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PupilEXT: Flexible Open-Source
Platform for High-Resolution
Pupillometry in Vision Research
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Tran Quoc Khanh1
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The human pupil behavior has gained increased attention due to the discovery of the
intrinsically photosensitive retinal ganglion cells and the afferent pupil control path’s role
as a biomarker for cognitive processes. Diameter changes in the range of 10−2 mm are
of interest, requiring reliable and characterized measurement equipment to accurately
detect neurocognitive effects on the pupil. Mostly commercial solutions are used
as measurement devices in pupillometry which is associated with high investments.
Moreover, commercial systems rely on closed software, restricting conclusions about
the used pupil-tracking algorithms. Here, we developed an open-source pupillometry
platform consisting of hardware and software competitive with high-end commercial
stereo eye-tracking systems. Our goal was to make a professional remote pupil
measurement pipeline for laboratory conditions accessible for everyone. This work’s
core outcome is an integrated cross-platform (macOS, Windows and Linux) pupillometry
software called PupilEXT, featuring a user-friendly graphical interface covering the
relevant requirements of professional pupil response research. We offer a selection of
six state-of-the-art open-source pupil detection algorithms (Starburst, Swirski, ExCuSe,
ElSe, PuRe and PuReST) to perform the pupil measurement. A developed 120-fps
pupillometry demo system was able to achieve a calibration accuracy of 0.003 mm and
an averaged temporal pupil measurement detection accuracy of 0.0059 mm in stereo
mode. The PupilEXT software has extended features in pupil detection, measurement
validation, image acquisition, data acquisition, offline pupil measurement, camera
calibration, stereo vision, data visualization and system independence, all combined in a
single open-source interface, available at https://github.com/openPupil/Open-PupilEXT.

Keywords: pupillometry, pupil measurement, stereo camera, vision research, pupil diameter, eye tracking, open
source

INTRODUCTION

The pupil diameter is an essential metric in visual neuroscience, as it has a direct impact on the
retinal irradiance, visual acuity and visual performance of the eye (Campbell, 1957; Campbell
and Gubisch, 1966; Woodhouse, 1975; Schwiegerling, 2000). Since the early days of pupillary
research (Reeves, 1918), the modeling of the pupil light response and its retinal processing path
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was the main focus of investigations (Zandi and Khanh, 2021).
Additionally, the pupil diameter is used as a biomarker in
research disciplines such as cognitive science (Aminihajibashi
et al., 2020; Cherng et al., 2020; Clewett et al., 2020; Sibley
et al., 2020), circadian photoentrainment (Münch et al., 2012;
Bonmati-Carrion et al., 2016; Spitschan et al., 2019; Tähkämö
et al., 2019; Van Egroo et al., 2019), clinical diagnostics (Lim et al.,
2016; Joyce et al., 2018; Chougule et al., 2019) or neuroscience
(Schwalm and Jubal, 2017; Carle et al., 2019). Pupil changes
of 0.015 to 0.5 mm are the range of interest in such studies,
leading to increased resolution and robustness requirements for
pupil measurement equipment. Closed commercial eye-tracking
systems are common in pupil examinations, associated with
high investments without offering the possibilities of validating
the pupil detection’s measurement accuracy. Additionally, with
closed systems, it is not possible to identify the applied
pupil detection algorithm, making it challenging to reproduce
experiments since small inaccuracies in a range of 0.01 mm could
propagate errors to the statistical evaluation of the pupil diameter.
Apart from commercial solutions, there is currently a lack of
an end-to-end open-source measurement platform that can be
easily set up for high-precision pupillometry under laboratory
conditions. Therefore, we developed a freely available hardware
and software platform for pupil measurements to support the
increased interest of interdisciplinary research groups in studying
the pupil behavior. Our proposed platform is a comprehensive
solution for performing accurate, verifiable and reproducible
pupil examinations, competitive with high-end commercial
stereo eye-tracking systems.

The core outcome of this work is an integrated cross-platform
(macOS, Windows and Linux) pupillometry software called
PupilEXT, featuring a user-friendly graphical interface (C++,
QT), covering the relevant requirements of professional pupil
behavior research (Figure 1). The open-source philosophy offers
insight into how the pupil measurement framework performs,
motivating to more transparency in collecting pupil data. We
aimed to provide a plug-and-play integrated hardware and
software platform, allowing interdisciplinary research groups a
precise pupil behavior research without high investments. The
proposed software is designed to incorporate high-resolution
industrial cameras that can be run either individually or in
a stereo camera arrangement. We guarantee a stable frame
rate and synchronous operation of stereo cameras by using a
microcontroller as an external hardware trigger. The integrated
solution with hardware and software is provided in a way that
even scientists with a non-technical background can reproduce
the system. Users simply need to purchase industrial cameras and
run the proposed PupilEXT software.

Inspired by the eye-tracking software EyeRecToo (Santini
et al., 2017) from Santini et al., we offer end-users a
selection of six state-of-the-art open-source pupil detection
algorithms (Starburst, Swirski, ExCuSe, Else, PuRe and PuReST)
to perform the pupil measurement. The system allows researchers
to report the used pupil algorithm with the respective
parameters since the pupil detection method itself could
influence the captured data. Additionally, end-users will be
able to determine the pupil diameter from externally acquired

FIGURE 1 | The graphical user interface of the PupilEXT software during a
pupil measurement with one connected industrial camera. The measured
pupil values are listed in real-time in a table or can be visualized graphically.
We provide a selection of six state-of-the-art pupil detection algorithms from
the literature. Stereo camera systems can be connected and calibrated
seamlessly to acquire the absolute pupil diameter. The accuracy of a pupil
measurement or calibration can be verified by implemented routines.

image sequences through the software suite. The integrated
platform is available to other research groups as an open-
source project, ensuring continuous development in the future.
We aimed to bridge the gap between visual neuroscience
or experimental psychology and engineering sciences, making
professional remote pupil measurements under laboratory
conditions accessible for everyone, without suffering the features
of commercial solutions.

The first section of this work deals with the scientific
background of pupil behavior research and the rising popularity
of this topic, from which we derive the motivation of the
proposed pupil measurement platform. Based on that, the
current state of pupillometry and the availability of suitable
open-source frameworks are highlighted. Next, we conducted
a meta-analysis of existing pupil detection algorithms from the
literature intending to select and integrate appropriate algorithms
in the proposed PupilEXT software. The functionality of the
platform is covered by starting with the hardware components,
consisting of cameras, microcontroller and a near-infrared (NIR)
illumination. Here, we describe the possible hardware topologies
with which end-users can conduct a pupil measurement or offline
analysis of external captured images. In particular, we show
the possibilities of validating a pupil measurement and camera
calibration with the PupilEXT software. Finally, the performance
of the system is demonstrated with an experiment concerning
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the pupil light response, clarifying the provided pupil metrics for
reliable data evaluation.

THE RISING POPULARITY OF PUPIL
LIGHT RESPONSE RESEARCH

The human retina contains receptors with distinct
photopigments, capable of transforming light quanta of
different wavelengths λ into frequency-coded action potentials
with information on color and brightness features from a visual
stimulus. Photoreceptors in the retina are classified according
to their broad spectral sensitivity in the visible spectrum range
and respective peak response λPeak. In the photopic adapted eye,
the retinal image-forming pathway is mainly controlled by the
short-wavelength (S, λPeak 420 nm), medium-wavelength (M,
λPeak 535 nm) and long-wavelength (L, λPeak 565 nm) sensitive
cones (Stockman and Sharpe, 2000; Solomon and Lennie, 2007;
Lucas et al., 2014). At scotopic and mesopic light conditions,
the more sensitive rods (λPeak 498 nm) dominate the vision.
Both cones and rods transmit, depending on the adaptation
state of the eye, integrated signals in different stages through
ganglion cells to the visual cortex of the brain (Van Meeteren,
1978; Smith et al., 2008; Jennings and Martinovic, 2014). In 1924,
the International Commission on Illumination (CIE) introduced
the photopic luminous efficiency function V(λ) to estimate the
visual effectiveness of light spectra for humans (Bodmann, 1992;
Sharpe et al., 2005; Sagawa, 2006).

A standard value in estimating the human brightness
perception is the luminance L given in cd/m2, which is a
V(λ) weighted photometric quantity (Berman et al., 1990;
Lennie et al., 1993; Withouck et al., 2013). The luminance
is merely a first approximation of the brightness perception,
as only the additive contribution of L- and M-cones to
the image-forming pathway is managed by V(λ) (CIE, 2011;
Besenecker and Bullough, 2017; Hermans et al., 2018; Zandi
et al., 2021). Since 1926, about eight pupil models were
proposed that integrated the luminance as a main dependent
parameter, assuming that the afferent pupil control pathway
can be described by a V(λ) weighted quantity (Holladay,
1926; Crawford, 1936; Moon and Spencer, 1944; de Groot and
Gebhard, 1952; Stanley and Davies, 1995; Blackie and Howland,
1999; Barten, 1999; Watson and Yellott, 2012; Zandi et al.,
2020).

The discovery of a new type of receptors in the outer retina
called intrinsically photosensitive retinal ganglion cells (ipRGCs)
was a turning point of vision science (Provencio et al., 1998,
2000; Gooley et al., 2001; Berson et al., 2002; Hattar, 2002;
Mure, 2021), which has led to a rethinking of classical retinal
processing models. This subset of ganglion cells are part of
the non-image-forming mechanism of the eye because of their
projection to regions of the suprachiasmatic nucleus (SCN) and
olivary pretectal nucleus (OPN) (Ruby et al., 2002; Berson, 2003;
Hattar et al., 2003; Do et al., 2009; Ecker et al., 2010; Allen
et al., 2019; Do, 2019). As a result, the ipRGCs can modulate
the circadian rhythm (Freedman, 1999; Brainard et al., 2001;
Thapan et al., 2001; Rea and Figueiro, 2018; Truong et al., 2020)

and pupil light response (Lucas et al., 2001, 2020; Gamlin et al.,
2007; Young and Kimura, 2008; Barrionuevo et al., 2018; Murray
et al., 2018) via a processing path that works independently of
the classical image-forming pathway (Hattar et al., 2006; Güler
et al., 2008; Schmidt et al., 2014; Spitschan, 2019a). Recent studies
showed that the pupil light response cannot be described by the
V(λ) weighted luminance alone, making a revision of classical
pupil models necessary (Zandi et al., 2018, 2020; Spitschan,
2019b; Zele et al., 2019). Therefore, one key topic in pupillary
research is the development of a valid empirical model (Zandi
et al., 2020), providing a spectral and time-variant function with
dynamic receptor weighting to predict the temporal aperture
across individuals (Rao et al., 2017; Zandi and Khanh, 2021).
When using stimulus spectra along the Planckian locus for
triggering the pupil light response, it is essential in measurements
that amplitudes in the range of 0.1 to 0.4 mm are captured
accurately to specify intrasubject variability (Kobashi et al., 2012)
in a pupil model. However, a special requirement for pupil
measurements arises when the pupil is used as a biomarker
for quantifying the cognitive state (Morad et al., 2000; Merritt
et al., 2004; Murphy et al., 2014; Ostrin et al., 2017; Tkacz-Domb
and Yeshurun, 2018; Hu et al., 2019; Van Egroo et al., 2019;
de Winter et al., 2021; Van der Stoep et al., 2021) or clinical
symptoms of diseases (Hreidarsson, 1982; Maclean and Dhillon,
1993; Connelly et al., 2014; Lim et al., 2016; Granholm et al.,
2017; Wildemeersch et al., 2018; Chougule et al., 2019). Cognitive
processes such as memory load, arousal, circadian status, or
sleepiness have a transient impact (Watson and Yellott, 2012) on
the pupil diameter with aperture changes of 0.015 to 0.53 mm
(Beatty and Wagoner, 1978; Beatty, 1982; Schluroff et al., 1986;
Jepma and Nieuwenhuis, 2011; Pedrotti et al., 2014; Bombeke
et al., 2016; Tsukahara et al., 2016; Winn et al., 2018), making
the reproducibility of such effects difficult if the accuracy of the
measurement equipment has not been sufficiently validated.

Today, the pupil behavior has become an interdisciplinary
field of research (La Morgia et al., 2018; Schneider et al.,
2020; Joshi, 2021; Pinheiro and da Costa, 2021) in which
the number of involved scientists rises, as the trend of the
number of publications with the keywords “pupil diameter”
or “pupillometry” reveals (Figure 2). The renewed attention
to the temporal pupil aperture (Binda and Gamlin, 2017), its
application in clinical diagnostics (Granholm et al., 2017; Joyce
et al., 2018; Chougule et al., 2019; Kercher et al., 2020; Tabashum
et al., 2021) and increasing popularity of chromatic pupillometry
(Rukmini et al., 2017; Crippa et al., 2018) topics requires
additional efforts in terms of standardization and provision of
consistent tools, contributing to comparability in measurement
and pre-processing methodologies. For instance, one key point of
standardization is the prevention of artificially induced changes
to raw data by the used tools, as in cognitive or vision-related
pupillary research small diameter margins are of interest. The
main methodology factors that could influence the research
results or reliability of pupil behavior studies are as follows:

(1) Number and depth of described experimental metrics when
reporting the results concerning the stimulus modality or
pre-conditioning state of the subjects.
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FIGURE 2 | The number of publications with the keywords “pupil diameter”
and “pupillometry” since 1985 to 2019, based on the Web of Science
database. The rising count of publications in recent years indicates that the
topic of pupil behavior is becoming more important. Due to the
interdisciplinary field of research, standardization of measurement
methodology and data processing is favorable, making study results
comparable.

(2) The used pre-processing method to smooth out and clean
the measured pupil raw data.

(3) The used measurement hardware and software framework
in collecting pupil data.

In order to minimize the influencing factors, there are actions
in the research community to provide the essential tools for
pupil research to lower the barrier of entering the topic and
ensuring the comparability of future research. A major step in
this direction was the work “Standards in Pupillography” by
Kelbsch et al., which summarized the current knowledge on
pupil behavior and defined recommendations to be considered
by author groups when reporting pupil study results (Kelbsch
et al., 2019). The standardization approach mainly dealt with the
minimal set of metrics that authors need to specify in published
research, allowing third parties to reproduce experiments when
necessary. Regarding the topic of data pre-processing, the focus
is on which methods should be used to detect and remove
artificially induced pupil changes, caused by eye blinks and
fast gaze jumps during pupil recording sessions. Ranging from
catching artifacts to smoothing out the measured raw data, a
large number of software libraries and guidelines exist that can
assist researchers in carrying out such tasks (Pedrotti et al., 2011;
Canver et al., 2014; Lemercier et al., 2014; Attard-Johnson et al.,
2019; Kret and Sjak-Shie, 2019; van Rij et al., 2019).

The research area of pupil behavior benefits from the
interdisciplinarity of the research groups, which is promoted
by the provision of tools and predefined standardized
methodologies. However, the pupillometry technique itself is a
significant hurdle, since there are no standardized requirements
or reliable end-to-end open-source systems for recording pupil
data in high-precision experiments under laboratory conditions.

THE ISSUE OF PUPILLOMETRY

Typically, a pupil measurement can be performed manually
by using a double-pinhole pupillometer (Holladay, 1926) or
photographs with a reference object (Crawford, 1936) or through

an integrated eye-tracking system. A higher proportion of pupil
behavior studies is conducted by using an eye-tracking system,
as identifying the pupil region is often a necessary step before
estimating the gaze position (Lee et al., 2012). Commercial
eye trackers from Tobii Pro, Smart Eye Pro or Eyelink are
common solutions, which are easy to set up and usable without a
technical background but cost approximately between 5,000 and
40,000 euros (Hosp et al., 2020; Manuri et al., 2020). Purchasing a
set of high-resolution professional industrial cameras costs about
200 to 600 euros, with which an optical accuracy of 0.01 mm/px
or more could be achieved. Thus, the price gap from commercial
products results from the integrated software and license fees.

Commercial systems rely on closed software, restricting
thereby conclusions about the used pupil-tracking algorithms,
which is essential for the reproducibility. Additionally, based
on the authors’ best knowledge, there is no commercial eye-
tracking system that states the accuracy of their measured pupil
diameter in the datasheet nor is a manual validation possible, as
their solutions’ primarily focus is on gaze tracking. Especially in
studies where pupil diameter effects are in a range of 10−2 mm, a
validation of the system’s pupil measurement accuracy through a
reference object is desirable.

The open-source head-mounted eye tracker project by
Pupil Labs (Kassner et al., 2014) is an alternative to fully
commercialized solutions, allowing free head movements and
experiments in natural environments where a classic remote eye-
tracking set-up is not possible. However, we do not recommend
this system for precise pupil measurement applications, due to
the cameras’ positions which are highly off-axis, causing pupil
foreshortening errors (Hayes and Petrov, 2016). Additionally, the
absolute pupil diameter is calculated indirectly by a method from
which conversion accuracy is not yet fully validated for pupil
measurements. Therefore, the solution provided by Pupil Labs
is more suitable for experiments in which only the relative pupil
diameter is of interest.

