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The amount of data being produced 
by neuroscientists is increasing rap-
idly, driven by advances in neuroimag-
ing and recording techniques spanning 
multiple scales of resolution. The avail-
ability of such data poses significant 
challenges for their processing and 
interpretation.

To gain a deeper understanding of the 
surrounding issues, the Editors of this 
e-Book reached out to an interdisci-
plinary community, and formed the 
Cor-tical Networks Working Group. 
The genesis of this e-Book thus began 
with this Working Group through sup-
port from the National Institute for 
Mathematical and Biological Synthesis 
in the USA. The Group consisted of 
scientists from neuroscience, physics, 
psychology and computer science, and 

meetings were held in person. (A detailed list of the group members is presented in the Editorial 
that follows.)

At the time we started, in 2010, the term “big data” was hardly in existence, though the volume 
of data we were handling would certainly have qualified. Furthermore, there was significant 
interest in harnessing the power of supercomputers to perform large scale neuronal simulations, 
and in creating specialized hardware to mimic neural function.

We realized that the various disciplines represented in our Group could and should work together 
to accelerate progress in Neuroscience. We searched for common threads that could define the 
foundation for an integrated approach to solve important problems in the field.

TOWARDS AN INTEGRATED APPROACH TO 
MEASUREMENT, ANALYSIS AND MODELING 
OF CORTICAL NETWORKS
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We  adopted a network-centric perspective to address these challenges, as the data are derived from 
structures that are themselves network-like. We proposed three inter-twined threads, consisting 
of measurement of neural activity, analysis of network structures deduced from this activity, 
and modeling of network function, leading to theoretical insights. This approach formed the 
foundation of our initial call for papers.

When we issued the call for papers, we were not sure how many papers would fall into each of 
these threads. We were pleased that we found significant interest in each thread, and the number 
of submissions exceeded our expectations. This is an indication that the field of neuroscience is 
ripe for the type of integration and interchange that we had anticipated.

We first published a special topics issue after we received a sufficient number of submissions. 
This is now being converted to an e-book to strengthen the coherence of its contributions. One 
of the strong themes emerging in this e-book is that network-based measures capture better 
the dynamics of brain processes, and provide features with greater discriminative power than 
point-based measures. Another theme is the importance of network oscillations and synchrony. 
Current research is shedding light on the principles that govern the establishment and main-
tenance of network oscillation states. These principles could explain why there is impaired 
synchronization between different brain areas in schizophrenics and Parkinson’s patients. Such 
research could ultimately provide the foundation for an understanding of other psychiatric and 
neurodegenerative conditions.

The chapters in this book cover these three main threads related to cortical networks. Some 
authors have combined two or more threads within a single chapter. We expect the availability 
of related work appearing in a single e-book to help our readers see the connection between 
different research efforts, and spur further insights and research.
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1. INTRODUCTION

Recent technological advances have led to an unprecedented increase in the volume and detail
of neuroscientific data, creating significant challenges for their processing and interpretation. We
approach this challenge through a network-centric perspective, as we believe that brain function
is fundamentally determined by patterns of connectivity between neurons, and the resulting
dynamics. This is in contrast to traditional computational neuroscience techniques that focus on
models of individual neurons and compartments. Progress, in consequence, is essential on (at least)
threemajor fronts:measurement of neural activity, analysis of network structures deduced from this
activity, andmodeling of network function, leading to theoretical insights.

The measurement front spans the range from multi-electrode recordings to whole-brain
measurements using imaging. Several basic scientific questions arise: What do we need to measure
in brain networks? Are there theoretical constraints that would dictate this? How do we design
our experiments to generate the most meaningful data? How do we record from awake/behaving
animals, or even from multiple animals interacting socially?

The analysis front consists of creating networkmodels from themeasurements. Some promising
techniques explore the estimation of networks using causality. However, several open questions
remain: How do we define the fundamental units within the network? Are these units fixed or do
they evolve dynamically? How do we infer connectivity between network elements? How do we
identify functional clustering, based on the individual neuronal features? How do we quantify and
interpret the activity of multiple neurons via multi-unit recordings, especially when there is no
stimulus-response paradigm?

The modeling front can proceed in several directions. From the extracted network we can
identify topological regularities, such as motifs and cycles. An interesting research direction is to
analyze the relationship between the structure of the network, as represented by its motifs, and its
function. A growing body of work is examining the relationship between network structure and
phenomena such as stability and synchrony. For instance, neurons in the hippocampus could be
modeled as a network wherein hubs consisting of hub neurons promote synchrony, while cycles in
this network may cause instability. The theme of synchrony as an important network phenomenon
emerges in several articles in this research topic (Canavier et al., 2013; Latorre et al., 2013; Tibau
et al., 2013; Vardi et al., 2013; Cavallari et al., 2014; Chary and Kaplan, 2014; Konstantoudaki et al.,
2014; Ratnadurai-Giridharan et al., 2014).

We emphasize that the three fronts consisting of measurement, analysis and modeling are
interdependent, but must evolve synergistically. The model and theoretical understanding need to
be grounded in constraints produced by the measurement process. Insights derived frommodeling
can be used to drive novel experiments and measurement techniques. An emerging trend deploys
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active probing and network manipulation through viral vectors
and optogenetic methods.

We expect that by aligning existing and future research
along these fronts, we will be able to answer questions
at the system level. We can view this development as a
generalization of the Hubel-Wiesel approach which characterizes
feed-forward sensory coding to approaches that characterize
dynamic network-level interactions with the input signals.
We can derive value from our understanding of network
function by applying it to brain-related disorders, such
as schizophrenia, drug addiction, or autism. For instance,
differences between default mode networks of ASD (autism
spectrum disorder) subjects and normals have been reported,
among other psychiatric and neurodegenerative conditions.
Cortical network properties ultimately determine how different
network oscillation states are established and maintained and
defining these principles could explain why there is impaired
synchronization between different brain areas in schizophrenics
and Parkinson’s patients. Overall, network-based measures
capture better the dynamics of brain processes, and provide
features with greater discriminative power than point-based
measures.

The articles in this research topic cover these different aspects
of cortical networks. To guide the reader, we provide below a brief
summary of each article, and relate it to the overall theme of the
research topic.

2. MECHANISTIC MODELS OF NEURONAL

DYNAMICS

Rothganger et al. (2014) present a model design platform,
N2A, which has the potential to speed up the process of
designing and validating biologically realistic models. By utilizing
a hierarchical representation of neural information, N2A allows
models from different users to be combined. N2A natively
implements standard computations in sensitivity analysis and
uncertainty quantification, which allows users to validate models
easily. They demonstrate the versatility of N2A through several
examples.

Ratnadurai-Giridharan et al. (2014) develop a biophysically
relevant network model of the CA1 subfield, and investigate the
relationship between network properties and the susceptibility
of CA1 to exhibit interictal spikes (IIS). They investigate
the conditions under which synchronization of paroxysmal
depolarization shift (PDS) events evoked in CA1 pyramidal (Py)
cells can trigger an IIS. Like other papers in this research topic,
they explore the conditions necessary for and consequences of
synchrony, and find that spontaneous IISs closely depend on the
degree of the network’s intrinsic excitability.

Bhattacharya et al. (2014) present a study of a thalamo-
cortico-thalamic (TCT) implementation on SpiNNaker (Spiking
Neural Network architecture), a hardware platform inspired by
the processing parallelism, and energy efficiency of biological
neural networks. Their system presents similar dynamic and
spectral features to EEG in the sleep-wake transition, and could
lead to much larger TCT models.

3. DESCRIPTIVE AND MODEL-BASED

MEASUREMENTS OF EXPERIMENTAL

DATA

Dey et al. (2014) use Resting State fMRI functional connectivity
and a combination of topological and neuroanatomical features
to implement predictive modeling on a dataset of Attention
Deficit Hyperactive Disorder (ADHD) and control subjects, and
obtain a high predictive accuracy, over 70 for 50% chance. The
use of graph-theoretic and anatomical features emphasizes the
notion that different brain functions (and dysfunctions) are an
emergent property of the interaction between specific brain areas.

Alonso et al. (2014) test a specific hypothesis derived from
theorizing the brain as a system determined by emergent
properties, namely dynamical criticality. Studying ECoG
recordings of anesthesia induction in humans, they show that
depth of anesthesia is concomitant with increased dynamical
stability, as estimated by the eigenvalues of fitted moving-
window auto-regressive models. They further demonstrate that
this stabilization effect cannot be explained by the spectral
changes associated with anesthesia, which are typically used to
characterize the transition to unconsciousness.

Almeida-Filho et al. (2014) study multi-electrode recordings
in the hippocampus and early visual and sensory cortices
of rats during and after novel object exploration, as well as
during the sleep cycle. They identified cell assemblies as a
linear combination of the units’ activity, and determined phase
relationships between these assemblies. They computed a graph
whose nodes correspond to assemblies, and edges correspond
to phases. They use graph-theoretic features to perform high
accuracy predictive modeling with a simple classifier (Naive
Bayes).

Vardi et al. (2013) propose a mechanism that allows time-
lags among populations of spiking neurons to drop from
several tens of milliseconds to nearly zero-lag synchrony. The
mechanism allows sudden leaps out of synchrony, hence creating
short epochs of synchrony. They obtained results by enforcing
conditioned stimulations on neurons embedded within a large
cortical network in vitro. Their simulations support the proposed
underlying biological mechanisms: the increase of neuronal
response latency to ongoing stimulations and temporal or spatial
summation required to generate evoked spikes.

Tibau et al. (2013) monitored the development of neuronal
cultures, and recorded their activity using calcium fluorescence
imaging. They demonstrate that the power spectrum can be used
as a signature of the state of the network, for instance, when
inhibition is active or silent, as well as a measure of the network’s
connectivity strength. The power spectrum identifies prominent
developmental changes in the network, and reveals the existence
of communities of strongly connected, highly active neurons that
display synchronous oscillations. Using this approach, one could
distinguish healthy from diseased networks, or track the effects of
therapeutic interventions.

Riera et al. (2014) describe an “electro-physiological
microscope” with high spatial and temporal resolution. It
consists of a 3-dimensional array of micro-electrodes, and a
novel way of analyzing the current-source density data collected
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by the array. Their method can localize single whisker barrels
from event-related responses to a single whisker deflection, but
can also provide information about the spatiotemporal dynamics
of neuronal aggregates in several barrels, with the resolution of
single neurons. Their method constitutes a significant advance
over previous approaches, and could thus change the way the
activity of cortical neurons is analyzed in the future.

4. NETWORK FUNCTIONALITY

4.1. The Importance of Being Synchronized
For the past several decades, theoreticians and experimentalists
alike have focused on neuronal synchrony and on the important
roles that it might play in brain function, from “The Binding
Problem” in perception (Gray, 1999) to Consciousness (Crick
and Koch, 1990; Melloni et al., 2007). For a fuller discussion and
additional references, see Singer (2007). Several of the articles in
this research topic illuminate the issue of synchrony from both
physiological and computational perspectives.

Canavier et al. (2013) address the problem of how neurons
can synchronize their responses with minimal time lag. They
developed a graphical method for determining the effect of
the phase response curve (PRC) shape on synchronization
and illustrate it using type 1 PRCs, consisting of advances
(delays) in response to excitation (inhibition). They showed that
the skewness of the PRC affects synchrony. Their analysis of
pairwise synchronization tendencies form a useful framework
to understand the synchronization behavior of neurons within
larger networks.

Konstantoudaki et al. (2014) explore the role of interneurons
in the maintenance of a dynamic balance between excitation and
inhibition, since changes in this balance have been identified in
several neuropsychiatric diseases, such as schizophrenia. They
constructed a pre-frontal-cortex (PFC) microcircuit, consisting
of pyramidal neuron models and the three interneuron types
described in the literature. Their simulations showed that generic
somatic inhibition acts as a pacemaker of persistent activity, and
that fast-spiking specific inhibition modulates the amplitude and
synchrony of the pacemaker’s output.

Nie et al. (2014) make use of Information Geometry (IG),
which is based on the expansion of the joint probability
distribution of an N-neuron system. They used two measures,
the single-IG measure and the pairwise IG-measure to examine
the activity of simulated interconnected neurons that exhibit
oscillations. They considered two oscillatory mechanisms,
externally driven oscillations and internally induced oscillations.
For both mechanisms, they showed a linear relationship between
the single-IG measure and the external input magnitude and a
linear relationship between the pairwise-IG measure and the the
sum of connection strengths between two neurons.

Cavallari et al. (2014) investigate the effect of employing
current- or conductance-based synapses in models of neural
networks, both of which have been widely used. They create
comparable networks that use the two types of synapses, and
compare their dynamics. They report that these two types of
networks, which had comparable first-order statistics, showed

profound differences in their second-order statistics of neural
interactions, and in the modulation of these properties by
external inputs. Thus, the second order statistics of the network
dynamics depend strongly on the choice of synaptic model, a fact
that modelers of neural networks will find very useful.

Thivierge et al. (2014) investigate synaptic motifs created by a
relay network, where two populations of neurons communicating
via a third relay population achieve synchronization. By
employing models of neuronal dynamics, they demonstrate that
the use of relay networks leads to the creation of a global
attractor of activity that prevents neurons from being responsive
to input stimuli. They overcome this limitation by introducing
a selective gain inhibition mechanism which allows neurons to
respond effectively to external stimuli. They present results to
show that patterns of neural synchronization follow stimulus
presentation, and that synchronization disappears after the
stimulus is removed.

Chary and Kaplan (2014) investigate the role of synchrony
in the functioning of reward circuits in the brain. Their
computational study demonstrates that synchrony can have two
opposing effects in networks that are sensitive to the correlation
between stimulus and reward: weakly correlated inputs amplify
short-term recall, but suppress long-term recall. Their main
finding is that even weak stimulus-reward correlations can
facilitate the short-term repetition of a pattern of neural activity,
while blocking the long-term embedding of that pattern.

Latorre et al. (2013) implement a network model of the
Inferior Olive (IO) to study its synchronization behavior, using
electrically coupled conductance-based neurons. In the presence
of stimuli, different rhythms are encoded in the spiking activity
of the IO neurons that nevertheless remains constrained to a
commensurate value of the subthreshold frequency. Moreover,
the stimuli induced spatio-temporal patterns that reverberate
for long periods. These results have implications beyond IO
studies, and is related to tremor, migraine, and epilepsy where
these modeling techniques could have a potentially significant
impact.

4.2. Computation
Kaplan and Lansner (2014) address the issue of odor perception,
and investigate the processing of odors through multiple
processing stages within a hierarchical system. They use a large-
scale network model which spans olfactory receptor neurons
(ORNs), three types of cells in the olfactory bulb, and three types
of cortical cells in the piriform cortex. A competitive Hebbian–
Bayesian learning algorithm is used to adjusting synaptic weights.
Their model is able to perform robust concentration-invariant
odor recognition.

Eguchi et al. (2014) use a detailed computational model of the
early visual system in an attempt to bring our understanding of
cortical color processing to a level thought to exist for orientation
processing. They use information-theoretic measures, and train
their model using natural images, in trying to understand how
cells of similar color preference come to cluster together in the
cortex. Like several other papers in this research topic they also
explore the function of synchrony, and the role it might play in
deciding what color is used in the visual stimulus.
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Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two
reasons. First, it is one of the most commonly found childhood disorders and second, the
root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI)
data has become a popular tool for the analysis of ADHD, which is the focus of our current
research. In this paper we propose a novel framework for the automatic classification of
the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct
brain functional connectivity networks for all the subjects. The nodes of the network are
constructed with clusters of highly active voxels and edges between any pair of nodes
represent the correlations between their average fMRI time series. The activity level of the
voxels are measured based on the average power of their corresponding fMRI time-series.
For each node of the networks, a local descriptor comprising of a set of attributes of the
node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project
all the subjects from the unknown graph-space to a low dimensional space based on their
inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used
on the low dimensional projected space for automatic classification of the ADHD subjects.
Exhaustive experimental validation of the proposed method is performed using the data
set released for the ADHD-200 competition. Our method shows promise as we achieve
impressive classification accuracies on the training (70.49%) and test data sets (73.55%).
Our results reveal that the detection rates are higher when classification is performed
separately on the male and female groups of subjects.

Keywords: attention deficit hyperactive disorder, functional magnetic resonance imaging, support vector machine,

multidimensional scaling, attributed graph

1. INTRODUCTION
Attention Deficit Hyperactive Disorder (ADHD) is one of the
most commonly found functional disorders affecting children.
Around 5–10% of school aged children are diagnosed with
ADHD (Biederman, 2005). In spite of all the efforts made in the
studies of ADHD, the root cause of this problem is still unknown.
No well known biological measure exists to date to detect ADHD.
Instead, it is characterized by clinical symptoms such as inatten-
tion, impulsivity and hyperactivity all of which are subjective.
In the proposed method we try to address the problem of auto-
matic classification of the ADHD subjects from their rs-fMRI data
alone. For this purpose we construct the resting state functional
connectivity network of the brain and exploit the topological dif-
ferences of the networks of the ADHD and control subjects for
classifications. In the rest of the article, the words network and
graph are used interchangeably with similar meaning.

Recently, fMRI has become very popular for brain activ-
ity related studies. Researchers use it for identifying the brain
regions which are responsible for particular cognitive activities
based on the correlation of input stimulus signal and captured
brain fMRI signals (task-related fMRI). Also, it is used for better
understanding of different brain functional diseases like dementia

(Rombouts et al., 2009). Likewise, ADHD is also being stud-
ied under the light of structural and functional brain imaging
techniques. Structural MRI (sMRI) analysis suggests that there
are abnormalities in ADHD brains, specifically in the frontal
lobes, basal ganglia, parietal lobe, occipital lobe, and cerebellum
(Castellanos et al., 1996; Overmeyer et al., 2001; Sowell et al.,
2003; Seidman et al., 2006). In another set of studies ADHD
brains were analyzed using task-related fMRI data. Bush et al.
(1999) found significant low activity in the anterior cingulate cor-
tex when ADHD subjects were asked to perform the Counting
Stroop during fMRI. Durston (2003) showed that the ADHD con-
ditioned children have difficulties performing the go/nogo task
and display decreased activity in the frontostriatal regions. Teicher
et al. (2000) demonstrated that the boys with ADHD have higher
T2 relaxation time in the putamen which is directly connected
to a child’s capacity to sit still. A third set of works was done
using the resting state brain fMRI to locate any abnormalities
in the Default Mode Network (DMN). Castellanos et al. (2008)
performed Generalized Linear Model based regression analysis
on the whole brain with respect to three frontal foci of DMN
and found low negative correlated activity in precuneus/anterior
cingulate cortex in ADHD subjects. Tian et al. (2006) found
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functional abnormalities in the dorsal anterior cingulate cortex,
(Cao et al., 2006) showed decreased regional homogeneity in the
frontal-striatal-cerebellar circuits but increased regional homo-
geneity in the occipital cortex among boys with ADHD, (Zang
et al., 2007) verified decreased Amplitude of Low-Frequency
Fluctuation (ALFF) in the right inferior frontal cortex, left sen-
sorimotor cortex, bilateral cerebellum, and the vermis, as well
as increased ALFF in the right anterior cingulate cortex, left
sensorimotor cortex, and bilateral brainstem.

While studies of group level statistics may indicate the abnor-
mal regions of ADHD patients, their use for automatic diagnosis
is still under investigation. There have been relatively few inves-
tigations at the individual level of classification of the ADHD
subjects. One such study was performed by Zhu et al. (2008)
where ADHD subjects were classified based on the regional
homogeneity of their fMRI data. In another work, bag-of-words
framework was used by Solmaz et al. (2012) for the classification
of the ADHD subjects. Recently, there was a global competition
(ADHD-200) organized, involving researchers from different sci-
entific disciplines, for automatic diagnosis of ADHD subjects as
well as understanding the underlying pathophysiology. For this
purpose the organizers released a large data-set containing rs-
fMRI data, sMRI data and phenotypic information of ADHD
and control subjects. Different automatic classification methods
were published using this data-set (Bohland et al., 2012; Brown
et al., 2012; Chang et al., 2012; Cheng et al., 2012; Colby et al.,
2012; Dai et al., 2012; Dey et al., 2012; Eloyan et al., 2012; Olivetti
et al., 2012; Sato et al., 2012; Sidhu et al., 2012). Many of these
approaches used some combination of rs-fMRI, sMRI and pheno-
typic data. Cortical thickness, gray matter probability, texture of
structural brain images were some of the common sMRI features
used for the classification. Regional homogeneity, and Fourier
transformation of fMRI signal were some of the features used
from functional images. Several studies computed functional net-
works from fMRI data and used different network statistics as
features. Brown et al. (2012) showed that even the use of only
phenotypic features can produce high classification accuracy. All
of these works achieved classification accuracy higher than the
chance factor.

As discussed, researchers have identified considerable differ-
ences between the ADHD and control groups while analyzing
rs-fMRI data. This motivates us to use the rs-fMRI data of the
ADHD-200 competition data set for the validation of our pro-
posed classification algorithm. Use of data from other modalities
like structural MRI and phenotypic information might improve
the classification accuracies but our aim is to verify the effective-
ness of rs-fMRI data only for solving the proposed problem. As
shown in Figure 1, our method can be subdivided into three main
parts. In the first part we construct the resting state brain func-
tional connectivity networks for the subjects under consideration.
The networks are modeled as attributed graphs where each node
is assigned a signature. Attributed graphs are used previously in
different works (Jouili and Tabbone, 2009; Xu et al., 2012). The
signature of a node is a set of attributes which characterizes the
node. The attribute set includes the degree of the node, the degree
of the neighboring nodes, the power of the node, the power of
the neighboring nodes and the physical location of the node. The

power of a node is calculated by averaging the power of the fMRI
time series of all the voxels comprising the node. In the second
part we compute distances between all possible pairs of graphs.
The distance computation for a pair of graphs is a two step pro-
cess. In the first step distances for all the node pairs are computed
based on their signature values. In the next step, all nodes of one
graph are assigned to the nodes of the second graph such that
the total matching cost is minimized. The Munkres algorithm is
used for the node assignment problem (Munkres, 1957). In the
last part the graphs are projected to a space of specified dimen-
sions based on their distance measures. The MDS (Torgerson,
1952) method is used for this purpose. Finally, a Support Vector
Machine (SVM) is used for the classification of ADHD subjects
in the projected space. The main contribution of our work is to
propose a novel automatic classification framework of ADHD
subjects based on the topological differences of the functional
brain connectivity networks of the ADHD and control groups of
subjects. Unlike the other methods, which use functional brain
networks for ADHD subject classification, we refrain from using
network features. Instead we mapped the networks onto a low
dimensional spatial configuration and perform classification on
the projected space. We also provided physical interpretations
of each of the dimensions of the projected space. We achieve
impressive detection accuracies on training (70.49%) and test sets
(73.55%). To the best of our knowledge, our average detection
rate on the test sets outperforms the previous best results (69.59%
by Dey et al., 2012).

The rest of the article is organized as follows. Data descriptions
are provided in section 2.1. In section 2.2, we provide brief intro-
duction of MDS. The main method is described in 2.3.1, 2.3.2,
and 2.3.3 sections.

2. MATERIALS AND METHODS
2.1. DATA
The data, provided by Neuro Bureau for the ADHD 200 com-
petition, is used for our study. Eight different centers con-
tributed to the compilation of the whole data set, which makes
it diverse as well as complex. In total it consists of 776 train-
ing and 197 test subjects. Different phenotypic information, such
as age, gender, handedness, IQ, is also provided for each sub-
ject. The experimental validations of our proposed method are
performed on the training and test data sets of 4 of the data
centers - Kennedy Krieger Institute (KKI), Neuro Image Sample
(NeuroImage), Oregon Health and Science University (OHSU)
and Peking University (Peking). Also, based on the information
provided with the phenotypic data, we excluded all those subjects
from our study which have questionable functional image quality
(QCRest1 = 0 of the phenotypic data sheet). Consider Table 1 for
an overview of the data used in our study. Different data centers
used different scanners and scanning parameters for capturing
data. For example KKI and NeuroIMAGE used Siemens Trio 3-
tesla scanner, OHSU used Siemens Magnetom TrioTim syngo MR
B17 scanner and Peking used Siemens Magnetom TrioTim syngo
MR B15 scanner. Some important scanning parameters used by
the data centers are listed in Table 2. Also different data acquisi-
tion parameters are used by different data centers such as KKI and
NeuroIMAGE captured data with subjects’ eyes closed, OHSU
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FIGURE 1 | Flowchart of our proposed method. (A) High power voxels
are selected, (B) voxels belong to each region of interest of CC200 map
are clustered together and represented by their cluster centers, (C) edges
of the network are formed based on the correlations of average fMRI
signals of the clusters, (D,E) inter network distances are computed in two
steps. First, for a pair of networks a node to node distance matrix is

computed. Next, each node of the network with fewer node count is
assigned to a node of the second network using Munkres algorithm such
that total matching distance is minimized. (F) MDS is used to form a
spatial configuration of the subjects on a low dimensional space based on
the inter-graph distance measures, (G) classification is performed in the
projected space.

Table 1 | Summary of the training and test data-sets from four test centers which are used in our work.

Center Sub Cnt Age (years) Male Female Control Combined Hyperactive Inattentive

TRAINING DATA-SET

Kennedy Krieger Institute 78 8–13 42 36 57 16 1 4

Neuro image sample 39 11–22 25 14 22 11 6 0

Oregon Health and Sci. Univ. 66 7–12 34 32 38 15 1 12

Peking University 183 8–17 135 48 114 22 0 47

TEST DATA-SET

Kennedy Krieger Institute 11 8–12 10 1 8 3 0 0

Neuro image sample 25 13–26 12 13 14 11 0 0

Oregon Health and Sci. Univ. 34 7–12 17 17 27 5 1 1

Peking University 51 8–15 32 19 27 9 1 14

The data was released for ADHD-200 global competition.

and Peking asked their subjects to keep their eyes open. While
OHSU showed a fixation cross at the screen, Peking didn’t show
anything. All research conducted by ADHD-200 data contribut-
ing sites were performed with local IRB approval, and contributed
in compliance with local IRB protocols. In compliance with the
Health Insurance Portability and Accountability Act(HIPAA) pri-
vacy rules, all data used for the experiments of this article are fully
anonymized. The competition organizers made sure that the 18
patient identifiers as well as face information are removed.

For all our experiments we used the preprocessed rs-fMRI data
released for the competition. The preprocessing is performed by
the competition organizers using the AFNI Cox (1996) and FSL

Jenkinson et al. (2012) tools and computed on Athena computer
clusters at the Virginia Tech advance research computing center.
All the fMRI scans are slice timing corrected, motion corrected
to the first image of the time series, registered on a 4× 4× 4 mm
voxel resolution Montreal Neurological Institute (MNI) space, fil-
tered using a bandpass filter (0.009 Hz <f <0.08 Hz), and blurred
with a 6-mm FWHM Gaussian filter. We used a binary mask, pro-
vided with each of the subjects, to find out the voxels which are
inside the brain volume. All the fMRI data volumes are of size
49× 58× 47 voxels, but the number of samples across time varies
among the data capturing centers. For further information about
the data and preprocessing steps and how to access the freely
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Table 2 | Table lists the summary of scan parameters for all the data

centers.

KKI NeuroIMAGE OHSU Peking

TR/TE (ms) 2500/30 1960/40 2500/30 2000/30

Slices 47 37 36 33

Thickness (mm) 3.0 3.0 3.8 3.5

FoV read (mm) 256 224 240 200

FoV phase (%) 100 100 100 100

Flip angel (degree) 75 80 90 90

available data we refer the interested readers to the following web
document (NITRC, 2011).

2.2. MULTIDIMENSIONAL SCALING
We provide a general overview of MDS for the sake of the com-
pleteness of the paper. MDS is a set of data analysis techniques
that enables one to understand the key dimensions of the objects
under investigation. The method and term were first introduce
by Torgerson (1952). Given a set of objects and the proximities
of each possible pairs of objects, MDS techniques can find a spa-
tial configuration of the objects based on their proximities. Here,
proximities suggest the overall dissimilarities or similarities of the
objects being considered. Hence, MDS can be viewed as a method
to project the objects from a space of unknown dimensions to a
space of specified dimensions such a way that the original prox-
imities of the objects are preserved as closely as possible. To state
it formally, given N numbers of objects and a dissimilarity (or
similarity) matrix DNxN, MDS projects the objects on a space of
given dimensions in such a way that D− Dp is minimized. Dp is
the distance matrix in the projected space.

Depending on how a dissimilarity (or similarity) matrix is
computed, MDS can be subdivided into direct and indirect meth-
ods. While for the direct methods numerical dissimilarity value
of each pair of objects can be directly computed, for the indi-
rect methods the dissimilarity values need to be derived from
other values like confusion data. MDS can be divided into classical
and nonmetric classes depending on how the problem is solved.
While the classical methods assume that the dissimilarity matrix
contains exact distances of the objects, the nonmetric methods
consider only the ordinal information of the object proximities.
For more details on the MDS we refer the interested readers to
Kruskal and Wish (1978). For our experiments we used a direct
classical MDS technique.

2.3. METHOD
The proposed method can be divided into three main parts such
as network construction, graph distance computation and ADHD
subject classification. The following sections describe each of the
parts in details.

2.3.1. Network construction
For all the subjects of the data set the resting state functional con-
nectivity networks are computed. The following steps describe
the network construction method and the concept is graphically
explained in Figures 1A–C.

The first step of the network construction method is the selec-
tion of the candidate voxels which constitute the network. We
observe that all the brain voxels do not contain valuable informa-
tion and including irrelevant voxels can degrade the classification
performance. This motivates us to select the voxels with high
activity level which are more effective in modeling the functional
connectivity networks and also in discriminating the ADHD and
the control groups of subjects. We substantiate our observation
by examining experimental data in Section 3, where we show that
the inclusion of all the brain voxels in the construction of the net-
work degrades classification performance. We consider the power
of the fMRI time series of a voxel as the measure of its activity.
The higher the power of a voxel, the higher is its activity level.
For a discrete time series T = {t1, t2, . . . , tn}, the power can be
computed as,

P(T) = 1

n

n∑
i= 1

ti
2 (1)

We then normalize the power values of all voxels between [0, 1].
The voxels are then ranked based on their power values. Finally,
for the network construction we select the voxels ranked with 98
percentile or more.

The second step of the network construction method is to
decide how to represent the nodes of the network. One easy solu-
tion is to assign every voxel to a node of the network. The problem
of doing this is that it makes the size of the network very large,
which is inefficient for further computational analysis. Also, the
network constructed in this fashion is full of redundant infor-
mation as the voxels in close spatial proximity have very similar
functional activity patterns. For these reasons we use a functional
regions of interests (ROIs) map, (CC200) proposed by Craddock
et al. (2011), to construct the nodes of the network. The map is
generated by parcellating whole brain resting state fMRI data into
190 spatially coherent regions of homogeneous functional con-
nectivity (FC). We cluster all the selected voxels belong to the
same ROIs and represent each of the clusters as a node of the
network. The issue concerning the best resolution of ROIs which
contains maximum information with minimum redundancy for
the functional study of the brains is not addressed in this work.

In the third step we construct the edges of the network and
compute the weights of the edges. We represent each node by the
average fMRI time series of all the voxels comprising the node.
Then, a correlation matrix is computed which contains correla-
tion values of the fMRI time series of all possible pairs of the nodes
in the network. For two nodes m and n with fMRI time series
mT = {m1, m2, . . . , mt} and nT = {n1, n2, . . . , nt} respectively,
the correlation value is computed as:

corr(mT , nT ) =

(
t

t∑
i= 1

mini

)
−
(

t∑
i= 1

mi

)(
t∑

i= 1

ni

)
√√√√√
⎡
⎣t

t∑
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i −

(
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i= 1

mi

)2
⎤
⎦
⎡
⎣t

t∑
i= 1

n2
i −

(
t∑

i= 1

ni

)2
⎤
⎦

, (2)

Note that the correlation values have range [−1, 1]. We empir-
ically verified that the networks constructed with only positive
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correlation values generate better classification accuracies than
the networks constructed with only negative correlation values
or absolute correlation values. Hence, the experimental results
reported use the networks with edges constructed with posi-
tive correlation values only. Also, we use a correlation threshold
corrTh to remove all the edges from the network which have
correlation values less than the threshold.

In the final step, we represent the network as an attributed
graph where each node of the network is represented by a set of
attributes. We call it the signature of a node. Given a node n, its
signature is defined as:

Signature(n) = 〈deg(n), deg(ngh(n)), pow(n), pow(ngh(n)), coord(n)
〉
,

(3)

where the functions, deg(.), ngh(.), pow(.), return sum of weights
of all the edges connected, the nodes connected by an edge and the
power of the input node respectively. coord(.) is the mean physical
coordinate of all the voxels comprising the node.

2.3.2. Graph distance
Once the functional networks are constructed for all of the sub-
jects in the data set, we compute the distances of all possible
pairs of networks as shown in Figure 1D. For a pair of networks
distance computation is a two step process. In the first step we
compute the distances of all the node pairs formed by selecting
one node from each of the networks. Given two networks G1 =
(V1, E1) and G2 = (V2, E2) and two nodes v1 ∈ V1 and v2 ∈ V2,
the distance between v1 and v2 is computed as the difference of
their signatures:

dist(v1, v2) =W · [d1, d2, d3, d4, d5]T, (4)

where W = [0.2, 0.1, 0.2, 0.1, 0.4] is the weight vector and
d1, d2, d3, d4, d5 are the differences of the node degrees, the
neighbor node degrees, the node powers, the neighbor node pow-
ers, and the physical locations of v1 and v2. All the difference
values are normalized between [0, 1] to enable proper compari-
son. The values for d1 and d3 are simply calculated by computing
degree and power differences of v1 and v2 and dividing them
respectively by the maximum degree and power encountered for
any of the nodes in the training set. To compute d2 first we sort the
neighbor degrees in descending orders. The node with less num-
ber of neighbor nodes is zero padded at the end to make the size
of the degree arrays same. Finally, we sum up the absolute differ-
ences of the array elements and divide the summed up value by
(maximumdegree ∗ size(degreearray)). d4 is computed in a simi-
lar fashion while power values are used instead of degrees. d5 is
calculated as follows:

d5 = 1

1+ 300e(|c1−c2|)/4
, (5)

where c1 and c2 are the physical coordinates of v1 and v2 respec-
tively. This is a sigmoid curve which restricts the value of d5 to the
range [0, 1]. The parameters of the equation are intuitively deter-
mined in such a manner that the value of d5 is close to zero when
|c1 − c2| = 0, low for the nodes in spatial locality and steeply
increasing for the nodes which are further apart. The components

of the weight vector W are determined intuitively considering
the following criteria. First, we want to make sure that the nodes
which are physically far apart should not match and therefore set
the highest weight corresponding to the physical distances of the
nodes. Next, we want to give the same importance to the degree
and power distances of the nodes. Hence, the weights correspond-
ing to the node degrees and power distances are assigned the
same value so are the neighbor node degree and power distances.
Finally, we assume that the importance of the node feature dis-
tances will be higher than the importance of the neighbor nodes
feature distances and hence weight for the neighbor node dis-
tances are lower than the node distances. In general the distance
of a pair of graphs should be calculated in such a way that the
nodes from the nearby regions with similar degrees and powers
and with similar neighbor nodes’ degree and power distributions
should match.

In the next step, we use the Munkres assignment algorithm
Munkres (1957) to assign all the nodes of one network to the
nodes of second network such a way that the total assignment
cost is minimized. This assignment cost is considered as dis-
tance of the network pair. Note that the numbers of nodes for
all the networks are not same. This is because when we select the
high power voxels there are some ROIs from which no voxels are
selected.

2.3.3. Classification
When the subjects are modeled as graphs, they cannot be directly
used for classification but need to be mapped onto a feature space.
A common way to deal with this is to compute different net-
work features which can be used for the classification (Zhu et al.,
2008; Bohland et al., 2012; Dey et al., 2012). We took a differ-
ent approach to solve this problem. As shown in Figures 1E,F,
we use the direct classical MDS technique to project the net-
works in a space with specified dimensions. The MDS method
takes the network distance matrix, computed in the previous
part of our method, as input and produces a spatial configu-
ration of the networks in the projected space. The number of
dimensions of the projected space can also be specified in the
MDS method. We got the best classification performances when
we use number of dimensions as 2. All the results of our pro-
posed method are generated on the 2 dimensional projected
space.

The classification is performed in the projected space using
the SVM Cortes and Vapnik (1995) with a polynomial kernel. We
choose to use the SVM classifiers for the following reasons. First,
the SVM can classify the data points from two classes, which are
not easily separable in the feature space, by using a kernel trick
to project the data points into a hyperspace where the separation
is easy. Second, the SVM regresses the feature space without over
fitting on the data by allowing miss classification with a penalty.
Experimental results show that the classifiers perform better when
trained separately on the male and female subjects. This indicates
that there may be considerable differences in the functional con-
nectivity networks of the male and female subject groups. Our
result is in concordance of the work of Bálint et al. (2009) who
showed that the male and female ADHD subjects have different
levels of functioning.
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FIGURE 2 | Figure plots corrTh vs. detection rates of our method on the (A) training data sets and (B) test data sets.

2.3.4. Experimental setup
The setups for all the different experiments performed are
described in this section. Experiment results are listed in section 3.

For all our experiments we used MATLAB (version R2008b)
implementations of the MDS and SVM. For the MDS, we
used the function name mdsscale with the criterion met-
ricstress and MaxIter = 100000. For the SVM, we used the
functions named svmtrain (with polynomial kernel) and svm-
predict to train the classifiers and test the detection accuracies
respectively.

For all the training and test sets of all the data centers,
three different sets of experiments are performed. While the first
set of experiments is performed on all the subjects, the sec-
ond and third sets of experiments are performed on the male
and female groups separately. Please note that the classifiers are
trained separately on the training and test sets of each data
center. Hence, in total [ (4 trainingsets+ 4testsets) ∗ 3 ] 24 dif-
ferent sets of experiments are performed. For the training sets,
detection accuracies are achieved by leave one out cross vali-
dation method. For the test sets, the classifiers are trained on
the subjects of the corresponding training sets and detections
are performed on the test sets. For each of these sets of exper-
iments we construct the networks by varying the corrTh from
0.30 to 0.90 with a step size of 0.10. The corrTh is explained
in the section 2.3.1 while describing the network construction
steps.

For the purpose of comparing our results we perform the
same classification experiments using some standard graph fea-
tures computed on the brain functional connectivity networks.
The features are computed using the Brain Connectivity Toolbox
(BCT) Rubinov and Sporns (2010), which contains a large selec-
tion of complex network measures commonly used for character-
izing structural and functional brain connectivity data sets. The
features we used are the degree, the topological overlap, the clus-
tering coefficient, the local efficiency and the rich club coefficient.
Following are the brief descriptions about the network features
used:

• Degree of a node is the number of nodes in the network it is
connected to by some edges.

• The mth step generalized topological overlap measure quanti-
fies the extent to which a pair of nodes have similar mth step
neighbors. Where mth step neighbors are nodes that are reach-
able by a path of at most length m. We got best results for
m = 5.
• Clustering coefficient is the fraction of triangles around a node.

In other words, it is the ratio of the neighbor nodes count
which are connected to each other to the total number of
neighbor nodes of the node.
• Local efficiency is the global efficiency computed on node

neighborhoods. Where global efficiency is the average of
inverse shortest path lengths in the network.
• Rich club coefficient at level k is the fraction of edges that con-

nect nodes of degree k or higher out of the maximum number
of edges that such nodes might share. We compute the coef-
ficients for all the k values where 0 ≤ k ≤ K. Here, k is an
integer and K is the maximum degree found for any node of
the training data.

Since each of the network features returns a feature vector whose
size depends on the node count of the network, we had to make
the node counts same for all the subjects to make the feature sizes
same. For this reason we construct the networks in a little differ-
ent way. Instead of using one power threshold value for selecting
highly active voxels for the whole brain, we use separate power
thresholds for each of the ROIs of CC200 map. For each of the
ROIs, we select the voxels ranked 98 percentile or higher based on
their power values. The rest of the network construction process
is same as before. The experiments are also set up in the similar
fashion as described for our proposed method.

To better understand the physical interpretations of each of
the dimensions of the MDS projected space, we performed some
analysis. First we compute some global feature values for each of
the networks of the KKI training set. A brief description of the
computed features is as follows:

• Density: it is the fraction of present connection to all possible
connection of the network.
• Global efficiency: it is the average inverse shortest path lengths

of the network.
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Table 3 | Summary of the results: table shows the best detection rates achieved (along with their specificities and sensitivities) on all the

training sets using the proposed method.

All subjects

Data centers Training data sets Test data sets corrTh

Detection rate Specificity Sensitivity Detection rate Specificity Sensitivity

KKI 75.64 100 9.52 54.55 62.50 33.33 0.8

NeuroIMAGE 64.10 68.18 58.82 48.00 64.29 27.27 0.5

OHSU 60.61 65.79 53.53 82.35 89.29 50.00 0.9

Peking 61.20 86.61 21.13 58.82 92.59 20.83 0.6

Average 64.48 84.71 30.66 62.81 83.12 27.27

Male female separate

KKI 76.92 90.48 36.84 54.55 62.50 33.33 0.5

NeuroIMAGE 76.92 81.82 70.59 100 100 100 0.5

OHSU 68.18 78.95 53.57 61.76 60.71 66.67 0.3

Peking 67.21 83.93 40.85 72.55 74.07 70.83 0.3

Average 70.49 84.53 46.72 73.55 72.73 75.00

The corrTh values are selected from the training sets where we achieve best detection rates. The rates on the test sets for the corresponding corrTh values are

reported. The values under the heading “Male Female Separate” are computed by averaging the accuracies on the male and female groups.

FIGURE 3 | Summary of the results: figure plots the best detection rates

achieved on all the training and test sets using five commonly used

network features implemented in the BCT, our method and our method

without the high power voxel selection step. Features 1–5 are the degree,
topological overlap, clustering coefficient, local efficiency and rich club

coefficient respectively. (A,B) Show the results on the training sets when the
classification is performed on all the subjects and on the male and female
subjects separately. (C,D) Show the similar results on test sets. The
detection rates of (B,D) are computed by averaging the detection rates on
the male and female groups.

• Rich club coefficient: as described in section 3. The correla-
tion values reported with x coordinates of the male and female
groups are achieved when k = 11 and k = 1 respectively.
• High power node fraction: it is the fraction of the nodes with

power greater than a threshold to the total number of nodes of

the network. The correlation value reported with x coordinates
of female group is achieved when powTH = 0.85.

For each of the computed global features, two separate feature
vectors are formed for the male and female group of subjects.
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FIGURE 4 | Figure plots the average detection accuracies on all

the data centers when inter-graph distances are calculated using

different subsets of node attributes. The classification is

performed on the male and female groups of subjects separately
to achieve the reported results on (A) training data sets and (B)

test data sets.

Please note here each feature vector represents a group of subjects
(for e.g., the male and female groups) but not the individual sub-
jects. Then the correlations of the feature vectors are computed
with the x and y coordinates of the 2 dimensional space where
networks are projected using the MDS method.

To show the importance of the high power voxel selection step
we perform a set of experiments using our method but without
the voxel selection step. Finally, we experimentally validate the
effectiveness of the node attribute set used in out method. For
this purpose, we compute the inter-graph distances using dif-
ferent subsets of the attribute set used. For each of the subsets,
inter-graph distances are computed separately followed by the
projection of the subjects to a low dimensional space using MDS
and classification using SVM. It is not possible for us to com-
pute results for all the possible subsets as there can be 31 different
subsets for 5 attributes. Instead we start with one attribute and
keep on adding attributes in the subsets. The results show that
the classification accuracies steadily increase as we kept on adding
attributes in the subset. Finally, we validate on all combinations
of 4 attributes to show that even missing one of the attributes of
our attribute set decreases the classification accuracy.

3. RESULTS
The detection rates of our method, when classification is per-
formed separately on the male and female subjects, are plotted
in Figure 2. The plots show how the detection rates vary for the
different data centers and with respect to different corrTh values.
In Table 3 we reported the best detection rates of our method
along with the specificity and sensitivity values for all the training
sets. The corrTh values corresponding to the best detection rates
on the training sets are selected and used to get the detection rates
for the test centers. One interesting fact is that in most of the cases
we get better classification accuracies when experiments are per-
formed on the male and female subjects separately. We achieve
an average detection rate of 64.48% on the training data sets and
an average detection rate of 62.81% on the test data sets when
classification is performed on all the subjects and 70.49% on the
training data sets and an average detection rate of 73.55% on the
test data sets when classification is performed separately on the
male and female subjects.

The detection rates of the classification experiments per-
formed using the standard network features are shown in Figure 3
along with the results of our method. The results are reported
separately for each of the data canters as well as the average detec-
tion rates are mentioned. It can be seen in almost all of the cases
our method performs better than the network features. Also, in
average, none of the features performs better than our method
when used separately on the male and female subjects. This justi-
fies the need of a specialized method for the analysis of the brain
functional problems like ADHD. Please note that we ignored the
classification results if any of the specificity or sensitivity is zero.
This implies that either all the subjects are classified as ADHD
or control. This is why for some of the network features the
detection accuracies are zero in Figure 3. Figure 3 also shows the
best detection rates of our method when no power threshold is
applied for the voxel selection during the network construction
step. The lower detection accuracies of these experiments com-
pared to our results justify the importance of the voxel selection
step.

Figure 4 reports the results when different subsets of node
attributes are used for the calculation of inter-graph distances.
For each of the subsets the average classification accuracies on all
the data centers are plotted in the Figure. The results reported are
achieved when classification is performed separately on the male
and female subject groups. As it can be seen, the best detection
rates are achieved when we use all the attributes in the set. This
justifies the importance of using all the attributes in the set for
inter-graph distance calculation.

4. DISCUSSION
In this work we propose a novel framework for automatic detec-
tion of the ADHD subjects using the rs-fMRI data of brain. For
this purpose we construct the functional connectivity network of
the brain and represented it as attributed graph. The first step of
the network construction method is the efficient selection of the
voxels which will be best to capture the functional activities of the
brains with the minimum redundancy. We select the highly active
voxels for the construction of the networks where voxel activ-
ity levels are measured based on the power of their fMRI time
series. Often signal to noise ratio of low active voxel time series
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FIGURE 5 | Subjects from KKI training set plotted on the MDS projected space. (A) all subjects, (B) subjects of the male group, (C) subjects of the female
group. The spaces are segmented during the SVM training phase.

are very high. Also, these noisy time series can have considerable
correlations with each other which lead to the adding of spurious
edges or changing the edge weights of the networks. The intuition
behind selection of the highly active voxels is to reduce this noise
which can affect the correlation weights of the network edges. As
shown in the plots of Figures 3A,B, the voxel selection process in
general helps to improve the classification scores. But, we have not
experimentally verified what is the ideal power threshold value
for this. We used a functional ROI map (CC200) to construct
the nodes by clustering the selected voxels which belong to the
same ROIs. The active voxel selection step along with the use of
CC200 map helped us to reduce the computational cost of our
algorithm by a great deal. Compared to around 28000 voxels per
brain volume, the average node count of the constructed networks
is around 60.

Next, we model the networks as attributed graphs where each
node of the networks has its signature. These signatures of the
nodes contain information about the local structures of the net-
works. Then, at the time of inter-graph distance computation
step, the Munkres algorithm is used to match these local descrip-
tors in a globally optimized fashion. To discourage the algorithm
from matching two nodes which are far apart in the physical

space, we uses the Euclidian distance of their coordinates as a
parameter of the matching cost computation.

The inter-graph distance measures allow us to use the MDS
technique to map the networks from an unknown space to a
2 dimensional projected space. Figure 5 shows the spacial con-
figuration of the subjects of the KKI training set when mapped
to their projected space. As it can be seen, the ADHD subjects
can be better segmented when the male and female groups are
plotted separately compared to when all the subjects are plot-
ted together. This fact is reflected in the experimental validations
where we consistently get better results when classification is done
separately on the male and female groups.

We perform an analysis to understand the physical interpre-
tation of the different dimensions of the MDS projected space.
For this purpose we computed the correlations of the differ-
ent global features of the networks with their coordinates in the
projected space. The correlation values are reported in Table 4.
As it can be seen, the x coordinates of the projected spaces of
the male and female groups are highly correlated with the den-
sity and rich club coefficient features and moderately correlated
with the global efficiency. It should be noted that these three fea-
tures capture different aspect of network edge structures. The last
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Table 4 | Correlations of the global features of the networks with the

x and y dimensions of the projected spaces of the male and female

groups.

Global features x male y male x female y female

Density 0.6906 0.3248 0.8310 0.1070

Global efficiency 0.4594 0.1924 0.5391 0.2578

Rich club coefficient 0.6367 0.4228 0.6482 0.4146

High power node fraction 0.3055 0.1984 0.1338 0.4942

feature shows some correlation with the y coordinate of female
group.

To justify the importance of a specialized method for analysis
of the ADHD, we compared our results with some of the standard
brain connectivity measures heavily used for functional analysis
of the brain. As shown in Figure 3 our method out performs the
standard network features by a large margin. Only the topological
overlap feature performs similar to our method on the training
data sets.

Figure 2 shows how detection rates vary with different cor-
relation thresholds used for the network computation. It can be
seen that the peaks of the detection rates are not same for the
different data centers. There are two main potential reasons for
this variation. First, there are variations in experimental protocols
followed by the different data centers. Also, to capture the data
different data centers used different scanner models and scanning
parameters. Second, the subjects, participated in the different
centers, have different age distributions. Mehnert et al. (2013)
found changes of functional connectivity measures with age in
human brain. The variation of detection rate patterns across the
centers indicates that there is a need to follow a more standardize
experimental procedure for the future studies.

To conclude, we develop a novel classification framework
which is modeled in a computationally efficient fashion as we
are able to drastically reduce the functional connectivity networks
sizes by efficiently selecting voxels and clustering them. Also, our
approach is able to produces impressive classification accuracies
(70.49% on training data sets and 73.55% on test data sets) espe-
cially on the test sets where we get the better detection accuracies
than any of the previously reported results (69.59% by Dey et al.,
2012 was the previous best). For this purpose we construct the
functional connectivity networks of the brains and use their inter-
network distance measures to project them onto a 2 dimensional
space. We provide physical interpretations of the dimensions of
the projected space in our analysis. Also, we show the superior
performance of our method over the standard network measures.
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We present a preliminary study of a thalamo-cortico-thalamic (TCT) implementation on
SpiNNaker (Spiking Neural Network architecture), a brain inspired hardware platform
designed to incorporate the inherent biological properties of parallelism, fault tolerance
and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating
biologically plausible computational models. Our focus in this work is to design a
TCT framework that can be simulated on SpiNNaker to mimic dynamical behavior
similar to Electroencephalogram (EEG) time and power-spectra signatures in sleep-wake
transition. The scale of the model is minimized for simplicity in this proof-of-concept
study; thus the total number of spiking neurons is ≈1000 and represents a “mini-
column” of the thalamocortical tissue. All data on model structure, synaptic layout
and parameters is inspired from previous studies and abstracted at a level that is
appropriate to the aims of the current study as well as computationally suitable for
model simulation on a small 4-chip SpiNNaker system. The initial results from selective
deletion of synaptic connectivity parameters in the model show similarity with EEG
power spectra characteristics of sleep and wakefulness. These observations provide a
positive perspective and a basis for future implementation of a very large scale biologically
plausible model of thalamo-cortico-thalamic interactivity—the essential brain circuit that
regulates the biological sleep-wake cycle and associated EEG rhythms.

Keywords: SpiNNaker, thalamo-cortico-thalamic circuit, computational model, sleep, Izhikevich model, synaptic

connectivity, PyNN

1. INTRODUCTION
Computational models are being adopted at an increasing rate as
a tool to investigate the cellular mechanisms of brain rhythms
in both normal and pathological conditions (Aradi and Érdi,
2006; Breakspear et al., 2010; Terry et al., 2011). While com-
putational resource is an obvious constraint in such endeavors,
two further significant obstacles in mimicking the biology are
parallelizing neuronal activity, and “de-syncing” the population
activity from the master-clock of the computer. Our longer-term
interest is in mimicking electroencephalogram (EEG) signatures
of the sleep-wake cycle, by simulating biologically plausible com-
putational models using biologically plausible computational
techniques. In recent years the University of Manchester has been
developing SpiNNaker (Spiking Neural Network architecture), a
bespoke massively parallel machine to mimic the inherent par-
allelism of neuronal activity in real time (Furber et al., 2013).
The brain-inspired parallel and asynchronous architecture of
SpiNNaker permits biologically plausible computation of brain
models—a feature that would otherwise rely on heavyweight
software and its compilation on conventional Von-Neumann
architectures, and yet achieve minimal parallelism. The study
presented here is an initial attempt to design and implement

a thalamo-cortico-thalamic (TCT) circuitry on the intrinsically
parallel SpiNNaker, which can then be scaled up to mimic bio-
logically plausible EEG signatures of the sleep-wake cycle. The
purpose of this work is to demonstrate, as a proof of concept, that
such a model can be implemented on SpiNNaker, and to inves-
tigate the benefits and drawbacks of this approach. It is not our
intention here to produce a model which fully and correctly repli-
cates all brain rhythms measured by EEG in regard to the TCT
circuitry; capturing the complex dynamics involved in that system
is beyond the scope of the current work.

Neuronal dynamics recorded in EEG, often termed brain
rhythms (Buzsáki, 2006), are an inexpensive and popular
means of correlating brain activity with its various functional
states (Wright and Liley, 1996; Nunez, 2000). The feed-forward
and feed-back circuitry between the thalamus and the cortex has
long since been known to play a key role in modulating brain
rhythms associated with the various sleep stages as well as the
sleep-wake transition (Steriade et al., 1993; Steriade, 2003, 2005;
Crunelli et al., 2011). Computational models of the TCT brain
circuit have therefore been the basis for studying neuronal mech-
anisms in sleep (Lumer et al., 1997a; Hill and Tononi, 2005; Traub
et al., 2005; Bojak et al., 2011; Olbrich et al., 2011; Robinson
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et al., 2011) as well as in conditions where the EEG is qualita-
tively similar to certain sleep stages such as epilepsy (Breakspear
et al., 2006) and under anaesthesia (Hutt and Longtin, 2010).
While all such models refer to a similar holistic structure of the
thalamocortical circuit, the models’ internal structure, simulation
platforms and parameterizations are significantly diverse. Thus,
a fundamental aspect in computational modeling of the brain is
the level of abstraction; the level of biological detail incorporated
in a model needs to be appropriate to the problem at hand. For
example, Olbrich et al. (2011) has attempted a multi-scale (time)
model architecture in sleep, while (Bojak et al., 2011) has stressed
on multi-modal models. On the other hand, (Hill and Tononi,
2005) have based their model on that of Lumer et al. (1997a,b)
and have looked into a multi-columnar model of the thalamocor-
tical circuit to mimic brain rhythms of sleep and wakefulness as
well as to understand memory consolidation during sleep (Nere
et al., 2013).

Another key aspect is the source of experimental data for both
model structure and parameterizations. Comprehensive data on
synaptic connectivity in the mammalian visual cortex is avail-
able in the works of Binzegger et al. (2004); Douglas and Martin
(2004) and Neymotin et al. (2011) with some estimation for
parameters which were not available from physiological studies.
Further, extensive physiological data on rodent and other mam-
malian lateral geniculate nucleus (LGN: the thalamic nucleus in
the visual pathway) is available in Horn et al. (2000); Sherman and
Guillery (2001); and Jones (2007). Based on these thalamic and
cortical physiological datasets as well as DTI (Diffusion Tensor
Imaging) data obtained from two human samples, Izhikevich
and Edelmann (2008a) have presented a comprehensive TCT cir-
cuit using minimal parameter spiking neural models (Izhikevich,
2003) to mimic spiking population behavior. The SpiNNaker-
based TCT model presented here is at the level of abstraction
of the model in Izhikevich (2003), and has two modules viz. a
thalamic module and a cortical module. The design and layout
of the thalamic module is as in Bhattacharya et al. (2011) and is
based on physiological data obtained from Sherman (2006). The
cortical module layout and parameterizations are based on a pre-
vious implementation on SpiNNaker (Sharp et al., 2012) that was
designed to test fast, stable and power-efficient performance on
SpiNNaker when compared with other available platforms. The
detailed modeling approach and parameterizations is covered in
section 2. To the best of our knowledge, we are not aware of any
prior instance of mimicking EEG signals using the SpiNNaker
machine; similarly, this is the first instance of implementation of
a TCT model within the SpiNNaker framework.

In section 3, we present the preliminary results from this study
based on our observation of the membrane potential time-series
and power spectra of the cell populations. Specifically, the out-
put of the excitatory cells of the thalamus and the cortical layer
4 are studied as a part of the first set of results from the TCT
model simulation on SpiNNaker. An average of three trial runs
of the model with all parameters at their initial values showed the
membrane potential of both cell populations as noisy time series
outputs with the dominant frequency of oscillation within the
alpha band (8–12 Hz), a characteristic of quiet wakefulness. Next,
we performed preliminary engineering of the model parameters

to induce a sleep-wake transitional behavior in the model. The
particular case we examined, which is outlined in more detail
in section 3, was that of disconnecting the thalamic reticular
nucleus (TRN) cell population in the model. This was designed
to alter the thalamo-cortico-thalamic loop, which is responsi-
ble for the maintenance of the quiet wakefulness alpha rhythm,
and simulate the situation during sleep in which cortical areas
become functionally disconnected (Massimini et al., 2005). It
thus provides a good test of the neuronal dynamics of the model
in a situation in which the real dynamics are reasonably well
understood. In previous (Bhattacharya, 2013; Bhattacharya et al.,
2013) as well as ongoing (unpublished) work, lumped parame-
ter models of neuronal population of the thalamocortical circuits
[also known as neural mass models (Marreiros et al., 2009)]
have shown dependence on the TRN connectivity for mimick-
ing qualitative dynamics as seen in EEG patterns of sleep and
quiet wakefulness. Our results showed some important similar-
ities with real sleep EEG time series data (also shown) when the
TRN population is disconnected. However, significant differences
with sleep power spectral data have also been observed; this sug-
gests the model requires further tuning before it can fully capture
sleep/wake thalamocortical dynamics.

It is important to note that the purpose of the work presented
here is to design a working model structure of the TCT circuit on
SpiNNaker such that the model dynamics show some similarity to
known dynamics of sleep and wake EEG in terms of characteristic
spectral power; the intention is not to present a fully tuned model
or a detailed exploration of those dynamics. A discussion on the
motivation of the current work, the drawbacks, the implications
of the initial results presented and future work plans is provided
in section 4.

2. MATERIALS AND METHODS
In this section, we first give a brief background of the SpiNNaker
architecture, followed by a detailed description of the TCT model
and modeling methods adopted in this work. The simulation
methods, and methods for observing results on the SpiNNaker
platform are also outlined.

2.1. THE SpiNNaker MACHINE AND TOOL CHAIN
2.1.1. The architecture
The SpiNNaker project, led by the University of Manchester and
its partners in academia and industry, aims to create a biologically
inspired high performance computing architecture for the simu-
lation of large real-time Spiking Neural Networks (Furber et al.,
2006, 2013). It incorporates characteristics of fault-tolerance and
power frugality, similar to those of the biological brain, whose
low-power and resilient performance is achieved through exten-
sive parallel computation.

A SpiNNaker system is formed by the interconnection of
SpiNNaker chips and boards (Figure 1), each chip being a cus-
tom Application Specific Integrated Circuit (ASIC) containing
18 ARM processors—the likes of which are found in mobile
telephones. Each processor is low-power in operation, but fully
programmable, permitting each to execute arbitrary neural and
synaptic models. Spikes emitted by a simulated neuron in oper-
ation are conveyed as short packets to efferent neurons using
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FIGURE 1 | A 48 chip SpiNNaker board (228 × 233 mm), the building

block from which larger systems will be constructed.

a bespoke network on chip, and further afield to processors
on neighboring chips using a network of connections which
resiliently interconnect the chips to form the SpiNNaker machine.

The maximum number of chips in a SpiNNaker configura-
tion is in excess of 65,000, and with 18 processors on each chip
a machine can exceed one million processors. Even with the
medium performance ARM processors used it is possible to sim-
ulate multiple neurons on each processor in real time, depending
on their model complexity, potentially delivering many hundreds
of millions of point-type neurons in a full deployment (Furber
et al., 2006).

2.1.2. Programming SpiNNaker
The selection of neuron and synaptic models and their intercon-
nectivity is achieved by the user through a high-level modeling
language. This flexible approach becomes increasingly important
as networks grow in size, and it becomes impractical to spec-
ify each individual neuron and its connections—the network
description is therefore made through multiple levels of hierar-
chy. The primary language used in the specification of Spiking
Neural Networks to operate on SpiNNaker is PyNN (Davison
et al., 2009), which is a popular description specification.
Support of the PyNN library is enabled by a software tool-chain
coined “PACMAN,” which has been developed to take this high
level description of the network and perform Partitioning And
Configuration MANagement (Galluppi et al., 2012). For example
a 10,000 neuron network is analyzed by PACMAN, and parti-
tioned into chunks which are manageable for a single processor
using the neuron model specified. If each processor is able to han-
dle 100 neurons of that type, then the partition size necessitates
100 processors and the tools take care of this partitioning and
the necessary inter-connectivity. The next stage involves allocat-
ing the physical processors to this task based on the topology of

the target SpiNNaker machine, the loading of data to it, and the
execution and control of the simulation.

2.1.3. Results recovery
There are two main methods of accessing the results on
SpiNNaker. Firstly PyNN may be used to direct the simulation
to make recordings of parameters periodically, for example neu-
ron membrane potentials over time; and after the simulation this
information may be recovered, processed and plotted. Secondly,
it is possible to recover data from the simulation whilst it is “in-
flight”—also requested through a PyNN parameter, for example
to direct spike outputs to a “dummy” efferent neuron whose role
is to collect and distribute spikes to an external receiver. This sec-
ond method becomes particularly useful in simulations which
run over an extended period, for example on a robot where a
control loop is to be closed (Denk et al., 2013), or to simulate mul-
tiple channels of activity simultaneously, and to this end real-time
visualization software (VisRT) has been developed (Patterson
et al., 2012). In this study we make use of both methods, data is
recovered post-simulation into MATLAB for analysis, and VisRT
is used to gain an insight into the firing rates and rhythms seen in
the simulations for EEG-type channel plots.

2.2. THE THALAMO-CORTICO-THALAMIC MODEL
The TCT model has two modules: cortical and thalamic; all infor-
mation on the model parameters are provided in Tables 2, 3.
The thalamic module consists of the thalamocortical relay (TCR)
cells, the inhibitory interneurons (IN) and the thalamic reticu-
lar nucleus (TRN). The synaptic connectivity layout and values
of the thalamic module cell populations are sourced from Horn
et al. (2000); Sherman (2006); and Jones (2007) and are as in our
previous work (Bhattacharya et al., 2011). The cortical module
cell populations are as described previously in Sharp et al. (2012)
and are further subdivided into layers 2–6. Layer 1 is ignored
in keeping with standard practice due to sparsity of neurons in
this layer. Similarly, layers 2 and 3 are treated as a single layer
in keeping with models based on physiology of the mammalian
visual cortex (Binzegger et al., 2009). Each cortical layer consists
of pyramidal (PY), basket (B) and non-basket (NB) cell popula-
tions. Layer 4 has an additional cell population of spiny-stellate
(SS) cells.

The number of neurons in each cell population of the thalamic
and cortical modules are provided in Tables 3B,C, respectively.
The data on the proportion of cells of each type in the corti-
cal layers are scaled versions of Izhikevich and Edelmann (2008a)
and Sharp et al. (2012), which in turn are inspired by data from
visual cortex of the cat as provided in Binzegger et al. (2004) and
Douglas and Martin (2004). Based on literature reporting phys-
iological data, it is estimated in Hill and Tononi (2005) that a
thalamocortical column containing 94 (i.e.,≈100) neurons cover
a surface area of 1454 μm2. The total number of cells in the TCT
model is 1090 (i.e., ≈1000) and may therefore be thought to rep-
resent a column of interconnected neurons covering ≈0.15 mm2

of thalamocortical tissue.
Each synaptic connectivity parameter between two cell pop-

ulations has two attributes: (1) a probability of connection
P indicating the absence of all-to-all intra- and inter-module
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connectivity; and (2) the weight of the synaptic connectivity C,
expressed as a percentage of the total number of synapses made
on an individual synaptic node on the post-synaptic cell. In the
cortical module, all P are identical to previous work (see Table 2,
in Sharp et al., 2012) to ensure stability and comparability dur-
ing simulation on SpiNNaker; the reader may refer to this work
for details on how the specific values were obtained. All values
for C in the cortical module are as in Izhikevich and Edelmann
(2008a) and Sharp et al. (2012). In the thalamic module, and for
connections between thalamic and cortical cells, the connection
probabilities P are arbitrarily set to 0.25 for the sake of simplic-
ity in this study. The intra-thalamic and corticothalamic values
for C are sourced from previous work (Bhattacharya et al., 2011),
which in turn are based on Horn et al. (2000) and Jones (2007).
The values of C for the thalamocortical efferents to the SS and B
cells of Layer 4 are sourced from Binzegger et al. (2004).

The TCR and IN cells of the thalamic module in the TCT
model are fed with a spike source that follows a Poisson distribu-
tion with a spiking rate of 25 Hz and an all-to-all connectivity. The
inter-module connectivities i.e., connections between the cortical
module and the thalamic modules as well as between the external
input source and thalamic module have an induced delay sim-
ulated by a uniformly distributed random number generator in
PyNN.

2.3. SPIKING DYNAMICS OF THE THALAMO-CORTICO-THALAMIC
MODEL NEURONS

Each neuron in the TCT model is an implementation of the spik-
ing neuron model proposed in Izhikevich (2003), which is now a
widely used template for modeling spiking neuron behavior due
to its computational efficiency and rich dynamics, and is com-
monly referred to as the “Izhikevich model.” Our longer-term
objective is to use the Izhikevich model to implement an appro-
priate spiking behavior for the neurons in each population of
the TCT model based on experimental observations in biology.
An excellent demonstration of how a changing set of parameter
values in the Izhikevich model can simulate the various spiking
dynamics of thalamocortical neurons is provided in Izhikevich
(2004). We have adopted three types of spiking behavior in the
model:

2.3.1. Tonic spiking
Tonic spiking refers to a continuous train of spikes in response to
an external stimulus and is known to be adopted by a cell when

it is communicating information (McCormick and Feeser, 1990);
for example tonic spiking of the TCR cells of the LGN indicate
that they are in a “driver” mode and are passing retinal infor-
mation to the visual cortex (Sherman, 2005). The tonic mode of
spiking can be further classified based on a (qualitative) character-
istic frequency of firing in response to a stimulus: regular spiking
(RS) and fast spiking (FS). A comparison of RS and FS dynamics
simulated using Izhikevich’s model and from in vitro recordings
on thalamocortical neurons is demonstrated in Izhikevich and
Edelmann (2008a) (Figure 10 in the Supplementary Material of
the cited work). We follow this work and parameterize the PY,
SS and TCR populations in the TCT model to adopt similar RS
dynamics in response to stimuli, while the cortical B cells are
parameterized to respond in an FS mode. It may be noted that
all the cell populations displaying the RS mode are excitatory in
nature, while the inhibitory B cell population respond in a FS
mode. For simplicity, we adopt a similar spiking behavior for the
inhibitory IN cell population of the thalamus.

2.3.2. Spike frequency adaptation
This terminology is used to define spiking dynamics where the
inter-spike interval is low at the onset of the stimulus but “adapts”
with passing time and the spiking frequency decreases. The cor-
tical NB cells are modeled in Izhikevich and Edelmann (2008b)
to exhibit a low threshold spiking (LTS) behavior, which is a type
of spike frequency adaptation dynamics. We follow this work and
parameterize the TRN cells in the TCT model to respond in an
LTS mode to a step stimulus.

2.3.3. Tonic bursting
Bursting behavior in neural dynamics refers to a series of spikes in
quick succession; tonic bursting would thus refer to a train of such
bursts of spikes. The burst spiking mode of the inhibitory TRN
cell population is believed to be centrally important in generat-
ing the synchronized oscillations observed in EEG during slow
wave sleep (Golomb et al., 1994; Destexhe and Sejnowski, 2002).
The TRN cell population in the TCT model is parameterized to
respond in a tonic bursting mode.

All data used to parameterize the cell populations in the above-
mentioned spiking modes is provided in Table 1 and based on the
implementation of the Izhikevich model in Python by Galbraith
(2011). The excitatory and inhibitory synaptic parameters are set
by empirical study in PyNN corresponding to a set of parame-
ters to simulate the desired spiking dynamics. The corresponding

Table 1 | The parameter set corresponding to the spiking dynamics shown in Figure 2.

(dimensionless parameters) (mV) (ms−1) (mA) TCT model cells

a b c d u v τE
syn τ I

syn I

Regular spiking (RS) 0.02 0.2 −65 6 −60 0 5 6 9 PY, SS, TCR

Fast spiking (FS) 0.1 0.2 −65 6 −70 0 5 6 9 B, IN

Low threshold spiking (LTS) 0.01 0.2 −65 6 −70 0 5 6 25 NB

Tonic bursting 0.02 0.25 −50 2 −70 0 5 6 10 TRN

All parameters are based on those provided in Galbraith (2011) for simulation using Python software. The final parameter values are adjusted by empirical study to

simulate similar qualitative spiking dynamics on SpiNNaker.
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dynamics of a single example neuron in a population in
response to an excitatory or inhibitory stimulus is shown in
Figure 2.

3. RESULTS
A typical human EEG recording taken during quiet wakeful-
ness and sleep (Durrant et al., 2013) is shown in Figures 3A–D.
Sleep in birds and mammals is divided into REM (Rapid-Eye-
Movement) and non-REM parts. Non-REM sleep is further
divided into light/transitional sleep (N1), which makes up 5–10%
of the night and is not considered functionally significant; normal
sleep (N2; Figure 3B), which is characterized by the presence of
spindles and K-complexes and is present for 40–50% of the night;
slow wave sleep (N3/SWS; Figure 3C) which is the deepest form
of sleep and characterized by the presence of high-amplitude low-
frequency (“slow”) waves. REM sleep (Figure 3D) is characterized
by a mixed frequency waveform, low muscle tone and rapid eye
movements. Sleep EEG is classified into these different stages
based on 30 s epochs according to standardized sleep scoring cri-
teria (Rechtschaffen and Kales, 1968; Ancoli-Israel et al., 2007).
As a complement to the characteristic waveforms, power spectral
density also differs considerably between sleep stages (Figure 3E).
In particular, spectral power in sleep and quiet wakefulness is
generally analyzed in four bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), and sigma (sometimes called the spindle band;
12–16 Hz). Higher frequencies in the beta and gamma ranges are
associated with active wakefulness and task completion and are
not involved in identifying sleep or wake patterns; these bands are

not considered further here. In Figure 3E, the power spectra in
all the sleep stages (REM and non-REM) are dominated by the
delta band. In contrast, the power spectra in quiet wakefulness is
dominated by the alpha band.

In order to test the ability of the model to capture some
basic neuronal dynamics, we ran simulations and compared the
model output to the recorded EEG data in Figure 3. The aver-
age membrane potential of all neurons in each cell population of
the TCT model is considered as the output membrane potential
of the population. Although EEG is believed to represent den-
dritic post-synaptic potentials from pyramidal neurons in the
cerebral cortex, the TCR cell output in thalamocortical popu-
lation models have been shown to mimic alpha rhythmic and
slow-wave EEG characteristics (da Silva et al., 1974; Suffczyński,
2000; Bhattacharya et al., 2013). Along these lines, in this work,
we focus on the TCR cells of the thalamic module and the main
target of their efferents to the cortical module (Gil et al., 1999;
Lee and Sherman, 2008) viz. the Pyramidal cells in Layer 4 (PY4).
Recent studies (Crunelli et al., 2011; Crunelli and Hughes, 2012)
have identified the central role of the inhibitory neurons of the
TRN acting via the TCR neurons in generating both slow oscilla-
tions and spindles that characterize non-REM sleep. In previous
work, we have shown the pivotal role of the TRN cell afferents
in effecting a time-series bifurcation of the TCR cell output in
a population model of the thalamocortical circuit (Bhattacharya
et al., 2013). In this work, we present a preliminary test on the
TCT model by studying the output time series and power spectra
with all model parameters at their base values. We then compare
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FIGURE 2 | (A) Regular spiking (RS), (B) Fast spiking (FS), (C) Low threshold
spiking (LTS), and (D) Tonic bursting dynamics of the Izhikevich
model (Izhikevich, 2003, 2004) simulated on the SpiNNaker chip using the

PyNN interfacing software. Plots in the left (right)-hand-side column
correspond to an excitatory (inhibitory) current stimulus applied between 250
and 750 ms during a 1000 ms simulation time.
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this with the case when the TRN cell population is disconnected
from the model.

The model is simulated on SpiNNaker for 30 s for each simu-
lation at a resolution of 1 ms, and subsequently downsampled to
200 Hz. The mean membrane potential of the PY4 and TCR cell
population are averaged across three simulation runs to improve
the reliability of the results. A snapshot of the real-time visualiza-
tion of the model simulation on SpiNNaker as seen using visRT

is shown in Figure 4. The human EEG used for comparison is
recorded at 200 Hz from an occipital electrode (O1) referenced
against the contralateral mastoid. Sleep stages are independently
classified by two experts with more than 90% agreement. Both
human EEG and the model output are filtered between 1 and
16 Hz with a Butterworth bandpass filter of order 10 in order to
focus on spectral bands of interest. Power spectral density is esti-
mated using a Welch periodogram with 800 FFT points using a
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FIGURE 3 | EEG characteristics of human sleep and wake. Quiet
wakefulness is represented in panel (A) and is characterized by the
presence of the alpha rhythm, which is absent during sleep (see the
power spectra at the bottom of the figure). Normal sleep, often
referred to as N2 in sleep literature, is represented in panel (B) and is
characterized by the presence of spindles (A, circled in cyan) and
K-complexes (B, circled in green). Slow wave sleep (SWS) is

represented in panel (C) and is characterized by high amplitude slow
oscillations. REM sleep (D) has a mixed frequency pattern, and is
additionally identified by the presence of eye movements and low
muscle tone. The power spectra in the four bands involved in
distinguishing wake and different stages of sleep (E) shows a greater
delta power during the sleep stages, while quiet wakefulness has
stronger alpha power. Data taken from Durrant et al. (2013).

FIGURE 4 | Real time output from the simulation of the TCT model on the SpiNNaker board as observed in visRT. The spiking rate of the TCR (top) and
PY4 (bottom) populations for each period of 25 ms over a total simulation time of 30 s is shown.
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Hamming window half the length of the sampling frequency and
a 50% overlap.

The TCR time-series output with all model parameters main-
tained at basal values (Figure 5A) show a similarity with the EEG
time series in quiet wakefulness (Figure 3A). The correspond-
ing time series output of the PY4 cells are shown in Figure 5C
and show a similarity with their main “driver” cells of the TCR,
albeit with a larger amplitude of oscillation. It may be noted
that the time series plots presented in Figure 5 are unfiltered
data sampled at 5 ms intervals (200 Hz). A power spectra anal-
ysis of both the TCR and PY4 outputs corresponding to basal
parameters show a dominant frequency within the alpha band
(Figure 5E), similar to the power spectra of quiet wakefulness
shown in Figure 3E. Next we disconnect the TRN cell popula-
tion from the TCT model by removing the connectivity from the
TRN to the TCR and vice-versa (see Table 3A). We note a dis-
tinct bifurcation in both the TCR and PY4 time series output
shown in Figures 5B,D, respectively with a reduced frequency of
oscillation compared to the output corresponding to basal param-
eters; an increased amplitude of oscillation is also observed in the
TCR output (Figure 5B). A comparison of the TCR time series

with real EEG data show a resemblance with the SWS time series
(Figure 3C). However, the frequency of the oscillatory activity in
Figures 5B,D appears (on visual inspection) to be higher than
that in Figure 3C. This observation is reflected in the power
spectra of both TCR and PY4 cell populations corresponding to
disconnection of the TRN, showing a dominant frequency within
the theta band (not shown here). This is unlike the power spec-
tra of SWS, which have a dominant frequency within the delta
band. Further, we observe that the amplitude of oscillation in the
PY4 output time series does not show any significant increase
with TRN disconnection, which is not in agreement with the
classic definition of EEG “slowing” (reduced frequency, higher
amplitude).

Overall, and given the preliminary nature of this work, we
would not expect the model parameters to be tuned to give a
perfect replication of human EEG, and indeed we do see substan-
tial differences between the two. The most important difference
between the model output and human EEG at present is the
lack of strong delta power with the TRN cells disconnected
from the model, and this area should be prioritized for further
research.
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FIGURE 5 | Sample of the time series outputs of the (A,B) TCR and

the (C,D) PY4 cell populations for a period of 5 s, clipped arbitrarily

between the 20th and the 25th s from the 30 s (unfiltered) signal

and downsampled to 200 Hz. A comparison with real EEG time series
data of quiet wakefulness (Figure 3A) shows a similarity with the (A)

TCR and (C) PY4 outputs when all model parameters are at their basal
values. A comparison with real EEG time series data of SWS
(Figure 3C) shows a similarity with the (B) TCR and (D) PY4 outputs
when the TRN cell population is disconnected from the model. (E) The

power spectra of the TCR and PY4 cell populations with all model
parameters at their basal values. A dominant alpha rhythm is observed,
similar to that in the real EEG power spectra of quiet wakefulness
(Figure 3E). (The reader may kindly note that the results presented
here is a preliminary attempt in studying the plausibility of simulating
EEG rhythms in models developed on the SpiNNaker computer. At no
point do we expect to see exact match of model results with real EEG
data; rather, we do expect to identify differences between the two that
will inform our ongoing work).
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Table 2 | The synaptic connectivity parameters between the cells of the cortical layers of the TCT model.

⇐
F
ro

m To Layer 2/3 Layer 4 Layer 5 Layer 6

⇒ PY B NB PY SS(2/3) SS(4) B NB PY(2/3) PY(5/6) B NB PY(4) PY(5/6) B NB

La
ye

r
2/

3

PY
59.9 51.6 48.6 4.3 5.6 2.7 5.8 2.7 45.9 44.3 45.5 45.5 2.5 2.5 2.5 2.5

0.137 0.077 0.062 0.03 0.011 0.01 0.01 0.01 0.087 0.135 0.052 0.052 0.027 0.017 0.01 0.01

B
9.1 10.6 11.4 0.2 0.4 0.2 0.5 0.2 1.8 1.7 2.3 2.3 0.1 0.1 0.1 0.1

0.171 0.132 0.123 0.016 0.01 0.01 0.01 0.01 0.032 0.052 0.023 0.023 0.032 0.01 0.01 0.01

NB
4.4 3.4 3.3 0.6 0.8 0.6 0.8 0.6 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1

0.064 0.031 0.026 0.017 0.01 0.01 0.01 0.01 0.01 0.031 0.01 0.01 0.01 0.01 0.01 0.01

La
ye

r
4

PY
7.7 6.6 6.2 4.2 4.3 4.1 4.2 4 7.5 7.3 7.5 7.5 1.3 1.3 1.3 1.3

0.049 0.027 0.023 0.03 0.024 0.026 0.015 0.016 0.04 0.057 0.024 0.024 0.024 0.014 0.01 0.01

SS(2/3)
6.9 5.8 5.5 3.6 3.8 3.7 3.8 3.6 2 2 2 2 0.9 0.9 0.9 0.9

0.043 0.024 0.020 0.026 0.021 0.023 0.013 0.014 0.014 0.026 0.01 0.01 0.014 0.01 0.01 0.01

SS(4)
0.6 0.5 0.5 11.5 11.3 11.9 11 11.7 3.3 3.2 3.3 3.3 0.7 0.7 0.7 0.7

0.01 0.01 0.01 0.063 0.061 0.075 0.039 0.047 0.02 0.032 0.011 0.011 0.032 0.01 0.01 0.01

B
X X X 7.2 7.2 7.1 8.4 8.2 5.2 5.2 X X 5.2 5.2 X X

X X X 0.067 0.067 0.076 0.05 0.056 0.01 0.01 X X 0.019 0.01 X X

NB
0.8 0.8 0.8 2.1 2.1 2 2.4 2.3 1.5 1.5 1.1 1.1 1.5 1.5 0.1 0.1

0.033 0.02 0.02 0.073 0.073 0.08 0.053 0.06 0.033 0.047 0.02 0.02 0.027 0.02 0.01 0.01

La
ye

r
5

PY(2/3)
7.4 6.3 5.9 1.2 1.1 0.8 1.1 0.8 11.7 11.3 11.6 11.6 11.9 11.9 0.1 0.1

0.09 0.05 0.042 0.027 0.013 0.096 0.01 0.01 0.113 0.144 0.073 0.073 0.031 0.013 0.01 0.01

PY(5/6)
X X X 0.1 0.1 0.1 X 0.1 1 1.2 1 1 4.9 4.9 4.9 4.9

X X X 0.01 0.01 X 0.01 0.01 0.031 0.054 0.023 0.023 0.131 0.215 0.123 0.123

B
X X X X X X X X 0.8 0.8 0.9 0.9 0.6 0.6 X X

X X X X X X X X 0.067 0.067 0.05 0.05 0.017 0.01 X X

NB
X X X X X X X X 1.1 1.1 1.3 1.3 0.8 0.8 0.4 0.4

X X X X X X X X 0.062 0.062 0.05 0.05 0.025 0.025 0.013 0.013

La
ye

r
6

PY(4)
2.3 2.1 1.8 31.4 31.1 32.7 30.3 32.2 2.3 2.3 2.3 2.3 1.2 1.2 1.2 1.2

0.01 0.008 0.008 0.118 0.0114 0.139 0.072 0.087 0.015 0.035 0.01 0.01 0.052 0.012 0.01 0.01

PY(5/6)
X X X 0.1 X X X X 2.1 2.5 2 2 13.2 13.2 13.2 13.2

X X X 0.01 X X X X 0.02 0.029 0.013 0.013 0.1 0.164 0.096 0.096

B
X X X X X X X X X 0.3 X X 7.7 7.8 7.7 7.7

X X X X X X X X X 0.01 X X 0.125 0.215 0.125 0.125

NB
0.8 0.7 0.6 5.5 5.5 5.8 5.4 5.7 11.5 11.3 11.4 11.4 7.7 7.8 7.7 7.7

0.23 0.015 0.01 0.185 0.135 0.17 0.085 0.105 0.275 0.32 0.17 0.17 0.245 0.24 0.125 0.125

The cortex is classified into six layers based on the cell types and intra-areal connectivities. Of these, Layer 1 is known to be sparsely populated and is mainly

associated with cortico-cortical connections and not considered in this work. Layers 2 and 3 are often treated as a single layer using the nomenclature L2/3 primarily

due to a lack of marked boundary between the two “layers” in terms of the cell-types and spatial layout. The nomenclature of the cells in each layer are—PY:

Pyramid cells; SS, Spiny Stellate cells; B, Basket cells; NB, Non-basket cells. The SS cells of Layer 4 and the PY cells of layers 5 and 6 send out dendritic projections

to other layers and thus are indicated with the layer number as suffix within brackets. Each connectivity parameter between a pre-synaptic population (say K) to a

post-synaptic population (say L) has two attributes and are placed as a 2-element column: the top number in the column is the synaptic connectivity “weight” C,

which is expressed as a percentage of the total number of synaptic connections made by all pre-synaptic populations of L on the latter; the bottom number in the

column is the probability P that a spike by K will be communicated to L. Values of the first attribute C are as in Izhikevich and Edelmann (2008a), and those of the

second attribute P are as in Sharp et al. (2012). All “X” in the table indicate absence of synaptic connectivity between the respective cell populations. “From” refers

to the pre-synaptic cells, and “To” refers to the post-synaptic cells.

4. DISCUSSION
Sleep and its biological relevance and mechanisms have been
of interest in research (Rasch and Born, 2013) and beyond;
a “healthy” sleep pattern have tremendous impact on daily
activities (Mednick and Ehrman, 2006). Thus it is not sur-
prising that sleep disturbances are a common accompaniment

of several neurological and psychiatric disorders (Brown et al.,
2012). Additionally, the time and frequency signatures of sleep
electroencephalography (EEG) in neurological disorders often
provide a better understanding of the disease conditions [for
example in schizophrenia (Gardner et al., 2014); Alzheimer
disease (Jonkman, 1997)]. Furthermore, rapid-eye-movement
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Table 3 | (A) The “weight” of the synaptic connectivities between the

thalamic and cortical module cells as well as between thalamic cell

populations. The probability of connection for inter-module

connectivity is 0.25 in the current model. The synaptic connections

from the retina to the thalamic cells have an all-to-all connectivity. (B)

The population of neurons of each type in the cortical module are

mentioned in the first column and the cortical layers are mentioned

in the top row. The cortical layer references within brackets (for

Layers 5 and 6 and for the SS cells) indicate the dendritic arborization

of the cells to these layers. An “X” indicates the lack of the cell type

in the cortical layer. (C) The population of neurons of each type in the

thalamic module.

(A) CONNECTIVITY PARAMETERS: INTRA-THALAMIC, THALAMO-

CORTICO-THALAMIC AND RETINO-THALAMIC

From To

Pre-synaptic Post-synaptic

TC
R

Layer 4

TRN PY SS(2/3) SS(4) B

35 25 6 6 13

IN

TCR IN

15.45 23.6

TR
N TCR TRN

15.45 15

La
ye

r
6 P
Y

(4
) TCR IN TRN

46 20 50

P
Y

(5
/
6) TCR IN

16 9

R
et

in
a TCR IN

7.1 47.4

(B) NUMBER OF NEURONS IN THE CORTICAL MODULE

Layer 2/3 Layer 4 Layer 5 Layer 6

(2/3) (5/6) (4) (5/6)

PY 260 90 50 10 140 50

B 30 50 10 20

NB 40 20 10 20

SS(2/3) X 90 X X X X

SS(4) X 90 X X X X

(C) NUMBER OF NEURONS IN THE THALAMIC MODULE

TCR 50

IN 10

TRN 50

(REM) sleep is thought to play a role in memory consolida-
tion involving the non-hippocampal brain parts (Born et al.,
2006). The thalamo-cortico-thalamic circuitry plays a key role
in generating brain rhythms (Steriade et al., 1993; McCormick
and Bal, 1997). Several studies on thalamocortical dynamics have
used mesoscopic scale lumped parameter models to mimic EEG

in healthy conditions (Robinson et al., 2002; Zavaglia et al.,
2006; Deco et al., 2008; Modolo et al., 2013; Moran et al.,
2013), as well as to investigate anomalous EEG in neurologi-
cal disorders (Suffczyński et al., 2004; Roberts and Robinson,
2008; Pons et al., 2010; de Haan et al., 2012). In recent
research (Bhattacharya, 2013), which is along similar lines as
in Lytton (1996); Erdi et al. (2006), the need for detailed synap-
tic mechanisms in thalamocortical lumped parameter models
to facilitate biologically realistic mapping of model features is
emphasized. While extended work on the lumped parameter
model implementing synaptic dynamics remains ongoing, we
believe it is necessary to have a parallel line of investigation using
a population model comprising of network(s) of single neuron
models (i.e., single-neuron-level population model as opposed to
lumped parameter population models) that is similar in struc-
ture to the former. This gives a “two-scale” architecture to the
thalamo-cortico-thalamic framework. The endeavor will be to use
the framework for realistic simulation of EEG dynamics in sleep-
wake transition. Here, we have presented a preliminary study on
inducing a transition from quiet wakefulness to a “slow wave”
(higher amplitude, lower frequency) pattern in the model out-
put, and have shown the similarity and dissimilarity of the model
output with real EEG data of sleep and wakefulness; these are
discussed further below.

The primary issue in building a single-neuronal-level popula-
tion model is the deficiency in available computational resources
in terms of implementing biologically plausible parallel and
asynchronous information transmission and exchange within
the model framework. Another key aspect is energy-efficiency
whereby maximal information processing is carried out using
minimal resources, a mechanism that allows biology to deal
with massive amounts of data in a fast and power efficient
manner. This necessitates specialized computational tools to pro-
vide a low-power, parallel asynchronous framework for build-
ing very-large-scale-biologically-plausible models (VLSBm). The
SpiNNaker (Spiking Neural Network architecture) chip is a plat-
form designed to occupy this space; it meets all of the above
criteria for building VLSBm and has been tested to outperform
current available software and hardware platforms when building
a cortical model of spiking neural networks (Sharp et al., 2012).

In this work we have built a thalamo-cortico-thalamic spiking
neural network for implementation on SpiNNaker. The mini-
framework consists of 1090 neurons to mimic approximately
0.15 mm2 of thalamocortical tissue. We have focussed on the tha-
lamocortical relay (TCR) cells and the cortical Layer 4 pyramidal
(PY4) cells; the layer 4 cells are known to be dominated by the
sensory pathway input from the thalamus compared to inputs
from other cortical areas (Gil et al., 1999). With all model param-
eters at their base values, the TCR time series output and its
power spectra resembles the EEG characteristics of quiet wakeful-
ness. Observation of the corresponding PY4 cell outputs indicate
that the behavior of these cells are largely driven by the TCR
cells. Next, we endeavored to vary specific model parameters to
simulate non-rapid eye movement (non-REM) sleep stages. The
thalamic reticular nucleus (TRN) neurons are implicated in play-
ing a vital role in effecting slow wave oscillation in the EEG such
as observed during slow wave sleep (SWS). To test this feature
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in the model, we disconnect all efferents from and afferents to
the TRN cell population. We observe a distinct transition in the
time series behavior of both the TCR and PY4 cells that resemble
the EEG time series in SWS, albeit at a slightly higher frequency
of oscillation (observed by visual inspection). This observation
is reflected in the power spectra where the dominant frequency
of oscillation for both population outputs are within the theta
band, unlike the dominant delta band frequency seen in all stages
of sleep EEG data. We speculate that the current disagreement
in the power spectra of the SWS simulation on the TCT model
may be addressed by dynamically changing the spiking behavior
of the model cell populations (see below for further discussion
on this). Furthermore, it will be interesting to observe how the
intracortical afferents affect the PY4 cells in comparison to the
TCR afferents (Destexhe, 2008; Lee and Sherman, 2008) and
whether the model behavior conforms to experimental observa-
tions. Nonetheless, we note that the framework presented herein
is a pilot study only, designed primarily to test the ability of the
hardware to capture thalamocortical dynamics. We believe that
the outcome from this study will provide a “basis” for simulating
EEG signals on SpiNNaker-based computational models. Thus, at
this stage, we do not attempt to simulate a true replication of the
sleep-wake dynamics on the model. The larger goal of the work
is to lay the foundations for building a VLSBm of thalamocor-
tical interactivity to simulate biologically realistic sleep rhythms
as observed in EEG. However, further testing and simulation on
SpiNNaker will be required before scaling up the model for realis-
tic simulation of EEG rhythms; we will take this up as an extension
of the current work. Altogether, we believe this is a promising
first demonstration of SpiNNaker as a platform for investigating
thalamocortical circuits in humans.

A widespread current concern in the computational neu-
roscience community is the non-trivial task of populating the
parameter space of computational models; the task gets harder
with increasing model size as experimental data with defini-
tive values for specific parameters are difficult to acquire. We
have sourced appropriate model parameter values from Binzegger
et al. (2004); Izhikevich and Edelmann (2008b); Bhattacharya
et al. (2011); Galbraith (2011); and Sharp et al. (2012). Model
layout and neuronal dynamics are from Sherman (2006) and
Bhattacharya et al. (2011) and Izhikevich (2003, 2004), respec-
tively. The absolute values of the model parameters often require
appropriate scaling for the simulation platform, and a common
approach to deal with this aspect has been to normalize all model
parameters to a “simulator-friendly” scale. Along these lines, sev-
eral assumptions and simplifications have been made in this
study:

First, burst spiking dynamics of the thalamic cells that are
crucial for generating slow wave oscillations (Jeanmonod et al.,
1996; Magnin et al., 2005) are explored minimally. The thalamo-
cortical relay (TCR) cells are tested for tonic spiking behavior
in this work, which best align with the awake state of the brain.
We speculate that the results reflect this behavioral mode of
the TCR cells, clearly showing a resemblance with both time-
series and power spectra of EEG in quiet awake state. However,
the TCR displays burst spiking dynamics during the stages of
sleep. Similarly, the TRN cells are known to show rich spiking

dynamics (e.g., rebound bursting, low threshold spiking) that
underlie sleep-wake oscillatory activity. These variant dynam-
ics of the TCR and TRN cells will be further investigated in
our ongoing work. Thalamic interneurons are more problematic;
there are to our knowledge no references in the modeling litera-
ture relating specifically to the spiking dynamics of the thalamic
interneurons (Destexhe et al., 1998). However the cortical basket
cells, which are also categorized as local interneurons depend-
ing on their function and dendritic arborization, are described
in Izhikevich and Edelmann (2008a) using Fast Spiking (FS)
dynamics. We have arbitrarily adopted this spiking behavior for
the IN cells. Overall, much more detailed exploration and simu-
lation of the individual thalamic cell spiking dynamics needs to
be performed to preview the parameter space that would allow
full replication of EEG in different sleep stages and the sleep-wake
transition. It needs to be mentioned here that a high number
of synaptic efferents from the thalamic interneurons are dendro-
dendritic (Cox and Sherman, 2000). However, this aspect does
not affect the synaptic transmission in the TCT framework as
it comprises of spiking neuron models, and does not take into
account the detailed axonal and dendritic attributes related to
spike transmission and reception.

Second, the Izhikevich model uses common excitatory and
inhibitory synaptic parameters for all cell populations of exci-
tatory and inhibitory types. This is a significant limitation and
requires modification in future versions of the model to enable
a direct comparison with the current lumped parameter models
that include neurotransmitter and receptor dynamics.

Third, the neuronal population in the thalamus represents a
loose estimate as no definitive data on the number of thalamic
cells within a cortical column is available from literature. We
preserve the (intra-thalamic) proportion of thalamic cells in the
(Izhikevich and Edelmann, 2008a) thalamocortical model (only
“specific nucleus” parameters are considered; the “non-specific
nucleus” parameters are ignored), but scale this up by a factor
of 102. This may be contrasted with a factor of 10 scaling of the
number of cortical cells. Thus the model is designed to place
increased emphasis on the thalamic behavior and its effects on
cortical oscillations for our test purposes.

Fourth, our objective is to simulate EEG in sleep and quiet
wakefulness. Thus, the simulated retinal input to the model needs
to conform to discharge rates of the retinal spiking neurons dur-
ing the resting state. In an early work on the cat retina (Kuffler,
1953), it is observed that the resting state discharge rate of a sin-
gle retinal neuron is approximately 25 Hz. This is in agreement
with the spike source rate provided as input to the TCT model in
this work. However, in a relatively recent work (Robinson et al.,
2004), it is estimated that the resting state firing rate of retinal
input is 11 Hz, while in an alert awake state this is in the range
12–20 Hz. Thus, it would need further work to test these varia-
tions in experimental data and the effects on the model output in
context to mimicking sleep-wake EEG.

Fifth, the probability of connection between the intra-thalamic
cells as well as for the feedforward and feedback connections
between the thalamus and the cortex is arbitrarily set at 0.25 by
empirical study on SpiNNaker. This will need further attention
and more detailed tuning in future work.
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Finally, the conduction delay for thalamocortical and corti-
cothalamic communication is implemented using a uniformly
distributed function to generate a random delay. However, data
acquired from physiology and tested on computational models is
available in literature (Roberts and Robinson, 2008). This will be
explored for implementation in future work.

In conclusion, we have presented a pilot study which involved
building biologically plausible networks on a biologically plau-
sible computational platform—SpiNNaker. The study examines
the feasibility of simulating EEG rhythms of sleep and wake-
fulness by implementing a thalamo-cortico-thalamic framework.
The longer-term aim is to build a VLSBm of thalamo-cortico-
thalamic synaptic interactivity on SpiNNaker, which will then
be validated with real EEG data collected during sleep (Durrant
et al., 2013). The work presented here gives a preliminary study
of this approach. Ongoing work to build a similar framework
with the lumped parameter approach will provide a “multi-
scale” architecture to the model in both space and time. Together
these models should provide new insights into the mechanisms
which give rise to the rich thalamocortical dynamics seen in the
human brain.
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When exposed to rewarding stimuli, only some animals develop persistent craving. Others
are resilient and do not. How the activity of neural populations relates to the development
of persistent craving behavior is not fully understood. Previous computational studies
suggest that synchrony helps a network embed certain patterns of activity, although
the role of synchrony in reward-dependent learning has been less studied. Increased
synchrony has been reported as a marker for both susceptibility and resilience to
developing persistent craving. Here we use computational simulations to study the effect
of reward salience on the ability of synchronous input to embed a new pattern of activity
into a neural population. Our main finding is that weak stimulus-reward correlations can
facilitate the short-term repetition of a pattern of neural activity, while blocking long-term
embedding of that pattern. Interestingly, synchrony did not have this dual effect on all
patterns, which suggests that synchrony is more effective at embedding some patterns of
activity than others. Our results demonstrate that synchrony can have opposing effects in
networks sensitive to the correlation structure of their inputs, in this case the correlation
between stimulus and reward. This work contributes to an understanding of the interplay
between synchrony and reward-dependent plasticity.

Keywords: cortical networks and systems, synchrony code, computational models in psychiatry, plasticity and

learning, substance abuse

1. INTRODUCTION
Synchrony refers to a coordinated pattern of network activity.
Synchrony occurs between (i) action potentials, (ii) local field
potentials, or (iii) action potentials and local field potentials. The
latter two types of synchrony are frequently called coherence.
Neural networks with strong recurrent connections can demon-
strate synchronous activity that persists over seconds to minutes
(Tetzlaff et al., 2012). Changing synaptic strengths allows that
activity to persist over longer time scales (Holtmaat and Svoboda,
2009).

Synchrony between action potentials helps localize sounds
(Joris et al., 1998), signal the direction of motion (Meister et al.,
1995; Meister and Berry, 1999), and discriminate among odors
(Stopfer et al., 1997; Tetzlaff et al., 2012).

When exposed to addictive substances, only some individuals
develop an addiction or dependence (Ersche et al., 2010). Of those
who become addicted or dependent, only some respond to treat-
ment (Gawin, 1991). Alterations in activity-dependent learning
in areas of the brain involved in reward processing are important
in the pathogenesis of addictive disorders (Koob and Le Moal,
2005). Increased synchrony can predict intoxication (Li et al.,
2011), resilience, susceptibility (Coullaut-Valera et al., 2014), or
likelihood of relapse (Camchong et al., 2013), depending on in
which brain region the synchrony manifests.

These observations suggest that many aspects of addiction
can be understood as changes in the structure of synchroniza-
tion of neural networks. To explore this, we study the stability
of a pattern of activity in the face of different stimulus-reward
inputs.

2. RESULTS
2.1. SUMMARY OF MODEL
Equation (1) describes the dynamics of a group of neurons, v.
Those neurons interact linearly with each other according to the
intrinsic connection matrix M, and receive input, u, weighted
according to the feedforward connection matrix W. The weights
in W depend on (i) the correlation between the stimulus, u,
and network activity, v, denoted u⊗ v, and (ii) the correlation
between the the stimulus, u, and the reward associated with the
stimulus, r, denoted r⊗ v. The second line in Equation (1) is a
linear differential equation in M, which means that it can only
remove pairwise correlations.

The top line of Equation (1) describes the firing rate of a
population of neurons. That firing rate decays in the absence
of recurrent or feedforward input. The second line implements
Hebbian modification of the feedforward weights, modulated
the by the reward associated with the stimulus, r. The third
line implements anti-Hebbian modification of the recurrent
weights. Anti-Hebbian modification prevents the network from
responding identically to inputs with the same amount of active
units.

τv
dv

dt
= −v+M · (tanh v)+W · u

τW
dW

dt
= K ·W · u (r− v)

τM
dM

dt
= (I−M)− (W · u) v (1)
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The importance of correlations arises directly from the bottom
two lines in Equation (1) because the outer product of two vec-
tors can be interpreted as the cross-correlation between those two
vectors. In this paper, we only consider 1-dimensional stimuli
for simplicity. The dependence of the dynamics of connections
among neurons on the correlation between stimulus activity and
network activity allows patterns of network activity that are very
far from v∞ to maintain stable connections between neurons.

Connections between units in the network stabilize, that is
d
dt M→ 0, when the correlation between network activity, v, and
the filtered version of the input, W · u, lies parallel to the devia-
tion between the connection matrix, M and the identity matrix,
I. Connections between the network and input stabilize, that is
d
dt W→ 0, when network activity accurately predicts the reward,
r = v or the neurons in the network become autonomous, M = I
so K = 0.

2.2. COMPUTATIONAL RESULTS
2.2.1. Stimuli
We model (crudely) the initiation, continuation, and cessation of
drug use with three patterns of stimuli, exposure, chronic, and
cessation, respectively (Figure 1, left). We combine these stimuli
with two types of reward saliences, designed to model susceptible
and resilient individuals (Figure 1, right). The reward associated
with a stimulus is a log-Gaussian for susceptible individuals and a
Gaussian for resilient individuals. A log-Gaussian function was
chosen to reflect experimentally observed dynamics of positive
reinforcement (Koob and Le Moal, 2005; Koob, 2013). A Gaussian
function was chosen to model the slower and softer dynamics sug-
gested to occur in resilient individuals (Ersche et al., 2010). We
calculate the stimulus-reward patterns as the convolution of each
combination of stimulus and reward (Figure 2).

Figure 3 investigates the ability of our network to maintain a
preset pattern in the face of different stimuli and different rewards
associated with those stimuli. In that figure, all panels in a row
share the same reward. All panels in a column share the same
stimulus. Each panel has three components, a raster plot, the

stimulus, and the reward associated with that stimulus. The mid-
dle column, in which the stimulus is tonic, shows the greatest
deviation from the resting pattern. Each row of the raster indicates
the firing pattern of a neuron, with black indicating an action
potential and white indicating the absence of firing. The middle
graph in each panel indicates the stimulus pattern. The bottom
graph in each panel indicates the perceived reward.

Figure 3 shows that susceptible networks are more able to
maintain the preset pattern in the face of a chronic stimulus than
resilient ones are; however, resilient networks can better maintain
the present pattern once the stimulus stops. In the context of neu-
ral network computation, stability of our network in the face of
different stimulus-reward patterns reflects (i) the incompatibil-
ity between the patterns the inputs would embed and the preset
patterns embedded in the network, and (ii) the lower energy asso-
ciated with the preset patterns which favors maintaining them.
In the context of addiction, patterns that are stable in the face of
input could model the lack of alteration of synaptic weights in
resilient individuals or the perpetuation of destructive behaviors
in susceptible individuals who develop substance dependence.

To quantify the similarity in patterns between two panels, we
considered each of the N rows of each panel’s raster to represent
a vector. We calculated the similarity between two patterns, a and
b, denoted by qab, as the average of the cosine of the angle, θ ,
between each corresponding rows Equation (2).

qab = 1

N

N∑
n=1

vn,a · vn,b

||vn,a|| · ||vn,a|| (2)

Figure 4 shows the result of applying Equation (2) to Figure 2.
Changes greater than this magnitude are beyond the 85th per-
centile in the empiric cumulative distribution function created
from randomly shufffling all rows in all rasters in Figure 3. This
corresponds to a change in the cosine of the angle of more than
0.05. That is to say, the deeper blue the square, the more effective
the stimulus-reward input was at embedding its pattern.

FIGURE 1 | Patterns of stimuli and rewards used as input. Left: Templates for three different patterns of binary stimuli, isolated (exposure), tonic (chronic), and
cessation. Right: Templates for two different dynamics of reward salience, log-Gaussian (susceptible) and Gaussian (resilient). All templates last for 200 time steps.
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FIGURE 2 | Stimuli-reward patterns for simulation. Each panel shows
the reward in arbitrary units over time associated with different patterns
of drug use. Rows denote different network modes, susceptible or

resilient. Columns denote different patterns of drug usage, initiation
(exposure), chronic (continual use), or cessation. All patterns last for 200
time steps.

FIGURE 3 | Stability of network activity in the face of various

stimulus-reward inputs. Each panel shows the raster (top), stimulus
(middle), and associated reward (bottom) for one of the six stimulus-reward
patterns from Figure 2. The row (x-label of raster) indicates the reward
pattern, susceptible or resilient. The column (y-label of raster) indicates the

stimulus pattern (exposure, chronic, or susceptible). In the raster, each row
indicates a neuron. The x-axis of the raster indicates time. A black mark is
placed at the itth position if neuron i fired at time t. The simulations in all
panels began with the same initial condition, being within the basin of
attraction of v0.
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This stability (resistance to embedding) is lowest with the
most prolonged stimulus, chronic use, as shown by the deep
blue colors in Figure 4. The impairment persists only for net-
works whose reward correlation follows a susceptible scheme.
In the lowest three rows in the first column of Figure 4, the
square corresponding to chronic (prolonged) exposure is deep
blue, but the others are paler than their counterparts in the
susceptible scheme. Interestingly, the susceptible network has a
more profound negative reaction than the resilient network does

FIGURE 4 | Similarity between network activities in Figure 3. The color
of each box in the heat map shows the circular mean of the cosine of the
angles formed between each row of the corresponding panels in Figure 3.
A row makes an angle of 0 with itself, which corresponds to a cosine value
of 1. Cooler colors indicate more different patterns.

to initial exposure and sensation (bottom graph in the panels in
Figure 3).

Susceptible networks exhibit more stable patterns of activity
with continual exposure to a highly rewarding stimulus than do
resilient networks (Figure 5). We calculated stability according
to Equation (9) (see Materials and Methods). Taken with the
impairment in recall, this suggests that, in susceptible networks,
chronic use creates new fixed points while destabilizing exist-
ing ones. Figure 6 shows that previously stable patterns become
associated with higher energies in susceptible but not resilient
networks after ceasing to be exposed to a highly rewarding
stimulus.

3. DISCUSSION
This paper discussed the ability of a computational model of
neural population dynamics with activity-dependent plasticity
to maintain preset patterns of activity in the face of different
stimulus-reward patterns. The types of stimuli were chosen to
model patterns of drug use. Rewards and stimuli were chosen to
reflect the division into susceptible and resilient organisms, noted
in the experimental and clinical literature.

We found that a tonic stimulus, modeling chronic exposure,
was most effective in destabilizing the network. If the network
perceived rewards according to Gaussian (resilient) dynamics it
fully recovered. If it perceived rewards according to log-Gaussian
(susceptible) dynamics, then it remained altered. The discontin-
uation of the tonic stimulus promoted unstable network activ-
ity in networks that follows log-Gaussian (susceptible) but not
Gaussian (resilient) reward dynamics. Our computational results
agree with experimental and clinical findings. Chronic but not
acute use causes cognitive impairment for many drugs of abuse
(Block et al., 2002; Lundqvist, 2005). These impairments persist

FIGURE 5 | Energy of network activity in the face of various stimulus-

reward patterns. Left panel shows the stability of a susceptible network when
stimulated by exposure (solid line), continuous use (dashed line), or cessation

(dashed-dotted line). Right panel shows similar conditions for a resilient
network. The y-axis of each panel plots energy on the same arbitrary scale. See
Methods for how E (v) quantifies stability. Lower energies are more stable.
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FIGURE 6 | Stability of fixed points of network in the face of various

stimulus-reward schemata. Layout similar to Figure 3. The top row denotes
a susceptible reward profile, the bottom a resilient profile. The left column

indicates exposure to rewarding stimulus, the middle column continuous use
of a rewarding stimulus, and the right column shows the cessation of
continuous use. Lower energies are more stable.

in some people even after cessation (Gouzoulis-Mayfrank et al.,
2003). The chronic use of drugs of abuse impairs certain neu-
rocognitive domains more than others (Bechara, 2005).

Simulating the relationship between synchrony and network
activity may provide insight into the pathogenesis and treat-
ment of functional brain disorders. It also suggests that certain
patterns of deep brain stimulation may be more effective than
others for a given pathology. For example, structured patterns
of stimulation may be more effective for some neuropsychi-
atric disorders, while a noisier stimulus, similar to that used in
electroconvulsive therapy, may be more appropriate for other
disorders. In support of this postulate, the frequencies used in
deep brain stimulation, even in the same region, vary with the
disease being treated (McIntyre et al., 2004). Stimulation of
the internal capsule and adjacent ventral striatum are effective
for treating obsessive-compulsive disorder only at frequencies
between 100 and 130 Hz (Greenberg et al., 2010). Tonic but
not phasic stimulation of the medial prefrontal cortex at 100
Hz reverses a depressive phenotype in mice (Covington et al.,
2010).

Future work, beyond addressing the caveats below, could
investigate whether the stimulus-reward patterns used here
induce similar effects in networks with different classes of embed-
ded patterns. This network embedded patterns using a bivariate
covariance rule. Many other schemes exist for embedding pat-
terns, including those using multivariate covariance rules. Our
model considered only the rewarding effects of drugs. A more
realistic model could account for negative reinforcement of with-
drawal, which may be more important in the maintenance of
drug-seeking behavior (Koob, 2013).

3.1. CAVEATS
The network constructed here grossly simplified the interactions
in neural networks, assuming that (i) all units in the network
interacted linearly, (ii) the dynamics of the network followed
a Markov chain, and (iii) there is no learning of new mem-
ories. These assumptions limit how widely the conclusions of
this paper apply. The assumption of linear interactions simpli-
fies the analysis. However, neuromodulators, such as dopamine
and acetylcholine, are important in learning and memory and
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FIGURE 7 | Schematic of network. The vector v denotes the firing rates of
all neurons in the network. For illustration, the activity and connections of the
ith neuron are highlighted while those of two other neurons are displayed but

ghosted. The matrix element Mij denotes the connection strength from the
jth neuron to the ith neuron. The matrix element Wij denotes the connection
strength from jth component of the input, uj , to the ith neuron.

reward-dependent plasticity. Their effects on neural activity are
non-linear. The Markov assumption simplifies simulation and
allows the calculation of an energy function at the expense of
making this network unable to manifest very slow correlations
(Glauber, 1963; Kim and Nelson, 1999).

4. MATERIALS AND METHODS
4.1. OVERVIEW
This section details the construction of a model neural network
with (i) excitatory and inhibitory connections, (ii) external input,
and (iii) the ability to recover prior patterns of activity. For
more detail, refer to the Supplementary Material. All computer
code used in the project are available in the GitHub repository
synchrony.

Figure 7 sketches a portion of the network with three neurons,
i, j, and k. The matrix M contains the strength of connections
between neurons. The matrix W contains the strength of con-
nections between components of the input, u, and neurons in
the network. Equation (3) describes the dynamics of the network.
The equation inset in Figure 7 is a version of Equation (3) for one
neuron.

τv
dv

dt
= −v+M · F (v)+W · u F (v) = tanh v (3)

Equation (4) constructs a symmetric matrix, M, from a finite set
of memories,

{
a�
}

.

M = 1

(1− α) α| {a�
} |
∑
{a�}

(
a�

i − αn
) (

a�
i − αn

)− 1

α| {a�
} |

(4)

We introduce the terms Hebbian modification and anti-Hebbian
modification to denote a strengthening or weakening of connec-
tions in the presence of correlated activity, respectively. Without

an anti-Hebbian term in the dynamics of the recurrent connec-
tion matrix, M, each row of the feedforward weight matrix, W
will come to lie parallel to the principal eigenvector of the input
correlation matrix. This will make each target neuron respond
identically. To break this redundancy we allow anti-Hebbian
modification into the dynamics of M, using Equation (5) from
Goodall (1960).

τM
dM

dt
= (I−M)− (W · u) v (5)

4.1.1. Reward-dependent plasticity
Dysregulation of brain areas that process rewards plays a role
in the pathogenesis of addictive disorders (Everitt and Robbins,
2005). A simple way to account for the rewarding effects of a stim-
ulus, u, is to make the connections between that stimulus and
the network, W, dependent on the magnitude of that reward, r.
Equation (6) shows for one neuron, v, the Rescorla-Wagner rule,
a simple mathematical formulation of this concept (Rescorla and
Wagner, 1972).

v = w · u
w← w+ εδu

δ = r − v (6)

In Equation (6), u denotes input to the network. The vector w
weights those inputs. The scalar, ε, represents the associability of
the stimulus with the reward. The vector, δ, denotes the reward-
prediction error. This name for δ arises from interpreting the
second line in Equation (6) as a gradient descent rule that min-
imizes the quantity 〈(r − v)2〉, which is the mean squared error
between the actual reward, r, and the prediction, v.

Equation (7) modifies Equation (5) by incorporating
Equation (6).

τW
dW

dt
= KWu (r− v) (7)

Frontiers in Neural Circuits www.frontiersin.org April 2014 | Volume 8 | Article 44 | 39

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Chary and Kaplan Synchrony can destabilize reward-sensitive networks

4.1.2. Stability of memories
If the state of any unit i in the network at some time t follows
Equation (8), then network activity, v, evolves as a Markov chain
(Glauber, 1963). Equation (8) assumes the activity of the ith unit,
vi follows Equation (3).

