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Editorial on the Research Topic

Neuroethology of the colonial mind: Ecological and evolutionary

context of social brains

Collective behavior relies on interactions among individuals who have neural

substrates supporting the exchange and processing of social information (Gordon, 2021).

The collective acquisition and processing of information in animal groups suggest that

individuals form a “colonial mind.” Over the past decades, studies of individual and

collective cognition have received a lot of attention (Couzin, 2009; Simons and Tibbetts,

2019). However, little is known about how the two systems interact. For instance, while

collective cognition necessarily emerges from individual cognition, individual cognitive

abilities are not correlated to collective cognitive abilities (Feinerman and Korman,

2017). Studying cognitive processes across levels of biological organization thus requires

a better understanding of the mechanisms of cognition at each level and within an

evolutionary context. This necessitates analyzing how animals use social information in

different contexts or understanding the neural adaptations associated with group living

and ecological challenges. For this research topic, we brought together researchers in

neuroscience and collective animal behavior to further examine these aspects of the

colonial mind.

Social information transfer can yield fitness benefits to individuals (Krause et al.,

2010). For instance, grouped animals often respond faster and more accurately to

changes in environmental or social circumstances than isolated conspecifics (Sumpter,

2010). While these cognitive advantages were long considered exclusive to the most

socially advanced animals, recent studies show collective cognition can be beneficial

across the animal kingdom, even in loosely social species. For instance, Mörchen

et al. demonstrate that organgutans, which are less social than other apes, learn

about new environments through social information gathered from local individuals
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when migrating. Ferreira et al. showed how social information

influences individual reactions in gregarious fruit flies under

threatening situations.

By contrast, the mechanisms underlying the transition

from solitary to group living are much less understood.

Several physiological changes may have contributed to division

of labor in highly social species. Sasaki et al. provide a

comparative perspective to understand how neurotransmitters

and hormones evolved to support eusociality. The authors

compiled literature from eusocial and non-social insects and

provided support for the “ovarian ground plan hypothesis”

(Amdam et al., 2004), suggesting ovarian function and

behavior is physiologically separated into reproductive and non-

reproductive forms. They also provided support for the “split-

function hypothesis” (West-Eberhard, 1996), which proposes

that juvenile hormone, ancestrally involved in reproduction,

evolved to have an additional role in worker division of

labor (Sasaki et al.).

Neuroanatomical comparisons can also inform researchers

about how animals transitioned from solitary to social life. The

“social brain hypothesis” posits that increasing levels of sociality

are associated with larger brains to support the processing

of more social information (Dunbar, 1998). However, the

distributed cognition of highly integrated groups with division

of labor may alleviate the cognitive load on the individuals,

and potentially reduce their neural requirements (Gronenberg

and Riveros, 2009). Testing this hypothesis in eusocial insects

has so far produced mixed results (O’Donnell et al., 2015,

2019; Kamhi et al., 2016; Sayol et al., 2020). The variation

in behaviors and life histories that characterize sociality may

be part of the reason for the inconsistencies observed. For

instance, many socio-cognitive behaviors once thought to be

specific to social species, such as the recognition of individual

identity or social learning, have recently been described in

non-social animals and may be primarily related to foraging

and mating (Poissonnier et al.). Researchers therefore should

be more selective in the behaviors associated with sociality in

comparative studies.

Accordingly, several studies began to focus on specific

characteristics of sociality to better understand how the

brain evolves to support particular social behaviors. For

example, Caponera et al. defined five characteristics of

sociality (intragroup competition, relationship differentiation,

information sharing, dominance hierarchies, and task

specialization and redundancy) and included an example

of how to apply these criteria in a comparison of social and

subsocial spiders. The authors found that task redundancy in

social spiders was correlated with a reduction in the arcuate

body, a brain region involved in mechanosensory integration

(Steinhoff et al., 2017). In a similar analysis, Godfrey et

al. showed that differences in olfactory processing regions

associated with nestmate recognition are positively correlated

with colony size across Leptomyrmecini ant species. As in the

social brain hypothesis, the authors proposed that increased

colony size is associated with a greater need for nestmate

recognition; however, they focused specifically on the circuitry

that supports this behavior.

Increased investment in olfactory processing is also

associated with nestmate interactions in the social wasp Polistes

dominula (Gandia et al.). In this species, females have larger

antennal lobes, while males have larger optic lobes, the

primary olfactory and visual processing regions, respectively

(Gronenberg, 2008). These differential neural investments

correspond to the importance of social interactions in group

living for females and the reliance on vision in mating for

males. Similarly, reproductive females may have a greater need

for group interactions than female workers that primarily

forage, and had larger mushroom bodies, a region involved in

higher order sensory integration (Fahrbach, 2006). Thus, it is

important to account for variation in behavior within the social

group. Brain region size of individuals within groups appears

to have adapted to the sensory requirements associated with

the individuals’ specific behavioral requirements (e.g., Arganda

et al., 2020).

While social context undoubtedly shapes cognitive and

neural function, sociality exists within a broader context

of the environment, which also may affect neural circuitry

(Healy, 2021). Non-social behaviors such as navigation (Sayol

et al., 2020) and foraging (Farris and Roberts, 2005; Farris,

2008; Sheehan et al., 2019) have been shown to influence

neural investment. Azorsa et al. used the “ecological brain

hypothesis,” which states that the brain evolves to account

for the cognitive challenges associated with foraging and

processing food (DeCasien et al., 2017; Lihoreau et al.,

2019; Simons and Tibbetts, 2019), to discuss how predation

foraging ecology may interact with group living to affect

the sensory requirements and cognitive processing of

the species.

Comparative analyses of brain size in relation to the socio-

ecology of social insects can provide insight for findings

in other organisms. Through a study of fossil records in

early humans, DeSilva et al. suggest that there has been a

recent decrease in brain size in humans. Using observations

from comparative studies of ant neuroanatomy, these authors

propose that the trend they observed may be associated with

characteristics of collective behavior such as increased sociality,

sharing of information, and group decision-making (but see

comment by Villmoare and Grabowski and response by DeSilva

et al. about potential issues of using rare fossil records for

such analyses).

The studies in this collection seek to understand how

behavioral and neural characteristics enable individuals to

engage in social behaviors and how social organization,

or collective behavior, may alter individual cognition. They
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take advantage of the approaches previously mentioned to

nicely illustrate how research on the evolution of brains and

cognition has recently moved from broad correlations between

brain sizes and social organization (Dujardin, 1850; Dunbar,

1998) to more detailed considerations of the neuroethology

of specific socio-cognitive behaviors (Lihoreau et al., 2012;

Godfrey and Gronenberg, 2019). Future research will have

to account for variation in cognition across group members

(Naug and Tait) and life history strategies that characterize

the group.

Recent studies, including those in this collection, have

progressed our understanding of the neural underpinnings

of collective cognition, but more can still be done. While

the diversity of animal models used in collective cognition

is increasing (i.e. social insects, Drosophila, primates), an

important effort should be made to broaden the scope

further with species comparisons across the spectrum of social

organization. The application and tuning of tools such as

statistical brain atlases (Arganda et al.) will make these large-

scale comparative studies feasible and accurate. Ultimately, a

better understanding of the neurobiology of collective minds

across the animal kingdom, including humans, may be useful

for developing more efficient collective decisions, more robust

artificial systems (e.g., Ebert et al., 2020), and more informed

interactions with wildlife.
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Convergent evolution of eusociality with the division of reproduction and its plastic
transition in Hymenoptera has long attracted the attention of researchers. To explain the
evolutionary scenario of the reproductive division of labor, several hypotheses had been
proposed. Among these, we focus on the most basic concepts, i.e., the ovarian ground
plan hypothesis (OGPH) and the split-function hypothesis (SFH). The OGPH assumes
the physiological decoupling of ovarian cycles and behavior into reproductive and non-
reproductive individuals, whereas the SFH assumes that the ancestral reproductive
function of juvenile hormone (JH) became split into a dual function. Here, we review
recent progress in the understanding of the neurohormonal regulation of reproduction
and social behavior in eusocial hymenopterans, with an emphasis on biogenic amines.
Biogenic amines are key substances involved in the switching of reproductive physiology
and modulation of social behaviors. Dopamine has a pivotal role in the formation
of reproductive skew irrespective of the social system, whereas octopamine and
serotonin contribute largely to non-reproductive social behaviors. These decoupling
roles of biogenic amines are seen in the life cycle of a single female in a solitary
species, supporting OGPH. JH promotes reproduction with dopamine function in
primitively eusocial species, whereas it regulates non-reproductive social behaviors with
octopamine function in advanced eusocial species. The signal transduction networks
between JH and the biogenic amines have been rewired in advanced eusocial species,
which could regulate reproduction in response to various social stimuli independently of
JH action.

Keywords: biogenic amine, division of labor, eusociality, Hymenoptera, reproduction, social evolution
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INTRODUCTION

Eusociality in insects, characterized by sophisticated division
of labor among group members, is assumed to have evolved
convergently from non-eusocial ancestors in an individual
taxon such as Hymenoptera (bees, wasps, and ants), Blattodea
(termites), Hemiptera (aphids), Thysanoptera (thrips), and
Coleoptera (beetles) (reviewed by Berens et al., 2015; Toth and
Rehan, 2017; Costa, 2018). The insect eusociality is defined
by cooperative brood care, overlapping generations between
the parent and adult offspring, and a reproductive division
of labor (castes) (Wilson, 1971). Based on the stability of
castes and the degree of morphological dimorphism between
castes, eusociality in Hymenoptera is further divided into
three groups: facultative, primitive and advanced eusociality
(Hunt, 2012). Facultative eusociality is characterized by a
flexible presence in the non-morphological castes. In primitive
eusociality, the non-morphological castes are always present,
and behaviorally distinct and plastic, whereas advanced eusocial
organisms with rigid morphological castes probably originated
from primitive eusociality (Hunt, 2012; Jandt and Toth, 2015;
Toth and Rehan, 2017).

To explain the evolutionary process of eusociality from
solitary to advanced eusociality in Hymenoptera, several
mechanistic hypotheses for social evolution have been proposed
(West-Eberhard, 1996; Robinson and Vargo, 1997; Hunt,
2007; Jandt and Toth, 2015). We introduce two evolutionary
hypotheses involved in reproductive physiology. First is the
ovarian ground plan hypothesis (OGPH), which focuses on
the physiological decoupling of ovarian cycles and behavior
into reproductive and non-reproductive states (West-Eberhard,
1996). This hypothesis comprises three components. The first is
a proposed cycle of ovarian activity in a solitary ancestor of the
social species. The second is the context-dependent expression
of alternative behaviors from a single genotype (phenotypic
plasticity) that can occur among females that nest together, each
with a solitary ovarian ground plan. The third is the evolution
of a switch-like mechanism that regulates phenotypic expression
into two castes: queens and workers (West-Eberhard, 1996; Hunt,
2007). This hypothesis predicts that physiological characteristics
related to caste-specific behavior in eusocial species are similar
to those of reproductive and non-reproductive behavior in a
single female in a solitary species (West-Eberhard, 1996; Jandt
and Toth, 2015; Trumbo, 2018). A related hypothesis termed
the reproductive ground plan hypothesis (RGPH) posits that the
regulation of the division of labor among workers arose from
a further split of solitary gene networks related to reproduction
(Amdam et al., 2004; Amdam and Page, 2010). The present paper
discusses the evolutionary process of the reproductive division of
labor from solitary to advanced eusociality, which is more related
to OGPH than RGPH.

Second is the split-function hypothesis (SFH) that focuses
on the function of juvenile hormone (JH) (West-Eberhard,
1996; Robinson and Vargo, 1997; Jandt and Toth, 2015).
JH is a hemolymphatic hormone released from corpora
allata and is well known as a key factor regulating the
female reproductive state in solitary insects (Nijhout, 1994;

Hartfelder, 2000; Raikhel et al., 2005; Jindra et al., 2013). In
primitive eusocial Hymenoptera, including paper wasps and
bumble bees, JH promotes ovarian development and egg-laying
behavior as well as solitary species (Robinson and Vargo, 1997;
Tibbetts et al., 2011a; Shpigler et al., 2014; Figure 1). In contrast,
in advanced eusocial species, including honey bees and ants, high
JH titer is associated with an age-related behavioral shift from
nursing to foraging (Robinson and Vargo, 1997; Bloch et al., 2009;
Figure 1). These findings lead to the suggestion that JH function
has shifted from a gonadotropin to a behavioral regulator in
workers during the social evolution. The SFH assumes that
the ancestral reproductive function of JH became split into a
dual function, regulating reproduction in queens and behavioral
division of labor among workers (i.e., nest construction, nursing,
defense, and foraging), and in advanced eusocial species, the
reproductive function of JH might have been lost. Therefore,

FIGURE 1 | Roles of dopamine and juvenile hormone in reproductive females
in Hymenoptera. A phylogenetic tree based on Gullan and Cranston (2014) is
modified. Possible non-monophyletic families are shown in quotes on a
dashed branch. Families containing eusocial species are indicated in red. In
this figure, evidence of correlation and causal relationships are extensively
evaluated. Correlation between dopamine levels in the brains and
reproduction (DA-Rep.), and between juvenile hormone titers in hemolymph
and reproduction (JH-Rep.) are indicated as positive (•), negative (×), and
neutral (–). Effects of dopamine (DA Rep. Ef.) and juvenile hormone (JH Rep.
Ef.) on reproduction, the relation of juvenile hormone with age polyphenism
(JH Age Po.) are also indicated. Ad: advanced eusocial, Pr: primitively
eusocial, So: solitary and facultatively eusocial (Bohm, 1972; Bell, 1973; Barth
et al., 1975; Röseler, 1977; Robinson et al., 1992; O’Donnell and Jeanne,
1993; Sommer et al., 1993; Harris and Woodring, 1995; Robinson and Vargo,
1997; Bloch et al., 2000; Pinto et al., 2000; Boulay et al., 2001; Sasaki and
Harada, 2020; Agrahari and Gadagkar, 2003; Brent and Vargo, 2003;
Dombroski et al., 2003; Cuvillier-Hot et al., 2004; Giray et al., 2005; Brent
et al., 2006; Cuvillier-Hot and Lenoir, 2006; Sasaki et al., 2007, 2009; Penick
et al., 2011; Tibbetts et al., 2011b; Wasieleski et al., 2011; Tibbetts et al.,
2013a; Smith et al., 2013; Amsalem et al., 2014; Kelstrup et al., 2014a;
Kelstrup et al., 2014b; Penick et al., 2014; Shpigler et al., 2014; Kelstrup
et al., 2015, 2017; Okada et al., 2015; Kapheim and Johnson, 2017; Sasaki
et al., 2017; Tsuchida et al., 2020; Yoshimura et al., 2021).
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this hypothesis predicts that JH regulates reproduction only in
solitary species, and regulates both reproduction and division
of labor among workers in primitive eusocial species (West-
Eberhard, 1996; Jandt and Toth, 2015).

To re-evaluate the SFH and OGPH, we focus on the substances
that directly regulate neural activities for social behavior. Social
behavior is largely regulated by several types of interaction among
colony members (e.g., dominance interactions, pheromones, or
trophallaxis). These stimuli are neurally inputted as multimodal
sensory signals and processed in the central nervous system
(CNS). The behavioral outputs are adaptively plastic, depending
on the colony status. Therefore, the neural process–behavioral
output pathway might not be as fixed as expected, but instead be
flexibly selected from available multiple pathways or combined
multiple pathways in the CNS by neural modifiers. One such
group of neural modifiers is the biogenic amines. Biogenic amines
are neuroactive substances that elicit certain behaviors and
physiological states and are widely conserved among vertebrates
and invertebrates. They have roles as neurotransmitters (acting
on a synapse), neuromodulators (acting on local neural circuits),
and neurohormones (hormonal function in remote tissues) in
both the peripheral nervous system and CNS (Evans, 1980;
Roeder, 2005; Lange, 2009). Thus, they are probably the
fundamental factors mediating social interactions and the output
of social behaviors.

Recently, there has been a significant increase in the
number of physiological studies on social behaviors (especially
in social hymenopterans) and the results have suggested the
regulatory mechanisms of biogenic amines together with roles
of JH and environmental factors. Therefore, here we integrate
recent data on biogenic amines and other factors to highlight
connections between biogenic amines and social behavior in
eusocial hymenopterans, leading to an improved understanding
of social evolution.

REPRODUCTIVE DIVISION OF LABOR
AND WORKER REPRODUCTION

The reproductive division of labor is fundamental to the
organization and evolution of insect societies. In primitive
eusocial hymenopterans, the caste fate can be mainly determined
at the adult stage, with a pre-imaginal bias generated at the
larval stage (O’Donnell, 1998; Berens et al., 2015). In Polistes
wasps, the cues related to caste determination during the pre-
imaginal stage include levels of larval nutrition and frequency
of vibrational stimuli (O’Donnell, 1998; Suryanarayanan et al.,
2011). The cues during the adult stage are the presence of a
queen and photoperiods (Bohm, 1972; Solís and Strassmann,
1990; Yoshimura et al., 2021).

In advanced eusocial societies, including honey bees, stingless
bees, and most ants, reproduction is strongly biased toward
queens. Queens have a high reproductive ability relative to
workers, which are either sterile or have low reproductive
potential. Caste-specific developmental pathways depending on
the nutritional condition during the larval stages might, to some
degree, result in two adult phenotypes (Wilde and Beetsma,

1982; Asencot and Lensky, 1988; Kamakura, 2011; Leimer et al.,
2012; Corona et al., 2016) and a specialized adult brain that is
morphologically and physiologically adapted to the performance
of caste-specific behavioral tasks (Snodgrass, 1956; Michener,
1974; Arnold et al., 1988; Groh and Rössler, 2008). How the caste-
specific behaviors are physiologically regulated is an important
issue in the reproductive division of labor in social insects. The
details of such caste-specific physiology would provide us with a
key to further our understanding of social evolution.

Reproductive Function of JH
In primitive eusocial Hymenoptera, JH promotes ovarian
development and egg-laying behavior at adult stages as well as
in solitary species (Raikhel et al., 2005; Tibbetts et al., 2011a;
Shpigler et al., 2014). Whereas, in advanced eusocial species, JH
inhibits the synthesis of a precursor of egg yolk vitellogenin or
does not affect ovarian development (Robinson and Vargo, 1997;
Pinto et al., 2000; Bloch et al., 2009; Figure 1). These findings well
fit the SFH that the ancestral reproductive function of JH became
split into a dual function, regulating reproduction in queens and
behavioral division of labor among workers. In contrast, this
evidence does not support the OGPH, because JH reproductive
function is no longer conserved in reproductive individuals in
advanced eusocial species. In advanced eusocial species, it is
expected that other substances instead of JH may drive cascades
of ovarian development for reproduction.

Caste-Specific Behaviors Mediated by
Biogenic Amines
Queen-worker differences in dopamine levels in the brain have
been reported in several species including the bumble bee
Bombus ignitus (Sasaki et al., 2021) and the honey bee Apis
mellifera (Brandes et al., 1990; Sasaki et al., 2012, 2018), but
not found in some ants (e.g., Formica japonica, Aonuma and
Watanabe, 2012a). In the bumble bee, the dopamine levels in the
brains of emerged queens (gynes) are approximately two times
higher than in emerged workers (Sasaki et al., 2021). The levels
of the precursor and metabolite of dopamine are also higher
in queens, suggesting the upregulation of the synthetic pathway
of dopamine in the brain of the queen. In the honey bee, the
dopamine levels in the brains of virgin queens were 3.5–7 times
higher than that in the same aged workers (Sasaki et al., 2012,
2018). The caste differences in dopamine levels in the brain
occur during pupal stages with upregulation of gene expression of
enzymes involved in dopamine biosynthesis (Sasaki et al., 2018).
From the larval stage to the adult stage, nurse bees provide queens
with food known as “royal jelly,” which contains the dopamine
precursor tyrosine (Haydak, 1970; Liming et al., 2009). Artificial
feeding of royal jelly during the larval stage increases tyrosine
flow with an elevation of catecholamines including dopamine in
the brain of queen-like adult females (Sasaki and Harada, 2020).

In honey bees, the high levels of dopamine in both brain and
hemolymph in virgin queens can contribute to the enhancement
of fighting with rival nestmate queens (Farkhary et al., 2017;
Sasaki and Harada, 2020), locomotor activities (Harano et al.,
2008), and flight activities (Farkhary et al., 2019), which could
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lead to active mating flight. In the fire ant, Solenopsis invicta,
virgin queens shed their wings (dealation) and lay unfertilized
male eggs in response to their isolation from nestmates.
The isolated virgin queens have higher dopamine levels in
their brains than the same aged non-isolated virgin queens
(Boulay et al., 2001). The inhibition of tyrosine hydroxylase
for dopamine biosynthesis reduced egg production, whereas
restoring dopamine biosynthesis with a dopamine precursor
restored oogenesis and oviposition, suggesting that dopamine
promotes reproduction (Boulay et al., 2001). Thus, dopaminergic
activities seem to be one of the conserved physiological
characteristics in the brain of the reproductive caste in bees and
ants, although more evidence is required in other species across
multiple levels of eusociality.

Worker Reproduction and Dominance
Hierarchy Among Females
In many advanced eusocial hymenopterans, workers cannot mate
despite retaining functional ovaries and producing unfertilized
eggs that develop parthenogenetically into males. Although
workers are usually infertile with inactivated ovaries in the
presence of a queen, worker reproduction frequently occurs in
the absence of queens. Even in facultative and primitive eusocial
species, subordinate reproduction can be suppressed behaviorally
and pheromonally by dominant females in a similar way to the
suppression of worker reproduction in advanced eusocial species.
Recent literature suggests consistently that brain dopamine is
involved in the behavioral and physiological transitions of non-
reproductives to reproductives in several lineages (Figures 1, 2).
Dopamine levels in the brains are positively correlated with
the reproductive states of workers in bumble bees (B. terrestris:
Bloch et al., 2000; B. ignitus: Sasaki et al., 2017), paper
wasps (Polistes chinensis: Sasaki et al., 2007; Polistes jokahamae:
Yoshimura et al., 2021), the honey bee A. mellifera (Harris and
Woodring, 1995; Sasaki and Nagao, 2001), and reproductive
females (gamergates) in ant species that retain totipotent workers
(Harpegnathos saltator, Penick et al., 2014; Diacamma sp.,
Okada et al., 2015; Figure 1). Experimental manipulations using
dopamine suggested gonadotropic functions and activation of
ovaries in workers of A. mellifera (Dombroski et al., 2003),
P. chinensis (Sasaki et al., 2009), and Diacamma sp. (Okada et al.,
2015). The combination of this correlative evidence with the
experimental evidence suggests that the reproductive function of
dopamine is shared among several species in multiple eusocial
lineages in Hymenoptera.

The gene expression of dopamine receptors in the brains
or ovaries of reproductive workers can be influenced by queen
substances in A. mellifera (Beggs et al., 2007; Vergoz et al.,
2012) and by isolation from interactions with nestmates in
H. saltator (Penick et al., 2014) and Diacamma sp. (Okada
et al., 2015; Shimoji et al., 2017; Figure 3). In the honey bee,
two dopamine receptor genes, Amdop1 (DopR1) and Amdop2
(DopR2) decrease in the brains of reproductive workers (Vergoz
et al., 2012; Figure 3). Since the expression of Amdop1 and
Amdop2 in the brains of virgin queens are lower than in
normal workers (Sasaki et al., 2018), the downregulation of

FIGURE 2 | Factors affecting increases in biogenic amines in the brain during
the transition of non-reproductives to reproductives in Hymenoptera. Purple
boxes indicate environmental factors. Dashed lines indicate hypothetical
pathways. DA: dopamine, OA: octopamine, TA: tyramine, 5HT: serotonin. In
this summary, “queen” and “queenless” are used in a broad sense to include
functional queens in ants (i.e., gamergates).

FIGURE 3 | Gene expression of dopamine receptors in the brain and
peripheral tissues of reproductive workers. Red: Apis mellifera, blue:
Harpegnathos saltator, green: Diacamma. sp. The expression levels of
receptor genes are based on Vergoz et al. (2012); Penick et al. (2014), and
Okada et al. (2015). In this summary, “queen” and “queenless” are used in a
broad sense to include functional queens in ants (i.e., gamergates).

these genes in reproductive workers suggests a transition to
a queen-like state. In a monomorphic ant Diacamma, D1-
like (human dopamine receptor subtype 1-like) receptor genes
(dopr1 and dopr2) are abundant in fat bodies of gamergates
(Okada et al., 2015), suggesting that the fat body is a potential
target of dopamine to stimulate vitellogenin (Vg) synthesis for
ovarian activation (Figure 3). Thus, the expression of dopamine
receptors in the brains and peripheral organs involved in
ovarian development supports the gonadotropic neurohormonal
function of dopamine.

Although dopamine has a predominant gonadotropic
function across taxa, brain tyramine might also promote

Frontiers in Ecology and Evolution | www.frontiersin.org 4 May 2021 | Volume 9 | Article 65916012

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-659160 May 8, 2021 Time: 17:31 # 5

Sasaki et al. Social Evolution and Biogenic Amines

reproduction with dopamine in workers in the honey bee. The
levels of brain tyramine in worker honey bees increase with
dopamine in response to the removal of a queen (Sasaki and
Nagao, 2002). The oral application of tyramine can inhibit
flying for foraging (Schulz and Robinson, 2001; Fussenecker
et al., 2006) and promote ovarian activity (Sasaki and Harano,
2007) and the production of queen-like pheromones by Dufour’s
gland and the mandibular glands (Salomon et al., 2012). In the
paper wasp P. jokahamae, the long-day photoperiod condition
increases the tyramine level in the brain and causes the initiation
of ovarian development (Yoshimura et al., 2021). In this paper
wasp, the levels of tyramine and dopamine in the brains are
correlated with ovarian development (Yoshimura et al., 2021).
Thus, mediation by both dopamine and tyramine, which have
a common precursor tyrosine, suggests the involvement of
tyrosine in ovarian activation. Later in this article, we focus
on current advances in understanding the environmental and
physiological regulation of dopamine, as a pivotal orchestrator of
reproductive physiology and behavior.

Social Factors Affecting Dopamine
Levels in the Brain
Determining the regulatory mechanisms underlying an increase
in brain dopamine depending on the social environment is
important for understanding the regulation of reproduction
in eusocial species. Several pioneering studies have begun to
elucidate various environmental and social factors involved
in the regulatory mechanisms (Beggs et al., 2007; Penick
et al., 2014; Matsuyama et al., 2015; Shimoji et al., 2017).
Behavioral interactions (dominance interaction), pheromonal
signals (queen substances), and nutrition (food intake) are
plausible candidates in the influence of brain dopamine levels that
control reproductive states (Figure 2).

Dominance Interaction
In behavioral interactions, aggressive behavior can influence
reproductive states among females. In primitive eusocial species,
social ranks including pre-contest assessment behavior and
reproductive states are associated with JH titer (Röseler, 1977;
Giray et al., 2005; Tibbetts et al., 2013b; Tsuchida et al., 2020).
Given that dopamine is also related to reproductive states in
primitive eusocial species (Bloch et al., 2000; Sasaki et al., 2007,
2017; Yoshimura et al., 2021), a relationship between JH and
dopamine is expected. In fact, the application of JH can enhance
the dopamine levels in the brain of workers in the paper wasp
P. chinensis (Tsuchida et al., 2020). In contrast, the reproductive
roles of JH have been lost in several advanced eusocial species
(Figure 1; Robinson and Vargo, 1997; Bloch et al., 2009), such that
other substances downstream of JH, including dopamine, might
have a function in promoting reproduction.

In the ant H. saltator, after being subjected to aggressive
behaviors by nestmates, workers have lower dopamine levels
in their brains compared with those nestmates (Penick et al.,
2014). In Diacamma sp., dominant workers that aggress other
workers have higher dopamine levels in their brains compared
with lower-ranked subordinate workers (Shimoji et al., 2017).
Such subordinate workers have elevated levels of brain dopamine

after isolation from the dominant workers and thus are no longer
subjected to attack. These observations suggest that dopamine
in the brain is regulated by aggressive behavior (Shimoji et al.,
2017; Figure 2). The level of dopamine increases in the brain of
the winner of an aggressive interaction to activate her ovaries,
whereas the loser decreases the level of brain dopamine to
suppress ovarian activation. If the brain dopamine level or
the ovarian activity positively influences their aggressiveness, a
positive feedback process can finally lead to the monopolization
of reproduction by a particular female. However, physiological
factors determining the level of aggressiveness in dominance
interactions are yet to be investigated.

Queen Substances
Queen substances can control worker behavior and physiology
in advanced eusocial bees as pheromonal signals. In the honey
bee, a queen pheromone, homovanillyl alcohol (HVA), can
reduce brain dopamine levels (Beggs et al., 2007). HVA has
the potential to bind a dopamine receptor (AmDOP3) and to
act as an agonist (Beggs and Mercer, 2009). HVA can control
brain dopamine in two ways: the first is the detection of
HVA by antennae and the resulting transmission of neural
signals to influence brain dopamine; the second is via the oral
intake of HVA so that it can act directly on the dopaminergic
systems in the brain via the hemolymph (Figure 2). The
former is supported by results showing the neural processing
of chemosensory signals from queen substances in the antennal
lobes (Carcaud et al., 2015). Another component of queen
substances in the honey bee, (2E)-9-oxodecenoic acid (9ODA),
also has important functions to inhibit ovarian activation in
workers and is detected by antennae with particular odorant
receptors and transduced as neural signals (Wanner et al., 2007).
Although novel, the latter mechanism requires more evidence.
Given that other chemicals (e.g., cuticular hydrocarbons) that
can be sensed by antennae are used as queen substances in
other hymenopteran species (e.g., Van Oystaeyen et al., 2014),
the detection of queen substances by the antennae might be
a common pathway (d’Ettorre et al., 2004), whereas the oral
intake of queen substances might be an additional mechanism
in the honey bee.

Food Intake
Food consumption is influenced by the presence of a queen and
her brood in a colony and affects the supply of precursors of
biogenic amines. In the honey bee, royal jelly contains tyrosine,
which is a common precursor of dopamine, tyramine, and
octopamine, although tyrosine is not the most abundant of the
26 amino acids that are contained in royal jelly (Townsend
and Lucas, 1940; Haydak, 1970; Liming et al., 2009). Royal
jelly is normally fed by nurse bees to the queen and larvae in
the queenright colony, whereas, in queenless colonies without
broods, it can be shared among nurse bees that can become
reproductive individuals. Therefore, reproductive individuals
in queenless colonies might ingest a relatively large amount
of tyrosine by consuming royal jelly-like food. This intake
of tyrosine can enhance the levels of brain dopamine and
tyramine in queenless workers and accelerate their transition
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from normal workers to reproductive individuals (Matsuyama
et al., 2015; Figure 2). This mechanism might operate not only
in honey bees but also other social insects in which the brain
dopamine levels either increase slowly in the absence of a queen
or are maintained at a high level during reproduction. These
species require nutrition for ovarian activation, with supplies of
dopamine precursors. Thus, dopamine metabolism and signaling
appear to have a pivotal role in the formation of reproductive
skew across various social systems, i.e., from primitive societies
in which physical interaction among monomorphic females
regulates the reproductive division of labor to advanced societies
where pheromones control it remotely.

Reproductive Function of Dopamine in
Solitary Insects
The reproductive function of dopamine in solitary insects is a
prerequisite for assuming dopamine as the core physiological
system in OGPH. The OGPH assumes that ancestral solitary
species possess functional aminergic systems for both
reproductive and non-reproductive activities. The OGPH
predicts that one functional system for reproduction expresses in
reproductive females, the other non-reproductive system occurs
in workers. Reproductive females in primitive and advanced
eusocial hymenopterans seem to possess the dopaminergic
system for reproduction as mentioned above.

Reproductive functions of the dopamine in females of
solitary insects have been reported in Blattodea (cockroach
Blattella germanica: Pastor et al., 1991), Hemiptera (linden bug
Pyrrhocoris apterus: Chvalova et al., 2014; plant bug Lygus
hesperus: Brent et al., 2016), Coleoptera (red flour beetle
Tribolium castaneum: Bai and Palli, 2016), and Diptera (fruit
fly Drosophila melanogaster: Neckameyer, 1996; Pendleton et al.,
1996; mosquito Anopheles gambiae: Fuchs et al., 2014). In these
species, dopamine accelerates ovarian development and egg-
laying behavior, often in a nutrition-dependent manner. In
A. gambiae, the inhibition of tyrosine (a precursor of dopamine)
supply causes a decrease in oviposition rate, fecundity, and
egg hatching rate (Fuchs et al., 2014). In T. castaneum, the
knockdown of the dopamine D2-like receptor gene leads to a
reduction in vitellogenin accumulation in developing oocytes and
an inhibition of JH-regulated remodeling of follicular epithelium,
suggesting a dopamine function of ovarian maturation with JH
mediation (Bai and Palli, 2016). In D. melanogaster, sexually
mature females express higher D1-like receptor (DopR) in the
fat body than young immature females (Gruntenko et al., 2012).
This expression pattern of the D1-like receptor in the fat body
is similar to that in the ant Diacamma (Okada et al., 2015).
Dopamine also regulates mating behavior in D. melanogaster
(Wicker-Thomas and Hamann, 2008). Dopamine production
regulated by JH has been reported in the brains of females
in D. melanogaster (Argue et al., 2013) and L. hesperus (Brent
et al., 2016). Thus, the reproductive function of dopamine is
shared among solitary species across different orders and could
be an ancestral character as a functional system to promote
reproduction with JH.

DIVISION OF LABOR AMONG WORKERS

Workers change their tasks depending on their age, size,
and/or morphology in the primitive and advanced eusocial
hymenopterans. In contrast to the age-related division of labor
which has been extensively studied in the honey bee, little is
known about endocrine influences on the size-related division
of labor that is seen commonly in ants and bumble bees. The
size and morphology of workers performing different tasks
are determined by developmental processes during the larval
and pupal stages. Therefore, the size-related or morphological
division of labor might be based on the particular physiological
state of each subcaste after eclosion and can be modified by the
states changing with age.

JH Function Regulating Age-Related
Division of Labor
The physiological basis of the age-related division of labor has
been studied extensively in honey bees. Younger bees perform
tasks inside the nest, such as feeding larvae, constructing and
maintaining the nest, and processing honey, whereas older
bees guard the nest and forage (Winston, 1987). The onset of
foraging in honey bees is linked to the action of JH (Robinson
and Vargo, 1997; Bloch et al., 2009). JH titers in honey bee
workers normally increase with age. Foraging worker bees have
higher hemolymphatic JH titers than bees working in the nest.
Treatment of young bees with methoprene, a JH analog, results
in the initiation of foraging earlier in life. JH is produced in the
corpora allata, paired secretory glands located close to the brain
(Nijhout, 1994). Removal of the corpora allata resulted in bees
that were able to initiate foraging although they were delayed in
their foraging onset (Sullivan et al., 2000). These results not only
demonstrate an effect of JH on age at onset of foraging but also
show that JH is not necessary for the initiation and maintenance
of foraging behavior. Therefore, it is likely that foraging onset
in worker bees is governed by redundant control mechanisms.
Such a JH function regulating the age-related division of labor
has been reported in other advanced eusocial species such as the
paper wasp Polybia occidentalis (O’Donnell and Jeanne, 1993)
and some ants (Diacamma: Sommer et al., 1993; Harpegnathos
saltator, Penick et al., 2011; Figure 1).

The JH function promoted foraging, including sugar response
and learning has been reported in the solitary bee Nomia
melanderi (Kapheim and Johnson, 2017) and the primitive
eusocial paper wasp Polistes canadensis (Giray et al., 2005) and
Synoeca surinama (Kelstrup et al., 2014b; Figure 1). Studies in
the primitive eusocial species seem to support the SFH assuming
the ancestral reproductive function of JH became split into a
gonadotropin and a regulator of worker foraging in the primitive
eusocial species. However, a study in N. melanderi did not
support the SFH, because the hypothesis does not assume the
ancestral foraging function by JH, rather this foraging function of
JH supports the OGPH (Kapheim and Johnson, 2017). Therefore,
the conclusion that the evolutionary process of the JH function
shifted from a gonadotropin to a regulator of worker foraging is
still controversial.
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Social Behaviors and Physiology
Mediated by Biogenic Amines
From Nursing to Foraging
Although nursing is a major task for workers in the nest, a clear
involvement of biogenic amines in enhancing brood care has
not been reported in hymenopterans, and increased levels of
amines are more likely to be associated with extranidal tasks.
An example of amine involvement in intranidal task regulation
in honey bees could be tyramine and octopamine involvement
in thermoregulatory fanning in the nest (Cook et al., 2017).
The nursing behavior of worker honey bees occurs under lower
levels of octopamine, dopamine, and serotonin, which increase
in the brain with age under queenright conditions (Taylor et al.,
1992; Schulz and Robinson, 1999). Interestingly, such age-related
increases in these amines in the brains of workers are also
observed in some ants, including Pheidole (Seid and Traniello,
2005), Diacamma (Okada et al., 2015), and the jumping ant
Harpegnathos (Penick et al., 2014). For example, in Pheidole
dentata, serotonin modulates minor worker responsiveness to
trail pheromones (Muscedere et al., 2012). These facts suggest
that the age-dependent increase in octopamine, dopamine, and
serotonin is a shared pattern in worker behavioral ontogeny, at
least in the honey bee and ants.

Octopamine in the brain is enhanced by JH and promotes
foraging behaviors in the honey bee (Schulz and Robinson,
2001; Schulz et al., 2002). Octopamine can enhance the
responses of nestmate recognition with aggression and learning
in workers (Robinson et al., 1999; Farooqui, 2012), which
could support guarding behaviors initially and then foraging
behaviors that require learning and memory. Octopamine also
mediates the persistent modulation of associative learning
and memory induced by an attractive pheromone component
geraniol (Baracchi et al., 2020). Expression of a gene encoding the
octopamine receptor (Amoctβr3/4) changes with age rather than
with social task, whereas that of Amoctαr1 correlates with social
tasks (Reim and Scheiner, 2014). Octopamine can also enhance
sugar responses in the proboscis extension of the honey bee
(Scheiner et al., 2002) and the stingless bee Melipona scutellaris
(McCabe et al., 2017), which is a behavioral modulation for
foraging characteristics. In fact, octopamine increases individual
foraging effort and collective food source exploitation in the
neotropical stingless bee Plebeia droryana (Peng et al., 2020).
In terms of foraging behaviors, brain levels of octopamine are
higher in dancing honey bees than in those that follow them, and
octopamine selectively increases the reporting of resource value
in dances by foragers (Barron et al., 2007).

Aggression for Guarding or Predation
The involvement of several biogenic amines in defensive or
aggressive behaviors has been reported in social hymenopterans.
Aggressive behaviors can be categorized into interactions
within species (intraspecies) and between species (interspecies).
The effects of amines in aggressive dominance interactions
are discussed earlier (see section “Social Factors Affecting
Dopamine Levels in the Brain”). Interspecies aggression can be
further divided into attacks during foraging (predation), nest

defense against predators, and competition between species.
Octopamine is known to elevate aggression levels between
conspecific males generally in solitary insects, including fruit
flies (Baier et al., 2002) and crickets (Stevenson et al., 2005).
These interactions between rival males might correspond to
intraspecies interactions in social species. In honey bee workers,
several octopamine agonists enhance the aggression levels during
nestmate recognition (Robinson et al., 1999). Serotonin enhances
the response to the alarm pheromone component (Harris and
Woodring, 1999; Nouvian et al., 2018). In ants, octopamine
and serotonin might be involved in aggressiveness in intra-
and interspecies interactions. Although the functional differences
between octopamine and serotonin are unknown, there are
positive correlations between aggressiveness and octopamine in
intraspecies interactions in Oecophylla smaragdina (Kamhi et al.,
2015), and in interspecies interactions in F. japonica (Aonuma
and Watanabe, 2012b) and O. smaragdina (Kamhi et al., 2015), or
between aggressiveness and serotonin in intraspecific interactions
in Formica rufa (Kostowski and Tarchalska, 1972; Kostowski
and Tarchalska-Krynska, 1975). In Odontomachus kuroiwae, oral
administration of serotonin or its precursor strongly promotes
the initiation of defensive behavior (Aonuma, 2020). In general,
worker aggressiveness increases with age in social Hymenoptera.
Together with the results discussed in the previous section,
the age-dependent increase in biogenic amines might generally
enhance the aggressiveness of workers, although there could
also be context-dependent adjustments of aggression levels
in these workers.

Cooperative behaviors in social insects can be observed
under conditions of low aggressiveness among nestmates. In
the ant Camponotus fellah, octopamine decreases the frequency
of trophallaxis (food exchange) between nestmate workers,
whereas the application of serotonin does not affect trophallactic
frequencies, suggesting that octopamine has a stronger effect
on trophallaxis than does serotonin (Boulay et al., 2000). In
the ant Pristomyrmex punctatus, the intake of secretion of the
myrmecophile butterfly Narathura japonica larvae causes a low
level of brain dopamine that enhances the intensity of guarding
behavior of workers to the latter (Hojo et al., 2015).

DISCUSSION

The OGPH assumes the decoupling of reproductive physiology
into reproductive and non-reproductive states that are
allocated to different individuals in eusocial species (West-
Eberhard, 1996). Given that biogenic amines have multiple
roles in reproduction and general behavior, we expect that the
involvement of biogenic amines in the regulation of physiological
status between reproductives and non-reproductives is derived
from the characteristics of the solitary ancestors of eusocial
species (Kamhi et al., 2017; Figure 4). The reproductive
physiology in primitive and advanced eusocial hymenopterans
is broadly associated with dopamine in the brain (Figure 1,
see section “Reproductive Division of Labor and Worker
Reproduction”), whereas non-reproductive behaviors in
advanced eusocial species, including foraging and nest defense,
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FIGURE 4 | Decoupling the multiple roles of biogenic amines into each
phenotype in eusocial species. Multiple roles of biogenic amines in solitary
and eusocial species are presented. Several general behaviors or movements
are shared between both reproductive females and workers in eusocial
species (overlapping area). Juvenile hormone regulates dopamine in solitary
and primitively eusocial species, whereas it regulates octopamine in advanced
eusocial species.

are mainly mediated by octopamine and serotonin (Farooqui,
2012; see section “Division of Labor Among Workers”).
Equivalent roles of dopamine in reproduction (mating and
ovarian activation) (see section “Reproductive Function of
Dopamine in Solitary Insects”) and octopamine in foraging
(sugar response, appetitive learning, and memory) (Roeder,
2005; Farooqui, 2012) are found in a single individual
in solitary species. Given such preadaptation, the OGPH
would be supported (Figure 4). There are, however, several
general behaviors or movements that are shared between both
reproductives and non-reproductives in eusocial insects. For
example, flight behavior is necessary not only for foraging in
non-reproductives but also for nuptial flight in reproductives.
Given that octopamine and dopamine are tightly related with
flight (reviewed by Roeder, 2005; Farooqui, 2012, see sections
“Reproductive Division of Labor and Worker Reproduction”
and “Division of Labor Among Workers”), the roles of these
monoamines might be shared between both reproductives
and non-reproductives. Thus, specialization of behavior might
require and/or renounce particular sets of aminergic function
originated from a pool of ancestral aminergic function.

Generally, in adult insects, JH is involved in physiology and
behaviors for both reproductive and non-reproductive states in
solitary species (Hartfelder, 2000; Raikhel et al., 2005; Kapheim
and Johnson, 2017; Trumbo, 2018). JH is a primary regulator
of reproduction, including ovarian activity and mating behaviors
(Hartfelder, 2000; Raikhel et al., 2005) with dopamine function,
and is also involved in foraging, including sugar response and
learning (Kapheim and Johnson, 2017; Trumbo, 2018; Figure 4).
In eusocial hymenopterans, the reproductive function of JH is

conserved in primitive eusocial species, whereas JH promotes
age-polyethism in non-reproductives in advanced eusocial
hymenopteran species (Figure 1). In advanced eusocial species,
loss of JH reproductive function leads to the SFH, whereas the
evidence contradicts the OGPH because the JH reproductive
function is not conserved in reproductive individuals. In contrast,
the evidence of JH foraging function in solitary species does not
support SFH, rather it fits the situation for OGPH. Interestingly,
the reproductive function of dopamine and foraging function of
octopamine are widely conserved in solitary to advanced eusocial
species. The function expressed in a single individual in solitary
species was decoupled into queens and workers in eusocial
species, supporting the OGPH. Corresponding to this function,
JH regulates dopamine in reproductive individuals in primitive
eusocial species (see section “Social Factors Affecting Dopamine
Levels in the Brain”), whereas it is positioned upstream of
octopamine in non-reproductives in advanced eusocial species
(see section “Social Behaviors and Physiology Mediated by
Biogenic Amines”) (Figure 4). This rewiring of the signal
transduction networks between JH and biogenic amines can
explain the mechanism underlying the shift of JH function
from a gonadotropin to a regulator of worker foraging and
might make it possible to regulate reproduction in response to
various social stimuli.

PERSPECTIVE

Biogenic amines are broadly present in the nervous systems
of invertebrates, modulating their behaviors and reproduction.
A limited number of substances can regulate diverse behaviors
in eusocial hymenopterans by local secretion in the CNS,
or by combining the effects of several monoamines, or
their dose-dependent effects. Reports on the behavioral effects
of biogenic amines are increasing, although the regulatory
systems of biogenic amines, including their interactions with
hemolymph hormones or signaling molecules, remain unclear.
Important topics for future research include: (i) more functional
validation of the biogenic amines associated with social behaviors;
(ii) clarification of the “crosstalk” with other physiological
mechanisms in signal transduction and regulatory networks;
and (iii) widely comparative studies of females in solitary,
facultative, and primitive eusocial species as a model of
the ancestral mode of reproductive physiology. Taxa-wide
comparative studies incorporating phylogenetic information
must be efficacious so that the preadaptation of physiological
mechanisms and its roles in social evolution can be understood.
Comparative studies would also be necessary to reveal both the
generality and specificity of physiological mechanisms for social
characters across taxa.

CONCLUSION

The OGPH assumes the physiological decoupling of ovarian
cycles and behavior into reproductive and non-reproductive
states. The multiple roles of biogenic amines in social
behavior and reproduction provide evidence for this hypothesis.
Dopaminergic signaling has a pivotal role in the formation of
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reproductive skew irrespective of the social system, whereas
octopaminergic signaling contributes largely to non-reproductive
social behaviors. These roles of biogenic amines occur in the
neuroendocrine system throughout the life cycle of solitary
species, supporting the OGPH. JH promotes reproduction with
dopamine in primitive eusocial species, whereas it regulates
non-reproductive social behaviors with octopamine in advanced
eusocial species. Thus, the signal transduction networks between
JH and biogenic amines have been rewired in advanced
eusocial species, which makes it possible for these species to
regulate their reproduction in response to various social and
environmental stimuli.
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Human brain size nearly quadrupled in the six million years since Homo last shared a
common ancestor with chimpanzees, but human brains are thought to have decreased
in volume since the end of the last Ice Age. The timing and reason for this decrease is
enigmatic. Here we use change-point analysis to estimate the timing of changes in the
rate of hominin brain evolution. We find that hominin brains experienced positive rate
changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo
and technological innovations evident in the archeological record. But we also find that
human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our
dating does not support hypotheses concerning brain size reduction as a by-product
of body size reduction, a result of a shift to an agricultural diet, or a consequence of
self-domestication. We suggest our analysis supports the hypothesis that the recent
decrease in brain size may instead result from the externalization of knowledge and
advantages of group-level decision-making due in part to the advent of social systems
of distributed cognition and the storage and sharing of information. Humans live in social
groups in which multiple brains contribute to the emergence of collective intelligence.
Although difficult to study in the deep history of Homo, the impacts of group size,
social organization, collective intelligence and other potential selective forces on brain
evolution can be elucidated using ants as models. The remarkable ecological diversity
of ants and their species richness encompasses forms convergent in aspects of human
sociality, including large group size, agrarian life histories, division of labor, and collective
cognition. Ants provide a wide range of social systems to generate and test hypotheses
concerning brain size enlargement or reduction and aid in interpreting patterns of brain
evolution identified in humans. Although humans and ants represent very different routes
in social and cognitive evolution, the insights ants offer can broadly inform us of the
selective forces that influence brain size.
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We live in a community of knowledge. Everything we do depends on
knowledge that is both inside our head as well as out in the world
and in other people’s heads.

Steven Slomen1, author of Knowledge Illusion: Why We Never
Think Alone

The key to the origin of the human condition is not to be found in
our species exclusively, because the story did not start and end with
humanity.

E. O. Wilson, The Social Conquest of Earth

Only humans and social insects can build and manage large-scale
societies according to complex economic decision rules.

Boomsma and Franks, 2006

INTRODUCTION

Understanding the causes and consequences of brain evolution
in humans—particularly the role of social life—is significant to
understanding the nature of humanity. Across diverse clades,
sociality is hypothesized to drive brain size and structure. In
primates, greater cognitive challenges associated with forming
bonded social groups in large societies, among other influences
(DeCasien et al., 2017; González-Forero and Gardner, 2018;
DeCasien and Higham, 2019), appear to have selected for
increased brain size (Dunbar, 1998; Dunbar and Shultz, 2007,
2017; Meguerditchian et al., 2021). A broad phylogenetic
perspective can be of significant value in exploring the evolution
of nervous systems (Striedter et al., 2014; Keifer and Summers,
2016; Shigeno, 2017). Although significantly different in sociality,
computation and decision-making in humans and social insects
are accomplished by physical neuroarchitectures (“solid brains”)
as well as “liquid brains” formed by interactions of group
members that create collective intelligence (Couzin, 2009; Pagán,
2019; Piñero and Solé, 2019; Reséndiz-Benhumea et al., 2021).
Across diverse species that vary in social organization, cognitive
demands on individuals may be lower in societies in which
group decision-making is more efficacious than individual
decision-making (Surowiecki, 2004; Sumpter, 2006; Krause et al.,
2010; Woolley et al., 2010; Sasaki and Pratt, 2018; Bak-
Coleman et al., 2021). Superorganismic decentralized “brain”
networks characterize humans and ants, the premier social
insect. Collective intelligence may reduce brain size in both
clades (Bailey and Geary, 2009; Feinerman and Traniello, 2016).
Therefore, the size of groups and society-level intelligence may
affect behavioral performance and cognitive loads and increase
or reduce brain size, depending on context.

Over the course of hominin evolution, encephalization has
been dynamic (e.g., Miller et al., 2019). Australopithecus cranial
capacities were on average 20% larger than those of the late
Miocene hominins Sahelanthropus and Ardipithecus or modern
chimpanzees, despite having chimpanzee-sized bodies (Wolpoff,
1999; Cartmill and Smith, 2009; DeSilva, 2011). These ∼450
cc brains remained roughly unchanged in size from 3.5 to

1From Big Picture Science podcast, Collective “Knowledge.” May 17, 2021.

2.0 million years ago even though late australopiths (e.g.,
Paranthropus) underwent extensive diversification. With the
evolution of Homo, brains began to expand but gross neural
organization may have remained primitive (Ponce de León
et al., 2021). Additionally, brain expansion was not universal
in fossil Homo as evidenced by the small-brained Middle and
Late Pleistocene hominins Homo naledi (Berger et al., 2015;
Montgomery, 2018) and Homo floresiensis (Brown et al., 2004;
Figure 1). Although an almost fourfold increase in brain
volume during the last 2 million years is a hallmark in human
evolution, it remains unappreciated—but well-documented—
that both absolute and relative brain size have decreased since
the end of the Pleistocene (Schwidetzky, 1976; Wiercinski, 1979;
Beals et al., 1984; Henneberg, 1988; Henneberg and Steyn, 1993;
Ruff et al., 1997; Bailey and Geary, 2009; Hawks, 2011; Bednarik,
2014; Liu et al., 2014; Bruner and Gleeson, 2019). The precise
timing of this decrease in brain size, however, is unclear. Some
have placed its origin in the late Pleistocene ∼35 kyr (Ruff
et al., 1997) and others in the more recent Holocene ∼10 kyr
(Henneberg, 1988; Hawks, 2011).

Here we investigate historical patterns of human brain
evolution to date major inflection points of changes in size to
attempt to identify selective factors in the environment that may
have prevailed during times of significant change in brain size.
Because the deep history of neural tissue and its organization
is difficult to explore, we use ants to model the broad impacts
of social selection on brain size evident in nature to gain
insights into the possible selective forces that influenced patterns
of human brain evolution. Although phylogenetically remote
from humans, ants provide examples of brain evolution that
may help identify selective factors and offer neuroarchitectural
details to complement the metric of brain size. These advantages
may compensate for some of the limitations of behavioral and
neurobiological research on extinct hominin forms.

Ants are eusocial insects characterized by reproductive
division of labor, cooperative brood care, and overlap of
generations. They are exemplars of social life that encompass
extant species basal in social structure and highly complex
species, enabling comparative studies. Ants are eusocial, and
humans have been characterized as eusocial (Foster and
Ratnieks, 2005; Boomsma and Franks, 2006; Betzig, 2014;
D’Ettorre, 2017b), both forming large, complex, kin-oriented
societies, including those with agricultural practices and full-
time division of labor. In humans, however, division of
labor is not associated with a loss of reproductive potential.
Ultrasocial species (Campbell, 1983; Gowdy and Krall, 2013,
2016) produce their own food crops and include some
ants (and termites) and humans. Sociobiological parallels can
be leveraged to understand the general role of advanced
social life in brain evolution. While divergent in key aspects
of social organization, humans and ants exhibit important
convergences, for example, in the ability to act collectively.
And although their brains are structurally and functionally
different, our understanding of brain size scaling and structural
allometries in ants provide opportunities to address general
questions of brain evolution—including size reduction —
in humans.
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FIGURE 1 | Trends in hominin brain evolution. (A) Cranial capacity in fossil apes (Miocene hominids) and hominins over the last 10 million years. Brain size remained
relatively steady throughout the late Miocene and Pliocene, increasing only slightly in Australopithecus compared with earlier hominins. However, by 2 million years
ago, there was a dramatic increase in the rate of growth, coinciding with fossil evidence for the earliest members of genus Homo. This change point is illustrated by a
red vertical dotted line (95% CI shown as thick pink vertical line). A second change-point is detected at ∼1.5 million years ago and the rate of brain size increase
remains steady through the Pleistocene and the evolution of Homo sapiens. If the small-brained Middle and Late Pleistocene hominins H. naledi (blue dots) and
H. floresiensis (orange dot) are included, these two change points merge into a single, overlapping encephalization event between 1.97 and 2.21 million years ago.
(B) During the last 100,000 years, brain size has remained steady in H. sapiens until a rapid and dramatic change point only 3,000 years ago decreased Holocene
human brain size at a rate fifty times greater than the previous increases in Pleistocene brain volume. Each black dot represents an individual fossil skull or
osteological specimen.