Remote tracking systems, positioned on the optical axis of the
eye, are better suited for reliable pupil measurements. Various
published approaches provide isolated components to build a
custom remote stereo camera system (Hiley et al., 2006; Long
et al., 2007; Kumar et al., 2009; San Agustin et al., 2010),
which is not always feasible for interdisciplinary research groups,
leading to a preference for commercial solutions. However, a
groundbreaking project called EyeRecToo by Santini et al. (2017)
has taken the first steps in establishing the idea of a competitive
open eye-tracking software suite, which even has the option
of choosing between different state-of-the-art pupil detection
algorithms. Unfortunately, the software is mainly designed for
head-mounted eye trackers or webcams and the use-cases are not
targeted for the experimental pipeline of pupil research under
laboratory conditions. For instance, a stereo camera arrangement
with extrinsic calibration and the subsequent validation of
a camera’s accuracy is not possible, to our best knowledge.
Additionally, the software does not offer the option for evaluating
external captured images from a stereo or mono camera system.

The success of the Pupil Labs project shows that end-users
wish to have a fully integrated system consisting of hardware
and software, packed with the functionalities of a professional
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commercial solution. Thus, in developing our proposed platform,
we have focused not only on the functionalities and requirements
of pupil researchers but also on the end-user’s experience,
which should provide an easy way to build and run a pupil
measurement system.

CHOOSING PUPIL DETECTION
ALGORITHMS FOR PupilEXT

The main application for an eye-tracking system is the estimation
of a subject’s gaze location, which usually needs to recognize
the pupil contour and its center position. Due to the high
contrast between the sclera and the pupil region in a digital
image, the recognition of the pupil is in principle possible
through a combination of thresholding, edge detection and
morphological operations (Goñi et al., 2004; Keil et al., 2010;
Topal et al., 2017). State-of-the-art pupil detection approaches
have additional steps in the image processing pipeline, ensuring
a more robust contour fit while having a high and accurate
detection rate. Under laboratory conditions, eye images are
mainly captured using a NIR light source to avoid cornea
reflections of the ambient environment, leading to optimized
pupil detection. However, accurate pupil detection is an
essential step in eye-tracking systems since a flawed edge
detection could have an impact on the performance of an
eye tracker (Santini et al., 2018a). Therefore, pupil detection
methods intended for eye-tracking systems can also be used
for pupil measurement, if an algorithm features the detection
of aperture sizes.

There are three different illumination set-ups proposed for
capturing a series of eye images that need to be in line with
the used pupil detection algorithm (Li et al., 2005). In the
bright-pupil method, a NIR-light source is placed close to the
optical axis of a camera, resulting in a positive contrast between
the iris and pupil region (Hutchinson et al., 1989). Due to
the retinal reflection of the illumination back to the camera,
the pupil region appears brighter than the iris and sclera itself
(Li et al., 2005). In the dark-pupil method, the light source
is placed off-axis to the camera. Thus, the pupil appears as a
dark spot surrounded by the brighter iris (negative contrast).
A third method called the image-difference technique leverages
the image difference between dark- and bright-pupil to extract
the pupil’s contour. For this, one NIR illumination should be
positioned close to the camera’s optical axis (NIR 1) and a
second one off-axis (NIR 2). By synchronizing the illuminations’
flashing interval with the sampling rate of a camera, one positive
contrast image can be captured in a first frame (NIR 1, ON;
NIR 2, OFF) and a second frame with negative contrast (NIR
1, OFF; NIR 2, ON). This approach can lead to a more robust
pupil detection but has the drawback that more effort has
to be invested in the illumination. Furthermore, two frames
are needed for each captured pupil size value, reducing the
overall sampling rate. The recent work of Ebisawa (1994, 2004),
Morimoto et al. (2002), and Hiley et al. (2006) used this image-
difference technique.

However, the core of a pupil measurement system is the
algorithm that is used to determine the pupil diameter. Recently
published works developed state-of-the-art approaches that
can be applied in our proposed software PupilEXT. Similar
to the work of Topal et al. (2017), we conducted a meta-
analysis of 35 published pupil detection methods (Table 1)
to evaluate and select suitable algorithms for our proposed
measurement platform.

The potential algorithms need to estimate the pupil size,
as this is the main focus of this work. From the 35
evaluated algorithms, we can rule out 11 approaches since
they are not able to output the pupil size (Table 1). We
decided to consider only algorithms designed for dark-pupil
detection, serving to more freedom in setting up the position
of the NIR light source. Another criterion for the selection
was the availability of the implementation since we started
from the working hypothesis that published procedures with
existing programming code are ready for practical applications.
Since our graphical user interface (GUI) should offer real-
time pupil detection, only C++-implemented approaches
were of interest.

Based on these criteria and taking the algorithms’ recency into
account, we selected a total of six pupil detection approaches for
PupilEXT. First, we decided to use the robust Starburst algorithm
by Li et al. (2005), which was considered as a standard approach
in pupil detection for a long time, implemented in several works
throughout the years. Furthermore, we added the algorithm by
Świrski et al. (2012), ExCuSe by Fuhl et al. (2015), ElSe by Fuhl
et al. (2016a), PuReST by Santini et al. (2018b) and PuRe by
Santini et al. (2018a). The algorithms ElSe, ExCuSe, PuRe and
PuReST are licensed for non-commercial use only. The pupil
detection algorithm from Swirski et al. is licensed under MIT, and
the Starburst algorithm under GNU GPL. More details about the
licensing terms of the detection algorithms can be found on the
project page of PupilEXT1.

We did not select pupil detection approaches based on neural
networks (Mazziotti et al., 2021). Models such as DeepEye (Vera-
Olmos et al., 2018) and PupilNet (Fuhl et al., 2016b, 2017) reveal
promising results, but their computational complexity is still
too high for real-time pupil measurement applications without
special hardware.

The user has the option to choose between these state-of-the-
art algorithms for pupil measurement in the proposed PupilEXT
platform. Additionally, the algorithms’ parameter can be checked
and adjusted in the user interface to increase the software-
based measurement accuracy, if necessary. By default, the PuRe
algorithm is selected because it is considered as a top performer
and the number of parameters are relatively user-friendly,
making it to a generalized procedure for different measurement
settings (Santini et al., 2018a,b). While the algorithms are
solely based on recent publications from various author groups,
the interested readership is referred to the original works of
the respective pupil detection methods or works that already
reviewed the algorithms (Topal et al., 2017; Manuri et al.,
2020).

1https://github.com/openPupil/Open-PupilEXT
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TABLE 1 | Comparison of the pupil detection algorithms identified in the literature.

Algorithm Approach
basis

Downscaling Bright/dark
pupil

Thresholding Ellipse
fitting

Center of
mass

Temporal
information

Runtime in
ms

Pupil size
output

Blink
detection

Confidence
measure

Implementation
available

Pupil size
evaluation

Ebisawa, 1994 Image-diff.
⊙

  

Zhu et al., 1999 Curvature �  LSM   

Morimoto et al., 2000 Image-diff.
⊙

   67

Pérez et al., 2003 Threshold �   40  

Lin et al., 2003 Edge � LSM  166  

Goñi et al., 2004 Threshold �    33

Ebisawa, 2004 Image-diff.
⊙

∗   20  

Starburst
Li et al., 2005

Rays � ∗ RANSAC  100 (3)   #  

Hiley et al., 2006 Image-diff. �   12 (2)

Long et al., 2007 Threshold # �   (1) 6.67

Dey and Samanta, 2007 Threshold  � ∗ Circle 127   

San Agustin et al., 2010 Threshold �  RANSAC    

Kumar et al., 2009 Edge � ∗ LSM    

Keil et al., 2010 Threshold �   60

Lin et al., 2010 Threshold # �    (1)  #

Lanatà et al., 2011 Threshold �  LSM  

Świrski et al., 2012 Threshold � ∗ RANSAC  3.77    

Schwarz et al., 2012 Threshold �    

Świrski and Dodgson, 2013 3D model � ∗ RANSAC     

Kassner et al., 2014 Edge �  LSM 45 (3)      

Chen and Epps, 2014 Threshold � ∗ LSM 60 (2)   #  

ExCuSe (Fuhl et al., 2015) Edge  �  LSM 7    

SET (Javadi et al., 2015) Threshold �    100   

ElSe (Fuhl et al., 2016a) Edge  � ∗ LSM  7   #  

PupilNet (Fuhl et al., 2016b) CNN # �

APPD (Topal et al., 2017) Curvature � MSM 5.37   #  

PuRe (Santini et al., 2018a) Edge  � LSM 5.17     

PuReST (Santini et al.,
2018b)

Edge  � ∗ LSM  1.88     

Li et al., 2018 Edge � LSM  

DeepEye (Vera-Olmos et al.,
2018)

CNN � ∗  33 (4)  

FREDA (Martinikorena et al.,
2018)

Image-diff. �  63 (2) #  

CBF (Fuhl et al., 2018b) Feature-
class.
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HARDWARE SET-UP OF THE CAMERA
SYSTEM

We linked the PupilEXT software with a specific camera
brand (Basler) to provide a comprehensive platform for
pupillometry. In this way, we allow a plug-and-play usage
of the proposed system since the software is adapted to
the hardware. The Pylon SDK is used to interface the
cameras with the measurement software PupilEXT. Thus,
any Basler branded industrial camera is integrable into the
pupillometry platform. We explicitly do not support consumer
webcams since PupilEXT is intended for reliable and accurate
research applications. Generally, live or post-acquisition pupil
measurements are supported through different measurement
configurations (Figure 3).

Two cameras are needed for the stereo camera arrangement
to detect the absolute pupil diameter directly (Figure 3A).
One essential factor in the processing accuracy of such
a configuration is the synchronization level between the
cameras. Therefore, we synchronized the cameras through
an external hardware trigger, leading to a stable system
comparable with a professional manufactured commercial
solution. Such a hardware trigger is needed to acquire images
from both cameras simultaneously. In low-budget systems, the
image acquisition is usually made by a software trigger that
cannot guarantee synchronized image acquisitions, leading to
reduced measurement accuracy. In our proposed system, the
trigger signal is generated through a microcontroller, which is
automatically controlled by PupilEXT. Additionally, we support
pupil measurements with a single camera (Figures 3B–D). Here,
the integration of a microcontroller for triggering an image
acquisition is optional (Figure 3B). However, by including
a microcontroller in the one-camera set-up, the duration
of a recording session can be set. Note that when using
a single camera, the pupil diameter is measured in pixels.
Through an extra recording trial with a reference object,
the pixel values can be manually converted to millimeters.
If cameras are connected to PupilEXT, a real-time pupil
measurement with one of the six pupil detection algorithms
can be carried out. Furthermore, we support the option of
recording images without pupil detection. In this way, it is
possible to analyze the images in a post-acquisition mode without
connected cameras (Figure 3E). In such an offline mode, image
sequences from externally recorded cameras can also be loaded,
making it possible to leverage the software on already existing
pupil image datasets.

We recommend a NIR illumination unit to avoid corneal light
reflections in the eye from the visible spectrum, which could
impact the accuracy of pupil detection. For this, a NIR bandpass
filter should be mounted in front of the camera’s lens. The
advantage of a NIR-based measurement is that the image quality
does not suffer in pupil light response experiments. Both the
source code of the microcontroller for generating the hardware
trigger and the respective NIR circuit board design (Figure 3D)
are provided together with the PupilEXT software, allowing to set
up the system effortlessly. The following subsections deal with the
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FIGURE 3 | Illustration of the possible measurement configurations that can be realized with the PupilExt software. (A) In stereo vision mode, two cameras are
connected to the computer via USB3.0. A microcontroller is connected to the IO-pins of the camera, which triggers a synchronized image acquisition on both
cameras. We recommend using a Nucleo-STM32 microcontroller since the provided source code can be used to flash the electronic. We implemented a UART
communication protocol in the microcontroller so that PupilExt can automatically control and synchronize the stereo camera system via the connected hardware, via
the electronics. (B) In mono camera vision mode, it is possible to control the image acquisition by an external hardware trigger, which has the advantage that the
recording time can be set accurately. When capturing multi-image sequences, the hardware trigger consists of a square wave signal in which each rising edge
triggers an image acquisition. (C) The use of a microcontroller is optional when connecting a single camera. Without the use of a microcontroller, a software trigger is
used for image acquisition. (D) Prototype of a pupillometry set-up with a single camera and respective near-infrared (NIR) illumination unit. (E) The software PupilExt
can be used without connected cameras in an offline mode to detect the pupil diameter from externally captured images.

different operational configurations of the platform (Figure 3)
and the needed hardware elements in more detail, ensuring the
reproducibility of the measurement platform.

Camera Set-Up
We built a prototype consisting of two Basler acA2040-120um
cameras with 50-mm lenses to validate the pupillometry platform
in a sample study. The cameras operated in stereo vision mode
to measure the absolute pupil diameter. The cameras support a
resolution of 2,048 px × 1,536 px with a maximal frame rate of
120 fps. We positioned the system in front of an observer at a
working distance of 700 mm, with a baseline distance between the
cameras of 75 mm in which the secondary camera has an angle
of 8◦ to the main camera (Figure 3A). A NIR illumination unit,
consisting of four LEDs with a peak wavelength of 850 nm (SFH-
4715AS), is placed near the subject’s head without obstructing the
view of the cameras. Furthermore, the camera lenses are equipped
with a high-pass infrared filter (Schneider IF 092 SH) with a
transmission range of 747 to 2,000 nm, which should reduce
artifacts from the ambient illumination.

The cameras are connected through their USB 3.0 interface
with the computer for data transmission. Additionally, the
IO-Pin connector of the cameras is used to adjust the
timing, execution and synchronization of the image capturing.
A microcontroller (Nucleo STM32F767ZI) is integrated into
the pupillometry platform, controlling the cameras’ capturing
interval through a shared digital signal.

For this, the microcontroller transmits a periodic square
waveform modulated signal with a voltage amplitude of 3.3 V.
Each rising edge of the signal triggers an image (Figure 3B). The
frequency and duration of the square wave signal are adjustable

through PupilEXT, affecting the frame rate and recording time
of the camera. While the use of a microcontroller is obligatory
when shooting stereo vision, it can be used optionally in the
single-camera set-up (Figures 3B,C). Before an absolute pupil
measurement can be carried out in stereo vision mode, extrinsic
and intrinsic calibrations of the cameras need to be performed in
PupilEXT.

Embedded Hardware Trigger
In stereo vision mode, the microcontroller must be connected
to the computer so that PupilEXT can communicate with the
embedded electronic via UART. We have implemented a simple
text-based protocol in the microcontroller, for starting and
stopping the trigger signal. Control commands can be dispatched
via the graphical interface in PupilEXT or manually through a
serial port terminal application like CoolTerm or HTerm. If the
provided embedded microcontroller source code is not used,
users can easily implement the protocol themselves in their
preferred microcontroller brand.

To start a trigger signal, the parameters
COUNT_OF_TRIGGER and TIME_TRIGGER_ON must be
set in the protocol. The parameter COUNT_OF_TRIGGER
indicates how many rising flags should be transmitted.
The parameter TIME_TRIGGER_ON sets the pulse width
in microseconds, which is used to set the sampling rate
of the camera. Both parameters are set with the string
command < TxCOUNT_OF_TRIGGERxTIME_TRIGGER_
ON > via the UART interface of the microcontroller. The
“x” term is used as a separator between the parameters. For
instance, if a trigger signal should be used for capturing a
total of 100 images with a rate of 10 ms, the protocol would
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correspond to < Tx100x5000 > . A detailed introduction of how
to flash and install the embedded electronic is provided on the
project’s webpage.

THE CROSS-PLATFORM SOFTWARE
SUITE

The core of the pupillometry platform consists of the
software PupilEXT, structured and implemented based on
the requirements of scientifically oriented pupil behavior
research. Although pupil measurements can be performed with
commercial eye-tracking solutions, the closed system design
blocks the transparency of used pupil detection algorithm and
the determination of its pupil measurement accuracy. Moreover,
such commercial systems are not fully intended for absolute
pupil measurements. With PupilEXT, we offer not only a free
alternative to commercial solutions but also extended features
in the topics of pupil detection, measurement resolution,
data acquisition, image acquisition, offline measurement,
camera calibration, stereo vision, data visualization and system
independence, all combined in a single open-source interface.

It is possible to choose between the six discussed pupil
algorithms (Starburst, Swirski, ExCuSe, ElSe, PuRe and
PuReST) and to freely adjust their processing parameters
and to optimize the pupil contour’s detection accuracy.
Additionally, the parameters of a pupil detection method can be
reported, leading to an increase in the reproducibility of pupil
examinations. We have integrated the pupil detection methods
into one unified framework by using a standard pupil detection
interface (Figure 4).

