose
(Sigma–Aldrich) supplemented with 10% fetal calf serum
(FCS). Culture supernatant was collected 2 days after
transfection and passed through a 0.22-micron filter. The
supernatant containing TMPRSS2 lentivector was added to
human embryonic kidney cells, HEK293T, seeded on 6-well

plates. Following 2 days of selection with 15 μg/ ml of
blasticidin (Invitrogen), the cells were incubated with the
medium containing the ACE2 lentivector, and supplemented
with 3 μg/ ml puromycin (Sigma–Aldrich). After selection with
puromycin, single cell lines were established by serial dilution.
Both the double-transduced pool and the cloned cell lines were
analyzed with SDS-PAGE using an anti-V5 antibody (#MA5-
15253, Invitrogen) for TMPRSS2 and an anti-ACE2-antibody
(#15983, Cell Signaling Technology).

HEK293T and HEK293T-ACE2-TMPRSS2 cells were
maintained in DMEM supplemented with 10% FCS, 2%
L-Glutamine, and 1% penicillin/streptomycin. Human lung
epithelial cell line Calu-1 was kept in Roswell Park Memorial
Institute (RPMI) 1640 medium supplemented with 10% FCS, 1%
L-Glutamine, and 1% penicillin/streptomycin. Another human
lung epithelial cell line Calu-3 and human colorectal
adenocarcinoma cell line Caco-2 were kept in Minimum
Essential Medium Eagle (MEM) supplemented with 20% FCS,
1% L-Glutamine, 1% penicillin/streptomycin, and 1% MEM
Non-essential Amino acid Solution (100X). VeroE6 cells
(ATCC® CRL-1586) were maintained in MEM supplemented
with 10% FCS, 1% L-Glutamine and 1% penicillin/streptomycin.
All the cell lines were incubated at 5% CO2 and 37°C.

We compared the expression level ofACE2, TMPRSS2, FURIN
and GAPDH with qPCR in all the cell lines (Supplementary
Figure S1) by using human specific primers (Supplementary
Table S1).

Production of Luciferase-Encoding
Lentiviral Vector Pseudotyped with WT and
Mutant SARS-CoV-2 S-Glycoprotein, and
VSV-Glycoprotein
HEK293T cells grown in T175 flask were transfected by using
TransIT-2020 reagent (Mirus Bio) with p8.9NDSB (Berthoux
et al., 2004), pWPI-puro expressing Renilla luciferase, pEBB-

TABLE 1 | Psychoactive drugs implicated in our study and the doses used for the treatment of HEK 293T-ACE2-TMPRSS2 and Calu-1 cells.

Category
of drugs tested

Name of drugs Dose (µM)

Selective serotonin reuptake inhibitors (SSRIs) Fluoxetine 0.01–20
Citalopram 0.01–50
Paroxetine 0.01–20
Fluvoxamine 0.01–50

Selective norepinephrine reuptake inhibitor (NRI) Reboxetine 0.1–50
Serotonin - norepinephrine reuptake inhibitor (SNRI) Venlafaxine 0.01–50
Tricyclic antidepressants Clomipramine 0.01–10

Imipramine 0.01–50
Desipramine 0.01–20

Rapid-acting antidepressants Ketamine 0.01–50
2R, 6R-Hydroxynorketamine (2R, 6R-HNK)
2S, 6S-Hydroxynorketamine (2S, 6S-HNK)

Phosphodiesterase-4 inhibitor Rolipram 0.01–50
Monoamine oxidase inhibitor Phenelzine 0.01–50
Antipsychotic Chlorpromazine 0.01–5

Flupenthixol 0.01–10
Pimozide 1–10

Anticonvulsant Carbamazepine 0.1–50
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GFP, and pCAGGS, an expression vector containing the SARS-
CoV-2 spike glycoprotein cDNA of the Wuhan-Hu-1 reference
strain (NC_045512.2). The last 18 codons of spike glycoprotein
were deleted to enhance the plasma membrane transport.
Pseudotyped viruses harbouring the glycoprotein of vesicular
stomatitis virus (VSV-G) were produced following the same
protocol by using VSV-G envelope expression vector pMD2.G
(#12259, Addgene). The culture media was replaced 12–16 h
after transfection with fresh DMEM High Glucose
(Sigma–Aldrich) supplemented with 10% FBS. The
supernatant containing the SARS-CoV-2 spike glycoprotein-
or VSV-G-harboring pseudoviruses was collected 48 h after
transfection, and passed through a 0.22-micron filter.