MATERIALS AND METHODS

To understand temporal patterns of human brain evolution, we
applied a change-point analysis to identify the timing of inflection
points in hominin brain evolution using our brain size dataset
of 985 dated log10 transformed estimates of hominin cranial
capacities (cc) compiled from the literature (Supplementary
File 1). The dataset represents brain evolution over the last 10
million years of hominid and hominin evolution and includes
Rudapithecus (N = 2), Sahelanthropus (N = 1), Ardipithecus
(N = 1), Australopithecus (including Paranthropus) (N = 29),
Early Pleistocene Homo (N = 37), Middle Pleistocene Homo
(N = 60), Late Pleistocene Homo (N = 156), and Holocene
H. sapiens (N = 699). We only used published cranial volumes
(cc or mL) and not cadaver-derived weights (g) since cranial
volume and brain weight are not equivalent (e.g., Tobias,
1970). Analysis was limited to individuals that are estimated
to have been at least 10 years old and thus had exceeded the
age at which modern H. sapiens achieves adult brain volume
(Coqueugniot and Hublin, 2012).

Changepoints were determined using the packages
changepoint (Killick and Eckley, 2014) and segmented (Muggeo,
2008) in R Studio (Version 1.2. 5019). Changepoint was first
used to provide approximate prior estimates for changes in
the mean log10(cc) across the time series using the “BinSeg”

method. These prior estimates were then used to fit a piecewise
generalized linear model to the data with the segmented package
(Muggeo, 2008), which provided estimates of 1) the locations
of changepoints (or breakpoints) in the slope of the time series;
and 2) the slopes of the lines around each changepoint, which we
interpreted as approximate rates of evolutionary change. Because
the phylogenetic relationship of the different hominin species
remains contentious and because there is genetic evidence
for interbreeding between many Late Pleistocene hominin
populations (e.g., Gokcumen, 2020), we included all hominin
specimens in the change point analysis. However, we ran two
separate models: one including the small-brained Middle and
Late Pleistocene fossils from H. naledi and H. floresiensis and one
excluding them. We mainly describe the results for when these
small brained species were excluded (N = 981), but the timing of
the decrease in hominin brain size in the Holocene was negligible
between these two models.

RESULTS

The best piecewise GLM model fit explained approximately
79% of the variance (adj r2 = 0.79) in log10(cc) values and
identified three changepoints (Table 1). The first was detected
at 2.10 ± 0.07 Ma, coincident with fossil evidence near the
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TABLE 1 | Estimates of changepoint dates—excluding small-brained Pleistocene Homo (N = 981).

Changepoint (CPT) Date (Ma) ± SE 95% Confidence Interval (CI) for changepoint date (Ma) Rate of change after changepoint [(log10(cc)/Ma] ± SE

CPT 1 2.10 ± 0.07 2.25 < CPT 1 < 1.96 0.35 ± 0.05

CPT 2 1.49 ± 0.14 1.75 < CPT 2 < 1.22 0.19 ± 0.01

CPT 3 0.003 ± 0.001 0.005 < CPT 3 < 0.001 −17.16 ± 6.69

TABLE 2 | Estimates of changepoint dates—including small-brained Pleistocene Homo (N = 985).

Changepoint (CPT) Date (Ma) ± SE 95% Confidence Interval (CI) for changepoint date (Ma) Rate of change after changepoint [(log10(cc)/Ma] ± SE

CPT 1 2.10 ± 0.05 2.19 < CPT 1 < 2.01 0.72 ± 0.51

CPT 2 1.97 ± 0.12 2.21 < CPT 2 < 1.73 0.20 ± 0.01

CPT 3 0.003 ± 0.001 0.006 < CPT 3 < 0.0005 −16.74 ± 7.55

first known occurrence of Homo erectus (Herries et al., 2020).
At 2.10 Ma, the rate of evolution increased sharply from
0.03 ± 0.01 log10(cc)/Ma to 0.35 ± 0.05 log10(cc)/Ma. A second
changepoint occurred at 1.49 ± 0.14 Ma when the rate of
evolution slowed to 0.19 ± 0.01 log10 (cc)/Ma. A steady increase
in brain size—independent of body size—followed and lasted
through the Pleistocene (Ruff et al., 1997; Lee and Wolpoff, 2003;
Rightmire, 2004; Hawks, 2011). We identified a third changepoint
at 0.003 ± 0.001 Ma at a rate of −17.16 ± 6.69 log10(cc)/Ma.
This rate is 50 times greater than the renowned increase in
human brain size. Our data suggest that this reduction may have
been more recent—3,000 years ago—than previously suggested.
We interpret our result conservatively, and caution that any
findings about brain size changes throughout human evolution
are contingent on the resolution of the available dataset (e.g.,
VanSickle et al., 2020). Indeed, the inclusion of smaller-brained
Pleistocene hominins (H. naledi and H. floresiensis) reduced
model fit slightly (adj r2 = 0.74) and had the effect of widening the
95% CIs of the first two changepoints such that they overlapped
between the wider time interval of 2.2–1.7 Ma (Table 2). Yet
the timing of the third Holocene changepoint in this model
was unaffected by the inclusion of these specimens, although its
95%CI also widened slightly (Table 2).

DISCUSSION

Brain Size Increase and Reduction in
Humans
The changepoints we identified document trends in brain
size but do not reveal underlying causes and mechanisms of
encephalization. The expensive tissue hypothesis (Aiello and
Wheeler, 1995) posits that a trade-off in allocated resources
from one expensive tissue (the brain) to another (the gut)
was made possible by shifts to a higher quality diet in Homo,
enabled in part by enhanced technological skills (Lepre et al.,
2011), exploitation of diverse resources (Braun et al., 2010),
and the invention of cooked foods through controlled fire
(Wrangham, 2009; Herculano-Houzel, 2016). In addition to
evidence that energetic constraints on encephalization may have
been released by dietary shifts in early Homo, others have posited
that brain expansion in early Homo may have been driven

by the need for enhanced social intelligence (Dunbar, 1998;
Dunbar and Shultz, 2017). With growing complexity in social life,
perhaps associated with increased group size, brain expansion
occurred. Resource sharing within groups and allocare may have
provided the energy surplus needed to support the increased
energetic cost of a larger brain (Isler and van Schaik, 2012).
These hypotheses are not mutually exclusive: a combination of
social challenges and ecological pressures and increased dietary
quality and breadth drove Pleistocene brain expansion in our
ancestors, who were living in increasingly larger groups and
likely benefitted from enhanced group-level cognitive abilities
and greater cultural intelligence (van Schaik et al., 2012), which
could in turn accelerate brain expansion via a feedback loop
(Markov and Markov, 2020).

The cause of brain reduction in the Holocene is also unclear.
One possibility is that it is associated with a corresponding
decrease in body mass (Henneberg, 1988; Ruff et al., 1997). The
early expansion of the brain in Homo has been explained as
an increase in absolute body size (Ruff et al., 1997; Wood and
Collard, 1999; McHenry and Coffing, 2000; Lee and Wolpoff,
2003) though Grabowski (2016) later employed quantitative
genetics to suggest that selection had favored brain enlargement
and body size increase was a by-product. Hawks (2011) contends
that the absolute change in brain size from the Pleistocene to the
Holocene is greater than expected based on changes in body mass
in the same time period, emphasizing that given the correlation
between human brain and body size (Holloway, 1980), the
observed 5 kg decrease in body size in the Holocene would
account for only a 22 mL decrease in brain volume (Hawks, 2011).
However, the actual reduction is more than 5x greater, suggesting
that body size alone cannot entirely explain the decrease in
brain volume. We find here that body size reduction may have
preceded brain size reduction by several millennia. Ruff et al.
(1997) notes that the decrease in body size in late Pleistocene
humans began around 50 kyr, whereas brain reduction appears
to been a Holocene phenomenon.

Yet there may be other non-allometric explanations for the
reduction in human brain size at the Pleistocene-Holocene
transition due to energetic, nutritional (Wiercinski, 1979),
and/or developmental constraints (Hawks, 2011). The brain size
reduction in Holocene humans parallels that of domesticated
animals, suggesting that humans have self-domesticated by
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deliberately removing highly aggressive individuals from
breeding populations, leading to a reduction in intra-population
(but not inter-population) aggression (Leach, 2003; Hare and
Tomasello, 2005; Wrangham, 2018, 2019; Bruner and Gleeson,
2019; Hare and Woods, 2020). Brain reduction in this case
would be a by-product (or cause) of docility, a phenomenon
documented recently in domesticated cattle (Balcarcel et al.,
2021). Groves (1999) suggests that domesticated dogs have
sufficiently co-evolved with humans to have symbiotically
become our external senses, thereby decreasing our reliance
on brain centers that process sensory information. However,
our finding here—that brain size reduction occurred in just
within last 3,000 years—is temporally inconsistent with these
prior explanations. Human self-domestication is argued to have
occurred at the onset of species∼300,000 years ago (Wrangham,
2019) or coincident with the evolution of what some have called
“behavioral modernity” ∼80,000 years ago (Hare and Woods,
2020). Recent fossil and genetic evidence indicate that dogs were
domesticated > 20,000 years ago (Perri et al., 2021).

Human and Ant Sociobiology and
Evolutionary Neurobiology: Insights Into
Brain Elaboration and Reduction
Human social life has long been analyzed in reference to the
social organization of ants. Imms (1946) review of Haskins
(1939) Of Ants and Men described ants as “predominant”
among the “very few living creatures whose social development
at all parallels our own.” He emphasized the value of having
“a nearly complete series of evolutionary forms among living
ants, numerous ‘missing links’ and ‘living fossils”’ and a history
“much more complete and much better preserved than that of
man.” Comparisons made to identify commonalities in patterns
of sociality between these diverse clades continue to be made
today (Boomsma and Franks, 2006; Wilson, 2012; Crespi, 2014;
D’Ettorre, 2017a,b; Friedman and Søvik, 2021; Gowdy, 2021). The
benefits of ant models for the study of human social evolution
noted by Imms are made more compelling by an additional
80 + years of new species discovery (roughly 5,000–6,000 circa
1,940 to > 14,000 today), an expanded phylogeny (6 to ∼20
subfamilies), and an eruption of integrative sociobiological and
neurobiological research. Ants exhibit striking variation in colony
size and demography, and individual and colony-level cognition.
Diversity in social phenotypes creates the potential to provide
general insights into human social structure and brain evolution.

Acknowledging the limitations of analogies, human and ant
comparisons may reveal patterns in nature that broadly suggest
social and ecological selective forces relevant to brain evolution.
We recognize that the uniqueness of human cognition (Laland
and Seed, 2021) cannot be overemphasized, and neurobiological
parallels with ants are as constrained as sociobiological
comparisons, if not more limited. Although ant and human
brains have the common function of processing environmental
information to adaptively respond to social signals and cues,
they are structured very differently. The size, neuron number,
and synaptic connectivity of an ant brain is a minute
fraction of that of a human brain (Herculano-Houzel, 2016;

Godfrey et al., 2021). However, the computational power of an
ant brain is remarkable for its size and miniaturization does
not appear to constrain behavioral performance and/or higher-
order processing (Muscedere et al., 2014), social learning, or
consciousness (Avarguès-Weber and Giurfa, 2013; Barron and
Klein, 2016; Perry et al., 2017; Lihoreau et al., 2019; Perry
and Chittka, 2019; Elek et al., 2020; D’Ettorre et al., 2021).
Social organization in ants may “require relatively simple and
computationally inexpensive forms of cognition” (Lihoreau et al.,
2012), some extrinsic to brain operations, that could mitigate
the need for advanced processing capability. Behavior in ants
typically involves task routines and kinesthetic performance
rather than sophisticated cognition. Unlike the human brain
(Noonan et al., 2018), ant brains appear to lack executive function
and the ability to mentalize, among other circuitry specialized for
human social performance.

Relative needs for social information processing are strikingly
different in ants and humans. Olfaction is dominant in
ants and involves a relatively small number of chemicals to
guide individual actions and organize colony-level behavior.
Vision appears to have very limited social functions and
mainly functions in navigation during foraging (Hölldobler
and Wilson, 1990). The anatomy of ant brains thus largely
reflects investment in brain centers such as the antennal lobes
and optic lobes responsible for processing olfactory and visual
stimuli, respectively. These inputs are mainly integrated in the
mushroom bodies, brain compartments specialized in higher-
order processing, learning, and memory, and to a lesser extent in
the central complex. The mushroom bodies, deeply homologous
to the vertebrate cortex (Tomer et al., 2010), have long been
consider to be the neuroanatomical seat of intelligence in ants
and other insects (Strausfeld et al., 1998), but the nature of ant
intelligence is only very loosely comparable to that of humans.
Mushroom body elaboration also preceded the evolution of
eusociality (Farris and Schulmeister, 2011).

Ants have nevertheless emerged as important models for
understanding the role of sociality (Ilies et al., 2015; Kamhi
et al., 2016, 2019; Godfrey and Gronenberg, 2019) and behavioral
performance and cognition (Muratore and Traniello, 2020;
Muratore et al., 2021) in brain evolution. Analyses of sociality
and brain size scaling (e.g., Godfrey and Gronenberg, 2019;
Muratore and Traniello, 2020) and information processing
through social interaction (e.g., Davidson et al., 2016) can
contribute to broadly understanding how social biology may
have influenced general aspects of human brain evolution. The
allometric scaling of functionally specialized brain centers in
ants allows the adaptiveness of brain mosaics to be explored
(e.g., Muratore et al., 2021) and the metabolic costs of neural
tissues that are highly significant to brain evolution (Aiello and
Wheeler, 1995) can be recorded in individual ant brains (Coto
and Traniello, 2021). Studies of the influences of diet, which is
considered significant in primate (and human) brain evolution
(Wrangham, 2009; DeCasien et al., 2017), are facilitated by the
diverse feeding ecologies of ants. Ant nutritional socioecology
spans highly specialized as well as generalist predators that vary
in colony size and degree of complexity of social organization,
allowing the relative roles of diet and social complexity to be
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separated because specialist and generalist species that each form
small and large colonies (Azorsa et al., in preparation). Ants
also have culture in the form of tool use (Zhou et al., 2020 and
references therein), and although they do not process food by
cooking, they may preserve prey (Maschwitz et al., 1979).

The application of theories of vertebrate brain evolution to
social insects has been debated (Lihoreau et al., 2012; Farris, 2016)
and studies describe variable relationships between sociality,
brain and brain compartment size, body size, and group size in
eusocial insects (Farris and Schulmeister, 2011; Seid et al., 2011;
Riveros et al., 2012). Workers of ant species characterized by
larger colony size have larger brains, suggesting greater social
interaction selects for increased brain size (Wehner et al., 2007).
Similarly, comparisons of socially basic and social complex
ant species suggest larger colony size and collective actions
have selected for larger brains and mushroom bodies (Kamhi
et al., 2016). In contrast, in monomorphic fungus-growing ants,
which have agrarian habits, larger colony size is associated
with decreased brain size (Riveros et al., 2012). This latter
comparison among agricultural ant species provides insight into
how increased group size and sociality in human populations may
have reduced brain size (Bailey and Geary, 2009) due to a high
level of emergent complexity.

Worker behavior undergoes age-related development in ants.
Like human brains, ant worker brains exhibit age-related synaptic
remodeling, suggesting synaptic pruning in association with an
increasingly diverse, flexible, and efficient behavioral repertoire
(Seid et al., 2005; Seid and Traniello, 2006; Muscedere et al.,
2009). Age and behavioral development can be associated with
increased brain volume (Muscedere and Traniello, 2012) and
declines in the density of mushroom body microglomeruli
(Gordon and Traniello, 2018)—“microprocessor”-like synaptic
structures that underlie plasticity in sensory processing capability
and behavior (Groh and Rössler, 2011; Groh et al., 2014).
Elements of human brain development are thus mirrored in
ant brain ontogeny and social behavior. In mole rats, eusocial
mammals convergent in social structure with eusocial insects,
there is no clear association between social system and relative
brain size: eusocial species do not have smaller or larger brains
than social or solitary species (Kverková et al., 2018). Although
there is an apparent trend between social system and forebrain
neuron number, this is likely an artifact of the extreme metabolic
adaptations to subterranean life found in H. glaber (Kverková
et al., 2018; Browe et al., 2020). Ants appear to provide more
useful models than eusocial mammals.

Division of Labor and Brain Investment Patterns
Division of labor is a core social trait in humans and ants
that potentially influences brain size evolution by unequally
distributing behavioral performance needs and cognitive loads
across group members. Greater social complexity in ants is
correlated with large group size and division of labor among
polyphenic workers (Anderson and McShea, 2001; Kappeler,
2019). Division of labor by morphologically differentiated and
behaviorally specialized workers (physical castes) is an attribute
of a relatively small number of ant species. Analyses of
brain and behavior in these ants, especially those featuring

extraordinary polymorphisms and high degrees of behavioral
specialization, can provide important information on how
distributed cognition impacts the size and scaling of brain size
and structure in relation to body size. For example, mushroom
bodies are disproportionally large in the brains of media
(mid-size) workers of the fungus-growing ant Atta cephalotes.
The diverse and behaviorally challenging task repertoire of these
workers encompasses leaf-harvesting, and their social role and
neuroanatomy differs from that of smaller and larger workers
that perform other tasks (Muratore et al., 2021). Using this
ant as a model to understand how agriculture has influenced
brain evolution may help identify social conditions, life histories,
and ecological factors favoring either an increase or decrease
in brain size. It can also help identify how brain centers
responsible for higher-order processing have evolved in response
to either narrowly circumscribed or pluripotent and flexible task
repertoires. In humans, such changes may have occurred during
the transition from hunter-gatherer to agrarian habits. Ants
provide a window through which such evolutionary processes
may have occurred, and neuroanatomical outcomes.

Other strongly polymorphic ants offer additional insights into
the role of division of labor in the evolution of brain size and
compartmental scaling (Muscedere and Traniello, 2012; Ilies
et al., 2015; Gordon et al., 2017, 2019). Ecologically different
species may have distinct neural phenotypes that vary in the
size of sensory input compartments and the mushroom bodies,
among other brain centers (Muscedere and Traniello, 2012).
Mushroom body size correlates positively with task plasticity,
supporting the notion that greater demands on behavioral
performance are reflected in greater investment in higher-order
processing tissues. Task specialization may also affect brain size
and compartmental scaling: larger colonies may show a higher
level of task specialization among workers, reflected in relatively
larger mushroom bodies (Amador-Vargas et al., 2015). The larger
picture is that brain differentiation can occur in association with
division of labor in the absence of striking changes in body size,
illustrating how selection may have operated in humans as social
groups increased in size.

Collective Intelligence and
Neuroenergetic Costs
Ponce de León et al. (2008) and Hawks (2011) suggested
that reduction of human brain size—without any evidence for
intellectual diminishment—implies selection for brain efficiency.
In ants, there is evidence of selection for metabolic efficiency
in the brain. Kamhi et al. (2016) used cytochrome oxidase
(COX) activity, a proxy for neuron metabolism, to contrast brain
evolution and social evolution in the weaver ant Oecophylla
smaragdina and the garden ant Formica subsericea, two sister
clades whose workers are equivalent in body size but differ
strongly in social organization and collective intelligence.
Increased social complexity in weaver ants—reflected in division
of labor by worker physical castes, large colony size, and
remarkable decentralized group action including cooperative
nest building—was associated with larger mushroom bodies,
implying greater needs for higher-order information processing.
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Weaver ant worker mushroom bodies have reduced COX activity.
Therefore, increased brain size in socially complex species may be
associated with reduced brain operation costs, contrasting with
the assumption that increased brain size increases metabolic costs
(Aiello and Wheeler, 1995; Isler and van Schaik, 2009).

Social Selection and Brain Evolution
Reduction in brain size may not compromise cognitive
performance if intelligence is an attribute of the society rather
than the individual. Galton (1907) first described that the
accuracy of decision making by human groups could exceed
that of any individual group member. This concept of collective
intelligence has since been elaborated in studies ranging from
insects to humans (Woolley et al., 2010; Ward et al., 2011; Sasaki
and Pratt, 2018; Almaatouq et al., 2020). If brain production,
maintenance, and operation costs are metabolically significant
(Aiello and Wheeler, 1995; Leonard et al., 2003; Isler and van
Shaik, 2006; Chittka and Niven, 2009; Navarrete et al., 2011;
Kuzawa et al., 2014; Pontzer et al., 2016; Herculano-Houzel,
2017), then collective intelligence may reduce demands for
neural tissue to support individual cognitive capabilities. Using a
multidisciplinary modeling approach, Reséndiz-Benhumea et al.
(2021) indeed demonstrated that agents with relatively small
brains can through social interaction achieve a level of behavioral
performance comparable to those of larger-brained but solitary
agents. Further testing of this idea, however, will require a
better understanding of whether Holocene human brains reduced
isometrically or if specific regions reduced in size.

We suggest that group cognition lowered the demands
for neural architechtures required to support some aspects of
individual intelligence and decision making (Bailey and Geary,
2009). This effect may have become even more pronounced
with the advent of writing ca. 5000 years ago (Schmandt-
Besserat, 2010), which falls within the estimated 95% CI for
the pronounced reduction in Holocene human brain size
(Figure 1). During human history, social groups became
larger, social interactions more frequent, social networks more
complex, and tracking relationships more demanding (Bailey and
Geary, 2009; Foley and Gamble, 2009). A rise in sociocultural
complexity was not due to particular individuals becoming more
intelligent and culturally skilled, but because of the emergence
of collective intelligence resulting from a growing population
of interconnected humans and interacting human groups. As
group size increases, interactions with a dynamic and exceedingly
complex social landscapes result in increased demands on the
brain (Bickart et al., 2011; Kanai et al., 2012). However, because
of the metabolic demands of the brain (Pontzer et al., 2016),
there may be limits to feedback loops between social network
size and brain structure. If group decision-making generated
adaptive group responses exceeding the cognitive accuracy and
speed of individual decisions and had a fitness consequence,
then human brain size may have decreased as a consequence of
metabolic cost savings.

Population size expanded dramatically with the advent of
agriculture, beginning ∼10 kyr and grew exponentially from an
estimated five million to over 100 million by 3000 years ago
(Goldewijk et al., 2011). This increase in population coincided

with deterioration in individual health (Armelagos et al., 1991;
Milner, 2019) and increases in infection rate (Eshed et al., 2010),
pathogenic load (Page et al., 2016), and virulence (Menneret
et al., 2010). It remains possible, then, that the high energetic
cost of a heightened immune response (Wells and Stock, 2020),
might have been a factor in Holocene brain reduction. In fact,
Crabtree (2013a; 2013b) proposed this immunity-for-intelligence
trade-off in his controversial “Idiocracy Hypothesis,” though this
idea has been criticized on the basis of flawed assumptions
(Kalinka et al., 2013; Mitchell, 2013).

Gowdy and Krall (2013) draw parallels between the
ultrasocial human superorganism, complete with division
of labor and “economic organization around surplus” that
arose in the Holocene and the sociobiology of agricultural
eusocial insects, including some ants and termites. Brain
size reduction occurred in traditional hunter-gatherer
human populations (Wiercinski, 1979) that never adopted
sedentary agricultural practices, but have complex social
networks (Apicella et al., 2012). Foster and Ratnieks (2005)
suggest that the presence of post-reproductive female helpers
(grandmothers) universally present in human societies is
sufficient to characterize humans as a “new eusocial vertebrate,”
offering additional support for the value of broad comparisons
across unrelated taxa.

CONCLUSION

We suggest that patterns of human brain evolution were
influenced by collective intelligence, a convergent characteristic
of diverse group-living animals (Surowiecki, 2004; Sumpter,
2006; Woolley et al., 2010; Morand-Ferron and Quinn, 2011;
Reid et al., 2015; Biro et al., 2016; Bates and Gupta, 2017;
Sasaki and Biro, 2017). The precise role of societal information
flow, distribution, and transfer as emergent group properties
that may affect brain evolution and neural functioning is not
well understood (e.g., Weaverdyck and Parkinson, 2018). Large
brains may not be required to generate complex behavior, and
brain mosaicism and circuitry—rather than overall size—may
be important (Healy and Rowe, 2007, 2013; Chittka and
Niven, 2009; Avarguès-Weber et al., 2018; Logan et al.,
2018; Godfrey and Gronenberg, 2019). Computational models
(e.g., Feinerman and Traniello, 2016; Reséndiz-Benhumea
et al., 2021) and patterns in some ant clades (Muscedere
and Traniello, 2012; Riveros et al., 2012; Muratore et al.,
2021) suggest that group-level cognition may select for
reduced brain size and/or adaptive brain size variation.
Moreover, complex systems theory predicts that greater social
complexity derives from individual simplicity (Delgado and Solé,
1997), although the neurobiological and behavioral meaning
of “simplicity” is unclear. Complexity in eusocial insect
colony organization may involve selection for either smaller,
neurally differentiated worker brains (Lihoreau et al., 2012;
Riveros et al., 2012; O’Donnell et al., 2015; Feinerman and
Traniello, 2016) or larger brains (Wehner et al., 2007) able to
metabolically offset increased production and operation costs
(Kamhi et al., 2016). It seems unlikely that a “theory of theories”
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will appear to universally and meaningfully explain the multiple
roles sociality can play across taxa as evolutionarily as
divergent as humans and ants. We advocate for an ecumenical
and open-minded approach that integrates theories of social,
sociocultural, ecological, and mosaic and metabolic brain
evolution to create an awareness of the breadth of the natural
landscape of possibilities that can encompass both brain size
increase and reduction. Human/ant comparisons have heuristic
value and can offer a conceptual compass to guide future research.
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(Formicidae: Dolichoderinae)
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Jessica Hernandez-Rivera3 and Wulfila Gronenberg1,3
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In social insects colony fitness is determined in part by individual worker phenotypes.
Across ant species, colony size varies greatly and is thought to affect worker trait
variation in both proximate and ultimate ways. Little is known about the relationship
between colony size and worker trait evolution, but hypotheses addressing the role
of social structure in brain evolution suggest workers of small-colony species may
have larger brains or larger brain regions necessary for complex behaviors. In previous
work on odorous ants (Formicidae: Dolichoderinae) we found no correlation between
colony size and these brain properties, but found that relative antennal lobe size scaled
negatively with colony size. Therefore, we now test whether sensory systems scale with
colony size, with particular attention to olfactory components thought to be involved
in nestmate recognition. Across three species of odorous ants, Forelius mccooki,
Dorymyrmex insanus, and D. bicolor, which overlap in habitat and foraging ecology but
vary in colony size, we compare olfactory sensory structures, comparing those thought
to be involved in nestmate recognition. We use the visual system, a sensory modality not
as important in social communication in ants, as a control comparison. We find that body
size scaling largely explains differences in eye size, antennal length, antennal sensilla
density, and total number of olfactory glomeruli across these species. However, sensilla
basiconica and olfactory glomeruli in the T6 cluster of the antennal lobe, structures
known to be involved in nestmate recognition, do not follow body size scaling observed
for other structures. Instead, we find evidence from the closely related Dorymyrmex
species that the larger colony species, D. bicolor, invests more in structures implicated
in nestmate recognition. To test for functional consequences, we compare nestmate and
non-nestmate interactions between these two species and find D. bicolor pairs of either
type engage in more interactions than D. insaus pairs. Thus, we do not find evidence
supporting a universal pattern of sensory system scaling associated with changes in
colony size, but hypothesize that observed differences in the olfactory components in
two closely related Dorymyrmex species are evidence of a link between colony size and
sensory trait evolution.

Keywords: antennal sensilla, ommatidia, antennal lobe glomeruli, social interactions, pheromone GC-MS
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INTRODUCTION

Superorganisms represent an increase in biological complexity
from solitary organisms, making them a common focus of
complexity studies (Cole, 1985; Bonner, 1993; Szathmáry and
Maynard Smith, 1995; Bourke, 1999; Anderson and McShea,
2001; Jeanson et al., 2012; Kennedy et al., 2017). In social insects
the colony is the reproductive unit of the superorganism and
complexity may scale with colony size in a manner similar to
complexity scaling with body size or group size across other
taxa (Bonner, 1993). Indeed, across ant species, reproductive
dimorphism (Bourke, 1999), worker polymorphism (Bonner,
1993; Murakami et al., 2000), and division of labor (Jeanson
et al., 2007; Ferguson-Gow et al., 2014) are correlated with
colony size. Importantly, components of increased complexity,
e.g., morphological (Tschinkel, 1988; Thomas and Elgar, 2003)
and behavioral (Jeanson et al., 2007; Ferguson-Gow et al., 2014)
differentiation in a colony, sometimes arise only after colonies
reach a certain size (Dornhaus et al., 2011).

Studies addressing the role of social structure in nervous
system trait evolution often propose that social complexity,
generally measured by colony size, will be negatively correlated
with individual worker behavioral complexity (Anderson and
McShea, 2001; Gronenberg and Riveros, 2009; O’Donnell et al.,
2015) and hypothesize that relative brain investment, particularly
in brain regions associated with more complex behaviors
such as multi-modal learning and memory, will decrease
with increasing colony size (Riveros et al., 2012; O’Donnell
et al., 2015; Kamhi et al., 2016). However, individual workers
of social species often show behavioral and cognitive skills
comparable to solitary relatives (Gruter et al., 2011; Pasquier
and Grüter, 2016; Hollis et al., 2017; Yilmaz et al., 2017), and
comparisons seeking to link colony size with changes in brain
structure may be complicated by confounding variables such
as habitat differences or phylogenetic distance (Kamhi et al.,
2016; Godfrey and Gronenberg, 2019b). Furthermore, complex
collective behaviors may emerge from expanded communication
systems or require relatively small changes in neural circuitry
(Lihoreau et al., 2012; Bouchebti and Arganda, 2020) without
changes to individual behavioral complexity (Jeanson et al., 2012;
Feinerman and Korman, 2017). Thus, our understanding of the
role of system complexity in individual-level trait evolution will
be aided by comparisons of individuals from closely related
species that vary in mature colony size but overlap in other
drivers of trait evolution such as habitat and foraging ecology
(Godfrey and Gronenberg, 2019a).

The evolution of larger social groups is hypothesized to
act as a unique driver of trait evolution, particularly in traits
related to intraspecific communication and recognition of group
members (Stuart, 1991; Bourke, 1999; Freeberg et al., 2012).
In solitary organisms, intraspecific communication and kin
recognition are important to coordinating reproductive and
familial relationships; in social organisms these same systems
may be expanded or modified for interactions among individuals
of varied relatedness. Since the evolution of sociality involves
an expansion of the type and number of relationships among
conspecifics, it represents an increase in biological complexity

from solitary life histories (McShea, 1996). Similarly, the number
and type of interactions may also scale with group size across
social species and have consequences for individual traits
(Anderson and McShea, 2001), particularly those related to
intraspecific recognition and communication (Dunbar, 1992).

Superorganisms are colonies, not societies, with important
differences in intragroup recognition and communication.
Rather than individualized recognition of group members (Wells
et al., 2003), superorganismal species are thought to use a
general recognition system that allows them to assess whether
an individual is a nestmate or non-nestmate (Breed, 2014;
Esponda and Gordon, 2015). Intraspecific communication in
Hymenoptera is largely chemosensory and mechanosensory
in nature (Hölldobler, 1999), with the origins of chemical
signaling in social insects originating from those used in defense
(Mitra, 2013), fertility (Van Oystaeyen et al., 2014; Oi et al.,
2015) and kin recognition (Lihoreau et al., 2007) by solitary
species. Chemosensory information is processed primarily in
the antennal lobe, and the diversification of signaling in
Hymenoptera is mirrored by a notable expansion in olfactory
receptor genes (Zhou et al., 2015), and increased complexity
of olfactory system morphology (Dacks and Nighorn, 2011;
Rössler and Zube, 2011).

In ants, social signal reception occurs primarily through
sensilla on the antennae and maxillary palps. The sensilla
basiconica have been identified as important in nestmate
recognition in ants (Ozaki et al., 2005; Nishikawa et al., 2012;
Sharma et al., 2015). These stout, pegged sensilla are set in a
small indentation in the cuticle (Hashimoto, 1990; Renthal et al.,
2003) and, while originally described as having a single apical
pore (Hashimoto, 1990), but are now known to be multiporous
(Sharma et al., 2015). Most other types of sensilla house a small
number of sensory neurons, but each s. basiconicum can be
innervated by more than 100 sensory neurons (Nakanishi et al.,
2009). Olfactory sensory neurons (OSNs) expressing a particular
odorant receptor complex converge on the same glomerulus
(synaptic cluster) in the antennal lobe such that the number of
glomeruli is often a good estimate of odorant receptor (OR) genes
(Hansson and Stensmyr, 2011; Haverkamp et al., 2018; but see
Younger et al., 2020). In ants, OSNs from the s. basiconica form
glomeruli in a cluster called T6, suggesting this region plays a
role in nestmate recognition (Ozaki et al., 2005; Nakanishi et al.,
2009; D’Ettorre et al., 2017) and may be subject to selection
on social communication. On the other hand, while some ants
have elaborate visual systems used in navigation, foraging, and
learning and memory (Jaffé et al., 1990; Narendra et al., 2011;
Yilmaz et al., 2017, 2019; Fernandes et al., 2018; Wehner, 2020),
and may rely on multiple modalities for nestmate recognition
(Bos et al., 2010), there are no documented examples of visually
based nestmate recognition systems in ants (Hölldobler, 1999).

With approximately 900 described species, Dolichoderinae is
one of the four largest, species-rich subfamilies of ants (Ward
et al., 2010). They are commonly referred to as odorous ants,
a moniker referencing the volatile compounds reminiscent of
fermented cheese or rotting fruit (Penick and Smith, 2015)
emitted from their pygydial (anal) gland (Wheeler et al.,
1975). However, the species diversity of dolichoderine ants is
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not reflected in relative research interest in dolichoderine ant
biology, where the majority of studies focus on the invasive
pest Argentine ant (Linepithema humile). In the experiments
described here, we ask if differences in sensory systems
across workers of three species of odorous ants in the tribe
Leptomyrmecini—Dorymyrmex bicolor, D. insanus, and Forelius
mccooki (Formicidae, Dolichoderinae; Figures 1, 2A,B)—are
explained by body size scaling and if not, whether variation in
colony size better explains differences. Importantly, these species
overlap in habitat and foraging ecology, even competing with
each other for resources (Bestelmeyer, 2005), commonalities
leveraged here to control for differences in sensory ecology driven
by these variables. We predict that variation in visual sensory
systems, presumably marginally related or unrelated to social
communication in these species, will be explained largely by
body size. In contrast, given that the olfactory system supports
social communication in ants, its evolution should be influenced
by or influence colony size evolution. We therefore expect
differences in the olfactory system, particularly in structures
related to nestmate recognition, to correlate better with colony
size than body size.

MATERIALS AND METHODS

Species Identification and Collection
Forelius and Dorymyrmex, two sister dolichoderine ant genera
known for their xerophilic and thermophilic habits, also have in
common a tendency toward remarkable intraspecific variation.
There are currently three species of Forelius in the United States,
F. damiani (Guerrero and Fernández, 2008) (known in the
United States only from southern Texas), F. pruinosus (Roger,
1863) and F. mccooki (McCook, 1880). The last two species
vary significantly in color and hardly at all in morphology;
few features can reliably separate them. The primary distinction
is one of standing pilosity: F. mccooki has erect setae on the
scapes, posterior margin of the head, and external face of the
tibiae, while F. pruinosus has few to none of these standing
hairs—but even this character has occasional intermediates
(Ward, 2005). The small yellow Forelius abundant in Tucson,
Arizona that were collected for our study have numerous
standing setae on the aforementioned structures, so we identify
these samples as F. mccooki. Some researchers have found
preliminary evidence of two Forelius clades throughout the
western United States, but also found conflicting results that
suggest F. mccooki, F. pruinosus, and an undescribed orange
Forelius sp. are tangled together in a single clade (Cover,
pers. comm., 2021). We concur with Ward (2005) and Fisher
and Cover (2007) that North American Forelius taxonomy
needs further study.

The taxonomy of North American Dorymyrmex is notoriously
complicated (Creighton, 1950; Snelling, 1995; Deyrup, 2017).
An ongoing phylogenetic analysis and taxonomic revision has
confirmed that species delimitation, particularly based on the
worker caste, is extremely difficult in this group (Oberski,
in press) and there are a number of species in western North
America that have yet to be described (Fisher and Cover, 2007).

Three Dorymyrmex species undoubtedly found in Arizona are
D. bicolor (Wheeler, 1906), D. insanus (Buckley, 1866), and
D. wheeleri (Kusnezov, 1952). D. wheeleri is a small, rather
distinctive Dorymyrmex species, and although its type locality
is Tucson, Arizona—the source of our colonies for this study—
no confirmed collections of the species exist beyond the type
series. Both D. insanus (type locality Howard Co., Texas) and
D. bicolor (Maricopa Co., Arizona) are conspicuously present
across the south-central and southwestern United States and
northern Mexico. However, there are other species known from
neighboring states whose range may very well extend into
Arizona: D. flavus (McCook, 1880) and D. smithi (Cole, 1936)
have been recorded from New Mexico; D. paiute (Snelling,
1995), southern Utah; and D. lipan (Snelling, 1995), west Texas
(Snelling, 1995; Mackay and Mackay, 2002). To confirm our
hypothesis that the dark and bicolored Dorymyrmex samples
we collected are D. insanus and D. bicolor, we first checked
Snelling’s (1995) literature review and key to United States
Dorymyrmex based on workers, which is partially recounted
below. Morphometrics include head length (HL), head width
(HW), cephalic index (ratio of HW/HL) (CI), eye length (EL),
and interocular distance (IOD).

Snelling (1995): Head relatively narrow, CI usually less than
88, rarely up to 90. Vertex of head straight or slightly
convex. Eye relatively large, IOD usually less than 1.5× EL.
Propodeal tubercle relatively prominent. Pronotum usually
with discal seta pair. Color light to dark brownish, head and
gaster commonly darker than mesosoma. (Kansas to central
Texas, west to southern California)

= insanus (Buckley, 1866)

Snelling (1995): Head relatively broad, CI over 90. Vertex
of head usually distinctly concave in frontal view, rarely
straight. Eye relatively small, IOD at least 1.75 × EL. Head
and mesosoma red. (Western Texas to southern Nevada
and California)

= bicolor (Wheeler, 1906)
Our Tucson collections of Dorymyrmex each conform to

one of these two descriptions, with the exception of the
cephalic index measurements of D. insanus—even those of
the neoparatype series, which contradict Snelling’s key. Our
D. bicolor and D. insanus can also be differentiated by worker
body size; D. bicolor individuals are larger than D. insanus (HW
0.84–1.00 mm vs. 0.73–0.81 mm; Supplementary Figure 1),
although this trend may weaken with larger sample sizes.
Among these populations, species-level mean head width
corresponds with body size measured by mass (Godfrey
and Gronenberg, 2019b); thus, head width is used as a
proxy for body size throughout this study, although it
may not hold true in other locations or with different
species of Dorymyrmex.

Across D. bicolor colonies, consistent differences appear
to create two morphotypes (Supplementary Figure 2). Some
measurements distinguish these D. bicolor morphotypes
quite well, such as the ratio of eye size to head width
(Supplementary Figure 1B) and body size (DPL, DF)
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FIGURE 1 | Three sympatric species of dolichoderine ants at the focus of the present work. (1A,B) Dorymyrmex bicolor, specimen CASENT0841125. (2A,B)
Dorymyrmex insanus, specimen CASENT0841126. (3A,B) Forelius mccooki, specimen CASENT0102754. Complete specimen data and images are hosted on
AntWeb (www.antweb.org); photographers Jill Oberski (1,2), Jen Fogarty (3).

(Supplementary Figures 2D,E), while others show all D. bicolor
samples as a single undifferentiated cluster, such as cephalic index
(Supplementary Figure 2F) or scape length (Supplementary
Figure 2E). Variation in allometry and color seem consistent
at the colony level, and thus may indicate simple variation
at the level of the reproductive unit or perhaps differences in
colony age or some other unidentified factor. Ultimately, for the
purposes of the present work, we treat our D. bicolor samples as
a single species.

To ease future taxonomic efforts, we have also selected
a representative voucher specimen for each species and
morphotype. These specimens have been deposited at the
University of California Davis insect collection (UCDC) with

the following unique identifiers: D. bicolor morphotype 1,
CASENT0841125; D. bicolor morphotype 2, CASENT0841124;
D. insanus, CASENT0841126; F. mccooki, CASENT0841127.

Colony size rankings are based on previously reported
measurements of workers outside the nest during peak foraging
times (Godfrey and Gronenberg, 2019b). Based on these
observations D. insanus was considered to have small colonies
(x̄ = 2, s = 1.5 workers outside nest); D. bicolor, intermediate
sized colonies (x̄ = 14, s = 7.3); and F. mccooki, large
colonies (x̄ = 46, s = 14; Godfrey and Gronenberg, 2019b).
For the current study, individual workers observed foraging at
regularly monitored colonies in Tucson, Arizona and adjacent
municipalities (Supplementary Table 1) were collected live into
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FIGURE 2 | External sensory structures scale with body size.
(A) Microphotographs of parts of the head capsule including the eye and
antenna of the three focal species arranged by colony size indicated by
number rankings above (B). (B) Phylogenetic relationships among
dolichoderine ants included in this study. (C) Sampling area for the three
antennal regions (top; red boxes) and diagram of measurements taken for
surface area (bottom); penultimate segment = PN; club base = CB; club
tip = CT. (D) Photomicrograph of the eye of D. bicolor; to show ommatidia;
eye surface area measured as footprint of eye on head capsule.

(Continued)

FIGURE 2 | (Continued)
Scale bars in (A,C,D) = 100 µm. Differences in antennal length (E) and
antennal surface area (F) are explained largely by differences in body size. Eye
area (G) and Ommatidia numbers (H) scale with body size, but significant
differences exist between Forelius and the Dorymyrmex species and scaling is
best described using piecewise regression (yellow and blue lines, respectively)
using head width of 0.69 mm as a breakage point (black arrow). For (G,H)
R-squared from piecewise linear regression indicated in black. Slopes for
piecewise regression indicated in colors that correspond to lines above and
below breakage point. Color code for (B,E–H), this figure and Figures 3, 4:
F. mccooki yellow; D. insanus cyan; D. bicolor blue.

Falcon 50 mL conical centrifuge tubes (Corning, #352070) using
an aspirator and transported back to the lab for experiments.

External Sensory Morphology
To count sensilla and ommatidia, head capsules were cleared
in 30% hydrogen peroxide for 1–3 days, rinsed, incubated in
80% glycerol, mounted on a slide with a polyvinyl alcohol
mounting medium, Mowiol R© 4–88 (Sigma-Aldrich), and covered
with a #1.5 coverslip. Antennae and eyes were imaged in
brightfield with a SpotFlex camera (FX1500WS, Diagnostic
Instruments, Inc., Sterling Heights MI, United States) mounted
on a Zeiss Axioplan microscope. Entire antennae were imaged
using a 2.5× objective, eyes using a 20× or 40× objective, and
antennae segments using a 63× objective (Figure 2A). Images
were captured with SPOT Basic image software (Diagnostic
Instruments, Inc., Sterling Heights MI, United States). Antenna
length, eye size, ommatidia number and sensilla density were
measured from stacks of images in Fiji (Schindelin et al., 2012).
All measurements were averaged over the two sides to produce
individual-level measurements for each sensory structure for
statistical analysis. Some head capsules were particularly fragile
following clearing and, in these cases, only one antenna or eye
was available for analysis.

The surface area (SA) of antennae segments was approximated
from measurements of segment diameter and height (Figure 2C).
The penultimate segment was approximated as a cylindrical tube
with SApen = 2πrh. Surface area of the apical club segment
(SAclub) was approximated as a cylindrical tube for the proximal
two thirds of its height and the lateral surface of a cone for the
distal most third such that

SAclub = (πr1 + πr2)

√(r1 + r2)
2
+

(
2
3

h
)2
+ πr2

√(
r2

2 + (
1
3

h)2
)

(Figure 2C). Eye area was measured as the traced boundary of the
eye on the cuticle (Figure 2D). Ommatidia were counted using
the Cell Counter plugin in Fiji (De Vos, 2001).

To quantify sensilla density, three polygons were drawn along
the antenna, one on the penultimate segment, one on each of the
base and tip of the club (Figure 2C). Depending on segment size
and shape, polygons sampled from 20 to 30% of the approximate
total surface area of the segment (Supplementary Figure 4A). All
sensilla with their base inside the sampling polygon were counted.
Sensilla density was averaged over segment and antennae. Sensilla
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basiconica (s. basiconica) were identified as stout, pegged sensilla
with a blunt, terminal end (Nakakuki, 1986; Renthal et al., 2003;
Ramirez-Esquivel et al., 2014) which protrude from the antenna
surface at a more obtuse angle than other sensilla (indicated
by red arrows in Figure 3A) and are easily distinguished using
brightfield microscopy (Kelber et al., 2010).

Antennal Lobe Morphology
To quantify differences in the number of olfactory glomeruli,
brains were labeled with an α-synapsin antibody to visualize
glomeruli. Brains were dissected in phosphate-buffered saline
(PBS) and microwave-fixed in 4% paraformaldehyde in PBS
(low power at 18◦C under vacuum for two cycles of 2 min),
then left in fixative for 12 h at room temperature. Following
blocking with 2% normal goat serum (Thermo Fisher Scientific
# 31872), brains were permeabilized with 1% Triton X-100 in
PBS (Electron Microscopy Supply, Fort Washington, PA; PBS-
TX), rinsed with 0.1% PBS-TX, and incubated on a shaker at
25◦C for two nights in primary antibody (1:500 in 2% goat serum
in 0.2% PBS-TX). Monoclonal Drosophila synapsin I antibody
(SYNORF1, AB_2315426; Developmental Studies Hybridoma
Bank #3C11) was used as the primary antibody to label synapsin.
Subsequently, brains were washed in 0.1% PBS-TX and incubated
overnight at room temperature in Alexa Fluor 568 (AB_2534072,
Thermo Fisher Scientific #A-11004) goat anti-mouse secondary
antibody (1:100 in PBS) on a shaker. After secondary incubation,
brains were washed in 0.1% PBS-TX and rinsed with distilled
water before being dehydrated in increasing concentrations of
ethanol in distilled water (10 min each in 50, 70, 80, 95, 100,
100%) and mounted in custom-made aluminum well slides with
#1.5 coverslips. Brains were cleared by incrementally removing
ethanol and replacing it with methyl salicylate. Brains were
imaged on an inverted Zeiss 880 Laser Scanning Confocal
Microscope using a plan-Apochromat 20× 0.8 aperture objective
and optically sectioned in the horizontal plane at 1-micron
intervals. Section thickness was corrected by a factor of 1.64
(adjusted section thickness = 1.64 microns) to account for the
refractive index mismatch between air and methyl salicylate
(Bucher et al., 2000).

To visualize olfactory sensory neuron (OSN) tracts and
glomerular clusters in the antennal lobe, mass fills of OSNs were
performed. For these experiments workers were anesthetized
on ice and the club or last three segments of their antennae
were removed with surgical scissors. A small crystal of Dextran,
Texas Red, 3,000 MW was dissolved in physiological saline
(130 mM NaCl/5 mM KCl/4 mM MgCl2/5 mM CaCl2/15 mM
Hepes/25 mM glucose/160 mM sucrose, pH 7.2; Groh et al.,
2004), allowed to dry until sticky, and placed on the excised
tip. Ants were allowed to recover in humidified chambers
with sucrose (30% w/w) for 2–4 days until anesthetized
and euthanized. Brains were fixed in 2% glutaraldehyde, 2%
paraformaldehyde for 24 h at room temperature, then rinsed,
dehydrated, mounted, and imaged as described for whole mount
synapsin labeling.

Whole-brain images were manually segmented using the
TrakEM2 software package in Fiji (Cardona et al., 2012).
Volumes of histologically recognizable subunits, the glomeruli,

FIGURE 3 | Basiconic sensilla density specifically does not scale with body
size. (A) Microphotograph (63× oil immersion lens) of distal antennal
segments [penultimate (left) and club (right)] of Dorymyrmex bicolor; red
arrows point to basiconic sensilla; scale bar = 100 µm; large arrows point at
the respective data sets in (B,C). (B) Non-basiconic sensilla density
decreases with increasing body size on both the penultimate and club
segments. (C) Basiconic sensilla density does not decrease with increasing
body size, specifically in the comparison of Dorymyrmex species. (B,C) Show
sensilla density for the penultimate (left) and club (right) antennal segments;
outliers excluded from analysis shown with decreased saturation.
(D) Estimated total number of basiconic sensilla when mean basiconic sensilla
density is multiplied by mean surface area for each segment (penultimate, left;
club, right) for individual ants; data shown does not include outliers. Statistical
comparisons of sensilla density across species made using a generalized
linear model with a quasi-Poisson distribution followed by ANOVA and
post hoc comparisons using Tukey’s Honestly Significant Difference.
*p < 0.05; ***p < 0.001. Color code for (B–D): F. mccooki yellow; D. insanus
cyan; D. bicolor blue.

were traced in one or both hemispheres in 4–6 individuals of
each species. Because basiconic sensilla innervate the T6 cluster
of glomeruli (Kelber et al., 2010; Nakanishi et al., 2010), glomeruli
of this cluster were identified from segmented images following
tracing of all glomeruli in order to look for differences that
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correspond with differences in basiconic sensilla across taxa.
The T6 cluster was identified based on location description and
images from the myrmicine ant, Atta vollenweideri (Kelber et al.,
2010) and the formicine ant, Camponotus japonicus (Nakanishi
et al., 2010; Nishikawa et al., 2012). Brains were not always
imaged in the same plane and, while it is possible to count
all glomeruli from any plane, it was difficult to distinguish T6
glomeruli in images taken outside the dorsoventral (neural axis)
plane. Therefore, to ensure T6 glomeruli could be appropriately
quantified, four antennal lobes from each of the focal species for
this analysis, D. bicolor, D. insanus, and F. mccooki, were chosen
based on image quality and orientation.

Potential Pheromone Compounds
Because D. bicolor showed significantly greater estimated total s.
basiconica (Figure 3D) than the small-colony relative, D. insanus,
and because differences in glomeruli number between these
species could be explained largely by those in the T6 cluster
(Figures 4A,B), we asked if the number of compounds we could
detect through gas chromatography/mass spectroscopy (GC-
MS) from D. bicolor was greater than from D. insanus, with a
particular interest in putative cuticular hydrocarbons that are in
part detected by s. basiconica. Eight ants from a single colony
of each species were used in the analysis. The gaster contents
and bodies were analyzed separately with the expectation that
cuticular hydrocarbons would show up in both samples, whereas
many of those produced for alarm and recruitment would be
unique to the metasoma ("gaster"). Ants were anesthetized on
ice and the gaster excised from the head and remaining thorax
segments. Compounds were eluted in the following manner: the
head and thorax from the 8 ants were placed in one 2 ml glass
vial and soaked with 500 µL dichloromethane (DCM; check
supplier) for 15 min, and gasters were placed in a different
2 ml vial with 500 µL DCM and crushed using a tissue grinder.
A control vial of 500 µL DCM was prepared at the same time.
These procedures were carried out in a lab hood and all tools,
vials, and lids were rinsed three times in DCM prior to use.
Chemical analysis of Dorymyrmex compounds was carried out
at the Analytical & Biological Mass Spectrometry facility at the
University of Arizona using a Shimadzu SHRXI GC column.
The eluent was introduced into a Shimadzu QP2010S mass
spectrometer and ionized by electron impact. Identification of
peaks was accomplished by comparison to the National Institute
of Standards and Technology (NIST) mass spectral library
(Shen et al., 2016). Existing reports of gland contents in the
literature were consulted to determine potential gland sources
of compounds identified from D. bicolor and D. insanus. For
detailed methods, see Supplementary Material.

Behavior
To test whether the difference in total s. basiconica between
D. insanus and D. bicolor is correlated with behavior, we
recorded and scored interactions between pairs of nestmates
and non-nestmates for each species. Ants were collected from
nest entrances between 08:00 and 10:00 and stored in a cool
chamber to be transported to the lab. Once in the lab ants
were stored in fluon-lined plastic boxes and given 30 min to

acclimate before pairings occurred. Nestmate or non-nestmate
pairs were placed in a 9 cm KIMAX R© borosilicate glass
petri dish on white lab paper and illuminated with a 75 W
incandescent bulb surrounded by an aluminum diffuser and
warmed to 30–32◦C with a 1,500 W personal space heater
(Holmes Products Corp., Milford, MA, United States) to mimic
outdoor thermal conditions. Ants were filmed using a Sony HDR
XR200 Handicam camera positioned on a tripod and focused
down onto the petri dish. Ants were placed in the petri dish in
succession and each was given 30 s to acclimate before either the
addition of the second ant or the behaviors were coded. Ants
were filmed for 3 min. Interactions were coded using the open-
source event logging software, Behavioral Observation Research
Interactive Software (Figure 5A, BORIS; Friard and Gamba,
2016). The following behaviors were coded: antennation (one
or both ants tapping antennae on the other), grooming (one
ant licking areas of the other ant’s head or body; Figure 5B),
trophallaxis, mandible flaring, biting (Figure 5B), retreating
(when one ant moved quickly away from an interaction), chasing
(when one ant moved quickly away from an interaction and the
other followed), fighting (when ants were biting and wrestling
occurred), and touch (fast or incidental contact that could not
be coded as one of the other behaviors). Only behaviors that
involved ants interacting were coded. Behaviors were scored
as point events or state events, with state events including
duration information. Behaviors scored as state events included
antennation, grooming, and fighting. For the purpose of analysis,
grooming and trophallaxis were considered affiliative behaviors,
mandible flaring, biting, chasing, and fighting were considered
aggressive behaviors, and touch and antennation were considered
neutral behaviors.