For this, the PupilDetectionMethod interface is adapted
from the EyeRecToo eye-tracking software (Santini et al.,
2017), which employs an interface to integrate multiple pupil
detection algorithms. It defines a set of abstract methods
like run and hasConfidence, which are concretized through
the specific algorithm implementation (Santini et al., 2017).
The run method defines the respective pupil detection algorithm
that returns a detected pupil from an image. Through
hasConfidence, we verify the availability of a confidence measure
from a respective algorithm. The interface provides a general
confidence measure that can be used if an algorithm does
not provide its confidence measure (Santini et al., 2018a). An
additional component that is adapted from EyeRecToo (Santini
et al., 2017) is the Pupil class, which aggregates all data of a
detected pupil and its fitted ellipse into one class. A simplified
UML diagram of the adapted structure is illustrated in Figure 4.

In PupilEXT, the camera frame rate is adjustable up to 120 Hz.
Pupil measurement data are stored in a comma-separated value
(CSV) file containing the pupil diameter, confidence measure and
ellipse parameters. Besides recording real-time pupil data, the
software features storage of raw images for later pupil evaluation.
A comprehensive stereo and mono calibration procedure within
the software guarantees an accurate and validatable measurement
pipeline. The unique feature is the integration of professional
industrial cameras with stereo vision capabilities, dedicated to
absolute pupil diameter measurements. Metrics are visualized

FIGURE 4 | UML diagram of the PupilDetectionMethod interface used to
implement the various pupil detection algorithms. Additionally, the Pupil class
is used for collecting a pupil detection result.

in real-time during pupil measurements, providing an ad-hoc
evaluation of metrics.

Camera Interface
Before PupilEXT can perform a remote pupil detection, images
must be grabbed from the camera(s). We access the Basler
cameras with their USB 3.0 interface using a manufacturer-
provided programming library called Pylon. Through the library,
we configure both the camera preferences and activate an image
capturing trigger for passing to the image processing pipeline. We
distinguish between two image acquisition modes of a camera.
With a software trigger, the camera acquisition is controlled over
the Pylon library interface to record images at a specified frame
rate continuously. In the single-camera mode, commonly, the
software trigger is used, and the hardware trigger is optional.
The hardware trigger is mainly implemented for the stereo vision
mode, in which two cameras synchronously capture images upon
a receiving a signal flag on an IO-pin. In stereo camera set-ups,
the integration of the hardware trigger is obligatory. In such
set-ups, a software trigger cannot guarantee that both cameras
capture an image at the same time, affecting the performance
of a stereo system. Connection establishment and message
transmission to the microcontroller is accomplished via a serial
port. The microcontroller configuration includes the settings for
a camera frame rate as well as the duration of the recording.

To integrate the camera(s) in PupilEXT, a Camera interface
was created, defining a set of functions for all camera types
(Figure 5). Three types of cameras are differentiated: a single
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FIGURE 5 | UML diagram of the Camera interface and its implementations
modeling for different types of cameras in the PupilEXT software. The
CameraImage class is used to represent resulting images and their
corresponding metadata.

camera, a file camera and a stereo camera consisting of the
main and secondary cameras (Figure 5). The file camera can
be viewed as a camera emulation used in offline pupil detection
sessions from previously recorded images retrieved from disk
storage. However, by emulating the playback of images as a
camera object, it can be integrated seamlessly into existing
functions of PupilEXT. For the representation of the camera
image, the CameraImage class is defined (Figure 4). The image
distribution in the PupilEXT software from the camera(s) is
organized with an internal event handler function. For this,
the Pylon camera library provides an interface that is called
every time a corresponding camera acquires a new image.
However, for a stereo camera set-up, an image recording consists
of two corresponding images that will be delivered by two
separate function calls.

The initial approach was to leverage a camera internal
timestamp to associate the two corresponding images. However,
matching the two cameras, internal timestamps of corresponding
images led to a buggy image rectification. Therefore, it was
necessary to find a more reliable approach. Besides the camera(s)
internal timestamp, additional metadata such internal frame
count is provided by the Pylon API. As long as both cameras
start the acquisition simultaneously, the frame counts match.
This approach ensures a fixed and reliable order of stereo image
acquisitions processed by PupilEXT.

Image Recording and Reading for Offline
Analysis
For retrospective detection of the pupil diameter, raw image
sequences from the camera can be stored directly on the hard
disk. Here, a decision about the format of the images needs to
be made. Users can choose between Windows Bitmap (BMP),
Tagged Image File Format (TIFF) and JPEG in the preferences
of PupilEXT. The BMP format represents an uncompressed
image format, resulting in large file size. In contrast, JPEG
is a lossy compressed format commonly used in consumer

photography due to its small size. The TIFF cannot be
directly categorized into either of these classes, as it represents
an adaptable container that can hold both compressed and
uncompressed image formats. A clear-cut decision on which
format to use cannot be made easily. While uncompressed
formats such as BMP would result in the highest quality of
images, the size of data that needs to be handled cannot be
underestimated. For the use case of recording images on a disk,
one needs to be able to write image data with a rate up to the
camera’s maximal frame rate, i.e., 120 fps.

Given the camera(s) of the reference system with a resolution
of 2,048 px × 1,536 px and assuming a bit depth of 8 bits for
greyscale images, the resulting image size is≈3.15 MB. However,
with 120 images per seconds, this results in a required writing
speed of ≈377.49 MB/s for a single camera and ≈755 MB/s for
the stereo set-up. Image size for compressed formats such as
JPEG cannot be estimated this easily. Thus, an average image
size observed from sample recordings of the reference system
is taken. Results are greyscale images with an average size of
around 840 kB. Consequently, JPEG requires a writing speed
of up to ≈100 MB/s for a single camera and around 200 MB/s
in a stereo camera setting. Solely based on the required writing
speed without incorporating delays from, i.e., the computational
overhead of compression, the speed of traditional hard disk
drives (HDDs) is only sufficient for writing JPEG images in a
single-camera set-up. More modern hardware in form of SATA
3, solid-state drives (SSDs) can further handle single and stereo
camera set-ups for JPEG images, or just a single camera using
BMP images. For recent NVMe-based SSDs, the writing speed is
theoretically sufficient for writing BMP images in a stereo camera
set-up. Note that the discussed rates all referred to the maximal
frame rate of 120 fps. Saving images for later analysis is generally
recommended for short recordings where the accuracy of the
various pupil detection algorithms is of interest.

Pupil Diameter Recording
Pupil data are recorded in CSV files that store all acquired
values of a pupil measurement. Pupil values can be recorded
in an online measurement with connected cameras or in an
offline measurement in which images are loaded in PupilEXT
for post-acquisition evaluation. For online measurements, each
pupil measurement is associated with a timestamp provided by
the system time in milliseconds since Unix epoch, which is
synchronized with the camera’s internal hardware clock. In offline
measurements, where images are read from files, no timestamp is
available. Thus, the corresponding filename is used to associate
each measurement. The fitted ellipse can be reconstructed from
the stored ellipse parameters: width, height, center position and
angle. Further recorded data for analysis are the pupil diameter,
circumference and confidence measure. The pupil diameter is
stated in pixel by default, and when in stereo mode, it is
additionally stated in absolute units.

Regarding the pupil detection confidence, a value is only
available when the applied pupil detection algorithm provides
such a measure. However, a second confidence value called
outline confidence is provided independently of the used
algorithm. This confidence measure is based on the outline
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contrast of the inner and outer regions of the fitted ellipse (Santini
et al., 2018a). The goal of such value is to describe the reliability
of the detected pupil diameter. These measures are useful to
directly filter pupil detections that may constitute a false detection
or include high uncertainty. Filtering out such detections is
a common practice in the pre-processing of pupil detection
results (Kret and Sjak-Shie, 2019). Santini et al. (2018a,b) apply
a combination of different metrics for their confidence measure.
Besides the outline confidence, the ellipse axis ratio and an
angular edge spread metric are used. The ellipse axis ratio
describes the ratio between major and minor axes of the ellipse,
aiming to state the degree of distortion of pupil fit. The angular
edge spread measures the spread of the found points on the fitted
ellipse. If the points are evenly distributed, it is more likely that
they originate from an exact pupil contour. We simplified the
accessibility of the data by using a tabular text-based format, i.e.,
in the form of a CSV file. This format is independent on the used
system and is commonly used for measurement recordings.

Camera Calibration
The goal of the camera calibration is to remove distortions caused
by the camera lens and to estimate a projective transformation
for mapping world coordinates to image coordinates. A camera
projection matrix in the form of M = K[R · T] is used for
mapping. K denotes the intrinsic parameter and R · T the
extrinsic parameter matrices. The intrinsic matrix K projects
points in the camera coordinate system to the image coordinate
system with the values of the focal lengths (fx, fy) and the optical
center (cx, cy) of a camera. These parameters are independent
on the viewed scene and are reusable. The extrinsic matrix [R ·
T] represents the projection of world coordinates to camera
coordinates, consisting of a 3 × 3 rotation matrix R and the
3 × 1 translation vector T (OpenCV, 2020). By using the camera
projection matrix M, an image coordinate Pc can be projected
into the associated world coordinates PW . Such projection is
typically applied in stereo vision, where the camera matrices of
two or more cameras are used to estimate the depth and position
of a point in world coordinates captured by these cameras.
A further application of camera calibration is the correction of
lens-induced distortion. Here, two types of distortion exist, radial
and tangential distortions. For correcting distortions in a pinhole
camera model, the calibration process estimates coefficients
representing the distortions in the image, resulting in the five
distortion coefficients C = (k1, k2, p1, p2, k3).

Implementing Single-Camera Calibration
In PupilEXT, we perform the single-camera calibration, e.g.,
the estimation of the camera parameters K with the computer
vision library OpenCV library and its calibration routines. For
this, a total of 30 images are collected with a rate of 0.5 fps,
independently from the adjusted camera frame rate. After one
image is collected, the depicted calibration pattern is detected,
and feature points of the pattern were extracted. Successfully
detected feature points and their positions are then stored
and visualized in the calibration interface of PupilEXT. If the
detection was not successful, the image is discarded, and the
process will be applied again to the next camera image. This

procedure is repeated until the specified number of images is
collected. The camera calibration process is performed when
enough feature points are collected. This function optimizes
the camera parameters by minimizing the reprojection error
according to the algorithm of Zhan (Zhang, 2000). The
reprojection error describes the root mean square error (RMSE)
distance between the reprojection of the observed feature points
using the current camera parameters and their known position in
the calibration pattern.

After successful camera calibration, the quality of the resulting
calibration is an essential metric. Its quality is primarily
dependent on the accuracy of the detected feature points,
which is an edge detection task similar to pupil detection. We
report in the PupilEXT interface the final reprojection error
in the form of the RMSE. However, as this error constitutes
a mean squared distance, it may be less intuitive for the user.
Therefore, we compute an additional error using the mean
absolute error (MAE), measuring the arithmetic mean of the
absolute distances between the observed feature points and their
projected estimation. The reprojection procedure of the MAE
distance is identical to the reprojection error returned by the
calibration routine. A set of ideal feature points of the calibration
pattern in world coordinates are projected into the image
plane using the estimated intrinsic and extrinsic parameters
K, R and T. After the projection of the ideal feature point
positions into their estimated image coordinates, they can be
compared with the actual detected feature points in the captured
image. The deviation is stated in the form of the Euclidian
distance between the detected and idealized point positions,
describing how well the camera parameter approximates the
actual camera projection.

Validate Single-Camera Calibration
The reported reprojection error is based on the camera’s
projection matrix, optimized for the collected set of images
during calibration. Therefore, the reprojection error may contain
a bias due to overfitting. For quantifying potential overfitting,
an additional verification feature is implemented in PupilEXT,
performing the same procedure as in the calibration step
but using fixed camera parameters. For this, we capture
new calibration pattern images during the verification and
calculate the reprojection error again, representing an unbiased
approximation of the calibration quality. For instance, our
prototyped single-camera system (Figure 3D) achieved an RMSE
reprojection error of 0.341 px, where values under one pixel are
commonly referred to as good calibration quality. For the MAE
reprojection error, we achieved a value of 0.041 px, meaning that
the average feature point coordinate was projected into the image
plane with such a distance error. The verification with a new set
of images showed a MAE reprojection error of 0.040 px.

In PupilEXT, the calibration parameters are stored to support
the reuse at a later point. For this, a configuration file is saved after
a successful calibration is completed. The file contains all essential
information to reproduce and assess the state of the camera
calibration, such as the attributes of the calibration pattern,
the estimated camera parameter matrices and all projection
error measures. The functionality of saving and restoring the
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calibration configuration enables an additional use case, the
correction of image distortions in offline pupil measurements.

Stereo Camera Calibration
Stereo vision offers the possibility of tracking the depth
information and absolute pupil size from two or more images
captured by cameras of known position. By using the calibration
matrices Mi of two cameras, it is possible to triangulate
image coordinates in both images to their corresponding world
coordinates PW . For this, matched points in both images must
be found. Therefore, the pupil detection must be applied to
images from both cameras (Figure 6A). For absolute pupil size
calculation, the ends of the major axis of the ellipse are extracted
and triangulated into world coordinates, and their distance was
computed through the Euclidian distance (Figure 6A).

Triangulation determines the world position of an image point
through its perspective projection in two or more images. Each
projection point in an image corresponds to a projection line
in world coordinates, representing all possible world coordinate
positions that could have projected this point into the image. The
projection lines of corresponding points can be used to determine

FIGURE 6 | Illustration of calculating the absolute pupil diameter with the
stereo vision set-up. (A) For the corresponding stereo images, two pupil
detections are carried out. We use the ellipses of the pupil detections and
their minimal encompassing rectangle as feature points for matching. Through
triangulation, the corresponding stereo images are transformed into world
coordinates. The absolute pupil diameter is calculated with the Euclidian
distance between the two world coordinates. (B) Procedure of the stereo
transformation with the main and second cameras’ images.

their intersection in world coordinates. Figure 6B shows two
corresponding image points of the main and secondary cameras
(dp11, dp21) and their intersection point dpW1 in the world
coordinate system. There are two challenges with this approach.
First, the corresponding pupil detections in both images are
required to retrieve matching points.

Second, extraction of feature points from a pupil contour
may be ambiguous due to blurriness of the edge. If an
identical pupil detection in both images cannot be guaranteed,
potential deviations can be prevented by detecting and filtering
those situations from the data stream. In PupilEXT, we use
the corners of the minimal encompassing rectangle of the
fitted ellipse (dp11, dp21) and (dp21, dp22) as feature points for
triangulation (Figure 6A). The corner points correspond to
the major axis of the ellipse for having a more robust feature
selection in both images.

Implementation of Stereo Vision
Given the two recognized pupil ellipse results from the main
and second cameras (Figure 6B), we check the success of pupil
detection and confidence in both images. Naturally, if one of
the detections failed, no matching points (Figure 6A) can be
extracted or triangulated into the world coordinate system. In
valid cases, the feature points (dp11, dp12) and (dp21, dp22) of both
ellipse fits are extracted. Here, the bounding rectangle of the
ellipse fit is leveraged, and the corner points from the major axis
are extracted (Figure 6A).

Assuming the calibration parameters of both cameras
are available, the paired ellipse image point coordinates
(dp11, dp12) and (dp21, dp22) are corrected for potential
distortions using the distortion coefficient matrices. Next,
the corresponding image feature points (dp11, dp21) and
(dp12, dp22) are triangulated using the OpenCV function
cv::triangulatePoints. The triangulation results PH1 and PH2
are represented in homogeneous coordinates, which then are
converted into Cartesian coordinates (Eqs. 1 and 2).

PH =


XH
YH
ZH
WH

 , home2cart (PH) =

XH/ω

YH/ω

ZH/ω

 (1)

ω =

{
WH, ifWH 6= 0
1, otherwise

(2)

With the transformed points in the world coordinate
system (dpW1, dpW2), we determine the absolute pupil diameter
through the Euclidian distance (Figure 6B). In the experiments,
the computation time of this procedure (feature extraction,
distortion correction and triangulation) was on average 0.03 ms,
which should not significantly influence the maximum possible
processing rate of pupil measurements.

However, no further criteria are applied for checking the
reliability of the stereo vision result, as it is left open for the user
applying the post-processing procedure. We did not consider a
general threshold for pre-filtering to be necessary since the user
should have full control over the evaluation of the data. For
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this, we provide all necessary raw data from both cameras in the
recorded CSV file.

Calibration of Stereo Vision
A requirement for the stereo triangulation is the projection
matrices Mi of both cameras. As discussed in the Camera
Calibration section, the parameters of a single camera are
estimated in the calibration procedure, resulting in the intrinsic
parameters of the cameras. As the projection matrix M consists
of both the intrinsic and extrinsic parameters, the extrinsic
parameters are estimated through a OpenCV stereo calibration
procedure, which takes the intrinsic parameters of each camera,
returning the extrinsic parameter in the form of the rotation
matrix R and the translation matrix T. Thereby (R, T) describe
the relative position and orientation of the main camera with
respect to the secondary camera coordinate system (OpenCV,
2020). After the estimation of these extrinsic parameters, the
projecting matrices M1, M2 can be calculated with the equation
M = K[R · T]. Notably, in a stereo camera set-up, the main
camera is typically selected as the origin of the stereo camera
coordinate system. Thus, the projection matrix of the main
camera does not apply rotation or translation and is therefore
given by M1 = K · [I|0], where T is replaced with the identity
matrix I and R is replaced with the zero vector.

