About this Research Topic
The rational design of therapeutic antibodies strongly relies on the quality of antibody structures. However, the high flexibility of antibodies in solution influences their function and binding properties substantially. Therefore, in-depth understanding of antibody dynamics, i.e., the conformational diversity and the kinetics of conformational transitions, is essential for quantitative predictions of binding properties. Environmental influences, such as pH dependence, redox environment and temperature, can lead to structural and functional changes that in consequence affect antigen binding and recognition, e.g., in engineering anti-cancer antibodies the role of the pH plays a central role in determining the function and efficiency of antibodies. As antibody-based biologics evolve towards more elaborated forms, i.e., bi-specifics, specific engineered isotypes, multivalent and dedicated formats, a profound knowledge of intrinsic structural and biophysical properties is key for the next generation of therapeutics.
This Research Topic welcomes the submission of Original Research, Reviews or Perspective articles on all aspects related to the theme of conformational diversity of antibodies and implications for binding and function. This includes but is not limited to:
• Antibody structure prediction
• Antibody engineering
• Thermal Stability
• pH-dependent antibody functions
• Antibody affinity maturation
• Antibody-antigen recognition
• Antibody specificity and selectivity
• Antibody biophysical properties
Dr. Guy Georges is an employee and shareholder of Roche, which provides diagnostics and pharmaceuticals. All other Topic Editors declare no competing interests in relation to the topic.
Keywords: Antibody engineering, structure prediction, pH-dependent antibody functions, antibody specificity, antibody selectivity, molecular recognition
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.