Statistics
All statistics were conducted in R version 4.0.2 (R Core
Development Team, 2020) using the R studio interface (R
Studio Team, 2020) and the tidyverse (Wickham et al., 2019),
lme4 (Bates et al., 2015), emmeans (Lenth, 2021), and ggpubr
(Kassambara, 2020) packages. Hypothesis testing for scaling
relationships in antennal length, club surface area, eye area, and
ommatidia number were achieved with the construction of linear
models (LMs) followed by ANOVA (Supplementary Table 2).
Surface area measurements were natural log-transformed for
these analyses. Tukey-adjusted least square means were used
for pairwise comparisons. LMs that included head width alone
were used to approximate slopes and intercepts for antennal
length and club surface area (Figures 2E,F). Piecewise LMs
with a break point at 0.69 mm were used to assess scaling in
eye surface area and ommatidia number between F. mccooki
and the Dorymyrmex species. Piecewise LMs estimate a single
R-squared value and slopes for lines above and below the
break point are presented. Differences in sensilla and ommatidia
density across species were assessed using ANOVA on GLMs
with quasi-Poisson likelihood. We tested whether sensilla density
varied predictably with body size using the assumption that
mean sensilla density should be significantly different in all
pairwise comparisons of species in either an increasing or
decreasing manner with body size. We detected significant
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FIGURE 4 | Glomeruli in the T6 cluster account for differences in antennal lobe glomeruli between Dorymyrmex species. (A) Number of antennal lobe glomeruli.
(B) glomeruli in the T6 cluster and other clusters in three species that vary in colony size. Number above boxes indicate mean glomeruli number for T6 cluster
(bottom) and all other glomeruli (top). Species ranked in order of increasing mean head width along the x-axis. (C) Synapsin-labeled antennal lobe and (D) mass
staining (dextran tracer) of antennal sensory neurons in the antennal lobe of D. bicolor with T6 cluster outlined (C) or indicated by arrowhead (D), scale
bars = 50 µm. Generalized linear model with gamma distribution and log link function used for statistical comparisons. Pairwise comparisons made using Tukey’s
honestly significant difference (HSD) test. *p < 0.05; **p < 0.01; ***p < 0.001.

differences in sensilla density between segments (χ2
= 124.885,

df = 1, p < 0.001), which is not part of our hypothesis
structure and therefore segments were analyzed separately. We
used GLMs with quasi-Poisson likelihood where head width
was the predictor variable to determine the slope and fit of
the relationship between body size and sensilla density across
all species (Supplementary Table 3). Affiliative, aggressive,
and neutral behavior events were compared using GLMs with
Poisson likelihood followed by post hoc tests. Antennation
durations were compared using the Mann-Whitney U-test across
treatments within species.

RESULTS

Summary
Species rankings according to body size (Figure 1) do
not correspond with species rankings according to colony
size (Figures 2A,B, ranked smallest to largest colony size).
This allowed us to assess whether sensory system scaling
is explained by body size and whether patterns that are
not associated with body size differences could be due to
colony size differences. We found that gross morphological

structures including antennal length (Figure 2E), surface
area (Figure 2F), eye area (Figure 2G), ommatidita number
(Figure 2H, Supplementary Figure 3), along with estimated total
number of sensilla (Supplementary Figure 4C), and olfactory
glomeruli (Figure 4A) scaled positively with body size. However,
the total number of s. basiconica (Figure 3D) and glomeruli
in the T6 cluster (Figure 4B), structures thought to play
a role in social communication in ants, deviated from this
pattern. While the density of total (Supplementary Figure 4B)
and non-basiconic sensilla (Figure 3B) scaled negatively with
body size, the density of s. basiconica did not and the large
bodied, intermediate colony sized D. bicolor had s. basiconica
density comparable to the medium body sized, small-colony
D. insanus (Figure 3C). These sensilla innervate a cluster
of the antennal lobe called T6 and coinciding with the s.
basiconica findings, D. bicolor showed a greater number of T6
glomeruli than the other species (Figure 4B). In subsequent
experiments to probe functional differences, we compared the
closely related Dorymyrmex species and found no differences in
the number of chemical compounds identified from bodies of
workers (Supplementary Figure 5 and Supplementary Table 6).
However, we detected differences in the frequency and duration
of social interactions, with D. bicolor individuals engaging
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FIGURE 5 | Dorymyrmex bicolor engage in more social interactions than D. insanus. (A) Schematic of behavior method with pairs of ants filmed in a glass petri dish
for 3 min and interactions coded in BORIS (Friard and Gamba, 2016). (B) Stills from recordings showing D. bicolor engaging in biting (left) and grooming (right)
behaviors. In comparisons of nestmate interactions or non-nestmate interactions between species, D. bicolor interact more often than D. insanus (C). In
comparisons of nestmate and non-nestmate behavior within species, D. bicolor non-nestmates display significantly more aggressive interactions (D) and significantly
fewer affiliative interactions (E) than nestmates, an effect not detected in D. insanus. D. bicolor nestmates participate in antennation for longer duration bouts (F) and
a greater amount of total time than non-nestmates (G); D. insanus nestmates and non-nestmates show comparable antennation bout duration and total time.
(H) Dorymyrmex insanus display few trophallaxis events with no differences among nestmate or non-nestmate pairs, whereas D. bicolor nestmates engage in
trophallaxis more frequently than non-nestmates. Statistical comparisons in (A–E,H) were made using a generalized linear model with a Poisson distribution followed
by ANOVA and post hoc comparisons using Tukey’s Honestly Significant Difference. Statistical comparisons in F and G were made using pairwise Mann-Whitney
U-test between non-nestmate and nestmate pairs of a species. *p < 0.05; ***p < 0.001; Color code for data point in (C–H): D. insanus cyan; D. bicolor blue.

more in interactions with nestmates or non-nestmates than
D. insanus (Figure 5).

External Sensory Morphology
Across species, antennal length and club surface area scaled
positively with head width (HW; Figures 2E,F). However, in
comparisons of club surface area, we detected a significantly
greater club surface area in D. bicolor as compared with
D. insanus when body size was taken into account (t-ratio = 2.511,
df = 38, p = 0.042). Eye area and ommatidia number also
scaled positively with head width (Figures 2G,H), but F. mccooki
had significantly smaller eyes than would be predicted from
the Dorymyrmex spp. regression line (Figure 2G) and steeper
slope for ommatidia scaling with body size (Figure 2H),
resulting in significantly greater ommatidia density in this species
(Supplementary Figure 3).

Mounting antennae on glass slides provided little control
over orientation; therefore, sensilla were sampled randomly from
surfaces of antennae without a way of identifying whether the
ventral or dorsal surface was sampled. Sensilla appeared to
be somewhat stereotyped in their distribution in that similar
patterns of sensilla at particular locations were recognizable
across individuals. It is possible that density is not homogenous
across the segment, particularly on the club, where the ventral
surface is used frequently to probe objects in the environment.
Even if sensilla distributions are non-homogenous, sampling
was random and therefore sampling of two antennae seemed
to provide a reasonable estimate of mean sensilla density, but
variation in our estimates is somewhat large (Figures 3B,C),
producing weak regression fits (Supplementary Table 3). Forelius
mccooki samples were very fragile and often one of the two
antennae was not of sufficient quality to count sensilla. Therefore,
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individual-level estimates from a single antenna were more
common in this species and may explain greater variation in
estimates for this species (Figures 3B,C; F. mccooki).

Non-basiconic sensilla density decreased with body size
rankings on both the penultimate and club segments (Figure 3B
and Supplementary Table 3). In all species, s. basiconica on
the penultimate segment were located near the rostral edge
(Figure 3A) and appeared to have a somewhat stereotyped
pattern, occurring at regular intervals. During counting it
appeared that density increased toward the tip of the club, with
occurrences less apparently stereotyped than on the penultimate
segment (Figure 3A). However, because the dorsoventral axis of
the club could not be discerned from images, it is possible they
are stereotyped along this axis. Density of s. basiconica did not
scale as strongly with body size on either segment, as F. mccooki
had densities greater than the two larger species, but D. bicolor
had densities comparable to those of D. insanus (Figure 3C). In
a generalized linear model using a pseudo-Poisson distribution,
body size explained 49% of the variation in non-basiconic sensilla
density on the club segment but only 12% of the variation in
basiconic sensilla on this segment (Supplementary Table 3).

We hypothesized that differences in s. basiconica density may
be due to changes in antennal surface area related to body
size and, when surface area is taken into account, the total
number of sensilla might still increase with body size across
species. However, despite high s. basiconica density, F. mccooki
had total sensilla numbers comparable to D. insanus, but fewer
total sensilla than D. bicolor (Figure 3D) on both segments.
In comparisons of D. insanus and D. bicolor, differences in
total basiconic sensilla number were detected specifically on
the club segment (Figure 3D), an effect likely driven by the
combination of D. bicolor showing a larger than expected club
surface area and comparable instead of lower s. basiconica density
to D. insanus.

Antennal Lobe Anatomy
Somewhat unexpectedly, glomeruli number scaled positively with
body size across species (c, t = 0.4.61, df = 12, p < 0.001;
Figure 4A; F. mccooki, x̄ = 214, SD = 10.7; D. insanus, x̄ = 260,
SD = 8.6; D. bicolor, x̄ = 275, SD = 9.8). Because estimated
total s. basiconica number did not scale with body size, instead
displaying a pattern suggesting either D. insanus had fewer s.
basiconica than would be expected from its body size or that
D. bicolor had many more, of particular interest was the difference
in T6 glomeruli among species. The T6 glomerular cluster was
identified in four antennal lobe samples from each of three species
(Figures 4C,D), F. mccooki, D. insanus, and D. bicolor. Two of the
D. bicolor antennal lobes used to identify T6 glomeruli came from
the same individual and these values were averaged for statistical
comparisons. D. bicolor had comparable mean numbers of non-
T6 glomeruli to D. insanus, but these species differed in the
T6 cluster with D. bicolor having approximately 12 more T6
glomeruli than D. insanus (Figure 4B). Conversely, F. mccooki,
which showed estimated total s. basiconica numbers comparable
to D. insanus (Figure 3D), had nearly the same number of T6
glomeruli and the difference in glomeruli numbers between these
species was in non-T6 glomeruli (Figure 4B). Thus, estimated

total s. basiconica number corresponded best with the number of
glomeruli in the T6 cluster.

Potential Pheromone Compounds
A total of 58 peaks were isolated through GC-MS for
both Dorymyrmex species and all body parts analyzed
(Supplementary Tables 4, 5 and Supplementary Figure 5),
including a total of 43 peaks from D. bicolor and 44
from D. insanus (Supplementary Table 6). This analysis
identified a number of compounds known to be recruitment
or alarm pheromone components in other dolichoderines,
including the monoterpenoids iridomyrmecin, citronellal (3,7-
dimethyloct-6-en-1-al), and limonene, and the ketone sulcatone
(6-methyl-5-heptenone) (Supplementary Figure 5; Cavill and
Ford, 1953; Cavill and Hinterberger, 1960; Blum et al., 1963;
Crewe and Blum, 1971; Cavill et al., 1979; Tomalski et al., 1987).
A large number of the peaks were identified as unbranched
alkanes, with the majority isolated from both metasoma
("gaster") (G) and combined head and mesosoma ("thorax"; HT)
samples (Supplementary Table 5 and Supplementary Figure 5),
suggesting they are distributed across the body. The total number
of shared and unique compounds was comparable between
the species, with 14 compounds unique to D. bicolor and 15
unique to D. insanus (Supplementary Table 6). This analysis
detected a set of peaks between 16.07 and 17.02 min unique
to D. insanus and a set of peaks between 18.61 and 19.12 min
unique to D. bicolor, identified as acyclic alkanes. Nearly one
third (17 of 58) peaks did not match existing records in the NIST
library, and 13 of 58 were identified as having multiple matches
(Supplementary Table 5).

Behavior
We measured interactions in 11 nestmate and 18 non-nestmate
pairs of D. bicolor and in 11 nestmate and 16 non-nestmate
pairs of D. insanus (Figure 5). Overall, D. bicolor pairs interacted
more with each other than D. insanus, shown by more frequent
incidental or fast contact (Figure 5C). While D. bicolor non-
nestmate pairs had a greater number of aggressive interactions
(Figure 5D) and significantly fewer affiliative interactions than
nestmates (Figure 5E), D. insanus pairs showed no significant
differences in these interactions (Figures 5D,E). We also
recorded trophallaxis, an important means of sharing resources
among members of a nest, and we found that D. bicolor
nestmate pairs engage in this behavior more frequently than
non-nestmates (Figure 5H). We recorded very few trophallaxis
events for D. insanus and there were no differences in trophallaxis
frequency between nestmates and non-nestmates (Figure 5H).
Since differences in contact could be explained by differences
in general activity or movement, and since we are specifically
interested in sensory structures on the antennae, we also looked
at the time pairs spent engaged in antennation. In these
comparisons only pairs that showed this behavior were included
in the analysis. A greater percentage of D. bicolor pairs showed
this behavior (25 out of 29 pairs of D. bicolor and 13 out of 27
pairs of D. insanus; p = 0.0038, Fisher’s exact test). We found that
D. bicolor nestmates spend a longer total time antennating than
non-nestmates, with the duration of antennation bouts being
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longer between nestmates (Figures 5F,G). We did not detect
differences in total antennation time or bout duration between
D. insanus nestmates and non-nestmates (Figures 5F,G).

DISCUSSION

In the experiments described here we tested whether differences
in sensory and antennal lobe structures across workers of
three species of odorous ants (Formicidae, Dolichoderinae) are
explained by body size scaling or variation in colony size. We
hypothesized that variation in visual sensory systems would
be explained largely by body size and that differences due to
colony size, if they exist, would be found in the olfactory system
structures implicated in social communication, specifically
nestmate recognition, in ants. We find that body size explains
most of the variation in sensory structures across our sample of
dolichoderine ants. Olfactory structures in general vary with body
size and not with colony size across all species, but components of
the olfactory system related to social cue processing, specifically
sensilla basiconica and T6 glomeruli, do not follow patterns of
body size variation seen for other sensory structures. Instead, the
small-bodied F. mccooki had significantly fewer s. basiconica than
the large-bodied D. bicolor but not the medium-sized D. insanus.
This suggests either the small-colony D. insanus has fewer s.
basiconica than would be predicted from body size, or its larger
colony relative, D. bicolor has far more. This class of sensilla
is associated with nestmate recognition in ants (Ozaki et al.,
2005) and innervates the T6 cluster of glomeruli in the antennal
lobe (Kelber et al., 2010). Observed differences in total glomeruli
number among D. bicolor, D. insanus, and F. mccooki are
explained by differences in the T6 cluster, suggesting differences
between the Dormyrmex species are due to greater investment in
these structures in D. bicolor. In probing functional consequences
of this difference, we found D. bicolor show a greater number
of social interactions than D. insanus, contacting both nestmates
and non-nestmates more frequently, and displaying more
affiliative and aggressive behaviors, respectively, during these
pairings. Without clear taxonomic classifications and a robust
phylogeny for Dorymyrmex, it is difficult to assess whether these
traits are expanded in D. bicolor or reduced in D. insanus,
but our findings suggest a link between colony size and these
sensory structures.

Body Size and Sensory Structure Scaling
Intraspecific differences in body size are associated with variation
in behavior in Hymenoptera (Nowbahari et al., 1999; Spaethe
and Weidenmüller, 2002), including division of labor in ants
(Wilson, 1980; Muscedere and Traniello, 2012), and sensory
structure scaling (Renthal et al., 2003; Smallegange et al., 2008;
Kelber et al., 2010; Perl and Niven, 2016). Sensilla density
determines behavioral sensitivity for some tasks (Gill et al., 2013;
but see Leitner et al., 2019). Interestingly, the number of olfactory
glomeruli can vary across morphological castes in ants (Mysore
et al., 2009; Kuebler et al., 2010), suggesting the regulation of
olfactory receptor expression may be linked with body size within
some species. Despite documented sensory structure scaling in

solitary and social insects, behavioral consequences are not well-
studied. In the buff-tailed bumblebee (Bombus terrestris) both
sensilla number and odor sensitivity scale positively with body
size intraspecifically (Spaethe et al., 2007), but little is known
about functional consequences of interspecific scaling. Given
that variation in individual sensory thresholds is hypothesized to
underly division of labor in social insects (Beshers et al., 1999),
regulation of worker size may be one mechanism to achieve this
(Beshers and Fewell, 2001). Across closely related species, body
size differences may influence differences in sensory structures
and, by extension, sensory reception or perception.

In the ants studied here, sensory structure size and component
number are positively correlated with body size across species.
However, while the visual system generally scales with body size,
F. mccooki eye area and ommatidia number do not scale with
the same slope as Dorymyrmex spp. (Figures 2G,H), resulting in
a significantly greater ommatidia density in this smaller species
(Supplementary Figure 3). In our previous work we did not
detect statistically significant differences in visual regions of the
brains of these species, but F. mccooki trended toward greater
mean investment in visual regions than would be predicted based
on body or brain size rankings (Godfrey and Gronenberg, 2019b).
It would be interesting to investigate differences in visually
guided behavior across species, because while their foraging times
in the Sonoran Desert do overlap, F. mccooki foraging times
extend farther into the middle of the day than Dorymyrmex spp.
(personal observation). Similar to visual systems, total antennal
sensilla density (of all types, including s. basiconica) scales
negatively with body size on both the penultimate and club
segments (Supplementary Figure 4B), an effect driven by non-
basiconic sensilla, since this holds true when basiconic sensilla
are removed and non-basiconic sensilla are analyzed separately
(Figure 3B).

We previously reported that antennal lobe size expressed
as a relative proportion of brain size scales negatively with
colony size in these ants (Godfrey and Gronenberg, 2019b), but
here we find the total number of glomeruli can be ranked by
body size across species (Figure 4A). In insects a one-to-one
correspondence between olfactory receptors and glomeruli has
been observed (Vosshall et al., 2000; Robertson and Wanner,
2006, but see Fishilevich and Vosshall, 2005; Younger et al.,
2020), and we did not have reason to expect the total number
of glomeruli (as an estimate of olfactory receptors) to scale
positively with body size as seen here. Intraspecific variation
in glomeruli number based on body size has been reported
in the polymorphic ants Camponotus compressa (subfamily
Formicinae) and Atta wollenweideri (subfamily Myrmicinae).
In A. wollenweideri, smaller workers have fewer sensilla and
antennal lobe glomeruli, whereas these numbers scale negatively
with body size in C. compressa such that the smallest class of
workers have the most sensilla and glomeruli (Mysore et al., 2009,
2010). Thus, intraspecific variation may be due to differences in
gene expression linked to body size (Mysore et al., 2010), and,
if so, in dramatically different ways across species. It is possible
that similar mechanisms linking body size with gene expression
could drive odorant receptor differences coincident with body
size across very closely related species.
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Evidence for Colony Size-Driven
Differences in Sensory Structures
There exists little information on sensory trait evolution and
social complexity, though studies generally predict a decrease
in sensory system component number or size with transitions
to sociality or increases in colony size. Indeed, in halictid bees,
reductions in total sensilla density coincide with transitions from
social to solitary habits, suggesting that even broad patterns of
sensory investment may be related to social structure (Wittwer
et al., 2017). While nearly all of the sensory structure variables in
this study could be correlated with body size, s. basiconica density
specifically could not be ranked by body size. However, this
variable could also not be neatly linked with colony size across
all three species. Gronenberg and Riveros (2009) suggested brain
trait scaling may form a humped-shaped curve in relation to
social complexity such that on the extreme ends there exists lower
investment in structures involved in complex behaviors or social
signaling, and Riveros et al. (2012) find support for this across
olfactory structures in fungus-growing ants, but it is difficult to
assess this with only the three species. Instead, our data indicate
that D. bicolor may invest proportionally more in s. basiconica
than its close relative, the smaller-colony D. insanus, resulting in
a greater number of these socially relevant sensilla in the large-
colony species. Total glomeruli counts show D. bicolor has 15–16
more total antennal lobe glomeruli than D. insanus (Figure 4A)
and, given that olfactory sensory neurons (OSNs) housed in s.
basiconica form the presynaptic terminals of the T6 glomeruli
(Kuebler et al., 2010), we hypothesized that differences in the
total number of glomeruli would be explained by differences in
this cluster. Indeed, the T6 cluster differed by an average of 12
glomeruli between species (Figure 4B, D. bicolor x̄ = 54, s =
7.4 vs. D. insanus,x̄ = 42, s = 2.1), indicating the difference in
the antennal lobe may be linked to differences in total number
of s. basiconica. This kind of expansion in sensory reception
systems has been attributed to strong selection for systems
that maintain group cohesion and efficiently coordinate group
behaviors (Leonhardt et al., 2016).

Because the OSNs of s. basiconica respond to large, cuticular
hydrocarbons that act as nestmate recognition cues in ants
(Ozaki et al., 2005), we predicted D. bicolor might show a
greater diversity or a higher number of these compounds than
D. insanus. A preliminary analysis of compounds found on
the body and inside the gaster of D. bicolor and D. insanus
revealed no differences that correspond clearly with colony size
or sensory structure scaling. While analysis showed a set of
large, unbranched alkanes unique to D. bicolor (Supplementary
Table 5 and Supplementary Figure 5; peaks 44, 49, 51, 53, 54,
55), there was a set similar in number unique to D. insanus
(Supplementary Table 5 and Supplementary Figure 5; peaks 37–
40, 41). In many ant species, Dufour’s gland produces alkanes
used as recruitment and defensive signals (Cavill and Ford, 1953;
Lenoir et al., 2011), but the broad distribution reported here
suggests at least some of these may be cuticular hydrocarbons
(Supplementary Table 5). However, cuticular hydrocarbon-
based signaling among conspecifics in social species may not
actually involve more varied or complex signaling molecules

when compared with signaling in solitary species (Kather and
Martin, 2015), nor is there evidence for a relationship between
social complexity and signal complexity across ants (Ord and
Garcia-Porta, 2012). However, the morphology required to
interpret specific compounds may be expanded in social species
(Dacks and Nighorn, 2011; Zhou et al., 2015). This is in line with
our observation of expanded s. basiconica and T6 glomeruli in
D. bicolor, when compared with D. insanus, without detectable
qualitative differences in compounds produced by these species.

Colony size may be causally related to cuticular hydrocarbon
profiles through genetic diversity. Polygynous colonies are often
larger (Buczkowski and Bennett, 2008; dos Reis et al., 2011;
Boulay et al., 2014) and the genetic diversity associated with
polygyny may result in greater CHC diversity or variation
in olfactory receptors, though evidence from the ant Formica
exsecta suggests that polygyny may actually reduce CHC diversity
(Martin et al., 2009). It is possible that the differences between
D. bicolor and D. insanus stem not only from colony size directly,
but from polygyny and associated differences in colony-level
genetic diversity. However, while Nickerson et al. (1975) suggest
both polygynous and monogynous species of Dorymyrmex exist
in North America, queen number is not known for species
used in this study.

In a previous study we found differences in exploratory
behavior linked with colony size in these species, with the smaller-
colony D. insanus showing greater exploratory activity. From
those experiments we suggested these differences may be driven
in part by differences in social interactions such as extended
periods of contact in D. bicolor (Godfrey and Gronenberg,
2019b). Here, the differences in socially relevant sensory systems
between D. bicolor and D. insanus correlate with the frequency
and duration of social interaction within these species, suggesting
observed differences in s. basiconica and T6 glomeruli may
indeed be functional.

Undoubtedly, colony size plays a role in social insect
evolution, as it is involved in both proximate (e.g., Jeanson
et al., 2007; Ferguson-Gow et al., 2014) and ultimate (e.g.,
Robinson and Page, 1988) causes of worker trait variation or
specialization. The current study focuses on the relationship
between colony size and the size and number of sensory
system components, with an emphasis on differences in sensory
structures known to be involved in nestmate recognition,
though not exclusively used for that purpose (D’Ettorre et al.,
2017). We find evidence that communication systems change
with colony size in closely related species, potentially because
selection acts on nestmate recognition and signaling related
to cooperative behaviors. However, our data do not support
a universal pattern of sensory system scaling associated with
changes in colony size. Here we compare a small number
of species for which a clear taxonomy and robust phylogeny
are only now being assembled, so we offer no a priori
hypothesis regarding causation or directional evolution; it
seems equally possible that shifts in communication systems
drove expansion of colony size (LeBoeuf et al., 2013) as
the inverse (Riveros et al., 2012), and these traits very
likely coevolve.
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The evolution of social systems can place novel selective forces on investment in
expensive neural tissue by changing cognitive demands. Previous hypotheses about
the impact of sociality on neural investment have received equivocal support when
tested across diverse taxonomic groups and social structures. We suggest previous
models for social behavior-brain relationships have overlooked important variation in
social groups. Social groups vary significantly in structure and function, and the specific
attributes of a social group may be more relevant to setting cognitive demands than
sociality in general. We have identified intragroup competition, relationship differentiation,
information sharing, dominance hierarchies, and task specialization and redundancy as
attributes of social behavior which may impact selection for neural investment, and
outline how variation in these attributes can result in increased or decreased neural
investment with transitions to sociality in different taxa. Finally, we test some of the
predictions generated using this framework in a phylogenetic comparison of neural
tissue investment in Anelosimus social spiders. Social Anelosimus spiders engage
in cooperative prey capture and brood care, which allows for individual redundancy
in the completion of these tasks. We hypothesized that in social spider species,
the presence of redundancy would reduce selection for individual neural investment
relative to subsocial species. We found that social species had significantly decreased
investment in the arcuate body, the cognitive center of the spider brain, supporting
our predictions. Future comparative tests of brain evolution in social species should
account for the special behavioral characteristics that accompany social groups in the
subject taxa.

Keywords: neuroecology, social behavior, social brain evolution, social spiders, distributed cognition hypothesis

INTRODUCTION

Evolutionary transitions of social behavior can introduce novel cognitive demands (Silk, 2007).
Metabolic costs of neural tissue are disproportionately high and brain tissue investment should
be constrained to meet cognitive demands (Niven and Laughlin, 2008; Iwaniuk, 2017). Origins or
modification of sociality may drive changes in brain tissue investment. Several hypotheses have
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been advanced to explain changes in neural tissue investment
associated with transitions in social behavior, generally referred
to as “social brain” hypotheses (Dunbar, 1998). Initially, social
brain hypotheses assumed there would be a positive effect
of sociality on brain investment, but more recent theoretical
treatments (Gronenberg and Riveros, 2009; Lihoreau et al.,
2012) and empirical findings (vertebrates: Gonzalez-Voyer et al.,
2009; Fedorova et al., 2017; Kverková et al., 2018; social insects:
O’Donnell et al., 2015) have called this assumption into question.

Studies to date have not adequately identified or accounted
for varying behavioral selective pressures that could change
cognitive demands as sociality evolves. Analyzing the
diversity of social interactions can contribute to more
rigorous theory linking social environments with brain
evolution. We suggest comparative tests of social brain
hypotheses should explicitly consider which aspects of
behavior change during transitions from solitary to group
living, or during transitions in social complexity, in each
study taxon. We identify some key features of social
systems that can act as independent selective forces on
neural investment. We explore how each of the following
attributes of social systems can affect cognitive demands
and thus selection for neural investment: intragroup
competition, individual recognition, information sharing,
dominance hierarchies, and task performance specialization
and redundancy. We predict that some of these behavioral
attributes will decrease the fitness effects of individual
cognitive abilities, such that selection for neural investment
will be relaxed. In contrast, other attributes of sociality may
place greater cognitive demands on individuals, selecting
for increased neural investment.

It is important to note that few, if any, of the behavioral
attributes we explore are universally present among social
taxa. The relevance of these behavioral attributes vary
among animal taxa, depending in part on how social groups
form and function. An important complicating factor is
the role of individual vs. group/colony selection as the
main determinant of fitness in a species (O’Donnell et al.,
2018). Variation among animal lineages in the structure
of social groups provides opportunities for cross-taxon
comparative analyses, which can be used to assess the relative
importance of different behavioral factors as determinants of
neural investment.

Our paper is divided into two main sections. In the first
section we present some attributes of social behavior that
could independently impact cognitive demands on animals,
either increasing or relaxing selection for brain investment. We
discuss potential effects of these demands on the evolution of
brain investment. The second section is an empirical test of
social brain effects in a taxon with diverse grades of sociality
and a relatively simple social system (cobweb spiders: Avilés
and Guevara, 2017). Social cobweb spider species exhibit task
sharing and redundancy among females; social males and
subsocial species do not (Samuk et al., 2011; Harwood and
Avilés, 2013, 2018). Furthermore, social spiders do not exhibit
some potentially confounding elements of sociality, such as
dominance hierarchies and task specialization (Lubin, 1995;

Settepani et al., 2013) that could complicate the interpretation of
social brain effects comparisons.

ATTRIBUTES OF SOCIAL BEHAVIOR:
INTRAGROUP COMPETITION

The evolution of social behavior potentially increases the
frequency or intensity of competition between animals, and
social competitive costs must nearly always be compensated by
other fitness payoffs to favor sociality (Silk, 2007). Social group
participation can drive increased brain tissue investment, either
in response to or in anticipation of competitive interactions.
Greater neural investment can improve performance on
behavioral tasks, such as mate location, and may confer
individual benefits in highly competitive social environments
(Kotrschal et al., 2015). Potential relationships of heightened
competition with brain investment are illustrated by species
where social groups involve temporary or facultative aggregations
that can increase local competition for food or other resources.
In desert locusts, the transition from solitary living to the
formation of massive swarms that compete for food and
engage in cannibalism (Guttal et al., 2012) is accompanied
by increased total brain investment and greater relative
investment in the mushroom bodies, which are cognitive
integrating regions of the insect brain (Ott and Rogers,
2010). Experimental manipulations that induce sociality in
species that are typically solitary have found similar increases
in cognitive performance or neural investment in social
groups. In Drosophila melanogaster fruit flies, larval crowding
resulted in increased food competition and was associated
with greater adult neural investment (Heisenberg et al., 1995);
juvenile Marpissa muscosa jumping spiders reared in groups
had significantly improved performance on learning assays
although competition was not directly implicated in this study
(Liedtke and Schneider, 2017).

ATTRIBUTES OF SOCIAL BEHAVIOR:
INDIVIDUAL RECOGNITION

Individual recognition can be cognitively demanding
because it requires discriminating and remembering the
individual identities of social partners (Shultz and Dunbar,
2006; Bergman and Beehner, 2015). In addition to the
number of unique relationships, qualitative differences in
interactions between group members can impose different
cognitive demands. For example, monogamous pair bonds
are common among birds, but species vary in the level of
pairs’ cooperation and affiliative behaviors (Emery et al.,
2007). Emery et al. (2007) proposed that increased total
brain investment in some bird species can be attributed to
a higher degree of cooperation during brood care, increased
affiliative displays, and social support interactions among
mates. Social alliances in particular may be expected to
impose higher cognitive demands because of the necessity
to remember group member identities, predict the outcome
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of interactions, and recognize others with similar status
(Chapais, 1995).

ATTRIBUTES OF SOCIAL BEHAVIOR:
DOMINANCE HIERARCHIES

Dominance hierarchies describe ranks of group members
in relation to one another (Drews, 1993). The criteria
used to define a “dominant position” vary among species
but may include increased access to food resources or
reproductive opportunities relative to other members of
a group (Drews, 1993). Achieving dominant status and
maintaining a hierarchy may increase cognitive demands
(and brain investment) by requiring dominant individuals
to differentiate group member relationships (Dunbar, 1992).
Socially dominant positions in hierarchies are associated with
increased neural investment in socially flexible bees relative
to both solitary and subordinate individuals (Smith et al.,
2010; Rehan et al., 2015). A loss of sociality in a primitively
social bee lineage resulted in decreased foundress neural
investment, potentially due to the loss of dominance interactions
(Pahlke et al., 2019, 2020).

The expected relationship of dominance behavior with
brain investment is complicated because dominance hierarchies
do not always rely on cognitively demanding, individualized
aggressive behaviors. Some hierarchies rely partially or entirely
on chemical signaling (Faulkes and Bennett, 2001; Sundström
and Boomsma, 2001; Orlova et al., 2020). In hierarchies which
do not rely on aggressive interactions, selection for neural
investment to navigate social interactions may be minimal
(Lihoreau et al., 2012). An additional complication is that
dominance status can affect other aspects of behavior such
as task performance. For example, reproductively-dominant
social insect queens may perform few behaviors other than
egg laying (Noirot, 1989; Barchuk et al., 2018), potentially
permitting reduced brain investment for dominants compared
to subordinates (Barchuk et al., 2018; Gordon et al., 2019; but
see O’Donnell et al., 2017). In these systems, neural investment
in dominants and subordinates may no longer be driven by
social interactions, but instead by caste-specific division of labor
(thus falling under the task specialization attribute, described
below).

ATTRIBUTES OF SOCIAL BEHAVIOR:
INFORMATION SHARING

Information sharing allows social animals to respond adaptively
to stimuli they have not experienced directly. Information
sharing can decrease the fitness costs of inaccurate stimulus
detection and may reduce selection for individual cognitive
abilities, permitting decreased brain tissue investment. The effect
of group information sharing on cognitive demands is well-
illustrated by vigilance behaviors. Individual vigilance behavior
performance rates decrease in the presence of conspecifics in
some species (McBlain et al., 2020; Wang et al., 2021), and

predator detection can be faster and more accurate in social
groups compared to lone individuals (Ward et al., 2011).
However, the need for increased ability to produce, detect and
respond to social signals can involve additional cognitive and
neural costs. In this case, social and environmental information
may be integrated by different parts of the brain, resulting
in distinct patterns of mosaic brain evolution: in cichlid
fish, environmental complexity is associated with increased
telencephalon investment, while increased social complexity is
associated with increased hypothalamus investment (Pollen et al.,
2007). Thus, for systems in which information sharing occurs,
assessing changes in specific brain regions, rather than total brain
investment, may better detect the effects of changes in cognitive
demands on brain investment.

ATTRIBUTES OF SOCIAL BEHAVIOR:
TASK PERFORMANCE SPECIALIZATION
AND REDUNDANCY

A common theme in some taxa is for social group members to
specialize on a subset of the tasks typically performed by solitary-
living individuals (Jeanne, 1986). Individuals may specialize on
specific behaviors for all or part of their lifetime; in extreme cases,
the evolution of morphologically distinct castes in some social
insects limits workers to performing certain behaviors or tasks
(Korb and Thorne, 2017; O’Donnell et al., 2018; Gordon et al.,
2019). Task specialization is often paired with neural adaptations
to meet the cognitive demands of a specific behavioral class
(Amador-Vargas et al., 2015; Iwaniuk, 2017), but may result
in decreased selection for general cognition (Gronenberg and
Riveros, 2009). Task specialization may improve colony-level
efficiency (Keller et al., 2011), and decreases in individual neural
investment can represent a savings of resource investment by
the social group. Reduced individual neural investment may
mark a transition to colony-level selection on neural investment
(O’Donnell et al., 2015, 2018).

Redundancy, or the availability of multiple individuals to
perform or complete a given task, may also reduce individual
cognitive demands. Redundancy can facilitate high probabilities
of successful task completion even when individual competency
is relatively low (Herbers, 1981). Redundancy in colony labor
is often present in caste-specialist systems and may be critical
for effective task partitioning among group mates (Jeanne,
1999), but redundancy is not restricted to task-specialist systems.
Redundancy applies whenever the completion of a shared task
is not the responsibility of a single individual, such as in
cooperatively breeding social groups (Taborsky et al., 2007; Riehl,
2013). Decreased neural investment has been associated with
living in stable groups in woodpeckers (Fedorova et al., 2017), and
in cichlid fishes who engage in biparental care (Gonzalez-Voyer
et al., 2009). In both of these systems redundancy to complete
tasks may reduce individual cognitive demands. In fact, the
evolution of redundant cooperation may be more likely to occur
when individuals are unaware of group-mates’ social strategies
(Pedroso, 2020).
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SOCIAL SPIDERS: A TEST FOR SOCIAL
BRAIN EFFECTS IN A SIMPLE SOCIAL
SYSTEM

Several evolutionary transitions between subsocial and social
behavior have occurred in the cobweb spider genus Anelosimus
(Figure 1). In subsocial species, individual females perform
extended maternal care but offspring disperse prior to or at
adulthood (Yip and Rayor, 2014; Avilés and Guevara, 2017).
In social species the offspring do not disperse, leading to the
maintenance of permanently communal nests. Social species
adult females cooperatively capture prey and share offspring care
(Avilés and Tufino, 1998; Yip et al., 2008; Samuk and Avilés, 2013;
Avilés and Guevara, 2017). However, social Anelosimus spiders
lack task specialization and do not exhibit individual recognition
or dominance hierarchies (Jones and Parker, 2000; Aviles and
Bukowski, 2006; Settepani et al., 2013). Individual redundancy,
resulting from cooperation on maternal care and prey capture,
could drive reduced selection for individual competency at these
tasks. As predicted, individual females in social Anelosimus
species are less competent at maternal care (Samuk et al.,
2011) and less effective hunters (Harwood and Avilés, 2018)
when compared to females from related subsocial species. We
expected brain investment to differ among the sociality levels
due to differences in reliance on individual ability to successfully
complete maternal care and prey capture tasks. We predicted
the arcuate body would be less developed (relatively smaller)
in females of the social compared to subsocial species, because
the arcuate body is a center of mechanosensory integration
(Babu and Barth, 1984; Steinhoff et al., 2018). Unlike females,
males of both social and subsocial species die shortly following

mating (Avilés and Gelsey, 1998; Avilés and Salazar, 1999; Viera
et al., 2007) and have little or no engagement in colony activity,
except in nest maintenance (Aviles, 1986). Because male behavior
does not differ consistently between the sociality categories, we
predicted male brain investment patterns would be similar in
subsocial and social species.

METHODS: A TEST FOR SOCIAL BRAIN
EFFECTS IN A SIMPLE SOCIAL SYSTEM

Subject Spider Collections
Specimens were collected and preserved in Prefer aldehyde-based
fixative solution (Anatech, Ltd.). We sampled adult females from
5 social and 6 subsocial species of Anelosimus spiders (adult
males from 5 social and 4 subsocial species), representing at least
3 independent transitions to social behavior (Agnarsson et al.,
2006; Figure 1C). Subsocial species: A. arizona (n = 3 females,
3 males); A. baeza (n = 4 females, 3 males); A. elegans (n = 3
females, 3 males); A. jabaquara (n = 3 females); A. studiosus
(n = 3 females, 3 males); A. tosum (n = 2 females). Social species:
A. domingo (n = 1 female, 3 males); A. dubiosus (n = 3 females,
1 male); A. eximius (n = 3 females, 3 males); A. guacamayos
(n = 3 females, 3 males); A. oritoyacu (n = 3 females, 3
males). Specimen collection date and location are detailed in
Supplementary Material.

Histology and Brain Size Measurements
For each subject we removed the legs and opisthosoma and
opened the cephalothorax dorsum to remove the venom gland,
then embedded in plastic resin comprised of Embed-812 resin,

FIGURE 1 | (A) Light photomicrographs of stained and sectioned protocerebrum tissue, showing supraesophageal ganglion (SEG) and arcuate body (AB) regions.
The 3D reconstruction shows the relative sizes of the SEG (purple) and AB (pink). (B) Brain volume was compared between subsocial (blue) species, which form
nests of single mothers and their offspring, who disperse at adulthood, and social (pink) species, which form permanent communal nests with multiple mothers and
offspring. (C) Phylogenetic relationships among the sampled species (Luo et al., 2020).
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DDSA, DBP, and DMP 30 (Electron Microscopy Services, Inc.),
and cured at 60◦C for 72 h. Embedded tissue was sectioned into
8–10 um thick slices using a rotary microtome and stained using
Toluidine Blue O (Fisher Scientific). Sections were photographed
using a light microscope and areas containing neuropil were
outlined using ImageJ version 1.53a (Schneider et al., 2012),
multiplied by slice thickness, and then converted to volume
(mm3) using a pixel-to-millimeter conversion factor. Detailed
embedding protocol (O’Donnell et al., 2011).

For each specimen, we measured the protocerebrum, which
is considered to be the “true brain” of spiders and is
comprised of the supraesophageal ganglion and the arcuate

body (Babu and Barth, 1984). The supraesophageal ganglion
receives visual sensory input (Babu and Barth, 1984). The
arcuate body is an integration center between the subesophageal
and supraesophageal ganglia (Babu and Barth, 1984), and
may be important for navigating complex environments
(Steinhoff et al., 2018). We focused on the arcuate body
as a region particular relevant to maternal care tasks and
prey capture, due to the necessity to integrate visual and
mechanosensory information and coordinate locomotion during
these tasks (Steinhoff et al., 2018). We quantified supraesophageal
volume (as a brain size reference) and arcuate body volume
(Steinhoff et al., 2017).

FIGURE 2 | Relationships between log supraesophageal ganglion volume and log arcuate body volume for Anelosimus spiders. (A) Females. (B) Males. Data points
represent mean-species values for either social (blue) or subsocial (green) species. Lines represents slopes of linear regression calculated using data from all species.
ari A, Arizona; bae A, baeza; dom A, domingo; dub A, dubiosus; ele A, elegans; exi A, eximius; gua A, guacamayos; jab A, jabaquara; ori A,oritoyacu; stu A,
studiosus; tos A, tosum.
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Statistical Analysis
We used General Linear Models (GLM; SPSS v. 28) and
Phylogenetically Generalized Least Squares (PGLS; R version
4.0.2 and the packages ape (Paradis and Schliep, 2019)
and phytools (Revell, 2012) to test whether subsocial and
social species differed in relative arcuate body investment.
We performed separate analyses for male and female brain
volume data. Because we expected an allometric relationship
between arcuate body volume and brain size (Napiórkowska
and Kobak, 2018), we first accounted for brain size effects
using supraesophageal ganglion volume as a covariate in the
models, then tested for the effects of species sociality category
(subsocial vs. social) as a fixed factor. We performed GLM
analyses (with type I sums of squares) on the raw species-
mean brain data and on log10-transformed brain region volumes
to assess the allometry of brain region evolution (Mascaro
et al., 2014). To account for possible effects of phylogeny on
brain region/behavior relationships we also performed separate
phylogenetically generalized least squares regression (PGLS).
PGLS allows accounting for linear covariates in the analysis of
categorical differences in response variables (in our study, social
behavior category differences in arcuate body volume) (Mundry,
2014). We used a published phylogeny of Anelosimus species
from Luo et al. (2020), with all branch lengths set to one. We used
a PGLS to test the relationship between arcuate body investment
and sociality level, with supraesophageal ganglion volume as a
covariate (controlling for brain size, as we did in the GLM). Mean
species values of brain region volumes used in PGLS analysis were
log10 transformed.

RESULTS: A TEST FOR SOCIAL BRAIN
EFFECTS IN A SIMPLE SOCIAL SYSTEM

For females, social category was a significant predictor of arcuate
body volume. After accounting for significant effects of brain
size [supraesophageal ganglion volume: GLM F(1, 8) = 12.02,
p = 0.008], arcuate body volume was significantly greater in
subsocial than in social species [GLM F(1, 8) = 5.72, p = 0.04].
Similar patterns were found in the analysis of log-log transformed
brain volume data [Figure 2; supraesophageal ganglion volume
effect: GLM F(1, 8) = 16.15, p = 0.004; social category effect: GLM
F(1 ,8) = 7.03, p = 0.03]. The log-log slope of the arcurate body
vs. supraesophageal ganglion volume regression was significantly
lower than 1.0 (slope = 0.39 ± 0.24 95% CI), demonstrated an
allometrically decelerating rate of increase in arcuate body size.
Using the PGLS to account for phylogeny supported the effects
of sociality category: arcuate body size was greater in subsocial

than in social species [Figure 2; PGLS on log transformed data:
F(1, 8) = 14.84, p = 0.005]. For males, social behavior category did
not predict arcuate body size [GLM linear analysis F(1, 6) = 1.11,
p = 0.33; GLM log-log analysis F(1, 6) = 1.72, p = 0.24; PGLS on
log transformed data F(1, 6) = 3.3, p = 0.12].

DISCUSSION: A TEST FOR SOCIAL
BRAIN EFFECTS IN A SIMPLE SOCIAL
SYSTEM

Female Anelosimus of social species engage in cooperative
brood care and prey capture (Avilés and Tufino, 1998; Yip
et al., 2008; Harwood and Avilés, 2013, 2018; Samuk and
Avilés, 2013; Avilés and Guevara, 2017), and we predicted that
individuals’ redundancy in these tasks would reduce individual
cognitive demands and relax selection for neural investment
compared to subsocial congeners. As predicted, females of social
species had significantly reduced relative investment in the
arcuate body compared to subsocial species. This pattern did
not hold for males which do not differ in task redundancy
between subsocial and social species. These results indicate that
behavioral redundancy is an attribute of sociality which may
promote reduced brain region investment, independently of
other social attributes such as task specialization. Application of
the behavioral framework we develop to other social systems may
encourage the identification of behavioral attributes driving brain
evolution that have previously gone unnoticed.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

LA collected and supplied specimens. All authors listed have
made substantial contributions to the work and approved it
for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.
733228/full#supplementary-material

REFERENCES
Agnarsson, I., Avilés, L., Coddington, J. A., and Maddison, W. P. (2006). Sociality

in theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60,
2342–2351.

Amador-Vargas, S., Gronenberg, W., Wcislo, W. T., and Mueller, U. (2015).
Specialization and group size: brain and behavioural correlates of colony size

in ants lacking morphological castes. Proc. R. Soc. B Biol. Sci. 282:20142502.
doi: 10.1098/rspb.2014.2502

Aviles, L. (1986). Sex-ratio bias and possible group selection in the social spider
Anelosimus eximius. Am. Nat. 128, 1–12. doi: 10.1086/284535

Aviles, L., and Bukowski, T. C. (2006). Group living and inbreeding depression
in a subsocial spider. Proc. Biol. Sci. 273, 157–163. doi: 10.1098/rspb.2005.
3308

Frontiers in Ecology and Evolution | www.frontiersin.org 6 November 2021 | Volume 9 | Article 73322853

https://www.frontiersin.org/articles/10.3389/fevo.2021.733228/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2021.733228/full#supplementary-material
https://doi.org/10.1098/rspb.2014.2502
https://doi.org/10.1086/284535
https://doi.org/10.1098/rspb.2005.3308
https://doi.org/10.1098/rspb.2005.3308
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-733228 November 16, 2021 Time: 13:41 # 7

Caponera et al. Cognitive Impact of Social Attributes

Avilés, L., and Gelsey, G. (1998). Natal dispersal and demography of a subsocial
Anelosimus species and its implications for the evolution of sociality in spiders.
Can. J. Zool. 76, 2137–2147.

Avilés, L., and Guevara, J. (2017). “Sociality in spiders,” in Comparative Social
Evolution, eds D. R. Rubenstein and P. Abbot (Cambridge: Cambridge
University Press), 188–223. doi: 10.1017/9781107338319.008

Avilés, L., and Salazar, P. (1999). Notes on the social structure, life cycle, and
behavior of Anelosimus rupununi. J. Arachnol. 27, 497–502.

Avilés, L., and Tufino, P. (1998). Colony size and individual fitness in the social
spider Anelosimus eximius. Am. Nat. 152, 403–418. doi: 10.1086/286178

Babu, K. S., and Barth, F. G. (1984). Neuroanatomy of the central nervous system of
the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology
104, 344–359. doi: 10.1007/bf00312185

Barchuk, A. R., dos Santos, G. D., Dias Caneschi, R., de Paula Junior, D. E., and
Moda, L. M. R. (2018). The ontogenetic saga of a social brain. Apidologie 49,
32–48. doi: 10.1007/s13592-017-0540-4

Bergman, T. J., and Beehner, J. C. (2015). Measuring social complexity. Anim.
Behav. 103, 203–209. doi: 10.1016/j.anbehav.2015.02.018

Chapais, B. (1995). Alliances as a means of competition in primates:
evolutionary, developmental, and cognitive aspects. Am. J. Phys. Anthropol. 38,
115–136.

Drews, C. (1993). The concept and definition of dominance in animal behaviour.
Behaviour 125, 283–313.

Dunbar, R. I. M. (1992). Neocortex size as a constraint size in primates on group
ecologically. J. Hum. Evol. 20, 469–493. doi: 10.1016/0047-2484(92)90081-j

Dunbar, R. I. M. (1998). The social brain hypothesis. Evol. Anthropol. 6, 178–190.
Emery, N. J., Seed, A. M., Von Bayern, A. M. P., and Clayton, N. S. (2007).

Cognitive adaptations of social bonding in birds. Philos. Trans. R. Soc. Lond.
B. Biol. Sci. 362, 489–505. doi: 10.1098/rstb.2006.1991

Faulkes, C. G., and Bennett, N. C. (2001). Family values: group dynamics and social
control of reproduction in African mole-rats. Trends Ecol. Evol. 16, 184–190.
doi: 10.1016/S0169-5347(01)02116-4

Fedorova, N., Evans, C. L., and Byrne, R. W. (2017). Living in stable social groups
is associated with reduced brain size in woodpeckers (Picidae). Biol. Lett.
13:20170008. doi: 10.1098/rsbl.2017.0008

Gonzalez-Voyer, A., Winberg, S., and Kolm, N. (2009). Social fishes and single
mothers: brain evolution in African cichlids. Proc. R. Soc. B Biol. Sci. 276,
161–167. doi: 10.1098/rspb.2008.0979

Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S., and Traniello,
J. F. A. (2019). Division of labor and brain evolution in insect societies:
neurobiology of extreme specialization in the turtle ant Cephalotes varians.
PLoS One 14:e0213618. doi: 10.1371/journal.pone.0219036

Gronenberg, W., and Riveros, A. J. (2009). “Social brains and behavior: past and
present,” in Organization of Insect Societies: From Genome to Sociocomplexity,
eds J. Gadau and J. Fewell (Cambridge, MA: Harvard University Press),
377–401.

Guttal, V., Romanczuk, P., Simpson, S. J., Sword, G. A., and Couzin, I. D. (2012).
Cannibalismcan drive the evolution of behavioural phase polyphenism in
locusts. Ecol. Lett. 15, 1158–1166. doi: 10.1111/j.1461-0248.2012.01840.x

Harwood, G., and Avilés, L. (2013). Differences in group size and the extent of
individual participation in group hunting may contribute to differential prey-
size use among social spiders. Biol. Lett. 9:20130621. doi: 10.1098/rsbl.2013.
0621

Harwood, G., and Avilés, L. (2018). The shortfall of sociality: group-living affects
hunting performance of individual social spiders. Behav. Ecol. 29, 1487–1493.
doi: 10.1093/beheco/ary099

Heisenberg, M., Heusipp, M., and Wanke, C. (1995). Structural plasticity in the
Drosophila brain. J. Neurosci. 15, 1951–1960. doi: 10.1523/jneurosci.15-03-
01951.1995

Herbers, J. M. (1981). Reliability theory and foraging by ants. J. Theor. Biol. 89,
175–189. doi: 10.1016/0022-5193(81)90184-3

Iwaniuk, A. N. (2017). “Functional correlates of brain and brain region sizes in
nonmammalian vertebrates,” in Evolution of Nervous Systems, Vol. 1, ed. J. Kaas
(Oxford: Elsevier), 335–348. doi: 10.1007/s002390010256

Jeanne, R. (1986). The evolution of the organization of work in social insects.
Monit. Zool. Ital. 20, 119–133.

Jeanne, R. (1999). “Group size, productivity, and information flow in social wasps,”
in Information Processing in Social Insects, eds C. Detrain, J. L. Deneubourg, and

J. M. Pasteels (Switzerland: Birkhauser Verlag Basel), 3–30. doi: 10.1007/978-3-
0348-8739-7_1

Jones, T. C., and Parker, P. G. (2000). Costs and benefits of foraging associated with
delayed dispersal in the spider Anelosimus studiosus (Araneae, Theridiidae).
J. Arachnol. 28, 61–69. doi: 10.1636/0161-8202(2000)028[0061:cabofa]2.0.co;2

Keller, L., Duarte, A., Weissing, F. J., and Pen, I. (2011). An evolutionary
perspective on self-organized division of labor in social insects. Annu. Rev. Ecol.
Evol. Syst. 42, 91–110. doi: 10.1146/annurev-ecolsys-102710-145017

Korb, J., and Thorne, B. (2017). “Sociality in termites,” in Comparative Social
Evolution, eds D. R. Rubenstein and P. Abbot (Cambridge: Cambridge
University Press), 124–153.

Kotrschal, A., Corral-Lopez, A., Amcoff, M., and Kolm, N. (2015). A larger brain
confers a benefit in a spatial mate search learning task in male guppies. Behav.
Ecol. 26, 527–532. doi: 10.1093/beheco/aru227

Kverková, K., Belíkova, T., Olkowicz, S., Pavelkova, Z., O’Riain, M. J., Sumbera, R.,
et al. (2018). Sociality does not drive the evolution of large brains in eusocial
African mole-rats. Sci. Rep. 8:9203.