Validate Quality of Calibration
Similar to the single-camera calibration, the reprojection error is
returned as RMSE by the stereo calibration procedure. In stereo
vision mode, the reprojection error states the distance between
the observed and reprojected feature points combined for both
cameras in image coordinates. However, for the user, it would be
more useful to be able to assess the quality of the stereo calibration
in terms of absolute units. Therefore, we leveraged the predefined
size of the calibration pattern to calculate the measurement error
of the calibration in absolute units. For this, we measure the
absolute square size of, i.e., the chessboard pattern, using the
detected feature points from both cameras in the calibration
routine. The detected feature points of the calibration pattern
are undistorted, stereo triangulated and converted into Cartesian
world coordinates.

Next, the measured square size is compared with the known
distance between two corner feature points of the calibration
pattern. As a result, we report the calculated error of the stereo
camera system in absolute units calculated by the distance
deviation between the measured and idealized sizes of the
pattern. However, the stated error again could be biased by the
overfitting in the calibration routine. Therefore, we implemented
a verification routine that checks the absolute measurement error
using a new set of images with the calculated projection matrices.
Similar to the single-camera mode, the stereo calibration matrix
can be saved and loaded into the software for the next usage,
reducing new calibration effort. Here, we recommend verifying
the old calibration before a pupil measurement is conducted.
If the lens settings or camera position are slightly changed,
the transformation matrix needs to be re-created by a new
calibration procedure. The necessity can be quickly checked using
the verification function in PupilEXT.

Performance of PupilEXT
The performance of PupilEXT in pupil measurements depends
on various factors such as processing power of the system, frame
rate of the camera and the applied pupil detection algorithm. As
listed in Table 1, the runtimes of the pupil detection algorithms
vary significantly. For the goal of conducting pupil measurements
with a frame rate of 120 fps, a maximal runtime of around 8 ms
or less is necessary. Additional computations such as correcting
lens distortion can increase the needed computation time per
image. We optimize the computational complexity in PupilEXT
by using a region of interest (ROI), reducing the amount of pixel
that needs to be processed. The ROI can be adjusted interactively
by the user in the interface.

In combination with the PuRe pupil detection algorithm, we
achieved a stable pupil measurement at 120 fps on full images.
With manually specified ROI selection, the frame rate can be
pushed further, as PupilEXT is completely implemented in C++,
supported by parallel computation using CPU threads.

The Graphical User Interface of PupilEXT
Figure 7 illustrates the GUI of PupilEXT during a pupil
measurement in the stereo camera mode. Via the taskbar of the
GUI (Figure 7, points 1 to 9, blue), the essential function of
the software is linked. Before a pupil measurement, the camera
mode and the respective cameras must be selected to establish
a connection (Figure 7, point 1, blue). In the camera settings
also a connection to the microcontroller can be established if
a hardware trigger is required. After successful connection to
the cameras, a window with a live image view of the cameras is
opened. Camera parameters such as gain factor, exposure time
or maximum frame rate can be changed at any time via a quick
start button (Figure 7, point 3, blue). Next, one of the six pupil
algorithms can be selected in the pupil detection preferences
(Figure 7, point 1, green). In addition to the algorithms, the
parameters of the method can be set to optimize the detection
accuracy when necessary (Figure 7, point 3, green). We have
provided a preset of parameters that can be selected (Figure 7,
point 2, green). In addition to the standard parameters from the
original papers, we have added optimized values that are adapted
to different ROI sizes. We have set the PuRe method as a standard
method in PupilEXT.

The pupil detection of the captured live images can be started
with the eye symbol in the main window (Figure 7, point 4,
blue). We provided in the live view window a quick action menu
(Figure 7, point 1, red), which can be used to adjust the image
size, setting the ROI or displaying magnification of the pupil.
The ROI features allow placement of a rectangular area over
the eye to improve performance further when recordings at a
higher frame rate of 120 Hz are needed. Note that for the stereo
camera mode, a calibration should be carried out; otherwise,
the absolute pupil diameter will not be available. The calibration
window can be reached through the taskbar in the main window
(Figure 6, point 5, blue).

In the calibration window (Figure 7, point 4, green), one
can select the type of calibration pattern. Next, the calibration
can be started, resulting in the calibration file that is saved
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FIGURE 7 | The graphical user interface of the programmed software PupilEXT during a pupil recording in stereo camera mode. In the main window’s taskbar,
various functions can be accessed for quick actions. In the pupil detection sub-window, a pupil algorithm with respective parameters can be adjusted. The camera
calibration can be done directly in PupilEXT. Calibration files can be saved and validated to give an outline of the camera system’s edge detection accuracy, which is
essential for a pupil measurement pipeline.

locally on the hard disk. If a calibration file already exists,
it can be loaded via the calibration window (Figure 7, point
4, green), and its validity can be again verified. The stated
calibration accuracy can be recorded in a CSV file during the
validation procedure.

After the calibration is completed, the absolute pupil diameter
is displayed in the data view, which also lists all tracked pupil
values in real-time (Figure 7, point 3, red). Each of these values
can be visualized in a real-time plot by selecting the specific value
in the data view. For recording the pupil measurements, a disk
location can be selected to save the pupil data in a CSV file
(Figure 7, point 7, blue). The data can be saved continuously
with the recording button (Figure 7, point 8, blue). The raw
images can be saved with the blue recording button (Figure 7,
item 9, blue) for later offline pupil detection in PupilEXT. In
the Supplementary Materials, we have added hands-on video
materials to illustrate the pipeline of usage and the features.
Additionally, we offer the feature of creating and loading custom
profiles (Figure 7, point 6, blue), which opens the software
in a specified state to avoid the workload when PupilEXT is
started next time.

DEMONSTRATION OF A MEASUREMENT
PIPELINE WITH PupilEXT

To illustrate the measuring procedure with PupilEXT, we
performed an exemplary experiment on the wavelength-
dependent pupil light response. We recorded the pupil diameter
of an observer with six repetitions (trials) using PupilEXT,
while different light spectra were turned on at a steady
luminance. For this, a subject looked into a 700 mm × 700 mm
sized homogeneously illuminated observation chamber. The
illumination was generated by a custom-made temperature-
controlled (30◦C ± 0.1◦C) multi-channel LED luminaire, which
was used to trigger the pupil diameter with chromatic stimulus
spectra (Zandi et al., 2020). Pupil foreshortening error (Hayes and

Petrov, 2016) was minimized by using a chin rest for positioning
the subject’s head. Additionally, the gaze point was fixed with a
0.8◦ sized fixation target (Thaler et al., 2013) in the middle of
the adaptation area. On the left eye’s optical axis, a stereo camera
system consisting of two Basler acA2040-120um cameras with
50-mm lenses was set up (Figure 3A).

The pupil diameter was triggered using chromatic LED spectra
with peak wavelengths λPeak of 450 nm [full width at half
maximum (FWHM): 18 nm, L = 100.4 cd/m2

± SD 0.23 cd/m2)
and 630 nm (FWHM: 16 nm, L = 101 cd/m2

± SD 0.31 cd/m2],
which were switched on for 30 s. Before each stimulus spectrum,
a phosphor-converted white-colored LED with a correlated color
temperature of 5,500 K (L = 201 cd/m2

± SD 0.48 cd/m2)
was presented to adapt the pupil diameter to its baseline. The
order of the chromatic stimulus spectra was randomized. One
pupil measurement trial lasted 240 s, as the anchor spectrum
(5,500 K) was switched on twice between each chromatic
stimulus for 90 s, and the main stimuli (450 and 630 nm)
were switched on 30 s. The spectra were measured 20 times
before and after the experiment using a Konica Minolta CS2000
spectroradiometer. We controlled the luminaire with a custom-
made MATLAB script, which stored the switch-on times of the
spectra in a CSV-File. Possible switch-on latency times during
the command transmission from MATLAB to the luminaire’s
hardware were taken into account by tracking the processing
time in the embedded software. We recorded stereo eye images
with 30 fps (∗.bmp) during each pupil examination trial (240 s),
making it possible to detect the pupil diameter from the
images with different detection algorithms, later on using the
offline pupil analysis mode of PupilEXT. The pupil data were
synchronized with the luminaire’s switch-on times afterward
using a MATLAB script.

Pre-processing the Measured Raw Data
Recorded raw pupil data are usually occupied by artifacts or other
non-physiological pupil changes that need to be pre-processed
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(Figure 8A). For the pupil data recorded by PupilEXT, we
recommend a two-step filtering procedure. First, every data point
that has an outline confidence measure (Santini et al., 2018a)
lower than 1 should be left. With this step, artifacts caused by
eye blinks are detected robustly (Figure 8A). Other artifacts can
occur if the matching points (Figure 6B) between the first and
second cameras differ, resulting in a non-physiological shift of
the pupil diameter, visible through slight peaks in the data. We
identify matching point errors by comparing the stated axis ratio
of the ellipses between the main and second cameras. The axis
ratios differ because of the second camera’s positioning causing
a perspective pupil area change. However, the ellipse axis ratio
difference between the ellipses of cameras 1 and 2 should remain
constant within a certain range. Thus, the reliability of the
matching points (Figure 6B) can be detected by calculating the

FIGURE 8 | Recorded pupil data and proposed pre-processing procedure of
pupil diameter data collected by PupilEXT. (A) A two-step pre-processing
procedure is proposed, which uses the outline confidence and the axis ratio of
the cameras’ tracked ellipses. (B) Recorded pupil data from our sample
experiment to illustrate the performance of PupilEXT. The outline confidence
can be used to identify eye occlusions in the data approximately. The
two-step pre-processing can remove artifacts and other unnatural
physiological pupil diameter changes.

difference of the axis ratio across the data points and removing
all strong outliers from the sample dataset (Figure 8A). We have
pre-processed the recorded pupil data according to this two-step
procedure. The results of one raw pupil measurement trial (240 s)
using the PuRe algorithm and respective pre-processed pupil
data are shown in Figure 8B. Eye blinks can approximately be
tracked by identifying the outline confidence areas that fall below
one. However, an eye-blink detection via the outline confidence
measure can only work if the algorithm’s detection rate is robust;
i.e., the pupil is detected in more than 90% of valid eye image
cases. We implemented the proposed two-step pre-processing
method in MATLAB. The script is available on the GitHub
repository of the PupilEXT project. Additionally, the recorded
eye images are made available online together with the stereo
calibration file. The data can directly be loaded into PupilEXT for
a hands-on experience.

Comparison of the Pupil Detection
Approaches
A majority of pupil detection algorithms was evaluated based
on their accuracy in estimating the pupil center (Table 1), as
they are mainly intended for eye-tracking applications. One of
the works evaluating the pupil fit was Świrski et al. (2012)
in which their approach was compared against the Starburst
algorithm. The pupil fit was assessed utilizing hand-labeled
pupil measurements and the Hausdorff distance. The Hausdorff
distance (Rote, 1991) thereby describes the maximum Euclidean
distance of one ellipse to any point on the other ellipse (Świrski
et al., 2012). Results show that the Swirski algorithm improves
the detection rate for a five-pixel error threshold from 15% for
Starburst to 87%, showing that not every eye-tracking algorithm
is suited for pupil measurements. Fuhl et al. (2015) evaluated the
ExCuSe algorithm, comparing their approach with the Swirski
and Starburst algorithms. However, only the distance between
the pupil center estimation and ground-truth was evaluated. The
evaluation was performed on 18 datasets of pupil images captured
under highly challenging real-world conditions. The detection
rate for a five-pixel error threshold shows an average rate of 17%
for Starburst, 40% for Swirski and 63% for ExCuSe.

A similar evaluation was repeated in the works of ElSe
(Fuhl et al., 2016a), PuRe (Santini et al., 2018a), and PuReST
(Santini et al., 2018b), where they conducted evaluations
using overlapping datasets and the pupil center distance as
a performance value. Within a five-pixel error threshold, the
algorithm of Starburst shows a detection rate of 13.44, 28 to
36% for Swirski, 50 to 58% for ExCuSe, 66 to 69% for ElSe,
72% for PuRe and 87% for PuReST. In these evaluations, a
performance loss for highly challenging recorded images was
observed. Specifically, images with low-intensity contrast and
pupils containing small reflections impaired the pupil detection
algorithms. Santini et al. showed that the average runtime of the
PuReST algorithm is 1.88 ms, compared with PuRe with 5.17 ms
(Santini et al., 2018b), making PuReST the fastest approach with
the highest pupil center detection rate. Note that these results
apply to images that do not occur under laboratory conditions.
Topal et al. (2017) evaluated the APPD algorithm (Topal et al.,
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2017) together with Starburst, ElSe and Swirski. The pupil fit
and processing time were used to quantify the performance of
the algorithms. For the pupil fit, the pupil localization was used,
which quantifies the overlap ratio between the detected ellipse
and the ground-truth, stated as [0, 1]. The results indicate a
high pupil localization of 0.97 for APPD compared with 0.93
for Swirski, 0.92 for ElSe and 0.77 for Starburst. Additionally,
Topal et al. measured an average computation time of 5.37 ms
for APPD, 7.12 ms for Else (7 ms), 47.17 ms for Swirski
(3.77 ms) and 49.22 ms for Starburst (100 ms). The numbers
in parentheses define the originally reported runtime of the
respective algorithms.

Based on the literature, it can be stated that PuReST is
the top performer when evaluating the pupil’s center detection
rate with highly noisy images. However, these results represent
the detection rate with a five-pixel error threshold and do not
state the accuracy of their pupil size measurements. Only the
evaluation of Topal et al. (2017), Świrski et al. (2012) carried out
a performance test on the pupil fit. Their results state a different
picture, with Swirski performing better than ElSe.

Another aspect that could significantly affect the performance
of a pupil detection algorithm is the parameters’ count. Each
algorithm has a set of parameters that need to be tuned by
the user to match the image composition. Selecting appropriate
values may constitute a challenge for the user. Thus, the fewer
parameters an algorithm possesses, the simpler its application.
Comparing the number of parameters of the pupil detection
algorithms, Swirski includes 11, followed by Starburst with five
and PuRe and PuReST with three. Else and ExCuSe have only two
parameters. We have stored in our proposed software PupilEXT
the standard values of the algorithms as stated by the authors
and additionally optimized three sets of parameters for pupil
measurement applications under different image compositions.

Validation of the Pupil Detection
Algorithms
We evaluated the captured eye images from our pupil experiment
using the six available pupil detection algorithms in PupilEXT.
Ideally, the pupil diameter should remain steady across the
detection algorithms, as the same eye image sets were used for
evaluation. However, due to the algorithms’ different parameters
settings and approaches, the measured diameter may differ. In
Figure 9A, we have plotted the detected raw pupil diameter from
one experimental trial (240 s) to illustrate how differently the
algorithms perform based on the same acquired image set. For
each raw data plot panel, the respective pre-processed pupil data
are illustrated, which were obtained using the proposed two-
step method. The ElSe, ExCuSe, PuRe and PuReST algorithms
achieved an acceptable pupil detection rate, visually noticeable
through the lower number of artifacts in the respective raw
dataset (Figure 9A). As discussed, the artifacts in the raw data
can be filtered by removing the detected pupil diameter with an
outline confidence of less than 1. In Figure 9B, we illustrated
a sample of recorded pupil images with the respective outline
confidence, showing that an invalid pupil fit can be detected and
removed when using such a metric.

The Starburst algorithm caused a higher number of artifacts.
Subsequent pre-processing of the raw data using the two-step
method was not helpful, as the Starburst algorithm caused too
many false detections. The Swirski algorithm had difficulties in
detecting small pupil diameter at the 450-nm stimulus. After the
invalid pupil data were filtered from the 450-nm time frame,
there were almost no valid data left for linearly interpolating
the missing values. Also, the Swirski algorithm had no robust
detection rate for the pupil recording with the 630-nm spectrum.
However, the cameras’ lenses were equipped with optical IR-
high-pass filters so that the spectral-dependent detection quality
was not due to the type of light spectrum. Each pupil detection
algorithm has a certain number of parameters that need to be
adjusted depending on the image resolution or how large the
pupil is in relation to the image size. An incorrect combination
of parameters could affect the pupil detection at differently sized
diameters, as the algorithm itself could rule out smaller pupils.

The proposed technique for detecting eye blinks based on an
outline confidence (Figure 8B) is highly affected by the detection
rate. For example, it is no longer possible to distinguish between a
false pupil fit or a closed eyelid at a higher rate of pupil detection
artifacts (Figure 9A). Additionally, the ExCuSe algorithm offers a
threshold value that can be used to detect eye blinks. In this way,
values that indicate a closed eyelid will automatically be removed
by the respective pupil detection algorithm itself, leading to the
fact that a subsequent analysis of eye blinks is no longer possible.
Therefore, an eye-blink recognition using the outline confidence
seems to work well only with PuRe and PuReST.