P [vi (t +�t) = 1] = 1

1+ e−vi
(8)

A network of binary units updated according to Equation (8) is
often called a Boltzmann machine because once the network has
reached equilibrium, a Boltzmann distribution defines the prob-
ability that a pattern of network activity will occur (Hinton and
Sejnowski, 1986). In a classical Boltzmann machine, one unit is
randomly selected and updated at each time point.

Every pattern of activity in the network, v, has an energy, E (v),
associated with it [top line of Equation (9)]. Patterns with lower
energy are more stable, that is more likely to occur, because they
are more likely to occur. The probability of a pattern, v occur-
ring, increases as the energy associcated with that pattern, E (v),
decrease [bottom line of Equation (9)] .

E (v, u) = −(u ·W · v)+ 1

2
(v ·M · v)

P[v] = e−E(v)

Z

Z =
∑
{v}

e−E(v)

(9)
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Hebb proposed that synapses between neurons that fire synchronously are strengthened,
forming cell assemblies and phase sequences. The former, on a shorter scale, are
ensembles of synchronized cells that function transiently as a closed processing system;
the latter, on a larger scale, correspond to the sequential activation of cell assemblies
able to represent percepts and behaviors. Nowadays, the recording of large neuronal
populations allows for the detection of multiple cell assemblies. Within Hebb’s theory,
the next logical step is the analysis of phase sequences. Here we detected phase
sequences as consecutive assembly activation patterns, and then analyzed their graph
attributes in relation to behavior. We investigated action potentials recorded from the
adult rat hippocampus and neocortex before, during and after novel object exploration
(experimental periods). Within assembly graphs, each assembly corresponded to a
node, and each edge corresponded to the temporal sequence of consecutive node
activations. The sum of all assembly activations was proportional to firing rates, but
the activity of individual assemblies was not. Assembly repertoire was stable across
experimental periods, suggesting that novel experience does not create new assemblies
in the adult rat. Assembly graph attributes, on the other hand, varied significantly across
behavioral states and experimental periods, and were separable enough to correctly
classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from
0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement
sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb’s
view that assemblies correspond to primitive building blocks of representation, nearly
unchanged in the adult, while phase sequences are labile across behavioral states and
change after novel experience. The results are compatible with a role for phase sequences
in behavior and cognition.
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INTRODUCTION
The firing synchronization of groups of neurons is a well-known
phenomenon in the brain (Harris et al., 2003; Buzsáki, 2004;
Harris, 2005; Canolty et al., 2010; Lopes-dos-Santos et al., 2011).
According to the cell assembly hypothesis (Hebb, 1949), neu-
rons transiently synchronize in order to form elementary units of
information processing. Some reports have provided experimen-
tal evidence that assembly activity, i.e., the co-firing of assembly
members, can be related to formation of memories and behav-
ior (Wilson and McNaughton, 1994; Stopfer et al., 1997; Robbe
et al., 2006; Peyrache et al., 2009; Liu et al., 2012; Ramirez
et al., 2013). Furthermore, sensory or electrical stimulation able
to synchronize neuronal firing in the millisecond scale has been
shown to generate sequentially, in the minute to hour scale,
synaptic potentiation, immediate-early gene expression, synap-
tic remodeling and dendritic sprouting (Chang et al., 1991; Bliss
and Collingridge, 1993; Deisseroth et al., 1995; Klintsova and

Greenough, 1999). In principle, this sequence of events satisfac-
torily explains why neurons that fire together wire together, and
vice-versa. However, to date there is still a mechanistic hiatus
between neuronal synchronization and the perception of complex
stimuli, or the planning and execution of complex motor tasks.

The gap between cell assemblies and behavior was anticipated
by Hebb (1949), who proposed that synchronized cell assem-
blies would evolve over time as phase sequences: “Any frequently
repeated, particular stimulation will lead to the slow develop-
ment of a ‘cell-assembly,’ a diffuse structure comprising cells in
the cortex and diencephalon (and also, perhaps, in the basal gan-
glia of the cerebrum), capable of acting briefly as a closed system,
delivering facilitation to other such systems and usually having
a specific motor facilitation. A series of such events constitutes
a ‘phase sequence’—the thought process. Each assembly action
may be aroused by a preceding assembly, by a sensory event,
or—normally—by both.”
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For many years these ideas remained untestable, but in the
past two decades, the detection and tracking of assemblies became
feasible due to major improvements in multi-electrode record-
ing techniques (Nicolelis et al., 2003; Buzsáki, 2004; Schrader
et al., 2008), as well as the development of adequate mathematical
frameworks for the identification of non-random synchroniza-
tion (Berger et al., 2010; Denker et al., 2010; Peyrache et al., 2010;
Lopes-dos-Santos et al., 2011, 2013). As a consequence, studies on
assembly activity and learning were recently published (Peyrache
et al., 2009; Benchenane et al., 2010); there were also demonstra-
tions of information coding by the temporal sequence of neurons
(Ikegaya et al., 2004; Ji and Wilson, 2006; Pastalkova et al., 2008;
Peyrache et al., 2009; Dragoi and Tonegawa, 2010). The hip-
pocampus, in particular, harbors assemblies activated by specific
places or time intervals, forming representational sequences (Lee
and Wilson, 2002; Macdonald et al., 2011; Kraus et al., 2013;
Pfeiffer and Foster, 2013).

In the present work we aimed to advance the investigation
of the next logical step in Hebbian theory, namely the detec-
tion of phase sequences as consecutive multi-assembly activation
patterns. We also set out to investigate the relationship between
phase sequences and cognitive behavior. The developed method
was based on graph theory and it was applied to datasets com-
prising chronic extracellular spike recordings from the primary
visual (V1) and somatosensory (S1) cortices, as well as the CA1
region of the hippocampus (HP), of rats subjected to a novel
object exploration paradigm (Ribeiro et al., 2007).

MATERIALS AND METHODS
EXPERIMENTAL PERIODS OF THE BEHAVIORAL PARADIGM
We used data from five Long-Evans adult male rats (300–350
g) recorded before, during and after a novel object exploration
paradigm (Ribeiro et al., 2007). The behavioral paradigm began
with 1–2 h of recordings as a freely-behaving rat went through
the wake-sleep cycle (PRE period). Next, the animal was allowed
to explore 4 novel objects placed in the corners of the recording
box for 20 min (EXP period). Finally, the objects were removed
and the animal was recorded for an additional 1–4 h, freely
traversing the wake-sleep cycle (POST period). Video recordings
with infrared illumination were used to document behavior. The
present study focused on the 1 h PRE and POST periods flanking
EXP (Figure 1A).

MULTIELECTRODE ARRAY IMPLANTATION
Briefly, the rats were anesthetized and surgically implanted with
multielectrode arrays of tungsten microwires (35 µm, 1.0–1.2
MOhm at 1 kHz). A screw implanted on the frontal portion of
the skull served as recording ground. The arrays targeted HP,
S1, and V1 in the left hemisphere stereotaxic coordinates in mm
from Bregma with respect to the antero-posterior (AP), medio-
lateral (ML), and dorso-ventral (DV) axes (Paxinos and Watson,
1997): HP (AP:−2.80; ML:+1.5; DV:−3.30); S1 (AP:−3.00; ML:
+5.5; DV: −1.40); V1 (AP: −7.30; ML: +4.00; DV: −1.30). DV
measurements were taken with respect to the pial surface. Arrays
comprised 16–32 microwires spaced at 250 mm intervals (4× 4
arrays for S1 and V1, 2× 16 array for HP). In S1 and V1, arrays
were aimed at pyramidal layer V.

ELECTROPHYSIOLOGICAL RECORDINGS AND UNIT SORTING
As described in detail in Ribeiro et al. (2007), action potentials
(spikes) and local field potentials (LFP) were recorded with multi-
electrode arrays placed in the dorsal CA1 region and dentate gyrus
of HP, in the barrel field of S1, and in V1. Animals were recorded
after a 1-week recovery period following surgery. A 96-channel
multineuron acquisition processor (MAP, Plexon Inc, Dallas, TX)
was used for digital spike waveform discrimination and storage.
Action potentials (spikes) were extracted from the high frequency
band data and sorted into units using supervised online spike
sorting (SortClient 2002, Plexon Inc.) associated with posterior
offline validation (Offline Sorter 2.3, Plexon Inc). LFPs recorded
from the same wires were pre-amplified, filtered, and digitized
using a Digital Acquisition card (National Instruments, Austin,
TX) and a MAP (Plexon Inc). Behaviors were recorded through-
out the entire experiment under infrared illumination, by way of
two CCD video cameras and a videocassette recorder. Video and
neural recordings were synchronized with a millisecond-precision
timer (model VTG-55; For-A, Tokyo, Japan). Within each region,
the amount of units consisted of 42 HP, 33 S1 and 20 V1 for rat #
1, 59 HP, 23 S1 and 28 V1 for rat # 2, 34 HP, 25 S1 and 23 V1 for
rat # 3, 39 HP, 27 S1 and 37 V1 for rat # 4 and 45 HP, 39 S1 and
42 V1 for rat # 5.

SORTING OF BEHAVIORAL STATES
We used LFP data associated with a behavioral state sorting
algorithm (Gervasoni et al., 2004) to classify the states with 1 s res-
olution. The algorithm is based on a two-dimensional state space
defined by two spectral amplitude ratios calculated by divid-
ing integrated spectral amplitudes at selected frequency bands.
A scatter plot of the two chosen LFP spectral amplitude ratios
(state-space) reveals distinct clusters that correspond to the three
major wake-sleep states studied here: waking (WK), slow wave
sleep (SWS), and rapid eye movement sleep (REM).

ASSEMBLY DETECTION
A cell assembly is a subset of cells that somehow behave as a sin-
gle entity. Here we assumed a linear model. More specifically, we
defined the activity of a cell assembly as a weighted sum of the
activity of individual units. In order to determine the weights of
each neuron to each cell assembly we used a recently developed
framework (Lopes-dos-Santos et al., 2013), which can be briefly
described in four main steps:

(1) The spike train of each neuron was binned into 5 ms windows
and z-scored (i.e., variance and mean were set to 1 and 0,
respectively). Thus, the population activity was transformed
in a matrix in which each element represented the normalized
number of spikes of a given neuron in a given time bin. We
referred to this matrix as activity matrix.

(2) Then, the number of statistically significant cell assemblies
was estimated by counting how many principal components
of the activity matrix had associated variances above the
upper bound of the Marčenko-Pastur analytical distribution
of eigenvalues (Marčenko and Pastur, 1967; Peyrache et al.,
2010; Lopes-dos-Santos et al., 2011).
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FIGURE 1 | Behavioral paradigm and cell assembly detection. (A) Rats
were submitted to three periods of experimentation. During PRE and POST
periods, animals were kept in a rectangular box freely behaving for 1 h,
including complete wake-sleep cycle, sorted here as WK, SWS, and REM.
Within EXP period, 4 novel objects were placed in the corners of the box and
the animals were free to explore them for 20 min. Figure adapted from
Ribeiro et al. (2007). (B) Toy example of assembly detection and projection of
assembly activity time-series. We simulated 30 independent neurons as
Poisson processes with mean 1 spike/bin and created three assemblies (A–C)

by setting 3% of the data (1% for each assembly) as bins with
synchronization between the cells of a specific assembly. In this dataset,
assembly A comprises neurons # 1, # 2, and # 3; assembly B is formed by
neurons # 7, # 8, # 9, and # 10 and neurons # 4, # 5, and # 6 make assembly
C. Top panel shows the spike matrix (white circles mark co-activations of
assembly neurons). Bottom panel shows the assembly activity time-series,
calculated using the ICA-based method described in Lopes-dos-Santos et al.
(2013). Note that the assembly activities peak only when their corresponding
neurons co-fire.

(3) The activity matrix was projected into the subspace spanned
by the principal components with eigenvalues crossing the
statistical threshold and then submitted to Independent
Component Analysis (ICA) (Laubach et al., 1999; Hyvärinen
and Oja, 2000). Independent components can be understood
as assembly patterns that represent assemblies when the lin-
ear model is assumed (Lopes-dos-Santos et al., 2013), i.e.,
the values attributed to each neuron in a pattern define the
weights of the cells in the corresponding assembly.

(4) Individual cell assembly activity was computed by projecting
the activity matrix onto its assembly pattern (Lopes-dos-
Santos et al., 2013), which can be mathematically defined as:

AAb =
Nneurons∑

i= 1

wizib = WTZb,

where AAb is the assembly activity at time bin b, Nneurons is
the total number of neurons, wi is the weight of neuron i in
a specific assembly and zib is the z-scored activity of neuron
i within bin b. We removed the contribution of single units

firing alone (for instance, if a heavily-weighted neuron acti-
vated but others were silent, the assembly activity remained
low).

Figure 1B shows an illustrative example of an activity matrix
(top panel) along with the assembly activities estimated by the
method. For more details, see (Lopes-dos-Santos et al., 2013).

RESULTS
TIME BIN DETERMINATION
We used an empirical approach to adequately choose the size of
the time bins. First, we tested a wide range of bin sizes (2–256 ms)
to investigate the relationship between bin size and number of
detected assemblies. As shown in Figure 2A, we found an inverse
relation between bin size and number of assemblies. We analyzed
this closely and found that single assemblies detected with larger
bin sizes could be split in two other assemblies when smaller bin
sizes were used. The raster plot in Figure 2B shows the 20 most
weighted units, sorted from heavier (top) to lighter (bottom),
which comprise the patterns of assembly A (80% of the total
weight). This assembly is one of the assemblies detected using
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FIGURE 2 | Time bin size influences the detection of cell assemblies.

(A) Plot between log2 of bin size in milliseconds and the number of detected
assemblies. We assessed bins in a binary scale from 2 to 256 ms. Notice an
inverse correlation between log2 of bin size and the number of assemblies;
inset shows the distribution of slopes of the linear fits in the main panel. Gray
dashed line depicts the 5 ms bin size chosen in our study. (B) (Bottom)
120 ms of assembly activity from animal # 1, showing activity of assembly A
(black line), detected in EXP WK with 16 ms bin size, and of assemblies A′
(blue line) and A′′ (green line), detected with a bin size of 4 ms. (Top)
Rasterplot of the 20 most relevant neurons that constitute assembly A (80%
of the weight), ranked from highest weight to the twentieth highest. Light
gray shadow represents 16 ms intervals, dark gray ones represent 4 ms. Blue
dots exhibit the spike times of neurons contributing to assembly A′ activity
peak (black and red arrows, bottom panel). Green dots mark spikes
contributing to assembly A′′ activity peak (black arrow head, bottom panel).
Colored dots (spike times) are graded from darker to lighter respective to the

weight of the correspondent neuron in the assembly pattern. Note that
neurons participating in assembly A (bin 16 ms) were sorted into assemblies
A′ and A′′ (bin 4 ms), which can be active in sequence (black arrow and arrow
head) or independently (red arrow). (C) Exploring similarities between
assemblies. Panels show the histogram of SI values from 10,000
comparisons made by shuffling the neurons weights within assemblies to
build a null hypothesis (bootstrap procedure). Red dashed line shows the
threshold for significance at p = 0.01. Red circles depict the SI between A
and A′ (0.82, top), A and A′′ (0.51, middle), and A′ and A′′ (0.016, bottom).
Note that assembly A is significantly similar to A′ and A′′ (SI = 0.82 and 0.51,
respectively). The SI between A′ and A′′ was small (SI = 0.016), indicating
that, in addition to the fact that these assemblies have independent activity,
they also have orthogonal membership. A′ and A′′ exhibit strong assembly
activations at different time bins (panel B–arrows vs. arrow head). However,
when 16 ms time bins were used, the activities of these assemblies were
packed in the same time window, causing the merge of A′ and A′′ into A.

a 16 ms time bin in rat # 1 dataset, and its activity is shown in
black (Figure 2B, bottom); while the activities of two assemblies
detected using a 4 ms bin size (A′ and A′′) are depicted in blue and
green, respectively (Figure 2B, bottom).

To use a quantitative criterion to compare assembly compo-
sition, a Similarity Index (SI) was defined as the absolute value
of the inner product between the assembly patterns (unitary vec-
tors) of two given assemblies, varying from 0 to 1. Thus, if two
assemblies attribute large weights to the same neurons, SI will be
large; if assemblies are orthogonal, SI will be zero. We applied a
permutation test in order to determine whether SIs were signif-
icantly above chance. This test consisted in shuffling the weights

of each pattern across neurons, and then recalculating the SI. We
ran 10,000 permutations in order to construct a null hypoth-
esis distribution. Two patterns were regarded as representations
of the same assembly if their original SI was larger than the
99th percentile of the null hypothesis distribution (i.e., p = 0.01).
Using this process, we found that both A′ and A′′ were signifi-
cantly similar to assembly A (Figure 2C). This indicates that units
with larger weights in assembly A were split in two independent
(SI = 0.016) assemblies A′ and A′′ comprising partially non-
overlapping sets of units (respective action potentials indicated
by blue and green dots in the raster plot of Figure 2B, respec-
tively). Considering that large bin sizes may conceal fast assembly
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sequences (Figure 2B), we chose the 5 ms bin as a compromise
between a high temporal resolution and the need to avoid small
bin sizes close to the neuronal refractory period.

SEARCHING FOR ASSEMBLIES IN DIFFERENT EXPERIMENTAL PERIODS
After defining bin size, we focused on the assessment of the dif-
ferences among assemblies detected using spike matrices from
different experimental periods (PRE, EXP and POST). Our goal
was to investigate whether the exposure to novel objects changes
the assembly repertoire. At first we ignored sleep states and
extracted assembly patterns from entire PRE, EXP and POST-
WK periods (each one independently). Next, we used the SI to
compare all assemblies between experimental periods.

We found little variation in the numbers of assemblies across
different experimental periods (Figure 3A). Most animals showed
a maintenance or minor decrease in the number of assemblies
from PRE to EXP, except for rat # 2, which showed an increase
of one assembly. From EXP to POST, the number of assemblies
detected also dropped slightly, except for rat # 3, which showed
a stable number of 10 assemblies per period. Rat # 1 showed the
highest variance in the number of assemblies detected across peri-
ods, ranging from 13 in PRE to 10 in POST. Figure 3B illustrates
the substantial similarity between assemblies detected in differ-
ent experimental periods for rat # 2, which overall showed the
largest number of assemblies. To assess assembly conservation
across experimental periods, we then categorized the assemblies
within each experimental period as showing unitary correspon-
dence, non-unitary correspondence, or no correspondence. An
assembly was considered to show unitary correspondence when
it was significantly similar to only one assembly in each of its
flanking experimental period(s) with p < 0.0001; non-unitary
correspondence defined assemblies which showed more than one
correspondence or, in the case of EXP, those with correspon-
dence to one assembly from a flanking period but not with the
other (e.g., correspondence with PRE but not with POST); the
no-correspondence category comprised assemblies showing no
significant correspondences. Group results across different exper-
imental periods (Figure 3C) show that the number of assemblies
exhibiting unitary correspondence was significantly higher than
those showing non-unitary correspondence or no correspon-
dence, including EXP which is flanked by two neighbor periods
(Wilcoxon ranksum test, p < 0.05, Bonferroni corrected).

A comparison across experimental periods reveals that the
percentage in PRE of assemblies with no correspondence was
slightly elevated, while non-unitary correspondence was very
minor. During EXP the percentage of non-unitary correspon-
dences increased, while the percentage of unitary correspon-
dences and no-correspondences decreased. This could represent
the fact that EXP is flanked by two neighbor periods, while PRE
and POST are flanked by only one. Another possible explanation
is that the exposure to novel objects could have changed some
assembly activation patterns, increasing their co-activations (see
Figure 6B), and causing separate assemblies to be detected as one.
This may decrease the SI, leading to non-significance between
similar assemblies, and/or to significant similarity of one assem-
bly with two or more assemblies from flanking periods, compris-
ing significant but lower SIs. The POST period showed the highest

FIGURE 3 | Cell assemblies are highly conserved across experimental

periods. (A) Number of assemblies detected using spike matrices from the
different experimental periods. (B) SI values among assembly patterns of
rat #2 across experimental periods. Assembly patterns were detected
using a 5 ms bin size. Assembly labels were sorted to let highest values in
the main diagonal. (C) For each experimental period, the panels show the
percentages of assemblies within each of the categories defined by the
number of significant correspondences between the assemblies of a given
experimental period and the assemblies from flanking periods (from top to
bottom, PRE, EXP and POST). Two assembly patterns were deemed
correspondent if their SI was above a threshold set by a bootstrap
procedure (p = 0.0001). The categories were defined as unitary
correspondence, non-unitary correspondence and no correspondence,
representing the percentage of assemblies within rats that showed,
respectively, a single correspondence between flanking periods, two or
more flanking correspondences, or no correspondence whatsoever. Note
that the percentage of assemblies within the unitary correspondence
category was considered significantly higher than the other categories for
all experimental periods (Wilcoxon ranksum test, ∗p < 0.05, Bonferroni
corrected).

percentages of assemblies in the unitary correspondence category,
with a very small percentage of assemblies in the non-unitary and
no-correspondence categories. This indicates that the typically
smaller number of assemblies in POST (Figure 3A) comprises a
subset of assemblies that is essentially the same as in EXP. Across
all animals, we found an average of only one EXP assembly per
rat that showed no correspondence to any PRE assembly, and yet
had correspondence with a POST assembly. This points to a very
high conservation of assemblies across experimental periods, and
rules out the possibility that new assemblies are formed within
EXP and reverberate during POST. For this reason, we continued
our investigation of assembly sequences by extracting the assem-
bly patterns from a concatenated spike matrix of all WK intervals
(PRE+EXP+POST), and then projecting the assembly activity
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over the entire recording, throughout the wake-sleep cycle. Using
this approach, we detected 11, 18, 10, 13 and 13 assemblies for
rats # 1 to # 5, respectively.

DETECTING ASSEMBLY ACTIVATIONS
In order to improve the time resolution for the analysis of assem-
bly activation sequences, we first re-binned the spike trains from
each unit using 1 ms bins, and convolved the data with a Gaussian
kernel (maximum = 1, 80% of the AUC within 5 ms windows).
Then we projected the activity of all assemblies, and defined a
threshold (for each assembly) as the 99th percentile of the distri-
bution of activity values across time bins (Figure 4A, red lines).
Figure 4A shows the activity of three exemplary assemblies (A, B,
and C) from rat # 1, which above-threshold peaks are depicted
by red, blue and green letters (assembly activations), respec-
tively. Subsequent assembly activation was only considered after
a “refractory” period of 3 ms elapsed.

CALCULATION OF ASSEMBLY GRAPH ATTRIBUTES
We constructed the assembly activation sequence by labeling
and concatenating assembly activations from different assemblies
(Figure 4A, bottom). Graphs were built from this sequence, so
that each assembly corresponded to a node, each edge corre-
sponded to the temporal sequence of consecutive node activa-
tions, and the time intervals between two assembly activations
were considered inter-activation intervals (IAI) (Figure 4A, bot-
tom). The coactivation of two or more assemblies within the same
time bin was represented as an additional node in the graph,
whose label comprised the labels of the assemblies activated at
the same time. For instance, if assemblies F and J displayed

synchronous activation, a fourth node FJ was added to the graph,
always in the alphabetical order (Figure 4B).

Two parameters shaped the graphs: maximum IAI and num-
ber of activations per graph (activation count). The maximum
IAI parameter defined the threshold IAI within each graph, i.e.,
every time interval between assembly activations within a graph
should be less than or equal to this maximum IAI. Seven different
maximum IAI values ranging from 10 to 1000 ms were explored.

An initial assessment of the data varying only the maxi-
mum IAI criterion showed that, in general, the assembly graph
attributes were proportional to the activation count in a graph
(Figure 4C, median of absolute Pearson correlation indexes dis-
tribution = 0.74), while the duration (the interval between the
first and last assembly activation within a graph) was not corre-
lated to assembly graph attributes (Figure 4C, median of absolute
Pearson correlation indexes distribution = 0.18).

A fixed number of assembly activations per graph was used
to control for this variability in the graph attributes. Since the
minimum activation count necessary to maximize the density
of a graph (Table 1) is the square of the number of nodes
–Number of Assemblies2, we evaluated seven values of activa-
tion count as percentages of Number of Assemblies2 (10, 20,
50, 100, 120, 150 and 200%). The custom-made java software
Speechgraphs (Mota et al., 2012; http://neuro.ufrn.br/softwares/
speechgraphs) was used to calculate 13 assembly graph attributes
(Table 1).

CHANGES IN POPULATION RATE DO NOT EXPLAIN THE ACTIVITY OF
INDIVIDUAL ASSEMBLIES
The algorithm to algebraically define assembly activity was the
squared linear combination of the firing rate of the units in a

FIGURE 4 | Determination of sequences of cell assembly activations.

(A) 1.5 s interval showing activity of 3 assemblies (A–C) of rat # 1 (3 top
panels). Thresholds are the 99th percentiles of the activity values for each
assembly. Threshold-crossing peaks are considered assembly activations.
Assembly activation sequence is defined as the series of activation across
different assemblies within subjects; and the time interval between two
subsequent activations is called inter-activation interval (IAI) (bottom panel).
(B) Exemplary graph generated with assembly activations from the first WK

episode of rat # 1 during PRE. (C) Distribution of absolute Pearson correlation
values between graph attributes and two other variables: activation count and
graph duration. Graphs were generated using assembly activation sequences
from behavioral states’ episodes. Panel shows distribution of data from all
episodes. Note that activation count was generally correlated with graph
attribute values in our dataset (median = 0.74, 74% of correlations were
significant with p < 0.05), while the graphs duration were not (median =
0.18, 8% of correlations were significant with p < 0.05).
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Table 1 | Graph attributes.

Abbreviation Name Definition

Nodes Number of Nodes Number of assemblies activated
and single sets of co-activations
in the graph

RE Repeated Edges Number of edges linking the
same pair of nodes more than
once in one specific direction

PE Parallel Edges Number of edges linking the
same pair of nodes more than
once irrespective of the
direction

L1 Loops with one
node/Self-Loops

Number of edges between one
node and itself

L2 Loops with two
nodes

Number of pairs of edges
between two nodes one in each
direction

L3 Loops with three
nodes

Number of sets of three edges
in one specific direction leaving
one source node, passing
through two other nodes and
coming back to the source node

LCC Largest Connected
Component

Number of nodes comprising
the largest sub-graph in which
each node is connected to each
other through a path in the
sub-graph (applied to the
undirected version of the graph)

LSC Largest Strongly
Connected
Component

Number of nodes comprising
the largest sub-graph in which
all nodes are mutually reachable,
i.e., there is a path from node A
to node B, and one from node B
to node A (applied to the
directed version of the graph)

ATD Average Total
Degree

Mean of the number of edges
pointing to or departing from a
node, across nodes

Density Density of the graph Density number that goes from
0 to 1 representing the
percentage of possible edges
that really exist in the graph

Diameter Diameter of the
Graph

Length of the longest shortest
path between the node pairs of
a network

ASP Average Shortest
Path

Average length of the shortest
path between pairs of nodes of
a network

CC Clustering
Coefficient

Average across nodes, of the
percentage of real edges
between the neighbor nodes of
a node over the total possible
edges between these neighbors

given time bin (Lopes-dos-Santos et al., 2011, 2013). Hence, while
assembly activity is dependent on population firing rate, it is not
fully determined by it, because its projection also depends on the
weight of each unit on that specific assembly.

A plethora of studies have shown that firing rate changes con-
vey behavioral information (Adrian and Zotterman, 1926; Hubel
and Wiesel, 1959; O’Keefe and Dostrovsky, 1971; Moritz et al.,
2008); thus, it was first important to show that assembly activ-
ity is not just an epiphenomenon of population rate. To address
this issue, we plotted the squared mean population rate against
the mean of all assemblies’ activity within each bin along the
whole experiment for each rat (Figure 5A for rat # 1, dark red
dots). The R2 of the linear fit between these two variables was
low for all animals (Figure 5B), indicating that they display a
weak correlation. We then plotted the same squared mean of
the population rate against the mean assembly activity projected
using spike matrices with surrogated rates within each single bin
(Figure 5A, dark green dots). This allowed us to vary one of the
variables that define assembly activity (weights of each unit within
each assembly), while keeping the other unchanged (population
rate). This approach showed linear fits with even lower R2 val-
ues (Figure 5A, light green line for rat # 1 and Figure 5B for
all rats).

Next we investigated activity time-series of individual assem-
blies (Figure 5C, exemplary assembly from rat # 1). Figure 5D
shows R2 values for the linear fits from all individual assem-
blies as in Figure 5C, for all animals (real data—left; surro-
gated data—right). All values are very low, and become even
lower when we use the surrogated dataset, including a sta-
tistically significant difference in R2 values between real and
surrogated datasets, for rats # 1 and # 5. (Figure 5D, aster-
isk, Wilcoxon signed-rank paired test, p < 0.05). Altogether,
these results indicate that the activity of individual assem-
blies is not reducible to fluctuations of the population firing
rate.

ASSEMBLY ACTIVATION RATE AND COACTIVATIONS
We analyzed assembly activation time-series (Figure 6A, exem-
plary plot from rat # 5) from all behavioral states (WK, SWS
and REM) and experimental periods (PRE, EXP and POST).
Considering all rats, we found that the assembly activation rate
during WK was significantly higher in almost all the paired com-
parisons (18 out of 21) of experimental periods between behav-
ioral states (gray lines with asterisk, p < 0.05, Wilcoxon ranksum
test, bootstrap corrected). Moreover, in all rats the assembly
activation rate during POST SWS was significantly higher than
during PRE SWS (Figure 6A, exemplary plot from rat # 5, black
line with asterisk), which suggests that the increase in firing rates
after novel object exploration (Ribeiro et al., 2007) may under-
lie the elevated co-firing of assembly neurons. Interestingly, two
out of the three rats that displayed REM during PRE and POST,
showed elevated activation rate after the experience. Previous
work with larger groups including the present dataset showed
no significant firing rate change between PRE REM and POST
REM (Ribeiro et al., 2007). The distribution of assembly coac-
tivations followed the same pattern of the assembly activation
rate, in which POST SWS displayed higher values than PRE
SWS for all rats. The number of coactivations was also higher
during WK than during sleep (Figure 6B, exemplary plot from
rat # 5); with significant differences in 18 out of 21 possible
comparisons.
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FIGURE 5 | The activity of individual assemblies is not reducible to rate

fluctuations. (A,C) show exemplary panels from rat # 1 and (B,D) show
group data. (A) Squared mean of the population rate and the mean of all
assemblies’ activity within each 1 ms bin (dark red dots). In order to scramble
associative behavior and keep the firing rate fixed, we also plotted the mean
population rate against the mean assemblies’ activity projected using the
spike matrix with neurons’ labels surrogated within each time bin (dark green
dots). Light red and green lines depict the least square linear fit for each color
coded subset of points along with the correspondent coefficients of
determination (R2). (B) Coefficient of determination distribution for all rats.

For all animals, data surrogation impaired the correlation between firing rate
and assembly activity. (C) The same color code as in (A), but plotting the
mean population rate against the activity of a single exemplary assembly
from rat # 1. (D) Shown are distributions of all rats R2 values for the linear fits
from the correlation between mean population rate and individual
assemblies’ activity (left) and mean population rate and individual assemblies’
activity estimated from surrogated spike matrices (right). Note that both
distributions exhibit very low R2 values and that there is a decreasing trend
from real to surrogated data, with significant difference for rats # 1 and # 5
(∗p < 0.05, Wilcoxon signed-rank paired test).

GRAPH ANALYSIS
We found that graph attributes varied significantly across
behavioral states and experimental periods (Figure 7). We tested
therefore whether a Naïve Bayes classifier could extract, from the
assembly graph attributes, information enough to sort behav-
ioral states and experimental periods (John and Langley, 1995).
We used the java software Weka (http://www.cs.waikato.ac.nz/
ml/weka/) to perform the classifications and estimated their qual-
ity by the area under the receiver operating characteristic curve
(AUROC). Figures 8A,B show that it was possible to sort behav-
ioral states with very high quality of classification, particularly
when WK and REM were compared (maximum AUROCs ranging
from 0.78 to 0.98). WK and SWS could also be distinguished, at a
somewhat lower level (maximum AUROCs ranging from 0.69 to
0.96). The poorest quality of classification was obtained by sort-
ing SWS from REM (maximum AUROCs ranging from 0.64 to
0.78).

The classification quality across experimental periods was not
as good as across behavioral states (median across rats 0.57

vs. 0.69, Wilcoxon ranksum test, p < 0.01), except for rat # 1.
Figures 8C,D show that the maximum AUROC values for the
comparisons between experimental periods ranged from 0.55 to
0.99, with distribution of all values yielding 0.52 and 0.67 as the
first and third quartiles, compared to 0.58 and 0.84, as quartiles
for the comparisons between behavioral states. We found a strong
positive correlation between the AUROC of graph attributes and
activation count for all the comparisons made (e.g., rats # 4 and
# 1 in Figures 8A,C). One example of this correlation is shown
on a plot of the AUROC values from the classification between
PRE WK and PRE SWS vs. the activation count of the graphs
of rat # 1, considering only values obtained using the 1000 ms
maximum IAI (Figure 8E). The figure shows a positive correla-
tion associated with an extremely strong linear fit (R2 = 0.95)
and a 1.2× 10−3 slope, in association with major variation in
AUROC values (full range: 0.54–0.80). To test if this was a general
effect of assembly count on AUROCs and to analyze the general
effect of maximum IAI on AUROCs, we plotted the AUROCs
vs. the activation counts along a constant maximum IAI; and
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FIGURE 6 | Descriptive statistics. Panels show the distribution of
assembly activation rate (A) and co-activation rate (B) (events per second)
during different behavioral states and experimental periods for rat # 5.
Behavioral states boxplots are color coded as red, blue, and green for WK,
SWS and REM, respectively. Experimental periods (PRE, EXP and POST)
are placed together and in chronological sequence within each behavioral
state. Black lines with asterisks reflect significance between two different
experimental periods within a given behavioral state. Gray lines with
asterisks reflect significance between two different behavioral states within
a given experimental period (p < 0.05, bootstrap corrected for multiple
comparisons).

the AUROCs vs. the maximum IAIs considering a constant acti-
vation count for the panels from all rats. Note that activation
count accounts for AUROC variability significantly more than the
maximum IAI, except for rat # 1 (Figure 8F), according to a pos-
itive correlation (Figure 8G). It is important to note that there
was no AUROC above 0.68 when we used maximum IAIs below
20 ms. Maximum AUROCs were obtained using each of the seven
different activation counts explored.

DISCUSSION
Our results show that assembly graphs comprising synchronized
neuronal units recorded from the hippocampus and primary sen-
sory cortices can be used to sort behavioral states (maximum
AUROC values ranging from 0.64 to 0.98) and experimental peri-
ods (maximum AUROC values ranging from 0.55 to 0.99) before,
during and after novel object exploration. This sorting is based on
several attributes that reflect the structural properties of assembly
graphs. At this point we do not know whether these attributes
are informative due to a causal relationship with behavior, or

as an epiphenomenon of some other underlying cause. In all,
our investigation corroborates the notion that phase sequences,
understood as specific patterns of assembly activations, reflect
the different regimes of neural processing as animals traverse
the wake-sleep cycle and acquire novel information about the
environment.

Such interpretation of the results cannot be furthered with-
out addressing the problem of the arbitrary definition of time
scale for synchronous firing. As shown in Figure 2A, the number
of assemblies detected decreases with bin size. We showed evi-
dence that this may be due to the tight temporal association of
assemblies detected using smaller bin sizes, which are detected as
a single assembly when larger bin sizes are used. Our choice of bin
size= 5 ms for the generation of assembly graphs, well within the
potentiation window of spike time dependent plasticity (STDP)
(Bi and Poo, 1998), represents a compromise between the num-
ber of assemblies detected and the need to avoid extremely low
bin sizes near the neuronal refractory period.

Our results show that the repertoire of assemblies is almost
unchanged across experimental periods, which suggests that
novel experience does not create new assemblies in the hippocam-
pus and primary sensory neocortex of the normal adult rat.
Our finding is compatible with Hebb’s hypothesis that assemblies
correspond to the primitive building blocks of representations,
being slowly formed across development but nearly unchanged
in adulthood. The experience-dependent changes in the structure
of assembly graphs, revealed by the use of a classifier, also cor-
roborates the complementary Hebbian hypothesis that relevant
information about concepts, percepts and behavior in general is
coded at the level of multiple assembly activations, the so called
phase sequences (Hebb, 1949).

We also showed that the activity of single assemblies cannot
be reduced to the changes in firing rate. Changes in neuronal
firing rates constitute well-known indexes of behavior (Adrian
and Zotterman, 1926; Hubel and Wiesel, 1959; O’Keefe and
Dostrovsky, 1971; Moritz et al., 2008). If phase sequences are
indeed important to generate new neural representations, they
should carry more specific information than firing rates. Since
assemblies are subsets of neurons that function transiently as
closed systems, the neurons related to a given perception or
behavior should have their rates affected synchronously, so as to
be detected as assemblies. The calculation of assemblies and the
projection of their activity is a way to reduce the dimension-
ality of a population of neuronal units onto neuronal subsets
which are likely related to behavior. Investigation of whether
phase sequences carry more information than firing rates is
ongoing.

The automatic sorting of behavioral states using the attributes
of assembly graphs reached a very high level, but the sorting of
experimental periods was substantially less accurate. The major
behavioral states comprise markedly different physiological pat-
terns in the brain (Noda et al., 1969; Vanderwolf, 1969; Hobson
and McCarley, 1971; Gervasoni et al., 2004), likely not the case for
the experimental periods investigated here. One possible cause for
this difference may be the small amount of assemblies detected,
due to the under-sampling of the neuronal units actually involved
in novel object exploration.
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FIGURE 7 | Assembly graph attributes vary significantly across

behavioral states and experimental periods. Panels show the
distribution of graph attributes’ values from rat # 5, using 1 s maximum IAI
and 169 activations/graph, for different behavioral states and experimental
periods. As in Figure 6, behavioral states boxplots are color coded as red,
blue, and green for WK, SWS and REM, respectively. Experimental periods
(PRE, EXP and POST) are placed together and in chronological sequence
within each behavioral state. Black lines with asterisks reflect significance
between two different experimental periods within episodes of a given
behavioral state (p < 0.05, Wilcoxon ranksum test, Bonferroni corrected).
Gray lines with asterisks reflect significance between two different

behavioral states within a given experimental period. Note that nearly all
the attributes sorted WK from SWS, during PRE or POST (except for L1
during PRE and L3 during POST). WK was significantly different from REM
during PRE (12 attributes) and POST (11 attributes), SWS was significantly
different from REM during POST (10 attributes), but no attribute could sort
SWS and REM during PRE. Only one attribute was capable of sorting PRE
from EXP within WK. When comparing PRE × POST within WK, 12
attributes could separate them. EXP WK graphs were detected as different
from POST WK graphs by 3 attributes. PRE SWS could be sorted from
POST SWS, and PRE REM could be sorted from POST REM, using any of
the graph attributes studied.
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FIGURE 8 | Assembly graph attributes allow for the automatic

classification of experimental periods and behavioral states. (A,C) The
rows of each panel represent the graphs maximum IAI (within the graph,
every IAI is less than or equal to the maximum IAI value), while the columns

correspond to the number of activations within the graphs defined as
percentages of the squared number of assemblies. Color codes vary from 0
to 1 and represent the median AUROC of 50 classifications made for 20

(Continued)
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FIGURE 8 | Continued

random graphs from each of the experimental periods compared using a Naïve
Bayes classifier; e.g., 20 graphs from PRE WK compared with 20 graphs from
EXP WK. In some cases of the parameter screening, we could not obtain the
minimum 20 graphs necessary for the classification. For instance, it was
impossible to generate one single graph comprising 200 activations (200% of
Number of Assemblies2 for rat # 3) within the 10 ms maximum IAI. These
conditions were coded blue to indicate no classification. The maximum AUROC
value of each panel is indicated. (A,B) Sorting of behavioral states. (A) Panels
show the classification quality across different maximum IAI and activation
count values for rat # 4. (B) Histograms of AUROC values as in panel (A) for all
rats. Red line depicts the 0.6 AUROC value, which sets the lower bound for a
good classification quality. WK and REM were well sorted by graph attributes,
with maximum AUROC values ranging from 0.68 to 0.98 for all rats within both
PRE and POST periods. The sorting of SWS and REM was substantially less
accurate, with maximum AUROC= 0.78 during POST in rat # 5. The sorting
between WK and REM was very good for all rats during PRE, (maximum
AUROCs from 0.78 to 0.98). (C,D) Sorting of experimental periods. (C) Panels
show the classification quality for rat # 1 across different maximum IAI and
activation count values. (D) Histograms of AUROC values from the panels as in
panel (C) for all rats. All the comparisons yielded maximum AUROCs ranging
from 0.55 to 0.99. (E) Correlation between AUROC and activation count using a

1000 ms maximum IAI from rat # 1 graphs comparing PRE WK and PRE SWS.
The slope of the linear fit indicates that each single activation added to a graph,
adds 0.0012 to the AUROC, with activation counts varying from 12 to 242
(AUROCs vary from 0.54 to 0.80). (F) Distribution of slopes of the linear fits
between activation count and AUROC with fixed maximum IAI value (e.g., panel
E); and between maximum IAIs and AUROC with fixed activation count. We
used the AUROCs from all the comparisons and conditions (maximum IAI and
activation counts) for all animals and considered only fits with three or more
data points. The analysis shows that the maximum IAI contribution to the
AUROC is around zero (mean across rats= 0.0024) and even negative, while
the contribution of the activation count is divergent, with a clear majority of
positive contributions (mean across rats= 0.097), yielding a significant
difference between these two variables, except for rat # 1 (G) Distribution of
Pearson correlations indexes for the comparisons in panel (F). Note that
activation count shows strong positive correlation with AUROCs (medians=
0.92, 0.93, 0.78, 0.80, and 0.91 for rats # 1 to # 5, respectively; 53% of the
values with p < 0.05), while maximum IAIs are scattered, with values spanning
the entire scale, and medians closer to zero or even negative for all rats (0.59,
−0.33,−0.56,−0.39, and 0.12 for rats # 1 to # 5, respectively; 8% of the values
with p < 0.05). Asterisks indicate significant differences between activation
count and maximum IAI distributions of correlation values within the same
animal.

It is important to point out that in the present study we
assumed that the activity of a cell assembly could be described as
a linear combination of the activity of individual neurons. While
this simplification of the assembly model allows for the analy-
sis of large neuronal populations, it also presents some potential
caveats (Lopes-dos-Santos et al., 2013). In particular, strong non-
linear correlations between neurons may lead to spurious results,
since both the determination of the number of assemblies and
the extraction of assembly patterns are based on the linear model.
Nevertheless, because this representation of assemblies is intuitive
and straightforward, it is possible to verify the outcomes of the
analysis; for instance, visual inspection of the raw data confirms
that co-activations of assembly members correspond to peaks
in assembly activity (see Figure 2B, also see examples employ-
ing similar linear methods in (Nicolelis et al., 1995; Peyrache
et al., 2009, 2010; Benchenane et al., 2010; Lopes-dos-Santos
et al., 2011, 2013). In principle, a non-linear method should be
more robust and realistic, but we are not aware of any non-
linear method capable of extracting assembly composition from
the ongoing activity of neuronal populations with dozens of neu-
rons. An ideal method should also incorporate information on
the physiology of specific cell types and neural circuits. Taken
together, our results show that, despite any possible non-linear
correlations that may exist among neurons, the linear ones carry
relevant information that support a role for phase sequences in
behavior and cognition. Future research shall include non-linear
modeling and also consider a neural coding approach, in order
to fully characterize the repertoires of phase sequences, and elu-
cidate the role of specific graph attributes in the representation of
contextual cues, sensory stimuli and motor behavior.
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In this work we analyze electro-corticography (ECoG) recordings in human subjects
during induction of anesthesia with propofol. We hypothesize that the decrease in
responsiveness that defines the anesthetized state is concomitant with the stabilization of
neuronal dynamics. To test this hypothesis, we performed a moving vector autoregressive
analysis and quantified stability of neuronal dynamics using eigenmode decomposition
of the autoregressive matrices, independently fitted to short sliding temporal windows.
Consistent with the hypothesis we show that while the subject is awake, many modes of
neuronal activity oscillations are found at the edge of instability. As the subject becomes
anesthetized, we observe statistically significant increase in the stability of neuronal
dynamics, most prominently observed for high frequency oscillations. Stabilization was
not observed in phase randomized surrogates constructed to preserve the spectral
signatures of each channel of neuronal activity. Thus, stability analysis offers a novel way
of quantifying changes in neuronal activity that characterize loss of consciousness induced
by general anesthetics.

Keywords: criticality, anesthesia, ECoG, depth of anesthesia monitoring, consiousness, dynamical systems

1. INTRODUCTION
It has been suggested that neural systems operate in a critical
regime similar to phase transitions in physics, given several com-
putational desirable features of such states represented by the
statistics of the thermodynamic variables (Chris, 1990). Evidence
for statistical criticality is based on the observation that var-
ious aspects of neuronal activity such as avalanches observed
in local field potentials and action potentials in tissue prepara-
tions and in animal models (Gireesh and Plenz, 2008; Ribeiro
et al., 2010), as well as magneto-encephalography (MEG) and
electro-corticography (ECoG) in human subjects (He et al., 2010;
Shriki et al., 2013), exhibit long tailed-distributions well approx-
imated by power laws. The critical regime provides important
functional benefits; quantities such as dynamic range and infor-
mation transmission are optimized near criticality (Shew and
Plenz, 2013).

More recently, the dynamical aspect of criticality has been
brought into focus, as a similarly desirable feature not fully cap-
tured by steady-state statistics such as avalanche size distributions
(Magnasco et al., 2009; Chialvo, 2010; Mora and Bialek, 2011;
Beggs and Timme, 2012); a perturbation in an extended dynam-
ical system that is close to a critical point will neither decay nor
explode, thus allowing for long range communication across the
entire system. In contrast, if the system is far from criticality
(therefore stable), perturbations damp out and no information
integration takes place beyond the characteristic damping time
scale (Tononi, 2008).

While models of self-organized criticality exhibit both dynam-
ically and statistically critical behavior (Bak et al., 1987; Gil and
Sornette, 1996), the two aspects of criticality are not necessarily
related. The winnerless network provides an illuminating exam-
ple: under very generic conditions, neural systems can display a
phase space determined by heteroclynic orbits connecting saddle
nodes (i.e., at least one unstable manifold), such that the resulting
dynamics are quasi-periodic cycles over the nodes, without nec-
essarily exhibiting statistically critical distributions (Rabinovich
et al., 2001; Aguiar et al., 2011; Ashwin et al., 2011). A model
connecting statistical and dynamical criticality in neural systems
was proposed recently by Magnasco et al. (2009). They con-
sider an abstract model in which the activity of a set of neurons
is encoded in a N-dimensional vector �x which evolves in time
according to a N × N connectivity matrix A, characterized by
its set of N eigenvalues {λn}. By assuming anti-Hebbian dynam-
ics for the connectivity matrix a very rich dynamical scenario
emerges. The eigenvalues of the matrix A evolve toward the
dynamically critical point Re(λn) ≈ 0 ∀n and the solutions of
the model exhibit complex spatio-temporal dynamics, as well as
long tailed avalanche distributions and other signatures of sta-
tistical criticality. Consistent with this observation, experimental
evidence of both statistical and dynamical criticality was reported
in human ECoG recordings; however, the precise mechanism by
which critical dynamics occur has not been investigated. The
analysis showed that the eigenvalues crowd near the critical line,
and moreover that task performance (finger tapping) implies a
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subtle but significant decrease in dynamical criticality, presum-
ably because the modes related to motor execution impose higher
stability (Solovey et al., 2012). Of note, signatures of statistical
criticality were not strongly affected by task performance.

If indeed dynamical criticality is a useful feature of brain activ-
ity rather than an epiphenomenon, stability of neuronal dynamics
ought to be modulated by the behavioral state of the subject.
Here, we hypothesized that a particularly dramatic change in
stability accompanies changes in the level of wakefulness (con-
sciousness). When the brain is awake and displaying complex
behavior its dynamical state ought to be close to a bifurca-
tion point; marginally stable modes contribute to long range
interactions across the system. Conversely when higher-order
functions associated with wakefulness have been diminished and
eventually completely disrupted by anesthetics, brain dynamics
should exhibit more stability. In other words, anesthesia induc-
tion should lead to stabilization of brain dynamics.

Changes in the level of arousal (wakefulness) have been his-
torically quantified using spectral analysis of neuronal activity.
In this view, decrease in the level of wakefulness is reflected in
the increase and prevalence of low frequency oscillations and the
concurrent decrease in the high frequency oscillations reviewed in
Brown et al. (2010). While this is true for some states of decreased
arousal such as slow wave sleep, this association breaks down dur-
ing other states in which arousal is similarly depressed such as
rapid eye movement (REM) sleep for instance. Furthermore, state
of general anesthesia can be characterized by different spectral
signatures depending on the specific choice of anesthetic agent
(Maksimow et al., 2006). This makes current modes of detecting
the “depth of anesthesia” unreliable (Avidan et al., 2011).

Lack of clear association between changes in the spectral con-
tent of brain signals and level of arousal is not entirely surprising.
It is likely that the overall level of wakefulness is a consequence of
the interactions among many brain regions rather than any spe-
cific feature of neuronal activity observed at any one region taken
in isolation. Therefore, more recent efforts have been aimed at
detecting decreases in arousal using connectivity measures based
on spectral coherence as well as mutual information and phase
relationships among brain activity recorded simultaneously at
multiple locations (Imas et al., 2005; Cimenser et al., 2011; Lee
et al., 2012). While this connectivity analysis does suggest that
integration of information between different brain regions may
be decreased when the level of wakefulness is reduced, it is not
trivial to relate changes in connectivity to the changes in global
dynamics of the brain.

To address the dynamics, we fitted vector autoregressive (VAR)
models to ECoG signals collected directly from the cortex of
human subjects as they were gradually induced into the state of
general anesthesia. These models were independently fit to short
temporal windows with an arbitrarily large overlap. Thus, while
we assume that the dynamics are locally linear and stationary over
a short temporal window, on a longer time scale the dynamics
are expected to be arbitrarily non-linear and non-stationary. This
locally linear approximation allows us to quantify the changes in
stability of brain activity in terms of temporal evolution of the
distribution of eigenmodes of the fitted models. As previously
reported (Solovey et al., 2012), we found a prevalence of critical
eigenmodes across the entire recordings. However, the stability

of the models shows statistically significant differences across dif-
ferent stages of induction. While the distribution of eigenvalues
changes in non-trivial ways, high frequency modes become more
damped as anesthesia is induced. Moreover, modes closer to crit-
icality, regardless of frequency, show a gradual shift to stability
spanning several drug volleys over approximately 20 min.

This work is organized as follows. In the next section we
describe the induction protocol and the analysis method. We
present our results in section 3. In section 4 we summarize and
discuss our findings.

2. METHODS
All experimental protocols were approved by the IRB at the
Weill Cornell Medical College (protocol number 1106011763).
After obtaining informed consent, three subjects undergoing sur-
gical treatment for intractable epilepsy were enrolled in this
study. Subdural electrode grids and strips (Ad-tech, Medical
Instruments Corp., Racine, WI) were implanted for the purposes
of localization of the epileptogenic loci. The location and the
number of electrodes were determined by the clinical considera-
tions (temporal lobe for all subjects in this study). After the initial
implantation of the subdural electrodes, the subjects underwent
video and EEG monitoring, duration of which was dictated solely
by clinical considerations (1–2 weeks in these subjects). The
recordings analyzed in this work were obtained during induction
of anesthesia for the second craniotomy performed after comple-
tion of this observation period. During induction of anesthesia
(see below), blood pressure, ECG, heart rate, pulse oxymetry, and
end tidal carbon dioxide were monitored and maintained within
normal limits. Patients were given supplemental oxygen via nasal
cannula.

After obtaining baseline recordings (without any
pre-medication) anesthesia was gradually induced using
target controlled infusions of propofol using pharmacokinetic
parameters derived by Schnider et al. (1999), administered
using STANPUMP. Target propofol concentration was increased
slowly while the level of sedation was accessed using responses
to simple verbal commands. Propofol infusion continued until
subjects lost the ability to respond to verbal commands. At this
point additional propofol, opioids, and neuromuscular blockers
were administered (at the discretion of the anesthesia provider)
and trachea was intubated. Recordings were terminated at this
point.

Recordings were obtained using SynAmps2 (Neuroscan) using
DC coupled recording. Data were acquired at 10 KHz. 64 channels
of ECoG signals were acquired in each subject. While both con-
ventional EEG and ECoG are thought to primarily reflect the sum
of synchronized postsynaptic potentials of neurons in the vicinity
of the electrode, the invasive nature of the ECoG signals allows
for much greater signal to noise ratio and significantly improves
spatial and temporal resolution of the signals.

No online filtering was performed. ECoG data was collected
from three human subjects as they were induced into general
anesthesia. For all subjects, the infusion started 60 s into the
recording and the concentration of anesthetics was increased
every 300 s. For Subject 1, propofol infusion started 60 s into
the recording. 360 s into the recording the subject reports being
awake. 510 s into the recording the subject no longer responds.
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960 s into the recording the subject is given additional drugs
and intubated. For Subject 2, propofol was incremented at 300,
600, and 900 s. At 660 s the subject opened eyes. 720 s into the
recording the subject no longer responded. 1140 s into the record-
ing subject was given additional drugs and was intubated. For
Subject 3, propofol infusion started 60 s into the recording. The
concentration was increased every 300 s and maintained constant
before and after. 900 s into the recording the subject no longer
responded to verbal commands or light taps on the shoulder.
1200 s into the recording subject was given additional drug and
was intubated.

Data was bandpass filtered at 0.1− 500 Hz and detrended in
segments of 10 s. We applied notch filters at 60± 2, 120± 2, and
180± 2 Hz. Finally, the amplitude of the signal in each channel
was normalized by its standard deviation. For our analysis data
was partitioned in equally sized windows of τ = 200 ms centered
every tj+ 1 − tj = � = 100 ms. In each window, we assumed that
the dynamics is locally linear and fitted a vector auto regressive
model (VAR) of order p = 1.

yn+ 1 = Ayn + un (1)

where yn are the fitted values, A ∈ R
N×N is the matrix to be esti-

mated and un is assumed to be white noise. Here, yn ∈ R
N is a

multivariate time series that represents the recorded activity in all
channels at time tn and A corresponds to the LAG 1 correlation
between channels. A comprehensive treatment of this model and
its estimation can be found in Lütkepohl (2006). In this work we
used a python implementation of Schnider’s et al. algorithm to
estimate A (Schneider and Arnold, 2001). This procedure yields
a set of matrices Aj which govern the stability properties of the
VAR model at time tj. In order to address changes in the sta-
bility of the fitted models we considered the distribution of the
modulus of the eigenvalues at each time step. Also, since our
underlying hypothesis corresponds to a continuum model we
performed a transformation in order to obtain a correspondence
between the eigenvalues of Aj and the timescales of the dynamics.

Let λj = ρjeiφ be the eigenvalue corresponding to the j-th mode,
the frequency of the mode is given by

fj = φj

2πdt
(2)

while the growth rate (timescale) of the mode is given by

τj = log(ρj)

dt
(3)

Here dt = 1
Sf
= 0.0001 s, where Sf is the sampling frequency of

the recordings. A mode with eigenvalue λ is critical if

‖λ‖ = 1 (4)

In practice however, we call a mode critical if ‖λ‖ ≈ 1 (thus
τ ≈ 0 s). These are modes which are close to alternate their
behavior between damping and growth (Strogatz, 2006).

The distributions so obtained were compared to the initial dis-
tribution (prior to induction) by means of two statistical tests.
Kolmogorov-Smirnov (KS) tests the null hypothesis that the dis-
tributions are the same and yields the maximal difference of the
cumulative distributions to quantify for the changes. Wilcoxon

rank-sum (W) tests the null hypothesis that the distributions are
the same against the alternative hypothesis that they are shifted
and returns a z-value to account for the magnitude of the shift. If
the values of the subsequent distributions are smaller than those
of the reference distribution (awake state) then z > 0, therefore,
an increase of the z-value indicates an increase of the stability.

We settled on a VAR-1 model because the main results related
to the effect of anesthesia are robust for VAR-2 and VAR-3 mod-
els. We have explored window sizes ranging from 100 ms to 1 s
and found no significant changes. Our method was tested against
surrogate data obtained by phase randomization of the signal;
for each channel we computed the Fourier transform of the sig-
nal, changed the phase value by a random number [drawn from
a flat distribution in (0, 2π)] and transformed back to obtain
the surrogated signals. Note that by construction this procedure
preserves the power spectrum of each signal.

3. RESULTS
We performed VAR analysis on three human subjects as they
were induced into general anesthesia. Our primary focus was to
detect changes in the distribution of the stability parameters ‖λj‖
during induction of anesthesia. To quantify changes in the sta-
bility of the models we used two non-parametric statistical tests
[Kolmogorov-Smirnov (KS) and Wilcoxon rank-sums(W)]. The
results of this analysis are shown in Figure 1A [for each subject
top row shows (KS) and bottom row shows (W)]. To improve
visualization the results were smoothed using moving average
windows of 10 s. The distribution of eigenmodes computed over
different windows during the awake state fluctuates. To scale the
observed differences in stability during induction of anesthesia
by these spontaneous fluctuations, we computed the time aver-
age of both KS and W statistics over the awake period (1 min)
and subtracted this value from the curves shown in Figure 1A. In
all cases, the temporal average of the p-values behaves similarly
to the KS-Z values. During the first minutes of the procedure we
find that p ≈ 0.75, thus, the null hypothesis that the distributions
are the same cannot be safely rejected. However, we find a dras-
tic drop of the p-value concomitant with changes in KS-Z values.
For the regions indicated in blue and green (Figure 1A), the aver-
age p-value of both tests are in the range of 0.2− 0.3 suggesting
that the distributions have changed. While the KS test simply indi-
cates that the distributions of stability parameters during awake
and anesthetized states are different, the increase in the z-values of
the Wilcoxon test implies that ‖λj‖ tends to decrease with induc-
tion of anesthesia, i.e., the dynamics is becoming more stable.
Note that the change in the distribution of the stability parame-
ter is not observed in phase randomized surrogates (red curves in
Figure 1A). Thus, the observed changes in stability are not given
by the spectral properties of neuronal activity.

Note that in general the eigenvalues of the autoregressive
matrices fitted to the ECoG signals are complex numbers whose
real and imaginary parts give rise to the timescale τ and fre-
quency f of the corresponding eigenmode (see Equations 2, 3).
While Figure 1A focused just on changes in the distribution of
the stability parameters, Figure 1B shows changes in both the dis-
tribution of timescales (abscissa) and bulk frequencies (ordinate)
treated independently. Time elapsed since the onset of experi-
ment is color coded from red (awake) to blue (anesthetized). The
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FIGURE 1 | ECoG signals were recorded from three human subjects as

they were induced into general anesthesia. Data was locally fitted with
VAR(1) models in windows of 200 ms every 100 ms (see methods). The
linear stability of each model is compared to the awake state by means of
two statistical tests. (A) top rows: Kolmogorov Smirnov test. For each
model we plot the KS statistics of comparing the fitted distribution of
eigenvalues against the awake state. (A) bottom rows: The distribution of
time scales is compared using Wilcoxon test. Both quantities were
averaged in time intervals of 10 s. The stability properties of locally fitted
VAR(1) models change as the subjects undergo anesthesia. We defined
three different segments (color rectangles) which were used for
subsequent figures. (B) Changes in the frequency and stability of the
eigenmodes. We compared the distributions of frequencies and time
scales using a Wilcoxon test. In each figure, the vertical axis shows the
z-value of comparing the frequency distributions whereas the horizontal
axis shows the same test for the stability parameters distributions. The
color code represents time elapsed since the beginning of the recording. In
this representation all realizations yield qualitatively similar results: as the
subjects are induced, the fitted frequencies shift to higher values at the
same time they become more damped.

bulk evolution of the eigenmodes is consistent in all subjects: as
induction progresses, modes shift to higher frequencies while they
become more stable. To validate that the results obtained with
the VAR-1 model are robust, we show in Figure A1 (included as
Appendix) the same analysis as in Figure 1A implemented with a
VAR-3 model. As it can be seen, the changes in the distribution of
eigenmodes are almost identical to those for VAR-1.

While Figure 1B suggests an increase in the bulk frequency
and decrease in the time constant, this does not fully charac-
terize the way in which anesthetics change the distribution of
eigenvalues in the plane spanned by timescale and frequency.
Figure 2 shows how we represent the distributions of the eigen-
values of Aj. The vertical axes corresponds to frequencies plotted
on a logarithmic (base 2) scale. Horizontal axes indicate the
modes damping/growth timescale. The sign indicates whether the
mode’s amplitude is growing (positive) or decaying (negative).
Histograms are color coded with blue indicating low occupancy
to red indicating high occupancy. Note that the damping time and

FIGURE 2 | Qualitative behavior of eigenmodes. The histogram
corresponds to the eigenmodes of VAR-1 processes fitted to ECoG signals.
The count in each bin is color-coded and the number of samples is N > 106.
The frequency axis is in logarithmic scale (base-2). The arrows indicate
points in the stability plane for which the qualitative dynamics of the
corresponding mode is illustrated. The dynamics of each mode can be
expressed as an oscillation of frequency f whose amplitude (red curves) is
modulated by an exponential decay/growth (blue curve). Each solution is
shown for 2/τ s. Note that for the points in the plane with non-zero count, a
number of oscillations occur before the mode is damped out. For the case
labeled with �, the mode grows exponentially (i.e., it is super-critical).

frequency are not independent and modes with lower frequencies
tend to have longer damping times, with slow oscillations found
near the critical point (τ ≈ 0). Traces on the margin of the fig-
ure illustrate the dynamics for particular pairs of damping time
and frequency. Note that the traces are plotted on the timescale
commensurate to the damping time rather than on an absolute
time scale. The inter-relationship between damping time and fre-
quency assures that most modes located along the most densely
populated ridge go through several complete cycles before being
damped out, while the modes located to the left of the dominant
ridge are damped out earlier and are thus less likely to carry out
meaningful computations performed by the brain.

Figure 3A shows the distribution of eigenvalues in the plane
introduced in Figure 2 during three stages of the induction pro-
cess (100 s segments shown in Figure 1A). In order to better
resolve the distributions we performed a moving VAR analy-
sis with tj+ 1 − tj = 1 ms of spacing between adjacent windows.
In order to visualize changes in the eigenvalue distributions
we normalized the count value of each histogram by its max-
imum. Then, we used the normalized values in each bin to
code for color in RGB space as indicated in the filled circles.
Figure 3B, correspond to the superposition of such images. In
this way, regions of the stability space that are similarly occu-
pied in the three stages are coded in gray scale [with white
corresponding to maximal occupancy (1,1,1)] and pure colors
RGB correspond to values that are exclusive to the first, sec-
ond and third stage respectively. A prominent feature shown by
these panels is the shift of high-frequency eigenmodes toward
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FIGURE 3 | Statistics of the models stability at each stage indicated in

Figure 1. Each stage is sampled in 100 s intervals and VAR(1) models were
fitted every 1 ms. For each stage we computed the frequency and growth \
decay timescale of each mode. Figures correspond to 2D histograms of this
quantities. The count in each bin is color coded and the number of samples is
N ≈ 106. The frequency axis is on logarithmic (base 2) scale. (A) Distributions

of eigenvalues. (B) Differences across segments. We normalized each bin in
(A) histograms by their maximum. The figure is constructed by superposing
the three histograms, each coding for a color in RGB space. In this way pure
red, pure green and pure blue correspond to eigenvalues that are only
present in the first, second and third stage. The rainbow-like pattern indicates
a shift of high frequency modes as they become more damped.

increased stability. While the full worm-like distribution of eigen-
values changes in subtle ways, the left-ward shift in these fre-
quencies is ubiquitous in all subjects. Figures 4A,B correspond
to vertical and horizontal “slices” respectively of the histogram
shown in Figure 3A for subject 1. Figure 4C shows details of
how these distributions change for subject 1. We performed the
same comparison as before but choosing a smaller frequency
range for computing the histograms. The shift to damped states
is more pronounced for modes with frequencies that are greater
than 64 Hz.

Finally, we investigated how the distribution of the most crit-
ical modes is affected by induction. This was partially inspired
by results previously reported in human ECoG, showing that
differences between task and resting conditions can be detected
precisely by changes in these populations (Solovey et al., 2012).
We show in Figure 5 the result of comparing the distribution of
modes truncated to eigenvalues with damping constant above a
given threshold close to criticality. For all subjects, the distribu-
tions show a gradual change in the stability of near-critical modes
along the entire span of the induction process Figure 5A. This
is somewhat surprising, as the induction process is controlled

by discrete events of drug increase which notably affect the full
eigenmode distribution.

4. CONCLUSIONS
Dynamical systems theory indicates that systems that are capa-
ble of performing computations should have a large number
of modes with marginal stability. In such a scenario an arbi-
trary perturbation will not decay or explode, thus allowing
for information integration across the entire system. Previous
work suggest that the brain might operate in a dynamically
critical regime (Magnasco et al., 2009; Solovey et al., 2012).
A simple model exhibiting complex spatio-temporal dynamics
was recently proposed, in which statistically critical behavior
emerges due to dynamical instabilities. Within this framework
we tested the hypothesis that the stability properties of the sys-
tem change as anesthesia is induced; specifically, we hypothesized
that wakefulness is related to dynamical criticality while the anes-
thetized state corresponds to increased damping of the dynamics.
To test this hypothesis we assumed locally linear dynamics esti-
mated in short segments of the recordings using eigenmode
decomposition of VAR models.
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FIGURE 4 | Detailed view of eigenmodes distributions for subject 1.

Colors indicate the segments indicated in Figure 1A. (A) Histogram in
Figure 3A is sliced by restricting the analysis to frequency bands of 5 Hz
centered around the indicated values. Note that the blue histograms are
always to the left of the red ones indicating increased stability as anesthesia
is induced. (B) Same analysis as (A) restricted to slices of 50 1

s . Note the
emergence of highly damped high frequency oscillations in the anesthetized

condition (blue). In both cases we plot count number on the scale (0.46000)
(A) and (0.120000) for (B). (C) Similarly to Figure 3B, we computed the
superposition of histograms in a smaller frequency range for better
visualization. The histograms were done with logarithmic binning and the
frequency axis is logarithmic (base 2). The rainbow indicates a shift toward
more damped states. The organization of stability undergoes non-trivial
changes in low frequency bands (4–128 Hz).

FIGURE 5 | Stability analysis for truncated distributions of eigenvalues.

We performed the same analysis as in Figure 1A for truncated distributions
of eigenvalues; we kept all the eigenvalues with damping constant greater
than a threshold. Each color corresponds to different threshold as indicated
in the figure labels. (A) KS statistics of comparing the truncated distribution
of eigenvalues. (B) Same as (A) using Wilcoxon z-value statistics.

We found that as the subjects become anesthetized the lin-
ear stability of the ECoG recordings show significant changes
which are efficiently tracked by non-parametric statistical meth-
ods. These markers are remarkably robust to changes in the way
data is normalized (choice of filters, amplitude normalization,
sampling frequency). Moreover, changes in this quantities were
found to be consistent with the subjects behavior as reported by
the medical team. This suggests that our indicators could be used
to monitor depth of anesthesia.

Our results are also consistent with the criticality hypothe-
sis: we found a prevalence of modes close to criticality across
the whole induction procedure. However, as the subjects became
anesthetized there were significant changes in the stability

properties of the fitted dynamics. These changes were examined
closely in selected stages of the procedure and are visualized by the
superposed histograms in Figures 3B, 4C. This analysis revealed
that changes in the stability exhibit much richer structure than
a simple block shift to damping across all frequencies. Yet, we
observe a consistent pattern in all three subjects; the eigenvalues
of the fitted models shift toward higher frequencies and increased
damping. This should be interpreted carefully; it is not necessar-
ily the case that there is an increase of high frequency spectral
content of the ECoG signals. Although there ought to be a rela-
tionship between a moving spectral analysis and the eigenmodes
of a moving VAR analysis, this relationship may be complex.

The increase in the prevalence of eigenmodes characterized by
high frequency (high gamma) may be seen as surprising given
the well-known observation that the power of high frequency
oscillations tends to decrease with some anesthetics including
propofol. This result, however, ought to be interpreted carefully.
The increase in the number of eigenmodes does not equate to the
increase in power. For instance, there could be fractionation of
a single correlated pattern of high frequency oscillations in the
awake state into multiple mutually independent patterns of high
frequency oscillations.

The finding that high frequency modes become more damped
as the subject is anesthetized is to some extent reassuring. If we
adopt the traditional view that high frequency activity is asso-
ciated to cognitive processes our results are consistent with an
appealing interpretation. The effect of the anesthetic procedure
is to damp out high frequency activity while still allowing for low
frequency modes to perform a function. Low frequency activity
can then presumably be associated to the maintenance tasks
which keep the subject alive.

A number of recent reports have been aimed at character-
izing criticality as a universal feature in ECoG recordings (He
et al., 2010), and as particularly relevant to differentiate wake-
fulness from sleep (Meisel et al., 2013; Tagliazucchi et al., 2013)
(see also Ribeiro et al., 2010 for comparable results with action
potential recordings). In this context, our results provide sup-
port for a consistent and theoretically founded interpretation of
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the relationship between criticality and wakefulness. While the
theoretical model is not the focus of the present publication, it is
interesting to note that it implies a specific and falsifiable predic-
tion: the model achieves self-tuned criticality by means of plastic
synaptic adaptation. It follows that blocking synaptic changes
should result in a breakdown of criticality; similarly, the model
should also be able to explain changes in criticality during the
sleep cycle, given the concomitant changes in plasticity patterns
(Ribeiro et al., 2007). This will be the subject of future pub-
lications, along with further validation of the stabilizing effect
of anesthesia in animal models, effects of different anesthetic
agents, larger number of subjects, recovery from anesthesia, and
application of the methods to EEG recordings.
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APPENDIX

FIGURE A1 | Model robustness. The figure shows the same analysis
presented in Figure 1A (2), but for a VAR-3 model. The results are almost
identical to those for VAR-1.
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Patterns of synaptic connectivity in various regions of the brain are characterized by the
presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts
that follow a particular configuration and link together small groups of neurons. Recent
computational work proposes that a relay network (two populations communicating via a
third, relay population of neurons) can generate precise patterns of neural synchronization.
Here, we employ two distinct models of neuronal dynamics and show that simulated
neural circuits designed in this way are caught in a global attractor of activity that prevents
neurons from modulating their response on the basis of incoming stimuli. To circumvent
the emergence of a fixed global attractor, we propose a mechanism of selective gain
inhibition that promotes flexible responses to external stimuli. We suggest that local
neuronal circuits may employ this mechanism to generate precise patterns of neural
synchronization whose transient nature delimits the occurrence of a brief stimulus.

Keywords: computer simulations, attractor, synchronization, oscillations, spiking neurons, mean field

INTRODUCTION
The mammalian brain is composed of a complex network of
synapses that permit the flow of electrochemical activity between
populations of neurons. In the cerebral cortex, synaptic net-
works form a dense map whose cytoarchitecture has been stud-
ied extensively (Braitenberg and Schuz, 1998). Several factors
influence the probability of local synaptic connections in cor-
tex, including physical distance (Song et al., 2005), functional
domains (sets of neurons that show similar response properties)
(Mountcastle, 1997), and selective connectivity amongst similar
cell types (Stepanyants et al., 2004). Another characteristic feature
of cortical networks is the presence of synaptic motifs, defined as
triplets (or, more generally, n-tuplets) of neurons whose synap-
tic pattern follows a particular configuration (Sporns and Kotter,
2004; Song et al., 2005; Roxin et al., 2008). These motifs provide
the building blocks of connectivity at a given spatial scale, and
have been explored in various contexts outside of brain connec-
tivity, including gene regulation and other biological and artificial
networks (Milo et al., 2004).

Motif configurations have been studied in the context of both
local cortical networks in vitro (Song et al., 2005) and in the
structural connectivity of macaque and cat cortex (Sporns and
Kotter, 2004). In all instances, a subset of motifs reoccurs with
higher-than-chance prevalence, suggesting a functional role in
cortical information processing (Thivierge and Marcus, 2007).
Simulated networks of neurons whose excitatory synapses fol-
low a “relay” motif (Figure 1A)—the most frequent motif in
primate visual cortex—exhibit synchronization with near-zero
time lag (Traub et al., 1996; Vicente et al., 2008). This form
of activity is reported in a spectrum of experiments includ-
ing retinal ganglion cell recordings (Ackert et al., 2006), in
cells of the lateral geniculate nucleus (Alonso et al., 1996),
and in the electroreceptors of the weakly electric fish (Doiron
et al., 2003). Zero-lag synchronization emerges because of the

common input provided by the relay node to the two other
nodes.

While computer simulations of a relay network suggest a
substrate for the emergence of synchronization between neu-
rons, these networks are limited in the scope of their behavior,
and typically follow a limit cycle whose period is determined
by the intrinsic properties of the model (Coombes et al., 2006;
Kopelowitz et al., 2012; Viriyopase et al., 2012). This limit cycle
has been shown to generalize to a large class of neuronal models
that follow a relay motif (Grossberg, 1978). While cortical record-
ings show evidence of limit-cycle oscillations (Rodriguez et al.,
1999), this behavior is typically transient in non-pathological
states. Brain oscillations are usually restricted to short time peri-
ods, and remain coherent for only a limited number of cycles
(Fries, 2005). Furthermore, transient neuronal responses them-
selves carry stimulus-relevant information in visual (Ackert et al.,
2006) and olfactory (Mazor and Laurent, 2005; Geffen et al.,
2009) processing. The question thus arises of how to gener-
ate transient, yet precise synchronization with connectivity that
follows a relay motif, resisting the propensity of this motif to
generate ongoing synchrony in a limit cycle. This question has
received scant attention, despite many studies examining the
impact of connectivity on simulated brain dynamics (Schuster
et al., 1979; Cohen and Grossberg, 1983; Sporns and Kotter, 2004;
Coombes et al., 2006; Thivierge and Marcus, 2007; Vicente et al.,
2008; Goldman, 2009; Ostojic et al., 2009).

Here, we begin by examining neuronal activity in a simplified
mean-field model that allows us to visualize global network activ-
ity using a phase plane plot, a graphical display of how nodes
interact to produce patterns of activity. This model highlights
the effect of key parameters in generating limit cycle activity,
multistability, and stimulus encoding. We then turn to a sec-
ond, more detailed model based on integrate-and-fire neurons, to
show conditions under which a relay network leads to a strict limit
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FIGURE 1 | Limit cycle activity in a simplified relay network. (A)

Illustration of a relay network, where each node is modeled by a
Wilson–Cowan equation (left panel), and generates periodic activity over
time (right panel). The relay node sends/receives activation to/from the two
outer nodes. (B) 3D phase-plane plots show activity at all three nodes of
the Wilson–Cowan model (axis color is associated with the corresponding
population). Each plot represents activity over a short timeframe. Once the
trajectory has completed a full cycle (at 50 ms), it loops back onto itself and
repeats the process.

cycle, thus preventing the encoding of incoming stimuli. Finally,
we describe a mechanism of selective gain inhibition (Vogels
and Abbott, 2009) that promotes stimuli encoding by breaking
up the functional interactions in relay networks. These results
carry important functional implications on how connectivity
constrains patterns of neuronal activity in synaptically-coupled
networks.

MATERIALS AND METHODS
WILSON–COWAN MODEL
Our starting point is a simplified population model where the
fundamental unit is a set of coupled noise-free Wilson–Cowan
equations (Wilson and Cowan, 1972):

ε
dx

dt
= −x + θ

(−wxτ + wyτ + wzτ + I
)

ε
dy

dt
= −y + θ

(
αwxτ − wyτ + I

)
(1)

ε
dz

dt
= −z + θ

(
αwxτ − wzτ + I

)
,

where x, y, and z each represent the mean firing rate of a local
population of neurons, w is a weighted connection, I is a constant
input stimulus (set to zero by default), α is a free parameter (set
to 1.0 by default), θ is a sigmoid function, θ(x) = 1/

(
1+ e−x

)
,

ε > 0 is a rate parameter that governs the speed at which the
firing rate changes, and τ is a fixed synaptic transmission delay.
Unless otherwise stated, connections are set to w = 103, lead-
ing to excitatory connections between populations and inhibitory
self-connections. For illustration purposes only (and bearing in
mind the limited biological correspondence of this simplified
account), we draw an equivalence of 1 time-step = 0.1 ms of

simulated activity. Unless otherwise stated, we introduce a delay
of τ = 1.5 ms in synaptic transmission from one population to
another. We employ an Euler method (integration step of 0.1) for
the integration of Equation 1.

POPULATIONS OF LEAKY INTEGRATE-AND-FIRE NEURONS
In addition to the above mean-field model, we considered a net-
work of integrate-and-fire neurons whose membrane potential is
described by

cm
dV

dt
= (Vrest − V

)+ gex
(
Eex − V

) −ginh
(
Einh+ V

)
(2)

+ Isyn + R
(
Iext + Itonic

)
,

where Vrest is the resting membrane potential, gex and ginh are
synaptic conductances of excitation and inhibition, Eex and Einh

are the reversal potentials of excitation and inhibition, R is a unit-
less scalar gain, Iext is an external current, Itonic is a tonic current,
and cm is the membrane capacitance. The synaptic input Isyn for
a neuron i is given by

Isyn,i =
N∑

j= 1

wij Kj, (3)

where wij is a synaptic weight from neuron j to neuron i, and Kj is
the excitatory postsynaptic membrane potential of a neuron j:

Kj = V0

S∑
s= 1

exp

(
ts − t

τfall

)
− exp

(
ts − t

τrise

)
, (4)

where s = 1,..,S indexes spike times and V0 is a scaling factor.
The rise and fall times of the postsynaptic membrane potential
are given by τrise and τfall, respectively. A spike is triggered when
the membrane potential (Equation 2) reaches its firing threshold
from below. At that point, V is held at 40 mV for 1 ms, then reset
to −70 mV for an absolute refractory period lasting 3 ms. In all
numerical simulations, we imposed a fixed time delay on synaptic
transmission (see parametric values below).

Some of the above model’s parameters were designed to vary
across the population of simulated neurons (Thivierge and Cisek,
2008). This was achieved by randomly drawing parametric val-
ues from a Gaussian distribution with σ = 0.33 times the mean.
Means for these parameters were as follows: gex (0.8 nS), ginh

(−1.5 nS), Eex (0 mV), Einh (−80 mV), τrise(3 ms), τfall (5 ms), fir-
ing threshold (−55 mV), resting potential (Vrest = −60 mV) and
synaptic delays (3 ms). Other parameters were constant across the
entire population of neurons: Itonic (3.5 mV), cm (0.02), R (10),
and V0 (0.09).

Synaptic connectivity (wij) was configured to produce three
distinct populations of neurons (with a total of 10,000 neu-
rons per population), characterized by strong within-population
interactions, and weaker between-population interactions. Both
within- and between- population weights were drawn from a
Gaussian distribution with mean of 100 nS (or −100 nS in the
case of inhibitory neurons) and standard deviation of 0.33 times
the mean. Twenty percent of connections were inhibitory. These

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 22 | 63

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Thivierge et al. Attractor dynamics

connections were chosen randomly amongst all potential connec-
tions. Only a portion of all possible connections were present:
the probability of a within-population connection between pairs
of neurons was set to 0.9, while the probability of a between-
population connection was set to 0.2. A cartoon illustration of
three regions of neurons where between-population connections
reflect a relay motif is shown in Figure 1A. Three populations
of neurons are labeled by different colors, and arrows represent
between-population connections.

RESULTS
NETWORK CONNECTIVITY AND MEAN-FIELD ACTIVITY
In order to investigate limit cycle activity in interconnected
networks, we performed simplified simulations using a Wilson–
Cowan population model (Equation 1). Activity at each node of
the network was approximated by a single equation that describes
mean population behavior (Figure 1A, right). We simulated a
relay network for 100 s, and displayed the resulting activity on
a phase plane plot (Figure 1B). This plot relates all three nodes
of the network at time-step t vs. t + 1, showing a trajectory
of neuronal activity. A limit cycle on a phase plane is char-
acterized by a closed loop that repeats itself by following the
same trajectory over and over again. While these simulations
are highly abstracted, and represent the Wilson–Cowan equation
of Equation 1 for only a specific set of parameters and initial
conditions, the resulting dynamics provide a clear illustration
of the influence of network connectivity on ongoing dynam-
ics, and are in line with previous work relating relay networks
with the emergence of limit cycle activity (Coombes et al., 2006;
Kopelowitz et al., 2012; Viriyopase et al., 2012). Zero-lag synchro-
nization arises here because of bidirectional connections in the
relay network, allowing two nodes (in blue and red) to coordi-
nate their activity through a third node (in black) that serves as
intermediary. In this way, zero-lag synchronization arises despite
the absence of direct connections between the blue and red
nodes.

In order to weaken (or remove) the limit cycle resulting from a
relay network, it suffices to eliminate the influence of the relay
node on the other two populations of the model (Figure 2A,
left). This is done by setting α = 0 (Equation 1). In this sce-
nario, connections are strictly feedforward, projecting onto the
relay node without feedback. With this configuration, activity in
two of the nodes (red and blue traces, Figure 2A, right) shows
a periodic cycle; the third node (black trace, Figure 2A, right),
however, shows no repeating pattern in terms of amplitude, even
over extended periods of time. If we considered only the activ-
ity of the latter node, we might be led to conclude that the
activity at that node is best described by random amplitude
fluctuations. However, displaying the activity of the model in
a phase plane reveals a hidden structure: while neuronal activ-
ity does not display a simple closed loop, it is constrained to
a limited portion of the total space (Figure 2B). The activity
of the model never repeats itself exactly over time, but follows
an “orbit” that forms a well-defined pattern in the phase plane
plot. Note that one can also change the input I in Equation 1 to
bias the system out of a limit cycle (see Linear Stability Analysis
below).

FIGURE 2 | Activity becomes unstable in a relay network with no

feedback connections. (A) Left: illustration of a three-node network where
connections are strictly feedforward (connections in gray are set to zero,
i.e., α = 0 in Equation 1). Right: pattern of activity obtained for each of the
three nodes in (A) over time. (B) Phase-plane of activity where nodes in (A)

are simulated with a Wilson–Cowan model. (C) Duration (in ms) of stable
cycles in a relay network with both feedback and feedforward connections
between nodes. Each dot shows initial conditions for the relay node and
the two outer nodes.

To evaluate the stability of limit cycle activity in relay networks,
we let An(t) reflect the activity of a given node n at time-step t, and
sought values of d for which

An(t) = An(t + kd)+ ε (5)

where ε was set to four orders of magnitude below the resolution
of the model (ε = 10−5 μA) and k is an arbitrary constant integer.
If a solution to d exists, the system is deemed periodic, and the
value of d determines the duration of the period. While the exact
value of this duration was dependent upon the initial conditions
of the system, convergence to a limit cycle was observed across a
range of starting points for A1, A2, and A3 (Figure 2C). This result
shows that a relay network consistently leads to a limit cycle, with
the length of the cycle dependent upon the initial conditions of
the system. The finding that the length of the limit cycle depends
upon initial conditions of the model is consistent with the idea
of multistability in models of neuronal activity (Foss et al., 1996).
Accordingly, a range of stable solutions exist, and each solution
can be reached by activating the model in a particular way.

We repeated the above analysis for a network with feedforward
connectivity (Figure 2A, setting α = 0 in Equation 1) and found
no solution to d across any configuration of initial conditions.
A more formal analysis of stability and of the origins of chaotic
behavior in relay and feedforward networks is presented below.

Two parameters of the Wilson–Cowan model bear a strong
influence on its activity. The first of these parameters is the trans-
mission delay between nodes (the amount of time elapsed before
the activity at a given node influences the activity at another
node). Shorter delays (below 78 ms) did not produce limit cycle
activity (i.e., no solution to Equation 5 was found); above that
value, changes in the value of delays did not markedly alter the
shape of the limit cycle (Figure 3A). In a strictly feedforward
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network, a similar result was found: short delays (e.g., 10 ms)
were not sufficient to generate trajectories in the phase plane plot
(Figure 3B).

A second parameter playing a key role in network activity
is the strength of the connection weights between populations.
Low (w = 102) and high (w = 103) weights between populations
yielded markedly different shapes of attractors (Figure 4). Of par-
ticular interest, a feedforward network generated a limit cycle
when connection weights were low (e.g., w = 102). In this case,
the red and blue nodes oscillate and transmit that oscillation in a
weak form to the black node, which then also oscillates. Together,
these results show that both transmission delays and weight mag-
nitudes influence the production of attractors in the activity of
the Wilson–Cowan model.

To further explore the route that goes from a limit cycle to a
more complex form of activity, we examined the order parameter
α that modulates the influence of feedback connections from
the relay node (see Equation 1). With a value of α = 0.2 and
greater, feedback connections are strong enough to produce a
limit cycle behavior; below that value, however, weaker feedback
results in more complex forms of activity (i.e., where no solution
to Equation 5 was found) (Figure 5).

Next, we examined the response of a Wilson–Cowan model
to a constant input injected into all three nodes. In different
simulations, each lasting 100 s, we varied the intensity of input
(from I = 0,. . . ,104). When connectivity followed a relay net-
work, activity in the network increased in response to inputs
ranging from I = 0 to I = 102, then saturated from I = 102 to

FIGURE 3 | Influence of transmission delay on network activity. (A; left
panel) Illustration of a relay network with both feedforward and feedback
connections. (right panel) Phase-plane plots of activity simulated with a

Wilson–Cowan model. Limit cycle activity emerges as a sharp transition
between a delay of 78 ms and a delay of 79 ms. (B; left panel) Feedforward
network. (right panel) Phase plane plots of activity.

FIGURE 4 | Influence of connection strength on the activity of a relay network. (A) Phase-plane plot of activity in a relay network where all connections
had low (w = 100) or high (w = 1000) values. (B) Same as (A) but with a strictly feedforward network.
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FIGURE 5 | Transition to limit cycle activity. (A) By adjusting a single
parameter α in the model (Equation 1), we can alter the strength of
connections in red, generating either a feedforward network (when α = 0), or
a relay network (when α > 0). (B) By setting the value of α to either 0, 0.1,

0.2, or 0.3 in different simulations, we found that a limit cycle emerges
around a value of α = 0.2, and is maintained for higher values of this
parameter. Below a value of 0.2, the network generates a more complex
attractor.

I = 104 (Figure 6A). This result was found with both high (w =
103) and low (w = 102) connection strength. We compared these
results with those obtained when injecting input into a network
with feedforward connectivity. In this case, activity monotonically
increased in response to inputs from I = 0 to I = 103, a broader
range than that obtained with a relay network (Figure 6B). Upon
close inspection, the difference in responses between the relay
and feedforward networks is largely explained by the fact that
the feedforward network exhibits lower activation under weak
input (i.e., mean activation is low when I is small). To further
probe the effect of input on network dynamics, we examined
phase plane plots of activity, as described above. In relay net-
works, for all values of input tested, activity consistently yielded
a limit cycle (i.e., where a solution to Equation 5 could be
found) (Figure 6C). By contrast, in feedforward networks, activ-
ity yielded different patterns depending on the intensity of input.
With weak input (I < 10), activity followed no repeating trajec-
tory (Figure 6D); however, as the intensity of input increased,
network activity settled into a limit cycle attractor. In sum, a
strictly feedforward network led to a greater dynamical range of
responses than a relay network; in addition, a feedforward net-
work resulted in a different attractor depending on the strength
of input, whereas a relay network always resulted in a limit cycle
attractor.

In a final series of simulations, we considered a scenario
where a relay network is embedded in a larger network of
Wilson–Cowan nodes. We began by generating a sparse ran-
domly connected network of 1000 nodes, where one node had
a 1% probability of being connected to any given node in the
network. Then, we selected three nodes at random and forced
their connectivity to follow a relay network (Figure 7A). All con-
nection weights, both within the relay network and outside of
it, were set to w = 103 if a connection was present, and w = 0
otherwise (self-connections were set to w = −103). Examples of
activity generated when a relay network was embedded in a larger

network are shown in Figure 7B. The resulting pattern of activ-
ity can be described as a “noisy” limit cycle, where perturbations
coming from activity in the surrounding network made the tra-
jectory of the limit cycle deviate from its path. Here, embedding
a relay network in a larger network did not result in a fun-
damentally different pattern of activity, but rather a perturbed
version of the original pattern obtained when the relay network
was simulated as a stand-alone network. Of course, increasing
the density of connections within the larger network would lead
to more pronounced perturbations, yet would result in a less
plausible scenario from the point of view of cortical connec-
tivity. Excitatory cortical cells receive only sparse afferents from
other excitatory cells. The probability of contact between two
neocortical excitatory cells that are 0.2–0.3 mm apart is esti-
mated to be p < 0.1, and between two such cells that are more
than 1 mm from each other, p < 0.01 (Braitenberg and Schuz,
1998; Song et al., 2005). Because nodes in the Wilson–Cowan
are aimed at simulating populations of neurons rather than indi-
vidual synaptic contacts, we rely on the latter probability as a
point of comparison. Our simulations of three-node relay net-
works embedded in larger random networks show that patterns of
activity are robust to the influence of ongoing activity generated
from the surrounding network under reasonable conditions of
connectivity.

LINEAR STABILITY ANALYSIS
The above simulations show that relay networks are prone to
oscillations that are caught in a limit cycle, while feedforward
networks generate more complex forms of activity that do not
oscillate in a strict manner. Here, we derive a linear stability
analysis that yields insight into the propensity of a relay net-
work to oscillate compared to a feedforward network. We con-
sider the three node (x,y,z) model of Equation 1, where outer
nodes y and z (red and blue nodes, Figure 1A) project to a
relay node x (black node in Figure 1A) with connection weight
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FIGURE 6 | The response of a relay network to input depends on

connectivity. (A; left) Illustration of a relay network with feedback connections.
(right) In a relay network, mean activation increases monotonically with the
strength of input, but saturates for values of input greater than 102. Black and
blue lines represent nodes of the network in (A) (activation of the red node
overlaps with that of the blue node). Solid lines, weights of w = 1000. Dashed

lines, weights of w = 100. (B; left) Network with strictly feedforward
connections. (right) In a feedforward network, mean activity increases in
response to input, and does not saturate until the strength of input reaches 103.
(C) In a relay network, activity follows a limit cycle regardless of the strength of
input. (D) In a feedforward network, activity follows a limit cycle for stronger
input (102) but not for weaker input (100).

w > 0. Likewise, node x projects back to nodes y and z, but with
a connection strength αw. Here α is an adjustable parameter
between 0 and 1; when α = 1, the three-node system embodies
a relay network, while for α = 0 it represents a feedforward net-
work. This formulation enables us to smoothly move between a
relay and feedforward network. It also enables us to investigate
all system parameters, combinations of parameters, and initial
conditions.

The fixed points of the system in Equation 1, that is, the values
of (x,y,z) for which the derivatives are zero, are given by solutions

of the following non-linear equations:

x∗ = θ
(−ωx∗ + ωy∗ + ωz∗ + I

)
(6a)

y∗ = θ
(
αωx∗ − ωy∗ + I

)
(6b)

z∗ = θ
(
αωx∗ − ωz∗ + I

)
. (6c)

To solve the above system, we first note that the solutions remain
invariant upon interchanging y and z. The same can be said of
the original system (Equation 1). This means that a solution
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FIGURE 7 | Relay network embedded in a broader network of

randomly interconnected nodes. (A) Cartoon illustration of a relay
network (red, blue, and black nodes) embedded in a larger network that has
random connectivity (gray nodes). The actual network that we simulated
had a total of 1000 nodes (not counting those of the relay network itself).
(B) Phase-plane plots showing the activity of a relay network. This activity
is characteristic of a limit cycle where perturbations from ongoing activity in
the surrounding network provide slight alterations to the trajectory. Three
plots show patterns of activity obtained from different probabilities of
connection between nodes in the surrounding network (1, 5, and 10%).
Each run of the model lasted 100 s at a resolution of 0.1 ms.

(x(t),y(t),z(t)) will be the same as a solution (x(t),z(t),y(t)), pro-
vided that the variables y and z have the same initial values; in
other words, y(t) tends to z(t) when time is large enough pro-
vided that y(0) = z(0). As for the fixed point, it will be such
that y∗ = z∗, that is, it will lie on the plane (x∗,y∗,y∗). Numerical
simulations indeed reveal that this is the case, and also that solu-
tions evolve to ones where y approaches z for a large range of
differences between y(0) and z(0). However, solutions where y(0)
differs significantly from z(0) can evolve such that both solutions
are the same, but maintain a fixed time lag between them. One
should note that the value of the input I determines the precise
value of the fixed point. In other words, this system admits a sim-
ple rate coding where the system settles onto a fixed point “rate”
that varies smoothly with the strength of the input. As we will
see below, as certain parameters change, this system undergoes a
“Hopf bifurcation,” or in other words a transition between a sta-
ble fixed point—corresponding to a stable constant firing rate in
the model—to stable limit cycle oscillations of the firing rate. Our
paper mainly concerns the robustness of these oscillations.

In order to investigate the dynamical properties of the system,
in particular what combinations of parameters lead to an equilib-
rium (i.e., a fixed point) or an oscillation, an important starting
point is to non-dimensionalize the equations. This will be done
here by scaling the time variable by the delay, leading to a new
continuous dimensionless time T = t/τ that is counted in the

number of delays (e.g., T = 5.677 means t = 5.677τ ). Further
defining k = ε/τ , and new variables X(T) = x(t), Y(T) = y(t),
and Z(T) = z(t), the model evolves according to:

k
dX

dT
= −X

(
T
)+ θ

[− wX
(
T − 1

)+ wY
(
T − 1

)
(7a)

+ wZ
(
T − 1

)+ I
]

k
dY

dT
= −Y

(
T
)+ θ

[
αwX

(
T − 1

)− wY
(
T − 1

)+ I
]

(7b)

k
dZ

dT
= −Z

(
T
)+ θ

[
αwX

(
T − 1

)− wZ
(
T − 1

)+ I
]
. (7c)

The fixed point (X∗,Y∗,Z∗) for this system is identical to that of
Equations 6a–c above, with the substitution of X,Y,Z for x,y,z.
While it is not possible to explicitly solve this transcendental
system, our numerical simulations reveal that there is only one
relevant fixed point (X∗,Y∗,Z∗). Investigating the linear stability
of this fixed point will reveal how solutions behave near this point,
and in particular, if bifurcations can occur between a stable equi-
librium and a stable oscillation. This linearization is done using a
multivariate Taylor expansion, keeping only the first order terms.
We first move the origin (0,0,0) onto the fixed point (X∗,Y∗,Z∗)
by a change of coordinates: X′ = X − X∗, Y ′ = Y − Y∗, Z′ =
Z − Z∗. The resulting linearized system is given by:

k
dX′

dT
= −X′

(
T
)− wAX′

(
T − 1

)+ wAY ′
(
T − 1

)
(8a)

+wAZ′
(
T − 1

)
k

dY ′

dT
= −Y ′

(
T
)+ αwA′X′

(
T − 1

)− wA′Y ′
(
T − 1

)
(8b)

k
dZ′

dT
= −Z′

(
T
)+ αwA′X′

(
T − 1

)− wA′Z′
(
T − 1

)
, (8c)

where A = dθ(g)
dg

∣∣∣
g∗

with g∗ = −wX∗ + wY∗ + wZ∗ + I, and

A′ = dθ(h)
dh

∣∣∣
h∗

with h∗ = αwX∗ − wY∗ + I. Both A and A′ are

slopes of the firing function, and act as a feedback gain. One
observation that can be made from the analysis thus far is that,
in order to examine the linear properties of either the relay or
the feedforward networks, the only important parameters are the
ratio k and the products wA and wA′.

A full analysis of this system is beyond the scope of our needs
here, but we will make a few observations. First, this system can
be simplified further by defining two new variables as the sum S
and difference D of Y ′ and Z′, S = Y ′ + Z′ and D = Y ′ − Z′. This
yields the system

k
dX′

dT
= −X′

(
T
)− wAX′

(
T − 1

)+ wAS′
(
T − 1

)
(9a)

k
dS

dT
= −S

(
T
)− wA′S

(
T − 1

)+ 2αwA′X′
(
T − 1

)
(9b)

k
dD

dT
= −D

(
T
)− wA′D

(
T − 1

)
. (9c)

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 22 | 68

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Thivierge et al. Attractor dynamics

In the (X′,S,D) coordinates, it becomes apparent from Equation
9c that the difference between the activities of the two nodes y and
z behaves independently of the variables X′ and S; these latter two
variables, however, evolve in a coupled manner. It is known that,
since w > 0, the difference D obeys linear delayed negative feed-
back dynamics (Erneux, 2009); consequently, if either (or both)
the delay or the linear connection weight wA′ are sufficiently
large, then the stable fixed point will continuously transition into
a stable oscillation (also known as a stable limit cycle). In technical
terms, this process is termed a supercritical Hopf bifurcation.

Assuming a relay network (α = 1) and the stable fixed point
case, the activities at nodes y and z will be constant and equal
after a transient period (leading to a trivial form of zero-lag syn-
chrony). This is because D∗ = 0 implies that Y ′ and Z′ are at
their equilibrium values of 0, that is, Y = Y∗ and Z = Z∗ (recall
that Y∗ = Z∗). This implies that one can effectively study the
dynamics of the whole model by focusing on Equations 8a,b
alone.

For the feedforward network (α = 0) and the stable fixed point
case, it is clear already from Equations 8b to 8c that the behavior
of Y ′ and Z′ will be the same, up to a time shift that depends on
their initial conditions. In fact, even considering the full dynam-
ics in Equations 1a–c, it is seen that, for the feedforward network,
both variables y and z have the same rule governing their evo-
lution, but behave independently of each other. Further, y and z
are merely a source of external forcing on node x. If the param-
eters are such that y and z tend to a fixed point y∗ = z∗, then
over long periods of time node x will receive an identical constant
forcing from each of these nodes. Node z could be eliminated,
and the weight of the connection from node y doubled—node
x would not see the difference (the same holds true if replacing
y by z).

Alternately, in a feedforward network with α = 0, the parame-
ters can be such that y and z oscillate autonomously. Their sum in
Equation 1a also oscillates at the same period, and qualitatively,
the dynamics of node x amounts to a periodically-driven delay-
differential equation. The dynamics can be very rich in this case,
with chaotic solutions and/or long transients, since the unforced
system x can oscillate on its own, and this oscillation competes
with the one imposed by the sum of y and z. This is the kind of
solution we find in the feedforward network (see Figure 2A).

Coming back now to a relay network (α = 1), but this time
with an oscillation for the difference variable D in Equation 9c,
variables Y and Z will move close and away from each other peri-
odically. This case also potentially leads to a complex solution. But
for the parameters of interest in our study, the feedback from x to
nodes y and z has a stabilizing effect, in the sense that the whole
three-dimensional system usually settles on a limit cycle where all
nodes oscillate at the same frequency.

One can carry out a linear stability analysis to find the regions
of parameter space where a Hopf bifurcation occurs, using the
reduced X-S system of Equations 9a,b. One first substitutes trial
solutions x(t) = xoexp(λt) and y(t) = yoexp(λt) into Equations
9a,b, where λ = μ+ iω is a complex eigenvalue (note that we
denote the angular frequency by ω, distinct from the coupling
weight w). Assuming this solution is valid for arbitrary non-
zero constant amplitudes xo and yo, and defining the effective

feedback gains β = wA and β′ = wA′, this yields the characteristic
equation(

kλ+ 1+ βe−λ
)(

kλ+ 1+ β ′e−λ
) = 2αββ ′e−2λ. (10)

This equation admits an infinite number of complex conjugate
roots (i.e., values of λ) corresponding to eigenvalues for the sys-
tem of Equations 9a,b linearized around the fixed point. In order
to find the conditions where the roots migrate from the left hand
side to the right hand side of the complex plane (a characteris-
tic of a Hopf bifurcation) we set the real part of the eigenvalue to
zero: μ = 0, i.e., λ = iω in Equation 10. The resulting two equa-
tions obtained by setting both the real and imaginary parts of this
special form of Equation 10 equal to zero define a relationship
between all the parameters and the frequency ω at the onset of
oscillation.

With respect to the Hopf bifurcation, the feedforward case
(α = 0) is well-documented (Erneux, 2009). In particular, a
bifurcation occurs when increasing either the delay or β; the
higher the one is, the smaller the required value of the other in
order for the Hopf bifurcation to occur (if both parameters are
high, the system is clearly in the oscillation regime). From the
first factor on the left hand side of Equation 10, the frequency
of the zero-amplitude solution born at the bifurcation is given by

ω = √β2 − 1/k, with β being the first root of tan[√β2 − 1/k] =
−√β2 − 1. The same expressions but with β ′ substituted for β

apply to the second factor on the left hand side of Equation 10.
Numerically, we find that the X system starts oscillating when the
coupling strength is w ≈ 9.15 with the delay fixed at 1. At this
onset, the S system still goes to a fixed point. This is so because,
as the coupling strength w increases, the first factor acquires a
purely imaginary root before the second factor does. This situ-
ation where X oscillates but S does not is possible because of the
unidirectional coupling from S (i.e., Y and Z) to X.

In the relay case (α > 0), the analysis of the roots of Equation
10 is much more involved and beyond the scope of this paper.
Numerically, we find that even for very small values of α, choosing
w ≈ 9.15 as in the previous paragraph now yields an oscillation
in S, and a larger amplitude oscillation in X. Both the X and S
oscillations are at the same frequency, i.e., it is a global oscillation
of the whole bi-directionally coupled system. In other words, a
smaller delay or effective feedback gain A or A′ can then generate
oscillatory activity. Thus, based on the transition between a fixed
point and a limit cycle, the relay network is more prone to oscillate
when compared to the feedforward network.

In summary, our stability analysis reveals that both the
relay and feedforward networks can exhibit a Hopf bifurcation.
Transitions to the limit cycle are favored by an increase in two
parameters: the delay, or the product of the connection weight
and the slope of the firing function evaluated at the fixed point
(the parameters k and I also have an effect, but this was not
explored here). Upon increasing α we find that the network is
more prone to oscillate (c.f., Figures 1A, 2A). In the feedforward
case, when the outer nodes (red and blue nodes in Figure 2A) are
in a limit cycle regime, the third node (black node in Figure 2A)
produces complex dynamics via the interaction of its intrinsic
oscillation and the unidirectional periodic forcing from the two
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outer nodes. This system can be largely understood with only one
variable instead of three. By increasing the value of α, we transi-
tion from a feedforward to a relay network where the dynamics of
the whole system settle onto a limit cycle.

Taken together, simulations and analysis of the Wilson–Cowan
model show a key role of delays, connection strength, and relay
connectivity on the ability of the model to generate limit cycle
activity. Further, results show that a feedforward network yields a
broader range of responses to stimuli than a relay network. While
these results reveal that the elimination of feedback projections
from the relay node to the outer nodes can break the network out
of a limit cycle, it is unclear how this could be achieved in living
synaptic networks. In the next section, we explore a mechanism
by which selective inhibition of relay neurons provides a network
with the ability to escape its limit cycle and modulate its activity
in response to incoming stimuli.

A RELAY NETWORK WITH SPIKING NEURONS
We now turn to a more detailed model of neuronal activity based
on 30,000 integrate-and-fire neurons divided into three distinct
populations, resulting in a global connectivity that followed a
relay network (Figure 8A, see Materials and Methods) (Thivierge
and Cisek, 2008, 2011; Rubinov et al., 2011). Simulated activity in
this network (Figure 8B) shows the appearance of a global limit
cycle, with two of the populations (in red and blue) exhibiting
synchronization with near-zero time-lag (Vicente et al., 2008).

This pattern of activity never faded away for as long as the simu-
lation was carried out (in this case, 5 min). Extensive simulations
revealed that the emergence of a limit cycle was not sensitive
to initial conditions of the network. This result mirrors those
obtained with the mean field model described above. Notice,
however, that while the overall pattern of activity in the network
follows a limit cycle, the precise spike times of individual neurons
do not, because of intrinsic fluctuations in the model (no exter-
nal noise was added, see Equation 2). In addition, notice that not
all neurons are synchronized, and some of the neurons remain
quiescent throughout.

While precise synchronization may convey information about
the input to a neuronal circuit (Thivierge and Cisek, 2008),
we argue that a strict limit cycle imposes severe constraints on
the behavior of circuits in response to an incoming stimulus.
Consider a periodic stimulus that is delivered at a fixed square-
pulse voltage (width of 5 ms) across all neurons (Figure 9A). By
varying the inter-stimulus interval and voltage intensity, we can
examine conditions under which network activity is modulated
by the incoming stimulus. Simulated network activity was gen-
erated for 30 s and a periodic stimulus was delivered during that
entire time to all neurons. A network configured according to a
relay network (Figure 9B) exhibited only marginal modulations
in mean firing rate in relation to either the intensity (Figure 9C)
or the frequency (Figure 9D) of stimulation. This rigid behavior
is explained by the fact that a relay network is highly entrenched

FIGURE 8 | Selective gain inhibition prevents limit cycle activity. (A)

Relay network, with neurons divided into three subpopulations (shown in red,
black, and blue, see Materials and Methods). Arrows indicate the presence of
between-population connections. (B) Spike raster of spontaneous activity for
100 neurons from the relay network in (A), with gain inhibition set to its
default value (ginh = 1.5 nS). (C) Influence of gain inhibition on mean firing
rates across a whole network. Each value of the graph is obtained from a

simulation where we increased gain inhibition above its default value (1.5 nS)
by a given percentage for neurons of the population in black (A) while gain
inhibition for the other two populations was held at its default value. This
increased gain inhibition reduces the excitatory coupling from the relay
neurons (black) to other populations. (D) Spike raster for 100 neurons of relay
network from (A), with gain inhibition set to ginh = 2.25 nS (corresponding to
a 50% increase from baseline).
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FIGURE 9 | Responses to a periodic stimulus delivered to all

neurons of an integrate-and-fire network. (A) Temporal evolution of
the stimulus. All stimuli had pulses lasting 5 ms each; different stimuli
varied according to the frequency (Hz) and amplitude (μA) of these
pulses. (B) Network with a relay configuration. The network was
composed of three subpopulations of neurons, each having gain
inhibition set to ginh = 1.5 nS. (C,D) Response to external stimuli in a

relay network. We monitored mean firing rates within each population
of neurons in response to different current intensities (C) and stimulus
frequencies (D). (E) Network where one subpopulation of neurons (the
“relay neurons”) had gain inhibition set to ginh = 2.25 nS (a 50%
increase from the default value). (F,G) Responses to external stimuli in
a relay network with increased gain inhibition as shown in (E). All
simulations were run for a total of 30 s of activity. Vertical bars = SEM.

in limit cycle activity (Figure 8B); this activity cannot easily be
dislodged from this attractor by incoming stimuli. Put differently,
a system that has reached a state of global oscillation cannot easily
be affected by external perturbations (Golubitsky et al., 2006).

SELECTIVE GAIN INHIBITION
A synaptic configuration based on a relay network is highly preva-
lent in mammalian cortex (Sporns and Kotter, 2004; Song et al.,
2005), yet the above simulations show that such a network pro-
motes the emergence of a limit cycle where activity is largely
unaffected by an incoming stimulus. To reconcile these observa-
tions, one possibility is that cortical neural circuits are capable
of dynamically reconfiguring their pattern of functional interac-
tions such that an architectural substrate based on a relay network
could disengage from its strict limit cycle behavior and generate
more flexible responses to incoming stimuli.

It is unclear, however, how biological circuits may be able to
disengage from strict limit cycle activity. Under the reasoning that
relay neurons (in black, Figure 8A) are responsible for driving

zero-lag synchrony, we suggest that if we tune down the influ-
ence of that subpopulation, we may prevent the emergence of a
global attractor. There are several ways in which this could be
achieved; here, we describe one candidate mechanism based on
selective gain inhibition (Vogels and Abbott, 2009). By tuning up
the inhibitory gain (ginh, Equation 2) of relay neurons, we can
selectively reduce activity in these neurons. In turn, less activity
would flow from the relay neurons to other neurons in the model,
thus altering the global patterns of neuronal activity.

To test the idea of selective gain inhibition, we simulated
spontaneous activity in a network with a global connectivity
based on a relay network, and, in different simulations, applied
gradually increasing values of gain inhibition to relay neurons
(Figure 8C). When gain inhibition was increased by 50% from
its baseline value (from 1.5 to 2.25 nS), network activity was no
longer characterized by synchronized activity (Figure 8D com-
pared to 8B). Spontaneous activity in this regime yielded an
overall low firing rate (mean rate of 1.01 Hz, s.d. 0.44) and
followed no strict repeating pattern over time. Importantly, a
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balance of gain inhibition was necessary: if inhibition was too
low (<50% increase from baseline), network activity remained
comparable to baseline (Figure 8C). Conversely, if gain inhibition
was too high (100% increase from baseline), activity in the relay
population vanished completely.

To examine the effect of selective gain inhibition on a network’s
response to an incoming stimulus, we began with a network
whose global connectivity follows a relay network, as described
earlier. Then, we increased gain inhibition by 50% in all of
the relay neurons (Figure 9E). In response to increasing stim-
ulus intensities, the two neuronal populations sending input to
the relay neurons modulated their mean firing rate in a near-
monotonic fashion (Figure 9F). The same two populations also
increased their firing rate in proportion to increased stimulus fre-
quency (Figure 9G). A network with increased gain inhibition
was thus able to modulate its firing rate based on an incoming
stimulus, and did not remain stuck in a persistent state of activ-
ity. Put differently, increased inhibition in this circuit resulted in
increased responsiveness to stimuli.

In follow-up simulations, we injected a network having selec-
tive gain inhibition (ginh = 2.25 nS) with a stimulus consisting
of a constant current (30 μA) lasting 2000 ms. After that time,
the stimulus was reduced to 5 μA and held constant for 2000 ms
(Figure 10A). During presentation of the first stimulus (30 μA),
activity was highly synchronized and strongly periodic. As soon
as the first stimulus ended and the second stimulus (5 μA) began,
the network became quiescent. Neurons thus produced a highly
synchronized and periodic response to a stronger stimulation,
and relatively little response to a weaker stimulation. This simula-
tion shows the capacity of a network with selective gain inhibition
to generate synchrony based on stimulus amplitude. Such tran-
sient responses would not be possible without selective gain
inhibition, given that a network configured with a relay network

follows a persistent limit cycle attractor (Figure 8B) and does not
modulate its response to incoming stimuli (Figures 9C,D).

To further examine the transient synchronization of a network
in response to a stimulus, we designed, as above, a relay network
where we increased the gain inhibition of the relay population
of neurons (Figure 8A, in black) by 50% from its baseline value
(from 1.5 to 2.25 nS). We then injected a constant stimulus of
30 μA into all neurons for a 10 s period. We computed the cross-
correlation between each pair of neurons during the stimulus
presentation:

Cij = E
{[

xi(t)− Ei
] [

xj(t)− Ej
]}

√
E
{[

xi(t)− Ei
]2
}

E
{[

xj(t)− Ej
]2
} , (11)

where xi(t) and xj(t) are the time-series of two given neurons
having means Ei and Ej, respectively. Next, we obtained a cross-
correlogram of activity by taking the mean cross-correlation
across all pairs of neurons. We found prominent zero-lag syn-
chronization (Figure 10B, leftmost panel, vertical dashed line),
as typical of activity for relay networks (Vicente et al., 2008).
Hence, selective gain inhibition did not disrupt the capacity
of a relay network to generate zero-lag synchronization. When
we repeated the above simulation with a weaker input current
(5 μA), cross-correlations no longer displayed a prominent peak
at zero time-lag as obtained with a stronger stimulation of 30 μA
(Figure 10B, middle panel). Selective gain inhibition thus pre-
vented a relay network from spontaneously generating zero-lag
synchronization.

In a final series of simulations, we injected a 10 s input of
various intensities (from 0 to 45 μA) into a relay network with
selective gain inhibition as described above. For each input inten-
sity, we computed the mean zero-lag cross-correlation across

FIGURE 10 | Transient synchronization in response to stimulation. (A)

Spike raster showing responses of 100 neurons from a relay network to a
strong external current (Iext = 30 μA, solid black line) followed by a weak
current (Iext = 5 μA, solid gray line). Gain inhibition of the relay neurons was
set to ginh = 2.25 nS (50% higher than baseline) throughout the simulation.

(B) Mean cross-correlation of the network during presentation of a strong
current (left panel) and a weak current (middle panel). Right panel: Mean
cross-correlation as a function of external current. Black and gray arrows
show a weak (Iext = 5 μA) and strong (Iext = 30 μA) current as simulated in
(A). Vertical dashed line: zero time-lag.
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all pairs of neurons. This value increased as the input intensity
was gradually amplified from 0 to 45 μA (Figure 10B, rightmost
panel, gray and black arrows), then remained stable from 30 to
45 μA. The network thus modulated its degree of zero-lag syn-
chronization in response to inputs of various current intensities,
within a given range.