Liedtke, J., and Schneider, J. M. (2017). Social makes smart: rearing conditions
affect learning and social behaviour in jumping spiders. Anim. Cogn. 20,
1093–1106. doi: 10.1007/s10071-017-1125-3

Lihoreau, M., Latty, T., and Chittka, L. (2012). An exploration of the social brain
hypothesis in insects. Front. Physio. 3:442. doi: 10.3389/fphys.2012.00442

Lubin, Y. (1995). Is there division-of-labor in the social spider Achaearanea wau
(Theridiidae)? Anim. Behav. 49, 1315–1323.

Luo, Y., Goh, S. P., Li, D., Gonzaga, M. O., Santos, A. J., Tanikawa, A., et al.
(2020). Global diversification of anelosimus spiders driven by long-distance
overwater dispersal and neogene climate oscillations. Syst. Biol. 69, 1122–1136.
doi: 10.1093/sysbio/syaa017

Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A., and Schnitzer, S. A. (2014).
Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-
thousand-times yes. Biol. J. Linn. Soc. 111, 230–233. doi: 10.1111/bij.12177

McBlain, M., Jones, K. A., and Shannon, G. (2020). Sleeping eurasian oystercatchers
adjust their vigilance in response to the behaviour of neighbours, human
disturbance and environmental conditions. J. Zool. 312, 75–84. doi: 10.1111/
jzo.12812

Mundry, R. (2014). “Statistical issues and assumptions of phylogenetic generalized
least squares,” in Modern Phylogenetic Comparative Methods and Their
Application in Evolutionary Biology, ed. L. Z. Garamszegi (Berlin: Springer),
131–153. doi: 10.1007/978-3-662-43550-2_6

Napiórkowska, T., and Kobak, J. (2018). The allometry of the arcuate body in the
postembryonic development of the giant house spider Eratigena atrica. Invert.
Neurosci. 18:3. doi: 10.1007/s10158-018-0208-4

Niven, J. E., and Laughlin, S. B. (2008). Energy limitation as a selective pressure on
the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804. doi: 10.1242/jeb.
017574

Noirot, C. (1989). Social structure in termite societies. Ethol. Ecol. Evol. 1, 1–17.
doi: 10.1080/08927014.1989.9525528

O’Donnell, S., Clifford, M., and Molina, Y. (2011). Comparative analysis of
constraints and caste differences in brain investment among social paper wasps.
Proc. Natl. Acad. Sci. U.S.A. 108, 7107–7112. doi: 10.1073/pnas.1017566108

O’Donnell, S., Bulova, S., Barrett, M., and von Beeren, C. (2018). Brain investment
under colony-level selection: soldier specialization in Eciton army ants
(Formicidae: Dorylinae). BMC Zool. 3:3. doi: 10.1186/s40850-018-0028-3

O’Donnell, S., Bulova, S. J., DeLeon, S., Barrett, M., and Fiocca, M. (2017).
Caste differences in the mushroom bodies of swarm-founding paper wasps:
implications for brain plasticity and brain evolution (Vespidae, Epiponini).
Behav. Ecol. Sociobiol. 71:116. doi: 10.1007/s00265-017-2344-y

O’Donnell, S., Bulova, S. J., DeLeon, S., Khodak, P., Miller, S., and Sulger, E.
(2015). Distributed cognition and social brains: reductions in mushroom
body investment accompanied the origins of sociality in wasps (Hymenoptera:
Vespidae). Proc. Biol. Sci. 282:20150791. doi: 10.1098/rspb.2015.0791

Orlova, M., Treanore, E., and Amsalem, E. (2020). Built to change: dominance
strategy changes with life stage in a primitively eusocial bee. Behav. Ecol. 31,
1361–1368. doi: 10.1093/beheco/araa093

Ott, S. R., and Rogers, S. M. (2010). Gregarious desert locusts have
substantially larger brains with altered proportions compared with the
solitarious phase. Proc. Biol. Sci. 277, 3087–3096. doi: 10.1098/rspb.2010.
0694

Frontiers in Ecology and Evolution | www.frontiersin.org 7 November 2021 | Volume 9 | Article 73322854

https://doi.org/10.1017/9781107338319.008
https://doi.org/10.1086/286178
https://doi.org/10.1007/bf00312185
https://doi.org/10.1007/s13592-017-0540-4
https://doi.org/10.1016/j.anbehav.2015.02.018
https://doi.org/10.1016/0047-2484(92)90081-j
https://doi.org/10.1098/rstb.2006.1991
https://doi.org/10.1016/S0169-5347(01)02116-4
https://doi.org/10.1098/rsbl.2017.0008
https://doi.org/10.1098/rspb.2008.0979
https://doi.org/10.1371/journal.pone.0219036
https://doi.org/10.1111/j.1461-0248.2012.01840.x
https://doi.org/10.1098/rsbl.2013.0621
https://doi.org/10.1098/rsbl.2013.0621
https://doi.org/10.1093/beheco/ary099
https://doi.org/10.1523/jneurosci.15-03-01951.1995
https://doi.org/10.1523/jneurosci.15-03-01951.1995
https://doi.org/10.1016/0022-5193(81)90184-3
https://doi.org/10.1007/s002390010256
https://doi.org/10.1007/978-3-0348-8739-7_1
https://doi.org/10.1007/978-3-0348-8739-7_1
https://doi.org/10.1636/0161-8202(2000)028[0061:cabofa]2.0.co;2
https://doi.org/10.1146/annurev-ecolsys-102710-145017
https://doi.org/10.1093/beheco/aru227
https://doi.org/10.1007/s10071-017-1125-3
https://doi.org/10.3389/fphys.2012.00442
https://doi.org/10.1093/sysbio/syaa017
https://doi.org/10.1111/bij.12177
https://doi.org/10.1111/jzo.12812
https://doi.org/10.1111/jzo.12812
https://doi.org/10.1007/978-3-662-43550-2_6
https://doi.org/10.1007/s10158-018-0208-4
https://doi.org/10.1242/jeb.017574
https://doi.org/10.1242/jeb.017574
https://doi.org/10.1080/08927014.1989.9525528
https://doi.org/10.1073/pnas.1017566108
https://doi.org/10.1186/s40850-018-0028-3
https://doi.org/10.1007/s00265-017-2344-y
https://doi.org/10.1098/rspb.2015.0791
https://doi.org/10.1093/beheco/araa093
https://doi.org/10.1098/rspb.2010.0694
https://doi.org/10.1098/rspb.2010.0694
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-733228 November 16, 2021 Time: 13:41 # 8

Caponera et al. Cognitive Impact of Social Attributes

Pahlke, S., Jaumann, S., Seid, M. A., and Smith, A. R. (2019). Brain differences
between social castes precede group formation in a primitively eusocial bee. Sci.
Nat. 106, 2015–2018. doi: 10.1007/s00114-019-1644-7

Pahlke, S., Seid, M. A., Jaumann, S., and Smith, A. (2020). The loss of sociality is
accompanied by reduced neural investment in mushroom body volume in the
sweat bee Augochlora pura (Hymenoptera: Halictidae). Ann. Entomol. Soc. Am.
114, 637–642. doi: 10.1093/aesa/saaa019

Paradis, E., and Schliep, K. (2019). Ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. doi:
10.1093/bioinformatics/bty633

Pedroso, M. (2020). Blind cooperation: the evolution of redundancy via ignorance.
Br. J. Philos. Sci. 72:3. doi: 10.1093/BJPS/AXZ022

Pollen, A. A., Dobberfuhl, A. P., Scace, J., Igulu, M. M., Renn, S. C. P., Shumway,
C. A., et al. (2007). Environmental complexity and social organization sculpt
the brain in Lake Tanganyikan cichlid fish. Brain Behav. Evol. 70, 21–39. doi:
10.1159/000101067

Rehan, S. M., Bulova, S. J., and O’Donnell, S. (2015). Cumulative effects of foraging
behavior and social dominance on brain development in a facultatively social
bee (Ceratina australensis). Brain Behav. Evol. 85, 117–124. doi: 10.1159/
000381414

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology
(and other things). Methods Ecol. Evol. 3, 217–223. doi: 10.1111/j.2041-210X.
2011.00169.x

Riehl, C. (2013). Evolutionary routes to non-kin cooperative breeding in birds.
Proc. Soc. Sci. 280:20132245. doi: 10.1098/rspb.2013.2245

Samuk, K., and Avilés, L. (2013). Indiscriminate care of offspring predates the
evolution of sociality in alloparenting social spiders. Behav. Ecol. Sociobiol. 67,
1275–1284. doi: 10.1007/s00265-013-1555-0

Samuk, K. M., LeDue, E. E., and Aviles, L. (2011). Sister clade comparisons
reveal reduced maternal care behavior in social cobweb spiders. Behav. Ecol.
9:20130621. doi: 10.1093/beheco/arr146

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to
imageJ: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/
nmeth.2089

Settepani, V., Grinsted, L., Granfeldt, J., Jensen, J. L., and Bilde, T. (2013). Task
specialization in two social spiders, Stegodyphus sarasinorum (Eresidae) and
Anelosimus eximius (Theridiidae). J. Evol. Biol. 26, 51–62. doi: 10.1111/jeb.
12024

Shultz, S., and Dunbar, R. I. M. (2006). Both social and ecological factors predict
ungulate brain size. Proc. Biol. Sci. 273, 207–215. doi: 10.1098/rspb.2005.3283

Silk, J. B. (2007). The adaptive value of sociality in mammalian groups.
Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 539–559. doi: 10.1098/rstb.2006.
1994

Smith, A. R., Seid, M. A., Jiménez, L. C., and Wcislo, W. T. (2010). Socially induced
brain development in a facultatively eusocial sweat bee Megalopta genalis
(Hailctidae). Proc. Biol. Sci. 277, 2157–2163. doi: 10.1098/rspb.2010.0269

Steinhoff, P. O. M., Liedtke, J., Sombke, A., Schneider, J. M., and Uhl, G.
(2018). Early environmental conditions affect the volume of higher-order
brain centers in a jumping spider. J. Zool. 304, 182–192. doi: 10.1111/jzo.
12512

Steinhoff, P. O. M., Sombke, A., Liedtke, J., Schneider, J. M., Harzsch, S., and
Uhl, G. (2017). The synganglion of the jumping spider Marpissa muscosa
(Arachnida: Salticidae): insights from histology, immunohistochemistry and
microCT analysis. Arthropod. Struct. Dev. 46, 156–170. doi: 10.1016/j.asd.2016.
11.003

Sundström, L., and Boomsma, J. J. (2001). Conflicts and alliances in insect families.
Heredity 86, 515–521. doi: 10.1046/j.1365-2540.2001.00884.x

Taborsky, B., Skubic, E., and Bruintjes, R. (2007). Mothers adjust egg size to
helper number in a cooperatively breeding cichlid. Behav. Ecol. 18, 652–657.
doi: 10.1093/beheco/arm026

Viera, C., Costa, F. G., Ghione, S., and Benamu-Pino, M. A. (2007). Progeny,
development and phenology of the sub-social spider Anelosimus cf . studiosus
(Araneae, Theridiidae) from Uruguay. Stud. Neotrop. Fauna Environ. 42, 145–
153.

Wang, X., Yang, L., Zhao, Y., Yu, C., and Li, Z. (2021). The group size effect and
synchronization of vigilance in the Tibetan wild ass. Curr. Zool. 67, 11–16.
doi: 10.1093/cz/zoaa024

Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T., and Krause, J. (2011).
Erratum: fast and accurate decisions through collective vigilance in fish shoals.
Proc. Natl. Acad. Sci. U.S.A. 108:8. doi: 10.1073/pnas.1101616108

Yip, E. C., Powers, K. S., and Aviles, L. (2008). Cooperative capture of large prey
solves scaling challenge faced by spider societies. Proc. Nat. Acad. Sci. U.S.A.
105, 11818–11822. doi: 10.1073/pnas.0710603105

Yip, E. C., and Rayor, L. S. (2014). Maternal care and subsocial behavior in spiders.
Biol. Rev. 89, 427–449. doi: 10.1111/brv.12060

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Caponera, Avilés, Barrett and O’Donnell. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 November 2021 | Volume 9 | Article 73322855

https://doi.org/10.1007/s00114-019-1644-7
https://doi.org/10.1093/aesa/saaa019
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/BJPS/AXZ022
https://doi.org/10.1159/000101067
https://doi.org/10.1159/000101067
https://doi.org/10.1159/000381414
https://doi.org/10.1159/000381414
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1098/rspb.2013.2245
https://doi.org/10.1007/s00265-013-1555-0
https://doi.org/10.1093/beheco/arr146
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1111/jeb.12024
https://doi.org/10.1111/jeb.12024
https://doi.org/10.1098/rspb.2005.3283
https://doi.org/10.1098/rstb.2006.1994
https://doi.org/10.1098/rstb.2006.1994
https://doi.org/10.1098/rspb.2010.0269
https://doi.org/10.1111/jzo.12512
https://doi.org/10.1111/jzo.12512
https://doi.org/10.1016/j.asd.2016.11.003
https://doi.org/10.1016/j.asd.2016.11.003
https://doi.org/10.1046/j.1365-2540.2001.00884.x
https://doi.org/10.1093/beheco/arm026
https://doi.org/10.1093/cz/zoaa024
https://doi.org/10.1073/pnas.1101616108
https://doi.org/10.1073/pnas.0710603105
https://doi.org/10.1111/brv.12060
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-766414 December 18, 2021 Time: 10:28 # 1

REVIEW
published: 21 December 2021

doi: 10.3389/fevo.2021.766414

Edited by:
Sara Arganda Carreras,

Rey Juan Carlos University, Spain

Reviewed by:
Jean-Christophe Sandoz,

Centre National de la Recherche
Scientifique (CNRS), France

Aurore Avargues-Weber,
UMR 5169 Centre de Recherches sur
la Cognition Animale (CRCA), France

*Correspondence:
Dhruba Naug

dhruba@colostate.edu

Specialty section:
This article was submitted to

Social Evolution,
a section of the journal

Frontiers in Ecology and Evolution

Received: 29 August 2021
Accepted: 03 December 2021
Published: 21 December 2021

Citation:
Naug D and Tait C (2021)

Slow-Fast Cognitive Phenotypes
and Their Significance for Social

Behavior: What Can We Learn From
Honeybees?

Front. Ecol. Evol. 9:766414.
doi: 10.3389/fevo.2021.766414

Slow-Fast Cognitive Phenotypes and
Their Significance for Social
Behavior: What Can We Learn From
Honeybees?
Dhruba Naug* and Catherine Tait

Department of Biology, Colorado State University, Fort Collins, CO, United States

Cognitive variation is proposed to be the fundamental underlying factor that drives
behavioral variation, yet it is still to be fully integrated with the observed variation at
other phenotypic levels that has recently been unified under the common pace-of-life
framework. This cognitive and the resulting behavioral diversity is especially significant
in the context of a social group, the performance of which is a collective outcome
of this diversity. In this review, we argue about the utility of classifying cognitive traits
along a slow-fast continuum in the larger context of the pace-of-life framework. Using
Tinbergen’s explanatory framework for different levels of analyses and drawing from
the large body of knowledge about honeybee behavior, we discuss the observed
interindividual variation in cognitive traits and slow-fast cognitive phenotypes from an
adaptive, evolutionary, mechanistic and developmental perspective. We discuss the
challenges in this endeavor and suggest possible next steps in terms of methodological,
statistical and theoretical approaches to move the field forward for an integrative
understanding of how slow-fast cognitive differences, by influencing collective behavior,
impact social evolution.

Keywords: cognitive phenotypes, pace of life, speed-accuracy tradeoff, social behavior, honeybees

INTRODUCTION

In the classic story of the tortoise and the hare, we learn about two distinctly different personalities
and the lesson that speed does not always matter, and an individual can be as successful doing
things slowly. Understanding questions regarding phenotypic variations such as why some animals
are slow and others are fast is a fundamental question in biology that has a long history in terms
of r and k selection and life history theory (MacArthur and Wilson, 1967; Pianka, 1970; Stearns,
1976). Such slow-fast differences in behavior, both between and within a species, have been modeled
under the pace-of-life syndrome (POLS) framework (Ricklefs and Wikelski, 2002; Réale et al., 2007,
2010), which proposes a suite of contrasting phenotypic traits to characterize this slow-fast axis
(Figure 1). In this framework, a slow pace-of-life, characterized by life history traits such as slow
growth, delayed reproduction and high survival, and a fast pace-of-life, marked by fast growth, early
reproduction and low survival, are functionally mediated by a large set of correlated physiological
and behavioral traits.
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FIGURE 1 | A summary of the predicted integration between the slow-fast
pace-of-life axis at different phenotypic levels (life-history, physiology and
behavior) and the slow-fast cognitive axis defined by the speed-accuracy
trade-off, with examples of a few traits at each level (after Réale et al., 2010;
Sih and Del Giudice, 2012). Specifically with respective to cognition, traits in
bold letters are those for which the empirical data met theoretical predictions,
those in italics did not meet predictions, and the remaining are those that were
not tested (Tait and Naug, 2020).

Behavioral variation correlates to slow-fast life history
differences through a risk-reward trade-off in which the higher
expression of certain behaviors can bring more rewards, but
at the cost of higher risk (Stamps, 2007; Wolf et al., 2007).
Behaviorally, fast individuals are those who can engage in more
risk-taking behaviors that allow them to gather resources more
rapidly and thereby express the traits associated with a faster
life history, compared to slow individuals. Since behavioral
output is an outcome of underlying cognitive mechanisms, these
slow-fast behavioral differences are proposed to be outcomes
of a speed-accuracy trade-off in terms of decision-making
(Chittka et al., 2009; Sih and Del Giudice, 2012; Jolles et al.,
2020). Fast decisions made with little information are subject
to higher inaccuracy but can result in greater and more
immediate rewards while slower decisions made with more
information are predicted to improve accuracy but come at
the cost of immediacy. The cognitive axis resulting from this
trade-off predicts fast individuals to broadly demonstrate rapid
learning, lower sampling and poor retention of information,
relative to slow individuals (Figure 1). Although a link between
behavioral and cognitive variation has been demonstrated to
some extent (Amy et al., 2012; Cole et al., 2012; Dougherty and
Guillette, 2018; Tait and Naug, 2020), most of these studies are
still limited in their scope and examining the covariation of
multiple cognitive traits with other phenotypic traits remains a
significant challenge.

This recent interest in a covariance between cognitive
and behavioral variation is mostly focused at the between-
individual level within a species (Carere and Locurto, 2011;

Thornton et al., 2014; Griffin et al., 2015; Boogert et al., 2018).
In contrast, the consequences of this individual level covariance
structure have rarely been studied at the level of a group,
even though the pace-of-life framework provides a convenient
basis to understand this interplay (Dammhahn et al., 2018).
Group living provides an opportunity to potentially relax the
constraints placed upon the individual by the tight correlation
among a set of traits that define the trade-offs in terms
of risks or rewards and speed or accuracy (Figure 2). This
extends the idea that at the collective level, any phenotypic
variation allows the collective phenotype to show a greater
range of response to a variable, complex and multivariate
environment (Piersma and Drent, 2003; Woods, 2014). However,
the final expression of the collective phenotype can be more
complex than predicted because the different phenotypes
in a social group may modulate the performance of each
other (Webster and Ward, 2011; van den Bos et al., 2013).
Negative frequency dependent processes can increase the
performance of a phenotype when it is rare while positive
frequency dependent processes can decrease the performance of
a rare phenotype.

For a comprehensive understanding of any biological
question, it is important to take an integrative approach
that encompasses both proximate (how?) and ultimate
(why?) levels of analyses. In this review, we therefore use
“Tinbergen’s four questions” approach (Tinbergen, 1963)
to address cognitive variation at four different levels—
functional value, evolution, causation and development.
Using this background, we argue that social insects,
especially honeybees, provide ideal model systems to
pursue integrative studies that span these different levels of
inquiries at different levels of biological organization, using
the pace-of-life as the central framework to understand the
importance of slow-fast differences in cognition in the social
context. We review our current understanding regarding
cognitive variation in honeybees and identify existing gaps
in knowledge, offering suggestions regarding potential
methodological and statistical approaches that can help
close these gaps.

INTERINDIVIDUAL VARIATION IN
COGNITIVE TRAITS AND COGNITIVE
PHENOTYPES IN SOCIAL INSECTS

Social insect colonies are comprised of significant morphological,
physiological and behavioral variation among individuals,
differences which underlie the observed division of labor that
is widely considered to be at the heart of their extraordinary
ecological success (Oster and Wilson, 1978; Beshers and Fewell,
2001). Although variation in cognitive traits is less studied,
one of the best examples of such interindividual variation
that is known to be correlated across multiple phenotypic
levels comes from the extensive study of low and high strains
of pollen hoarding honeybees (Pankiw and Page, 2000; Page
et al., 2012). The two strains differ in their sensorimotor
and learning abilities such that the high strain bees have
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FIGURE 2 | Hypothetical correlation between two traits, (A,B) at the individual
level that leads to possible slow (blue) and fast (red) phenotypes. This can lead
to an individual being constrained in its phenotypic expression, defined by its
tightly associated trait values for (A,B). However, a group composed of both
slow and fast phenotypes, by being able to express trait values at different
points on the slow fast axis, is able to relax these constraints at the collective
level.

higher sensitivity to sugar and water, a higher performance
on odor- and tactile based associative learning tasks as
well as an earlier age of first foraging, higher levels of
vitellogenin and ovary development, a suite of traits referred
to as the foraging syndrome (Page et al., 1998, 2006). The
strong association among several learning traits and their
correlation with other behavioral and life history traits are
linked through a common genetic architecture of overlapping
quantitative trait loci (QTLs) that show broad epistatic and
pleiotropic effects (Page et al., 2012). These QTLs are also
associated with insulin-insulin like signaling (IIS) and target
of rapamycin (TOR) pathways, which have broad effects
in nutritional signaling and regulation of behavior across a
wide range of taxa, indicating the fundamental integration
of cognition with a variety of traits at different levels of
the phenotype. These observations, however, bring up the
important question about the nature of causal relationships
among these multitude of traits and it has been shown
that differences in learning ability are largely explained
by differences in sucrose sensitivity—a physiological trait
(Scheiner et al., 2005; Roussel et al., 2009). Interindividual
variation in cognitive traits has also been documented in
other bees (Spaethe et al., 2007; Raine and Chittka, 2008;
Muller and Chittka, 2012; Klein et al., 2017) and it is
important to ask if this variation is similarly correlated to
differences at other phenotypic levels as what is observed
in the honeybees.

Although simple associative learning, due to the relative ease
with which it can be measured, is the most commonly used
trait to describe the cognitive phenotype of an individual, it
is somewhat limited in its scope and one has to go beyond it
if we are to understand the functional relevance of cognitive

variation (Giurfa, 2015). Honeybees do show variation in other
learning traits such as reversal learning (Bhagavan et al., 1994;
Carr-Markell and Robinson, 2014; Cook et al., 2019) and
aversive learning (Junca et al., 2019), and these different types
of learning measures are correlated at the individual level such
that there is a negative relationship between associative and
reversal learning, and between appetitive and aversive learning
abilities. Apart from these learning traits, little is known about
similar variation with respect to other cognitive traits other
than some limited work showing interindividual variability in
terms of risk-sensitivity (Mayack and Naug, 2011), sampling
and novelty preference (Katz and Naug, 2015), all of which
are connected to energetic state. Using this as a background,
it was more recently shown that several of these cognitive
traits covary in a manner that largely meets the predictions
of the speed-accuracy trade-off and results in slow and fast
cognitive phenotypes such that fast bees are described by high
associative learning and high preferences for novelty and risk,
compared to slow bees (Tait and Naug, 2020). These cognitive
differences also translated to functional differences in behavior
and life history traits—fast bees transitioning to a forager
role at an earlier age than slow bees. These findings suggest
that slow-fast cognitive phenotypes describe broad differences
among individuals in a variety of cognitive traits and provide
a window into how cognitive variation fits into the pace-of-
life framework.

There are two distinct foraging phenotypes in honeybees—
scouts that gather new information about the resource
environment and recruits which use that information (Seeley,
1983; Biesmeijer and De Vries, 2001). These two phenotypes can
therefore be considered functionally equivalent to producers and
scroungers (Katz and Naug, 2016), which allows us to consider
how different cognitive phenotypes might occupy distinct
social roles in a broader ecological framework (Katsnelson
et al., 2011). The ability of producers to acquire information
through personal experience should be reflected in their high
performance on an individual learning task while the ability of
scroungers to do the same by observing conspecifics should be
reflected in their high performance on a social learning task.
Given that individual learning should require higher levels of
sampling (Kurvers et al., 2010; Rosa et al., 2012), one would
predict that scouts represent the slow cognitive phenotype
which spends more time gathering information. While this
seems to be substantiated by the slower learning seen in scouts
(Cook et al., 2019), it stands in contrast with their observed
preference for novelty (Liang et al., 2012), which aligns more
with what is expected of the fast cognitive phenotype (Sih and
Del Giudice, 2012). Such inconsistencies highlight the fact
that the original predictions of the slow-fast cognitive axis
might not be as universal, an issue that we feel is also partly
related to the challenge of clearly defining the cognitive traits
themselves, an issue which we discuss later in more detail.
In addition, the scout/recruit behavioral axis might also be
plastic over the foraging lifespan of an individual bee, subject
to its developmental, social and resource environment, which
can lead to inconsistencies in the cognitive traits measured in
these two phenotypes.
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COGNITIVE DIVERSITY: ADAPTIVE
VALUE OF SLOW-FAST COGNITIVE
PHENOTYPES IN A GROUP

The historic and continued fascination with social insects
is primarily to do with the fact that they are considered
superorganisms due to their collective performance based on
the tight integration among colony members (Wheeler, 1911;
Wilson, 1971; Kennedy et al., 2017). This view of insect
societies has been addressed in terms of several phenotypic traits
(Lumsden, 1982; Southwick, 1983; Behmer, 2009; Gillooly et al.,
2010) including cognition (Franks, 1989; Seeley, 1989; Couzin,
2009; Menzel, 2012; Feinerman and Korman, 2017). Phenotypic
diversity among colony members (Jeanne, 1988), which allows
flexibility and resilience to environmental heterogeneity and
perturbations, promotes group productivity and fitness (Jones
et al., 2004; Mattila and Seeley, 2007; Oldroyd and Fewell,
2007; Wray et al., 2011; Modlmeier et al., 2012) although
there are studies which suggest that the effects of diversity
could be more complex (Moritz and Page, 1999; Arathi
and Spivak, 2001; Baer and Schmid-Hempel, 2001; Mugel
and Naug, in press). Models of division of labor and task
allocation addressing how interindividual behavioral variability
affects group performance (Beshers and Fewell, 2001), have,
however, included relatively little on the specific role of
cognitive variation on collective performance. Even the recent
interest in understanding the significance of interindividual
variability within a social insect colony (Pinter-Wollman,
2012; Bengston and Jandt, 2014; Jandt et al., 2014; Jeanson
and Weidenmuller, 2014; LeBoeuf and Grozinger, 2014; Jandt
and Gordon, 2016) has not explicitly addressed the role of
cognitive differences among individuals and its significance for
social evolution.

The observed interindividual variation in cognitive traits at
the colony level (Page et al., 2006; Muller and Chittka, 2012;
Junca et al., 2014; Smith and Raine, 2014; Tait et al., 2019) can
be described in terms of a speed-accuracy trade-off (Chittka
et al., 2003). The functional consequences of this trade-off are,
however, ambiguous—while one study suggested that fast and
inaccurate foragers, which are more indiscriminate in their
choice between rewarding and non-rewarding flowers, can collect
resources at a higher rate (Burns, 2005), another showed that
such foragers end up with a lower lifetime collection (Evans
et al., 2017). Although the results of these two studies are not
easily comparable given their different experimental designs,
they suggest that slow and fast cognitive strategies might have
different costs and benefits associated with them. Colonies that
maintain a cognitively diverse workforce therefore might be
able to show an overall higher efficiency in resource acquisition
(Burns and Dyer, 2008).

The positive influence of cognitive diversity on collective
foraging is most likely mediated by the resource landscape,
which has a strong influence on foraging dynamics (Waddington
et al., 1994; Steffan-Dewenter and Kuhn, 2003; Couvillon et al.,
2015). Since slow and fast cognitive phenotypes differ with
respect to how they gather and use information, a more

challenging or scarce resource environment can enhance the
value of producing new information, while a more rich or
clumped resource environment can reduce its value and provide
an advantage for scrounging. In a social foraging context, the
collective performance of the group can therefore be viewed
in the framework of a Genotype × Environment interaction,
where the genotype specifies the relative frequency of each
cognitive phenotype in the group and the environment refers
to the spatial and temporal distribution of resources. Despite
the long history of theoretical work on this topic (Caraco and
Giraldea, 1991; Vickery et al., 1991; Luttbeg and Sih, 2010),
actual empirical tests of how the performance of different
cognitive strategies is influenced by the resource environment
are extremely rare, largely because of their challenging nature
(King et al., 2009).

COMPARATIVE COGNITION:
EVOLUTION OF SLOW-FAST COGNITIVE
PHENOTYPES

Our understanding of the functional relevance of cognitive
variation can strongly benefit from studies at the interspecific
level (Chittka et al., 2012; Rosati, 2017; Wenseleers and
van Zweden, 2017). Although the initial studies that placed
behavioral and life history traits along a slow-fast axis made
use of interspecific comparisons (Promislow and Harvey, 1990;
Wiersma et al., 2007), the same approach has not been used as
much to understand similar variation in cognitive traits across
species. Since interspecific differences in cognition represent
adaptations to differences in ecological factors (Healy et al.,
2009; Sheehan and Tibbetts, 2011; Cauchoix and Chaine, 2016),
understanding such differences in terms of a slow-fast axis
would be an important step toward identifying its evolutionary
significance. In the context of a social group, we know little
regarding whether the link between individual and collective
cognition is modulated by ecological factors.

However, interspecific comparisons of cognitive traits can
be confounded by the fact that any observed differences across
species could be attributed to assays or experimental conditions
that are not equally relevant for each species. One therefore
needs to exercise good judgment in terms of the experimental
design and the species that are chosen for such studies. It has
also been pointed out that seemingly similar cognitive capacities
might be mediated by entirely different neural mechanisms
and therefore behavioral studies must be complemented with
research at a proximate level (Chittka et al., 2012). Neuroecology,
the comparative study of mechanisms that underlie cognitive
capacity, has provided robust support for the adaptive nature of
cognitive differences in social insects in terms of brain evolution
(Kamhi et al., 2016; Godfrey and Gronenberg, 2019). Based on
these findings that support the classic idea that social evolution
is one of the strongest drivers of brain evolution (Dunbar, 1998;
Dunbar and Shultz, 2007), social insects are particularly suited to
understanding how cognitive trait evolution is related to sociality.

Although honeybees have served as a classic model of
cognition research (Menzel, 2012; Giurfa, 2015), our extensive
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knowledge regarding their cognitive capacity is largely derived
from studies with Apis mellifera, with little known about the
cognitive traits of other honeybee species. Comparative studies
of cognition across these different species offer an excellent,
yet untapped, experimental opportunity that can give insights
into the role of ecological factors on cognitive variation at both
the individual and the collective levels. The two cavity nesting
species, A. mellifera and A. cerana, have been described as “fast”
due to their shorter lifespan, higher metabolic rate and faster
behavioral “tempo” compared to the two open nesting species, A
dorsata and A. florea, described as “slow” (Seeley, 1985; Dyer and
Seeley, 1991). In fact, Seeley (1985) speculated about clusters of
functionally related traits that could identify causal relationships
between ecology and social organization and how such a goal
could be realized with a comparative trait-oriented approach
across the four species. The slow-fast phenotypic axis offers
exactly that opportunity in terms of a unifying framework that
can be used to measure a large set of traits at different phenotypic
levels and systematically test if the slow-fast differences among
these species also extend at the level of cognition and if the
covariance among traits is shaped by the ecological differences
among these species.

A comparative approach inspired by this framework was
recently used to test if the observed slow-fast cognitive differences
among A. mellifera individuals (Tait and Naug, 2020) are
consistent across the other honeybee species and if there are
slow-fast cognitive differences among these species that match
differences in their behavior, life history and ecology (Tait
et al., 2021). The results suggest some consistency in the traits
that define the slow-fast cognitive axis within each of the
four species—specifically, individuals which are fast learners
also show higher preference for novelty compared to those
who are slow. However, interspecific differences in cognitive
traits did not correlate to slow-fast differences in life history
and nesting ecology as it was A. florea (slow “tempo”) and
A. cerana (fast “tempo”) which were found to cluster together
as a distinct group, characterized by their lower associative
learning and higher risk preference than A. dorsata (slow
“tempo”) and A. mellifera (fast “tempo”) which formed a separate
cluster. Instead, it was found that these interspecific cognitive
differences correlate to differences in absolute brain size—A.
dorsata and A. mellifera, the two species with higher associative
learning also have significantly larger brains than A. cerana
and A. florea (Gowda and Gronenberg, 2019; Tait et al., 2021).
Although the analysis of this observed relationship is somewhat
rudimentary, these results highlight the importance of integrating
measurements from multiple phenotypic levels to understand
the basis of cognitive differences across species. The two species
with larger brains, A. dorsata and A. mellifera, also have both a
larger colony size and a more complex foraging niche in terms
of its spatiotemporal complexity, compared to A. florea and
A. cerana (Seeley, 1985; Dyer and Seeley, 1991). It is therefore
worth asking if the evolution of slow-fast cognitive traits is
related to social and environmental complexity, which are widely
recognized as important drivers of cognitive evolution (Roth and
Pravosudov, 2009; Roth et al., 2010), which includes evidence

from social insects (Farris and Schulmeister, 2011; Farris, 2016;
Kamhi et al., 2016).

ENERGETICS OF COGNITION:
MECHANISTIC BASIS OF SLOW-FAST
COGNITIVE PHENOTYPES

If brain size is an important determinant of cognitive capacity
(Chittka and Niven, 2009), it becomes important to understand
the neural mechanisms that shape slow-fast differences in
cognitive traits. There are substantial energetic costs associated
with neural processing and differences in cognitive capacity
are predicted to be fundamentally derived from variation in
brain metabolic activity (Laughlin et al., 1998). This mechanistic
connection between cognitive capacity and energy use allows us
to test if slow-fast differences in cognitive traits are shaped by
differences in metabolic rate at both the intra- and interspecific
levels. Combined with the knowledge that behavioral traits such
as aggression are also correlated to metabolic activity in the
brain (Rittschof et al., 2018), this will help connect the slow-fast
cognitive axis to the common energetic link that characterizes the
broader pace-of-life axis (Careau et al., 2008; Mugel and Naug,
2020).

In honeybees, energetic availability can drive differences
in associative learning (Jaumann et al., 2013), risk sensitivity
(Mayack and Naug, 2011), exploration-exploitation tendency
(Katz and Naug, 2015, 2016) and impulsivity (Mayack and Naug,
2015), each of which is part of the slow-fast cognitive axis.
A growing body of work shows that differences in associative
learning and memory are robustly related to metabolic activity
in the brain, as measured with cytochrome oxidase (COX), a
metabolic marker of neuronal activity (Déglise et al., 2003).
The well-known link between cognitive differences and levels
of various neurotransmitters (Mercer and Menzel, 1982; Giurfa,
2006; Cook et al., 2019) could also be reflective of such
differences in brain metabolic activity since energy use is
regulated through the same signaling pathways (Roeder, 2020).
By combining measurements of variation in both whole-body
metabolic rate and brain ATP capacity with performance on
cognitive assays, one can test whether the slow-fast differences
in cognitive phenotypes are fundamentally related to a difference
in metabolic capacity.

A link between cognitive capacity and energy use suggests
that the collective cognitive capacity of a social group would
be fundamentally influenced by the variation in metabolic
rate within the colony. However, such a relationship can be
complicated by the fact that collective cognition is proposed
as a mechanism for relaxing the energetic constraints on
cognition at the individual level (Lihoreau et al., 2012; Feinerman
and Traniello, 2016; Feinerman and Korman, 2017; Coto and
Traniello, 2021). In social insects, increasing social complexity
is correlated to a decrease in brain size at the individual
level and it is argued that distributed cognition can allow for
investment in functionally specialized brain regions, ultimately
lowering brain metabolic costs (O’Donnell et al., 2015). In
ants, socially complex species have larger brains but a lower
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energetic activity in the higher order processing centers such
as mushroom bodies (Kamhi et al., 2016). These results suggest
that individual energetic constraints related to learning and other
slow-fast cognitive differences may not be reflected as easily
in social insects and emphasizes the importance of identifying
the mechanisms that link individual cognitive capacity to
collective cognition.

COGNITIVE PLASTICITY:
DEVELOPMENTAL ANALYSIS OF
SLOW-FAST COGNITIVE PHENOTYPES

What adds to the difficulty of understanding and defining
the cognitive capacity of an individual is its plasticity, subject
to influences from both the current and the developmental
environment (Thornton and Lukas, 2012; Buchanan et al., 2013;
van den Bos et al., 2013; Davidson et al., 2018; Cauchoix et al.,
2020). These include influences of the nutritional, physical and
social components of the environment, which acting through
various epigenetic modifications and signaling pathways, can
shape brain development, function and neural plasticity (Murphy
et al., 2014). Environmental variability plays a major role in the
covariance among different traits (Sgrò and Hoffmann, 2004;
Wright et al., 2019) and it is proposed that the predicted
slow-fast trait correlations are more likely to be observed
in unfavorable environments (Hämäläinen et al., 2021). Such
developmental effects on the adult phenotype can be either plastic
(permanent environment effects) or flexible in the short term
(reversible plasticity). Developmental effects may be adaptive
if they result in a phenotype that is better fitted to the
environment the individual is likely to experience as an adult—
the so called Predictive Adaptive Response (PAR) hypothesis,
according to which a match between the developmental and
the adult environments leads to positive effects and a mismatch
leads to adverse effects on various phenotypic traits (Gluckman
and Hanson, 2004). Despite the strong support for such
developmental effects on various phenotypic traits, including
some work on honeybees (Wang et al., 2016), studies focusing
on the patterns of slow-fast cognitive traits in an environmental
context are rare.

Developmental effects are likely to be particularly relevant
in social insects because the age-based division of labor is a
developmental process that is both plastic and is accompanied by
several important changes in cognitive traits (Ben-Shahar et al.,
2000; Cabirol et al., 2018). In honeybees, several studies show the
influence of birth weight and early social experience on sucrose
responsiveness and associative learning (Pankiw et al., 2004;
Scheiner, 2012; Arenas et al., 2013; Mortensen and Ellis, 2018;
Tsvetkov et al., 2019) but we lack the knowledge about similar
effects on other cognitive traits. The use of social information
can be shaped by resource unpredictability during development,
pre-natal stress leading to copying behavior in adulthood and
post-natal stress leading to the opposite effect (Boogert et al.,
2013). Since social information use is one of the key parameters
that defines the scout-recruit behavioral axis or the slow-fast
cognitive axis, these results suggest promising research avenues

to understand the inconsistencies that are sometimes seen in the
expression of these cognitive phenotypes. Developmental effects
on cognitive traits are especially relevant in the current context
of the influence of anthropogenic changes and other stressors on
behavior (Decourtye et al., 2005; Gómez-Moracho et al., 2017).

CHALLENGES AND SOLUTIONS: A
ROADMAP FOR FUTURE WORK

Methodological Approaches
One of the most challenging aspects of establishing a detailed and
robust cognitive axis is the measurement of multiple cognitive
traits in multiple contexts, made even more difficult in social
insects due to the relatively short worker lifespan. Perhaps one of
the most appealing aspects of using honeybees as a model system
for the study of cognitive variation is the ability of the well-
established laboratory-based Proboscis Extension Reflex (PER)
assay to measure several cognitive traits in a large number of
individuals with a high throughput. The PER assay consists of
presenting a bee with an odor, a conditioned stimulus (CS),
followed by a sucrose reward, an unconditioned stimulus (US),
in a series of trials and measures learning ability as the number
of conditioned responses (CR), instances when the bee extends
its proboscis to the CS prior to the US delivery (Bitterman et al.,
1983). While this assay is conventionally used for measuring
various types of learning, including discrimination learning
(Smith et al., 1991) and reversal learning (Chandra et al., 2000),
it can also be adapted to measure a variety of more complex
cognitive traits such as risk-sensitivity (Shafir et al., 1999; Mayack
and Naug, 2011), sampling and novelty preference (Katz and
Naug, 2015; Tait and Naug, 2020). These assays have also been
adapted for use in the other honeybee species (Ali et al., 2021;
Tait et al., 2021), an important consideration if we are to extend
the comparative study of cognitive phenotypes in honeybees.
The appetitive PER assay, and the closely similar, aversive Sting
Extension Reflex (SER) assay (Vergoz et al., 2007), also allow
us to control for differences in motivational state that might
otherwise confound the measurement of cognitive traits in field-
based assays.

Experimental evolution and artificial selection approaches can
be powerful tools in uncovering how a phenotypic trait might
be shaped by specific selection pressures. Studies in cognitive
variation have, however, lagged in this regard probably due
to the large number of traits that are required to define the
cognitive axis, their plasticity and the likely small heritability
component in these traits due to the complex genetic architecture
of cognition. The honeybee, being the only social insect that has
been successfully bred for specific traits, allows extraordinary
opportunities to select and breed for specific phenotypic traits
using instrumental insemination techniques. Using the heritable
variation in associative learning (Brandes, 1988, 1991; Laloi and
Pham-Delegue, 2010), genetic lines with differences in their
associative learning or reversal learning ability have been bred
(Brandes and Menzel, 1990; Bhagavan et al., 1994; Chandra
et al., 2000; Ferguson et al., 2001). Such cognitive lines can
allow us to rigorously test the nature of the covariance structure
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among different cognitive traits and partition it into genetic
and environmental effects. These lines can enable us to test the
functional influence of various cognitive traits at the individual
level as well as allow the possibility of creating experimental mixes
of different cognitive phenotypes to test how cognitive differences
scale up from the individual to the collective level to influence
group-level performance and life history (Cook et al., 2020).

Statistical Approaches
Cognitive phenotypes, defined as consistent individual
differences in several cognitive traits, also pose a challenge
in terms of statistical analysis. Since these phenotypes are
described by multiple traits that covary with each other, the
complexity of the multivariate cognitive trait space needs to
be captured by data reduction techniques such as principal
component analysis (PCA), which can be used to identify
specific cognitive traits that explain the largest differences among
different cognitive phenotypes (Keagy et al., 2011; Mazza et al.,
2018; Tait and Naug, 2020). PCAs, used to study interindividual
variation within a species, however, are not appropriate when
comparing the variation between species because individuals
of a species are more similar to each other than those from
other species. A related technique, canonical variate analysis
(CVA), which maximizes the separation of a priori defined
groups, rather than the individuals within each of them, is
more appropriate for such interspecific comparisons (Campbell
and Atchley, 1981; Carter and Feeney, 2012; Tait et al., 2021).
Such statistical non-independence arising from phylogenetic
inertia (Harvey and Purvis, 1991; Sherry, 2006) could also
be addressed by using a phylogenetically corrected analysis
such as the phylogenetic generalized least squares (PGLS)
method (Székely et al., 2013). With the measurement of multiple
cognitive traits, it also becomes important to understand the
causal relationships among these different traits and the use
of Structural Equation Models (SEM) or path analysis can
allow us to extract such relationships. Studies on cognitive
phenotypes, which mostly rely on simple covariance analyses,
need to see a wider adoption of these more sophisticated
statistical approaches.

In terms of collective performance, groups are generally
compared using statistical models that are focused on the
parameters of mean or variance. Such analyses are, however,
unable to offer any insights into the possible mechanisms that
mediate the effects of phenotypic diversity. In this context,
a rarely used technique based on the Price equation, which
identifies the different mechanisms that underlie the effects of
diversity more specifically, can be used to analyze the influence
of diversity on performance (Loreau and Hector, 2001; Takahashi
et al., 2018). In this approach, the effect of inter-individual
variation or heterogeneity on group performance is quantified
as a diversity effect, which is then further partitioned into a
complementarity effect, the influence of interactions between
different phenotypes, and a selection effect, the disproportionate
influence of a phenotype. A recent study used this technique
to explore the influence of metabolic diversity in honeybees
to find that the effects of diversity on collective performance
can be complex (Mugel and Naug, in press) and it remains

an exciting prospect to use a similar approach in studies of
cognitive diversity.

Modeling Approaches
The speed-accuracy trade-off, which is considered as the
underlying basis for the slow-fast cognitive axis, is a classic
paradigm that addresses how animals manage these two
constraints at the same time in a manner that maximizes the
benefit to cost ratio of a decision. Numerous models describing
such decision-making processes show a parallel between
individual and collective decision-making where populations
of neurons or individuals accumulate evidence for alternative
choices and a decision is made for a specific alternative once
the population reaches a threshold for that alternative (Bogacz,
2007; Marshall et al., 2009; Pelé and Sueur, 2013). These decision-
making models are therefore more fundamentally tied to models
of optimal sampling and learning, which predict that an animal
should sample more and therefore learn more slowly, but more
accurately, if the cost of making a wrong decision is large or
if the cost of waiting to make a decision is low, both of which
in turn are tied to the variability in the environment (Stephens,
1987, 1989, 1991). Sampling and the statistical property of the
central limit theorem (CLT), which posits that the estimate of
the true mean (accuracy) improves with sample (group) size,
is also what explains the improved performance of a collective
unit as against an individual. However, it is important to note
that this outcome of CLT is based on the assumption of a
random sample, which in this context would refer to a random
assortment of cognitive phenotypes. Using specific distributions
to model cognitive heterogeneity within a group, it would be
instructive to generate testable predictions about how diversity
of slow-fast cognitive phenotypes would influence the sampling
process and how that in turn would affect the collective cognitive
performance of the group.

Since the basis of collective cognition lies in a group of
heterogeneous individuals interacting together, it has frequency-
dependent outcomes that can be modeled using a game-theoretic
approach, which allows us to predict the performance of each
morph based on its relative frequency and how that in turn shapes
the performance of the entire group. While the inclination to
learn can be strongly influenced by the frequency of learners
and non-learners in a group, only a handful of studies has
examined the evolution of learning or any other cognitive
parameter and its consequence on collective performance in a
game-theoretic context (Giraldeau, 1984; Dubois et al., 2010;
Katsnelson et al., 2012; Aplin and Morand-Ferron, 2017).
Modeling approaches like these can be productively combined
with statistical approaches that can analyze the details of the
diversity effects in empirical data as described above. The scarcity
of studies in this framework probably stems from the fact that we
largely lack the ability to create experimental groups with specific
compositions of different cognitive phenotypes, an endeavor
which can be accomplished by the ability to generate selection
lines as discussed earlier.

Finally, we feel that a major, but mostly overlooked, problem
in the field of animal personality and animal cognition in general,
is a lack of coherent and consistent definitions of different
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traits. Overlapping definitions sometimes lead to the same traits
being measured in different ways, which means that they are
not statistically independent of each other and can lead to
inconsistent patterns about how these traits covary. For example,
many studies measure exploration, activity and neophilia as three
independent “eco-cognitive behavioral traits,” but unless defined
and assayed carefully, the magnitude of these three traits could
interdependently follow from each other. A lower preference for
novelty could also be expressed as a lower level of sampling,
which in turn may also lead to poorer learning, a covariance
structure that is not only non-independent but also one that
does not exactly match both model predictions (Sih and Del
Giudice, 2012) and empirical data (Tait and Naug, 2020) about
slow-fast cognitive phenotypes. Similarly, “reaction to a novel
object” is frequently used as a definition of exploration, but it
is also used as a measure for boldness even though the latter
might be more specifically to do with an individual’s reaction to
a risky situation. Risk itself is defined in terms of tendency of
an individual to expose itself to a predator (Ferrari, 2014) or a
preference for variability (Tait and Naug, 2020; Tait et al., 2021).
The biological mechanisms driving these diverse behaviors could
be very different and might lead to very different predictions
about how they might co-vary with each other. This problematic

issue is partly a consequence of the fact that cognitive processes
are not directly measurable and can only be inferred by assessing
a change in behavior (Barron et al., 2015; Griffin et al., 2015;
Mazza et al., 2018). In this setting, process-based models can be
informative about how these traits might be linked to each other,
allowing us to see if these numerous traits are outcomes of a single
fundamental cognitive process, such as sampling, or if they can
vary independently of each other.

These obfuscations about how different cognitive traits are
defined and measured point to a larger problem of how a set of
cognitive traits is predicted to covary with each other to define
different cognitive phenotypes. Models of the speed-accuracy
trade-off, which is used as the major framework to conceptualize
decision-making and the existence of slow but accurate and fast
but inaccurate cognitive phenotypes (Sih and Del Giudice, 2012),
have not considered broader and influential ideas regarding
trade-offs. According to life history theory, trade-offs are a
combined outcome of differences in both resource acquisition
and allocation such that negative correlations between traits are
produced only when individuals vary mainly in their allocation
while positive correlations between the same traits can be
seen when individuals vary mainly in their acquisition (Van
Noordwijk and De Jong, 1986; Reznick et al., 2000). Since

FIGURE 3 | Possible alternative Y models of information (I) acquisition and its allocation to speed (S) and accuracy (A) in terms of either (A) an allocation model in
which there is low inter-individual variation in information acquisition but high variation in its allocation, resulting in a scenario where (1) individuals invest more in
accuracy at the expense of speed, or (2) vice versa, resulting in a negative relationship between speed and accuracy, or (B) a performance model in which there is
high inter-individual variation in information acquisition but low variation in its allocation, resulting in a scenario where (1) individuals have a greater total amount of
information that can be allocated to speed and accuracy, or (2) individuals have a lower total amount of information that can be allocated to speed and accuracy,
resulting in a positive relationship between speed and accuracy.
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information can be considered as a resource, the same framework
also applies in the context of decision making (Figure 3).
Therefore, if individuals vary mainly in their ability to acquire
information, as it is likely to be if it is correlated to traits such
as metabolic rate and energetic capacity as might be expected
from the pace-of-life hypothesis, it can produce a positive
correlation between speed and accuracy, which might explain the
seemingly contradictory absence of a trade-off between speed and
accuracy during learning in some studies (Raine and Chittka,
2012; Mamuneas et al., 2015; Chang et al., 2017). Only when
individuals similar in their information acquisition ability vary
in how they allocate this information, should one see the more
commonly expected trade-off between speed and accuracy. Since
differences in acquisition are more likely to be manifested in some
environments than others (Reznick et al., 2000), it means that
the expression of the speed-accuracy tradeoff could be restricted
to specific types of information environments. This also implies
that the nature of covariation among different cognitive traits
could be driven by Gene x Environment interactions, leading to
possible polymorphisms in terms of different suites of covarying
cognitive traits.

CONCLUSION

Collective cognition has long been a topic of major interest
to biologists and information scientists and a large body of
both theoretical and empirical work has firmly established
that groups can generally acquire and process information
more efficiently and accurately than it is possible for single
individuals. These findings about collective cognition closely
parallel what is seen for collective traits at other phenotypic
levels such as behavior and physiology so that it is now an
established fact that collective action generally results in more
robust outputs that are more stable to perturbations. Given
this background, we feel that it is time now to move beyond
this and take the next major step toward integrating these

findings to a broader theoretical framework that can connect
cognition to other levels of phenotypic variation at multiple levels
of biological organization. The pace-of-life framework, which
aims to place suites of phenotypic traits including cognition
on a common slow-fast axis, seems particularly suited to this
enterprise, allowing us to understand both the mechanistic and
functional integration across these traits, which is important if
we are to understand the role of cognition in collective behavior
and social evolution. Applying the framework at the group level
allows us to understand how the constraints posed upon the
individual by the covariance among different cognitive traits
might be relaxed by collective action. Social insects, especially
honeybees, due to their wide-ranging experimental amenability,
provide ideal model systems to apply this framework in testing
how the slow-fast cognitive composition of a group shapes
the emergent collective cognitive phenotype to influence colony
behavior and life history.
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Brain plasticity is widespread in nature, as it enables adaptive responses to sensory
demands associated with novel stimuli, environmental changes and social conditions.
Social Hymenoptera are particularly well-suited to study neuroplasticity, because the
division of labor amongst females and the different life histories of males and females
are associated with specific sensory needs. Here, we take advantage of the social
wasp Polistes dominula to explore if brain plasticity is influenced by caste and sex,
and the exploitation by the strepsipteran parasite Xenos vesparum. Within sexes, male
wasps had proportionally larger optic lobes, while females had larger antennal lobes,
which is consistent with the sensory needs of sex-specific life histories. Within castes,
reproductive females had larger mushroom body calyces, as predicted by their sensory
needs for extensive within-colony interactions and winter aggregations, than workers
who frequently forage for nest material and prey. Parasites had different effects on
female and male hosts. Contrary to our predictions, female workers were castrated
and behaviorally manipulated by female or male parasites, but only showed moderate
differences in brain tissue allocation compared to non-parasitized workers. Parasitized
males maintained their reproductive apparatus and sexual behavior. However, they had
smaller brains and larger sensory brain regions than non-parasitized males. Our findings
confirm that caste and sex mediate brain plasticity in P. dominula, and that parasitic
manipulation drives differential allocation of brain regions depending on host sex.