In Figure 10, we calculated the average percentage of the
invalid data rate for each algorithm and spectrum separately
to illustrate the pupil detection algorithms’ performance across
the conducted pupil measurement trials. The invalid data rate is
defined as the number of diameter values that had to be removed
from the raw dataset when using the two-step pre-processing
approach (Figure 8B). The ElSe, ExCuSe, PuRe and PuReST
algorithms had a lower invalid data rate of 10%, indicating good
detection performance across all measurement trials (Figure 10).
The Starburst algorithm failed to perform a valid pupil fit at
450 nm in 58.46% SD 5.93% of cases. At the second reference
spectrum (5,500 K), the pupil detections from Starburst failed in
36.82% SD 7.1% of the cases. Since the invalid pupil detection
rate was higher than 10% for every stimulus spectrum, we assume
that the performance of Starburst is independent of the parameter
settings; possibly, the false pupil fits arise due to the contrast or
resolution in the eye image. The Swirski algorithm’s performance
suffered mainly at the 450-nm stimulus with an average error
rate of 81.09% SD 10.10%. This behavior seems to be due to the
algorithm’s parameters adjustments, as the invalid data rate is
higher for smaller pupil diameters. Our results are in line with
previous benchmarks from the literature, which showed that the
Starburst and Swirski algorithms had lower detection rates (Fuhl
et al., 2015, 2016a; Santini et al., 2018a,b). Note that the Swirski
algorithm could have a better pupil fit, as it does not downscale
the eye images before processing (Świrski et al., 2012; Topal
et al., 2017). Since the Swirski algorithm has 11 free parameters
that need to be adjusted, it is not a practical algorithm in our
view because the detection method could suffer its robustness
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FIGURE 9 | Comparison of the pupil detection algorithms based on the same eye image set and visualization of the pupil ellipse fit as a function of the outline
confidence. (A) Eye images from one subject were recorded during a chromatic pupillometry experiment using PupilEXT. The pupil was exposed to LED spectra of
the peak wavelengths 450 nm (L = 100.4 cd/m2

± SD 0.23) and 630 nm (L = 101 cd/m2
± SD 0.31) for 30 s. An anchor spectrum with a correlated color

temperature (CCT) of 5,500 K (L = 201 cd/m2
± SD 0.48) was turned on for 90 s between each stimulus. The pupil diameter from the recorded images was

extracted using the available algorithms in PupilEXT and pre-processed to illustrate the algorithms’ detection differences. (B) For each detected diameter, an outline
confidence measure is provided and used as an indicator to filter unreliable pupil fits from the dataset. Pupil fits from different measurement sessions are illustrated
as a function of the outline confidence. We recommend discarding all pupil diameters with a lower outline confidence measure of 1.

when using the wrong settings. The advantage of the pupil
algorithms ElSe, ExCuSe, PuRe and PuReST is the smaller number
of parameters that need to be set, leading to less error-proneness
and practicability in conducting pupil measurements.

To better estimate how much the pupil diameter deviates
depending on the used pupil algorithm, we evaluated the
acquired eye images with the top-performing algorithms (ElSe,
ExCuSe, PuRe and PuReST) and calculated the steady-state
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FIGURE 10 | Percentage of invalid pupil fits inside the raw data, and the
averaged steady-state pupil diameter of the last 5 s. Pupil data are from one
subject with six repetitions in each condition. (A) Mean of the invalid data
point count (outline confidence < 1) in per cent for each algorithm and used
spectrum. A higher invalid data rate indicates that more raw data need to be
removed due to inaccurate pupil fits. The Starburst algorithm did not provide
an adequate detection rate, mainly observed at 450 nm (57.46% ± SD
5.93%) and the second reference spectrum (36.82% ± SD 7.1%). The Swirski
algorithm showed a significant invalid detection rate of 81.09% ± SD 10.10%
at 450 nm. Since the cameras were equipped with an IR-high-pass filter, the
spectral-dependent pupil detection rate is mainly due to the differently sized
pupil diameter. Due to the increased number of parameters from Starburst
and Swirski, a generalization for small and large pupil diameters is more
challenging. (B) The temporal pupil diameter was averaged over the last 5 s to
compare how differently the pupil algorithms evaluate the same dataset. The
ElSe and ExCuSe algorithms have approximately the same pupil diameter in
all scenarios, which is due to the computation method’s similarities. The same
applies to the PuRe and PuReST algorithms. The measured pupil diameter’s
uncertainty range is on average 0.05 mm ± SD 0.004 mm, originating from
the different detection results with the same dataset.

equilibrium pupil diameter. For this, we calculated the pupil
diameter’s mean value over the last 5 s of a measurement.
Figure 10B shows the steady-state pupil diameters from the six
measurement trials. The scatter within a pupil algorithm is due
to the pupil diameter’s intrasubject variability, which is mainly
induced by cognitive effects and can be up to 0.5 mm (Zandi
et al., 2020; Zandi and Khanh, 2021). The absolute mean pupil
diameter differences between the ElSe and ExCuSe algorithms
are negligible with 6 · 10−4 mm at 450 nm and 0.0041 mm
at 630 nm, which are due to the same detection approaches.

The same was applied for the PuRe and PuReST algorithms
with an absolute mean diameter difference of 0.0061 mm at
450 nm and 0.0051 mm at 630 nm. The PuReST algorithm
was an extension of PuRe, allowing faster pupil detections and
explaining the similar pupil fits. However, the mean difference
between the algorithm groups ElSe/ExCuse and PuRe/PuReST
is 0.054 mm SD 0.0043 mm. This is particularly interesting
because it indicates how much the measured pupil diameter can
deviate when different detection method approaches are applied
to the same eye image set. Therefore, in cognitive studies in
which the pupil diameters’ mean difference is less than 0.1 mm,
we highly recommend reporting the algorithm and respective
parameter settings. The parameters that we used for our pupil
detection experiments are stored in the PupilEXT software and
also available on the GitHub repository of this project.

Determining the Pupil Measurement
Accuracy
The accuracy of the pupil measurement can by characterized with
PupilEXT by two approaches. First, the validation process of the
stereo calibration determines the quality of the system, indicated
by the reprojection error in MAE within PupilEXT. However,
such a metric does not include the inaccuracies caused by pupil
detection methods. Therefore, it is advisable for checking the
validity of the system by a circular formed reference object. For
this, we placed a reference object of known size (5 mm) in front
of the subject’s eye and determined the diameter using a pupil
detection algorithm in PupilEXT (Figure 11).

The measured raw data of the reference object showed a
MAE of 0.014 mm. After pre-processing the data with the two-
step method, a MAE accuracy of 0.0059 mm was achieved

FIGURE 11 | Determination of the used stereo camera system’s measurement
accuracy. A reference object of known size (5 mm) was placed in front of the
observers’ occluded eye. The diameter of the object was tracked using the
PuRe algorithm. Based on the raw data, a mean absolute error (MAE) of
0.014 mm can be determined. However, the raw data contain artifacts that we
have removed using the proposed two-step pre-processing approach. After
pre-processing, we can state a measurement accuracy of 0.0059 mm (MAE).
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with our prototyped system. It should be noted that such a
measurement accuracy is still an idealized approximation since
the reference object was kept still without interference. After pre-
processing, isolated peaks remained with an amplitude of 0.1 mm.
However, remaining pupil data are usually smoothed, making
such remaining isolated peaks negligible.

Limitations of the Proposed Pupillometry
Toolbox
The current version of PupilEXT offers a comprehensive solution
for pupillometry. However, the software is not designed for two-
eye measurements, as only one eye at the same time can be
captured. We recommend positioning the ROI in the live view
of PupilEXT software over one eye to let the algorithms iterate
inside the specified region if two eyes are visible in the image.
Furthermore, an online pupil measurement can only be carried
out with Basler branded cameras. In the future, the integration of
other camera brands is possible through the implemented camera
class. However, externally acquired images from other camera
brands can be loaded into PupilEXT for offline pupil detections,
making it possible to use the software even without purchasing
a Basler camera.

Currently, the implemented pupil algorithms perform their
computations on the CPU. Therefore, we recommend using the
PuRe or PuReST algorithm for real-time pupil measurements
with a higher frame rate between 60 and 120 fps, as the detection
approaches shine with low processing times. In the future, it
would be desirable to perform calculations directly on a graphics
processing unit (GPU) during an online measurement, making
higher frame rates for all integrated pupil detection methods
possible. Note that we did not implement a limiting threshold of
the frame rate level inside the PupilEXT software. The frame rate
is limited by the respective pupil detection algorithm’s processing
time, which can vary depending on the used computer. If the
frame rate is too high for the computer during an online pupil
measurement, the images will be stored in the machine’s memory
buffer and fed to the pupil algorithm one by one. In such
cases, there is the risk that the working memory will overflow
when operating PupilEXT for longer times in such a mode.
Therefore, the camera fps should ideally be on the same level as
the processing fps. Both metrics are stated in the live view panel
of PupilEXT. Note that on our computer (Intel Core i7-9700K),
we performed pupil measurements in stereo mode at 120 Hz
without any issues when using the PuReST or PuRe algorithm.
Even higher frame rates are possible in the single-camera mode
because only the image from one camera has to be processed.
Alternatively, eye images can be captured on the disk for later
pupil detection, allowing higher frame rates. This function is
available for both mono and stereo camera modes.

DISCUSSION

The idea of replacing commercial systems with open-source
solutions is currently pushed by working groups topically
working on eye-tracking devices (Santini et al., 2017; Arvin
et al., 2020). The advantage of eye-tracking research is that

standardized metrics exist that reflect the accuracy of a
detected gaze point (Holmqvist et al., 2012). In pupillometry
research, metrics on the pupil fit’s measurement accuracy is
usually not stated, mainly because most applied systems do
not allow manual verification after conducted experiments.
The lack of missing pupil fit metrics in commercial eye-
tracking systems applied for pupil measurement motivated
recent works, attempting to develop procedures or provide
at least pupil measurement error information of widely used
systems (Klingner, 2010; Gagl et al., 2011; Brisson et al., 2013;
Hayes and Petrov, 2016; Murray et al., 2017; Wang et al.,
2017; Titz et al., 2018; Coyne et al., 2019). Mathematically,
the pupil center’s accuracy detection is just an indicator for
a good pupil fit but does not ensure it. For example, the
pupil center can be correct for cases in which the gaze
point differs from the camera’s optical axis (eye rotation),
but the detected pupil diameter can be estimated incorrectly
due to the perspective distortion of the pupil image (pupil
foreshortening error) (Hayes and Petrov, 2016). Additionally,
it is not directly possible to reproduce the pupil fit’s accuracy
from the pupil center accuracy, which is mainly stated in
the datasheet of eye-tracking devices. Suppose studies indicate
an effect on the pupil diameter of 0.5 mm. In that case,
ideally, there should be a procedure to verify that both the
camera system and the applied pupil detection method can
detect such small diameter margins. For example, the recently
published work “Standards in Pupillography” (Kelbsch et al.,
2019) rarely paid attention to possible technical- and software-
induced measurement errors, although this could highly affect
the validity and conclusions of research results. By comparing
the pupil detection algorithms, we showed that a measurement
error of up to 0.05 mm could occur with identical eye images,
induced solely by the type of used detection algorithm itself.
In commercial systems where it is usually unknown which
pupil detection algorithm is applied, comparisons between
study results in such a measurement range are difficult.
Therefore, the camera’s spatial resolution specification or the
pupil center’s measurement accuracy is insufficient for pupil
measurements. From our perspective, a uniform measurement
platform is essential for pupillometry, ensuring comparability
and reproducibility. By verifying our proposed PupilEXT set
up with a reference object, we offer the possibility to test and
state the accuracy of the pupil’s fit directly. Furthermore, the
proposed system ensures reproducing pupil examinations results
by using the captured images in the offline analysis mode of
PupilEXT.

With PupilEXT, we have developed the first freely accessible
integrated end-to-end pupil measurement platform consisting of
hardware and software for professional pupillometry research
in vision science. Pupil measurement can be carried out in
a one- or two-camera mode. The calibration and validation
procedure in PupilEXT are intended to provide a transparent
way in reporting the measurement accuracy of a conducted pupil
study. The specification of measurement accuracies is currently
a major issue in pupil research since only in few publications
is the validity of the pupil tracking’s accuracy stated. This is
mainly due to the use of commercial systems that usually do not
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support validation procedures of pupil measurement pipelines.
The complete software, embedded code and printed circuit board
(PCB) layout of the NIR illumination are provided as an open-
source project. We provide three Supplementary Videos to
illustrate the handling of PupilEXT. The instruction, details about
the installation and video tutorials can be found at the project’s
website (see text footnote 1).

As a next step, it is planned to add a gaze calibration routine
to PupilEXT to support eye-tracking applications. Currently,
we only support Basler branded cameras, but it is possible
to add additional industrial camera types into PupilEXT since
the camera access is separated from the core of the proposed
software. The feature of determining the pupil diameter from
externally captured images could perhaps make PupilEXT a
standardized measurement suitable for pupil research. For this
aim, we will investigate in the next studies the tracking accuracy
of the integrated pupil algorithms with ground-truth images,
leading to a better estimation of real-world inaccuracies under
laboratory conditions.
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Neuromorphology is crucial to identifying neuronal subtypes and understanding learning.

It is also implicated in neurological disease. However, standard morphological analysis

focuses onmacroscopic features such as branching frequency and connectivity between

regions, and often neglects the internal geometry of neurons. In this work, we treat

neuron trace points as a sampling of differentiable curves and fit them with a set of

branching B-splines. We designed our representation with the Frenet-Serret formulas

from differential geometry in mind. The Frenet-Serret formulas completely characterize

smooth curves, and involve two parameters, curvature and torsion. Our representation

makes it possible to compute these parameters from neuron traces in closed form. These

parameters are defined continuously along the curve, in contrast to other parameters like

tortuosity which depend on start and end points. We applied our method to a dataset of

cortical projection neurons traced in two mouse brains, and found that the parameters

are distributed differently between primary, collateral, and terminal axon branches, thus

quantifying geometric differences between different components of an axonal arbor. The

results agreed in both brains, further validating our representation. The code used in

this work can be readily applied to neuron traces in SWC format and is available in our

open-source Python package brainlit: http://brainlit.neurodata.io/.

Keywords: neuron, morphology, axon, curvature, projection, mouse, spline, python

1. INTRODUCTION

Not long after scientists like Ramon y Cajal started studying the nervous system with staining and
microscopy, neuronmorphology became a central topic in neuroscience (Parekh and Ascoli, 2013).
Morphology became the obvious way to organize neurons into categories such as pyramidal cells,
Purkinje cells, and stellate cells. However, morphology is important not only for neuron subtyping,
but in understanding learning and disease. For example, a now classic neuroscience experiment
found altered morphology in geniculocortical axonal arbors in kittens whose eyes had been stitched
shut upon birth (Antonini and Stryker, 1993). Also, morphological changes have been associated
with the gene underlying an inherited form of Parkinson’s disease (MacLeod et al., 2006). Neuron
morphology has been an important part of neuroscience for over a century, and remains so – one of
the BRAIN Initiative Cell Census Network’s primary goals is to systematically characterize neuron
morphology in the mammalian brain.
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Currently, studying neuron morphology typically involves
imaging one or more neurons, then tracing the cells and
storing the traces in a digital format. Several recent initiatives
have accumulated large datasets of neuron traces to facilitate
morphology research. NeuroMorpho.Org, for example, hosts a
total of over 140,000 neuron traces from a variety of animal
species (Ascoli et al., 2007). These traces are typically stored as
a list of vertices, each with some associated attributes including
connections to other vertices.

Many scientists analyze neuron morphology by computing
various summary features such as number of branch points,
total length, and total encompassed volume. Neurolucida, a
popular neuromorphology software, employs this technique.
Another approach focuses on neuron topology, and uses metrics
such as tree edit distance (Heumann and Wittum, 2009).
However, both of these approaches neglect kinematic geometry,
or how the neuron travels through space. Tortuosity index
is a summary feature that captures internal axon geometry,
but this feature depends on the definition of start and
end points, and cannot capture an axon’s curvature at a
single point.

In this work, we look at neuron traces through the lens of
differential geometry. In particular, we establish a system of fitting
interpolating splines to the neuron traces, and computing their
curvature and torsion properties. To our knowledge, curvature
and torsion have never been measured in neuron traces. We
applied this method to cortical projection neuron traces from
two mouse brains in the MouseLight dataset from HHMI Janelia
(Winnubst et al., 2019). In both brains, we found different
distributions of these properties between primary, collateral, and
terminal axon segments. The code used in this work is available
in our open-source Python package brainlit: http://brainlit.
neurodata.io/.