Taken together, our results show that selective gain inhibition
can modulate the behavior of a relay network, such that the net-
work can generate zero-lag synchronization in response to an
incoming stimulus, yet does not remain stuck in a global attractor
dominated by a fixed limit cycle.

DISCUSSION
While there is a growing consensus that patterns of structural
connections in the brain provide the backbone for a rich reper-
toire of activity (Bullmore and Sporns, 2009), here we argue
using both simulations and mean-field analysis that a relay net-
work imposes strict constraints on the types of dynamics pro-
duced by a network. Going further, simulation results using
spiking neurons suggest that a mechanism of selective gain inhi-
bition allows a network to modulate its patterns of activity
and escape the rigid constraints imposed by synaptic connec-
tivity, providing flexible and transient responses to an incoming
stimulation.

While there are several examples of transient zero-lag synchro-
nization in the central nervous system, a prominent one is found
in the response of direction-sensitive (DS)—ON ganglion cells in
the visual system (Ackert et al., 2006). In these cells, GABAergic
inhibition forces activity to desynchronize following a transient
phase of stimulus-induced zero-lag synchronization initiated by
gap junction couplings between DS-ON and wide-field amacrine
cells. While GABAergic inhibition suppresses zero-lag synchro-
nization, it leaves intact the broad synchronization profile of
cross-correlations at non-zero time lags. An analogous behavior
was observed in our simulated spiking neurons, where selective
gain inhibition suppresses stimulus-induced zero-lag synchro-
nization (Figure 10B, leftmost panel) but leaves intact the broad
profile of cross-correlations (Figure 10B, middle panel). Zero-lag
synchronization amongst neighboring DS-ON cells is the prod-
uct of shared excitation passing exclusively through an indirect
gap junction coupling that operates through polyaxonal amacrine
cells. Similarly, in simulations of spiking neurons, zero-lag syn-
chronization emerges between two populations of neurons that
are coupled exclusively through an indirect excitatory pathway
involving a third population of neurons (Figure 8A).

The emergence of zero-lag synchronization through an indi-
rect excitatory pathway has been reported in other computational
work (Vicente et al., 2008); however, previous work did not
address the question of how a network can transiently synchro-
nize and desynchronize in response to stimulation. Using two
different models of neuronal activity, we showed that patterns of
activity in a relay network generally remain stuck in a strict limit
cycle and are highly unresponsive to external stimuli. This limita-
tion is particularly problematic given the high prevalence of relay
networks in brain regions that play a central role in the integra-
tion of polysensory information, including dorsolateral prefrontal
cortex, posterior cingulate cortex, and insula (Sporns et al., 2007).

These regions, by their anatomical location and functional role,
are expected to be highly responsive to input activation. Our sim-
ulation results provide a potential mechanism whereby a fixed
anatomical substrate based on a relay network can, through selec-
tive gain inhibition, modulate its firing rate in response to an
incoming stimulus. This mechanism is similar in essence to a
recent gating network (Vogels and Abbott, 2009) where responses
can be gated “on” by a command signal that disrupts the precise
balance of excitation and inhibition. In our case, increased gain
inhibition provides a way of breaking the fixed limit cycle attrac-
tor of a populations of neurons. In living systems, synapse-specific
gain inhibition could be achieved by homeostatic mechanisms
that dampen network reverberation, as evidenced in CA3 pyra-
midal cells (Kim and Tsien, 2008). It could also be achieved via
cholinergic modulation, which performs cell-specific targeting
and exhibits rapid response times (Ford et al., 2012; Taylor and
Smith, 2012).

Zero-lag synchronization is proposed to play a num-
ber of functional roles in neuronal information processing.
Synchronized activity may enhance the saliency of incoming
stimuli, thus controlling the flow of information transmitted to
downstream neurons. Zero-lag synchronization also provides an
exquisite mechanism for precise temporal responses to rhyth-
mic stimuli (Thivierge and Cisek, 2008, 2011), and may in
itself constitute a unique channel for information transmission.
Conceptually, a code based on synchronized action potentials
necessitates a fewer number of presynaptic neurons to gener-
ate a postsynaptic response, and therefore allows for a greater
number of input combinations than a code based on asyn-
chronous activity (Stevens, 1994). In DS-ON ganglion cells,
transient zero-lag synchronization is proposed to play a role in
movement detection (Ackert et al., 2006), where a prominent
synchronized/desynchronized response reinforces the presence of
movement along a cell’s preferred direction.

The transient synchronization of a neuronal population in
response to a stimulus is supported by a range of experiments in
cat cortex (Gray and Singer, 1989) as well as human electroen-
cephalography (Rodriguez et al., 1999). A simulated network that
generates synchronized oscillations only as long as a specific exter-
nal signal is applied—and returns to a non-synchronized state
once the signal is removed—is consistent with experiments where
oscillations are observed only during the presence of a particular
stimulation (Doiron et al., 2003; Ackert et al., 2006).

CONCLUSION AND FUTURE WORK
Taken together, our simulation results show that a variety of
factors—including patterns of synaptic connectivity, delays in
synaptic transmission, synaptic efficacies, selective gain inhi-
bition, and surrounding network activity—contribute to both
spontaneous and evoked activity in local neuronal networks.
These factors provide a panoply of constraints and degrees of
freedom that shape the landscape of behaviors that emerge from
the interaction of neurons in synaptic circuits of the brain.
Future work could extend our results by investigating how con-
nectivity schemes (e.g., allowing both excitatory and inhibitory
connections) delimit the patterns of activity produced in local
populations of neurons.
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Although many computational models have been proposed to explain orientation maps
in primary visual cortex (V1), it is not yet known how similar clusters of color-selective
neurons in macaque V1/V2 are connected and develop. In this work, we address the
problem of understanding the cortical processing of color information with a possible
mechanism of the development of the patchy distribution of color selectivity via
computational modeling. Each color input is decomposed into a red, green, and blue
representation and transmitted to the visual cortex via a simulated optic nerve in a
luminance channel and red–green and blue–yellow opponent color channels. Our model of
the early visual system consists of multiple topographically-arranged layers of excitatory
and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity
between layers. Layers are arranged based on anatomy of early visual pathways, and
include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1
output layer makes synaptic connections to neighboring neurons and receives the three
types of signals in the different channels from the corresponding photoreceptor position.
Synaptic weights are randomized and learned using spike-timing-dependent plasticity
(STDP). After training with natural images, the neurons display heightened sensitivity
to specific colors. Information-theoretic analysis reveals mutual information between
particular stimuli and responses, and that the information reaches a maximum with fewer
neurons in the higher layers, indicating that estimations of the input colors can be done
using the output of fewer cells in the later stages of cortical processing. In addition,
cells with similar color receptive fields form clusters. Analysis of spiking activity reveals
increased firing synchrony between neurons when particular color inputs are presented or
removed (ON-cell/OFF-cell).

Keywords: brain modeling, visual cortex, neocortex, color, color selectivity, self-organizing color maps,

self-organizing feature maps, STDP

INTRODUCTION
It has long been known that many neurons in primary visual
cortex (V1) are tuned to exhibit preference to particular simple
oriented line segments, forming orientation maps that capture
the preferred orientation of neurons across the cortical surfaces
(Hubel and Wiesel, 1962). Similarly, clusters of color-selective
neurons in areas V1/V2 have been reported, as mapped with opti-
cal imaging and electrophysiological recordings (Landisman and
Ts’O, 2002; Friedman et al., 2003; Xiao et al., 2003; Lu and Roe,
2008; Salzmann et al., 2012). While several computational studies
have been conducted to explain the emergence of the orienta-
tion map (Somers et al., 1995; Choe and Miikkulainen, 1998;
Paik and Ringach, 2011), only a few have been done over such
patchy distribution of color selectivity within an area of V1/V2
(Bednar et al., 2005; Rao and Xiao, 2012). Barrow et al. (1996)
have proposed a model for the formation of cortical blobs, regions
in primary visual cortex that are densely stained by cytochrome
oxidase (CO) (Livingstone and Hubel, 1984), using the Hebbian

learning rule. This model reproduces receptive fields of neurons
inside and outside CO blobs, and the results showed that neurons
outside the blobs are selective for orientation while neurons inside
the blobs are selective for color. However, the spatial organization
of a large number of color-selective areas was not studied in their
model. In this paper, we investigate the emergence of the spatial
organization of color preference maps by developing a hierar-
chical neural network model that reflects anatomically faithful
processing pathways and projections.

Physiological studies have shown that color information is first
represented by the activity of specific types of photoreceptors and
transmitted along specific fibers in the optic nerve (Komatsu,
1998). Visual signals leaving the eyes then reach the primary
visual cortex via the lateral geniculate nucleus (LGN). LGN has
multi-layered organization, and different color information is
coded at specific layers (Chatterjee and Callaway, 2003). Although
actual neural processing is not known, Komatsu and Goda (2009)
theorized that a two-stage model can explain the transformation
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of color signal that takes place between photoreceptors and V1,
resulting in forming the color selective neurons. At the first stage,
signals from color opponent neurons are linearly summed with
various combinations of weights, with the results rectified. This
information is then propagated to neurons in the second stage
where a further linear summation and rectification is performed.

Rao and Xiao (2012) have recently started investigating sim-
ilar principles in computational simulations and successfully
produced maps of orientation and color selectivity using anatom-
ically realistic projections incorporating two color opponent
channels and a luminance channel. However, this model used
rate-coded neurons, which do not convey the precise times of
action potentials or spikes emitted by cells. Various physiological
studies have indicated that spiking dynamics can be important
for the simulation and information processing (Sugase et al.,
1999; Freiwald and Tsao, 2010). Although our current model
does not investigate orientation selectivity, one of the aims of our
study is to expand the focus in previous research (Bednar et al.,
2005; Rao and Xiao, 2012) to see if it is possible to observe the
spatial organization of color preference maps and spike-timing
related phenomena such as ON/OFF selectivity using more phys-
iologically realistic Hodgkin–Huxley (HH) neuron models via
Spike-Timing Dependent Plasticity (STDP).

Many neural networks are implemented with rate-coded neu-
ron since it is observed that the mean firing rates of sensory
neurons are correlated with the intensity of the encoded stim-
ulus feature. For example, it is widely viewed that the infor-
mation sent to the visual cortex by the retinal ganglion cells
are encoded by the mean firing rates of spike trains gener-
ated with a Poisson process. A theoretical study conducted by
Rullen and Thorpe (2001) showed that rate codes are opti-
mal for fast information transmission but cannot account for
the efficiency of information transmission between the retina
and the brain; however, temporal structure of the spike train
can be efficiently used to maximize the information trans-
fer rate. This could therefore be an important feature that
contributes to the development of neurons tuned to specific
features.

Another benefit of our approach is that the precise firing times
of spiking HH neurons allow investigating the temporal dynam-
ics of information processing. Such investigations could include
determining the role of temporal processing of C1, C2, and L
channels in LGN (Chatterjee and Callaway, 2003), and selec-
tive representation of different stimuli by neuronal population
synchronization (Evans and Stringer, 2013). In addition, spik-
ing neurons allow incorporation of biologically plausible learning
rules, such as STDP. A number of experiments (Markram et al.,
1997; Bi and Poo, 1998) have reported that synaptic strength
changes depending on presynaptic and postsynaptic spike time,
and this mechanism has been extensively studied from a theo-
retical point of view (Gerstner et al., 1996; Abbott and Nelson,
2000).

Meanwhile, similar to the orientation maps and color maps,
physiological studies have shown that various brain areas man-
ifest a small-world structure, characterized by the presence of
highly clustered neurons (Yu et al., 2008), and the factors leading
to this organization have been investigated in several theoretical

works (Shin and Kim, 2006; Kato et al., 2007, 2009; Basalyga
et al., 2011). In the present study, we were particularly interested
in whether such small-world structures could evolve from a net-
work whose weights were initialized randomly, after learning with
natural images.

We speculated there would be difficulty in the development
of such cells since the representation of color is more complex
than oriented bars. However, with this model, we hypothesized
that the response patterns of neurons in the output layer (layer
5 of V1) would develop heightened responses to specific colors
solely due to learning taking place during exposure to multiple
image patches extracted from natural images of indoor scenes
used in Quattoni and Torralba (2009), as a result of integrating
different color opponent signals that occurred at different levels
of the network. We also hypothesized that the learning would
allow for a distribution of neurons that were tuned to similar
color input with spatial clustering, where neurons within the clus-
ter had heightened synaptic weights, relative to neurons outside of
the cluster.

MATERIALS AND METHODS
MODEL
Architecture
The model is composed of nine layers of neurons which are orga-
nized into five hierarchical areas: photoreceptor layers (R, G, B),
lateral geniculate nucleus (LGN) layers (L, C1, C2), V1 layer 4
(L4), V1 layer 2/3 (L2/3), and V1 layer 5 (L5). The dimensions of
each layer are shown in Table 1, and the total number of neurons
is thus 5700.

Each color input presented to the network is first decomposed
into an RGB representation (range: 0–1) in digital images to be
consistent with the trichromatic color vision in primates as a
result of S, M, and L cones (Rowe, 2002) (Figure 1). The degree
of each input is represented as different spiking frequencies of
photoreceptors with 10% of random noise. To be consistent with
physiology, a stimulus that a human would perceive as red acti-
vates the green channel very strongly as well. The frequency of
each cone is determined as follow:

• Sfreq = 40[Hz] × B
• Mfreq = 40[Hz] × (G+ R× 0.7+ B× 0.25)/(1+ 0.7+

0.25)

• Lfreq = 40[Hz] × (R+ G× 0.7+ B× 0.25)/(1+ 0.7+ 0.25)

Specific combinations of the decomposed color signals are then
projected to cells in LGN. The projections reflect the physiolog-
ical findings that reported different characteristics in different
layers of LGN (Shapley et al., 1981). Specifically, as later studies

Table 1 | Dimensions of each layer.

Layer Dimensions (number of cells)

V1 layers (L4, L2/3, L5) 30× 30

LGN layers (C1, C2, L) 30× 30

Photoreceptor layers (L, M, S) 10× 10
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revealed, different layers of LGN receive different visual informa-
tion via optic nerves and show different functionality, forming a
luminance channel (L) and two opponent color channels, com-
prising red–green (C1) and blue–yellow (C2) channels as follows
(Casagrande, 1994; Goda et al., 2009; Rao and Xiao, 2012):

• Magnocellular (MC) pathways: luminance channel L = R+ G
• Parvocellular (PC) pathway: red/green opponent channel

C1 = R− G
• Koniocellular (KC) pathway: blue/yellow opponent channel

C2 = (R+ G)− B

Physiological studies also report that while the MC and PC path-
ways project their output to V1 L4, the KC pathway terminates
in V1 L2/3 (Chatterjee and Callaway, 2003), and many neu-
rons in L2/3 project excitatory connections to the neurons in
V1 L5 (Douglas and Martin, 2007). Our model incorporates
this anatomical architecture (Figure 1). Physiological evidence
indicates that there is heavy feedback from V1 to LGN (from
layer 6) and the thalamic reticular nucleus is involved in both the
feed-forward and feedback pathways, and data also suggests that
retinal ganglion cells have widely different spatial extent; however,
these are beyond the scope of this paper and are not explicitly
modeled.

Synaptic connections
Convergent connections are established to each neuron from a
topologically corresponding region of the preceding layer, lead-
ing to an increase in the receptive field size of neurons through
the visual processing areas, which reflects the known physiology
of the primate ventral visual pathway (Pettet and Gilbert, 1992;
Freeman and Simoncelli, 2011). While synaptic weights between
the photoreceptor layers and LGN layers are kept static, the

L M S

Photoreceptors

LGN

V1
Luminance channel (L)

Y/B opponent channel (C2)

R/G opponent channel (C1)

V1 Layer 4 V1 Layer 2/3

V1 Layer 5

FIGURE 1 | The pathways along which color information from the

photoreceptors is conveyed to cortical area V1 (solid lines represent

excitatory connections and broken lines represent inhibitory

connections). Each color input is represented by a specific combination of
corresponding firing frequencies of trichromatic cones. Each signal is
projected to anatomically appropriate layer in LGN layers forming a
luminance channel and two color opponent channels. The output is then
projected to appropriate layer in V1.

weights of other feed-forward connections are learned through
visually guided learning.

Each feed-forward connection requires a 1 ms delay for sig-
nal transmission. Each neuron also establishes lateral short-range
excitatory connections and long-range inhibitory connections,
forming a Mexican-hat spatial profile (Figure 2). Whether this
kind of lateral connectivity exists at the anatomical level is debat-
able (Martin, 2002; Kang et al., 2003; Hopf et al., 2006; Adesnik
and Scanziani, 2010), since a detailed microcircuitry map at the
neuron-to-neuron level is not currently available. However, we
incorporated this architecture to (1) be consistent with a previous
model by Rao and Xiao (2012) and (2) to abstract the function
exhibited by this kind of architecture (Kang et al., 2003; Neymotin
et al., 2011b). Further experimental work that details the wiring
of cortical microcircuitry may reveal whether these considera-
tions were justified (Alivisatos et al., 2013). The synaptic delay
is 1 ms for the excitatory connections and 4 ms for the inhibitory
connections.

Learning mechanism (STDP)
While synaptic weights at the connections between photoreceptor
layers and LGN layers were fixed, weights in all the other feed-
forward connections were plastic. Each synaptic weight in the
model was learned using STDP, where Long-term potentiation
(LTP) is caused if the pre-synaptic spike precedes the postsynap-
tic spike, and Long-term depression (LTD) is caused if the spike
timing is in the opposite order. The degree of the modification
depends on how close the two spikes are in time (Bi and Poo,
1998) as follows:

�w =
⎧⎨
⎩

LR× exp
(−(tpost − tpre)

ptau

)
if (tpost − tpre) > 0

−LR× exp
(

tpost − tpre

dtau

)
if (tpost − tpre) < 0

(1)

FIGURE 2 | Conceptual visualization of the inter/intra layer

connectivities. Activations of adjacent cells in the preceding layer are
transmitted to a topologically corresponding cell in the following layer. Tiles
filled with red represent cells that receive excitatory lateral connections
while tiles filled with blue represent cells that receive inhibitory lateral
connections, forming a Mexican-hat spatial profile.
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where LR is a learning rate, tpre is the time when presynaptic
cell becomes activated, tpost is the time when postsynaptic cell
becomes activated, and ptau/dtau controls the range of the influ-
ence. The curve generated by this function is show in Figure 3.
Weights are originally randomly assigned within a fixed range,
and after every iteration, weights in the same layers are normal-
ized so that the mean of all the values are always kept in the middle
of the pre-specified range, and also to prevent runaway excita-
tion (Neymotin et al., 2011a, 2013; Rowan and Neymotin, 2013).
Neurophysiological evidence for synaptic weight normalization is
provided by Royer and Paré (2003).

Neuron model
Model neurons utilized the standard parallel conductance model
with Hodgkin–Huxley dynamics for generating action poten-
tials. Neurons consisted of a single compartment (diameter
of 30 μm, length of 10 μm, axial resistivity of 100 �cm). The
rate of change of a neuron’s voltage (V) was represented as
−Cm

dV
dt = gpas(v − eleak)+ isyn + iNa + iK , where Cm is the

capacitive density (10μF/cm2), isyn is the summed synaptic cur-
rent, and iNa and iK represent the Na+ and K+ currents from the
Hodgkin–Huxley channels. gpas represents the leak conductance
(0.001 nS), which was associated with a reversal potential, eleak,
of 0 mV.

Synapses were modeled using an instantaneous rise of
conductance, followed by exponential decay with specified
time-constant, τ. For excitatory synapses, we utilized AMPA
synapses (τ = 5 ms, erev = 0 mV), while for inhibitory GABA
synapses (τ = 10 and erev = −80). Synaptic currents followed
isyn = g(v − erev), where v is the membrane potential, and erev is
the reversal potential associated with the synapse.

Software
Simulations were run using the NEURON simulation envi-
ronment with the Python interpreter, multithreaded over
16–32 threads (Hines and Carnevale, 2001; Carnevale and
Hines, 2009; Hines et al., 2009). Simulation is posted on
ModelDB (https://senselab.med.yale.edu/ModelDB/ShowModel.
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FIGURE 3 | Synaptic modification functions with/without

Spike-Timing Dependent Plasticity (STDP). (A) Function with STDP:
temporal windows for depression (dtau = 34 ms) and potentiation
(ptau = 17 ms) used for spike-timing dependent plasticity where the
equation is given in Equation (1) (B) Function without STDP: the synaptic
weights are potentiated whenever both pre and post synaptic neurons
become activated during the training time for 300 ms.

asp?model=152197) (Hines et al., 2004). Simulations were run
on Linux on a 2.93 GHz 16-core Intel Xeon CPU X5670. A 300 ms
simulation ran in approximately 30 s.

DATA ANALYSIS METHODS
Clustering
In order to quantify the degree of clustering of the activations in
the network, a clustering coefficient C is calculated based on the
responses among different color inputs at every training iteration
as follows (modified from Kato et al., 2007):

C = 1

nCells× nStims

nStims∑
s= 1

nCells∑
i= 1

Cs,i (2)

Cs,i =

ks,i∑
l= 1

ks,i∑
m= l+ 1

(FRs,l × FRs,m)

kiC2
(3)

where nCells is the number of neurons in a network; nStims is the
number of stimuli during the testing; FRs,i is the firing rates of
the cell i when exposed to a stimulus s; ki sets the nearby neurons
from the i-th neuron for the analysis. We use 9 (3× 3) for the k
value.

Single-cell information
A single cell information measure was applied to individual
cells to measure how much information is available from the
responses of a single cell about which color input is present. The
amount of color specific information that a certain cell transmits
is calculated from the following formula:

I(s, �R) =
∑
r ∈ �R

P(r|s)log2
P(r|s)
P(r)

(4)

Here s is a particular color and �R is the set of responses of a cell
to the set of color stimuli, which are composed of eight colors
slightly varied the RGB values of original color by ±1%. This is
based on the assumption that the same set of tuned cells will still
respond to slightly variant colors and is to well differentiate the
tuned cells from randomly responding cells. The maximum infor-
mation that an ideally developed cell could carry is given by the
formula:

Maximum cell information = log2(n× p) bits (5)

As eight different sets of colors (combination of 0 and 1 for each
RGB value) are used in this analysis, the maximum information
could be carried in this analysis is 3.

Multiple-cell information
A multiple-cell information measure was used to quantify the net-
work’s ability to tell which stimulus is currently exposed to the
network based on the set of responses, R, of a sub-population
of cells, �C, as following formula with details given by Rolls and
Milward (2000).

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 16 | 78

https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=152197
https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=152197
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Eguchi et al. Self-organization of color-opponent receptive fields

I�C
(
S, S′

) =∑
s,s′

P
(
s, s′

)
log2

P
(
s, s′

)
P(s)P (s′)

(6)

P
(
s′
) =∑

s∈ S

P
(
s′|R�C(s)

)× P
(
R�C(s)

)
(7)

P
(
s, s′

) = P
(
s′|R�C(s)

)× P
(
R�C(s)

)
(8)

Here, S represents the set of the stimuli presented to the net-
works, and �C defines the set of cells used in the analysis, which
had as single cells the most information about which color
input was present. From the set of cells �C, the firing responses
R�C (R = r(c)|c ∈ �C) to each color in S are used as the basis for the
Bayesian decoding procedure as follows:

P
(
s′|R�C

) = P
(
s′
)∏

c ∈ �C P
(
Rc(s′)|s′)∑

s′′ ∈ S P (s′′)
∏

c ∈ �C P (Rc(s′′)|s′′) (9)

P (Rc(s)) |s′) =
∑nTrans

t= 1 pdf
(
Rc(s, t), R̄c

(
s′
)
, SDc

(
s′
))

nTrans
(10)

where n Trans defines the number of possible transforms; in this
case, similar but slightly different colors, and pdf computes the
probability density function at firing response of a subset of cells
when exposed to a stimulus s at tth transforms using the normal
distribution with their mean and standard deviation.

RESULTS
The results described in this study used a network model trained
with various small color image patches extracted from original
natural images of indoor scenes used in Quattoni and Torralba
(2009). The size of the photoreceptor layer in our model is
10× 10 pixels while the size of original images was an average of
504.1× 658.4 pixels (112 images). The training sessionconsisted

of 2000 iterations, where 2000 different 10× 10 image patches
were extracted from the set of images. This was designed as an
abstraction of natural viewing, where eyes saccade, and the acti-
vation of photoreceptors corresponds to visual inputs bounded
by their range of view.

LEARNING PRODUCES SPATIAL CLUSTERING
During the training, synaptic efficacy between each of two layers
progressed from a uniform distribution at the initial state toward
a binary distribution where only a limited number of synaptic
connections were highly strengthened or weakened (Figure 4).
This convergence toward an bimodal equilibrium state is consis-
tent with other self-organizing modeling work with STDP (Song
et al., 2000; Kato et al., 2009; Basalyga et al., 2011). Contrary,
physiological studies have shown that synaptic weights tend to
have unimodal distributions with a positive skew (Barbour et al.,
2007). Barbour et al. (2007) raised a possible reconciliation with
the bimodal distributions of modeling with such experimental
data, given that the dendritic distribution of synaptic weights may
have a wide range of values, due to electrotonic filtering effects.
However, in order to explore this possibility, further investigation
will be required.

Investigation into the firing count of each neuron to differ-
ent color inputs shows that the weight convergence resulted in
development of clustered responses in the networks (Figure 5).
A comparison between the results with the weight distribution
plots in Figure 4 shows that even though the average weight
was kept constant, neuronal firing activity became more promi-
nent and deviated after the training; it was sparse (average rate
of 2.165 Hz with standard deviation of 0.874) prior to learning,
but after 2000 iterations of 300 ms exposure to image patches
extracted from natural indoor images, the network developed
different clustered firing patterns of neurons (average rate of
3.966 Hz with standard deviation of 1.169) for eight different

Untrained Network Trained Network (2000 iterations)

0 1 0 1
synaptic weights distribution

from V1 L23 to V1 L5

from C2 to V1 L23

from V1 L4 to V1 L23

from C1 to V1 L4

from L to V1 L4

from V1 L23 to V1 L5

from C2 to V1 L23

from V1 L4 to V1 L23

from C1 to V1 L4

from L to V1 L4

synaptic weights distribution

A B

FIGURE 4 | Synaptic weight distribution at synapses before (0

iteration) and after (2000 iterations) the learning. Weights are
initialized randomly. After every iteration, connection weights between
the two layers are normalized so that the mean of all the values are

kept in the middle of the pre-specified range, and to prevent runaway
excitation. The graphs show that the weights converged over the
course of the training sessions. (A) Untrained network. (B) Trained
network.
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FIGURE 5 | Boundaries of peaks of firing counts for seven colors (red, orange, yellow, green, aqua, blue, and purple) (A) before, (B) after training, and

(C) normalized firing activity of seven neurons in V1 L5 in response to the seven color inputs were plotted.

color inputs (red, orange, yellow, green, aqua, blue, purple,
and pink).

In Figures 5A,B, the boundaries of peaks of firing counts
for seven different colors (red, orange, yellow, green, aqua,
blue, and purple) before and after training are plotted. The
result shows that the training resulted in developing color selec-
tive clustered responses. Normalized firing activity of seven
neurons in V1 L5 were recorded and plotted in Figure 5C.
These results failed to show a clear spatial shift of the
activation with gradual change of color inputs as reported
in Xiao et al. (2003); however, the results revealed gradual
changes of firing patterns according to changes of input col-
ors, which is partially consistent with the physiological find-
ings. This also shows that some cells show higher selec-
tivity than others at responding to similar colors. This is
likely due to the fact that the color representation takes
a specific combination of three continuous values of RGB.

Depending on the trained weights, activations of some neu-
rons may only be influenced by one or two of the three values,
and the activation patterns also vary due to different com-
binations of those values and influences from other nearby
neurons.

We calculated a clustering coefficient [C; Equations (3, 3)] to
assess the effectiveness of training in producing spatial clustering
within the network. Figure 6 shows C of V1 L4, V1 L2/3, V1 L5,
as well as of V1 L5 trained with Hebb-like learning rule, plotted
as a function of training iteration. The result demonstrates that
the networks trained with STDP rule gradually increases cluster-
ing coefficients as training proceeds while the network trained
with Hebb-like learning rule remains relatively low clustering
coefficient.

The emergence of clustering may be explained by the lat-
eral excitatory connections described in section 2.1.2. When a
specific neuron becomes activated, the signal is propagated to
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FIGURE 6 | Clustering coefficient dynamics during the training. The
clustering coefficients C of V1 L4, L2/3, and L5, where the networks were
trained with STDP, were calculated by the equation given in Equations (3, 3)
and plotted by dotted line, dashed line, and solid line with circle markers,
respectively. Additionally, the clustering coefficients of V1 L5 when the
network was implemented with Hebb-like rule is plotted by the line with
asterisk markers. The result demonstrates that the networks trained with
STDP rule gradually increases clustering coefficients as training proceeds
while the network trained with Hebb-like learning rule remains relatively
low clustering coefficient.

the neighboring neurons making them more likely to become
activated as well. Once the neighboring cell reaches a threshold
and becomes activated, synaptic connections convergent onto the
cell from recently activated cells in the preceding layer become
strengthened via STDP. Repetitions of this process are likely to
be the cause of the development of the clustered responses of
cells. This phenomenon should be prominent only among nearby
cells because of lateral propagation delays and long-range lateral
inhibition.

The precise temporal dependence of STDP is crucial for the
clustering learning process. Activation of neurons are laterally
propagated within layers but with a specified delay. Therefore,
temporal differences of the activations between the source in the
preceding layer and the targets in the following layers become
large as the signal is propagated. As a result, the degree of LTP
decays as the differences become large, and LTD is turned on if the
post-synaptic activation timing becomes closer to the next pre-
synaptic activation, thus forming the distinct clustering responses
in the networks.

In order to confirm the importance of spike-timing in forming
color receptive field clustering, we ran a control simulation, using
a Hebbian plasticity synaptic learning rule, which does not take
into account the timing of pre- and post-synaptic neuronal spik-
ing (Figure 3B). After learning with this Hebbian plasticity rule,
the clustering coefficient value remained low (Figure 6 lines with
asterisks) relative to the results in the network trained with STDP.
This underlines the importance of STDP in developing clustering
in our model.

In addition, our model shows that the clustering coefficient
in higher layers tended to be larger. This observation makes us

expect information to gradually change in the different layers, and
this assumption has been confirmed in the next section.

SELECTIVITY OF THE RESPONSES
In order to identify how the learned connectivity shaped output
neuron sensitivity to stimuli, the techniques of Shannon’s infor-
mation theory were employed (Rolls and Treves, 1998). If the
responses r of a neuron carry a high level of information about
the presence of a particular color stimulus s, this implies that the
neuron will respond selectively to the presence of that color. Two
information measures were used to assess the ability of the net-
work to develop neurons that are selective to the presence of a
particular color by measuring single cell and population informa-
tion (see sections 2.2.2, 2.2.3). Since eight different sets of colors
(red, orange, yellow, green, aqua, blue, purple, and pink) are used
in this analysis, the maximum information carried in this analysis
is 3 bits.

Figure 7A shows the single cell information analysis as plotted
in rank order according to maximum information each cell car-
ries for a specific stimulus. The results compare the information
distribution of each layer in the trained network and of the final
layer (V1 L5) in the untrained and trained network. The results
demonstrate that neurons in the trained network generally carry
more single-cell information.

While useful in assessing the tuning properties of a particu-
lar neuron, the single-cell information measure cannot provide
mutuality of the responses; if all cells learned to respond to the
same color input (according to the single-cell measure) then there
would be relatively little information available about the whole set
of color stimuli S. To address this issue, we used a multiple-cell
information measure, which assesses the amount of informa-
tion that is available about the whole set of color inputs from a
population of neurons (see section 2.2.3).

In Figure 7B, the multiple cell information measures are plot-
ted according to the number of cells used in the analysis. The
result shows that the trained network conveys more color spe-
cific information than the untrained network. More interestingly,
we found that the amount of color specific mutual information
reaches a maximum with fewer neurons in the higher layers: 13
neurons in L4, 10 neurons in L2/3, and 8 neurons in L5. This
analysis indicates that estimations of the input colors can be
done using the output of fewer cells in the later stages of cortical
processing.

More precisely, the total amount of mutual information
(across a layer) can not increase through further processing as
the Data Processing Inequality (DPI) states—it can only be pre-
served or lost. In other words, if all the information from all
cells in each of the two layers was added up, it will decrease
in the higher layer. However, our specific information measure
explained in section 2.2.3 can increase for particular cells, as they
become more selective throughout the layers. In this case, some of
that information has shifted into different cells, and so all stimuli
can now be represented with fewer neurons, allowing for fewer
required cells to convey maximum information. Our information
measure therefore improves, showing that the cells are becoming
more tuned, even though the total information in the layer has
decreased.
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ON- AND OFF-CELLS
The firing pattern of each cell in response to turning a stimulus
ON and OFF was also investigated. During this testing proce-
dure, eight different colors (red, orange, yellow, green, aqua, blue,
purple, and pink) are presented for 240 ms, followed by 60 ms
of no visual input presentation, and the voltage level of each
neuron is recorded. In order to find if any neuron developed
ON/OFF sensitivities during training with similar properties to
those found in V1/V2 in vivo (Michael, 1978; Friedman et al.,
2003), from each recorded voltage dynamics, the 30 neurons

which responded the most during the first 60 ms and the last
60 ms were selected to be plotted in Figure 8. Similar to the phys-
iological findings, we found both ON- and OFF-cells for each
different color input, where populations of neurons showed a
burst of firing just after a presentation or removal of a color
input.

Also, further analysis revealed that some of those cells dis-
played the temporal color opponent property as reported in
Friedman et al. (2003). Figure 9A shows two types of such
cells: Red-ON/Green-OFF cells and Yellow-ON/Blue-OFF cells.
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lines represents trained networks while dotted line represents naive network.
(A) The single cell information measure are plotted in rank order according to
how much information they carry. The result show that the maximum
information each cell carry drops rapidly in the naive network while most of
the cells in the trained network carry relatively higher amount of information.
(B) The multiple cell information measures are plotted according to the

number of cells used in the analysis to visualize the mutuality of the
responses. The information that the trained network carries reaches
maximum mutual discriminability with 3 bits of information with around 8
neurons while the information that the naive network carries does not reach
this point with 15 neurons. This result also shows that fewer neurons are
required to represent all stimuli in the higher layers, as the information
measure improves from L4→ L2/3→ L5.

0

2

4

0

2

4

0

5

0

5

0

5

10

0

1

2

0

2

4

0

2

4

0

5

10

0

2

4

0

5

0

1

2

0

2

4

0

2

4

0

5

0

2

4

3
0

 n
e

u
ro

n
s

0 240 300 0 240 300

0 240 300 0 240 300

0 240 300 0 240 300

0 240 300 0 240 300

0 240 300 0 240 300

0 240 300 0 240 300

0 240 300 0 240 300

0 240 300 0 240 300

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

3
0

 n
e

u
ro

n
s

FIGURE 8 | Firing activity of 30 neurons in V1 L5, which responded

vigorously when color input is presented or removed, from each

experiment. The color bars under each raster plot represent times at which

colors are presented to the neurons (each color is presented for 240 ms and
removed). From these results, we found that many neurons exhibit the
characteristics of ON/OFF-cells in the trained network.
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FIGURE 9 | Firing responses of neurons in the V1 L5, which shows

temporal color opponent ON/OFF responses. Figure on the top shows 30
neurons that responds highly when color red is presented and when color
green is removed. Figure on the bottom shows 30 neurons that responds

highly when color yellow is presented and when color blue is removed. This
result shows that in the trained network, we found Yellow-ON/Blue-OFF cells
and Red-ON/Green-OFF cells as reported in physiological experiments. (A)

Random delay. (B) No delay

In order to find such cells, we first identify 100 cells that show
Red-ON (or Yellow-ON) property, and then chose 30 cells from
the subset that show Green-OFF (or Blue-OFF) property.

Neurons in the layers are exposed to different colors in natural
images during the training, so the development of ON-cells which
exhibit specific responses to specific inputs can be explained with
standard feed-forward competitive learning principles (Rolls and
Treves, 1998). In contrast, the development of OFF-cells are due
to the lateral inhibitory connections emitted by ON-cells: sup-
pose there are ON-cells that were tuned to the color red. If red
is presented to the network, these ON cells become activated
making surrounding cells that receive inhibitory synaptic con-
nections from the ON cells less likely to become activated. When
the color input is removed, ON-cells stop activating. As a result,
the surrounding cells are no longer suppressed by the ON-cells,
demonstrating their being OFF-cells.

However, the question is where the OFF-cells receive excita-
tory input to enable them to remain activated after the removal
of the color input. In other words, there should be some mecha-
nism where ON-cells immediately stop receiving excitatory input
while OFF-cells keep receiving excitatory input, even after the
removal of the color input. This may be caused by the differ-
ences in firing timing of different input cells as explained in
Figure 10.

In our model, the maximum activation frequency of input cells
was set to 40 Hz (25 ms interspike interval), which is gamma oscil-
lations which are widespread in the visual cortex. Also, different
input cells have different randomly determined delays from the
input cell receiving color input to its firing, which is reflected in
their firing timings. As shown in Figure 10, suppose the spike tim-
ing of an input cell A is 24 ms earlier than another input cell B.
This means that there is at most 24 ms difference between the final
spike timing of cell A and the timing of cell B before the removal
of the color input. This 24 ms difference will result in giving a
chance for the OFF-cell that receives most of the inputs from the
input cells such as B to become activated after an ON-cell that
happens to receive most of the inputs from the input cells such as
A stops activating inhibitory signals.

In order to confirm the importance of the delay for the devel-
opment of such ON/OFF cells, we have also trained the same
network without randomly determined delays from the input cell
receiving color input to its firing timings. Figure 9B shows the
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FIGURE 10 | Diagrams to explain the speculated cause of the

differences in durations of firing activities of different neurons after

removal of color inputs. In this experiment, the maximum activation
frequency of input cells was set to 40 Hz, and different input cells have
different delays in the firing timings. Firing activation timing of input cell A is
1 ms later than another input cell B. This means there are 24 ms differences
in the last activation before the removal of the color input. This difference
will result in giving a chance for the OFF-cell that receives most of the
inputs from the input cells such as B to become activated after an ON-cell
that happens to receive most of the inputs from the input cells such as A
stops releasing inhibitory signals.

firing activities of each 30 neurons selected by the same procedure
used to find Red-ON/Green-OFF cells and Yellow-ON/Blue-OFF
cells earlier. The results show that in the network that employed
inputs without randomized delays, we failed to find Green-OFF
and Blue-OFF cells within each subset of 100 Red-ON cells and
Yellow-ON cells. This result indicates that the randomized delay
plays an important role for the development of the OFF cells.

In animal V1, much of the ON and OFF component of the
responses are thought to be inherited from similar properties of
LGN and RGC cells. Therefore, we are not expecting that onset
and offset transients arise in V1 alone. However, our results sug-
gested the possibility of multiple mechanisms that impact the
firing times of these cells.
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DISCUSSION
In this study, we have developed a model of early visual process-
ing of colors including the pathway beginning at photoreceptors
and terminating in the fifth layer of V1. We have incorpo-
rated anatomically accurate projections of signals between lay-
ers and the biologically plausible learning of synaptic weights
based on STDP using Hodgkin–Huxley models of neuronal
dynamics.

We have successfully shown that the networks gradually
develop clustered firing activity of neurons during training (sec-
tion 3.1). Information analysis based on averaged firing rates of
each neuron also confirmed development of neuronal color selec-
tivity after the training (section 3.2). Our results also indicated
that populations of neurons can provide reliable predictions of
the input color presented to the retina. Interestingly, the color
information measure by multiple-cell information analysis rises
more rapidly with fewer cells from L4→ L2/3→ L5, suggesting
that layered neocortical architecture may enable it to boost impor-
tant information. We also found that if the synaptic weights in
the network were learned via a Hebbian plasticity rule, the level
of clustering coefficient remained low relative to the results in the
network trained with STDP.

However, the question is why other models without STDP,
including the model by Rao and Xiao (2012), show similar types
of clustering merely due to Mexican-hat connectivity. One pos-
sibility would be that in many hierarchical unsupervised neural
network models, each layer is trained separately in turn. This
is important for synaptic connectivities in higher layers to be
appropriately tuned. However, in our model, all the synaptic
connectivities are learned simultaneously, which may be more
realistic. The implication would be that STDP may allow a net-
work to learn connectivities more flexibly without the traditional
greedy method of teaching one layer at a time. We propose this
hypothesis because adding another dimension of timing via STDP
allows the synaptic weights to be dynamically updated in real-
time whereas rate coded neurons depend on averaged firing rates
within pre-specified time windows.

Furthermore, investigating neuronal voltage dynamics
revealed the presence of both ON-cells and OFF-cells, which
respond maximally immediately after presentation or removal of
a particular color input. These results led us to hypothesize that
the emergence of OFF-cells was caused by different spike timing
delays from input cells (section 3.3).

The role of neuronal synchrony in color processing is still an
open question particularly since our model demonstrates that
information analysis based on firing rates can successfully pre-
dict the color input. However, while the network was trained with
various color input in natural images, in this analysis, the network
was tested only with eight clearly distinct colors, and in order to
accurately decode the subtle differences between similar colors,
synchrony and its timing may play an important role for the rep-
resentations at least in our proposing mechanism. In addition,
the importance of timing delays in the creation of ON/OFF cells
suggests rate codes alone may not be sufficient in visual system
development.

ROLE OF SPIKE-TIMING DELAYS IN CREATING ON/OFF CELLS
The mechanism of the emergence of OFF-cells due to spike timing
delays allows us to propose a possible in vivo mechanism of the
development of the ON/OFF-cell that is also combined with the
R/G opponency shown in Figure 9. As shown in Figure 11, we
suppose there is a simplified network that consists of three cells
in the LGN layers and two cells in output layer (RON/GOFF cell
and its neighboring cell N). In this schematic, LGN cells consist
of a C1 (R/G opponent) cell and two L (monochrome) cells. In
addition, one of the L cells, L1, has a delayed Green input (see
details in Figure 10).

When the color red is presented to the network (Figure 11A),
all three cells in the LGN become activated, and the RON/GOFF

output cell that receives excitatory inputs from the C1 cell and
one L cell (L1) becomes highly activated. When the red input is
removed (Figure 11B), only L cells become slightly activated due
to the delayed connection, which does not have a large influence
on the RON/GOFF cell.

R G B R G B

C1 L2

R G B

C1

R G B

L1 L2L1

excitatory connection

inhibitory connection

*

*delayed connection

A Red is presented B Red is removed C Green is presented D Green is removed

C1 L2L1 C1 L2L1

N N N N

* **

Ron/

Goff

Ron/

Goff

Ron/

Goff

Ron/

Goff

FIGURE 11 | Diagrams of a simplified network to explain emergence of

ON/OFF-cells that is also combined with R/G opponency shown in

Figure 9. Each box represents a neuron. Inputs leading to the
activation/inactivation of a RON/GOFF output cell is shown ((A) red is
presented; (B) red is removed; (C) green is presented; (D) green is removed).
Here, N represents the neighboring cell of the RON/GOFF output cell. In the

intermediate layer, C1 is a cell in the Red/Green color opponent channel (R −
G) and L is a cell in the luminance channel (R + G). In the input layer on the
bottom, each R, G, B represent a photoreceptor. Neurons are filled in
proportion to their activation level. Solid (broken) arrows represent excitatory
(inhibitory) connections. A star placed next to an arrow means that the
connection has delayed synaptic timing as discussed in Figure 10.
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When Green color input is presented to the same network
(Figure 11C), the L cells become activated. Subsequently, the N
cell in the output layer that sends an inhibitory signal to the
RON/GOFF cell becomes activated as well. Because of the inhibi-
tion, the RON/GOFF cell does not become highly activated even
though it receives excitatory input from the preceding L1 cell.
When the color input is removed (Figure 11D), the L1 cell that
has the delayed connection from the Green cell is kept activated,
which causes the RON/GOFF cell to become activated.

Similarly, a possible mechanism of the ON/OFF-cell that is
combined with Y/B opponency is provided in Figure 12. In the
figure, we suppose a simplified network consists of three C2 (Y/B
opponent) cells in the LGN layer and three cells in the output layer
(YON/BOFF, N1, and N2). Each cell in the output layer receives
excitatory input from one C2 cell (C21, C22, and C23) cell). N2

cell establishes inhibitory connection to N1, and the N1 estab-
lishes an excitatory connection to the target cell, YON/BOFF. In
this network, C22 cell establishes the delayed connections dis-
cussed above (in Figure 10) from the R and G cells, and C23 cell
establishes delayed connections from all R, G, and B cells.

As shown in Figure 12A, when the color yellow is presented, all
C2 cells become activated. As a result, the target cell, YON/BOFF,
should become highly activated by receiving excitatory input from
the preceding C21 cell. In addition, the target cell YON/BOFF

receives some excitation from N1 cell. When the color input is
removed (Figure 12B), due to the delayed connections, C22 and
C23 cells are kept active for an interval, but not C21. As a result,
the target cell, YON/BOFF would not get highly activated.

When the color blue is presented (Figure 12C), none of the
C2 cells would become activated, leading to no activation of the
target cell. On the other hand, when the color input is removed
(Figure 12D), C22 cell becomes activated to some degree due to
the delayed connection from R and G with their weak activations
caused by the color blue. This leads to the activation of N1 that
establishes excitatory connection to the target cell, YON/BOFF. In

this way, it is possible to provide a possible dynamical mechanism
of ON/OFF-cells that involves color opponency.

In order to test the hypothesized architectures above, we have
modeled the simple networks using the same set of neurons used
in our computational model and recorded firing activity of each
neuron for 300 ms (240 ms of color input presentation followed
by 60 ms of no color input presentation) (Figure 13). The results
show that the same target neuron exhibits characteristics of both
RON/GOFF, and YON/BOFF firing activity. However, the result also
showed that those responses are not observed immediately after
the presentation or removal of the color input. In other words,
there is still activity in ON-cells after the stimulus is turned off.
Also, OFF-cells show responses when the stimulus is turned on.
These effects are due to the transitional delay of signals. However,
as shown in Figures 8, 9, the population activity shows a more
clear ON/OFF response.

POTENTIAL LIMITATIONS
Although our model predicts that spike timing is important for
the effective development of color selectivity, our model did not
investigate development of orientation selectivity, which is known
to coexist with color selectivity, as investigated in previous mod-
els (Barrow et al., 1996; Rao and Xiao, 2012). Therefore, in future
work it will be important to model co-development of both color
and orientation selectivity. A different limitation of our model
is that the representation of color input was based on simpli-
fied input cells that detect digital RGB values. To investigate more
realistic mechanisms of development, biologically-accurate archi-
tectures of the various types of retinal cells that are involved in the
process should be implemented.

CONVERGENCE OF APPROACHES
Our model of the early visual system displays convergence
between the fields of computational neuroscience and artifi-
cial neural networks (ANNs). Computational neuroscience has
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FIGURE 12 | Diagrams of simplified network to explain a possible

mechanism of ON/OFF-cell that is combined with the Y/B opponency

reported in Figure 9. In the figure, each box represents a cell in the network.
Inputs leading to the activation/inactivation of a YON/BOFF output cell are
shown: ((A) yellow is presented; (B) yellow is removed; (C) blue is presented;
(D) blue is removed). In the output layer on the top, the target cell shown as
YON/BOFF in each box represents the ON/OFF target cell, N1 is a neighboring
cell that sends excitatory connections to YON/BOFF, and N2 is a cell that

sends excitatory connections to N1. In the intermediate layer, C2 is a cell in
the Yellow/Blue color opponent channel [(R + G)−B]. In the input layer on the
bottom, each R, G, B represent each photoreceptor. Cells are filled with a
color to provide degrees of activations of different cells; partially filled box
means it is only activated a small amount. All solid arrows represent
excitatory connections while broken arrows represent inhibitory connections.
A star placed next to an arrow means that the connection has a delayed
synaptic timing as discussed in Figure 10.
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FIGURE 13 | (A) Firing activity of each neuron in the simple network
described in Figure 11. Left sub-panels show the activity when color
input of red, RGB(1, 0, 0), is presented while right sub-panels show the
activity when color input of green, RGB(0, 1, 0) is presented, both for
240 ms. In the figures on the top, the activity of C1, L1, and L2 are
plotted with blue, green, and red color, respectively. The figure on the
middle plots the activity of the neighboring cell, N, and the figure on the
bottom plots the activity of the RON/GOFF cell. (B) Firing activity of each

neuron in the simple network described in Figure 12. Left sub-panel
shows the activity when color input of yellow, RGB(1, 1, 0), is presented
while right-subpanel shows the activity when color input of blue, RGB(0,
0, 1), is presented, both for 240 ms. In the top panels, the activities of
C21, C22, and C23 are plotted with blue, green, and red color,
respectively, and in the middle panels, the activities of N1 and N2 are
plotted with blue and green color, respectively. The bottom panels display
the activity of the YON/BOFF cell.

traditionally attempted to understand neuronal dynamics by
building models by using known biological detail without forcing
an explicit engineered goal. ANNs, which emerged from the field
of artificial intelligence, have stressed an approach that aims to
develop systems displaying intelligence by constraining the system
design to a specified goal, while taking inspiration from biological
systems (Hinton et al., 2006).

Recent developments in ANNs, including deep learning, a
technique drawing inspiration from neurobiology, have made sig-
nificant progress in recent years (Hinton et al., 2006) improving
performance on visual information processing (Lee et al., 2009).
Progress has also been made by training recurrent neural net-
works to perform extremely well on difficult, specialized classes
of problems, such as handwritten character recognition (Graves
and Schmidhuber, 2008). Related developments have also started
focusing on investigations into utilizing brain-inspired informat-
ics to improve the intelligence of current technologies (Eguchi
et al., 2013). However, currently, even the best machine learn-
ing algorithms have difficulty in matching human performance
in recognizing arbitrary classes of complex visual stimuli. Basic
research in neurobiology, combined with utilization of biological
detail in computer models, is therefore needed to enable further
improvements in machine learning. Improved understanding of
how the brain circuitry represents and processes visual informa-
tion may inspire new classes of visual processing algorithms. We
have used this approach to design our model, which allows cor-
relation of its neuronal dynamics with electrophysiological data,
takes into account known neuroanatomy, and uses a biologically

plausible learning rule (Markram et al., 1997), and therefore takes
a step toward improved understanding of in vivo brain dynamics.

NEOCORTICAL ARCHITECTURE
One of the basic goals of neuroscience is to elucidate the mech-
anisms by which the structure of the brain leads to its function
(Shepherd, 2004). This depends on a careful study of neu-
roanatomy as well as functional measures in vivo (Weiler et al.,
2008). The importance of changes in microcircuitry is under-
scored with experimental studies that have shown how alterations
in cortical connectivity can lead to diseases, such as autism (Qiu
et al., 2011). Since it is not possible to measure the state of all neu-
rons it is important to combine computer modeling with known
neurophysiological circuitry data (Lytton, 2008). Following this
approach in our model allows us to make predictions on the func-
tion and development of several features observed in visual cortex
in vivo.

Our model suggests that in vivo, the process of development of
color clustering is more likely to initiate in earlier layers (L4) of
V1. This may be testable via electrophysiological methods applied
during different stages of development. Our model is also con-
sistent with more general implications, suggesting that through
a process of development, each layer of neocortex may learn to
enhance important signals as they progress within the micro-
circuitry. Although initial synaptic weights in our model were
randomly distributed, visual information and STDP allowed the
feed-forward projections of the neocortex to learn the color infor-
mation as the signals flowed in successive layers. In our model, the
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color information progressed from L4→ L2/3→ L5. Although
L4 is the input layer into V1, the final output layer (L5) had
the highest information content about the color stimuli. Further
experiments will be needed to elucidate the role that individ-
ual layers play in shaping the information coding capacity of the
neocortex.

Prior modeling (Stringer and Rolls, 2002; Rolls and Stringer,
2006; Dura-Bernal et al., 2012) and experiments (Hung et al.,
2005) have shown the importance of the feed-forward architec-
ture of the visual cortex ventral stream for object recognition.
Although our work makes use of the feed-forward architecture
of cortical areas, it also takes into account additional details of
wiring, including recurrent connectivity. As more microcircuitry
data becomes available, it will be possible to refine our model
further (Alivisatos et al., 2013). Part of this process will involve
combined experimental/computational approaches. For example,
Hung et al. (2005) studied the ventral visual pathway with the aim
of understanding how object recognition takes place by building
pattern recognition algorithms that utilize inferotemporal cortex
neuronal spiking information to assess both object category and
identity. In the future it will be possible to extend our model to use
similar techniques to quantify performance in object recognition
that is based on accurate color processing.
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Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool
for theoretical investigations of brain function. These models have been used both with
current- and conductance-based synapses. However, the differences in the dynamics
expressed by these two approaches have been so far mainly studied at the single neuron
level. To investigate how these synaptic models affect network activity, we compared the
single neuron and neural population dynamics of conductance-based networks (COBNs)
and current-based networks (CUBNs) of LIF neurons. These networks were endowed
with sparse excitatory and inhibitory recurrent connections, and were tested in conditions
including both low- and high-conductance states. We developed a novel procedure to
obtain comparable networks by properly tuning the synaptic parameters not shared by the
models. The so defined comparable networks displayed an excellent and robust match of
first order statistics (average single neuron firing rates and average frequency spectrum of
network activity). However, these comparable networks showed profound differences in
the second order statistics of neural population interactions and in the modulation of these
properties by external inputs. The correlation between inhibitory and excitatory synaptic
currents and the cross-neuron correlation between synaptic inputs, membrane potentials
and spike trains were stronger and more stimulus-modulated in the COBN. Because of
these properties, the spike train correlation carried more information about the strength of
the input in the COBN, although the firing rates were equally informative in both network
models. Moreover, the network activity of COBN showed stronger synchronization in the
gamma band, and spectral information about the input higher and spread over a broader
range of frequencies. These results suggest that the second order statistics of network
dynamics depend strongly on the choice of synaptic model.

Keywords: recurrent neural network, integrate-and-fire neurons, current based neuron models, conductance based

neuron models, spike correlation, local field potentials, correlation analysis, information encoding

INTRODUCTION
Networks of Leaky Integrate-and-Fire (LIF) neurons are a key tool
for the theoretical investigation of the dynamics of neural cir-
cuits. Models of LIF networks express a wide range of dynamical
behaviors that resemble several of the dynamical states observed
in cortical recordings (see Brunel, 2013 for a recent review). An
advantage of LIF networks over network models that summarize
neural population dynamics with only the density of popula-
tion activity, such as neural mass models (Deco et al., 2008), is
that LIF networks include the dynamics of individual neurons.
Therefore LIF networks can be used to investigate phenomena,
such as the relationships among spikes of different neurons, that
are not directly accessible to simplified mass models of network
dynamics.

A basic choice when designing a LIF network is whether the
synaptic model is voltage-dependent (conductance-based model)
or voltage-independent (current-based model). In the former

case the synaptic current depends on the driving force, while
this does not happen in the current-based model. Current-based
LIF models are popular because of their relative simplicity (see
e.g., Brunel, 2013) and they have the key advantage of facilitating
the derivation of analytical closed-form solutions. Thus current-
based synapses are convenient for developing mean field mod-
els (Grabska-Barwinska and Latham, 2013), event-based models
(Touboul and Faugeras, 2011), or firing rate models (Helias et al.,
2010; Ostojic and Brunel, 2011; Schaffer et al., 2013), as well as
in studies examining the stability of neural states (Babadi and
Abbott, 2010; Mongillo et al., 2012). Moreover, current-based
models are often adopted, because of their simplicity, to inves-
tigate numerically network-scale phenomena (Memmesheimer,
2010; Renart and Van Rossum, 2012; Gutig et al., 2013; Lim
and Goldman, 2013; Zhang et al., 2013). On the other hand,
conductance-based models are also widely used because they
are more biophysically grounded (Kuhn et al., 2004; Meffin
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et al., 2004). In particular, only conductance-based neurons can
reproduce the fact that when the synaptic input is intense, cor-
tical neurons display a three- to fivefold decrease in membrane
input resistance (thus they enter a high-conductance state), as
observed in intracellular recordings in vivo (Destexhe et al., 2003).
However, an added complication of conductance-based models is
that their differential equations can only be evaluated numerically
or approximated analytically (Rudolph-Lilith et al., 2012) rather
than being fully analytically treatable.

Despite the widespread use of both types of models, the differ-
ences in the network dynamics that they generate has not been yet
fully understood. Previous studies comparing conductance- and
current-based LIF models focused mostly on the individual neu-
ron dynamics (Kuhn et al., 2004; Meffin et al., 2004; Richardson,
2004). Here we extended these previous works by investigating
the network level consequences of the synaptic model choice. In
particular, we investigated which aspects of network dynamics
are independent of the choice of the specific synaptic model, and
which are not. Understanding this point is crucial for fully eval-
uating the costs and implications of adopting a specific synaptic
model.

We compared the dynamics of two sparse recurrent excitatory-
inhibitory LIF networks, a conductance-based network (COBN)
with conductance-based synapses, and a current-based network
(CUBN) with current-based synapses. To properly compare the
two networks, we set to equal values all the common parameters
(including the connectivity matrix). Building on previous works
(La Camera et al., 2004; Meffin et al., 2004), we devised a novel
algorithm to obtain two comparable networks by properly tun-
ing the synaptic conductance values of the COBN given the set
of values of synaptic efficacies of the CUBN. Since the differences
between the dynamics of the two synaptic models depend on the
fluctuations of the driving force (i.e., of the membrane poten-
tial), they should be close to zero when the synaptic activity is
low. Thus, when decreasing the background synaptic activity, the
Post-Synaptic Currents (PSCs) of the two models should become
more and more similar. Consequently, our procedure calibrated
the conductances so that PSCs became exactly equal in the limit of
zero synaptic input (see Methods). Then we investigated whether
this procedure could generate COBNs and CUBNs with matching
average single neuron stationary firing rates under a reasonably
wide range of parameters and network stimulation conditions.
We then studied how comparable conductance- and current-
based networks differed in more complex characterizations of
population dynamics, such as the cross-neuron correlations of
membrane potential (MP), input current and spike train, as well
as the spectrum of network fluctuations. The latter was inves-
tigated not only for total average firing rates, but also for the
simulated Local Field Potential (LFP) computed from the massed
synaptic activity of the networks (Mazzoni et al., 2008). To study
the spectrum of network fluctuations it is useful to use a LFP
model (rather than a massed spike rate) mainly because cortical
rhythms are more easily measured in experiments by recording
LFPs rather than the spike rate (Buzsaki et al., 2012; Einevoll
et al., 2013); therefore this quantification makes the models more
directly comparable to experimental observations. We then quan-
tified how the external inputs modulate the firing rate, the LFP

spectrum and the spike train correlation by using information
theory (Quian Quiroga and Panzeri, 2009; Crumiller et al., 2011).
Finally, we discuss the similarities and differences of COBN and
CUBN against recent experimental observations of dynamics
of cortical network correlations (Lampl et al., 1999; Kohn and
Smith, 2005; De La Rocha et al., 2007; Okun and Lampl, 2008;
Ecker et al., 2010; Renart et al., 2010).

METHODS
NETWORK STRUCTURE AND EXTERNAL INPUTS
We considered two networks of LIF neurons with identical archi-
tecture and injected with identical external inputs. The only dif-
ference between the two networks was in the synaptic model: one
was composed by neurons with conductance-based synapses and
the other by neurons with current-based synapses (see subsection
“Single neuron models” in Methods). The network structure was
the same one used in a previous work (Mazzoni et al., 2008), to
which we refer for a full description. Briefly, each network was
composed of 5000 neurons. Eighty percent of the neurons were
excitatory, that is their projections onto other neurons formed
AMPA-like excitatory synapses, while the remaining 20% were
inhibitory, that is their projections formed (A-type) GABA-like
inhibitory synapses. The 4:1 ratio is compatible with anatom-
ical observations (Braitenberg and SchüZ, 1991). The network
had random connectivity with a probability of directed con-
nection between each pair of neurons of 0.2 (Sjostrom et al.,
2001; Holmgren et al., 2003), thus any neuron in the network
received on average 200 synaptic contacts from inhibitory neu-
rons and 800 from excitatory neurons (see Supplementary Figure
1). Both populations received a noisy excitatory external input
taken to represent the activity from thalamocortical afferents,
with inhibitory neurons receiving stronger inputs than excita-
tory neurons. This simulated external input was implemented as
a series of spike times that activated excitatory synapses with the
same kinetics as recurrent AMPA synapses, but different strengths
(see Tables 1, 2).

The input spike trains activating the model thalamocortical
synapses were generated by a Poisson process, with a time-varying
rate, νext(t), identical for all neurons. Note that this implied that
the variance of the inputs across neurons increased with the input
rate. νext(t) was given by the positive part of the superposition of
a “signal,” νsignal(t), and a “noise” component, n(t):

νext(t) = [νsignal(t)+ n(t)]+ (1)

The separation of signal and noise in the input spike rate was
to reproduce the classical experimental design in which a given
sensory stimulus is presented many times, with each presenta-
tion (or “trial”) eliciting different responses due to variations in
intrinsic network dynamics from presentation to presentation.
We achieved this by identifying the external stimulus with the
signal term,νsignal(t), (which was thus exactly the same across
all trials of the same stimulus) and by using a noise term, n(t),
generated (as explained below) independently in each trial.

In this study we used three kinds of external signals. For the
majority of the simulations we used constant stimuli, νsignal(t) =
ν0, (with ν0 ranging from 1.5 to 6 spikes/ms). In a second
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set of simulations we used periodic stimuli made by super-
imposing a constant baseline term to a sinusoid: νsignal(t) =
A sin(2π ft) + ν0, where A = 0.6 spikes/ms; f ranged from 2 to
16 Hz in Figure 12 and from 2 to 150 Hz in Figure 13 and ν0

was set to 1.5 (respectively 5) spikes/ms when studying the low-
(respectively high-) conductance state. We also used a time-
varying signal that reproduced the time course of Multi Unit
Activity recorded from the LGN of an anaesthetized macaque dur-
ing binocular presentation of commercially available color movies
(Belitski et al., 2008). This latter dynamical stimulus, called “nat-
uralistic”, is fully described and characterized in (Mazzoni et al.,
2008) to which we refer for further details. For the purposes of
the present work, it is useful to remind that this naturalistic signal
was a slow signal dominated by frequencies below 4 Hz.

The noise component of the stimuli, n(t), was generated by an
Ornstein-Uhlenbeck (OU) process with zero mean:

τn
dn(t)

dt
= −n(t)+ σn(

√
2τn)η(t), (2)

where σ2
n = 0.16 spikes/ms is the variance of the noise, and η(t)

is a Gaussian white noise. The time constant τn was set to 16 ms
to have a cut-off frequency of 10 Hz. Note that the trial-to-trial
differences in the stochastic process generated by Equation 2 were
the first and largest source of trial-to-trial variability in the model,
the second and last being the fact that each neuron received an
independent realization of the Poisson process with rate νext(t).

In a specific set of control stimulations (Supplementary
Figure 4), instead of the OU process described above, we used a
Gaussian white noise with the same variance. Note that, for low
frequencies, the power spectrum of the OU process was higher
than the one of the white noise.

SINGLE NEURON MODELS
Both inhibitory and excitatory neurons were modeled as LIF neu-
rons (Tuckwell, 1988). The leak MP, Vleak, was set to −70 mV,
the spike threshold, Vthreshold, to −52 mV and the reset potential,
Vreset, to −59 mV. The absolute refractory period was set to 2 ms
for excitatory neurons and to 1 ms for inhibitory neurons (Brunel
and Wang, 2003). The equation for the sub-threshold dynamic of
the MP of i-th neuron had the following form:

τm
dVi(t)

dt
= −Vi(t)+ Vleak − Ii

tot(t)

gleak
, (3)

where τm is the membrane time constant (20 and 10 ms for exci-
tatory and inhibitory neurons respectively), gleak is the leak mem-
brane conductance (25 nS and 20 nS for excitatory and inhibitory
neurons respectively) (Brunel and Wang, 2003) and Ii

tot (t) is the
total synaptic input current. The latter was given by the sum of all
the synaptic inputs entering the i-th neuron:

Ii
tot(t) =

∑
N(i, AMPArec)

Ii
AMPArec(t)+

∑
N(i, GABA)

Ii
GABA(t)+ Ii

AMPAext(t),

(4)
the value of N(i, AMPArec) (respectively N(i, GABA)) being the set
of excitatory (respectively inhibitory) neurons projecting into the

i-th neuron, and Ii
AMPArec(t), Ii

GABA(t), Ii
AMPAext(t) the different

synaptic inputs entering the i-th neuron from: recurrent AMPA,
GABA, and external AMPA synapses respectively.

The difference between current- and conductance-based
synapses lied in the definition of these synaptic input currents
Isyn. For the current-based model:

ICUBN
syn (t) = Jsynssyn(t), (5)

where Jsyn are the synaptic efficacies (see Table 1) and ssyn(t) a
function that models the synaptic kinetics (see below).

In the conductance-based model the synaptic input currents
depended also on the MP, V(t):

ICOBN
syn (t) = gsynssyn(t)(V(t)− Vsyn), (6)

where gsyn and Vsyn are respectively the conductance and the
reversal potential of the synapse; the term (V(t)− Vsyn) is the
driving force of the synaptic current. The values of the parameters
gsyn in Equation 6 were computed as described in the subsection
“Procedure to determine comparable COBN and CUBN models.”
The reference values of reversal potentials and synaptic conduc-
tances are displayed in Table 2. In Figures 6C,D and 7D these
values were varied to test the robustness of our results.

The same function ssyn(t) described the time course of the
synaptic currents in both models; it depended both on the
synapse type and on the kind of neuron receiving the input. Every
time a pre-synaptic spike occurred at time t∗, ssyn(t) of the post-
synaptic neuron was incremented by an amount described by a

Table 1 | Synaptic efficacies of the current-based network.

Current-based network

SYNAPTIC EFFICACIES, Jsyn (pA)

GABA on inhibitory 54

GABA on excitatory 42.5

AMPArecurrent on inhibitory −14

AMPArecurrent on excitatory −10.5

AMPAexternal on inhibitory −19

AMPAexternal on excitatory −13.75

Table 2 | Reference values of the synaptic parameters of the

conductance-based model.

Conductance-based network

SYNAPTIC CONDUCTANCES, gsyn (nS)

GABA on inhibitory 2.70

GABA on excitatory 2.01

AMPArecurrent on inhibitory 0.233

AMPArecurrent on excitatory 0.178

AMPAexternal on inhibitory 0.317

AMPAexternal on excitatory 0.234

SYNAPTIC REVERSAL POTENTIAL, V syn (mV)

VGABA −80

VAMPA 0
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delayed difference of exponentials (Brunel and Wang, 2003):

�ssyn(t) = τm

τd − τr

[
exp

(
− t − τl − t∗

τd

)
− exp

(
− t − τl − t∗

τr

)]
,

(7)
where the latency τl, the rise time τr and the decay time τd are
shown in Table 3.

A useful parameter for conductance-based neuron analysis is
the effective membrane time constant τeff. Following a standard
procedure we computed the total effective membrane conduc-
tance for the i-th neuron as:

gi
tot(t) = gleak +

∑
N(i, AMPArec)

gAMPArec si
AMPArec(t) (8)

+
∑

N(i, GABA)

gGABA si
GABA(t)+ gAMPAext si

AMPAext(t),

and we rewrote Equation 3 as follows:

τi
eff(t)

dVi(t)

dt
= −Vi(t)+ gleakVleak +∑N(i, syn) gsyn si

syn(t) Vsyn

gi
tot(t)

(9)

where τi
eff(t) = τm gleak

gi
tot(t)

(10)

is the effective membrane time constant and “syn” indicates:
recurrent AMPA; GABA; external AMPA. In particular, for
the i-th neuron, the effective AMPA conductance is defined
as
∑

N(i, AMPArec) gAMPArec si
AMPArec(t)+ gAMPAext si

AMPAext(t) and

the effective GABA conductance as
∑

N(i, GABA) gGABA si
GABA(t)

(see Figure 3).

NUMERICAL METHODS
Network simulations were done using a finite difference integra-
tion scheme based on the second-order Runge Kutta algorithm
(Press et al., 1992), also known as the midpoint method, with time
step �t= 0.05 ms.

The noise, n(t), was obtained from Equation 2 by implement-
ing an exact numerical simulation of the Ornstein-Uhlenbeck
process (Gillespie, 1996). The temporal durations of the simu-
lations varied from 4.5 s to 100.5 s, and they are specified in the
figure captions. The regimes we investigated displayed average fir-
ing rates relatively low (0.4–13 Hz), thus, when computing the
Inter-Spike Interval (ISI) and the pairwise spike train correlation,
we used the longest simulation times (25.5 and 100.5 s) to obtain
larger spike datasets. Since we studied stationary responses, the
first 500 ms of the simulations were never included in any analysis.
Analysis and simulations (the latter implemented using MEX file)
were performed in Matlab. Both COBN and CUBN model source
codes are available as Supplemental Material to this paper and on

Table 3 | Synaptic time constants of both models.

Synaptic time constants (ms) τl τr τd

GABA 1 0.25 5

AMPA on inhibitory 1 0.2 1

AMPA on excitatory 1 0.4 2

the ModelDB sharing repository (http://senselab.med.yale.edu/
ModelDB/ShowModel.asp?model=152539) with accession num-
ber 152539.

SPECTRAL ANALYSIS
To compute the power spectrum we used the Fast Fourier
Transform with the Welch method (pwelch function in Matlab),
dividing the time window under investigation into eight subwin-
dows with 50% overlap.

For the entrainment analysis showed in Figure 13 in case of
periodic inputs with frequency f, we bandpassed the LFP at the
correspondent frequency f with a Kaiser filter with zero phase lag
and 2 Hz bandwidth, very small passband ripple (0.05 dB) and
high stopband attenuation (60 dB). We extracted then the instan-
taneous phase by means of the Hilbert transform of the signal. To
quantify entrainment, we computed the phase coherence between
the phase of the input signal and of the LFP at the correspond-
ing frequency (Mormann et al., 2000). Phase coherence, which
we computed using the CircStat toolbox (Berens, 2009), ranges
from zero (no relationships between phases) to 1 (perfect phase
locking between the two signals).

COMPUTATION OF SIMULATED LOCAL FIELD POTENTIAL
We computed from network activity the LFP by using a proce-
dure that has been proposed in previous works (Mazzoni et al.,
2008, 2010, 2011), to which we refer for full details. The pro-
cedure is summarized and motivated in the following. LFPs are
experimentally obtained by low-pass filtering the extracellularly
recorded neural signal, and are thought to reflect to a first approx-
imation the current flow due to synaptic activity around the tip
of the recording electrode (Buzsaki et al., 2012). Thus, we com-
puted the simulated LFP as the difference between the sum of the
GABA currents and the sum of the AMPA currents (both external
and recurrent) that enter all excitatory neurons. This quantity was
then divided by the leak membrane conductance to obtain units
of mV.

This simple recipe was motivated by two well-known geomet-
rical properties of cortical circuits. First, AMPA synapses tend to
be apical, i.e., they contact the dendrites away from the soma,
while GABA synapses tend to be peri-somatic, i.e., they contact
the soma or the dendrites close to the soma. Because of this spatial
arrangement, the sink and sources resulting from the activation
of both AMPA and GABA synapses will tend to produce in the
extracellular field a dipole oriented from apical dendrites toward
soma; hence we computed the LFP by subtracting the AMPA cur-
rents from the GABA currents (divided by the leak membrane
conductance). Second, pyramidal neurons contribute more than
interneurons to generation of LFPs in cortex because their apical
dendrites are organized in an approximate open field configu-
ration, whereas the organization of dendrites of interneurons is
arranged to a first approximation in a close field configuration
(Lorente De No, 1947; Murakami and Okada, 2006; Linden et al.,
2011). Therefore we computed LFPs by considering only input
currents to excitatory neurons (taken here to correspond to cor-
tical pyramidal neurons). This model, though simple, proved to
be an effective way to generate a realistic LFP signal that match
many characteristics of LFPs in sensory cortex (Mazzoni et al.,
2008, 2010, 2011).
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PROCEDURE TO DETERMINE COMPARABLE CURRENT- AND
CONDUCTANCE-BASED NETWORKS
As mentioned above all the parameters that were directly shared
between the two models were set equal; also the connectivity
matrix was the same in the CUBN and in the COBN. The start-
ing point of our comparison was to completely define the CUBN,
by specifying the synaptic efficacies, Jsyn (reported in Table 1),
as well as the values of the common set of parameters. Then,
we computed the synaptic parameters of the COBN that made it
comparable to the given CUBN. To simplify the problem, we first
set the reversal potentials of the COBN to biophysically plausi-
ble values: VAMPA = 0 mV and VGABA = −80 mV (as reference
values, but we also tested other values, see Figures 6C,D, 7D).
The “free” parameters left to set were now only the COBN
conductances (gsyn in Equation 6).

The procedure used to obtain the conductance values lead-
ing to comparable COBN and CUBN is illustrated in Figure 1
and described in the following. Consistent with the fact that the
effective membrane time constant of the COBN is equal to the
membrane time constant of the CUBN only in absence of synaptic
input (see Equation 10), we set the conductances of each synapse
type to obtain the same PSCs as in the corresponding current-
based synapse in the limit of no synaptic activity. Explicitly, for
each synapse type:

gsyn = Jsyn

(〈V〉pop − Vsyn)
, (11)

where 〈V〉pop was the average (over time and neurons) MP
of excitatory and inhibitory populations obtained from net-
work simulation of 4.5 s with a constant external input of 1.5
(spikes/ms)/cell. This last value was chosen because it was the low-
est stimulus used throughout the paper, i.e., the one that induced
the lowest synaptic activity. Since 〈V〉pop depended on gsyn, we
determined both values numerically and recursively. We used as
first guess the average MP obtained with the CUBN, we computed
the associated conductances with Equation 11, we ran a COBN
simulation with those conductances and then we used the result-
ing 〈V〉pop to compute the updated conductances, until 〈V〉pop
(and consequently the conductances) reached a stable value (see
Figure 1). Note that convergence was very fast: stability within a
tolerance on average MPs of 0.01 mV was achieved usually in less
than 10 steps. By using Equation 11, we rewrote the Equation 6 as
follows:

ICOBN
syn (t) = Jsynssyn(t)

[
1+ V(t)− 〈V〉pop

〈V〉pop − Vsyn

]
. (12)

Comparing Equation 12 with Equation 5 it is clear that the synap-
tic currents of the two networks are the same only when V(t) =
〈V〉pop, that is in the limit of no synaptic input.

Conductance-based neurons can undergo transitions from
low- to high-conductance states (Destexhe et al., 2001) and
the simulations performed in this work included both states.
However, current-based neurons cannot undergo such transi-
tions and their membrane time constant is close to the effective
membrane time constant of conductance-based neurons in a

FIGURE 1 | Procedure to set the synaptic conductances of the COBN.

The flowchart illustrates the iterative algorithm we used to set the synaptic
conductances, gsyn,such in a way to obtain a COBN comparable with the
given CUBN. The two networks shared all the common parameters, so,
once the CUBN was given, the synaptic conductances depended only on
the synaptic reversal potentials of the COBN, Vsyn.

low-conductance state (see Figure 3A). Therefore, the correspon-
dence between the two models that we defined is consistent with
the physiologically-meaningful requirement that the differences
between the two synaptic models decrease with synaptic activity
(Destexhe et al., 2003).

COMPUTATION OF THE AVERAGE POST-SYNAPTIC POTENTIALS IN THE
CONDUCTANCE-BASED NETWORK
Modeling the synaptic input as conductance transients produces
an activity-dependent increase of membrane conductance (that
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is a reduction of effective membrane time constant, see Equation
10) which attenuates and shortens the Post-Synaptic Potentials
(PSPs) (Destexhe and Pare, 1999). In order to extract the aver-
age (activity-dependent) PSPs of the COBN we used a procedure
similar to the one used in (Kumar et al., 2008): for each synapse
type (see Table 2) we randomly selected 300 neurons from the
network and we made a copy of them. These “cloned” neurons
received the synaptic input of the original ones and had exactly
the same spiking activity. The only difference with respect to the
original is that the cloned neurons received an extra spike, from
the synapse under investigation, each 100 ms (except for the first
500 ms), for a total of 100 PSPs for each cloned neuron (i.e., sim-
ulations lasted 10.5 s). We subtracted then the MP of the original
neurons from the one of the cloned neurons and, by doing a spike
triggered average over time and selected neurons, we obtained the
average effective PSP.

COMPUTATION OF CORRELATIONS AMONG SIGNALS IN THE
NETWORKS
We quantified the effects of the choice of the synaptic model on
the cross-neuron correlation in time. We computed the cross-
neuron pairwise Pearson’s correlation coefficient of the time
course of AMPA currents and of GABA currents entering the
neurons, MPs and spike trains. The spike trains were binned
in non-overlapping time windows of 5 ms and their correlation
coefficients were averaged over all neuron pairs of the net-
work (Figures 10A–C). Time courses of the other variables were
expressed with the original time steps of 0.05 ms and the correla-
tion was estimated averaging the correlation coefficients over all
neurons’ pairs obtained from two randomly selected subpopula-
tions of 200 excitatory and 200 inhibitory neurons (Figure 9).

We measured also the average correlation between the time
course of AMPA and GABA currents entering each single neu-
ron. In particular, we computed the normalized cross-correlation
between AMPA and GABA currents entering each neuron belong-
ing to the two subpopulations of 200 neurons above mentioned.
Then we averaged (over the neurons) the peak value and the peak
position, i.e., the time lag for which the correlation was strongest
(Figure 8).

COMPUTATION OF INFORMATION ABOUT THE EXTERNAL INPUTS
We studied how networks encoded external stimuli by means
of mutual information between stimulus and response (that we
will simply call information in the manuscript) (Shannon, 1948).
The information that a set of responses, R, carries about a set of
stimuli, S, is given by:

I(S;R) =
∑
s∈S

P(s)
∑
r∈R

P(r|s) log2
P(r|s)
P(r)

, (13)

where P(s) is the probability of presentation of the stimulus s,
P(r) the probability of observing the response r, and P(r|s) the
probability of observing r when s is presented.

As explained above, we used three kinds of external
input signals: constant input (Figures 2–11), periodic input
(Figures 12, 13) and a naturalistic input (Figure 14). In the con-
stant input case, each input rate, ν0, was considered a different

stimulus (with simulations lasting 25.5 s), while, for the periodic
stimuli, each stimulus corresponds to a frequency f (with simu-
lations lasting 10.5 s). In the naturalistic case, the stimulus pre-
sentation time (80 s) was divided into 2 s long non-overlapping
windows and each window was considered as a different “stim-
ulus” for the information calculation, following the procedure
described in (Belitski et al., 2008). We discarded an interval at
the beginning of the simulations (500 ms both for constant and
periodic case and 2 s for the naturalistic case) to avoid artifacts
due to initial conditions. When computing information we con-
sidered three different response sets R: the average network firing
rate, the average cross-neuron spike train correlation, and the
LFP power of each single frequency (Belitski et al., 2008) in the
(1–150) Hz range. To facilitate the sampling of response proba-
bilities, the whole range of response values was divided into six
consecutive intervals. Each of these intervals contained the same
number of responses (i.e., they were equi-populated). All the
responses belonging to a given interval assumed then the same
interval-specific discrete value. In summary, we discretized the
responses into six equi-populated bins. Then conditional prob-
abilities P(r|s) were evaluated empirically by using the results
from 50 trials per each stimulus s. We corrected information
estimations for the limited sampling bias (Panzeri et al., 2007)
by using the “quadratic extrapolation procedure” described in
Strong et al. (1998) implemented in the Information Breakdown
Toolbox (Magri et al., 2009).

RESULTS
We investigated the differences in the dynamics of neural popu-
lations between conductance-based LIF networks (COBNs) and
current-based LIF networks (CUBNs), with particular empha-
sis in understanding how the neural population activity of these
two types of network is modulated by external inputs. We first
introduced an iterative procedure to determine synaptic param-
eter values so that the CUBN and the COBN were placed on a
fair common ground, and could therefore be legitimately com-
pared. We then analyzed similarities and differences of single
neuron dynamics and of interactions among neurons in the two
networks as a function of strength and nature of the external
stimuli.

DETERMINING SYNAPTIC PARAMETER VALUES TO BUILD
COMPARABLE CURRENT- AND CONDUCTANCE-BASED NETWORKS
A necessary requirement to compare the activity of two different
network models is to define a meaningful and sound correspon-
dence between them. Our first step was thus to define a procedure
to achieve comparable networks (see Methods for details). In
brief, we set all the common parameters to exactly equal—and
biologically plausible—values in both models. In this way the
two models differed only because of the different synaptic model
adopted: voltage-independent for CUBN (see Equation 5) and
voltage-dependent for COBN (see Equation 6). In particular, the
expression of the Post-Synaptic Currents (PSCs) in the COBN
depended on conductances gsyn and on reversal potentials (VAMPA

and VGABA), while in the CUBN the PSCs depended only on
synaptic efficacies Jsyn. We set VAMPA and VGABA at 0 and−80 mV
respectively (but importantly our results were robust to changes
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FIGURE 2 | Individual synaptic events. Dynamics of single synaptic events
on excitatory neurons (see Methods). Results were qualitatively very similar
when considering synaptic inputs impinging on inhibitory neurons (see “PSP
peak amplitude” in Supplementary Table 1). (A,B) Shape of Post-synaptic
Currents (PSCs, top) for individual synaptic events in case of recurrent AMPA
(A) and GABA (B) connection (thalamic AMPA case is not shown because it
is qualitatively very similar to the recurrent AMPA case). The origin of the
time axis corresponds to the arriving time of the spike. Green lines represent
the kinetics in current-based neurons, which is independent from background
synaptic activity. Dashed blue lines indicate the kinetics of an isolated
conductance-based neuron (thus without background activity), having starting
membrane potential equal to

〈
V
〉
exc = −58.8 mV, that is the average potential

of the excitatory neurons of the network when the external input signal is
1.5 (spikes/ms)/cell. Red lines indicate the average PSCs in

conductance-based neurons embedded in the network (thus with
background activity) when the external input signal is 1.5 (spikes/ms)/cell (see
Methods for details). Blue and green lines are superimposed in (A). (C)

Absolute average values of the PSC peaks as a function of the external input
rate for neurons embedded in the network. Results are relative to recurrent
AMPA (red) external AMPA (green), and GABA (blue) synapses for current-
(thick lines) and conductance-based (thin lines with markers) neurons.
Shaded areas for the conductance-based neurons correspond to the standard
deviation across neurons (for AMPA connections the shaded areas are not
visible because they are too small). (D–F) Same as (A–C) for Post-Synaptic
Potentials (PSPs). PSPs are more relatively affected by the choice of the
synaptic model with respect to the PSCs, because, in the COBN, the PSCs
depend on the driving force, while the PSPs both on the driving force and on
the effective membrane time constant.

in these parameters, see Figures 6C,D, 7D). We then used an iter-
ative algorithm (detailed in Methods and illustrated in Figure 1)
to set the values of the conductances gsyn of the COBN in such a
way to obtain a COBN comparable to the CUBN with the given
synaptic efficacies Jsyn.

The PSCs and the Post-Synaptic Potentials (PSPs) of recur-
rent AMPA and GABA synapses in the comparable net-
works are shown in Figures 2A,B,D,E for three different cases:
current-based synapse, conductance-based synapse of a single
neuron without background synaptic activity and conductance-
based synapse of neurons embedded in the COBN network (that
thus received background synaptic activity). The post-synaptic
kinetics of conductance-based neurons is activity dependent.
The terms that mediate this dependency are: the driving force
(see Equation 6) and the increase of the total effective mem-
brane conductance (see Equation 8). Both these terms tend to
reduce the post-synaptic stimulus, but the PSCs are affected only
by the driving force, while the PSPs by both the driving force
and the effective membrane conductance. To understand how
these two terms shape the post-synaptic stimulus, it is impor-
tant to compare post-synaptic responses of conductance-based
neurons, with and without background activity. Firstly, we com-
pared PSCs and PSPs of the current-based synapse with those
of the conductance-based synapse in the absence of background

activity. In this condition the shape of excitatory PSCs and PSPs
was almost identical for the two models when considering AMPA
synapses (Figures 2A,D), while, for GABA synapses, differences
between the two models were visible (Figures 2B,E). This asym-
metry was due to the fact that the value of the average MP
(see figure caption) was much closer to the reversal potential of
GABA synapses than to the one of AMPA synapses (see Equation
12). Consequently the relative reduction of driving force during
the post-synaptic event was higher for GABA synapses, provok-
ing a stronger reduction of both PSCs and PSPs, with respect
to the AMPA synapses (Figures 2B,E). Moreover, the PSPs of
fast synapses (that is synapses with short τdecay) are less affected
by synaptic bombardment (Koch, 1999; Kuhn et al., 2004), so,
being the AMPA τdecay shorter than the GABA ones (see Table 3),
the asymmetry was even stronger when looking at the PSPs
(Figures 2D,E). Secondly, we considered the conductance-based
neurons embedded in the COBN and we found that in this case
both AMPA and GABA synapses displayed a reduction in the
amplitude and in the timescale, because the background network
activity affected the time course of the MP (thus of the driving
force) and increased the total effective membrane conductance.

As stated above, differences between the two synaptic mod-
els were expected to increase with input strength because the
background synaptic activity increases. We measured this effect
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FIGURE 3 | Effective parameters in conductance-based networks. Input
rate modulations of COBN-specific parameters. (A) Average effective
membrane time constant for conductance-based excitatory neurons (red
markers) and inhibitory neurons (blue markers) as a function of the
external input rate. Membrane time constants of the current-based
neurons are shown for reference as thick lines. Results show that
conductance-based membrane timescale is much faster than current-based
one and that it decreases with input strength. (B) Average effective AMPA

(red) and GABA (blue) conductances on excitatory neurons as a function of
the external input rate. Results show that the COBN goes from low- to
high-conductance states in the range of external stimuli considered. Same
color code as (A). Shaded areas represent standard deviation across
neurons [in (A) for inhibitory time constant and in (B) for AMPA
conductances they are not visible because too small]. Values are
computed from a simulation of 10.5 s per stimulus and are averaged over
time and neurons.

by injecting in the network constant inputs ranging from 1.5 to
6 (spikes/ms)/cell. Figures 2C,F show the amplitude of the dif-
ferent PCSs and PSPs as a function of the external input rate.
Note that the PSCs (Figure 2C) and PSPs (Figure 2F) in the
CUBN were activity-independent by construction, while, in the
COBN, both PSCs and PSPs decreased substantially when input
rate was increased; furthermore the relative reduction was the
strongest for the slowest PSPs of GABA synapses (as stated above).
Supplementary Table 1 reports average PSP amplitude values on
both inhibitory and excitatory neurons.

Figure 2 shows that, in the COBN, PSPs were not only smaller
but also faster than in the CUBN, consistently with previous
results (Kuhn et al., 2004; Meffin et al., 2004). This reflected the
decrease of the effective membrane time constant, τeff, of the
COBN, whose average value is shown in Figure 3A as a func-
tion of the input rate. When injecting stimuli with high input
rates, we found that for both neuron populations the effective
time constant, τeff, was in the 1–5 ms range, matching experimen-
tal observations relative to the high-conductance states (Destexhe
et al., 2003).

We then asked how the effective conductances associated with
the AMPA and GABA currents varied in the COBN as a func-
tion of the input rate. We found (Figure 3B) that the average
conductances grew linearly with input rate, as observed in single
neuron case (Kuhn et al., 2004). Crucially, for high input rates,
the relative conductances gAMPA/gleak and gGABA/gleak displayed
values respectively close to 1 and 3.5, in the range of those
found experimentally in high-conductance states (Destexhe et al.,
2003). This suggested that our input range was suited to investi-
gate the whole continuum going from low- to high-conductance
states.

AVERAGE SINGLE NEURON PROPERTIES
After having examined the properties of PSPs and conductances
in the two comparable networks, we began investigating how
these properties affect the dynamics of neural activity in the
networks. To gain some visual intuition about this, we plot-
ted (Figure 4) example traces of how variables reflecting single
neuron and network activity evolve over time for the two types
of network both in the low- and high-conductance state. The
overall spike rate of individual neurons was similar for the two
networks in both low- and high-conductance state (compare
Figures 4A with 4C and Figures 4B with 4D) suggesting that the
level of network firing was only mildly dependent on the synap-
tic model adopted. On the other hand, single neuron MP traces
were similar in the two networks in the low-conductance regime
(compare Figures 4E with 4G), but different in many aspects in
the high-conductance regime (compare Figures 4F with 4H). In
particular, in the high-conductance state, the COBN MPs had
rapid gamma-range variations which were correlated across neu-
rons and whose amplitude was more prominent than that of the
gamma oscillations in the CUBN MPs, suggesting that the oscil-
lation regime in the high-conductance state was tighter in the
COBN than in the CUBN. Finally, we considered the traces of
the LFP (which can potentially capture both supra- and sub-
threshold massed neural dynamics). LFP traces were relatively
similar across networks in the low-conductance state (Figure 4I).
However, there was an interesting qualitative difference in the LFP
traces in the high-conductance state: the COBN LFP had tran-
sient peaks of very high amplitude, which were not observed in
the CUBN. At fixed level of overall firing rate, the amplitude
of the LFP is modulated by the relative timing of the synaptic
events contributing to it. Therefore this observation suggests that
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FIGURE 4 | Example traces. Examples of 5 s (A–D) and 500 ms (E–J) of data
traces generated by the two networks when using constant stimuli. The left
column shows the activity in response to an input rate ν0 set to 1.5 spikes/ms
generating a low-conductance state. The right column shows the activity in
response to an input rate ν0 set to 5 spikes/ms generating a
high-conductance state. (A–D) Raster plot of 10 excitatory and 10 inhibitory

neurons taken from the COBN (A,B) and from the CUBN (C,D). The selected
neurons and the color code are the same across panels (A–D). (E–H)

Membrane potential of two neurons taken from the COBN (C,D) and from
the CUBN (G,H). The neurons displayed and the color code are the same
across the panels (E–H). (I,J) Simulated LFP obtained from the COBN (thin
line) and from the CUBN (thick line).

the COBN may undergo larger fluctuations in synchronization
than the CUBN. The visual inspection of example traces sug-
gests that, while some network properties such as overall firing
rate are consistently close in the two networks, other more subtle
aspects of network dynamics (such as the ability of the network
to transiently synchronize its activity) may not be entirely equiv-
alent in the two networks, especially in the high-conductance
state. In the following we will systematically quantify this
intuition.

An important feature of the models is the dynamics of the
average (over time and neurons) of the total synaptic input cur-
rent Itot (Equation 4). We observed in both networks (Figure 5A)
an increase of 〈Itot〉 with the input rate (Pearson correlation test,
p < 10−5). However, 〈Itot〉 was significantly higher for the CUBN
over all inspected inputs (t-test p << 10−10). The net input cur-
rent 〈Itot〉 was also less modulated by the input rate in the COBN:
the difference between the current (divided by the leak mem-
brane conductance) at maximum and minimum input was 1 mV
for COBN and 15 mV for CUBN. Even if the firing rate was very
similar in the two networks (see Figure 6A), average GABA cur-
rents were weaker in COBN, while average AMPA currents were
very similar (see Figure 5B). This discrepancy in the dynamics of
the net input current was due to the fact that individual PSCs of
GABA currents were more affected (i.e., reduced) by the change
from CUBN to COBN with respect to the AMPA PSCs, as pointed
out in Figure 2. Note also that in the case of external AMPA

current, the spike trains that activated the synapses (more pre-
cisely the function s(t) in Equations 5 and 6) are exactly the same
in the two models, while they were different for the other currents.

Consistent with the sample traces shown in Figures 4G,H, the
average MP of the CUBN decreased steeply when we increased
the input (−15 mV between maximum and minimum input,
Figure 5D). This is due to the fact that, in the CUBN, the net
input current strongly increased when increasing the external
inputs (Figure 5A). Conversely, and consistently with the sam-
ple traces in Figures 4E,F, the decrease in COBN MP was smaller
(−2 mV between maximum and minimum input, Figure 5D),
consistent with previous results (Meffin et al., 2004). It is
important to note that an increase of the input current led to an
increase the voltage fluctuations in both models. However in the
COBN, it caused also a concomitant increase of the membrane
conductance, which in turn decreased the membrane voltage fluc-
tuations. The dynamics of MP in COBN thus resulted from the
competition between these two effects, which overall produced
a suppression of both fluctuations and mean of the MP (Kuhn
et al., 2004; Meffin et al., 2004; Richardson, 2004). We found
that, for external inputs higher than 2 (spikes/ms)/cell, there was
a linear relation (R2 = 0.98, p << 10−10) between the ratio of
the average MP changes induced by the external inputs in the
two networks and the effective membrane time constant of the
COBN (see Figure 5E). This result confirmed and extended what
found for a single neuron model in a high-conductance state in
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FIGURE 5 | Membrane potential and synaptic input currents as a

function of the external input rate. Effects of external input rate modulation
on the net synaptic input currents and the membrane potential of excitatory
neurons. The synaptic currents in panels (A–C) are divided by the leak
membrane conductance to obtain units of mV. Results are qualitatively very
similar when considering inhibitory neurons [see “MP” and “σtime (MP)” in
Supplementary Table 1]. We studied separately the average over time and
the standard deviation over time of the variables by using a simulation of
10.5 s per stimulus. Shaded areas correspond to standard deviation across
neurons. (A) Average total synaptic input current in CUBN (thick line) and
COBN (thin line with markers) as a function of the external input rate. (B)

Different input currents in the two networks. Blue/red/green lines represent
respectively the average GABA/recurrent AMPA/external AMPA currents in
CUBN (thick lines) and in COBN (thin lines with markers). (C) Average (over
neurons) standard deviation in time of the total input current in the two
networks as a function of the input rate. (D) Average membrane potential in
the two networks as a function of the external input rate. For reference, the

panel shows also threshold potential (cyan), reset potential (green) and leak
membrane potential (black). (E) Ratio of the decrease of the average MP
observed in the two networks when increasing the external inputs as a
function of the effective membrane time constant (see Figure 3A). The
decrease in MP is computed for external inputs greater than 2
(spikes/ms)/cell with respect to the average MP obtained with an external
input of 2 (spikes/ms)/cell. (F) Average (across neurons) standard deviation
over time of the membrane potential in the two networks as a function of the
input rate. Shaded area for COBN is not visible because it is too small.
Results show that for the COBN both average total input current and
membrane potential are almost constant across stimuli, while in the CUBN
both quantities change dramatically for different input strengths.
Cross-neuron variability of both variables is much higher in the CUBN. In both
networks net input current fluctuations become larger when input rate is
increased. This is reflected in larger fluctuations in the membrane potential in
the CUBN, but not in the COBN. In panels (A,B,D,E) the average values of
MP and input currents are computed over time and neurons.

Richardson (2004). Shaded areas in Figures 5A,D indicate stan-
dard deviation across neurons, and show that the cross-neuron
variability in both net input currents and MP was much larger in
the CUBN than in the COBN, suggesting a more coherent activity
for the latter (see subsection “Correlations among neurons”).

When we looked at the variability over time of the input cur-
rents, we found that it grew almost linearly and with very similar
values for both COBN and CUBN (Figure 5C), while the increase
of the variability over time of the MP was much more pronounced

in the CUBN than in the COBN (Figure 5F). This result is still
consistent with the suppression of voltage fluctuations typical of
conductance-based model with respect to the current-based one.

In sum, our findings so far confirmed that dynamics previ-
ously observed in simpler conditions were valid also over a more
extended range of conditions, proved that the range of input
rates considered encompassed both low- and high-conductance
regimes, and highlighted some of the differences between the
dynamics of COBNs and CUBNs.
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FIGURE 6 | Firing rates comparison. (A) Comparison between average
firing rate (FR) of inhibitory (blue) and excitatory neurons (red) for COBN (thin
lines with markers) and CUBN (thick lines) as a function of the external input
rate. (B) Average Coefficient of Variation of the Inter-Spike Interval in the two
networks. Same color code as (A). (C) Relative difference between the
average FR of excitatory neurons in COBN and CUBN computed for different
AMPA and GABA reversal potentials. The relative difference is averaged over
the whole stimuli set ranging from 1.5 to 6 (spikes/ms)/cell. Green arrow

indicates reference value of reversal potentials that were used in all the
analysis (see Table 2). (D) Same as (C) for inhibitory neurons. In (A,C,D) the
results are obtained from 50 trials of 4.5 s per stimulus, while for the panel
(B) we used a single trial of 100.5 s per stimulus (see Methods). Results
show that the two models have similar firing rates over the whole input
range. This agreement is stable over a wide range of network parameters.
On the other hand, the CV of the ISI increases with the input rate in the
CUBN, while it does not in the COBN.

FIRING RATE MODULATIONS
Having established a procedure that computes comparable CUBN
and COBN parameters, and having investigated the synaptic
responses in these comparable networks, we next compared the
average firing rates of single neurons in the two networks, and
studied how they are modulated by the strength of the input to
the networks.

We considered individually the excitatory and inhibitory
neural populations since they fired at very different rates
(Brunel and Wang, 2003). Figure 6A shows the way inhibitory
and excitatory firing rates increase with the input rate in
the two networks. Consistently with the qualitatively intu-
ition gained form the visual inspection of the raster plots in
Figures 4A–D, we found that the discrepancies between COBN
and CUBN firing rates were extremely small (average differ-
ence over external inputs of 10%), though significant (t-test
p < 0.05 except for excitatory neurons with external input rates
greater than 4 spikes/ms). This shows that the algorithm used
to set comparable networks produces networks whose neu-
rons have similar average firing rates with a similar depen-
dence on the input strength, both in low- and high-conductance
states.

To verify if the agreement of the firing rate in the two compa-
rable networks was robustly achieved over a wide range of param-
eters, we computed the COBN synaptic conductances for a set of
20 different COBN networks (obtained by using the setting proce-
dure illustrated in Figure 1 with 20 different combinations of the
synaptic reversal potentials, VAMPA, ranging from 0 to −20 mV,
and VGABA, ranging from −75 to −90 mV). We then computed
the average firing rates for each resulting network. We found that
even when VAMPA was −20 mV and VGABA −75 mV, and hence
the discrepancies between the two models were stronger, the exci-
tatory neurons firing rate differed between COBN and CUBN at
most by 25%, but usually the difference was much smaller, on the
order of 10% (Figure 6C). Note that, given the very low firing rate
of excitatory neurons, the relative difference corresponded always
to small values of absolute difference (<0.4 spikes/ms). The dif-
ference in the firing rate of the inhibitory neurons between COBN
and CUBN were of the order of 10% for all reversal potentials
combinations inspected (Figure 6D).

These results show that our procedure determines COBNs
with firing rates similar to the compared CUBN for a wide range
of parameters. In current-based neurons the firing rate is mod-
ulated only by the increase in the MP fluctuations (Figure 5F),
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FIGURE 7 | Spectral dynamics of LFP and firing rate. Input rate-dependent
modulations of the LFP, studied focusing on position and amplitude of the
gamma frequency peak. (A) LFP power spectra in COBN as a function of the
external input rate. Data are averaged over trials. (B) Same as (A) for CUBN.
(C) Difference in the position of the gamma band [(30–100 Hz)] peak of the
power between the two networks. The analysis was performed for the LFP
signal (black), and for the total firing rate of excitatory (red) and inhibitory
neurons (blue). (D) Difference in the position of the LFP gamma peak
averaged over the constant external inputs used (ranging from 1.5 to
6 (spikes/ms)/cell with steps of 0.5 (spikes/ms)/cell) as a function of AMPA
and GABA reversal potentials. Green arrow indicates reference values (see
Table 2). (E) Modulation of the LFP gamma peak power for the two
networks. Power modulation is defined as the difference of the power of a
frequency at a given input signal and its power at the input signal of

1.5 (spikes/ms)/cell, normalized to the latter power. (F) Average (over trials)
amplitude of the fluctuations of the sum of the currents entering the
excitatory neurons for the two networks as a function of the input rate. The
currents are divided by the leak membrane conductance to obtain units of
mV. Blue, red, and green lines represent GABA, recurrent AMPA and external
AMPA respectively. These are the currents we used to compute LFP. Note
that the external AMPA currents are almost identical between the two
networks because their synapses are activated by the same spike trains in
COBN and CUBN (see Methods). Results are computed by using 50 trials of
4.5 s per stimulus and show that (i) the gamma peak position across stimuli is
similar for the two networks and this agreement is robust to change in the
network parameters, (ii) the amplitude of the peak power is more modulated
in the COBN because of the stronger fluctuations of the synaptic currents at
the network level.

while in conductance-based neurons, the firing rate activity is the
result of two different competing effects: the shortening of the
timescales (Figure 3A) and the increase of the membrane fluctua-
tions (Figure 5F), that tend to facilitate the firing activity, and the
increase of the effective membrane conductance, that acts in the
opposite direction (Figure 3B) (Kuhn et al., 2004; Meffin et al.,
2004; Richardson, 2004). It is therefore quite interesting that these
underlying different dynamics compensate to produce, in the two
corresponding network models, very similar firing rates over a
wide range of inputs and parameters.

We then considered how the coefficient of variation (CV) of
the inter-spike interval (ISI) changed with the strength of the
input rate. We found (Figure 6B) that the two networks showed
a very different dependence of CV on input rates. The ISI CV of
neurons of the COBN was close to one for all considered input
rates (indicating near-Poisson firing statistics). In contrast, in
CUBN, the ISI CV was higher than 1 (i.e., the firing was more
variable than that of a Poisson process) and increased with the
input rate, reaching values up to 1.33 and 1.16 for inhibitory neu-
rons and excitatory neurons respectively, confirming results of
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FIGURE 8 | Cross-correlation between AMPA and GABA inputs.

Cross-correlation between the time course of recurrent AMPA and GABA
currents entering excitatory neuron. (A) Average peak value of
cross-correlation between AMPA and GABA input currents into excitatory
neurons (see Methods for details) for CUBN (thick line) and COBN (thin line
with markers). Note that, AMPA and GABA currents having opposite sign, the
correlation is negative. Shaded areas correspond to standard deviation across

neurons. (B) Cross correlation average peak position. This measure quantify
how much AMPA inputs lags behind GABA ones. Same color code as (A).
Results are computed by using a simulation of 10.5 s per stimulus and show
that (i) correlation between recurrent AMPA and GABA input currents is
stronger in the COBN than in the CUBN, (ii) input correlation decreases
monotonously with input rate in COBN, while it does not in CUBN, (iii) GABA
inputs lags behind AMPA inputs by few milliseconds in both networks.

(Meffin et al., 2004). The difference between the CVs of neurons
in COBN and CUBN was highly significant (t-test, p < 10−7) for
all input rates above 1.5 spikes/ms. The larger ISI CV of neurons
in COBN was consistent with our finding of larger MP fluctua-
tions in time in the COBN (Figure 5F). ISI CV values were within
the experimentally observed range 0.5–1.5 (Maimon and Assad,
2009) for both networks, but only the COBN reproduced the
experimental result that the ISI CV of cortical neurons is not
affected by the firing rate (Maimon and Assad, 2009).

The discrepancy between the similarity of the firing rates and
the dissimilarity of the ISI CVs suggests that the first-order statis-
tics of the two networks were close to match, but the second order
statistics differed significantly.

SPECTRAL MODULATIONS IN SIMULATED LOCAL FIELD POTENTIALS
We investigated then the differences in the spectral modulations
of network activity, as measured by the simulated LFP and by
the total excitatory and inhibitory firing rate generated by the
two networks. LFP models can offer interesting insights into the
dynamics of cortical networks (Einevoll et al., 2013) because they
offer an insight in both supra- and sub-threshold dynamics that
can be compared with experimental recordings; however the dif-
ferences in LFPs computed from networks with either current-
or conductance-based synapses have not been investigated yet.
We expected significant differences to arise because, as detailed
above, the sub-threshold dynamics of COBNs and CUBNs were
quite different.

The dependence of LFP spectrum on the input rate
(Figures 7A,B) shows that, consistent with previous results
(Brunel and Wang, 2003; Mazzoni et al., 2008, 2011), both
networks develops gamma range (30–100 Hz) oscillations that
become stronger and faster as the input is increased. Figures 4I,J

illustrate this effect in the time domain. Figures 7A,B show the
LFP input rate-driven modulation in COBN and CUBN. The
dependence of response to variations in input rate in the two
networks was qualitatively similar. There was no modulation for
frequencies below 5 Hz (Pearson correlation test, p > 0.1); there
was strong modulation in the gamma band and above (Pearson
correlation test, p < 0.01). The difference between the position
of the COBN and CUBN gamma peak was always below 5 Hz
(Figure 7C). For comparison, we also computed the power spec-
trum of the total firing rate of excitatory or inhibitory neurons
(Figure 7C). The spectral peaks of COBN and CUBN were very
close also in this case.

We tested the robustness of the agreement between spectral
peaks of CUBNs and COBNs by measuring the average (over
stimuli) gamma-peak distance between the two networks for dif-
ferent AMPA and GABA reversal potentials (similarly to what was
done in the analysis represented in Figures 6C,D), and we found
that the two networks always displayed almost identical positions
of the gamma frequency peaks (Figure 7D).

Note that we did not build the comparable networks to obtain
robustly similar firing rates and similar dominant frequencies in
the gamma band, as we used other constraints to select compa-
rable parameters. The equivalence and robustness of rates and
gamma peaks arose from network dynamics, and, in particular,
the robustness corroborates the notion that our procedure indeed
produces a meaningful comparison. We also tested other kinds of
procedures to set the COBN synaptic conductances, gsyn, given
the CUBN synaptic efficacies, Jsyn. In particular we define gsyn

such in a way to maximize the similarity of PSCs (in one case)
or PSPs (in another case) between the two networks at the sin-
gle neuron level, to compensate for the post-synaptic stimulus
reduction that is peculiar of the COBN with respect to the CUBN
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FIGURE 9 | Synaptic input and membrane potential correlation across

neurons. (A) Average cross-neuron correlation coefficient between the time
course of recurrent AMPA currents (red lines) and GABA currents (blue lines)
on excitatory neurons, for CUBN (thick lines) and COBN (thin line with
markers), as a function of the external input rate. Similar results hold for
inhibitory neurons (see “Rec. AMPA-Rec. AMPA” and “GABA-GABA” in
Supplementary Table 1). (B) Average correlation coefficient between the

membrane potential (MP) time courses of pairs of excitatory neurons as a
function of the external input rate. While in the COBN the MP correlation
increases with input rate, the opposite occurs in the CUBN. Shaded areas
correspond to standard deviation across neuron pairs. Results are computed
by using a simulation of 10.5 s per stimulus and show that in COBN the
cross-neuron correlations between membrane potentials and between input
currents are stronger than in CUBN.

(Figure 2). When using these procedures the results were both
less robust to change in the synaptic reversal potentials and less
similar between CUBN and COBN (data not shown).

On the other hand, differences between the LFP spectra of the
two networks are also apparent in Figures 7A,B. First, the COBN
gamma peak was larger and was modulated by the input rate in
a much stronger way than the CUBN gamma peak (Figure 7E).
Given the fact that the net input current in the COBN was smaller
(Figure 5A) and also fluctuated slightly less than in CUBN
(Figure 5C), at first we found this result surprising. However, the
phenomenon can be understood after measuring the AMPA and
GABA fluctuations. As reported in Figure 7F, the size of recur-
rent AMPA and GABA current fluctuations was larger in COBN
than in CUBN, and the difference increased with the input rate.
Indeed, while the simultaneous increases of AMPA and GABA
fluctuations compensated each other in the COBN net input cur-
rent (Figures 5A,B), the contributions of these two currents to the
computed LFP have the same sign (see Methods), and this led to a
stronger spectral peak in the COBN. Second, the CUBN displayed
a broad LFP spectral peak in the high gamma region (>60 Hz),
and small fluctuations in the low gamma region (<60 Hz), while,
in the COBN, for inputs greater than 3 (spikes/ms)/cell there was
a sharp peak in the high gamma band and also a pronounced
plateau in the low gamma. Third, since the power associated with
this plateau was modulated by the input rate, for the COBN all
frequencies above 20 Hz were significantly modulated, while in
the CUBN significant modulation occurred only for frequencies
above 60 Hz. As we will see in the next section, the narrower
gamma peak indicates a stronger synchronization in the COBN
than in the CUBN, while the stronger modulation in the gamma
power makes the amount of information conveyed by the COBN
larger than in the CUBN (see “Information about external inputs”
subsection).

For both networks, the spectra of the total firing rate were
qualitatively very similar to the spectra of the LFP for all input
rates considered (data not shown). Therefore all the aforemen-
tioned differences were present also when comparing the COBN
and CUBN total firing rate power spectra.

CORRELATION BETWEEN AMPA AND GABA CURRENTS
The correlation between AMPA and GABA synaptic currents is
known to play a very important role in determining the network
dynamics and in particular the spike train variability (Isaacson
and Scanziani, 2011). A negative correlation of AMPA and GABA
input currents leads to sparse and uncorrelated firing events,
while positive values lead to strong bursty synchronized events
(Renart et al., 2010). We thus compared the cross correlation
between recurrent AMPA and GABA currents impinging on sin-
gle neurons in COBN and CUBN. We found that the correlation
between GABA and AMPA inputs was stronger (i.e., more neg-
ative) in the COBN for all external input rates (Figure 8A).
Moreover, in both networks, AMPA currents led GABA cur-
rents with lags shorter than 5 ms, of the order of those observed
in (Okun and Lampl, 2008). However, for all external input
rates, AMPA-GABA lags were smaller in the COBN (Figure 8B).
Although Figure 8 shows results only for excitatory neurons,
similar results held for inhibitory neurons (Supplementary Figure
2). Finally, these results held also when using as external noise
a white noise process instead of an Ornstein-Uhlenbeck process
(see Supplementary Figure 4C).

CROSS-NEURON CORRELATIONS
The fact that the cross-neuron variability in average cur-
rent inputs and MPs was much smaller (Figures 5A,D) and
high gamma frequency peaks were narrower in the COBN
(Figures 7A,B) suggested that the activity was more coherent
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FIGURE 10 | Spike train correlation. Spike train pairwise coefficient of
correlation between neurons belonging to the same (A,B) or to different (C)

populations. (A) Average spike train correlation between pairs of excitatory
neurons as a function of the external input rate for CUBN (thick line) and
COBN (thin line with markers). (B) Same as (A) for correlation between pairs
of inhibitory neurons. (C) Same as (A) for correlations between pairs
composed by an inhibitory and an excitatory neuron. (D) Distribution of the

correlation coefficient across inhibitory neurons pairs for an input of 1.5
(spikes/ms)/cell for the two networks. (E) Same as (D) for an input of
6 (spikes/ms)/cell. Note that panels (A–C) do not have error bars for clarity,
but the range of correlation values is similar to the one displayed in panels
(D,E). Results are computed by using a simulation of 100.5 s per stimulus and
show that firing rate correlation is very low for both networks, and it
increases with input rate in the COBN, but not in the CUBN.

in the COBN than in the CUBN. This view was further cor-
roborated by the finding that the sum of the recurrent cur-
rents was larger in the COBN (Figure 7F) and suggested that,
in this network, input currents may be more correlated across
different neurons.