Mutations in RBD regions were generated by synthetic DNA
(Integrated DNA Technologies) using PvuII and HpaI restriction
sites. Lentiviral vectors pseudotyped with mutant spikes were
produced by following a similar protocol as the wild type particles
with minor changes. Instead of pWPI-puro expressing Renilla
luciferase, pWPI plasmid carrying both GFP and Renilla
luciferase were used to eliminate the use of pEBB-GFP plasmid.

Detection of Viral Infection by Pseudotyped
SARS-CoV-2 or VSV-G Viruses and Native
SARS-CoV-2
In the Protocol I (Figure 1), infection and treatment of
HEK293T-ACE2-TMPRSS2 cells was used. Because of the
replication-deficient nature of pseudo-viruses, we aimed at
understanding the effect of drugs on the initial viral entry to
cells. Therefore, we exposed cells to the compounds and the
pseudoviruses simultaneously.

HEK293T-ACE2-TMPRSS2 cells were cultured in poly-L-
lysine coated 96-well plates (ViewPlate 96, PerkinElmer Life
Sciences). Next day, the cells received varying concentrations
of listed drugs (Table 1) and pseudotyped lentiviruses harboring
S-protein of SARS-CoV-2 or glycoprotein of VSV. Following 24 h
incubation with drugs and viral particles, cells were washed once
with PBS. After cells were lysed for 15 min at RT, Renilla
luciferase reporter was used to measure viral entry. For this
purpose, luciferase activity was measured with a plate reader
employing dispenser feature (Varioskan Flash, ThermoFisher
Scientific) after substrate addition to each well (Renilla
luciferase Assay System, E2820, Promega or Coelenterazine
native, cat#303, Nanolight Technology). In order to measure
background signal, uninfected cells and empty wells were
included into the assay plate.

Calu-1 cells were used in the Protocol II (Figure 1) to address
the drug effect on the replication and secondary wave of infection
by SARS-CoV-2 virus. Protocol II, while complementing protocol
I, addresses the efficiency of drug treatment on infection by the
native virus. After identifying selective serotonin reuptake
inhibitors (SSRIs), selective norepinephrine reuptake inhibitor
(NRI), serotonin - norepinephrine reuptake inhibitor (SNRI),
tricyclics, and antipsychotics that reduced the pseudoviral
infection in HEK cells, we shortlisted candidates to be tested
in Calu-1 cells with the native virus. Therefore, we ensured that
there is, at least, one representative from one of these groups
(Table 1). All work with infectious SARS-CoV-2 virus was
conducted in a Biosafety Level 3 (BSL-3) laboratory of UH at
Haartman Institute. SARS-CoV-2 virus isolates (wild type,
B.1.1.7, B.1.351, and B.1.617.2), obtained from nasopharyngeal
swabs of patients (Cantuti-Castelvetri et al., 2020) (MOI 0.05),

FIGURE 1 | Protocols used in the study. Protocol I represents the experiments in HEK293T-ACE-TMPRSS2 cell line, while Protocol II corresponds to the
experiments conducted in Calu-1 cell line. created with BioRender.com.
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were incubated with Calu-1 cells in 48-well plates (40.000 cells/
well) for 1 h at 37°C and 5% CO2, after which virus inoculum was
removed and cells were washed twice with PBS. The compounds
were added to the cells in six replicates, diluted in virus growth
medium (VGM) (RPMI-1640 supplemented with 2% FCS,
L-glutamine, penicillin and streptomycin), and 0.1% DMSO in
VGM was used as control. Samples of the supernatant were
collected at 1 and 48 h post infection for qRT-PCR and at 48 h for
the TCID50 assay. Viral RNA was extracted using RNeasy Mini
Kit (Qiagen, Germany), and SARS-CoV-2 qRT-PCR was
performed using primers, probe and an in vitro synthesized
control for RNA-dependent RNA polymerase (RdRp) as
described earlier (Corman et al., 2020; Lin et al., 2021).
Infectious virus titers were determined by TCID50
measurement of VeroE6 cells. Shortly, 10-fold dilutions of the
samples were inoculated to VeroE6 cells, incubated for 5 days,
fixed with 10% formaldehyde for 30 min RT and stained with
crystal violet.

A flow chart was prepared to summarize the timeline of
experiments regarding the pseudotyped viruses and the native
virus (Figure 1).

Cell Viability Assay
Cell culturing, treatment, and infection protocols were followed
as described for HEK293T-ACE2-TMPRSS2 and Calu-1 cells
(Figure 1). At the end of 24 h or 48 h period, cells were
washed once with PBS and their viability was measured with a
kit designed to quantify ATP level according to instructions of the
manufacturer (CellTiterGlo 2.0 Luminescent Cell Viability Assay,
Promega).