2. METHODS

2.1. Spline Fitting
First, the neuron traces were split into segments by recursively
identifying the longest root to leaf path (Figure 1A). The
first axon segment to be isolated in this way was defined
to be the “primary” segment. Subsequent segments that
branched were defined as “collateral” segments, and those
that did not branch were defined to be “terminal” segments
(Figure 1B). This classification approximates the standard
morphological definitions of primary, collateral and terminal
axon branches.

Next, a B-spline was fit to each point sequence using
scipy’s function splprep (Virtanen et al., 2020). Kunoth
et al. (2018) provide an in depth description of B-splines and
their applications. Briefly, B-splines are linear combinations of
piecewise polynomials, sometimes called basis functions. The
basis functions are defined by a set of knots, which determine
where the polynomial pieces meet, and degree, which determines
the degree of the polynomial pieces. The j’th basis function for
a set of knots ξ and degree p is recursively defined by Equation

(1.1) in Kunoth et al. (2018):

Bj,p,ξ : =
x− ξj

ξj+p − ξj
Bj,p−1,ξ (x)+

ξj+p+1 − x

ξj+p+1 − ξj+1
Bj+1,p−1,ξ (x)

with

Bi,0,ξ : =

{

1, if x ∈ [ξi, ξi+1),

0, otherwise.

Splines are fit to data by solving a constrained optimization
problem, where a smoothing term is minimized while keeping
the residual error under a specified value (Dierckx, 1982). Here,
we constrain the splines to pass exactly through all points in the
original trace, which corresponds to a smoothing condition of
s = 0 in splprep. For a sequence of n > 5 points, we fit a
spline of degree 5, which is the minimal degree that ensures that
the splines are thrice continuously differentiable. Differentiability
is important because it allows for estimation of curvature and
torsion, explained in the next section.

Sequences of fewer than 5 points, however, required lower
degree splines to fully constrain the fitting procedure. For a
sequence of 3 < n ≤ 5 points we used degree 3, for a sequence of
n = 3 points we used degree 2, and for a sequence of n = 2
points we used degree 1. By selecting the degree in this way,
we avoided splines of large even degree, such as fourth order
splines, which are not recommended in our interpolation setting
(Virtanen et al., 2020). Also, these degree choices are low enough
to allow for a fully constrained fitting procedure, but high enough
to make curvature/torsion nonvanishing when possible.

We recall that B-splines are not required to be parameterized
by the arclength of the curve. Here, we set ξ = {0, . . . , L}, where
L is the cumulative length of the segments connecting the vertices
of the trace, in µm. All other spline fitting options were set
to the defaults in splprep. This spline fitting method can be
applied to any set of points organized in a tree structure, such as
a SWC file. Figure 1C shows examples of splines that were fit to
neuron traces.

2.2. Frenet-Serret Parameters
An important advantage of B-splines is that their derivatives can
be computed in closed form. In fact, their derivatives are defined
in terms of B-splines as shown below in Theorem 3 from Kunoth
et al. (2018):

Theorem For a continuously differentiable b-spline Bj,p,ξ (·)
defined by index j, degree p ≥ 1, and knot sequence ξ , we have:

d

ds
Bj,p,ξ (s) = p

(

Bj,p−1,ξ (s)

ξj+p − ξj
−

Bj+1,p−1,ξ (s)

ξj+p+1 − ξj+1

)

where we assume by convention that fractions with zero
denominator have value zero.

Curvature and torsion can be easily computed because of
this property. For a thrice differentiable curve x(s) ∈ R

3 that
is parameterized by arclength (i.e., ||ẋ(s)|| = 1 ∀s), one can
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FIGURE 1 | (A,B) Cartoon example of how we partition an axonal arbor trace into different segment classes, with numbers indicating distances between points (with

arbitrary units). (A) A neuron trace is split into different segments by identifying the longest root to leaf path (“Main branch”), and separating sub-trees from it. The

sub-trees which still have branch points are processed in the same way until the neuron has been split into segments. By using path length to identify the Main

branch, this splitting process is invariant to rigid transformations of the trace. (B) Illustration of how axon segments are classified as primary, collateral, or terminal. The

first segment is defined as primary, and segments that have no sub-trees are defined as terminal. All other segments are defined as collateral. (C) Examples of our

spline fitting method applied to neuron traces from the MouseLight project (Winnubst et al., 2019). The splines pass through all trace points, and are thrice

continuously differentiable for segments that contain at least five trace points. The blue points indicate the somas, and the spline colors indicate segment class (blue =

primary, red = collateral, green = terminal). The neuron on the left is from brain 1, the one on the right is from brain 2. The scale bar only applies to (C).

compute the curvature (κ) and torsion (τ ) with the following
formulas:

κ(s) = ||ẋ(s)× ẍ(s)||

τ (s) =
〈(ẋ(s)× ẍ(s)),

...
x (s)〉

||ẋ(s)× ẍ(s)||2

defined with the standard Euclidean norm || · ||, inner product
〈·, ·〉, and cross product ×. When curvature vanishes, we define
torsion to be zero as well, since the torsion equation becomes
undefined. The units of curvature and torsion are both inverse
length. In this work, neuron traces have units of microns, so
curvature and torsion both have units of (µm)−1.

Curvature measures how much a curve deviates from being
straight, and torsion measures how much a curve deviates
from being planar. Together, these quantities parametrize
the Frenet-Serret formulas of differential geometry. These
formulas completely characterize continuously differentiable
curves in three-dimensional Euclidean space, up to rigid motion
(Grenander et al., 2007). Curvature takes non-negative values,

but torsion can be positive or negative where the sign denotes the
direction of the torsion in the right-handed coordinate system. In
this work, we are not interested in the direction of the torsion, so
we focused on the torsion magnitude (absolute value).

2.3. Data
We applied our methods to a collection of cortical projection
neuron axon traces from two mouse brains in the HHMI Janelia
MouseLight dataset. The precision of the reconstructions is
limited by the resolution of the original two-photon block-face
images, which was 0.3µm × 0.3µm × 1µm (Winnubst et al.,
2019). Each reconstruction is the consensus of traces by two
independent annotators. Winnubst et al. (2019) showed that
using two annotators per neuron produced reconstructions that
are about 93.7% accurate (in terms of total axonal length). There
were 180 traces from brain 1 and 50 traces from brain 2.

After fitting splines to these traces, curvature and torsion
magnitude were sampled every 1µm along the axon segments.
Sampling every 1µm is the highest sampling frequency that
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does not exceed the image resolution, so it is an appropriate
balance of precision and computational efficiency. We studied
curvature and torsion magnitude in two ways, described below
in sections 2.4, 2.5.

2.4. Computing Autocorrelation of
Curvature and Torsion
Our first goal was to identify the length scale at which straight
axon segments remain straight and curved axon segments remain
curved, so we studied the autocorrelation of curvature and
torsion magnitude along the axon segments. For each axon
segment, the autocorrelation functions of curvature and torsion
were computed along the length of the segment, yielding a
collection of autocorrelation functions for each brain. Then,
we evaluated whether autocorrelation at a particular lag was
significantly higher than 0.3 using a one-sided t-test with a
significance threshold of α = 0.05. We identified 0.3 as our effect
size because correlations higher than 0.3 are generally regarded
as “moderate” correlations.

It is worth noting that, by the nature of the spline fitting
procedure in Virtanen et al. (2020), “lag” in our autocorrelation
functions refers to straight line distances between the trace
points, not by the arclength of the resulting curves.

2.5. Comparing Axon Segment Classes
Our second goal in the analysis was to compare curvature/torsion
between segment classes. First, we estimated each segment’s
average curvature/torsion magnitude by taking the mean from
all points that were sampled on that segment.

In order to compare different segment classes, we developed
a paired sample method for testing for differences in average
curvature/torsion. Different neurons represented different
samples, and the average curvature/torsion of two segment
classes (primary vs. collateral, collateral vs. terminal, primary vs.
terminal) represented the paired measurements.

Define the random variable X as the average curvature/torsion
of one segment class and Y as the average curvature/torsion of
another segment class. Further, say X and Y are both real valued.
Our null and alternative hypotheses are as follows:

H0 :Pr[X > Y] = 0.5

H1 :Pr[X > Y] 6= 0.5

We tested these hypotheses using the sign test (Neuhauser,
2011). The test statistic is the number of times that the data
point from one sample is greater than its pair from the other
sample. A key advantage of the sign test is that it does not
require parametric distribution assumptions, such as normality
of the data. Also, its null distribution can be computed exactly
via the binomial distribution. The two different parameters
(curvature and torsion), and the three different segment class
pairs constitute six total tests, so we applied the Bonferroni
correction to α = 0.05 to obtain the significance threshold
0.0083, which controls the family-wise error rate to 0.05. We
conducted one-sided sign tests in all cases.

We also wanted to study whether these results would hold
if the traces were perturbed. In particular, since the annotators

vary the distance between points in their trace, we decided to
randomly remove trace points and repeat the curvature/torsion
measurements. Since the traces are tree structures, a trace point
can be removed after connecting its child node(s) to its parent
node. We produced 20 copies of the original dataset and, in each
case, removed every trace point with 10% probability.

3. RESULTS

3.1. Autocorrelation of Curvature and
Torsion
The autocorrelation functions for all segments of a brain were
averaged, and they are shown in Figure 2. Also shown is a
shaded region that represents one standard deviation of these
autocorrelation functions. The t-tests described in section 2.4
were significant at lags of 1, 2, 3, 4µm for curvature in brain 1,
1, 2, 3µm for curvature in brain 2, 1, 2µm for torsion in brain 1,
and 1, 2µm for torsion in brain 2.

3.2. Axon Segment Class Differences
The distributions of mean curvature and torsion are shown
in Figure 3. Our statistical testing procedure, described in
section 2.5, rejected the null hypothesis in all cases, with all p
< 5 × 10−7. The directions of the one-sided tests were identical
in both brains with:

Curvature: Collateral > Terminal > Primary

Torsion: Collateral > Primary > Terminal

When we applied the same testing procedure to the 20 datasets
with trace points randomly removed, the null hypotheses were
also all rejected, in the same directions, in all cases.

Neuron counts for all 36 possible curvature/torsion orderings
across classes are shown in Figure 4. The most common ordering
of curvature/torsion is exactly the same as the results of the sign
test (106/180 neurons followed this ordering in brain 1, 38/50 in
brain 2).

In the Supplementary Figure 1, we plot the curvature/torsion
vs. segment length. There appear to be modest correlations
between segment length and curvature/torsion values in
log-log plots.

4. DISCUSSION

Our work proposes a model of neuron morphology using
continuously differentiable B-splines. From these curves, it is
possible to measure kinematic properties of neuronal processes,
including curvature and torsion. These techniques are freely
available in our open source Python package brainlit: http://
brainlit.neurodata.io/, and more information about how to
reproduce the specific results here can be found in the data
availability statement.

In most contemporary neuromorphological analysis, neuron
traces are regarded as piecewise linear structures, which
precludes any analysis of higher order derivatives. Our
spline representation makes it possible to estimate higher
order derivatives and study parameters like curvature and
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FIGURE 2 | Autocorrelation of curvature and torsion magnitude averaged across all axon segments with ±1σ confidence intervals. Curvature and torsion were

sampled at every 1µm along the axon segments. One sided t-tests indicated that curvature had statistically significant autocorrelation values above 0.3 at lags of 1, 2,

3, and 4 µm in brain 1 and 1, 2, and 3 µm in brain 2. Torsion had statistically significant autocorrelation values above 0.3 at lags of 1 and 2µm in both brain 1 and 2.

FIGURE 3 | The distributions of average curvature and average torsion differed between the different segment classes as shown in these kernel density estimates

(which integrate to one, and therefore density has the units of µm), using a Gaussian kernel. The bandwidth of the kernel was 1.2σ where σ was computed using

Scott’s method (Scott, 2015). Segment averages were computed by sampling the curves at a uniform spacing of 1µm. One-sided sign tests, testing for differences in

average curvature and torsion, were conducted while controlling the family-wise error rate to 0.05. The tests were significant in all cases and the directionality of the

tests agreed in both brains.

torsion of neuron branches. In the popular piecewise linear
representation, curvature and torsion would be zero along
the line segments, and undefined where the line segments
meet. We simulated a piecewise linear representation by
modifying our spline fitting procedure to only produce splines
of degree one. Indeed, with this less sophisticated representation,

curvature and torsion vanished everywhere, making them
not meaningful.

Tortuosity index captures similar information to
our curvature/torsion measurements and is popular in
neuromorphological analysis (Stepanyants et al., 2004).
However, tortuosity requires the user to define start and end
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FIGURE 4 | For each neuron, average curvature and torsion was computed for all three segment classes (P, primary; C, collateral; T, terminal) and compared between

classes. These heatmaps show the neuron counts for all 36 possible orderings of curvature/torsion. The most common ordering was collateral > terminal > primary

for curvature and collateral > primary > terminal for torsion.

points whereas our method does not. Further, the piecewise
linear representation of neuron traces limits the sampling
frequency of tortuosity. Since tortuosity of a straight line is
identically 1, placing the start and endpoints on the same linear
segment will always produce a tortuosity value of 1. Our method,
on the other hand, can produce more meaningful instantaneous
curvature/torsion values.

Our methods for fitting splines and measuring curvature
and torsion can be applied in neuromorphological analysis in
a variety of ways, but we highlight two applications here, on a
dataset of 230 projection neuron traces from two different mouse
brains. We found that the autocorrelation functions of both
curvature and torsion showed statistically significant correlations
above 0.3 within lags of approximately 2 microns (specific lag
values given in section 3.1). Next, we defined segments as
either “primary,” “collateral,” or “terminal,” and found significant
differences in the distributions of curvature and torsion between
these classes.

The statistical analysis approach described in section 2.5
satisfies two desirable properties. First, by averaging
measurements across segment classes, and pairing the data,
we did not have to assume independence between segments of
the same neuron. Assuming independence seemed inappropriate
because, for example, segments that are connected to each
other may have correlated geometry. Second, it avoided any
parametric assumptions of the data, such as assuming normality
of curvature/torsion measurements. A normality assumption
seemed inappropriate for several reasons, including the fact
that curvature is nonnegative, and that curvature/torsion was
identically 0 for short segments with only 2 trace points.

Figure 4 shows that most individual neurons agree with
the overall trend that collateral segments have the highest
curvature and torsion. This suggests that the finding here is a
consistent phenomenon among projection neurons in mice. In

order to explore curvature/torsion distributions one level deeper,
we looked into the relationship between curvature/torsion and
segment length (see Supplementary Figure 1). In all segment
classes, longer segments tend to have less curvature. The
relationship between segment length and torsion is weaker, but
there does appear to be a positive correlation.

Together, these findings suggest that the geometry of primary
axon branches is different than that of higher order branches,
such as the segments in terminal arborizations. In particular,
higher order branches (collaterals and terminals) had higher
curvature than primary branches. Collateral branches also had
the highest torsion, but primary branches had higher torsion than
terminal segments.

The primary limitation of our work is that our process of
splitting a neuron trace into segments may not partition an
axonal arbor into the most meaningful segment classes. This is
because we needed an unambiguous classification system, while
most definitions used in neuroscience literature are subjective
and qualitative. For example, collaterals are broadly defined as
branches that split off their parent branch at sharp angles, and
arborize in a different location from other branches (Rockland,
2013). However, there is no strict cutoff for how far away a branch
has to travel for it to be considered a collateral. Further, a branch
may be simultaneously considered a collateral and a terminal.We
designed a set of segment classes which are mutually exclusive,
collectively exhaustive, and agree with common usage of the
terms ‘primary,’ ‘collateral,’ and ‘terminal’ by neuroscientists.
Future work could include changing our definitions of these
classes to incorporate other morphological properties such as
branch angle, or axon radius. Also, extending these experiments
to neuron trace repositories such as NeuroMorpho.Org would
help verify if the results using our classification system generalize.

Previous research has already indicated differences in
axon geometry across neuronal cell types. For example,
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Stepanyants et al. (2004) found higher tortuosity in the axons of
GABAergic interneurons vs. those of pyramidal cells. Similarly,
Portera-Cailliau et al. (2005) found Cajal-Retzius cells to be
significantly more tortuous than Thalamocortical (TC) cells,
which is a type of projection neuron. Portera-Cailliau et al.
(2005) also offers evidence that, while the primary axon in
TC cells travel via a growth cone, most branching occurs
via an interstitial, growth cone independent process. Our
work elaborates on this distinction, suggesting that higher
order axon branches have different geometry as well. While
earlier research studied the differences of axonal geometry
between neurons, we studied the variation of axonal geometry
within neurons.