Keywords: brain plasticity, parasite, parasitic manipulation of host, Polistes dominula, sensory brain regions,
social wasp, strepsiptera, Xenos vesparum

INTRODUCTION

Brain plasticity enables adaptive responses to different sensory demands such as novel stimuli,
changing environments and social conditions (Taborsky and Oliveira, 2012; O’Donnell et al., 2013;
Anderson and Finlay, 2014; Kamhi et al., 2017; Jernigan et al., 2021). For instance, neuroplasticity
has evolved across many lineages as a result of variable selective pressures acting on the cognitive
demands of sensory and perceptual systems (Barton et al., 1995; Barton and Harvey, 2000; Catania,
2005). Since brain tissue is energetically expensive, plasticity in specific brain structures may be
linked to the sensory and processing needs of adaptive behaviors (Isler and Van Schaik, 2006;
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Niven and Laughlin, 2008; Riveros and Gronenberg, 2010;
Pyza, 2013; Montgomery et al., 2016; Dunbar and Shultz,
2017; Rozanski et al., 2021). Investment in neural tissue may
be mediated by experience (Jones et al., 2009; Riveros and
Gronenberg, 2010; Cabirol et al., 2018), diet (Murphy et al.,
2014; DeCasien et al., 2017), environmental stimuli (Burns
et al., 2009; Axelrod et al., 2018), tradeoffs with reproduction
(Pitnick et al., 2006), and/or endocrine factors (Ball et al., 2002;
Lendvai et al., 2013). Previous studies also provide compelling
evidence for how neuroplasticity adaptively supports the division
of labor in complex insect societies and matches sensory
specialization (Groh and Meinertzhagen, 2010; Giraldo et al.,
2013; Kamhi et al., 2017; Gordon et al., 2019; Arganda et al., 2020;
Baudier et al., 2021).

Given that specialized behaviors are associated with a range of
caste-specific sensory needs, corresponding investment in neural
tissue is expected (Gronenberg et al., 1996; Ehmer et al., 2001;
O′Donnell et al., 2007; Seid et al., 2011; Rehan et al., 2015;
Arganda et al., 2020; Penick et al., 2021). Therefore, social insects
provide the opportunity to compare differential investment in
sensory brain regions between castes and sexes with different
life histories (Gronenberg and Riveros, 2009; Beani et al., 2014),
while controlling for genetic background. In insect brains, visual
input travels from the eyes and is received and processed by
the optic lobes, while olfactory input is received by the antennal
lobes (Strausfeld, 1989; Anton and Homberg, 1999; Gronenberg
and Hölldobler, 1999). From these lower-order sensory neuropils,
projection neurons convey the computed information to the
mushroom bodies (Akalal et al., 2006). In these higher-
order brain centers, the chemical and visual information is
further processed and integrated with internal information by
intrinsic neurons and finally projected to premotor areas. The
substructures of the mushroom body calyces, act as learning and
memory centers that integrate sensory information and foraging
experience. Specifically, olfactory information is processed in the
lip, the visual information in the collar, and both sensory stimuli
in the basal ring (Ehmer and Hoy, 2000; Akalal et al., 2006;
Fahrbach, 2006). Finally, the central complex is implicated in
spatial navigation (Pfeiffer and Homberg, 2014; Honkanen et al.,
2019; Le Moël et al., 2019).

Here, we take advantage of the primitively eusocial paper
wasp Polistes dominula to test how brain plasticity is associated
with behavioral flexibility (Pardi, 1996; O’Donnell et al., 2014,
2018; O’Donnell and Bulova, 2017; Rozanski et al., 2021).
In this temperate wasp species, the recognition of nestmates,
caste, and sex relies on both chemical and visual cues (Dani
et al., 2001; Cappa et al., 2016, 2020; Beani et al., 2019;
Cini et al., 2019). Females are morphologically similar and
organized in a flexible caste system, according to a dominance
hierarchy (Pardi, 1948). The reproductive castes emerge in mid-
summer and consist of males and gynes that will become
foundresses the following spring. Gynes remain on the natal
nest without performing any colony tasks and then mate,
form winter aggregations, and enter diapause (Reeve, 1991).
The following spring, foundresses initiate construction of nests
and compete for the dominant position establish a dominance
hierarchy. The dominant foundress monopolizes egg-laying, and

the first offspring will become workers (Strassmann et al., 2004).
Therefore, subordinate foundresses and workers are involved in
nest building and defense, the rearing of larvae, and foraging
(West-Eberhard, 1969). In the mid-summer, adult males and new
gynes emerge. Males abandon the nest early after emergence
and display lek-behavior at landmarks where they mate with
gynes and die at the end of fall (Beani, 1996; Beani et al., 2014).
Gynes store sperm for reproduction during the following spring
(Cappa et al., 2013).

In addition, P. dominula is also parasitized by the strepsipteran
insect Xenos vesparum, which provides a great opportunity to
explore the effect of this parasite in allocation of brain tissue
(Hughes and Libersat, 2018; Libersat et al., 2018). X. vesparum
larvae enter worker wasp larvae in the early summer and
develop inside their hosts (Manfredini et al., 2010). When
the hosts emerge as adults, the parasites undergo pupation
and behaviorally manipulate their hosts (Hughes et al., 2004b).
After metamorphosis, adult female parasites remain as obligate
endoparasites inside the host, while adult males emerge from the
host, and mate with females. Parasite pupae decrease the size of
corpora allata in female hosts and castrate them by irreversibly
inhibiting ovary development (Strambi and Strambi, 1973;
Strambi et al., 1982; Hughes et al., 2004b; Beani, 2006). Parasitized
workers abandon the colony and aggregate on selected plants
where parasite mating occurs (Hughes et al., 2004b; Beani et al.,
2018). In contrast, male wasps are less-frequently parasitized,
and instead maintain their reproductive apparatus and sexual
behavior (Beani et al., 2011; Cappa et al., 2014). After mating,
female parasites extend the lifespan of their worker host to
overwinter like a gyne (Beani et al., 2021). Instead, female and
male hosts parasitized by males die at the end of the summer
(Beani et al., 2021).

While brain plasticity within and across social insects has been
extensively studied (Godfrey and Gronenberg, 2019), no studies
have explored plasticity within a species that has morphologically
similar individuals, various colony tasks, and a parasite that
potentially alters brain morphology. We predicted that the
relative volume of selected brain regions reflects specific sensory
needs for each caste and sex (reproductive females, female
workers, and males) (Rozanski et al., 2021). We also predicted
higher volume of visual regions in males to detect and identify
potential mates or rival males in a lek, compared to females. On
the contrary, we expected more olfactory processing by females
compared to males due to social interactions in the colony.
We also tested for the effect of parasitic manipulation in brain
allometry. We predicted a stronger parasite effect in the brain of
workers, because they are castrated and show strong behavioral
manipulation, compared to parasitized males who reproduce
and show no changes in behavior. Finally, little is known about
the specific neuroendocrine effects of female and male parasites
toward female and male hosts. Based on the strong behavioral
alterations induced by the parasite on worker wasps (Strambi
and Strambi, 1973; Beani et al., 2017), we expected a reduction
of corpora allata regardless of parasite sex. Conversely, given the
mild parasite impact on male hosts (Cappa et al., 2014; Beani
et al., 2017), we predicted a small effect of X. vesparum on male
corpora allata size.

Frontiers in Ecology and Evolution | www.frontiersin.org 2 January 2022 | Volume 10 | Article 80343770

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-803437 January 27, 2022 Time: 14:39 # 3

Gandia et al. Brain Plasticity in Social Wasps

MATERIALS AND METHODS

Field Collection
We collected reproductive females (N = 10 foundresses and N = 9
gynes), non-parasitized workers (N = 10), workers parasitized by
one X. vesparum female (N = 11) or by one X. vesparum male
(N = 11), non-parasitized males (N = 10), and males parasitized
by one or two X. vesparum males (N = 9). All samples were
collected during the first days of July of 2016 and 2018, in the
plain of Sesto Fiorentino (Tuscany, Italy). Males parasitized by
X. vesparum females and parasitized gynes are lacking in our data
set, due to the protandrous emergence of X. vesparum (Hughes
et al., 2004a), and to the scarcity of male and gyne reproductive
larvae during the infection period in the early summer. Wasps
from each caste emerge synchronously and at specific times
throughout the summer, which controls for age (Molina and
O’Donnell, 2008) and seasonality effects that can influence brain
development. Non-parasitized and parasitized hosts are easily
distinguished by inspecting for parasite extrusions between the
abdominal tergites, and parasites can be identified as female or
male because of the shape of their pupal sac (Figure 1B). Finally,
to verify which individuals were parasitized, their abdomens
were preserved and dissected in 70% ethanol. We confirmed
the absence of pupal parasites in female workers and males
without any visible signs of parasitism. In parasitized workers
and males, we also confirmed sex of the parasites and gonad
development predicted for each category (Figure 1C). Finally, we
preserved each head capsule individually in a glyoxal fixative for
subsequent histological sectioning (Prefer, Anatech Ltd., Battle
Creek, United States).

Histology and Measurement of Brain
Regions
We first dehydrated each head capsule with a series of
increasing ethanol and acetone concentrations. We then used
the established concentrations for the Embed 812 resin kit
(Electron Microscopy Sciences, Hatfield, United States) to embed
the head capsule while maintaining their brain dimensions,
following the histology protocol for Polistes wasps (O’Donnell
et al., 2015; Rozanski et al., 2021). The samples were moved
repeatedly between an open-air rocking shaker (Thermo Fisher
Scientific, Waltham, United States) and a vacuum to improve
infiltration of the solvent.

Next, we placed each embedded head capsule in an individual
plastic mold filled with the same concentration of resin in an
oven at 60◦C. After 72 h, the resin was polymerized. We sectioned
each brain in consecutive coronal sections with a thickness of 17
µm and stained the tissue with toluidine blue, to visualize clearly
defined boundaries for each brain region. We photographed the
consecutive brain sections for each specimen using a Canon EOS
5D Mark III mounted on a Leica DM IL LED microscope at 4 x
magnification, including a scale of 1,000 µm.

Using the AxioVision SE64 (Zeiss, NY, United States), we
outlined the area for each individual brain region (Figure 1A).
We traced the antennal lobes and the three substructures of
the optic lobes: medulla, lobula and lamina. We also traced the

two calyx substructures process olfactory and visual stimuli: lip
and collar, respectively, and the central complex. The remaining
structures in the protocerebrum were grouped as the central brain
(Figure 1A), following the established method for this species
(Rozanski et al., 2021) and ants (Sheehan et al., 2019). Outlining
of brain regions was done blind to the category for each sample.
We quantified each brain region for every other section per
brain, as this method shows high accuracy (i.e., < 3.5% error
for 34 µm thick sections) (Ehmer and Hoy, 2000). We then
determined the volume for each region by multiplying the area
by the distance between sections (34 µm). We generated the 3-
D brain reconstruction by using the software RECONSTRUCT
(Fiala, 2005). To control for the effect of head size, we measured
head width. Finally, we determined the cross-sectional area of
the corpora allata by measuring the diameter of one of the two
glands, following the method previously used for this species
(Strambi and Strambi, 1973).

Statistical Analyses
We explored if differential volume in specific brain regions
among phenotypes was the result of changes in allometric scaling
(Ott and Rogers, 2010; Eberhard and Wcislo, 2011; Seid et al.,
2011; O’Donnell et al., 2013; Stöckl et al., 2016; Sheehan et al.,
2019). In P. dominula, the optic lobe represents on average 42%
of the brain and may have an effect on relative neuropil scaling
(Rozanski et al., 2021). Therefore, we compared investment in
each sensory brain region to the central brain, instead of by the
whole brain (Ott and Rogers, 2010; Stöckl et al., 2016; Sheehan
et al., 2019).

We used the allometric equation y = a∗xβ for the scaling
relationship between brain regions x and y. We then
logarithmically transformed the estimates β (slope) and
α (intercept of a regression) by using the linear equation
log(y) = βlog(x) + log(a), where log(a) = α (Dubois, 1897; Huxley
and Teissier, 1936). Standardized Major (SMA) regression
analyses were calculated by using the SMATR v.3 package for R
(WartonI, Wright et al., 2006, Warton et al., 2012).

First, we tested for a common slope among non-
parasitized phenotypes as a baseline comparison,
consisting of males, reproductive females and workers
(H0 = βmales = βreproductives = βworkers). We implemented
log-likelihood tests followed by post hoc pairwise comparisons
provided in the SMATR package. Since allometric scaling did
not differ significantly between foundresses and gynes, we
pooled them under a new category called “reproductives.”
Second, we tested for a common slope among non-parasitized
workers, with one female parasite and with one male parasite,
and between non-parasitized and parasitized males. The volume
of brain regions did not differ between male wasp parasitized
by one or two male X. vesparum, so we also pooled them. We
compared allometric changes in the whole brain with head width,
central brain with whole brain, and pooled sensory regions with
changes in the central brain. Finally, we explored the allometric
relationship between each sensory brain region and central
brain, following our established method for this wasp species
(Rozanski et al., 2021).
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FIGURE 1 | Study system: a female brain, the abdomen of a parasitized female, and Xenos vesparum parasites. (A) Frontal view of a 3-D reconstructed brain of a
female Polistes dominula. The sensory brain regions are color coded: substructures of the optic lobes (blue), antennal lobes (yellow), lip (bright red), collar (dark red)
and the central complex (white). All sensory regions are normalized by the central brain (gray). For reference, the subesophageal zone is shown in bright pink and the
mushroom body peduncles in light red. Scale bar = 500 µm. (B) A host abdomen shows a male X. vesparum pupa (top) and the cephalothorax of a neotenic female
X. vesparum pupa (bottom) extruding from the tergites. (C) Same larvae of X. vesparum after being dissected from the host’s abdomen: male parasite on top and
female on the bottom. (B,C) Are scaled (scale bar = 2 mm).

For categories that shared a common slope, we used log-
likelihood tests to calculate the slope index (SI) for the brain
region comparisons described above. The SI determined if a brain
region is allometric (β 6= 1), meaning that sensory brain region
(y)/central brain (x) would change with size. We also used a
Wald Test to calculate the common shift (H0 = equal axis among
phenotypes), for any shift along the x axis. Finally, we calculated
how much larger a sensory region (y) is compared to the
central brain (y), by using a grade shift index (GSI) to compare
phenotypes (i.e., H0 = α males = α reproductives = αworkers). The
GSI reflected changes in intercept α (elevation) with no changes
in the slope β. This method facilitates pairwise volumetric
comparisons between phenotypes (i.e., e α males− α reproductives),
by implementing a Wald test. For example, if GSI > 1, males
had larger volume of a brain region compared to reproductives,
and if GSI < 1 the relationship would be inverse. We specify
the direction of change for each of the analyzed categories in
“Results” section and Supplementary Tables 1, 2. Lastly, we also
ran a Kruskal-Wallis test with subsequent pairwise comparisons
to determine corpora allata growth across castes and to test the
effect of both parasite and host sex.

RESULTS

Investment in Sensory Regions by Caste
and Sex
All brain regions, except for the central complex showed
a common slope, but had differences in the GSI, common
shift and/or SI depending on the specific region (Figure 2
and Supplementary Table 1). Males and reproductive females
had proportionally larger pooled sensory regions compared
to workers (GSI = 1.056, P = 0.01 and GSI = 1.036,

P = 0.006, respectively, Figure 2C). Males had proportionally
smaller antennal lobes when compared to reproductive females
(GSI = 0.87, P < 0.001), as an effect of both changes in elevation
and a common shift (Figure 2D and Supplementary Table 1).
Males also had smaller antennal lobe volume than workers
(GSI = 0.926, P = 0.002, Figure 2D). Males had larger optic
lobes than reproductive females (GSI = 1.064, P = 0.001) and
workers (GSI = 1.103, P < 0.001, Figure 2E and Supplementary
Table 1). Within females, reproductives had larger antennal lobes
(GSI = 1.057, P = 0.002, Figure 2D) and calyces compared to
workers (GSI = 1.042, P = 0.003, Figure 2F). Reproductives had
increased optic lobe volume compared to workers (GSI = 1.037,
P = 0.02, Figure 2E). Finally, workers showed an isometric
increase in the central complex (P = 0.052), in contrast to a
hypoallometric reduction of this navigational brain region in
reproductive females and males (Figure 2I).

Investment in Sensory Regions by
Parasitized and Non-parasitized Wasps
Workers parasitized by one female or one male X. vesparum
showed no differences in allocation of most sensory brain regions,
compared to non-parasitized workers (Figures 3A, C, G). Indeed,
non-parasitized workers shared a common slope with workers
with a female or a male X. vesparum, and no volumetric
differences in the antennal lobes (Figure 3D) or the optic lobes
(Figure 3E and Supplementary Table 1). However, we did find
a change in the slope index of the whole brain in workers
parasitized by a female, compared to non-parasitized workers
or those parasitized by a male (P < 0.001, Figure 3B and
Supplementary Table 1). Workers parasitized by one female
had an isometric pattern, resulting in larger calyces (P = 0.031,
Figure 3F) and collars (P = 0.045, Figure 3H), than non-
parasitized workers and those parasitized by one male. Lastly,
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FIGURE 2 | (A–I) Comparison of the investment in sensory regions by sex and caste. The volume of each brain region was log-transformed, and each dot
represents one individual. The males are depicted in black, reproductives (gynes and foundresses) in dark orange and workers in blue. The corresponding colored
lines represent the slope for each category, and each dot represents an individual. Given that most comparisons shared a common slope, see Supplementary
Table 1 for full Standardized major axis (SMA) results.

workers with one male parasite had a hypoallometric reduction
of the central complex in comparison to non-parasitized workers
and those parasitized by a female (P = 0.027, Figure 3I).

In contrast, parasitized and non-parasitized males showed
differential allocation toward specific brain regions. They shared
a common slope and differences in grade shifts for the
following brain regions: whole brain, antennal brain, lip, and
central complex (Supplementary Table 2). Parasitized males
had a proportionally smaller whole brains than non-parasitized

males (GSI = 1.15, P < 0.001, Supplementary Table 2 and
Figure 4A). However, due to a common shift along the main
slope axis, parasitized males had proportionally large antennal
lobes (P = 0.01, Figure 4D), lip (P = 0.001, Figure 4G) and central
complex (P < 0.001, Figure 4I) compared to non-parasitized
males (Supplementary Table 1). In contrast, parasitized males
showed a disproportionately reduced volume of the central brain
(P = 0.02, Figure 4B), but disproportionately large volume of
pooled sensory regions (P = 0.03 Figure 4C), optic lobes (P = 0.03,
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FIGURE 3 | (A–I) Comparison of the investment in sensory regions by parasitized and non-parasitized workers. Categories are depicted as non-parasitized workers
(blue), workers parasitized by one female X. vesparum (dark gray) and workers parasitized by one male X. vesparum (light gray). The corresponding color-coded line
represents the slope for each category and each dot represents an individual. Some comparisons shared a common slope, see Supplementary Table 1 for full
statistical results.

Figure 4D), calyces (P = 0.04, Figure 4F), and collar (P = 0.02,
Figure 4H) compared to non-parasitized males (Figure 4 and
Supplementary Table 2).

Corpora Allata Development According
to Sex, Caste, and Parasitism
The corpora allata were significantly smaller in all males
compared to females (χ2 = 46.86, df = 6, P < 0.001, Figure 5).
Although not significant, foundresses showed the expected trend
toward large corpora allata compared to gynes (Z = 2.02, P = 0.07)
and workers (Z = 0.79, P = 0.06). Post hoc pairwise tests showed

no significant differences in workers parasitized by one female
(Z = 1.62, P = 0.1) and by one male (Z = 4.41, P = 0.5) compared to
non-parasitized workers. Gland size also did not differ according
to parasite sex (Z = −0.84, P = 0.39), or between parasitized and
non-parasitized males (Z =−0.02, P = 0.98).

DISCUSSION

We provide several lines of evidence supporting the focal
hypothesis that brain plasticity facilitates differential sensory
needs and life histories within the same species. First,
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FIGURE 4 | (A–I) Comparison of the investment in sensory regions by parasitized (purple) and non-parasitized males (black). SMA fits are log-transformed per
categories with the lines based on intercepts and slopes (purple for parasitized and black for non-parasitized males). Most volumetric comparisons did not share a
common slope, see Supplementary Table 2 for full SMA tests.

reproductive females also had larger calyces compared to worker
females, reflecting sensory needs associated with division of labor.
Second, males and females showed a consistent and significant
differential investment in volume of the optic and antennal
lobes. This pattern implies a life history-based plasticity of
otherwise genetically shared backgrounds in Polistes dominula.
Furthermore, we provide novel evidence for the effect of
the Xenos vesparum parasite in neural investment by female
and male hosts. Contrary to our prediction, non-parasitized
and parasitized workers show moderate volumetric differences
in brain sensory regions, while parasitized males showed a
more drastic effect in allocation of neural tissue compared to
non-parasitized males. Overall, our results are consistent with

differential investment in brain regions being advantageous
across social wasp species (O′Donnell et al., 2011).

The observed differential investment in sensory brain regions
reflect the distinct life cycles of P. dominula males and females,
similarly to previous studies in bees and ants (Van Praagh et al.,
1980; Arnold et al., 1985; Menzel et al., 1991; Gronenberg, 2008;
Mysore et al., 2009). Together, these findings suggest that in social
Hymenoptera, male sexual behavior is a fundamental driver
of neural organization (Beani et al., 2014). Male P. dominula
leave their nest within a few days after emergence and gather at
distinct leks to increase their mating opportunities (Beani, 1996).
When attempting to mate, males can visually distinguish between
females and competing males, and between workers and gynes
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FIGURE 5 | Corpora allata size in reproductive females, workers, males,
parasitized workers, and parasitized males. The cross-sectional area of the
corpora allata was calculated by measuring its diameter in microns and
normalized with head size. Wasp categories are color coded: found
(foundresses), gynes, work (workers), work1f m (workers with 1 female
parasite), work1m (worker with 1 male parasite), males and male1m (male with
1 male parasite). Each boxplot shows the median, 25th and 75th percentiles.
The whiskers show the 5th and 95th percentiles.

(Cappa et al., 2013; de Souza et al., 2017; da Silva et al., 2021).
Therefore, larger optic lobes may facilitate detection and
discrimination between potential mates or male intruders in
their defended territories (Beani et al., 2014). Males have smaller
antennal lobes, which is likely due to experiencing less complex
olfactory stimuli, as they do not engage in frequent chemically-
based social interactions in the colony. In contrast, reproductive
females have proportionally larger antennal lobes, lips and collars,
which is consistent with other studies that show sensory needs
associated with division of labor, interactions among nestmates,
learning and memory (Gronenberg et al., 1996; Ehmer and Hoy,
2000; O′Donnell et al., 2011; Mora-Kepfer, 2014; Jernigan et al.,
2021; Mertes et al., 2021; Rozanski et al., 2021; Uy et al., 2021).
Thus, the social environment of female wasps has a wider range
of chemical and sensory processing cues compared to males
(Beani et al., 2014).

Within females, reproductives had proportionally larger
calyces than workers, which coincides with division of labor
in these social wasps (O′Donnell et al., 2007). Foundresses
consistently engage in social interactions both within the colony
and as gynes during winter aggregations, utilizing visual and
chemical cues toward recognition (Dani et al., 2001; Cini et al.,
2019). In contrast, most workers spend less time interacting
with foundresses and brood on the nest, and allocate more
time performing tasks such as foraging for prey and building
material (Gamboa et al., 1978). Our results are similar to studies
in P. dominula (Ehmer et al., 2001), P. instabilis (Molina and
O’Donnell, 2007), and Mischocyttarus mastigophorus (O′Donnell
et al., 2007) that correlate large calyces with social dominance.
Contrastingly, in ants, honey bees, and Polybia paper wasps,

subordinate forager workers have large calyces (Withers et al.,
1993; Gronenberg et al., 1996; O′Donnell et al., 2004). However,
these social insects form large colonies, and show specialized
division of labor and age polyethism. Specifically, workers
transition from tasks inside the nest to more sensory-demanding
tasks outside the nest such as navigation and learning landmarks,
which supports the pattern of large calyces (Gronenberg and
Riveros, 2009; O′Donnell et al., 2011; Cabirol et al., 2018).
Finally, differences in nutrition may also influence allocation
of brain tissue between workers and foragers. In P. metricus,
lower nutrition is associated with higher foraging and brain
gene expression in workers (Toth et al., 2009; Daugherty et al.,
2011). Similarly, in the primitively-eusocial bee Augochlorella
aurata, queens have larger mushroom bodies than workers, due
to increased nutrition as larvae (Pahlke et al., 2019).

Contrary to our expectations, parasites have small effects
on the brain architecture of workers and did not elicit a
significant reduction in the corpora allata. Male parasites induced
a reduction of the central complex, compared to non-parasitized
workers or workers parasitized by one female. This difference
in the central complex, which is mainly implicated in spatial
navigation, is not consistent with the lack of differences in
behavior between workers infected by the two sexes. Noticeably,
workers parasitized by one X. vesparum female showed larger
calyces than non-parasitized workers and those parasitized by
one male. Interestingly, workers parasitized by one female
enter diapause and resemble the behavioral and physiological
phenotype of overwintering gynes, while workers parasitized by
a male die at the end of summer like non-parasitized ones (Beani
et al., 2021). Thus, it is likely that the female parasite should
minimize cognitive impairment of its worker host.

In contrast, male parasites had a more drastic effect in the
brain architecture of P. dominula males, which are parasitized
less frequently than females. Parasitized males had significantly
smaller whole brains and central brains than non-parasitized
males. They also showed a significant increase in the volume
of several sensory brain regions, including the antennal and
optic lobes, and two substructures of the calyx: lip and collar.
Remarkably, neuroendocrine manipulation does not seem to
occur in parasitized males, as they develop their corpora allata,
testes, seminal vesicles and accessory glands and attempt to mate
(Cappa et al., 2014; Beani et al., 2017). The inability to castrate
the male may likely result in brain manipulation instead. Given
that the brain is an expensive tissue to produce (Niven and
Laughlin, 2008; Keesey et al., 2020), the parasite may reallocate
energy and resources to develop inside the host, resulting in the
observed small brains.

Notably, only a few studies have tested for neuroanatomical
changes induced by parasites that do not directly infect in
the brain, but instead lodge inside insect body cavities. The
parasitic fungus Ophiocordyceps manipulates the behavior of
their ant host, but does not induce structural changes in the
brain (Hughes et al., 2011). Instead, the fungal hyphae surround
muscle fibers (Hughes et al., 2011; Fredericksen et al., 2017).
The hairworm Paragordius tricuspidatus induces neurogenesis in
the mushroom bodies of its cricket host, before manipulating
it to jump into the water to continue the parasite’s lifecycle
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(Thomas et al., 2003). Infected crickets also showed differential
expression of proteins in the head (Biron et al., 2006). Together
with our findings, these results suggest that different parasites
likely hijack distinct neural mechanisms to control the behavior
of their insect hosts (Hughes and Libersat, 2018).

Overall, our results demonstrate that brain plasticity is
associated with sensory needs in males and within female castes
of P. dominula, but that parasitic manipulation can also drive
differential investment of brain regions depending on both host
and parasite sex. Intriguingly, workers infected with a female
parasite show a strong manipulation effect of the parasite on
caste determination, lipid storage, and prolonged lifespan in
parasitized females that act as their main host (Beani et al.,
2021), but more dampened effects on allocation of brain tissue.
In turn, the reproductive apparatus and behavior of parasitized
males are essentially unaffected, but they experience stronger
volumetric changes in brain regions. Previous work has shown
that X. vesparum drives gene expression changes of workers
toward a gyne-like pattern; thus, the parasite is manipulating the
transcriptomic plasticity of the caste system (Geffre et al., 2017).
Parasitized females also show low levels of haemolymphatic
protein and juvenile hormone compared to non-parasitized
females, but with no difference between non- parasitized and
parasitized males (Strambi and Strambi, 1973; Strambi et al.,
1982). Our study shows that strepsipteran do not drive evident
neuroanatomical changes in their females hosts, suggesting that
this parasite may be relying on other manipulation mechanisms
(Libersat et al., 2018).
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Diet and social complexity are hypothesized to drive the evolution of the neuroarchitecture of the
brain, but the relative impacts of foraging ecology and social organization have not been fully
disentangled. Predatory ant species encompass generalists as well as specialists on remarkably
narrow ranges of arthropod prey, and vary in strategy from solitary hunting to group raiding.
Dietary differences and variation in individual or group predation appear to be correlated with
the use of vision for navigation by solitary huntresses, the predominance of chemical signaling
to organize group predation, and the structure, biomechanics, and sensorimotor control of the
mandibles, and likely gustatory sensilla. Predatory ants provide the opportunity to separate the
relative roles of diet and colony size and brain structure, and offer diverse novel systems to
understand adaptive brain mosaicism and the neuronal regulation of predatory behavior. Here we
discuss the socioecology of predatory ants and its influence on neuroanatomy.

THE NEUROBIOLOGY OF PREDATION

Neuroethological and molecular studies of visual, olfactory, auditory, pheromonal, electrical, and
mechanoreceptive sensory systems have identified circuitry underpinning predatory behavior in
diverse animal clades (Sillar et al., 2016). Star-nosed moles (Catania, 2011), electric fishes (Sukhum
et al., 2018), and bats (Genzel et al., 2018) are renownedmodels. Predator sensory systems generally
reflect foraging ecology. Many predatory insects, for example, have large eyes to detect and pursue
moving prey through interceptive or ambush hunting strategies. Optic lobe neurons tuned to the
motion of small moving objects regulate predatory behavior (Wardill et al., 2015, 2017; Fabian
et al., 2018; Nicholas et al., 2018; Nityananda et al., 2018; Supple et al., 2020). Predators may also
exhibit morphological and anatomical adaptations to prey type (Martinez et al., 2018) and/or group
hunting strategies (Lang and Farine, 2017; Bastos et al., 2021). Predatory behavior in ants evolved
independently multiple times in virtually all major subfamilies, including basal clades (Rabeling
et al., 2008; Ward, 2014) and most predatory genera are sociobiologically and ecologically diverse
(Keller and Peeters, 2020). Predatory ants often show striking differences in diet—usually linked to
differences inmandiblemorphology, biomechanics, motor, olfactory and likely gustatory systems—
and social organization. An evolutionary approach can integrate studies of foraging ecology, social
structure, morphological evolution, neuroanatomy, and neurophysiology.

MANDIBULAR MORPHOLOGY, SENSORY BIOLOGY, AND
MOTOR CONTROL IN PREDATORY ANTS

The morphology of the mandibles—the primary appendages ants use like tools to manipulate their
environment and capture prey—varies widely across taxa. Most ants, including some extinct and
extant predatory species, have triangular, shovel-shaped mandibles, but those of many predatory
species have extreme morphologies (Figure 1) and biomechanical adaptations to specialized diets
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and prey-capture strategies (Brown and Wilson, 1959; Masuko,
1993, 2019, 2020; Dejean, 1997; Dejean and Dejean, 1998;
Rabeling et al., 2012; Schmidt and Shattuck, 2014; Probst et al.,
2015; Barden et al., 2020; Keller and Peeters, 2020). Predatory ant
mandibles have associated neuronal mechanisms that, in some
cases, control remarkably rapid closure. In trap-jaw ants, the
mandibles can be cocked back (like a mousetrap) and then used
to strike prey in as little as 0.33ms. Bite force and speed of depend
on mandibular muscle biomechanics and properties of the
motor neurons that innervate them (Gronenberg, 1996; Just and
Gronenberg, 1999). Trap-jaw mandibles typically have sensory
trigger hairs that respond to prey contact with a high-frequency
burst of action potentials and project into the subesophageal zone
(SEZ; Gronenberg et al., 1998a,b; Gronenberg and Riveros, 2009),
a brain compartment involved in sensorimotor control of the
mandibles, mouthparts, feeding behaviors, and gustation. The
motor and chemosensory information transduced by sensilla is
eventually processed by the mushroom bodies (MBs) a higher-
order brain compartment strongly linked to learning, memory,
and behavioral plasticity (Fahrbach, 2006; Gronenberg, 2008;
Wright, 2016). Gronenberg et al. (1993) first described how
the sensory-motor reflex of the trap-jaw strike of predatory
Odontomachus workers is controlled by mechanoreceptor
trigger hairs with large, rapidly conducting axons in what
is likely a monosynaptic connection with motor neurons.
Comparative analyses of trap-jaw mechanisms, which have
evolved independently in multiple ant genera, reveal convergent
biomechanical and neurobiological traits (Gronenberg, 1996;
Larabee et al., 2017). Mandible closure velocity in trap-jaw ants
appears to differ among species due to phylogeny, physiology,
and prey specialization (Larabee et al., 2017, 2018; Gibson et al.,
2018). The study of mandible morphology and neurobiology
(motor control and sensory capabilities) of predatory ants may
thus shed light on the relationships of diet, prey recognition,
hunting and prey-capture strategies, and brain organization.
Additionally, brain compartments associated with feeding (e.g.,
SEZ) may scale allometrically with prey-catching strategies, prey
specialization, and colony size (Kamhi et al., 2017; Miroschnikow
et al., 2020).

DIET, SOCIALITY, AND BRAIN EVOLUTION

Ecological brain theory hypothesizes that the behavioral and/or
cognitive challenges of locating and processing food play a key
role in brain evolution (Harvey et al., 1980; Goldman-Huertas
et al., 2015; DeCasien et al., 2017; Lihoreau et al., 2019; Simons
and Tibbetts, 2019). A high-quality (e.g., frugivorous) diet
correlates with large brain size and expanded olfactory or visual
systems in primates (Dunbar and Shultz, 2017; DeCasien and
Higham, 2019). Social brain theory hypothesizes that brain size
increases with group size and social complexity, due to cognitive
challenges associated with increased conflict and cooperation
(Dunbar and Shultz, 2017). Vertebrate societies are characterized
by reproductive competition and social bonding, but eusocial
insect workers are generally sterile. The applicability of social
brain theory as developed for vertebrates to eusocial insects

has thus been questioned (Lihoreau et al., 2012; Farris, 2016).
Here we use the term social complexity as a working concept
consistent with Anderson and McShea (2001): socially complex
ants have large colony size, worker polymorphism and division
of labor, and collective foraging strategies. Dornhaus et al. (2012)
further discuss how collective organizationmay scale with colony
size. Empirical studies of eusocial insect brain evolution indicate
increased social complexity may increase or decrease worker
brain size in larger colonies depending on reproductive conflict
and division of labor (Jaffe and Perez, 1989; Wehner et al., 2007;
Riveros et al., 2012; Muscedere et al., 2014; O’Donnell et al.,
2015, 2018; Kamhi et al., 2016; Godfrey and Gronenberg, 2019;
DeSilva et al., 2021). Brain structure is also known to change with
worker age (Seid et al., 2008; Muscedere and Traniello, 2012) or
task specializations that may develop in large colonies (Amador-
Vargas et al., 2015). Variation in diet, social organization, and
behavioral polyphenisms in insects may be underpinned by
neuroanatomical differentiation. Brain size in insects correlates
with life history and diet (Farris and Roberts, 2005; Farris, 2008;
Bouchebti and Arganda, 2020) and an increase in MB size,
potentially supporting enhanced foraging-related navigation and
memory (Sayol et al., 2020). At a cellular scale, the density
of MB synaptic complexes (microglomeruli, MG) correlates
with age, subcaste, task specialization or increase in behavioral
repertoire (Groh and Rössler, 2011; Groh et al., 2014; Kamhi
et al., 2017; Gordon and Traniello, 2018; Gordon et al., 2018),
or requirements for higher-order processing involved in learning
and memory (Li et al., 2017). Memory may be associated with
a transient increase in MG density (Falibene et al., 2015). These
latter studies are among the few suggesting a link between diet,
social behavior, and brain evolution in insects. The relationship
between diet and MB evolution remains poorly understood.

PREDATORY ANTS AS MODELS OF BRAIN
EVOLUTION

Predatory behavior in ants evolved independently multiple
times in virtually all major subfamilies, including basal clades.
Predatory ants are widely distributed and sociobiologically and
ecologically diverse. Workers are active predators, and species
show striking differences in prey specialization, dietary breadth,
and colony size (range from <10 workers [Thaumatomyrmex
spp.] to 20 million [Dorylus wilverthi]), worker polymorphism,
and division of labor. These ants thus have the potential
to offer new insights into the relationship between social
organization, diet, brain size, and mosaic structure. Army ants
(Subfamily Dorylinae) are mass-foraging generalist or specialist
predators that may form huge colonies of morphologically and
behaviorally specialized workers (Kronauer, 2020; McKenzie
et al., 2021). Predatory poneroid ants hunt alone or in
groups and differ in diet and social complexity (Peeters, 1997;
Ward, 2014; Hanisch et al., 2020). Solitary huntresses in some
species broadly attack invertebrates whereas others specialize
on termites, an energetically valuable clumped and sessile
resource (Figure 1). The shift from randomly distributed prey
to clumped prey involves changes in foraging behavior, resulting

Frontiers in Ecology and Evolution | www.frontiersin.org 2 February 2022 | Volume 9 | Article 80420082

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Azorsa et al. Socioneuroethology of Predatory Ants

FIGURE 1 | Predatory behavior in ants. (A) Group foraging in Neoponera commutata, a specialized predator of termites, and (B) prey retrieval. (C) Daceton

armigerum workers retrieving prey. (D) Odontomachus, a trap-jaw ant.

in an apparent decrease in use of vision (e.g., ommatidia
size and/or number) for navigation by solitary workers to
chemical signaling to organize group predation (Hölldobler
and Traniello, 1980; Mill, 1984; Dejean and Lachaud, 2011;
Jelley and Barden, 2021; Sosiak and Barden, 2021). These
differences in hunting and prey-capture strategies, as well
as the involvement of different sensory modalities in prey
localization (Masuko, 1990; Gronenberg and Tautz, 1994; De la
Mora et al., 2008), are associated with changes in behavioral
demands for prey recognition, foraging communication, and
foraging-task specialization (Schmidt and Overal, 2009) that will
be reflected in volumetric changes in functionally specialized
brain compartments. Other socioecological traits (activity
pattern, nesting and foraging habits, foraging range, and prey
distribution) are associated with morphological adaptations such
as eye and antenna size, and sensilla type and density, and
in turn linked with prey selection, diet, and brain mosaicism
(Menzi, 1987; Polidori et al., 2012; Narendra et al., 2013;
Ramirez-Esquivel et al., 2014; Bulova et al., 2016; Wittwer
et al., 2017; Heinze et al., 2018; McKenzie et al., 2021).
Prey olfactory detection and discrimination likely depend on
the diversity of sensillae and receptors, and their neuronal
projections into individual antennal lobe glomeruli that vary in

size and number (Couto et al., 2005; van der Woude and Smid,
2016). These characteristics make predatory ants useful models
to understand how dietary shifts may have shaped colony size
and complexity, individual and group behavior, and brain and
sensory system structure.

COMPARATIVE AND PHYLOGENETIC
ANALYSES

Species that vary strongly in diet, predatory strategy, and social
complexity can be compared to identify selective influences
on brain mosaicism and synaptic architecture. For example,
Neoponera laevigata is a specialized group-predator of termites:
workers are polymorphic, colonies are relatively large (∼1,500)
and nomadic (Downing, 1978). In contrast, workers of the sister
species N. apicalis are monomorphic generalist predators that
forage solitarily and form small colonies (∼200 workers; Schmidt
and Shattuck, 2014). Other species that differ socioecologically
include N. villosa (large colonies, generalist diet) and Leptogenys
langi and Stigmatomma pallipes (small colonies, specialist
diet). The influences of social organization and diet on brain
compartment scaling andMG densities can thus be distinguished
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given that species have small or large colony size and generalist
or specialist diets. Brain compartment volume variation of the
[MBs], the optic [OL], the antennal lobes (AL; visual and
olfactory information processing, respectively), and the SEZ can
then be assessed to test the following hypotheses:

• If colony size and associated increases in social interactions,
rather than diet, drive brain evolution, then species with
large colonies with either generalist or specialist diets are
hypothesized to have allometrically large MBs to process
social information.

• If diet has a primary influence on brain evolution, then
workers of prey-generalist species with both small and large
colonies will have large MBs compared to specialist species
(higher demands for navigational skills involving learning and
memory [MB elaboration and increased MG density] in prey-
generalist species; prey-specialist species depend on chemical
signaling during foraging).

• Species with generalist diets that vary in behavioral and/or
cognitive demands for prey recognition and navigation are
predicted to have similar compartmental scaling in the OLs
and ALs, and MG densities in large and small colonies
(macroscopic and synaptic neuroanatomy are independent of
colony size).

• Prey-specialist species will have reduced OL and increased AL
size and a decrease in MG density in association with relative
demands for processing visual (MB collar) and olfactory (MB
lip) information, respectively.

• Prey-generalist species will have larger SEZ and a higher
diversity and size of AL glomeruli (need to discriminate
among prey).

• If the interaction of diet and colony size influence brain size
evolution, then workers of prey-generalist species with large
colonies will have allometrically large MBs (higher demands
on sensory and behavioral functions).

• Neuroanatomical scaling and socioecology can be mapped
phylogenetically to identify patterns of brain evolution.
Detailed cellular analyses can be informed by and benefit from
this broad analysis.

CONCLUSION

Our understanding of the relationship between diet, sociality,
brain size, compartmental scaling, synaptic architecture, and
other neuroethological underpinnings of behavior can benefit
from studies of predatory ants. Integrated sociobiological,
ecological, morphological, neurobiological, transcriptomic, and
genomic research is needed to understand the evolution of
individual and group predatory strategies. Brain evolution can
thus focus on the behavioral ecology of predation. Studies of
morphological evolution can be integrated with sensory biology
and motor control of the mandibles as well as the scaling of
functionally specialized brain centers. The characterization of
olfactory sensilla and their receptors on the mandibles, other
mouthparts, and antennae, and investigation of AL glomeruli
size and distribution are needed to understand mechanisms
of gustation and their relationship with diet preference,
prey identification, and prey-capture strategy. Additionally, we
can infer whether gains and losses in neuroarchitecture are
significantly associated with clades bearing particular individual
worker and social traits and dietary habits.
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Current methods used to quantify brain size and compartmental scaling relationships
in studies of social insect brain evolution involve manual annotations of images
from histological samples, confocal microscopy or other sources. This process is
susceptible to human bias and error and requires time-consuming effort by expert
annotators. Standardized brain atlases, constructed through 3D registration and
automatic segmentation, surmount these issues while increasing throughput to robustly
sample diverse morphological and behavioral phenotypes. Here we design and evaluate
three strategies to construct statistical brain atlases, or templates, using ants as a
model taxon. The first technique creates a template by registering multiple brains of
the same species. Brain regions are manually annotated on the template, and the
labels are transformed back to each individual brain to obtain an automatic annotation,
or to any other brain aligned with the template. The second strategy also creates a
template from multiple brain images but obtains labels as a consensus from multiple
manual annotations of individual brains comprising the template. The third technique is
based on a template comprising brains from multiple species and the consensus of their
labels. We used volume similarity as a metric to evaluate the automatic segmentation
produced by each method against the inter- and intra-individual variability of human
expert annotators. We found that automatic and manual methods are equivalent in
volume accuracy, making the template technique an extraordinary tool to accelerate
data collection and reduce human bias in the study of the evolutionary neurobiology of
ants and other insects.

Keywords: standardized brain atlases, computational neuroimaging, evolutionary neurobiology, neuroethology,
social brain evolution, Neuroanatomy, Ant brains
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INTRODUCTION

Our understanding of pattern and process in brain evolution in
group-living animals benefits from sampling phylogenetically
diverse species. Ants and other eusocial insects (primarily
wasps, bees, and termites) have become important models
to explore what is broadly conceptualized as “social brain
evolution” (Dunbar, 1998; Lihoreau et al., 2012, 2019; Godfrey
and Gronenberg, 2019; Muratore and Traniello, 2020; Coto
and Traniello, 2021). Eusocial insects have exceptional
reproductive and ergonomic polyphenisms associated with
division of labor and highly cooperative behavior, and thus
offer multiple opportunities and a rich array of species
to examine how reproductive competence, sterility, and
morphological and behavioral differentiation impact social
roles and neuroarchitecture. Workers show extraordinary
behavior as individuals as well as members of groups that act
collectively, and individuals are so interdependent that the
colony is considered to be a “superorganism” (Hölldobler and
Wilson, 2009). The brains of colony members have evolved to
respond as individuals but also as decision-making groups to
cope socially with the environment and its challenges, as well as
facilitate communication and coordinate foraging, defense, and
nest construction and regulate task performance and nestmate
recognition. Important questions integrating insect sociobiology
and evolutionary neurobiology concern how selection may
favor either an increase or reduction in brain size and structure
(Wehner et al., 2007; Muscedere and Traniello, 2012; Riveros
et al., 2012; O’Donnell et al., 2018; Arganda et al., 2020; DeSilva
et al., 2021).

Ant brains and those of other insects can be adaptive
allometric mosaics composed of functionally specialized
brain compartment allometries. Neuropils are involved in
primary sensory processing (e.g., the antennal, optic lobes,
subesophageal zone), motor control and navigation (the central
complex and subesophageal zone), and multi-sensorial higher-
order processing and integration, learning and memory (the
mushroom bodies) (Strausfeld, 2012). Immunohistochemistry,
confocal microscopy, and other techniques are commonly used
to image brains and neuropil volumes are quantified using
image analysis software to examine brain structure within and
across insect species. Methods to calculate neuropil volumes
require allocating significant effort to manually annotate
brain compartments and subregions because an anatomical
label must be assigned to every pixel or voxel in 2D and 3D
images, respectively (Figure 1). This technique of recording
neuroanatomical data is both time consuming and susceptible to
human bias and error.

Technical problems associated with imaging ant brains can
be reduced by using methodologies developed to study the
human brain (Talairach and Tournoux, 1988). These techniques
usually combine images from multiple brains into a single
reference brain or template (Figure 2). This method has been
applied in studies on honey bees (e.g., Rybak, 2012), flies
(e.g., Rein et al., 2002; Costa et al., 2016; Arganda-Carreras
et al., 2018), and other insects (e.g., Kurylas et al., 2008;
Menzel, 2012; el Jundi and Heinze, 2020). The use of several

brain images to build a template avoids potential biases arising
during tissue fixation and imaging, and accounts for the natural
variability among samples, allows a statistical representation
of the brain of a species or worker phenotype. This type
of template, as opposed to a reference brain derived from a
single individual, is called a “group-wise template.” Because
combining all samples in a single brain representation requires
transforming them onto the same reference space, templates
allow normalizing information from brains that might have
been imaged under different conditions. In addition, group-
wise templates are usually associated to annotations (labels)
of brain subcompartments. These labels of the template are
used to automatically segment (annotate or label) these sub-
compartments in new samples, by registering them against
the template, which consist of transforming them to be in
the same reference space as the template (e.g., Arganda-
Carreras et al., 2018). An alternative to his strategy is that
of Rybak (2012), where a template brain is created in a
similar way to ours, but individual brains are first labeled
using a statistical shape model and then registered against
the template using the label volumes instead of the gray-
value ones. This approach has the advantage of a label-
oriented registration, where each anatomical region can be
treated independently. However, its performance may be too
sensitive to the segmentation result obtained by the model,
which should correctly estimate the sometimes very large shape
diversity of the dataset.

Although template strategies have been widely applied in
mammals (Talairach and Tournoux, 1988; Evans et al., 1994;
Mazziotta et al., 1995; Chen et al., 2006; Dogdas et al., 2007;
Shattuck et al., 2008; Yu et al., 2010), their implementation in
insect research has been less frequent. It has been expanded
from Drosophila (Rein et al., 2002; Jefferis et al., 2007; Cachero
et al., 2010; Costa et al., 2016; Arganda-Carreras et al., 2018)
to other insects only in the last decade (e.g., Menzel, 2012;
Rybak, 2012; el Jundi and Heinze, 2020). The application of
this methodology to research focusing on ants has occurred
more slowly, probably because of their high diversity (∼15,000
species). In addition, intra-specific variability is an issue per
se: workers may show greater variation in brain anatomy at
the level of species and colony, thus constraining the image
registration process needed to generate a template, which usually
requires a minimum spatial overlap of positions between same
sub-regions in the co-registered brain images. Another difficulty
is that neuroanatomical studies performed on ants focus on
more or less detailed brain subdivisions, creating different sets of
compartmental anatomical labels (e.g., Muscedere and Traniello,
2012; Amador-Vargas et al., 2015; Bressan et al., 2015; O’Donnell
et al., 2018; Gordon et al., 2019; Sheehan et al., 2019; Habenstein
et al., 2020). Consequently, most studies describing ant brain
organization have not aimed at building brain templates (e.g.,
Bressan et al., 2015; Habenstein et al., 2020).

Here, we describe and evaluate experimental strategies to
generate brain templates in ants to promote standardized
approaches for comparative neuroanatomical analysis. While
finer descriptions of neuropil sub-compartments exist for ant
brains (e.g., Bressan et al., 2015; Habenstein et al., 2020) and
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FIGURE 1 | Anatomy of a P. spadonia minor brain. MB-LC (mushroom body lateral calyx), MB-MC (mushroom body medial calyx), SEZ (subesophageal zone), OL
(optic lobes), AL (antennal lobes), MB-P (mushroom body peduncle), CX (central complex), and ROCB (rest of the central brain). Scale bar = 100 um. Three brain
slices have been selected to show all the subregions analyzed.

other social Hymenoptera (e.g., Brandt et al., 2005; Rybak, 2012;
Groothuis et al., 2019), we focused this first approach on major
neuropils (which are commonly used to explore neuroanatomical
differences among species, castes, subcastes and experimentally
manipulated individuals, e.g., Kamhi et al., 2016; Seid and Junge,
2016; Gordon et al., 2017; Grob et al., 2021). We recently applied
state-of-the-art imaging techniques to generate templates using
brains from a single or multiple ant species (Arganda-Carreras
et al., 2017; Gordon et al., 2019). Using careful annotations
by trained researchers as our standard, we evaluate template-
based strategies to automatically segment ant brain confocal
images, allowing more efficient and less biased volumetric data
acquisition. We validate the template method by evaluating its
application to workers of species in the ant genus Pheidole.

MATERIALS AND METHODS

We present three methods to produce and use templates for
automatic segmentation (Figure 2). The first consists of building
a template using confocal gray value whole brain images of a
single species, and manually labeling brain compartments on
the template (Figure 2A). This “direct label method” involves
manually tracing a single anatomy (the one of the template)
and automatically tracing other gray value brain images (by
registration against the labeled template). The second “consensus
label method” also uses a single-species template, but gray
value brain images used to build the template contain manually
annotated labels (Figure 2B). Then, these manual labels are used
to create the final template labels. This method considers label
values resulting from more than a single (potentially biased)
tracing, and thus, it may be more accurate than the first method,
at the expense of requiring more manual work. In this case, the
method is only useful to trace new brains. The third possibility—
the “multispecies template method”—is similar to the second but
uses gray value brain images from several species (Figure 2C),
thus enabling the expansion of species sampling. We next
describe the ant brain dataset used, the methods to generate the
different templates and labels, and how to evaluate the efficacies
of the different methods.

Brain Anatomy Dataset
We imaged brains of minor workers of four species of
the hyperdiverse ant genus Pheidole (P. spadonia, P. rhea,
P. tepicana, and P. obtusospinosa). While Pheidole is typically
characterized by complete dimorphism in the worker caste
(small minor and large major [soldier] workers) and in
some basal species (P. rhea) trimorphism, which includes
a third, larger worker subcaste (super soldiers), we used
only minors for proof of concept. Minors and majors
are easily discriminated by body size and head allometry
(Wilson, 2003).

Minor workers were decapitated and their brains were
dissected from the head capsule in ice cold HEPES-buffered
saline. Brains were fixed and immunohistochemically stained
using SYNORF1 (a monoclonal Drosophila synapsin I antibody
obtained from the Developmental Studies Hybridoma Bank,
catalog 3C11) and secondarily stained using Alexa Fluor
488 for visualization of neuropil (slightly modified from
Ott, 2008). Mounted in methyl salicylate, brains were
imaged on an Olympus Fluoview BX50 laser (488 nm)
scanning confocal microscope with a × 20 air objective
(NA = 0.5) at a resolution of ∼0.7 × 0.7 × 5µm/voxel,
producing gray images of 16 bits (in TIFF format). We
imaged 10 brains from P. spadonia, and three each of
P. rhea, P. tepicana, and P. obtusospinosa minor workers.
Each brain image was manually labeled as described
in the “Manual labeling of original brain images and
template” section below.

Standard Brain Image Method: Image
Registration and Template Generation
Templates were built in a diffeomorphic space1 as an average-
shape brain (“Template,” Figure 2). The diffeomorphic space
allows for smooth invertible transformations from one anatomy
to another (T1 and T−1, Figure 2). Our methodology is based

1Diffeomorphism: differentiable transform that allows mapping the coordinates
of one image onto the coordinates of another image in a smooth and invertible
way.
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FIGURE 2 | Automatic labeling methods. (A) Ten confocal images of brains of
P. spadonia minors are combined on a single group-wise template, which is
manually traced (creating “direct labels”). Each brain used to build the
template (and other new brains) can be registered against the template with a

(Continued)

FIGURE 2 | transformation function T. The inverse function T-1 can be used
on the manual labels of the template to automatically label the registered
brain. (B) Nine confocal images of brains of P. spadonia minors are combined
on a single group-wise template. The existing manual labels of each brain are
registered against the template, and every voxel is assigned to one label by
majority voting (creating “consensus labels”). New brains can be registered
against the template with a transformation function T. The inverse function T-1

can be used on the consensus labels of the template to automatically label
the registered brain. (C) Twelve confocal images of brains of P. spadonia,
P. rhea, P. tepicana, and P. obtusospinosa (three of each species) are
combined on a single multispecies group-wise template. Consensus labels
are created for the template as in B, and the same procedure is applied to
automatically trace new brains. Scale bar = 100 um. A single slice per brain
has been shown for illustration clarity.

on a two-step approach using symmetric diffeomorphic image
registration2 (SyN, Avants et al., 2008) of a group of gray
value brain images to one another by maximizing mutual
information3 first and cross-correlation4 later. Following this
optimization process, the group of images are warped into
the same coordinate system. In the first step, all gray value
brain images are registered against one randomly selected image
by optimizing mutual information and allowing only affine
transformations (translations and proportional changes in size).
Transformed images are then averaged to build a preliminary
“blurry” reference brain image. In the second step, the original
gray value brain images are registered to this blurry average using
non-rigid transformations (i.e., allowing local deformations) by
maximizing the cross-correlation of the intensities of all brains. In
this step, the registration is gradually improved at four resolution
levels (sequentially at 1/8, 1/4, 1/2, and 1/1 of the original sizes,
following a resolution pyramid strategy) and produces an optimal
average template. The first registration compensates for large
disparities in size while the second locally finds an optimal
solution. The template was generated by the normalized voxel-
wise median of the co-registered volumes (Arganda-Carreras
et al., 2017). All steps were implemented in the Advanced
Normalization Tools (ANTs) software (Avants et al., 2011) after
transforming in Fiji (Schindelin et al., 2012) gray and label images
to the open format NRRD. For a detailed description of the
software methods used in this paper, we refer the reader to
Supplementary Material.