We verified this hypothesis by measuring the average Pearson
correlation coefficient between the time evolution of the recurrent
AMPA and of the GABA input currents over neuron pairs (see
Methods), Figure 9A shows that for both AMPA and GABA cur-
rents the average cross-neuron correlation coefficient was indeed
significantly stronger (t-test, p << 10−10) in the COBN for all
external input rates. Figure 9A shows also that, in the COBN,
the cross-neuron correlation grew with the external input rate
for both currents (Pearson correlation test, p < 10−5). In the
CUBN the AMPA currents were linearly correlated to the input
rate (Pearson correlation test, p < 0.05), while GABA currents
varied with the input rate in a non-monotonic way. However, if
we used white noise, instead of the Ornstein-Uhlenbeck noise (see
Methods), the cross-neuron current correlation was again higher
in the COBN (t-test, p << 10−10), but grew monotonously with
the input rate for both networks (Pearson correlation test, p <

10−5), as shown in Supplementary Figure 4A. The increase in

the difference between the cross-neuron current correlation in
COBN and CUBN with the input rate (Figure 9A) led to the
increase of the difference in AMPA and GABA total fluctuations
in the two networks, shown in Figure 7F. To fully appreciate
the key role played by correlations note that, if the correla-
tions were similar in COBN and CUBN, fluctuations would be
expected to be larger in CUBN since the firing rate was similar
for the two networks (Figure 6A) and the single PSC amplitude
was larger for the CUBN (Figure 2). Cross-neuron correlation
of the input currents should be reflected in cross-neuron MP
correlation. The previously shown sample traces of the MP of
neuron pairs (Figures 4E,H) suggested that the correlation was
indeed similar for COBN and CUBN in the low-conductance
state, but much stronger for the COBN in the high-conductance
state. We thus analyzed the average correlation of the MP time
courses of pairs of excitatory neurons (Figure 9B). Over the
whole external input range considered, MP correlation in the
COBN was significantly stronger than in the CUBN (t-test, p <<

10−10). Cross-neuron MP correlation in the COBN increased
with external input rate (Pearson correlation test, p < 10−8),
while it was only mildly affected in the CUBN (Pearson corre-
lation test, p < 0.02). These results held for all considered neuron

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 12 | 103

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Cavallari et al. Current- vs conductance-based LIF networks

FIGURE 11 | Spectral information relative to the input rate. Information
carried by LFP power spectrum (left column) and population firing rates
power spectra (right column) about constant inputs ranging from 1.5 to
3 (spikes/ms)/cell with steps of 0.1 (spikes/ms)/cell. Data are obtained by
using 50 trials of 4.5 s per stimulus. (A) Average power spectrum of LFP over
the entire stimulus range for the COBN and the CUBN (thin line with markers
and tick line respectively). (B) Average power spectrum of the total firing rate

of excitatory and inhibitory neurons (red and blue respectively) for the two
networks [same line code as (A)]. (C) Spectral information carried by LFP
about the input rate (see Methods for details). Same color code as (A). (D)

Spectral information carried by total excitatory and inhibitory firing rate about
the input rate. Same color code as (B). Results show that the COBN carries
more information about constant stimuli for all considered frequencies, both
in LFP and in firing rates.

pairs (Supplementary Figure 3) and also when considering white
noise, instead of Ornstein-Uhlenbeck noise (Supplementary
Figure 4B).

We finally computed the cross-neuron spike train correlation.
We expected it to be related to the MP correlation displayed in
Figure 9B, even if, since both networks were in a fluctuation-
driven state, the spike train correlation should be close to zero
(Brunel and Wang, 2003; Renart et al., 2010). We found indeed
a very low average spike train correlation (Figures 10A–C) such
that, for low input rates, a significant fraction of pairs displayed
negative correlation (Figure 10D). However, in the CUBN, the
spike train correlation was weaker and less sensitive to input
rate changes than in the COBN (see Figures 10A–C and com-
pare Figures 10D,E). These results did not change if we injected
white noise, instead of Ornstein-Uhlenbeck noise, in the network
(Supplementary Figure 4D).

INFORMATION ABOUT EXTERNAL INPUTS
In the previous subsections we investigated how the average
level of spike rate, LFP and spike train correlation depends on
the external input to the network, finding a more pronounced
stimulus modulation of LFP gamma power and of cross-neural
correlation in COBN. To quantify these stimulus modulations of
network activity, we computed the mutual information between
the stimuli to the network and various aspects of network activity
(see Methods for details).

We first measured the information carried by the average
firing rate, both of excitatory and inhibitory neurons, in the
two networks by using constant stimuli in the range 1.5–3
(spikes/ms)/cell with steps of 0.1 (spikes/ms)/cell. We found that,
consistently with the results shown in Figure 6A, the information
carried by the average firing rate had the same value of 2.3 bits
for both neural populations in both network models. Given that
the modulation of spike train correlation with external input is
greater in the COBN than in the CUBN, we expected that also the
mutual information between the spike train correlation and the
input rate was greater in the COBN than in the CUBN. Indeed
this was the case: information in spike train correlation was much
larger in the COBN (1.6 and 2.0 bits for excitatory and inhibitory
neurons respectively) than in the CUBN (1.4 and 0.9 bits for
excitatory and inhibitory neurons respectively).

We measured then the information content of the LFP power
spectrum. The LFP power spectrum averaged over all the pre-
sented constant stimuli was higher for the COBN than for the
CUBN for all frequencies above 15 Hz (Figure 11A). We found
that, at all frequencies above 20 Hz, the COBN LFP spectrum car-
ried more information about input rate than the CUBN LFP spec-
trum (Figure 11C). Most notably, the peak information increased
by about 20%, and the (20–45) Hz frequency range was informa-
tive in the COBN, but not in the CUBN. We repeated the analysis
considering the power spectra of the total inhibitory and excita-
tory firing rate in the two networks. Excitatory neurons in the
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FIGURE 12 | Spectral information relative to periodic low frequency

inputs. Dynamics of the COBN and CUBN when injected with slowly
oscillating inputs. The input signals are sine curves with amplitude A =
0.6 spikes/ms and frequency f, from 2 to 16 Hz, superimposed to a baseline
of ν0 = 1.5 spikes/ms in the left column and ν0 = 5 spikes/ms in the right
column. The first baseline value produces a low-conductance state, while the
second originates a high-conductance state. Data are obtained from 50 trials
of 10.5 s per stimulus. (A,B) LFP power spectrum in the COBN as a function
of the external signal frequency. The power spectrum is averaged over trials.

(B) Same color code as in (A). (C,D) Same as (A,B) for the CUBN. The inset
in (B) shows a detail of the panel in the frequency range where beats are
displayed. (E,F) Spectral information carried by the LFP about the frequency
of the stimulus presented (see Methods for details) for COBN (blue line) and
CUBN (red line). Results show that the information due to the entrainment of
the LFP to the slow input oscillations is almost the same in COBN and
CUBN. The only difference is due to the beats that appear in the
high-conductance state of the COBN [inset in (B)], which result in a peak of
information around 100 Hz (F).

COBN had stronger power than excitatory neurons in the CUBN
for all frequencies (Figure 11B, note that here the y-scale is lin-
ear, while in 11A is logarithmic) and showed a secondary peak at
about 20 Hz. For inhibitory neurons, instead, the COBN power
spectrum was higher only for frequencies above 15 Hz, as in the
LFP.

So far we have investigated only the information carried about
the strength of a time-independent input to the network. In a pre-
vious work on CUBN (Mazzoni et al., 2008) it has been shown
that when the input to the CUBN is dominated by low fre-
quency fluctuation, the network oscillations (captured by both
LFP and massed firing rate measures) form two largely indepen-
dent frequency information channels. A gamma-range informa-
tion channel is generated by recurrent interactions of inhibitory
and excitatory neurons and conveys information about the mean
input rate. A low-frequency information channel is generated by
entrainment of the low frequency network activity to the slow
fluctuations of the input stimulus and carries information about
the stimulus time course on such slow time scales. We wanted to
test how these two information channels, developed when pre-
senting the network with time-varying stimuli, depended on the
choice of the synaptic model.

To investigate this point, we injected into the two networks
periodic stimuli with fixed amplitude and frequency varying
between 2 and 16 Hz. These input frequencies below 16 Hz were
taken to represent the slow naturalistic fluctuations present in
natural input signals (Luo and Poeppel, 2007; Chandrasekaran
et al., 2010; Gross et al., 2013). Since we wanted to investigate
potential differences between models separately in low- and high-
conductance states, we generated two kinds of input signals: a
low-input regime (corresponding to a low-conductance state)
and a high-input regime (corresponding to a high-conductance
state). Thus the periodic input was made of a sinusoidal signal at
a given frequency superimposed to a constant baseline that was set
to a low value (ν0 = 1.5 spikes/ms) to induce a low-conductance
state and to a high value (ν0 = 5 spikes/ms) to induce a high-
conductance state. The amplitude of the sinusoidal component
of the input was 0.6 spikes/ms across all simulations. Results are
reported in Figure 12.

We examined first the low-conductance state (left column of
Figure 12). We considered the LFP power spectra of the two net-
works in response to periodic stimuli of different frequencies
(Figures 12A,C). With respect to the previously examined con-
stant input case (Figures 7A,B), the LFP power spectrum of both
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FIGURE 13 | Entrainment of LFP to input oscillations. Entrainment of the
network oscillations to the frequencies of the periodic input in COBN and
CUBN. The input signals are periodic curves as in Figure 12, but with
frequency f from 2 to 150 Hz. (A,B) Average (over trials) coherence between
the phase of the input signal, with frequency f, and the phase of the LFP
bandpassed in the corresponding frequency range (f − 1, f + 1) Hz (see
Methods for details). Note that the phase coherence lies in the interval (0, 1).
Data are obtained from 50 trials of 10.5 s per stimulus; shaded areas

represent standard deviations across trials. Blue lines display results from
COBN and red lines from CUBN. (C,D) LFP power spectrum in the COBN as
a function of some selected external signal frequencies. The power spectrum
is averaged over 50 trials. (D) Same color code as in (C). (E,F) Same as (C,D)

for the CUBN. In the low-conductance state both networks entrain very well
to the external stimulus, whereas in the high-conductance regime the COBN
entrains less well than the CUBN in the middle and in the highest frequency
regimes.

networks had an additional high narrow peak exactly at the same
frequency of the periodic input. This peak signaled the entrain-
ment of the network to the periodic input (Mazzoni et al., 2008).
The ability of the two networks to entrain their dynamics to the
low-frequency stimuli suggested that the power of the LFP at such
low frequencies could discriminate which of these periodic inputs
was being presented. We tested this suggestion quantitatively by
using mutual information, and we found that the slow LFP fre-
quencies conveyed indeed information about the stimuli, approx-
imately in the same amount in both networks (Figure 12E). Note
that, in the low-conductance state, there was also a slight modu-
lation with the input frequencies of the power in the gamma band
(40–70) Hz, with slightly lower gamma power for stimuli of faster
frequency (Figures 12A,C). These modulations of gamma-range
power resulted in moderate amounts of stimulus information in
the same range, (40–70) Hz, (Figure 12E), and were likely due to
the time taken by the networks to develop gamma oscillations fol-
lowing the very low input values occurring at the trough of the
sinusoidal input.

We then investigated the high-conductance state (right column
of Figure 12). Figures 12B,D shows that entrainment of both
networks to low frequencies (signaled by the high narrow peak
of LFP spectrum at the same frequency as the input) occurred

strongly in the high-conductance state. The information about
which of these periodic inputs was being presented, carried by the
low frequency LFP power, was still identical in the two networks
(Figure 12F). Moreover, and consistently with the above results
obtained with constant inputs (Figures 7A,B), the gamma peak in
the high-conductance states was much stronger and narrower in
the COBN than in the CUBN. Probably because of this, the COBN
(but not the CUBN) developed beats of the low-frequency peaks
into the frequency range around 100 Hz (inset Figure 12B). Since
the low-frequency peak varied with the input, these beats led to an
amount of information in the COBN LFP power around 100 Hz.
The moderate gamma-range information peak, observed in the
(40–70) Hz range for the low-conductance state (Figure 12E),
was absent in both networks for the high-conductance regime
(Figure 12F), because the input rate was always high at any time
point. Thus gamma oscillations in the range (80–94) Hz were
always strong, with relatively small fluctuations over time, leading
to not discernable modulation across the set of input frequencies
considered (Figures 12B,D).

We then investigated the ability of the network to entrain
to a wider range of input frequencies, in particular including
frequencies as fast as or faster than the gamma oscillations intrin-
sically generated by the network. We did so by testing the network
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FIGURE 14 | Spectral information relative to naturalistic stimuli.

Information carried by LFP power spectrum (left column) and population
firing rates power spectra (right column) about intervals of naturalistic
stimulation based on LGN recordings in monkeys watching a movie.
Recording time (80 s) is divided into 40 intervals, considered as different
stimuli and the information is computed over 50 trials (see Methods for
details). (A) Average power spectrum of LFP over the entire naturalistic
input for COBN and CUBN (thin line with markers and thick line
respectively). (B) Average power spectrum for the total firing rate of
excitatory and inhibitory neurons (red and blue respectively) for the two
networks. Same line code as in (A). (C) Spectral information carried by

LFP (see Methods for details). Same color code as in (A). In the inset, it is
shown the difference between COBN and CUBN information in the low
frequency band. (D) Spectral information carried by total excitatory and
inhibitory firing rates. Same color code as (B). In the inset, it is shown the
difference between COBN and CUBN information in the low frequency
band. Results show that, also considering complex stimuli, the information
relative to the mean value of the input [that here is the information carried
by the frequencies above the delta band, (1–4) Hz] is higher and carried on
a broader range of frequencies in the COBN, both in LFP and in firing
rates. The information conveyed by delta band frequencies is instead
almost identical in the two networks.

with periodic stimuli over the 2–150 Hz range of input frequen-
cies (Figure 13). Again, to investigate differences between models
separately in low- and high-conductance regimes, we generated
two kinds of input signals that only differed for the value of the
baseline, as described above. We quantified entrainment by com-
puting the coherence between the phase of the input signal and
the phase of the LFP bandpassed in a narrow band (with 2 Hz
bandwidth) centered at the frequency of the periodic input. In the
low-conductance state both networks were strongly entrained to
the input over the whole range of frequencies examined, as indi-
cated by the high phase coherence (Figure 13A). However, when
injecting the same input frequencies with the highest baseline
(i.e., making the network operate in a high-conductance state),
the behavior of the two networks was very different. The CUBN
could still entrain extremely well over the entire input frequency
range tested. The COBN entrained extremely well to inputs in
the (80–94) Hz input frequency range, but less well to inputs
with frequency between 16 Hz and 80 Hz, and above 94 Hz. The
reason for the presence in the COBN of frequency regions with
lower phase coherence (and thus less accurate entrainment to the

periodic input) may be because, in the high-conductance state,
the COBN had stronger internally generated recurrent oscilla-
tions (of higher power than the CUBN, see Figures 13D,F) whose
dynamics likely did not interfere constructively with the dynamics
of the entrainment to the input. This resulted in peaks of less high
amplitude in the COBN LFP spectrum at the exact frequency of
the periodic input (Figures 13D,F). It is interesting to note that
the COBN still entrained very well in the (80–94) Hz input fre-
quency range (Figure 13B), despite this was also the frequency
range exhibiting the strongest recurrent oscillations. Indeed, this
range coincided with the peak amplitude of the internally gener-
ated gamma oscillations (Figure 12B). The ability of the network
to entrain well in this gamma range can be understood by observ-
ing that this was also the range more strongly modulated by
the input rate (Figure 7A). Thus, due to their particularly strong
responsiveness to the input, external and internal oscillation in
this range could interfere constructively, resulting in large peaks
of the network LFP at the input frequency (Figure 13D).

To study the differences in the responses of the two networks
to stimuli more complex and more biologically relevant than
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periodic functions, we finally compared the information carried
by the LFP and firing rate spectra in COBN and CUBN when
using the naturalistic time-varying inputs. We injected then in
the networks naturalistic stimuli based on MUA recordings from
the LGN of an anaesthetized macaque presented with a commer-
cial 80 s color movie clip. The average LFP and total firing rate
power spectra for both networks with this set of stimuli are dis-
played respectively in Figures 14A and B. All these spectra had
higher power at low frequencies (as the input signal had), and the
gamma peaks were low because the average stimulus rates were
in the range 1.2–2 spikes/ms. We computed information about
which part of the time-varying naturalistic signal was being pre-
sented (see Methods for details). We found that both LFP and
firing rates spectra carried more information in the COBN than
in the CUBN, for all frequencies (Figures 14C,D). The difference
in spectral information between COBN and CUBN for frequen-
cies below 5 Hz was almost zero for the LFP and very low for the
firing rates (see insets of Figures 14C,D).

Our findings therefore confirm that the two independent
information channels (one in the low frequencies due to the
entrainment to the input, and one in the gamma band due to
internally generated oscillations), which were previously reported
for the CUBN (Mazzoni et al., 2008), also exist in the COBN.
Moreover, our results show that the information about the input
conveyed by low frequencies, both in low- and high-conductance
states, does not depend on the details of the synaptic model
adopted, while the information encoded in the gamma range is
larger in the COBN than in the CUBN.

DISCUSSION
Here we compared in detail the neural population dynamics of
LIF networks with either current-based or conductance-based
neuron models. The comparison of network dynamics was made
on networks with all shared parameters set to an equal com-
mon value, and with model-specific synaptic parameters set by a
novel recursive procedure that makes COBN and CUBN directly
comparable. Our main result was that, although average firing
rates and peak frequency of gamma oscillations in such compa-
rable networks were very similar over a wide range of parameters,
other aspects of neural population dynamics (such as shape of
oscillation spectra or cross-neuron correlation) were significantly
different between CUBN and COBN. In particular, oscillation
spectra, gamma synchronization and cross-neuron correlation
were more markedly modulated by the external input in COBN
than in CUBN. The significance of these findings, and their
relationship with both theoretical and experimental literature, is
discussed in the following.

ESTABLISHING COMPARABLE NETWORKS
The first contribution of the work presented here was to provide
a new recursive algorithm to determine the COBN conductance
values that correspond to a given set of CUBN synaptic effi-
cacies in networks that have identical values for all the shared
parameters. We found that this procedure was able to build
two networks displaying relatively small differences, both in the
average firing rates and in the gamma frequency peak position,
for an input range sufficiently large to encompass both low- and

high-conductance states (Destexhe et al., 2003). The relationship
of our new procedure with the previous work we built on is
discussed in the following.

In a previous work addressing the issue of building equiv-
alent CUBN and COBN models (La Camera et al., 2004), the
authors discarded the approach of setting synaptic conductances
at fixed average MP (i.e., the one we used in this work) stat-
ing that “Although this might work for a single input, it does
not work for all inputs in a large pool (results not shown).” La
Camera and colleagues proposed instead to build equivalent net-
works by making both inhibitory and excitatory connectivity free
parameters, so that the optimal equivalence was obtained when
the CUBN had twice the excitatory and half the inhibitory con-
nectivity of the COBN. Differently from this procedure, in our
work all the common parameters of the two networks were iden-
tical, including the connectivity matrix. This, in our view, has
the advantage that differences in network dynamics can be more
directly imputed to changes in model synaptic dynamics. Meffin
et al. (2004) determined the value of the conductances start-
ing from a “fixed rough estimate of the average MP” set as the
midpoint between threshold and reset potential. The difference
with our work is that we used directly the actual average value
of the MP of the neurons of each population. Note that there
is a discrepancy between the two values since the true average
MP was equal or slightly below the reset potential (Figure 5D).
In extensive initial simulations, we found that using the aver-
age MP, rather than the midpoint between threshold and reset
potential, made it much easier for the comparable networks to
exhibit very close firing rates and gamma spectral peaks (results
not shown).

In summary, the comparable networks established with our
procedure exhibited average firing rate and position of the peak
of the LFP power spectrum that were both similar across net-
work models and were relatively robust to changes in the synaptic
reversal potentials. In our view this strengthens the value and
usefulness of the setting procedure introduced.

COMPARISON BETWEEN SYNAPTIC MODELS
Previous seminal papers (Kuhn et al., 2004; Meffin et al.,
2004; Richardson, 2004) compared the firing rate and MP of
conductance- and current-based LIF neurons. Our findings, sum-
marized in Supplementary Table 1, confirmed the main results of
these previous works, and extended them in several ways. Our
main contribution was to extend the comparison to include other
aspects of neural population dynamics. In particular, we consid-
ered the effect of the synaptic models on the spectrum of network
activity, on the cross-neuron correlations and on the stimulus
modulation of these different network features. The significance
of these advances is discussed in more detail below.

CORRELATION IN THE NETWORKS
Spike trains of different neurons were more correlated in the
COBN than in the CUBN, with the correlation difference increas-
ing with the external input rate. The fact that the COBN spike
train correlation was more strongly modulated by the input rate
led to the fact that spike train correlation carried more informa-
tion in the COBN.
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In our networks, the neurons received inputs from the same
simulated external pool and this led to values of shared input
that were likely higher than those shared by pairs of cortical neu-
rons recorded from different electrodes. However, in the COBN,
the dependence of correlation on the network stimuli resembled
qualitatively the one observed in real experiments, more than
in the CUBN. First, the positive correlation between firing rate
intensity and spike train correlation is often observed in neu-
rophysiological experiments, (Kohn and Smith, 2005), and this
behavior is only reproduced by the COBN. Further, MP of cor-
tical neurons (Lampl et al., 1999) (but see also Yu and Ferster,
2010) are more correlated when they receive an input triggering
a stronger response (i.e., having an higher contrast/the correct
orientation). This resembles the dynamics displayed here by the
COBN, but not by the CUBN. Moreover, in several experiments
(see Isaacson and Scanziani, 2011 and references therein), the cor-
relation between AMPA and GABA synaptic inputs is stronger the
more intense is the stimulus, consistent with the COBN dynamics
shown in Figure 8A.

The high values of correlation that we found in the COBN
might, at first sight, look different from those of Renart et al.
(2010) in which a conductance-based LIF network, with a struc-
ture similar to the one considered here, displayed a much smaller
MP correlation thanks to the decorrelation due to a precise bal-
ance between excitation and inhibition. In other words, in that
work, AMPA-GABA correlation and cross-neuron MP correlation
were described as mutually exclusive. We think that the reason
for the difference between their results and those obtained in our
work is the crucial assumption of Renart et al. (2010) that AMPA
and GABA timescales are identical. In a supplemental analysis the
authors showed indeed that, when AMPA synapses were made
progressively faster than GABA, the negative feedback was not
fast enough to compensate for excitation and hence to decorre-
late the neurons; the network became then more synchronized.
When in Renart et al. (2010) the authors considered the case
in which τrE = 2 ms and τrI = 5 ms (very close to our values,
see Table 3), the correlation between GABA and AMPA currents
reached values above 0.5, coherent with our results (Figure 8A).

FREQUENCY SPECTRA OF NETWORK ACTIVITY
We also compared the frequency spectra of the network activity
in COBN and in CUBN. A marked difference was in the larger
amount of information and stronger stimulus modulation of the
gamma range for COBN. This, in our view, may be explained as
follows. When increasing the external input rate, we observed an
increase of the cross-neuron spike train correlation in the COBN,
which was associated with an increase of the cross-neuron cor-
relation of the synaptic currents (both AMPA and GABA). This
caused a stronger modulation of the COBN currents and con-
sequently of the LFP gamma peak. The stronger modulation of
the gamma band in turn contributed to the fact that, both when
time-constant and time-varying inputs were injected, the COBN
carried more information than the CUBN in the gamma band.

Neurophysiological recordings of LFP spectra modulation in
visual cortex during stimulation with various kinds of visual stim-
uli (Henrie and Shapley, 2005; Belitski et al., 2008) reported much
broader gamma peaks than the ones we found for COBNs. The

width of gamma peaks reported in cortical data was more similar
to the broad gamma peak generated by CUBN rather than to
the sharp peak generated by the COBN. We hypothesize that the
sharpness of the COBN gamma peak may be over-emphasized by
the lack of neuron-to-neuron heterogeneity in the specific net-
work models implemented here. Introducing a small degree of
variability in neuronal parameters could decrease the correlation
in COBN while keeping it stimulus-dependent. An important
point for future research is to understand how heterogeneities
in network parameters differentially affect COBN and CUBN
dynamics.

A final point worth discussing is that the COBN, unlike
the CUBN, showed considerable amounts of information about
input strength in the LFP power in the frequency range 15–
25 Hz. Notably, the power of real visual cortical LFPs (Belitski
et al., 2008) also did not carry information in this frequency
range. Belitski and coworkers hypothesized that the 15–25 Hz
LFP frequency region related mainly to stimulus-independent
neuromodulation. The additive contribution to the LFP of fluc-
tuations generated by a stimulus-unrelated system would poten-
tially cancel out the information generated by the network in this
frequency range.
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The characterization of functional network structures among multiple neurons is essential
to understanding neural information processing. Information geometry (IG), a theory
developed for investigating a space of probability distributions has recently been applied
to spike-train analysis and has provided robust estimations of neural interactions. Although
neural firing in the equilibrium state is often assumed in these studies, in reality, neural
activity is non-stationary. The brain exhibits various oscillations depending on cognitive
demands or when an animal is asleep. Therefore, the investigation of the IG measures
during oscillatory network states is important for testing how the IG method can be
applied to real neural data. Using model networks of binary neurons or more realistic
spiking neurons, we studied how the single- and pairwise-IG measures were influenced
by oscillatory neural activity. Two general oscillatory mechanisms, externally driven
oscillations and internally induced oscillations, were considered. In both mechanisms, we
found that the single-IG measure was linearly related to the magnitude of the external
input, and that the pairwise-IG measure was linearly related to the sum of connection
strengths between two neurons. We also observed that the pairwise-IG measure was not
dependent on the oscillation frequency. These results are consistent with the previous
findings that were obtained under the equilibrium conditions. Therefore, we demonstrate
that the IG method provides useful insights into neural interactions under the oscillatory
condition that can often be observed in the real brain.

Keywords: information geometry, spikes, spiking neuron model, oscillation, neural networks

INTRODUCTION
The dynamics of neural interactions have been conjectured to
play an important role in neural information processing. One way
to investigate the neural interactions is to record multi-neuronal
firing activity from a freely behaving animal, and analyze the cor-
relations between individual units. In past decades, electrophys-
iological studies have significantly been advanced by the use of
multi-electrode recording techniques (Wilson and McNaughton,
1993; Chapin et al., 1999; Kudrimoti et al., 1999; Laubach et al.,
2000; Hoffman and McNaughton, 2002; Buzsaki, 2004; Tatsuno
et al., 2006; Euston et al., 2007; Davidson et al., 2009; Peyrache
et al., 2009b; Dragoi and Tonegawa, 2011, 2013). In order to ana-
lyze such high-dimensional multi-neuronal datasets, a number of
statistical methods have also been developed (Gerstein and Perkel,
1969; Abeles and Gerstein, 1988; Aertsen et al., 1989; Zhang et al.,
1998; Panzeri and Schultz, 2001; Grun et al., 2002a,b; Brown et al.,
2004; Fellous et al., 2004; Czanner et al., 2005; Shimazaki and
Shinomoto, 2007; Amari, 2009; Gilestro et al., 2009; Peyrache
et al., 2009a; Shimokawa and Shinomoto, 2009; Lopes-Dos-
Santos et al., 2011). Recently, a method based on information
geometry (IG) has been applied to the analysis of neural data
(Amari and Nagaoka, 2000; Amari, 2001; Nakahara and Amari,
2002; Amari et al., 2003; Tatsuno and Okada, 2004; Eleuteri et al.,
2005; Ikeda, 2005; Miura et al., 2006; Nakahara et al., 2006;

Gilestro et al., 2009; Tatsuno et al., 2009; Ince et al., 2010; Lovette
et al., 2011; Nie and Tatsuno, 2012). It has been demonstrated
that IG provides a powerful statistical tool for analyzing spiking
data. Some of the advantages of IG approach include the orthogo-
nal decomposition of neural interactions (Amari, 2001; Nakahara
and Amari, 2002), and its direct relationship to underlying con-
nections (Tatsuno and Okada, 2004; Tatsuno et al., 2009; Nie and
Tatsuno, 2012); the single-IG measure is related to the amount
of external inputs and the pairwise-IG measure is related to the
amount of direct neural interactions between two neurons.

These IG properties were often investigated under the assump-
tion that the network is in an equilibrium state. However, in the
brain, the equilibrium assumption does not hold true. Instead,
the brain undergoes a variety of non-equilibrium states such
as oscillations. For example, the slow-wave oscillation (∼1 Hz)
was discovered during non-REM sleep (Steriade et al., 1993;
Crunelli and Hughes, 2010), and evidence suggests that it plays
an important role in memory consolidation (Huber et al., 2004;
Stickgold, 2005; Diekelmann and Born, 2010). The theta (6–
10 Hz) rhythm is a prominent coherent oscillation observed
in the hippocampus, and its surrounding area during rat spa-
tial navigation (Vanderwolf, 1969; Bland, 1986; Buzsaki, 2002).
The theta rhythm has also been observed in various human
neocortical areas during the delay period of working memory
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tasks (Raghavachari et al., 2001; Meltzer et al., 2008). The beta
(15–30 Hz) oscillation is conjectured to play a key role in action
preparation and inhibitory control in the motor system (Baker
et al., 1997). The gamma (30–80 Hz) oscillation has been shown
to play a role in the integration of sensory information (Gray
et al., 1989; Singer and Gray, 1995). The fast hippocampal sharp
wave ripples (100–200 Hz) were also reported during an animal’s
awake immobility and slow-wave sleep (Buzsaki et al., 1992).
Therefore, it is important to investigate if the IG measures can
be applied to neural data under oscillatory conditions.

In this study, we investigated how the single- and pairwise-
IG measures are influenced by a network oscillation. Under an
equilibrium assumption, previous studies have shown that the
single- and pairwise-IG measures provide a robust estimation of
the magnitude of external input and direct neural interactions
(Tatsuno et al., 2009; Nie and Tatsuno, 2012). We also focused on
these IG measures in this study because the external inputs and
intrinsic neural interactions are the two main factors for char-
acterizing network dynamics. For the oscillation mechanisms, we
have considered two representative cases; one is an external driven
oscillation where a network is influenced by external oscillatory
inputs. The other is an internally induced oscillation where inter-
actions between excitatory and inhibitory neuron populations
produce an oscillation. By computer simulations using simple
binary model neurons or more biologically plausible spiking neu-
rons, we investigated whether the properties of the IG measures
that were established with the equilibrium condition still hold
true under oscillatory network states.

In section Methods, we briefly introduce an information-
geometric analysis of neural spikes. In section Results, we
describe the model and network structure used in the numeri-
cal simulation. In section Discussion, the simulation results for
both externally driven and internally induced oscillations are
described in detail. In section Acknowledgments, we summarize
our findings and discuss future directions of research on this
topic.

METHODS
INFORMATION-GEOMETRIC METHOD
We briefly introduce the information-geometric method for spik-
ing data analysis (for details see Amari and Nagaoka, 2000).
Generally, in an N-neuron system, the state of i-th(i = 1, . . . , N)

neuron is represented by a binary random variable xi, where
xi = 1 or 0 representing neuronal firing or silence, respectively.
The joint probability distribution of the N-neuron system can be
described by a fully expanded N-th order log-linear model (LLM)

log px1x2···xN =
∑

i

θ
(N, N)
i xi +

∑
i<j

θ
(N, N)
ij xixj + · · ·

+ θ
(N, N)
12,···N x1x2 · · · xN −ψ(θ)(N, N), (1)

where θ
(N, N)
ij,···m (1 ≤ m ≤ N) represents the m-neuron interaction

and ψ(θ)(N, N) with θ =
{
θ
(N, N)
i , θ

(N, N)
ij , . . . , θ

(N, N)
12,···N

}
is a nor-

malization constant such that
∑

px1x2 · · · xN = 1. The first and

the second superscripts in θ
(N, N)
ij,···m represent the order of the LLM

and the number of neurons in the system. We use θ
(N, N)
i , θ(N, N)

ij ,

and θ
(N, N)
ij,···m to describe the single-IG measure, the pairwise-IG

measure and the m-neuron IG measure with the N-th order LLM
for a N-neuron system, respectively, (Nie and Tatsuno, 2012). The
joint probability of N neurons is calculated by

px1x2,...,xN =
cx1x2,...,xN∑

x1x2,...,xN
cx1x2,...,xN

, (2)

where cx1x2,...,xN is the count of events (X1 = x1, X2 =
x2, . . . , XN = xN) that occur.

However, in reality, it is difficult to calculate the statistical
information from all neurons in a large network. Therefore, the
partially expanded LLM is often used for the estimation of neu-
ronal interactions. The partially expanded k-th order LLM in an
N-neuron network is given by

log px1x2···xk, ∗ ··· ∗ =
∑

i

θ
(k, N)
i xi +

∑
i<j

θ
(k, N)
ij xixj + · · ·

+ θ
(k, N)
12,···kx1x2 · · · xk −ψ(θ)(k, N) (3)

where θ =
{
θ
(k, N)
i , θ

(k, N)
ij , . . . , θ

(k, N)
12,··· k

}
. The first few terms of θ

and normalization factor are given as follows:

θ
(k, N)
i = log

px1 = 0, ··· , xi = 1, ··· , xk = 0,∗···∗
px1 = 0,··· ,xk = 0,∗ ··· ∗

,

θ
(k, N)
ij = log

px1 = 0,..., xi = 1,..., xj = 1,··· ,xk = 0,∗ ··· ∗
px1 = 0,··· , xk = 0,∗···∗

px1 = 0,..., xi = 1,..., xj = 0,..., xk = 0, ∗ ··· ∗
px1 = 0,..., xi = 0,..., xj = 1,..., xk = 0, ∗···∗·········

(4)

ψ(k, N) = − log px1 = 0,..., xk = 0, ∗ ··· ∗,

where ‘ ∗ · · · ∗′, represents the marginalization over the (N − k)
neurons.

The single-IG measure θ
(k, N)
i and the pairwise-IG measure

θ
(k, N)
ij are the two main focuses in this study because θ

(k, N)
i is

related to the amount of external inputs and θ
(k, N)
ij is related

to the amount of direct neural interactions between two neu-
rons (Tatsuno and Okada, 2004; Tatsuno et al., 2009; Nie and
Tatsuno, 2012). Using a network of simple binary neurons, and
the assumption of an equilibrium state, the previous study has

shown that the single-IG measure θ
(2, N)
i and the pairwise-IG

measure θ
(2, N)
ij with the 2nd-order LLM are related to the net-

work parameters as

θ
(2, N)
i ∝ 2hi + O

(
1

N

)
, θ

(2, N)
ij ∝ (Jij + Jji)+ O

(
1

N

)
, (5)

where hi represents the magnitude of constant external input to
a neuron i, and Jij (Jji) is the connection weight from a neuron j
to i (from a neuron i to j), respectively, (Tatsuno et al., 2009). If a

network receives correlated inputs, the relationship for θ
(2, N)
ij in
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Equation 5 does not hold true anymore. However, we have also

shown that θ
(k, N)
ij with the higher k-th order LLM provides a bet-

ter estimation of neural interactions (Nie and Tatsuno, 2012). For
example, θ(4, N)

ij was shown to have the relationship

θ
(4, N)
ij ∝ (Jij + Jji

)
, (6)

within approximately a 10% error if the number of neurons N
is ∼ 103 or larger; a typical size of network in a cortical column
(Urban et al., 2001). We have also confirmed that the relation-
ship θ

(4, N)
i α2hi holds true within approximately a 10% error

(unpublished data).
These properties could be useful for the field of neuroscience

because the IG measures can estimate the changes of underlying
network parameters (hi and Jij) separately, while other correla-
tion measures have not yet been shown to have such a property
(Amari, 2009). However, these results were derived under the
equilibrium limit, and little is known if the similar relationship
holds under the oscillatory condition.

NEURON MODEL AND NETWORK STRUCTURE
Neuron model
We investigated the influence of oscillations using a network of
simple binary neurons with stochastic dynamics (Ginzburg and
Sompolinsky, 1994) and biologically plausible spiking neurons
(Izhikevich, 2003). Using simple binary model neurons, we first
investigated whether the property of the IG measures that were
shown under the equilibrium condition also held true for the
oscillatory condition. We then extended our investigation to more
realistic spiking neurons.

For a binary model neuron, the transition between the binary
states is given by the transition rate w as

w(xi = 0→ xi = 1) = g(ui)

τ0
,

w(xi = 1→ xi = 0) = 1− g(ui)

τ0
,

w(xi = 0→ xi = 0) = 1− w(0→ 1),

w(xi = 1→ xi = 1) = 1− w(1→ 0),

(7)

where τ0 is a microscopic characteristic time and ui represents the
total input to the i-th neuron.

g(ui) = 1+ tanh(ui −m)

2
(8)

is the sigmoidal function in the bounded interval [0, 1] where m is
a parameter controlling the firing probability of a model neuron.

For a biologically more plausible neuron model, we adopted
the Izhikevich model because it is known to be computation-
ally efficient and biologically plausible (Izhikevich, 2003). The
Izhikevich model reduced the complex dynamics of the Hodgkin–
Huxley (HH) neuronal models to two coupled differential equa-
tions as

dVi

dt
= 0.04V2

i + 5Vi + 140− Ui + Ii,
dUi

dt
= ai(biVi − Ui).

(9)

Here the variable Vi represents the membrane potential of neu-
ron i, and Ui represents a membrane recovery variable which
correlates with the activation of K+ ionic currents and inacti-
vation of Na+ [for detail see (Izhikevich, 2003)]. Ui and Vi are
reset after a spike: if Vi ≥ 30 mV, then Vi ← ci, Ui ← Ui + di. Ii

represents a total input to neuron i; ai, bi, ci, di are dimension-
less adjustable parameters which are usually taken as (ai, bi) =
(0.02, 0.2) and (ci, di) = (−65, 8)+ (15, −6)r2

i for excitatory
neurons, (ai, bi) = (0.02, 0.25)+ (0.08, −0.05ri) and (ci, di) =
(−65, 2) for inhibitory neurons. ri is a uniformly distributed
random variable on the interval [0, 1] (Izhikevich, 2003).

Network structure
We considered two mechanisms for generating oscillatory net-
work states; one is the oscillation driven by external inputs
(Figure 1A), and the other is the oscillation induced by the
intrinsic interaction between excitatory and inhibitory neuron
populations (Figure 1B). The former mechanism can be a model
for hippocampal theta oscillation in which the projections from
the medial septum to the hippocampus play a central role (Dragoi
et al., 1999). The latter structure where excitatory and inhibitory
neuron pools interact is widely observed in cortical areas (Buzsaki
and Wang, 2012). It can be a model for cortical oscillations (such
as in a gamma-range) that rely on the interplay between excitatory
and inhibitory neuron pools.

In the first scenario (externally driven oscillation, Figure 1A), a
sinusoidal external input hi(t) = h0 sin(ωt + ϕi) for the i-th neu-
ron was used to generate oscillatory states in a network, where
h0, ω, and upvarphii represent the amplitude, angular speed,
and phase of sinusoidal signals, respectively. Note that h0 and
ω are common to all neurons, but ϕi can be different for indi-
vidual neurons. The explicit expression of an input signal allows
one to produce different network oscillations systematically. For
the binary neuron model, the total input to the i-th neuron is
written as,

ui(t) =
∑

j

Jijxj(t)+ hi(t). (10)

where Jij represents a connection weight from the j-th neuron to
the i-th neuron. The neuronal state xi(t) was then updated follow-
ing the transition rate w in Equation 7. Note that model neurons
are identical, whether they are excitatory or inhibitory.

For the Izhikevich model in the first scenario, we considered a
population of excitatory neurons. Although it has been demon-
strated that a network of excitatory neurons can synchronize, a
network of Izhikevich neurons that were connected in this par-
ticular way cannot produce an intrinsic oscillation (Mirollo and
Strogatz, 1990; Hansel et al., 1995). This allows us to investi-
gate the relationship between the IG measures and an externally
driven oscillation in a more realistic setting. The total input to an
Izhikevich neuron i is given by,

IE
i (t) =

∑
j

JEE
ij sE

j (t)+ hi(t), (11)

where JEE represent positive weights between excitatory neurons

and sE
j = δ(t − t

f
j ) is the delta function representing the existence
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FIGURE 1 | A schematic of two mechanisms for generating network

oscillations. (A) Oscillation is generated by an external oscillatory input
(externally driven oscillation). A neuron i in the network of N neurons
with recurrent connections Jij receives a sinusoidal external input
hi = h0 sin(ωt + ϕi ) where h0, ω, and ϕi represent the amplitude,
angular speed, and phase of the sinusoidal input, respectively. (B)

Oscillation is generated by the interaction between excitatory and

inhibitory neuron pools (internally induced oscillation). Excitatory neurons
are connected by positive connections JEE , inhibitory neurons are
connected by negative connections JII , inhibitory neurons receive positive
connections JIE from excitatory neurons, and excitatory neurons receive
negative connections JEI from inhibitory neurons. In addition, excitatory
and inhibitory neurons receive external constant input HE

i and HI
k ,

respectively.

of a spike emitted from an excitatory neuron j at time t
f
j . The

neuronal state was then updated by Equation 9 and the associ-
ated reset dynamics. In the numerical simulation, we used a small
bin width of 1 ms so that it would contain no more than one
spike.

Figures 2A–C show example spike trains and multi-unit
activity of binary model neurons driven by external sinu-
soidal inputs of 1, 6, and 100 Hz oscillations, respectively.
Izhikevich neurons also exhibited very similar activity (data
not shown). It can be clearly seen that neural activity is
entrained to external input. Using these two models, we inves-
tigated how the IG measures are affected by externally driven
oscillations.

In the second scenario (internally induced oscillation,
Figure 1B), interaction between excitatory and inhibitory neuron
pools generates an oscillation. For the binary neuron model, the
total input to the i-th excitatory neuron and the k-th inhibitory
neuron are written as,

uE
i (t) =

∑
j

JEE
ij xE

j (t)+
∑

j

JEI
ij xE

j (t)+HE
i ,

uI
k(t) =

∑
j

JII
kj x

I
j (t)+

∑
j

JIE
kj xI

j (t)+HI
k, (12)

where JII, JIE, and JEI represent negative weights between
inhibitory neurons, positive weights from excitatory neurons
to inhibitory neurons, and negative weights from inhibitory
neurons to excitatory neurons, respectively. The excitatory
and inhibitory neurons receive constant external inputs HE

i
and HI

i , and maintain sustained oscillatory activity. The neu-
ronal state was updated following the transition rate w in
Equation 7.

For the Izhikevich model in the second scenario, a similar rela-
tionship exists for the total inputs for the i-th excitatory neuron

and the k-th inhibitory neuron,

IE
i (t) =

∑
j

JEE
ij sE

j (t)+
∑

j

JEI
ij sE

j (t)+HE
i ,

II
k(t) =

∑
j

JII
kj s

I
j (t)+

∑
j

JIE
kj sI

j (t)+HI
k. (13)

The neuronal state was then updated following Equation 9 and
the associated reset dynamics. Figures 2D,E provide examples of
spike trains and multi-unit activity of Izhikevich neurons that
exhibited ∼6 and 40 Hz oscillations, respectively. Binary neurons
also exhibited a very similar activity (data not shown). Neural
activity was synchronized, but the degree of entrainment was
weaker than the externally driven mechanisms. Using these two
models, we investigated how the IG measures were influenced by
the internally induced oscillation.

RESULTS
EXTERNALLY DRIVEN OSCILLATION
We investigated the relationship between the IG measures, θ(4, N)

i

and θ
(4, N)
ij , and the connection weights, (Jij + Jji), using a net-

work of 1000 binary neurons and 1000 Izhikevich neurons.
We focused on the IG measures with 4th-order LLM because
they have been shown to estimate connection weights (Nie and
Tatsuno, 2012) and external inputs (unpublished data) within
a 10% error under an equilibrium assumption. In the simula-
tion, we kept the amplitude of external input at a value such that
the overall network firing probability is relatively low (pxi ∼ 0.1).
Connection weights were set to the order of 1/N to prevent sat-
uration of neuronal activity. For a binary neuron model, we used
Jij = 1/N + εij where εij is a random variable from a normal dis-
tribution N(0, 1/N) with a mean of 0 and the standard deviation
of 1/
√

N. For the Izhikevich model, we restricted the simulations
to a pool of only excitatory neurons to ensure that no inter-
nally induced oscillation occurred. The connection weights were
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FIGURE 2 | Average firing probability and raster plot of

representative oscillatory activity. (A) Average firing probability of
1000 binary neurons (top panel) and a raster plot of 100 randomly
sampled neurons (bottom panel) over 1000 ms under the influence of
an external sinusoidal input of 1 Hz (slow oscillation) are shown. (B)

Average firing probability of 1000 binary neurons (top panel) and a
raster plot of 100 randomly sampled neurons (bottom panel) for an
external sinusoidal input of 6 Hz (theta oscillation) are shown. (C)

Average firing probability of 1000 binary neurons (top panel) and a

raster plot of 100 randomly sampled neurons (bottom panel) for an
external sinusoidal input of 100 Hz (ripple oscillation) are shown. (D)

1000 ms of average firing probability of 1250 Izhikevich neurons (top
panel) and a raster plot (bottom panel) with approximately a 6-Hz
oscillation are shown. In the top panel, spikes from an excitatory
neuron and an inhibitory neuron are represented by a black dot and a
gray dot, respectively. (E) 1000 ms of average firing probability of 1250
Izhikevich neurons (top panel) and a raster plot (bottom panel) with
approximately a 40-Hz oscillation are shown.

assigned as JEE
Ij = 1/N + ε′ij where ε′ij is a random variable fol-

lowing uniform distribution U(0, 1/N) within the interval of

[0, 1/N]. θ
(4, N)
i and θ

(4, N)
ij were calculated by 106 updates of

the network. With the time resolution of 1 ms, the simulation
corresponds to ∼15 min of recordings. To obtain the mean and
variances of the IG measures, we performed 100 independent
simulations. Error bars in the figure represent the standard error
of mean (SEM).

We investigated the oscillation frequencies that have often been
observed in the brain; slow oscillation (∼1 Hz), theta oscillation

(6–10 Hz), and ripple oscillation (100–200 Hz). The left column
of (Figures 3A,D,G) shows the results for the slow oscillation.
The multi-unit activity of the binary neurons exhibits a slow
oscillation of the frequency of external input (Figure 3A) and
the neurons were entrained to this frequency (Figure 2A). The
spiking activity of Izhikevich neurons also showed almost iden-

tical activity (data not shown). To investigate how θ
(4, N)
i and

θ
(4, N)
ij are related to the change of connection weights, we sys-

tematically modified the sum of connection weights between two
neurons (1 and 2) from −9/N to 9/N. Due to the randomness
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FIGURE 3 | Relationship between the IG measures and the sum of

connection weights for an externally driven oscillation. (A) Average firing
probability of 1000 binary neurons with a 1-Hz oscillatory modulation is
shown. (B) Average firing probability of 1000 binary neurons with a 6-Hz
oscillatory modulation is shown. (C) Average firing probability of 1000 binary
neurons with a 100-Hz oscillatory modulation is shown. (D) Relationship
between the pairwise IG measure (θ

(4, 1000)
12 ) and the sum of connection

weights (J12 + J21) under a 1-Hz oscillation. Black and gray lines represent
the simulation results by binary neurons and Izhikevich neurons, respectively.
(E) Relationship between the pairwise IG measure (θ(4, 1000)

12 ) and the sum of

connection weights (J12 + J21) under a 6-Hz oscillation. (F) Relationship
between the pairwise IG measure (θ(4, 1000)

12 ) and the sum of connection
weights (J12 + J21) under a 100-Hz oscillation. (G) Relationship between the
single IG measure (θ

(4, 1000)
1 ) and the sum of connection weights (J12 + J21)

under a 1-Hz oscillation. Black and gray lines represent the simulation results
by binary neurons and Izhikevich neurons, respectively. (H) Relationship
between the single IG measure (θ

(4, 1000)
1 ) and the sum of connection

weights (J12 + J21) under a 6-Hz oscillation. (I) Relationship between the
single IG measure (θ

(4, 1000)
1 ) and the sum of connection weights (J12 + J21)

under a 100-Hz oscillation.

of the connectivity, focusing the neurons (1 and 2) did not

affect the generality. We found that θ
(4, N)
12 was linearly related

to the sum of the connection weights, and that the values of
θ
(4, N)
12 for both the binary and Izhikevich models were very close

(Figure 3D, black line for a binary model and gray line for the
Izhikevich model). On the other hand, θ

(4, N)
1 and θ

(4, N)
2 were

independent from the change of synaptic weights (Figure 3G).
These results are consistent with the previous findings under
the equilibrium assumption; showing that IG measures can also
provide useful insights in conditions where the network oscil-
lates. The middle and right columns of Figure 3 show the results

for theta oscillations (Figures 3B,E,H) and ripple oscillations
(Figures 3C,F,I), respectively. We found that the relationship
between the IG measures and connection weights was robust
against a different frequency of external inputs. This confirmed
that the IG measures can also provide useful information for
externally driven theta and ripple oscillations.

To further investigate if the robust property of the IG measures
for slow, theta, and ripple oscillations holds true for other fre-
quencies, we varied the frequency over 1–200 Hz, the range that
can be typically observed in the brain. We set (J12 + J21) = 2J.

Figure 4 shows that θ
(4, N)
12 and θ

(4, N)
1 did not depend on
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FIGURE 4 | Dependency of the IG measures for an oscillation frequency

for an external drive oscillation. The values of the single-IG measure
θ
(4, 1000)
1 and the pairwise-IG measure θ

(4, 1000)
12 were calculated for different

oscillatory frequencies (1, 5, 6, 10, 20, 50, 100, and 200 Hz). Parameters were
set as J12 + J21 = 2J, h0 = 0.05, and ϕi = 0. (A) The relationship between

θ
(4, 1000)

12 and the oscillation frequency by binary model neurons. (B) The

relationship between θ
(4, 1000)
12 and the oscillation frequency by Izhikevich

neurons. (C) The relationship between θ
(4, 1000)
1 and the oscillation frequency

by binary model neurons. (D) The relationship between θ
(4, 1000)

1 and the
oscillation frequency by Izhikevich neurons.

oscillation frequencies (Figures 4A,C for a binary model, and
Figures 4B,D for Izhikevich model). The results confirmed that
the IG measures would be useful for neural data analysis when
the brain exhibits a variety of oscillations depending on cognitive
demands and the sleep stages.

The previous analyses (Figures 3, 4) were performed under the
zero relative phase difference between two neurons i and j, namely
δϕij =

∣∣ϕi − ϕj

∣∣ = 0. This corresponds to the synchronous neural
firings that were depicted in Figures 2A–C. Neurons can, how-
ever, exhibit phase differences. For instance, sequential neural
activity was observed in the natural and anesthetized brain states
(Lee and Wilson, 2002; Euston et al., 2007; Luczak et al., 2007;
Bermudez Contreras et al., 2013). Therefore, we calculated IG
measures with phase differences. Figure 5 shows the results of
the 6-Hz simulations in which the phase difference between sinu-
soidal inputs to the neurons 1 and 2 was set to π/6 (Figures 5A,C)
and π/2 (Figures 5B,D). The rest of the neuron pairs have ran-
dom phases in the range of [0, 2π]. Figures 5A,B show that

θ
(4, 1000)
12 is linearly related to the sum of synaptic weights, sug-

gesting that the relationship observed in zero phase difference
condition also holds for the non-zero phase difference condition.

Similarly, Figures 5C,D show that θ
(4, 1000)
1 does not depend on

the connection weights, even when neurons fire with phase dif-
ferences. By comparing these results with Figures 3E,H where
there was no phase difference, we also found that phase differ-
ence produced the shift of the actual values of IG measures. This
suggests that if the phase relationship drastically changes between

the two recording epochs, the values of the IG measures cannot
be directly comparable. However, if their difference is not large or
if phase difference can be estimated beforehand, we could use the
information for adjusting the IG values. We also confirmed that
these relationships held true for slow (1 Hz) and ripple (100 Hz)
frequencies (data not shown).

So far we have focused on the relationship between the IG
measures and the connection weights. Another important param-
eter is the magnitude of sinusoidal input h0. Therefore, we have

analyzed how θ
(4, 1000)
1 and θ

(4, 1000)
12 are related to h0. Figure 6

shows the result when the external sinusoidal input has a fre-

quency of 6 Hz (theta oscillation). We found that θ
(4, 1000)
12 was

nearly independent from the change of h0 (Figure 6A), but

θ
(4, 1000)
1 was almost linearly related to it (Figure 6B). We also

confirmed that almost identical relationship holds true for other
frequencies such as slow oscillation and ripple oscillation if there
is no phase difference. For non-zero phases between neurons, we
observed that the IG values were shifted, like the case for the IG
values and connection weights, but that the same linear and inde-
pendent relationship in Figure 6 was sustained. The results under
the oscillatory condition are consistent with the previous findings

under the equilibrium condition; θ(4, N)
i was linearly related to the

magnitude of the constant input and that θ
(4, N)
ij was almost inde-

pendent from it (Nie and Tatsuno, 2012). The investigation here

provides further evidence that θ
(4, N)
i is useful for the estimation

of the magnitude of external input.
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FIGURE 5 | Relationship between the IG measures and the sum of

connection weights for non-zero phase differences. An external oscillation
mechanism was used, and the oscillation frequency was set to 6 Hz. (A)

Relationship between the pairwise IG measure
(
θ
(4, 1000)

12

)
and the sum of

connection weights (J12 + J21) for the phase difference of δϕ12 = π/6. Black
and gray curves represent the simulation by binary neurons and Izhikevich
neurons, respectively. (B) Relationship between the pairwise IG measure

(
θ
(4, 1000)
12

)
and the sum of connection weights, (J12 + J21) for the phase

difference of δϕ12 = π/2. (C) Relationship between the single-IG measure(
θ
(4, 1000)
1

)
and the sum of connection weights (J12 + J21) for the phase

difference of δϕ12 = π/6. (D) Relationship between the single-IG measure(
θ
(4, 1000)
1

)
and the sum of connection weights (J12 + J21) for the phase

difference of δϕ12 = π/2.

FIGURE 6 | Relationship between the IG measures and the amplitude of

an external sinusoidal input for an externally driven oscillation.

Oscillation frequency was set to 6 Hz and phase difference was δϕ12 = 0. (A)

Relationship between the pairwise-IG measure, θ
(4, 1000)
12 , and the amplitude

of a sinusoidal input, h0. Black and gray lines represent the simulation results
by binary neurons and Izhikevich neurons, respectively. (B) Relationship
between the single-IG measure, θ

(4, 1000)

1 , and the amplitude of a sinusoidal
input, h0.

In summary, we investigated how the IG measures were
influenced by an externally driven oscillation. Using a simple
binary neuron model, and a more realistic Izhikevich model,

we found that θ
(4, N)
ij had a linear relationship with the sum

of the connection weights, and that it was almost independent

from the magnitude of a sinusoidal input. In contrast, θ(4, N)
i was

almost independent from the connection weights, but was linearly

related to the magnitude of the sinusoidal input. These proper-
ties were not affected by the frequency of the oscillations or the
relative phase differences between neurons.

INTERNALLY INDUCED OSCILLATION
As another mechanism for generating an oscillatory network
behavior, we also investigated the interactions between excitatory
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and inhibitory neuron pools. We analyzed the network structure
in Figure 1B by simple binary model neurons and Izhikevich neu-
rons. Unlike the first oscillation mechanism, where an oscillation
frequency and phase differences could be explicitly controlled, it
was not easy to generate an oscillation with desired parameters.
However, we were able to generate two examples that were often
observed in the brain. Figures 7A,B show multi-unit activity cor-
responding to theta frequency (∼8 Hz) and gamma frequency
(∼40 Hz), respectively. The same examples with a raster plot were
also depicted in Figures 2D,E. To avoid saturation in neural activ-
ity, we have set the connection weights to the order of 1/N. For
a theta oscillation, we set the connection as JEE

ij = J1 · ε′ij, JIE
ij =

5J1 · ε′ij, JII
ij = −J2 · ε′ij and JEI

ij = −J2 · ε′ij where J1 = 1/Ne, J2 =
1/Ni, and ε′ij is a random variable following a uniform distri-
bution U(0, 1) within the interval [0,1]. For a gamma oscil-
lation, we used JEE

ij = J1 · ε′ij, JIE
ij = 6J1 · ε′ij, JII

ij = −J2 · ε′ij and

JEI
ij = −2J2· ε′ij. The stronger JIE was necessary to induce oscilla-

tion (Adini et al., 1997). The external constant inputs to excitatory
and inhibitory neurons were set as HE

i = 0.05 and HI
i = 0.02,

respectively. The simulation of 106 update was performed with
Ne = 1000 excitatory neurons and Ni = 250 inhibitory neurons.
The mean and variance was estimated using 100 independent
simulations.

To investigate the relationship between the IG measures and
the sum of connection weights, without losing the general-
ity, we modified (J12 + J21) between the neurons (1 and 2)
in the range of [−9J, 9J]. Firstly, we focused on the connec-
tions within the excitatory neuron population and within the
inhibitory neuron population. In other words, both connections,
J12 and J21, were positive for the range of (J12 + J21) ≥ 0 and
both were negative for (J12 + J21) < 0. Figures 7C,E show the

relationship between θ
(4, 1250)
12 and θ

(4, 1250)
1 , and the sum of con-

nection strengths (J12 + J21) under the theta oscillation. The

results clearly show that θ
(4, 1250)
12 is linearly related to the sum

of the connection weights and that θ
(4, 1250)
1 was independent

from the modulation of the connection weights. Furthermore,
the dependency of the IG measures on the connection weights
was continuous in both positive and negative ranges. This sug-
gests that IG measures can be applicable to both positive and
negative connections. Figures 7D,F show results for gamma oscil-

lation. Similar results were obtained for both θ
(4, 1250)
12 and

θ
(4, 1250)
1 .

Secondly, we investigated the interaction between excitatory
and inhibitory neurons. Namely, we selected the neuron 1 from
the excitatory neuron pool and the neuron 2 from the inhibitory
neuron pool. The sum of connection weights was modified
from −9J to 9J. Figures 8A,B are the same with Figures 7A,B,
showing the multi-unit activity for theta and gamma oscillation,
respectively. Figures 8C,E show the relationship between the IG
measures and the sum of the connection weights under the theta
oscillation. Similarly, Figures 8D,F are for gamma oscillation. The

results show that the linear dependency of θ
(4, 1250)
12 on the sum of

the connection weights holds true for an excitatory and inhibitory

neuron pair. We also found that θ
(4, 1250)
1 had almost no rela-

tionship with the sum of connection weight. For the relationship

between the IG measures and the magnitude of constant input HE
i

and HI
i , we confirmed that θ

(4, 1250)
1 was linearly related to their

magnitude, but θ
(4, 1250)
12 was independent from them (data not

shown).
In summary, for internally generated oscillations, we demon-

strated that the relationship between the IG measures and the
connection weights that were found under equilibrium assump-
tion also held true.

DISCUSSION
Previous studies have shown that the IG measures provided use-
ful information about network structures (Tatsuno and Okada,
2004; Tatsuno et al., 2009; Nie and Tatsuno, 2012). Specifically,

the single-IG measure θ
(4, N)
i was related to the magnitude of

external constant input, and the pairwise-IG measure θ
(4, N)
ij was

related to the sum of the connection strengths. Although these
studies were conducted under the equilibrium assumption, the
real neural signals exhibit various oscillations depending on cog-
nitive demand of the task or the state of the brain. Therefore, we
studied the relationship between the IG measures and the neural
network parameters under oscillatory network states.

We have considered two general oscillation mechanisms; one
was the oscillation driven by external input, and the other was the
oscillation induced internally due to interactions between exci-
tatory and inhibitory neuron pools. Numerical simulation was
performed by the network of a simple binary neuron model and
the Izhikevich neuron model. The former model was used so as
to compare the results with that of previous studies, and the latter
was used to investigate the relationship with more realistic model
neurons.

For the external oscillation, our investigation showed that

θ
(4, N)
ij was linearly related to the sum of the connection strengths,

and that θ
(4, N)
i was independent from it over a wide range of fre-

quency from 1 to 200 Hz. We also showed that the relationship
holds true when there are phase differences between neurons. In

addition, we demonstrated that θ
(4, N)
i was almost linearly related

to the magnitude of sinusoidal input, but that θ
(4, N)
ij was almost

independent from it. For the internally induced oscillation, we

have also confirmed that θ
(4, N)
ij was linearly related to the sum of

the connection strengths, and that θ
(4, N)
i was independent from

it. We have also shown that the same relationship holds true for
any neuron pairs (within excitatory population, within inhibitory
population, and across excitatory and inhibitory populations).

In summary, this study and previous studies have demon-
strated that the IG measure provides useful information for
analyzing neural circuits; not only for the equilibrium condition,
but also for the oscillatory condition. The single-IG measure is
useful for estimating the relative strength of external inputs. In
addition, the single-IG measure is better than using the change in
firing rate because the firing rate can be modulated both by the
change in synaptic coupling strength and the magnitude of exter-
nal inputs. Studies show that the appropriately selected single-IG
measure is capable of estimating the external inputs with rela-
tively small influence from synaptic interactions. Similarly, the
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FIGURE 7 | Relationship between the IG measures and the sum of

connection weights for an internally induced oscillation. Both
connections, J12 and J21, were positive for the range of (J12 + J21) ≥ 0 and
they were negative for (J12 + J21) < 0. (A) Average firing probability of 1250
Izhikevich neurons with approximately a 6-Hz oscillatory oscillation is shown.
(B) Average firing probability of 1250 Izhikevich neurons with approximately a
40-Hz oscillatory oscillation is shown. (C) Relationship between the
pairwise-IG measure (θ(4, 1000)

12 ) and the sum of connection weights

(J12 + J21) under a 6-Hz oscillation. Black and gray lines represent the
simulation results by binary neurons and Izhikevich neurons, respectively. (D)

Relationship between the pairwise-IG measure (θ(4, 1000)
12 ) and the sum of

connection weights (J12 + J21) under a 6-Hz oscillation. (E) Relationship
between the single-IG measure (θ

(4, 1000)
1 ) and the sum of connection

weights (J12 + J21) under a 6-Hz oscillation. (F) Relationship between the
single-IG measure (θ

(4, 1000)
1 ) and the sum of connection weights (J12 + J21)

under a 40-Hz oscillation.

pairwise-IG measure can provide more direct information about
the synaptic interactions between neurons than other correlation
measures (Amari, 2009). It has been also shown that the pairwise-
IG measure is statistically independent from the change in firing
rate and that it provides pure neural interactions (Amari, 2001;
Nakahara and Amari, 2002). Together with the findings in this
study, the pairwise-IG measure is a very useful measure to study
direct neural interactions between neurons.

This study suggests that the actual values of the IG mea-
sures depend on the mechanisms of oscillation. For an externally

driven oscillation, θ
(4, N)
12 ∼ 0.2 was obtained for (J12 + J21) ∼

1/N. For an internally induced oscillation, the same connection

strength produced θ
(4, N)
12 ∼ 0.002. Within the same oscillation

mechanism, the selection of model neurons (binary model or
Izhikevich model), or a small difference in network parame-
ters such as phase differences also produced a difference in the
actual value of the IG measures. Nonetheless, as long as the net-
work is in one of the oscillation mechanisms, and the phase

difference is kept the same, the IG measures can provide use-
ful insights into network structures regardless of the oscillation
frequencies.

In the study of memory consolidation, one of the key ques-
tions is to understand how the changes in synaptic connections
are related to learning and memory formation. Evidence suggests
that neural activity during slow-wave sleep plays an important
role in learning (Diekelmann and Born, 2010). Specifically, there
is increasing evidence supporting the hypothesis that replay of
neural activity during subsequent sleep is positively correlated
with memory formation (Pavlides and Winson, 1989; Wilson and
McNaughton, 1994; Kudrimoti et al., 1999; Lee and Wilson, 2002;
Euston et al., 2007; Girardeau et al., 2009; Peyrache et al., 2009b;
Ego-Stengel and Wilson, 2010). However, the direct information
about synaptic change is not available from multi-unit recordings
of a freely behaving animal because spikes and local field poten-
tials are the two main observables. In this study, we showed that

θ
(4, N)
ij was linearly related to the sum of the connection weights,
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FIGURE 8 | Relationship between the IG measures and the sum of

connection weights for an internally induced oscillation. Neuron 1
was selected from the excitatory neuron pool and Neuron 2 was
selected from the inhibitory neuron pool. In other words, one of the
connections in J12 + J21 was positive and the other was negative. (A)

Average firing probability of 1250 Izhikevich neurons with approximately
a 6-Hz oscillatory oscillation is shown. (B) Average firing probability of
1250 Izhikevich neurons with approximately a 40-Hz oscillatory oscillation
is shown. (C) Relationship between the pairwise-IG measure (θ(4, 1000)

12 )

and the sum of connection weights (J12 + J21) under a 6-Hz oscillation.
Black and gray lines represent the simulation results by binary neurons
and Izhikevich neurons, respectively. (D) Relationship between the
pairwise-IG measure (θ(4, 1000)

12 ) and the sum of connection weights
(J12 + J21) under a 6-Hz oscillation. (E) Relationship between the
single-IG measure (θ

(4, 1000)

1 ) and the sum of connection weights
(J12 + J21) under a 6-Hz oscillation. (F) Relationship between the
single-IG measure (θ

(4, 1000)

1 ) and the sum of connection weights
(J12 + J21) under a 40-Hz oscillation.

and that θ
(4, N)
i was linearly related to the magnitude of external

inputs, even under the oscillatory conditions. We have also ver-
ified these relationships not only with a simple binary model
neuron, but also with a more realistic spiking model neuron. This
finding would allow us to analyze neural activity during slow-

wave sleep before and after the task; θ
(4, N)
ij would be a good

measure for the change of connection weight, and θ
(4, N)
i for

the magnitude of background input that would be influenced
by local field potentials. By comparing the relative change of

θ
(4, N)
ij between slow-wave sleeps before and after the task, and

the strength of memory replay/improvement of behavior per-
formance, the IG measure may provide a way to estimate the
relationship between the synaptic modification and memory for-
mation without having direct access to information of synaptic
change.

As a related approach to the IG method, the maximum entropy
(MaxEnt) has attracted much attention recently (Schneidman

et al., 2006; Tang et al., 2008; Tyler et al., 2012). The philoso-
phy of the MaxEnt approach is not to assume anything other
than what we know from the data. For example, if firing rate
and pairwise correlation are the only information we have, the
distribution with maximum entropy is given as the Boltzmann
distribution,

P(2) {x} = 1

Z
exp

⎛
⎝∑

i

h′ixi +
∑
i<j

J′ijxixj

⎞
⎠ , (14)

where h′i is a bias term for the neuron i, J′ij is the symmetric cou-
pling strength between neurons i and j, and the partition function
Z is given by,

Z =
∑
{x}

exp

⎛
⎝∑

i

h′ixi +
∑
i<j

J′ijxixj

⎞
⎠ . (15)
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We see that the MaxEnt is equivalent to the IG with the 2nd-order
LLM,

log px1x2∗ ··· ∗ =
∑

i

θ
(2, N)
i xi +

∑
i<j

θ
(2, N)
ij xixj −ψ(θ)(2, N),

(16)
where the relationship between the parameters are given as,

θ
(2, N)
i = h′i, θ

(2, N)
ij = J′ij,ψ(θ)(2, N) = log Z. (17)

As was discussed in Tatsuno and Okada (2004) and in Tatsuno
et al. (2009), it is possible to relate these IG measures, θ

(2, N)
i and

θ
(2, N)
ij , to the network structure even for a network with asym-

metric connections (Equation 5). However, under the influence
of correlated inputs, we have also shown that the relationship
in Equation 5 broke down, and that it was necessary to use the
IG measures with the higher-order LLM such as the 4th-order
(Equation 6) (Nie and Tatsuno, 2012). In other words, it was
necessary to take into account neural activity of two additional
neurons to estimate the direct neural interaction between neuron
i and j. In summary, we see that the MaxEnt approach and the
IG method are closely related. In addition, we also see that the
MaxEnt can be considered a part of the IG method that provides
a more general analysis framework for the space of the probability
distributions.

In this study, we used the synchronous neural activity for esti-
mating the direct neural interaction as the form of (Jij + Jji).
However, in the real learning processes such as sequential learn-
ing, it is possible that synaptic modification occurs differently
for each direction; e.g., Jij increases, while Jji decreases. The
proposed method is not able to estimate the directed synaptic
change. As one possible remedy for this difficulty, calculation of
the pairwise-IG measure using the time-lagged spiking activity
between neurons was suggested (Tatsuno and Okada, 2004; Nie
and Tatsuno, 2012). Another limitation of the present study is
not including the effect of delay; e.g., axonal conduction delay
or synaptic transmission delay. It is possible that these delays
dramatically change the firing patterns as well as increase a vari-
ety of coexisting patterns (Izhikevich, 2006). Little is known
about the relationship between the IG measures and direct neu-
ral interactions with conduction delay. In addition, it has not
been clear how IG measures with more neuronal interactions
such as triplewise-IG measures θ

(k, N)
ijk or quadruple-IG measures

θ
(k, N)
ijkl behave under oscillatory conditions. It would be inter-

esting to extend the current study to include more neuronal
interactions.

Despite these limitations, the IG method is one of the most
promising statistical tools for spike train analysis (Amari, 2001;
Nakahara and Amari, 2002). Its direct relationship with the net-
work parameters would provide useful information for the esti-
mation of structural changes (Tatsuno and Okada, 2004; Tatsuno
et al., 2009; Nie and Tatsuno, 2012). We hope that an advance-
ment of novel analysis methods including IG will lead to a
break-through finding in neuroscience.
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Olfactory sensory information passes through several processing stages before an
odor percept emerges. The question how the olfactory system learns to create odor
representations linking those different levels and how it learns to connect and discriminate
between them is largely unresolved. We present a large-scale network model with single
and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory
receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and
granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform
cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor
stimuli derived from physico-chemical descriptors of behaviorally relevant real-world
odorants. The properties of ORNs were tuned to show saturated response curves with
increasing concentration as seen in experiments. On the level of the OB we explored the
possibility of using a fuzzy concentration interval code, which was implemented through
dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted
cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC
neurons was self-organized from a mutual information measure and by using a competitive
Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted
cells to different odors yielding a distributed feed-forward projection to the PC. The PC
was implemented as a modular attractor network with a recurrent connectivity that was
likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality
of the model in a one-sniff-learning and recognition task on a set of 50 odorants.
Furthermore, we study its robustness against noise on the receptor level and its ability
to perform concentration invariant odor recognition. Moreover, we investigate the pattern
completion capabilities of the system and rivalry dynamics for odor mixtures.

Keywords: pattern recognition, olfactory bulb, piriform cortex, large-scale neuromorphic systems, spiking neural

network, BCPNN, concentration invariance, pattern rivalry

1. INTRODUCTION
The major task of the olfactory system is to perform recognition
of odors which is essential for survival by identifying edibility or
danger. An odor evokes spatio-temporal patterns of activity in dif-
ferent stages of the olfactory hierarchy. The crucial mechanisms
involved in odor object recognition are widely unknown, which
is mainly due to the complexity of interactions and the transfor-
mations of information occurring between the different stages. In
order to study the mechanisms embedded in the olfactory system,
a system-level approach is required, comprising the three major
levels of the early olfactory hierarchy including the epithelium,
where the stimulus enters the nervous system, the olfactory bulb
(OB) where the first transformation happens, and the piriform
cortex (PC) which integrates and stores the information relevant
for odor recognition (Gottfried, 2010; Wilson and Sullivan, 2011),

Abbreviations: OR, olfactory receptor; ORN, olfactory receptor neuron; OB,
olfactory bulb; MT, mitral or tufted cell; PG, periglomerular cell; PC, piri-
form cortex; PYR, pyramidal neurons; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; NMDA, N-methyl-D-aspartate; GABA, γ-aminobutyric
acid; WTA, winner-take-all operation; MC, minicolumn; HC, hypercolumn; VQ,
vector-quantization; MDS, multi-dimensional scaling.

and decision making (Gire et al., 2013). The OB and the PC
and the connectivity between the two are crucial components for
solving pattern recognition tasks, however experiments are only
beginning to shed light on the possible connectivity principles.
Neurons in the PC receive convergent synaptic input from differ-
ent glomeruli (Apicella et al., 2010), but the question as to which
principles underlie the connectivity between OB and PC is not yet
resolved.

In this study we try to bridge the gap between the biophysics
seen from a detailed perspective and the organization princi-
ples on a system level. Here, we present a model which is able
to recognize artificial odor patterns in a self-organized manner
using a Hebbian–Bayesian learning rule and ideas inspired from
machine learning implemented on a biophysically detailed sub-
strate. We will first embed our study in the context of existing
literature, before we will explain the goals and hypotheses of
our study.

1.1. CONTEXT AND OVERVIEW OF EXISTING PRIMARY LITERATURE
The olfactory system has long been a model system to study
memory formation (Haberly and Bower, 1989; Brennan et al.,
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1990), object recognition (Davis and Eichenbaum, 1991) and
pattern completion (Barnes et al., 2008). Computational mod-
eling of the olfactory system began with the work by Rall et al.
(1966) and continued to complement experimental research by
testing hypotheses under controlled conditions and by connecting
behavior with the underlying mechanisms.

Many studies focus on a single component of the lower
levels of olfactory processing hierarchy, e.g. the OR responses
(Hopfield, 1999), the epithelium (Simões-de Souza and Roque,
2004b; Sandström et al., 2009a), the OB or subparts thereof
(Anton et al., 1991; Davison et al., 2003; Sandström et al., 2007;
Brea et al., 2009; Linster and Cleland, 2009; Li and Cleland, 2013;
Yu et al., 2013). There have only been few studies that attempt to
model multiple parts of the olfactory pathways, for example, the
study by Simões-de Souza and Roque (2004a) combines epithe-
lium and OB. Modeling work on the PC can have a high level of
detail (Wilson and Bower, 1992; Vanier, 2001) and describes the
PC as a content-addressable memory system that is optimized for
storing synaptic representations of odors through Hebbian learn-
ing (Barkai et al., 1994), yet often lacks a fair representation of
the lower parts of the sensory pathway and the interactions in
between. On the intermediate scale, Freeman’s K-sets (Freeman
and Erwin, 2008) have been used to model pattern recognition
with chaotic dynamics (Yao and Freeman, 1990; Li et al., 2005),
but this approach does not explain how connectivity emerges and
misses lower parts as well. More recently, computational studies
connect function with self-organization mechanisms and emer-
gent connectivity in the OB (Migliore et al., 2007; Linster and
Cleland, 2010; Migliore et al., 2010). The model by Li and Hertz
(2000) involves both OB and PC and is based on rather abstract,
oscillatory units and recognition works on the basis of tempo-
ral characteristics, which is argued for by other studies as well
(Hopfield, 1991, 1995; Margrie and Schaefer, 2003; Schaefer and
Margrie, 2012; Brody and Hopfield, 2003). Whether the tempo-
ral coding is crucial for recognition is up for debate and we will
come back to this question in the discussion. Linster et al. (2009)
presents a small scale model comprising simple models of olfac-
tory receptor neurons (ORNs), MT, PG, granule and PYR cells to
study response habituation effects based on synaptic adaptation
and potentiation in PC for single odor patterns. The study offers
a comparison with behavioral data, but lacks the generic pattern
recognition capabilities which we are addressing in this study.

There exist a number of studies on classification and recogni-
tion in the insect olfactory system (Huerta et al., 2004; Nowotny
et al., 2005; Schmuker and Schneider, 2007; Schmuker et al.,
2011). The study by Nowotny et al. (2005) uses an approach
similar to ours, by transforming the combinatorial code in the
antennal lobe (the equivalent of the OB in insects) into a higher
dimensional space and applying Hebbian learning with mutual
inhibition in the mushroom body (the PC equivalent in insects).
An improved understanding of the olfactory system through
modeling also lead to substantial advances in machine olfaction
(Gutierrez-Osuna, 2002; Pearce et al., 2006; Raman et al., 2011).

1.2. PURPOSE OF THIS STUDY
As we have outlined above, most existing models either use
an abstract description with components far away from the

biological substrate or have a high level of detail but lack other
relevant system components leading to an incomplete picture of
the olfactory system. Furthermore, the role of the different com-
ponents from a computational perspective is still under debate,
for example whether most of the transformations involved in pat-
tern recognition take place in the OB or rather in the PC and how
the interactions between the two is organized is unknown. What
is lacking is a generic computational model capable of behav-
ioral relevant functions like pattern recognition which involves
the ability to self-organize and which is able to run in a bio-
physically plausible setting. In this work, we are trying to make a
first step toward filling this gap by presenting—to the best of our
knowledge—the first functional biophysical model of the olfac-
tory system integrating the first three stages on a high level of
detail.

The goal of this paper is threefold. First, we propose a generic
approach for neural information processing that generates the
connectivity from the OB to the PC and within the PC by means
of self-organization and competitive learning. More generally, we
model the activity dependent formation of connectivity between
sensory layers and cortical memory systems as well as the recur-
rent long-range intra-cortical connectivity. Second, we show that
a biophysically plausible implementation of this approach in the
context of olfaction is feasible. Third, we prove the functionality
of our concept and the spiking implementation in a number of
pattern recognition tasks and study the system’s behavior therein.

Our model is based on an abstract generic model for cortical
information processing (Lansner et al., 2009; Persaud et al., 2013)
which offers a recursively applicable algorithm to generate func-
tional connectivity within and between processing stages and is
realized as a multi-layer spiking neural network. Furthermore, we
explore the possibility of an OB model making use of a concen-
tration interval code in the mitral (MT) cell layer to serve as input
to an attractor network model of the PC, and we investigate the
behavior of the system in the five following tasks. First, we show
the functionality in a pattern recognition task for 50 artificial odor
patterns. Second, we test the ability of the system to recognize
odors at different concentrations and propose a solution to the
concentration invariance problem (Cleland et al., 2011) in olfac-
tion. In the third task we challenge the system with noisy patterns
mimicking impure odors. The fourth task shows the system’s pat-
tern completion capabilities by testing with incomplete patterns
of different sparsity, and the fifth task is to distinguish between
different mixtures of learned patterns.

1.3. MAIN HYPOTHESES
We will now explain the main computational hypotheses on
which the model is based, name important experimental find-
ings supporting these and explain the implementation in section
2. Hereby we move the olfactory pathway along from the receptor
level to the cortex.

1.3.1. Activity dependent connectivity from epithelium to bulb
Each ORN expresses only one olfactory receptor (OR) (Buck and
Axel, 1991), and each odorant activates a broad range of ORNs
involving different ORs (Firestein, 2001). ORNs expressing the
same OR (in the following named an ORN-family) have different
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sensitivities to the same odorant and show dose-response curves
with activation thresholds and saturation points covering a broad
dynamic range (Grosmaitre et al., 2006). An ORN-family projects
to only one or two glomeruli (Vassar et al., 1994; Mombaerts
et al., 1996). We extend these principles by adding our first
hypothesis which affects the connectivity from ORNs to OB. We
assume that axons from one ORN-family undergo an activity-
dependent sorting process when connecting to the dendritic trees
of MT and PG neurons in the same glomerulus. This assump-
tion extends the chemoaffinity hypothesis (Sperry, 1963) and
applies the existing idea that activity and experience is involved
in the axon growth process (Gill and Pearce, 2003; Tozaki et al.,
2004; Kerr and Belluscio, 2006; Imai and Sakano, 2008; Sakano,
2010; Mori and Sakano, 2011) to the local axon sorting process
(Zhao and Reed, 2001; Serizawa et al., 2006; Takeuchi et al., 2010)
and thereby shapes the response properties of MT cells. This
activity-dependent sorting activates MT belonging to the same
glomerulus as a function of the average firing rate of the con-
vergent ORNs, an idea picked up earlier by Anton et al. (1991);
Cleland and Linster (2005). A previous study has shown that
activity dependent sorting can lead to map formation in the OB
which could have perceptual advantages (Auffarth et al., 2011).
We are using axon sorting mechanisms that are possibly active
within an ORN-family to implement our second hypothesis, a
concentration interval code in the OB.

1.3.2. Concentration coding
The concentration interval coding hypothesis assumes that each
MT cell has one preferred concentration of an odor to which
it responds maximally (Sandström et al., 2009b) and we will
explain in detail in section 2 how these two hypotheses are
used to implement a fuzzy concentration interval code in the
OB. This hypothesis is inspired by the idea of neuronal tun-
ing which assumes that neuronal responses are tuned to specific
inputs through experience and rules for optimally covering the
stimulus space have been studied (Zhang and Sejnowski, 1999;
Brown and Bäcker, 2006). Cells coding for an interval of a certain
stimulus dimension have been found in many sensory systems.
For example, just to name a few examples, in vision there exist
interval codes for orientation (Hubel and Wiesel, 1962; Schoups
et al., 2001; Li et al., 2012) and direction (Albright, 1984), in the
auditory system for pitch (Bendor and Wang, 2005), and posi-
tion, direction, speed (Poirier et al., 1997), in hippocampus place
or grid cells show strong responses to their preferred position
(Moser et al., 2008), and in the motor system neurons are tuned
to end positions of movements and other parameters (Aflalo and
Graziano, 2006).

The interval coding strategy can be used to encode variables in
a probabilistic way, as tuning curves of individual neurons overlap
and the value encoded by a population of units can be decoded in
a Bayesian optimal sense (Ma et al., 2006). This “fuzzy” coding
is related to the concept of Gaussian Mixture Models (GMMs),
a generic probabilistic model capable of representing arbitrary
densities which makes this coding suitable for unsupervised
classification algorithms. GMMs are well-established for coding
in learning and classification systems for complex stimuli, e.g.
speaker recognition (Reynolds et al., 2000), person identification

(Stylianou et al., 2005), and image classification (Permuter et al.,
2003).

One of the canonical computations believed to be performed
by lower sensory areas is decorrelation (Cleland, 2010; Linster and
Cleland, 2010), which we assume to be performed in the con-
centration domain by MT cells receiving input from the same
glomerulus (so called sister MT cells). We thereby assume that
cells connected to one glomerulus operate as functional mod-
ules making use of the columnar organization as revealed by a
viral tracer study (Willhite et al., 2006). In this study, we apply
this idea to encode odorant concentration in a fuzzy manner by
MT cells and explore the possibility of such a code in a func-
tional model for self-organized pattern learning. The advantage
of this coding scheme is that odor identity and concentration can
be represented at the same time without relying on precise spike
timings.

Whether mitral cells do exhibit a concentration interval code
or not is not fully resolved, due to contrary indications from
different experiments and the complex temporal dynamics of
alternating excitation and inhibition (Chaput et al., 1992) and
their sensitivity to concentration (Chalansonnet and Chaput,
1998). Experiments by Tan et al. (2010) show that at least in some
glomeruli mitral cells do not exhibit a concentration interval
code as we propose here. Other studies, in contrast, report non-
monotonous firing rates for increasing concentrations in mice
(Reinken and Schmidt, 1986), rats (Wellis et al., 1989), and ham-
sters (Meredith, 1986). The study by Egana et al. (2005) suggests
that sister MT cells often exhibit very different response charac-
teristics in terms of increase in firing rate due to odor exposure
and their respiratory-related temporal patterns. Likewise, it has
been shown that sister MT cells show non-redundant temporal
behavior (Dhawale et al., 2010) and it has been suggested that
the reason for that might be found on the circuit level. Bozza
et al. (2004) used an imaging technique showing the synaptic
vesicle fusion in ORNs targeting glomeruli and found differ-
ent concentration-response relationships for different glomeruli.
The most sensitive glomeruli to 2-hexanone showed saturated
response curves at an intermediate concentration (see Figure 5E
in Bozza et al., 2004), thus providing non-monotonous input into
some glomeruli which could possibly explain the different experi-
mental indications mentioned above. The response characteristics
of bulbar neurons have been studied mostly in anesthetized ani-
mals, but recent experiments by Kato et al. (2012) show that
mitral and granule cell react differently toward anesthesia, and
odor representations are different in awake and anesthetized
states. Hence, MT cell odor responses might be more narrowly
tuned in unanesthetized animals and strongly depend on the
behavioral context (Shipley et al., 2008). Here, we explore the
possibility of this hypothetical coding scheme in a biophysically
detailed model and explore the capability for concentration cod-
ing in a functional context from a systems level perspective. An
alternative idea, which is not mutually exclusive to the concen-
tration interval coding hypothesis, is that MT cells code odor
concentration and odor identity by the spike latency within a sniff
(Margrie and Schaefer, 2003; Schaefer and Margrie, 2012). We
will discuss the spike latency coding hypothesis in section 4 in
the context of our results.
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1.3.3. Rate-based hebbian learning from OB to PC
Our next hypotheses concern the mechanisms underlying pro-
jections from OB to PC. First, we assume that learning is rate-
based and hence primarily taking place on a coarser time-scale
than e.g. spike-timing dependent plasticity usually modeled on
a timescale of milliseconds, but use the response of the OB
to odorant patterns over one long sniff (modeled as one long
inhalation leading to a stimulus of ∼400 ms and simulated for
1600 ms). Furthermore, we do not regard learning mechanisms
active within the OB, e.g. MT responses changing with expo-
sure (Fletcher and Wilson, 2003), generation of granule cells
(Mandairon et al., 2006) and disregard the dynamics of the
odor afterimage (Patterson et al., 2013). We assume that the
main component in olfactory learning is how projections from
OB to PC and within PC are created and that pattern recog-
nition is based on the activity evoked through these afferent
fibers terminating in the PC and the recurrent activity within
the PC. In order to organize the connectivity from OB to
PC we use the mutual information of normalized individual
mitral cells responses and a competitive correlation-based learn-
ing mechanism, which is used as input to the Bayesian Confidence
Propagation Neural Network (BCPNN) algorithm (Lansner and
Ekeberg, 1989; Lansner et al., 2009). Similar implementations
thereof have been applied in various setups (Sandberg et al., 2002;
Lansner et al., 2003, 2009; Auffarth et al., 2011; Persaud et al.,
2013).

Oscillations are a prominent phenomenon in the olfactory sys-
tem. In this study, we do not study oscillations, as they do not play
a crucial role within our framework for the pattern recognition
tasks we consider and, because according to our hypothesis, learn-
ing takes place on larger time-scales than oscillations do occur.
Hence, oscillatory signatures have not been analyzed in this study,
but can be found in modular network of very similar type as ours
as studied by Lundqvist et al. (2010, 2011).

1.3.4. Olfactory cortex as an attractor memory system
Another important component of the olfactory memory system
is the recurrent connectivity within the PC. The association fiber
network prominent in PC is regarded as the substrate for a con-
tent addressable and distributed memory system (see Haberly,
2001; Wilson et al., 2006; Wilson and Sullivan, 2011 for reviews).
Our cortex model is inspired by the idea that the olfactory cor-
tex acts like other associative cortices in the sense that it learns
to create and distinguish sparse and distributed representations
of odor patterns, and is able to associate simpler odor patterns
with each other to form abstract complex odor objects (Haberly,
2001; Wilson and Sullivan, 2011). Attractor networks have been
proven to be an effective model to explain memory formation
and retrieval (Amit, 1992; Hasselmo and McClelland, 1999) and
other brain functions (see e.g. Rolls, 2008) and are one approach
to implement higher cognitive functions like holistic perception
in biophysically detailed simulations (Lansner, 2009). Inspired by
previous models, we see the cortex as a crucial part in the pat-
tern classification process and derive the projections from OB to
OC and the recurrent cortical connectivity with the help of the
BCPNN algorithm (Fransén and Lansner, 1998; Sandberg et al.,
2002; Lansner et al., 2009).

1.4. PRINCIPLE APPROACH
This study explores the possibility to apply a generic, recursive
approach to a self-organized pattern recognition system on a bio-
physical substrate resembling the mammalian olfactory system.
Despite the fact that the PC is a three-layered paleocortex, we
assume the PC to work in a similar way as other sensory and asso-
ciation cortices with regard to memory formation. In the model
design and choice of parameters, we put emphasis on functional
implications and on a qualitative match to the biological substrate
rather than an accurate quantitative agreement between simula-
tions and experimental data. Thus, our approach should not be
seen as realistic in all detail, but rather be regarded as explorative
and plausible toward bridging the gap between system-level com-
putations and biophysical detail. We use numerical simulations of
single and multi-compartment neuron models described by the
Hodgkin–Huxley formalism and apply rate-based learning rules
to derive functional connectivity to support pattern recognition.
We used this family of neuron models, for several reasons. First,
there already exists a number of neuron model implementations
for the most prominent bulbar and cortical cell types that are
relevant for our approach and ready to use with the NEURON
simulator (Hines and Carnevale, 1997). Second, neuron models
that were not implemented at the beginning of the studies could
be adapted from existing neuron models (see Table 1 for a brief
overview of neuron types). Third, network models in NEURON
are easily parallelizable and hence can be extended to larger scales
and offer the possibility for future refinements and extensions,
e.g. if more biophysical realism is desired.

2. MATERIALS AND METHODS
2.1. NEURON AND SYNAPSE MODELS AND CHOICE OF PARAMETERS
In order to model a multi-layered network with a reasonable
level of detail, one has to fill several gaps by making assumptions
because many aspects and parameters of the real system are not
known. We have tried to use realistic parameters wherever possi-
ble, but as the primary goal of this paper is to present a holistic
architecture implementing a high-level task with a spiking neural
network, we had to reduce this goal at several points to achieve
the desired function.

2.1.1. Neuron types
For all simulations we use neuron models described by the
Hodgkin–Huxley formalism, an overview of the used neuron
models is shown in Table 1. Our principle approach was to
use existent neuron models without modification if possible
and to adapt existing neuron models if the desired function
required changes. For ORNs we have extended an existing single-
compartmental neuron model described in Pospischil et al.
(2008) by adding a time-dependent input current to model
the odor stimulus, a low- and a high-threshold Calcium cur-
rent and a Calcium activated Potassium channel to provide
adaptation mechanisms to guarantee saturating dose-response
curves. The ORN channel conductances have been tuned so
that the model shows plausible dose response curves for a
family or ORNs, i.e. different response onsets depending on
the sensitivity and saturating output rates for high stimulus
concentrations.
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Table 1 | Neuron and synapse models and choice of parameters.

Neuron name Type Stage Number of compartments References

ORN Exc Epithelium 1 Adapted from Garcia (2010)

MT Exc OB 4 Davison et al., 2003

PG Inh OB 3 Davison et al., 2003

Granule cell Inh OB 3 Davison et al., 2003

PYR Exc PC 1 Adapted from Pospischil et al. (2008)

RSNP regular spiking Inh PC 1 Adapted from Pospischil et al. (2008)

Basket cell (fast spiking interneuron) Inh PC 1 Adapted from Pospischil et al. (2008)

Readout neuron PC 1 Adapted from Pospischil et al. (2008)

In the OB, we use three multi-compartmental cell types: MT
cells, granule cells and PG neurons. As in other studies we model
mitral and external tufted cells as one neuron type, as our focus
lies in the projection from both neuron types to the cortex.
Neuron models for MT and granule cells are identical to those in
the study by Davison et al. (2003). MT cells have compartments
for glomerular dendrite, primary dendrite, soma and secondary
dendrite connecting to granule cells. Granule cells have com-
partments for their soma, peripheral and deep dendrites. In the
absence of a neuron model for PG cells at the beginning of our
study, we used the same neuron model for PG as for granule cells
using their peripheral dendrite for interactions with ORNs and
MT cells and dendrodendritic interactions to convey PG output
to MT cells.

The PC model contains one excitatory adapting neuron type
(PYR), a fast-spiking inhibitory interneuron [in the following
called basket cell (Ekstrand et al., 2001)] and a regular spiking
non-pyramidal (RSNP) neuron (all adapted from Pospischil et al.
(2008). The BCPNN algorithm as described later gives bias values
for each cortical module, which can be interpreted as intrin-
sic excitability implemented as an inhibitory A-type Potassium
current (Bergel, 2010) added to RSNP and PYR neurons.

2.1.2. Synapse models
Excitatory synapses are realized through exponential currents
mediated by AMPA receptors with a time constant of 10 ms and
NMDA receptors implemented as in Davison et al. (2003), which
models a Magnesium block and operates at a longer time con-
stant (≈150 ms). Inhibitory synapses only have one time scale and
are modeled as exponential currents mediated by GABA receptors
with a time constant of 20 ms.

2.1.3. Choice of parameters
One set of parameters determines the network size that needs to
be adapted to the number of patterns the system is trained with.
These are the number of glomeruli (equal to the number of ORs),
the number of HCs and the number of MCs per HC. We have
not explored the number of ORs, HCs and MCs required to suc-
cessfully learn a given number of patterns, because this would be
out of the scope of this paper and should be studied with a less
detailed model.

The BCPNN algorithm yields the connectivity between the OB
and OC and within the OC as “abstract weights”. Hence, these
parameters are estimated by BCPNN, whereas the translation into

biophysical weights is done with the help of free scaling param-
eters that were chosen to yield biophysically plausible synaptic
conductance values in the order of a few nS. Furthermore, there
exists a large set of model parameters (on the order of 70)
controlling various aspects, like the individual cell models (cell
morphology, ion channel conductances, background noise), con-
nectivity parameters from ORNs to OB and within the OB. A
subpart of these have been tuned by hand to achieve the desired
behavior.

Because of the complexity of this model and the immense
number of parameters involved, we omit a list of parameters here,
but refer to the existing literature and the simulation code, which
is available on request. As already mentioned, the focus of this
study is to implement a functional model operating on multiple
stages and not to build a precisely matched counterpart of the
biological substrate. Hence, we decided to choose parameters
to fulfill functional requirements as this is our primary goal.
In combination with the small size of the networks compared
to real systems this might have lead to unrealistic values in
some cases. Furthermore, the vast amount of parameters would
make a parameter sensitivity analysis extremely complex and
computationally intensive and as the parameter space is very
high-dimensional, it is likely that many different operating
regimes could be found.

Simulations were performed with the NEURON simulator
(Hines and Carnevale, 1997) on a Cray XE6 system using 96–
120 cores. For setting up simulation preparation, connectivity
and analysis of results we used python with the modules numpy
(Oliphant, 2007), scipy (Jones et al., 2001–2013) and orange
(Demšar et al., 2013). Figures and data visualization were done
using matplotlib (Hunter, 2007) and Inkscape (Andler et al.,
2004–2014). Cell parameters were identical for all neurons of
the same type. To account for natural variability all weights
were randomly modified by 10%, the initial membrane voltage
was drawn from a normal distribution with mean −70 mV, and
standard deviation 5 mV, and each neuron (except readout neu-
rons) received Poisson spike trains as background noise to model
both network effects and stochastic opening and closing of ion
channels.

2.2. ODOR INPUT PATTERNS
In order to decide how strong each family of ORNs (each express-
ing one OR and targeting only one glomerulus) gets activated by
an artificial odor pattern, we derive a distribution of odorant-OR
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affinities based on real-world data. Haddad et al. (2008) pre-
sented an optimized set of 32 physico-chemical descriptors which
could account for variability in neural responses of ORNs and
glomeruli in different species for different sets of odorants. This
gives a 32-dimensional space, in which the 447 odorants they
provide can be described. In short, we place virtual ORs in this
32-dimensional space as centroids resulting from clustering the
odorants, calculate the Euclidean distance between the virtual
ORs and real-world odorants, and based on this distance we
obtain the affinity between the OR-odorant pair. This approach
is inspired by the odotope theory Shepherd (1987); Mori (1995),
which suggest that the molecular shape of an odorant and the
molecular preference of an OR determine the OR response. This
idea implicates that spatial proximity of ORs in this multidimen-
sional space implies similar molecular receptive ranges of the
ORs. This idea is currently debated because not only functional
groups of odor molecules, but also the vibrational energy spec-
trum of molecules does play a role in determining OR responses
(Franco et al., 2011; Gabler et al., 2013). Nevertheless, for sim-
plicity we chose the odotope theory as a guiding principle to
generate artificial odor patterns. It should be emphasized that the
pattern recognition capability of our system is not constrained
to this way of generating artificial odor patterns. Despite the fact
that our virtual ORs lack a direct biological correspondence, the
presented approach of interpreting ORs as centroids after clus-
tering the odor space seems plausible, assuming that ORs could
have specialized to code for parts of the olfactory world. The
study by Geisler and Diehl (2002) suggests that perceptual sys-
tems are designed for encoding natural stimuli in an optimal way.
Nei et al. (2008) suggest that variations in chemosensory recep-
tor gene repertoires among species can be explained to a large
extent by the adaptation of organisms to different environments.
In the following, we describe the details of our approach inspired
by these ideas.

The ORs were chosen to be the centroids of clusters in the odor
space computed by the k-means clustering algorithm (Hartigan
and Wong, 1979). As the distances between ORs and odorants are
based on the results of the clustering procedure and hence depend
strongly on the number of ORs to be put in the odor space and
the random initial conditions, we have pooled distance distribu-
tions for different numbers of ORs over 100 trials. The motivation
behind this approach is to get a picture of the real-world odor
space and to derive a generic way to generate arbitrary numbers of
virtual odor patterns that share the same characteristics in terms
of odorant-OR distances as real odors could have based on the
odotope idea described above.

For each number of ORs (centroids) we fitted a trimodal
normal distribution to the obtained distance distributions, as it
resembled the distribution reasonably well (see Figure 2) and
observed that the fit parameters did not change qualitatively for
distributions when 20–66 centroids were used to cluster the odor
space. For more than 66 centroids, the k-means algorithm could
often not converge because of too many centroids populating the
odorant space and leaving centroids without odorants in their
proximity. Hence, we used the averaged fit parameters of the dis-
tance distribution for 20–66 centroids to obtain a method to draw
distances between artificial odorants and ORs, which gives us an

average distance distribution D between real world odorants and
virtual ORs. The activation pattern of an odorant was generated
by first randomly choosing nactivated ORs that do show a response
given the system is exposed to that odorant in a noise-free envi-
ronment (how noisy patterns are generated will be explained
below). For each pattern we chose a random integer nactivated to
be between 30% and 50% of all receptors, as this is in the range
of what has been reported experimentally (Ma et al., 2012). For
each activated odorant i and OR j a distance di,j was sampled
from D and transformed into an affinity Ai,j by applying this
transformation function:

Ai, j = exp

(
−

d2
i, j

(E[D])2

)
(1)

where E[D] = 7.7 is the expected value for distances sampled
from the distribution D as shown in Figures 2A,B. We chose this
transformation function in order to have a strong influence of
the distance between odorant and OR in the space determined
by Haddad et al. (2008) and to obtain a population of affinity
values covering the whole range between 0 and 1 even for small
sample sizes of odorant-receptor pairs as in our model simu-
lations. An example set of 50 patterns for 40 ORs is shown in
Figure 4A.

The perception in noisy environments was modeled by mod-
ifying each element in the affinity matrix A resembling an
odorant-receptor pair to A′ :

A′i, j = max(0, min(1,Ai,j + rnd(−σ, σ))) (2)

where rnd(−σ, σ) stands for a random number uniformly dis-
tributed between −σ and σ, σ stands for the strength of noise.
By this means affinities are constrained to the interval between
0 and 1. The idea behind this approach is that in noisy environ-
ments, other odors unrelated to the original odor pattern might
be present which is represented by having new non-zero ele-
ments in A, whereas existing OR responses might be suppressed
at the same time. For simplicity we have not considered the partly
competitive and non-linear interactions between odorants and
receptors (Rospars et al., 2008) when a receptor could react to
several present odorants.

2.3. THE OLFACTORY EPITHELIUM
The epithelium has been modeled as a population of ORNs
without taking the spatial dimension into account. For simplic-
ity, ORNs have been modeled as single-compartment Hodgkin–
Huxley neurons with the goal to have a variety of saturating
dose-response curves, similarly to experimental studies (see e.g.
Rospars et al., 2000, 2003, 2008). An odorant stimulus is modeled
as an input current as shown in Figure 2, either as a single puff
stimulating ORNs for ∼450 ms or as a sequence of four briefer
sniffs with a frequency of ∼4 Hz. The maximum input current
into one ORN is determined by the product between the affinity
of the OR expressed by the ORN family to the respective odor and
by the maximum excitatory conductance determined by the phys-
iology of cell, which could be the cell size, number of expressed
ion channels or the number of receptors on the cilium of the
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cell. This product of affinity between an OR and an odor, which
influences the individual ORN response, can be seen as the frac-
tion of activated receptors or opened ion channels exciting the
ORN. This fraction of activated receptors (OAV for odor activity
value) can be translated into a concentration c or dose (with-
out considering physical units) by applying c = OAV/(1−OAV).
Consequently, affinity values (OAV) values are constrained to be
between 0 and 1.

We assume here that ORNs expressing the same OR do not
have a single value for the maximum conductance, but rather a
distribution based on the profound differences in response kinet-
ics as seen in the experimental studies (Rospars et al., 2003;
Grosmaitre et al., 2006) and described by statistical popula-
tion models (Sandström et al., 2009a; Grémiaux et al., 2012).
Figure 2C shows the responses of two example receptor neurons
to excitatory stimuli. In the simulations presented throughout
the study, our model contains 40 populations, each expressing a
different OR and comprising 800 neurons that project onto one
glomerulus but could be scaled up to include more ORs or more
ORNs.

2.4. THE OLFACTORY BULB
We will first describe the pathways in the OB model and explain
the connectivity from OE to OB afterwards. Our model of the
OB is intended to include the most prominent processing path-
ways and several inter- and intraglomerular interactions. The
leading idea behind the synaptic organization in our OB model
is to implement the hypothesized concentration interval code
by MT cells within one glomerular module. As a basis for this
we assume a columnar organization spanning different layers
of the OB as reported by Willhite et al. (2006). For this pur-
pose, we implement a soft winner-take-all (WTA) circuit within
one glomerular module with feed-forward excitation provided
by ORNs through axo-dendritic synapses, serial and reciprocal
dendro-dendritic synapses between MT and PG cells and recipro-
cal synapses between MT and granule cells. MT cells receive direct
excitation from ORNs via AMPA and NMDA receptors (Ennis
et al., 1996) on their glomerular compartment resembling fast
and graded monosynaptic input (Najac et al., 2011). A part of the
interneurons situated in the glomerular layer (≈20% of the PG
cells) also receive direct input from ORNs (Shepherd and Greer,
1998; Hayar et al., 2004; Toida, 2008). Inspired by the differences
in dendritic arborization of PG cells reported by Toida (2008) we
have implemented four types of PG cells that differ in their synap-
tic organization. Figure 1 shows a schematic of the connectivity
within one glomerular module in the OB model described in the
following. One type of PG cells (marked with PG_S1 in Figure 1,
in Toida (2008) they are called TH-ir or type 1 neurons, as they
contain the dopamine-synthesizing enzyme tyrosine hydroxylase)
gets direct input from ORNs and makes a serial inhibitory (or
in physiological reports often called symmetrical) synapse to MT
cells. The second type of PG neurons (still being an TH-ir neuron,
marked with PG_S2 in Figure 1) additionally receives dendro-
dendritic excitatory input from a nearby MT cell, but inhibitis
another MT cell as reported by Toida (2008). The third type
of PG neurons (PG_R1, in Toida (2008) called type 2 neurons,
CB-ir neurons as they contain calbindin-d28k, or CR-ir as they

contain calretinin) lie deeper in the glomerular layer and show
a different arborization pattern. These neurons form “typical”
reciprocal dendro-dendritic synapses with MT cells and do not
receive direct input from ORNs. The fourth type of PG neurons
we implement PG_R2 has in addition to reciprocal synapses with
MT neurons also inhibitory connections to other MT cells. As a
rough physiological constraint we have set the number of recipro-
cal synapses in the glomerular layer to be about 25% (according
to Shepherd and Greer, 1998).

Arevian et al. (2007) reported that lateral inhibition between
MT cells with correlated activity is enhanced. We interpret this
behavior as another aspect of a WTA mechanism between MT
cells and use the dendritic arborization patterns of PG cells as
one mechanism to implement this. Another possible mecha-
nism underlying this lateral inhibition is the prominent dendro-
dendritic inhibition between MT cells and granule cells. Granule
cells make two types of reciprocal synapses, one with mitral cells
from one glomerulus, the other type with MT cells from all
glomeruli in the OB, hence providing interglomerular inhibition
(Urban and Sakmann, 2002). As our interest lies in the function
of the system, the synapse strengths have not been matched to
experimental data, but have been tuned so that MT cells show
the hypothesized concentration interval code within a glomerular
module.

Several studies have pointed out the importance of autore-
ceptors in MT cells (Montague and Greer, 1999; Friedman and
Strowbridge, 2000; Salin et al., 2001; Schoppa and Westbrook,
2002). We have implemented excitatory AMPA and NMDA
autoreceptors on the primary dendrites and NMDA autoreceptors
on the secondary dendrites of MT cells to facilitate the hypothe-
sized WTA mechanism between MT cells through self-excitation.
Despite the fact the PG cells do connect with other glomeruli,
presumably via short-axon and external tufted cells we have not
included this type of cells and connections here to not increase
the complexity of the model even further as we wanted to explore
the possibility of the concentration interval code via WTA mech-
anisms. Likewise, for the sake of simplicity, our OB model makes
no assumptions about chemotopy in the layout of glomeruli, i.e.
there is no spatial organization for glomeruli. With regard to cell
populations, we have 8 mitral cells per glomerulus, 20 PG cells per
MT cell, 100 ORNs per MT cell, and 200 granule cells per MT cell.

Results shown in the following are based on an OB model with
40 glomeruli, i.e. 32,000 ORNs, 320 MT cells, 6400 PG cells, and
32,000 granule cells.

2.4.1. Connectivity from epithelium to OB
When connecting ORNs expressing one receptor that project to a
single glomerulus, we follow the hypothesis that activity depen-
dent axon guidance mechanisms are involved in order to create
the concentration interval code in the MT population. For this
purpose, we order ORNs within one family by their sensitivity
and divide them into a number of different groups, each group
exciting one target MT cell and inhibiting another MT cell receiv-
ing excitatory input from the next less sensitive ORN group. For
example, the most sensitive ORNs respond to an odorant already
at a low level of activation and activate their corresponding MT
cell. The same MT cell receives inhibitory input from PG_S1
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FIGURE 1 | Schematic of the early stages of the mammalian olfactory

system. Odors bind to receptors in the cilia of ORNs and lead to input
currents based on the affinity between odorant and OR and on the ORN
sensitivity. ORNs expressing the same OR make excitatory connections
with PG and MT cells in one glomeruli. PG cells show different dendritic
arborization patterns and interact with MT cells of the same glomerulus
through serial synapses (blue line with dot) and reciprocal synapses (green).
MT cells have AMPA and NMDA auto-receptors (shown in red) on their distal
primary and secondary dendrites providing self-excitation. Granule cells
connect with MT cells through reciprocal synapses. MT and granule cells
interact across glomerular modules throughout the OB granule cell layer. MT
cells have afferent projections to excitatory pyramidal (PYR) and inhibitory

regular spiking neurons (RSNP) which are learned based on MT response
patterns. MT cells connect diffusely to the PC and PYR neurons receive input
from distinct glomeruli. The PC has a modular attractor memory structure
with pre-wirde (non-plastic) connections from RSNP cells to PYR neurons in
their respective minicolumn (MC), between PYR within one MC, from PYR
to basket cells, between basket cells and feed-back inhibition from basket
cells to PYR. The learned connectivity in PC includes connections from PYR
to RSNP and PYR cells in other MC and vice versa providing long-range
connectivity. Connections from PYR to readout neurons are learned as well.
ONL, olfactory nerve layer; Glom, glomerular layer; EPL, external plexiform
layer; MBL, mitral cell body layer; GL, granule cell layer. Colors represent
odorants, ORN family, cell type or odor identity, respectively.

neurons that get activated by the next less sensitive group of ORNs
and hence receives the equivalent of the difference of the two
response curves from these two ORN groups (see Figures 2, 3 for
clarification). Because of this difference in response curves excit-
ing the MT cell, we achieve the hypothesized interval code. This
effect is amplified by the inhibition each MT cell receives from
PG_S2 and PG_R2 neurons (see Figure 2). The intra-glomerular
inhibition provided by PG_S2, PG_R2 neurons and granule cells
leads to an approximate normalization of MT activity, i.e. the out-
put rate of a glomerulus stays approximately constant over a wide
range of concentration (see Figure 3).

2.5. THE PIRIFORM CORTEX
Guided by the hypothesis that the PC acts like an attractor net-
work when learning and retrieving odor patterns, we implement
the PC based on previous work as a modular attractor network

(Lundqvist et al., 2006; Lansner, 2009; Lundqvist et al., 2010).
Despite the fact that a modular structure based on stimulus pref-
erence comparable to orientation columns in V1, for example, has
not been observed in olfactory cortices, we explore the possibil-
ity that a modular network structure as an organization principle
could be involved in tasks like pattern recognition, completion
and rivalry. The basic structure of our PC model consists of
several computational modules [in the following called hyper-
columns (HC)], each consisting of several minicolumns (MC)
with 30 excitatory and 4 inhibitory cells respectively (see Figure 1
for a schematic). This modular structure has been chosen for
two main reasons. First, we wanted to reflect the BCPNN algo-
rithm as closely as possible in a spiking network in order to
achieve the desired computational capabilities through attractor
dynamics with soft WTA-like inhibition. Second, the modular
structure including recurrent inhibition through basket cells (as
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FIGURE 2 | (A) Distribution of distances D between virtual ORs and
real-world odorants in a high-dimensional physico-chemical descriptor
space taken from Haddad et al. (2008). Distances are obtained by
clustering the multidimensional odor space a with k-means clustering
algorithm, treating the resulting centroids as virtual ORs and averaging
the Euclidean distances between ORs and odors over 100 trials. The red
solid line shows the fit of a superposition of three normal distributions
(light green, yellow, black dotted lines) to the mean distance distribution
averaged over multiple clustering trials with number of ORs ranging from
20 to 66. Before the fitting, the distance distribution has been normalized

by the number of ORs (centroids). The y-axis shows the normalized
number of occurrence pooled over 100 trials, x-axis shows the Euclidean
distance d in odorant space. (B) Affinity distribution from which affinities
between odorants and receptor pairs are drawn. The y-axis shows the
probability to draw an affinity given on the x-axis. The affinity distribution
has been obtained by transforming the distance distribution with the
given function. (C) Odor input (upper panel) and example membrane
potentials (bottom) of an ORN to two different kind of stimuli, odor puff
(in blue) and sniffing (black). The blue membrane trace in response to an
odor puff is shifted by +10 mV for visibility.

described below) is required to balance excitation in the sys-
tem and hence plays an important role in shaping the dynamics
toward biologically plausible regimes.

Our PC model comprises three cell types that are mod-
eled as single-compartment Hodgkin–Huxley neurons all taken
from Pospischil et al. (2008). Excitatory pyramidal cells (PYR)
receive input from MT cells belonging to different glomeruli
(Apicella et al., 2010) and can be associated with seminlu-
nar, superficial and deep pyramidal cells (see e.g. Bekkers and
Suzuki, 2013 for a recent review of cells in the PC). Similarly
to the model in Lundqvist et al. (2006), PYR cells connect
to other PYR cells within the same MC with a probability of
25% and to basket cells in the same HC with a probability of
70%. Basket cells receive excitatory input from PYR cells only
and connect to PYR cells in the same HC with a probability
of 70% and hence provide strong feedback inhibition to PYR
cells imposing a soft winner-take-all like competition among
MCs belonging to the same HC. RSNP neurons receive exci-
tation from MT cells and from PYR cells. RSNP cells project
to PYR neurons belonging to the same MC with a probabil-
ity of 70%. The results shown in this study are from sim-
ulations of 12 HCs with 30 MCs each, giving 10, 800 PYR,
1440 RSNP, and 2160 basket cells, as we have 6 basket cells
per minicolumn.

2.5.1. Connectivity between OB and PC
The connectivity from the OB to PC is derived based on the
mutual information between MT cells and the BCPNN algo-
rithm, similar to previous models (Johansson and Lansner, 2006;
Lansner et al., 2009). Connections are not derived on a cell-to-
cell basis, but target units in the PC that are represented by MCs
consisting of 30 neurons each. After the weights from MT cells
to MCs have been computed they will be translated into cell-to-
cell connections as described in section 2.5.3. For this purpose we

simulate the responses of the epithelium and OB for 1600 ms to
Np = 50 different random artificial odor patterns and use the MT
cell responses to calculate their mutual information.

First, the NMT mitral cell responses to the Np pattern presen-
tations are transformed into probabilities of activation pi. This
is done by normalizing the number of spikes f k

i fired by mitral
cell i during pattern k by dividing through the sum of spikes fired
during all Np patterns:

f k′
i =

f k
i∑Np

k f k
i

(3)

Furthermore, we apply a half-normalization to each glomerular
unit, i.e. if the summed normalized activity during one pattern in
one glomerulus is higher than one, it is normalized to one:

ξ k
i =

{
f k′
i /

∑q
i f k′

i if:
∑q

i f k′
i > 1,

f k′
i otherwise

(4)

The indices i and q stand for the MT cells belonging to one
glomerulus. This half-normalization is applied because we inter-
pret MT cells as probabilistic sensors and the normalized activities
within one glomerulus as probabilities of measuring the presence
of a certain feature. As MT cells code for concentration this would
correspond to the probability of sensing an odorant at the cor-
responding concentration. This is why the normalized activities
must not sum up to a value above one.