It is also worth noting that this is not the first work
to model neuron traces as continuous curves in R

3. For
example, Duncan et al. (2018) construct a sophisticated and
elegant representation of neurons that offers several useful
properties. First, their representation is invariant to rigid motion
and reparameterization. Second, their representation offers a
vector space with a shape metric amenable to clustering and
classification. However, their representation is limited to neuron
topologies consisting of a main branch and only first order
collaterals. Our B-splines approach does not immediately yield
vector space properties, but can be applied to neurons with higher
order branching, and allows for closed form computation of
curvature and torsion. In short, the representation in Duncan
et al. (2018) is designed for analysis between neurons, and our
representation is designed for analysis within neurons. In the
future, we are interested in bringing the advantages of their work
to the open source software community, and combining it with
the advantages of ours.

This method could also be applied to measure curvature and
torsion of dendrites, since dendrites also have a tree structure
and are commonly stored in SWC format. However, the segment
classes that we define (primary, collateral and terminal) would be
inappropriate for dendrites. A segmentation classification system
for dendrites would likely depend on the neuron type being
studied. For example, a natural classification system of dendrites
in pyramidal cells may separate apical dendrites from basal ones
while dendrites in Purkinje cells would not have such a division.
The researcher would have to define the dendrite segment classes
according to the dataset, and the goals of the research.

It is well known that axons are pruned and modified over
time (Portera-Cailliau et al., 2005). It is possible that this process
contributes to the different geometry of proximal vs. distal
axonal segments. Indeed, Portera-Cailliau et al. (2005) mentions
the growth of short twisted branches toward the end of axon

development. Future animal experiments could follow-up on this
idea, and similar experiments to this one could be applied to
other neuron types and other species to see if this is a widespread
phenomenon in neuron morphology.
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Automated mouse phenotyping through the high-throughput analysis of home cage

behavior has brought hope of a more effective and efficient method for testing rodent

models of diseases. Advanced video analysis software is able to derive behavioral

sequence data sets from multiple-day recordings. However, no dedicated mechanisms

exist for sharing or analyzing these types of data. In this article, we present a free,

open-source software actionable through a web browser (an R Shiny application), which

performs an analysis of home cage behavioral sequence data, which is designed to

spot differences in circadian activity while preventing p-hacking. The software aligns

time-series data to the light/dark cycle, and then uses different time windows to produce

up to 162 behavior variables per animal. A principal component analysis strategy

detected differences between groups. The behavior activity is represented graphically

for further explorative analysis. A machine-learning approach was implemented, but

it proved ineffective at separating the experimental groups. The software requires

spreadsheets that provide information about the experiment (i.e., metadata), thus

promoting a data management strategy that leads to FAIR data production. This

encourages the publication of some metadata even when the data are kept private. We

tested our software by comparing the behavior of female mice in videos recorded twice

at 3 and 7 months in a home cage monitoring system. This study demonstrated that

combining data management with data analysis leads to a more efficient and effective

research process.

Keywords: home cage scan, mus musculus, rodent, automatic, machine learning, multidimensional analysis

INTRODUCTION

Any attempt to identify the behavioral phenotype of an animal can be a highly tedious undertaking.
Animal behavior depends heavily on many variables, which are sometimes uncontrollable, such
as general health, age, animal care, sex, environmental factors (pre- and post-natal), housing
conditions, environmental stress (including from the experimenter), and diet (VanMeer and Raber,
2005). Therefore, the research community has been searching for high-throughput technologies
and methods that can not only phenotype numerous animals through computer automation and
with low effort from the experimenter, but also be applied without the experimenter interacting
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with the animal. Behavioral analysis of video-captured home cage
behavior could potentially be an effective and efficient method
for characterizing rodent models of diseases. Because analyzing
the behavior of animals under crowded conditions in group
housing remains difficult (see Bains et al., 2018 for a review),
the most widely used approach is to record animals’ behavior in
individual cages.

Currently, various technical solutions can provide a detailed
analysis of single-housed mouse behavior sequences by analyzing
a video (Figure 1). These include proprietary systems such as
the HomeCageScan (HCS) software (Cleversys, Steele et al.,
2007), and the phenorack system (Viewpoint S.A., France Bains
et al., 2018), as well as an open source solution (Jhuang et al.,
2010), and manual video annotation (see Jhuang et al., 2010 for
an example). These software solutions assign one behavior to
each video frame (using a short video sequence as the input).
The primary data output is a sequence of behavior states. The
number of different behaviors recognized varies between the
solutions. To simplify the analysis or compare software accuracy,
the number of behavior categories can be reduced (Steele et al.,
2007; Jhuang et al., 2010; Luby et al., 2012; Adamah-Biassi et al.,
2013). In addition to the raw behavior sequence data, the HCS
software, as one example, may create summaries of the time spent
performing each recognized behavior, as well as of the distance
traveled (horizontally) for time intervals from minutes to several
days (Figure 1).

While much effort has been spent on developing the software
that automatically tracks behavioral motives over time, very

FIGURE 1 | Overview of the workflow in animal homecage behavior analysis: the animal behavior is observed directly or a video is recorded (1), the behavior

sequence data is produced manually or by video analysis software (2), and the data is analyzed (3). The tools presented in this paper take care of this third step with

one application dedicated to the quality assurance of metadata (providing information about the experiment), and one application analyzing the data to detect

differences between groups.

little effort has been invested into the analysis of the data
produced. Published accounts have mostly reported analyses
conducted after data were pooled into only two categories and
one time window, and were mostly performed manually in Excel
(approximately 24 h in Steele et al., 2007, 2.5h before feeding
time in Luby et al., 2012). Consequently, such analyses would
detect a difference in overall activity, but not in activity types
or rhythm that might be relevant (Tobler et al., 1996). The
analysis of daily rhythm indeed requires a more careful analysis,
making sure the data is synchronized to the daily schedule (light
condition changes). On the other hand, the detailed analysis of
each behavior leads to a very high number of variables, which
require either a multivariate analysis to avoid p-hacking, harking
and false positives, or a preliminary experiment to identify the
variables of interest a priori (Damrau et al., 2021).

Multidimensional approaches have been used previously to
separate experimental groups. Steele et al. (2007) used a two-
out validation strategy with an L1-regularized logistic regression;
specifically, they trained a model on half of the data and then
used the model to predict the grouping in the remaining data.
This allowed them to discriminate between sick and healthy
individuals from the video data well before the appearance
of traditionally used symptoms. Another study (Bains et al.,
2018) performed a canonical discriminant analysis to select the
behavior variables that best separated groups (animal behaviors
were monitored manually).

Currently, no repository exists for home cage monitoring data
of animal models of disease. For this study, we obtained only
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derived data (hourly-binned data exports Steele et al., 2007),
because the raw data had not been saved. This restricted our use
of meta- and comparative analyses.

In this article, we present an integrated solution for the
analysis and management of home cage video monitoring
data. We propose a simple metadata schema in the form of
spreadsheets that allow for a flexible structure of the data. The
data become computer-readable, a first and critical step toward
the production of FAIR (findable, accessible, interoperable, and
reusable) open data (Group, 2014). In addition, we provide a
pack of open-source R scripts and R Shiny applications (apps)
that can analyze such FAIR data. On top of being available
for use and further development, the BSeq_analyser application
(Figure 1) is provided with an easy to use interface. It accounts
for both daily rhythms (synchronizing data along the day/night
cycle of the animal and splitting it into time windows of identical
size for each animal) and activity spectrum (with a minimal
pooling of behavior categories), producing up to 162 variables
per experiment. It runs a multidimensional analysis that tests
whether different experimental groups can be distinguished
(using the first component after a principal component analysis
[PCA] or based on a machine-learning strategy). It also provides
plots of hourly activities for explorative analysis.

We tested the software using unpublished data obtained
in Berlin, as well as previously published data obtained from
Andrew Steele’s lab. In particular, we compared the behavior
profile of animals monitored twice at 3 and 7 months of age.
Because of the differences in age and experience, we expected a
change in behavior, which our analysis was in fact able to detect.

MATERIALS AND METHODS

Data Provenance and Animal Testing
The authors did not perform the animal research described in
the manuscript but only analyzed the data. The data used in this
manuscript was collected by the animal outcome core facility
in Berlin and Prof. Steele’s group, as described in the master
metadata file, following the method described in Schroeder et al.
(2021) and Steele et al. (2007), respectively. In brief, the natural
behavior of single mice within a home cage, unaffected by an
experimenter, was video- recorded from a side view. Animals
were singly housed for approximately 23 h in a regular home
cage (EU type II) without additional enrichment (to avoid the
detection of artifacts on video), but with free access to food and
water. The videos were analyzed to classify the single behavior
shown on each frame using the HCS software package (CleverSys
Inc., USA).

Software and Data Availability
We used Rstudio and GitHub to develop the open source
software (MIT licensed) as well as to organize its development
and version control (www.github.com/jcolomb/HCS_analysis).
Github issues were used to archive some discussions held
with the CleverSys staff and data providers (Andrew Steele).
Different milestones of the development were and will be
archived on Zenodo to assure long-term preservation of the
software (doi: 10.5281/zenodo.1162721). Data were added to the

repository. Different text files available with the software describe
and document the use of the two apps, details of the analysis
algorithms, and ways to expand the analysis. A readme file
explains how to navigate them.

Main Dependencies
The software was built on R resources (R Core Team,
2020). This work would not have been possible without the
tidyverse environment (Wickham, 2019), packages for interactive
processing (Chang et al., 2020; Pedersen et al., 2020; Sievert et al.,
2020), statistical analysis (Breiman et al., 2018; Helwig, 2018;
Park and Hastie, 2018; Meyer et al., 2019; Harrell, 2020) and
graphical interfaces (Auguie, 2017; Murrell, 2020; Sievert et al.,
2020). It also depended on the osfr package, which was still
in development (Wolen and Hartgerink, 2020) and loaded via
the devtools package (Wickham et al., 2020). We used the env
package (Ushey, 2020) to dock the project.

Metadata Structure
The metadata was structured in different files to avoid having
to provide the same information multiple times (Figure 2).
Each experiment was described in the master metadata
file available online (https://osf.io/myxcv/). We expanded the
RADAR descriptive metadata schema (Kurze et al., 2017) to
create the structure of the master metadata (Table 1). The
information entered in that file was made openly available even if
the data was not. In addition to the generic entries from RADAR,
the file contained information about the path to the other three
metadata files - the experiment (one row per test provides details
about the animal and the experiment), lab (conditions such as
light conditions are given), and identifiers metadata file - and
the data folder, as well as information about the software used
to acquire and analyze the video.

Metadata and Data Registration
We have provided a detailed manual that describes the relatively
complex metadata creation process (see the readme file), and
also a Shiny app for testing the quality of the metadata entered
by users (available at analysis/Shiny__testanduploaddata/) and
pushed it to OSF. We followed the manual and push metadata
from a different experiment performed in Berlin.

The master metadata file was deposited on the open science
framework storage at “https://osf.io/myxcv/” via the Shiny app.
We chose this solution not only because we could read and
update it directly from R, but also because it was version
controlled (i.e., misuse will not have serious consequences). This
file indexed all experiments that were analyzed with the software,
but the deposition of the actual data remained independent and
optional. The analysis software could access data locally (as in
the example provided) or on the web via the HTTP protocol. We
used the Github repository as one practical example.

Data Analysis
The detailed process of the analysis can be read directly from
the commented code and readme file available on Zenodo and
GitHub. Variables can be entered in the master_noshiny.r file or
via the Shiny app, and the master_shiny.r file is then processed.
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FIGURE 2 | Data and metadata structure. The master project metadata file

links the address of the metadata files and the data folder. The experiment

metadata file links to each data file (for clarity, only one folder is shown here).

The format of the data is either .xlsx summary files (min or hour) or the HCS

output files .mbr (behavior sequence) and .tbd (position; note that the software

does not read that file). By reading the master file, the computer can determine

the path to every data file. Upon analysis, the software creates a new folder

indicating the software’s name and version. Its reports are saved there, while

derived data files are saved in a folder named after the software name but not

its version.

The second tab in the Shiny app plots hourly summary data by
running the “plot5 hoursummaries.r” code. A brief description
of the software procedure is provided below.

Overview
The analysis software automatically reads the master metadata
file on OSF. When the user specifies the project to be analyzed,

TABLE 1 | Master metadata information.

Identifier F0001

Proj_name Ro_testdata

Title Wild type data at different age. For testing

purpose

Creator Colomb, Julien

Contributors Long, Melissa; Winter, York (https://orcid.org/

0000-0002-7828-1872)

Creator_email julien.colomb@fu-berlin.de

Publisher

Publication year

Production year 2015

Subject area Behavioral neurobiology

Resource Dataset

Rights CC0

Rights holder Winter, York

Description_ comments Part of a project at the AOCF, only data from

wild type animals are available here.

Funder information XXX

video_acquisition HCS 3.0

video_analysis HCS 3.0

group_by Treatment

confound_by

source_data this_github

Folder_path Ro_testdata

raw_data_folder HCS3_output

video_folder Videos

animal_metadata metadata/Ro_testdata_meta.csv

lab_metadata metadata/Lab_metadata.csv

indentificator_ metadata

the software will import, process and analyze the data (Figure 3).
The software reads the metadata associated with the project and
creates a synchronized minute summary file from the indicated
primary data file (raw data or minute/hourly summary files).
The minute summary is a table where each row reports the
amount of time spent performing each behavior for each minute
of experiment, the time relative to the start of the experiment, the
time relative to the light extinction, and the animal ID and group.
Behavior categories (see Table 2) are pooled and the software
creates time windows (only time windows where all animals
have data can be produced, the user can choose which time
window to incorporate in the analysis), before calculating a value
for each behavior category for each time window. Some data
might be excluded from the analysis at this point, following the
label indicated in the experiment metadata. The software then
performs multidimensional analyses on this window’s summary
data to plot them as well as to test whether experimental
groups can be distinguished. The analysis involves a random
forest (RF) analysis for identifying the variables that exhibit the
largest differences among the different groups of mice. Next, an
independent component analysis (ICA) is performed on these
8–20 variables and the first three components are plotted in an
interactive 3D plot. Independently, the next part of the software
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FIGURE 3 | Overview of the data analysis workflow. See text for details.

runs a PCA and examines the first principal component for
statistically different results in the groups using a nonparametric
test. Then, it may run a machine-learning algorithm on the data
using a support vector machine (SVM) algorithm. Validation of
the latter results is conducted through a non-exhaustive two-out
validation technique as in Steele et al. (2007) if the sample size per
group is below 15, or otherwise through a test data set. Hourly
summary plots (using the synchronized minutes summary data)
are also provided in the application second tab.

Data Inputting Details
The software reads theminute summary file created by the HCS
software or creates a new one from the raw behavior sequence
data or the hourly summary data. In the latter case, the hour
value divided by 60 is used for each minute of that hour. The
software adds a column that indicates the time to the light-off
event (“bintodark”) and what the light condition was (DAY or
NIGHT). This is calculated from the start of the experiment in
the experiment metadata (which can be read from the name of
the video file coming from the HCS software package) and the
light/dark cycle information obtained from the lab metadata file.

We used the information delivered by CleverSys to derive
categories from the raw sequence files code, and obtained 38
categories (the distance traveled on the x axis was not considered
a behavior category; No Data and Arousal were discarded; and

six different drink and eat categories were pooled into two). The
synchronized minute summary file is saved on the hard-disk at
this point, and will be read by the software on a subsequent run.

In the next step, the software pools these 38 categories into
18 (Berlin categories: we restricted the number of categories to
pool some behavior types that are very rarely detected) or 10
(Jhuang categories: categories the Jhuang open source software
can detect) using the “grouping variables.r” code (Table 2). The
data records were typically from experiments lasting slightly less
than 24 h. Nine different time windows were defined, with the
last three windows overlapping with the first six; see Figure 4.

Then, the square root of the proportion of time spent
performing each behavior during each time window is calculated.
This data transformation makes the data more normally
distributed and allows for a better analysis in a multidimensional
space, but it does not require non-null values like log
transformation. This derived data set is the multivariate dataset
(called “Multi_datainput” in the code, time windows summaries
in Figure 3), which can contain up to 162 variables per subject
(18 behavior categories times 9 time windows), it is also saved on
disc.

Multivariate Data Visualization and Analysis
The software uses a double RF analysis to select 8–20 variables,
which are used as input for ICA. The first RF selects the best 20
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TABLE 2 | The initial 45 categories from the HCS outputs were pooled into 18

and 10 categories, the latter being the only categories available in another open

source video analysis software, while the former was used to pool categories that

have very little occurence.