Data and Statistical Analysis
Pseudotyped Viruses
The number of samples per treatment group was determined
based on our earlier studies (Fred et al., 2019; Casarotto et al.,
2021). Each “n” represents the number of wells used for the
indicated treatment. Some drugs were tested in the same plate,
therefore, the same control group values were used for the
analysis. Data were normalized to control groups to avoid
unwanted sources of variation, pooled together, and analyzed
in GraphPad Prism 6.0 software. Pseudotyped virus experiments
were analyzed by unpaired t-test or one-way analysis of variance
(or their nonparametric equivalents) followed by Dunnett or
Dunn’s post hoc tests if a significant overall effect was observed.
Cell viability of non-infected and infected cells treated with
indicated compounds were analyzed by two-way analysis of
variance followed by Sidak’s post hoc test, again only if we
observed a treatment or interaction effect between the factors.
The luciferase activity readings from pseudotyped viruses (SARS-
CoV-2 and VSV-G) were replotted together to run a comparative
analysis. We compared the drug effect on the infection by SARS-
CoV-2 spike and VSV-G pseudotyped viruses by two-way
analysis of variance followed by Sidak’s multiple comparison
test. The mutant pseudotyped virus experiments (infection) were
also analyzed by two-way analysis of variance followed by Sidak’s
multiple comparison. IC50 values were calculated in GraphPad
Prism software by using the non-linear curve fitting of the data

with log (inhibitor) vs. response-Variable slope function after
conversion of drug concentrations to logarithmic scale.

Protein bands detected in Western Blotting were subtracted
from background and normalized to total protein of beta actin.
Data were analyzed by the two-way analysis of variance followed
by Sidak’s post hoc test. Same analysis was applied to the qPCR
assessment of ACE2 and TMPRSS2 expression in infected and
non-infected HEK cells.

Native SARS-CoV-2 Viruses
Each “n” represents the number of wells used for the indicated
treatment. The control group of some samples were the same, as
they were tested in the same plate. Therefore, the same control
group was represented in different plots. The plots representing
changes in the genome copy number were plotted in linear scale,
whereas TCID50 values were represented in log10 scale in
GraphPad Prism.

For all the experiments, values of p < 0.05 were considered
significant. Presence of any outliers was calculated by using
Grubb’s test on GraphPad Prism website (https://www.
graphpad.com/quickcalcs/grubbs1), and excluded from the
analysis. We performed one-way ANOVA, two-way ANOVA
or unpaired t-test, followed by Dunnet’s, Dunn’s or Sidak post
hoc analysis for the experiments with the native virus. Statistical
analysis were provided in Supplementary Table S2 for the
corresponding figures.

RESULTS

HEK293T-ACE2-TMPRSS2 Cell Line Is
Responsive to Camostat Mesylate
Camostat mesylate, a clinically tested serine protease inhibitor,
has been shown to inhibit the activity of TMPRSS2 and reduce the
SARS-CoV-2 infection in cell lines expressing TMPRSS2 (Kawase
et al., 2012; Hoffmann, et al., 2020b; Hoffmann, et al., 2020c). In
order to confirm the activity of TMPRSS2 in the HEK293T-
ACE2-TMPRSS2 cell line, we treated the cells with different doses
of camostat mesylate for 24 h and measured the level of viral
infection. The infection of HEK293T-ACE2-TMPRSS2 cell line
by the pseudotyped lentiviruses was significantly reduced
suggesting that these cells express TMPRSS2 and the activity
of this protease is blocked by camostat mesylate (Supplementary
Figure S2).

Antidepressant Drugs Show Antiviral
Activity Against Pseudotyped Viruses and
the First wave (B.1) Lineage of SARS-CoV-2
In the Protocol I, HEK293T-ACE2-TMPRSS2 cells were treated
with a mixture of pseudotyped viral particles and one of the
following antidepressants: fluoxetine, citalopram, paroxetine,
fluvoxamine, venlafaxine, reboxetine, clomipramine,
imipramine, or desipramine (Table 1) for 24 h. We found that
all the drugs significantly reduced the viral infection, as measured
by luciferase reporter activity (Figure 2). According to the cell
viability assay where ATP level was measured in infected
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HEK293T-ACE2-TMPRSS2 cells, all the tested compounds,
except venlafaxine (Figure 2E) and reboxetine (Figure 2F),
were slightly toxic at higher concentrations (Figure 2).
Combination of infection with drug treatment did not induce
any further toxicity (Supplementary Figure S3). We also
examined the changes in mRNA level of ACE2 and TMPRSS2
by the viral infection combined with 24 h of fluoxetine (10 µM),
clomipramine (10 µM), and chlorpromazine (5 µM) treatment