Based on the normalized activation probabilities pi and prob-
abilities for joint activation pi,j are obtained by:

pi =
∑Np

k ξ k
i

Np
(5)

Frontiers in Neural Circuits www.frontiersin.org February 2014 | Volume 8 | Article 5 | 134

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kaplan and Lansner Self-organized olfactory pattern recognition

FIGURE 3 | Top: ORN response curves from one family of ORNs
expressing the same OR. Colors indicate groups within this ORN family
which project to different target MT and PG cells. Each group contains 100
ORNs. Output rates were measured over one simulation run of 1600 ms,
including the stimulation from one long sniff of ∼400 ms Bottom: Mitral
cell response curve averaged over 10 trials, error bars indicate the standard
deviation. Colors correspond to the source group of ORNs providing
excitatory input.

pi,j =
∑Np

k ξ k
i ξ k

j

Np
(6)

Then the mutual information Ii,j and joint entropy Ei,j between
mitral cells is calculated as follows:

Ii,j =
{

pi,j log(
pi,j

pipj
) if: pi · pj �= 0 and pi,j �= 0

0 otherwise
(7)

Ei,j =
{
−pi,j log pi,j if: pi,j �= 0

0 otherwise
(8)

From these two quantities the mutual information distance mea-
sure is defined as:

Di,j =
{

1− Ii,j

Ei,j
if: Ei,j �= 0

1 otherwise
(9)

In order to decide which MT connects to which HC in the PC,
we apply a multi-dimensional scaling algorithm (MDS) to the
distances Di, j into three dimensions implemented by the Python-
Orange software package (Demšar et al., 2013). The mapping
between MT cells and cortical HCs is achieved by doing a k-means
clustering as vector quantization (VQ), resulting as HC being
the centroids to a number of MT cells in the three-dimensional
mutual information space. The VQ is repeated until no HC is
empty, i.e. each HC gets input from at least one MT cell, ignor-
ing MT cells that were silent during all patterns. This MT-HC
mapping can be modified by allowing each MT cell to connect
not only to one HC, but to the m nearest centroids or HCs. If
not stated otherwise, we have used m = 4 for our simulations. A
second VQ is applied to each HC to distribute the different pat-
terns among the MCs in one HC to derive their specific response
properties. This is done by building a new multidimensional MT-
response space in which each mitral cell assigned to the target HC
represents one dimension and each pattern represents a Euclidean
vector. The normalized MT cell activation ξ k

i gives the magnitude
for vector k in dimension i. The result of this second VQ maps pat-
terns to the different MCs in a HC and gives a binary activation
Np × (NHC · NMC) matrix containing information during which
patterns a MC is activated by its source MT cells. This binary
activation matrix is used in the next step as postsynaptic activa-
tion matrix ζ. Finally, the weights between MT cells and MCs are
calculated based on the BCPNN algorithm:

wi,j =

⎧⎪⎨
⎪⎩

log
pi,j

pipj
if: pi �= 0 and pj �= 0

log 1/Np if: Np �= 0 and pi,j = 0

0 otherwise

(10)

where pi is the normalized pre-synaptic activation probability of

MT cells, pj =
∑Np

k ζk
j

Np
is the probability of activation of MC j and

ζk
j is an element from the binary activation matrix of MC j in pat-

tern k, i.e. the information if the MC has been assigned to pattern
k in the second VQ as described above.

2.5.2. Recurrent connectivity in PC and pattern recognition readout
As before, we compute connections with the help of the BCPNN
algorithm and regard MCs as elementary units and derive long-
range connections between MCs belonging to different HCs based
on their probability of activation in an abstract sense. The previ-
ous step gave us the projections wi,j from MT cells to MCs which
will now be used to calculate the responses of an abstract MC
as follows. First, a MC j receives input sk

j from MT cells during
pattern k:

sk
j =

NMT∑
i

wi,jξ
k
i (11)

This input or support is combined with the bias βj of that MC:

βj =
{

log(pj) if: pj > 0

log(1/N2
p ) otherwise

(12)
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ok
j =

{
exp

(
βj + sk

j

)
if: sk

j > 0

0 otherwise
(13)

As for MT cells that code with their normalized activity for the
presence of an odorant at a certain concentration in a probabilis-
tic fashion, we apply the same sort of half-normalization for all
MCs belonging to one HC, i.e. if the sum of output activities
during one pattern in one HC is larger than one, it is set to one:

ok′
j =

{
ok

j /
∑q

j ok
j if:

∑q
j ok

j > 1,

ok
j otherwise

(14)

The indices j and q stand here for the MCs belonging to one HC.
We will come back to this point of interpreting activity as the
probability of perceiving a certain feature in the Discussion.

The recurrent weights between MCs situated in different HCs
is then calculated in the same way as above in Equation (10) with
the output activities ok

i determining the probabilities of activation

by replacing ξ k
i in Equations (5, 6).

MCs belonging to the same HCs are not connected. The
weights within a MC (from RSNP to PYR cells and between PYR
cells) are set statically and not affected by this abstract learning
algorithm. The same holds for the connectivity involving basket
cells.

In order to be able to classify the distributed cortical repre-
sentations after learning we train an additional layer of readout
cells. For training the connectivity from PC to the readout layer
we use the exact same formalism, but with only one single read-
out cell being active during a pattern. Hence, for readout cells we
set ok

j = 1 if j = k and 0 otherwise as a supervisor signal. This
assumes that during learning the system is exposed to odorants
in a pure form, in a sequential order (as separate patterns, i.e.
responses are gained through separate simulations) and with the
knowledge about the distinctness of odor patterns. This is also the
condition for a correct recognition, when these abstract connec-
tion and bias values are transformed into the spiking network and
“test patterns” are presented to the system, i.e. in the spiking con-
text we regard a pattern as correctly classified if the corresponding
readout cell has the maximal output firing rate. A readout neu-
ron is not connected with other neurons and serves as a simple
indicator if one pattern is perceived as present or not.

2.5.3. Translating abstract learning results to biophysical model
As described in the above section we obtain abstract connection
matrices for feed-forward connections MT cells and PC, between
MCs in PCs and from the PC to a readout layer which tries to
identify input patterns with the presented patterns during the
training. To transform the abstract connectivity obtained from
Equation (10) we do a linear mapping from the abstract weights
into biophysical weights, i.e. conductance values. If the resulting
biophysical weight is below a threshold of 5 pS, the connection is
discarded because it has no significant influence and to decrease
computational costs. For OB to PC and the recurrent PC con-
nections, negative values get linearly mapped to positive weights
that target the inhibitory RSNP cells which in turn provide inhi-
bition to the target MC. Positive values are linearly mapped to

weights that target PYR cells. Based on the source and target cell
type we use different linear transformation factors, e.g. we trans-
form negative weights so that the most negative value corresponds
to a conductance of 3 nS for MT to RSNP connections and 1.5 nS
when the connection originates from a PYR neuron. When an MT
cell excites a MC it targets 50% of all PYR in that MC, i.e. 15
cells. When an MT cell inhibits a MC it excites 75% of all RSNP
in that MC, i.e. three RSNP neurons, which in turn inhibit the
PYR cells in the that MC. For recurrent PC connections, positive
weights are transformed into 45 excitatory long-range connec-
tions between the two respective MCs, which corresponds to 5%
of all possible connections between the two MC. Negative weights
are realized so that 10 out of 30 PYR cells from the source MC
target 3 out of 4 RSNP cells in the target MC. Source and tar-
get cell pairs for recurrent PC connections are chosen randomly
and multiple connections between the same source and target
pair are replaced with a valid source-target pair. Connecting the
readout layer takes into account all PYR cells in the source MC.
After the linear transformation of the abstract weights into the
cell type specific conductances, all conductances on the single-
cell level are randomly changed by 10% in order to account for
natural variability of neurons and synapses.

The full data on resulting number of synapses and neurons in
the system is shown in Table 2.

Table 2 | Neuron and connection numbers.

Neuron (connection) Type Number Relative connection

name density (%)

ORN Exc 32,000 –

ORN→MIT Exc 32,000 0.3

ORN→ PG Exc 308,000 0.15

MT Exc 320 –

MT→ PG Exc ∼7360 0.36

MT→ GRAN Exc ∼267,100 2.6

MT→ PYR Exc ∼ 1.742 · 106 5

MT→ RSNP Exc ∼80,150 17.4

PG Inh 6400 –

PG→MT Inh 21,760 1

Granule cell Inh 32,000 –

Granule cell→MT Inh 267,100 2.6

PYR Exc 10,800 –

PYR→ PYR Exc ∼75,500 0.06

PYR→ RSNP Exc 1.23 · 106 7.9

RSNP Inh 1440 –

RSNP→ PYR Inh 30,240 0.2

Basket cell Inh 2160 –

Basket cell→ PYR Inh 630 5.8

Readout neuron Unspec 50 –

PYR→ Readout Exc 0.54 · 106 100
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3. RESULTS
We will first show the response curves of ORNs and MT cells real-
izing the hypothesized fuzzy concentration interval code before
we focus on the five functional tasks the system has been tested
with (recognition, concentration invariance, noise robustness,
pattern completion, pattern rivalry).

Figure 3 shows the output rates of one family of ORNs to an
odorant to which the OR has maximal affinity for different con-
centrations. Output rates are measured over one full simulation of
1600 ms in response to an odor puff (see Figure 2). The response
curves are color coded depending on the target MT cell to which
the ORN subgroup will project according to our hypothesized
axon-sorting as described in sections 1.3.1. and 2.4.1. The MT
response curves are averaged over ten trials with different ran-
dom seeds modifying background noise and initial membrane
potentials, error bars indicate the standard deviation. Through
the projection patterns described in section 2.4.1 we achieve that
individual MT cells code for only a certain concentration range.

3.1. TASK 1: BASIC PATTERN RECOGNITION
The fuzzy interval code realized by MT cells is the basis for our
approach of interpreting the OB as a probabilistic sensor array
which provides information about certain odor features to the
PC. We have tested this coding scheme and the self-organized
connection algorithm first in a simple pattern recognition task
(in the following referred to as Task 1). The system expresses 40
ORs and has been trained by stimulating the ORNs and OB with
50 different patterns in sequence, i.e. separate simulations using
odor puffs as input. Figure 4A shows the used set of random odor
patterns, which correspond to artificial odor patterns at a medium
concentration.

The OB response to these 50 pattern presentations was used
to derive the connectivity to and within PC and to the readout
layer as described above. As a basic proof of functionality, we
then presented the exact same patterns to the system again and
looked at the output rates of the readout cells for each pattern
(see Figure 4B). The criterion for a correctly recognized pattern
is that the readout cell responsible for the given pattern as defined
by the supervisor signal (see section 2.5.2) must have the highest
output rate measured over the whole simulation time of 1600 ms.

According to this criterion all 50 patterns have been recognized
correctly.

The activity of PYR cells averaged over all 50 patterns is very
sparse and distributed. During each pattern 223± 34 neurons
(∼2.0± 0.3%) of all neurons were active (being active measured
as firing more than one spike per pattern). Still, firing rates of
individual neurons could get as high as 150 Hz and mean firing
rates averaged over all patterns and all cells that fired at least one
spike are around 10 Hz. On average each neuron was active in only
1.0± 1.4 patterns (∼2.0± 2.7%). In total 68.5% of the PYR cells
were active in at least one pattern, 19.5% in more than two and
2.7% showed spiking activity in more than three patterns.

3.2. TASK 2: CONCENTRATION INVARIANCE
In order to test the system’s capability of recognizing odors that
appear at a different concentration, meaning that the effective
activation for those OR that respond to the given odor is different,
we selected the first 10 odor patterns from Task 1 and changed
the affinity between an activated ORs and the odorant in five
steps from −0.2 to +0.2 compared to the affinity in the train-
ing pattern (see Figure 4C). Changing the affinity is equivalent
to changing the concentration as they are in our model depen-
dent from each other c = OAV/(1−OAV). This results in a set
of 10 different odors with 5 different concentrations each and
should be regarded as 50 test patterns. First, we tested the sys-
tem as trained in Task 1 with this set of patterns and looked at
the response of the readout cells. As the system was trained to
distinguish 50 different odors at one single (medium) concen-
tration pattern only (as shown in Figure 4B), the system did not
recognize all patterns correctly, but three odors when presented
at the lowest concentration were misclassified (data not shown).
This could be interpreted as if the system would perceive these
three odors at low concentration as being qualitatively different
compared to higher concentrations.

Since odorants in real systems do occur at different concen-
trations and the perceived “effective” concentration varies during
the sniffing or inhalation process, we trained the system with pat-
terns representing odorants at different concentration. To achieve
concentration invariance recognition we trained the system with
the patterns representing 10 odors at 5 different concentration

FIGURE 4 | (A) Patterns to train and test the basic pattern recognition
capabilities of the system (Task 1). 40 ORs are activated in 50 different patterns.
Per pattern 30–50% of all ORs are activated. (B) Readout activity for pattern
recognition test. As input served the 50 patterns shown in (A). (C) Patterns to

train and test concentration invariance. Shown are the first 10 patterns from
(A) with varying concentration (affinity). (D) Readout activity response to the
patterns shown in (B) after training the system with these. Independent of the
concentration, all patterns get recognized correctly after the training.
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(Figure 4C) instead of single concentration odors only. The sys-
tem then recognized the 10 different odorants correctly for all
concentrations as shown in Figure 4D.

3.3. TASK 3: NOISE ROBUSTNESS
To simulate a more realistic pattern recognition task, we presented
noisy versions of the 50 “pure” patterns to which the system was
trained in Task 1. As described by Equation (2) we modified each
element in the affinity matrix by an increasing degree of noise σ

and tested the system trained from Task 1 to recognize these noisy
patterns. The blue curve in Figure 5 shows the performance of
the system for four different noise levels. For a degree of noise of
abs(σ) ≤ 0.05 the system recognizes all patterns correctly, hence
showing some noise robustness, but performance drops rapidly
for larger σ. As we have chosen an extremely simple model for
odorant-OR interaction without regarding possibly competitive
interactions, it is not possible to relate these values to real systems
in a meaningful way.

3.4. TASK 4: PATTERN COMPLETION WITH MODIFIED TEMPORAL
INPUT

A typical task to be mastered by a sensory system is to deal with
incomplete patterns. We model incomplete patterns by taking the
system from Task 1 and choosing a random number of ORs that
get activated in the complete pattern (Task 1) to be inactive in the
incomplete pattern. As an additional test for the dependency of
the system to rely on precise spike timings we changed the input
dynamics from the odor puff (with which the system has been
trained) to the more variable sniffing input (see Figure 2C). The
difference in stimulation dynamics is clearly visible on the ORN
level, but is less pronounced on higher levels as shown in Figure 6.

FIGURE 5 | Performance in Task 3 (noise robustness) and Task 4

(pattern completion). The system as trained to 50 complete and noise
free patterns (as in Task 1) is exposed to odor patterns with increasing
number of deactivated ORs and to patterns with increasing degree of
noise. The blue curve marked with circles corresponds to the lower x-axis
and shows performance in Task 3. The red curve with solid lines and
triangle markers corresponds to the upper x-axis and shows performance in
Task 4. The dotted red curve with star markers shows the Task 4
performance of a network without recurrent long-range connectivity in PC
as trained in Task 1.

This might be due to the strong influence of NMDA currents
involved in feed-forward excitation, but also the self-excitation
via excitatory autoreceptors on MT cell dendrites might attenu-
ate the temporal structure imposed by the ORN layer. Figure 6
shows the activity of MT, PYR and readout cells as raster plots to
one example pattern in the training and test setup with half of the
ORs being silenced. The complete training pattern is plotted with
gray dots, whereas the response to the incomplete test pattern is
marked with blue dots. Despite the difference in temporal input
structure and the fact that activity in the OB and epithelium (not
shown) is significantly less, the system is able to complete the pat-
tern in the PC. This can be seen from the fact that cells being active
during training overlap with the cells active during the test to a
much higher extent than it is for MT cells, where a high number
of gray dots indicate the incompleteness of the test pattern. Due
to the recovered activity in the PC, the PYR cells drive the correct
readout cell (the lowest readout cell, as it was pattern 0).

We have studied this pattern completion capability in a more
systematic way by testing all patterns trained during Task 1 with
different levels of completeness. Pattern completeness is defined
by the fraction of ORs being active in the test pattern compared
to the number of activated ORs in training patterns. Pattern
completeness was varied from 80% to 30% and the number of
correctly recognized patterns was counted as shown by the red
trace in Figure 5. For all test patterns in Task 4 and 5 we used the
sniffing input model in contrast to the training runs which uses
an odor puff as input (see Figure 2).

The systems seems robust toward incomplete patterns for
missing up to 40% of the odor components as the recognition
performance stays above 90%. As shown by the example raster
plots in Figure 5, the activity pattern in the PC seems very sim-
ilar on the population level in the sense that the same MCs
are active in comparison to the activity evoked during training,
despite the missing odor information and the different tempo-
ral structure. This pattern completion capability is presumably
due to the recurrent excitatory cortical connections which help to
restore activity in MCs that receive less input from the OB during
incomplete patterns. In order to prove this assumption we have
tested a network with the exact same patterns but removed the
long range connections between PYR and RSNP that have been
trained during Task 1. The result is shown by the dotted red line
in Figure 5. It shows a drastically impaired performance com-
pared to an “intact” network with trained long-range connectivity
between HCs.

3.5. TASK 5: PATTERN RIVALRY WITH MODIFIED TEMPORAL INPUT
Perceptual bistability or rivalry occurs when stimulus patterns
overlap so that two distinct perceptions are possible. This phe-
nomenon can be explained by attractor dynamics in the networks
involved in sensory integration and perception. We have inves-
tigated the system’s response behavior to odor patterns that
are constructed from varying subparts of distinct patterns from
Task 1.

In order to study the system’s responses to mixtures, we con-
structed new odor patterns by choosing a pair of two of the 50
distinct odors patterns, with which the system has been trained
in Task 1, and generating a new set of patterns by varying the
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FIGURE 6 | Example activity shown as raster plots during pattern 0 in

Task 4 (pattern completion). The system as trained to 50 complete
patterns (as in Task 1) is exposed to an incomplete version of a training
pattern in which 50% (randomly chosen) of the previously active ORs are
silenced. The y-axis shows the cell number of the respective neuron type.
Gray dots mark the activity during the training, blue dots show the activity
during the test with the incomplete pattern. For the test pattern temporal
dynamics of stimulation are more variable due to sniffing input as
compared to the puff like input used during training. Left: MT spike

patterns clearly show the incomplete test pattern, but only faint difference
in dynamics. Middle: Pyramidal cells in PC show a very similar activity on
the population level because of the recurrent cortical connectivity. The
temporal dynamics are different as compared to the complete pattern,
partly due to incompleteness but also due to the sniffing input. Right: The
correct readout cell begins to spike approximately 150 ms later during the
test pattern compared to the training pattern activity, but clearly shows
higher activity than other readout cells. Hence, the incomplete pattern is
correctly classified.

number of components taken over from the respective two pat-
terns. For example, a mixture of 0.4/0.6 between two arbitrary
patterns B and R is built by choosing randomly 40% of the ORs
active in pattern B and 60% or ORs activated in pattern R and
combine them into a mixture pattern. This has been done for
50 different pattern pairs with a varying fraction of each pattern
from 0.8/0.2 to 0.2/0.8 in steps of 0.1, taking over the previously
chosen ORs into the next mixture pattern resulting in a sequence
of mixture patterns which morphs from one to the other. This
gave us seven different mixture patterns for each of the randomly
chosen pure training pattern pair. We chose to pick 50 different
odor pairs to generate in total 350 mixture patterns. This large
set of mixture patterns has been presented to the system that has
been trained with pure patterns as in Task 1 in sequential order.

We counted the number output spikes by the readout neu-
rons corresponding to the two unmixed training patterns and
averaged these over the 350 mixture patterns (see Figure 7). The
average curve shows a smooth transition from one pattern to the
other and rivalry behavior in between, meaning that the system
recognizes both patterns at the same time (regarded over one
pattern presentation). During the morphing process from one
pattern into the other it often occurred that the readout layer rec-
ognized none of the two partial test patterns but interpreted the
superposition as a different pattern.

When looking at the dynamics during a single example mix-
ture as shown in the left two panels of Figure 7, the PC and the
readout activity indicate two distinct odor percepts (as indicated
by the color of the dots) at different times during the stimula-
tion. Hence, the systems perception switches dynamically from
one odor to the other which is characteristic for perceptual rivalry.

4. DISCUSSION
In this study we have presented a generic architecture for self-
organized pattern recognition and memory systems and imple-
mented a spiking model thereof inspired by the first three

stages of the mammalian olfactory system. We have proven the
functionality of the system in different pattern recognition tasks
involving concentration invariant recognition and pattern com-
pletion, and studied its robustness against noise and rivalry phe-
nomena occurring with mixtures of odor patterns. Our approach
is generic, because it can be used for other modalities as well
(Lansner et al., 2009), as the format of the sensory array on
which the learning algorithm operates is modality specific, but
the cortical structure responsible for the integration and con-
solidation of sensory information is regarded to be modality
independent.

4.1. ORIGINAL HYPOTHESES
One of our key hypotheses is that activity dependent axon sort-
ing mechanisms contribute to the formation of a concentration
interval code in the MT layer of the OB. The motivation behind
the hypothesized interval coding is to use the OB as a probabilistic
sensor array that serves as input for the BCPNN algorithm which
allows for self-organization of the connectivity from OB to PC
and within the PC based on the probabilistic interpretation of
MT responses. Here, we explored the possibility of such a cod-
ing scheme in the context of odor concentration and showed that
it is implementable in a spiking context.

Furthermore, we assume that the PC acts similar to other
cortices as an attractor network and hence applied a modular
network structure to simulate functions like pattern completion
and rivalry. We are well aware of the fact that no columnar orga-
nization has been reported in olfactory cortices and we suggest
that the computational structure is not necessarily visible from
the spatial layout of cells as in other sensory systems, e.g. in
V1 (Li et al., 2012), but rather implemented through the con-
nectivity patterns, e.g. MCs could correspond to small, spatially
dispersed populations with enhanced recurrent connections that
connect to a common pool of inhibitory interneurons (corre-
sponding to basket cells in our model). A softening of the rule
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FIGURE 7 | Task 5: Pattern rivalry with sniffing input. Left: Raster plot
showing PYR responses to a 0.6/0.4 mixture of two distinct patterns. The
fraction of both patterns stays constant during the whole stimulation. Blue
dots show spikes from cells being active during the “blue” odor in Task 1.
Red dots show spikes from cells being active during the “red” odor in
Task 1. Gray dots show spikes from cells that are active during the test
pattern, but have not been active in either of the two mixture
components. During the first 200 ms the red pattern evokes activity in
both PYR and readout cells, but is then suppressed by the blue pattern
becoming active after ∼500 ms of odor stimulation. A substantial part of
PYR activity is related to none of the two patterns, exemplary for the

often occurring misclassifications during the recognition of odor mixtures.
Middle: Raster plot corresponding to the pattern from left panel showing
spikes emitted by readout cells that were active during the two respective
training patterns. The stronger pattern is being recognized starting from
∼700 ms, i.e. approximately after 500 ms or two sniff cycles (simulated
sniffing frequency is around 4 Hz. Right: Average curves showing the
mean number of spikes emitted by the readout cells trained to recognize
one of the two test patterns. Black curve shows the mean response from
readout cells that code for none of the two test patterns. The blue and the
red curve indicate a smooth transition from one pattern to the other
depending on the relative strength in the mixture.

that basket cell inhibition targets only PYR belonging to the same
HC was investigated in studies by Lundqvist et al. (2010, 2013).
There the modular basket cell inhibition was replaced by a dis-
tance dependent inhibition and it was shown that the network
dynamics change, but that the attractor behavior, and with that
the computational capabilities of the system, are preserved with-
out this modular inhibition. The computational capabilities of the
presented model are rather based on the specific long-range exci-
tation between MCs and the specific inhibition mediated through
RSNP cells (Fransén and Lansner, 1998), whereas basket cell
inhibition is required to regulate the network activity and balance
the excitation. This is because RSNP cells in our model can not
counterbalance the recurrent excitation within an attractor.

The strict columnar organization as used in our model was
chosen to reflect the BCPNN algorithm more closely, but is likely
softened in real systems. Hence, in this respect our network model
should not be seen as a precise model of the biological coun-
terpart but rather as a way to implement networks performing
holistic computations and behaviorally relevant functions. One
advantage of the modular structure and the assumed patchy con-
nectivity is a shorter wiring length with the same pattern storage
capacity when compared with a non-modular “pepper-and-salt”-
like organization (Meli and Lansner, 2013).

4.2. SUMMARY OF FINDINGS AND EXPLANATION
We have shown that the self-organization algorithm previously
used only in abstract models (Lansner et al., 2009; Persaud
et al., 2013) can be translated into a spiking network con-
text, and that pattern recognition can work on the time scale
of a single sniff, comparable to results from behavioral stud-
ies (Uchida and Mainen, 2003). First of all, we have shown
that a concentration interval code can be implemented with the
help of known pathways in the OB with biophysically detailed
neuron and synapse models. Furthermore, we have successfully

translated an abstract self-organization framework to a spik-
ing network and shown its functionality in a simple pattern
recognition task (Task 1). The key components to achieve this
functionality is the projection from OB to PC and the connectiv-
ity within PC obtained from the BCPNN algorithm. The system
has proven to be robust against changes in temporal dynamics
and high levels of incompleteness at the same time. In a pat-
tern completion task we have shown that the recurrent excitatory
connectivity in the PC promotes the restoration of incomplete
pattern activity and facilitates pattern recognition of incomplete
patterns.

In addition, we have shown that concentration invariant
recognition emerges after training the system with patterns at
multiple concentrations. This brings us to the conclusion that
concentration invariance could be learned through experience
by exposure to odorants that effectively always vary during the
sniffing or inhalation. A system without having been trained to
perceive odors of different concentrations as belonging to the
same odorant can lead to qualitative different percepts as we
observed in our simulations, and has been reported for some
odorants (Gross-Isseroff and Lancet, 1988; Johnson and Leon,
2000; Wright et al., 2005).

Surprisingly, little differences in bulbar and cortical activity
were observed when different stimulation protocols were applied.
One possible explanation for this could be that NMDA currents
dominate the behavior more than fast excitatory currents do, as
NMDA currents are found almost ubiquitously in the system,
e.g. as source for self-excitation in MT cell dendrites. Thus, we
conclude that the input dynamics including precisely timed spike
patterns or sequences thereof do not play a crucial role for the
pattern recognition capabilities of our model system. It remains
subject to debate whether this finding can be seen as an argument
against spike timing dependent codes, as different stages might
use different ways of coding as suggested by Haddad et al. (2013).

Frontiers in Neural Circuits www.frontiersin.org February 2014 | Volume 8 | Article 5 | 140

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kaplan and Lansner Self-organized olfactory pattern recognition

Similarly, other concentration coding schemes as the one used in
our model could work equally well.

4.3. RESULTS IN CONTEXT TO OTHER EXISTING STUDIES
In general our results are in qualitative agreement with recent
experimental findings regarding odor representations in the PC
and projections from OB to PC. The connectivity obtained by
our self-organization method leads to PYR neurons that inte-
grate information from distinct glomeruli as seen in Apicella et al.
(2010). Furthermore, we observe sparse and distributed activ-
ity in PC in response to odor stimuli with activation levels in
a comparable range to findings by Stettler and Axel (2009). In
accordance with (Poo and Isaacson, 2011) we observed rather
unspecific inhibition in PC, as connectivity involving basket cells
is not dependent on the source or target cell’s response properties.
In addition, weights from OB to PC observed after training are
often inhibitory and hence provide inhibition for a large number
of odorants.

4.4. LIMITATIONS
Despite the complexity of the presented model, there are a large
number of limitations and aspects which have not been covered
at all by our model. Regarding the general (structure), our model
does not include any notion of the anterior olfactory nucleus
(Brunjes et al., 2005), and other input sources into PC from other
areas than the OB were not regarded in our model (see e.g. Luna
and Morozov, 2012). Differences between the anterior and poste-
rior PC have not been included in the model as well as learning in
other structures (Morrison et al., 2013). Our model does also not
include neurogenesis seen in the OB of rodents (Nissant et al.,
2009; Sahay et al., 2011), but whether neurogenesis is crucial in
the human olfactory system is still up for debate (Bergmann et al.,
2012). Acetylcholine was not included in this model, but the role
of cholinergic modulation might impact memory performance as
shown in de Almeida et al. (2013). More specifically, our imple-
mentation of the concentration code is not easily extendable to
larger neuron numbers, as this would require substantial retuning
of various parameters to achieve the desired response curves.

One very important limitation of the model, as was presented
here, is the lack of projections from the PC to the OB. The
back-projections do play an important role in odor recognition,
especially in tasks where attention or the expectation of an odor
changes the signals represented in the system. This task-relevant
information could be included in an extension of our model using
external input into the PC and the inverted OB to PC weight
matrix, which would make PYR neurons target granule cells,
preferably connecting the respective glomerular module, so that
task-relevant information acts like a template on the bulbar layer
to filter or enforce certain patterns.

4.5. OUTLOOK
In general, two broad directions could be taken starting from
the presented model. One is making the model more realistic
and trying to verify or falsify it, e.g. by using more realistic odor
patterns, incorporating more experimental data specifying the
circuits involved, adding cell types and structures that have been
omitted in this model. The opposite direction is to simplify cer-
tain components even further (e.g. reducing the complexity of

ORNs, and bulbar cell models) and test the model in different
and more complex tasks, e.g. odor segmentation. The question
on which scale the inhibition in cortical circuits acts in a compu-
tational meaningful manner, in our model represented by the size
of a hypercolumnar module, and how the extent of this recurrent
inhibition is sensitive to feed-forward excitation and the spread
thereof is unknown and needs to be investigated in the future.
As this study is only a first step in transforming abstract learning
paradigms into the context of functional spiking network models
and thereby trying to bridge the gap between system-level func-
tions and biophysical detail, this model offers the possibility for
versatile extensions and improvements, to be examined in future
studies.
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Here we propose a methodology to analyze volumetric electrical activity of neuronal
masses in the somatosensory barrel field of Wistar rats. The key elements of the proposed
methodology are a three-dimensional microelectrode array, which was customized by our
group to observe extracellular recordings from an extended area of the barrel field, and
a novel method for the current source density analysis. By means of this methodology,
we were able to localize single barrels from their event-related responses to single
whisker deflection. It was also possible to assess the spatiotemporal dynamics of neuronal
aggregates in several barrels at the same time with the resolution of single neurons. We
used simulations to study the robustness of our methodology to unavoidable physiological
noise and electrode configuration. We compared the accuracy to reconstruct neocortical
current sources with that obtained with a previous method. This constitutes a type of
electrophysiological microscopy with high spatial and temporal resolution, which could
change the way we analyze the activity of cortical neurons in the future.

Keywords: CSD, LFPs, brain current sources, neuronal activity, cerebral cortex, barrel field

INTRODUCTION
Currently many efforts are focused on decrypting canonical
working principles of cortical microcircuits in mammalians. To
this end, the barrel cortex of rats has been a very useful ani-
mal model. In vivo extracellular electric recording from these
barrels provides information about the activity of large popula-
tions of neurons with an excellent temporal resolution. Although
the extracellular electric recording technique was launched in
the middle of the 19th century, it is now recapitulating its
role with the rapid development of silicon-based microelectrode
arrays (MEA). With the technological advances in the micro-
electromechanic systems (e.g., deposition, lithography, etching,
die-preparation, Wise, 2005), MEAs with high spatial resolution
are gradually being built with a variety of not only microelec-
trode local configurations (e.g., tetrodes, octodes, polytrodes) but
also shank spatial arrangements (e.g., linear or “laminar,” planar
and three-dimensional) (Ulbert et al., 2001; Csicsvari et al., 2003;
Buzsáki, 2004; Blanche et al., 2005; Kipke et al., 2008; Du et al.,
2009; Ogawa et al., 2011; Riera et al., 2012). MEAs with three-
dimensional formats are ideal to obtain volumetric recordings
from multiple barrels, a crucial step to understand trans-laminar
and tangential interactions in the cortical microcircuits with an
acceptable spatial and temporal resolution (Riera et al., 2012).

Unfortunately, the extracellular electric potentials do not rep-
resent directly the ionic flows generated by excitable membranes
in active neuronal ensembles, i.e., the volumetric density of cur-
rent sources C(t), but instead they are far-field external reflections
of these electric currents through a highly conductive extracellu-
lar medium. Accurate biophysical models that included realistic
profiles of the electric conductivity are required to properly

characterize these external reflections at each particular corti-
cal region. In order to have a good estimation of the current
source density (CSD) C(t) inside a cortical region, extracellu-
lar electric potentials need to be observed, usually with respect
to a common reference, from a large number of microelectrodes
homogeneously distributed inside that region. This is named
the CSD analysis. A priori information about the brain current
sources is always required to uniquely solve the inverse prob-
lem underlying any CSD analysis. Evidence that brain current
sources are actually smooth over extended regions within the bar-
rel cortex has been accumulating over the last decade. Despite its
clear value, this constraint has not been explicitly introduced in
previous methods for CSD analysis.

In this study, we propose a new methodology for perform-
ing CSD analysis on volumetric extracellular recordings from the
barrel cortex of Wistar rats that is based on:

(a) the framework of generalized smoothing splines to introduce
spatial a priori constraints on the CSD C(t) (i.e., the vCSD
method).

(b) a volume conductor model that includes realistic observa-
tions of the conductivity profile for the barrel cortex of Wistar
rats (Goto et al., 2010).

(c) a three-dimensional silicon-based probe (NeuroNexus
Technologies, Inc., http://www.neuronexustech.com/) cus-
tomized in particular for the barrel cortex of this type of rats.

We apply the proposed method to assess specific features of
the current sources in the barrel cortex of adult Wistar rats
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undergoing whisker deflections. First, we determine the spatial
extent of early thalamic inputs into layer 4 of the cortex and
use it as a gold-standard to evaluate the performance of our
method. In addition to obtaining volumetric current source pat-
terns associated with local field potentials (LFP) during single
whisker stimulation, we concurrently determine the spatiotem-
poral profiles of single cortical neurons by combining our method
with those used for spike detection and single-unit classification
(Quiroga et al., 2004; Sakata and Harris, 2009) from multiunit
activity (MUA). Also, we use simulations to evaluate the stability
of our method for different noise levels and electrode grid reso-
lutions. For illustration purposes, we compare the performance
of our method with that resulting from the use of an alterna-
tive method previously proposed in the literature to perform CSD
analysis with three-dimensional MEAs (i.e., the iCSD3D method,
Łe.ski et al., 2007). MATLAB scripts for the iCSD3D method are
available at http://www.neuroinf.pl/Members/szleski/icsd.html.

MATERIALS AND METHODS
ANIMAL PREPARATION
All experiments were performed following the policies estab-
lished by the Animal Care Committee at Tohoku University
(Sendai, Japan). Adult Wistar rats (7–11 weeks of age, male)
were used in the experiments. Animals were first anesthetized
with intraperitoneal (IP) injections of urethane (1.2 g/kg), and
immobilized with a stereotaxic system (Narishige, Japan) that
comprises ear bars and a mouth/nose clamp. If necessary, an
extra dose of urethane was administrated. Before surgery, all
whiskers were trimmed to 1 cm. The right somatosensory bar-
rel cortex was exposed through a craniotomy (5 mm in diameter,
centered 2.4–2.5 mm posterior to the Bregma and 5.8–6.0 mm
lateral from midline) and a small patch of dura matter was
carefully removed. Non-conductive paraffin oil (Nacalai tesque)
was applied over the exposed brain tissue to keep the cere-
bral cortex moistened. Two other craniotomies with 1 mm in
diameter were made at the left posterior and right posterior
parts to the lambdoidal suture to set the ground and refer-
ence screws, respectively. These screws were attached to the
skull by dental cement and in direct contact with the brain’s
surface.

A THREE-DIMENSIONAL SILICON-BASED MEA
In this study, we used a three-dimensional silicon-based micro-
electrode array (3D array) that was customized in collaboration
with NeuroNexus Technologies, Inc. The 3D array is composed
of multiple 2D planar probes (4 shanks each with 8 micro-
electrodes, 200 μm inter-electrode distance) which are bound
together (400 μm inter-shank distance) using micro assembly
technique (Figure 1A). Figure 1B shows an illustration of the 3D
array after being inserted into a virtual barrel field of a rat. A
picture with the probe in position to be inserted into an actual
somatosensory barrel cortex is shown in Figure 1C. Each 3D
probe has 128 microelectrodes in total covering a volumetric
region of interest (ROI) of about 2 mm3, which means 4–9 adja-
cent barrels. By means of this 3D array, changes in the distribution
of the extracellular electric potentials in such a ROI are observed
with high temporal resolution.

FIGURE 1 | The 3D array. (A, left) Micro assembly of four planar probes a
courtesy of Neuronexus Tech. (A, right) Each planar probe comprises 32
microelectrodes with 400 μm inter-shank distance and 200 μm
inter-electrode distance along each shank. An illustration (B) and a
photograph (C) of the 3D array right before its implantation into the
somatosensory cortex of a rat.

THREE-DIMENSIONAL RECORDINGS OF EXTRACELLULAR ELECTRIC
POTENTIALS
We implanted the customized 3D array into the exposed
somatosensory barrel cortex in a way that the tip of each
shank was at a depth of 1600 μm. Due to the strong reactiv-
ity of the brain tissue compared to other probe formats (e.g.,
laminar and planar), the insertion of the 3D array constitutes
one of the most difficult steps of the proposed methodology.
Repelling forces make the tissue easily bent and recover upon
attempted insertion of the probe. Therefore, we applied a grad-
ual insertion method where the 3D array is iteratively inserted
two steps forward (200 μm) and one step backward (100 μm)
until a designated depth is reached. Each insertion was observed
using a customized rotating digital microscope (KH-1300, Hirox;
Narishige).The probe insertions were performed with a micro-
manipulator (Combi 25Z; Luigs and Neumann Feinmechanik,
Ratingen, Germany) and the procedures were always monitored
on the digital display of the micromanipulator’s control system
(SM5; Luigs and Neumann). Each shank of the 3D array was
carefully painted with a lipophilic neuronal tracer carbocyanine
(DiI, D282; Invitrogen) to reveal its actual position from histo-
logical images, which were obtained after each recording section.
Experiments were early terminated for those rats with consider-
ably cortical bleeding due to perforations of pial vessels. We also
excluded from the analysis several rats whose histological images
show signs of cortical swelling or abnormal lamination. It took us
some years to master this insertion protocol.” In most of the cases,
deformations of the cortical tissues were observed neither during
the experiment nor on the postmortem images.
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For comparison with the iCSD3D method (Łe.ski et al., 2007),
half of microelectrodes were excluded, resulting in an array of 64
microelectrodes, to mimic a 3D array with equidistant microelec-
trode arrangement (400 μm inter-electrode distance and 400 μm
inter-shank distance). The 3D array was connected to the main
amplifiers (PZ-2, Tucker-Davis Technologies, TDT) through a
couple of 64 channel ZIF-Clip® headstages (ZC64; TDT). The
PZ-2 amplifiers were connected to a signal processor unit (RZ-2;
TDT) by optical fibers. The electric potentials at the microelec-
trodes were recorded with respect to the reference electrode, and
with a sampling frequency of 25 kHz.

Individual whiskers were deflected by the piezoelectric
bimorph actuator (TAYCA, Japan). The deflection angle, fre-
quency and interval for each whisker deflection were set to 7.2◦,
1 Hz, and 100 ms, respectively. To that end, square pulses with
these parameters were programmed in MATLAB and the resulting
signals were used to energize a piezoelectric bimorph actua-
tor through the D/A converter (PCI-6259, National instruments,
USA) and the piezo driver (PCD-001, General Photonics, USA).
For each condition, we recorded 100 trials.

HISTOLOGY
After recordings, rats were perfused with 4% paraformalde-
hyde in 0.1 M sodium phosphate buffer saline solution, and
their postmortem brains were kept in the same solution
overnight. After that, the fixed brains were cut tangentially
to the brain surface in 100 μm thickness by a tissue sec-
tioning equipment (Vibratome 1000-plus; Leica Microsystem).
To reveal the barrels, the sections were treated with 3,3′-
diaminobenzidine (DAB, Sigma D8001) and cytochrome C oxi-
dase from horse heart (Sigma, C2506) following the protocol
by Civillico and Contreras (2006). Co-localized immunostain-
ing images that reveal the shank positions and barrels were
obtained by using an upright fluorescent microscope (SZX16,
Olympus).

DATA PREPROCESSING
The extracellular electric potential comprises two types of elec-
trophysiological signals (Gray et al., 1995), i.e., the LFPs, which
reflect spatiotemporal superposition of synaptic inputs to the
neuronal populations, and the unit activity, which captures the
action potentials produced by neurons in close proximity to the
microelectrodes. To obtain LFPs from the raw data, we applied a
Butterworth band-pass filter with cut-off frequency of 1 Hz and
500 Hz. Event-related potentials (ERPs, �(t), t = −50− 100 ms)
evoked by whisker deflections were calculated by averaging LFPs
over 100 trials. Another band-pass filter with cut-off frequency
of 500 Hz and 8 kHz was applied to the raw data. From the
resulting high frequency components, we extracted MUA by
negative edge detection with a threshold of 4 times the stan-
dard deviation and 1.5 ms dead time. Twenty samples (i.e., eight
and twelve samples prior and posterior to the spike troughs,
respectively) of the detected spikes were used for classification.
Spikes at each microelectrode were divided into putative excita-
tory pyramidal cells (PCs) and interneurons (INs) by two-step
clustering strategy (Ogawa et al., 2011). First, we represented
the spikes using four-level Haar wavelets. From the resulting 20

wavelet coefficients, 10 representative coefficients were selected
as the input for cluster analysis using the Kolmogorov–Smirnov
test. The cluster analysis was performed using the superpara-
magnetic clustering method (Blatt et al., 1996) followed by a
manual clustering strategy to avoid obvious outliers and mis-
classifications. The aforementioned data processing was carried
out using the free-downloaded MATLAB toolbox, “Wave Clus”
(Quiroga et al., 2004). Second, we extracted three features from
the mean waveform of each classified spike cluster, i.e., the peak
amplitude asymmetry, half width and trough peak. We applied k-
means clustering method to these features and we finally obtained
two spike clusters (Figure 2). Based on the three features, we
assumed that spikes whose waveforms show “wide” and “nar-
row” shapes were generated by putative PCs and INs, respectively
(Sakata and Harris, 2009). The separability of these clusters was
tested by the Hotelling’s T-squared test (P = 0.022). It is well
known that spiny stellate (SS) cells in Layer 4 are one of the
INs in the neocortex. The spike’s duration for SS cells is around
0.6 ms, which is within the range of that for the INs (i.e., 0.27–
0.65 ms) but different from that for the PCs, i.e., from 0.70 to
1.50 ms (Tierney et al., 2004). Therefore, based only on its dura-
tion it is difficult to distinguish a spike fired by a SS cell from
one fired by a GABAergic INs. Meanwhile, a study using intra-
cellular recording showed that SS cells in the stimulated barrel
respond around 6–8 ms after the deflection (Armstrong-James
et al., 1992). Based on this criterion, we selected the microelec-
trodes located around layer 4 of the barrel corresponding to
the stimulated whisker. We picked up IN-like spikes observed
at these microelectrodes in the post-stimulus period from 6 to
8 ms, and defined them as putative SS cells. The spiking times
of PCs, INs and SS cells at each microelectrode were used as
triggers to compute the spike-triggered average of the electric
potentials (STAPs). The black cross in Figure 2 corresponds to
the features extracted for the SS cells. Clearly it is hard to
distinguish SS cells from GABAergic INs in terms of spiking
characteristics.

FIGURE 2 | A classification of the detected spikes. The right panel

shows the classified mean spike waveforms of the excitatory pyramidal
cells (PCs) and interneurons (INs). Black lines denote their mean spike
waveforms. Left panel shows the spike waveforms as projected onto the
three-dimensional feature space. The black cross indicates the mean spike
waveform of the detected spiny stellate (SS) cells.
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THE vCSD METHOD
Neither the LFPs nor the unit activity independently represent
the ionic flows across cell membranes, i.e., the volumetric CSD.
Instead, they are external reflections of these electric currents
through a highly conductive extracellular medium. The key com-
ponent of our proposal is the vCSD method to reconstruct these
trans-membrane ionic flows for both types of extracellular elec-
tric potentials. The main idea underlying the vCSD method is
illustrated in Figure 3. Consider a 3D array of N = nx × ny × nz

microelectrodes implanted in a neocortical ROI. The position of
the probe inside the cortical regions is determined from the DiI
traces left in the histological sections (Figure 3A). The symbols,
nx and ny denote the numbers of shanks in the x and y directions,
respectively, and nz represents the number of microelectrodes
on each shank. The actual positions of these microelectrodes are
�ri

e ∈ R3, (i = 1, 2, · · · , N) and the electric potentials observed
at these microelectrodes are denoted by φi. The ROI is divided
into M = mx ×my ×mz cubic microscopic volumes. We called
the resulting cubic mesh, with inter-node distance d, as the “cur-
rent source grid” (Figures 3B,C). Discrete point current sources

Ij (j = 1, 2, · · · , M) are defined at the grid points �rj
s ∈ R3 of

the current source grid. Note that the relationship between the
actual vCSD value Cj and Ij at each grid point is represented by
Cj = Ij/d3.

Under the validity of the quasi-static approach for the prop-
agation of the electric field inside the brain tissue (Plonsey and
Heppner, 1967), the Poisson equation is useful to relate the
electric potentials and the current sources inside the brain

∇ ·
(↔

σ ∇φ
)
= −C, (1)

where
↔
σ denotes the conductivity tensor. After solving the above

partial differential equation independently for each time instant,
the current sources defined on the discrete grid and the resulting
electric potential φi at the ith microelectrode can be related by
the following biophysical model, known as the forward problem
(Goto et al., 2010)

φi = G(�ri
e, �rj

s, �)Cj

= GijCj, (2)

where G is the generalized Green’s function that is determined
by the ROI’s geometry, the boundary conditions, and the con-
ductivity profile of the brain tissues, i.e., the volume conductor
model. These physical properties are summarized in the parame-
ter set � in function G. Note that we are using Einstein symbolic
sum notation. As a consequence of the superposition of the elec-
tric fields, the resulting electric potential at each microelectrode
reflects contributions from all current sources. The relationship
between electric potentials at all microelectrodes in the 3D array
and the current sources at the grid points can be represented by
the following algebraic equation

� = GC (3)

where � = [φ1 φ2 . . . φN ]T and C = [C1 C2 . . . CM]T are vec-
tors, and G is the discrete generalized Green’s function matrix

G =

⎡
⎢⎢⎢⎢⎣

G11 G12 · · · G1M

G21 G22 · · · G2M
...

...
. . .

...

GN1 GN2 · · · GNM

⎤
⎥⎥⎥⎥⎦. (4)

For simplicity, we have ignored the time dependency in our
definitions. The vCSD method consists of estimating C from mea-
surements of �, which represents in fact an ill-posed inverse
problem.

THE VOLUME CONDUCTOR MODEL
The use of a realistic volume conductor model G constitutes one
of the most significant differences between the vCSD method
and other conventional methods for CSD analysis (e.g., Łe.ski
et al., 2007; Potworowski et al., 2011). In some theoretical stud-
ies, inhomogeneity and/or anisotropy in the electric conduc-
tivity have been considered (Holt, 1998; Pettersen et al., 2006)
on the basis of experimental evidence, e.g., in the cerebellum
(Nicholson and Freeman, 1975; Okada et al., 1994) and in the
neocortex (Hoeltzell and Dykes, 1979). However, most of CSD
methods in the literature assumed an infinite, homogeneous and
isotropic volume conductor model, denoted in this paper by
the Green’s function (InfH, Ginf). It was demonstrated in the
past that changes in the electric conductivity do not significantly
affect the results obtained with the classic CSD method, which is
based on the second-order spatial derivative of the electric poten-
tials (Mitzdorf and Singer, 1980). Conversely, Goto et al. (2010)
showed that misspecification of the volume conductor model in
terms of both geometry and conductivity profile affect dramat-
ically a more contemporary method, i.e., the iCSD3D method
(Łe.ski et al., 2007). Goto et al. (2010) proved that the somatosen-
sory cortex of rats can be locally approximated by six spherical
shells, which were easily determined from fluorescent images
of brain sections labeled by the fluorescent Nissl staining. Also,
detailed measurements of the electric conductivity profile in this
particular cortical region, revealed the existence of significant
anisotropies (Goto et al., 2010). Based on this previous study, we
used a spherical inhomogeneous and anisotropic (SphIh) volume
conductor model, with corresponding Green’s function Gsph, for
the somatosensory cortex of rats (Figure 3D), and used the math-
ematical strategy proposed by De Munck and Peters (1993) to
calculate Gsph numerically.

SUPPRESSING THE EFFECT OF NOISE ON THE CSD RECONSTRUCTION
Commonly, the number of point current sources is larger than
the number of microelectrodes M >> N, and also, the lin-
ear operator based on function G(�ri

e, �rj
s, �) has a non-trivial

null space; hence, the matrix G has an incomplete rank and is
poorly conditioned. The use of a priori information about C
has become a standard way to deal with this problem, giving
rise to the well-known “distributed inverse solution” family. The
low resolution electrical tomography (LORETA), which results
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FIGURE 3 | Definition of the current source grid and the volume

conductor model. (A) A composed fluorescent image of a Nissl stained
coronal section of the rat brain and the illustration of the 3D array inserted
into the somatosensory barrel cortex. (B) The current source grid (magenta)
is defined for a ROI covered by the inserted 3D array. A magnified picture of
the current source grid corresponding to the black-dashed-circle is also

shown (C). Each grid point has a vCSD value Cj ,(j = 1, 2, · · · , M) and the
electric potential observed at the ith microelectrode is denoted by φi ,
(i = 1, 2, · · · , N). (D) The spherical inhomogeneous and anisotropic (SphIh)
volume conductor model. Six concentric spherical shells represent the layers
of the somatosensory cortex, and each shell has particular radial and
tangential conductivity values (Goto et al., 2010).

from a vector laplacian penalization to the optimization func-
tional for the primary current density, constitutes, so far, one of
the most acknowledged distributed inverse solutions for macro-
scopic EEG data (Pascual-Marqui et al., 1994). LORETA can be
interpreted within the context of the general smoothing splines
introduced by Wahba (1990) to solve noisy operator equations
(Riera et al., 2006). LORETA inverse solution warrants not only
smoothness of the reconstructed C but also forces it to be mini-
mal on the boundary of the brain. Technically, the LORETA type
of inverse solution of equation (3) results from minimizing the
optimization functional o (C) = ‖�− GC‖2 + λ ‖LC‖2 respect
to the CSD vector C. The matrix L is the discrete spatial Laplacian
operator defined as

L = 6

d2
(W− E)

[W]ij =
{

1
6 , if

∥∥∥�ri
s − �rj

s

∥∥∥ = d

0 otherwise

}
, ∀i, j = 1 . . . M (5)

where E is the M ×M identity matrix.
Finally, the solution of the weighted linear regression

problem is:

Ĉ = (G′G+λL′L
)−1

G′� (6)

The estimation of the hyper-parameters λ is a problem of con-
siderable importance, since it tells us about the accuracy of the
electrophysiological instrument, the quality of the data in terms of
the S/N ratio as well as the degree of smoothness to be introduced

for the unknown vector C. In this paper, we used the general-
ized cross validation (GCV) method to estimate λ (Wahba, 1990).
Therefore, the optimal λ minimizes the following evaluation
function E(λ)

E(λ) = ‖P�‖2

[tr(P)]2
(7)

where the projecting matrix P is defined as

P = E− G
(

G′G+ λL′L
)−1

G′.

The vCSD method was applied to grand-average ERPs and STAPs.
To that end, immunostaining images were used to define the
current source grid relative to the position of the microelec-
trodes. Based on the imprints of the shanks and insertion depth
of the 3D array, we defined a rectangular current source grid,
comprising M = 30 × 30 × 28 grid points with d = 50 μm
inter-grid distance. The CSD C(t) for each time instant was esti-
mated by solving Equation (6) with G = Gsph. The iCSD3D
was also applied to the ERPs and the respective CSD in the cur-
rent source grid was estimated. Note that in order to remove the
dynamic effect of the signal observed at the reference electrode,
we applied the average reference operator (Pascual-Marqui, 1999)
to the Green’s function matrices, ERPs and SRPs (Offner, 1950;
Bertrand et al., 1985).

EFFECT OF VOLUME CONDUCTOR MODEL ON THE CSD ANALYSIS
Goto et al. (2010) have evaluated how misspecifications of the
conductivity profile and the cortical geometry affect the CSD
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reconstruction using the iCSD3D method. Such a method is
based on the assumptions of an infinite ROI with homogeneous
and isotropic conductivity. Goto et al. (2010) found distortions
in the CSD reconstructions, especially in the case of CSD dis-
tributions with charge-unbalances. In this study, we performed
a simulation to ensure that such distortions are minimized by
the proposed vCSD method when an appropriate volume con-
ductor model is used. As in Goto et al. (2010), we employed a
3D array (N = 9 × 9 × 15 microelectrodes array, 100 μm
inter-electrode distance along the shank, 100 μm inter-shank dis-
tances). We defined the rectangular current source grid which has
M = 16 × 16 × 28 grid points with a resolution d = 50 μm.
Two types of CSDs were simulated. The first type was a sinusoidal
function weighted by a Gaussian term, which represents charge
balanced CSDs.

Cj =

⎧⎪⎨
⎪⎩

sin
[

2π(zj−z0)

T

]
exp

(
−
√

x2
j +y2

j

2l2

)
if
∣∣zj − z0

∣∣ < T
2

0 otherwise

(8)

where Cj is the value of CSD at the jth grid point located in the
tangential coordinates

{
xj, yj
}

and the radial depth zj, l is the
full width at half-maximum (FWHM) in the xy-plane. The sec-
ond type of CSD was a pure Gaussian function, which represents
charge-unbalanced CSDs.

Cj = exp

⎛
⎝−
√

x2
j + y2

j +
(
zj − z0

)2
2l2

⎞
⎠ (9)

where l is the FWHM in both the xy-plane and z direction. From
these CSD distributions, we simulated electric potentials at the
microelectrodes � by using equation (3) with the SphIh volume
conductor model (i.e., Gsph). After that, we performed both the
vCSD analysis (i.e., G = Gsph) and the iCSD3D method (i.e.,

G = Ginf) to estimate Ĉ from the simulated data �. Finally, the
reconstruction errors (RE) for both methods were evaluated from
the estimated CSDs by the following criterion

RE =
√√√√√ M∑

j= 1

(
Cj − Ĉj

)2
/√√√√√ M∑

j= 1

(
Cj
)2

(10)

CSD RECONSTRUCTION FROM NOISY DATA
To assess the sensitivity of the proposed vCSD method to noise,
we conducted another simulation study. We employed a cubic
current source mesh which had M = 24 × 24 × 24 grid
points with an inter-grid distance d = 50 μm. The following
Gaussian type of CSD distribution was used.

Cj = exp

⎛
⎝−
∥∥∥→rj − →r0

∥∥∥
2l2

⎞
⎠ (11)

where
→
r0 is the center of the Gaussian function which for all trials

was selected randomly within the ROI. The FWHM l was fixed at

400 μm throughout this simulation study. The electric potentials
at the microelectrodes � were calculated from this CSD distri-
bution by using equation (3) with G = Ginf. We computed the
potentials �β that included an additional noise term

�β = �+ ξ (12)

where ξ ∝ N
(
0, σ2

)
is a Gaussian noise with zero mean and

variance σ2. The variance σ2 was determined from the sample
variance of �

σ2 = β

N∑
i= 1

(
φi − 1

N

N∑
i= 1

φi

)2

(13)

where the parameter β ∈ [0.01, 0.05, 0.1, 0.5] determined the
level of noise.

We estimated the CSD distribution Ĉ from simulated data �β

by the vCSD method, i.e., Equation (6) with G = Ginf, and the
iCSD3D method (G = Ginf). The REs were calculated for each
value of β. Additionally, we evaluated the impact of the resolution
of the microelectrode array on the CSD reconstruction by calcu-
lating the respective RE for arrays with 200, 300, 400, and 600 μm
inter-electrode distances.

LOCALIZATION OF THE BARRELS
To evaluate the accuracy of the vCSD and iCSD3D methods,
we used estimated CSD distributions to detect the barrels corre-
sponding to the particular deflected whiskers. We manually reg-
istered the anatomical barrels covered by the current source grid.
First, we picked up one xy-plane U ⊂ R2 in the current source
grid at the approximated depth of layer 4. This plane (ML4 =
24 × 24 grid points) was superimposed with the immunostain-
ing image and the relative position of each grid point was defined
as �rk ∈ U , (k = 1, 2, . . . , ML4). Note that grid points outside of
the microelectrode grid, i.e., the outermost three grid points in
both the x and y directions and the outermost two grid points
in z direction in the 30 × 30 × 28 sized current source grid,
were used to equivalently introduce a free boundary condition
that allow us to accommodate outside current sources Łe.ski et al.
(2007). CSD values at those grid points were ignored.

Second, we defined a binary value ak at each grid point in
the two-dimensional grid plane �rk, resulting in a vector A =
(a1, a2, . . . , aML4). Third, we defined a barrel space B ⊂ U man-
ually from the immunostaining images. And finally, the elements
of A were set by the following criterion

ak =
{

1 if �rk ∈ B

0 otherwise
(14)

We used the binary vector A (i.e., the anatomical barrel) as the
Gold Standard for evaluating the accuracy with which barrel
were detected by the CSD methods. The following thresholding
method was used to detect a barrel:
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1. We normalized the CSD distribution C̄(�rk).

Ĉn(�rk) = Ĉ(�rk)

/
max
�rk∈U

(
Ĉ(�rk)

)
(15)

2. We defined another binary vector F(α) =(
f1(α), f2(α), . . . , fML4(α)

)
as the functional barrel. A

threshold α in the interval [0, 1] was used to define the
elements of F(α) by the following criterion.

fk(α) =
{

1 if Ĉn (�rk) ≥ α

0 otherwise.
(16)

3. We determined the threshold α∗ in a way that the functional
barrel has same area as that of the corresponding anatomical
barrel, i.e., difference of the total summation of the compo-
nents in the binary vectors A and F(α) is minimized.

α∗ = arg min
α∈[0,1]

∣∣‖A‖2 − ‖F(α)‖2
∣∣ (17)

4. For evaluating the detection accuracy, i.e., the localization
error, we used the normalized distance between the anatomical
A and functional F(α∗) barrels.

Localization Error = ‖A− F (α∗)‖2

‖A‖2
(18)

In this formalism, the localization errors corresponding to the
best and worst detected barrel are 0.0 and 1.0, respectively. We

found no computational problems for all barrels analyzed with
this method.

STATISTICAL ANALYSIS
The Kolmogorov–Smirnov test was used to determine the wavelet
coefficients that better represent the spikes. The Hotelling’s T-
squared test was used to evaluate the separability of clusters in the
spike’s parameter space. Pair-based comparisons were performed
using the one-tailed t-test and Mann-Whitney U test for the REs
and Localization Error, respectively.

RESULTS
Figure 4 summarizes the methodology for fast assessments of
the electrical activity of cortical networks in the barrel field
of Wistar rats. Single whisker evoked-potentials were recorded
from the somatosensory barrel cortex by using the 3D array.
These potentials were separated into LFPs and unit activities
by applying low and high range band-pass filters, respectively.
We extracted LFPs for single trial responses, and also computed
the ERPs. At the same time, neuronal spikes were detected at
each microelectrode, and classified into excitatory PCs and INs.
An additional criterion was applied to distinguish SS cells from
INs (see Material and Methods). The spiking times of the clas-
sified cells were used to compute the STAPs. Cortical current
sources associated with single trial LFPs, ERPs, and STAPs were
processed through the vCSD method (Figure 5). The example
movie of a single trial response can be seen in the Supplementary
Video and an explanation for a particular time instant is in
Figure 6.

FIGURE 4 | The methodology for fast assessments to the electrical

activity of cortical networks in the barrel field of Wistar rats. Electric
potentials recorded with the 3D array under single whisker deflections are
divided into LFPs and unit activities via corresponding band-pass filters
(1–500 Hz for LFPs and 0.5–8.0 kHz for unit activity). Event related and
single trial potentials are computed from the LFPs. The spike triggered

average of the electric potentials (STAPs) for pyramidal cells (PCs) and
interneurons (INs) are obtained through spike detection and clustering
methods. Finally, the vCSD method is applied to the STAPs as well as to
the averaged (ERPs) and single trial LFPs to estimate the spatiotemporal
CSD maps associated with single unit activities and population inputs,
respectively.
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FIGURE 5 | Example of the CSD distributions estimated for single unit

(left panel) and population synaptic (right panel) activities. The CSD
distributions are represented in three dimensional contours. The contours
denoted by meshes and patches represent the weak (30% of the maximum)
and strong (70% of the maximum) intensity of the CSD, respectively. In the
left panel, orange and magenta are used for the current sink of the excitatory
[pyramidal (PC) and spiny stellate (SS) cells] and inhibitory (IN) neurons,

respectively. Blue and green are for the current sources generated by PC/SS
and IN, respectively. In the right panel, red and blue are used to represent
current sink and source, respectively. The CSD maps were estimated from
instantaneous ERPs at 8 ms post-stimulus time of a single whisker
deflection. On the right frame, the white circles in the histological image
denotes the barrels and one of them, indicated by the arrow, corresponds to
the barrel associated to the deflected whisker in this particular condition.

FIGURE 6 | Instantaneous image taken from the Supplementary

Video at time instant (15 ms post-stimulus), indicated by a

horizontal black line at the lower panels. The upper panels

show single trial spike (left) and LFP-related (right) CSD distributions

after a single whisker deflection at time t = 0. The lower panels

show the time courses of the LFPs obtained from each electrode
in the 3D array and the respective raster plots of the detected
single units.

EFFECT OF VOLUME CONDUCTOR MODEL ON THE vCSD ANALYSIS
We conducted computer simulations to evaluate the effect on the
vCSD method of certain misspecifications in the volume conduc-
tor model. Figure 7A shows, for a single trial, the actual current
sources (left panels) used to generate the electric potentials, as

well as their reconstructions by means of the vCSD method
in the cases of employing the InfH (center panels) and SphIH
(right panels) volume conductor models, respectively. The cur-
rent sources in the upper and lower panels were created using
a balanced (sinusoidal) and an unbalanced (Gaussian) model,
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FIGURE 7 | Results of the simulations studies to evaluate the vCSD

method. (A) Example of the CSD reconstructions of large-sized
sinusoidal and Gaussian types of CSD of distributions by vCSD method
using both InfH and SphIh volume conductor models. The dashed lines
in each panel indicates the boundaries separating the cortical layers.
(B) Statistical test to evaluate the reconstruction errors (REs) for InfH
and SphIh volume conductor models. The triple asterisk indicates the
threshold of the p-value (P = 0.001, n = 10) used for the one-tailed t-test.

(C) Example of the CSD reconstructions of a Gaussian CSD distribution
(panel leftmost) from electric potentials observed by a virtual 3D array
which have 200 μm inter-electrode distance. Top and bottom rows are
the CSD distributions estimated by the iCSD3D method and the vCSD
method with InfH, respectively. Each column denotes a different noise
level added to the simulated electric potential distributions. (D) Contour
plots for the reconstruction errors as the functions of the noise level and
the inter-electrode distance.

respectively. When the SphIh volume conductor model was used,
the CSD was accurately reconstructed for both small and large
sized sources (reconstruction error, REs <2%). However, the
CSD reconstructions obtained using the InfH volume conductor
model showed significant distortions in the spatial configuration

with larger REs. These distortions were more prominent for the
case of charge-unbalanced models of the current sources. High
REs for the charge-unbalanced CSD reconstructed by the iCSD3D
method were also reported in Goto et al. (2010). The statistics for
the REs reported in Figure 7B were obtained by performing ten

Frontiers in Neural Circuits www.frontiersin.org February 2014 | Volume 8 | Article 4 | 154

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Riera et al. Volumetric CSD analysis

single trial simulations with current sources centered at different
depths along the cortical lamina.

CSD RECONSTRUCTION FROM NOISY DATA
We have also performed a second simulation study to compare
the noise sensitivity and the spatial resolution of the iCSD3D
and vCSD methods. To this end, we simulated electric potentials
which were contaminated with observational noise at different
levels from 1 to 50%. In order to use the original iCSD3D
method, we employed in this particular simulation study the InfH
volume conductor model for both methods. Note that down-
loadable MATLAB code for the iCSD3D model is only available
for InfH volume conductor. Additionally, these electric potentials
were calculated for silicon-based probes with three dimensional
microelectrodes arrays having different spatial resolutions, i.e.,
from 0.2 to 0.6 mm inter-electrode distances. Figure 7C shows
the reconstructed current sources by both iCSD3D (upper pan-
els) and vCSD (lower panels) methods for the particular case of
a silicon-based probe with inter-electrode distance of 0.2 mm. In
this figure, each column-wise panel shows the CSD reconstruc-
tion for different noise levels. Color maps with the REs for both
types of CSD analysis methods as a function of the noise level and
the inter-electrode distance are shown in Figure 7D. The iCSD3D
method was able to correctly reconstruct current sources for low
levels of observational noise. However, the REs, in this particu-
lar case, increased rapidly with the inter-electrode distance. The
situation was dramatically inverted when large noise contamina-
tion in the observed electric potentials existed, with a very poor
reconstruction for higher resolution MEA. However, substantial
improvements were achieved when we reduced the electrode’s
resolution (i.e., increase inter-electrode distance). These improve-
ments were observed in 50% of noise level only for inter-electrode
distances longer than 0.4 mm. Even though they were smaller, sig-
nificant differences in the REs were found (P < 0.001) between
the vCSD and iCSD3D methods. This simulation study revealed
an intrinsic tradeoff in the iCSD3D method, which results from
the lack of a regularization term to stabilize an inverse operator
defined from a highly ill-conditioned matrix. Such compromise
between the noise level in the data and the spatial resolution of
the microelectrode array was not observed in the case of using the
vCSD method. The vCSD method kept acceptable performance
even at 50% noise level and inter-electrode distance of 0.2 mm. In
the current simulation study, we employed 50 trials for each noise
level and microelectrode array’s resolution.

LOCALIZING SINGLE BARRELS USING THE vCSD METHOD
In this study, we used the actual anatomical barrels as the “Gold
standard” to validate our methodology for single whisker deflec-
tion. The main reasons for using the anatomical barrels come
from the structure of the barrels and their spatiotemporal synap-
tic responses to single whisker stimulation. First, the main inputs
from the thalamus to the somatosensory barrel field arrive at layer
4 of the cortex, where the SS cells process them. The arriving times
of these first sensory inputs are around 6–8 ms after the whisker
deflection (Armstrong-James et al., 1992; Wilent and Contreras,
2004). After the SS cells receive these inputs, they increase their
activity by self-feedback mechanisms within the corresponding

barrel (Feldmeyer et al., 1999). During this period, synapses of
the SS cells play the main role in producing post-synaptic poten-
tials. The dendrites of SS cells located inside a particular barrel
extend mainly to the center of the barrel, indicating most of
these synapses are delimited to the single barrel (Woolsey et al.,
1975; Petersen and Sakmann, 2000; Egger et al., 2008). Based on
these facts, the synaptic activities of SS cells in response to the
single whisker deflections are limited within the corresponding
barrel, i.e., current sinks in the period of 6–8 ms after a single
whisker deflection are confined within the barrel. This hypothe-
sis has been supported by previous in vitro and in vivo studies.
For instances, in vitro field EPSP recordings in the barrel field
after the electric stimulation of its center showed that excitatory
neuronal circuits within layer 4 are functionally confined to each
barrel (Petersen and Sakmann, 2000). Additionally, in vivo VSDI
imaging, and in vivo extracellular recordings by horizontal planar
Utah intra-cortical microelectrode array (in combination with
spike histogram analysis) showed that the barrels corresponding
to the deflected whiskers could be well-localized (Petersen and
Diamond, 2000; Petersen et al., 2003). Taking into account the
anatomical and functional characteristics of the barrels, we used
actual whisker ERPs recorded by our 3D array at this particular
time instant to evaluate the performance of the vCSD method. By
means of Dil staining, we were able to co-register the CSD distri-
bution and the anatomical barrels, which were clearly determined
from the xy-images of cytochrome C oxidase immunostaining
at the level of layer 4 (Figure 8A). We estimated the CSD dis-
tributions in the period of 6–8 ms post-stimulus (Figure 8B).
We defined the functional barrels from the CSDs based on a
thresholding method. The thresholds were chosen in a way that
the functional barrels have the same area as the corresponding
anatomical barrels (Figures 8C,D). Both anatomical and func-
tional barrels were represented by binary vectors whose lengths
represented the total number of grid points on the xy-plane of the
current source grid at the level of layer 4. Figure 8E shows local-
ization errors of the functional barrels for reconstruction with the
vCSD and iCSD3D methods. The results from single trial com-
parison are shown in Figure 9. We found that the localization
error of the vCSD method was lower than 20% (19.0± 6.1%) and
this method always produces more accurate reconstructions than
the iCSD3D method (41.4± 10.1% localization error).

DISCUSSION
We have demonstrated that, by the combination of mathematical
methods and high technology, it is possible to image the activity
of neuronal networks from extracellular electric recordings at res-
olutions unprecedented for electrophysiological methods. For the
first time, to our knowledge, images with high spatial-resolution
in both the horizontal plane (i.e., cortical columns) and trans-
laminar axis (i.e., cortical layers) are obtained from electrophys-
iological recordings in similar fashions to those achieved via
multi-photon fluorescent microscopes. From actual electrophys-
iological recordings, we reconstructed the CSD distributions at
any depth of the barrel cortex separating cortical inputs from their
outputs. Additionally, we were able to discriminate spike-related
CSD distributions for different types of cells. Our methodology
will be quite useful for a variety of applications in neuroscience,
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FIGURE 8 | Localization of barrels by means of the iCSD3D and vCSD

methods. (A) CSD distribution at 6–8 ms post-stimulus with an illustration
of the xy -plane at the level of layer 4. (B) Co-registration of the xy -plane of
the current source grid at the depth of layer 4 and the anatomical image
acquired from the cytochrome c oxidase stained tangential brain section of
the barrel cortex. The position of the shanks are determined from Dil
staining images. (C) Superposed pictures in the xy -plane of the CSD

distribution at the depth of layer 4 and the anatomical barrel denoted by
cyan dots. (D) The functional barrel (yellow circle) obtained from the
xy -slice of the CSD distribution and the anatomical barrels. (E) Localization
errors between the anatomical barrels and the corresponding functional
barrels estimated by iCSD3D and vCSD methods. The one-tailed
Mann-Whitney U Test (P = 0.004, n = 5) was used to compare the
performances of these two methods.

FIGURE 9 | Five samples of anatomical barrels (cyan dots) and their

corresponding functional barrels (yellow circles) estimated by the

iCSD3D (top row) and vCSD (bottom row) methods. It can be seen
that the vCSD method provided better estimates of the functional barrels

than those obtained by the iCSD3D method. We pointed out that among
the main reasons for the inaccuracy of the iCSD3D method are the
misspecification of the volume conductor model and/or the effect of
systematic noise in the data.
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from both a biophysical and an electrophysiological point of view.
For example, from the cable theory for PCs, it is known that
the spatial summation of the trans-membrane current must be
zero. However, by means of the vCSD analysis, it was possible
to evaluate this hypothesis for the case of STAPs (Riera et al.,
2012). Also, in this latter study, the same analysis was applied to
evaluate multipolar contributions to the LFP recordings. These
issues are important in the light of recent interests in elucidat-
ing fundamental principles of the EEG and MEG genesis. Also,
by the proposed methodology, it will be possible to identify lay-
ers, and determine detailed interactions between these layers but
also columns (barrels) in behaving rats. Our group is currently
using the proposed methodology to determine the spatial cod-
ifiers of the whisker velocity and direction (unpublished data).
Our methodology could be extended in the future to study other
cortical regions and species.

Methods to perform CSD analysis on data recorded with
three-dimensional MEAs are still under development, with only
different volumetric version of the inverse CSD (iCSD, Pettersen
et al., 2006) method available in the literature (i.e., the iCSD3D
method, Łe.ski et al., 2007; the kCSD method, Potworowski et al.,
2012). The main idea behind these methods is to use interpolat-
ing splines to represent the extracellular electric potentials, and
thus to indirectly introduce specific priors for the density of cur-
rent sources C. The iCSD3D method was recently improved by
formulating it in the context of reproducing kernel Hilbert spaces
and introducing a Tikhonov regularization strategy (Potworowski
et al., 2012). These authors used a cross-validation technique to
determine the best value for the regularization parameter λ when-
ever the data are corrupted with noise. In contrast, the proposed
method is the first introducing smoothing constraints directly to
the brain current sources C over extended regions of the barrel
cortex to solve the inverse problem underlying the CSD analy-
sis. The performance of the proposed method was evaluated, and
compared with that for the iCSD3D method, using simulated data
with different noise levels and electrode grid resolutions.

Although the iCSD3D method can be trivially generalized to
more complex volume conductor models, it originally assumed
for simplification that the brain tissues are homogeneous and
isotropic. In this study, we claim that more realistic volume con-
ductor models for the brain tissues of interest must be used to
considerably improve the accuracy of the three-dimensional CSD
analysis. The iCSD3D method has been applied in the past to
averaged extracellular electric potentials obtained from the deep
forebrain of one adult male Wistar rat during whisker stimula-
tion, with an insertion/recording strategy that allow to cover a
volume of (2.8× 3.5× 4.9) mm with a total of 140 electrodes.
However, we have evaluated its performance in this study using
not only simulations but also an experimental paradigm for a gold
standard.

The method developed in this work is directly applicable to
perform CSD analysis whenever the following conditions are met:
(a) recordings of extracellular potentials are performed with a
tridimensional MEA, (b) the conductivity profile of the area of
study is layer-wise inhomogeneous and anisotropic, and (c) the
geometry is approximately spherical. As a consequence of its
extensive use by the community, we have developed the entire

methodology for the particular case of the barrel cortex of rats.
Although the application to other cortical areas of the rats might
be straightforward, its use in other species and brain regions must
be carefully evaluated in accordance with the respective conduc-
tivity profiles and geometries (e.g., somatosensory cortex of cats,
Hoeltzell and Dykes, 1979; CA1 of guinea pigs, Holsheimer, 1987;
cerebellum of turtles, Okada et al., 1994; visual cortex of monkeys,
Logothetis et al., 2007).

FUTURE DEVELOPMENTS
The application of the multi-photon fluorescent imaging tech-
nique to study the brain constitutes one of the most remarkable
achievements in the era of the colored revolution in neuroscience
(Denk et al., 1990; Vonesch et al., 2006). By combining this tech-
nique with the bulk-loading method for membrane-permeable
Ca2+-indicator dyes (Stosiek et al., 2003), both sensory-evoked
and ongoing activity in neuronal populations have been observed
in vivo from rodent/cat neocortex with the spatial resolution of
single neurons. Recently, the technique has benefited from the lat-
est technological and methodological advances in the evaluation
of both neuronal spiking (Wallace et al., 2008) and volumetric
activity (Göbel et al., 2007; Cheng et al., 2011). However, there
are several limitations of the multi-photon fluorescent imag-
ing technique, which make the methodology proposed in this
study a better option for observing neuronal population activ-
ities in a variety of neuroscience problems. First, except when
using voltage-sensitive fluorescent dyes, multi-photon micro-
scopic imaging commonly constitutes an indirect measurement of
the actual membrane potentials (i.e., it senses slow changes in the
intracellular Ca2+ concentrations). As a consequence, it is hard
to distinguish subthreshold neuronal activity (i.e., post-synaptic
inputs) from spiking (i.e., axonal outputs). In comparison to
Ca2+-indicator dyes, the sensitivity of voltage-sensitive fluores-
cent dyes for imaging subthreshold electrical activity is excellent.
Unfortunately, the latter lack single-cell spatial resolution in vivo
(Kuhn et al., 2008) and are deficient in terms of the S/N ratio.
Also, alterations in the cellular physiology have been associated
with the use of voltage-sensitive fluorescent dyes (Mennerick
et al., 2010). Second, multi-photon imaging still suffers from poor
time resolution even though a lot of technical progresses have
been made recently (Göbel et al., 2007; Planchon et al., 2011),
Thus far, precisions of a few milliseconds have been achieved
by combining some of these methods (Grewe et al., 2010), but
actual reconstructions of spike dynamics, propagation and tim-
ings from fluorescence traces are just about to happen. Third, the
neocortical tissues are high light-scattering media, which results
in an imaging-depth limit (Theer and Denk, 2006). By combin-
ing regenerative amplifiers (Theer et al., 2003) with genetically
encoded calcium indicators, even layer 5 (up to 800 μm) have
been recently imaged in vivo (Mittmann et al., 2011) although
image resolution at that depth is poor. In principle, MEA could
be combined with silicon photonics to take advantages of optical
applications quickly developed in this decade. The methodology
proposed in this study could also benefit from recent advances
in MEA fabrication. For example, to improve interaction with
neural cells, microelectrodes built from nanoscale bioactive coat-
ings (e.g., polymers) have been proposed (Richardson-Burns
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et al., 2007). By means of multiplexing and telemetry techniques,
miniaturized and wireless multi-channel systems are speedily
developing for recording neural signals from behaving small
animals (e.g., rats, Szuts et al., 2011).

The MATLAB code for the vCSD analysis is available at the
following website http://web.eng.fiu.edu/jrieradi/.
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Neocortical network activity is generated through a dynamic balance between excitation,
provided by pyramidal neurons, and inhibition, provided by interneurons. Imbalance of the
excitation/inhibition ratio has been identified in several neuropsychiatric diseases, such
as schizophrenia, autism and epilepsy, which also present with other cognitive deficits
and symptoms associated with prefrontal cortical (PFC) dysfunction. We undertook a
computational approach to study how changes in the excitation/inhibition balance in
a PFC microcircuit model affect the properties of persistent activity, considered the
cellular correlate of working memory function in PFC. To this end, we constructed a PFC
microcircuit, consisting of pyramidal neuron models and all three different interneuron
types: fast-spiking (FS), regular-spiking (RS), and irregular-spiking (IS) interneurons.
Persistent activity was induced in the microcircuit model with a stimulus to the proximal
apical dendrites of the pyramidal neuron models, and its properties were analyzed,
such as the induction profile, the interspike intervals (ISIs) and neuronal synchronicity.
Our simulations showed that (a) the induction but not the firing frequency or neuronal
synchronicity is modulated by changes in the NMDA-to-AMPA ratio on FS interneuron
model, (b) removing or decreasing the FS model input to the pyramidal neuron models
greatly limited the biophysical modulation of persistent activity induction, decreased the
ISIs and neuronal synchronicity during persistent activity, (c) the induction and firing
properties could not be altered by the addition of other inhibitory inputs to the soma (from
RS or IS models), and (d) the synchronicity change could be reversed by the addition
of other inhibitory inputs to the soma, but beyond the levels of the control network.
Thus, generic somatic inhibition acts as a pacemaker of persistent activity and FS specific
inhibition modulates the output of the pacemaker.

Keywords: prefrontal cortex, NMDA, synchronicity, fast-spiking interneurons, connectivity, parvalbumin

interneurons

INTRODUCTION
Neurons in the prefrontal cortex (PFC) have been shown to
exhibit activity that often persists past the end of the stimu-
lus, as recorded in vivo during the delay period of working
memory tasks (Goldman-Rakic, 1995). This persistent activity
corresponds to the on-line representation of a memory for a
short period of time. Its emergence has been shown to depend
on the balance of excitation, provided by glutamatergic neurons,
and inhibition, provided by GABAergic interneurons (Goldman-
Rakic, 1995; Compte, 2006) as well as on single neuron dynam-
ics (Sidiropoulou et al., 2009; Yoshida and Hasselmo, 2009).
Specifically, activation of NMDA glutamate receptors has been
shown to have a highly significant role on supporting stable per-
sistent activity, from computational studies (Wang, 1999; Compte
et al., 2000), in vitro brain slice experiments (McCormick, 2003)
and in vivo recordings in monkeys (Wang et al., 2013). Relatively
few studies, however, have investigated how interneuron structure
and physiology contributes to physiological prefrontal cortical
(PFC) function (Rao et al., 1999; Wang et al., 2004).

Interneurons exhibit great diversity in their distribution, con-
nectivity, neurochemistry, synaptic connections and electrophysi-
ological properties. Three main classes have been identified based
on their electrophysiological characteristics, namely the FS, the
regular-spiking (RS) and the irregular-spiking (IS) interneurons
(Markram et al., 2004).

FS interneurons exhibit fast, high-frequency and short dura-
tion action potentials. Morphologically, they have been identified
as chandelier and basket neurons and they express the calcium-
binding protein, parvalbumin (PV). They innervate the soma
and the proximal dendritic compartments of pyramidal neurons
in the PFC (Wang et al., 2002; Zaitsev, 2005). RS interneu-
rons exhibit RS firing pattern, are mostly double bouquet and
Martinotti-type cells andexpress the protein calbidin (CB) (Cauli
et al., 1997). They have been shown to innervate the distal den-
dritic compartments of pyramidal neurons in the PFC. IS neurons
exhibit IS firing pattern, are primarily bipolar cells and express
the protein calretinin (CR). They project to the dendritic com-
partments of both PV- and CB- positive cells—suggesting that at

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 7 |

NEURAL CIRCUITS

160

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/journal/10.3389/fncir.2014.00007/abstract
http://www.frontiersin.org/people/u/5849
http://community.frontiersin.org/people/AthanasiaPapoutsi/95801
http://community.frontiersin.org/people/KLEANTHICHALKIADAKI/133484
http://www.frontiersin.org/people/u/34323
http://www.frontiersin.org/people/u/54297
mailto:poirazi@imbb.forth.gr
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Konstantoudaki et al. Effects of interneuron types on persistent activity

least some types of CR-positive cells might be disinhibitory—as
well as the distal dendritic compartments of pyramidal neurons
in the PFC (Cauli et al., 1997).

Interneuron activity has been shown to contribute to corti-
cal dynamics, network oscillations (Bartos et al., 2007), neuronal
synchronization of pyramidal neurons (Guidotti et al., 2005),
sensory processing (Börgers and Kopell, 2008), memory func-
tion (Jensen et al., 2007), goal-directed behavior (Kvitsani et al.,
2013) and social behavior (Yizhar et al., 2011). Specific inactiva-
tion of PV interneurons was shown to lead to decreased gamma
oscillations in the PFC (Sohal et al., 2009). With regards to work-
ing memory function and persistent activity, earlier experimental
studies have suggested a role for GABAA-mediated inhibition in
shaping the memory fields in PFC (Rao et al., 1999). Moreover,
in vitro experiments suggest that GABAA activation prevents the
generation of high frequency epileptiform bursts, while GABAB

activation contributes to termination of up-and-down states, a
physiological phenomenon related to persistent activity (Mann
et al., 2009). Finally, computational studies have implicated the
activity of PV/FS interneurons in persistent activity induction and
of CB/RS interneurons in mediating the resistance to distractors
which can prematurely terminate persistent activity (Wang et al.,
2004).

However, there are still many unanswered questions with
regards to which biophysical or connectivity properties of the dif-
ferent types of interneurons mediate persistent activity induction,
firing frequency characteristics and neuronal synchronicity. In an
effort to provide some answers to these questions, we extended
a recently developed PFC microcircuit model (Papoutsi et al.,
2013) to include the three main types of interneurons, i.e., the FS,
regular-spiking (RS), and irregular-spiking (IS) interneurons. We
used this modeling tool to dissect the role of different interneuron
types in persistent activity and to determine whether the connec-
tivity profile or the physiological properties of these interneuron
subtypes mediate their roles in persistent activity.

Our simulations showed that (1) the NMDA current onto the
FS interneuron can modulate the induction of persistent activ-
ity, but not its maintenance properties, (2) reducing FS model
input to the pyramidal neuron models did not allow for NMDA or
GABAB-dependent modulation of persistent activity induction,
and significantly increased the firing frequency, ISI variability and
neuronal synchronicity during persistent activity, (3) the firing
frequency/ISI variability changes could not be altered by the addi-
tion of any other type of inhibitory input to the soma (RS or
IS-mediated) and (4) the synchronicity change could be reversed,
but beyond the levels of the control network by the addition
of non-FS inhibitory input to the soma. Overall, our data sug-
gest that somatic inhibition acts as a pacemaker of persistent
activity with the FS interneuron modulating the output of the
pacemaker.

MATERIALS AND METHODS
Four different compartmental model cells were built, based on
known electrophysiological data: one pyramidal neuron and three
different interneurons, an FS model, an RS model and an IS
model. They were connected in a network, which comprised 16
pyramidal models and 4 interneuron models (2 FS models, 1

RS and 1 IS model). Connectivity between the model neurons
was based on experimental anatomical and electrophysiological
data, as described below. All models are implemented in the
Neuron simulation environment (Hines and Carnevale, 2001)
and simulations were executed on a xeon cluster (8 core xeon
processors).

PYRAMIDAL NEURON MODEL
The pyramidal neuron model used was based on the one pub-
lished in Papoutsi et al. (2013) and consists of a soma, a basal, a
proximal and a distal dendritic compartment. It includes mod-
eling equations for 14 types of ionic mechanisms, known to be
present in these neurons, as well as modeling equations for the
regulation of intracellular calcium (same equation as in Papoutsi
et al., 2013). The passive and active properties of the pyramidal
neuron model was validated according to experimental results of
Nasif et al. (2004) (Table 1 and Figure 1). The dimensions of the
somatic, axonic, and dendritic compartments of the pyramidal
model cell, as well as the passive and active parameters of the
model neuron are listed in the supplemental text (Supplemental
Tables 1, 2).

INTERNEURON MODELS
All three interneuron models included ionic mechanisms for
the fast Na+, A-type K+, and delayed-rectifier K+ currents, as
well as modeling equations for the regulation of intracellular
calcium buffering mechanism (same equations as in Papoutsi
et al., 2013). In addition, each different interneuron model sub-
type included additional ionic mechanisms known to be present
in each type (Toledo-Rodriguez et al., 2005), as detailed in the
following paragraphs.

Table 1 | Input resistance values of the model neurons and those

obtained from electrophysiological data.

IR (Model) IR (Experimental)

Pyramidal 91.3 80 ± 6.8 (Nasif et al., 2004)

FS 250.19 235 ± 68 (Zaitsev, 2005)

RS 487.75 582 ± 195 (Zaitsev, 2005)

IS 545.18 585 ± 137 (Zaitsev, 2005)

FIGURE 1 | Pyramidal neuron model validation. (A) Model response to a
current-step pulse at the soma (0.17 nA). (B) Experimental response of a
PFC layer V pyramidal neuron to a current step-pulse (adapted from Nasif
et al., 2004).
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FS INTERNEURON MODEL
The FS interneuron model consisted of three compartments: a
somatic, a dendritic and an axonic compartment (Supplemental
Table 1). The somatic compartment included mechanisms for
the slow K+ current (IKslow), the N-type high-threshold acti-
vated Ca++ current (N-type) and the hyperpolarization-activated
cation current (Ih) (Table 2), in addition to the ones men-
tioned above. The membrane capacitance was set to 1.2 μF/cm2
and axial resistance to 150 ohm/cm (Table 2). The resting
membrane potential was adjusted to −73 mV and its result-
ing input resistance was 250 M� (Kawaguchi and Kubota, 1993)
(Table 1). The APs of this FS model neuron had short dura-
tion and large afterhyperpolarization. It responded to a depo-
larizing current pulse (0.05 nA, 500 ms) with six spikes, as
shown in Figure 2A (top), with an action potential thresh-
old of −53 mV. A depolarizing current of 0.2 nA, 500 ms
resulted in a (10 spikes 100 ms) 100 Hz response (Figure 2A,
bottom).

RS INTERNEURON MODEL
The RS interneuron model consisted of three compartments: a
somatic, a dendritic and an axonic compartment (Supplemental
Table 1) and included mechanisms for the low-threshold Ca++
current (T-type) and the Ih (Table 3). The membrane potential
was adjusted to −64 mV (Kawaguchi and Kubota, 1993). The
membrane capacitance was set to 1.2 μF/cm2 and the axial resis-
tance to 150 ohm/cm (Table 3). The resulting input resistance is
487 M� (Table 1). The model neuron responded to a depolariz-
ing current pulse (0.05, 500 ms) with 15 spikes, with an action
potential threshold of −51 mV (Figure 2B, bottom). A depo-
larizing current of 0.2 nA, 500 ms resulted in a 60 Hz response
(Figure 2B, top).

IS INTERNEURON MODEL
The IS interneuron model consisted of four compartments: a
somatic, two dendritic and an axonal compartment, simulat-
ing a bipolar cell (Supplemental Table 1), and included mech-
anisms for slow K+ current, fast Ca++-activated K+ current
and N-type Ca++ current (Table 4). The membrane potential
was adjusted to -70 mV (Kawaguchi and Kubota, 1993), the
membrane capacitance to 1.2 μF/cm2, and axial resistance to

Table 2 | Active and passive ionic properties of FS interneuron model.

FS interneuron mechanisms Soma Axon Dendrite

Sodium conductance, S/cm2 0.135 1.35 0.09

Delayed rectifier K+, S/cm2 0.036 0.018 0.0075

N-type calcium, S/cm2 0.0003 – –

D-type K+, S/cm2 0.0000725 – –

H-current, S/cm2 0.00001 – –

A-type K+, S/cm2 0.0032 – 0.032

fAHP, S/cm2 0.0001 – –

Calcium diffusion model Yes No No

CM (μF/cm2) 1.2 1.2 1.2

RA (ohm/cm) 150 150 150

RM (k� cm2) 10 10 10

150 ohm/cm (Table 4). Its input resistance (∼545 M�) as indi-
cated by electrophysiological data (Zaitsev, 2005) (Table 1). The
typical discharge of this cell in response to depolarizing current
pulses consisted of the emission of an initial cluster of two to
six APs, depending on the level of depolarization, followed by
APs emitted at an irregular frequency (Cauli et al., 1997). The
discharge frequency increases as a function of the stimulation
intensity according to electrophysiological results of (Cauli et al.,
1997) (Figure 2C).

MICROCIRCUIT MODEL
We constructed a microcircuit of 20 neuron models: 16 pyra-
midal models, based on Papoutsi et al. (2013), 2 FS interneu-
ron models, 1 RS interneuron model and 1 IS interneuron
model, so that the relative number of interneurons to pyrami-
dal model neurons was 20% (Dombrowski et al., 2001) and
the relative inhibitory input coming from FS interneurons was
50% (Figure 4). Connectivity properties including the location
and number of synaptic contacts, the latencies between pairs of
neurons, as well as the electrophysiological properties of their
synaptic connections, were based on anatomical and electrophys-
iological data, similar to the values reported in Papoutsi et al.
(2013). Specifically, pyramidal neuron models were fully con-
nected recurrently (Wang et al., 2006) at their basal dendrites with
latencies drawn from a Gaussian distribution with μ = 1.7 ms
and σ = 0.9 (Thomson and Lamy, 2007). Autaptic contacts were
also included and were adapted to 1/3 of excitatory connections
(Lubke et al., 1996).

CONNECTIVITY
The axon of each pyramidal neuron model projects to the basal
dendrite of other pyramidal neuron models. Pyramidal neu-
ron models also projected to the dendrites of FS models, IS
model and RS model. However, specificity of synaptic inner-
vations in the neocortex implies that the recurrent network is
not randomly arranged (Yoshimura and Callaway, 2005). The
axons of the FS interneuron models project to the soma of
all pyramidal neuron models. The axon of the RS interneu-
ron model projects to the distal apical dendrite of all pyramidal
neuron models (Murayama et al., 2009). The axon of the IS
interneuron model projects to the soma of the RS interneu-
ron model, providing disinhibitory input to the micorcircuit,
as well as the distal apical dendrite of all pyramidal neuron
models. Furthermore, inhibitory autapses are present in the
FS interneuron models (Bacci et al., 2003). A summary of
synaptic connections present in the microcircuit is described in
Table 5.

NUMBER OF SYNAPSES
The total number of excitatory synapses to the three types of
interneuron models and of inhibitory synapses on the pyrami-
dal neuron model was based on the anatomical data (Tamás et al.,
1997a,b; Markram et al., 2004). The total number of inhibitory
synapses onto each pyramidal model neuron was 13% of the total
excitatory synapses (Peters et al., 2008). A summary of the num-
ber of synapses introduced between each type of connection is
described in Table 5.
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FIGURE 2 | Validation of the electrophysiological characteristics of the

FS interneuron (A), the RS interneuron (B) and the IS interneuron

model (C). FS neuron model response to increasing depolarizing current
injections (A1) compared to experimental data from current-clamp
recordings (A2, adapted from Cauli et al., 1997), reveal the fast-spiking
profile of the FS model. RS neuron model response to increasing

depolarizing current injections (B1) compared to experimental data from
current-clamp recordings (B2, adapted from Cauli et al., 1997), reveal the
regular spiking of the RS model. IS neuron model response to
depolarizing current injections (C1) compared to experimental data from
current-clamp recordings (C2, adapted from Cauli et al., 1997), reveal the
irregular spiking of the IS model.

VALIDATION OF THE SYNAPTIC MECHANISMS
The conductances of excitatory and inhibitory synaptic mecha-
nisms were adjusted according to electrophysiological recordings
(Thomson and Deuchars, 1997; Angulo et al., 1999; Thomson and
Destexhe, 1999; Xiang et al., 2002; Bacci et al., 2003; Woo et al.,
2007; Wang et al., 2008; Wang and Gao, 2009). The conductance
of a single AMPA-R synapse onto the pyramidal neuron model
was adjusted so that it generated a voltage response of 0.1 mV
at the soma (Nevian et al., 2007). The NMDA current was val-
idated with a simulated voltage clamp protocol to replicate the
results of Wang et al. (2008) (Figure 3A). AMPA- and NMDA-
mediated currents were recorded at−70 mV and+60 mV, respec-
tively, in FS and RS neuron models, according to Wang and
Gao (2009). Our results correspond to the experimental data,

as shown in Figures 3B,C. The relative proportion of NMDA
and AMPA receptor mediated synaptic components of the FS
models is standardized at 0.5 (Wang and Gao, 2009). The rela-
tive proportion of NMDA and AMPA receptor mediated synaptic
components of RS models is standardized at 0.8 (Wang and Gao,
2009). In lack of experimental data for the IS neuron model,
its AMPA- and NMDA- mediated currents were also simulated
to match those of the FS and RS neuron models, whereas the
NMDA-to-AMPA ratio was adapted so that the IS interneuron
model could fire action potentials during the stimulus.

Furthermore, GABAA receptor mediated currents (IPSCs),
between the FS interneuron and the pyramidal neuron were vali-
dated, based on Woo et al. (2007) and the GABAB receptor medi-
ated IPSC was validated against experimental data from Thomson

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 7 | 163

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Konstantoudaki et al. Effects of interneuron types on persistent activity

Table 3 | Active and passive ionic properties of RS interneuron model.

RS interneuron mechanisms Soma Axon Dendrite

Sodium conductance, S/cm2 0.075 0.75 0.018

Delayed rectifier K+, S/cm2 0.018 0.009 0.009

T-type calcium, S/cm2 0.003 – –

H-current, S/cm2 0.000002 – –

A-type K+, S/cm2 0.035 – 0.00875

fAHP, S/cm2 0 – –

Calcium diffusion model Yes No No

CM (μF/cm2) 1.2 1.2 1.2

RA (ohm/cm) 150 150 150

RM (k� cm2) 40 40 40

Table 4 | Active and passive ionic properties of IS interneuron model.

IS interneuron mechanisms Soma Axon Dendrites

Sodium conductance, S/cm2 0.015 0.15 0.075

Delayed rectifier K+, S/cm2 0.018 0.009 0.009

D-type K+, S/cm2 0.000725 – –

N-type calcium, S/cm2 0.001 – –

fAHP, S/cm2 0.00003 – –

Calcium diffusion model Yes No No

CM (μF/cm2) 1.2 1.2 1.2

RA (ohm/cm) 150 150 150

RM (k� cm2) 20 20 20

Table 5 | Summary of synaptic connections in the microcircuit.

Type of Location No. of References

connection synapses

Thalamocortical
(incoming)

Proximal
dendrite

120 Kuroda et al., 1998

Pyramidal
(recurrent)

Basal dendrite 24 Thomson and Lamy, 2007;
Peters et al., 2008

Autapses in Pyr Basal dendrite 8 Lubke et al., 1996

Pyr -to-FS Dendrite 12 Markram et al., 2004;
Thomson and Lamy, 2007

Pyr -to-RS Dendrite 14 Markram et al., 2004

Pyr -to-IS Dendrite 7 Cauli et al., 1997; Markram
et al., 2004

Autapses in FS Soma 1 Bacci et al., 2003

FS -to-Pyr Soma 15 Tamás et al., 1997a,b;
Markram et al., 2004

RS -to-Pyr Distal dendrite 12 Tamás et al., 1997a,b;
Markram et al., 2004

IS -to-Pyr Distal dendrite 10 Tamás et al., 1997a,b

IS -to-RS Dendrite 2 Murayama et al., 2009

et al. (1996) as in Papoutsi et al. (2013). According to Xiang
et al. (2002), the amplitude of IPSCs for FS-Pyramidal pairs had
a mean value significantly larger than RS-Pyramidal pairs. In par-
ticular, the GABAA mediated current between the RS-Pyramidal
neuron pair should be 1/10 of the GABAA mediated current
between FS-Pyramidal cell pair (Xiang et al., 2002). Due to lack
of experimental data for the IPSCs of the IS-Pyramidal neuron

FIGURE 3 | Validation of Synaptic Properties within the microcircuit.

(A1) Current responses from a layer 5 pyramidal-to-pyramidal pair. When
membrane potentials were held at −70 mV, the currents are predominantly
mediated by AMPA receptors; whereas at +60 mV, the currents were
largely mediated by NMDA receptors (adapted from Wang et al., 2008,
Copyright 2008 National Academy of Sciences, USA). (A2) Simulated
voltage-clamp responses of the pyramidal model neuron at −70 mV (AMPA
currents) and at +60 mV (NMDA currents). (B1,B2) Experimental (B1) and
modeling (B2) data of AMPA and NMDA currents, in FS interneurons (B1 is
adapted from Wang and Gao, 2009). (C1,C2) Experimental (C1) and
modeling (C2) data of AMPA and NMDA currents, in RS interneurons (C1 is
adapted from Wang and Gao, 2009).

pair, GABAA mediated current of this pair was estimated to be
1/10 of the GABAA of RS-Pyramidal pair. The autoinhibition of
PV interneurons is much stronger than the inhibition between
interneurons of different types, such as IS-RS pairs (Bacci et al.,
2003). Autaptic inhibitory currents in FS interneurons evoked
a relatively large transient current of 0.35 mA amplitude (Bacci
et al., 2003). The aforementioned current was simulated as
described in Papoutsi et al. (2013). Across different experiments,
the NMDA-to-AMPA ratio of 1.25 and the GABAb-to-GABAa
ratio of 0.2 were taken as control state.

BACKGROUND NOISE
In addition, for best simulation of membrane potential fluctua-
tions as observed in vitro due to the stochastic ion channel noise
(Linaro et al., 2011), an artificial current with Poisson character-
istics (mean rate 0.02 Hz) was injected in the soma of all neuron
models. Specifically, for the IS neuron model, the amplitude of
this mechanism was larger (mean rate 0.035 Hz) (Golomb et al.,
2007).

STIMULATION PROTOCOL
The proximal apical dendrites of the pyramidal neuron models
were stimulated with 120 excitatory synapses (containing both
AMPA and NMDA receptors), which were activated 10 times at
20 Hz (yellow arrows in Figure 4) (Kuroda et al., 1998). Since
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FIGURE 4 | A schematic of the PFC microcircuit. The PFC microcircuit
consists of 16 pyramidal neuron models (P) and 4 interneuron models; 2
fast-spiking interneuron models (FS), 1 regular spiking interneuron model
(RS) and 1 irregular-spiking interneuron model (IS). All neurons are fully
connected through recurrent connections. The axon of each pyramidal
neuron model projects to the basal dendrite of the other pyramidal neuron
models. The axon of the FS interneuron model projects to the soma of all
pyramidal neurons models. The axons of the RS and the IS interneuron
models project to distal apical dendrite of all pyramidal neuron models. The
axon of the IS interneuron model projects to the dendrite of the RS
interneuron model. The pyramidal neuron and the FS interneuron models
also form autaptic synapses. Persistent activity in the microcircuit is
induced by providing external synaptic simulation to all 16 pyramidal
neurons in their proximal apical dendrites.

neurons within a microcircuit share similar stimulus properties
(Yoshimura and Callaway, 2005; Petreanu et al., 2009), the same
initial stimulus was delivered to all pyramidal neurons.

ANALYSIS
Data analysis was performed in Matlab (Mathworks, Inc). Inter-
Spike-Intervals (ISIs) were calculated for the neuronal response of
each neuron model of the microcircuit during the stimulus and
during persistent activity. An average of the ISIs of each neuron
of the network, as well as coefficient of variations, in 500 ms time
bins was measured for each experimental state.

The Synchronization or de-synchronization of the neurons
was measured using the SPIKE-distance measurement, which is
sensitive to spike coincidences (Kreuz et al., 2011). For this mea-
surement we obtained the spike trains simultaneously from the
neuronal population of the microcircuit and then we calculated
the time intervals between successive spikes occurring in any of
the participating neurons. If there are no phase lags between
the spike trains (neurons fire synchronously) the synchroniza-
tion index will have values of zero. In general, small values of
synchronization index indicate synchronicity, whereas large val-
ues indicate asynchronous spiking activity (as in Papoutsi et al.,
2013).

As an additional estimation of the synchronization or de-
synchronization among spiking neurons in the microcircuit dur-
ing each different condition, we measured the total number of
spikes recorded in 1 ms time bins, and constructed plot with the
discrete -time firing rate.

Power spectra were generated on the summed synaptic cur-
rents (AMPA, NMDA, and GABAA) generated by the pyramidal
neurons in the network, averaged for 10 trials, over a 1-s period
of steady-state persistent activity, 3 s after the end of the stim-
ulus. The averaged synaptic currents were first decimated and
then, the mean square power spectrum was calculated using the
periodogram method.

MODEL AVAILABILITY
The code of this model in the NEURON simulation environment
will be available following contact with the corresponding author
and will be posted on ModelDB database upon publication.

RESULTS
We used a 20-neuron PFC microcircuit model that included 16
biophysically-detailed pyramidal cell models and 4 interneuron
models: 2 FS, 1 RS, and 1 IS interneuron model, in order to study
the role of these interneuron cell-types in persistent activity emer-
gence and maintenance properties. All modeled neurons were
validated against experimental data from intracellular recordings
in brain slices (Figure 2—see Methods for details). In addition,
the synaptic mechanisms were validated against experimental
data (AMPA current, NMDA-to-AMPA ratio, GABA currents)
(Figure 3—see Methods for details).

Persistent activity in the network was induced by an exter-
nal excitatory stimulus to the apical dendrite (Figure 4). Similar
to a smaller version of the microcircuit model (which included
7 pyramidal model neurons and 2 FS interneurons Papoutsi
et al., 2013), persistent activity induction was dependent on the
GABAB-to-GABAA and NMDA-to-AMPA ratio on the pyramidal
neuron models (Figure 5A). Each neuron model had a different
firing pattern during persistent activity, depending on its own
electrophysiological characteristics (Figure 5B). The interspike
intervals (ISIs) of the pyramidal neuron model during persis-
tent activity were between 60 and 120 ms, i.e., firing frequency
of 8-17 Hz (Figure 5C). The coefficient of variation (CV) of the
ISIs, although not very high as observed in vivo (Compte, 2006),
was greater during persistent activity compared to the CV dur-
ing the stimulus (Figure 5D). Furthermore, we find that spiking
activity of neurons in the network was synchronized both dur-
ing the stimulus response and the persistent activity, although
synchronicity during the stimulus was greater compared to that
during persistent activity (Figure 5E). These properties are simi-
lar to the corresponding properties observed in persistent activity
during working memory tasks (Constantinidis and Procyk, 2004).

Increasing the NMDA-to-AMPA ratio onto pyramidal neu-
ron models decreased the ISIs, especially during the initial phases
of persistent activity (Figure 5F), suggesting an increase in the
firing frequency. On the other hand, modulating the NMDA-to-
AMPA ratio onto FS models does modulate the % probability for
induction of persistent activity (Figure 5G) but not the ISIs of the
pyramidal neuron model (Figure 5H). This is in accordance with
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FIGURE 5 | Persistent activity induction in the network. (A) The
probability of persistent activity induction (measured out of 100 trials) was
dependent on the GABAB-to-GABAA and NMDA-to-AMPA ratio on the
pyramidal model neurons, as previously seen (Papoutsi et al., 2013). (B)

Representative traces of all neuron models during the stimulus and during
persistent activity. (C) Graph showing the ISIs during the stimulus and
persistent activity in 500 ms bins, for all neuron models. (D) Graph showing
the coefficient of variation during the stimulus and persistent activity in
500 ms bins, for all neuron models. The ISI is increased during the initial

phase of persistent activity for all model neurons compared to the stimulus.
This is not the case for the FS interneuron model. (E) Discrete-time firing rate
plot showing the number of neurons that fire synchronously during the
stimulus and during persistent activity. (F) Changing NMDA-to-AMPA ratio on
pyramidal neuron models modulated the ISIs, especially during the initial
phases of persistent activity. (G) Changing NMDA-to-AMPA ratio on FS
interneuron models modulated the probability for induction of persistent
activity. (H) Changing NMDA-to-AMPA ratio on FS interneuron models did not
modulated the ISIs.

the notion that regulation of NMDA receptors in FS interneurons
modulates PFC function (Homayoun and Moghaddam, 2007),
although the slow kinetics of the NMDA receptors may not allow
for immediate change in network firing (Rotaru et al., 2011).
Furthermore, modulating the NMDA-to-AMPA ratio either on
pyramidal neuron model or the FS model doesn’t have an impor-
tant effect on the synchronicity among neurons in the micro-
circuit both during the stimulus and during persistent activity
(Supplemental Tables 3, 4). For the rest of the study we used
the following conditions: GABAB-to-GABAA ratio= 0.2, NMDA-
to-AMPA = 1.25 (pyramidal neuron model), and NMDA-to-
AMPA= 0.5 (FS interneuron model).

In order to study the role of the different interneuron cell types
in persistent activity, we next simulated “knock-out” networks for
each interneuron subtype, Thus, we generated a PFC microcir-
cuit without the FS models (“FS KO”) (Figure 6A1), a micro-
circuit without a RS model (“RS KO” network) (Figure 6A2),
and a microcircuit without an IS model (“IS KO” network)
(Figure 6A3). We find that the probability for persistent activity
induction is always 1, across all GABAB-to-GABAA and NMDA-
to-AMPA ratios in the “FS KO” network (Figure 6B1), while it
is not significantly altered in the “RS KO” and “IS KO” network
models (Figures 6B2,3). Therefore, the sensitivity to biophysi-
cal modulation is completely lost in the “FS KO” network. In
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FIGURE 6 | Persistent activity properties at different simulated

“interneuron KO” network models. (A) Graphical representations of the
FS interneuron KO network model (A1), the RS interneuron KO network
model (A2), the IS interneuron KO network model (A3). (B) Graphs
showing persistent activity induction across different NMDA-to-AMPA and
GABAB-to-GABAA ratios in the FS interneuron KO network model (B1),
the RS interneuron KO network model (B2), the IS interneuron KO
network model (B3). (C) Graph showing the ISIs before and during

persistent in 500 ms bins for the control and the different “KO” network
models. (D) Graph showing the CVs of ISIs of the pyramidal neuron
model before and during persistent in 500 ms bins for the control and
the different “KO” network models. (E) Graph showing the
de-synchronicity index in the control and different “KO” network models.
(F) Discrete-time firing rate plot showing the synchronization among all
neuron models during persistent activity in the “control” (top) and “FS
KO” network models (bottom).

addition, the ISIs during the stimulus and during persistent activ-
ity are significantly decreased in the “FS KO” network to 15 ms
(i.e., close to 80 Hz frequency), but not significantly altered in
the “RS KO” and “IR KO” networks (Figure 6C). As well, the CV
of the ISIs of pyramidal neurons during the stimulus and dur-
ing persistent activity is significantly decreased in the “FS KO”
network (Figure 6D). This indicates that the firing rate and its
variability of pyramidal neuron models is tightly controlled by the
activity of FS interneuron models, but not the RS and IR interneu-
rons. Finally, neuronal synchronicity during persistent activity is
also significantly decreased in the “FS KO” network, as evident by
the desynchronization index measure and the discrete-time firing
rate plot (Figures 6E,F). This is again in accordance with other
studies suggesting a contribution of FS interneuron spiking on
neuronal synchronization and oscillations (Sohal et al., 2009).

Since the “FS KO” net was the only one showing significant
differences with regards to persistent activity properties, we

wanted to further study the role of the FS interneuron model.
Thus, we gradually decreased the number of GABAergic synapses
(both GABAA and GABAB) from the FS interneuron model onto
the pyramidal neuron model in order to simulate a less severe, and
possibly more realistic, disruption in the FS neuronal functioning.
We find that decreasing the FS model inputs onto the pyrami-
dal neuron model increases the probability for persistent activity
induction across the different GABAB-to-GABAA (NMDA-to-
AMPA = 1.25), while when 40% or less of FS inputs remain,
persistent activity is induced across all GABAB-to-GABAA ratios
tested (Figure 7A). This suggests that once more than 50% of PV
inputs are lost, then the PFC microcircuit behaves as if no FS
model is present, with regards to induction of persistent activ-
ity. This large increase in persistent activity induction renders the
microcircuit insensitive to modulation of GABAB.

Furthermore, as FS model inputs decrease, the ISIs of the pyra-
midal neuron model during persistent activity gradually decrease,
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FIGURE 7 | Effects of decreased number of GABAergic synaptic inputs

from the FS models to the pyramidal neuron models. (A) Decreasing
the number of synaptic inputs from the FS model neurons to the
pyramidal model neurons increases the range of GABAB-to-GABAA ratios,
in which persistent activity is induced. When less than 40% of FS inputs
are present in the microcircuit, persistent activity is induced 100% across
all GABAB-to-GABAA ratios. (B) As the number of the FS inputs

decreases, the ISIs of the pyramidal neuron model decreases. (C) As the
number of the FS inputs decreases, the CV of the ISIs of the pyramidal
neuron model decreases. (D) The synchronicity among all neuron models
during persistent activity, is significantly reduced when no PV inputs are
present in the microcircuit, while it increases by decreasing the number
of synaptic inputs from the FS model neurons to the pyramidal model
neurons.

hence the firing frequency gradually increases (Figure 7B). The
variability of ISIs is also decreased when FS inputs decrease to
60% or more, making this index the most sensitive to FS inputs
(Figure 7C). Finally, the desyncrhonization index among neuron
models in the microcircuit gradually decreases while decreasing
the number of FS inputs, but then increases when no FS inputs
are present (i.e., “FS KO” net) (Figure 7D). This suggests that syn-
chronicity actually increases when a percentage of FS inputs to the
pyramidal neuron models are blocked but then decreases when no
inputs are present.

Many of the roles of FS neurons on cortical network func-
tions have been attributed to its specific connectivity, specifically
the projection of FS neurons to the soma of the pyramidal neu-
rons (Lovett-Barron et al., 2012; Royer et al., 2012). However, by
design experimental manipulations cannot differentiate between
the target location of an interneuron and its physiological char-
acteristics. So, the next step was to study in detail the role of
this specific connectivity by changing the projection site of the
FS neuron model to different dendritic locations of the pyrami-
dal neurons other than the soma; on the basal dendrites (D0 net)
(Figure 8A1), on the proximal dendrites (D1 net) (Figure 8A2),
on the distal dendrites (D2 net) (Figure 8A3). When the FS input
is located anywhere else but the soma, then, the probability for
induction of persistent activity increases to 100% (Figure 8D),
while the ISIs and ISI variability during persistent activity sig-
nificantly decrease (Figures 8B,C). Furthermore, when the FS
model input is located to dendritic locations and not the soma

the desynchronization index decreases, suggesting an increase in
synchronicity (Figure 8E). Therefore, if FS neuron models do not
project to the soma, network activity during persistent activity
resembles the state where 50% of less FS inputs to the soma are
active (Figure 7).

Somatic inhibition provided by the FS interneuron seems to
be necessary for the induction of proper firing frequencies during
persistent activity. In order to eliminate the possibility that the
same perisomatic inhibitory effect could be achieved by the other
types of interneurons, we modified the network by reversing the
projection and number of FS interneuron with RS interneuron
(Reverse RS net) (Figure 9A1) and with IS interneuron (Reverse
IS net) (Figure 9A2). When one FS interneuron is projecting
in distal dendrites of pyramidal neurons, but two RS or two
IS interneurons provide somatic inhibition on pyramidal neu-
rons, the probability for induction of persistent activity increases
(Figure 9E), while the ISIs and ISI variability during persistent
activity significantly decrease (Figures 9B,C). Finally, the desyn-
chronization index decreases in both of the reverse networks
(Figure 9D). The above results were resistant to changes in the
kinetics of the excitatory synaptic mechanisms of RS and IS mod-
els and to changes in the conductance values of the inhibitory
synaptic mechanism that the RS and IS models provide to their
connected neuron models (Supplemental Figures 1, 2). Our
results were also resistant to increasing the frequency (40 Hz) of
the stimulation used to initiate persistent activity (Supplemental
Figure 3). These results suggest that somatic inhibition provided
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FIGURE 8 | Persistent activity properties when the FS interneuron model

projects to different dendritic compartments. Different variations of the
PFC microcircuit were constructed in order to study the effect of the
projection site of FS model neurons onto the pyramidal neurons. (A)

Graphical representations of the FS interneuron model projecting to the basal
(D0) (A1), the proximal (D1) (A2), and distal (D2) (A3) dendritic compartment
of the pyramidal neuron model. (B) Graph showing ISIs before and during
persistent in 500 ms bins for the control and the different projecting site
networks. The ISIs of pyramidal neuron models are decreased in all

microcircuits in which the FS model neurons project to the dendritic
compartments of the pyramidal neuron models. (C) Graph showing CVs of
ISIs before and during persistent in 500 ms bins for the control and the
different projecting sites. The CVs of the ISIs of pyramidal neuron models are
decreased in all microcircuits in which the FS model neurons project to the
dendritic compartments of the pyramidal neuron models. (D) Graph showing
persistent activity induction in the control and the different FS projecting site
networks. (E) Graph showing the synchronicity index in the control and
different projecting site networks.

specifically by the FS neuron is necessary for the firing frequency
during persistent activity and allowing for modulation of persis-
tent activity induction. On the other hand, synchronicity of the
PFC microcircuit could be increased by changing either the pro-
jection of the FS model or changing the physiological profile of
the interneuron models projecting to the soma.