Seven group-wise templates were generated for this study
(Supplementary Table 1) with 9 (“consensus label method”), 10
(“direct label method”) or 12 (multispecies template method)
original gray value brain images. Six of them were single-
species templates, built using only P. spadonia minor gray
value brain images (“direct/consensus label methods”). One
was a hybrid template, generated from brains of P. spadonia,
P. rhea, P. tepicana, and P. obtusospinosa minors (“multispecies

2Image registration: process of transforming one image (usually known as moving
image) into the coordinate system of another image (usually known as fixed
image).
3Mutual information: metric taken from information theory and used on image
registration to measure the amount of information that one image contains about
another image. It should be maximum when both image are perfectly aligned.
4Cross-correlation: metric of the similarity of two images as a function of the
displacement of one with respect to the other.
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template method”), three brains per species. Templates were also
associated with anatomical brain label values obtained either by
manual or consensus labeling (see below).

Neuropil Labeling
Manual Labeling of Original Brain Images and
Template
For each original gray value brain, an expert annotator
determined the region occupied by each brain compartment by
labeling them manually using Amira (version 6.0 or 2019.2).
Labels were traced on eight compartments (as in Muscedere
and Traniello, 2012; Gordon et al., 2017): the optic lobes
(OL, comprising lobula, medulla and lamina and connecting
fibers), antennal lobes (AL, comprising glormeruli, and central
hub), mushroom-body medial calyx (MB-MC), mushroom-
body lateral calyx (MB-LC), mushroom-body peduncle (MB-
P), central complex (CX, comprising the lower and upper
division of the central body, the protocerebral bridge and the
noduli), subesophageal zone (SEZ) and rest of the central brain
(ROCB). This manual tracing was performed in only one brain
hemisphere, except for the CX, SEZ and ROCB, which lack a clear
subdivision between hemispheres. A trained annotator requires
approximately 1 h to label a brain hemisphere. Figure 1 shows
three confocal scans of a P. spadonia brain. Studies aiming to
analyze differences between the right and the left sides of the
brains would require, however, to have fully traced brains.

A single dataset of manual labels for the template generated
for the “direct label method” was obtained using the same
methodology described above.

Consensus Labeling of Templates
One method used to obtain the same regional label values on
the group-wise template is based on combining the information
provided by the manual label values of the original brains used
to build the template, which also needed to be transformed to the
NRRD format. The first step consisted of applying to each label
image the same diffeomorphic transformations performed on its
original brain anatomy (T1, Figures 2B,C), and later a per-voxel
majority voting over all deformed label images of the same brain
center to produce “consensus labels.” Since not all the samples of
our original dataset contained labels of the same hemisphere, we
used Fiji’s tool “Flip horizontally” (Schindelin et al., 2012) when
needed to create mirror images of brain anatomies and their
manual labels to only have samples with right-hemisphere labels.

Automatic Labeling of Original Brain Images
To automatically label gray value brain images, individual
brain images were registered against a group-wise template
performing the same two-step method described above—initial
affine registration maximizing mutual information followed by a
non-rigid registration optimizing cross-correlation. The inverse
transformations (T−1, Figure 2) were then applied to the
template regional labels (regardless of the method chosen to
generate them), automatically building label values for individual
gray value brain images registered against the template. To avoid
always tracing the same side and prevent bias due to natural brain

asymmetries, a proportion of the gray value brain image datasets
to be traced can be flipped.

Five P. spadonia gray value brain images were automatically
traced using the three methods described before. It is important
to notice that for the “direct label method,” these five gray value
brain images were also used to build the template, while for the
other two methods, which use consensus labels, these five brains
were left out of the templates. This is because the consensus
labels integrate the information from the manual labels of the
brain anatomies used for the template: on one hand, it would
seem unnecessary to relabel those brains, and on the other hand,
the original manual labels and the automatically obtained labels
would be basically the same and the objectivity of the evaluation
of the method would be compromised.

Evaluation of Approaches
Because automatic and manual labels are expected to produce
slightly different results, we needed to determine whether these
differences were acceptable. To do so, we compared differences
between automatic and manual labels with the differences
between manual labels generated by several expert annotators
(“Inter-Person”) and by the same annotator (“Intra-Person”)
tracing the same gray value brain image more than once
(Supplementary Table 3). Three annotators (with at least 2
years of experience tracing brains) traced the same five brains
(to have an acceptable measure of interpersonal differences,
“Inter-Person”), and one of them traced the same five brains
three times (to have an acceptable measure of intrapersonal
differences, “Intra-Person”). The three expert annotators also
traced the single species (P. spadonia) template for the “direct
label method.” As explained for consensus label creation, when
manual labels were on the left side, the gray value brain anatomy
and the labels were flipped to be on the right side.

Because many comparative neuroanatomical studies use
volumetric data, as a measure of neuropil investment (Wehner
et al., 2007; Muscedere and Traniello, 2012; Riveros et al., 2012;
O’Donnell et al., 2018; Arganda et al., 2020), Volume similarity
(Eq. 1) was used as the relevant metric for evaluating automatic
labeling methods and was calculated for each label and brain, as
well as for the total brain volume, using volumes estimated with
the open-source toolbox MorphoLibJ (Legland et al., 2016; see
Supplementary Table 2).

Volume similarity

= 2 ×

∣∣Volume label method 1− Volume label method 2
∣∣∣∣Volume label method 1+ Volume label method 2
∣∣ (1)

Volume similarity between labels annotated for the same
compartment obtained by different methods was calculated
within the same gray value brain image, and for the automatic
and manual labels pairing labels always related to the same
original annotator (e.g., OL volume obtained by the “multispecies
template” strategy using consensus labels built from manual
labels by annotator 1 + OL volume obtained by manual labels
from annotator 1; see Supplementary Table 3).
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Statistical Analysis
We used bootstrapping to perform statistical analyses (Efron and
Tibshirani, 1994). This method has the advantage of making
no assumptions about the distributions underlying the data
and of being able to handle datasets where data are not
fully independent, as is the case in our dataset for different
measurements performed on the same brain. To make pairwise
comparisons between volume similarity measurements of one
brain center provided by two methods, we first we selected one
brain at random and pooled all volume similarity measurements
for the same brain center from the control and the method.
From this pool, we selected volume similarity measurements
randomly and with replacement, creating two randomized sets
of measurements, with the same sizes as the originals. We then
selected a new brain at random with replacement (the same
brain can be selected several times) and repeated the same
procedure 5 times because our dataset to evaluate the methods
has a total of 5 brains. We thus obtained a randomized dataset
with the same statistical characteristics as the original, but in
which measurements in the two groups came from the same
distribution. We then computed the difference between the
means of the measurements of the two groups, d_rand. We
repeated this procedure 10,000 times, obtaining a distribution for
d_rand. This distribution is centered at 0 by construction, and
its width represents the differences between method and control
that we could expect by chance if both belonged to the same
distribution. We then computed the difference between each
method and control from the dataset and defined our p-value as
the proportion of d_rand that had a value greater than the actual
difference between the two methods found in our study. We set
the significance level at p < 0.05.

RESULTS

We compared the variability (measured as volume similarity)
between automatic methods (“Direct labels,” “Consensus labels,”
and “Multispecies template”) and expert annotators, to the
variability among (“Inter-Person”) and within (“Intra-Person”)
annotators (Figure 3 and Supplementary Table 4). This allows
the determination of whether the differences between automatic
and manual labels are comparable to those produced by expert
annotators that we accept as inevitable errors. Regardless of
the comparisons between automatic and manual methods, our
results showed that the inter- and intra-individual differences
can be considerable, reaching ca. 10% and even higher in
compartments such as the AL and the CB (Figure 3).

In general, we found that, regardless of method, differences
between automatic and manual labels were similar to inter-
and intra-individual tracing variability, and in some cases
actually smaller. This indicate that automatic methods were more
reliable than having different annotators or the same annotator
repeat the labels. Compared with inter-person variability for
the same compartments, the variability of the “direct labels
method” was 5% smaller in the OL (Figure 3A, p-value = 0.028,
Supplementary Table 4), 11% smaller in the AL (Figure 3B,

p-value = 0.025, Supplementary Table 4), and 5% smaller in the
MB-P (Figure 3E, p-value = 0.01, Supplementary Table 4).

The variability of the “multispecies template method” was
4% larger than the inter-person variability only for the ROCB
(Figure 3H, p = 0.025, Supplementary Table 4). When
comparing the automatic methods with the intra-individual
variability, larger variabilities of the automatic methods were
found for the MB-MC, in which the variability of “direct label
method” was 5% larger (Figure 3C, p = 0.026, Supplementary
Table 4), for the ROCB, in which the variability of the “direct
label method” was 2% larger (Figure 3E, p-value = 0.004,
Supplementary Table 4) and the variability of the “multispecies
template method” was 6% larger (Figure 3E, p-value = 0.015,
Supplementary Table 4). A marginally significant difference (8%
smaller, Supplementary Table 4) was found when comparing the
“consensus label method” and the intra-person variabilities.

The “consensus label method” produced variabilities similar to
those among and within annotators for all compartments. Some
differences were marginally significant (Supplementary Table 4)
in comparison to the variability among annotators (5% smaller
in the OL, 4% larger in the MB-LC, and 6% smaller in the CX)
and within the same annotator (4% larger in the MB-LC and 3%
larger in the SEZ, the ROCB and for the whole brain).

DISCUSSION

Statistical templates serve as representative neuroanatomies that
integrate variation in brain structure across samples. When
associated with neuroanatomical labels, they are a valuable
tool to automatically and efficiently segment compartments
in similar brains that have not been previously traced.
With these annotations we can calculate descriptive metrics
such as brain compartment volumes useful to understand
differential investment in brain centers and their associated
neural functions in behavior.

We presented and evaluated three methods to determine
whether their results are comparable to manual annotations. To
do so, we compared volumetric differences between automatic
and manual labels to volumetric differences due to inter-
and intra-individual variability of annotators. We found that
automatic segmentation produced satisfactory results. Our three
automatic methods produced compartmental volumetric data
similar to those obtained via manual annotations by different
annotators or by the same annotator repeatedly tracing the
same brain. In some cases, we found that the variability
between automatic and manual data was even smaller than inter-
person variability. Only for one center evaluated (ROCB), the
“multispecies template method” produced a variability 2% larger
than the inter-person one. This error level might be acceptable
considering the benefits of automation and the reduction in
human bias. We expected to find more differences in comparison
with intra-person variability. Surprisingly, only for two neuropils
(MB-MC and ROCB), the “direct label method” and the
“multispecies template method” produced larger differences (2–
6% larger) between automatic and manual data than intra-
person variability.
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FIGURE 3 | Variability between annotations for brain compartments and the whole brain. Variation (using volume similarity) given is for the (A) optic lobe (OL).
(B) Antennal lobe (AL). (C) Mushroom body medial calyx (MB-MC). (D) Mushroom body lateral calyx (MB-LC). (E) Mushroom peduncle (MB-P). (F) Central complex
(CX). (G) Subesophageal zone (SEZ). (H) For the rest of the central brain (ROCB). (I) For the whole brain. Statistical comparisons are made using bootstrapping tests
for comparing the volume differences found between the manual and the automatic labels (“Direct labels,” “Cons. Labels,” and “Multisp. temp.”) and between
individuals (“Inter-Person”) or within the same individual (“Intra-Person”). “∗” indicates p-values smaller than 0.05.

Standardized average brain atlases (group-wise templates) are
increasingly applied in insects (Rein et al., 2002; Brandt et al.,
2005; El Jundi et al., 2009; Kvello et al., 2009; Rybak et al., 2010;
Peng et al., 2011; Menzel, 2012; Rybak, 2012; Costa et al., 2016;
Arganda-Carreras et al., 2017, 2018; Gordon et al., 2019;
Groothuis et al., 2019; el Jundi and Heinze, 2020) to efficiently
and accurately collect data required to test hypotheses of brain
evolution and to facilitate the establishment of connectomes.
They allow, for example, the registration of multiple marked
neurons into standard anatomies to determine their spatial
relationships and possible inclusion in common neuronal circuits
(e.g., Brandt et al., 2005; Peng et al., 2011). Annotated atlases
also provide information on the shape and size of the different
brain compartments to make intra and interspecific comparisons
(e.g., Rein et al., 2002; Heinze et al., 2013; De Vries et al., 2017)
and generate and test hypotheses on the importance of particular
modalities of sensory processing in insect behavior, ecology, and
sociobiology, and life history.

In ants, most brain studies present 3D models based on
representative individuals (e.g., Bressan et al., 2015; Habenstein
et al., 2020) instead of standardized brain atlases. Aside from
accounting for interindividual variability and reducing the
possible bias of a single representative, the use of group-wise
templates allows the rapid and accurate collection of volumetric
neuroanatomical data. To our knowledge, we were the first to
generate group-wise templates and consensus labels in ants to
automatically trace similar brains (Arganda-Carreras et al., 2017).

In this work, we also presented for the first time a multispecies
template. In another study, we used group-wise templates
manually traced to reduce the time needed to trace 60 brains of
three different brain phenotypes of the polymorphic turtle ant
Cephalotes varians (Gordon et al., 2019). Here we validate these
different methods using the variability of human annotations
as the “gold standard.” All the methods presented reduce the
time required for manually tracing each brain and help decrease
potential errors of multiple annotators, either by allocating a
single annotator to a large dataset or by combining labels that
integrate variability between samples. Group-wise templates also
advantageously ensure blind annotations for samples of different
origins known to the annotator (for example, different treatments
or species) thus minimizing biases. For this purpose, we plan to
build single templates for polymorphic species in future studies.
Each strategy might be more suitable to answer some research
questions than others; for example, the “direct label method”
is recommendable for blind studies comparing individuals
under different treatments. The “consensus label method” might
provide with robust reference anatomical atlases that consider
interindividual variability. And the “multispecies template
method” can make evolutionary and comparative studies
requiring large datasets from multiple species more robust. While
our methods have been evaluated using descriptions of major
neuropils, testing them on finer neuropil sub-structures will be
a logical next step that will increase their potentiality. Regardless
of the neuroanatomical scale, the use of templates to accurately
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and rapidly collect volumetric neuroanatomical data, combined
with sociobiological, socioecological, phylogenetic, metabolic, or
neurochemical analyses can help elucidate macroevolutionary
and microevolutionary patterns of brain evolution. This will
allow to better understand encephalization and allometric
scaling in regard to the behavioral ecology and sociobiology
of individual workers, and the impact of emergent colony-level
processes on the brain.
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Differences in Threat Level
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Marta A. Moita

Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal

Animals in groups integrate social with directly gathered information about the
environment to guide decisions regarding reproduction, foraging, and defence against
predatory threats. In the context of predation, usage of social information has acute
fitness benefits, aiding the detection of predators, the mounting of concerted defensive
responses, or allowing the inference of safety, permitting other beneficial behaviors, such
as foraging for food. We previously showed that Drosophila melanogaster exposed to
an inescapable visual threat use freezing by surrounding flies as a cue of danger and
movement resumption as a cue of safety. Moreover, group responses were primarily
guided by the safety cues, resulting in a net social buffering effect, i.e., a graded
decrease in freezing behavior with increasing group sizes, similar to other animals.
Whether and how different threat levels affect the use of social cues to guide defense
responses remains elusive. Here, we investigated this issue by exposing flies individually
and in groups to two threat imminences using looms of different speeds. We showed
that freezing responses are stronger to the faster looms regardless of social condition.
However, social buffering was stronger for groups exposed to the fast looms, such that
the increase in freezing caused by the higher threat was less prominent in flies tested in
groups than those tested individually. Through artificial control of movement, we created
groups composed of moving and freezing flies and by varying group composition,
we titrated the motion cues that surrounding flies produce, which were held constant
across threat levels. We found that the same level of safety motion cues had a bigger
weight on the flies’ decisions when these were exposed to the higher threat, thus
overriding differences in perceived threat levels. These findings shed light on the “safety
in numbers” effect, revealing the modulation of the saliency of social safety cues across
threat intensities, a possible mechanism to regulate costly defensive responses.

Keywords: defensive behavior, freezing, social buffering, Drosophila melanogaster, motion cues, safety in
numbers, fear, looming stimulus

INTRODUCTION

A major benefit of being in a group is the possibility of adding social information to directly
perceived information about the environment to guide behavior. Across the animal kingdom,
this social information can not only be actively transmitted via signals evolved specifically for
communication (Hollén and Radford, 2009; Leonhardt et al., 2016), but also acquired through
information-bearing cues of different sensory natures, which animals produce as they engage in
their daily activities. Vertebrates use such social cues to procure food (Galef and Giraldeau, 2001),
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for example, using vision to assess where and how much others
are eating (Coolen et al., 2005), to choose mates by copying the
decisions of others (Kavaliers et al., 2017) based, for example, on
olfactory cues (Galef and Laland, 2005), and to infer predation
threat levels (Griffin, 2004), for instance, by auditory detection
of escape (Murray et al., 2017) or freezing (active immobility
response aimed at becoming inconspicuous) (Pereira et al., 2012).
These types of social cue usage are also reported in invertebrates,
including Drosophila melanogaster (Ferreira and Moita, 2019;
Couzin-Fuchs and Ayali, 2021), guiding aggregation on food
(Tinette et al., 2004; Dombrovski et al., 2017, 2019; Shultzaberger
et al., 2018), reproduction-related decisions in mating (Mery
et al., 2009; Danchin et al., 2018) and oviposition (Sarin and
Dukas, 2009; Battesti et al., 2012; Bailly et al., 2021), as well as
defensive responses (Ferreira and Moita, 2020), many of which
rely at least partially on vision.

The acquisition and exploitation of the information provided
by social cues can confer fitness benefits (Kendal et al., 2005),
particularly in the context of a response to a potential threat:
failure to detect a predator can lead to an animal’s immediate
demise, whereas needless engagement in metabolically costly
defense responses (Barrios et al., 2021) can negatively impact
survival. That individual defense responses to predatory threats
can vary in modality and vigor depending on the perceived threat
level is well known (De Franceschi et al., 2016). Surprisingly,
however, detailed studies of how different threat levels impact
group behavior are still scarce. There are reports of modulation
of group responses with threat, showing that prey species from
higher-predation habitats form larger and more cohesive groups
than those from lower predation environments (Seghers, 1974;
Hager and Helfman, 1991; Magurran et al., 1992; Beauchamp,
2004). At the interplay of foraging and predation, there are
further examples of modulation by threat level of reliance on
social cues (Kendal et al., 2005). For example, bumblebees use
the presence of conspecifics as a cue of safety, joining others at
foraging sites only in potentially hazardous situations, when those
sites were previously predator-infested (Dawson and Chittka,
2014). Minnows also use socially derived information and copy
feeding location to a higher extent when exposed to a higher
predation risk (Webster and Laland, 2008), an example of
the “copy-when-asocial-learning-is-costly” hypothesis regarding
social learning. These examples point to the fact that group
foraging behaviors are modulated by threat level, and that
reliance on social cues also varies with predation risk. Although
it has been reported that the angle of approach of a threat
can trigger different degrees of uniformity in escape formations
(Marras et al., 2011), little is known regarding how different threat
levels affect group defensive responses and reliance on social cues,
which we addressed here.

To study responses to threat, we used visual looming stimuli
mimicking an approaching predator, which have been reported
to elicit defensive behaviors in all visual animals tested so far,
from invertebrates, such as crabs (Oliva et al., 2007) and flies
(Card and Dickinson, 2008; Zacarias et al., 2018), to vertebrates
like mice (Yilmaz and Meister, 2013) and humans (Ball and
Tronick, 1970). Using visual threats, whose properties can easily
be manipulated in the lab, permits a detailed understanding of

how different aspects of a threat affect the crucial deployment of
defense responses. For example, a black disk sweeping overhead,
mimicking a cruising predator, elicits freezing, while the same
black disk expanding on the screen, as if looming toward the
mouse, induces escapes (De Franceschi et al., 2016). Similarly,
fruit flies have been shown to respond both with escapes and with
freezing to repeated, inescapable, sweeping, and looming stimuli,
where escapes predominate in response to sweeps (Gibson et al.,
2015) and freezing in response to looms (Zacarias et al., 2018).
In addition, in both zebrafish larvae (Bhattacharyya et al., 2017)
and flies (Card, 2012; von Reyn et al., 2017), looming stimuli with
lower approach rates evoke slower escapes, while higher approach
rates evoke faster responses.

We had previously shown that flies exposed to looming stimuli
in groups use social motion cues as both a cue of threat and
safety (Ferreira and Moita, 2020). On the one hand, freezing
in others leads to freezing in a focal fly. On the other hand,
in line with buffering effects in other animals (Kiyokawa et al.,
2004, 2014; Faustino et al., 2017), movement of others leads to
movement resumption after freezing. In this study, we addressed
how different threat levels affect group freezing behavior and
usage of social motion cues. We used two loom speeds as different
degrees of threat and analyzed freezing responses in individual
and group tested flies to uncover the effect of threat imminence
on group-mediated freezing responses. We then manipulated
the social environment, controlling the numbers of moving and
freezing flies surrounding a focal fly to clearly disentangle the
effect of looming speed on the usage of social motion cues in
regulating freezing responses.

MATERIALS AND METHODS

Fly Lines and Husbandry
Flies were kept at 25◦C and 70% humidity in a 12:12 h dark:light
cycle. Experimental animals were mated females, tested only
once when 4–6 days old. For optogenetic manipulations, flies
were transferred for 48 h before the experiments to food with
0.4 mmol/L retinal, a required co-factor for the function of the
opsin CsChrimson. In experiments with mixed genotypes, focal
flies were marked on the thorax using a white marker pen.

Wild-type flies used were Canton-S. LC6-splitGAL4 line
w[1118]; P{y[ + t7.7] w[ + mC] = R92B02-p65.AD}attP40;
P{y[ + t7.7] w[ + mC] = R41C07-GAL4.DBD}attP2 (Wu et al.,
2016) and w[∗] norpA[36] (blind flies) were obtained from the
Bloomington stock center. The UAS-CsChrimson line used was
w1118; P{20XUAS-IVS-CsChrimson.mVenus}attP2 (Klapoetke
et al., 2014). LC6-splitGal4 driver-line flies were crossed with
UAS-CsChrimson effector flies, to create LC6 > CsChrimson flies
used for optogenetic induction of freezing (freezing flies).

Behavioral Apparatus and Experimental
Protocol
Behavioral experiments were performed as described in (Ferreira
and Moita, 2020), with minor modification. Briefly, we imaged
unrestrained flies in 11◦ slanted polyethylene terephthalate
(PETG) arenas with 68 mm diameter (central flat portion
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diameter 32 mm). A screen (Asus monitor running at 240 Hz,
tilted 45◦ over the stage, Figure 1A) was used as a source of
light and the delivery of looming stimuli. The experiments ran
for 10 mins comprising a 5-min baseline where the screen was
kept white, followed by a 5-min stimulation period where twenty
500 ms looming stimuli were delivered at random intervals
ranging from 10 to 20 s [black circles in a white background,

with a virtual object length of 1 cm (Zacarias et al., 2018),
exponentially expanding at a speed of 25 or 50 cm/s; half
length to speed ratios, l/v, values of 40 and 20 ms, respectively,
corresponding to biologically relevant threats, which mimic
damselfly attacks (von Reyn et al., 2014)]. The stage contained
two arenas, and under it, a custom-built LED board that provided
invisible backlight for video imaging (infrared, 940 nm) and

FIGURE 1 | Group freezing responses scale with threat imminence. (A) Experimental setup and conditions: we tested individuals and groups of five flies in backlit
arenas imaged from above; after a 5-min baseline, flies were exposed to twenty 500 ms looming presentations, every 10–20 s; we provided either slow (25 cm/s,
purple) or fast looms (50 cm/s, green). (B,C) Data for flies tested individually (lighter shades) and in groups (darker shades). (B) Fraction of flies freezing throughout
the experiment; dashed lines represent looming stimuli presentations; n represents the numbers of flies tested for each condition. (C,D) Violin plots representing the
probability density distribution of individual fly data bound to the range of possible values, with boxplots elements: [central white dot, median; box limits, upper (75)
and lower (25) quartiles; whiskers, 1.5 × interquartile range]. (C) Proportion of time spent freezing in the stimulation period. P-values result from Kruskal–Wallis
statistical analysis followed by Dunn’s multiple comparisons test. (D) Difference in the proportion of time spent freezing between individually tested flies and flies
tested in groups for slow and fast looms (refer to the section “Materials and Methods”). P-value results from the two-tailed Mann–Whitney test.
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red-light (627 nm) for optogenetic stimulation. Videos were
acquired through Bonsai (Lopes et al., 2015) at 60 Hz and
1,280 width × 960 height resolution using two USB3 cameras
(PointGrey Flea3). We tested wild-type flies alone and in groups
of five, as well as one focal wild type (marked with white paint)
surrounded by different proportions of blind, moving flies, and
optogenetically manipulated, freezing flies.

Optogenetic stimulation followed two protocols and all
LC6 > CsChrimson flies within the same protocol received
the same stimulation: (1) stimulation without concurrent loom
presentations–after a 5-min baseline period, 20 stimuli of pulsed
red light at 50 Hz, 50% duty cycle (DC), 7.5 mw/cm2 normalized
intensity were delivered over the course of another 5 min and (2)
optogenetic manipulations with simultaneous looming stimuli–
again after a 5-min baseline period, coinciding with the initiation
of the presentation of the looms stimulation occurred over 2 min,
at 50 Hz, 50% DC, 10 mW/cm2 normalized intensity.

Data Analysis
Data were analyzed using custom scripts in spyder (python 3.8).
Statistical testing was done in GraphPad Prism 7.03, and non-
parametric, Kruskal–Wallis test followed by Dunn’s multiple
comparison test or two-tailed Mann–Whitney test were chosen,
as data were not normally distributed (Shapiro–Wilk test).

As reported in our previous study (Ferreira and Moita, 2020),
we used IdTracker (Pérez-Escudero et al., 2014) to obtain the
position of each individual fly throughout the video, and hence
acquire x, y coordinates, and then used a costume Bonsai (Lopes
et al., 2015) script to analyze motion and hence pixel change
a 4 mm × 4 mm square around the center of mass of the
fly. With these metrics, as described previously (Zacarias et al.,
2018; Ferreira and Moita, 2020), we were able to classify different
behaviors, taking into account pixel change and speed, namely,
freezing and jumps.

Freezing bouts were classified as zero-pixel change detected
around the fly for at least 500 ms (30 frames). Noise in the
images can create pixel changes even when the fly is still visibly
immobile. Therefore, to decrease the incidence of false freezing
breaks (where the fly is still freezing but noise in the image creates
pixel changes), within a bout of freezing, pixel changes occurring
for less than 50 ms (3 frames) were allowed, that is only pixel
changes detected for more than this period were considered true
breaks in freezing.

Freezing in response to looms was determined using a time
window starting 30 frames before each loom until 150 frames
after the loom. The probability of freezing entries (or freezing
onset) was calculated by determining the likelihood a fly that was
not freezing 30 frames before a loom, started freezing during, or
until 150 frames after it. Latency to freeze corresponds to the
time from loom onset to the initiation of freezing (depicted in
Supplementary Figures 1A,B). The probability of freezing exits
(or freezing offset) between looms was calculated by determining
the fraction of instances that flies were freezing within the 2 s after
the loom and were not freezing in the last 0.5 s before the next
loom (meaning they broke freezing in between looms).

The proportion of time spent freezing was quantified by
taking the sum of the frames in which freezing occurred during

the stimulation period (5 min, corresponding × frames) and
dividing that by the total number of frames of this period. Flies
typically freeze in bouts, initiating freezing around the end of the
looming stimulus and remaining immobile for different lengths
of time. The length of each freezing bout varies across looming
stimuli and across flies, such that the same proportion of time
freezing may result from different freezing patterns. Therefore,
we also analyzed the distribution of freezing bout lengths, by
measuring the time elapsed from freezing onset to offset or until
the experiment ended (when flies once freezing remain immobile
for the rest of the test session).

To determine when a jump occurred, we identified when a fly’s
speed exceeded 75 mm/s for at least one frame, and applied a time
constraint of 3 frames between two consecutive jumps (Zacarias
et al., 2018; Ferreira and Moita, 2020).

To compare the effect size of a manipulation across conditions,
for example, to compare the effect of manipulating social
environment (individually vs. group tested flies) across threat
level (slow vs. fast looms), we used the following strategy, as the
use of common effect size statistics in non-parametric data is
controversial: first, we took the median value of the proportion
of time spent freezing by flies tested individually (from a sample
of 20 flies exposed to slow looms) and subtracted the median
value of time spent freezing by flies tested in groups (again a
sample of 20 flies exposed to slow looms was used). We repeated
this procedure 1,000 times (each time a random sample, with
replacement, of 20 individuals was used), creating a distribution
of difference values in the proportion of time spent freezing
between flies tested individually and in groups, when exposed
to slow looms. In this manner, we simulated 1,000 replicates
of this experiment, allowing for an estimation of the effect
size of manipulating the social environment of flies exposed
to one threat level, i.e., slow looms. Next, we performed the
same for flies exposed to fast looms, and a distribution of the
difference between social conditions in the proportion of time
spent freezing by flies tested under a higher threat level was
generated. Finally, we compared the distributions thus generated,
allowing for a comparison of the effect size of manipulating
social condition across loom speeds. A similar procedure was
performed to compare the effect size of manipulating threat level
across social conditions. The same approach was used when
analyzing freezing exits.

As previously described (Ferreira and Moita, 2020), we
calculated motion cues for a focal as the summed product of
speed and angle on the retina of a focal fly that each of the
surrounding flies produces

∑
speed = angle on the retina (θ)

where θ = 2 arctan
(

size
2 × distance

)
.

Logistic Regression Model
We modeled the decision to stay frozen or resume movement
using the scikit-learn logistic regression model, as previously
described (Ferreira and Moita, 2020). Briefly, we modeled the
probability of exiting freezing in between looming stimuli as
a function of the looming speed and the average of the sum
of the motion cue generated by neighboring flies during that
freezing bout. We used 100,000 times bootstrapped data with
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replacement. To determine the explanatory power of each
predictor, we determined the associated fraction of variance.

RESULTS

To study how different threat imminences affect social defensive
responses of the flies, we first assessed whether the speed
with which a looming dark disk approaches modulates freezing
responses of individual flies. To this end, we compared freezing
behavior of individually tested flies exposed to one of two
looming speeds, 25 and 50 cm/s (Figure 1A). A pilot experiment
suggested that individual freezing responses varied with looming
speed and, indeed, we found that the fraction of flies freezing
throughout the experiment when exposed to twenty renditions
of the slower loom (25 cm/s) is inferior to that observed when
flies are exposed to the same number of renditions at a faster
speed (50 cm/s) (Figure 1B). This is further corroborated by the
increased time spent freezing by flies exposed to the faster looms
compared with flies exposed to the slower looms (Proportion
of flies Freezing, PropF25 = 0.65 IQR 0.18–0.89, PropF50 = 0.88
IQR 0.58–0.94, Kruskal–Wallis, KW, followed by Dunn’s multiple
comparisons test, D, p = 0.0002, Z = 4.12; Figure 1C). Exposure to
faster looms also led to more rapid freezing responses, as revealed
by the shorter latencies to freeze in response to the fast looms
relative to slow looms (Supplementary Figure 1A). Having
established that increasing looming speed increases freezing
responses in flies tested individually, we will henceforth use
looming speed to study how different levels of threat affect
defensive behaviors in groups.

As flies show social buffering of defensive responses, that
is, when exposed to a threat while surrounded by others they
freeze less (Ferreira and Moita, 2020) and groups of animals can
behave differently depending on the level of threat (Seghers, 1974;
Hager and Helfman, 1991; Magurran et al., 1992; Beauchamp,
2004; Marras et al., 2011), we hypothesized that experiencing
looms of different speeds impacts group behavior and the weights
given to the available social information. We thus compared
freezing responses of flies, tested in groups of five, exposed to
the fast and slow looms (Figures 1B,C) and found that, just
as individually tested flies, groups of five flies exposed to the
faster looms freeze more than groups exposed to slower looms
(PropF25 = 0.10 IQR 0.50–0.22, PropF50 = 0.30 IQR 0.11–
0.55, KWD p < 0.0001, Z = 10.35; Figure 1C). In addition,
flies exposed to fast looms in groups show shorter latencies to
start freezing that are similar to those observed for flies tested
individually (Supplementary Figure 1B). Although both flies
tested individually and flies tested in groups responded with more
sustained freezing to the faster loom, it is still possible that the
impact of the social environment, that is, the degree of social
buffering, varied with threat level. To test this possibility, we
compared the decrease in freezing of flies tested in groups relative
to freezing levels of individually tested flies for both loom speeds
(refer to the section “Materials and Methods,” Figure 1D). We
found that the decrease in freezing, caused by social buffering,
was slightly but reliably bigger for flies exposed to fast looms
(two-tailed Mann-Whitney, MW, p < 0.0001). In summary, the

time flies spend freezing scales with perceived threat imminence,
but the social environment seems to have a higher weight, albeit
to a small extent, in guiding freezing responses when flies are
exposed to faster looms.

When in a group, the movement generated by the neighboring
flies leads to an increase in freezing exits resulting in faster
resumption of activity and less sustained freezing in between
loom presentations (Ferreira and Moita, 2020). Hence, we
analyzed the effect of looming speed on the probability of exiting
freezing (Figure 2). Consistent with our previous results, flies
tested individually display low probability of exiting freezing
[Prob(Fexit) 25 = 0.21, IQR 0.06–0.67, Prob(Fexit) 50 = 0.08 IQR
0.05–0.17; Figure 2A], and flies tested in groups are more likely
to stop freezing in between looming stimuli [Prob(Fexit) 25 = 0.94
IQR 0.82–1.00, KWD p< 0.0001, Z = 11.78, Prob(Fexit) 50 = 0.79
IQR 0.44–0.94, KWD p < 0.0001, Z = 11.55; Figure 2A]. In
line with the results for the proportion of time spent freezing
(Figure 1), perceived threat imminence significantly affects the
probability of exiting freezing in flies tested individually (KWD
p = 0.0004; Figure 2A) and in groups (KWD p< 0.0001, Z = 3.92;
Figure 2A).

To further explore the impact of threat level on the decision
to stop freezing, we used a logistic regression model. In our
prior study (Ferreira and Moita, 2020) such a model revealed
that the motion cue generated by surrounding flies was the
strongest predictor of the decision to stop freezing, explaining
close to 90% of the variance in the data. Therefore, in this study,
we modeled freezing exits using the motion cue of others and
looming speed as predictors (refer to the section “Materials and
Methods,” Figure 2B). This model accurately describes our data,
as seen by the area under the receiver operating characteristic
(AUROC), a measurement of model accuracy (0.72 ± 0.011),
and shows that although the social motion cue explains most
of the variance in the data (0.66 ± 0.041), looming speed also
explains a significant part (0.33 ± 0.041). This model does not,
however, allow us to look at the interaction between looming
speed and the impact of social environment on the decision
to stop freezing and resume activity. To address this issue, we
compared the impact of the social environment on freezing exits
observed for flies exposed to fast and slow looms, that is, we
computed the difference P(Fexit)individual–P(Fexit)social, for
flies exposed to both loom speeds, where a negative value means
that there are more freezing exits in flies tested in groups. We
found a small but reliable difference across loom speeds, as
seen by the less negative values for flies exposed to the faster
rather than to the slower looms (refer to the section “Materials
and Methods,” MW p < 0.0001, Figure 2C). Thus, the social
environment had a stronger impact on freezing exits of flies
exposed to slow looms, albeit to a small degree. As in our
experimental conditions (in this and our prior study (Ferreira and
Moita, 2020)) being surrounding by others leads to a buffering
of freezing, it might be no surprise that this buffering effect
is stronger under lower threat levels, which is in line with the
finding that both for flies tested individually and for flies in
groups, freezing bouts are shorter when exposed to slow looms
than when exposed to fast looms (Supplementary Figures 1C,D).
However, it stands in contrast with the stronger social impact
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FIGURE 2 | Probability of freezing exit in groups scales with threat imminence. (A,C,D) Violin plots representing the probability density distribution of individual fly
data bound to the range of possible values, with boxplots elements: central white dot, median; [box limits, upper (75) and lower (25) quartiles; whiskers,
1.5 × interquartile range]. (A) Probability of freezing exit before the following looming stimulus. P-values result from Kruskal–Wallis statistical analysis followed by
Dunn’s multiple comparisons test. (B) Logistic regression model of the decision to stop or continue freezing as a function of social motion cues and looming speed
(10,000 bootstrapping events). Mean and standard deviation of model performance (AUROC–area under the receiver operating characteristic curve, black) and
explanatory power of the social environment (dark gray) and looming speed (light gray). (C) Difference in the probability of freezing exit between individually tested
flies and flies tested in groups for slow and fast looms (refer to the section “Materials and Methods”). P-value results from the two-tailed Mann–Whitney test.
(D) Probability of freezing entry upon looming stimulus. P-values result from Kruskal–Wallis statistical analysis followed by Dunn’s multiple comparisons test.

on total time spent freezing for flies exposed to the fast loom.
As the proportion of time spent freezing depends on both the
probability of entering freezing upon a loom and the probability
of breaking from freezing before the next loom, it is possible that
while the social impact on freezing exits is bigger when flies are
exposed to slow looms, the probability of entering freezing upon
a loom may be decreased in groups to a larger extent during
exposure to faster looms. Indeed, we found that flies exposed
to slow looms individually or in groups are equally likely to
enter freezing, whereas for flies exposed to fast looms, being
in a group decreases the probability of freezing entry (KWD
p < 0.0033, Z = 3.456, Figure 2D). This finding could result from
a shift in balance of the weights given to social danger and safety
cues as a function of threat level. In conclusion, looming speed
affects both freezing entries and exits, an effect that may interact,
even if weakly, with the impact of the social environment on
freezing behavior.

Our results so far establish that both threat imminence and
the social environment affect freezing responses. However, in
these experiments, the social environment, i.e., the behavior
of flies in the group, varies with threat level, as reflected in
the increased average motion cue generated by groups of flies
exposed to the slow looms relative to the motion cues produced
by groups exposed to fast looms (Supplementary Figure 2).
Therefore, to test the impact of threat imminence on the use
of social cues, it is crucial to have experimental control over
the social cues, namely, the motion of others, such that for
different threat levels, the motion cues surrounding a focal test

fly remain similar. To manipulate the social environment, we
controlled the proportion of moving and freezing flies around a
focal fly, from all four flies moving to all freezing and the various
proportions in between. The same group compositions were
exposed to the fast and slow looms (Figure 3). We used blind,
NorpA mutant flies, which do not perceive the looming stimulus
and walk the entirety of the experimental time, as the moving
neighboring flies. This produces the highest surrounding motion
cues, a manipulation we had previously shown to lower freezing
by focal flies (Ferreira and Moita, 2020). To create freezing
flies, we artificially induced freezing by optogenetically activating
lobula columnar neurons 6 (LC6) using the channelrhodopsin
CsChrimson (Klapoetke et al., 2014), LC6 > CsChrimson
(Supplementary Figure 3A). Making use of these freezing and
moving fly lines to create different proportions of moving and
freezing flies (Supplementary Figures 3B,C), we were able
to produce graded motion cues in groups for both looming
speeds (Figures 3A,B). Crucially, these motion cues were similar
across threat imminences (Figure 3C). However, optogenetically
activating LC6 neurons, in addition to driving freezing, also
triggers jumps coupled to the loom presentations, especially
during the first 2 s of stimulation (Supplementary Figures 3D,E).
This means that stable graded motion cues were present about 2
s after the first loom, being briefly interrupted upon loom onset
subsequently (Figures 3A,B). It was therefore not possible with
this manipulation to examine freezing as a social cue of threat,
which mostly modulates freezing onset (Ferreira and Moita,
2020). However, the stable motion cues in between looming
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FIGURE 3 | Manipulating the social environment produces similar motion cues across threat imminences. (A–C) We manipulated four out of the five flies in a group,
to surround focal flies with groups with different proportions of flies that always move (blind flies, NorpA) and flies that are optogenetically made to freeze
(LC6 > CsChrimson). The color code for the groups is presented in (A,B). Motion cues (refer to the section “Materials and Methods”) produced by the manipulated
surrounding flies throughout the experiment when exposed to slow (A) or fast looming stimuli (B); dashed lines represent looming stimuli presentations; n represents
the numbers of groups tested for each condition. (C) Violin plot representing the probability density distribution of individual fly data bound to the range of possible
values, with boxplots elements: [central white dot, median; box limits, upper (75) and lower (25) quartiles; whiskers, 1.5 × interquartile range]. Average motion cues
produced by the manipulated surrounding flies during the stimulation period. P-values result from the two-tailed Mann–Whitney test; significance is determined via
Bonferroni correction.

stimuli allowed the study of the use of safety cues, which
modulate the resumption of activity by a fly that froze after the
loom (Ferreira and Moita, 2020).

Having a handle on the social environment allowed us to
analyze the behavior of focal wild-type flies exposed to similar
social motion cues while being presented with looming stimuli
of different speeds (Figure 4) and assess how different threat
levels affect social cue usage. In both cases, we found that a
graded manipulation of the social motion cues leads to graded

freezing responses of focal flies, as seen in the proportion
of flies freezing throughout the experiment (Figures 4A,B)
and in the proportion of time each fly spends freezing (KW
p < 0.0001, statistic = 127.5, Figure 4C; KW p < 0.0001,
statistic = 196.8, Figure 4D). In addition, overall, flies exposed
to faster looms freeze more than flies exposed to slower
looms (Figure 4C). In opposition to our previous findings
(Ferreira and Moita, 2020), flies surrounded by all freezing
flies froze less than flies alone; we believe this is due to
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FIGURE 4 | Social environment overrides the perceived imminence of a threat in guiding freezing responses. (A–F) We manipulated focal flies to surround with four
flies creating groups with different proportions of flies that always move (blind flies, NorpA) and flies that are optogenetically made to freeze (LC6 > CsChrimson). The
colours codes for group composition are presented in (A,B). Fraction of focal flies freezing throughout the experiment when exposed to slow (A) or fast looming

(Continued)
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FIGURE 4 | stimuli (B); dashed lines represent looming stimuli presentations; n represents the numbers of flies tested for each condition. (C–F) Violin plots
representing the probability density distribution of individual fly data bound to the range of possible values, with boxplots elements: central white dot, median; [box
limits, upper (75) and lower (25) quartiles; whiskers, 1.5 × interquartile range]. Proportion of time spent freezing in the stimulation period when exposed to slow (C)
and fast (D) looms. (E) Difference in the proportion of time spent freezing between individually tested flies and flies tested in groups for slow and fast looms (refer to
the section “Materials and Methods.” P-values result from the two-tailed Mann–Whitney test. (F) Difference in the proportion of time spent freezing between focal flies
exposed to the two looming speeds, for each group composition (refer to the section “Materials and Methods”). Statistical comparisons between conditions are
presented in Supplementary Table 1.

the induction of jumps, which affects freezing entries as
mentioned above.

Importantly, we could now compare the impact of similar
social cues across different threat levels, by plotting the difference
between freezing by focal flies tested individually and in each
social condition, for both fast and slow looms (refer to the section
“Materials and Methods”; Figure 4E). We found that the impact
of the social environment was stronger when flies were exposed
to the faster loom in the presence of moving flies, which provide
social cues of safety, as the differences relative to individually
tested flies were bigger for flies exposed to fast than for flies
exposed to slow looms (MW p < 0.0001; Figure 4E).

As mentioned above, freezing responses scale with threat
imminence, but the social environment seems to have a bigger
weight in the presence of a higher threat level, which may result
from stronger impact of the social safety cues. Indeed, when
comparing the difference in freezing responses between looming
speeds, across the graded social motion cues, it is evident that
there is an effect of looming speed on the time spent freezing
(refer to the section “Materials and Methods”; KW p < 0.0001,
statistic = 2,419; Figure 4F and Supplementary Table 1), but
that this effect decreases and flattens out with the addition of
moving flies to the social environment [Prob(Fexit) = 0.11–0.079
IQR −0.19 to 0.26, Figure 4F and Supplementary Table 1].
To summarize, adding moving flies, hence adding motion cues,
levels out differences in freezing responses across looming speeds.

To further understand the effect of these tightly controlled
social cues on freezing responses in groups, we once again
focused on freezing exits in between loom presentations
(Figure 5). Overall, for both looming speeds, increasingly adding
motion cues, by adding moving flies, leads to an increase in the
probability of freezing exit (KW p < 0.0001, statistic = 140.4,
Figure 5A; KW p < 0.0001, statistic = 306.1, Figure 5B). The
stronger impact of social cues of safety on the responses to
faster looms is again evident comparing the magnitude of the
difference between freezing exits by focal flies tested individually
and in the presence of moving flies for both fast and slow
looms (MW p < 0.0001; Figure 5C). In addition, although
there are differences in the probability of freezing exit across
looming speeds for all group compositions, with slower looms
inducing higher freezing exit probabilities, these differences once
again become very small as soon as one moving fly is added
[Prob(Fexit) = 0.12–0.033 IQR −0.012 to 0.17, Figure 5D and
Supplementary Table 2].

The finding that flies exposed to strong motion safety
cues show decreased total time spent freezing and increased
probability of freezing exits, for both loom speeds, indicates
that the length of individual freezing bouts is decreased. Indeed,

for all social conditions, freezing bouts that end in a freezing
break between looms are shorter when more moving flies are
around (Figures 5E,F), and hence, the bout length depends
on stimulus strength, i.e., the level of surrounding motion
cues. This suggests that flies gather information about safety
for longer periods of time, when this information is sparser.
Interestingly, at all stimulus (motion cue) strength levels, the
distribution of these freezing bout lengths exhibited positive
skew, a characteristic of information accumulation over time
until the animal makes a decision (Luce, 1986; Ratcliff and Smith,
2004; Gold and Shadlen, 2007; Carandini and Churchland, 2013).
Interestingly, social cues of danger provided by four freezing
flies seem to be more salient for flies exposed to faster looms
(Figures 5C,D); however, an appropriate analysis of this effect
warrants a different experimental design in which jumps do not
confound the analysis. In conclusion, social cues of safety lead
to similar probabilities of exiting freezing across looming speeds
and hence override differences in threat level.

DISCUSSION

In this study, we have addressed how threat imminence impacts
defensive behaviors in groups and reliance on social cues.
We showed that flies respond with different freezing levels to
looming stimuli approaching at different speeds, whether tested
individually or in groups, with faster looms triggering faster and
more sustained freezing responses. Interestingly, we identified a
non-linear scaling effect of looming speed, that is, the increase in
freezing caused by exposure to a higher threat is not similar across
social conditions. This increase in freezing was more pronounced
for flies tested individually than flies tested in groups, indicating
that the groups of flies exposed to faster looms showed a stronger
social buffering effect than the groups exposed to slower looms.
Moreover, controlling the social cues surrounding a fly through
the manipulation of group composition under both looming
conditions revealed that social cues of safety override differences
in freezing responses to the two threat levels.

With the manipulation of looming speeds, we observed that
faster looms lead to a faster engagement in freezing responses,
which are then maintained for more prolonged periods of time,
whether flies are tested individually or in groups. These findings
are consistent with a perceived higher threat level for faster looms
leading to a more vigorous response whose intended outcome is
undetectability by a potential predator until safety is established.
On the one hand, the differences between the latencies to start
freezing are in line with differences in latencies to escape in
fish (Bhattacharyya et al., 2017). On the other hand, freezing
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FIGURE 5 | Social cues of safety lead to freezing breaks, which underlie freezing response similarities across threat imminences. (A–F) We manipulated focal flies to
surround with four flies creating groups with different proportions of flies that always move (blind flies, NorpA) and flies that are optogenetically made to freeze
(LC6 > CsChrimson). The color code for the groups is presented in (E,F); gray shadings represent an individually tested wild-type fly. (A–D) Violin plots representing
the probability density distribution of individual fly data bound to the range of possible values, with boxplots elements: central white dot, median; [box limits, upper
(75) and lower (25) quartiles; whiskers, 1.5 × interquartile range]. Probability of freezing exit before the following looming stimulus when exposed to slow (A) or fast
looming stimuli (B). (C) Difference in the probability of freezing exit between individually tested flies and flies tested in groups for slow and fast looms (refer to the
section “Materials and Methods”). P-values result from the two-tailed Mann–Whitney test. (D) Difference in the probability of freezing exit between focal flies exposed
to the two looming speeds, for each group composition (refer to the section “Materials and Methods”). Statistical comparisons between conditions are presented in
Supplementary Table 2. Kernel density estimate plots of the distribution of freezing bout lengths for flies exposed to slow (E) and fast (F) looms.
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duration increases with faster looming speeds at an apparent
contrast with the reported shorter escape duration for fast looms.
However, a closer examination of the flies’ behavior suggests
that at a functional level, the change is in the direction of
increased protection. Flies exposed to an escapable fast loom
cut short their sequence of preparatory behaviors that ensures
a controlled take-off flight away from the predator, resulting in
a faster take-off, albeit less controlled. The small difference in
take-off duration may grant precious time to flies to survive the
chase (von Reyn et al., 2014). When exposed to an inescapable
fast loom, flies freeze for a longer period of time, which may allow
them to remain undetected in case the predator looms again in a
second chase attempt.

Crucially, we identified that a graded manipulation of the
social environment, providing graded levels of motion cues,
induces graded freezing responses. Furthermore, underlying the
graded amount of total time spent freezing is the modulation of
the probability of freezing exit, resulting in graded freezing bout
durations. These freezing bout durations uncover progressively
faster freezing disengagement, that is, decreasing reaction times
to increasing safety motion cues, for both threat imminences.
With these findings, we uncovered a different strategy to that
observed in social copying in the context of reproduction-related
decisions in flies (Danchin et al., 2018), where animals adopt
a conformity strategy, following the decision of the majority
of others. If flies in our experiments were conforming to the
majority, one would expect higher freezing levels for groups
with 3 and 4 freezing flies, which was not the case. The finding
that flies in our experimental conditions do not conform to
the group majority and show stronger social buffering when
exposed to a higher threat level may seem surprising. It is
possible, however, that very sustained freezing responses, several
minutes at a time, may become too expensive (Barrios et al.,
2021) and that responding to the social environment may reduce
the cost without significantly reducing the flies’ defenses. The
behavioral pattern we observed is consistent with such a strategy,
as flies responded to the looming stimulus with freezing even
in groups with moving flies; however, each incremental addition
of social safety cues lead them to disengage from freezing after
increasingly shorter times. This pattern is reminiscent of a
process of evidence integration, of safety cues, to decision bound–
resumption of activity. A finer grained investigation of how
freezing responses of individuals and flies in groups vary with
threat level, with careful control and monitoring of motion cues,
will permit determining whether freezing responses in flies follow
an integrate to threshold model of decision making, analogously
to that observed for escape decisions in mice (Evans et al., 2018)
and two-alternative forced choices visual and olfactory tasks
in primates, rodents, and flies (Luce, 1986; Ratcliff and Smith,
2004; Gold and Shadlen, 2007; Carandini and Churchland, 2013;
DasGupta et al., 2014).

Importantly, we uncovered a hitherto unknown, non-linear
scaling effect of defense responses in groups with threat
imminence. The enhanced social buffering effect upon fast looms
seems to result from the perception of the approach speed of the
threat in interaction with the perception of surrounding social
cues, raising the question of whether this effect is generalizable

across different features of threat that convey different degrees of
danger, such as contrast of the threatening stimulus relative to
the background, or rather specific to approach speed. To address
this issue, it will be interesting to analyze freezing responses
tampering with various features of predation threat.

Interestingly, social cues of danger produced by surrounding
freezing flies seem to exacerbate freezing responses to the faster
loom compared with the slower loom, as the former are a lot less
likely to exit freezing. However, our experiments do not allow
addressing the social effect on freezing onset appropriately as
the optogenetic manipulations used also produce strong jumping
responses. Future experiments inducing freezing without jumps
will allow studying the interplay between threat levels and
social cues of danger.

We believe that this study opens up a path to understand
the dynamics of the usage of individually percieved data about
threat and danger cues in different predation settings, which
will provide valuable insight into how crucial threat response
decisions are made.
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Supplementary Figure 1 | Effect of looming speed on latency to freezing onset
and freezing bout length. Distribution of the time points of freezing onset after
looming for flies tested individually (A) and in groups (B). Dashed gray lines
represent looming onset and offset. Cumulative distributions of freezing bout
lengths for flies tested individually (C) and in groups (D). Orange denotes flies
exposed to slow looms and green denotes flies exposed to fast looms.

Supplementary Figure 2 | Motion cues in groups scale with threat intensity.
Violin plots representing the probability density distribution of individual fly data

bound to the range of possible values, with boxplots elements: [central white dot,
median; box limits, upper (75) and lower (25) quartiles; whiskers,
1.5 × interquartile range]. Average motion cues a focal fly is exposed to the
stimulation period. P-value results from the two-tailed Mann–Whitney test.