(Supplementary Figure S4). The ACE2 expression remained
unaltered upon fluoxetine treatment, while clomipramine in
infected cells, and chlorpromazine in non-infected cells
induced a reduction of this target (Supplementary Figure
S4A). TMPRSS2 level was increased by fluoxetine in non-
infected and infected cells, while the other compounds
remained ineffective (Supplementary Figure S4B).
Furthermore, by addressing the protein levels (Supplementary

FIGURE 2 | The effect of antidepressant drugs on HEK293T-ACE2-TMPRSS2 cells challenged with SARS-CoV-2 pseudotyped viruses. Treatment with (A)
fluoxetine (luciferase assay: n � 18–26; cell viability: n � 6; IC50 � 5.992 µM), (B) citalopram (luciferase assay: n � 16–22; cell viability: n � 6; IC50 � 27.51 µM), (C)
paroxetine (luciferase assay: n � 12; cell viability: n � 5; IC50 � 12.55 µM), (D) fluvoxamine (luciferase assay: n � 14–24; cell viability: n � 6; IC50 � 10.54 µM), (E)
venlafaxine (luciferase assay: n � 11–12; cell viability: n � 5; IC50 � 36.35 µM), (F) reboxetine (luciferase assay: n � 12; cell viability: n � 6; IC50 � 17.69 µM), (G)
clomipramine (luciferase assay: n � 12–24; cell viability: n � 6; IC50 � 0.75 µM), (H) imipramine (luciferase assay: n � 6–18; cell viability: n � 6; IC50 � 3 µM), and (I)
desipramine (luciferase assay: n � 12; cell viability: n � 5; IC50 � 8.097 µM) significantly reduced luciferase reporter activity. At higher concentrations, all the compounds,
except (E) venlafaxine and (F) reboxetine reduced ATP levels in the luminescent cell viability assay after 24 h incubation. *p < 0.05 from control group (0). Data
represented as mean ± SEM.
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Figure S4C), we found that fluoxetine does not exert any effect on
the ACE2 expression (Supplementary Figure S4D), while
TMPRSS2 is significantly increased in non-infected cells after
24 h (Supplementary Figure S4E). Despite not being statistically
significant, fluoxetine also increased TMPRSS2 in the infected
cells (Supplementary Figure S4E).

In the Protocol II experiments, SARS-CoV-2 infected Calu-1
cells were treated with fluoxetine, reboxetine, clomipramine,
imipramine, citalopram or venlafaxine up to 48 h at
concentrations of 5, 10, and 20 µM. The base level of viral
RNA that was measured 1 h after drug treatment revealed no
significant changes between control and treatment groups
(Figure 3). However, at 48 h after infection, fluoxetine
(Figures 3A,B), citalopram (Figures 3D,E), reboxetine
(Figures 3G,H), and clomipramine (Figures 3J,K) clearly
reduced the genome copies of SARS-CoV-2 and infectious
virus particles measured by TCID50 assay. Despite reducing
the genome copies (Figure 3M), imipramine failed to effect
the TCID50 (Figure 3N).Venlafaxine was ineffective on
reducing the viral replication and infectious particles of native

SARS-CoV-2 (Figures 3P,Q). Viability of Calu-1 cells was
measured in infected cells after 48 h treatment with the
compounds. All compounds, except for imipramine, decreased
the cell viability (Figures 3C,F,I,L,O,R).

Antipsychotics can Decrease the Viral
Infection
The antiviral activity of antipsychotics chlorpromazine,
flupenthixol, and pimozide were tested through the Protocol I
in HEK293T-ACE2-TMPRSS2 cells against the pseudotyped
viruses harboring SARS-CoV-2 spike protein (Table 1).
Following 24 h incubation, all of these compounds were able
to prevent viral infection, although we also observed slight
reduction of cell viability (Figures 4A–C).