In an effort to compare our results to the available literature
with regards to changes in network oscillations in the pres-
ence of defects in inhibition, we analyzed the power spectra of
the summed synaptic currents in the different model networks
reported above. In our control network, we observe the presence
of a peak in the power spectrum at 20 Hz and a smaller peak
at 40 Hz (Figure 10A, dark blue trace). Both peaks are absent
in the FS KO network, suggesting a significant role of the FS
model neuron in maintaining these oscillations. In addition, only
the 40 Hz peak is decreased in the RS KO network, while the
power spectrum of the IS KO network is the same as the control
(Figure 10A). Both peaks are absent when 50% or less of the FS
input to the pyramidal model neuron remain, however, the peak
at 40 Hz is already decreased when 80% of the FS inputs remain
(Figure 10B). Finally, when the somatic inhibition is provided by

the RS or IS neuron, the peaks at 20 and 40 Hz are even larger
(Figure 10C). Therefore, our results suggest that the FS input is
critical for maintaining network oscillations, and also reveals a
novel role of the RS neuron model in maintaining primarily the
40 Hz oscillation.

DISCUSSION
In this study, we have specifically delineated distinct and spe-
cific roles of the FS interneurons in persistent activity properties.
First, we identified that NMDA current input onto interneurons
only modulates persistent activity induction but not its spik-
ing properties during persistent activity. Second, we find that
the FS neuronal inputs to the pyramidal neurons modulate the
induction of persistent activity, in an all-or-none way, while the
properties of spiking during persistent activity in a gradient man-
ner. Third, moving the FS inputs away from the soma and onto
other dendritic compartments has similar effects to completely
removing the FS neurons from the network, indicating the signif-
icant role of the projecting site of the FS neuron. Finally, we show
that replacing somatic inhibition by either the RS or IS neuron
models does not reverse the induction or firing frequency changes
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FIGURE 9 | Different variations of the PFC microcircuit were

constructed in order to study the effect of the spiking profile of the

neuron model that provides somatic inhibition to the pyramidal

neuron. (A) Graphical representations of the microcircuit in which 2 RS
interneuron models are projecting to the soma, while 1 FS interneuron
model projects to the distal dendritic compartment of pyramidal neuron
models (Reverse RS) (A1), and of another microcircuit in which 2 IS
interneuron models are projecting to the soma, while 1 FS interneuron
model projects to the distal dendritic compartment of pyramidal neuron
models (Reverse IS) (A2). (B) Graph showing ISIs before and during
persistent in 500 ms bins for the control and the two “reverse” states of
the network. The ISIs of pyramidal neuron models are decreased in all

microcircuits in which the FS model neuron project to the distal dendritic
compartments of the pyramidal neuron models while either of the other
two neuron models are projecting to the soma of pyramidal neurons. (C)

Graph showing CVs of ISIs before and during persistent in 500 ms bins
for the control and the two “reverse” states of the network. The CVs of
ISIs of pyramidal neuron models are decreased in all microcircuits in
which the FS model neuron project to the distal dendritic compartments
of the pyramidal neuron models while either of the other two neuron
models are projecting to the soma of pyramidal neurons. (D) Graph
showing the synchronicity index in the control and the two “reverse”
states of the network. (E) Graph showing persistent activity induction in
the control and the the two “reverse” states of the network.

but does alter neuronal synchronization (increases beyond the
control condition).

NMDA RECEPTORS IN PYRAMIDAL NEURON vs. INTERNEURONS
The role of pyramidal neuron NMDA currents in persistent
activity and working memory tasks is well established (Wang,
2001). Our simulation results reinforce the significance of pyra-
midal neuron NMDA currents in persistent activity induction
and modulation of both induction and the firing properties dur-
ing persistent activity. However, the role of NMDA receptors
on interneurons has received much less attention, particularly
from modeling studies of persistent activity. Our modeling results
show that an increase in NMDA currents onto FS interneurons
decreases the probability for induction of persistent activity, while
decreasing the NMDA currents onto FS interneurons increases
the probability for induction of persistent activity (Figure 5G).
This bidirectional modulation suggests that NMDA receptors
at FS interneurons have a critical role in persistent activity
induction, and subsequently working memory performance. Our
results partly agree with a more generic cortical model (Spencer,
2009), showing the effects of NMDA on FS interneurons on net-
work activity and synchronization. Furthermore, since NMDA
on FS interneurons modulates persistent activity induction in
our model, we predict that this could impair working memory

and other PFC functions. Indeed, removing functional NMDA
receptors from FS interneurons has been shown to result in such
behavioral defects (Belforte et al., 2009).

THE ROLE OF INTERNEURONS IN NEURONAL SYNCHRONICITY AND
GAMMA-FREQUENCY OSCILLATIONS
Cortical oscillations, particularly in the gamma-frequency, have
been suggested to significantly contribute to several cognitive
functions, such as selective attention, perception. These oscilla-
tions are thought to reflect synchronous activity of rhythmically
firing neurons (Jensen et al., 2007). Activity of PV/FS interneu-
rons has been found in several studies, both experimental and
computational, to have a significant role in maintaining the above
oscillations and neuronal synchronization (Borgers et al., 2008;
Cardin et al., 2009; Sohal et al., 2009; Vierling-Claassen et al.,
2010).

Gamma oscillations have been shown to increase the mutual
information between incoming synaptic frequency and output of
action potentials (Sohal et al., 2009).

In our model, there is a bidirectional modulation of neuronal
synchronicity by the FS interneuron. Decreasing the FS input
results in increased synchronicity, while a “KO” simulated con-
dition results in decreased synchronicity. Replacing the FS input
with either the RS or IR neurons increased synchronicity, but past
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FIGURE 10 | Power spectra of the summed synaptic activity in the

model network. (A) Power spectra of the control, FS KO, RS KO, and IS
KO networks. (B) Power spectra of networks with different % of remaining
FS inputs on pyramidal models. (C) Power spectra of the control compared
to reverse RS and reverse IS networks.

the levels of the control network. This suggests that the effects
of FS input on neuronal synchronicity are complex. Small reduc-
tions of FS inputs (20%) result in both increased synchronicity
and a small deviation in the firing rate and ISI variability, suggest-
ing that this could be beneficial for the network activity and could
possibly result in working memory enhancements. However, 40%
or greater reductions in FS-mediated synaptic inputs result not
only in increased synchronicity but also in increased firing fre-
quency and decreased ISI variability, indicating a possible defect
that could move the network activity toward epileptiform behav-
ior. Therefore, as mentioned in Yu et al. (2004), “it is not the
weaker or stronger but an appropriate synchronous state may be
of more functional significance in sensory encoding.”

CHANGES IN INTERNEURONS AND DISEASE
Converging experimental and clinical evidence suggests that dys-
function in the GABAergic system and the consequent imbalance
between excitation and inhibition in the cerebral cortex underlies
at least part of the pathophysiology of several neuropsychiatric
disorders, such as schizophrenia, epilepsy and autism (Marín,
2012).

In particular, interneuron defects have been associated very
strongly with schizophrenia (Lewis et al., 2005). Schizophrenic
patients have been shown to express decreased levels of the
GABA-synthesizing enzyme, GAD67, and PV (Akbarian, 1995;
Volk et al., 2001). In addition, GAD67 and PV are also decreased
in several animal models of schizophrenia (Braun et al., 2007;

Lodge et al., 2009). Furthermore, both reduced working mem-
ory load and reduced power of gamma oscillatory activity in the
dorsolateral PFC have been found in schizophrenia (Gonzalez-
Burgos and Lewis, 2008), which is also observed when inactivat-
ing the PV interneurons with light (Sohal et al., 2009).

Decreased markers of inhibitory transmission, such as num-
ber of differentiated PV and CB interneurons is found in animal
models of autism (Eagleson et al., 2010; Fu et al., 2012) while
a decrease in GAD67 (a marker for inhibitory transmission) is
also decreased in human autistic patients (Fatemi et al., 2002).
Furthermore, decreased gamma response in the occipital cortex
was also found in a human study (Wright et al., 2012).

Epilepsy is another condition that is associated with decreased
interneuron populations, as evident mostly from the emergence
of epileptic behavior in animal models with reduced number of
interneurons (Cobos et al., 2005; Butt et al., 2008; Gant et al.,
2009; Peñagarikano et al., 2011). Moreover, epilepsy is char-
acterized by excessive neuronal synchrony (Traub and Wong,
1982), suggesting that decreased interneuron function can also be
associated with increased synchrony.

Our results predict that decreases greater than 50% in the
number of interneurons or GABAergic synapses lead to disrup-
tion in stimulus-specific persistent activity induction. Therefore,
any type of stimulus irrespective of neuromodulation could
results in persistent activity, a condition that should greatly
impair performance in working memory tasks and other PFC-
dependent cognitive functions, such as attention and behavioral
flexibility.

CONNECTIVITY vs. PHYSIOLOGICAL PROPERTIES
All three distinct interneuron subtypes differ in their physiologi-
cal characteristics as well as the location of their synaptic targets.
Specifically for the FS interneuron, it has a FS, high frequency
physiological profile and it primarily targets the somatic region
of the pyramidal neurons (Markram et al., 2004). It has been
suggested that the observed function of the specific interneuron
subtypes is mostly attributed to the location of their synaptic tar-
gets (Wang et al., 2004). The significance of the projection site in
the pyramidal neurons has also been shown in our study, since the
differences in persistent activity induction, firing frequency and
ISI variability are seen when the FS interneuron projects to any
dendritic compartment and not the soma. However, our simula-
tions also show that the FS physiological profile is also necessary,
since replacing the FS neuron model with either the RS or the IR
neuron models at the soma does not reverse the induction, firing
frequency and ISI variability changes. Instead, the synchronicity
changes are reversed, but not to baseline levels. Specifically, when
somatic inhibition is provided by the RS or IS neurons, both the
synchronicity and network oscillations are stronger. This suggests
that somatic inhibition provided by interneurons with FS activity
is absolutely crucial for the different properties of persistent activ-
ity. However, any type of inhibition, mediated by either the RS or
IR neuron models, can maintain and even further increase neu-
ronal synchronicity. Thus, generic somatic inhibition can serve
as a pacemaker of persistent activity, but FS-mediated somatic
inhibition is necessary for proper expression of persistent activity
properties.
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MODEL LIMITATIONS
Our model microcircuit includes different types of model neu-
rons (a pyramidal neuron and 3 different types of interneurons).
As seen in the methods, the model network used in this work is
heavily constrained with available experimental data. However,
sources of inaccuracy can be introduced by the variability of
preparations used to produce the experimental data, as well as
by the limited availability of data with regards to the specific
brain region of our study (prefrontal cortex) and specific layer
(layer V). Whenever possible, the data used to validate the mod-
els were taken from studies of layer V pyramidal neurons or the
different types of interneurons in the prefrontal cortex (Zaitsev,
2005; Peters et al., 2008; Wang et al., 2008; Wang and Gao, 2009).
However, in cases there were no available data from the specific
region and specific layer, data from non-specified frontal cortex
(Kawaguchi and Kubota, 1993; Lubke et al., 1996; Thomson and
Lamy, 2007; Woo et al., 2007) or specific primary sensory areas
for either pyramidal neurons or interneurons (Cauli et al., 1997;
Tamás et al., 1997a,b; Xiang et al., 2002; Toledo-Rodriguez et al.,
2005) and were used. Another issue with regards to the available
data used to constrain the model is the age of the animals used in
the experimental studies. Most of the above studies used to val-
idate our models come from rodents of very young age (up to a
month old), although there are some in adult animals, for exam-
ple (Wang and Gao, 2009). Since it is becoming evident that age
plays a very significant role in the cellular physiology and underly-
ing cellular mechanisms (McCutcheon and Marinelli, 2009), our
conclusions are limited by the use of the specific available data.
Should more specific data from the prefrontal cortex, preferably
from adults, become available the specific or future models can be
constrained in a more strict way.

Furthermore, there is also variability in the available data with
regards to the specific layer examined. Hence, studies using pri-
mates suggest that recurrent networks mostly in layer III and
to a lesser extent in layer V PFC mediate the persistent activ-
ity observed during working memory tasks (Wang et al., 2013).
Several models of working memory in the literature (Compte
et al., 2000; Wang et al., 2004) simulate layer III recurrent net-
works (Kritzer and Goldman-Rakic, 1995), in a larger scale
compared to the model reported here. The main results, how-
ever, with regards to the contribution of NMDA currents, for
example, are similar. Even the layer III models constrain their bio-
physical parameters using layer V electrophysiological recordings
(Seamans et al., 1997) or recordings not confined to a specific
layer (Connors and Gutnick, 1990; Hammond and Crepel, 1992).
In light of recent evidence with regards to differences in bio-
physical properties of layer III and layer V pyramidal neurons
(Bremaud et al., 2007; de Kock, 2013), future modeling studies
could be constrained even further with layer specific recordings,
possibly revealing layer-specific information coding or persistent
activity properties.

MODEL PREDICTIONS AND FUTURE USES
Our model generates two important predictions that could be
tested experimentally. First, it predicts that NMDA current mod-
ulation on interneurons only modulates induction of persistent
activity and not neuronal excitability or synchronicity during

persistent activity. Thus, NMDA receptor blockade specifically
in interneurons could increase the emergence of up-and-down
states in in vitro experiments or increase persistent activity to
non-selective stimuli in in vivo tasks. Second, it predicts that grad-
ual decrease in the percent of FS-mediated GABAergic synapses
will significantly increase the firing rate during persistent activity
and decrease the variability of ISIs. For example, in animal mod-
els with decreased GABAergic neurons (Peñagarikano et al., 2011;
Vidaki et al., 2012), one would expect a very significant increase in
the emergence of up-and-down states, during which the neuronal
firing rate will be increased and ISI variability decreased.

Furthermore, because of its level of the biophysical detail and
extensive validations, the model network can be used as a tool
to further delineate the role of interneurons in persistent activity
and stimulus-dependent activity. Some examples of studies that
could use and/or extend the model include, but are not limited
to, (a) identifying the role of the other two interneuron types (RS
and IS models) under different stimulation protocols, (b) study-
ing the role of specific biophysical mechanisms on interneurons
either on persistent activity or stimulus-dependent activity, and
(c) extending the model network to incorporate plasticity rules
specific to the different types of interneurons.
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Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms
events often observed in electroencephalographs (EEG) of epileptic patients. In vitro
analysis of resected mesial temporal lobe tissue from patients with refractory temporal
lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we
develop a biophysically relevant network model of the CA1 subfield and investigate
how changes in the network properties influence the susceptibility of CA1 to exhibit
an IIS. We present a novel template based approach to identify conditions under which
synchronization of paroxysmal depolarization shift (PDS) events evoked in CA1 pyramidal
(Py) cells can trigger an IIS. The results from this analysis are used to identify the synaptic
parameters of a minimal network model that is capable of generating PDS in response to
afferent synaptic input. The minimal network model parameters are then incorporated into
a detailed network model of the CA1 subfield in order to address the following questions:
(1) How does the formation of an IIS in the CA1 depend on the degree of sprouting
(recurrent connections) between the CA1 Py cells and the fraction of CA3 Shaffer collateral
(SC) connections onto the CA1 Py cells? and (2) Is synchronous afferent input from the
SC essential for the CA1 to exhibit IIS? Our results suggest that the CA1 subfield with
low recurrent connectivity (absence of sprouting), mimicking the topology of a normal
brain, has a very low probability of producing an IIS except when a large fraction of CA1
neurons (>80%) receives a barrage of quasi-synchronous afferent input (input occurring
within a temporal window of ≤24 ms) via the SC. However, as we increase the recurrent
connectivity of the CA1 (Psprout > 40); mimicking sprouting in a pathological CA1 network,
the CA1 can exhibit IIS even in the absence of a barrage of quasi-synchronous afferents
from the SC (input occurring within temporal window >80 ms) and a low fraction of CA1
Py cells (≈30%) receiving SC input. Furthermore, we find that in the presence of Poisson
distributed random input via SC, the CA1 network is able to generate spontaneous periodic
IISs (≈3 Hz) for high degrees of recurrent Py connectivity (Psprout > 70). We investigate the
conditions necessary for this phenomenon and find that spontaneous IISs closely depend
on the degree of the network’s intrinsic excitability.

Keywords: interictal spikes, hippocampal CA1 region, computational models, paroxysmal depolarization shift,

temporal lobe epilepsy

1. INTRODUCTION
Mesial temporal lobe epilepsy (MTLE) is a chronic neurological
disease that affects the hippocampus and the inner regions of
the temporal lobe. MTLE is characterized by recurrent seizures
(ictal activity) and interictal spikes (IISs), which typically occur in
between seizure epochs in the form of transient discharge events
which are clearly discernible from background EEG activity.
Studies involving long-term EEG monitoring in animal models
of MTLE show that IISs also occur prior to the first instance of
spontaneous ictal activity (Buzsáki et al., 1991). In chronic in vivo
animal models of MTLE, it has been observed that IISs start
within a few weeks after initial brain injury and steadily increase

in frequency of occurrence (Buzsáki et al., 1991). Despite an over-
whelming evidence for an IIS as a characteristic observable feature
in EEG of MTLE patients (Engel, 1996), the role of IISs and
its clinical manifestation in MTLE remain unclear. For example,
while there is evidence to suggest that IISs interfere with normal
cognition and learning (Holmes and Lenck-Santini, 2006; Kleen
et al., 2010) and may facilitate the development of spontaneous
seizure activity (Staley et al., 2005), recent in vitro experiments
suggest that an increase in interictal spiking activity may serve as
an anti-epileptogenic agent (Avoli et al., 2006). In order to com-
pletely understand the role of IISs in MTLE, we need to study
the effects of selectively invoking or suppressing IISs on demand.
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Progress in this direction will most certainly first require a fun-
damental understanding of the network mechanisms underlying
the generation of an IIS in an epileptic brain.

In MTLE, IISs are thought to originate from the CA3/2 region
of the hippocampus involving a group of pacemaker pyramidal
(Py) cells (Jefferys, 1990; Wittner and Miles, 2007). IISs propagate
as population bursts throughout the CA3 subfield and on to the
CA1 subfield via the Schaffer collaterals (SC) (Stoop and Pralong,
2000). A number of in vivo and in vitro studies have demon-
strated that when the SC fibers are cut or the CA3 removed,
CA1 loses its ability to generate IISs (Lewis et al., 1990; Stoop
and Pralong, 2000). While the CA3 may be necessary for the ini-
tiation of IISs in the hippocampus, the CA1 subfield is critical
for propagating the IIS to subcortical brain structures outside
the hippocampus via the subiculum and the entorhinal cortex
(Lopes da Silva et al., 1990; van Groen and Wyss, 1990; Dvorak-
Carbone and Schuman, 1999). Furthermore, in MTLE, the CA1 is
one of the first hippocampal subfields that undergoes rapid mor-
phological and structural changes, such as recurrent pyramidal
axonal sprouting and neuronal cell death (Lehmann et al., 2000).
It is therefore essential to understand how the morphological and
structural changes implicated in the CA1 subfield of an MTLE
brain influence the subfields ability to exhibit IISs in response to
afferent input from the SC.

The cellular correlate for an IIS is the epileptiform burst-
ing activity of Py cells commonly referred to as the paroxysmal
depolarization shift (PDS) (McCormick and Contreras, 2001;
Staley and Dudek, 2006). The PDS represents a large (20–40 mV),
long lasting (50–200 ms) neuronal depolarization which results
in the initiation of high frequency burst of action potentials
(200–300 Hz) (Kandel et al., 2000). The depolarization wave is
usually followed by a slow afterhyperpolarization (AHP). An
example of PDS recorded from resected hippocampal tissue of
a TLE patient is shown in Figure 1B. The PDS phenomenon is
attributed to a number of factors including increased extracellu-
lar K+ concentration, reduced extracellular Ca2+ concentration
(Yaari et al., 1983; Formenti et al., 2001; Burgo et al., 2003;
Smith et al., 2004; Golomb et al., 2006), increased synaptic drive
(Jefferys, 1990) and channelopathies (McNamara, 1994). In the
pathological CA1 Py cell population, the duration of a PDS
burst its AHP can have variable durations. Furthermore, the
PDSs themselves can occur with varying degree of synchroniza-
tion (Netoff and Schiff, 2002). Identifying the correspondence
between the features of these cellular events and the extent of
their synchronization is critical for exploring their role in the
formation of IISs in the CA1.

The primary goal of this study is to develop a biophysically
relevant computational network model of the CA1 subfield in
order to investigate the network mechanisms implicated in the
formation of IISs within the subfield. Using experimental data
on IISs recorded from an in vivo animal model of chronic lim-
bic epilepsy, we first ask the following question: what are the
characteristics of PDS events that are implicated in the genera-
tion of an experimentally observable IIS? We develop a method
for analyzing recorded IISs in order to empirically estimate the
underlying PDS characteristics. These include the depolariza-
tion time interval, the hyperpolarization duration of a typical

FIGURE 1 | (A) A typical IIS observed in experimental EEG recordings. The
measurable amplitude features (A1 and A2) and temporal features
(�PQ ,�QR , and �RF ) are used to validate candidate IIS. (B) An
experimentally recorded PDS event from rat CA1 tissue in vitro. (C) Model
generated PDS using the Golomb CA1 pyramidal cell model . (D) A
template PDS that defines the envelope of a burst defined by parameters
τB (burst width) and τAHP (AHP width). The template model of PDS is used
to determine PDS and synchronization parameters for the formation
of an IIS.

PDS event and the degree of synchronization between these PDS
events. This data is used to tune a synaptically reduced neuronal
network model in order to enable the model to generate PDSs
with features matching those obtained using the empirical esti-
mation procedure. The tuning procedure allows us to estimate the
relative strengths of the excitatory and inhibitory neuronal popu-
lations implicated in the generation of PDS events in the minimal
network model. This information in addition to data from lit-
erature (Kandel et al., 2000; Demont-Guignard et al., 2009) is
used to build a bio-physically relevant network model for the
CA1 subfield. We then use this model to investigate the follow-
ing specific questions: (1) How does the formation of an IIS in
the CA1 depend on the degree of sprouting (recurrent connec-
tions) between the CA1 Py cells and the fraction of CA3 Shaffer
collateral (SC) connections onto the CA1 Py cells? and (2) Is syn-
chronous afferent input from the SC essential for the CA1 to
exhibit IIS? Our results suggest that the CA1 network is capa-
ble of eliciting IIS activity primarily through two mechanisms
of network synchronization: (1) input-induced synchronization,
where the CA1 network with low intrinsic excitability character-
ized by low degree of recurrent connections between the CA1
Py cells can elicit IIS in response to synchronized barrage of
afferent input from the SC with high degree of SC to Py connec-
tivity and (2) emergent synchronization, where the CA1 network
with high degree of recurrent connections between the excitatory
Py cells can elicit spontaneous IIS activity even in response to
asynchronous afferent input from SC.

A major motivation for identifying the various conditions
under which the CA1 can exhibit IIS, is to eventually develop a
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control strategy to disrupt IIS events. Any control strategy should
take into consideration the fact that different network conditions
may require different control schemes to disrupt IIS. This affects
not only the control approach but also possibly the choice of
actuation used in the implementation of a control system. We
anticipate that the CA1 network model presented here and our
findings of the general conditions under which the CA1 can elicit
an IIS response could serve as a computational tool to effec-
tively investigate and develop various control paradigms for the
ultimate purpose of controlling IIS.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL SETUP
Adult male Sprague Dawley rats (n = 3) of age 63 days and weigh-
ing between 200 and 265 g were used for the experiments. Thirty-
two microwire recording electrodes were bilaterally implanted
into the CA1 region of each rat’s hippocampus. Chronic lim-
bic epilepsy was induced in the rats using the in vivo self-
sustaining electrical status epilepticus animal model (Lothman
et al., 1989). The Institutional Animal Care and Use Committee
of the University of Florida approved all protocols and pro-
cedures (IACUC protocol D710). The rats were housed in a
controlled environment and monitored with continuous video
and CA1 local field potential recordings. At the end of the record-
ing session, the rats were sacrificed and the intact brains were
excised. The isolated intact brains were imaged with high strength
magnetic resonance microscopy to confirm the location of the
electrode placement within the CA1 region of the hippocampus
(Talathi et al., 2009). Data from a single electrode implanted in
the contral-lateral CA1 subfield was analyzed to extract IIS shape
profiles (Talathi et al., 2009), which were detected using a modi-
fied spike clustering algorithm (Fee et al., 1996) that sorted spikes
into separate clusters.

Data for reference PDSs were obtained from Dr. K. Srinivasa
Babu (Christian Medical College, Vellore, See Acknowledgments).
Ventral hippocampal horizontal slices of 400 μM thickness were
dissected out from a 4 week old Wistar rat. The slices were trans-
ferred into an interface chamber containing artificial CSF with
118 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 25 mM
NaHCO3, 1.24 mM NaH2PO4, and 10 mM glucose equilibrated
with dissolved Carbogen (95% O2 and 5% Co2) at room temper-
ature and at a pH of 7.4. After 1 h of incubation, the slices were
perfused with 20 μM Bicuculline to induce epileptic bursting.
Recordings were performed with Glass electrodes (4–8 mOhm)
fabricated from borosilicate glass capillaries, filled with pipette
solution containing (in mM) 135 Kmeso4, 8 NaCl, 10 HEPES, 2
Mg2ATP, and 0.3 Na3GTP. Signals were digitized at 10 KHz and
recorded using Clampex software (Molecular devices, USA).

2.2. COMPUTATIONAL SETUP
All computational networks were built using a custom C++
framework. The code was compiled using g++ (ver 4.4.6) and
run using a RHEL 6 cluster. Up to 64 simulations could be run
in parallel using the OpenMPI framework. The computational
cluster consisted of 2 Intel Xeon dual-quad core dual-rackmounts.
This provided 32 cpu cores. The total RAM available to the sys-
tem was 48 GB. Networks of 300 neurons for a simulation time

of 1 s, typically took between 10 and 30 min depending on the
number of synapses implemented for a given network. Analysis
of experimental data, simulation data, and template based stud-
ies were done on an Intel Xeon quad core PC using Matlab.
Numerical integration was performed using the fourth order
Runge-Kutta(RK4) algorithm with a time step of 0.01 ms. The
RK4 technique was used with delay-differential equations (See
Methods: Synaptic model) after verifying that there were no
noticeable deviations in simulation results with the Euler method
of numerical integration. We compare the CA1 model’s output
for different integration methods and different time steps in the
Supplemental data section. The codes used for producing some of
the results will be made available on modelDB.

2.3. NEURON MODELS
In this section we introduce the neuronal models that we employ
for the construction of our network. We use single compart-
ment, standard Hodgkin-Huxley type neuronal models for both
the pyramidal cells (Py) and interneurons. For interneurons, we
model the predominant populations found in the CA1 which are
the basket (B) and orien/alveus (OA) cells. The Py cells are mod-
eled using the Golomb neuron model (Golomb et al., 2006), the
B cells are modeled using the Wang-Buzsaki model (Wang and
Buzsáki, 1996), and the OA cells are modeled using the Wang neu-
ron model (Wang, 2002). The neuron models are mathematically
structured as follows:

cV̇ = IDC − Ig(V, n)− IKCa(V, Ca2+)+ Isyn

ṅ = G(V, n)

m∞ = U(V)

(1)

where, c is the membrane capacitance, V is the membrane volt-
age, Ig represents the sum of the currents flowing due to voltage
gated intrinsic membrane ion channels (Na, K, Ca etc.), IKCa is
the membrane current due to calcium gated potassium channels,
Isyn is the total synaptic current and IDC is an intrinsic current
that sets the cell’s excitability. n ∈ [0, 1] and m∞ ∈ [0, 1] are the
gating variables vectors for ion channels present on the neuron
membrane with finite rise time constants and instantaneous rise-
time kinetics, respectively. We provide the details on the neuron
models channel currents and kinetics in the Supplemental data
section.

2.4. SYNAPTIC MODEL
The synaptic current contribution for all the neuron models
is modeled as: Isyn(t) = gsS(t)(V − Es), where gs can be the α-
Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
or γ -Aminobutyric acid (GABA) synaptic conductance, Es

is the reversal potential of the synapse (approximately 0 mV
(Andrasfalvy and Magee, 2001) for AMPA and−72 mV for GABA
Cohen et al., 2002), and S(t) represents the fraction of bound
synaptic receptors and has the following form:

Ṡ(t) = S0(Vpre(t − τx))− S(t)

τ̂(S1 − S0(Vpre(t − τx)))
(2)
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where
S0(Vpre) = 0.5(1+ tanh(120(Vpre − 0.1))) (3)

where Vpre(t) is the pre-synaptic neuronal spike, τx is the synap-
tic delay for synapse type x ∈ {Py,B,OA}. τPy was assumed to be
near instantaneous at 0.5 ms. Basket cells were assumed to have a
larger delay of 5 ms due to their distance from Py cells. OA cells
that were the furthest away from Py cells had synaptic delays of
10 ms with Py cells. The delay between OA and B was 5 ms. The
delay from synapses of interneurons was calculated assuming a
conduction velocity of 0.1 m/s (Salin and Prince, 1996) and con-
sidering the average distance between neuronal populations. The
rise and decay time constants of the synaptic current is expressed
as τR = τ̂(S− 1) and τD = τ̂S, respectively. τR for all cells was
assumed to be near instantaneous at 0.1 ms. τD for Py, fast firing
B and slower OA synapses were set at 1 ms, 3 ms, and 5 ms, respec-
tively (Geiger et al., 1995; Bartos et al., 2002, 2007; Taxidis et al.,
2012).

In Table 1 we list the values of the synaptic strength conduc-
tances used for the CA1 model. This was done by matching the
post-synaptic potentials (PSPs) of various neurons with physio-
logical recordings (Cobb et al., 1997; Ali et al., 1998; Taxidis et al.,
2012). As we were unable to obtain physiological data for PSPs of
the synaptic connections for Py-Py and SC-B, we assumed SC-B
strengths to be the same as other inhibitory synapses and the Py-
Py excitatory strength was assumed to be the same as SC-Py’s. We
estimated the strength of SC-Py using empirical techniques (see
Results: Estimating the synaptic parameters of the CA1 network).

2.5. DETAILED CA1 NETWORK MODEL
We construct a detailed representation of a section of the CA1
using information interpreted from literature (Kandel et al., 2000;
Andersen et al., 2006; Demont-Guignard et al., 2009). Following
from Demont-Guignard et al. (2009), we construct the CA1 net-
work with 80%−20% excitatory-inhibitory neuron ratio using
225 Py cells, ∼22 B cells, and∼22 OA cells that are distributed in
a 3D cuboid of 0.21 × 0.21 × 0.21 mm3 as shown in Figure 2A.
Each of the neuron types are distributed uniformly within their
individual cuboid layers. The connection between any given pair
of cells depends on the euclidean distance between the pairs
and follows a Gaussian distribution with standard deviation
σx,y, where x and y are the pair of connected cells. We initially

Table 1 | Values of gs used based on matching of PSP amplitudes

with physiological data.

gs (nS) Model PSP (mv) Reported PSP (mv)

PY-B 0.1 1.24 1.4

PY-OA 0.1 1.33 1

B-PY 0.5 0.65 0.45

OA-PY 0.5 0.65 0.46

B-B 0.5 0.71 0.25

The resting membrane potential of the neurons in the CA1 network model from

which the PSPs were measured were: −65.73 mV for Py cells, −64.02 for B

cells, and −61.54 mV for OA cells.

choose σPy,Py = 20 μm such that the probability of the con-
nection between any two Py cells is low. The other parameters
for the network are taken from Demont-Guignard et al. (2009)
as: σPy,B = 166.6 μm, σB,Py = 233.3 μm, σPy,OA = 166.6 μm,
σOA,Py = 280 μm, σB,B = 233.3 μm, σOA,B = 280 μm. OA cells
do not exhibit recurrent inhibition and B cells do not synapse
on to the OA cells. The CA3’s input to the CA1 via SC is sim-
ulated as a barrage of action potentials through AMPA synapses
that synapse on to Py and B cells. 100% of the B cells each receive
an SC synapse, while the percentage of Py cells each receiving SC
input can be varied (Typically 70%). We illustrate the connectivity
of the CA1 network in Figure 2B.

Since IISs are a hyper-excitable phenomenon, it is neces-
sary to ensure that the CA1 network is in a hyper-excitable
state. In the Results section, we have provided details on esti-
mating synaptic conductances that are conducive for this pur-
pose. We also increase the Py cell’s excitability by setting the
IDC value of Pyramidal cells to 0.3 nA/cm2. We additionally set
IDC = −0.3 nA/cm2 for OA cells to prevent them from firing
spontaneously and inhibiting the Py cells. Bio-physically this can
be interpreted as due to decreased interneuronal cell activity. The
effects of sprouting in the network model was a critical compo-
nent in this paper. We define the degree of sprouting (Psprout) by
the average number of incoming synapses from other Py cells that
each Py cell receives. For example, Psprout = 40 corresponds to an
average of 40 input synapses from other Py cells to every Py cell.
We define Psprout = 100 to be the upper-limit in our simulations
due to the observations in our results that IIS frequency saturates
at this value of sprouting (see Results: IIS formation as an induced
or emergent synchronization phenomenon).

2.6. LOCAL FIELD POTENTIAL MEASUREMENT
The local field potential (LFP) refers to extracellular voltage sig-
nals (≤500 Hz) recorded sub-durally from the brain(Dzhala and
Staley, 2003). EEG level signals are usually found in the range
of ≤100 Hz while signals from multiunit recordings are found at
around ≥300 Hz. Both these components are usually present in
various combinations in LFP depending on the type of electrode
and site of the electrode placement (Dzhala and Staley, 2003).
For our computational model we focus on the lower frequency
EEG-range signals as IISs fall in the EEG-range signal category. To
model this, we must be able to capture transmembrane potentials
that might contribute to an IIS (Buzsáki et al., 2012). Researchers
seeking to reproduce LFP signals in a computational environment
commonly consider summed synaptic current contributions.
This however may not be sufficient to capture detailed aspects of
highly synchronized events such as IIS. Transmembrane poten-
tials can build up significantly under synchronous conditions to
affect extracellular measurements (Buzsáki et al., 2012). These
include fast spikes(in bursts) and AHP. When there is an inflow of
cations from the extracellular medium into the neuron, a current
source is created extracellularly. To maintain electro-neutrality,
there will be an outflow of ions into the extracellular field creating
a sink. A dipole created in such a manner obeys Kirchoff ’s current
law. An LFP’s main component is from the dipoles (Buzsáki et al.,
2012) whose measured potential varies with the inverse square of
distance between the current source-sink site and the recording
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FIGURE 2 | (A) The CA1 neurons in the network model are
distributed in cuboid layers. The Py cells are distributed in a thinner
layer representing the stratum pyramidale. The interneurons B and
OA are distributed in slightly thicker layers, with the basket cells
being in closer proximity to the pyramidal cells than the OA.

(B) The connectivity is described by the clusters of colored spheres
representing neuron groups and their synapse bundles (black
cylinders). The arrows with triangular heads represent incoming
excitatory connections and those with circular heads represent
incoming inhibitory projections.

electrode position. Recent studies have shown that there may also
be significant contributions from monopoles whose creation does
not follow Kirchoff ’s law (Destexhe and Bedard, 2012; Riera et al.,
2012). However, the effects of monopoles on recorded LFP from
the brain are not completely understood. Hence, we choose not to
model our LFP based on monopoles. With these factors in mind,
we choose to model the LFP as a direct function of the mem-
brane voltage of individual Py neurons. Similar approaches have
also been used by other researchers such as Ursino and La Cara
(2006).

LFP(t) =
N∑
i

Vsi(t)

r2
i

(4)

N is the total number of pyramidal cells, Vsi is the ith neuron’s
soma membrane voltage,and ri is the distance of the ith neuron
from the measuring electrode. In our network model, the LFP
electrode is placed in the vicinity of the stratum pyramidale layer.
This arrangement indicates that the major LFP component will
be from the pyramidal soma.

3. RESULTS
3.1. TEMPLATE BASED ANALYSIS OF THE TEMPORAL PROFILE OF PDS

EVENTS
We begin by identifying the temporal characteristics of PDS
events and the degree of PDS synchronization that is implicated
in the generation of an experimentally observed IIS. In Figure 1A,
we show an example of a typical IIS (normalized with peak value
of 1) recorded from the CA1 subfield of an epileptic rat (Talathi
et al., 2009). In agreement with data from earlier works (Jayakar
et al., 1989; Adjouadi et al., 2005), the IIS profile exhibits the fol-
lowing empirical characteristics: (a) The total duration �t of the
IIS, �t = �RP +�PF +�FQ, is between 50 ms and 400 ms. (b)
The two half waves (R to P and P to F) satisfy the condition that
their absolute difference is less than or equal to their calculated
average (Jayakar et al., 1989): |�RP −�PF| ≤ 0.5(�RP +�PF)

(c) The downward deflection voltage A2, is larger than the upward
deflecting voltage A1, satisfying the condition: 0.25 ≤ R ≤ 2,
where R = A1/A2.

An example of a typical PDS, obtained from a rat hippocam-
pal slice perfused with Bicuculline (see Methods) is shown in
Figure 1B. In general, there is a large variability in the shape pro-
file of PDSs (Hwa et al., 1991), however the following empirical
characteristics are commonly observed in majority of PDS shape
profiles: (a) The amplitude of the depolarization peak (ADP) is
usually greater than the amplitude of the afterhyperpolarization
peak (AAHP) (Kandel et al., 2000) and (b) The duration of PDS
burst τB is less than or equal to the duration of after-hyper-
polarization τAHP, τB ≤ τAHP.

The transformation � : (τB, τAHP)→ (
�RP, �PF,�FQ

)
from

individual PDS events into a mean field IIS event is mediated
via synchronization of PDS events, which can be quantified by
estimating the distribution in the timing τs, of the occurrences
of PDS in the CA1 Py cells. In order to characterize this trans-
formation, we use a template based method to first construct
an artificial PDS template (ρ) parameterized by τB and τAHP as
follows:

ρ(t) =

⎧⎪⎨
⎪⎩
− et

τB
e

t
τB if t ≤ 0

− βet
τAHP

e
− t

τAHP if t > 0

(5)

This empirical function produces a PDS envelope with the PDS
depolarization peak normalized to 1 as illustrated in Figure 1D.
These artificial PDS constructs are then used to generate a
template IIS event as follows:

IIStemplate(t) =
∑

k

ρ(t − t0 + tk) (6)

where tk ∈
[−τs

2 , τs
2

]
represents the time of occurrence of kth PDS

event relative to a reference time t0. We note that the parame-
ter τs controls the effective degree of synchronization of the PDS
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events that are implicated in the generation of the IIS. Using
the IIS template in equation 6, we estimate the set of param-
eter values {τ∗B, τ∗AHP, τ∗s } that produce an IIS template with a
“closest-fit” match [root mean squared error (RMSE) <0.1] to
the experimentally recorded mean field IIS (Figure 1A). The
key results of our template based analysis are summarized in
Figure 3. In Figures 3A–C, we plot the RMSE as function of τB

and τAHP for three specific values of τs = {20, 40, 80}ms ,respec-
tively. In Figure 3D, we present an example of a valid IIS template
event with the closest match (lowest RMSE) to the experimen-
tal IIS. In Figures 3E,F, we show examples of invalid IIS tem-
plate events generated using PDSs with τB << τAHP and τB >>

τAHP, respectively. From Figure 3A we identify PDS parameters
{τB, τAHP, τs} = {50 ms, 350 ms, 20 ms} that produces a template
IIS with low RMSE against experimental IIS(≈ 0.1). We use these
parameters as initial conditions and minimize the template IIS
RMSE using the Nelder-Mead simplex method (Lagarias et al.,
1998) to obtain τ∗B = 37 ms, τ∗AHP = 300 ms, and τ∗s = 24 ms.

3.2. ESTIMATING THE SYNAPTIC PARAMETERS FOR THE SCHAFFER
COLLATERAL AFFERENTS

In this section we present results of our analysis of a synapti-
cally reduced model for the CA1 subfield that is used to estimate
the excitatory synaptic strength of SC input onto the epilep-
tic CA1 Py cells. The SC-Py synaptic strength is chosen such
that the Py cell elicits PDS bursts with measured temporal fea-
tures (τB, τAHP) matching those obtained from the template PDS
analysis. We define the synaptically-reduced model of the CA1
subfield by incorporating just the essential connectivity patterns
between a single CA1 Py neuron and the two prominent interneu-
ron types; the basket cell (B) and the orien-alveus cell (OA).
The synaptically-reduced network’s architecture is illustrated in
Figure 4A. The conductance values for all synapses (Py− B =
Py−OA = gex and SC− B = B− Py = OA− Py = gin) except

for SC− Py = gSC, are estimated by matching the PSP magni-
tudes from each cell type (see Methods: Synaptic models). We
then systematically varied gSC , corresponding to the strength of
excitatory synaptic input from the SC onto the Py, in order to
trigger a template matched PDS response from the CA1 Py cell.
The results of these calculations are reported in Figure 4B. We
notice that the error in τB and τAHP values decreases and satu-
rates between 1.5 ≤ gSC ≤ 2.5 such that the synaptically reduced
network elicits a PDS with temporal features {τ∗B, τ∗AHP} ≈{37,
370} ms, which conform with the parameters identified for the
template based PDS event. An example of this model gener-
ated PDS is shown in Figure 1C. These synaptic parameters are
next used in the construction of a biophysically relevant CA1
network model that is capable of generating IISs which matches
the features of experimentally recorded IISs.

FIGURE 4 | (A) The synaptically reduced CA1 network consisting of the
basic neuron types with synaptic interconnections (except autapses). The
network is used to determine synaptic parameters (gi and gsc ) that
produces a PDS matching that predicted by the template studies.
(B) Shows the variation of burst width (τB) in green, AHP width (τAHP) in
blue, and the RMSD error (red curve which is scaled by a factor of 30 to
match the green Y-axis on the right) of these values from the
template-analysis PDS parameters, as a function of gsc .

FIGURE 3 | (A–C) Shows regions in the PDS template parameter space
where IIS occurs. White spaces indicate absence of valid IIS while the colors
code for the RMSE of the template generated IIS with the Mean

experimental IIS. (D–F) Show examples of template derived LFP profiles.
(D) Shows a valid IIS profile while (E,F) show cases when τB << τAHP and
τAHP << τB, respectively.
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3.3. ELICITING IIS FROM THE CA1 NETWORK MODEL
The synaptic parameters obtained from the synaptically-reduced
network model of CA1 neurons were incorporated into a bio-
physically relevant network model of the CA1 subfield comprising
of excitatory Py neurons (≈230) and two major interneuronal
subtypes, the basket (B) cells (≈30) and the orien-alveus (OA)
cells (≈30). All the neurons were modeled as single compart-
ment model neurons following the conductance based Hodgkin-
Huxley framework. To address the issue of variability in biological
neurons and its effect on system dynamics (Marder and Taylor,
2011), in particular the formation of IIS, we investigated two
different single compartment CA1 Py neuron models in our
construction of the CA1 network. Interneuronal dynamics are
implemented using well-established single-compartmental neu-
ron models, the Wang-Buzsaki model for fast spiking basket
cells (Wang and Buzsáki, 1996) and the Wang bursting neuron
model for the OA cells (Wang, 2002). Further details on the neu-
ron model types and the distribution of synaptic connectivity
in the network are provided in the Methods Section. Using this

model we investigate how pathological changes in the CA1 sub-
field including sprouting of CA1 Py neurons and the variability
in the afferent input from the SC affects the CA1 subfield’s ability
to elicit IISs. Toward this end, we systematically investigated the
likelihood for CA1 to elicit an IIS as a function of (a) the degree of
synchronization in the volley of afferent input from SC onto the
CA1 neurons. (b) the percent of CA1 Py cells that receive direct
afferent input from the SC and (c) the degree of CA1 Py neuronal
sprouting.

The degree of synchronization in the afferent spike volley was
varied as a function of a temporal window τSC

Syn in which a given
fraction fSC of CA1 neurons receive afferent input from SC with
uniform probability. The degree of sprouting was quantified in
terms of percent sprouting Psprout, corresponding to the aver-
age number of synapses a given CA1 Py cell receives from other
Py cells in the network. For example, Psprout = 40 implies any
given CA1 Py neuron in the network receives synaptic input from
40 other CA1 Py neurons in the network. In Figures 5A–E, we
summarize the key results of our simulation studies to identify

FIGURE 5 | (A–E) Show IIS RMSE with the mean experimental IIS, color
coded maps in terms of network parameters and input synchronization
(jitter). In each of the colormaps for a fixed input window (τSC

Syn), the
input percentage from SC to pyramidal cells (fSC ), and the degree of
sprouting (Psprout) was varied. (F) Shows an example model generated
IIS in comparison with the mean experimental IIS. (G–I) Shows the

input and output rasters and the LFP measured from the activity of the
CA1 during low sprouting. The Py cells receive low frequency Poisson
input via SC but at 500 ms, there is a quasi-synchronous barrage of
input that causes the Py in the CA1 to fire in a synchronous manner.
This activity is an example snapshot of the multiple simulations done
to create (A–E).
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the set of parameter values α = {τSC
Syn, fSC, Psprout} for the CA1

network that can trigger an IIS that satisfies the empirical criteria
for an experimentally observed IIS. The color code corresponds to
the RMSE between the simulated IIS and the mean profile of the
experimentally recorded IIS. The white space in the color plots
correspond to the regions in the parameter space α, where the
CA1 network failed to trigger an IIS that satisfied the empirical
criterion. In Figure 5G, we show a spike raster plot of a typical
input received by CA1 Py cells from the SC and in Figure 5H, we
show the spike raster of the response of CA1 Py neurons to the
SC input. Finally, in Figure 5I, we show the corresponding LFP
activity including the presence of an IIS that is generated by the
CA1 network model.

As can be seen from Figures 5A–E, the CA1 network with
very low sprouting, mimicking the topology of a normal brain,
will not elicit an IIS except when a large fraction of CA1 neu-
rons (fSC ≥ 80%) receives a quasi-synchronous barrage of afferent
input (τSC

Syn ≤ 20 ms) via SC. Increased recurrent connectivity of
CA1 (Psprout > 40) can evoke IIS in the CA1 network even in the
presence of low synchrony SC afferent input (τSC

Syn > 80 ms) and
a low fraction of SC input to CA1 pyramidal cells (fSC ≈ 30%).
This suggests that the ability of CA1 to trigger an IIS increases
with increasing recurrent connections in the network and is less
dependent on the variability in the afferent input from the SC.
In turn, this indicates that IISs may become more frequent with
increased axonal recurrent sprouting as a wider range of SC
input is now sufficient to elicit an IIS. Considering a previous
hypothesis, that the epileptic CA1 pyramidal axonal sprouting
increases over time and enhances the CA1’s ability for local
recruitment during population bursts (Smith and Dudek, 2001),
our computational observations suggests that the frequency of

IIS events may increase over time during epileptogenesis. Indeed,
this phenomenon has been reported in animal models of epilepsy
(Buzsáki et al., 1991).

We next investigated how the results presented above vary with
the choice of the CA1 Py model neuron used in the implemen-
tation of the CA1 network. We employed a CA1 pyramidal cell
model, recently developed and validated by Nowacki et al. (2011).
Figures 6A–E show that our general conclusion for the region
in the parameter space of α where the CA1 network can trigger
an IIS remains unaltered. Minor differences in the degree of Py
sprouting and the percent of CA1 neurons receiving direct synap-
tic input from SC is attributed to the difference in the intrinsic
excitability of the model Py neurons. Following from these find-
ings we observe that the ability to trigger an IIS in an excitable
CA1 network is primarily dependent on the ability of an indi-
vidual CA1 neuron to generate a PDS like burst in response to
synaptic input from SC and is less dependent on the exact details
of the mechanism of the PDS generation itself. Figure 6F com-
pares an IIS generated using the Nowacki model for PY in the
CA1, against the mean experimental IIS.

Finally, we investigated the degree of PDS synchronization
implicated in the generation of an IIS. From the template based
analysis, we predicted that an IIS will result when individual
PDS events occur within a temporal window of τ∗s = 24 ms. In
order to verify the significance of this prediction, we analyzed
the distribution of PDS events generated in the CA1 network in
response to afferent drive from the SC. Specifically, for each IIS
event triggered in the CA1 network, we look for the fraction of
PDS events (fPDS) that fall within a temporal window of ±12 ms
around the peak of the triggered IIS event. In Figure 7, we plot
the distribution of this fraction. We find that when an IIS occurs,

FIGURE 6 | Similar network parameter IIS trends seen in the case of the

Golomb Py model (Figure 5), can be observed using the Nowacki model

for the bursting Py cells. (A–E) Show IIS RMSE with the mean experimental
IIS, color coded maps in terms of network parameters and input

synchronization (jitter). In each of the colormaps for a fixed input window
(tSC

Syn), the input percentage from SC to pyramidal cells (fSC ), and the degree
of sprouting (Psprout) was varied. (F) Shows an example model generated IIS
in comparison with the mean experimental IIS.
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on average ≥50% of the PDS events generated in the network
lie within a 24 ms temporal window, in agreement with the PDS
empirical estimation results.

3.4. SPONTANEOUS GENERATION OF IIS FROM HIGH RECURRENCE
AND SPARSE RANDOM INPUT

Motivated by our finding that the CA1 network with a high
degree of recurrent connections is able to elicit an IIS even in
the absence of a synchronous barrage of afferent input from the
SC, we investigated the response of the CA1 network to an asyn-
chronous afferent input from the SC modeled as a sequence of
identically independently Poisson distributed spikes occurring at
5 Hz. The results are summarized in Figures 8A–C. We observe
that in response to Poisson distributed random SC input, the CA1
network, with sufficiently high degree of sprouting (Psprout > 65)

FIGURE 7 | Shows the probability distribution function of the fraction

of the PDS events (fPDS ) that fall within a 24 ms window(as predicted

by the template studies) during an IIS event. It can be seen that the
probability is much higher for fractions greater than 50%.

responds by emitting a periodic sequence of spontaneously
triggered IIS occurring at≈3 Hz. This type of quasi-periodic syn-
chronization in response to random input have been observed in
generic networks of coupled excitatory and inhibitory neuronal
populations(van Vreeswijk and Hansel, 2001; Kudela et al., 2003).
On further investigation, we noticed that the spread of network
activity during a population burst corresponding to these spon-
taneously triggered IIS events was not fixed. This is illustrated in
Figure 9. In the two selected IISs from the same simulation, the
spread of synchronized bursting can be seen occurring in oppo-
site directions. This observation suggests that specialized neurons
(like hub neurons) may not be necessary for this kind of burst
synchronization. We also decreased the percentage of recurrent
excitatory sprouting and as suggested from the reported find-
ings in the previous section, all IIS activity in the network was
abolished (Figures 8D–F).

We also investigated the effect of scaling on the network’s
ability to exhibit spontaneous periodic IIS activity by increas-
ing the size of the CA1 network 30 fold (by scaling the network
in X and Z dimensions shown in Figure 2B) while maintain-
ing the network connectivity, the level of neuronal excitability
and the synaptic strengths. The scaled network consisted of 8000
pyramidal cells, 1000 basket, and 1000 oriens/alveus cells. The
sprouting was maintained at approximately Psprout = 65. The net-
work was stimulated with 5 Hz Poisson distributed random input
via SC. The scaled network’s rasters and LFP responses are shown
in Figures 10A–C. We observed that the scaled model exhibited
identical behavior to that of the original model in that IIS were
generated at a similar rate of≈3 Hz in the scaled network as well.

3.5. IIS FORMATION AS AN INDUCED OR EMERGENT
SYNCHRONIZATION PHENOMENON

From results presented in the previous Sections, we see that the
CA1 network can exhibit IIS via (a) induced synchronization

FIGURE 8 | (A–C) Input and output rasters and the LFP from CA1 network activity with high sprouting(Psprout ≈ 70). (D–F) Show input and output rasters and
LFP of network activity when sprouting is low (normal case).
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of the PDS events elicited from CA1 Py neurons in response
to synchronous barrage of afferent input from the SC and (b)
emergent synchronization of PDS events elicited from CA1 Py
neurons with high degree of recurrent connections in response to
asynchronous Poisson distributed SC input. In Figures 11A,B, we
show a schematic diagram depicting the scenarios that can trig-
ger the emergence of IIS in the CA1 network. The mechanism
of induced synchronization leading the emergence of IIS is rela-
tively straightforward and does not require recurrent connections
between CA1 Py cells as a necessary condition. In the absence of

FIGURE 9 | (A) Shows the pattern of network synchronization during the IIS
event at 2480 ms (circled in red). (B) The synchronization of another IIS at
3490 ms (circled in black). The IISs were generated in a network with high
recurrent sprouting (Psprout ≈ 70).

any recurrent CA1 Py neuronal connections, if a large fraction of
CA1 Py cells receive sufficiently synchronized SC input; the CA1
Py cells will respond with a high probability of eliciting a PDS
more or less simultaneously, resulting in the observation of an IIS
in the mean field CA1 network activity.

On the other hand, the spontaneously occurring IIS in the
CA1 network in response to asynchronous Poisson distributed
SC input requires recurrent CA1 Py connections as a necessary
condition. We refer to this phenomenon as emergent synchrony
of the PDS events because the synchrony emerges from within
the network as opposed to primarily from the input. In addition
to recurrent connections between the CA1 Py neurons, a num-
ber of additional network parameters that regulate the network
excitability are implicated in the emergence of spontaneous IIS
within the CA1 network. In particular, the strength of inhibitory
synaptic connections and the frequency of Poisson distributed SC
input play major roles in the emergence of spontaneous IIS.

We begin by analyzing the role of sprouting in the emergence
of spontaneous IIS. We systematically varied the degree sprout-
ing (recurrent connections between the CA1 Py neurons) from
Psprout = 0 to Psprout = 100, while keeping all other CA1 network
parameters in the default state (see Methods). In Figure 11C,
we plot the result of these calculations (shown in blue trace) by
measuring the rate of spontaneous IIS as function of the degree
of sprouting in the CA1 network. We observe that spontaneous
IIS emerge in the network when Psprout > 25, with the rate of
spontaneous IIS saturating to a maximum value of ≈3 Hz for
Psprout = 100 sprouting in the network. Further investigations led
us to the observation that the slow activation time constant τZ

of the potassium M-current of Py cells is primarily implicated in
determining the maximum rate of spontaneous IIS activity in the
CA1 network. This is illustrated in Figure 11C, where we plot the
rate of spontaneous IIS in the CA1 network as a function of Psprout

for different values of τZ . We observe that the maximum rate of
spontaneous IISs monotonically decreases with increasing value
of τZ . This is because for smaller value of τZ , the M-current acti-
vates faster resulting in truncating the number of spikes per burst
of PDS activity, while faster deactivation of M-currents result in
an increased rate of PDS bursting activity, which in turn triggers
the emergence of spontaneous IIS at an increased rate.

We next analyzed the dependence of the rate of sponta-
neous IIS on the frequency of Poisson distributed random SC
input. For a default network configuration with Psprout = 70, we

FIGURE 10 | (A–C) Input and output rasters and the LFP from the large scale CA1 model (≈10,000 neurons). The scaled up network still retains similar
dynamics and IIS waveforms as in the smaller scale.
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FIGURE 11 | (A) This figure schematically represents the concept of induced
synchrony: When an already synchronous barrage of input arrives at the CA1
network, the output also tends to be synchronous in nature. This has been
observed in networks with both low and high degree of sprouting.
(B) Another case when IIS is possible but without synchronous input. In this
case we observe that the CA1 network must have a high degree of sprouting
and receive sparse random input continuously. (C) IIS frequency vs. sprouting
trends. We see that all IIS frequencies tend to saturate by 100% sprouting.
Lower values of the M-current decay constant (τZ ) significantly changes the
maximum rate of spontaneous IIS exhibited in the network. The mean trend
is shown in dark colors while the lighter bands indicate the standard error.

(D) The nature of IIS rate vs. Poisson input frequency is non- monotonic.
Networks that are less excitable (gsc = 1.0 mS/cm2, IDC = 0.1 μA/cm2,
Psprout = 30) show an increase in IIS rate up to a certain point (30 Hz) beyond
which the nature of the poisson input goes from synchrony-conducive
excitability to synchrony-disruptive excitability. The mean trend is shown in
dark blue and the standard error is depicted in the light blue band.
(E) Increasing GABA synaptic strengths can interfere with synchronization
and hence decrease the rate of spontaneous IISs. The mean trend is shown
in dark blue and the standard error is depicted in the light blue band. (F–H)

Input and output rasters and the LFP of a network with high GABA synaptic
strength (gin = 25 ms/cm2).

systematically increased the frequency of Poisson input from 5 Hz
to 30 Hz. The results of this analysis are presented in Figure 11D.
We see that, with default network parameters, the network
initially responds by generating spontaneous IIS at ≈3 Hz, but
as the frequency of Poisson input increases, the network exhibits
high frequency-low amplitude non-IIS like spiking activity. By
estimating the degree of synchronization amongst the CA1 Py

neurons using a well-established synchronization measure Hansel
and Sompolinsky (1992); Kudela et al. (2003), we find that the
network receiving Poisson distributed random SC input at 30 Hz
exhibits 70% less synchronization than is the case when the
network exhibits spontaneous IIS in response to Poisson dis-
tributed random SC input at 5 Hz. This suggested that increasing
the rate of random spikes to the CA1 via SC disrupts network
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synchronization making the network less susceptible to exhibit
spontaneous IIS. It should be noted that this finding was observed
in a network that was already in an excitable state, i.e. high degree
of recurrent connections and Py cells are highly input sensitive
(IDC = 0.3 μA/cm2). We next investigated if this finding varied
with a network of lower intrinsic network excitability. We reduced
the degree of sprouting to 30 and at the same time reduced τZ

to 25 ms, such that the network does not exhibit spontaneous
IIS at the saturating rate of 6 Hz observable for network with
Psprout = 100. We also reduced the Py cells intrinsic excitabil-
ity (IDC = 0.1 μA/cm2, gsc = 1.0 mS/cm2). In this case, as we
increased the frequency of Poisson distributed random SC input,
the rate of spontaneous IIS activity is increased reaching a peak
of 6 Hz for Poisson input frequency of 30 Hz. Thus, depending on
the level of network excitability the rate of random SC input can
be either conducive or disruptive to emergent synchronization in
the network. In Figure 12 we show examples of LFPs generated
by the CA1 network model for different values of SC input rates
and excitability levels of Py cells (IDC). We notice that in general
as the rate of SC input increases the network goes from producing
IIS-like spikes to higher frequency oscillations.

Finally, we analyzed how the rate of spontaneous IIS depends
on the strength of inhibitory synaptic connections in the net-
work. For different values of Psprout = {35, 50, 65}, we gradually
increased the strength of inhibitory synaptic couplings in the net-
work. From Figure 11E we see that the frequency of spontaneous
IIS decreases with increase in network inhibition and eventually
saturates. Furthermore, we also observe that the rate at which the
IIS frequency saturates depends upon the degree of sprouting of
pyramidal cells in the CA1 network. We see that for Psprout = 65,
the frequency of spontaneous IIS takes longer to saturate than
in the case of Psprout = 35 where the frequency of IISs saturates
to a non-zero minimum (<1 Hz) much faster. Finally, we make
the observation that when Psprout is sufficiently high to induce
spontaneous IISs, even high values of GABAergic conductances

FIGURE 12 | The figure shows the LFP of the CA1 network for different

SC input rates (Poisson frequency varied) and different levels of

neuronal excitability (Idc ). In general as the rate of SC input increases, the
network goes from producing IIS-like spikes to higher frequency oscillatory
activity.

are unable to completely eliminate IISs. This possibly suggests
that when a CA1 network reaches a sufficiently hyperexcitable
state through recurrent pyramidal cell sprouting, even enhanced
interneuronal activity may be insufficient in completely sup-
pressing epileptiform activity (Franck and Schwartzkroin, 1985;
Franck et al., 1988; Bausch, 2005). In Figures 11F–H, we show an
example of raster and LFP plots when GABA strength (gin) values
were set at 25 mS/cm2. The Figures clearly show that sponta-
neous IISs can still occur with high network inhibition but many
of the synchronization attempts of the Py cells are thwarted by
interneuronal interferences. This results in much weaker islands
of synchronization (Figure 11G at 1500 and 2000 ms) or no
synchronization at all (at 900 ms).

4. DISCUSSION
Our primary goal was to first develop a biologically relevant plat-
form for modeling IISs in the CA1, and then to analyze the
network conditions necessary for IISs. In order to build the CA1
network model such that it possesses the capability to exhibit IISs,
we had to consider various cellular and network level param-
eters possibly implicated in the role of IIS genesis. In order to
avoid the impracticality of a computationally expensive paramet-
ric exploration of a high dimensional system for IIS generation,
we chose to dissociate the cellular level parameters from net-
work level parameters and analyze them separately in a hierarchic
fashion.

We introduced a template based approach for estimating the
empirical features of the cellular correlate of IIS, i.e., the PDS
burst width (τB) and the PDS after-hyperpolarization duration
(τAHP), from experimentally recorded IIS. These features were
used to estimate the synaptic parameters of a reduced CA1 net-
work, which in turn allowed us to develop a biologically relevant
model of the CA1 network capable of generating an IIS event with
empirical characteristics matching those obtained from exper-
imental recordings from the CA1 of an in vivo animal model
of epilepsy. We believe that the proposed approach, leveraging
experimental data to estimate network parameters, may be used
for the analysis and development of models for other LFP features
besides IIS. We however note that the template based approach
proposed here provides a ballpark estimate for some of the criti-
cal network parameters. For example, PDSs that occur during an
IIS would most likely have a distribution of burst width and AHP
durations with the mean values presumably close to our estimated
values. To our knowledge not many other methods are currently
available for estimating computational network parameters solely
from experimental recordings of LFP data such as IIS. This step is
important for the biological validation of computational models
that attempt to capture experimental features of interest.

We next developed a biophysically relevant model of the CA1
network in order to identify the network conditions under which
the CA1 network can elicit an IIS. We found that the CA1 can
trigger an IIS event under a variety of conditions. For network
configurations characterized by a low degree of sprouting, IISs
can be evoked by a synchronous barrage of afferent input from the
SC with high percentage of SC to Py connectivity. The simulations
also indicated that many pyramidal cells (>80%) are recruited via
the SC when an IIS is triggered. For higher degrees of sprouting,
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we found that the formation of IIS is less dependent on the degree
of input synchronization and the percentage of SC to Py connec-
tions. Indeed, even in the presence of low input synchronization
(τSC

Syn = 240 ms) and low fSC , we noticed that IISs could still form
for a sufficiently large degree of CA1 sprouting (Psprout ≥ 40).
These findings suggest that sprouting may play a significant role
in synchronization of PDSs, resulting in the manifestation of an
IIS. We also observed that in the presence of sufficiently high
degree of Py cell sprouting, sequence of asynchronous afferent
input onto the CA1 Py cells from the SC can trigger spontaneously
generated IIS events that occur in periodic fashion. These results
indicate that the CA1 network is less influenced by the nature of
SC input as the degree of Py sprouting increases. If we consider
the hypothesis suggested by Staley et al. (2005) that sprouting is
a phenomenon that progresses over a period of weeks in the TLE
brain, then in conjunction with our results this indicates that IISs
will gradually increase in their frequency over a timespan. This
phenomenon was in fact observed experimentally by Buzsáki et al.
(1991).

The CA1 network is capable of producing IISs primarily
through two mechanisms of synchronization, (a) input-induced
synchronization and (b) emergent synchronization. We found
that while induced synchronization is a straightforward mani-
festation of SC input on Py output synchronization, emergent
synchronization was a more complex phenomenon. IIS forma-
tion by emergent synchronization seems to depend on the CA1
network’s intrinsic excitability. The level of the CA1 network
excitability depends on many parameters. We observe that when

the CA1 network has achieved a sufficient degree of Py cell
recurrent sprouting, even enhanced GABAergic strengths can-
not completely suppress epileptiform activity. This observation
is in agreement with prior experimental studies (Franck and
Schwartzkroin, 1985; Franck et al., 1988) where enhanced
GABAergic activity alone was insufficient in controlling epilep-
tic hyperexcitability. We also see that if the network is already in
an excitable state (primarily high recurrent Py sprouting and suf-
ficiently excitatory synaptic strengths) and is capable of exhibiting
IISs, increasing the SC drive significantly (30 Hz) to the CA1
may actually disrupt IISs and instead result in high amplitude
oscillatory activity. Hence there is a domain of network excitabil-
ity in terms of SC input and network parameters for which IIS
formation is possible.

We note that NMDA synapses were not incorporated in our
implementation of the CA1 model primarily because it has been
demonstrated that NMDA synapses are not critical for burst initi-
ation in the hippocampus when the brain is already in an epileptic
state (Stoop and Pralong, 2000; Stoop et al., 2003). It may, how-
ever, be worth investigating the effects of NMDA on long-term
changes in the CA1, such as sprouting and synaptic plasticity
between recurrent pyramidal cells.

While IISs have been the focus of this work, the CA1 network
model may be capable of exhibiting other significant LFP pat-
terns. For instance, we observe that in the event of significantly
increased random input drive from the SC (@ 30 Hz), the CA1
network with a high degree of sprouting produces non-IIS oscil-
latory activity in the theta range (4–8 Hz). This LFP activity is

FIGURE 13 | (A) A sequence of spontaneous IIS-like events produced from
the CA1 network model. (B) An example of the CA1 model generated tonic
ictal-like activity in the theta range. This is primarily produced by increasing

the frequency of SC input drive to the CA1 (@ 30 Hz). (C) Sequence of IIS
events observed in an EEG recording of a rat induced with TLE. (D) EEG
recordings of the tonic phase of an ictal event.
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extremely similar to the tonic phase of an ictal event (Quiroga
et al., 1997). We illustrate comparisons between our model’s LFPs
and experimentally recorded data for the IISs and the tonic phase
of an ictal event in Figure 13. Figures 13A,C show IISs generated
from the model CA1 network and from experimentally recorded
EEG, respectively. Figure 13D shows the EEG recording of the
tonic phase of an ictal event. In comparison, the model is able to
generate a similar LFP waveform as shown in Figure 13B when
the rate of Poisson SC input is increased to 30 Hz. We antici-
pate that our modeling paradigm may serve as a framework for
future investigators interested in incorporating further details in
the CA1 model in order to better understand the mechanisms of
epileptogenesis.
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APPENDIX
NEURON MODEL DETAILS
In this section we provide details on the channel currents and con-
duction parameters for the three neuron models described in the
methods section. The channel currents for the Golomb model
(Golomb et al., 2006) are: Ig = {INa, IKDR, INaP, IL, IA, IM} and
IKCa = 0 where,

INa = gNam3∞h(V − ENa)

IL = gL(V − EL)

IKDR = gKDRn4(V − EK)

INaP = gNaPp3∞h(V − ENa)

IA = gAa3∞b(V − EK)

IM = gMz(V − EK)

(7)

The gating variables are {n, h, b, z, m∞, p∞, a∞}, where

ḣ = φ(�(V, θh, σh)− h)/(1+ 7.5 ∗ �(V, τth,−6.0))

ḃ = (�(V, θb, σb)− b)/τb

ṅ = φ(�(V, θn, σn)− n)/(1+ 7.5 ∗ �(V, τtn,−15.0))

ż = (�(V, θz, σz)− z)/τz

m∞ = �(V, θm, σm)

p∞ = �(V, θp, σp)

a∞ = �(V, θa, σa)

(8)

where, φ = 1 and �(V, θ, σ) = 1
1+exp(

−(V−θ)
σ

)
and the parameters

are: θm = −30 mV; σm = 9.5 mV; θh = −45 mV; σh = −7 mV;
θn = −35 mV; σn = 10 mV; θa = −50 mV; σa = 20 mV;
θb = −80 mV; σb = −6 mV; θz = −39 mV; σz = 5 mV; τb =
15 ms; τz = 75 ms; τth = −40.5 ms; τtn = −27 ms.The chan-
nels reversal potentials and conductances are as follows:
ENa = 55 mV; EK = −90 mV; EL = −70 mV; gNa = 35 mS/cm2;
gNaP = 0 mS/cm2; gKDR = 6 mS/cm2; gL = 0.05 mS/cm2;
gA = 1.4 mS/cm2; gM = 1 mS/cm2. We set IDC = 0.3 μA/cm2.

For the Wang-Buzsaki model (Wang and Buzsáki, 1996) the
channel currents are: Ig = {INa, IK , IL} and IKCa = 0,where

INa = gNam3∞h(V − ENa)

IL = gL(V − EL)

IK = gK n4(V − EK)

(9)

The gating variables are {n, h, m∞},where

ḣ = φ(αh(1− h)− βhh)

ṅ = φ(αn(1− n)− βnn)

m∞ = αm

αm + βm

(10)

The gate variables rate constants are given as:

αm(V) = −0.1(V + 35)

exp(−0.1(V + 35))− 1

βm(V) = 4 exp(−(V + 60)/18)

αh(V) = 0.07(exp(−(V + 58))/20)

βh(V) = 1/ exp(−0.1(V + 28)+ 1)

αn(V) = −0.01(V + 34)

exp(−0.1(V + 34))− 1

βn(V) = 0.125 exp(−(V + 44)/80)

(11)

The model parameters are: ENa = 55 mV; EK = −90 mV;
EL = −65 mV; gNa = 35 mS/cm2; gK = 9 mS/cm2;
gL = 0.1 mS/cm2; c = 1 μF/cm2; φ = 5. IDC was set
to 0 mV.

The Wang model’s (Wang, 2002) channel currents are:
Ig = {INa, IK , Ih, ICa, IL} and IKCa = gKCa[Ca2+]/([Ca2+] + KD)

(V − EK), where

INa = gNam3∞h(V − ENa)

IK = gK n4(V − EK)

Ih = ghH(V − Eh)

ICa = gCam2∞(V − ECa)

IL = gL(V − EL)

(12)

The gating variables {n, h, m∞} follow the same dynamics as
described in equations 10 and11. The additional gating variables

are {Ḣ, ˙[Ca2+]} which have the following dynamics:

Ḣ = H∞ −H

τH

H∞(V) = 1/(1+ exp((V + 80)/10))

τH(V) = 20

(exp((V + 70)/20)+ exp(−(V + 70)/20)
+ 5

˙Ca2+ = −αICa − [Ca2+]/τCa

(13)

The parameters for {INa, IK , IL} are the same as those described in
the Wang-Buzsaki model. The additional parameters are: gKCa =
10 mS/cm2; KD = 30 μM; ECa = 120 mV; gCa = 1 mS/cm2;
Eh = −40 mV; τCa = 80 ms; α = 0.002.

NUMERICAL INTEGRATION DETAILS
In this section we show that the network behavior remains invari-
ant for different numerical integration methods. In paricular we
compare the effects of different time steps (0.01 and 0.05 ms)
on the CA1 network’s model simulation. We also compare the
Euler integration method against the fourth order Runge-Kutta
method. The results are illustrated in Figure A1. For a fixed
value of Psprout = 65 and keeping other model parameters at
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FIGURE A1 | (A) An example LFP trace of spontaneous IIS using the Euler
integration method for a time step of 0.01 ms. (B) An LFP trace using the
Euler integration method for a time step of 0.05 ms. (C) Spontaneous IIS
LFP obtained via simulations using the fourth order Runge-Kutta integration

method with a time step of 0.01 ms. (D) A similar LFP trace obtained
using the fourth order runge-kutta integration method for a timestep of
0.05 ms. All simulations were run with default model parameter values and
Psprout = 65.

their default values, we ran simulations to compare the numerical
integration time steps and methods. In the case of the Euler inte-
gration method, we see that a time step of 0.01 ms (Figure A1A)
and a time step 0.05 ms (Figure A1B) both produce very similar
spontaneous IIS LFP traces. Even in the case of the fourth order
Runge-Kutta integration method, we continue to see no notica-

ble deviation between the LFP traces for simulation time steps of
0.01 ms (Figure A1C) and 0.05 ms (Figure A1D). Furthermore,
we also do not notice any significant differences between the LFP
traces obtained from the Euler and fourth order Runge-Kutta
integration methods. These observations suggest that the choice
of time step (0.01 ms) for our simulations is valid.

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 2 | 191

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


METHODS ARTICLE
published: 24 January 2014

doi: 10.3389/fncir.2014.00001

N2A: a computational tool for modeling from neurons to
algorithms
Fredrick Rothganger*, Christina E. Warrender , Derek Trumbo and James B. Aimone*

Cognitive Modeling Department, Sandia National Laboratories, Albuquerque, NM, USA

Edited by:

Guillermo A. Cecchi, IBM Watson
Research Center, USA

Reviewed by:

Guillermo A. Cecchi, IBM Watson
Research Center, USA
A. Ravishankar Rao, IBM Research,
USA

*Correspondence:

Fredrick Rothganger and James B.
Aimone, Cognitive Modeling
Department, Sandia National
Laboratories, 1515 Eubank Blvd
MS-1327, Albuquerque, NM 87185,
USA
e-mail: frothga@sandia.gov;
jbaimon@sandia.gov

The exponential increase in available neural data has combined with the exponential
growth in computing (“Moore’s law”) to create new opportunities to understand neural
systems at large scale and high detail. The ability to produce large and sophisticated
simulations has introduced unique challenges to neuroscientists. Computational models
in neuroscience are increasingly broad efforts, often involving the collaboration of experts
in different domains. Furthermore, the size and detail of models have grown to levels
for which understanding the implications of variability and assumptions is no longer trivial.
Here, we introduce the model design platform N2A which aims to facilitate the design and
validation of biologically realistic models. N2A uses a hierarchical representation of neural
information to enable the integration of models from different users. N2A streamlines
computational validation of a model by natively implementing standard tools in sensitivity
analysis and uncertainty quantification. The part-relationship representation allows both
network-level analysis and dynamical simulations. We will demonstrate how N2A can
be used in a range of examples, including a simple Hodgkin-Huxley cable model, basic
parameter sensitivity of an 80/20 network, and the expression of the structural plasticity
of a growing dendrite and stem cell proliferation and differentiation.

Keywords: neuroinformatics, computational modeling, computational neuroscience, structural plasticity,

biologically realistic modeling

INTRODUCTION
Computational neuroscience methods for constructing and sim-
ulating biologically realistic models have increasingly been rec-
ognized as important for understanding the function of complex
neural circuits. The role for computational tools will continue
to grow in the near future, with significant policy efforts such
as the EU Human Brain Project (Markram, 2012) and the pro-
posed Brain Activity Map (Alivisatos et al., 2013). These programs
emphasize the high-throughput collection of neural data through
both connectomics research and large scale physiology mea-
surements of neuronal behavior in circuits. While the role of
computational tools for modeling and simulation is increasingly
recognized, the path from this raw data to interpretable model
results is unclear.

Constructing neural simulations typically involves several dis-
tinct stages once a conceptual approach has been established
(Figure 1A). (1) Relevant data from the biological world must be
identified, filtered, and represented in a computationally tractable
form. This is often a challenge because a substantial portion of
neurobiological data is qualitative in nature. (2) A model must
be assembled from this raw data, which involves critical deci-
sions on the appropriate level of abstraction and desired scope.
(3) The model is typically simulated, either directly in the model
construction tool or in a separate environment. (4) Finally, the
simulation data must be analyzed, which is often non-trivial
due to the potential scale of models today. Each of these four
stages is unique, often requiring distinct forms of insight and
benefiting from different aspects of expertise on the part of the
user.

There are numerous software applications available for parts
of one or several of these stages, some of which have been opti-
mized over decades (Table 1). In particular, the simulation of
neural systems (step 3) has benefited greatly from tools such
as NEURON and GENESIS/MOOSE which facilitate the rep-
resentation and simulation of complex neuronal dynamics and
morphologies (Hines and Carnevale, 1997; Bower and Beeman,
1998; Dudani et al., 2009). Recently introduced simulators such
as Brian and NEST have focused more on network simula-
tions, and similar capabilities have been added to NEURON and
GENESIS (Gewaltig and Diesmann, 2007; Goodman and Brette,
2008). Many of these network simulators have been parallelized
to run on supercomputers. In general, simulators require the user
to describe models in a programming language. Notably, some
simulators, such as NEURON and GENESIS, also provide an inte-
grated modeling environment that facilitates the user’s work at
various steps in the process, such as editing models and managing
simulations. Having a programming language such as Python or
C at the foundation of a neural modeling tool is greatly enabling
for its functionality, as in theory these languages are both agnostic
to scale or complexity.

Nevertheless, despite this plethora of tools, modeling neural
systems is becoming ever more challenging, particularly as avail-
able computing resources and available biological data approach
previously unimaginable heights. This trend toward incorporat-
ing more biological detail into models and integrative community
efforts has led to the development of XML based descriptions
such as NeuroML and NineML (Gleeson et al., 2010, 2011;
Raikov, 2010) and model generation tools such as PyNN and
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NeuroConstruct (Gleeson et al., 2007; Davison et al., 2008) that
are moving the community beyond stand-alone platforms toward
model-sharing. Nonetheless, the use of standard parts, which
is useful for model interchange, can be limiting when build-
ing models with complex features, such as structural plasticity
or non-standard dynamics. Relying on a formal coding inter-
face to go beyond pre-packaged modeling components often
presents a challenge to the typical neuroscientist user. We expect
this need to be particularly notable when a prospective mod-
eler faces challenges such as structural plasticity (often important
for clinical models), uncertainty quantification (necessary for any
model with numerous free parameters), and parallelization of
large-scale simulations. These are general problems with solu-
tions that are often specific to a given network. For instance,

FIGURE 1 | (A) Simple overview of computational modeling process and
relationship to neurobiological data. (B) Illustration of where N2A tool
contributes to neural modeling studies; we envision that N2A will
eventually be capable of mapping into a wide range of common neural
simulation platforms.

while some network architectures map well onto GPUs (Richert
et al., 2011), other networks map better to different system
architectures.

Here, we present a new tool, Neurons to Algorithms, or N2A,
which complements these existing approaches. Rather than focus
on the simulation aspects, which are often specialized to the
type of model being computed, we focus on the first two stages
of modeling, the computational representation of neurobiolog-
ical data (e.g., describing the projection pattern from DG to
CA3 as a narrow Gaussian with sparse connection probabil-
ity) and the descriptions of models themselves (Figure 1B). In
this respect, it is most similar to PyNN, though with several
important differences. First, N2A represents information in a
flexible computable format that permits almost any neurologi-
cal dynamics; whereas PyNN is more specialized to use canonical
standards or native models represented within lower-level simula-
tors. Second, N2A’s hierarchical and relational design is inherently
scale agnostic, forming a computable database for neural data.
Finally, the part-relationship representation is suitable for both
standard dynamical simulations as well as higher level network
analysis.

We have designed N2A to be general in how it represents mod-
els, so we expect that it will be suitable for a wide range of neural
modeling approaches. However, we recognize that some tools are
exceptional in certain application areas (i.e., biophysical single
neuron multi-compartment models in NEURON), and we expect

Table 1 | Overview of different neural modeling tools.

Language Model generation and translation Simulation Interface Typical use

N2A Integrated
development
environment (IDE)

Large scale simulations of
biologically realistic networks

NEURON IDE Biophysically realistic models
of neurons and small
networks

GENESIS/MOOSE IDE Biophysically realistic models
of neurons and small
networks

Brian Code (Python) Network simulations of user
defined neurons

NEST Code (Python) High performance simulations
of large scale point neuron
networks

PYNN Code (Python) Scripted description of models
for multiple simulation
platforms

NeuroML Code (XML) Model interchange using
standard parts

NineML Code (XML) Model interchange using
user-defined parts

Neuroconstruct IDE Development and visualization
of biologically realistic neurons
and small networks

Primary scope is illustrated by bold arrows, with limited capabilities shown by shaded arrows.
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those to remain the tools of choice in those domains and will
seek to integrate N2A with their existing functionality. Rather, we
believe that N2A will provide differentiating capabilities in high
fidelity, large scale network models. These models have several
key characteristics, including many distinct neuron and con-
nection types, non-trivial connectivity patterns and part-to-part
variability, and large parameter spaces with at times poor biolog-
ical constraints that will require considerable sensitivity analysis
and parameter exploration. This type of high-detail modeling is
relatively new to neuroscience and is an increasingly common
approach, enabled in large part by modern computing resources
and the advances in high density physiology and anatomical data
acquisition (Izhikevich and Edelman, 2008; Aimone et al., 2009;
Richert et al., 2011; Markram, 2012) and by the recognition that
therapeutic models will require consideration of the complexity
of neural dynamics (Aimone and Weick, 2013).

OVERVIEW OF N2A FRAMEWORK
The translation from raw biological information into a model
suitable for simulation is a non-trivial process. We recognized
that a systematic approach capable of model development would
require a structured language, a dedicated software platform,
and use of community resources. Along these lines, the overall
N2A framework we describe here has three significant compo-
nents: the N2A language, the N2A software, and integration into
the broader community. First, we will introduce the N2A lan-
guage, which is our approach for describing neural models that
enables the description of neural data in a computable format
from which models can be constructed. Second, we will describe
the current N2A software application, which includes both a user
interface and a custom database. Third, we will discuss our vision
for how N2A fits into the broader neuroscience community,
which includes both the integration of N2A into existing neu-
roinformatics frameworks and collaborative N2A peer-to-peer
networks.

The N2A tool is open source and is available at http://code.
google.com/p/n2a.

MODEL DESCRIPTION LANGUAGE
The N2A language was designed with the primary goal of being
capable of representing as much neural data as possible in a sim-
ple computable format. In this context, computable refers to the
ability for an observer, whether a human or a machine, to read
the description and integrate it into a simulation. A simple rule-
of-thumb is that for a model to use neural information, it either
has to be represented by an equation or in the structure of the
model. For some classes of neural data, such as the behavior of
ion channels and membrane voltage dynamics often character-
ized in electrophysiology studies, representation in a computable
format is as simple as writing the canonical differential equations
(see HH example below). For other types of data, computabil-
ity is less straightforward; for instance describing the dynamics
of dendrite growth will likely be a non-trivial pursuit involving
approaches such as L-Neuron (Ascoli and Krichmar, 2000). N2A
refers to units with largely self-contained dynamics (e.g., a neu-
ron or a dendritic spine) as parts and the equations governing its
dynamics as its equation set.

The conversion of neural anatomy information into a model’s
structure is a major goal of N2A which is best illustrated by an
example. Figure 2 illustrates a few cell types in the hippocampus
from one common point of view. Ontologies, such as those at
NeuroLex and Open Source Brain (Gleeson et al., 2012; Larson
and Martone, 2013), describe the parts and relationships of a
system. Each object in the ontology can have any number of
attributes, and an important job of the ontology is to provide con-
sistent naming of those attributes across the entire community.
Attributes may contain any kind of data, from a single num-
ber to text to an entire data series captured by a physiological
experiment.

Examples of attributes might be:

Name=Hippocampus CA3 pyramidal call
Organism= Vertebrata
Neurotransmitter released= Glutamate
Dendrite Length= 12481.9± 2998.9 um

Most attributes can be thought of as a simple pair: attribute =
value. N2A takes this one step further by representing the dynam-
ics of a part as a set of equations. The attributes are the variables,
and the values describe how those variables evolve over time.
Equations describe how attributes interact with each other in an
explicit computable manner. Such a mathematical representation
can be incorporated into the metadata of any part in the ontology.
The Examples section below shows what several models look like
in practice.

PART INHERITANCE AND INCLUSION
The N2A language specifies rules for how equation sets are com-
bined which are motivated by object oriented principles from
programming. When part C also is a part P (e.g., a granule cell
is a neuron), part C inherits all the equations and metadata con-
tained in P. C can inherit from any number of parents. A named
value (equation or metadata) that is defined directly in C hides
any value with the same name in a parent.

When a part M has a part P (e.g., the dentate gyrus has gran-
ule cells), a prefix is added to each equation from P as it is
included into M. This allows the user to reference equations within
included parts. N2A uses the full-stop character (.) to delimit pre-
fixes. A value with P’s prefix that is defined directly in M hides any
value in P with the same name, in much the same way that names
in M hide names in M’s parents. P may in turn include a part
Q, whose equations are all prefixed and placed in P. M can then
hide any name in Q by using both prefixes. This can continue
any number levels deep. For example, the brain model includes
a hippocampus which includes a granule cell model. The brain
model could contain an equation that specifically sets the number
of granule cells in the population.

CONNECTIONS
To understand connections in N2A, it is important to recognize
the difference between a part and an instance of that part. N2A
distinguishes these notions in much the same way that an object-
oriented language such as Java distinguishes between a class and
an object. When a simulation runs, each part in the model can
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generate an entire population of instances, and each instance has
its own distinct set of values for the state variables defined in
the part. An equation set should be thought of as a template for
stamping out instances.

A part C that connects two parts X and Y (e.g., the mossy ter-
minal in Figure 2) is able to access their equation sets and make
statements about how they couple to each other. C associates a
prefix with each of X and Y, and uses those prefixes to access the
respective variables. During a simulation, an instance of C may
add to or otherwise modify values in the connected instances.
C specifies rules about which members of population A to con-
nect with which members of population B. Instances of C are
created or destroyed automatically as the populations grow and
shrink.

STRUCTURAL DYNAMICS
When an instance of part P becomes an instance of part Q (e.g.,
the progenitor cell becomes a granule cell in Figure 2), all values
with matching names are copied into the new instance. P can
split into any number of types, allowing one to model develop-
ment and population dynamics. The N2A language commits to
the notion that all morphology and connectivity are the conse-
quence of the dynamics governing individual parts. These include
rules for creating and destroying parts, splitting and changing
type, and moving in space. The language provides a way to express
all of these as equations.

SCALE INDEPENDENCE
The N2A language is designed to model a system at a wide range
of scales. Gene regulatory networks can be represented either as
coupled parts or as a collection of state variables within a given
part. Common protein interaction sequences, such as the MAPK
pathway, can be represented as a part that is included in many
other structures.

The interaction of neuron populations is illustrated in
Figure 2. Entire brain regions can be wrapped into parts and

FIGURE 2 | Example of hierarchical relationship of a neural system that

can be mapped into N2A. N2A uses a parts/connections framework to
describe a model’s components and how they interact. Further, parts and
connections can inherit dynamics and relationships from parent parts (e.g.,
a granule cell is a neuron) that allow the models described within N2A to be
related to neurobiological data characterized within neuroinformatics
ontologies.

connected with each other. Each level of model can be represented
by either a simple or a detailed part, allowing successive abstrac-
tion as one studies a system (Figure 3).

SOFTWARE
The N2A software attempts to ease many of the obstacles that
researchers face while developing, executing and fine-tuning
physiological models. To this end the software embodies these
basic principles: transparency, traceability, repeatability, and
sharing.

The system is a Java-based desktop application (Figure 4) with
an embedded database (Figure 5). The interface provides the
user with a method to locate models and other supplemental
records, modify models, and create new sets of simulations (“run
ensembles”) against a given model. Supplemental records could
be references to papers, associated lab results, input data, or other
related information that you want to track alongside the mod-
els. The user interface provides context sensitive help. It shows
part hierarchies along with associated equation sets, metadata and
references.

To support repeatability, the N2A software stores all model
runs. A planned part of the design is to keep a version history
for models (see below), so researchers can make changes without
affecting the equations used in a previous simulation. Currently,
run ensembles and individual runs maintain all parameter infor-
mation in addition to their associated model. Run results are
stored separately for analysis. Post-run/analysis products can
potentially be tracked by the software given the right plug-in
support. By recording every aspect of the model creation and exe-
cution, including system-generated random numbers and seeds,
we enable repeatability for quality assurance and double-checking
purposes.

No single tool can serve all purposes, so N2A is built from the
ground up with extensibility in mind. The software uses a plug-in

FIGURE 3 | Illustration of application of part-connection-model

framework to different scales of neural simulations. The structure of the
N2A language allows it to be applied in scales ranging from molecular
kinetics models of cell signaling to neural network models comprised of
complex neurons and synapses.
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FIGURE 4 | Screenshot of N2A User Interface. The N2A application allows
users to create and edit equation sets for parts, define how they connect
within a model, and incorporate metadata and references regarding literature

sources into the model. Equations are input in a straightforward
mathematical notation, with differential equations written using the “X′=”
notation and constants defined directly.

infrastructure to allow others to extend the product to meet their
needs. A key class of extension is the handler (“backend”) for a
given simulator, and a simple interface is provided for creating
new ones. Additionally, new types of model and supplemen-
tal records can be added and visualized in the user interface
according to the plug-in designer’s wishes.

SIMULATION CAPABILITIES
N2A is a model description language, but to make it useful in
practice the tool is able to translate models into inputs to several
different simulators. Each simulator is handled by a separate
“backend” module. Currently, N2A has backend modules for
two simulators: C++ and Xyce. To be fully useful it will need
additional backends to support commonly used simulators
such as NEURON, GENESIS, Brian, or NEST, and common
middleware such as PyNN. As N2A becomes integrated with
evolving neuroinformatics standards such as NeuroML, we hope

to leverage multiple additional simulators. This is a key part of
future work.

C++
The C-backend is the reference implementation of the N2A lan-
guage. It is capable of simulating any construct expressible in the
language, including structural dynamics. The price for such gen-
erality is a loss of efficiency in specialized cases. For example, the
C-backend is primarily designed for a general dynamical system,
so it is less efficient on large spiking networks. The C-backend
works by translating the model into a set of C++ classes, which
are then coupled with a runtime library that handles object man-
agement and numerical integration. The entire simulation is a
self-contained executable program.

XYCE
Xyce is a parallelized version of the electrical circuit simulator
SPICE that is capable of natively simulating large scale circuits
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FIGURE 5 | Structure of N2A software database. N2A stores three types
of information within the database. (1) Raw data such as references and
parameter fits that helps define parts’ behavior (left), (2) model descriptions
which consist of a set of parts and connections and information concerning
their initialization and inputs (center), and (3) ensembles of runs that include
model configuration, runtime metadata and results (right). N2A uses
external simulation tools and analytical environments, though it does
include a reference simulator implemented in C++ (bottom).

on supercomputers. Recently, we have extended its capabili-
ties for very large scale simulations of neural networks (Schiek
et al., 2012). In addition to its traditional devices (transistors,
capacitors, etc.), Xyce now also has neuron and synapse “devices.”
Xyce parses and solves a broad range of explicit mathematical
expressions, so model dynamics not covered by built-in devices
can also be included. Currently, N2A is capable of translat-
ing most of its neural models into Xyce simulations, through a
combination of direct equations and specialized neural devices.

FUTURE CAPABILITIES: MODEL SHARING AND
INTEGRATION INTO THE NEUROINFORMATICS COMMUNITY
The N2A tool is still under development, and the methods of shar-
ing described in this section are aspirational, but high-priority
future work. We summarize existing and projected capabilities in
Table 2.

Ideally, all models associated with a given part should be
stored in a central repository accessible to everyone, such as the
Neuroscience Information Framework (NIF) or Open Source
Brain (Gleeson et al., 2012). NIF is particularly compatible
with our vision because they organize all data according to the
NeuroLex ontology and they offer curation for small quantities of
data. Since N2A models are very concise they fit into this category.

Figure 6 illustrates a second means of sharing. A user asks
the N2A tool to act as a server online and allow peers to access
data and compute resources. This Peer-to-Peer (P2P) arrangement
brings up two closely related issues: versioning of models and the
repeatability of simulations. The problem is this: if a researcher
configures a model a certain way, simulates it, and later some part
that the model depends on is changed, it is no longer possible to
produce exactly the same simulation again.

We propose to keep all parts/models under version control.
Examples of version control systems in the software-development
world include Subversion, Git, Mercurial, etc. An N2A data-store
would not directly use these tools, but instead implement similar

Table 2 | Status of current and future features of N2A.

Feature Status

LANGUAGE SPECIFICATION

Part and connection
descriptions and inheritance

Documented and implemented in N2A
tool

Structural dynamics Documented and implemented in N2A
tool, limited backend support

Composition of models as
parts in other models

Documented with some backend
support. Tool allows composition of parts,
but currently treats models distinctly

N2A SOFTWARE

Model/part search,
metadata, reference
documentation, version
control

Implemented in N2A tool

Uncertainty
quantification/sensitivity
analysis

Tool drives multiple simulations with
parameter variation using different
standard approaches

Analysis of simulation
results

Not implemented; user must export to
other tool (e.g., Matlab or Excel)

Peer to peer communication Not yet implemented

Exchange models with
community

Not yet implemented. Plan to add
NeuroML import/export

Visual editing of network
structure

Partially implemented

SIMULATION BACKENDS

C++ Backend (reference
implementation)

Implements most N2A language
specifications. Structural plasticity only
partially implemented

Xyce Implements dynamical equations directly;
implements event-driven synapses
through pre-built devices

Other simulators Future intent to develop export capability
to other tools

FIGURE 6 | Schematic of N2A peer-to-peer collaborative community

vision. N2A can be run with either a local database or through a common
network repository. Users will be able to directly share models between
collaborators or with the broader community through opening their
database to the broader neuroinformatics community.

concepts. Any time a model is transmitted between two peers
or simulated, a version is permanently recorded in the database.
All parts it depends on are also permanently versioned. Ongoing
development of a part goes into a subsequent version, and does
not have any influence on the content of a model. To ensure
repeatability of simulations, it is necessary to record a number
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of details beyond the model itself, such as the simulator used,
random number seeds, platform, etc. It may not be possible to
capture every detail and make a simulation perfectly repeatable,
but a record of the key variables will help in interpreting the
results of the experiment.

To further drive integration into the neuroinformatics land-
scape, we envision that the N2A tool will be compatible with
existing tools by leveraging the increasingly common standards
for model definition, such as NeuroML, LEMS, and NineML.
As other simulation frameworks and environments specializ-
ing in other classes of neural simulations develop support these
growing standards, we expect that linking the models defined
within N2A into those simulation environments to be relatively
straightforward.

EXAMPLES
Here, we show three different examples of the neuroscience
systems implemented within the N2A tool to illustrate how it rep-
resents progressively more sophisticated neural circuits. These are
not a complete sample of N2A’s applicability; rather these exam-
ples are intended to highlight the scope of N2A and its eventual
vision.

HH MODEL
The Hodgkin-Huxley (HH) model of spike generation and prop-
agation underlies many computational modeling studies and is
well suited to illustrate how N2A represents neural dynamics
(Hodgkin and Huxley, 1952). Briefly, the Na+/K+ ion channel
version of the HH model is a system of four differential equa-
tions with two state variables governing the dynamics of Na+ ion
channels (m and h), one state variable governing dynamics of K+
ion channels (n) and a state variable (V) representing the inter-
nal voltage of the neuron or axon. V is often represented by the
equation

CV ′ = gNam3h(ENa − V)+ gK n4(EK − V)

+ gleak(Eleak − V)+ I

where C is membrane capacitance; gNa, gK , and gleak are maxi-
mum conductances for Na+, K+ and leak currents, respectively;
ENa, EK , and Eleak are the reversal potentials for those respective
currents; and I is input current. The state variables m, n, and h
typically take the form

x′ = αx(V) (1− x)− βx(V) x

where αx(V) and βx(V) are functions of voltage specific to each
state variable.

N2A REPRESENTATION
Within N2A, we represented the HH model using the equations
outlined in (Koch, 2004) in a simple 3-segment cable configu-
ration (Figure 7). While N2A can represent the HH dynamics
of individual compartments using a part that contains all of
the equations for the sodium, potassium, and leak currents, we
chose to construct the demonstration model as a part with only
passive membrane dynamics that “includes” the appropriate ion

channels, in this case Na+ and K+. This separation of ion chan-
nels from host compartments facilitates the reuse of well-tuned
ion channels in multiple independent neuron models as well as
the rapid interchange of one ion channel to another within a
given model. Each of the three HH compartments are coupled
by a simple connection part that implements the cable equation

A.V ′ = gr(B.V − A.V)

B.V ′ = gr(A.V − B.V)

where A.V and B.V are the voltages of the two connected HH
compartments and gr is the lateral membrane conductance.

Below is the complete set of equations expressed in the N2A
language (Figure 7A). This example contains seven parts: the
abstract ion channel, two ion channels that inherit from it, the
abstract passive compartment, the HH compartment that inher-
its from it and includes the two ion channels, the HH connection,
and finally the model that incorporates the HH compartment and
HH connection into a cable. For a more thorough explanation of
how the language expresses this model, see the “N2A Language
Overview” in the supplementary material.

We illustrated simple HH dynamics and propagation of
action potentials by injecting 10pA into the left compartment
(Figures 7B,C) and, in an effective current clamp condition,
observed voltage deflection representing the 100 mV spiking
event in the compartment (Figure 7D). The spike propagates to
the right-most compartment with a short delay (Figure 7E). A
longer current injection yields a series of spikes in the leftmost
compartment (Figure 7F) that again is manifested two compart-
ments away (Figure 7G), albeit at a short delay and with a notable
failure to propagate of one spike.

SENSITIVITY ANALYSIS OF BALANCED
EXCITATION/INHIBITION NETWORKS
Balanced excitation/inhibition (E-I) networks have attracted
attention as a coarse model of cortical dynamics (Vogels and
Abbott, 2005; Brette et al., 2007). Often containing a mix-
ture of 80% excitatory and 20% inhibitory spiking neurons
(though studied with both other ratios and in non-spiking sys-
tems), E-I networks can show a range of non-trivial “phases”
of dynamical network activity, including oscillatory and chaotic
(or near-chaotic) behaviors. Balanced E-I models are interest-
ing for a number of reasons, among which is their increasing
relevance in understanding motor and prefrontal cortex dynam-
ics and their relationship to the reservoir computing research
area in machine learning. Specifically, it appears that the chaotic
dynamics observed under certain conditions are computationally
uniquely powerful (Laje and Buonomano, 2013).

Clearly, not all configurations will produce complex chaotic or
near-chaotic behavior; indeed understanding the effects of design
and parameters on these dynamics is an active area of research
(Litwin-Kumar and Doiron, 2012). Here, we illustrate the param-
eter exploration capabilities of the N2A tool by systematically
varying two basic parameters that affect the behavior phase:
strength of recurrent excitation (E) and strength of recurrent
inhibition (I).
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FIGURE 7 | HH model defined within N2A and simulated on Xyce. (A)

N2A language depiction of HH dynamics (B) Cartoon illustration of 3
compartment HH cable. Current is injected into left compartment and
measured in left and right compartments (C) N2A representation of HH

cable. (D) Action potential in left compartment (site of current injection). (E)

Propagating action potential in right compartment. (F) Spike train in left
compartment in response to persistent current. (G) Propagating spike train in
right compartment.

N2A REPRESENTATION
We implemented the model described in benchmark 3 of (Brette
et al., 2007) in N2A, then used N2A to define and execute a “run
ensemble” of 121 simulations with different values of synaptic
conductance (Figures 8, 9). Building the 80-20 network model
consisted of creating the necessary parts, defining cell populations
(“Layers”), and defining connections between cells (“Bridges”)
both within and across populations. The N2A parts used for this
model were: (1) a variant of a Hodgkin-Huxley neuron described
in the Brette paper (Figure 8A) (2) a conductance-based synapse
also described in the Brette paper (Figure 8B), (3) an artifi-
cial “Spiker” neuron to provide input into the network, and
(4) another exponential synapse to connect the “Spiker” cells to
selected cells in the main population. Xyce has built-in implemen-
tations of the Brette neuron and synapse models, so the N2A parts
included metadata indicating that those implementations should
be used. Figures 8C,D shows how populations and connections
are identified in N2A. All neurons in the 80-20 network have
the same dynamics, so we created a single population of neurons
using the same N2A part, but made excitatory connections only
to the first 80% by index. Excitatory and inhibitory connections
used the same “Brette synapse” part. We used connection equa-
tions both to override part parameter values as appropriate for
excitatory or inhibitory connections and to specify which neurons
can be connected.

The “Runs” tab shown in Figure 9A allows the user to create
and run one or more simulations of the model. Any parameter
defined in the model can be dragged from a pre-populated list
into the run ensemble definition, with search strategies ranging
from simple step protocols to Monte Carlo and Latin Hypercube
sampling. The figure below shows selection of the two synap-
tic conductance coefficients varied to produce Figures 9B–D, the
number of values for each and how they varied. In this case
we simply stepped through a range of values at fixed inter-
vals. Certain simulation parameters such as seed or integration
method can be chosen or varied in the same way.

Unsurprisingly, for low E the network exhibits very low aver-
age firing rates, whereas high E with low I yields very high
average firing rates (Figure 9B). For roughly balanced E and I
levels, the overall firing rates appear to be comparable in spite
of absolute magnitude. However, a simple measure of activity
distribution (Figure 9C) shows that even for E, I combinations
with comparable firing rates, the dynamical state of the net-
work can differ considerably; suggesting that there are at least
four clear states of network activity observable in our small
search space (it should be noted that it is not surprising that
high-dimensional networks such as these can exhibit many dif-
ferent phases of behavior). Figure 9D shows representative exam-
ples of network activity at different positions in the parameter
space.
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FIGURE 8 | 80/20 E-I network definition in N2A. (A) Screenshot of part
equation set for spiking neurons used in 80/20 model. (B) Screenshot of
synapse equation set for connections between neurons in 80/20 model. (C)

Simple network illustration of 80/20 model from a block perspective (left) and

instantiation perspective (right). (D) Screenshot of model definition equation
set for 80/20 network in N2A; differences in excitatory and inhibitory
connections (namely conductance and reversal potential) as well as the
sparse inputs are defined at this level.

It is interesting to note that even this simple illustration of
the parameter searching capabilities of the N2A tool provides
results that merit more detailed exploration. It was not surprising
that these networks not only exhibit silent (1) and hyperactive
(4) states in addition to the originally published asynchronous
state (2), but we did not expect this simple parameter exploration
exercise to show a state where the network activity is preferen-
tially localized to a subset of highly active neurons (3). What is
not clear from this study (or indeed many other studies of these
abstract networks) is how these dynamics relate to real in vivo
cortical function. For instance, it has been suggested that work-
ing memory in the pre-frontal cortex (and other cortical areas)
involves a switch from asynchronous activity to a more persis-
tent activity of a subset of neurons holding a trace (Durstewitz
et al., 2000; Wang, 2001). These illustrative parameter search
results are far too preliminary to make any strong links to this
neurobiological phenomenon, however it would be interesting
to expand the search to include the both more realistic network
connectivity (Litwin-Kumar and Doiron, 2012)and extrinsic neu-
romodulatory influences such as dopamine(Brunel and Wang,
2001) that may effectively alter the excitation/inhibition balance
dynamically.

STRUCTURAL DYNAMICS
In addition to challenges in understanding parameter sensitivity
of models, many neural systems involve dynamics or structures
that are not well suited to existing tools. One such example is
structural plasticity of neural systems. While most modeling stud-
ies treat neural circuits as effectively fixed, at most implementing
plasticity in synaptic weights, there are many neural processes that
necessitate changing the network itself over extended time scales.
These include neurological and psychiatric disorders, develop-
ment, and even structural plasticity in the healthy adult brain
through neurogenesis and dendritic spine dynamics.

N2A REPRESENTATION
The structure of parts within N2A allows for the representation
of the regulated birth, transitions, and death of instances. Here,
we show two examples of how structural plasticity would be rep-
resented within the N2A language. There are two key language
commands: assigning type to an instance of a part will transition
it to a different type of part (i.e., differentiation), and assigning
multiple types to an instantiated part will replicate the instance.
This division can either be symmetric (where both children are
equivalent to one another, regardless of whether the parent’s type
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FIGURE 9 | Model simulations of 80/20 E-I network in N2A. (A)

Screenshot of parameter search window within N2A; any model parameter
can be varied either randomly or systematically and in isolation or in
conjunction with other parameters. (B) Firing rates in response to
parameter sweep of differing E and I synaptic conductance levels. (C)

Distribution of activity in response to parameter sweep. (D) Representative
raster plots of spiking from E-I network at different positions in parameter
state space; 1—all neurons effectively silent; 2—asynchronous firing
dynamics; 3—skewed firing dynamics, with subset of neurons exhibiting
persistent activity; 4—hyperactive network with most neurons persistently
active.

is maintained) or asymmetric (where the children are different
parts, with one perhaps retaining the parent’s type).

Figure 10 shows two examples of what the N2A language
will accommodate. Figure 10A shows a growing dendrite, with
a dynamic growth cone (purple) at the end. This growth cone
is capable of linear growth (basically splitting into an ordinary
compartment and the growth cone), branching (splitting into
multiple growth cones and a stable compartment), differentiation
(growth cone becomes a compartment), or death (growth cone
simply disappears).

Figure 10B illustrates a different form of structural dynamics,
the proliferation and differentiation of a dentate gyrus stem cell
into an eventual granule cell population during the adult neuro-
genesis process. In this example, a radial glial cell (RGC, green),
which is considered the primordial stem cell type in the adult
dentate gyrus, is capable of asymmetric division, producing a

FIGURE 10 | Examples of how structural plasticity would be expressed

within N2A. (A) Growing dendrite with growth cones. Progressive series
of growth cone (GrCn) branching, differentiation, and death can lead to the
construction of a complex arborization. Each step of this process could be
regulated by other variables, such as external chemical signals or intrinsic
activity. (B) Proliferation and Differentiation from a stem cell population. A
radial glial cell (RG, green) can divide asymmetrically, producing a copy of
itself and a neural progenitor cell (NPC, red). This NPC can then itself divide
symmetrically, asymmetrically, differentiate, or die. As with the growing
dendrite, each of these events can simply be probabilistic or regulated by
other factors.

neural progenitor cell (NPC, red) as well as a “copy” of itself. This
NPC subsequently exhibits several rounds of symmetric cell divi-
sion, amplifying the number of children. Finally, the NPCs will
either die (black) or differentiate into granule cells (blue).

SUMMARY
N2A has been designed to enable the general neuroscientist to
achieve the scope and depth of models that heretofore have
been mostly limited to those with considerable programming
expertise. Concepts such as structural plasticity and parameter
searching that are illustrated can all be achieved using other tools
or conventional languages, but they often require considerable
work on the modeler’s part. We believe that the trends in neu-
roscience toward more detailed characterization of systems and
increased emphasis on clinical conditions (such as diseases and
therapeutic mechanisms) will further amplify the importance of
having a tool to effectively capture neurobiological complexity in
a straightforward manner.

The increase in high throughput data acquisition, improved
neuroinformatics tools, and growing availability of computing
resources all will facilitate the trend toward more biologically
detailed approaches to modeling neural systems. An important
consideration is that the rationale behind biologically realistic
models is quite different than that of other modeling approaches,
such as large scale simple models and abstract models of neural
system functions. Briefly, in contrast with models that illustrate
how a neural circuit can map to a known function, “bottom up”
detail oriented models can suggest novel computational func-
tions for neural processes that otherwise would not have been
considered. Such work has in the past been useful in identify-
ing the functions of complex neural processes; for instance a
high resolution model of neurogenesis was able to suggest that
new neurons may provide a previously unknown function of
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encoding time into episodic memories (Aimone et al., 2009), a
function that has subsequently been measured in rats (Morris
et al., 2013).

Notably, the potential value of “bottom up” models in provid-
ing novel functional insight into a brain region is dependent on
a design of the model that is not biased toward desired results.
The brain is, of course, considerably more complex than any
single model is capable of representing, and abstraction is thus
always necessary to some extent. However, abstraction should be
performed with careful consideration to minimize disruption to
behavior, not simply guided by the ease of implementation or
the ready availability of data. The N2A tool is well suited for this
challenge; as its representation of neuronal dynamics enables the
incorporation of complex processes that are often neglected into
models, such as adult neurogenesis or cellular protein kinetics.
Furthermore, we believe that as N2A is further integrated into the
broader neuroinformatics community, modeling biases due to the
local availability of information will be minimized (e.g., someone
may include the oft-ignored CA2 region in a hippocampal model
if N2A can pre-populate the relevant details).

We recognize that N2A’s data-centric, dynamical representa-
tion of neural information makes it less well suited for other
modeling approaches, for which we expect many existing tools
to be preferable. This includes Monte Carlo type simulations of
molecular dynamics (e.g., MCell) and morphologically defined
models of dendritic dynamics (e.g., NEURON). Notably, the orig-
inal motivation of N2A was to automatically extract computa-
tional structures (the “algorithms” in the name) from data about
neurons and their interconnections. Although the goal of auto-
matic model reduction for algorithm discovery is now considered
remote, its influence lingers in the design of the language and
tools. For example, an increasing fraction of data in neuroscience
exists in databases and is machine readable and computable,
incorporating both graphical structures and dynamics.

The long-term goal of understanding the computation of the
entire brain appears in the community sharing and neuroinfor-
matic aspects of the tool. It is necessary, after all, to have a com-
putational framework capable of representing the entire nervous
system. In that sense N2A shares aspirations with cognitive frame-
works such as ACT-R and SOAR, but it makes far fewer commit-
ments to specific structure. Rather the expectation is that a large
community of experts will jointly assemble what they know onto
the scaffolding to create a digital mind. Undoubtedly the current
incarnation of the language will evolve many times and perhaps
even go extinct before the community reaches that goal.
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Neuronal networks in vitro are prominent systems to study the development of
connections in living neuronal networks and the interplay between connectivity, activity
and function. These cultured networks show a rich spontaneous activity that evolves
concurrently with the connectivity of the underlying network. In this work we monitor the
development of neuronal cultures, and record their activity using calcium fluorescence
imaging. We use spectral analysis to characterize global dynamical and structural traits
of the neuronal cultures. We first observe that the power spectrum can be used as a
signature of the state of the network, for instance when inhibition is active or silent, as
well as a measure of the network’s connectivity strength. Second, the power spectrum
identifies prominent developmental changes in the network such as GABAA switch.
And third, the analysis of the spatial distribution of the spectral density, in experiments
with a controlled disintegration of the network through CNQX, an AMPA-glutamate
receptor antagonist in excitatory neurons, reveals the existence of communities of
strongly connected, highly active neurons that display synchronous oscillations. Our work
illustrates the interest of spectral analysis for the study of in vitro networks, and its
potential use as a network-state indicator, for instance to compare healthy and diseased
neuronal networks.

Keywords: neuronal cultures, multineuron calcium imaging, spectral analysis, network development, excitation-

inhibition balance, GABA switch, synchronous oscillations

1. INTRODUCTION
Living neuronal networks, from the smallest neuronal assem-
bly up to the human brain, are one of the most fascinating yet
intricate structures in Nature. The subtle interplay between the
architecture of the neuronal network and the dynamics of the
neurons give rise to a vast mosaic of complex phenomena that are
still a major paradigm in neuroscience (Bassett and Gazzaniga,
2011), including spontaneous activity patterns (Blankenship and
Feller, 2009; Deco et al., 2010; Luczak and MacLean, 2012), infor-
mation processing and routing (Bullmore and Sporns, 2012),
synchronization (Salinas and Sejnowski, 2001), plasticity and
adaptability (Destexhe and Marder, 2004), together with remark-
able self-organizing properties and critical behavior that suggest
an efficient yet flexible modus operandi (Chialvo, 2010; Bullmore
and Sporns, 2012).

The interplay between single cell dynamics and network topol-
ogy is tremendously complex, particularly when applied to the
comprehension of the human brain (Chicurel, 2000; Alivisatos
et al., 2012; Abbott, 2013). However, in the last two decades we
have attended to an outbreak in the development of techniques
to investigate the brain in vivo. Advances in brain functional
and mapping techniques such as fMRI, EEG, MEG, or DTI,
together with resources from graph theory and signal processing
(Bullmore and Sporns, 2009; Feldt et al., 2011), have provided
unprecedented detail on brain functional interactions and their

dependence with the underlying circuitry. They have also opened
new perspectives in our comprehension of dysfunctional circuits.
Indeed, severe neurological disorders and behavioral deficits are
associated to alterations of the neuronal circuitry (Seeley et al.,
2009), abnormal neuronal activity coordination (Uhlhaas and
Singer, 2012), or deficient neuronal machinery (Maccioni et al.,
2001). Autism, for instance, has been ascribed to an undercon-
nectivity or overconnectivity of local brain circuits combined
with long-distance disconnection. Schizophrenia has been asso-
ciated with an imbalance of the excitatory and inhibitory circuits,
among other factors (Lynall et al., 2010; Yizhar et al., 2011b).
Epileptic brains, compared to those of healthy subjects, display
a richer functional connectivity with a clear modular structure
(Chavez et al., 2010), while brain networks in Alzheimer’s disease
patients are characterized by a loss of the small-world network
feature (Stam et al., 2007).