Supplementary Figure 3 | Freezing and jumping responses of optogenetically
activated LC6 > CsChrimson. (A) Fraction of flies freezing throughout the
experiment while providing pulsed red light at the timestamps normally used to
provide looming stimuli (dashed lines); LC6 > CsChrimson flies supplemented
with retinal (blue) and control without (gray). (B–D) We manipulated four out of the
five flies in group, to surround focal flies with groups with different proportions of
flies that always move (blind flies, NorpA) and flies that are optogenetically made
to freeze (LC6 > CsChrimson), while presenting looming stimuli. The color code
for the groups is presented in (B–D). Fraction of surrounding, manipulated, flies
freezing throughout the experiment when exposed to slow (B) or fast looming
stimuli (C); dashed lines represent looming stimuli presentations. (D,E) Data from
flies exposed to slow looms. (D) Number of jumps throughout the experiment by
the surrounding manipulated flies. (E) Number of jumps at the first loom
presentation for LC6 > CsChrimson flies in groups of four surrounding
optogenetically manipulated flies.
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Introduction

Encephalization has long been understood to be a key adaptation in the human

lineage, and over the last four million years species attributed to Australopithecus and

Homo have shown demonstrable trends toward increased brain size. However, our

understanding of past populations is limited by our reliance on the fossil record. For

some poorly preserved species, we are currently dependent on a few or even a single

cranium. This places limits on our ability to infer subtle changes in brain size, even as the

broader trend of encephalization is clear.

DeSilva et al. (2021) hypothesize that modern human brain size has decreased,

starting at roughly 3,000 years ago. They offer a model in which directional selection

for decreased brain size, and/or stabilizing selection for maintaining large brains, was

relaxed due to the ability to store information externally in social groups. Under this

model, which they analogize from ants, following the development of complex societies,

the cumulative intelligence and knowledge of the social group acted to relax the strong

forces of selection that had been present in earlier human populations. They propose

that “group-level cognition may select for reduced brain size and/or adaptive brain size

variation” (DeSilva et al., 2021, p 7).

Do we see a decrease in brain size in modern
humans?

DeSilva et al. (2021) base their relevant conclusions on the results of a “change-point

analysis,” in which they identify a change in mean brain size, starting at roughly 3,000

years ago (or 3 ka), coinciding with the widespread appearance of complex societies.

Their data set is a collection of 987 fossil and museum specimens ranging fromMiocene
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hominid Rudapithecus (9.85 million years ago or Ma) to modern

humans (300 ka to 100 years).

The dataset itself raises several questions. The first is whether

the sample is appropriate to test the hypothesis that brain

size reduced due to changes associated with the transition

to agriculture and the rise of complex societies. Since this

transition occurred at different times across the globe (see

Barker, 2009), rather than over a single 3–5 ka year period,

under the hypothesis of DeSilva et al. (2021) we should detect

the change in different modern human populations at different

times. However, the dataset of DeSilva et al. (2021) is not

organized to test the hypothesis in this fashion. Populations

from around the globe are lumped together, with only 23 crania

sampled over what we would argue to be a critical window with

regards to their hypothesis, 5–1 ka, and coming from Algeria,

England, Mali, China, and Kenya, among other locations. Later

modern human samples are focused on Zimbabwe (at 1.06 ka),

the Pecos Pueblo sample from the United States (1 ka), and

finally, 165 crania (28% of the total sample) are from Australian

pre-Neolithic hunter-gatherer populations and dated in DeSilva

et al. (2021) to 100 years ago. In that same dating category,

307 (53% of the total sample) are from unspecified Morton

Collection crania, where we have no way of knowing how many

may be from pre-Neolithic and post-Neolithic populations. We

also observe that the sample of DeSilva et al. (2021) generates a

modern human mean of 1,297 cc in the final 100-year category,

which is well below other published estimates of contemporary

world-wide modern mean human cranial capacity that range

from ∼1,340 cc up to ∼1,460 cc (Beals et al., 1984; Henneberg,

1988; Ruff et al., 1997; DeSousa and Cunha, 2012).

Second, the sample relies on the combination of fossil and

modern human specimens, with temporal intervals between

these crania ranging from 2.85 million years (Ma) to 100 years,

and data points at each time interval ranging from 578 to 1

(Figure 1). Even within their sample of modern humans, starting

with the 300-ka year old Jebel Irhoud skulls from Morocco, the

intervals range from 105 ka years to 100 years. This produces a

heavily unbalanced sample. Of the 987 total specimens (and 836

modern human crania) in the analysis, 578 specimens are from

just two sources—the Morton Collection in Philadelphia and

Peter Brown’s Analysis of Australian and Asian recent modern

humans (Brown et al., 2004; Lewis et al., 2011). Both samples

are placed in the final 100-years category, which means that

more than half of the specimens of a 9.8-million-year analysis

are placed in the final 100 years (Figure 1).

Change-point analysis is, broadly speaking, a form of

regression in which the hypothesis being tested is whether

there is a change in the distribution of a particular parameter

(e.g., slope, residual variance, mean, etc.; Chow, 1960; Chen

and Gupta, 2012). This type of analysis relies on the standard

assumptions of regression: that the residuals do not deviate from

(multivariate) normality and homoscedasticity. However, in the

DeSilva et al. (2021) data set, the extremely disproportionate

sampling of more recent populations leads to violations of

these assumptions. Using the full dataset, the residuals from

the change-point analysis model (Figure 1) are significantly

skewed (Mardia’s test p < 0.00001) and, depending on the

statistic, approaching heteroscedastity (Breusch-Pagan p < =

0.100, White test p = 0.059). Even if the data are reduced to

just the modern human data set starting at ∼300 ka—to test

the hypothesis of micro-evolution within modern humans—the

residuals are still heavily skewed (Mardia’s test p < 0.00001).

To understand relevant patterns over time, we propose

that several adjustments must be made to the data. First, we

limited the analysis to modern humans only. We challenge

the notion that brain size changes between such adaptively

divergent and temporally distant groups such as Rudapithecus,

Australopithecus, and Homo erectus in any way inform on

hypotheses relating to potential changes in modern human

brain size around 3 ka driven by transitions to agriculture

and social complexity in the Holocene. Analyses must be done

at the appropriate scale (Du et al., 2018), and hypotheses of

micro-evolutionary change within species should be addressed

with data at the appropriate micro-evolutionary scale. In

addition, ignoring interspecific relationships (i.e., phylogeny)

and population structure can have unforeseen consequences on

analyses (e.g., Felsenstein, 1985; Roseman and Auerbach, 2015).

Thus, we limited the data to only modern humans changing the

analysis to focus on only the last 300 ka.While includingmodern

human population structure in our analysis (e.g., Roseman

and Auerbach, 2015) could be warranted, this would require

a completely different approach than used in DeSilva et al.

(2021) and here we merely wish to explore the effect of using

their same methods on data that is more appropriate to the

research question.

Second, we reduced the data tomeans calculated to represent

specific temporal slices, following on standard practice in time-

series analysis (e.g., Auger and Lawrence, 1989; Wagner et al.,

2002; Lopez et al., 2010; Palma, 2016; Hites, 2019). Using the data

from DeSilva et al. (2021), we calculated 100-year mean values

for the modern human data set, which focuses on the last 300 ka

(Figure 2).

However, due to of the paucity of older samples, even

within the single-species modern human sample, these data

were still significantly skewed (Mardia’s test p < 0.0001).

Because 60% of the data fall within the last 10% of the

modern human timeline, our final step was to create a subset

of the data that encompassed the data over this most well-

populated interval, the last 30 ka (Figure 3). This created

a more normally distributed time series, (Mardia’s test p =

0.956), with the largest temporal gap reduced to only 2.8 ka.

We suggest that, given the data available from DeSilva et al.

(2021), this consolidated and narrowed data set is needed

to produce an accurate test of the hypothesis of a shift in

mean brain size in modern humans in the pre and post-

agricultural period.
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FIGURE 1

Original dataset from DeSilva et al. (2021). Residuals from the regression are heavily skewed and heteroscedastic, and the temporal intervals
between samples ranges from 2.85 million years to 100 years. Of the total of 987 total specimens in this 9.85Ma analysis, 578 are in the final
100-year interval. Also shown is fitted regression lines from a linear model with 95% confidence intervals around the slope; changepoints were
found using segmented R package at 2.1 ± 0.1Ma, 1.3 ± 0.1 Ma, and respective slopes of 0.03 ± 0.01, 0.35 ± 0.04, 0.14 ± 0.13 surrounding
changepoints. No changepoint was located at or around 3 ka that approached significance using Davies (1987) test after accounting for
previously mentioned changepoints (p-value of any additional changepoints = 0.621).

FIGURE 2

Modern human cranial size over the last 300 ka using data consolidated into 100-year means. This data set follows standard practice in time
series analysis by having single values at each time slice. Further, the heteroscedasticity is strongly reduced (although it is still heavily skewed).
Also shown is fitted regression line with 95% confidence interval around the slope; slope = 2.78e−5

± 8.89e−5, which is not significantly di�erent
from 0 with a p-value of 0.754. No changepoint was found for this consolidated and reduced dataset.
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FIGURE 3

Modern human cranial size over the last 30 ka using data consolidated into 100-year means. This data set is neither heteroscedastic nor skewed.
Further, we argue that this is the appropriate scale at which to examine the micro-evolutionary hypothesis of change due to selection changes
in the Holocene. Also shown is fitted regression line with 95% confidence interval around the slope; slope = 2.80e−5

± 8.89e−5, which is not
significantly di�erent from 0 with a p-value of 0.754. No changepoint was found for this consolidated and reduced dataset.

There are multiple methods for identifying changepoints

in series data (Chen and Gupta, 2012), and we employed

two methods: using standard segmented regression in SegReg

(www.waterlog.info) and the R Package segmented (Muggeo,

2008) to determine if there were shifts in slope following on the

changepoint hypotheses of DeSilva et al. (2021). We first used

our consolidated modern human 300 ka dataset, and then the

consolidated modern human 30 ka dataset.

Using either data set and either software packages, we found

no significant changepoint at or near 3 ka (Figures 2, 3). This

includes using the same R packages and data as in DeSilva et al.

(2021), with the addition of a Davies (1987) test for significance

of a changepoint around 3 ka in the package segmented (Muggeo,

2008), a step DeSilva et al. (2021) did not report (p-value for any

changepoints in the consolidated 300 ka= 0.739; and p-value for

any in the consolidated 30 ka dataset= 0.259).

The Davies test (Davies, 1987) is necessary in cases where

a new parameter enters the model under the alternative

hypothesis, here testing if the difference between the slopes

at the changepoint is significantly different from zero vs. a

null hypothesis of no difference as the null hypothesis has one

less parameter—the changepoint (Muggeo, 2008). Calculating

100-year means on the modern human data had the effect of

reducing the residuals heteroscedasticity for the 300 ka dataset

(Breusch-Pagan p = 0.501, White Test p = 0.538), and for

the 30 ka dataset (Breusch-Pagan p =0.610, White Test p

= 0.877).

With regards to testing the hypothesis in question, our

analyses showed no changes in brain size associated with the

transition to agriculture during the Holocene. Overall, our

conclusion is that, given a dataset more appropriate to the

research question, human brain size has been remarkably stable

over the last 300 ka. Thus, hypotheses of recent change are not

supported by the evidence (see also Beals et al., 1984; Henneberg,

1988; Ruff et al., 1997; DeSilva et al., 2021).

Discussion

DeSilva et al. (2021) propose that human brain size has

decreased, and offer innovative reasons why this may be so,

primarily focusing on a model of “group level cognition.” Our

analysis of these data fails to find a decrease in human brain size

over the last few thousands of years. When the large sample sizes

of the most recent human samples are adjusted for, the pattern

disappears, and the arguments no longer need to be invoked.

We argue that, when examining questions of micro-

evolutionary change, the analysis and data need to be

appropriate for the specific scale of that hypothesis. Further, the

data need to be otherwise relevant for the hypothesis being tested

(see Houle et al., 2011). Given that the adoption of agriculture

and the transition to complex societies occurred in different

times at different places, the samples need to be specific enough
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to test the hypothesis across different times and populations,

which does not appear to be the case in this instance.
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What is really social about social 
insect cognition?
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It is often assumed that social life imposes specific cognitive demands for 

animals to communicate, cooperate and compete, ultimately requiring larger 

brains. The “social brain” hypothesis is supported by data in primates and 

some other vertebrates, but doubts have been raised over its applicability to 

other taxa, and in particular insects. Here, we review recent advances in insect 

cognition research and ask whether we can identify cognitive capacities that 

are specific to social species. One difficulty involved in testing the social brain 

hypothesis in insects is that many of the model species used in cognition 

studies are highly social (eusocial), and comparatively little work has been 

done in insects that live in less integrated social structures or that are solitary. 

As more species are studied, it is becoming clear that insects share a rich 

cognitive repertoire and that these abilities are not directly related to their level 

of social complexity. Moreover, some of the cognitive mechanisms involved 

in many social interactions may not differ from those involved in non-social 

behaviors. We discuss the need for a more comparative and neurobiologically 

grounded research agenda to better understand the evolution of insect brains 

and cognition.

KEYWORDS

social brain hypothesis, insects, social evolution, comparative cognition, foraging, 
mate competition

1. Introduction

The considerable variation in brain size and cognitive abilities in the animal kingdom 
has been a long-standing question for biologists (Healy, 2021). It is broadly accepted that 
the brain evolved to process ecological information. However, it is an energetically 
expensive organ to operate and maintain. Therefore explanations for its evolution must 
reconcile these costs with fitness payoffs (Aiello and Wheeler, 1995). This presented an 
especially intriguing puzzle for primatologists who observed that the brains of primates 
were significantly larger than predicted, given their body size (Clutton-Brock and Harvey, 
1980), and that classical explanations implicating their need for complex problem-
solving (Gibson, 1986) did not account for these trends in all primate groups. The 
correlation between neocortex size and social group size in primates hinted at a link 
between brain size and sociality, later formalized as the “social brain hypothesis” 
(Dunbar, 1992; Dunbar, 1998). Following this hypothesis, increases in the frequency and 
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complexity of social interactions, and the cognitive challenges of 
managing social relationships, may have required better 
information processing capabilities and larger brains. Over the 
past decades, research in primates has yielded experimental 
support for this hypothesis, reporting that neocortex size is also 
associated with intensity of reproductive competition 
(Lindenfors, 2005), frequency of coalition formation (Dunbar 
and Shultz, 2007), social play (Lewis, 2001), and social learning 
(Reader and Laland, 2002).

The story is a bit different in insects. While early description 
of insect anatomy and behavior also suggested a strong 
relationship between cognition and sociality (Dujardin, 1850), 
recent attempts to correlate brain size with metrics of social 
complexity are ambiguous (Riveros et al., 2012; O'Donnell et al., 
2015; Farris, 2016; Kamhi et al., 2016; Gordon et al., 2019; Kamhi 
et al., 2019), emphasizing the need for more research (Lihoreau 
et al., 2012a; Simons and Tibbetts, 2019). Insects, like primates, 
display diverse social forms (Costa, 2006; Hölldobler and Wilson, 
2009) which are accompanied by brain size variations (Strausfeld, 
2012). However, the social organization of insect colonies can 
be dramatically different from that of vertebrates. In their most 
socially advanced forms (eusociality), insect colonies are 
characterized by extensive division of labor, cooperative brood 
rearing, and overlapping generations of adults (Batra, 1966; 
Michener, 1974; Wilson, 1975). This means that workers (i.e., the 
individuals on which most cognitive studies are performed) are 
sterile and fitness payoffs are experienced at the level of the group. 
Reproductive competition, mate selection and pair bonding  - 
some of the primary drivers of brain evolution in social vertebrates 
(Healy, 2021) - therefore do not occur in these individuals. In fact, 
increases in insect social complexity are predicted to decrease 
overall brain size through obligate division of labor which allows 
for investment in functionally specialized brain regions 
(Gronenberg and Riveros, 2009; O'Donnell et al., 2015). In this 
way, the social structure of an insect colony may reduce the need 
for individual investment in neural tissue while improving overall 
performance in a few specialized tasks.

These recent theoretical developments, coupled with the 
observation that most of the impressive cognitive feats reported in 
insects have been identified in the context of individual foraging, 
and not social interactions (von Frisch, 1967; Giurfa, 2013; 
Wehner, 2020), draw attention to the emerging role of competition 
and foraging ecology in the evolution of insect cognition (Kamhi 
et al., 2016, 2019). For instance, a phylogenetic analysis has shown 
that the elaborated mushroom bodies in the insect brain (i.e., 
neuroanatomical structures involved in learning and memory), 
were acquired roughly 90MYR before the evolution of eusociality, 
coinciding with the switch from phytophagy to parasitoidism and 
the origin of central-place foraging (Farris and Schulmeister, 
2011). This suggests the challenge of navigating and finding food 
in various types of landscapes drove the evolution of enhanced 
cognitive processes in what would later become eusocial insects 
(Jeanson and Weidenmüller, 2014; Farris, 2016). This observation 
thus raises the possibility that enhanced cognitive abilities may not 

be unique to just eusocial insects, but could be observed in any 
species that experiences the appropriate ecological conditions.

In this mini-review we  consider whether many of the 
cognitive abilities once thought to be exclusive to social insects 
can evolve through non-social ecological processes. We argue that 
the primary drivers of insect cognition are processes related to 
reproductive competition and foraging. Using the extensive body 
of literature surrounding cognitive abilities in highly eusocial 
hymenopterans (i.e., honey bees, ants, and wasps) and the more 
recent, though rapidly expanding field of non-eusocial insect 
cognition (e.g., drosophila), we show that enhanced cognition 
abilities can evolve in other social structures (encompassing 
presocial, subsocial, semisocial, parasocial, quasisocial, 
facultatively social, cooperative breeding, gregarious, etc. species, 
sensu Michener, 1974; Wilson, 1975; Crespi and Yanega, 1995; 
Costa, 2006) and in solitary species.

2. Cognitive abilities shared by 
eusocial and non-eusocial insects

Advanced levels of sociality require cognitive abilities 
supporting precise social interactions (Byrne and Bates, 2007). For 
insects, this may mean being able to assess group identity, 
recognize specific individuals, remember past interactions with 
them, share information, find and learn the localization of food 
resources and navigate back to the colony nest (Wenseleers and 
van Zweden, 2017). Below we  describe how many of these 
cognitive abilities, once thought to be unique to eusocial insects, 
have in fact recently been reported in some non-eusocial species 
and we discuss the possible explanations for how such traits could 
have evolved independently of sociality (see summary in Table 1).

2.1. Individual recognition

Targeted social interactions, such as cooperation, may require 
specific recognition systems to identify different types of 
individuals in a group or population (Anderson and McShea, 
2001; Wenseleers and van Zweden, 2017). As such, eusocial insects 
have evolved recognition systems enabling them to discriminate 
nestmates and non-nestmates (van Zweden and d'Ettorre, 2010), 
as well as individuals from specific castes within the colony (van 
Oystaeyen et al., 2014), through the use of odor cues. In some 
small colonies where dominance hierarchies are established to 
determine reproductive priority, insects also possess the ability to 
recognize individual nestmates. This is the case of colonies 
founded by several reproductive females, like for instance the 
paper wasps Polistes fuscatus that have unique facial coloration 
patterns (Tibbetts, 2002), or the ants Pachycondylla villosa that 
carry individual chemical signatures (D’Ettorre and Heinze, 2005). 
Though these recognition mechanisms have been implicated in 
the ecological success of insect societies (Jeanson and 
Weidenmüller, 2014) they are not specific to eusocial species. 
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Theoretical models predict that the capacity to recognize group 
members should peak at intermediate levels of sociality and 
decrease as societies become larger (Gronenberg and Riveros, 
2009), possibly due to the inability to manage so many social 
interactions and the risk of genetic conflicts in large colonies with 
different patrilines (Ratnieks et al., 2006). Moreover, if cognitive 
processes involved in individual recognition evolved due to the 
demands of recognizing reproductive competitors (Tibbetts, 
2002), insect societies composed of highly related individuals 
should not possess such abilities. In line with these predictions, 
recent work shows males of the fruit fly Drosophila melanogaster, 

which form temporary aggregations on food sources for feeding 
and mating, appear to recognize other males with whom they 
compete for access to females (Yurkovic et al., 2006), although the 
cues involved are still unknown. In the solitary decorated cricket 
(Gryllodes sigillatus), individuals acquire the scent of their partners 
after mating. Female crickets, who recognize their own odor 
through self-referent phenotype matching favour pairings with 
males with unfamiliar odors to maximize their number of mating 
partners (Capodeanu-Nägler et al., 2014). While more studies are 
needed to better understand the evolution of individual 
recognition across insects, these observations in eusocial and 

TABLE 1 Some examples of cognitive abilities reported in eusocial and non-eusocial insect species.

Eusocial Non-eusocial

Individual recognition - Wasps establish reproductive dominance hierarchies based 

on facial coloration patterns (Tibbetts, 2002)

- Fruit flies establish dominance hierarchies for mate competition 

(Yurkovic et al., 2006) (unknown mechanism)

- Ant queens establish reproductive dominance hierarchies 

based on chemical cues (D’Ettorre and Heinze, 2005)

- Crickets select mating partners through self-referent odor 

phenotype matching (Capodeanu-Nägler et al., 2014)

Numerosity - Honey bees count landmarks (Chittka and Geiger, 1995), 

perform basic additions (Howard et al., 2019), and have the 

concept of zero (Howard et al., 2018)

- Tenebrio beetles adjust mate guarding duration to the number of 

males encountered before mating (Carazo et al., 2009)

-Desert ants count steps to evaluate distances during path 

integration (Wittlinger et al., 2006)

- Ladybugs adjust egg laying strategy according to the number of 

larvae or other females encountered (Hemptinne et al., 1992)

Non-elemental learning - Honey bees solve reversal learning and patterning tasks 

(Boitard et al., 2015; Devaud et al., 2015)

- Fruit flies solve reversal learning (Mancini et al., 2019) and 

patterning tasks (Durrieu et al., 2020)

Social learning - Honey bees share information locational information 

about food sources (von Frisch, 1967) through the waggle 

dance

- Fruit flies copy the choices of oviposition sites (Battesti et al., 

2012) and mating partners (Danchin et al., 2018) through visual 

observation

- Bumblebee bees learn flower preferences (Leadbeater and 

Chittka, 2005; Worden and papaj, 2005) and new foraging 

techniques (Alem et al., 2016; Loukola et al., 2017) through 

visual observation

Tool use - Some ant species use soil debris to soak liquid food and 

carry it back to their nest (Maak et al., 2020)

-Ant-lion larvae throw sand to make their prey fall into the bottom 

of their pit (Oguma, 1930)

- Several ant and wasp species close their nest using soil/

stone deposits (Pierce, 1986)

-African tree crickets use and manipulate leaves to amplify their 

calls (Prozesky-Schulze et al., 1975)

- Solitary wasps use pebbles to compact soil to close their burrow 

(Brockmann, 1985)

Emotions - Honey bees show a pessimistic judgment bias after stress 

in their expectation of a food reward (Bateson et al., 2011)

- Fruit flies show a pessimistic judgment bias after stress in their 

expectation of a food reward vs. punishment (Deakin et al., 2018)

- Bumblebees show optimistic judgment biases after an 

unexpected food reward (Perry et al., 2016)

Navigation - Ants and bees learn places (von Frisch, 1967; Wehner, 

2020)

- Fruit flies and solitary wasps learn places (Tinbergen, 1932; 

Ofstad et al., 2011)

- Ants and bees learn routes between their nest and a goal 

(von Frisch, 1967; Wehner, 2020)

- Dung beetles learn routes through celestial cues and wind 

compass, and path integration (Dacke et al., 2019)

- Honey bees and bumblebees develop traplines to exploit 

multiple feeding sites (Lihoreau et al., 2012; Buatois and 

Lihoreau, 2016)

- Butterflies use traplines (Young and Montgomery, 2020)
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non-eusocial species suggest individual recognition may be more 
closely related to reproductive competition and mate selection, 
rather than just social life.

2.2. Numerosity

Social life may require the ability for individuals to assess 
quantities and estimate the number of social partners or potential 
competitors in a group (Rios and Kraenkel, 2017). Several studies 
suggest eusocial honey bees (Apis mellifera) can count landmarks 
(Chittka and Geiger, 1995), recognize the number of objects in an 
image (Gross et al., 2009), perform basic operations (Howard et al., 
2019), and understand the concept of zero (Howard et al., 2018, 
but see MaBouDi et al., 2021). Desert ants (Cataglyphis fortis) seem 
to count steps to evaluate distances during path integration 
(Wittlinger et al., 2006). However, whether these abilities are linked 
to sociality is not clear as many other behaviors could also require 
numerosity, like monitoring brood and forager populations and 
increasing resource collection to feed a colony, may simply result 
from individual variability in response threshold to environmental 
stimuli (i.e., the presence of pheromones, empty brood cells) not 
numeric competency (Page and Erber, 2002). Moreover, eusocial 
insect colonies can be  so large so as to make recognizing and 
tracking all social interactions between conspecifics very unlikely 
(Gronenberg and Riveros, 2009). Thus, we would expect cognitive 
traits related to numerosity to evolve when monitoring potential 
rivals or mates is both feasible, given colony/population size, and 
is associated with increased reproductive fitness. Accordingly, 
some studies suggest non-eusocial insects have some sense of 
numerosity. For instance, males of the gregarious beetle Tenebrio 
molitor are capable of adjusting the intensity of their mate guarding 
strategy according to the number of males encountered before 
mating (Carazo et al., 2009). In the ladybug Adalia bipunctata 
females reduce egg laying according to the number of larvae from 
other females already encountered (Hemptinne et al., 1992). These 
observations, though relatively rare, indicate that insect numerosity 
may be  more closely related to the likelihood of encountering 
competitors and mates than just group size.

2.3. Non-elemental learning

Living in a group may also multiply the need for animals to 
develop different types of associative learning. As more individuals 
are encountered, more types of interactions, relationships, and 
common experiences may have to be stored in memories (Bond 
et al., 2003). Honey bees (A. mellifera), that live in colonies with 
thousands of workers, can learn many elemental associations 
between a stimulus and a reward, but also more sophisticated 
non-elemental associations involving ambiguous stimuli (Giurfa, 
2013). For instance, bees can learn to respond to a reinforced odor 
A and not to a non-reinforced odor B, and then have to learn the 

opposite when stimulus contingencies are reversed (Boitard et al., 
2015). Honey bees can also be trained to patterning problems, by 
associating a simple component (A or B) to a reward and the 
mixture (AB) to an absence of reward or vice versa (Devaud et al., 
2015). So far, however all these experiments simulate learning in 
a foraging context, suggesting that this might be a stronger driver 
of associative learning than social life per se. Accordingly, the 
gregarious fruit fly D. melanogaster was recently shown to solve 
similar non-elemental cognitive operations such as reversal 
learning (Mancini et al., 2019) and negative patterning (Durrieu 
et al., 2020), a task related to foraging for food or oviposition sites. 
Given these observations in non-eusocial insects, it might well 
be that these types of learning are primarily required to find food 
or mating partners rather than just for navigating more 
social interactions.

2.4. Social learning

Animals can learn about their environment by observing 
conspecifics (Laland, 2004). Information provided by others often 
improves individual decisions and is believed to be  a major 
advantage of social life (Bourke, 2011). Famously, honey bees 
share information about the location of abundant food sources in 
the form of a symbolic waggle dance (von Frisch, 1967). Eusocial 
bumblebees can learn flower preferences through visual 
observation of more experienced conspecifics (Leadbeater and 
Chittka, 2005; Worden and Papaj, 2005) and new foraging 
techniques, such as pulling ropes (Alem et al., 2016) or rolling 
balls (Loukola et  al., 2017). Interestingly, the study of the 
mechanisms underpinning flower choice copying in bumblebees 
showed this behavior can emerge from associative learning 
mechanisms that are not different from non-social learning 
(Dawson et al., 2013). It has thus been argued that social learning 
is just a form of individual learning with a social cue (Galef, 
1995), and the emergence of social learning should correlate with 
the cost of information acquisition, not a direct result of group 
living. Supporting that theory, gregarious fruit flies 
D. melanogaster can also learn from their conspecifics. Females 
copy the choices of others for oviposition sites (Battesti et al., 
2012) and mating partners (Danchin et al., 2018). Solitary wood 
crickets Nemobius sylvestris learn to hide after being in contact 
with conspecifics maintained under stressful conditions in the 
presence of spiders (Coolen et al., 2005). Thus, social learning 
and may employ associative mechanisms of non social learning 
can be observed in solitary species.

2.5. Tool use

In social groups with overlapping generations of individuals, 
social learning can lead to the emergence and cultural transmission 
of complex behaviors, like tool use (Shumaker et al., 2011). Such 
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transmission is a form of heritable adaptation that is likely a key 
benefit of social life (Danchin et al., 2004). Several phenomena 
akin to tool use have been reported in eusocial insects (Pierce, 
1986). For instance, workers of Pogonomyrmex and Aphaenogaster 
ant colonies occasionally use soil debris to transport liquid food 
that they could not otherwise bring back to their nests (Maak 
et al., 2020). However, examples of tool-users are also found in 
non-eusocial species. Antlion larvae throw sand to make their 
prey fall into the bottom of its pit (Oguma, 1930). African tree 
crickets pierce holes in leaves to create baffles and amplify their 
mating calls (Prozesky-Schulze et al., 1975). Solitary wasps use 
pebbles to compact the soil and close their burrows (Brockmann, 
1985). Future research would benefit from identifying the specific 
learning mechanisms (i.e., social learning or trial and error) 
involved in tool use in these later examples remains unclear 
(Kenward et  al., 2005). Once again, these abilities appear to 
be linked to foraging, sexual competition and defense, rather than 
the degree of sociality (Weir and Kacelnik, 2006).

2.6. Emotions

Many social interactions are regulated by emotional displays 
that enable communication between group members (van Kleef, 
2009). In principle, being in a specific emotional state can improve 
responses to threats or social interactions and lead to more 
efficient collective responses. In this context, emotional states are 
elicited by rewarding and punishing goals, whereby rewards are 
stimuli that animals work to acquire and punishments are stimuli 
that they work to avoid Rolls (2014). Studies using judgment bias 
paradigms (Baciadonna and McElligott, 2015) indicate eusocial 
insects show emotional-like states. For instance, honey bees 
(A. mellifera) gently shaken just before the experiment showed 
pessimistic biases when faced the problem of classifying an 
ambiguous odor stimulus (Bateson et  al., 2011) whereas 
bumblebees (Bombus terrestris) that received an unexpected 
reward showed consistent optimistic biases in a visual judgment 
task (Perry et al., 2016). However, similar emotional-like states 
were also recently reported in non-eusocial insects, such as in the 
gregarious fruit fly D. melanogaster where shaken flies showed a 
pessimistic bias in an ambiguous odor binary choice task, while 
control flies did not (Deakin et al., 2018). Again, this observation 
in non-eusocial fruit flies suggests emotional display is not specific 
to sociality. In fact, it is likely that these emotional states are 
triggered by basal neurohormonal mechanisms common across 
insect species (i.e., releases of biogenic amines) and increase 
efficiency of decision making in many contexts independent of 
sociality, such as foraging or predator avoidance.

2.7. Elaborate navigation

Social animals must intensely engage in foraging in order to 
gather and store large amounts of foods for their progeny. For 

central place foragers, this requires precise spatial memories 
and efficient navigation (Collett et  al., 2013). Accordingly, 
eusocial insects are notoriously skilled navigators, learning near 
optimal routes between their colony nest and specific places 
based on cues in the local environment and on the panorama 
(Wehner, 2020). Honey bees and bumblebees can travel several 
kilometers to visit hundreds of flowers looking for nectar and 
pollen, and repeat these foraging trips over several days or 
weeks (von Frisch, 1967). When these resources are patchily 
distributed in space, foragers tend to develop multi-destination 
routes (i.e., traplines) by which individuals visit plant patches 
in stable sequences using the shortest possible path linking all 
these places (Lihoreau et al., 2012b; Buatois and Lihoreau, 
2016). Strikingly however, many non-eusocial insects, including 
non-central place foraging species, are also excellent at these 
spatial cognitive tasks. In fact, the seminal experiment 
demonstrating place learning in insects were conducted in the 
non-eusocial wasps (Philanthus triangulum) in which moving 
the visual landmarks surrounding the nest of the wasp triggered 
search around landmarks (Tinbergen, 1932). Fruit flies 
D. melanogaster also develop visual place memories when 
forced to find a hidden cool tile in a warm arena based on 
patterns displayed on the panorama (Ofstad et  al., 2011). 
Various butterflies have been observed developing traplines 
between distant plants (Young and Montgomery, 2020). Dung 
beetles use environmental cues to navigate in a straight line 
away from the dung pile as fast as possible (Dacke et al., 2019). 
Spatial cognition skills supporting efficient navigation are 
therefore not exclusive to eusocial insects and appear to rely 
more on ecological factors such as the variability of food sources 
in time and space rather than sociality per se.

3. Concluding remarks

Many cognitive abilities once thought to be required for social 
interactions and unique to eusocial insects are also being 
discovered in non-eusocial species (see summary in Table 1). This 
suggests factors related to foraging ecology, mate selection, 
reproductive competition, and defense not just sociality may give 
rise to the rich and elaborated cognitive capabilities found in 
insects. This also emphasizes the need for further theoretical and 
experimental research to clarify the relationship between ecology, 
sociality, and cognition in this group (Lihoreau et  al., 2019). 
We  argue this knowledge gap can be  filled by overcoming 
methodological and conceptual challenges.

Foremost among these challenges is a scarcity of model 
organisms which limits our ability to assess how ecological and life 
history traits impact cognitive evolution. The large volume of insect 
behavioral and cognitive research is almost entirely based on highly 
eusocial ants, bees, and wasps. This is not surprising as these insects 
are easily maintained in both laboratory and natural environments, 
display a diversity of cognitive and neuroanatomical traits and have 
a well-established history of assays used to quantify cognitive 
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FIGURE 1

Literature search illustrating species biases in insect cognition research. Network map of words extracted from a Web of Science database, 
downloaded the September 21, 2021 from articles including “insect” and “cognition” either in the title or the abstract. We used VOSwiewer 1.6.16 
with binary counting (only the presence or absence of a word counts), including each word that appeared 10 times or more, and removing or 
replacing irrelevant terms such as plural/singular, homonyms etc (see Supplementary Appendix). In the first cluster (orange), behavioral and 
learning studies were largely dominated by studies on bees and ants. In the second cluster (blue), molecular biology studies about brain functions 
were mostly dominated by studies on Drosophila.

variability (Giurfa, 2013). While there have been attempts to 
compare cognitive abilities across closely related, ecologically 
distinct, eusocial species (Sheehan and Tibbetts, 2011; Tait et al., 
2021), examples are still rare and limited in their power due to the 
small number of species and phylogenetic groups usually considered 
in these studies (Harvey and Purvis, 1991). There are, however, 
other species of eusocial and non-eusocial insects, each with a 
unique ecology and life history but with very little information 
regarding their cognitive traits. Comparative analyses investigating 
such understudied insect clades could go a long way to improving 
our understanding of the role of ecology and sociality in the 
evolution of insect cognition, especially given the noticeable 
taxonomic bias revealed by our review of the literature (Figure 1). 
The network map of keywords extracted from the Web of Science 
(titles and abstracts) illustrates research biases for behavioral and 
learning in bees and ants (orange cluster), in contrast to a functional 
molecular bias in Drosophila studies (blue cluster).

Another difficulty lies in the unverified assumption that 
larger behavioral repertoires require larger brains (Godfrey and 
Gronenberg, 2019). Many fundamental changes in the 
complexity of a nervous system may not result in measurable 
volumetric differences, and novel behavior may emerge from 
minimal rewiring of existing neurons (Chittka and Niven, 
2009). Therefore, recent studies point towards a need to 
consider a new framework for insect comparative cognition, 
including a comprehensive discussion on their ecology beyond 
their social status (Lihoreau et al., 2012a; O'Donnell et al., 2015; 

Farris, 2016; Simons and Tibbetts, 2019). If we want to move 
from describing cognitive feats in insect models to understand 
why and how these cognitive abilities have evolved across 
insects in general, we  need to develop more systematic 
comparative analyses of species with contrasted ecologies 
(including foraging, mating, and social interactions) and 
detailed anotomo-functional measures of their brains. It is only 
by identifying cognitive operations that are specific to social life, 
the neural circuits they involve, and the ecology and life history 
of the species, that the social brain hypothesis and its derivatives, 
as they are currently framed, can be tested and refined.
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Human brain reduction from the Late Pleistocene/Holocene to the modern day 
is a longstanding anthropological observation documented with numerous lines 
of independent evidence. In a recent study (DeSilva et al., 2021; Front. Ecol. Evol.), 
we analyzed a large compilation of fossil and recent human crania and determined 
that this reduction was surprisingly recent, occurring rapidly within the past 5,000 
to 3,000 years of human history. We attributed such a change as a consequence 
of population growth and cooperative intelligence and drew parallels with similar 
evolutionary trends in eusocial insects, such as ants. In a reply to our study, 
Villmoare and Grabowski (2022; Front. Ecol. Evol.) reassessed our findings using 
portions of our dataset and were unable to detect any reduction in brain volume 
during this time frame. In this paper, responding to Villmoare and Grabowski’s 
critique, we  reaffirm recent human brain size reduction in the Holocene, and 
encourage our colleagues to continue to investigate both the timing and causes 
of brain size reduction in humans in the past 10,000 years.

KEYWORDS

encephalization, Homo sapiens, Holocene, Pleistocene, social evolution

Introduction

Our analysis of human brain evolution (DeSilva et al., 2021) was based on robust prior 
research demonstrating that human brains decreased in volume in the Late Pleistocene or 
Holocene. This recent reduction has been documented by numerous researchers for nearly 
90 years across diverse populations globally (Figure 1; von Bonin, 1934; Weidenreich, 1946; 
Tobias, 1971; Schwidetzky, 1976; Wiercinski, 1979; Beals et al., 1984; Henneberg, 1988, 1998, 
2004; Brown, 1992; Henneberg and Steyn, 1993, 1995; Ruff et al., 1997; Brown and Maeda, 2004; 
Wu et al., 2007; Bailey and Geary, 2009; Hawks, 2011; Balzeau et al., 2013; Bednarik, 2014; Liu 
et al., 2014; Stibel, 2021, 2023). The question we asked, then, was not whether modern human 
brain volume was smaller than that of Pleistocene Homo sapiens, but when this reduction 
occurred. Addressing this question, we could proceed to infer why an organ critical for human 
survival would decrease in size.

Our original findings that brain size has reduced surprisingly recently (~5,000–3,000 years 
ago) is consistent with previous research and led to our hypothesis that population growth and 
knowledge specialization associated with cooperative intelligence led to a decrease in the volume 
of the brain, which is energetically expensive to develop and operate (Aiello and Wheeler, 1995; 
Navarrete et al., 2011; Heldstab et al., 2022). We drew parallels with patterns of brain evolution 
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in ants, an entirely eusocial clade in which workers of different species 
have also undergone selection for both increased and reduced brain 
size in relation to higher levels of social complexity (Traniello et al., 
2022). In ants, the scaling of brain size to body size and brain 
mosaicism vary with the behavioral and/or cognitive demands of task 
performance and division of labor, characteristics that are likely to 
impact brain evolution across diverse taxa, including humans.

Yet Villmoare and Grabowski (2022) recently argued that the 
dataset from which we based our findings was inadequate for the 
question being asked. Furthermore, they reassessed our study 

using portions of our dataset and were unable to detect any 
reduction in brain volume. Based on their analysis, they conclude 
that “human brain size has been remarkably stable over the last 
300 ka. Thus, hypotheses of recent change are not supported by the 
evidence.” If these authors are correct, human brain reduction—an 
established fact for almost a century (Figure 1)—did not occur. In 
this paper, responding to Villmoare and Grabowski’s critique, 
we demonstrate that our revised dataset is sufficient for testing 
trends in brain volume through time and reaffirm recent human 
brain size reduction.

FIGURE 1

(A) Summary of results of published studies in the last ca. 90 years reporting a decrease in human brain size in the late Pleistocene/Holocene (N = 19). 
The average reported decrease across all studies is 8.5%, illustrated by the blue dotted line. Percent change was used as published or, if not available 
in-text, calculated from the average brain volumes published in the study that demarcated the decrease. (B) Average brain size (cranial capacity) across 
members of the genus Homo during the Pleistocene and Holocene epochs. Bars are means, with whiskers representing ± one standard error. The last, 
yellow bar includes both the global mean cranial capacity for modern H. sapiens calculated by Beals et al. (1984), and the alternative modern H. 
sapiens mean cranial capacity (dotted line), compiled from recent anatomical and archaeological samples in the current study.
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Recent human brain reduction: what 
does prior research tell us?

Recent (i.e., Late Pleistocene or Holocene) human brain reduction 
is not a new idea (Figure 1; Supplementary Table S1) and is not as 
controversial as Villmoare and Grabowski (2022) suggested. Von 
Bonin (1934) wrote, “there is a definite indication of a decrease at least 
in Europe within the last 10,000 or 20,000 years” in the human brain. 
Noted anthropologists Franz Weidenreich (1946) and Philip Tobias 
(1971) observed that modern human brain volumes are on average 
smaller than Pleistocene hominin crania. Schwidetzky (1976) found a 
decrease in the estimated number of “extraneurons” (following 
Jerison, 1963) since the Neolithic in parts of Europe. Wiercinski 
(1979) used linear measurements on 20 different populations in 
Europe, Africa, Asia, and Australia and reported a reduction in cranial 
dimensions in 17 of them, concluding that human brain reduction was 
a post-Aurignacian global phenomenon.

Using a dataset of 5,288 cranial capacities from 122 distinct global 
populations, Beals et al. (1984) detected a recent decrease in brain size 
and wrote, “we consider de-encephalization through the last 
100,000 years as confirmed.” Henneberg (1988) evaluated primarily 
linear measurements taken on nearly 13,000 skulls and concluded that 
there had been a 10–17% decrease from the Mesolithic to modern 
times. Most of these data were obtained on specimens from Europe 
with additional skulls from northwest Africa and west Asia. 
Henneberg and Steyn (1993, 1995) identified a similar decrease in 
brain size in samples from sub-Saharan Africa and Japan. By 2004, 
Henneberg’s global study had exceeded 14,000 samples from 15 
thousand years ago (ka) to modern day. He concluded that “Cranial 
capacity decreased by some 100–150 mL during the Holocene, with 
most of this decrease occurring during the last 3 Ka.” We unfortunately 
neglected to cite Henneberg (2004) in our original paper and correct 
the oversight here. We find it compelling that the 3 ka date is consistent 
with what we found using a different methodology and a different 
sample (DeSilva et al., 2021).

Using a sample from East Asia and Australia, Brown (1992) 
reported a recent 10% reduction in cranial capacity. Ruff et al. (1997) 
used data from Beals et al. (1984) and samples from the Pecos Pueblo 
(New Mexico, United States) archaeological site and found a Late 
Pleistocene decrease in brain volume. Brown and Maeda (2004) 
reported a decrease in the size of the cranium in Chinese skulls from 
the Neolithic to today—with an accelerating rate of change after 
3,500 years before present (BP)—a finding replicated using a different 
dataset by Liu et al. (2014). Wu et al. (2007) took linear measurements 
on 718 male skulls from the Holocene of China and reported a 7.2% 
reduction in calculated cranial volume from the Bronze age to the 
present. In their study of the Cro-Magnon H. sapiens cranium, Balzeau 
et al. (2013) state that “a decrease in absolute endocranial size since 
the Upper Pleistocene is noticeable in H. sapiens.” They based this 
finding on 15 Pleistocene crania from 25–92  ka and 99 modern 
human crania from Europe, Africa, Asia, the Pacific islands, and 
North America. Stibel (2021) found a 5% decrease in brain volume 
from Pleistocene H. sapiens to modern people. In an updated paper, 
Stibel (2023) reported that brain size in Late Pleistocene (50–12 ka BP) 
H. sapiens was 10.7% larger than in Holocene humans (12 ka BP- 
present), a statistically significant difference (p < 0.0001, t-test).

We recognize that the history of brain science is rife with 
problematic studies biased by racist and sexist objectives. Furthermore, 

“brain size” is difficult to objectively measure and different 
investigators have determined brain mass and/or cranial capacity 
using distinct methods (see review in Tobias, 1970). Most studies 
report summary statistics (e.g., Ho et al., 1980) while very few report 
data from individuals (e.g., Bischoff, 1880). Furthermore, certain 
regions of the world are overrepresented (e.g., Europe) while there is 
little data for other human populations. Despite these limitations, 
independent of measurement technique, brain volume reductions 
have been consistently reported by researchers for over three-quarters 
of a century on skulls representing populations globally (Figure 1). It 
is difficult to accept on scientific grounds that all of these studies are 
in error.

How big is the average human brain?

Villmoare and Grabowski (2022) considered our average reported 
brain volume for recent modern humans (1,297 cc in DeSilva et al., 
2021; 1,304 ± 154 cc in this study) to be  lower than other reports 
showing roughly 1,400 cc, citing Beals et al. (1984), Henneberg (1988), 
Ruff et  al. (1997), and De Sousa and Cunha (2012) as support. 
However, in the very papers they cite, modern human cranial 
capacities are less than 1,400 cc on average. Beals et al. (1984) sampled 
5,288 crania from 122 different ethnic groups and reported a cranial 
capacity of 1,349 ± 78 cc. Ruff et al. (1997) supplemented the value 
reported in Beals et al. (1984) with the Pecos archaeological sample 
averaging 1,308 ± 123 cc (N = 29). Henneberg (1988) used mostly 
linear measurements to calculate cranial capacities. Where he used 
directly measured cranial capacities, the weighted average is 1,387 cc 
(N = 245). De Sousa and Cunha (2012) reported an average of 1,392 cc 
(N  = 551), though these values are converted from brain weights 
measured in 20–30 year-olds from Dekaban and Sadowsky (1978). 
However, the entire Dekaban and Sadowsky (1978) adult dataset 
(N = 3,399) indicates an average brain size of 1,334.5 cc ± 205.9. Thus, 
using identical sources referenced by Villmoare and Grabowski 
(2022), the range never exceeds 1,400 cc and is instead 1,308–1,392 cc 
with a weighted average of 1,345 cc (N = 8,961). Independently, Tobias 
(1971) reported an identical average of 1,345 cc from “thousands” 
of measurements.

While it can be problematic to convert brain mass (g) to cranial 
capacity (cc) (see Tobias, 1970), two equations permit direct 
comparison. Cranial capacity can be converted from brain weight (g) 
using Hofman (1983)’s equation:

 
Brain mass g cranial capacity cc( ) = ( )× 0 95.

This equation is derived from brain volume (cc) = cranial capacity 
(cc) * 0.92 and the specific gravity of human brain tissue = 1.036 g/cm3. 
Ruff et al. (1997) established the equation:

 
Brain mass g cranial capacity cc( ) = × ( )1 147

0 976
.

.

Here, we averaged the results of the two methods which were on 
average only 1–2% different from one another. For those studies with 
an equal sex representation, brain size averages between 1,335 ± 206 cc 
(Dekaban and Sadowsky, 1978; N  = 3,399) and 1,344  ±  137 cc 

125

https://doi.org/10.3389/fevo.2023.1191274
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


DeSilva et al. 10.3389/fevo.2023.1191274

Frontiers in Ecology and Evolution 04 frontiersin.org

(Ho et al., 1980; N = 1,261). Furthermore, Grabowski (2016) reported 
an average brain mass of 1,299 g (Table 2, p. 180) using data from 
Bischoff (1880). Converting this value to cc using the equations in 
Hofman (1983) and Ruff et al. (1997) yields an average of 1,350 cc.

These values, however, almost certainly overestimate the average 
adult human brain size, given the disproportionate representation of 
larger-bodied European males in the samples and the known scaling 
relationship between brain and body size (Ruff et al., 1997; Hawks, 
2011; Grabowski, 2016). When smaller-bodied populations from East 
Asia, sub-Saharan Africa, and Australia are compiled (data from 
Henneberg and Steyn, 1993; Brown and Maeda, 2004), the weighted 
sample mean is 1,300 cc (N = 768). Therefore, we disagree that our 
original calculated value of ~1,300 cc for the average human cranial 
capacity is too low—being slightly larger than Albert Einstein’s 
(~1,291 cc converted from grams; Witelson et al., 1999), and slightly 
smaller than Walt Whitman’s (~1,317 cc converted from grams; 
Spitzka, 1907). When cranial capacity averages and standard 
deviations are appropriately weighted by continental populations 
(Source: https://www.statista.com/statistics/237584/distribution-of-
the-world-population-by-continent/), we  calculate an average of 
1,328 ± 145 cc. Using estimated pre-colonial populations from the year 
1,500, we arrive at a weighted average of 1,331 ± 153 cc. Given these 
data, it is unclear how the commonly reported overestimate of 
>1,400 cc has entered our collective knowledge.

Critical analysis of human brain 
volume datasets: statistical 
approaches

Given the literature cited above, we  naturally did not explore 
whether brain volumes had decreased, as that had been clearly 
established in multiple previous studies, but estimated when. To 
answer this question, we employed a changepoint analysis using the 
segmented package in R (Muggeo, 2008; details in DeSilva et  al., 
2021), which led us to compile raw cranial capacities for fossil crania 
spanning the past 10 million years (Ma), along with a large modern 
human sample. Compiling these data was not difficult for Miocene 
and Plio-Pleistocene hominids because endocranial volumes are 
standard measurements reported for skulls discovered in 
paleoanthropological or archaeological contexts (e.g. Holloway et al., 
2002). Using this dataset, we found statistically significant changes in 
the rates of hominin endocranial volume change at ~2 [(95%  
confidence interval (CI): 2.0-2.3) and ~ 1.5 (95% CI: 1.2-1.8)] Ma, 
findings consistent with previous work on hominin brain size 
evolution during these periods (Antón et al., 2014; Grabowski, 2016). 
We disagree with Villmoare and Grabowski (2022) that important 
crania from diverse taxa such as Rudapithecus, Australopithecus, and 
Homo erectus––which we included in our model to contextualize the 
temporal dynamics of hominin brain evolution before the evolution 
of modern humans––are not relevant in such discussions (see, for 
instance, Begun, 2010; Gowlett et  al., 2012; Antón et  al., 2014; 
Almécija et al., 2021).

Our use of this particular changepoint analysis was intentional, as 
it allowed for estimates of breakpoint times and slopes in a large data 
set that otherwise lacked uniform sampling from each time slice, a 
widespread issue for most paleoanthropological datasets. Rather, this 
analysis, implemented by fitting a piecewise linear regression to the 
data, relies primarily on standard regression assumptions, as pointed 

out by Villmoare and Grabowski (2022)—i.e., normality and 
independence of residuals, and homoscedasticity—to generate 
estimates of slopes and breakpoint locations. Our changepoint 
approach, while unconventional based on the literature cited in 
Villmoare and Grabowski (2022), is nevertheless common and 
consistent with other investigations concerned with estimating the 
timing of key events in the paleoanthropological record using 
unbinned, raw time-series data (e.g., Faith et al., 2018; Wynn et al., 
2020). For our own analysis, the majority of our time series followed 
these a priori assumptions; in turn, Villmoare and Grabowski (2022) 
produced estimates for the first two breakpoints in the time series (2.1 
and 1.3 Ma) that fell within the 95% CI initially reported in Table 1 of 
DeSilva et al. (2021).

Yet for recent humans, we  were challenged to incorporate 
sufficient samples to accurately represent modern variation without 
skewing our data, a constraint we  failed to address sufficiently 
according to Villmoare and Grabowski (2022). They rightly point out 
that the Holocene portion of our dataset is skewed primarily towards 
modern humans, an unavoidable taphonomic bias and limitation in 
our original model that may skew our estimate of when brain 
reduction occurred towards more recent periods, and, in the worst 
case, obscure additional, earlier change points. Yet we disagree with 
their proposed solution: consolidating the individual cranial data into 
means representing identical temporal slices of 100  years (see 
Figures 2 and 3 of Villmoare and Grabowski, 2022). Pooling irregularly 
sampled data into equal-sized time bins runs the risk of diluting 
trends or introducing spurious ones, depending on data density across 
time, and particularly on the timing of outlier measurements: e.g., a 
single outlier data point in a sparsely sampled period would be given 
the same importance as hundreds of data points from a well-sampled 
period. Better, less sensitive options include weighted regression 
models (individual points are assigned importance weights inversely 
proportional to data density), bootstrapping or resampling 
(oversampling with replacement from time periods with few data, 
and/or undersampling without replacement from intervals with high 
data density), or even log-transforming time measurements (assuming 
trend direction and changes therein are more important than 
trend type).

We are not opposed to binning the data to improve a priori 
statistical assumptions (cf. Figure 2 of this study), but we also find it 
problematic to bin data arbitrarily in such a way that is uncritical of 
the broader question being asked: has there been a significant change 
in average human brain size since the start of the Holocene? 
We contend that the reason Villmoare and Grabowski (2022) did not 
find a Holocene decrease in cranial capacity with their consolidated 
dataset of means is because the time-averaging process effectively 
removed the crucial variability in cranial capacity found in the period 
of interest, i.e., the last 10,000 years. Indeed, when such variability is 
binned more appropriately (e.g., by geological time periods defined in 
part by global climate changes) and incorporated into simpler 
statistical analyses (e.g., t-tests; see below analyses with updated data), 
a strong and significant decrease in modern human brain size across 
the Holocene boundary is detected (Figure 2), reaffirming our original 
conclusions (DeSilva et al., 2021).

A related critique by Villmoare and Grabowski (2022) was our use 
of questionable modern cranial samples from the collection of Samuel 
Morton at the Penn Museum. We agree this is a problematic dataset 
because it has been used to promote false and dangerous ideas of white 
supremacy (Morton Collection Committee, 2021; Mulligan et  al., 
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2022). Eliminating these data from the present analysis had no 
appreciable impact on our reported brain volume for modern humans 
(Supplementary Table S2). In lieu of the Morton data, we have added 
modern cranial capacity data from the Terry Collection (N  = 94; 
VanSickle et  al., 2020 via lynncopes.com) and India (N  = 50; 
Manjunath, 2002).