Chlorpromazine (1, 2.5, and 5 µM) was also tested through the
Protocol II in SARS-CoV-2 (B.1 lineage) infected Calu-1 cells.
Treatment for 48 h with all the tested concentrations of
chlorpromazine were able to reduce the total amount of virus
(Figure 4D), but we failed to observe diminished amount of

FIGURE 3 | The effect of antidepressant drugs on SARS-CoV-2 (B.1) infection in Calu-1 cells. (A,B) Fluoxetine (n � 6), (D,E) citalopram (n � 4–6), (G,H) reboxetine
(n � 5–6), and (J,K) clomipramine (n � 6) reduced the genome copy number of SARS-CoV-2 measured by qRT-PCR and also the amount of infectious viral particles
detected by TCID50 assay after 48 h of treatment. (M) Imipramine (n � 6) reduced the genome copy number, while (N) failed to reduce TCID50 (n � 6). (P,Q) Venlafaxine
(n � 5–6) was ineffective for changing the genome copy number of SARS-CoV-2 and TCID50. (C,F,I,L,R) All the compounds, (O) except imipramine, reduced the
viability of Calu-1 cells infected with the native SARS-CoV-2 (n � 6). Genome copies were plotted in linear scale, while TCID50 values in log scale. Fluoxetine: FLX,
Citalopram: CIT, Reboxetine: RBX, Clomipramine: CMI, Imipramine: IMI, Venlafaxine: VEN. *p < 0.05 from control group (0) at corresponding time point. Data
represented as mean ± SEM.
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infectious virus after 48 h treatment (Figure 4E). There was a
slight but significant reduction in the viability of infected Calu-1
cells after 48 h treatment with chlorpromazine (5 µM)
(Figure 4F).

Some Psychoactive Drugs Fail to Prevent
the Infection by the Pseudotyped Viruses
Ketamine, used formany decades as anesthetic drug in clinics, has
been shown to induce antidepressant-like effects when
administered in sub-anesthetic doses (Berman et al., 2000;
Zarate et al., 2006; Abdallah et al., 2015). Therefore, we next
tested whether ketamine and ketamine metabolites (2S,6S-HNK
and 2R,6R-HNK), which have also received attention as rapid-
acting antidepressants during recent years (Abdallah et al., 2015;
Zanos et al., 2018), might also inhibit infection by the
pseudotyped virus. We found that neither ketamine nor the
metabolites were effective in reducing the viral infection

within 24 h of incubation period (Supplementary Figures
S5A–C). Furthermore, other classical antidepressant drugs,
phosphodiesterase-4 inhibitor rolipram and monoamine
oxidase inhibitor phenelzine (Table 1) also failed to prevent
the viral entry (Supplementary Figures S5D,E). We also
tested carbamazepine, an anticonvulsant, which is also used as
mood stabilizer for the treatment of bipolar disorder (Mitchell &
Malhi, 2002). This compound also failed to change the viral
infection in ACE2/TMPRSS2-expressing HEK cells after 24 h of
treatment (Supplementary Figure S5F).

Some of the Tested Drugs Show
SARS-CoV-2 Spike Specificity
We used pseudotyped viruses harboring glycoprotein of vesicular
stomatitis virus (VSV) to address the specificity and potential
viral-entry independent effects of tested compounds. HEK293T-
ACE2-TMPRSS2 cells were treated with a mixture of VSV-G