These advances have provided novel clinical prognosis tools
by linking specific functional failures to topological traits of the
anatomical network. They have evidenced that the information
obtained from functional and anatomical techniques contain sev-
eral signatures that reveal the properties of brain functions, both
in normal and disease states. Nevertheless, a major difficulty in
analyzing this information has been the sheer size and complexity
of the human brain. The activity recorded from the intact brain
results from the occurrence of several, simultaneous processes
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involving a huge number of interacting cells, thus complicat-
ing the understanding of the ultimate mechanisms that regulate
neural activity. These difficulties have called for more controlled,
accessible and simplified systems that would allow to investigate
the basis of brain operation. Neuronal cultures have emerged as
one of those systems. These in vitro preparations are typically
derived from dissociated rat cortical or hippocampal tissues, can
be maintained for several months, and their activity monitored
by a number of recording techniques that are able to track single
cell behavior (Eckmann et al., 2007). The flexibility of neuronal
cultures to fit diverse experimental platforms, as well as the abil-
ity to act on them by chemical, electrical or other means, have
made them very attractive for a large number of investigations,
most notably the emergence and richness of spontaneous activity
patterns (Wagenaar et al., 2006a; Orlandi et al., 2013), the inter-
play activity-connectivity (Volman et al., 2005), the network’s
self-organizing potential (Pasquale et al., 2008), and criticality
(Tetzlaff et al., 2010).

Here we propose to use analytical tools based on spectral
analysis to investigate the functional and structural topology of
neural cultures. We use fluorescence calcium imaging to moni-
tor the spontaneous activity of the neuronal network with single
cell resolution. In a first set of experiments, we investigate the
development of the network along the first 3 weeks of mat-
uration, a period in which the average neuronal connectivity,
circuitry topology, and the excitatory-inhibitory balance change
significantly. In a second set of measurements, we perturb the
topology of a mature culture by gradually weakening the exci-
tatory connections. This action results in a gradual decay of
collective spontaneous activity until it is fully disrupted. The
analysis of the power spectrum in these two scenarios evidences
that spectral data can capture dynamical features of the neu-
ronal network. Our study is a preliminary investigation that,
although it requires a thorough exploration and modeling, may
help understanding the use of statistical descriptors to detect and
quantify distinct topological and dynamical traits in neuronal
networks.

2. MATERIALS AND METHODS
2.1. NEURONAL CULTURES
Rat cortical neurons from 18 to 19-day-old Sprague-Dawley
embryos were used in the experiments. All procedures were
approved by the Ethical Committee for Animal Experimentation
of the University of Barcelona, under order DMAH-5461.
Following standard procedures described in previous studies
(Soriano et al., 2008; Orlandi et al., 2013), dissection was carried
out in ice-cold L-15 medium (Life) enriched with 0.6% glucose
and 0.5% gentamicin (Sigma-Aldrich). Embryonic cortices were
isolated from the rest of the brain and neurons dissociated by
pipetting.

Cortical neurons were plated on 13 mm glass coverslips (#1
Marienfeld-Superior). Prior to plating, glasses were washed in
70% nitric acid for 2 h, rinsed with double-distilled water
(DDW), sonicated in ethanol and flamed. To facilitate a homo-
geneous distribution of neurons in the cultures, glasses were
coated overnight with 0.01% Poly-l-lysine (PLL, Sigma). Cultures
were incubated at 37◦C, 95% humidity, and 5% CO2 for 4

days in plating medium [90% Eagle’s MEM—supplemented
with 0.6% glucose, 1% 100X glutamax (Gibco), and 20 μg/ml
gentamicin—with 5% heat-inactivated horse serum, 5% heat-
inactivated fetal calf serum, and 1 μl/ml B27]. The medium was
next switched to changing medium [90% supplemented MEM,
9.5% heat-inactivated horse serum, and 0.5% FUDR (5-fluoro-
deoxy-uridine)] for 3 days to limit glia growth, and thereafter
to final medium [90% supplemented MEM and 10% heat-
inactivated horse serum]. The final medium was refreshed every
3 days by replacing half of the culture well volume. Plating was
carried out with a nominal density of 1 million cells/well (5000
neurons/mm2), providing a final density in the range 200–400
neurons/mm2.

Cultures prepared in these conditions contain both excitatory
and inhibitory neurons, whose strength can be controlled by the
application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX,
Sigma), an AMPA-glutamate receptor antagonists in excitatory
neurons; or through bicuculine-methbromide (Sigma), a GABAA

receptor antagonist in inhibitory neurons.

2.2. PREPARATION OF THE EXPERIMENTS
Our study encompassed two groups of experiments. In a first
one we monitored neuronal activity along the maturation of
the network; in a second one we studied the disintegration of
the network by gradually blocking AMPA-excitatory connections
through CNQX.

The study of the evolution of the network as a function of
the culture age (days in vitro, DIV) started with the preparation
of 2–3 batches that contained 24 identical cultures each. One of
the batches was next selected for analysis, which was carefully
inspected before the beginning of the series of measurements.
We used only those batches whose cultures contained a simi-
lar number of neurons, and homogeneously distributed over the
substrate. Measurements then consisted in the systematic record-
ing of spontaneous activity in the cultures of the batch, in 24 h
intervals along 3 weeks.

We verified that the culture medium changes did not biased
the results presented here, particularly those related with the
maturation of the network. This verification was carried out
by measuring neuronal activity along 2 weeks in batches where
we either replaced completely the mediums in each change,
or in batches where we replaced only 1/3 of the culture well
volume. All development experiments showed the same trend
within experimental error, independently of the medium change
protocol.

The disintegration experiments were also carried out in cul-
tures that were prepared and inspected as the above. As described
later, we considered cultures in the range 8–16 DIV, which were
sufficiently mature to show rich spontaneous activity during the
different stages of disintegration.

2.3. EXPERIMENTAL SETUP
Measurements consisted in the recording of spontaneous activ-
ity through calcium imaging, which allows the monitoring of
neuronal firing by the binding of Ca2+ ions to a fluorescent
indicator (Grienberger and Konnerth, 2012). Prior to imag-
ing, cultures were incubated for 40 min in External Medium
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(EM, consisting of 128 mM NaCl, 1 mM CaCl2, 1 mM MgCl2,
45 mM sucrose, 10 mM glucose, and 0.01 M Hepes; treated to
pH 7.4) in the presence of the cell-permeant calcium sensi-
tive dye Fluo-4-AM (Gee et al., 2000), with 4 μl Fluo-4 per
ml of EM. The culture was washed with fresh EM after incu-
bation and finally placed in a recording chamber containing
4 ml of EM.

The recording chamber was mounted on a Zeiss inverted
microscope equipped with a 5X objective and a 0.32X optical
zoom. Spontaneous neuronal activity was monitored through
a Hamamatsu Orca Flash 2.8 CMOS camera attached to the
microscope, in combination with a light source for fluorescence.
Images were acquired with a speed of 20 or 33 frames per sec-
ond (respectively, 50 or 30 ms interval between two consecutive
frames) and a spatial resolution of 4.40 μm/pixel. Images had a
size of 960× 720 pixels with 256 gray-scale levels. This settings
provided a final field of view of 4.2× 3.2 mm2 that contained on
the order of 3000 neurons. Camera, microscope and light source
settings were optimized to minimize photo-bleaching and photo-
damage while providing the best signal to noise ratio throughout
the measurements.

2.4. EXPERIMENTAL PROCEDURE AND PHARMACOLOGY
For the experiments where we investigated the development of
the network, we proceeded as follows. We first recorded sponta-
neous activity as a long sequence of images with a total duration
of 30 min, with both excitation and inhibition active (“E + I”
network). We next fully blocked inhibitory synapses with 40 μM
bicuculline, a GABAA antagonist, so that activity was solely driven
by excitatory neurons (“E-only” network). We then left the cul-
ture in darkness for 10 min for the drug to take effect, and
finally measured again for 30 min with identical experimental
settings.

For the experiments where we monitored the disintegration of
the network, we first completely blocked inhibition with 40 μM
bicuculline as well as NMDA receptors with 20 μM APV. We then
waited 10 min and measured spontaneous activity for 20 min (“E-
only” activity). Next, we started a sequence of gradual application
of CNQX, and explored concentrations of 50, 100, 200, 400, 800,
and 2000 nM. After each application we waited 5 min for the
drug to take effect, and measured spontaneous activity for 15 min.
The total duration of the experiment was about 2 h. We verified
by washing off the drug and measuring again “E-only” network
activity that the culture health was not compromised by the long
duration of the experiment. Other studies that used almost iden-
tical disintegration protocols confirmed the good health of the
culture throughout the experiment (Soriano et al., 2008; Jacobi
et al., 2009).

In all experiments we also quantified the background signal
of the recording system to assess our ability in resolving neu-
ronal firings from actual noise. To do this, we removed the culture
from the recording chamber and measured the noise of the cam-
era as well as possible additional artifacts, such as fluctuations in
the light of the fluorescence lamp or contamination from indi-
rect light sources in the laboratory. We finally verified that the
results presented here were not influenced by any artifact from
the experimental system.

2.5. DATA ANALYSIS
At the end of each experiment we took bright-field images for a
better identification of the neuronal cell bodies (see Figure 1). We
then manually marked each neuron as a squared region of inter-
est (ROI) with a typical lateral size of 10 pixels (about 40 μm).
Each experiment typically contained about 2000 ROIs, i.e., indi-
vidual neurons. The analysis of the average gray level in each
ROI along the entire acquired image sequence finally provided
the fluorescence intensity F for each neuron as a function of
time.

Long trains of neuronal activity may contain a small drift of
the baseline signal due to photo-bleaching. Although we observed
such an effect only in about 5% of the neurons, we automatically
corrected this artifact by applying a moving median filter of width
2000 points. We verified that such a correction did not modify the
shape of neuronal signal during firing events.

Finally, the fluorescence trace F(t) was normalized for each
neuron to correct for its background brightness level by com-
puting F̃(t) = (F(t)− F0)/F0 ≡ �F/F0, where F0 is the average
amplitude of the background fluorescence signal at rest. The illus-
trative traces of Figure 1, as well as all the data shown in this
work, correspond to such a corrected data.

Neuronal activity in our cultures is characterized by episodes
of intense, network-spanning activity events (bursts) combined
with quiescent interval of erratic individual firing. The interval
between bursting episodes was calculated over the average signal
of the neuronal network to take advantage of the almost syn-
chronous bursting episodes. We first determined the onset time of
neuronal activation, which was achieved by detecting those events
in the fluorescence signal that were at least four times above the
standard deviation of the signal. Second, we computed the dif-
ference between consecutive onset times, to finally provide the
interburst interval distributions.

2.6. SPECTRAL ANALYSIS
To analyze the spectral content of the fluorescence signals, we
computed the power spectral density of the normalized traces
F̃(t) = �F/F0 by using the Welch periodogram method (Welch,
1967; Halliday et al., 1995) implemented in Matlab 7.12.0. Signal
is divided into Hamming windows of 256 points (approxi-
mately 10 s), 50% overlapped. To estimate the FFT, 1024 points
are used, applying zero-padding. Because we use a sample fre-
quency of 20 Hz for young cultures and 33 Hz for mature culture,
the frequency resolution is of 0.019 Hz and 0.032 Hz, respec-
tively. The corresponding frequency ranges are (0.078–10) Hz and
(0.128–16.5) Hz. Finally, the averaged spectrum for the whole set
of neurons was computed when required, for instance to com-
pare global network characteristics during the maturation of the
cultures.

For the studies where we investigated the spatial distribu-
tion of the local energy across the different frequencies we
calculated—for each neuron—the average signal of the selected
neuron and its n = 100 closest neighbors. Then, the result-
ing time-series were analyzed following the same procedure
described above. By plotting the spectral energy of each neu-
ron at a frequency of interest we obtained a two-dimensional
representation of spectral energy that revealed those neurons or
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FIGURE 1 | Cortical cultures and neuronal activity. (A) Example of an
entire neuronal culture 13 mm in diameter at day in vitro 9. The rectangular
box shows the actual field of view (FOV) of the camera and illustrates the
size of the monitored area. (B) Detail of a small region of the monitored
area containing about 100 neurons. Images correspond to bright field (left)
and fluorescence (center), together with an example of the selection of the
regions of interest for monitoring single neuronal activity (right). The
fluorescence image has been integrated over 100 frames, and bright spots
correspond to firing neurons. (C) Illustrative fluorescence traces of neuronal
activity in three regions of interest (labeled and marked with arrowheads in
the above images) along 2 min. Fluorescence traces are expressed as
�F/F0 (background corrected fluorescence divided by the resting
fluorescence). Both excitation and inhibition were active during the
recording (“E+I” networks). Note the variability in fluorescence amplitude
from neuron to neuron. The bottom trace in blue shows the fluorescence
signal averaged over all the neurons in the field of view.

groups of neurons with the strongest power at that frequency of
interest.

The smoothing of the fluorescence signal by averaging with
neighboring cells significantly reduced the noise of the PSD data.
We tested different n values and observed that 100 was the
appropriate value to balance a neat PSD signal and low over-
lap, particularly in the studies of spatial distribution of spectral
energy. For the latter, we indeed verified that the results did not
change significantly up to n � 500.

3. RESULTS
3.1. NEURONAL CULTURES AND NETWORK ACTIVITY
The neuronal networks that we study are constituted by an
ensemble of thousands of neurons that have been dissociated
from rat cortical tissue and homogeneously plated on glass cover
slips 13 mm in diameter, as shown in Figure 1A and described
in detailed in the Materials and Methods section. Neurons
grown in these conditions have a remarkable self-organizing
potential, connecting to one another within hours and show-
ing spontaneous activity as early as day in vitro (DIV) 4–6
(Chiappalone et al., 2006; Pasquale et al., 2008; Soriano et al.,
2008). Although neurons develop in a relatively large area, with
our imaging instrumentation we observe a small but represen-
tative region of 13.4 mm2 that contains few thousand neurons.
A detailed inspection of our cultures reveal their spatial dis-
tribution which, despite some clustering, is compatible with a
homogeneous distribution of neurons (Figure 1B). We monitor
neuronal activity with fluorescence calcium imaging. As shown
in the panels of Figure 1B, the spatial resolution of our measur-
ing device is sufficient to trace the behavior of all the neurons
in the field of view, with single-cell resolution, and along several
hours.

Figure 1C provides examples of fluorescence traces in our
cultures, for measurements with both excitation and inhibition
active (“E+I” networks). The traces correspond to a developing
culture at DIV 9. Fluorescence displays a fast onset due to neu-
ronal activation, followed by a slow decay back to the baseline and
that corresponds to the slow unbinding rate of calcium ions from
the fluorescent probe.

Neuronal network activity in cultures is characterized by
episodes of collective neuronal activation termed bursts where
the neurons fire in a quasi-synchronous manner in a short time
window of ∼200 ms. Almost the entire population of neurons
participate in a bursting episode, which is observed in the traces of
Figure 1C by the quasi-simultaneous occurrence of firing across
the neurons. The timing of the bursts themselves is in gen-
eral regular, with average interburst intervals on the order of
10 s in the provided example. In between bursts, neuronal activ-
ity is characterized by sparse, asynchronous firings across the
network.

The properties of spontaneous activity, and in particular the
structure of the bursting episodes, depends both on the excitabil-
ity of the neurons, i.e., their ability to spontaneously fire, and the
connectivity of the network, i.e., the ability to recruit, amplify
and propagate activity from other neurons. The latter is partic-
ularly important since connectivity significantly changes during
the maturation of the network.
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3.2. NETWORK DEVELOPMENT
To investigate distinct features of spontaneous activity due
to varying neuronal connectivity, we first treat the scenario
in which the network grows and matures along several days
in vitro (DIV).

Neurons in our preparations are plated homogeneously on the
glass substrate and lack any initial connectivity. However, devel-
opment occurred rapidly. We already observed connections as
early as 24 h after plating and, consistently with other studies
(Soriano et al., 2008), neurons were electrically excitable by DIV
2–3 (data not shown). Spontaneous activity appeared by DIV 5–
6, subsequently changing in strength and structure as the culture
matured and evolved further. Figure 2 illustrates this behavior
for a given culture batch, and with both excitation and inhibi-
tion active (“E+I” network). Representative fluorescence traces
of average network activity in a period of 15 days of develop-
ment are provided in Figure 2A. For this batch we observed the
first occurrence of bursting at DIV 6. At earlier days, the bursting
dynamics was either absent or too sparse to be detected. Although
the presence of bursts is clear at DIV 6, their interburst timing
is irregular and the firing amplitudes low. By DIV 8 the fluo-
rescence amplitude has substantially increased and bursting has
become more regular, reaching a stage of high periodicity by 2
weeks after plating. At later stages of development we observed

different trends from batch to batch, with firing amplitudes and
interburst intervals stabilizing or decreasing.

Figure 2B depicts the shape and strength of a burst among dif-
ferent evolutionary stages. Bursts are time-shifted for the onset
of network activation to coincide. The plot reveals the gradual
increase in bursting amplitude during the early stages of devel-
opment, and the sudden jump at DIV 9, which hints at strong
changes in both neuronal excitability and network connectivity.

The example of Figure 2B highlights the dominance of
the burst shape (amplitude and width) on the structure of
the recorded signal. This is further evidenced in Figure 2C,
which shows the distribution of fluorescence amplitudes for the
population-averaged signal along maturation. The distribution at
DIV 5 is close to a Gaussian distribution, indicating the absence
of firing events sufficiently strong to be detected by the cam-
era. As development continued, the histogram of amplitudes
became distinctly right-skewed, with progressively higher values
of fluorescence. A detailed statistical analysis of the changes in
fluorescence is provided in Figure 2D, and illustrates the strong
asymmetry of the fluorescence distributions. Interestingly, the
major changes in firing amplitude occur by the end of the first and
second weeks in vitro. The average firing amplitudes (denoted by
a black square) as well as the maximum measured amplitudes (up
triangles) abruptly jump at these stages.

FIGURE 2 | Network development. (A) Examples of fluorescence traces of
spontaneous activity along 15 days of development. All measurements
correspond to cultures from the same batch. Traces are the average over the
monitored network population (�2000 neurons). The peaks of fluorescence
signal identify bursting episodes. The time elapsed between two consecutive
bursts define the interburst interval (IBI). The measurement at day in vitro
(DIV) 6 corresponds to the first observation of spontaneous bursting activity in
the batch. (B) Detail of a bursting event (averaged over the monitored network
population) during the early stages of development to illustrate the substantial
increase in fluorescence amplitude after DIV 8. (C) Histogram of the
network-averaged fluorescence signal for representative stages of

development. Bursting activity is absent at DIV 5, giving rise to a fluorescence
histogram that is close to a Gaussian distribution. The distributions broaden as
bursts emerge and increase in amplitude. (D) Box plots of the statistical
analysis of the fluorescence distributions. Note the logarithmic scale in the
vertical axis. The mean of the distribution (�) and its maximum value (�)
substantially increase by DIV � 8 (pink) and after DIV 15 (yellow), suggesting
major evolutionary switches of the network. In the figure, whiskers represent
25 and 75% confidence intervals, and crosses (x) 1 and 99%, respectively. (E)

IBIs box plot analyses. The broad IBI distribution observed for young cultures
significantly changes to a narrow distribution with stable IBI timing after DIV 8,
to change again toward a higher variability by DIV � 15.
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These changes in network dynamic behavior are also cap-
tured by the distribution of interburst intervals (IBIs), which
show a tendency to become well timed as the cultures mature
(Figure 2D). The average IBI reduces from high, broadly dis-
tributed values in the range 100–200 s at DIV 5–8 to narrowly
distributed values around 10–20 s after DIV 8. By DIV 16 the net-
work dynamics changes again toward a more erratic behavior and
larger IBIs.

3.3. EMERGENCE OF INHIBITION DURING DEVELOPMENT
The role of inhibition during development is depicted in Figure 3.
A first interesting feature is the observation that the blockade of
inhibition (“E-only” recordings, see Materials and Methods) at
early stages of development silences the network or strongly dis-
rupts its activity, as shown in the network-averaged traces at DIV
5 and 8 in Figure 3A. Such a disruption is a consequence of the
depolarizing action of GABA at early developmental stages and
that confers it an excitatory role (Ben-Ari, 2002). Therefore, the
blockade of GABAA effectively reduces excitation and, in turn, the
mechanisms for the network to spontaneously fire.

GABA changes to its normal inhibitory action by DIV 7, an
event known as GABA switch (Ganguly et al., 2001; Soriano
et al., 2008). The blockade of inhibition at this and subsequent
stages results in strong bursting due to the excess in excitation,
which is revealed by the high fluorescence amplitudes at DIV 15
(Figure 3A).

The distribution of fluorescence amplitudes of Figure 3B also
illustrates the changing role of inhibition during development.
“E+I” networks show bursting activity already at DIV 5, with
broad fluorescence distributions that gradually increase in width
as bursts strengthen in maturer stages. “E-only” networks, how-
ever, show at DIV 5 a distribution of fluorescences close to a
Gaussian distribution, although the slight deviation at high flu-
orescences hint at some sporadic, individual neuronal activity.
Bursting is observed by DIV 7–8, though very erratic due to
GABA switch. At the other extreme of development (DIV 15) net-
work behavior completely changes, and the bursting amplitudes
in the “E-only” condition are much higher than in the “E+I” one.

In general, the blockade of inhibition in cultures older than
1 week leads to a substantial increase of the fluorescence ampli-
tudes, larger interburst intervals and a higher regularity of
bursting episodes. These distinct traits of “E-only” networks are
a consequence of the absent firing-regulatory role of inhibition,
which causes the neurons to fire until the excitatory neurotrans-
mitter’s pool is exhausted (Cohen and Segal, 2011).

We observed that GABA switch could be well identified by
analyzing the network average fluorescence signal in terms of the
power spectrum density (PSD), and comparing the two network
conditions along development. As shown in Figure 3C, at DIV 5
and 6 the “E-only” signal is below the “E+I” one. The spectra for
the “E-only” case also scales with lower slopes, indicating a much
different behavior of the network, which is either silent or very

FIGURE 3 | Influence of inhibitory action during development and GABA

switch. (A) Illustrative population-averaged traces of spontaneous activity
during development, and comparing “E+I” (top traces) and “E-only” signals
(bottom ones) on the same culture. GABA has an excitatory role at early
developmental stages and therefore its blockade effectively reduces
excitation and silences the network. GABA switches to its normal inhibitory
role by DIV � 6− 7. In maturer cultures, the blockade of inhibition increases
excitation and the strength of the bursting episodes. (B) Corresponding
fluorescence amplitude distributions, depicting the gradual increase in values

as maturation progresses. At DIV 8 the blockade of inhibition neither silences
the network nor strengthens firing, signaling the GABA switch event. (C)

Power spectrum densities (PSD) of the spontaneous activity signals,
averaged over the monitored population, and along representative stages of
development. The gray curve shows the PSD associated to the noise of the
camera. The PSD for “E+I” (blue) and “E-only” recordings (red) are markedly
different except during GABA switch, at DIV � 7− 8, signaling its occurrence.
The lines and their slopes are a guide to illustrate the markedly different
behavior of the PSD between noise and actual measurements.
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weak in activity. By DIV 7–8 the spectral curves cross one another.
Most likely inhibition has here a mixed role across the culture
during the GABA switch event, leading to a similar spectral trend
in the two network conditions. GABA is completely inhibitory at
DIV 9 and maturer cultures, and the “E-only” curves are now the
ones with the highest energy compared to the “E+I” case.

We also show in Figure 4 the evolution of the PSD for three
different batches and covering different ranges of the maturation
process. We show only the “E+I” data to emphasize develop-
mental traits. The plots depict the general trend that the power
spectra moves upwards and with progressively higher slopes as
the cultures mature and the bursts strengthen. At DIV 5, which
corresponds to the first occurrence of bursting activity for this
batch, the corresponding PSD curve is distinctly above the noise
level. The shape of the PSD curves and their relative shift substan-
tially change during evolution, signaling the progressive increase
in bursting amplitudes and frequency. After the second week in
vitro, however, the cultures seem to reach a stable phase, with
all spectra showing similar amplitudes and effectively collapsing
into one another. The PSD here fits well a power law behavior
P ∼ f−α, with 2.3 � α � 2.8.

3.4. NETWORK DISINTEGRATION
Here we investigate the deterioration in spontaneous activity
when the excitatory connectivity of the network is progressively
weakened by CNQX, an AMPA-glutamate receptor antagonist in

excitatory neurons (see Materials and Methods). In these experi-
ments we fully blocked NMDA and GABAA receptors to restrict
ourselves to the simplest scenario. Figure 5A illustrates, for a
mature culture at DIV 16, the evolution of the average “E-only”
spontaneous activity for increasing concentrations of CNQX. We
also provide the activity data for the unperturbed, “E+I” network
for comparison. For [CNQX] = 0 (full connectivity strength), the
network spontaneous activity shows the usual high-amplitude
bursting behavior together with the large interburst intervals
characteristic of the dynamics solely driven by excitation. Small
additions of CNQX mainly disrupt the average interburst interval,
which increases remarkably compared to the initial case. As the
disintegration progresses, concentrations of [CNQX] � 200 nM
modify both the fluorescence amplitude and the interburst inter-
vals. At extreme values of weakening, [CNQX] � 2000 nM, global
network activity is very rare or has stopped completely.

While high concentrations of CNQX completely disrupted
bursting, i.e., population-spanning coherent activity, we should
note that uncorrelated, neuron-to-neuron activity was still
present. Although these events were scarce, we systematically
detected their presence in the studied cultures.

To investigate variability in culture age, we carried out the
same disintegration protocol for cultures at different stages of
maturation. As depicted in Figure 5B, the bursting amplitudes
in all these cases show a similar trend. Initially, the blockade of
inhibition in the transition from “E+I” to “E-only” connectivity

FIGURE 4 | Power spectrum density (PSD) during development for “E+I”

networks. The plots show the PSD evolution for three different culture batches
(A–C), covering in total about 3 weeks of development. The PSD gradually
shifts upwards as the network matures, a feature that is accompanied by a

tendency of the PSD to scale as a power law P ∼ f−α. Mature cultures at
DIV � 13 appear close to one another, suggesting that approximately after 2
weeks in in vitro cultures have reached a stable stage. The dotted black lines
are a guide to the eye to illustrate the increasing values of α along maturation.
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FIGURE 5 | Network disintegration through CNQX in an “E-only”

network. (A) Examples of spontaneous activity traces for 7 concentrations
of the AMPA-excitatory antagonist CNQX, in a mature culture at DIV 16.
During the disintegration protocol inhibitory synapses are silenced through
application of 40 μM bicuculine. NMDA synapses are also blocked by
20 μM APV. Fluorescence traces are compared with the unperturbed,
“E+I” case. For [CNQX] = 0, activity is characterized by high amplitudes
and large interbust intervals (IBIs) compared to the “E+I” case. As CNQX
is applied, both the bursting amplitude and timing change, until all bursting
activity disappears for large [CNQX]. The bar at the right side of the traces
illustrates the relative strength of the excitatory connectivity. (B)

Population-averaged bursting amplitudes during the disintegration process
and for different culture ages, showing the steady decay in bursting
amplitudes as CNQX increases. (C) Average network activity, quantified as
1/〈IBI〉, during disintegration. Young cultures decrease in activity and
become silent at lower CNQX concentrations than maturer cultures.
Maturer cultures show a mixed behavior in which activity initially decreases,
to abruptly increase for some CNQX concentrations. The data for DIV 16
shown in panels (B) and (C) correspond to the exemplary traces of
panel (A).

ramps up the bursting amplitude to a maximum, but the subse-
quent gradual network disintegration leads to a progressive decay
in amplitudes until bursts disappear altogether.

This general trend in the decay of bursting amplitudes does
not hold for the bursting activity of the network, which is quan-
tified as 1/〈IBI〉. As shown in Figure 5C, although most of the
cultures at DIV � 13 exhibit a gradual decay in activity upon
CNQX application, those cultures at DIV � 14 display an increase
in activity at specific concentrations of CNQX. This erratic behav-
ior seems indeed a distinct feature of mature cultures, and hints
at the existence of network mechanisms in these cultures that
promote activity, possibly to compensate the weakening in con-
nectivity. Moreover, the fact that the increase in activity upon
CNQX application occurs at different concentrations from one
culture to another may indicate that development drives each
culture to slightly different circuit architectures and connectivity
strengths.

The study of the disintegration process in terms of the PSD
is shown in Figure 6A for a culture at DIV 13. This figure por-
trays the general trend observed in most of the experiments.
The PSD initially increases from the “E+I” condition to the “E-
only” one due to the large amplitude of the bursts in the absence
of inhibition. Next, the gradual addition of CNQX decreases
the overall power as well as the PSD slope, concurrently with
the progressive decay in bursts amplitudes. However, for large
concentrations of CNQX—and rare or inexistent bursting—the
PSD exhibits a scaling trend that is distinctly different from
both the bursting behavior and the background noise. This
scaling suggests that the PSD is capturing temporal correla-
tions between neurons’ individual firing events. We note that
these neuron-to-neuron interactions could not be detected in
measurements with strongest connectivity strengths ([CNQX] �
400 nM) due to the dominance of bursting behavior in network
activity.

This general trend actually showed some interesting varia-
tions, illustrated in Figures 6B,C. For the example at DIV 14
(Figure 6B) we observed evidences of peaks in the PSD at fre-
quencies f � 7− 8 Hz. These peaks were particularly strong at
CNQX concentrations of 100 and 200 nM. Remarkably, these
concentrations also correspond to the ones in which network
activity increases upon disintegration. Indeed, we systematically
observed a correlation between those experiments in which activ-
ity increased at specific values of CNQX and the presence of peaks
in the PSD. Another example is provided for a culture at DIV
16 (Figure 6C). In this case we observed two peaks (at around
5 and 7 Hz) for [CNQX] = 200 nM, the concentration at which
network activity increases for this culture.

3.5. NETWORK SPATIAL TRAITS
To further explore the PSD potential in characterizing neuronal
network features, we analyzed the spatial distribution of spectral
energy across the culture. We first considered the average energy,
i.e., the mean value of the PSD distribution. Figure 7A shows the
map of spectral energy for the PSD data of the culture at DIV 16
depicted in Figure 6C. Spectral energy is shown for the “E-only”
condition along different stages of disintegration. The “E+I” data
is also provided for reference.
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FIGURE 6 | Power spectrum density (PSD) in mature cultures during

network disintegration through CNQX. (A) General trend of the PSD for a
culture at DIV 13. For [CNQX] = 0 the PSD exhibits its highest energy, which
is associated to the high amplitude of the bursting episodes. The PSD energy
gradually decreases with CNQX, and for [CNQX] � 800 nM bursting is absent
and the PSD reveals temporal correlations arising from individual neuronal

activity. PSD structure at this extreme concentrations is clearly different from
the background noise. (B) A culture at DIV 14 showing peaks in the PSD at 7
and 8 Hz, which correspond, respectively, to [CNQX] = 200 and 400 nM. The
inset provides a detail of the peaks. (C) A culture at DIV 16 showing the
presence of two peaks, at 5.5 and 7.5 Hz, for [CNQX] = 200 nM. The inset
shows a detail of the peaks.

We note that, by considering the entire spectral energy, the
PSD values are dominated by the low frequency contributions,
i.e., those associated with the amplitude of the bursts. Hence, the
map of spectral energy in these conditions effectively shows the
distribution of bursting amplitudes across the network.

An interesting feature of the map shown in Figure 7A is that
the distribution of energy is inhomogeneous. Neurons with high
bursting amplitudes are concentrated in the top-right corner of
the field of view, and constitute by themselves a group of spa-
tially close neurons that fire together with similar amplitudes, a
quality that is maintained even at high levels of disintegration.
We also note that in the transition from “E+I” to “E-only” con-
nectivity, the spatial location of the “highly energetic” neurons
substantially changes, evidencing that the balance between excita-
tion and inhibition plays an important role in shaping network’s
local dynamical features.

The physical closeness of these “highly energetic” neurons is
emphasized in Figure 7B, which shows the spectral energy as a
function of the neuron index, with neurons ordered by spatial
proximity. The plot marks two particularly relevant communities,
labeled R0 and R1, whose containing neurons maintain a high
spectral energy up to complete disintegration of the network. The
location of these two groups in the monitored region of the cul-
ture is shown in Figure 7C. We remark that we monitor only a
small region of the culture. Therefore, these groups of neurons

may also share some traits with (or their dynamics influenced by)
other neurons outside the field of view. For sake of discussion,
we also provide in Figure 7D the neuronal density map, which
highlights those regions in the field of view that are more densely
populated. A direct comparison with Figure 7C shows that the
two communities R0 and R1 of energetic neurons do not correlate
with particularly dense areas, revealing the importance of non-
local phenomena (both in circuitry and dynamics) in shaping
specific neuronal activity traits.

We carried out this spatial analysis with all the monitored
cultures, and covering from very young (DIV 5–6) to mature
(DIV � 20) cultures. In general we observed that young cul-
tures up to DIV � 10 displayed a rather homogeneous spatial
disintegration, with no identifiable “highly energetic” communi-
ties. However, for cultures at DIV 14 and older we systematically
observed an inhomogeneous disintegration combined with the
existence of communities. The location of these communities var-
ied from culture to culture, and confirmed that mature cultures
break the initial network isotropy and develop slightly different
connectivity layouts.

3.6. COHERENT NEURONAL OSCILLATIONS
Figures 6B,C introduced the observation that some cultures
had a PSD characterized by the presence of peaks at frequen-
cies f in the range 5–10 Hz. These peaks were stronger at
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FIGURE 7 | Distribution of spectral energy across a culture during

disintegration through CNQX. Data corresponds to the experiment at DIV
16 shown in Figure 6C. (A) For a given neuron, its PSD (averaged over
frequencies) is displayed in the (x, y) space according to the spatial location
of the neuron. The analysis is then extended to cover all the �2000
monitored neurons in the field of view, finally providing a color map of the
PSD distribution across the network. For the unperturbed, “E+I” network,
the neurons with the highest PSD form a compact spot in the top-right corner
of the field of view. The blockade of inhibition both shifts and increases the
size of this “highly energetic” group of neurons. This region progressively

reduces in size as CNQX is applied, but maintains a spatial cohesion up to the
complete disintegration of the network. (B) Color coded PSD values as a
function of the frequency f and the neuron index. Neurons are ordered by
spatial proximity to highlight two groups of “highly energetic” neurons,
termed R0 and R1, that maintain their strong energy and spatial cohesion
during disintegration. (C) Spatial location of the R0 and R1 neuronal
ensembles in the field of view. (D) Neuronal density map, calculated by
counting the number of neurons in a square unit area 100 μm wide. The high
energetic groups R0 and R1 do not correlate with an area of the network
particularly populated.

specific concentrations of CNQX, suggesting the emergence—or
reinforcement—of collective oscillatory modes in the network for
a precise coupling strength between neurons.

To further investigate these oscillatory modes, we consid-
ered again the experiment at DIV 16 whose PSD is shown in
Figures 6C, 7. Here, however, we analyze the PSD properties at
the frequency f = 5.54 Hz, where a peak was well identifiable at
[CNQX] = 200 nM. Figure 8A shows the spatial distribution of
energy at this frequency for the two network conditions, “E+I”
and “E-only”, as well as along gradual disintegration through
CNQX.

We first note the remarkable contrast in the spatial distribution
of energy at f = 5.54 Hz between the “E+I” and “E-only” condi-
tions. The former shows a compact spot of energetically similar
neurons, while the latter displays an almost symmetric coverage,
with a low energy region on the left that contrasts with a high
energy one on the right. Again, these distinct maps reveal the
importance of inhibition in shaping network dynamics.

Second, the study also reveals the evolution of this highly
energetic spot throughout weakening. Indeed, for the “E+I”
condition, the difference in energies between this spot and the
neighboring areas is relatively small, by 10%, which made diffi-
cult its detection in the PSD of Figure 6C. As the connectivity
of the network shifts to the “E-only” condition and CNQX is
applied, we observe that the difference between the energy in this
spot and its neighborhood ramps to about 45% at [CNQX] =
200 nM, a difference that progressively decreases as the disinte-
gration progresses, although the compactness of the spot is well
maintained.

We additionally investigated in more detail the differences
in the PSD between the observed compact spot and the neigh-
boring areas. For simplicity, we restricted the analysis to the
“E-only” connectivity condition at [CNQX] = 200 nM weaken-
ing. Figure 8B depicts four investigated communities. In each
community we selected a central neuron and averaged its PSD
with the 100 closest neighbors (white dots within a circle in
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FIGURE 8 | Emergence of synchronous oscillations during network

disintegration through CNQX. Data corresponds to the experiment at
DIV 16 shown in Figure 6C. (A) Spatial distribution of the PSD at a
frequency of 5.54 Hz and for different connectivity conditions, “E+I” and
“E-only” with gradual weakening. The presence of a compact spot at the
center-right of the PSD map highlights a neuronal community (termed Z0)
that synchronously oscillates at this frequency. Oscillations with strong
amplitude also appear along the right edge. For [CNQX] = 200 nM the Z0

community displays the highest difference in energy compared to the
neighboring regions. (B) Location of 4 different communities. For each
community, the central dot marks the position of a selected neuron
whose power spectrum is averaged over all the 100 closest neurons
(white dots within a circle). (C) PSD of the four communities for the
“E-only” connectivity at 200 nM. The community Z0 and R1 show a clear
peak in the PSD at f = 5.54 Hz. The PSD at this frequency is also higher
in these two communities compared to the others.

Figure 8B). We label as Z0 the community that corresponds to the
“spot” mentioned above, and by R1–R3 the rest of communities.
The corresponding PSD distributions are shown in Figure 8C
together with the average over the entire network for clarity. We
first note that the Z0 and R1 communities have a much higher
energy than the others, and that both are markedly character-
ized by a peak in the PSD at 5.54 Hz. This peak is difficult to
observe in the other communities. By comparing these results
with the network-averaged PSD, we conclude that both Z0 and
R1 are the main contributors to the observed peak at 5.54 Hz, and
that Z0 is the community that remains highly coupled throughout
disintegration.

To gain insight into the origin of these synchronous oscilla-
tions, we also carried out an analysis in which we investigated
the link between the oscillations and the bursts themselves. As
shown in Figure 9A, we first separated the original fluorescence
signal into two contributions, one containing the low–frequency
modulation associated to the shape of the bursts, and another one
containing the rest of the signal. The corresponding PSD analysis
(Figure 9B) revealed that the shape of the bursts dominates the
behavior of the spectral curves and therefore masks the dynamics

of the network. On the contrary, the PSD of the filtered data
retains both the dynamical traits of the network and completely
captures the oscillatory behavior. We also investigated the prop-
erties of the signal in between bursting episodes, and excluded
any contribution of the background signal to the presence of the
oscillations. We therefore confirmed that the oscillations occurred
concurrently with the bursts themselves. This is highlighted in
Figure 9C, which compares the traces of the filtered signal along
the different bursts. In all cases, the onset of the oscillatory behav-
ior practically coincides with the beginning of bursting (t = 0s in
the plots). The frequency analysis of these traces (averaged over
all the bursting episodes) is shown in Figure 9D, revealing a peak
at 5–7 Hz, i.e., the range of the initially described characteristic
frequencies.

We extended all the above analyses to other cultures charac-
terized by peaks in the PSD. We observed qualitatively similar
traits, i.e., the existence of communities with markedly strong
synchronous oscillations, the presence of specific CNQX con-
centrations at which the strength of the oscillatory mode was
maximum, and the link between oscillations and bursts. The
frequencies of the oscillatory modes as well as their spatial
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FIGURE 9 | Oscillations originate in the bursts. Data corresponds to the
experiment at DIV 16 for [CNQX] = 200 nM. (A) The top trace depicts the
average fluorescence time series of a group of 100 bursting neurons that
constitute the Z0 community. The first burst of this series and its
manipulation is shown in detail in the bottom panel. The blue trace
corresponds to the original fluorescence signal, and reveals a well
pronounced oscillatory behavior at the peak of bursting. The original signal is
separated into two contributions: the burst shape (red) and the oscillatory
signal (black). Burst shape is estimated by applying a median filter with length
L = 33 frames (1 sec); the resulting trace follows the slow dynamics of the
burst while the oscillatory signal keeps the higher frequency components.
Activity out of the busting episodes (background signal, gray trace) is
computed by connecting the periods in between bursting events. (B) The
spectral analysis of the resulting signals reveals that the burst trace

dominates the shape of the power spectrum, and actually keeps the greatest
fraction of energy from the original signal. The oscillatory component has a
much lower energy but retains network activity correlations (in the range
1− 5 Hz approximately) as well as the oscillations at 5.5 and 7.5 Hz. The
signal out from the bursting episodes does not exhibit any oscillatory
components. Curves are vertically shifted a factor 50 from one another (and
using the background signal as reference) to better highlight the different
shapes of the power spectrum. (C) Fluorescence trace of the oscillatory
signal for all the 11 bursting episodes of the recording, locked to the initiation
of each episode (dashed white line), showing that oscillations originate within
the bursts themselves. (D) Their corresponding averaged Gabor transform,
picturing the presence of an oscillation in the 5–7 Hz range that only appears
once the bursts have reached their maximum amplitude and start the
decaying phase.

distribution significantly varied among cultures and developmen-
tal ages, emphasizing again the formation of specific network
features during maturation.

3.7. UNHEALTHY CULTURES
Figure 6 showed that the PSD could capture, in a regime of
suppressed bursting, temporal correlations between individual
neuronal firings. Such a burst elimination was achieved by sig-
nificantly reducing neuronal coupling through CNQX. Based on
this observation, we hypothesized that such a network-spanning
affectation could also occur in conditions where the health of the
culture was compromised. To test such a possibility, we carried
out a simple test in which we left the cultures to degrade, at the
end of a normal experiment, by leaving them in the recording
system for several hours.

Photo-damage in such an experiment induced neuronal death
and severe disruption in the normal neuronal network behav-
ior, which was evidenced by the extinction of bursting episodes.
However, close inspection of the recordings showed that local
activity, in the form of individual firing or groups of persistently
active neurons, was still identifiable. Figure 10A shows traces
of network-averaged fluorescence to compare the healthy and
unhealthy states. We also show the fluorescence signal corre-
sponding to the noise of the camera.

The corresponding PSDs of these measurements are shown in
Figure 10B. Remarkably, the PSD for the deteriorated, unhealthy
culture displays a neat scaling that is not masked by the bursts’
structure. Also, the PSD is qualitatively similar in shape as the
one for healthy cultures and [CNQX] = 800 nM. Interestingly,
we measured clearly different exponents α. For the healthy and

CNQX-drugged networks we consistently measured exponents of
α � 2.0, while for the unhealthy experiments we obtained α �
3.0. Such a different values reveal different temporal correlations
or dynamical modes in the network, and hints at the potential of
PSD analysis to quantify the state of neuronal networks.

4. DISCUSSION
Our experiments fall within the context of functional multineu-
ron calcium imaging (fMCI), a technique based in the ability
to examine network activity in large neuronal populations and
with single-cell resolution (Stosiek et al., 2003; Ohki et al., 2005;
Bonifazi et al., 2009; Takahashi et al., 2010a,b). fMCI has received
substantial attention in the last years driven by the spectacular
development of optogenetic tools and genetically encoded cal-
cium indicators, which allow to monitor and probe neuronal
circuits in vivo without the need of electrodes or other invasive
measuring techniques (Yizhar et al., 2011a).

Given the challenge in fMCI to link the measured calcium
fluorescence signal with the structural and dynamical traits of
the underlying network, in vitro preparations have emerged as
valuable platforms to probe neuronal circuitry and investigate
the properties of the measured fluorescence signal. In this work
we have utilized spontaneous activity in cortical cultures as the
main measure to investigate the relation between activity, fluores-
cence signal and network connectivity. We have used two major
approaches to access different neuronal circuitries, namely the
monitoring of network development along 3 weeks and its con-
trolled disintegration through application of CNQX. In both cases
we observed distinct features in the shape of the fluorescence
signal and its associated power spectrum density (PSD). The
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FIGURE 10 | Unhealthy cultures. (A) Traces of fluorescence spontaneous
activity in a “E+I” culture recoded in healthy (top) and unhealthy (center)
conditions. The unhealthy state was induced by maintaining the culture
under continuous light exposure for 4 h, which resulted in the death of
several neurons. The unhealthy network showed individual neuronal firing
but was deprived of bursting activity. The bottom trace shows the noise of
the recording system. (B) Corresponding PSD curves. The unhealthy state
shows a trend very different from both the healthy state and the noise,
with a scaling at high frequencies that may arise from temporal correlations
between individual neuronal firings.

PSD could capture relevant events during development, revealed
locality features in the neuronal network, and highlighted the
presence of synchronous oscillatory modes within neuronal
communities.

4.1. FLUORESCENCE SIGNAL AND POWER SPECTRUM
The recorded fluorescence signal displayed different traits
depending on both the age of the neuronal culture and its con-
nectivity strength. First, young cultures under DIV � 5 did not
display bursts, and the networks dynamics was characterized by
sparse individual neuronal firings of very low amplitude. We
detected the presence of these events in the histograms of fluores-
cence amplitude (Figure 3B), which deviate from Gaussian dis-
tributions at high fluorescence values. However, the PSD curves
corresponding to these “young” traces were similar to the ones
obtained by measuring the noise of the camera. Hence, in very
young cultures and with the experimental settings that we used in
the present work, we could not use the power spectrum to quan-
tify temporal correlations between neurons or other dynamical
features.

Second, cultures at DIV � 6 did show bursts, with a struc-
ture (amplitude, width and interburst timing) that depended on

maturation. The corresponding PSDs reflected such variations,
and we could detect GABA switch as well as the relative strength
between excitation and inhibition by comparing the PSD curves
of the “E+I” and “E-only” conditions (Figure 3). Also, the rise in
bursting amplitudes during development was reflected in the PSD
by a gradual increase in the average power (Figure 4). The PSD
curves for mature cultures showed a rather good collapse with
a slope α � 2.5, indicating the advent of a more stable network
state. Despite the variations from culture to culture, such a trend
was systematic. Hence, in principle we could “guess” the develop-
mental stage of a culture, and even some coarse properties, based
in the average energy and slope of the PSD.

We must note, however, that the shape of the PSD arises
from a complex combination of factors, including the fast jump
in fluorescence at the beginning of bursting, the width of the
bursts, the slow decay of fluorescence back to the resting state,
as well as the time between burst. One would therefore need a
detailed exploration of these different parameters to fully under-
stand the information that the PSD can provide. Given the variety
of bursting regimes that a neuronal culture can convey (Van Pelt
et al., 2004b; Wagenaar et al., 2006a,b), such a exploration is a
considerable endeavor.

As a third major remark, we observed distinct features in the
PSD between the development of the network and its disinte-
gration through CNQX. The former includes the growth and
strengthening of connections, both locally and globally, and thus
the overall network dynamics constantly evolve. The latter weak-
ens homogeneously the excitatory connectivity in the network,
leading to essentially a similar network dynamics with progres-
sively reduced bursting. Hence, young cultures are not equivalent
to fully disintegrated mature cultures. The two experimental
approaches are therefore complementary and reveal distinct fea-
tures. Indeed, a remarkable observation in the experiments with
CNQX is that, for concentrations that led to almost no bursting
at [CNQX] � 800− 2000 nM, we observed significant individ-
ual neuronal firing across the culture. Given the maturation of
the network, these firings were of sufficient strength to exceed
the noise of the system. Only in these conditions the PSD fol-
lowed a scaling that we believe was capturing correlations between
neurons (Figure 6).

The investigation of temporal correlations from PSD analyses
is indeed a powerful concept since it may unveil dynamical traits
of the network, e.g., in the form of synaptic inputs or intrin-
sic neuronal interactions (Thurner et al., 2003; Destexhe and
Rudolph, 2004; El Boustani et al., 2009). The significance of the
scaling by itself in our data, as well as the information that these
correlations provide about the interplay activity-connectivity in
the network, needs detailed investigation. Notably, the observa-
tion that healthy and unhealthy cultures exhibit different scaling
exponents suggest that such studies could provide a basis to
describe pathological or deteriorated cultures from the analysis
of the PSD. In this context, an additional experimental tool that
would provide valuable insight is the incorporation of connectiv-
ity guidance in the culture substrate, for instance in the form of
biochemical fixation or physical trapping (Eckmann et al., 2007;
Wheeler and Brewer, 2010). Dynamics in such “patterned cul-
tures” substantially differ from standard ones due to the dictated
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connectivity (Shein Idelson et al., 2010; Tibau et al., 2013), and
would possibly give rise to different temporal correlations.

4.2. DEVELOPMENT AND NETWORK TRAITS
Several works in the literature have investigated the emergence
of network-spanning bursting episodes during development.
Consistently with our work, bursts were reported to appear by
DIV 5–6 (Kamioka et al., 1996; Opitz et al., 2002; Wagenaar et al.,
2006a), showing a low amplitude and irregular timing. These
studies used micro-electrode arrays (MEAs) as activity-measuring
technique, and also revealed that the activity contained both indi-
vidual firing events and bursts. As said before, this individual
spiking was also present in maturer networks (DIV � 10 and
older), and we actually used the valuable information that they
provide to reconstruct neuronal connectivity in the context of
Transfer Entropy (Stetter et al., 2012). Mature cultures exhibited
stronger and more regular bursting as a consequence of the pro-
gressive maturation of synapses and the increase in their number
(Muramoto et al., 1993; Kamioka et al., 1996; Opitz et al., 2002).
Interestingly, we observed a stabilization in bursting amplitudes
as well as a decrease in bursting firing frequency by DIV 18–20
(Figures 2D,E). These results are consistent with the studies of
Van Pelt et al. (2004b,a) who reported that, in cortical cultures
similar to ours, burst duration and firing amplitudes reached
maximum values by DIV 18, to later stabilize or decrease as
network evolved further.

The different spatial analysis of the PSD (Figures 7, 8) for
mature cultures during network disintegration revealed strong
inhomogeneities in the distribution of spectral energies, with
compact spots of high energy. Spectral energy is directly linked
to the amplitude of the bursts which, in turn, is related to the
number of the elicited action potentials (Sasaki et al., 2008).
If we assume that neurons firing with large bursting ampli-
tudes have a higher input connectivity, then the combination
of strong firing and spatial closeness identifies neuronal com-
munities that are highly interconnected. The cohesion within a
community is maintained up to complete disintegration of the
network. Chiappalone et al. (2006) showed that spatially close
neurons are progressively more functionally connected as the net-
work matures; and Soriano et al. (2008) showed that, in CNQX
disintegration experiments similar to ours, groups of neurons
spatially close maintained their interconnectivity and collective
firing when stimulated electrically.

Hence, we ascribe this spatial inhomogeneities in the PSD to
the formation of highly conserved topological communities that
maintain unique local features despite changes in global network
dynamics. We indeed hypothesize that the communities observed
by Chiappalone et al. (2006) are the same as our groups of “highly
energetic neurons.”

4.3. HIGH FREQUENCY SYNCHRONOUS OSCILLATIONS
The PSD curves upon CNQX disintegration revealed the existence
of high-frequency oscillations in the range 5–10 Hz, which were
remarkably strong and spatially localized at particular concentra-
tions of CNQX. These oscillations were observed solely in mature
cultures and, in general, we detected them both in the “E+I”

and “E-only” conditions. A detailed study of the fluorescence
traces revealed that the oscillatory modes originated from activ-
ity within the bursts themselves. Interestingly, Shein Idelson et al.
(2010) reported oscillations in small neuronal circuits formed
by compact cell aggregates. They observed collective oscillatory
modes within network bursts in the range 25–100 Hz, and the
authors associated them to synchronous oscillations during the
decaying phase of the network burst.

Our observed oscillations are markedly strong in localized
communities, suggesting that the oscillations emerge as a result
of recurrent activity within these communities. We found puz-
zling, however, the observation that the CNQX concentrations
at which the oscillations had the highest amplitude coincided
with sudden increases in global network dynamics. We suggest
that the network may activate correction mechanisms at a critical
connectivity weakening to prevent the deterioration of activity.
These mechanisms may arise from local alterations in synaptic
strength or connectivity, as well as from changes in the excitability
of the neurons themselves.

It also may occur that these communities of oscillatory activity
play a role in the network, for instance as centers for the initiation
of activity. Orlandi et al. (2013) recently introduced the concept
of “noise focusing”, the amplification and propagation of network
background activity toward specific foci or basins of attraction
where bursts ultimately initiate. It would be enlightening to inves-
tigate if there is a relation between these foci of burst initiation
and our oscillatory communities.

Finally, we remark that these oscillations seem to be inexistent
in young cultures (or too weak to be detected), which strength-
ens the argument that strong coupling within the cell community
is required for their generation. An aspect that requires investi-
gation, however, is what parameters tune the frequency of the
oscillations, for instance by exploring the relative weight between
AMPA, NMDA and GABA receptors. Shein Idelson et al. (2010)
indeed showed that the oscillations disappeared altogether when
GABA was fully blocked, which does not occur in our case.
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A central problem in cortical processing including sensory binding and attentional gating
is how neurons can synchronize their responses with zero or near-zero time lag. For a
spontaneously firing neuron, an input from another neuron can delay or advance the next
spike by different amounts depending upon the timing of the input relative to the previous
spike. This information constitutes the phase response curve (PRC). We present a simple
graphical method for determining the effect of PRC shape on synchronization tendencies
and illustrate it using type 1 PRCs, which consist entirely of advances (delays) in response
to excitation (inhibition). We obtained the following generic solutions for type 1 PRCs,
which include the pulse-coupled leaky integrate and fire model. For pairs with mutual
excitation, exact synchrony can be stable for strong coupling because of the stabilizing
effect of the causal limit region of the PRC in which an input triggers a spike immediately
upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive
during a refractory period and cannot trigger an immediate spike. Right skew destabilizes
antiphase and enables modes with time lags that grow as the conduction delay is increased.
Therefore, right skew favors near synchrony at short conduction delays and a gradual
transition between synchrony and antiphase for pairs coupled by mutual excitation. For
pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging
from zero to a substantial fraction of the period for pairs. However, for right skew there
is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew
destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as
well. These pairwise synchronization tendencies constrain the synchronization properties
of neurons embedded in larger networks.

Keywords: synchrony, synchronization, pulsatile coupling, phase locking, phase resetting

INTRODUCTION
A role has been proposed for synchronous oscillations in bind-
ing of sensory experiences (Singer, 1993) and attention (Fries
et al., 2001). Synchronization that occurs between distal brain
regions is almost always associated with oscillatory activity (Konig
et al., 1995). This synchrony is achieved rapidly (Singer, 1999)
and persists only transiently. The role of reciprocal coupling in
synchronizing neural oscillators is supported by the observation
that strong inter-hemispheric phase locking in the gamma fre-
quency band with zero phase lag occurred in cat visual cortex
could be disrupted by severing the corpus callosum (Engel et al.,
1991). The inter-hemispheric conduction delays were on the order
of 4–6 ms, which is about a sixth to a third of a gamma cycle.
A role for altered synchronization tendencies in disease states
(Uhlhaas and Singer, 2006) is supported by the observations that
long distance synchronization is reduced in schizophrenia and
epilepsy, whereas local synchronization in epilepsy is enhanced.
Phase resetting theory (Glass and Mackey, 1988; Winfree, 1990;
Ermentrout and Terman, 2010) is often used to study the syn-
chronization tendencies of regularly spiking neurons. A phase
response curve (PRC) shows how much an input advances or

delays the next spike as a function of where in the cycle the
input is applied. Type 1 PRCs (Hansel et al., 1995) are com-
prised of either all advances (for excitation) or all delays (for
inhibition), whereas type 2 PRCs exhibit both advances and
delays.

Neurons with type 1 PRCs tend not to synchronize via
weak mutual excitation (Hansel et al., 1995; Ermentrout, 1996).
Nonetheless, the ability of pulse-coupled leaky integrate and fire
(LIF) and other oscillators with type 1 PRCs to synchronize due
to strong mutual excitation is well known (Peskin, 1975; Mirollo
and Strogatz, 1990). The PRC of this model at late phases has a
strongly stabilizing slope due to the ability of an input to trigger
a spike immediately on arrival at very late phases, which creates a
linear “causal limit” region in the PRC. This region accounts for
synchrony at zero delay (Canavier and Achuthan, 2010), and as
we show in this study, also accounts for the existence of a grad-
ual transition between synchrony and antiphase as the conduction
delay is increased, regardless of PRC skew. In contrast, a criti-
cal role for PRC skew in networks of type 1 neurons connected
by mutual synaptic excitation was demonstrated by Ermentrout
et al. (2001). If the maximum resetting (of either sign) occurs
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in the first half of the cycle, the PRC is left skewed; on the
other hand if it occurs in the right half, it is right skewed. If
the right skew is increased, the tendency to approximately syn-
chronize with small time lags is increased for pairs of type 1
neurons coupled via mutual synaptic excitation or electrical cou-
pling (Pfeuty et al., 2003; Zahid and Skinner, 2009), and skewing
the PRC toward the left stabilizes the antiphase mode. In con-
trast, the antiphase mode is stabilized by skewing the PRC to the
right (Ladenbauer et al., 2012) for pair with type 1 mutual inhi-
bition. There are several ways in which altering the conductances
(Ermentrout et al., 2001, 2012; Pfeuty et al., 2003; Gutkin et al.,
2005; Stiefel et al., 2009) can change the shape of a type 1 PRC for
a regularly spiking neuron. Therefore, one way to quickly reverse
the synchronization tendencies of neurons is to modulate the
intrinsic ion channels that alter the PRC shape (Ermentrout et al.,
2012), which could provide a switch to turn synchrony on and off
rapidly.

Here we examine the effect of changing the skew of a type
1 PRC on the ability of pairs of neurons characterized by these
PRCs to synchronize in the presence of conduction delays. We
quantify the tendency of a network to synchronize using a global
method that requires the identification of the unstable solutions
comprising the boundaries between the attractive basins of the
stable solutions, and compares the size of the sets of initial con-
ditions, or basins of attraction, that lead to synchrony versus
any other competing stable modes. In some cases we also use a
local measure that infers the rate of convergence to synchrony
in the neighborhood of a stable solution using the slopes of
the PRC at the phases at which inputs are received with a pos-
sibly non-zero delay after spikes in the presynaptic neuron(s).
The solution structure for pairs of coupled neurons with type
1 PRCs in the presence of conduction delays is highly dependent
upon the skew of the PRC. In particular, right skew enhances
the ability of mutually excitatory pairs to preserve synchrony in
the presence of small delays, but diminishes that of inhibitory
pairs. Overall, inhibitory synchrony (Van Vreeswijk et al., 1994;
Wang et al., 2012) is much more robust to conduction delays.
These results have implications for synchronization in larger net-
works as well (see Implications of Generic Modes for Larger
Networks).

MATERIALS AND METHODS
WANG–BUZSAKI MODEL
The Wang and Buzsaki (1996) conductance-based model neuron
has the following parameters unless otherwise noted. The rever-
sal potentials ENa, EK, and EL were set to 55, −90, and −65 mV,
respectively and the capacitance was set to 1 μF/cm2. The max-
imal sodium (gNa), potassium (gK), and leak (gL) conductances
were set to 35, 9, and 0.1 mS/cm2, respectively. I stim is the applied
current and was set at 1.0 μA/cm2. The synaptic current is given
by I syn = g syns(V − Esyn), where g syn is the maximum synaptic
conductance and Esyn is equal to −75 mV for inhibitory synaptic
connectivity and equal to 0 mV for excitatory synaptic connectiv-
ity. The rate of change of the gating variable s in units of ms−1 is
ds/dt = 6.25(1 − s)/[1 + exp(−V pre/2)] − s/τsyn, where V pre is
the voltage of the presynaptic cell, and τsyn is the synaptic decay
time constant of 1.0 ms.

MEASUREMENT OF PRC IN ISOLATED WANG–BUZSAKI NEURONS
Figure 1A1 shows the measurement of the PRC for a Wang–
Buzsaki model neuron where the input is the synaptic conductance
waveform (Figure 1A1, bottom trace) that results from a spike in
the presynaptic neuron. The phase φ is 0 at an upward crossing
of a predetermined threshold (here −14 mV), and the phase φ

at which a stimulus is received is ts/P0, where P0 is the intrinsic
period and ts = φP0 is the stimulus interval, defined as the inter-
val between the time of the action potential and the receipt of an
input. The recovery interval tr is defined as the interval between
the receipt of an input by a neuron and the next action potential
in the same neuron: tr= P0 − ts+ P0f(φ), where the phase reset-
ting f(φ) is given by the normalized change in the cycle length that
contains the perturbation f(φ)= (P1− P0)/P0. In this study we do
not focus on second order resetting that is evidenced by changes
in length of the second cycle following the perturbation, but in
some cases the second order phase resetting must be considered
(Oprisan et al., 2004; Maran and Canavier, 2008; Woodman and
Canavier, 2011). A positive resetting signifies a phase delay and a
negative resetting signifies a phase advance. Figure 1A2 shows a
typical PRC for the Wang–Buzsaki model, consisting of all delays
in response to an inhibitory synaptic input.

LEAKY INTEGRATE AND FIRE NEURON MODEL PRC
The LIF model is given by dV /dt = −γV (t) + S0, where V (t) is
the membrane potential, γ is the magnitude of the leak, and S0 is
the applied current. When V (t) = 1 the neuron is presumed to
fire and V (t) is reset to 0 (Figure 1B1). Following the methods of
Peskin (1975) and Mirollo and Strogatz (1990), the neurons are
instantaneously pulse-coupled such that an input depolarizes the
membrane by a fixed amount ε or brings the membrane poten-
tial to threshold, whichever among the two values is less. For
two coupled neurons i and j, when V i(t) = 1, meaning one neu-
ron reaches spike threshold, then the potential in the partner is
set to V j(t) = min [1,V j(t)+ε], j �= i, meaning that inputs that
occur late within the cycle can immediately trigger a spike. At
an initial condition of V (0) = 0, we can explicitly solve for the
voltage such that V (t) = (S0/γ)(1 − e−γt ). From this expres-
sion, solving for the elapsed time (ts) to reach a given value of
voltage V (t), we obtain ts = (1/γ) ln{S0/[S0 − γV (t)]}. The
intrinsic period of the oscillator is the elapsed time required to
reach V (t) = 1, which is C/γ, where C = ln[S0/(S0 − γ)]. We
can solve for the phase advance due an instantaneous jump from
V j(t) to V j(t)+ ε by taking the difference between the elapsed time
required to reach V j(t) corresponding to a given phase φ= ts γ/C
and the elapsed time required to reach V j(t) + ε in the absence
of a perturbation. For V j(t) + ε < 1, this difference is equal to
(−1/γ){ln[(S0 − γ)/(S0 − γεeCφ)]− 1}, which is then normalized
by the intrinsic period in Eq. 1. For V j(t) + ε ≥ 1, the resetting
is limited by the fact that an input cannot advance the next spike
time to a time before the neuron receives an input, so the phase
is advanced by exactly the normalized time remaining until the
next input (1 − φ), with a sign reversal due to our definition of
phase resetting in which advances are negative. The resetting at 0
and 1 are not the same because the effect of an input is assumed
to end when a spike is produced; a more physiological model for
coupling would assume any excess charge beyond that required
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FIGURE 1 | Phase response curve (PRC) measured in isolated neurons

and used to predict network activity. (A1) PRC measurement in a
Wang–Buzsaki model neuron. Inset shows open loop configuration without
feedback. A perturbation in the form of a synaptic conductance waveform
evoked by a single spike in the presynaptic neuron (lower trace) is applied at a
phase of φ = ts/P0, and the phase resetting f (φ) is the normalized change in
cycle length f (φ) = (P1 − P0)/P0. Alternatively, the perturbed cycle length
P1 is equal to the sum of the stimulus (ts) and recovery (t r) intervals.
(A2) Typical PRC for an inhibitory input to a Wang–Buzsaki neuron with
gsyn = 0.35 mS/cm2, τsyn = 1 ms, Istim = 2.0 μA/cm2, and otherwise as the
Methods. (B1) PRC measurement in a leaky integrate and fire model neuron.
An instantaneous increment in membrane potential (black arrow) either
advances the phase or immediately causes the neuron to reach threshold.
(B2) Typical PRC for leaky integrate and fire neuron. Beyond a phase of about
0.8, a spike is triggered immediately by the input. In this “causal limit” region,

the resetting is equal to φ − 1. (C) Stimulus and recovery intervals in the
network. Inset shows closed loop configuration with feedback. In an
alternating firing pattern, each spike affects the timing of the very next spike
(k = 1) in the same neuron via a feedback loop through the partner neuron. In
a phase-locked mode with constant firing intervals, the gray shaded area
indicates that the stimulus interval in neuron 1 is equal to the recovery
interval in neuron 2 plus twice the delay δ, and the pink shaded area illustrates
a similar constraint for the stimulus interval in neuron 2. The time lags, or
firing intervals between neurons, can be inferred from the stimulus and
recovery intervals. (D). Predicting closed loop modes with open loop data.
Plotting the algebraic combination of intervals with quantities that must be
equal in a phase-locked mode on the same axis ensures that the intersections
represent the stimulus and recovery intervals in phase-locked modes. The
delay was 20% of the intrinsic period P0. The axes are all normalized by the
intrinsic period of the component oscillators and therefore dimensionless.
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to evoke a spike is applied in the next cycle, causing an advance
in that cycle, which at a phase of 1 would equal the resetting at a
phase of 0.

Given the constraints on how much a spike can be advanced,
the phase resetting (see Figure 1B2) is given by

f(φ) = −min(|(−1/C){ln[(S0-γ)/(S0-γεeCφ)] − 1}|, |φ − 1|) (1)

The negative sign in Eq. 1 was necessary to make the sign of
the PRC consistent with the convention used in this work. The
PRC in Figure 1B2 was calculated directly from Eq. 1. This non-
physiological feature by which an input instantaneously triggers
a spike introduces a linear region in the PRC at late phases in
which the phase advance is φ− 1, exactly equal in magnitude and
opposite in sign to the fraction of the cycle remaining when the
input is applied. Since this limit is imposed by causality, we call
this linear region the causal limit region of the PRC.

PREDICTION OF NETWORK ACTIVITY USING PHASE RESETTING
The assumptions required to apply the stimulus and recovery
intervals measured in isolated neurons with no feedback to the
closed loop circuit are simply that the spikes remain essentially the
same in the presence of feedback, and that the effect of each pertur-
bation dies out within a single network period after it is received.
Detailed stability calculations are given in Woodman and Canavier
(2011). We use a method (Woodman and Canavier, 2011; Wang
et al., 2012) very similar to the spike time difference method (Acker
et al., 2003) with the advantage that it is easily extendable to longer
conduction delays.

Our method takes advantage of the algebraic relationship
shown in Figure 1C between the stimulus and recovery intervals
in one to one phase-locked periodic modes. The stimulus interval
(in the absence of any second order resetting) is simply P0φ as
described above, and the dependence of the recovery interval on
the phase was determined using the phase resetting protocol also
described above. The key idea (Woodman and Canavier, 2011) is
that there is a feedback loop through which a spike in one neuron
influences, after a conduction delay, the timing of a spike in its
partner, and this spike in turn, after another conduction delay,
affects the timing of a spike in the original neuron. The duration
of this feedback loop is always the sum of the two delays plus the
recovery interval in the partner. For short equal conduction delays,
the duration of this feedback loop is exactly the stimulus interval
in the original neuron, as illustrated in Figure 1C. This condition
must be met with respect to both the stimulus interval in neuron 1
(Figure 1C, gray shaded area) and the stimulus interval in neuron
2 (Figure 1C, red shaded area), so there are two symmetric criteria
that must both be satisfied in order to establish a periodic one to
one phase locking. However, longer feedback loops are also possi-
ble, in which the duration of the feedback loop is still equal to twice
the conduction delay plus the recovery interval in the partner, but
one or more spikes occur in the original neuron before the feed-
back from a given spike is received. The duration of the feedback
loop in the original neuron is then equal to the stimulus interval
in the original neuron plus k − 1 network periods PN, where the
parameter k − 1 is the number of spikes that occur before the
feedback loop is closed, and the network period is the sum of the

stimulus and recovery intervals associated with any given input
phase.

The stimulus and recovery intervals measured using the PRC
protocol can be plotted for each isolated neuron with the axes
arranged as in Figure 1D so that the intersection points meet both
criteria for the duration of the feedback loop described above that
must be satisfied in a periodic one to one locking by the stimulus
and recovery intervals in each neuron. The observable time lags
between neural firings can be calculated using the algebraic rela-
tionships shown in Figure 1C (Woodman and Canavier, 2011). In
addition to the phasic relationships within a periodic mode, we
also need to know the stability of each mode. The stability can also
be read from the graph in Figure 1D (Wang et al., 2012), at least
for k= 1. The stability criterion for the k= 1 mode mandates that
if the absolute value of the slope of the black curve is greater than
the slope of the red curve at an intersection, then that intersection
is stable, hence a steeper black curve at the intersection point guar-
antees stability. The derivation follows from the stability criterion
for modes with k = 1, which is−1 < [1− f ′(φ1)][1− f ′(φ2)] < 1
where f ′(φ1) and f ′(φ2) are slopes of the PRC evaluated at the
phase locking points of φ1 and φ2. Stability is guaranteed if the
slope of the PRC at both locking points is positive and <2. Since ts
depends only on phase, and tr depends on both the phase and the
phase resetting, algebraic manipulation reveals that the slope of the
black curve for neuron 1 for k = 1 is [f ′(φ1)− 1]−1 and the slope
of the red curve for neuron 2 for k= 1 is [f ′(φ2)− 1]. Dividing all
terms in the stability criterion by [1− f ′(φ1)] and considering the
cases for which [1− f ′(φ1)] is positive or negative gives the stability
criterion in terms of the relative steepness of the slopes. For k = 2,
the stability criterion is−1 < [1− f ′(φ1)− f ′(φ2)] < 1. For higher
values of k, the appropriate stability criterion must be applied
(Woodman and Canavier, 2011).

RESULTS
TWO LIF NEURONS PULSE COUPLED BY EXCITATION TRANSITION
GRADUALLY BETWEEN SYNCHRONY AND ANTIPHASE AS THE
CONDUCTION DELAY IS INCREASED
Solutions that were obtained as the conduction delay was varied
in pairs of LIF model neurons coupled via excitatory pulses are
shown in Figure 2. With no delay, all initial conditions converged
to synchrony (Figure 2A), as expected (Peskin, 1975; Mirollo and
Strogatz, 1990). For delays >0 but up to about 40% of the intrin-
sic period, a “leader–follower” mode was obtained in which the
smaller time lag between the firing of the two neurons was equal
to the delay (second blue bar in Figure 2B). This mode is observed
because the follower fires exactly when the delayed input from
its partner arrives, but the leader does not fire immediately upon
receiving an input from the follower. Convergence occurs within
a single cycle for reasons explained below. The lack of robustness
of synchrony mediated by excitatory pulse coupling to delays was
also expected (Ernst et al., 1995). For delays equal to about 40–50%
of the intrinsic period (see Figure 4C), an exact antiphase mode
was obtained (Figure 2C) in which the time lags are each equal
to half the network period, and because each neuron fired imme-
diately upon receiving an input, the delays (horizontal blue bars)
were exactly equal to the time lags. For delays equal to about 50–
85% of the network period, we again obtained a leader–follower
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FIGURE 2 |Typical patterns observed in a pair of pulse-coupled LIF

oscillators as the delay is varied. Blue horizontal bars show the conduction
delay. (A) For short delays, all initial conditions converge to synchrony. (B) For
short delays, the shorter time lag (asterisk over blue bar indicating delay)
between one neuron (black curve) and the other (red curve) is exactly equal to
the delay. Note that the other time lag is not equal to the delay. (C) For
midrange delays antiphase is observed in which each time lag (asterisks) is

equal to the delay. This is not generic for antiphase, but rather a special case
as explained in the text. (D) For longer delays, again only one time lag is equal
to the delay, this time the longer time lag (see asterisk). (E) For delays almost
equal to an intrinsic period, the trajectories do not converge to synchrony,
instead the neurons switch their firing order on each cycle. The delays are
equal to the time lags (asterisks). Parameters for the coupled LIF are γ = 0.9,
S0 = 1, ε = 0.05.

mode in which one neuron, but not the other, fired immedi-
ately after the delayed input from its partner arrived (second blue
bar in Figure 2D). In this case the longer of the two time lags
is equal to the delay, but convergence generally does not occur
within one cycle. Finally, for delays longer than 90%, a nearly
synchronous mode emerged in which the firing order of the two
neurons switched on every cycle (leapfrog mode in Maran and
Canavier, 2008; Oh and Matveev, 2008).

We can understand how the modes in Figure 2 arise by exam-
ining how the delays alter the generic periodic solutions for two

identical, identically coupled oscillators in which the receipt of an
input at late phases can immediately trigger a spike. We consider
as generic only 1:1 modes, in which no oscillator fires twice in a
row before the other oscillator fires. The inset in Figure 3 shows
two oscillators coupled with equal conduction delays. Figure 3
shows a schematic representation of the generic modes: the two
oscillators can fire together in exact synchrony (Figures 3A,E),
they can alternate in exact antiphase with the same time lags
(Figure 3C), or they can fire alternately with different intervals
between spikes (Figures 3B,D). The meaning of the integer k can
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FIGURE 3 | Five generic modes in identical, identically pulse-coupled LIF

oscillators with identical conduction delays. Pink shaded regions show
relationship of delay to the phase, blue show the relationship to the time lags.
(A) For a synchronous mode and identical oscillators with short delays, the
stimulus interval ts in each oscillator is equal to the delay δ. The dashed lines
show that the first spike in the top neuron does not affect the timing of the
very next spike in the same neuron, but rather the one after that, so k = 2.
(B) In the leader–follower mode for k = 1, the stimulus interval in the follower
(top) is equal to the network period, the time lag between the firing of the
leader and that of the follower is equal to the delay, and the stimulus interval

in the leader is twice the delay. The dashed lines show that the first spike in
the top neuron does affect the timing of the very next spike in the same
neuron, so k = 1. (C) Antiphase. For identical oscillators, both stimulus
intervals are equal to twice the delay plus the recovery interval. (D) In the
leader–follower mode for k = 2, the sum of the stimulus intervals is twice the
delay, hence their average gives the delay. (E) Causal limit synchrony for long
delays. In this case the stimulus intervals in both neurons are equal to the
delay as in (A), but because the recovery intervals are equal to 0, the stimulus
intervals are also equal to both the network period and the delay. The delay is
also equal to one time lag if the other is considered to be 0.

be better understood by observing the paths marked by dashed
lines in Figures 3A,B. The path begins with a spike in the top neu-
ron and shows whether the timing of that spike affects the timing
of the next spike in the spike neuron via the feedback loop through
the other neuron. Figure 3A shows that after one delay, an input is
received by the other neuron, then one recovery interval later the
other neuron spikes, then after one more delay an input is received
by the first neuron. This input arrives too late to affect the timing
of the very next spike in the first neuron, but will affect the timing
of the second, so k = 2. On the other hand, the dashed lines in
Figure 3B show that the first spike in the top neuron does affect the

timing of the very next spike in the same neuron via the feedback
loop though the other neuron, so k = 1 for this case.

The pink shaded areas in Figure 3 show the relationship of the
stimulus intervals to the conduction delay, and the infinity symbol
represents the steady value of the intervals in a periodic mode after
all transients have decayed. This relationship is important because
it allows us to predict the phase that at which inputs will be receive
in a given model directly from the value of the conduction delay.
For synchrony at both early (Figure 3A) and late phases (causal
limit synchrony, Figure 3E), the conduction delay is equal to the
stimulus interval in each neuron (δ = ts = φP0). Therefore the

Frontiers in Neural Circuits www.frontiersin.org December 2013 | Volume 7 | Article 194 | 225

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00194” — 2013/12/9 — 19:40 — page 7 — #7

Canavier et al. Effect of skew in phase response curve

phase at which an input is received in the synchronous modes
is always equal to the normalized delay (φ = δ/P0). We refer to
Figure 3E as causal limit synchrony because a spike is triggered
immediately when the delayed input is received; this is not the
case in Figure 3A. The pink shaded area in Figure 3B shows that
the delay is half the stimulus interval (tsL) for the leader, so the
phase at which an input is received is half the normalized delay. The
pink shaded area in Figure 3C shows that in the antiphase mode
the stimulus interval in one neuron is equal to twice the delay plus
the recovery interval in the other neuron. There is no pink shaded
area in Figure 3D because there is no integral relationship between
one stimulus interval and the conduction delay; instead the delay
is half the sum of the two stimulus intervals. This result is obtained
by noting tsF + t lFL + tsL = t lFL + 2δ and canceling the time lag
term tlFL.

The blue shaded areas in Figure 3 show the relationship of
the time lags observed in each mode to the conduction delay.
Figures 3B,D show that for leader–follower modes with k = 1 and
2 respectively, the delay is equal to the time lag between the leader
and the follower (t lLF), meaning that a spike is triggered in one
neuron, but not the other, immediately when a delayed input is
received. The blue shaded area in Figure 3E shows that in the causal
synchrony mode, a spike is triggered in both neurons immediately
upon receipt of the delayed input, and consequently both stimulus
intervals as well as the network period are equal to the conduction
delay. These relationships are a direct consequence of the ability
of a delayed input to immediately trigger a spike upon its arrival.

Each of the generic modes in Figure 3 corresponds to the
panel with the same letter in Figure 2. However, in order to
complete our analysis on the coupled LIF system, we need to
apply the insights gained in Figure 3 to the PRC for the indi-
vidual LIF neurons given the assumed form of pulse coupling
described in Section “Materials and Methods.” Figure 4 uses only
the information in the PRC (shown in both Figures 4A,B) to
predict the two time lags (defined in Figure 1C) that comprise
one to one periodic locked modes (shown in Figure 4C) asso-
ciated with each mode obtained in Figure 2 by integrating the
differential equations for the pair of pulse-coupled LIF oscillators.
The time lags are the intervals between a spike in one neuron
and the next spike in its partner (Figure 1C). For synchrony, one
lag is arbitrarily set to 0 and the other to the network period.
For antiphase, both time lags are equal (indicated by filled cir-
cles) so only one is visible. Only stable modes (black symbols)
can be observed as a result of simulations, but the prediction
method also identified the unstable (red symbols) and neutrally
stable (blue circles) modes. Both the axes with the time lags
(intervals) and delay are normalized with respect to the intrinsic
period; the phase is the stimulus interval normalized by the intrin-
sic period. The lowercase letters along the middle of Figure 4C
indicate the delays corresponding to the solutions in the corre-
sponding panels in Figure 2 and the schematic representation in
Figure 3.

The overall picture given in Figure 4 with respect to the generic
modes is as follows. There are three solution branches, corre-
sponding to synchrony, leader–follower and antiphase. Synchrony
is stable (a) at zero delay (open black circles) but in region (b)
splits into an unstable synchronous branch (pairs of open red

FIGURE 4 | Predicting the solution structure for pulse-coupled LIF

pairs. (A) Phase response curve for a leaky integrate and fire neuron with
parameters as in Figure 2. The unstable branch is to the left of φCL. The
stable, causal limit branch of the PRC is to the right of φCL, and neurons
receiving an input on this branch fire immediately upon receipt of the input.
The input phases in leader–follower mode φL and φF lie on the left and right
branches, respectively, and must have equal phase resetting f (φL) = f (φF )
as indicated by horizontal dotted line. Open circle denotes the average of
φL and φF . The vertical dotted lines from (A) to (C) give the boundaries in
(C) of the leader–follower mode for k = 2 and the causal limit synchrony
region. The dashed line labeled y = 2φ − 1 give the input phase for the
antiphase mode φAP with zero delay. If the center of the PRC (open circles)
falls to the right of this line, the leader–follower k = 1 branch exists. (B) The
PRC is replotted at half scale to show the generic relationships between
the normalized stimulus interval, phase (φ = ts/P0) and the normalized
delay (δ/P0) in the leader–follower mode for k = 1 and the antiphase mode.
The phase φL at which the leader receives an input for the k = 1
leader–follower mode is twice the normalized delay (φL = tsL/P0; tsL = 2δ,
see Figure 3B, so φL = 2δ/P0). The follower receives an input at phase φF
and fires immediately. This leader–follower mode ceases to exist when
twice the normalized delay value reaches φCL; beyond that point, the
antiphase mode gains stability. In this antiphase mode, both neurons
receive an input at the same phase (see Figure 3C) on the right stable
branch indicated in (B), and fire immediately upon receiving the input. On
this branch, the normalized stimulus interval for each neuron is equal to
twice the normalized delay. (C) Predicted solution structure as delays are
varied for two neurons coupled via the PRC in (B1). The two time lags

(Continued)

Frontiers in Neural Circuits www.frontiersin.org December 2013 | Volume 7 | Article 194 | 226

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00194” — 2013/12/9 — 19:40 — page 8 — #8

Canavier et al. Effect of skew in phase response curve

FIGURE 4 | Continued

between the firings of the two neurons are represented by a pair of red
symbols (unstable mode), a pair of black symbols (stable mode) or a pair of
blue circles (neutrally stable mode). In an antiphase mode, both time lags
are the same, which is indicated by a filled symbol. For synchrony, one time
lag of each pair must be 0 and the other is equal to the network period. The
leader–follower mode for k = 1 persists for normalized delays up to φCL/2
indicated by the leftmost vertical dotted line from (B) to (C). In the stable
antiphase mode for normalized delays from φCL/2 to 0.5, both time lags are
exactly equal to the delay (see Figure 3C). The leader–follower mode re-
establishes itself for normalized delays >0.5 and persists until the normalized
delay reaches φCL.This leader–follower mode has a k = 2 and the normalized
delay is equal to (φL + φF )/2 (see Figure 3D). Neutrally stable causal limit
synchrony (see Figure 3E) is observed starting at normalized delays greater
than φCL indicated by rightmost vertical dashed line from (A) to (C). Note the
diagonal line formed by the black and blue symbols indicates that in every
stable or neutrally stable mode, at least one time lag is equal to the delay.
The lower a, b, c, d, and e in (C) correspond to the labels of the same letter
in Figures 2 and 3.

circles) and a stable leader–follower branch (open black squares).
In the same regions, antiphase is unstable (solid red circles). Unlike
the weak coupling approach, the network period is not equal to
the intrinsic period, because the network period includes a non-
negligible contribution from the phase resetting in the circuit.
Therefore, the normalized time lag is not 0.5 for antiphase because
the normalization is by the intrinsic period and not the network
period. At the start of the region labeled (c), the stable leader–
follower branch and the unstable antiphase branch coalesce into
a stable antiphase branch. Therefore, the stable leader–follower
branch allows for a gradual transition between synchrony and
antiphase as the delay is lengthened. At the start of the region
(d) these two branches again diverge with antiphase losing stabil-
ity and leader–follower regaining existence. At the start of region
(e) the stable leader–follower and unstable synchronous branches
merge into neutrally stable causal limit synchrony (open blue cir-
cles). Neutrally stable synchrony implies that near synchronous
solutions, like the one shown in Figure 2E, do not converge to
synchrony.

The diagonal line of symbols in Figure 4C indicates that for
every predicted one to one stable or neutrally stable phase-locked
mode, one or both time lags are equal to the delay. We will show
that the PRCs in Figures 4A,B, along with the understanding of the
generic modes presented in Figure 3, can explain the relationship
of these time lags to the delay as well as why solution branches
coalesce, diverge, or change stability. The key characteristic of
the PRCs in Figures 4A,B is that they have two branches, a left
branch with a negative destabilizing slope and a right branch with
a maximally stabilizing slope to the right of the phase marked
φCL, which is the causal limit (CL) region described in Section
“Materials and Methods.” Inputs received at phases in the causal
limit region immediately trigger a spike.

WHY IS EXACT SYNCHRONY STABILIZED BY THE CAUSAL LIMIT
REGION OF THE PRC AND DISRUPTED BY CONDUCTION DELAYS?
At zero delay, indicated by the point labeled “a,” there is a stable
synchronous solution (black circles in Figure 4C) and an unstable
antiphase solution (solid red circle). For the synchronous solution,
Figure 3A shows that both neurons receive an input at a phase
equal to the normalized delay. Synchrony at zero delay is a special

case because k= 1 for that case, and the relevant stability criterion
for synchrony with no delay depends upon the slope of the PRC at
the two ends, f ′(0+) and f ′(1−). Specifically for synchrony stability
requires that−1 < [1− f ′(0+)][1− f ′(1−)] < 1 where the+ and−
superscripts indicate the limit from the right and left, respectively
(Oprisan and Canavier, 2001; Achuthan and Canavier, 2009). The
quantity [1− f ′(0+)][1− f ′(1−)] is a scaling factor that operates
in the vicinity of synchrony and multiplies the phasic deviation
from synchrony on one cycle to give the deviation on the next
cycle.

If infinitesimally small delays are introduced, each spike no
longer affects the timing of the very next spike in the same neuron
via the feedback loop through the partner (Figure 3A). Instead,
the effect is felt on the second spike after the spike that trig-
gered the input, so k = 2 and the stability criterion becomes
−1 < [1− f ′(0+)− f ′(0+)] < 1 (Woodman and Canavier, 2011).
For the negative slopes just to the right of zero, the scaling factor
1− f ′(0+)− f ′(0+) is >1, resulting in deviations from synchrony
that grow and render synchrony unstable. The major effect is not
the change in the form of the stability criterion, but rather the
loss of the stabilizing slope at a phase just to the left of one (1−),
where the slope is nearly 1 so the scaling factor is nearly 0. The
bottom line is that the slope of the left branch of PRC for excita-
tion does not favor synchrony at short delays; therefore, zero time
lag synchrony with mutual excitation is not robust to delays for
this PRC shape. Since the stimulus interval is equal to the delay,
the normalized delays and input phases on the PRC are numeri-
cally equal and synchrony remains unstable along the left branch
of the PRC in Figure 4A until the normalized delay exceeds φCL

(blue circles in region including the label e in Figure 4C). The
neutrally stable causal limit branch emerges at that point with one
time lag equal to the delay and the network period as shown in
Figure 3E. Recall that the scaling factor that determines stabil-
ity is 1 − f ′(φ1) − f ′(φ2) for k = 2. Both input phases are the
same (φ1 = φ2) and fall on the causal limit line with a slope of
1 [f ′(φ1) = f ′(φ2) = 1]. Therefore, the scaling factor that deter-
mines whether perturbations from synchrony grow or decay is
equal to−1. This implies that synchrony is neutrally stable, which
means that perturbations do not decay; also the negative sign
of the scaling factor guarantees that the firing order switches on
every cycle preventing convergence to exact synchrony as shown in
Figure 2E.

WHEN DO YOU GET UNEQUAL TIME LAGS THAT TRANSITION BETWEEN
SYNCHRONY AND ANTIPHASE?
In the leader–follower mode shown in Figure 2B, the follower
neuron (red trace) but not the leader (black trace) fires immedi-
ately upon the delayed receipt of an input (see Figure 3B), thus its
phase locking point lies in the causal limit region of the PRC. This
particular mode has a conduction delay of 20% of the period,
and is indicated by the open circles in the predictive plot for
k = 1 in Figure 1D as well as by the black squares above and
below the letter b in Figure 4C. As illustrated schematically in
Figure 3B, one time lag (t lLF) is equal to the delay δ, and the
stimulus interval for the leader (tsL) is exactly twice the delay.
Therefore the PRC in Figure 4B is plotted so that the normalized
stimulus intervals for the leader (the phase φL) line up with the
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corresponding normalized delay (half the stimulus interval). For
each φL on the left branch, the leader–follower mode for k = 1
exists if there is a corresponding φF point on the right, causal limit
branch with the same resetting value, as illustrated by the horizon-
tal dashed line. This leader–follower solution branch ends at φCL

and coincides with the stabilization of the antiphase mode. The
ability of a delayed input to immediately trigger a spike guarantees
stable solutions for which the time lag is equal to twice the delay
(see caption of Figure 3D) and enables near synchrony with short
time lags. For k = 1, the scaling factor for deviations from the
phase-locked mode is [1 − f ′(φF )][1 − f ′(φL)], which is 0 given
that f ′(φF ) is 1, so convergence is rapid.

The defining characteristic of the antiphase mode (Figures 2C
and 3C) is that the two time lags are equal, the two stimulus
intervals are equal and the two recovery intervals are equal. Each
stimulus interval is also equal to the recovery interval plus twice
the delay: PφAP = P − PφAP + Pf(φAP) + 2δ. This implies that
the phase at which an input is received in the antiphase mode is
φAP = [1+ f(φAP)]/2+ δ/P. For zero delay, the intersection of the
line y = 2φ − 1 with the PRC occurs at φAP, because on that line
φ= [1+ f(φ)]/2. In Figure 4, for normalized delays less than φCL,
the phase corresponding to the antiphase mode falls on the left,
unstable branch of the PRC. The stability of antiphase at zero delay
is critical: the stability of this mode at 0 usually implies the absence
or lack of stability of the near-synchrony modes (squares with
short delays) and competes with synchrony if it exists. Beyond φCL

the recovery intervals become 0, so the stimulus intervals become
equal to twice the delay and the region between the vertical dashed
lines in Figure 4B forms the boundaries for the stable antiphase
mode (black circles in the vicinity of c in Figure 4C), as the time
lags become exactly equal to the delay, and the phase at which an
input is received in the stable antiphase model falls on the stable
causal limit branch in Figure 4B, where the phase is twice the
normalized delay. The scaling factor for k = 1 antiphase is given
by [1 − f ′(φAP)][1 − f ′(φAP)], which is 0 on the causal limit line
and implies convergence within a single cycle in the neighborhood
of the fixed point.

The antiphase mode loses stability because φAP “wraps around”
and falls on the destabilizing left branch of the PRC for delays
greater than half the intrinsic period (Woodman and Canavier,
2011). For normalized delays between 0.5 and φCL, the leader–
follower mode reappears (Figure 2D and region near d in
Figure 4C). For the k = 2 leader–follower mode, the sum of the
stimulus intervals equal to twice the delay (Figure 3D). Using the
definition of the stimulus intervals, we obtain that the normalized
delay is equal to (φL + φF )/2, marked as open circles in the PRC in
Figure 4A. The horizontal dashed lines show a minimum normal-
ized delay of about 0.5 is required for φL = 0 and φF = 1 + f(0),
and a maximum normalized delay of φCL, beyond which causal
limit synchrony emerges as described above. The scaling factor
for the k = 2 leader–follower mode is 1 − f ′(φL) − f ′(φF ). Since
f ′(φF )= 1, the scaling factor reduces to−f ′(φL), which is positive.
If the latter slope is <1, which it generally is, stability is guaranteed.

In order to confirm that our graphical analysis of the PRC
yields the correct predictions for modes with unequal time lags
(specifically leader–follower modes for the LIF model) regardless
of whether the PRC is right or left skewed, as well as to confirm

that the stable synchronous modes results from the steep slope at
1− and not directly from right skew, we constructed the coun-
terexample in Figure 5. The pulse coupling was made to be very
strong in order to extend the causal limit region of the PRC in
Figure 5B leftward. Figure 5A illustrates with one example set
of initial conditions that for zero delay, all initial conditions con-
verge to synchrony. Synchrony at zero delay remains stable, and
the intersection of the line y = 2φ− 1 with the PRC that gives the
stability of the antiphase mode at zero delay still falls on the unsta-
ble branch, and the leader–follower modes with unequal time lag
still mediate a gradual transition from synchrony to antiphase as
the conduction delays are lengthened. At a delay corresponding
to the value φCL, the antiphase mode is stabilized. This extreme,
artificial example that shows that right skew is not required for
synchrony at zero delay nor the gradual transition with near syn-
chronous modes at small delays. However, in the more realistic
examples given in the next section, increasing right skew does
promote synchrony and near synchrony for excitatory coupling.

LEFT SKEW STABILIZES ANTIPHASE AT SHORT DELAYS AND
PROMOTES BISTABILITY FOR CONDUCTANCE-BASED MODEL
WITH EXCITATORY COUPLING, UNLIKE THE LIF RESULTS
The pulse-coupled LIF is not very physiological, especially with
respect to the instantaneous pulse coupling in the voltage wave-
form. The generic modes observed in the LIF are modified in
networks of real neurons, and their closer analogs, conductance-
based models, because a spike in one neuron cannot immediately
trigger a spike in another – there must be a finite delay. Figure 6A1
shows a typical left skewed type 1 PRC for a Wang–Buzsaki model
neuron receiving excitatory synaptic input. The PRC has a left
branch with a destabilizing slope and a right branch with a stabi-
lizing slope. The vertical dotted line separates the branches. Unlike
the extreme example of left skew for a pulse-coupled LIF neu-
ron given in Figure 5, the left skew in a more realistic model
does not give rise to synchrony with zero delay, nor to the leader–
follower branch with near synchrony at small delays. Instead, the
synchronous mode is unstable for zero delay because the destabi-
lizing slope at 0+ dominates the less steep stabilizing slope at 1−.
Synchrony remains unstable for normalized delays to the left of
the vertical dotted line (red circles to the left of the dotted line in
Figure 6A2). The leader–follower branch does not emerge at small
delays because of the left skew as explained below. One important
consequence of the non-zero recovery intervals in realistic mod-
els (and real neurons) is that synchrony with normalized delays
greater than φCL is stabilized, as opposed to neutrally stable and
unobservable as for the case of the pulse-coupled LIF. The slope
on the right branch is less steep ensuring convergence because the
scaling factor 1 − 2f ′(φ) is guaranteed to have an absolute value
<1 for positive slopes <1. Optimal convergence occurs when the
slope at the locking point equals 0.5.

The most critical result of this paper, which is the effect of skew
on the existence of unequal modes, can be explained as follows.
The key idea is that the same line that determines the location
and hence the stability of the antiphase mode also determines
whether a positive value of the conduction delay can support the
near synchrony that is part of the leader–follower solution branch.
For k = 1, for identical oscillators with identical delays, we obtain
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FIGURE 5 | Right skew is not rigorously required for zero lag synchrony

or leader–follower modes in excitatory pairs. An extreme example was
constructed to show that right skew is not required for these phenomena.
Parameters for the coupled LIF pair are γ = 0.9, S0 = 1, ε = 0.05. (A)

Convergence to synchrony with no conduction delay. (B) Left skewed
phase resetting curve enters the causal limit region beyond the phase φCL
at about 0.4. Again, the dashed line labeled y = 2φ − 1 give the input phase
for the unstable antiphase mode φAP with zero delay. (C) Solution structure
for delays less than half the intrinsic period shows a stable leader–follower
mode with time lags proportional to the delay emanating from synchrony at
zero delay. The symbols have the same meaning as in Figure 4, and all
quantities are normalized by the intrinsic period.

2δ = tsL − trR (see Figure 7A), where trR is recovery interval for
the phase locking point on the right branch and tsL, the stimu-
lus interval for the phase locking point on the left branch of the
PRC. Therefore the recovery interval has to be less than the stim-
ulus interval. [Note that if f(φR) = φR − 1, which occurs when
φR falls in the causal limit region and trR = 0, this condition
is automatically satisfied, as in Figures 4C and 5C.] Substituting
for the recovery and stimulus intervals yields a normalized delay
δ/P0= (φL+φR)/2− [1+ f(φR)]/2, where f(φR)= f(φL). Since the
normalized delay has to be non-negative, unequal interval modes
with k = 1 only exist if the average (φL + φR)/2, indicated by the
open circles in Figure 6A1, is greater than or equal to [1+ f(φ)]/2.
Since the phase resetting corresponding to each open circle is given
by the y-axis value, this condition is satisfied for phases that lie
to the right of the dashed line y = 2φ − 1, the same line that
determines the phase φAP for antiphase at zero conduction delay,
because along this line φ = [1 + f(φ)]/2. Since all possible circles
lie to the left of this line in Figure 6A2, no k= 1 branch of solutions
with unequal time lags emerges. However, the vertical dotted line
shows that a k = 2 solution branch (red squares to the right of the
line in Figure 6A2 with unequal time lags does emerge at delays
equal to (φL+φR)/2. In fact, it is easy to see that the k= 2 unequal
times lags (including leader–follower) mode always exists, because
it is not possible for the delay to be negative in this scheme. How-
ever, this mode is not guaranteed to be stable. Figure 7B shows
that for unequal time lag modes with k = 2, δ − tsL = tsR − δ

which implies that the sum of the stimulus tsL and the recovery
intervals trR equals twice the delay: 2δ = tsL + tsR. In this case,
the normalized delay δ/P0 is the average (φL + φR)/2, which is the
same expression as that of the leader–follower mode for k = 2. In
contrast to the LIF example, this branch of solutions with unequal
time lags is unstable because the slope on the destabilizing left
branch dominates due to the shallower slope of a right branch
that does not fall on the causal limit.

The same line representing y = 2φ − 1 gives the phase φAP

antiphase mode for zero delay at the intersection with the PRC
(Figure 6A1). The left skew favors the stability of the antiphase
mode for zero delay because it extends the stabilizing right branch
of the PRC to smaller phases, and this stability persists for a
range of delay values (black circles marked k = 1 in Figure 6A2).
Since φAP = [1 + f(φAP)]/2 + δ/P, increasing the delay shifts the
antiphase mode rightward. The synchronous solution (k= 2) with
φ = δ/P is stabilized by its arrival on the right branch before the
antiphase solution reaches the end of the right branch and loses
stability as it jumps to the left branch. This overlap enables bistabil-
ity for some delays. As delays are further increased, the k increases
to 3 and the generic solutions recur (Woodman and Canavier,
2011). Left skew promotes bistability by increasing the length
of the stabilizing branch compared to the destabilizing branch,
increasing the likelihood that solutions for different k values at the
same delay can be concurrently stable.

RIGHT SKEW FAVORS A GRADUAL TRANSITION FROM NEAR
SYNCHRONY TO ANTIPHASE IN CONDUCTANCE-BASED MODELS
WITH EXCITATORY COUPLING, SIMILAR TO LIF RESULTS
A right skewed PRC (Figure 6B1) was obtained by increasing
the potassium conductance. The antiphase mode again emerges
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FIGURE 6 | Skew influences solution structure of Wang–Buzsaki type 1

excitatory model neuron. (A1) Left skewed type 1 PRC due to excitation.
Simulated at gsyn = 0.06 mS/cm2 and Istim = 1 μA/ms for both neurons. The
intersection of the dashed line y = 2φ − 1 with the PRC gives the phase for
the stable antiphase mode φAP with zero delay. Open circles are the average
(φL + φR)/2 for pairs of phases on the left and right branches with equal
phase resetting. They fall to the left of the dashed line, so there is no
leader–follower branch at early phases. (A2) Predicted solution structure as
delays are varied for two neurons coupled via the PRC in (A1). The two time
lags between the firings of the two neurons are represented by a pair of red

symbols (unstable mode), or a pair of black symbols (stable mode). Only one
symbol is visible for antiphase because the two time lags are equal, indicated
by a filled symbol. For synchrony one time lag is 0. (B1) Right skewed type 1
Wang–Buzsaki PRC with gK = 40 mS/cm2. The antiphase mode for zero delay
falls on the unstable branch. The open circles that indicate the center
between the two branches fall to the right of the dashed line, so there is an
unequal time lag branch at short delays (black squares for k = 1 in B2). The
blue bar shows a delay that falls on this branch. (B2) Predicted solution
structure as delays are varied for two neurons coupled via the PRC in (B1).
k Values are given for the stable (black) branches.

for zero delay at the intersection of the line y = 2φ − 1 (gray
line in Figure 6B1) with the PRC, but the right skew destabi-
lizes the antiphase mode by causing it to fall on the destabilizing
left branch, and the destabilization persists for short delays. The
slope on the right branch at 1− is not in the causal limit region,
and is insufficiently steep to stabilize synchrony with zero delay.
The synchronous solution branch is qualitatively similar to that

for left skew. However, the right skew enables the existence of
the modes with unequal time lags by the same mechanism that
it stabilizes antiphase; shifting the PRC with respect to the line
y = 2φ − 1. In contrast to the open circles representing the aver-
age phase (φL + φR)/2 of a pair with the same resetting, there
are open circles in Figure 6B1 that lie to the right of this line.
The blue bar indicating the phase gap between the line and the
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FIGURE 7 |The leader–follower modes persists approximately as

unequal time lag modes in models with more realistic coupling.

Unlike the leader–follower mode here the recovery interval of the neuron
on the right branch is not 0. (A) For k = 1, 2δ + t rR = tsL, where 2δ + t rR
is shaded in pink and tsL in blue. The normalized delay after substitution of
the recovery and stimulus interval can be rewritten as
δ/P = (φL + φR)/2 − [1 + f (φR)]/2. This gives a criterion for non-negative
delay. (B) For k = 2, 2δ = tsL + tsR . This is obtain by noting that the sum of
the pink intervals tsL + t rR + t lLR + tsR is equal to the sum of the blue
intervals t lLR + δ + t rR + δ and canceling t rR + t lLR from both sides.
Normalized delay is equal to the average of the phase locking points:
δ/P = (φL + φR)/2.

open circle gives the magnitude of the normalized delay for that
mode. The pairs of black squares in Figure 6B2 at short delays
show that the time lag can be quite short for small delays, so near
synchrony can potentially be enabled by right skew in oscillators
with type 1 PRCs. These modes are stable because the right skew
tends to make the slope on the stabilizing right branch steeper
than that on the left, favoring stability by keeping the scaling factor
[1− f ′(φL)][1− f ′(φR)] below 1. A positive slope (≤1) decreases
the magnitude of [1− f ′(φR)], which compensates for [1− f ′(φL)]
being >1. The unequal modes lose existence at a delay equal to
δ/P0 = (φL + φR)/2 − [1 + f(φR)]/2, where φL = φR, exactly the
same delay δ/P0 = φAP − [1 + f(φAP)]/2 at which the antiphase
mode gains stability because φAP also shifts to the stable right
branch at the point on the PRC at which φL = φR in a bifurcation
that is generic for pairs of oscillators coupled by excitation with
right skewed type 1 PRCs. This is evidenced by the pairs of black

squares coalescing to a region with only one filled circle visible in
Figure 6B2.

A k = 2 branch of unequal time lag solutions emerges before
antiphase loses stability. As in the case of left skew, the average
phase (φL + φR)/2 of a pair with the same resetting is equal to
the normalized delay (see also schematic in Figure 7B) as indi-
cated by the vertical dotted line emanating from the open circle in
Figure 6B1 and demarcating the end of the leader–follower k = 2
branch in Figure 6B2. Unlike the analogous mode for left skew,
this mode is stabilized by the steeper slope of the PRC on the right
branch compared to the left, again caused by the rightward skew,
because the scaling factor 1− f ′(φL)− f ′(φR) is <1.

LEFT SKEW FAVORS SYNCHRONY THAT IS ROBUST TO SUBSTANTIAL
DELAYS IN PAIRS COUPLED WITH INHIBITION
The effect of potassium conductance on the skew of PRCs mea-
sured in response to synaptic inhibition is opposite the effect
for excitation. Therefore the potassium conductance was reduced
to obtain a left skewed PRC (Figure 8A1) for a Wang–Buzsaki
model neuron receiving an inhibitory synaptic input. For type
1 PRCs in response to inhibition, the slope of the left branch
is stabilizing and the slope of the right branch is destabilizing,
which is the opposite of the situation for excitation. Synchrony
with zero delay is stable for this example with left skew because
the stabilizing slope at 0+ is steeper than the destabilizing slope
at 1−. The robustness of the synchronous solution to delays
is striking, as the synchronous solution (pairs of black circles
with one time lag equal to 0 in Figure 8A2) persists for delay
values nearly half the intrinsic period. The scaling factor for
early synchrony with k = 2 is 1 − 2f ′(φ), where the phase
corresponds to the normalized delay, so for small positive PRC
slopes, the synchronous mode remains stable in the presence of
conduction delays. Intuitively and in contrast to the case for exci-
tation in Figures 3C and 5C, the slope at 1− is not required
for stability, and the loss of the effect of this slope when con-
duction delays are introduced does not affect the stability of
synchrony. Stability of synchrony is lost only when the normal-
ized delay value exceeds the phase that marks the beginning
of the right branch of the PRC with a negative, destabilizing
slope.

Since the antiphase mode for zero delay occurs at a phase deter-
mined by the intersection of the line 2φ− 1= f(φ) with the PRC,
left skew destabilizes the antiphase mode by extending the unsta-
ble right branch to earlier phases such that this intersection occurs
on the unstable branch as in Figure 8A1. The antiphase mode
is unstable for delays up to about half the intrinsic period (indi-
cated by red filled circles in Figure 8A2 for short delays for k = 1)
because that is the length of the unstable branch. The same mech-
anism that destabilizes antiphase prevents the existence of modes
with unequal time lags for short delays, and also for the most part
destabilizes the k = 2 leader–follower branch of unequal time lags
at delays near 0.5 in Figure 8A2. The open circles in Figure 8A1
marking the average phase for pairs of phases with equal phase
resetting on the left and right branches of the PRC fall to the left
of the 2φ − 1 = f(φ), so they correspond to unrealizable negative
delay values and the k = 1 unequal time lags mode (Figure 7A)
does not exist. The location of the squares in Figure 8A2 indicates
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FIGURE 8 | Synchrony is robust to conduction delays for skewed type 1

PRCs in response to inhibition, although right skew favors antiphase for

small conduction delays. k Values are given for the stable (black) branches.
(A1) Typical type 1 left skewed Wang–Buzsaki PRC with inhibitory coupling,
gsyn = 0.06 mS/cm2 and Istim = 1 μA/ms, gK = 5 mS/cm2. The intersection
of the dashed line y = 2φ − 1 with the PRC gives the phase for the unstable
antiphase mode φAP with zero delay. Open circles are the average (φL + φR)/2
for pairs of phases on the left and right branches with equal phase resetting,
and since they fall to the left of the dashed line, there is no unequal time lag
mode at short delays. (A2) Predicted solution structure as delays are varied
for two neurons coupled via the PRC in (A1). The two time lags between the
firings of the two neurons are represented by a pair of red symbols (unstable
mode) or a pair of black symbols (stable mode). Only one symbol is visible for

antiphase because the two time lags are equal, indicated by a filled symbol.
Synchrony is stable for delays less than about half the intrinsic period, and
antiphase is stable for delays greater than half the intrinsic period. (B1) Type 1
Wang–Buzsaki model right skewed PRC with gsyn = 0.06 mS/cm2 and
Istim = 1 μA/ms, gK = 9 mS/cm2. The line y = 2φ − 1 intersects the PRC on
the stable left branch, so antiphase with zero delay is stable. The open circles
that indicate the center between the two branches fall to the right of the
dashed line, so there is an unequal time lag branch at short delays (red
squares for k = 1 in B2), but it is unstable. The blue bar shows a delay that
falls on this branch. (B2) Predicted solution structure as delays are varied for
two neurons coupled via the PRC in (B1). At the shortest delays, synchrony
and antiphase are bistable. The basin of attraction for antiphase is large at zero
delay but shrinks with increasing delay until antiphase loses stability.

the delay values for the unequal time lags near a delay of 0.5, but
since the destabilizing slope on the right branch is in general less
steep than that on the stabilizing left branch, these modes are
mostly unstable because the scaling factor 1 − f ′(φL) − f ′(φR)
is usually >1. For longer delays, at k = 3 the generic solutions
recur.

RIGHT SKEW FAVORS ANTIPHASE AND BISTABILITY FOR SHORT
DELAYS IN PAIRS COUPLED WITH INHIBITION
Figure 8B1 shows a right skewed PRC of the Wang–Buzsaki model
neuron for the same parameter values as in Figure 6A1 except
for the reversal potential of the synaptic conductance, which is
inhibitory for the PRC in Figure 8B1. The synchronous branch is
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qualitatively the same as for the left skewed PRC in Figure 8A1, and
it is stable for conduction delays up to half the intrinsic period for
the same reasons. However, the antiphase solution branch is qual-
itatively different. Since the antiphase mode for zero delay occurs
at a phase determined by the intersection of the line 2φ− 1= f(φ)
with the PRC, right skew stabilizes the antiphase mode by extend-
ing the stable left branch to later phases such that this intersection
occurs on the stable branch as in Figure 8B1. The antiphase mode
is stable for delays up to about a 10th of the intrinsic period (indi-
cated by black circles in Figure 8B2 for time lags of about 0.5 at
short delays for k = 1) because that is the length of stable branch
at phases greater than φAP. In contrast to Figure 6B for inhibition,
here the same mechanism that stabilizes antiphase also enables
the existence of modes with unequal time lags for short delays.
The open circles in Figure 8B1 marking the average phase for
pairs of phases with equal phase resetting on the left and right
branches of the PRC fall to the right of the 2φ − 1 = f(φ), so
they correspond to the delay values for the k = 1 unequal time
lags mode indicated by the red squares in Figure 8B2 that fall
between stable synchrony and stable antiphase at short delays.
The blue bar in Figure 8B1 indicating the phase gap between
the line and the open circle gives the magnitude of the delay for
that mode. Because the destabilizing slope on the right branch is
steeper than that on the stabilizing left branch, the scaling factor
[1 − f ′(φL)][1 − f ′(φR)] is < −1, so these modes are unstable.
Significantly, the structure of the unequal modes solution with
small time lags at early delays transitioning into delays equal to
half the network period causes the basin of attraction for syn-
chrony to be quite small for very short delays such that most
initial conditions lead to antiphase. However, this effect quickly
dissipates with increasing delay and synchrony quickly becomes
robust over a significant region of delays as in the case for left
skew.

The location of the open circles in Figure 8B1 indicates the
delay values for the unequal time lags for k = 2 near a delay of
0.5, but because the destabilizing slope on the right branch is
steeper than that on the stabilizing left branch, the scaling factor
1 − f ′(φL) − f ′(φR) exceeds 1, destabilizing these modes as indi-
cated by the second set of red squares in Figure 8B2. For type 1
inhibition, right skew rather than left skew promotes bistability,
because bistability depends upon lengthening the stable branch
and the slopes and synchronization tendencies of the left and
right branches of the PRC are inverted compared to excitation.
For longer delays, at k = 3 stable antiphase recurs. The bottom
line is that for type 1 PRCs in response to inhibition, left skew
destabilizes and right skew stabilizes the antiphase mode, there-
fore left but not right skew favors synchrony at short conduction
delays.

DISCUSSION
SUMMARY
The major result of this paper is to understand how the shape of
the PRC determines the generic modes that are observed in pairs
of neurons (or other oscillators) with no delays, and how conduc-
tion delays affect the tendency of pairs of neurons to synchronize.
Specifically, a gradual transition from synchrony to antiphase with
increasing conduction delay exists only if the center of the two

branches lies to the right of the invariant line whose intersection
with the PRC determines the intrinsic phase at which each neu-
ron receives an input in the antiphase mode with no delay. For
type 1 PRCs and mutual excitation, right but not left skew enables
near synchrony at short delays by shifting the center of the two
branches to the right of this invariant line. In contrast, for type
1 PRCs and mutual inhibition, left but not right skew favors syn-
chrony at short delays by destabilizing the competing antiphase
mode by causing the intersection with the invariant line to occur
on the unstable right branch. We show that exact synchrony with
no delay for type 1 inhibitory but not excitatory PRCs is robust
to conduction delays, because only the PRC for excitation relies
on the stabilizing slope of the PRC at late phases to stabilize syn-
chrony with no delay. A recent experimental study (Wang et al.,
2012) confirmed the fragility of the synchronous mode for exci-
tatory synaptic coupling in the presence of conduction delays and
the robustness of this mode for inhibition. Generic solution struc-
tures are given herein for type 1 PRCs; however, the existence and
stability criteria for all generic modes are general and apply to
any shape PRC. Consistent with previous work, the effect of skew
also manifests itself via differential effects on the slopes of the
two PRC branches. Several stability features of the generic solu-
tions for excitatory coupling depend critically on the increase in
the steepness of the slope of the PRC at late phases mandated by
causality.

EXTENSION TO OTHER PRC SHAPES
For PRCs with more than two branches, any two branches could
in principle give rise to the solutions with unequal time lags that
provide a gradual transition between synchrony and antiphase. For
example, a type 2 PRC in response to excitation typically has two
lobes (Ermentrout, 1996): at early phases the first lobe consists
of delays and the second lobe of advances. If the center of the
second lobe lies to the right of the invariant line, then modes with
unequal time lags and relatively short delays could be enabled
and stabilized, so right shift of the extremum of the second lobe
would favor such modes. Furthermore, the branch between the
maximum advance and the maximum delay is unstable, so shifting
the peaks so that the intersection with the invariant line does not
fall on this branch removes bistability of antiphase with synchrony
at zero delay, favoring synchrony. As the frequency is increased, the
first lobe of the type 2 PRC shrinks (Fink et al., 2011). In principle
the effect of any PRC shape can be understood by applying the
methods described in this study. The only critical assumptions are
that each neuron emits one spike for every spike emitted by the
partner, that the PRC of each isolated neuron in response to an
input from the partner is known, that the PRC still characterizes
the response of the neuron to an input received within the coupled
network, and that the effect of each input does not persist after the
next spike in the same neuron that received the input.