Villmoare and Grabowski (2022) also noted that our dataset 
contained few individuals from a key time-period, 1-5 ka. We added 
13 individuals from this time range from Henneberg and Steyn 
(1993) and Stibel (2021). Additionally, we  used the millet seed 

method to measure cranial capacities of two skulls from the 
South African archaeological site Byneskranskop (~3.1 ka; Sealy, 
2006) and another individual from the older Plattenberg Bay site 
(~7 ka; Sealy, 2006). We also revised the age of the Pecos Pueblo 
population to 500 years BP, assuming most of the individuals derive 
from the Glaze V period. Finally, we removed juvenile Neanderthals 
(N  = 4), which were inadvertently included in our dataset, and 
eliminated one entry of the Liujiang skull, which mistakenly 
appeared twice. The revised cranial volume catalog is now available 
as a supplementary Excel file.

FIGURE 2

Dynamics of brain size reduction (cranial capacity) in H. sapiens during the Pleistocene and Holocene. (A) Changes in H. sapiens cranial capacity over 
the past 300,000 years, subdivided by geological epochs and climatic milestones, with recent modern samples (<1.0 ka) subdivided from the rest of the 
Holocene. Means represent average cranial capacity, whiskers are ± one standard error. There is only a single cranial capacity reported for MIS 4. 
(B) Changes in the average H. sapiens cranial capacity over the past 300,000 years, subdivided by major continental landmasses. Average cranial 
capacities are presented here as Z-scores (i.e., standard-deviation units). (C) Average cranial capacity in H. sapiens, before and after the original 
reduction date of 3,000 years proposed by DeSilva et al. (2021). An average reduction in brain size of 159 cc (using our modern estimate) or 117 cc 
(using the Beals et al. (1984) modern estimate) after 3,000 years is illustrated. Whiskers are ± one standard error.
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Brain reduction in the Holocene

Analysis of our modified dataset shows that Holocene brain reduction 
remains robust (Supplementary Table S2; Figure 2). On the broadest scale, 
Pleistocene (300 ka-11.7 ka) H. sapiens brains average 1,458 ± 140 cc 
(N = 136). This is effectively identical to the average Neanderthal brain 
(1,459 ± 182 cc; N = 14) from the Würm period (<115 ka; DeSilva, 2018). 
There is no directional change in brain volume in H. sapiens throughout 
the Pleistocene whether the data are consolidated in consistent time 
intervals (Villmoare and Grabowski, 2022), or divided by geological stages 
of the Pleistocene epoch (Supplementary Table S2). This pattern of stasis 
in H. sapiens brain volume changes quite abruptly and obviously in the 
later part of the Holocene (Supplementary Table S2; Figures  2A,B). 
We agree with Villmoare and Grabowski (2022) that more samples from 
this time-period will be valuable for future study. However, we argue that 
even without any samples from the Holocene, one could identify a change 
in brain size by simply comparing the chronological “bookends” of the 
Pleistocene and today. In fact, instead of a change point analysis or data 
consolidation, a simple t-test can effectively evaluate if human brains 
today differ in volume from humans in the Pleistocene. Using Welch’s 
t-test, the difference between Pleistocene and Holocene human cranial 
capacities in our dataset is significant (t = 9.15, p < 0.0001), a result similar 
to that found in Stibel (2023). Even more granularly, if we were to look at 
the changes in H. sapiens cranial capacity before and after the originally 
proposed change point (3,000 years) in DeSilva et al. (2021), a t-test 
reveals a significant decrease in human cranial capacity post 3 ka 
(t = 12.81, p < 0.0001; Figure 2C).

Because Villmoare and Grabowski (2022) suggest our initial study 
underestimated modern human brain volumes, we  repeated the 
analysis with brain weight data (N  = 3,399) from Dekaban and 
Sadowsky (1978)—converted to cranial capacities—and found the 
same differences (t = 9.83, p < 0.0001). The Beals et al. (1984) dataset 
(N = 5,288), which compiles a larger global sample of cranial capacities 
and is therefore preferable, also reveals significant differences (t = 9.04, 
p  < 0.0001, Welch’s t-test). Therefore, independent of the modern 
dataset used (e.g., Dekaban and Sadowsky, 1978; Beals et al., 1984; this 
study), it is clear that there has been, on average, a 100–150 cc reduction 
in brain volume (Figure 2C). These data are consistent with Henneberg 
(2004), who similarly found a 100–150 mL reduction in brain volume 
during the Holocene using measurements on 14,000 crania. These data 
further mirror a widely recognized Holocene reduction in body size 
(Ruff et al., 1997; Stibel, 2023) that would be difficult to reconcile with 
Villmoare and Grabowski’s (2022) proposed stasis in brain size.

On finer scales, similar magnitudes of Holocene brain reduction 
have been documented regionally and across latitudes (e.g., Henneberg 
and Steyn, 1993; Liu et al., 2014; Stibel, 2023). In other words, human brain 
volume has decreased by a standard deviation in the last 10,000 years, 
whether examined locally or globally (Figures 2A,B). It is probable that 
brain reduction occurred at different rates in different areas during the 
Holocene—a point also noted in the critique of our initial study. But unlike 
Villmoare and Grabowski (2022), we view these regional dynamics as 
integral components of an overarching global reduction in human brain 
size that defined the last 10,000 years. Holocene brain reduction is not a 
uniquely human phenomenon; rather, a widespread pattern of brain size 
reduction is also found in domestic and human-associated mammals 
during the last 10,000 years—ranging from large hooved taxa like cows, 
horses, llamas, and pigs to rodents like rats and guinea pigs (Balcarcel et al., 
2021a,b, 2022). These findings, combined with our own analyses, speak to 
the profound effect that the Holocene agricultural revolution and the 

subsequent rise of complex societies had on the trajectory of human and, 
more broadly, mammalian brain evolution.
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Migrant orangutan males use
social learning to adapt to new
habitat after dispersal

Julia Mörchen1,2*, Frances Luhn1, Olivia Wassmer3,
Julia A. Kunz3,4, Lars Kulik1, Maria A. van Noordwijk3,5,
Carel P. van Schaik3,5, Puji Rianti6,7, Sri Suci Utami Atmoko8,
Anja Widdig1,2† and Caroline Schuppli3,9†

1Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig, Germany,
2Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology,
Leipzig, Germany, 3Department of Evolutionary Anthropology, University of Zurich,
Zurich, Switzerland, 4Institute of Evolutionary Biology of Montpellier (ISEM), University of Montpellier,
Montpellier, France, 5Comparative Socioecology, Max Planck Institute of Animal Behavior,
Konstanz, Germany, 6Primate Research Center, Institute of Research and Community Service, IPB
University, Bogor, Indonesia, 7Animal Biosystematics and Ecology Division, Department of Biology,
IPB University, Bogor, Indonesia, 8Fakultas Biologi, Universitas Nasional, Jakarta, Indonesia,
9Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior,
Konstanz, Germany
Dispersal has been suggested to be challenging, especially for species that

heavily rely on social learning for knowledge acquisition. One of the obstacles

that migrants face is learning how to cope with an unfamiliar, new habitat, which

may involve learning from resident individuals. So far, only very few studies have

looked at social learning in migrants after dispersal. Here we examine how

migrant male orangutans use a behavior called “peering” (an indicator of

observational social learning), to learn from local individuals. In total, we

analyzed 4,009 daily dyadic associations with and without peering events of 77

males of the highly sociable Sumatran orangutans (Pongo abelii) at the Suaq

population and 75 males of the less sociable Bornean orangutans (Pongo

pygmaeus wurmbii) at the Tuanan population, covering a combined study time

of 30 years. Analysis using generalized linear mixed models supported our

prediction that migrant males in Suaq preferentially peered at the local adult

females. However, in Tuanan, migrants peered mostly at other adult males and

local immatures. Migrants’ peering rates were highest shortly after their arrival,

and significantly decreased with increasing time spent in the area. Migrants in

both sites peered significantly more at peering targets’ feeding on food items that

are rarely eaten within the locals’ diet, than at commonly eaten ones and peered

significantly more at skill-intense food items than easy-to-process ones. Further,

migrants interacted significantly more with the peered-at food item after the

peering event, than before, suggesting that they practice the observed behavior.

Our results therefore suggest that migrant males use peering to learn new

ecological knowledge after dispersal (e.g., where and what to feed on), and

continue to learn complex skills even within adulthood, (e.g., how to feed on

skill-intense food items). To do so, migrants selectively attend to the most

knowledgeable and/or available individuals, practice the new skill afterwards
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and even flexibly adjust their learning, e.g., when confronted with intolerant

locals or when the need for learning decreases. Together, our study provides

important evidence that social learning in great apes expands towards adulthood,

an ability which critically impacted also human evolution.
KEYWORDS

observational social learning, peering, eavesdropping, dispersal, migrant male
orangutans, skill learning in adults, social tolerance
1 Introduction

Social learning refers to learning that is influenced by the

observation of, or by associating and interacting with another

individual or its products (Heyes, 1994; Heyes, 2012). Through

social learning, individuals can avoid risks and costs of own

exploration (Lorenz et al., 2011), acquire knowledge faster

(Custance et al., 2002; van Schaik and Burkart, 2011) and benefit

from the “wisdom of the crowd” (Toyokawa et al., 2019).

Accordingly, social learning is a well-documented learning mode

in a variety of taxa, ranging from invertebrate (Grüter and

Leadbeater, 2014) to vertebrate species (Ferrari et al., 2007;

Wilkinson et al., 2010; Aplin et al., 2015; Sasaki and Biro, 2017)

and is especially prevalent in humans and non-human primate

species (Whiten et al., 1999; van Schaik et al., 2003; Gariépy et al.,

2014). Social learning is also the prerequisite for the emergence of

traditions and cultures (Whiten et al., 1999; van Schaik, 2010).

Wild great apes are known to heavily rely on social learning for

skill acquisition and live highly cultural lives, with chimpanzees and

orangutans known to have the most sophisticated and diverse non-

human cultures in nature (Whiten et al., 1999; van Schaik et al.,

2003). Extensive research on wild primates suggests that the social

learning strategies during lifetime development follow a three-phase

model: in the first phase, infants benefit from extensive vertical

learning from the primary care giver, usually their own mother

(Lehmann et al., 2013; Whiten and van de Waal, 2018). This is then

followed by a second phase, where juveniles gradually learn

obliquely from a wider array of group members with increasing

age (Whiten and van de Waal, 2018; Ehmann et al., 2021). A third

phase of potential horizontal social learning would take place when

individuals reach sexual maturity and disperse to new areas, where

they encounter new and unfamiliar ecological and social

circumstances (see below). Mathematical models support these

shifts in role model choice (who to learn from) and they suggest

that during these three phases also the context and content of social

learning flexibly shifts, according to the requirements of the

respective life stage the individual is situated in (Lehmann

et al., 2013).

The context of social learning greatly depends on the

knowledge, or the deficit thereof, of the learner which can vary

considerably depending on an individual’s age and experience.

Potential social learning contexts are foraging, mating, or

migration (Brown and Laland, 2003). One pathway during
02131
context learning is to adopt a behavior of a conspecific, when e.g.

being uncertain or when the own established behavior is

unproductive (Laland, 2004), with an information flow going

from an expert to the naïve or not knowledgeable individual,

independent of learners’ age classes (Henrich and McElreath,

2003). In terms of the content of social learning, skills such as

“knowing how” are dominantly shared between parents and

offspring, whereas information about the current state of the

environment or conspecifics (“knowing where”, or “knowing

who”), as well declarative knowledge (“knowing that”, van Schaik,

2010) is shared among adults. However, it needs to be kept in mind

that individuals must balance the costs and benefits of social

learning. Costs can include attending to outdated information or

when competing over resources with non-related conspecifics,

which are reluctant to share information (Emery and Clayton,

2001; Clayton et al., 2007; Bugnyar et al., 2016).

Through these shifts in role model selection, context and contents

of social learning, individuals can build up and refine their repertoires

on which they will rely during adulthood (Lehmann et al., 2013). This

implies that by the time individuals reach adulthood, all necessary skills

and knowledge are present, representing accumulated knowledge

between and within generations (Schuppli and van Schaik, 2019). It

also implies that most social learners are young, and that the frequency

of social learning decreases significantly with increasing age (Schuppli

et al., 2016c). However, these theoretical models only apply, when the

ontogeny follows a linear development within a stable environment

and they do not consider the occurrence of dramatic changes in social

and environmental conditions. Natal dispersal, i.e. when individuals

permanently depart from their natal area, might be a disruptive phase,

where individuals cannot rely on information already collected, but

must – in extreme cases – start all over, learning about a new ecological

and social niche. Social learning may be one way of coping with such

sudden changes (Whiten, 2017; Gruber et al., 2019; Whiten, 2021). So

far it has not been systematically studied how adult migrant primates

make use of observational forms of social learning, to potentially

expand and update their repertoire after dispersal for optimal

resource exploitation.

Many primate species show sex-biased natal dispersal, which

takes place when individuals reach sexual maturity (Cheney and

Seyfarth, 1983; van Noordwijk and van Schaik, 1985; Suzuki et al.,

1998; Pusey, 2004). The evolution of sex-biased dispersal is a result

of the species’ experienced trade-off between the costs of staying e.g.

risk of inbreeding and resource competition and the benefits of
frontiersin.org
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staying in known areas with supportive relatives (Pusey and Packer,

1987; Silk and Brown, 2004; Widdig et al., 2017). Dispersing

individuals, on the other hand, face energetic, time, and

opportunity costs (Ferreras et al., 2004; Bonte et al., 2012); as well

as an increased risk of mortality due to predation (Cheney and

Seyfarth, 1983) and starvation (Dittus, 1977). Individuals that leave

their natal area when reaching sexual maturity and disperse, might

experience high levels of aggression from hostile residents after

arrival, whether the species exhibits male or female dispersal (van

Noordwijk and van Schaik, 1985; Suzuki et al., 1998; Kahlenberg

et al., 2008). In addition, migrants may lack relevant ecological

knowledge in their new habitat, which is likely to be especially true

for long distance dispersers (Isbell and Vuren, 1996).

Systematic research on how social learning is used to cope with

challenges of dispersal under natural conditions and how learning

changes over extended periods of time is so far missing. However,

experimental studies in wild vervet monkeys (Chlorocebus

pygerythrus) found that migrants selectively learn from philopatric

females about how to open an “artificial fruit” (van de Waal et al.,

2010) or a foraging box (Bono et al., 2018) and would even abandon

learned food preferences in favor of the local norm (van de Waal

et al., 2013). Luncz and Boesch (2014) reported that one migrant

female chimpanzee (Pan troglodytes) progressively changed her own

socially learned nut-cracking technique after immigrating to a new

group where individuals show a different technique. Other studies

also reported how migrants would adapt in different aspects of the

social domain in different primates (Pan troglodytes, Nakamura and

Uehara, 2004; Papio anubis, Sapolsky and Share, 2004). Furthermore,

there is evidence for social learning in the social context in that

migrants and locals adapt to strong intergroup aggression in

chimpanzees (Wrangham and Glowacki, 2012; Wilson et al., 2014)

or to highly affiliative behaviors in bonobos (Pan paniscus, Sakamaki

et al., 2015; Fruth and Hohmann, 2018). However, unlike in

orangutans (see below), these species live in social groups where

migrants are expected to experience a certain degree of conformity in

the form of peer or group pressure, which likely influences the

migrants’ social learning to manage social relationships, maybe in

addition to learning the local ecology.
Frontiers in Ecology and Evolution 03132
Orangutans are especially suited to investigate social learning

because of their slow development (Wich et al., 2004; van

Noordwijk et al., 2018) which provides growing individuals with

plenty of opportunities of social learning from mothers and others

(Schuppli et al., 2016a; Ehmann et al., 2021). Wild orangutans have

been shown to be highly neophobic (Forss et al., 2017), likely to

avoid risks and costs of individual exploration (Forss et al., 2015).

Despite their strong novelty avoidance, wild orangutans live in skill-

intense feeding niches and rely on broad and difficult-to-acquire

skill repertoires (Marshall et al., 2009; Schuppli et al., 2016b).

Immature orangutans have to learn more than 200 different food

items and skill intense foraging techniques, a process which takes

around 12 years (Jaeggi et al., 2010; Schuppli et al., 2016a), while

items and techniques that are rare or difficult require the highest

learning effort (Schuppli et al., 2016c). During this time, immature

orangutans also gain increasing independence from their mothers

as evident in a decrease in time spent in physical contact, as well as

behavioral changes (van Noordwijk and van Schaik, 2005; van

Noordwijk et al., 2009; Mendonça et al., 2017). Results by

Schuppli et al. (2016a) suggest that virtually all learning in

immature orangutans happens via observational social learning in

the form of peering, first from their mothers and with increasing age

from other individuals (Schuppli et al., 2016c; Schuppli and van

Schaik, 2019). In addition, with increasing independence from the

mother, immature orangutans show sex-specific interest in their

peering behavior towards specific classes of adult role models,

presumably in preparation for their later dispersal patterns and

adult role (Ehmann et al., 2021).

Peering is the attentive close range watching of an individual

(hereafter “peering target”) with such avid attention and physical

closeness, that it allows the peerer to witness the details of the

peering targets activity (Figure 1, see full definition Table 1 in

methods). Peering has been established as a measure of social

learning in the wild: e.g. immature chimpanzees (Matsuzawa

et al., 2001; Lonsdorf et al., 2004), immature capuchin monkeys

(Cebus apella, Ottoni et al., 2005) adult bonobos (Idani, 1995; Péter

et al., 2022), and in Sumatran (Pongo abelii) and Bornean orangutan

immatures (Pongo pygmaeus wurmbii, Schuppli et al., 2016a;
FIGURE 1

Migrant orangutan male (on the right side) peering at an adult local female (on the left side), feeding on termites within a dead branch, species
Pongo abelii. Photo courtesy SUAQ Project, www.suaq.org.
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Ehmann et al., 2021), as well as in captivity: e.g. in adult Sumatran

and Bornean orangutans (Stoinski and Whiten, 2003; Dindo et al.,

2011), adult bonobos (Stevens et al., 2005) and adult chimpanzees

(Yamanashi et al., 2020).

Sumatran orangutans live in individual based fission fusion

systems (van Schaik, 1999), but are highly sociable, whereas

Bornean orangutans are less sociable, spending most of their time

alone (van Noordwijk et al., 2012). The differences in sociability are

linked to differences in food availability on the two islands. Sumatra

tends to have higher forest productivity (Wich et al., 2011), which

has likely led to the higher evolved levels of sociability and tolerance

due to reduced competition over resources (Knott et al., 2008; Knott

et al., 2010; Schuppli et al., 2017). However, in both species males

disperse at the onset of reaching maturity, while females are the

philopatric sex and settle close to their natal area (Arora et al., 2012;

Nietlisbach et al., 2012; van Noordwijk et al., 2012). By the time

males disperse for the first time, they are still in a state named

“unflanged” which resemble the female appearance (Morrogh-

Bernard et al., 2011). Most males later go through a secondary

growth spurt and develop into so called “flanged” males with

secondary sexual characteristics, including cheek pads (Utami

Atmoko et al., 2002; Dunkel et al., 2013). Flanged and unflanged

males may eventually settle and become residents, or remain

transient and move between areas (Delgado and van Schaik,

2000). Although it is not exactly known where they disperse to,

studies showed that males travel over long distances and even cross

physical barriers such as rivers and mountains (Nietlisbach et al.,

2012; Nater et al., 2013). Additionally, males are known to have

large overlapping home ranges (van Schaik, 1999; Singleton and van

Schaik, 2001). Due to their long-distance dispersal, migrants are

expected to possess different knowledge compared to the local

resident females (Schuppli and van Schaik, 2019). Since

differences in socially learned skills are even visible between

individuals living in the same study area (Jaeggi et al., 2010) and

in close communities with similar habitats (Bastian et al., 2010),

males that have recently arrived are expected to lack knowledge on

the local area, in contrast to males who have already spent more

time in the area or resident females. Accordingly, (Schuppli and van

Schaik, 2019) showed that local adult females hardly peer at all.

The aim of this study is to investigate whether migrant male

orangutans use peering as means to socially learn about the local

ecology of their new habitat after dispersal. To do so, we investigate
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the peering content, peering target choice, and effects of arrival time

on males’ peering frequencies. Specifically, we will test the

following predictions:
1. Peering in the feeding context: If males peer to learn about

the local ecology then they should mostly peer at

orangutans feeding on food items which are rare, because

those items are less likely to be known to the males. We do

not expect an effect of the processing intensity (i.e.,

complexity) of the food item on peering rates, because

adult migrant males should be familiar with many different

processing techniques, including complex ones (prediction

1a). Furthermore, we predict a significant increase in

practice rates of the peered-at behavior after a peering

event (prediction 1b).

2. Peering target choice: If peering is used to learn about the

local ecology, then it should be directed at role models

which are most knowledgeable of the local ecology. Female

orangutans spend their lives in their natal area, therefore

females likely have the highest knowledge of their home

range. Consequently, we predict that males peer at adult

females more often than at any other age-sex class

(prediction 2).

3. Peering over time: With increasing time spent in the area,

males should gain more knowledge about its ecology and

thus, the need to learn should decrease. Accordingly, we

predict that peering rates will decrease with increasing time

spent in the study area (prediction 3).
2 Methods

2.1 Data collection and study animals

The data for this study were collected from 2003 to 2018 on the

population of Bornean orangutans (Pongo pygmaeus wurmbii) at

the Tuanan research station, in Central Kalimantan, Borneo,

Indonesia, and from 2007 to 2020 on the Sumatran Orangutan

population (Pongo abelii) at the Suaq Balimbing Research Station,

in South Aceh, Sumatra, Indonesia. At both sites, data were

collected during nest to nest follows of focal individuals, following
TABLE 1 Definitions of the focal behaviors used as a measure of observational social learning and practice behavior, changed after Schuppli et al.
(2016c).

Behavior Definition

Peering The peerer is directly looking at the action of another individual (peering target), sustained over at least 5 seconds, and at close enough range that enables
the peering individual to observe the details of the action (within 2 meters in the feeding- and within 5 meters in the nest-building context). The peering
individual faces the peering target and shows signs of following the actions of the peering target by head movements, which indicates attentive interest in
the action of the target.

Peering-
practice-
behavior

The peerer interacts with the peered-at item before or after a peering event, which can include the manipulation, handling and feeding on the peered-at
item.

Interaction
rate

Interaction rate is defined as the number of interactions the peerer has with the peered-at item, controlled for the time the peerer spent in a given food
patch in which the peering occurred (i.e., feeding locations in trees of the same species that are less than 10 meters apart). The interaction rate is
categorized as “before” (time between patch entry and the peering event) and “after” the peering event (time between peering event and patch exit).
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a standardized behavioral observation protocol and using

instantaneous scan sampling at two-minute intervals (see protocol

here http://www.aim.uzh.ch/de/orangutannetwork.html). A total of

157 observers contributed to data collection. All of these observers

had passed through an extensive training period and achieved at

least an 85% level of agreement with experienced observers. As part

of the scan sampling, the activity of the focal animal as well as the

distances to all other individuals in association with the focal

individual (see below) were noted at two-minute intervals.

Whenever the focal individual was feeding, the details were noted

(see below). Additionally, behaviors of special interest to the

objectives of the ongoing research at the sites, including all social

interactions, were recorded at an all occurrence basis and described

in detail. At both sites, all occurrence data on peering behavior (see

Table 1 for definitions) were collected. For each peering event, the

identities of the peerer and peering target as well as the duration of

the peering event were noted. Whenever possible, the reactions of

the peerer and the peering target were described in detail. This

included who approached to peering distance, as well as who ended

the peering event and how this was achieved (see Figures S4–S6 in

Supplement A). The peered-at activities of the peering targets were

divided into four categories: social, nesting, feeding and other

behaviors (i.e. included activities like moving, resting, defecating,

etc.). Following (Schuppli et al., 2016c), we defined nest peering

distance as ranging from 0 to 5 meters between the peerer and the

peering target(s) whereas for all other contexts (including feeding

context) peering distance was defined as ranging from 0 to 2 meters.

For peering in the feeding context, the species of the consumed

food item were noted, as well as the parts eaten by the individual

(i.e., leaves, flowers, fruits, bark, pith, vegetative matter, but also

insects and their products). Throughout this study, we refer to the

combination of species name and the part eaten, as a “food item”

(Bastian et al., 2010). Food items that were not recognized during a

follow were photographed for later identification, consulting

experienced staff members or the project’s extensive botanical

record. In total, we had ~28,000 hours of feeding data, and a total

of ~42,000 male focal follow hours available (Supplement A, Table

S1). The feeding data was used to create frequency scores for food

item combinations for both sites separately, by ranking each food

item combination according to the time it had been eaten by the

local females and their independent offspring. The frequency of

particular food items being eaten varied greatly; from 2 minutes to

2500 hours throughout the record of feeding events in the

populations. To control for the influence of temporal variation in

food availability on social learning at both sites, we used the fruit

availability index (FAI), calculated each month as the percentage of

fruiting trees in established phenology plots (Marshall et al., 2009;

Vogel et al., 2015).

We defined a daily dyadic association as a focal male spending

time with another individual of any age-sex class, within 50 meters.

Every encountered orangutan, either as an association partner of

the focal (henceforth called “association member”) during a focal

follow or during opportunistic encounters, was identified and

recorded on a daily basis. We distinguished between four

categories of association members: adult females, immatures,

unflanged males and flanged males. All adult male orangutans,
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including 88 unflanged and 64 flanged males, were classified as

adult migrants due to the species’ male-based dispersal. For each

male, we estimated their arrival date in the study area based on the

date he was first encountered by the research teams. We also

computed a continuous record of the number of months they

were encountered in the study area which represents the absolute

minimum number of months they had spent in the study area (see

Figure S3 in Supplement A). As locals we considered all adult

females with their immature offspring, who had not reached sexual

maturity (usually at 12–15 years of age, van Noordwijk et al., 2018).

In total, we included 49 adult females and their 80 immature

offspring from both sites into the analysis as association

members. Since no peering was directed at flanged males, we

excluded them as peering targets from the analysis.

In total, we compiled 4009 daily dyadic associations, with a total

of 207 daily dyadic associations with 534 peering events and 3919

daily dyadic associations without peering events, of a total of 1350

dyads from both sites (see data overview in Supplement A, Table

S1). To account for different durations of peering events, they were

weighted according to their duration, e.g., a peering event with a

duration of minimum of 5 to 120 seconds got a peer count of 1,

from 120 to 240 seconds got a peer count of 2 and so on

(Supplement A, Table S2). Since data availability differed for each

prediction tested, the sample size varies across the different models

(see Supplement A, Table S3) for amount of data used per model.
2.2 Data analysis, data sets and
model structures

2.2.1 Peering in the feeding context
To test the effects of food item frequency and processing

intensity on peering (prediction 1a), we calculated the number of

peering events the migrants directed at peering targets feeding on

different food items. To assess the level of manual and oral

processing steps needed to consume each item (i.e. food item

processing intensity), each food item was classified by the number

of steps needed to process it before ingestion. Processing steps range

from 0 (e.g., pick and eat a leaf) up to 5, which represent the most

sophisticated form of food processing skills including tool use,

which is regularly seen only in the Suaq population (Meulman

and van Schaik, 2013; Schuppli et al., 2016c, see Supplement A,

Table S4). This analysis explored patterns within male peering

behavior and thus only considered days where actual peering

occurred. To control for varying opportunities to peer at different

food items, we included the time each food item was eaten by the

peering targets while being in association with the peerer. In total,

we analyzed 789 daily dyadic events with a migrant peerer

associating with another orangutan of any age-sex class in 74

dyads. The structure of model 1a included the males’ peering

count as response variable and the time the peering target had

spent feeding on the respective food item per day as an offset term.

Food item frequency and processing intensity were included as

predictors and FAI as control variable. Additionally, we included

date, food items and dyad as random effects and random slopes of

dyad over FAI and processing intensity into the model.
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To test if males practice what they peered at (prediction 1b),

controlled for the time the peerer spent in a given food patch with a

peering target, we calculated the migrants’ interaction rate with the

peered-at item, before and after the peering event (see Table 1. for

definitions). For this question only data from the Suaq population

were available, since patch entry and exit times were not

systematically recorded in Tuanan. In total, we here analyzed 126

dyadic events with a migrant peerer associating with another

orangutan of any age-sex class of 15 different dyads, including 12

migrant males. Model 1b included the males’ number of

interactions with the food item before and after peering as

response variable, and the time the peerer spent in the given food

patch per dyad as an offset term. We included the condition (before

and after the peering event) as a categorical predictor and FAI as

control variable. Additionally, we controlled for the dyad and date

by including them as random effects.
2.2.2 Role model choice
To test if males learn about the local ecology by peering most at

local philopatric females, who are expected to possess the most

knowledge on the area (prediction 2), we used the full record of

dyadic associations between migrants and individuals of the

different age-sex classes during our study period. For each male,

we calculated the number of peering events directed at each dyadic

association partner, controlled for the time they had spent in

association (i.e., between 0 and 50 meters) during a particular

three-month period (hereafter “quarterly peering count”). This

included all daily dyadic associations migrants spent in

association with orangutans of the different age-sex classes, i.e.

days with both peering absent and present. We here used 2,426 daily

dyadic events with a migrant peerer associating with other party

members of any age-sex class (1350 dyads). Model 2 included the

males’ quarterly peering count as response variable and the time in

association with the dyad partner per day as an offset term. In this

model, we included an interaction between the peering targets’ age-

sex class and the site due to the expected differences in social

tolerance of individuals of different age-sex classes. Additionally, we

controlled for male ID, dyad and year by entering them as random

effects into the model.
2.2.3 Peering over time
To test if male peering decreases with increasing time spent in

the area due to their increase in local knowledge (prediction 3), we

included the males’ quarterly peering count as response variable

and the time in association with the dyad partner per day as an

offset term. We then linked this data with the number of months the

migrant peerer had been recorded to be present in the area, and

controlled for the respective FAI value at the specific association

date. Since in 3,919 out of all 4,009 total dyadic observations (97%,

Supplement A, Figure S1) the males’ peering count was zero, we

here present a model excluding all dyadic associations without

peering. Therefore, we only explored patterns within male peering
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in this analysis. Model 3 included the time a migrant had spent in

the area (in months) as a continuous predictor and the FAI as

continuous control variable. We further controlled for the site,

dyad, year and ID by including them as random effects.

Additionally, we included random slopes of ID, dyad and year

over FAI and the continuous predictor present month in area. In

total, we analyzed 149 daily dyadic events with a migrant peerer

associating and peering at another party member of the different

age-sex classes, summed up quarterly.
2.3 Statistical analyses

All analyses and graphs were done in R, version 4.2.0 (R Core

Team, 2023). We used generalized linear mixed models (GLMMs)

with a negative binomial family distribution (model 1a, 2) or a

Poisson family distribution (model 1b, 3) as implemented in the

glmmTMB package (Brooks et al., 2017). Throughout all analyses, the

fruit availability index (FAI), food items frequency and processing

intensity were z-standardized across sites. We ran full-null model

comparison using likelihood ratio tests (LRT) by using the “anova”

function, with the null model containing the random effects and the

control variables only (Fox and Weisberg, 2019). If the comparison

revealed that the full model fitted the data significantly better than the

null model, we assessed the effect of each predictor in the full model

using the “drop1” function of VGAMpackage (Yee, 2020). In the case

that the GLMM included categorical predictors, post-hoc tests were

done using Tukey pairwise comparisons implemented in the

emmeans package (Searle et al., 1980). Furthermore, all models

were tested for overdispersion (Mundry, 2022) and zero-inflation

using the DHARMa package (Hartig, 2022). Random slopes were

included in model 1a) and 3) and excluded from all other models to

achieve model convergence, see Supplement B for random effects and

random slopes output for eachmodel. The dispersion parameter of all

models ranged from 0.56 to 1.11, the zero-inflation ratio of observed

to predicted zeros from 0.98 to 1.07 suggesting no critical cases. We

assessed the overall fit of the models by calculating the conditional

pseudo delta R2 using the MuMln package (Nakagawa et al., 2017;

Bartoń, 2023). We validated the models’ stability using influence

diagnostics of the “glmmTMB_stability” function following

(Mundry, 2022), which compares model estimates from the full

dataset with those that were extracted from the data excluding

cases (individuals and dyads) one at a time. We detected no

influential cases, since the direction of the effects were consistent in

all models (Supplement B, detailed model output). Additionally, all

models were checked visually to assess whether they fulfil the model

assumptions (Harrell, 2015). Using the vif() function from the car

package (Fox and Weisberg, 2019), we further detected no effect of

multicollinearity among the fixed effects in any model, with the

variance inflation factors ranging from 1.00 to 2.39. Alpha level

throughout all tests was set on p = 0.05 with significant values marked

with bold fond. Trends were interpreted for p values ranging between

> 0.05 and 0.08 marked with bold fond and a dot.
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3 Results

Descriptively, we found that in absolute numbers, most

(67.84%) of the peering events by male migrants happened in the

feeding context (Supplement A, Figure S2; Table S6). When

analyzing the males’ peering behavior in the feeding context in

more detail, we found several lines of evidence that migrant

orangutan males use peering to learn about local food items

(prediction 1a).
1a Peering in the feeding context: food
item frequency and processing intensity

The full-null model comparison revealed that the set of

predictor variables used had a significant influence on the

migrants’ peering rates (full-null model comparison, LRT:

X2 = 19.62, df = 4, P < 0.001). Specifically, the full model revealed

that the food item processing intensity had a significant positive

effect on migrants’ peering rates, with migrants peering significantly

more at skill-intense food items, than at easy-to-process ones

(Table 2; Figure 2). Furthermore, food item frequency had a

significant negative effect on peering rates, i.e., migrants peered

significantly more at rare food items than at common ones

(Table 2; Figure 3).
1b Peering practice behavior

The full-null model comparison revealed that the predictor

variable used had a significant influence on the migrants’

interaction rate with the peered-at item (full-null model

comparison, LRT: X2 = 951.403, df = 1, P < 0.001). The full

model showed that migrants interact significantly more with the

peered-at item after the peering event than before the peering event

(Table 3; Figure 4).
2 Role model choice

The full-null model comparison revealed that the predictor

variable used had a significant influence on the migrants’ peering

rates (full-null model comparison, LRT: X2 = 49.57, df = 5, P <
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0.001). The full model revealed a significant interaction between the

age-sex class of the role model and study site (LRT: X2 = 15.02, df =

2, P < 0.001, Table 4; Figure 5). The interaction showed that

migrants of the more sociable population Suaq peered

significantly more at adult females and local immatures,

compared to Tuanan, the less sociable population. Specifically, the

post-hoc test showed that migrants in Suaq peered most frequently

at local adult females, followed by unflanged males and local

immatures (Supplement A, Table S5; Figure 5). In contrast,

migrants in Tuanan peered most often at unflanged males,

followed by local immatures and the least at local adult females

(Supplement A, Table S5; Figure 5). At both sites, no peering was

directed at flanged males.
3 Peering over time

The full-null model comparison revealed that the predictor

variable used had a significant influence on the migrants’ peering

rates (full-null model comparison, LRT: X2 = 12.94, df = 2, P <

0.001). In more detail, migrants’ peering rates decreased

significant ly with increas ing t ime spent in the area

(Table 5; Figure 6).
4 Discussion

Our study investigated whether migrant male orangutans use

peering behavior to socially learn about the food items in their new

habitat after dispersal. Therefore, we examined the content of

migrants’ peering behavior, their role model choice and

subsequent practice of the learned behavior in two different

orangutan populations using data collected over 30 study years.

Further, we analyzed how the migrants’ peering rates would change

with increasing time spent in the area. We found several lines of

evidence that male migrant orangutans indeed use peering behavior

as an observational form of social learning and utilize it in a flexible

and selective manner. The results suggest that migrant males use

peering to acquire new ecological information after dispersal,

including where and what to feed on (on rare and common

items) and continue to learn complex skills even within

adulthood (like how to feed on skill-intense food items). To do

so, migrants selectively attend to the most knowledgeable and/or
TABLE 2 The effect of the food items’ frequency and processing intensity on the migrants’ peering behavior analyzed using a GLMM with a negative
binomial family distribution.

Factor Factor type Estimate SE Lower CI Upper CI c² df P

Intercept Intercept −0.04 0.2 −0.5 0.31 – – 0.85

Frequency Predictor −0.38 0.19 −0.76 −0.04 3.521 1 0.047

Proc. Intensity Predictor 0.38 0.16 0.15 0.6 10.368 1 < 0.001

FAI Control 0.13 0.2 −0.29 0.51 0.063 1 0.518

Site (Tuanan) Control −0.72 0.35 −1.53 −0.06 3.574 1 0.043
front
Shown are the model estimates, with standard errors (SE), lower and upper confidence intervals (CI), Chi-square of predictors (c²) and degrees of freedom (df). Analysis is based on N = 789 daily
dyadic observations of migrants peering at peering targets feeding on different food items, on days where peering occurred. The conditional pseudo delta R2 for this model was 0.36.
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available individuals of the study areas, subsequently practice the

new skill, and flexibly adjust their learning, e.g. when confronted

with intolerant locals or when the need for learning decreases.

Crucially, we found these effects in two orangutan species which

show differences in their levels of sociability and tolerance
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originating from differences in food availability between Borneo

and Sumatra (Wich et al., 2011).
4.1 Peering contexts and food peering

In line with our predictions we found several lines of evidence

that migrant orangutan males use peering to learn about local food

items (prediction 1a). Descriptively, we found that the majority of

the migrants peering events happened in the feeding domain. First,

and against our initial prediction, we found that migrants’ peering

increases with increasing processing intensity of a food item. The

highest levels of peering were shown at peering targets engaging in

the most skill-intense forms of food processing skills, including tool

use. It is generally assumed that in non-human primates skill

learning (knowing how) is completed by the end of the

developmental period (van Schaik, 2010; Schuppli et al., 2016a).

In immature orangutans, adult levels of easy feeding techniques are

achieved shortly after weaning, whereas the more skill intense

techniques of food consumption need more time, but seem to be

mostly in place before reaching adulthood (i.e., age at first

reproduction) and thus before dispersal (Schuppli et al., 2016a).

Furthermore, findings on humans suggest that adults are able to

transfer existing skill and knowledge to solve new problems

(Nisbett, 2009; van Schaik and Burkart, 2011). Our results

however indicate that orangutan male migrants are lacking

knowledge on local food items in the study areas and use peering

to learn how to consume the easy-to-process, but especially the

skill-intense local foods.

Second, we found that migrants’ peering significantly

increases with increasing rarity of the respective food item in

the locals’ overall diet. This result is in line with our prediction,

that migrants use peering to learn what they can eat in their new

habitat, as well as where and when to find it. Similar findings have

been reported in immature orangutans (Schuppli et al., 2016c) and

in wild capuchin monkeys, were individuals were found to pay

more attention to foods, that are rare in their diet and that are

difficult to process (Perry and Jimenez, 2006). It is known that

with increasing geographic distance the similarities in habitat

ecology, composition and culture decreases, which increases the

likelihood that the migrants which are known to disperse over

long distances might not know especially the rare local food items

(van Schaik et al., 2003; Russon et al., 2009; Krützen et al., 2011).

However, it is not known, if items that are commonly eaten at

Suaq and Tuanan, are commonly available items in other areas.

Furthermore, food species might be commonly eaten locally but

still rarely eaten in other areas, due to diet preferences (Bastian

et al., 2010). Therefore, to fully test our prediction we would have

to gain knowledge about food item availability in the males’

natal populations.

Third, we found evidence that migrant males’ practice what

they have learned, e.g. by interacting more frequently with the

peered-at item after the peering event than before (prediction 1b).

Similar selective explorative behavior has been studied in immature

orangutans suggesting that peering was followed by increased rates

of practice behaviors with the peered-at items (Schuppli et al.,
FIGURE 2

Migrants peering rates at food items with increasing food item
processing intensity, ranging from 0 of being very easy to process,
to 5 of being very skill-intense to process, controlled for the time in
hours the peering target fed on the item. Each dot represents the
average rate per individual male per complexity level and food item
combination. The mean peering rate over all males is shown as a
dotted line, the median is indicated by the horizontal line, the upper
and lower quartile are depicted by the box and the minimum and
maximum values are shown by the whiskers.
FIGURE 3

Migrants peering rates at different food items, depending on the
items frequency in the local females’ and their independent
offspring’s diet, ranging from being very rare (−0.5) to very common
(1.0) controlled for the time the peering target fed on the respective
food item. Each dot represents the average rate per individual male
per food item combination. The dashed line depicts the fitted
model, with its confidence limits for the predictors as dotted lines.
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2016c). Future studies should identify whether the learned and

practiced knowledge is actually used in the migrants daily lives, and

whether they also apply this knowledge when being alone without

a demonstrator.
4.2 Peering target choice

In line with prediction 2, that migrants should preferably learn

from those role models that have most knowledge of the local area,

we found that in the highly sociable population of Suaq, migrants

showed the highest peering rates at local philopatric females,

followed by peering at local immatures and other adult unflanged

males. Similar findings have been reported in wild male migrant

vervet monkeys, that selectively learned from the philopatric

females about how to open an “artificial fruit” (van de Waal et al.,

2010). However, in the less sociable population of Tuanan, we

found the opposite in the migrants’ role model choice, as they

showed the highest peering rates at adult unflanged males, followed

by peering at local immatures and the least at philopatric females.

Tuanan migrant males may not have many opportunities to peer at
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local females because females avoid long associations with males,

(Kunz et al., 2021), and thus eventually also close proximity or

feeding close to males.

In Suaq and Tuanan, males overall initiate and maintain

associations with females more frequently than the females

themselves. However, only in Tuanan, the Bornean population

with the less productive habitat, prolonged associations with

males led to an increase in fecal cortisol metabolite levels in

females, suggesting that associations are stressful and costly for

the females (Kunz et al., 2021). Accordingly, in Tuanan, females are

also avoidant of unrelated females (van Noordwijk et al., 2012).

These findings are thought to stand in direct connection with the

less productive habitat in Borneo that causes increased levels of

resource competition (Rijksen, 1978; van Schaik, 1999; Kunz et al.,

2021). This argumentation is further supported by a study on the

Tuanan orangutans showing that philopatric females will decrease

their low level of gregariousness and social tolerance even more,

when confronted with increased levels of competition due to the

long-term effects of human-induced fires (Ashbury et al., 2022).

Social intolerance towards migrants in such cases therefore most

likely does not originate from strong social peer pressure
FIGURE 5

Migrants peering rates at specific peering target classes, controlled
for the time in association. Each dot represents an average rate per
individual male per peering target class, with the mean peering rate
overall all males as a dotted black. The median is indicated by the
horizontal line, the upper and lower quartile are depicted by the box
and the minimum and maximum values are shown by the whiskers.
TABLE 3 Results of the GLMM with a Poisson family distribution of the migrants’ interaction rate with the food item before and after the peering
event (condition) for the Suaq population only.

Factor Factor type Estimate SE Lower CI Upper CI c² df P

Intercept Intercept −20.18 14.63 −56.51 2.59 – – 0.168

Condition (Before) Predictor −4.39 0.11 7.34 7.79 951.4 1 < 0.001

FAI Control 0.41 1.18 −3.14 4.87 0.12 1 0.73
front
Shown are the model estimates, with standard errors (SE), lower and upper confidence intervals (CI), Chi-square of predictor (c²) and degrees of freedom (df). Analysis is based on N = 126 daily
dyadic observations of migrants interacting with the peered-at item, on days where peering occurred. The conditional pseudo delta R2 for this model was 0.99. For this analysis only data from the
Suaq population were available.
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Migrants interaction rates per dyad with the peered-at item before
and after the peering event at the Suaq population. Each dot
represents the average rate per individual male depending on the
condition (before and after). The median is indicated by the
horizontal line, the upper and lower quartile are depicted by the box
and the minimum and maximum values are shown by the whiskers.
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(conformity) as it is seen in chimpanzees (Whiten et al., 2005) or

vervet monkeys (van de Waal et al., 2013), but instead from direct

competition over scarce resources. This is further supported by our

result that at both sites, no peering was directed at flanged males,

who are known to be less tolerant towards other males, likely

because they compete over ecological resources and access to

females with these males (Utami Atmoko et al., 2009).

It appears that migrants at Tuanan would then choose the

“second best option to learn from”, which are other adults like

unflanged males or local immatures, who themselves (depending on

their age, or the time already spent in the area) may have a

substantial amount of local knowledge (Schuppli et al., 2016a). In

general, immatures and unflanged males are the most sociable age

sex classes in orangutans, which may favor relaxed associations in

closer distance to each other (Mitra Setia et al., 2009). Previous

studies showed that immature orangutans exhibit a growing interest

in and tendency to peer at individuals other than their own mothers

as they become older and more independent (Schuppli et al.,

2016a). Furthermore, learning from immigrant males seems to be

important for the immatures’ skill acquisition, in particular for

immature males (Ehmann et al., 2021). Therefore, unlike for the
Frontiers in Ecology and Evolution 10139
adult females, the benefits of learning from adult males may

outweigh the costs of close associations with these males,

especially for older and male immatures. These mutual benefits of

knowledge exchange between adult males and immatures may

promote close associations and peering between these classes.

These patterns suggest, that in contrast to the established social

learning theories, under conditions like in Tuanan, migrants seem

to be forced to seek information from peering targets, that are

unlikely to possess complete local information: unflanged males,

who originated from different areas and immatures who have not

completed their learning about the local area. This horizontal and

oblique learning thus may bear the risk to obtain incomplete or even

wrong information (Henrich & McElreath, 2003; Laland, 2004).

These findings also demonstrate the males’ selectivity and flexibility

in their peering target choice. Similar flexibility in role model choice

has been found in wild vervet monkeys, were migrants usually

would copy local philopatric females, but do switch to copy

dominant males when these males gain a much higher payoff in

experimental food reward setups as females (Bono et al., 2018). This

mental flexibility is generally already visible in immature

orangutans, who, as they get older, increasingly learn from other

individuals than the own mother (Schuppli et al., 2016c) and show

sex-specific preferences for role models (Ehmann et al., 2021).
4.3 Learning over time

In line with our prediction 3, we found that the migrants

peering rate significantly decreased with increasing time the male

had spent in the study area. Our results show that within the first 6

months after dispersal the migrants peering rates are particularly

high. At this time, they likely still lack the majority of knowledge of

the new area. Our results suggest that the subsequent gradual

learning process can take multiple months, which may partly be

due to the fact, that many food items are not available all year

around. The drop in peering rates suggests that with increasing time

spent in the area, the migrants’ competency on local ecological

increases and thus the need to learn decreases. These findings

parallel how immature orangutans socially learn via peering,

where with increasing age and competence, immature peering

rates gradually decrease (Schuppli et al., 2016c). It has been

estimated that over the course of their lifetime, Bornean and

Sumatran orangutans peer approximately 9,000 and 38,000 times

whereby the majority of all peering happens during immaturity
FIGURE 6

Migrants’ peering rates, as a function of the number of absolute
months spent in the study area until the day of the peering event,
controlled for the time being in association with respective peering
targets. Each dot represents the average rate per individual male per
time point in area. The dashed line depicts the fitted model, with its
confidence limits for the predictors as dotted lines.
TABLE 4 The effect of the interaction between the role models’ age-sex classes and site, on the migrants peering behavior analyzed using a GLMM
with negative binomial family distribution.

Factor Factor type Estimate SE Lower CI Upper CI c² df P

Intercept Intercept −6.84 0.37 −7.69 −6.12 − − < 0.001

ClassTarget: Site Predictor − − − − 15.02 2 < 0.001

FAI Control 0.21 0.16 -0.14 0.5 0.58 1 0.45
front
The age-sex classes of the peering targets are: adult females, immatures and unflanged males. Shown are the model estimates, with standard errors (SE), lower and upper confidence intervals (CI),
Chi-square of the interaction (c²) and degrees of freedom (df). Analysis is based on N = 2426 daily dyadic number of observations of migrants associating with peering targets of all age-sex classes,
on days with and without peering, summed up quarterly per year. The conditional pseudo delta R2 for this model was 0.12. Full information on post-hoc test (Tukey pair-wise comparisons) listed
in Supplement A, Table S5.
iersin.org
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(Schuppli and van Schaik, 2019). The results of our study suggest,

that at least for the dispersing males, the “learning window” remains

open over the course of their dispersal and the first years after it.

The fact that in immatures age has a strong effect on peering

rates, raises the question whether age may also affect the peering

rates of the males in this study. Unfortunately, because we do not

know how old the males in our study are (because we have no

information on their lives before their arrival at the study sites), we

cannot test for age effects. However, when the males arrive in our

study areas, their body sizes vary visibly (Schuppli and van

Noordwijk, personal communication), which suggests that the

males are of different ages. After their arrival, peering remains

high for the first 6 months only, but then drops. Furthermore, in

adult females, peering remains at very low levels throughout

adulthood (Schuppli & van Schaik, 2019). Therefore, age effects

alone are unlikely to bring about the peering patterns we found in

the adult males.
5 General discussion

Our study represents a systematic analysis of adult migrant

orangutans’ observational social learning (measured in peering

behavior) from local residents after dispersal. By examining the

actual learning process (rather than focusing on the result of

learning), we were able to identify details on the content and the

role model choice. This stands in contrast to existing studies that

have either focused on single migrants, and single behaviors of

migrants or local conspecifics only, or within conditions that were

altered experimentally. Furthermore, by including data collected

over a study period of 30 years, we were able to track individual

migrants peering behavior as a function of the time they had spent

in the study area. We were thus able to cover the process of

migrants’ social learning, from their inferred arrival, followed by

the chronological changes over time. The results parallel how

immature orangutans socially learn during immaturity, but differ

significantly in those areas (e.g. content and role model choice), that

are specifically important for adult orangutans confronted with a

new ecological environment after dispersal (see further down).

Hence, the flexibility in wild adult orangutans’ social learning

might be key to counterbalance the costs of dispersal and to

successfully adapt to a new habitat.
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6 Conclusions

First: Dispersal seems to be a very disruptive phase for migrant

orangutans. Although when compared to immatures, migrants

show very low peering rates (Schuppli et al., 2016c), our results

show that migrants temporarily resume peering as an observational

form of social learning. Therefore, the existing ecological knowledge

of migrants seems insufficient to thrive in the new habitat without

social learning. Our results support the suggested third phase of

social learning during primate development, which stated that

migrants make use of social learning after dispersal to adapt to

the new habitat (Whiten and van de Waal, 2018).

Second: With this study we add to the growing body of evidence

that peering is a means of observational social learning.

Observational social learning allows migrants to learn relevant

local knowledge safely and efficiently without individual re-

invention while benefitting from already existing knowledge

instead. Not knowing what is edible and what is dangerous entails

substantial risks and can lead to fatalities. Furthermore, individuals

that are in possession of critical ecological information have a

survival advantage (Kurman and Ronen-Eilon, 2004; Marzec, 2020).

Follow-up studies should therefore examine to what extent the

male’s repertoires correlate with their fitness. Ultimately, since large

bodied, long-lived and slow breeders like great apes, are especially

challenged by sudden changes in their environment (next to

dispersal, e.g. also due to habitat loss), relying on social learning

for adaptation might be the most efficient way, since the adaptation

through regular biological evolution would take too long for

individuals to come up with advantageous traits just in time.

Third: In our study we found preliminary evidence that social

tolerance might be the key to allow for relaxed learning situations.

The local females in the less sociable species are known to avoid

long associations with males (Kunz et al., 2021), which may

decrease the migrants’ opportunities to socially learn from them

after arrival. At this point, it is not possible to identify the causes for

this diminished learning opportunities. It is possible that either

females and or males will increasingly grow more intolerant in

times of scarcity and will therefore decrease physical closeness to

each other to avoid direct resource competition by e.g. being in the

same feeding patch. Overall, the successful long-term integration of

a migrant might therefore critically depend on such tolerant ties

with the local females.
TABLE 5 The effect of the time spent in the area on the migrants peering behavior analyzed using a GLMM with Poisson family distribution.

Factor Factor type Estimate SE Lower CI Upper CI c² df P

Intercept Intercept −4.9 0.12 −5.1 −4.65 – – < 0.001

PresentMonthInArea Predictor −0.51 0.15 −0.8 −0.24 8.246 1 < 0.001

FAI Control 0.32 0.19 −0.04 0.63 3.576 1 0.087

Site (Tuanan) Control 0.02 0.24 −0.46 0.45 0.009 1 0.922
front
Shown are the model estimates, with standard errors (SE), lower and upper confidence intervals (CI), Chi-square of the predictors (c²) and degrees of freedom (df). Analysis is based on N = 149 daily
dyadic observations of migrants associating with peering targets of all age-sex classes, on days with peering, summed up quarterly per year. The conditional pseudo delta R2 for this model was 0.94.
iersin.org
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Fourth: Being our most distant great ape relative, the study of the

orangutans may reveal shared traits at the very basis of the

Hominidae lineage some 12–14 million years ago (Locke et al.,

2011). The ability for migrants to use observational forms of social

learning after dispersal seems to be the ancestral state of the hominin

lineage. The conditions at the time of this trait’s emergence, must

have selected for migrants that have the general ability to harvest the

benefits of cultural knowledge through social learning from locals, but

avoided the costs through competition in times of food scarcity. In the

course of hominin evolution, this ability then developed further

alongside the different species’ social systems and formed the

respective species’ social learning biases; even eventually into the

two most opposite extremes possibly, as it is seen now inmodern-day

chimpanzees vs. bonobos, which split approximately 2 million years

ago (Prüfer et al., 2012). The human journey has always been a matter

of migration and migrants are described to be exceptional people, in

terms of versatility, resilience and adaptivity (Goldin et al., 2011); an

ability we seem to share with our most distant great ape relative.
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