FIGURE 4 | Antiviral activity of antipsychotics in HEK293T-ACE2-TMPRSS2 cells challenged with pseudotyped viruses and in Calu-1 cells infected with SARS-
CoV-2 (B.1). Decline of luciferase reporter activity was observed at multiple doses of (A) chlorpromazine (luciferase assay: n � 8–20; cell viability: n � 8; IC50 � 0.972 µM),
(B) flupenthixol (luciferase assay: n � 12; cell viability: n � 5; IC50 � 1.072 µM), and (C) pimozide (luciferase assay: n � 12; cell viability: n � 5; IC50 � 4.539 µM) following
24 h incubation suggesting reduced infection. Treatment of cells with (A) chlorpromazine, (B) flupenthixol, and (C) pimozide combined with viral infection
decreased cell viability indicated by the ATP level. (D) Treatment with chlorpromazine for 48 h decreased the genome copy number of SARS-CoV-2 (n � 5–6) in qRT-
PCR, but (E) failed to reduce the amount of infectious virus in TCID50 assay (n � 6). (F) The highest dose of chlorpromazine treatment increased the toxicity in infected
Calu-1 cells indicated by the ATP level. Genome copies were plotted in linear scale, while TCID50 values in log scale. Chlorpromazine: CPZ. *p < 0.05 from control group
(0). #p < 0.05 from control group (0) at corresponding time point. Data represented as mean ± SEM.
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FIGURE 5 | Antiviral activity of fluoxetine against the mutant pseudo-viruses and the native variants of SARS-CoV-2. Treatment with fluoxetine (10 μM, 24 h)
significantly reduced the luciferase reporter activity in HEK293T-ACE2-TMPRSS2 cells infected with (A)WT (grey, n � 16), N501Y (blue, n � 18), K417N (red, n � 18), (B)
E484K (green, n � 8–9) and (C) triple mutant (N501Y/K417N/E484K, orange, n � 13–16), viral particles. Fluoxetine (10 µM) reduced genome copy number and TCID50 in
Calu-1 cells infected with (D,E) B.1.1.7 (alpha), (G,H) B.1.351 (beta), and (J,K) B.1.617.2 (delta) variants, measured by qRT-PCR and TCID50 assay, respectively
(n � 6). (F,I,L) Fluoxetine also slightly reduced the Calu-1 viability in cells infected with the variants (n � 6) measured by the ATP levels. Fluoxetine: FLX and wild type: WT.
*p < 0.05 from control group (veh). #p < 0.05 from control group (0). Data represented as mean ± SEM.
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pseudotyped viruses and drugs including fluoxetine, citalopram,
paroxetine, fluvoxamine, reboxetine, clomipramine, desipramine,
chlorpromazine, flupenthixol, or pimozide for 24 h. Viral
infection was quantified by measuring the luciferase activity
(Supplementary Figure S6; Supplementary Figure S7). While
fluoxetine (Supplementary Figure S6A), clomipramine
(Supplementary Figure S6C), chlorpromazine
(Supplementary Figure S6E), flupenthixol (Supplementary
Figure S6G), pimozide (Supplementary Figure S6I), and
reboxetine (Supplementary Figure S6K) reduced the infection
by the VSV-G pseudotyped viruses; citalopram (Supplementary
Figure S7A), desipramine (Supplementary Figure S7C),
paroxetine (Supplementary Figure S7E), and fluvoxamine
(Supplementary Figure S7G) remained ineffective. Slight
reduction of cell viability was observed in infected HEK293T-
ACE2-TMPRSS2 cells after fluoxetine, clomipramine,
chlorpromazine, pimozide, and reboxetine treatment
(Supplementary Figure S6), while flupenthixol, citalopram,
desipramine, paroxetine, or fluvoxamine did not exert a toxic
effect (Supplementary Figure S6; Supplementary Figure S7).

We compared the effectiveness of the tested antidepressants
and antipsychotics against SARS-CoV-2 spike- and VSV-G-
pseudotyped viruses. We compiled the data from these viruses,
and found higher effectiveness of drugs in reducing the luciferase
activity in SARS-CoV-2 pseudoviruses compared to VSV-G
(Supplementary Figures S6B,D,F,H,J,L; Supplementary
Figures S7B,D,F,H).

Fluoxetine Remains Effective Against
Pseudotyped Viruses Harboring the S
Protein RBD Mutations and Native Variants
B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2
(Delta)
Next, we addressed the effectiveness of fluoxetine against the
pseudotyped viruses carrying mutations in the S protein that have
been observed in some of the emerging SARS-CoV-2 variants.
We found that fluoxetine (10 µM) treatment for 24 h was effective
against pseudotyped viruses carrying single point mutations in
their S protein (N501Y, K417N, or E484K) (Figures 5A,B), and
also a triple mutant harboring combination of these three point
mutations (N501Y/K417N/E484K) (Figure 5C). Calu-1 cells
which were infected with B.1.1.7 (alpha), B.1.351 (beta), or
B.1.617.2 (delta) variants, and challenged with fluoxetine
(10 µM) showed reduced amount of genome copies (Figures
5D,G,J) and infectious virus (Figures 5E,H,K). The viability of
Calu-1 cells infected with these variants and treated with
fluoxetine for 48 h was slightly reduced (Figures 5F,I,L).

DISCUSSION

In the present study, we identified the potential of some widely
consumed antidepressant and antipsychotic drugs against the
infection by SARS-CoV-2 (B.1) and the variants B.1.1.7 (alpha),