GENERIC NATURE OF OUR RESULTS COMPARED WITH SPECIFIC MODEL
APPROACHES
The three major approaches (Ermentrout and Chow, 2002) to
studying coupled oscillators are (1) to study specific model such
as the LIF model or the Hindmarsh–Rose model, (2) to use a
weak coupling assumption, or (3) to use a pulsatile coupling
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assumption. We chose to use the latter. Previously, Dhamala et al.
(2004) showed that time delays can enhance neural synchrony
by calculating the largest Lyapunov exponent for time delayed
networks of diffusively coupled Hindmarsh–Rose model neurons.
Clearly our methods also illustrate how delays can enhance neural
synchrony. For example, in Figure 6A, synchrony is unstable for
delays less than about a third of the intrinsic period, but is sta-
ble for delays from a third of an intrinsic period to an intrinsic
period. For a 40-Hz gamma oscillation, regions separated by 8–
25 ms would synchronize optimally. Our approach does not rely
on knowledge of the differential equations that describe particular
neurons, only of the relevant PRC, therefore it is quite general.

Our work on the LIF oscillator was motivated by studies of pul-
satile coupling (Ernst et al., 1995, 1998) that extended the results
of Peskin (1975) and Mirollo and Strogatz (1990) to the case of
two pulse-coupled oscillators reciprocally coupled with delays up
to half the intrinsic period. Their assumptions implicitly defined
a PRC and allowed the construction of return maps. The stable
fixed points of these maps revealed that for small delays and strong
excitatory coupling, at all coupling strengths synchronization with
a phase lag equal to the delay was found to be always stable, anal-
ogous to our leader–follower mode. For inhibition, bistability
between synchrony and antiphase was observed but as the cou-
pling strength was increased only synchrony remained. Zeitler
et al. (2009) studied the bifurcation structure of pairs of similar
oscillators also coupled via conduction delays and noted that for
these systems, only antiphase and synchrony could be stable for
identical, identically coupled oscillators, but modes with unequal
time lags could acquire stability in pairs coupled by excitation, sim-
ilar to what we have found. The solution structure of simplified
models such as the pulse-coupled LIF is not always representa-
tive of that obtained for conductance-based models. Real neurons
(and conductance-based models) can exhibit much more nuanced
PRCs, and the theoretical framework presented here includes and
expands previous work on pulse-coupled oscillators with delay.

DIVERGENT PREDICTIONS OF PULSATILE COUPLING THEORY VERSUS
WEAK COUPLING THEORY
Weak coupling theory cannot be used to analyze pulsatile coupling
of the type proposed by Peskin (1975) and Mirollo and Strogatz
(1990), in which a finite and constant perturbation in voltage
results from a presynaptic threshold event, with the caveat that an
increase in the postsynaptic membrane potential beyond threshold
has no additional effect. The PRC for an infinitesimal perturbation
in membrane potential (equivalent to an infinitesimal perturba-
tion in membrane current) has been derived for the LIF oscillator
(Brown et al., 2004), and the PRC given in Eq. 1 for strong cou-
pling cannot be derived from the infinitesimal PRC. Furthermore,
the stability results for weakly coupled LIF oscillators and pulse-
coupled oscillators are not in agreement. Weakly coupled type 1
oscillators do not synchronize with excitation (Hansel et al., 1995),
but pulse-coupled oscillators synchronize both for the two oscil-
lator circuit (Peskin, 1975) and all-to-all coupled circuits of N
oscillators (Mirollo and Strogatz, 1990). Weak coupling does not
account for the increase in the slope on the right branch imposed
by causality as the conductance is increased, but instead assumes
the PRC scales with increasing coupling the same way at all phases.

This is an important limitation of weak coupling theory that has
not been previously documented, and applies to synchrony in all
circuits of oscillators that have PRCs with a destabilizing slope at a
phase of 0 but a stabilizing slope at a phase of 1. Another disagree-
ment between weak coupling theory and strongly pulse-coupled
theory is that weak coupling (for example, Ladenbauer et al., 2012)
assumes that in the presence of delays, synchrony always exists with
both neurons receiving an input at zero phase, but clearly for oscil-
lators coupled by strong excitation, at sufficiently long delays, the
synchronizing input actually occurs at a late phase on or near the
causal limit region of the PRC. Finally, weak coupling does not
recognize how the stability criterion changes with the duration of
the feedback loop.

FUNCTIONAL SIGNIFICANCE: PRC SKEW AND THUS
SYNCHRONIZATION PROPERTIES CAN BE MODULATED
Ermentrout et al. (2012) proposed that modulation of intrinsic
ion channels could quickly reverse the synchronization tendencies
of neurons by altering the PRC shape, providing a switch to turn
synchrony on and off rapidly. There are several ways in which alter-
ing the conductances (Ermentrout et al., 2001, 2012; Pfeuty et al.,
2003; Gutkin et al., 2005; Stiefel et al., 2009) can change the shape
of a type 1 PRC for a regularly spiking neuron. Reducing restora-
tive potassium currents or increasing regenerative sodium currents
favors left skew if these currents are active at rest, whereas manip-
ulations in the opposite direction favor right skew. This principle
was used to manipulate the skew of the PRC in the Wang–Buzsaki
model neuron used in this study. For the baseline potassium con-
ductance value gK = 9 mS/cm2, the PRC for the Wang–Buzsaki
model neuron in response to excitation was left skewed but the
PRC in response to inhibition was right skewed. For excitation,
gK was increased to change the PRC skew from left to right, and
for inhibition, the gK was decreased to change the skew from right
to left. Taken to the extreme, manipulations of currents active
at rest that favor right skew can change the underlying bifurca-
tion and PRC type from 1 to 2 (Ermentrout et al., 2001; Prescott
et al., 2008; Stiefel et al., 2008), which often changes the stability
by changing the sign of the slope at zero phase. On the other hand,
manipulations of currents that are only activated by spikes can-
not in general change the PRC type, but they can alter its shape
(Ermentrout et al., 2001, 2012; Gutkin et al., 2005). Ermentrout
et al. (2001) also showed that adding either recurrent inhibition
or adaptation with a sharp, depolarized threshold such that it was
only evoked by spikes, preserved the type 1 character of the PRC
but shifted the skew to the right as expected for increases in out-
ward current. However, an exception to this general pattern was
found in which increasing an outward current that contributes to
the afterhyperpolarization following a spike promoted left rather
than right skew, because the primary effect of the change was
to increase sodium channel availability (Ermentrout et al., 2012).
Thus, there are many plausible modulatory targets available for
changing the synchronization tendencies of biological networks.

PREVIOUS STUDIES EXAMINING SKEW IN THE CONTEXT OF WEAK
COUPLING WITH NO DELAY
Weak coupling (Ermentrout and Kopell, 1990, 1991;
Ermentrout, 2002) identifies one to one phase-locked modes
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in identical coupled pairs by finding the zero crossings of
H(φ) − H(1 − φ), in which the H function is equivalent to our
phase resetting f(φ) except opposite in sign. Instead of neglecting
changes in frequency caused by the coupling, our method finds
the equivalent of the zero crossings of H(φ)−H[1− φ−H(φ)],
which contains an extra H function within the argument of
another H function in order to update the elapsed time by the
non-negligible resetting in the partner neuron. One consequence
of neglecting the contribution of phase resetting to the network
period is that for weak coupling, antiphase is always assumed to
occur at an intrinsic phase of 0.5 instead of 2φAP − 1= f(φAP). A
critical role for PRC skew in networks of type 1 neurons connected
by mutual synaptic excitation was demonstrated by Ermentrout
et al. (2001), who showed that for certain model neuron pairs with
slightly right skewed type 1 PRCs in response to excitation, both
synchrony and antiphase were unstable, and near antiphase was
the only stable solution. They used weak coupling to explain their
results, and plotted H(1 − φ) − H(φ) to get the phase-locked
modes from the zero crossings and the stability from the slope
H ′(1 − φ) − H ′(φ), which must be >0 for stability. The stabil-
ity criterion is slightly different than the ones we utilize because
changes in the network period due to resetting are neglected as
explained above. Nonetheless, the stability analysis is usually quite
similar, for example, the stability of synchrony is determined
entirely by whether the slope of the PRC is steeper before or after
the spike, with the former case implying stability for the case of
pairs of neuron coupled via type 1 PRCs in response to excita-
tion. Ermentrout et al. (2001) then skewed type 1 PRCs farther
to the right by flattening the slope at early phases while increas-
ing the steepness at late phases. The increased skew caused the
stable zero crossings to shift toward near synchrony, in which
one neuron of the pair fires just before the other, as shown in
our Figure 6B. Our extension of their work is that we explain
directly in terms of the shape of the PRC how the stabilization
occurs by bringing the unequal time lags solution branch into
existence.

Ermentrout et al. (2012) also give an example of a different
stabilization mechanism for a pair of Golomb and Amitai (1997)
model neurons with reciprocal synaptic excitation and type 1 PRCs
in which exact synchrony is stable for the baseline parameters
given because of the right skew of the PRC. In this mechanism
the right skew preferentially steepens the stabilizing slope at 1−
compared to the nearly flat destabilizing PRC slope at 0+. Pfeuty
et al. (2003) had complementary results showing that skewing
the PRC toward the left stabilized the antiphase mode for two
mutually electrically coupled neurons by causing the antiphase
mode near a phase of 0.5 to fall in the region of stable slope.
Similarly, Zahid and Skinner (2009) showed that for pairs of elec-
trically coupled neurons, right skew favors small phase lags because
both synchrony and antiphase were unstable for the type 1 PRCs
they observed, but sufficient left skew can stabilize antiphase and
cause it to be globally attracting. In that study, skew was quan-
tified by the fraction of the area under the PRC that fell to the
left of a phase of 0.5, and weak coupling theory was invoked to
show how destabilization of the antiphase mode by right skew led
to the emergence of nearly synchronous modes with one small
time lag. Electrical coupling is more analogous to excitation than

inhibition in spiking neurons if the effect of the depolarizing
effect of the suprathreshold spike dominates (Chow and Kopell,
2000), so these results are consistent with the framework pre-
sented in this paper. The advance in theory presented in this paper
is that we do not make the weak coupling assumption, but instead
show graphically that the destabilization of antiphase mode and
the emergence of near synchrony depends on the location of the
peak of the PRC relative to the location of the line that gives the
phase of the antiphase mode at zero delay in terms of the intrinsic
period.

PREVIOUS STUDIES EXAMINING SKEW IN THE CONTEXT OF WEAK
COUPLING WITH CONDUCTION DELAY
Remme et al. (2009) examined oscillatory dendritic compartments
separated by passive cylindrical dendritic compartment of dif-
ferent electrotonic lengths, somewhat analogous to introducing
a delay. Under weak coupling assumptions, they found that a
left skewed PRC, or interaction function H(φ), yields bistabil-
ity between synchrony and antiphase, whereas a right skewed
interaction function yields gradual transitions between the two
modes as the delay was increased. Again, results for electrical
coupling parallel our results for synaptic excitation in Figure 6.
Ladenbauer et al. (2012) also showed that increasing right skew
in pairs of type 1 neurons coupled by synaptic excitation favored
smaller phase lags decreasing to 0 at no delay, and favored the
leader–follower mode by destabilizing the antiphase mode in the
presence of conduction delays. For inhibition, increasing right
skew stabilized the antiphase mode and promoted bistability with
synchrony that persisted with short conduction delays. The weak
coupling analysis of an adaptive exponential integrate and fire
neuron (aEIF) in Figure 6 of that paper is consistent with our
Figures 6 and 8.

EFFECT OF DISCONTINUITIES
The criteria for exact synchrony given in this paper are only strictly
valid if there is no resetting in the cycle following the perturbation
(Oprisan et al., 2004; Achuthan and Canavier, 2009), called sec-
ond order resetting. Second order resetting is most prominent for
inputs given just before a spike, so adding conduction delays for
the most part precludes receipt of an input just before a spike and
minimizes the importance of second order resetting. A complete
treatment of stability with discontinuities must take into account
that the first order phase resetting at a phase of 1 is 0 because
an input applied after the cycle is over cannot affect that cycle.
Effects of discontinuities are treated in Ladenbauer et al. (2012),
Dodla and Wilson (2013), and Wang et al. (2012, supplementary
material).

IMPLICATIONS OF GENERIC MODES FOR LARGER NETWORKS
Some of the results presented herein may also be extendable to net-
works of all to all connected neurons. For type 1 PRCs in response
to excitation, the right branch of the PRC tends to stabilize syn-
chrony, since if a neuron spikes later than the group, it receives
an input at a late phase (1−, just to the left of 1) that advances
it more than the group on the next cycle bringing it closer to
synchrony. On the other hand, the left branch tends to destabi-
lize, since a neuron that spikes before the group receives an input
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at an early phase (0+, or just to the right of 0) that advances it
more than the group, taking it farther from synchrony. Simula-
tions of pulse-coupled LIF neurons (Ernst et al., 1995; Coombes
and Lord, 1997) have previously shown that the globally attract-
ing synchronization of N pulse-coupled oscillators (Peskin, 1975;
Mirollo and Strogatz, 1990) with type 1 PRCs comprised of all
advances (excitation) is easily disrupted by conduction delays.
Therefore the population activity is predicted by the activity of
a single pair, in which synchrony is also disrupted by conduction
delays.

Another possible extension is to clustering in larger networks.
Bistability between synchrony and antiphase supports cluster-
ing (Gutkin et al., 2005; Jeong and Gutkin, 2007; Achuthan and
Canavier, 2009). Chandrasekaran et al. (2011) have shown how
two clusters that fire even slightly out of phase with each other
can enforce synchrony within each cluster, even if exact synchrony
within the isolated cluster in unstable, so this mechanism should
generalize to enforce near synchrony in larger networks with
one cluster firing slightly before the other. The leader–follower
mode has been shown to stabilize clusters to some degree in
networks with delay (Ernst et al., 1995). The strongly stabiliz-
ing effect of the causal limit region of excitatory PRCs is only
adequately considered using the methods for strong coupling
described herein.

The most important extension of these results is to synchro-
nization between distal brain regions. Previously it was thought
that long projections connecting brain regions were excitatory,
but recently long distance inhibitory connections have also been
identified (Melzer et al., 2012). For two mutually coupled popu-
lations in two different brain regions, the results from this study
and our previous study (Wang et al., 2012) show that inhibitory
projections may more reliably synchronize these populations in
the presence of conduction delays between distal regions, and that
some heterogeneity and noise can be tolerated. Alternatively, if
the connections are excitatory and the PRCs type 1, then right
skew in the PRC is likely required during episodes of near syn-
chrony. If the unit oscillator is not a single neuron, but rather
a network oscillator, the relevant PRCs for the network oscilla-
tion can be measured and analyzed for synchronization tendencies
in a similar fashion to that for a single neuron (Akam et al.,
2012).

A final possible extension relates to the dynamic relay hypoth-
esis which suggests that synchronization among distal neurons
can be achieved via symmetric coupling through a hub neuron.
Viriyopase et al. (2012) studied the simplest such system with two
outer neural oscillators each reciprocally connected to a third
neuron, the relay neuron via identical reciprocal delays. They
identified a “pacemaker” regime in which all three neurons fired
simultaneously in the causal limit synchrony mode, that is, all
neurons fired immediately upon receiving delayed input from the
neuron or neurons to which it is connected. They also identified
two other modes, “slave synchrony” in which the outer neurons
were leaders and the relay neuron was a follower, and a “driven
synchrony” mode in which the converse was true. Therefore the
concepts developed herein for two neurons are directly extend-
able to N neurons each reciprocally connected to a hub (but not
directly to each other).
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A classical view of neural coding relies on temporal firing synchrony among functional
groups of neurons, however, the underlying mechanism remains an enigma. Here we
experimentally demonstrate a mechanism where time-lags among neuronal spiking leap
from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden
leaps out of synchrony, hence forming short epochs of synchrony. Our results are
based on an experimental procedure where conditioned stimulations were enforced
on circuits of neurons embedded within a large-scale network of cortical cells in vitro
and are corroborated by simulations of neuronal populations. The underlying biological
mechanisms are the unavoidable increase of the neuronal response latency to ongoing
stimulations and temporal or spatial summation required to generate evoked spikes. These
sudden leaps in and out of synchrony may be accompanied by multiplications of the
neuronal firing frequency, hence offering reliable information-bearing indicators which may
bridge between the two principal neuronal coding paradigms.

Keywords: network, topology, firing synchrony, in vitro modular networks, neuronal circuit

INTRODUCTION
One of the major challenges of modern neuroscience is to eluci-
date the brain mechanisms that underlie firing synchrony among
neurons. Such spike correlations with differing degrees of tempo-
ral precision have been observed in various sensory cortical areas,
in particular in the visual (Eckhorn et al., 1988; Gray et al., 1989),
auditory (Ahissar et al., 1992; Nicolelis et al., 1995), somatosen-
sory (Nicolelis et al., 1995), and frontal (Vaadia et al., 1995) areas.
Several mechanisms have been suggested, including the slow and
limited increase in neuronal response latency per evoked spike
(Vardi et al., 2013b). On a neuronal circuit level its accumulative
effect serves as a non-uniform gradual stretching of the effective
neuronal circuit delay loops. Consequently, small mismatches of
only a few milliseconds among firing times of neurons can vanish
in a very slow gradual process consisting of hundreds of evoked
spikes per neuron.

The phenomenon of sudden leaps from firing mismatches of
several tens of milliseconds to nearly zero-lag synchronization,
below a millisecond, is counterintuitive. Since the dynamical vari-
ations in neuronal features, e.g., the increase in neuronal response
latencies per evoked spike, are extremely small, one might expect
only very slow variations in firing timings. Moreover, relative
changes among firing times of neurons require dynamic relax-
ation of the entire neuronal circuit to achieve synchronization.
Hence, sudden leaps, in and out of synchrony, seem unexpected.

In the present study, we propose a new experimentally cor-
roborated mechanism allowing leaps in and out of synchrony.
The procedure is based on conditioned stimulations enforced
on neuronal circuits embedded within a large-scale network of

cortical cells in vitro (Marom and Shahaf, 2002; Morin et al.,
2005; Wagenaar et al., 2006; Vardi et al., 2012). These stimulations
varied in strength, so that the evoked spikes of selected neurons
required temporal summation. We demonstrate that the underly-
ing biological mechanism to sudden leaps in and out of synchrony
is the unavoidable increase of the neuronal response latency
(Aston-Jones et al., 1980; De Col et al., 2008; Ballo and Bucher,
2009; Gal et al., 2010) to ongoing stimulations, which imposes a
non-uniform stretching of the neuronal circuit delay loops.

MATERIALS AND METHODS
CULTURE PREPARATION
Cortical neurons were obtained from newborn rats (Sprague–
Dawley) within 48 h after birth using mechanical and enzymatic
procedures (Marom and Shahaf, 2002; Vardi et al., 2012, 2013b).
All procedures were in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and
Bar-Ilan University Guidelines for the Use and Care of Laboratory
Animals in Research and were approved and supervised by the
Institutional Animal Care and Use Committee.

The cortex tissue was digested enzymatically with 0.05%
trypsin solution in phosphate-buffered saline (Dulbecco’s PBS)
free of calcium and magnesium, supplemented with 20 mM
glucose, at 37◦C. Enzyme treatment was terminated using
heat-inactivated horse serum, and cells were then mechanically
dissociated. The neurons were plated directly onto substrate-
integrated multi-electrode arrays (MEAs) and allowed to develop
functionally and structurally mature networks over a time period
of 2–3 weeks in vitro, prior to the experiments. Variability in
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the number of cultured days in this range had no effect on
the observed results. The number of plated neurons in a typ-
ical network is in the order of 1,300,000, covering an area of
about 380 mm2. The preparations were bathed in minimal essen-
tial medium (MEM-Earle, Earle’s Salt Base without L-Glutamine)
supplemented with heat-inactivated horse serum (5%), glu-
tamine (0.5 mM), glucose (20 mM), and gentamicin (10 g/ml),
and maintained in an atmosphere of 37◦C, 5% CO2 and 95% air
in an incubator as well as during the electrophysiological mea-
surements. All experiments were conducted on cultured cortical
neurons that were functionally isolated from their network by a
pharmacological block of glutamatergic and GABAergic synapses.
For each plate, 12–20 μl of a cocktail of synaptic blockers was
used, consisting of 10 μM CNQX (6-cyano-7-nitroquinoxaline-
2,3-dione), 80 μM APV (amino-5-phosphonovaleric acid), and
5 μM Bicuculline. This cocktail did not block the spontaneous
network activity completely, but rather made it sparse. At least
1 h was allowed for stabilization of the effect.

MEASUREMENTS AND STIMULATION
An array of 60 Ti/Au/TiN extracellular electrodes, 30 μm in diam-
eter and spaced either 200 or 500 μm from each other (Multi-
Channel Systems, Reutlingen, Germany) was used. The insulation
layer (silicon nitride) was pre-treated with polyethyleneimine
(Sigma, 0.01% in 0.1 M Borate buffer solution). A commer-
cial setup (MEA2100-2x60-headstage, MEA2100-interface board,
MCS, Reutlingen, Germany) for recording and analyzing data
from two 60-electrode MEAs was used, with integrated data
acquisition from 120 MEA electrodes and 8 additional analog
channels, integrated filter amplifier and 6-channel current or volt-
age stimulus generator (for both MEAs). Mono-phasic square
voltage pulses (−900 to −100 mV, 100–500 μs) were applied
through extracellular electrodes. Each channel was sampled at a
frequency of 50 k sample/s. Action potentials were detected on-
line by threshold crossing. For each of the recording channels a
threshold for spike detection was defined separately, prior to the
beginning of the experiment.

CELL SELECTION
Each circuit node was represented by a stimulation source (source
electrode) and a target for the stimulation—the recording elec-
trode (target electrode). These electrodes (source and target) were
selected as the ones that evoked well-isolated, well-formed spikes
and reliable responses with high signal-to-noise ratio. This exam-
ination was done with stimulus intensity of −800 mV using 30
repetitions at a rate of 5 Hz followed by 1200 repetitions at a rate
of 10 Hz.

STIMULATION CONTROL
A node response was defined as a spike occurring within a typi-
cal time window of 2–10 ms following the electrical stimulation.
The activity of all source and target electrodes was collected,
and entailed stimuli were delivered in accordance to the circuit
connectivity.

Circuit connectivity, τ
Conditioned stimulations were enforced on the circuit neurons
embedded within a large-scale network of cortical cells in vitro,

according to the circuit connectivity. Initially, each delay was
defined as the expected time between the evoked spikes of two
linked neurons; e.g., conditioned to a spike recorded in the target
electrode assigned to neuron A, a spike will be detected in the tar-
get electrode of neuron B after τAB ms. For this end, conditioned
to a spike recorded in the target electrode of neuron A, a stimu-
lus will be applied after τAB-LB(0) ms to the source electrode of
neuron B, where LB(0) is the initial latency of neuron B.

In cases where missed evoked spikes caused a termination of
the neuronal circuit activity, stimulation was given to neuron A
after a period of 100 ms, to restart the circuit’s activity.

All neurons were stimulated at a rate of 10 Hz (Figures 1, 3) or
8 Hz (Figure 2), before the leap to synchronization.

Strong stimulations, (−800 mV, 200 μs), resulting in a reli-
able neural response, were given to all circuit neurons exclud-
ing neuron C (Figures 1, 2) and E (Figure 3). Weak stimu-
lations (Figure 1: −450 mV, 40 μs. Figure 2: −600 mV, 60 μs.
Figure 3: −700 mV, 60 μs) were given to neuron C (Figures 1,
2) or E (Figure 3), so that an evoked spike is expected
only if the time-lag between two consecutive weak stimula-
tions is short enough. In cases where the time-lag between
two consecutive stimulations was shorter than 20 μs (from
the end of the first stimulation to the beginning of the con-
secutive one), a unified strong stimulation was applied, to
overcome technical limitations. The weak stimulations were
defined for each neuron separately, due to differences in their
threshold.

TTS (TS stands for temporal summation) is the maximal time-
lag between two weak stimulations which typically results in an
evoked spike. This quantity was empirically estimated by gradu-
ally changing the time-lag between two weak stimulations, and
found to differ between neurons.

DATA ANALYSIS
Analyses were performed in a Matlab environment (MathWorks,
Natwick, MA, USA). Action potentials were detected by threshold
crossing. In the context of this study, no significant difference was
observed in the results under threshold crossing or voltage min-
ima for spike detection. Reported results were confirmed based
on at least ten experiments each, using different sets of neurons
and several tissue cultures.

RESULTS
LEAP TO SYNCHRONY ACCOMPANIED BY A DOUBLED FIRING
FREQUENCY
Experimental results
We first demonstrate leaps to synchrony using a neuronal cir-
cuit consisting of four neurons and conditioned stimulations
split into weak/strong stimulations (Figure 1A). A strong stim-
ulation consists of a relatively high amplitude and/or relatively
long pulse duration such that an evoked spike is generated reli-
ably, whereas a weak stimulation consists of a lower amplitude
and/or pulse duration, such that an evoked spike is expected only
if the time-lag between two consecutive weak stimulations is short
enough. All delays (denoted on connecting lines between neu-
rons in Figure 1A) were selected to initially include the response
latency of the target neuron, e.g., the time-lag from neuron A
to B, τAB, was initially set to τ-LB(0) where LB(0) stands for
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FIGURE 1 | A sudden leap to synchrony accompanied by frequency

doubling. Notations used: SyncAB, the absolute time-lag between the spikes
of neurons A and B; �(StimC ), the absolute time difference between two
weak stimulations to neuron C; �LD , the increase in response latency of
neuron D after n evoked spikes. (A) Schematic of a neuronal circuit consisting
of four neurons and weak/strong stimulations represented by dashed
(green)/full (black) lines. An initial stimulation is given to neuron A. (B)

Experimental measurements of �(StimC ) as a function of the spikes of
neuron A. �(StimC ) is initially set to ε ≈ 0.8 ms (green line) with τ = 50 ms
and TTS ≈ 0.24 ms (presented by the dashed horizontal green line). A unified
longer stimulation was given in events where the time-lag between the weak
stimulations <20 μs [presented by �(StimC ) = 0]. SyncAB is presented by the
blue line, indicating a sudden leap from τ = 50 ms to nearly zero-lag
synchronization. (C) Spike trains of the four neurons. A sudden leap to
SyncAB ≈ 0 occurs at time/2τ = 122.5 (at spike 121 of neuron A) immediately
following a single evoked spike of neuron C. It is accompanied by a doubled

firing frequency, from ∼10 to ∼20 Hz. SyncAB ≈ 0 is robust to response
failures of neuron C, e.g., time/2τ = 124.5. (D) SyncAB as a function of the
spikes of neuron A, for various ε, where the data for ε = 0.8 (blue) is the
same as in (B,C). The number of spikes to a leap to synchrony increases with
ε. (E) �LD for repeated stimulations at 10 Hz. �LD at the synchrony leap for
different ε are colored following (D). Note that SpikeD is equal to SpikeA in
(B,D). (F) Results of population dynamic simulations where each neuron in
(A) is now represented by a population comprised of 40 Hodgkin-Huxley
neurons, each one innervated by four randomly chosen neurons from each of
its driving clusters. The delays between neurons are taken from a Gaussian
distribution centered at the delays of the single neuron case with a variance
of 0.2 ms. For simplicity, each time a neuron fires all of its outgoing delays are
increased by 0.04 ms. The simulation parameters were ε = 2 ms and
TTS ≈ 1.3 ms. (G) Raster plot of the 120 neurons comprising nodes A, B, and
C. A leap to synchrony occurs at time/2τ ≈ 20, accompanied by a doubling of
the firing frequency.

the initial response latency of neuron B. For τ = 50 ms, neu-
rons A and B initially fire alternately, in and out of phase, at
a frequency of ∼10 Hz (Figure 1B). Neuron D fires ∼τ/2 ms
laggard to neuron A (Figure 1C) and the time-gap between

two weak stimulations arriving at neuron C, �(StimC), is ini-
tially ε (Figures 1A,B). The experimentally estimated maximal
time-gap between stimulations of neuron C which generates an
evoked spike (temporal summation) is denoted by TTS, thus for
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FIGURE 2 | A sudden leap to synchrony accompanied by tripled

frequency. Notations used: SyncAB, the absolute time-lag between the
spikes of neurons A and B; �(StimC ), the absolute time difference
between two weak stimulations to neuron C; �LD , the increase in
response latency of neuron D after n evoked spikes. (A) Schematic of a
neuronal circuit as in Figure 1A, however, the delay from neuron B to A
is now 2τ. (B) Experimental measurements of �(StimC ), similar to
Figure 1B, with ε ≈ 0.5 ms, 3τ = 125 ms and TTS ≈ 0.2 (presented by the
dashed horizontal green line). SyncAB, (blue line) indicating a sudden leap
from τ ≈ 125/3 ms to nearly zero-lag synchronization. (C) Spike trains of
the four neurons. A sudden leap to synchronization, SyncAB ≈ 0, occurs
at time/3τ = 44 (at spike 44 of neuron A) consecutive to three evoked
spikes of neuron C. This is accompanied by tripled firing frequency of
neurons A and B, from ∼8 to ∼24 Hz. SyncAB ≈ 0 is robust to response

failures of neuron C, e.g., time/3τ = 46.33. (D) SyncAB as a function of
the spikes of neuron A for various ε, where the number of spikes to the
leap to synchrony increases with ε. The data for ε = 0.5 (blue) is the
same as in (B,C). The observed oscillations in SyncAB before a leap to
synchrony originate from response failures of neuron C, and similarly
oscillations in a leap out of synchrony originate from response failure of
either neuron A or B. (E) �LD , for repeated stimulations at 8 Hz. �LD at
the leap for different ε are indicated and colored following (D),
approximately verifying Equation (1), e.g., for ε = 0.8 ms and TTS ≈ 0.2 ms,
�LD (197) gives ∼0.6 ms. Note that SpikeD is equal to SpikeA in (B,D).
(F) Results of population dynamic simulations similar to Figures 1F,G

with ε = 2 ms, TTS ≈ 1.3 ms and 3τ = 125 ms. (G) Raster plot of the 120
neurons comprising nodes A, B, and C. A leap to synchrony occurs at
time/3τ ≈ 20, accompanied by tripled firing frequency.

�(StimC) > TTS ≈ 0.24 ms neuron C typically does not fire. As
a result of the increase in the response latency of neuron D,
�(StimC) is reduced (green line in Figure 1B) sufficiently so that
neuron C starts firing [�(StimC) ≤ TTS] (Figure 1C). The circuit
now consists of two delay loops, ∼2τ (A-B-A) and ∼3τ (A-C-B-
A). Since the greatest common divisor (GCD) of the circuit delay
loops is GCD(2,3) = 1, conditioned to the firing of neuron C,

zero-lag synchronization between neurons A and B is theoreti-
cally expected (Kanter et al., 2011) after a very short transient, τ

(Figure 1C). This phenomenon is quantitatively measured by the
time-lag between spikes of neurons A and B, SyncAB. The emer-
gence of zero-lag synchrony is clearly demonstrated by the leap
to SyncAB ≈ 0 ms (blue line in Figure 1B), which is accompa-
nied by a sudden frequency multiplication from ∼10 to ∼20 Hz
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FIGURE 3 | Short epochs of synchrony not accompanied by a change

in frequency. Notations used: SyncAE , the absolute time-lag between the
spikes of neurons A and E; �(StimE ), the absolute time difference
between two weak stimulations to neuron E; �L, defined as
�LB +�LC +�LD −�LF . (A) Schematic of a neuronal circuit consisting of
six neurons and weak/strong stimulations represented by dashed
(green)/full (black) lines. (B) Experimental measurements of �(StimE ),
similar to �(StimC ) in Figure 1B, with ε ≈ 1.7 ms, τ = 50 ms and
TTS ≈ 0.5 ms (presented by the dashed horizontal green line). The time
delay between neurons A and E, ∼2τ, is denoted by the dashed horizontal
black line. The firing region of neuron E (blue dots bounded by dashed
vertical guidelines), which is at nearly zero-lag synchronization with the
firing of neuron A, SyncAE ≈ 0, starts after 77 spikes of neuron A. The

temporary firing of E terminates after ∼200 spikes of neuron A. (C) Spike
trains of neurons A, F, and E, indicating a steady firing frequency (∼10 Hz)
of the neuronal circuit independent of the firing of neuron E, where an
epoch of synchrony, SyncAE ≈ 0, begins at time/2τ = 77 (at spike 77 of
neuron A). (D) The number of spikes prior to the firing of neuron E
increases with ε. The mild increase in the firing mismatch, SyncAE , is
attributed to the additional increase by ε of the initial 2τ delay loop (E fires
∼2τ+ ε laggard to A, however, the time-gap between consecutive firings
of A is ∼2τ+ 2ε). The data for ε = 1.7 (blue) is the same as in (B,C). (E)

�L for repeated stimulations at 10 Hz. �L at the synchrony leap for
different ε are colored following (D). The number of spikes per neuron
(e.g., SpikeA), n, until the leap to synchrony increases with ε and can be
obtained from Equation (1), where �LD is substituted by �L.

(Figure 1C). Note that the sudden multiplication in frequency, by
itself, shortens SyncAB from 100 to 50 ms, however, it cannot lead
to zero-lag synchrony. The sudden emergence of SyncAB ≈ 0 ms
requires only a single firing of neuron C, and is then main-
tained by the mutual firing of neurons A and B, independently
of the firing of neuron C (Figure 1C). For a given TTS, the num-
ber of evoked spikes of neuron D until the leap to synchrony,
n, increases with ε (Figure 1D). Quantitatively, using the exper-
imental response latency profile of neuron D, LD, one can find n
fulfilling the equality:

�LD(n) ≈ ε− TTS (1)

where �LD(n) stands for the increase in response latency of neu-
ron D after n evoked spikes (Figure 1E). Note that neuron D is
laggard to neuron A, thus the number of evoked spikes of neuron
A until the leap to synchrony increases with ε as well, in accor-
dance with Equation (1) (Figure 1D). Since TTS varies between
neurons and even within the same neuron over different trials,

deviations from this equation are expected (e.g., �LD for ε =
0.8 ms and ε = 1 ms are almost the same, Figures 1D,E). A slow
gradual increase in SyncAB after a leap to synchrony (Figure 1D)
is theoretically attributed to the difference in the increase of
neuronal response latencies |�LA(n)-�LB(n)| and the leap out
of synchrony (Figure 1D) is a consequence of a response fail-
ure of neurons A and/or B (see Section “Slow Divergence out
of Synchrony” in Appendix). Similar results were obtained and
exemplified for spatial summation (not shown), where weak stim-
ulations were given to a neuron through two different source elec-
trodes. An evoked spike is expected only if the time-lag between
two consecutive weak stimulations, controlled by the relative
stimulation timings of the source electrodes, is short enough.

Simulations of population dynamics
The sudden leap to synchrony was experimentally verified under
the limitation where each circuit node is represented by a sin-
gle neuron, and is demonstrated to be robust under simulations
of population dynamics (Figures 1F,G). Each one of the four
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nodes (Figure 1A) now represents a population comprised of
40 Hodgkin-Huxley sparsely connected neurons (for simulation
details, see Vardi et al., 2013a). For the parameters used, TTS ≈
1.3 ms, ε = 2 ms and 0.2 ms variance for the Gaussian distri-
bution of the delays, a leap to synchrony is expected following
Equation (1) after ∼20 spikes of cluster A (Figure 1F). The sim-
ulated SyncAB is defined as the absolute difference between the
average spiking times of the neurons comprising clusters A and B,
where at least 50% of the neurons in a cluster fired (Figure 1G).
Initially, several neurons in cluster C fire as a result of relatively
close stimulations from either cluster A or D. This sporadic fir-
ing is a consequence of the Gaussian distribution of the delays
between populations, however, their impact on the firing activity
of cluster B is negligible. As neurons of cluster D fire repeat-
edly, �(StimC) decreases and more neurons from cluster C fire.
Consequently, the activity of cluster C is enhanced such that a leap
to synchrony is observed, accompanied by frequency doubling
from∼10 to∼20 Hz (Figures 1F,G). A leap out of synchrony was
not observed in the simulations, since population dynamics are
more robust to a single neuron’s response failure in comparison
to a neuronal circuit where each node is represented by a sin-
gle neuron (Figures 1A,D). Low connectivity, as well as a wider
Gaussian distribution of delays between populations are expected
to enhance fluctuations and response failures, and will eventually
lead to a leap out of synchrony.

Population dynamics exhibit consistency with most of the
experimental results, hence minimizing the possibility of these
results as being only an artifact of the tissue culture. Nevertheless,
the verification of our results in more realistic scenarios is
required, including shorter delays and their interplay with the
neuronal refractory period, the morphology of the neurons
instead of considering neurons as points (Doiron et al., 2006),
as well as possible adaptation mechanisms in the form of short
and long term synaptic plasticity (Abbott and Regehr, 2004;
Izhikevich, 2006). In addition, more accurate and systematic sta-
tistical measures of synchrony (Kreuz et al., 2009; Shimokawa and
Shinomoto, 2009) can be adopted to describe the transition to
synchrony in the case of population dynamics.

LEAP TO SYNCHRONY ACCOMPANIED BY TRIPLED FIRING FREQUENCY
More general features of a sudden leap to synchrony are exem-
plified by increasing the delay from neuron B to A, τBA, from τ

(Figure 1A) to 2τ (Figure 2A). The circuit now consists of two
delay loops,∼3τ (A-B-A) and∼4τ (A-C-B-A) (Figure 2A). Since
GCD(4,3)= 1, zero-lag synchronization is theoretically expected,
conditioned to the firing of neuron C. Initially, neurons A and
B fire at a frequency of ∼8 Hz (3τ = 125 ms) (Figure 2C) and
SyncAB ≈ τ (Figure 2B). Neuron C starts to fire as �(StimC) ≤
TTS ≈ 0.2 ms, resulting in SyncAB ≈ 0 which is accompanied
by tripled firing frequency (Figure 2C). The number of evoked
spikes by neuron D (or its leader neuron A) to the leap increases
with ε in a non-linear manner following �LD(n), in accordance
with Equation (1) (Figures 2D,E).

Typically, several leaps in and out of synchrony between neu-
rons A and B occur before arriving at a stable nearly zero-lag
synchronization (Figure 2D). These oscillations are attributed to
unreliable responses of neuron C, and increase the duration of

the relaxation to synchrony (Figure 2D). Similar oscillations on
the way out of synchrony (Figure 2D) are attributed to the first
response failure of either neuron A or B. Consequently, neurons
A and B fire alternately in time-lags τ and 2τ. The final exit out
of synchrony occurs in the second response failure of neurons
A or B.

Simulation results (Figures 2F,G) confirmed the robustness
of the experimentally observed leap to synchrony in popula-
tion dynamics. The oscillations in the relaxation to synchrony
are attributed to response failures of cluster C. These failures
are a consequence of fluctuations in the firing timings of clus-
ters A and D and the Gaussian distribution of their delays to
cluster C.

EPOCHS OF SYNCHRONY NOT ACCOMPANIED BY A CHANGE IN
FREQUENCY
A mechanism to leap out of synchrony as well as the inter-
relation between the sudden leap to synchrony and the firing
frequency are at the center of the next examined neuronal circuit
(Figure 3A). This circuit consists solely of a 2τ-delay loop, hence
neurons A and F fire alternately in∼τ ms time-lags. Nevertheless,
neuron A affects neuron E by weak stimulations arriving from
two comparable initial delay routes; ∼2τ ms (A-F-E) and ∼2τ-
ε ms (A-B-C-D-E) (Figure 3A). Initially, neuron E does not fire
since ε ≈ 1.7 ms > TTS ≈ 0.5 ms. Since the overall increase in
the neuronal response latency of a chain is accumulative, propor-
tional to the number of neurons it comprises, �(StimE) gradually
decreases below TTS (Figure 3B) and neuron E suddenly starts to
fire. Consequently, since neuron A fires every ∼2τ ms and neu-
ron E fires ∼2τ ms laggard to A, SyncAE ≈ 0 (Figures 3B,C). As
�(StimE) decreases, the response of neuron E becomes more reli-
able (Figures 3B,C) and a leap out of synchrony is observed when
�(StimE) again exceeds ∼TTS (Figure 3B). Since neuron E’s fir-
ing does not close a new neuronal loop, the leaps in and out of
synchrony do not affect the firing frequency of the neuronal cir-
cuit (Figure 3C). The number of spikes to synchrony increases
with ε as well as the time-gap between neurons during synchro-
nization, SyncAE (Figures 3D,E). Simulation results (not shown)
confirmed the robustness of the experimentally observed leap in
and out of synchrony without a frequency change in population
dynamics.

DISCUSSION
Understanding the brain mechanisms that underlie firing syn-
chrony is one of the great challenges of neuroscience. There are
many variants of population codes, where a set of neurons in
a population acts together to perform a specific computational
task (Palm, 1990; Eichenbaum, 1993; Ainsworth et al., 2012).
There is much discussion over whether rate coding or temporal
coding is used to represent perceptual entities in populations of
neurons in the cortex. A number of reports suggest that almost
all the information in a stimulus is embedded in the rate code
of active neurons (Aggelopoulos et al., 2005), while others sug-
gest that synchrony among spiking of neuronal populations carry
the information (deCharms and Merzenich, 1996). Experimental
support for changes solely in firing rate when the perceptual
task is modified (e.g., Lamme and Spekreijse, 1998; Roelfsema
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et al., 2004) is as compelling as those works that show changes in
synchrony in the absence of firing rate changes (e.g., Womelsdorf
et al., 2005), whereas in other experiments changes in both rate
and spike correlations are observed concurrently (e.g., Biederlack
et al., 2006). In any case, the usefulness of rate coding and tem-
poral coding as information carriers of brain activity is a function
of the decoding complexity, which is tightly correlated with their
accuracy.

Rate and temporal coding are typically inaccurate in brain
activities, although there are several well-known exceptions where
neurons fire with high temporal accuracy (Bullock, 1970; Bullock
et al., 1972; Moortgat et al., 2000). Rate precision, measured by
inter-spike interval (ISI) distributions, typically follows a broad
distribution, deviating from a Poissonian one (Amarasingham
et al., 2006). In addition, relative spike timings between coactive
neurons are usually within the precision of several milliseconds
(Kayser et al., 2010; Wang, 2010). In the case of a broad dis-
tribution of ISIs, the mission to grasp gradual changes in tem-
poral and/or rate coding (e.g., changes from an average firing
rate of 5–6 Hz), on a timescale of a few ISIs, is a heavy com-
putational mission which might not be satisfactorily resolved.
The underlying cause of this computational difficulty is the
broad distribution of the ISIs which is overlapped between
gradually changed temporal codes or gradually changed rate
codes.

To overcome this difficulty we proposed a mechanism which
enables the emergence of a sudden leap to synchrony together
with or independent of a leap in the firing frequency. This mech-
anism results in leaps from firing mismatches of several dozens
of milliseconds to nearly zero-lag synchronization, and can be
accompanied by a sudden frequency multiplication of the neu-
ronal firing rate. These sudden changes occur on a time scale
of extremely few ISIs, and are easily detectable as the distribu-
tions of the ISIs before and after the leaps are non-overlapping.
Hence, one ISI is sufficient to detect the transition without
accumulatively estimating the ISI distribution. These fast and
robust indicators might be used as reliable information carriers
of time-dependent brain activity.

The proposed mechanism also allows for the simultaneous
emergence of sudden leaps in rate and temporal synchrony, hence
bridging between these two major schools of thought in neuro-
science (Eckhorn et al., 1988; Gray et al., 1989; Ahissar et al.,
1992; Nicolelis et al., 1995). This mechanism requires recurrent
neuronal circuits, and synchrony appears even among neurons
which do not share a common drive. Sub-threshold stimula-
tions (e.g., the stimulations to neuron C in Figures 1, 2 and
to neuron E in Figure 3) serve as a switch that momentarily
closes or opens a loop in the neuronal circuit. The state of the
switch changes a global quantity of the network, the GCD of
the entire circuit’s loops, which determines the state of syn-
chrony (e.g., zero-lag synchrony, cluster synchrony, shifted zero-
lag synchrony) (Kanter et al., 2011; Nixon et al., 2012). These
demonstrated prototypical examples call for a theoretical exam-
ination of more structured scenarios, including multiple leaps
in and out of synchrony. In addition, a more realistic biological
environment has to be examined containing synaptic noise and
adaptation.
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APPENDIX
SLOW DIVERGENCE OUT OF SYNCHRONY
The slow increase in SyncAB (Figure 1D) is analytically exam-
ined below for a case of two phase-to-phase neurons, A and B,
as depicted in Figure A1. The derivation below is in the spirit of
Ermentrout’s analysis of coupled type I membranes (Ermentrout,
1996). We first define the following quantities and assumptions:

ti(q)≡ the timing of the qth spike of neuron i, e.g., tA(0) is the
timing of the first spike of neuron A, where the count starts at 0.

Li(q)≡ neuronal latency of neuron i at its qth spike.
The initial time delays are τAB = τBA ≡ τ.
Assuming initial conditions, t = 0, where both neurons fire

simultaneously, i.e., tA(0)≡ 0, tB(0)= 0.
The spiking times of neurons A and B are given by

{
(i) tB(q) = tA(q−1)+ τ+ LB(q)

(ii) tA(q) = tB(q− 1)+ τ+ LA(q)

FIGURE A1 | Slow divergence out of synchrony between two

phase-to-phase neurons. Notation used: SyncAB, the time-lag between
the spikes of neurons A and B. (A) Schematic of two bidirectional
interconnected spiking neurons. The initial delays between the neurons are
equal, τAB = τBA = τ. (B) Response latency of both neurons as a function
of spike number. The latencies were taken to be LA = 0.5 × ln(q + 5) + 2,
LB = 0.3 × sqrt(q + 2) + 3, qualitatively similar to latency profiles observed
in experiments. (C) SyncAB as a function of spike number for the latencies
depicted in (B), assuming SyncAB(0) = 0. The calculation (brown line) was
done using Equation (A1) and is in a good agreement with straightforward
simulations of exact spike times (black dots). For simplicity, the simulated
SyncAB is only displayed for even numbers of spikes.

Substituting (ii) into (i) and vice versa:

{
tB(q) = tB(q− 2)+ τ+ LA(q− 1)+ τ+ LB(q)
tA(q) = tA(q− 2)+ τ+ LB(q− 1)+ τ+ LA(q)

one can find that the solution of these coupled recursive equations
is given by:⎧⎪⎨

⎪⎩
tB(q) =∑ q

2

q′=1
LB
(
2q′
)+ LA

(
2q′ − 1

)+ 2τ

tA(q) =∑ q
2
q′ = 1 LA

(
2q′
)+ LB

(
2q′ − 1

)+ 2τ

Consequently, the firing time-gap between the two neurons is
given by

SyncAB(q) ≡ ∣∣tB(q)− tA(q)
∣∣

SyncAB(q) =
∣∣∣∣∑ q

2

q′ = 1
LB
(
2q′
)+ LA

(
2q′ − 1

)

− LA
(
2q′
)− LB

(
2q′ − 1

) ∣∣∣∣
SyncAB(q) =

∣∣∣∣∑ q
2

q′ = 1

(
LA
(
2q′ − 1

)− LA
(
2q′
))

−
∑ q

2

q′ = 1

(
LB
(
2q′ − 1

)− LB
(
2q′
))∣∣∣∣

Under the assumption of continuous increase in latency and
large q

dLi
(
2q′
)

d
(
2q′
) ≈ − (Li

(
2q′ − 1

)− Li
(
2q′
))

> 0

SyncAB(q) =
∣∣∣∣∣
∫ q

2

0

dLA
(
2q′
)

d
(
2q′
) dq′

d
(
2q′
)d
(
2q′
)

−
∫ q

2

0

dLB
(
2q′
)

d
(
2q′
) dq′

d
(
2q′
)d
(
2q′
)∣∣∣∣∣

SyncAB(q) = ∣∣0.5
(
LA(q)−LA(0)

)−0.5
(
LB(q)−LB (0)

)∣∣ (A1)

Note that these calculations refer to even values of q. Similar equa-
tions can be obtained for odd values of q (not shown). In addition,
fluctuations in the latencies may also enhance the deviation from
synchronization.
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The inferior olive (IO) is a neural network belonging to the olivo-cerebellar system whose
neurons are coupled with electrical synapses and display subthreshold oscillations and
spiking activity. The IO is frequently proposed as the generator of timing signals to
the cerebellum. Electrophysiological and imaging recordings show that the IO network
generates complex spatio-temporal patterns. The generation and modulation of coherent
spiking activity in the IO is one key issue in cerebellar research. In this work, we
build a large scale IO network model of electrically coupled conductance-based neurons
to study the emerging spatio-temporal patterns of its transient neuronal activity. Our
modeling reproduces and helps to understand important phenomena observed in IO
in vitro and in vivo experiments, and draws new predictions regarding the computational
properties of this network and the associated cerebellar circuits. The main factors
studied governing the collective dynamics of the IO network were: the degree of
electrical coupling, the extent of the electrotonic connections, the presence of stimuli
or regions with different excitability levels and the modulatory effect of an inhibitory loop
(IL). The spatio-temporal patterns were analyzed using a discrete wavelet transform to
provide a quantitative characterization. Our results show that the electrotonic coupling
produces quasi-synchronized subthreshold oscillations over a wide dynamical range. The
synchronized oscillatory activity plays the role of a timer for a coordinated representation
of spiking rhythms with different frequencies. The encoding and coexistence of several
coordinated rhythms is related to the different clusterization and coherence of transient
spatio-temporal patterns in the network, where the spiking activity is commensurate
with the quasi-synchronized subthreshold oscillations. In the presence of stimuli, different
rhythms are encoded in the spiking activity of the IO neurons that nevertheless remains
constrained to a commensurate value of the subthreshold frequency. The stimuli induced
spatio-temporal patterns can reverberate for long periods, which contributes to the
computational properties of the IO. We also show that the presence of regions with
different excitability levels creates sinks and sources of coordinated activity which shape
the propagation of spike wave fronts. These results can be generalized beyond IO studies,
as the control of wave pattern propagation is a highly relevant problem in the context
of normal and pathological states in neural systems (e.g., related to tremor, migraine,
epilepsy) where the study of the modulation of activity sinks and sources can have a
potential large impact.

Keywords: spike wave fronts, subthreshold oscillations, electrical coupling, multifunctional neural networks,

cerebellar circuits, source-sink phenomena, rhythm coordination and encoding, activity reverberation

1. INTRODUCTION
The architecture of the inferior olive (IO) network and the asso-
ciated circuits of the cerebellar cortex of mammals have been
investigated anatomically and physiologically in great detail (De
Zeeuw et al., 1998; D’Angelo et al., 2011; De Zeeuw et al.,
2011). Experimental recordings, both in vitro and in vivo,
show that IO cells are electrically coupled and display a char-
acteristic behavior with subthreshold oscillations (Llinás and
Yarom, 1981; Benardo and Foster, 1986; Lampl and Yarom,
1993; Bal and McCormick, 1997; Long et al., 2002; Chorev
et al., 2007; Choi et al., 2010) and spiking activity (Llinás

et al., 1974; Sotelo et al., 1974). Their axons transmit syn-
chronous and rhythmic excitatory synaptic input to both the
deep cerebellar nuclear cells (CNs) and to the Purkinje cells
(PCs) of the cerebellar cortex (Uusisaari and De Schutter, 2011).
The phasic response of the PCs is transmitted as inhibitory
inputs to the CNs. Thus, the nuclear cells are excited by
the IO neurons and later inhibited by the PCs. This inhibi-
tion leads to rebound excitation. The nuclear cells also send
an inhibitory feedback to the IO closing this inhibitory loop
(IL) (De Zeeuw et al., 1997; Uusisaari and De Schutter, 2011) (see
Figure 1).
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PC

CN

IO

FIGURE 1 | Schematic representation of the cerebellar inhibitory loop.

The figure shows the inferior olive neurons (IO layer), cerebellar nuclei
(CN layer) and Purkinje cells (PC layer). Blue connections are excitatory and
red ones are inhibitory. The IO neurons are highly coupled with electrotonic
synapses (green dots in the figure).

While much is now known from the anatomical and physi-
ological perspective, the functional role of the IO is still under
discussion (Welsh et al., 1995; Llinás et al., 1997; De Zeeuw
et al., 1998; Kobayashi et al., 1998; Kistler and De Zeeuw, 2002;
Long et al., 2002; Schweighofer et al., 2004; Dean et al., 2010;
Bazzigaluppi et al., 2012). It has been proposed as a system that
controls and coordinates different rhythms through the intrinsic
oscillatory properties of the individual IO neurons and their
electrical interconnections (Llinás and Yarom, 1986; Llinás and
Welsh, 1993; Manor et al., 1997; De Zeeuw et al., 1998; Hutcheon
and Yarom, 2000; Leznik and Llinás, 2005) by means of clusters of
functionally interconnected cells. The IO has also been suggested
to be implicated in learning (Ito, 1982; Raymond et al., 1996; Ito,
2005; Van Der Giessen et al., 2008; Schweighofer et al., 2013),
in comparing tasks of intended and achieved movements as a
generator of error signals (Oscarsson, 1980; Llinás, 2009; Schlerf
et al., 2012; Ito, 2013), and as a dynamical working memory
in the context of the olivo-cerebellar closed-loop (Kistler and
De Zeeuw, 2002).

Electrical gap junctions allow the synchronization of the sub-
threshold oscillations among groups of neurons (Bennett and
Zukin, 2004; Connors and Long, 2004), and through these, the
synchronization of the spiking activity. Subthreshold oscillations
must clearly have a relevant role for information processing in
the context of a system with extensive electrical coupling. In such
systems, not only the spiking activity can be propagated through
the network, but also small voltage differences of hyperpolarized
membrane potentials among neighbor cells. Subthreshold oscil-
lations are present in many other neural systems (Leung and
Yim, 1991; Gutfreund et al., 1995; Pape et al., 1998; Amir et al.,
2002; Reboreda et al., 2003; D’Angelo et al., 2009), as well as gap-
junctions (Bennett and Zukin, 2004; Long et al., 2004). However,
the IO seems to be a system where the joint presence of these two
features can have a special significance for its function. Several
theoretical models of the IO network have been proposed to study
its properties and behavior (e.g., see Manor et al., 1997; Varona
et al., 2002; Velarde et al., 2004; Jacobson et al., 2008; Katori et al.,

2010; De Gruijl et al., 2012; Torben-Nielsen et al., 2012). These
studies largely contribute to the understanding of the IO function
from a network dynamics perspective.

In this paper we show that large scale networks of electrically
coupled IO neurons generate localized spatio-temporal patterns
which can easily encode several coexisting rhythms. In our sim-
ulations, we have used conductance-based neurons to generate
subthreshold oscillations as well as spiking activity in the ampli-
tude and frequency ranges reported for these neurons. We argue
that neither the knowledge of the anatomic organization of these
neural circuits, nor the study of the individual activity of the cells
alone is enough for the identification of their function. However,
understanding the collective dynamics gives us important clues
about the underlying computational properties and the possible
multifunctional nature of the IO. We want to emphasize here the
combination of the specific organization of the connections and
of the specific dynamics of the neurons as an essential step in
understanding the role of the olivo-cerebellar circuits. The use of
large population networks of realistic neurons is required for the
study of the IO network dynamics and, in particular, the encod-
ing and control of rhythms in the IO transient spatio-temporal
activity.

Our results show that the two principal characteristics of the
IO, i.e., the subthreshold oscillations of the individual neurons
and the electrical gap junctions, make this system a powerful
encoder and generator of spatio-temporal patterns with differ-
ent but coordinated oscillatory rhythms. In our study, we first
analyze the factors that shape the patterns in autonomous net-
works. We show that networks of spiking neurons that do not
generate subthreshold oscillations have a more restricted ability
to develop dynamical patterns. Then, we study the ability of IO
networks to generate and encode reverberating rhythms depend-
ing on external stimuli. We also show that the presence of low
and high excitability regions in this system creates activity sinks
and sources that shape the propagation of coordinated spike wave
fronts. Finally, we discuss the modulatory effect that the IL can
have on the IO spatio-temporal activity.

2. MODELS AND METHODS
2.1. NEURON MODEL
To model the individual behavior of each IO cell, we have built
a conductance-based neuron using a Hodgkin–Huxley type for-
malism (Hodgkin and Huxley, 1952) that generates the char-
acteristic subthreshold oscillations and spiking activity in the
amplitude and frequency ranges observed in the living IO cells.
Figure 2 shows some examples of the different behaviors dis-
played by the neuron model as a function of its parameters: from
subthreshold oscillations to tonic spiking. The results discussed
in this paper do not depend on whether individual neurons are
intrinsic or network oscillators (Manor et al., 1997; Schweighofer
et al., 1999; Manor et al., 2000; Kistler and De Zeeuw, 2002).

Our model is based on Wang’s work on subthreshold mem-
brane potential oscillations in cortical pyramidal cells (Wang,
1993). The model uses a single compartment to describe the neu-
ron dynamics. Since we want to build large scale networks of
thousands of units, the computational cost is an important issue.
Five voltage-dependent ionic currents (INa, INap, IKd, IKs and Ih),
a leakage current (Il) and a stimulus injected current (Iinj) define
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FIGURE 2 | In our simulations, we model the individual behavior of

the single IO cells with a Hodgkin–Huxley type model. The model is
able to generate subthreshold oscillations and spiking activity at different
frequencies as a function of the parameters (see the text for details). The

figure illustrates different examples of spiking frequencies over the
subthreshold oscillations depending on the values of σ (defining the action
potential threshold of the model) and Iinj (constant depolarizing current in
Equation 1).

the specific behavior of the neuron (see below). Formally, the
membrane voltage is described by the following equation:

Cm
dV

dt
= −(INa + INap + IKd + IKs + Ih + Il + Iinj + Ielec + Isyn)

(1)
where Cm = 1 μF/cm2; Il = gl(V − Vl) with gl = 0.1 ms/cm2

and Vl = −60 mV; and Iinj is a constant depolarizing current.
Currents Ielec and Isyn are, respectively, the total current from the
electrical gap junctions connecting the neurons to build the IO
network and the total synaptic current from the IL (see section 2.2
for a detailed description of these two currents).

The general description of the five active ionic currents con-
sidered in the model follows the Hodgkin–Huxley formalism:

Ii = ḡi · xp · yq · (V − Vi) (2)

where ḡi is the maximal conductance of the current, V is the
membrane potential, Vi is the reversal potential of the current
and x and y are the activation and inactivation variables. Table 1
provides the specific values of these parameters for each particu-
lar current. The activation and inactivation variables, when exist,
satisfy the following equations:

dx

dt
= x∞ − x

τx
,

dy

dt
= y∞ − y

τy
(3)

The steady state and time constants of these variables for each
current are:
• INa

m∞ = αm
αm+ βm

; τm = 1
αm+ βm

αm = 0.1(V + 30− σ)/(1− exp(−0.1(V + 30− σ)));
βm = 4 exp((−V − 55+ σ)/18);

Table 1 | Conductance description, maximal conductances and

reverse potential (Equation 2) for the ionic currents of the single

neuron model.

Current (µA/cm2) Conductance ḡi (mS/cm2) V i (mV)

INa ḡNam3∞h ḡNa = 52 VNa = 55

INap ḡNapn∞ ḡNap = 0.1 VNa = 55

IKd ḡKdc4 ḡKd = 20 VK = −90

IKs ḡKsd(ρe+ (1− ρ)f ) ḡKs = 14 VK = −90

Ih ḡht ḡh = 0.1 Vh = −43

h∞ = αh
αh+ βh

; τh = 1
αh+ βh

αh = 1.99 exp((−V − 44+ σ)/20);
βh = 28.57

1+ exp(−0.1(V + 14− σ)))
;

• INap

n∞ = �(V, 51, 5);
• IKd
c∞ = αc

αc + βc
; τc = 1

αc + βc
;

αc = 0.2857(V + 34− σ)/(1− exp(−0.1(V + 34− σ)));
βc = 3.57 exp((−V − 44+ σ)/80);
• IKs

d∞ = �(V, 34, 6.5); τd = 50 ms
e∞ = �(−V,−65, 6.6); τe = 200+ 220�(V, 71.6, 6.85);
f∞ = �(−V,−65, 6.6); τf = 200+ 3200�(V, 63.6, 4);
• Ih
t∞ = �(−V,−45, 5.5);
τt = 1

(exp(−14.59− 0.089V)+ exp(−1.87+ 0.0701V))
;

where ρ and σ are parameters for the fine tuning of the
action potential threshold of the model; and �(X, Y, Z) =

1
1+ exp(−(X+Y)/Z)

.
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The equations were numerically solved with a Runge-
Kutta6(5) variable step method with a maximum error of 10−13.
In all the simulations presented in this paper ρ = 0.6 and σ = 1,
unless another value is specified in the simulation description to
change the excitability level in different regions of the network.
The initial conditions were selected randomly from a set of 10,000
coherent values for all the dynamic variables (10,000 different
final conditions in simulations of a single cell) and the stimu-
lus injected current (Iinj in Equation 1), unless a specific value
is indicated to implement external stimuli, was selected randomly
between 0.0 and 0.35 μA/cm2.

2.2. NETWORK MODEL
To simulate the IO network we have built two-dimensional net-
works of 50× 50 IO neurons connected with gap junctions
among close neighbors. The term Ielec in Equation (1) denotes
the current received by each neuron through these connections.
Therefore, Ielec = gc

∑
i(V − Vi), where index i runs over the

neighbors of each neuron and gc is the electrical coupling con-
ductance. The number of electrically coupled neighbors varied
from 4 to 12. We imposed periodic boundary conditions within
the network to avoid border effects.

With this network topology we simulate the autonomous
behavior of the IO network. However, as Figure 1 illustrates, the
IO forms part of an IL with the deep cerebellar nuclei and the
PCs of the cerebellar cortex. To test the effect of this inhibi-
tion, we implemented a simplified model of the cerebellar IL that
takes into account the timing of these inhibitory inputs omitting
the details of the cerebellar neurons and circuits. The inhibitory
connections were modeled without the detailed implementation
of the cell types involved in the IL (PCs and cerebellar nuclei).
The action of the cerebellar IL was built through an inhibitory
feedback in the IO networks from a bidimensional network of
simple integrate and fire (IF) neurons. Each IF neuron was con-
nected to the IO network bidirectionally as depicted in Figure 3
in one dimension for simplicity. These connections preserved the
topology of the IO network, i.e., neighbor cells in the IO net-
work sent and received connections to neighbor cells in the IF
layer. The connection probability was 75% in both directions.
Each IF neuron took into account whether a group of neighbor
IO neurons (up to 10 neighbor cells) had a synchronous spik-
ing event (in a time window of 5 ms), if so, the IF cells evoked
a delayed IPSP (10 ms) back to a cluster of up to 10 IO neu-
rons. Then the IF neuron had a refractory period where it could
not fire for a short time (10 ms). Inhibitory synaptic currents
from the action of the integrate and fire neurons were imple-
mented using the model and parameters described in Destexhe
et al. (1994) (ḡsyn = 0.1 nS), and were added into the term Isyn of
Equation (1).

2.3. GRAPHICAL REPRESENTATION OF THE SPATIO-TEMPORAL
PATTERNS

The spatio-temporal patterns generated by the IO networks con-
sist of propagating wave fronts of spiking activity that can remain
bounded in a region of the network. To illustrate the propagating
waves of activity in the simulations, we have generated movies
of square-shaped networks to represent their evolving dynamics.

Each point in the 50× 50 square represents the evolution in time
of the activity of a given neuron within the network. The neu-
ral activity is represented with a color scale, where warm colors
(red) correspond to neurons with a membrane potential over the
spiking threshold (around−47 mV in our model) and cool colors
(blue) correspond to hyperpolarized neurons. Intermediate col-
ors represent subthreshold activity. Regions with the same color
in the movies have synchronous behavior. Although in the paper
we provide snapshots of the evolution of the network activity,
the described phenomena are better appreciated in the movies
included as supplementary material. To better appreciate the
dynamics in slow motion, the temporal scale in the movies does
not correspond to the neuron time in ms. The videos are gener-
ated at a 25 Hz frame rate and each frame corresponds to 0.5 ms
in neuron time.

2.4. WAVELET ANALYSIS OF THE PATTERNS
In one dimensional signals, spectral methods are suitable for the
detection of rhythms present in the signal. However, in higher
dimensions, the coefficients produced by the multidimensional
Fourier transform are hard to interpret as they present a number
of artifacts not directly related with the behavior of the signal, but
to sampling (aliasing effects) or border conditions. Thus, to char-
acterize quantitatively the localized spatio-temporal patterns of
the IO network models we did not use spectral methods. Instead,
we propose the study of the IO spatio-temporal patterns as a
sequence of images evolving in time by means of a wavelet based

MODEL OF THE INFERIOR OLIVE INHIBITORY LOOP
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FIGURE 3 | Schematic representation of the cerebellar inhibitory loop

(IL). To test the effect of the IL in the IO dynamics we model it with a
simple bidimensional network of integrate and fire (IF) units connected to
the IO network preserving the topology, i.e., neighbor cells in the IO
network sent and received connections to/from neighbor cells in the IL
layer.
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compression scheme. Wavelet based techniques have proven to
be a useful tool for signal analysis (Mallat, 1999) and, in par-
ticular, for the study of images or sequences of images (Stollnitz
et al., 1996). Unlike the Fourier transform coefficients, where the
“frequency” content of the signal cannot be localized in time (or
space), the wavelet transform coefficients are determined both by
a resolution component and a time (or space) component and,
therefore, they represent the resolution content at a given portion
of the original signal. The number of coefficients of the wavelet
transform that are higher than a given threshold, or alternatively,
those that comprise a given percentage of the total energy of the
signal, characterizes the whole complexity of the signal. Wavelet
based compression schemes are based on this complexity. On one
hand, when the number of wavelet coefficients larger than a fixed
threshold is small, the corresponding signal can be represented
only with a few low resolution components and high compres-
sion can be achieved without highly distorting the original data.
On the other hand, if the number of coefficients larger than the
fixed threshold is high, we have a complex signal, so we will need
both high resolution (details) and low resolution components to
represent it and, therefore, low compression can be performed.
Wavelet based compression schemes have been used, for exam-
ple, for one dimensional signal segmentation through “wavelet
probing” techniques (Deng et al., 1993).

The Wavelet Transform (WT) is related with multiresolution
analysis and presents a hierarchical structure that is particu-
larly suited for fast numerical algorithms (Daubechies, 1992).
In particular, the multiresolution process allows the computa-
tion of the coefficients of the WT by means of the Discrete
Wavelet Transform (DWT) with a low computational cost. The
two dimensional wavelet transform has been used for image
compression, as it presents high compression levels and a low
computational cost (O(w × h× t) vs. O(w × h×max{log(w)×
log(h)} × t) for similar compression schemes based on spectral
techniques; where w and h are the image width and height in pix-
els, respectively, and t is the number of images). Briefly, the idea
behind the image compression techniques based on the WT is that
wavelet coefficients that correspond to parts of the image that are
smooth have a small value (low spatial complexity), in contrast
with complex images that present a low number of small parame-
ters of the two dimensional WT and their compression ratios are
lower.

Our metric to characterize the IO spatio-temporal patterns is
based on the previous compression technique. The method con-
sists in considering the spatio-temporal patterns generated by our
IO models as sequences of images and estimating the compression
rate of each of them by calculating the number of DWT coeffi-
cients higher than a given threshold. In this way, we translate the
spatio-temporal pattern to a new one dimensional signal, C(t),
which represents the evolution in time of the spatio-temporal
pattern complexity. As a first step in the characterization, a two-
dimensional basis was generated by direct Cartesian product of
the one-dimensional Haar basis (Stollnitz et al., 1996). Then,
we calculated the two dimensional non-standard DWT for each
frame of network activity and counted the number of coefficients,
C(t), that were larger in absolute value than a given threshold
(th = 1 in the simulations shown here). The new one dimensional

signal provides a useful characterization of the spatio-temporal
patterns in which both the frequencies and the spatial complexity
can be discussed. At a given time t, a high value for C(t) means
that the network has a complex spatial structure, while a low value
indicates a uniform space (synchronized activity). The time evo-
lution of C(t) provides information about the frequency of the
spatio-temporal patterns.

2.5. WAVE FRONT PROPAGATION CHARACTERIZATION
The IO wave fronts in our simulations have the shape of circles
or arcs centered at a given region and propagating through the
network. To characterize the evolution of these wave fronts, we
have developed an algorithm for the detection of arcs of propa-
gating spiking activity through the analysis of each video frame.
Several methods have been developed for the detection of circles
in images, most of them based on the Hough Transform (Duda
and Hart, 1972). The Hough transform provides accurate results
as long as the circle radius is known, and the image has low noise
and low density of edge pixels (pixels with value 1 in a binary
representation of the image). Furthermore, the Hough transform
requires a high amount of memory and computational resources
as a non-linear optimization process is involved in the method.

Our method for detection of arcs is based on the idea that a
circle is completely determined by the position of three edge pix-
els in the image representing a given frame of IO network activity.
To apply this algorithm, we convert the membrane potential time
series to binary time series where 0 means that the neuron is
under the firing threshold, and 1 that it is over the threshold. The
algorithm iteratively searches for a set of three edge pixels in the
frame F. Once a set of three edge pixels is found [p1 = (x1, y1),
p2 = (x2, y2), p3 = (x3, y3)], the center of the unique circle that
contains them is calculated in the following way:

• The general equation of the circle can be written as x2 + y2 +
Ax + By + C = 0 with center at the point p = − 1

2 (A, B) and

radius r = √C − A2 − B2. Then the three edge pixels coordi-
nates are used in the previous equation, obtaining the following
linear system:

x1
2 + y1

2 + Ax1 + By1 + C = 0
x2

2 + y2
2 + Ax2 + By2 + C = 0

x3
2 + y3

2 + Ax1 + By3 + C = 0

The values A, B, C can now be obtained by methods such as
Gauss elimination or Cramer’s rule. If these methods cannot
solve the system, then the three points lie on a straight line.
• Once the center p is obtained, we create a image mask F′ with

the same size of frame F that contains just the plot of the circle
with center p and radius r obtained in the previous step. We
then count the number of edge pixels in the mask, and perform
a logic AND (F ∩ F′) operation between the original frame F
and the mask F′.
• We count the number of the resulting edge pixels from the pre-

vious operation and we consider that there exists a circle in F
that contains the three points if that number is larger than a
given fraction of the edge points in the mask F′.

Frontiers in Neural Circuits www.frontiersin.org September 2013 | Volume 7 | Article 138 | 251

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Latorre et al. Rhythm coordination of IO spatio-temporal patterns

This procedure is repeated until all different circles are found in
frame F. By analyzing the evolution of centers at different time
frames, and the change in the value of the radii of the arcs, we can
decide whether each center is a source or a sink.

3. RESULTS
3.1. ORIGIN AND PROPAGATION OF THE SPATIO-TEMPORAL

PATTERNS
3.1.1. Gap-junction mediated quasi-synchronized IO activity
In vitro experiments demonstrate that IO cells generate spatio-
temporal patterns of network activity (Devor and Yarom, 2002b;
Leznik et al., 2002; Leznik and Llinás, 2005). In our analysis
of these patterns, we first discuss the spontaneous activity of
autonomous IO network models without any external stimuli. We
have built two-dimensional networks of 50× 50 IO model neu-
rons connected with gap junctions among close neighbors (see
section 2.2 for details). The parameters of the IO cells were set

so that they could generate subthreshold oscillations and spik-
ing activity (section 2.1). Different simulations were performed
varying the magnitude of the electrical coupling conductance
among neurons and the number of electrotonically coupled
neighbors.

In a neural media with the features of the IO, currents aris-
ing from incoming inputs are invested to increase/decrease the
excitability level of each unit and to be shared among neigh-
bors through the diffusive coupling. To address the effect of the
strength of the electrical coupling in the spatio-temporal activity
of the IO network, we discuss four representative cases illus-
trated in Movies S1–S4: weak coupling, strong coupling, mod-
erate coupling and weak coupling extended to further neighbors.
Sequences of network activity in the form of snapshots of these
movies are shown in Figures 4A–D. Sequences develop in time
from left to right with a time interval between frames of 3 ms.
Both in the videos and in the snapshots, the level of activity
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FIGURE 4 | Spontaneous spatio-temporal patterns generated by the IO

network models. (A–D) Respectively, snapshots of Movies S1–S4. These
panels illustrate the patterns of activity of four 50× 50 IO networks with
different connectivity settings: weak coupling (A), strong coupling (B),
moderate coupling (C), and weak coupling extended to further neighbors (D).
Sequences develop in time from left to right with a 3 ms time interval
between frames. Regions with the same color have synchronous behavior.
Color bar maps the membrane potential. When the coupling is moderate
(panels C and D), there exist well-defined spatio-temporal patterns of spiking
activity traveling over the network. However, when the coupling is either too
weak or too strong these spatial structures do not appear. (E–H) Membrane
potential time series of four randomly chosen neurons from the IO networks
whose activity is represented in panels (A–D). Units are mV. The inset in

panel (F) shows the approximate location of these neurons in the
two-dimensional network. The color code matches the time series of each
cell. When the strength of the coupling is weak (E), there is not synchrony
among cells (cf. panel A). However, as the coupling increases, either with
moderate electrical conductances or a more extensive connectivity (panels
G and H, respectively), the subthreshold oscillations tend to synchronize.
Note the small phase shifts in the quasi-synchronized subthreshold
oscillations in these cases. These transient small phase shifts create the
spatio-temporal patterns observed in panels (C,D) and the corresponding
activity movies in the supplementary material. As the strength of the
coupling grows (F), the global spiking frequency decreases and, if the
electrical coupling is high enough, the individual activity of the cells is
completely synchronized (cf. panel B).
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of each neuron is represented with the color scale described in
section 2.3: warm colors correspond to neurons with a membrane
potential over the spiking threshold and cool colors correspond to
hyperpolarized neurons.

In these four representative cases, we observe that the activ-
ity of the autonomous IO network model strongly depends on
the magnitude of the electrical coupling. As expected, when
the coupling between close neighbors is too weak, i.e., gc <

0.01 mS/cm2, the IO neuron activity is nearly independent and
thus no coherent patterns are formed (see Movie S1 and the
corresponding snapshots in Figure 4A). Strong coupling, gc >

0.7 mS/cm2, induces almost total synchronization and also avoids
the formation of spatial structure in the patterns, as seen in
Movie S2 and Figure 4B. However, networks with moderate val-
ues of the coupling always show evolving spatio-temporal pat-
terns (see Movie S3 and Figure 4C). The spatio-temporal pat-
terns consist of transient spiking activity wave fronts that propa-
gate throughout different regions of the IO network. Physiological
experiments have revealed that each IO cell can be coupled to
a large number of neighbors (Devor and Yarom, 2002b; Hoge
et al., 2011). This situation corresponds to our fourth represen-
tative case. The simulations show that increasing the extent of
the connections has a similar effect in the network dynamics as
an increase in the coupling strength. As an example, Figure 4D
shows the spatio-temporal patterns corresponding to an IO net-
work with electrical coupling among 12 nearest neighbors with
gc = 0.01 mS/cm2 (see also Movie S4). Note that a network with
the same coupling strength but electrical connectivity just among
four close neighbors displays nearly independent activity (not
shown here). Thus, increasing the number of connections among
cells in the IO network model leads to equivalent dynamics as
those generated with less connections but larger coupling strength
(cf. Figures 4C,D).

The network dynamics is better understood by looking at
the membrane potential of single neurons together with the
collective activity shown in the movies. Figures 4E–H plot the
membrane potential time series of four representative neurons
within the IO networks whose spatio-temporal activity is shown
in panels (A–D), correspondingly. The analysis of panels in
Figure 4 and the activity movies shows that the patterns arise
from small transient phase shifts in the quasi-synchronized sub-
threshold oscillations for moderate values of the electrical cou-
pling [see the time series of panels (G) and (H) in Figure 4,
and compare them with panels (E) and (F)]. The occurrence
of a spike induces new phase shifts and fast propagating waves
that shape the patterns within the quasi-synchronized (period
locked) subthreshold activity. However, when the coupling is too
weak, the spatio-temporal patterns are absent (see Movie S1 and
Figure 4A) since, as can be observed in Figure 4E, the activity
of each IO cell is nearly independent because the low electrical
current cannot provide coherence to the subthreshold oscilla-
tions. Strong coupling also avoids the formation of a spatial
structure in the patterns since all the neurons are almost syn-
chronized and follow each other (see Movie S2 and Figure 4F).
Higher values of the coupling strength increase the synchro-
nization level but diminish the frequency of the global spiking
behavior (cf. Figures 4A–C). Figure 5 quantifies this decrease by

showing the average firing rate of the IO network model as a
function of the coupling conductance. Stronger electrical cou-
pling has a shunting effect that reduces the excitability of the
neurons. Similarly, a larger extent of the electrotonic connec-
tions also decreases the firing rates for a strong enough coupling
(see Figure 5).

Thus, the autonomous IO network model with the topology
discussed above and moderate values of the electrical coupling
is able to generate well-defined spatio-temporal patterns based
on quasi-synchronized subthreshold activity. The patterns con-
sist of transient propagating wave fronts of spiking activity that
can remain bounded in a region of the network. In all the cases
discussed so far, the degree of synchrony among cells changes as a
function of the coupling conductance although the frequency of
the subthreshold oscillations remains nearly constant.

The characterization of the spatio-temporal patterns gener-
ated by the autonomous IO network models with a discrete
wavelet transform analysis (DWT, see section 2.4) corroborates
these results. Figure 6 shows the evolution of the number of DWT
coefficients for different simulations of autonomous IO networks
(spontaneous activity). The red traces correspond to a network
with very small coupling among the IO cells. The number of
DWT coefficients remains high during the simulation revealing a
complex spatial structure in the patterns (i.e., independent sin-
gle neuron activity). Nevertheless, the homogeneous frequency
of the subthreshold oscillations is captured by the DWT analysis.
The magenta trace shows the opposite case, a network with a high
electrical coupling showing a high degree of synchronization (no
complexity in the spatial structure and thus low number of DWT
coefficients), only broken briefly at each spike event [see Movie S2
and Figure 4B]. The other two traces (green and blue) corre-
spond to a moderate value of the coupling where the evolving
spatio-temporal patterns can be observed with the dominant fre-
quency of the quasi-synchronized subthreshold oscillations. Note
the sustained broad range (∼200–1500) in the number of DWT
coefficients characterizing these patterns.

FIGURE 5 | The electrical coupling decreases the frequency of the

global spiking behavior. The figure shows the evolution of the average
firing rate of two IO network models with an electrical coupling among
4 and 8 neighbor cells, respectively, as a function of the coupling strength.
Stronger electrical coupling reduces and regularizes the spiking frequency.
This phenomenon occurs both increasing the coupling strength and the
number of connections among neighbors.
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FIGURE 6 | Characterization of the IO spontaneous activity with the

DWT. In all the cases plotted, each IO neuron in the network is connected
to four nearest neighbors with the electrical conductance indicated in each
trace. Units for the connectivity are mS/cm2. The higher the number of
DWT coefficients, the more complex is the spatial organization of the
pattern reflecting the absence of coherence in the IO network. For a
connectivity gc = 0.0001 mS/cm2, C(t) remains high all the time. This
indicates that the individual activity of each neuron is independent (see
Movie S1 and Figure 4A). The oscillations observed in the red trace
correspond to the homogeneous subthreshold activity. The opposite case,
a low number of DWT coefficients, corresponds to a strong coupling (in the
example gc = 0.8 mS/cm2), where the activity of each neuron is almost
completely synchronized (see Movie S2 and Figure 4B). The peaks in the
magenta trace correspond to the generation and propagation of a spike
over the whole network. Finally, when the coupling is moderate
(gc = 0.05 mS/cm2 and gc = 0.08 mS/cm2) the evolution of the DWT
coefficients shows the evolving spatio-temporal patterns over the same
dominant frequency of the subthreshold activity.

3.1.2. Activity phase locks in the absence of subthreshold
oscillations

To investigate to what extent the presence of the subthreshold
oscillations influences the structure of the patterns, we also simu-
lated autonomous networks of tonically spiking neurons without
subthreshold oscillations. This behavior can be easily induced in
the model by adjusting the spiking threshold through the kinetics
of the ionic channels of the model (parameter σ) or by applying
a constant current injection (Iinj) in the whole population (see
section 2.1). When the subthreshold oscillations were not present,
the spatial topology of the patterns remained nearly constant (see
Movie S5 and Figure 7 with snapshots of the evolution of the net-
work activity in this situation). The fixed spatial organization of
the patterns is due to a high degree of sustained phase-locking
among neighbor units in the absence of subthreshold oscillations.
Movie S5 shows that the propagation of the wave fronts is faster
over this nearly fixed spatial shape. In all our simulations, the
characteristic spatial structure of the patterns changed signifi-
cantly in time only when subthreshold oscillations were present
in the model.

3.2. RHYTHM ENCODING AND COORDINATION
The simulations described so far implemented neurons with
spontaneous spiking activity over the subthreshold oscillations.
A major point of interest in this study was the analysis of
the response of the IO network model to stimuli that could
induce different coherent spiking frequencies in the IO neurons.

−70mV

−45mV

FIGURE 7 | Spatio-temporal patterns in the absence of subthreshold

oscillations. Snapshots of Movie S5. The figure illustrates the
spatio-temporal patterns observed in a network model of 50 × 50
neurons electrically connected to their four nearest neighbors with
gc = 0.05 mS/cm2. The individual dynamics in this case does not contain
subthreshold oscillations, just spiking activity. In the simulation illustrated
here we achieve this behavior by applying a constant current injection (Iinj)
in the whole population (Figure 2). Sequences are equivalent to those
shown in Figure 4, developing in time from left to right with a time interval
between frames equal to 3 ms. When the subthreshold oscillations are not
present, the spatial topology of the patterns remains nearly constant.

The single neuron model can generate different spiking fre-
quencies depending on the current injection (Iinj). The spiking
frequencies are commensurate with the subthreshold oscillation
frequencies up to the tonic firing (see section 2.1 for details).

3.2.1. Coexistence of stimulus induced rhythms in the IO media
To study the spatio-temporal patterns induced by stimuli to the
IO network model, we performed simulations where different
external currents were injected in different clusters of neighbor
neurons. The stimulus clusters are surrounded by neurons that
have no stimuli. The stimulus induces a higher spiking frequency
in the neurons of these clusters while sustaining a similar sub-
threshold oscillation, as compared to the neurons without stimuli.
The larger the input current, the higher the spiking frequency.
Rhythms induced by the stimuli could then be observed in the
network of IO neurons. As an example, Movie S6 shows the
spatio-temporal patterns produced in an IO network model when
two external stimuli evoking two different spiking frequencies
were applied to two clusters of 6× 6 cells within the network.
Figure 8A displays snapshots of this movie showing the coexis-
tence of wave fronts with different spiking frequencies. The right
panel in this figure indicates the approximate location of each
cluster in the network. The coherent wave fronts originate in the
regions with stimuli and generate the spatio-temporal patterns.
The spatial scale of the patterns evoked by stimuli in the IO net-
work depends on the frequency of response of the clusters (nor-
mal dispersion) and the strength of the coupling. Multiple spatio-
temporal structures with different spiking frequencies may coexist
simultaneously in the IO networks. For example, Movie S7 (and
the corresponding snapshots in Figure 8B) corresponds to a sim-
ulation with 25 clusters of 6× 6 neurons each with different
stimuli.

Figure 8C shows the wavelet analysis of three representative
examples of networks with several coexisting frequencies of oscil-
lations induced by stimuli. In all the traces, the frequency of the
subthreshold oscillations can be observed. However, the spiky
waveform indicates the presence of multiple coexisting frequen-
cies. This can be better noted in the blue trace corresponding
to the evolution of the DWT coefficients for the network with
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FIGURE 8 | Spatio-temporal patterns induced by external stimuli in the IO

network models. (A–B) Snapshots of Movies S6 and S7. Sequences develop
in time from left to right with a time interval between frames of 3 ms. The
snapshots illustrate how several structures with different frequencies can
coexist simultaneously in the network when several stimuli are present.
The number of connected neighbors in the IO network is eight with
gc = 0.05 mS/cm2. Stimuli are introduced in the IO network by means of a
constant current injection in different clusters of neighbor neurons (see
the text). Panel (A) shows the activity of a network with two different
clusters of 6× 6 cells each with different stimuli (Iinj1 = 0.75 μA/cm2 and
Iinj2 = 0.25 μA/cm2). Panels (B) shows the activity of a network with 25
different clusters of 6× 6 cells with Iinj distributed over 0.1–0.75 μA/cm2.
The right panels display the approximate positions of the clusters within the
network. Colors represent different current injections, and thus different

spiking frequencies in these clusters. (C) Characterization of the IO activity
with the DWT when the IO network received different external stimuli. The
stimuli induces the coexistence of different spatio-temporal patterns with
different frequencies and spatial organization (see Movies S6 and S7), which
is reflected in a more complex evolution of the DWT coefficients whose shape
characterizes the spatio-temporal pattern (cf. with Figure 6). Thus, the
stimuli are encoded in these coexisting and coordinated spiking rhythms
commensurate with the subthreshold oscillations. In all cases, each IO neuron
is connected to its eight nearest neighbors with the electrical conductance
indicated in each trace. Units are mS/cm2. Red trace corresponds to a network
with 2 input clusters of 36 IO neurons in which an injection of 0.25 μA/cm2 and
0.75 μA/cm2 was applied. Green trace corresponds to the same network but
using a stronger coupling. Blue trace shows C(t) for a network with 25 clusters
of 25 neurons each with different stimuli distributed over 0.1–0.75 μA/cm2.

25 input clusters. It is important to emphasize that any input to
the IO clusters is encoded into a spiking frequency that is com-
mensurate with the subthreshold oscillations, which results in a
coordinated network activity.

3.2.2. Sort term memory through stimulus reverberation
In the IO network simulations we observe that the stimulus
induced spatio-temporal patterns can survive for several sec-
onds after the excitation is over. This stimulus reverberation effect
depends on the coupling strength in the network and is illus-
trated in Movie S8. In the simulation shown in this video, initially
the network dynamics evolves freely as in the previously studied
autonomous IO networks. Then, the external stimulation starts
(at instant 0:40 in the movie) and lasts for 2 s (until the instant
2:00 in the movie). During this interval, we apply two external
stimuli to two different clusters of 6× 6 cells. Note that from
the beginning of the stimulation, stepwise, the stimulated clusters
become the two principal sources of the spatio-temporal patterns.

When the external stimulus is over, this behavior continues for a
long period and the IO network generates the same wave fronts
that were induced by the stimuli.

Figure 9 analyzes in detail this phenomenon by comparing an
IO network of nearly isolated cells (panels A.1, A.2) and a net-
work with moderate coupling (panels B.1–B.4). To highlight the
reverberant effect, for this analysis the parameters of each indi-
vidual IO cell were set to generate just subthreshold oscillations
without spiking activity in isolation. Therefore, the spiking activ-
ity without an external stimulus is a network effect (cf. the neuron
activity before the stimuli in Figures 9A.2,B.3). Figures 9B.1,B.2
show, respectively, the evolution of the DWT coefficients of the
whole network and the stimulated clusters in the simulation with
moderate coupling. This DWT analysis shows that the global net-
work dynamics changes when the external stimuli are applied.
Note that the change due to the excitation lasts for several seconds
after the stimulation is over, and then the network goes back to the
autonomous activity. Conversely, in the network with very weak
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FIGURE 9 | Stimulus induced spatio-temporal patterns can survive for a

long time after the end of the stimulation. The figure illustrates how
stimulus induced spatio-temporal patterns reverberate in the IO network
models. In the case of a “network” of 2,500 nearly isolated cells
(gc = 0.00001 mS/cm2) (A), in a simulation first without stimuli, then during
the stimulation of two clusters of 6× 6 cells (Iinj1 = 0.75 μA/cm2 and
Iinj2 = 0.65 μA/cm2), and finally without any stimulation again, the DWT
coefficients (A.1) reveal a complex spatio-temporal structure in the network
activity, even during the stimulation. No changes in the global dynamics
appear when the two clusters are stimulated, although the individual activity

of the stimulated cells changes during this interval (A.2). Focusing on the
individual activity of these cells, we observe that when the stimulus begins
the neuron starts generating spiking activity. In this case, when the stimulus
is over, the neuron goes back immediately to the autonomous activity. (B) In
contrast, when the neurons have moderate coupling, the change in the
network dynamics due to the excitation lasts for several seconds after the
stimulation (see Movie S8). The DWT coefficients shows this effect, both in
the whole network dynamics (B.1) and in the clusters of stimulated neurons
(B.2). Panels (B.3,B.4) show the changes in the activity of a neuron at the
border and at the middle of a stimulated cluster, respectively.

coupling (Figures 9A.1,A.2), the change in the dynamics induced
by the external stimulus is not sustained when the stimulus
is over.

3.2.3. Activity source-sink phenomena
Another remarkable feature arising in the IO model networks
is the activity source-sink phenomena when at least two specific
clusters of neurons are present: one cluster with a higher rate of
spiking activity than the average population and the other with

no intrinsic spiking activity (subthreshold oscillating neurons)
or low excitability. In this situation, the wave fronts generated
in the cluster with high excitability (source) travel to the clus-
ter with low excitability (sink). To identify the sources and sinks
we use the algorithm described in section 2.5 which can charac-
terize the wave front propagation. To apply this algorithm, first
we convert the membrane potential time series to binary time
series where 0 means that the neuron is under the firing threshold
(−47 mV), and 1 that it is over the threshold. Then, to identify
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the wave front sources and sinks, we search for arcs centered in
a given region and analyze the evolution of their mean radius.
In the activity sources, the arc radius grows; while in the sinks
the radius decreases. Table 2 shows the result of this analysis in
two simulations where the source and the sink are located in dif-
ferent regions. In both cases, each IO neuron is connected to 12
neighbors with electrical coupling gc = 0.01 mS/cm2. Figure 10
displays snapshots of these simulations. The approximate location
of each cluster is shown in the right panels. In these simulations,
more than 50% of the wave-front arcs whose radii increase are
centered in the cluster with a higher spiking rate. Near 60% of
the arcs whose radii decrease travel to the cluster of subthreshold
oscillating cells.

The wave fronts originated in the source generate secondary
wave fronts and travel through the IO network following dif-
ferent trajectories depending on the sink location where they
finally die. Figure 11 illustrates how the source-sink phenomena
allows the IO network models to generate spiking wave fronts in
different regions and attract them to specific locations by mod-
ulating the excitability of the IO cells. The figure compares the
pathways followed by the spatio-temporal patterns produced in
a network of strongly coupled cells (gc = 0.8 mS/cm2 among
eight neighbors) as a function of the source and sink location.
Insets in each panel indicate the approximate position of both
regions in each situation. The strong level of coupling facilitates
the analysis of the traveling spiking activity since in this case
only one wave front is active at a give time. The pathways in
Figure 11 correspond to a simulation where both the sink and
source location change in time. Note that the trajectories are
similar when the source and the sink are in the same position

Table 2 | Characterization of the wave front propagation traveling

from the source to the sink.

Cluster t1 t2 t3 t4 t5

SA Source 2.6± 0.5 6.8± 0.8 10.0± 1.3 15.7± 2.7 –

SA Sink – 14.9± 3.4 9.6± 2.4 3.1± 0.7 2.2± 0.4

SB Source 2.3± 0.5 6.6± 1.0 9.7± 1.1 14.4± 1.9 –

SB Sink – 13.9± 2.0 8.2± 0.9 3.9± 1.2 2.1± 0.4

The table shows the evolution of the mean radius of the IO wave fronts in two

representative cases to illustrate the activity source-sink phenomena. In a sim-

ulation where a cluster of neurons has a higher rate of spiking activity than the

average population (CA) and another cluster has only subthreshold oscillating

neurons (CB), the evolution of the mean radius of the arcs with center in these

clusters shows that the wave fronts generated in CA travel to CB. The table char-

acterizes the wave front propagation corresponding to the two simulations (SA

and SB) illustrated in Figure 10. The number of connections among the nearest

neighbors is 12 with gc = 0.01 mS/cm2. Both clusters consist of 6× 6 neighbor

neurons. In the cluster with highly excitable neurons (source) Iinj = 0.5 μA/cm2,

while in the cluster with low excitable neurons (sink) σ = 2 and Iinj = 0 μA/cm2.

To calculate the mean radius, the interval from the wave front birth to the wave

front death was divided in five subintervals (ti ) with the same duration. Dashes

indicate that no arcs were detected for that interval. Units are dimensionless as

the radii were calculated in terms of the number of adjacent neurons covered

by a spatio-temporal pattern from a given center detected with the wave front

characterization algorithm described in section 2.5.

(cf. left and right columns). In particular, they have the same
origin and die in the same destination. Movie S9 is a movie of
this simulation. Note that, to better show the propagation of
spike wave fronts, in this activity movie the color scale changes.
Each time the source/sink location changes in the simulation, the
new position is pointed out in the video. The spatio-temporal
patterns mostly travel from the source to the sink (Figure 11).
Nevertheless, the video shows the competition between the global
intrinsic IO network dynamics and the source dynamics. This
competition allows the generation of wave fronts in a location dif-
ferent from the source traveling to the sink (e.g., the wave front
generated in the left-upper corner at instant 0:43 in the movie).
Finally, the video also shows that, due to the stimulus reverbera-
tion effect, after each change in the excitability of a group of cells,
it may exist a short interval where the spatio-temporal patterns
do not travel to the sink region (e.g., the first wave front gener-
ated after the sink/source location change at instant 0:32). After
this adaptation period, the wave fronts are attracted to the new
sink.

Different stimulus can shape the presence of sources and
sinks in the spatio-temporal patterns of the IO. The ability to
attract the wave fronts from one region to another by modulat-
ing the excitability can be an important feature for a system with
topology preserving connections as those found in the cerebellar
circuits.

3.3. EFFECT OF THE INHIBITORY LOOP
As Figure 1 illustrates, the IO is part of an IL with the deep cere-
bellar nuclei and the PCs of the cerebellar cortex. The terminals of
the inhibitory synapses from the cerebellar nuclei are located close
to the gap junctions of the IO (Sotelo et al., 1986) and this can
produce a transient decoupling of neighbor neurons. The effect
of inhibitory synapses into the IO network could in principle
destroy the quasi-synchronization of the subthreshold oscillations
observed in the previous simulations, and thus destroy or largely
affect the dynamics of the spatio-temporal patterns. To test the
effect of this inhibition we have performed simulations using a
simplified model of cerebellar IL (see section 2.2).

The presence of inhibitory chemical synapses coming from
the IL changed both the spiking frequency and the frequency
of the subthreshold oscillations in the IO network simula-
tions. Each synapse induced a transient desynchronization of
the subthreshold oscillations among neighbor cells (Figure 12A).
The synchronization was recovered later for close enough
cells and the spatio-temporal patterns were not destroyed, but
received an additional modulation (see wavelet analysis below).
Movies S10, S11 illustrate the dynamics of two IO networks
where the IL is present: one without stimuli and the other with
several stimuli (Figures 12B,C show snapshots of these movies).
As in the autonomous networks, several frequencies for the oscil-
lations could also be distributed in different clusters with different
stimuli in the presence of the IL (see Movie S11 and the corre-
sponding snapshots in Figure 12C). The inhibitory connections
affect the extent of the propagation of the patterns in the network
and a larger coupling conductance or number of connections
is needed to reproduce the extent of the patterns without the
inhibition.
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FIGURE 10 | The source-sink phenomena appears in the IO network

model when a cluster of neurons is set to have a high rate of spiking

activity while another is set in a subthreshold oscillatory regime. In the
networks illustrated in the figure, the number of connections among the
nearest neighbors is 12 with gc = 0.01 mS/cm2. Sequences develop in time

from left to right with a time interval between frames of 10 ms. Right panel
shows the approximate location of the source (cluster with highly excitable
neurons, Iinj = 0.5 μA/cm2) and the sink, (cluster with low excitable neurons,
σ = 2 and Iinj = 0 μA/cm2). The difference between the top and bottom panel
is the location of the sink cluster (the source is the same in both cases).
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FIGURE 11 | (A–C) The source-sink phenomena allows the IO network models
to generate spiking wave fronts from different regions and attract them to
specific regions. To represent the pathways followed by the spatio-temporal
patterns generated in a network model, we plot the IO cells that are over the
firing threshold in each moment, from the wave front birth to its death. y and z
axes represent the neuron coordinates in the IO network (50× 50 square
shaped), while x axis represents time evolution. Note that time is counted in
terms of frames. The color code is used to illustrate the evolution of the wave
fronts, blue corresponds to moments near their birth and red to moments

near their death. We have selected three different pairs of locations for a
single source and a single sink in the same IO network (also shown in
Movie S9). A total of six pathways are shown in the figure, two examples for
each pathway. The insets indicate the approximate location of the source and
the sink in each case. The figure shows that the wave fronts are generated in
the regions with a higher rate of spiking activity than the average population
(sources), then travel through the IO network in different trajectories
depending on the sink location and finally die in this region. Note the effect of
the periodic boundary conditions of the network in this representation.

The inhibitory modulation is hardly appreciated by an eye
inspection (e.g., see Movies S10, S11), but can be seen in the
wavelet analysis. Figure 12D corresponds to the wavelet analysis
of networks with the IL. The evolution of DWT coefficients in

these networks clearly shows the slow modulatory effect induced
by the IL in two networks with gc = 0.05 mS/cm2 in the absent
or present of stimuli. Note that the more spiky trace (green
trace) corresponds to a network with an external stimuli. Thus,
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FIGURE 12 | (A) Membrane time series for four randomly chosen neurons
(the same as in Figure 4) within an IO network model of 50× 50 units
where the inhibitory loop is present. Each neuron is connected to its
eight nearest neighbors with gc = 0.05 mS/cm2. In the absent of
inhibition, subthreshold activity with a moderate coupling is
quasi-synchronized (cf. Figure 4G). However, here, there exist transient
desynchronizations induced by the inhibitory feedback from the IL
(denoted by the arrow). (B) Spatio-temporal patterns observed in IO
network model without external stimuli under the modulatory effect of
the IL (snapshots of Movie S10). (C) Activity of an IO network with two
clusters of neurons with an external stimuli (snapshots of Movie S11). In

panels (B,C) the IO network topology and stimuli clusters are the same
described for Figure 8A. Sequences develop in time from left to right
with a time interval between frames of 3 ms. (D) Number of coefficients
of the two-dimensional DWT that are bigger than 1 for different situations
where the IL is present. The red trace corresponds to an IO network
without stimuli where each cell is connected with its eight nearest
neighbors with gc = 0.05 mS/cm2. The green trace corresponds to the
same network but with two input clusters of 36 neurons with an
injection of 0.25 μA/cm2 and 0.5 μA/cm2. Note the IL induces an
additional spatial modulation in the IO network activity. Nevertheless, the
spatio-temporal patterns generated by the IO network do not disappear.

the simulations indicate the IL can introduce an additional
modulation in the IO network activity without destroying the
patterns.

4. DISCUSSION
While the anatomy and physiology of the cerebellar circuits has
been studied for more than a century now, the possible roles of
the IO are still under discussion. The activity of this neural sys-
tem has been analyzed mainly at the level of single-cell recordings,
from which network properties were then inferred. In partic-
ular, electrophysiological and imaging techniques have allowed

the direct study of the IO network activity in in vitro (Devor
and Yarom, 2002b; Leznik et al., 2002; Leznik and Llinás, 2005;
Chorev et al., 2007; Hoge et al., 2011) and in vivo (Chorev
et al., 2007) experiments. However, the dynamical properties
of IO networks in vivo have not been explored in detail. Two
major hypothesis have been proposed about the IO: (1) the learn-
ing hypothesis, in which IO activity modifies through long-term
depression the cerebellar input and output (Ito, 1982; Kobayashi
et al., 1998; Ito, 2005; Swain et al., 2011); and (2) the IO
activity contributes to motor control in real time through its
intrinsically rhythmic synchronous activity (Welsh et al., 1995;
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Jacobson et al., 2008). Another proposal brings together these two
views and postulates that the major role of the IO is to reduce
the firing rate carrying the error signal for cerebellar learning
while maintaining its information content (Schweighofer et al.,
2004, 2013). All these hypotheses are plausible for this neu-
ral system with very rich dynamical properties and likely to
be multifunctional.

In this paper we have studied for the first time the IO
dynamics using a large scale network with conductance-based
models. This type of model is necessary to address the dynam-
ics that arises from the interaction between the spiking activity
and the subthreshold oscillations in the context of a diffusive
neural media built on gap-junctions. Electrical gap junctions
have been suggested as a key factor for the characteristic rhyth-
mic dynamics in the IO network (Blenkinsop and Lang, 2006;
Marshall et al., 2007). In our simulations, both the subthresh-
old oscillations and the spiking activity, propagated through the
gap junctions, strongly contribute to the generation of coher-
ent and coordinated spatio-temporal patterns for a large range
of coupling strengths. The coordination arises from the sub-
threshold oscillations that keep a high degree of synchroniza-
tion due to the extensive electrical connectivity while allow-
ing different spiking frequencies in distinct regions of the IO
network.

In the presence of stimuli, different rhythms can be encoded
in the spiking activity of the model IO neurons that nevertheless
remains constrained to a commensurate value of the subthresh-
old frequency. Experimental recordings show that subthreshold
oscillations in the living IO cells are very precise (Devor and
Yarom, 2002a), although their frequency can change at different
moments or between different groups of cells (Devor and Yarom,
2002b; Chorev et al., 2007). In this context, the climbing fibers to
PCs in the cerebral cortex could carry motor signals beating on
the rhythm of the subthreshold oscillations being locally propa-
gated through the precisely timed wave fronts of the IO spiking
activity. It is also possible in this system the organization of a con-
text dependent coordination of the spatio-temporal patterns that
are coming from different sources. Both these functions could
provide, from the commensurability of the different incoming
frequencies, a convenient representation of motor rhythms for the
next processing levels.

Several transient dynamical phenomena were identified in
the simulations of IO networks that can be useful for a
precise encoding and coordination of rhythms. The specific
properties of the dynamic organization of the IO patterns
observed in our simulations can be summarized in the following
points:

• Both the characteristic subthreshold oscillations and the spik-
ing behavior of the IO cells are essential for the genesis of the
transient spatio-temporal patterns in the network.
• Higher values of the electrical coupling conductance gc among

cells increased the synchronization level and diminished the
frequency of the spiking behavior.
• A higher number of electrically coupled neighbors also

decreased the frequency of the spiking behavior for a strong

enough coupling. In this case the degree of synchrony among
cells was higher although the frequency of the subthreshold
oscillations remained nearly constant under all these changes.
• The presence of regions with different stimuli could organize

clusters of cells (i.e., localized patterns) with different spiking
frequencies encoding the stimuli and coexisting in the network
at the same time under the coherence and commensurability
provided by the subthreshold oscillations. The spatial scale of
the patterns evoked by a stimulus depended on the frequency
of the response.
• The stimuli induced spatio-temporal patterns can reverberate

in the network for long periods after the end of the stimuli.
This can be used as a short term memory mechanism in such
media.
• The wave fronts of spiking activity can be transported through

the network to specific locations by regulating the excitability
of different clusters (source-sink phenomena).
• The IL introduces an additional slow modulation in the pat-

terns that can be used for further encoding tasks. In any case,
the induced transient desynchronization does not destroy the
spatio-temporal patterns.

The spatio-temporal patterns in our simulations were similar
to those observed in imaging recording of IO slices reported
in Manor et al. (2000), Leznik et al. (2002), and Leznik and
Llinás (2005). The large scale modeling of IO networks is a pow-
erful tool to interpret the imaging recordings and to overcome
the restricted amount of experiments that can be done in these
setups (Varona et al., 2002; Torben-Nielsen et al., 2012). In partic-
ular, the models can tackle the study of the effect of the IL arriving
from the cerebellar nuclei, which is difficult to assess through in
vitro experimental recordings. In short, IO network simulations
can help us to test hypotheses related to the role of cellular and
network processes in the genesis of neuronal spatio-temporal pat-
terns, as well as to understand how the IO oscillations encode and
control several simultaneous rhythms.

In the context of the study of spatio-temporal dynamics in
brain circuits, an important question is how detailed the single
neuron model has to be (Rabinovich et al., 2006c). The answer
depends on what we are planning to model, the functions of some
brain network or a specific system. In our case, our IO network
model had to display subthreshold oscillations, spiking activity
and input-specific excitability modulations. As we addressed the
effect of the interaction between the subthreshold and spiking
transient activity in the IO networks, our study required a model
that could describe the generation and propagation of currents
during the action potentials. Many morphological and physiolog-
ical details of the IO neurons and the IL were not considered in
the model discussed in this paper, but the fundamental dynam-
ical phenomena observed here does not likely depend on these
details.

Synchronization at different levels is one of the most dis-
cussed phenomena in relation to neural coding (Engel et al.,
1992; Diesmann et al., 1999) and neural dynamics (Chow and
Kopell, 2000; Rabinovich et al., 2000b, 2006a; Engel et al.,
2001), particularly in the context of electrically coupled neurons
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(Bennett and Zukin, 2004; Connors and Long, 2004). Sustained
or transient phase locks and phase synchronization have been
extensively studied both experimentally and theoretically (e.g.,
see Chow and Kopell, 2000; Rabinovich et al., 2006b; Rabinovich
and Varona, 2011; Latorre et al., 2013). Several features of tran-
sient spatio-temporal pattern activity are universal for excitable
systems of different nature (biological, chemical, physical). For
example, the emergence of large-scale spatio-temporal pat-
terns in the form of synchronized spirals is typical for epilep-
tic brains (Stacey, 2012), termo-convection and many other
media (Rabinovich et al., 2000a). The results of this work can
be generalized beyond IO studies, as the control of wave pat-
tern propagation is a highly relevant problem in the context of
normal and pathological states in neural systems (e.g., related
to tremor, migraine, epilepsy, etc.) where the study of the mod-
ulation of activity sinks and sources can have a potential large
impact.

Our modeling has shown important phenomena observed in
IO in vitro and in vivo experiments and produced new predic-
tions regarding the computational properties of this network. IO
spatio-temporal patterns demonstrate specific features because
the IO is a two-level neural media consisting of subthreshold
oscillations and spiking activity in the context of diffusive elec-
trical coupling. These two kinds of activity mutually interact:
spikes influence the phase of the subthreshold oscillation and
at the same time these oscillations determine the probability of
the spikes to occur and coordinate the coherency of large-scale
patterns. Together with the inhibitory feedback, such specificity
of the IO system demonstrates a unique long-lasting encoding
and highly shapeable spatio-temporal patterns that can partici-
pate in functions related to timing control, learning and motor
memory.

Excitatory inputs to the IO neurons coming from the deep
cerebellar nuclei or mesodiencephalic junction, which is inner-
vated by excitatory projection neurons of the cerebellar nuclei (De
Zeeuw and Ruigrok, 1994), have not been discussed in this
paper. Some of the neurons of the mesodiencephalic junction
project directly to motoneurons and interneurons in the spinal
cord responsible for motor activity. Interestingly, the olivo-
cerebellar loops appears to be topographically organized (De
Zeeuw et al., 1998), and they surely react to each of the
local spiking frequencies in the IO patterns. This means that
if different patterns are clustered in the IO encoding differ-
ent rhythms, they could be coordinated, transported and con-
trolled through the intrinsic dynamical properties discussed
above.
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Movie S1 | Nearly independent activity in an autonomous weakly coupled

IO network model. Each neuron is connected to four neighbors with a

weak electrical coupling (gc < 0.001 mS/cm2). See section 2.3 for a

description of the graphical representation. Note that the time scale does

not correspond with the simulation time. For low coupling conductances,

the activity of the neurons is nearly independent (see Figure 4E) and the

spatio-temporal patterns are absent.

Movie S2 | Synchronized activity in an autonomous strongly coupled IO

network model. The network displayed in this video is equivalent to the

network in Movie S1 but with a strong electrical coupling

(gc < 0.8 mS/cm2). In this situation, there is almost total synchronization

among neurons (see Figure 4F), only broken briefly when spiking behavior

occurs, and no spatio-temporal patterns are generated.

Movie S3 | Spatio-temporal patterns of coordinated activity in an

autonomous moderately coupled IO network model. The network

displayed in this video is analogous to the network in Movies S1, S2 but

with a moderate electrical coupling among cells (gc < 0.08 mS/cm2). In

this case, the individual neurons have quasi-synchronized subthreshold

activity (see Figure 4G) and the network displays well-defined

spatio-temporal patterns consisting of propagating wave fronts of spiking

activity from transient phase shifts in the subthreshold oscillations.

Movie S4 | Spatio-temporal patterns in an autonomous IO network model

with weak coupling extended to further neighbors. Each neuron is

connected to 12 neighbors with a weak electrical coupling

(gc < 0.01 mS/cm2). The effect of increasing the number of connections

between neighbors is equivalent to increasing the coupling strength to a

moderate magnitude (cf. Movie S3).

Movie S5 | Nearly constant spatial pattern topology in the absence of

subthreshold oscillations. The video shows the activity of an autonomous

IO network of tonically spiking neurons without subthreshold oscillations

where each unit is connected to four neighbors with a weak electrical

coupling (gc < 0.05 mS/cm2). The spiking behavior is induced in all

neurons of the network by injecting a constant current (see section 2.1

and Figure 2 for details). In this situation, the IO network generates

spatio-temporal patterns, but their spatial topology remains nearly

constant (cf. Movie S3).

Movie S6 | Coexistence and coordination of spatio-temporal patterns

induced by stimuli. Activity of an IO network with two external stimuli.

The number of connected neighbors is eight with gc = 0.05 mS/cm2.

External stimuli are introduced as a constant current injected in clusters of

closed neurons. In this case, we consider two clusters of 6× 6 cells with

Iinj1 = 0.75 μA/cm2 and Iinj2 = 0.25 μA/cm2. Figure 8A shows the

approximate position of each cluster. The stimulated neurons have a

higher spiking frequency. We observe that each stimulated cluster is the

source of a wave front with different frequencies. The IO network is able

to simultaneously encode several coexisting spiking rhythms.

Movie S7 | Encoding of multiple simultaneous rhythms. The network in

this video is equivalent to the network in Movie S6, but with 25

stimulated clusters of 6× 6 cells with different current injections.

Figure 8B shows the approximate position of each cluster. The effect

observed here is the same observed in Movie S6, but with many more

coexisting spiking rhythms that are nevertheless coordinated through the

subthreshold oscillations. Different current injections in the different

clusters are encoded in different spiking rhythms.
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Movie S8 | Stimulus reverberation allows short memory mechanisms in

the IO models. Activity movie showing the stimulus reverberation effect in

an IO network model where each neuron is connected to four nearest

neighbors with electrical coupling gc = 0.05 mS/cm2. Individual neuron

parameters in this simulation are σ = 2 and Iinj = 0.35 μA/cm2. Note that

parameters are set so that each individual neuron only displays

subthreshold oscillations in isolation. The simulation starts with a period

without stimulation (from 0:00 to 0:40). After this interval, two clusters of

6× 6 neurons receive an external stimuli (from 0:40 to 2:00). Here on, the

IO network does not receive any external stimulus again. Note that the

stimulus induced spatio-temporal patterns survive long after the end of

the excitation.

Movie S9 | The source-sink phenomena allows the IO models to attract

the wave fronts to specific locations. Note that in this video the color scale

changes with respect to the one used in the rest of IO activity movies.

Here, blue color means that the corresponding neuron is under the firing

threshold, and red indicates that neurons are firing. To better illustrate the

wave front propagation trajectory, no intermediate colors are used. During

the simulation, the location of the source and the sink changes. Each

change is graphically indicated in the movie. The spatio-temporal patterns

originated in the source cluster (high excitability region) die in the sink

cluster (low excitability region). Wave fronts are attracted to the changing

low excitability regions (cf. Figure 11).

Movie S10 | Modulatory effect of the IL in autonomous IO networks.

Activity movie showing the modulatory effect of the IL in an autonomous

IO network model where each neuron is connected to its eight nearest

neighbors with an electrical coupling gc = 0.05 mS/cm2 (cf. Figures 6 and

Figures 12D, which shows the DWT analysis).

Movie S11 | Modulatory effect of the IL in the presence of stimuli. Activity

movie showing the modulatory effect of the IL in the same network

model as in Movie S10 but in the presence of two external stimuli (cf.

Figures 8C and Figures 12D, which shows the DWT analysis).
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