B.1.351 (beta), and B.1.617.2 (delta). The experiments using
pseudotyped viruses to infect HEK293T cells overexpressing
ACE2 and TMPRSS2 were aimed at identifying the direct
effect of drugs on the entry phase of the viral infection, as we
added the virus and drugs around the same time. The outcome
measure by luciferase assay was a direct indication of the number
of infected cells, due to replication-deficient nature of
pseudotyped viruses. In experiments with human respiratory/
lung epithelial cells and native virus, Calu-1 cells were first
exposed to the SARS-CoV-2 virus, which was followed by the
removal of this inoculum and addition of drugs to be tested. In
this scenario, drugs do not necessarily interfere with the initial
infection of cells by the virus, which was at low multiplicity of
infection (MOI 0.05), but with viral particle production and
infection of the neighboring cells. The decrease in viral
replication that we observed after treating the cells for 48 h
with the tested drugs and the reduction of TCID50 as a
secondary outcome could be caused by 1) the blockade of
virus entry during the subsequent waves of Calu-1 cell
infection; 2) a direct effect on the mechanisms of viral
replication, packaging and release of new viral particles; 3) an
indirect effect through the regulation of innate immunity; or 4) a
combination of the above effects. The first alternative, that the
drugs interfere with viral infection of Calu-1 cells later on when
the cells release newly packed viruses to medium thereby
explaining the decline of viral genome copies and TCID50,
would also be compatible with our findings with the
pseudotyped virus.

By testing pseudotyped viruses harboring the VSV-G, we
found that some compounds, including fluoxetine,
clomipramine, chlorpromazine, flupenthixol, pimozide, and
reboxetine, counteract the infection in HEK-ACE2-TMPRSS2
cells suggesting that these drugs are not specific for SARS-CoV-2
spike protein. On the other hand, the effect was significantly
smaller against the VSV-G pseudoviruses compared to the SARS-
CoV-2 pseudoviruses. Although the reduction of viability may
have contributed to the diminished VSV-G infection, it should be
noted that these compounds are effective against the entry of
other viruses, as this has been reported in studies testing
clomipramine and flupenthixol against Ebola virus (Johansen
et al., 2015). Moreover, as these drugs also counteract VSV-G
pseudoviruses, it is unlikely that mechanism of action is on the
luciferase transcription. Interestingly, fluvoxamine, paroxetine,
desipramine, nor citalopram exerted any effect on VSV-G
infection suggesting the SARS-CoV-2 spike specificity of these
compounds.

Accumulating data suggest that the psychoactive drugs that
have been categorized as functional inhibitors of acid
sphingomyelinase activity (FIASMA) (Kornhuber et al., 2010;
Kornhuber et al., 2011) can significantly reduce the SARS-CoV-2
infection through cellular events associated with cholesterol-
trapping, luminal pH changes in endolysosomal
compartments, and ceramide manipulation (Carpinteiro et al.,
2020; Schloer et al., 2020). FIASMA compounds, other than
psychoactive drugs, have been reported to reduce SARS-CoV-2
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infection in vitro (i.e., ambroxol, a mucolytic drug) (Carpinteiro
et al., 2021), and also diminished the risk of intubation or death
from COVID-19 in patients (i.e., cardiovascular system
medications) (Hoertel, et al., 2021a). Most of the compounds
we tested in the present study that showed antiviral activity are
considered FIASMAs. On the other hand, we found that non-
FIASMA compounds reboxetine, in both HEK and Calu-1 cells,
and venlafaxine (Kornhuber et al., 2011; Zeitler et al., 2019), in
HEK cells, demonstrate antiviral activity. However, the failure of
venlafaxine against the native SARS-CoV-2 was unexpected. The
data prompted us to assume that HEKs and Calu-1 cells might
show differential expression and/or recruitment of distinct
molecular targets for the infection by pseudoviruses and the
native SARS-CoV-2, respectively. Therefore, availability or
absence of specific targets might affect the drug response.
Altogether, inhibition of ASM by these drugs can only
partially explain the role of psychoactive drugs for the
reduction of SARS-CoV-2 infection. Recently, some of these
FIASMA compounds, including cationic amphiphilic drugs
(CADs), have been suggested to induce phospholipidosis,
which can explain the antiviral action of these drugs
(Tummino et al., 2021).

Another mechanism of action proposed for these compounds,
is the Sigma-1 receptor (S1R) agonism, as the activation of this
receptor is known to regulate cytokine production (Lenze et al.,
2020). Many psychoactive drugs bind to S1R, including
fluvoxamine, sertraline, fluoxetine, citalopram, imipramine,
paroxetine, and desipramine (Narita et al., 1996; Sukhatme
et al., 2021). However, venlafaxine, one of the compounds that
showed antiviral activity in our study in HEK cells, has a very
weak affinity to this chaperone (Ishima et al., 2014). Moreover,
ketamine can bind to both S1R and S2R (Robson et al., 2012), but
this drug was ineffective as an antiviral agent in the present study.
Therefore, S1R agonism and the regulation of cytokine levels
through this chaperon does not appear to fully explain how these
drugs act as antiviral agents.

Our data on chlorpromazine are in agreement with the earlier
studies that have demonstrated antiviral activity against other
coronaviruses (Cong et al., 2018; Dyall et al., 2014; Wilde et al.,
2014). Other antipsychotics, flupenthixol and pimozide, identified
as inhibitors of pseudotyped viral infection of HEK cells in our
study, have also been confirmed by others as antiviral agents
(Drayman et al., 2020; Yang et al., 2020). Pimozide, tested by
computational docking analysis and in vitro assays, has been
suggested to inhibit main protease of SARS-CoV-2 (MPro)
(Vatansever et al., 2020).

Emergence of the novel variants raises concern on the
effectiveness of currently available SARS-CoV-2 vaccines for
the neutralization of these variants (Callaway, 2021; Callaway
and Ledford, 2021; Fontanet et al., 2021). Recent in vitro studies
reported that some of these vaccines remain effective against the
variants carrying a set of mutations (Muik et al., 2021; Wu et al.,
2021; Xie et al., 2021); however, others have shown decreased
effectiveness, particularly to those carrying the E484K mutation
(Wadman, 2020; Callaway and Mallapaty, 2021; Collier et al.,
2021;Wang et al., 2021). Our data suggest that fluoxetine remains

effective against the pseudotyped viruses harboring single
mutations (N501Y, K417N, E484K), or a triple mutation
(N501Y/K417N/E484K) present in beta and gamma variants.
In line with this, inhibitory effect of fluoxetine persists
against the SARS-CoV-2 variants alpha, beta, and delta.
Therefore, it is plausible to argue that antidepressants, as well
as related-psychoactive compounds can be considered as an
alternative treatment method for people infected with SARS-
CoV-2.

One of the limitations of our study is that inferring the drug
concentrations required for the inhibition of SARS-CoV-2
infection at the clinical level from in vitro data is difficult, as
these drugs accumulate in different organs, including brain and
lungs, and show variance among individuals (Karson et al., 1993;
Bolo, 2000; Johnson et al., 2007). Samples collected from pilot
fatalities show 19.6 μg/ g mean concentration of fluoxetine in
lungs (∼7.6 µM) which is in the concentration range that is
effective against SARS-CoV-2. Although further experiments
are needed to address the tissue concentrations for the other
molecules tested, these data suggest that due to accumulation into
lung tissue (R. D. Johnson et al., 2007) (60-fold higher
concentrations were found in lungs than in plasma), the
concentrations tested here have been estimated to be clinically
relevant against the SARS-CoV-2 infection (Eugene, 2021).
We have also listed the IC50, CC50, and selectivity index
(SI) parameters in Supplementary Table S3, which were
calculated from the HEK cell response. We almost never
reached to 50% drop in the cell viability test with the
concentrations tested, which might have affected the CC50
values calculated by curve fitting. Therefore, interpretation of
CC50 and SI values to suggest a safe antiviral window might be
misleading.

Another interesting result we observed was the increase of
TMPRSS2 in HEK cells after 24 h fluoxetine treatment. The
TMPRSS2 increase by fluoxetine was detected in both non-
infected and infected cells suggesting that the infection alone has
no impact on this event. In fact, we expected to observe a reduction
of TMPRSS2 by fluoxetine. However, the increase of TMPRSS2 after
24 h fluoxetine treatment might not be related with the antiviral
action of fluoxetine. To gain an insight into this issue, testing
fluoxetine with different treatment regimens is needed.

Dissecting the viral entry routes provides the opportunity
for alternative strategies for prevention and management of
the viral infection. Since the emergence of COVID-19,
substantial progress has been made towards understanding
the life cycle of SARS-CoV-2 and particularly how the virus
can enter target cells (T. Tang et al., 2020). Earlier studies on
viruses including SARS-CoV, Ebola, and influenza shed a light
on the mechanism of viral entry and accentuated the importance
of endolysosomal compartments and cholesterol (Mingo et al.,
2015; Kühnl et al., 2018), which led to the recent discoveries
of repurposed drugs against SARS-CoV-2 (Carpinteiro et al.,
2020; Schloer et al., 2020). Alternative strategies, including the
combination of compounds that can target machineries in host
cells and the virus itself have also been developed to increase the
effectiveness of the treatment (Schloer et al., 2021). For instance,
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combination of fluoxetine with remdesivir, a nucleotide analog
interfering RNA-dependent RNA polymerase, was shown to be
more effective than either of these compounds alone (Schloer
et al., 2021).

Together with other recent studies, our data suggest that
antidepressant drugs might become an additional tool against
the COVID-19 pandemic, therefore, further clinical studies
implicating bigger sample size and longer follow-up periods
should be conducted.
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