Original_HCS Berlin_category Jhuang_category

Travel.m. Distance_traveled Distance_traveled

ComeDown ComeDown Rear

RearUp Rearup Rear

Turn Walk Walk

Stretch Stretch Rear

HangCudl Hang Hang

HangVert Hang Hang

CDfromPR ComeDown Rear

CDtoPR Rearup Rear

RUfromPR Rearup Rear

RUtoPR Rearup Rear

LandVert Hang Rear

WalkLeft Walk Walk

WalkRght Walk Walk

Stationa Immobile Rest

Drnk.S1. Drink Drink

Eat.Z1. Eat Eat

Jump Jump Unknown_behavior

Unknown Unknown Unknown_behavior

HVfromRU Hang Hang

HVfromHC Hang Hang

ReptJump Jump Unknown_behavior

Circle Walk Walk

Dig Digforage Unknown_behavior

Forage Digforage Unknown_behavior

Pause Immobile Micro_move

Urinate Unknown Unknown_behavior

Groom Groom Groom

Sleep Immobile Rest

Twitch Twitch Micro_move

Arousal

Awaken Awaken Micro_move

Chew Chew Eat

Sniff Sniffing Micro_move

RemainRU Rearup Rear

RemainPR Rearup Rear

RemainHV Hang Hang

RemainHC Hang Hang

RemainLw RemainLow Micro_move

WalkSlow Walk Walk

No.Data

Drnk.S2. Drink Drink

Drnk.S3. Drink Drink

Eat.Z2. Eat Eat

Eat.Z3. Eat Eat

variables, whereas the second RF is performed using only these
20 variables. The best eight variables or all variables with a Gini
score above 0.95 are kept for the ICA and are listed in the report.

The data are then plotted according to the first three components
of the ICA, resulting in a three-dimensional plot.

Then, the software performs a statistical analysis using a PCA
on the multivariate data set, and then plots the first component
and performs a statistical analysis of this first component over
groups. Finally, the user can choose (via the “Perform the
multidimensional analysis (takes time)” button) to perform a
machine-learning analysis based on a SVM approach using a
radial kernel. We also attempted an L1-regularized regression,
modifying the code used in Steele et al. (2007), obtained from
Prof. King. The models were used to predict the experimental
group of the data not used for training. The software used two
different validation techniques. For data sets with fewer than 15
animals per group, a two-out validation strategy is used, whereas
the software uses a completely independent test data set when the
sample size exceeds 15 (see the analysis_details.md text delivered
with the software for details). The software reports the kappa
score as a measure of model accuracy. For the statistical analysis,
the same machine-learning code is run on the same data but
after a randomization of the group (permutation). This provides
us with a cloud of accuracy results that can be used to perform
a binomial test, which in turn provides us with a p-value that
indicates whether the model can predict the experimental group
at a level above chance.

RESULTS

Data Integration
In order to facilitate the analysis of data from different sources,
we proposed a format for organizing the data (behavior sequence
or binned summary data) and the metadata (information about
the experiment, the lab, and the animals), such that the R Shiny
apps can access the different files automatically. Critically, this
format does not require any file to be renamed, but it does
include file names in the experiment metadata. An extra main
and public metadata file reports information about the project, its
contributors, and the placement of the other files (see Figure 2),
making the data FAIR (Group, 2014).

We have also provided a walk-through (available at
metadata/information/Readme.md) and a Shiny app to facilitate
new data integration. The app tests and uploads the project
metadata to the master metadata file online (which can then be
read by the second app devoted to data analysis). The process
of creating the spreadsheets lasts for approximately 1 h once
all information have been gathered. The data files themselves
did not require any modification. We obtained data of different
quality and formats from different labs. The software deals only
with files output from the HCS software package (CleverSys Inc.)
thus far (the raw behavior sequence [.mbr file] or the minute or
hour binned data summaries).

We provided and used a data set produced in Berlin of 11
wild-type female mice recorded twice (at the age of 3 and 7
months, respectively) for approximately 24 h, and published data
obtained from Andrew Steele (Steele et al., 2007; Luby et al.,
2012). Other data sets were tested but the data were not made
public. The sample size was decided independent of this study
and one animal was excluded because the data for one time
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FIGURE 4 | Screenshot of the Bseq_analyser Shiny app for data analysis. In the left panel, the user indicates the data and variables to use. He or she can also

indicate where to find the data that are not published online (by clicking the “Data directory” button). The left panel also presents some messages and a link to the

report. The main panel has two tabs, one for performing the multidimensional analysis (with a prior choice of time windows or not) and one for creating hourly

summary plots of each behavior category.

point were not available. Mice were tested in the same order
at the two time points, and were subjected to other behavioral
tests in the 4-month time period between the two home cage
monitoring events.

Data Analysis
We used data obtained using the HCS software with 11 wild-
type mice recorded twice for approximately 24 h. The data were
grouped following the age of the animal (young or old) at the time
of the recording (available under Ro_testdata project). One Excel
export file was corrupted (animal 279, first test), whereas the data
of one animal was inconsistent (animal 25, second test: the raw
data and the exported data did not correspond). Animal 25 was
removed from the analysis by modifying the metadata file, which
contained an “exclude” column.

The BSeq_analyser R Shiny app was used to analyze the data,
as shown in Figure 4. In the left panel, the user must choose
variables: the project to analyze, the behavior categorization
to use (Table 2), whether to recreate the minute summary file
from the raw data, whether a machine learning analysis should
be performed, and the number of permutations to perform (if
machine learning analysis is performed). The users might then
choose which time windows to incorporate in the analysis. They
then press the “Perform multidimensional analysis” button and
wait until the html report is produced and presented on screen.
We performed this analysis once with the corrupted data from
the Excel summary files (Figure 5) and once with a corrected

FIGURE 5 | Three dimensional representation of the results of the ICA on the

test data with a minute summary as the primary data. Note that the data with

corrupted entries (animal 279, first test) does not show up as an outlier in

this graph.

export of the raw data (see whole report at https://doi.org/10.
6084/m9.figshare.6724547.v3).

The software read and transformed the data according to the
information given in the metadata and the variables selected. It
reports a data analysis using a PCA, present the results of RF
analysis and visualizes the data in 3 dimensions. (for details, see
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FIGURE 6 | Time spent walking for young (first) and old (second) animals observed for 24 h (lights went off at 0 h). Recordings began immediately after the animals

had been placed in the observational cages. Data are means and standard deviation expressed as percentages of time spent walking. The increase in activity at the

start of the test appeared to wear off faster in old animals. In order to work for different types of grouping, the legend shows genotype and treatment conditions and is

not optimized.

the Materials and Methods section and the code itself). The html
report is saved on the hard disk (see Figure 4) and can be directly
opened in the browser app. Noteworthily, the PCA was effective
at separating the two experimental groups (nonparametric
statistical test on the first component [p= 0.00067; the effect size
was large: Z/square(n)= 0.76]).

For the data visualization, a random forest algorithm was
used to choose the 8–20 variables that were the most effective
at separating the different animal groups. An independent
component analysis (ICA) was then run on these variables
and the data were plotted in two or three dimensions. When
we performed this analysis including the corrupted file, the
data point was surprisingly not an extreme value (see Figure 5,
interactive at https://plot.ly/j_colomb/39/).

In the second tab of the app, hourly summaries of the
percentage of time spent performing each behavior are provided
(time is synchronized to the light-off event). Although it can be
directly seen in the app (plot by plot), a pdf file with all plots is
also produced. Figure 6 presents an example of a 24-h summary
plot obtained using the “walking” behavior category.

Machine Learning Analysis
The software predicts group separation using a multidimensional
analysis. In addition to PCA, it might then use a supervised
machine learning (support vector machine [SVM] using a radial
kernel) approach to separate the two groups. Noteworthily, the
software can also deal with three different experimental groups,
but no more (the data had to be split into pairs of groups and
an analysis was performed for each pair). The SVM is trained
on part of the data. The model is then used to predict the group
membership of data not used to train the model. The kappa score

gives an indication of the effectiveness of the model, which itself
indicates how easy the two groups of data can be separated. The
software uses either a two-out validation strategy (as in Steele
et al., 2007) if there are fewer than 15 animals per group, or
an independent test data set otherwise. The whole process is
repeated after permuting the group membership of the train
data set. A binomial test compares the actual accuracy with a
cloud of accuracy values obtained after many permutations, thus
calculating a range for the p-value. The number of permutations
is reported with this estimated p-value.

In order to test the efficacy of the approach, we ran the
analysis using different variables with our test data set. This was
performed with version v0.1.1-alpha of the software and with
the two corrupted files for animals 25 and 279. While the PCA
could tell the experimental groups apart (data not shown), the
machine-learning approach was not as effective. We performed
analyses over three time window variations: one time window
(from 2 h before lights off to the end of the recording), five time
windows (first 2 h of recording, last 2 h before nightfall, first
3 h of the night, last 3 h of the night, first 3 h of the second
day), or six time windows (all of the windows described above).
We ran the analysis using both behavior categorizations. Since
the number of animals was low (11 per group), we used the
two-out validation procedure. The algorithm could tell the two
groups apart when the Berlin categorization was used, but not
when the Jhuang categorization was used, irrespective of the time
window combination or algorithm used (Figure 7). When the
same analysis was performed with corrected data, the latest code
and the one time window in the Berlin categorization seemed to
provide an even worse success rate for the SVM approach https://
doi.org/10.6084/m9.figshare.6724547.v3.
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FIGURE 7 | Accuracy of machine-learning algorithms in predicting data group membership in the test data, using two-out validation. The red line represents the

accuracy when the real groups were used, whereas the distribution represents the accuracy obtained when data group membership was randomized prior to the

(Continued)
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FIGURE 7 | analysis. Graphs are grouped according to the number of time windows used in the columns (one, five, or all six windows; see text), categorization of the

behavior (first three rows: Jhuang categorization, last three rows: Berlin categorization) and the machine-learning algorithm (L1-regularized regression: rows 1 and 4;

SVM with radial kernel: rows 2 and 5; SVM with linear kernel: rows 3 and 6); p-values were obtained through confidence intervals for binomial probability analysis.

Working With Hourly Summaries and Raw
Data
The software could also use hourly summaries as primary input
data (they are the only data available in the Steeleo7 HD data set).
In this case, a minute summary was produced by dividing the
hourly value by 60. The synchronization with lights off between
experiments was not precise in those cases, but a rough analysis
of the output revealed that this had only a minor effect on the
whole analysis (https://doi.org/10.6084/m9.figshare.6724604.v1).

In general, we recommend exporting minute summaries from
the HCS software for new experiments (to obtain the distance
traveled) but using the raw data for analysis. Indeed, the distance
traveled per minute cannot be calculated with our software.
However, the created minute summary file is more robust than
that from the HCS software; specifically, some behavior events
were sometimes not taken into account, and in one case the HCS
export function failed completely.

Remarkably, using the raw data as the input allows for
a more complex analysis of the data. One can, for instance,
analyze the transition between different behaviors. For example,
we showed which behavior was performed before and after
“land vertical” events, merging our two experimental groups
(Figure 8). While landing occurred after hanging behaviors as
expected, the animals started to either rear again or engage in
sniffing or eating behaviors, but rarely started to walk directly
after a landing. In addition, the “hanging vertical from the
rear up” behavior notably did not follow a rear up behavior in
these cases.

Meta-analysis
In order to test the re-usability of our data and code, we
performed a meta-analysis using data from different projects.
We read all data at our disposal for wild-type animals. We
then performed the usual analysis with all nine time windows,
followed by a PCA (we could not include the Steele07_HD data
because the birth date of the animals was not provided, and
also because the seventh time window did not have data). We
plotted the first PCA component against the age of the animal,
adding the genotype as an additional variable (Figure 9). The
results suggested that both age and genotype might affect mouse
behavior in the home cage.

DISCUSSION

FAIR Data per Default
Using relatively simple tools (R and spreadsheets) and common
platforms (GitHub, OSF, and Zenodo), we combined data
analysis and data “FAIRification” into one workflow. On top of
metadata necessary for the data analysis, we ask the users to
provide general information about the experiment, and strongly
encourage them to publish this particular piece of metadata

through one of our apps (Figure 2). This creates an open
repository for home cage monitoring metadata in a spreadsheet
form (https://osf.io/myxcv/). Users may choose to keep the data
private, but even unpublished data is in a state to be shared easily.

Home cage monitoring experiments lead to videos
that are analyzed to produce a time stamped sequence of
recognized behaviors. By combining these data with metadata
(which provide information about the experiments and the
experimenters in a computer-readable form), one can produce
interesting visualizations and analyses, especially if the raw
data (in this case an .mbr text file) are provided. We encourage
users to avoid using the Excel summary files produced by the
proprietary software, but rather to start the analysis from the raw
data. Doing so will make the analysis more robust: data from
different software may be included more easily, and one avoids
problems created in closed access export functions. In particular,
we encourage users not to include the distance traveled variable
in the analysis, as its spread differs from the other variables
(percentage of time spent performing a behavior) and thus
including it in a multidimensional analysis may cause problems.

In order to best test the data and code re-usability, we
performed a meta-analysis (Figure 9). We pooled all data
available to us, filtered those from wild-type strains, and asked
whether animal age or genotype had the most influence on
animal behavior. While the amount of data available to us
proved insufficient to answer the question, the analysis could be
performed with few issues.

Data Visualization and Analysis
The software aligns the data to the light/dark cycle, and then
cleans the data to only keep data points where all subjects have
provided data, thus ensuring that each sample is of equivalent
valence for the analysis. Such data cleansing has been absent from
most analyses published to date, although it might be crucial
for spotting specific effects at the time of the light/dark switch.
We also implemented different time windows to create specific
variables along the day/night cycle, in order to detect differences
that could be overseen with a 24-h summary analysis. We are
confident that the software represents progress toward a cleaner
and more detailed analysis of behavior sequence data.

In addition, the use of the software would prevent p-hacking
and harking (Kerr, 1998). To illustrate this, we shuffled the
grouping of the test data before performing the analysis (data not
shown). We observed that the 3D data visualization still showed
some differences between the groups. This was expected because
the RF analysis is meant to look for the cause of differences
and would find some in a data set with 162 variables. The
summary analysis (which corresponds to the type of analysis
usually performed) can still reveal some apparent differences for
some behavioral traits – differences that could be claimed to be
statistically significant if one does not correct for multiple testing.
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FIGURE 8 | Average percentage of time that a behavior (the original HCS behavior categories were used) appeared just before or after a “land vertical” behavior. The

eight behaviors with the highest median proportion are shown; squares and numbers represent the mean percentage. Similar numbers were obtained when taking the

median.

FIGURE 9 | Effect of age and genotype on behavior phenotype as summarized by the first component of a PCA. The data suggested that both genotype and age

could affect animal behavior.

However, the PCA clearly indicated that a difference between the
two artificial groups of data could not be detected statistically,
as expected.

We made quite an effort to implement and test a machine-
learning approach, with the idea being that a PCA may miss
existing differences due to high variability for some variables
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inside groups. However, our analysis revealed that this approach
seems to be ineffective with our type of data (Figure 7). In
particular, the analysis revealed that the distribution of the
accuracy of predictions in randomly permuted groups varied
greatly between algorithms, which questions the approach used
by Steele et al. (2007).

An Open Source Proof of Concept
By using a GitHub workflow and an open-source programming
language (R), providing Shiny apps for use by non-coders, and
implementing metadata in simple spreadsheets that are easy to
read and write, we hope to reach the growing community of
researchers who are dealing with behavioral sequence data. The
software is intended for non-computer-scientist researchers to
read and extend, and therefore, it has been kept simple. While
we have provided extensive comments, including dependencies,
as well as a hierarchy of code files to facilitate code reading, we did
not use functions nor implement tests. Similarly, the experiment
metadata are provided in spreadsheets, a practical solution that
we were able to implement with little effort. We believe that
the implementation of a more complex data format would be
counterproductive at this stage.

The analysis runs identically on the Shiny app or when
variables are provided in a code file, so debugging and extension
creation can be performed without the need to care about the
difficulties of Shiny apps debugging. We used that approach to
perform a quick analysis of the behavior transition in our data set.
Our results demonstrated the potential of this approach both for
spotting limits in the video analysis software (e.g., inconsistent
sequences) and for creating new, more detailed analyses based on
the behavior sequence itself.

Mouse Behavior
As expected, mouse behavior differed in the second session
compared with the first session, which was detected by a PCA. An
explorative look at the data suggested that mice are more active
at the beginning of their first session, during the day, confirming
that the use of different time windows is beneficial for the analysis
of the data. Our meta-analysis also suggested that both age and
genotype influence mouse behavior.

CONCLUSION

We have presented several open-source Shiny apps that allow
the archiving, visualization, and analysis of long-term home cage
video monitoring experiments. This report is a proof of concept

for workflows allowing both data analysis and publication. The
analysis tool by itself should be helpful for the analysis of
behavioral sequence data. It cleanses the data before analysis and
provides an easy way to test for group effects including patterns
in circadian behavior, while avoiding harking and p-hacking.
We hope that the community will increase the amount of data
openly available as well as expand the software in novel ways for
analyzing behavioral sequence data.
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Classical null hypothesis significance testing is limited to the rejection of the point-null
hypothesis; it does not allow the interpretation of non-significant results. This leads to a
bias against the null hypothesis. Herein, we discuss statistical approaches to ‘null effect’
assessment focusing on the Bayesian parameter inference (BPI). Although Bayesian
methods have been theoretically elaborated and implemented in common neuroimaging
software packages, they are not widely used for ‘null effect’ assessment. BPI considers
the posterior probability of finding the effect within or outside the region of practical
equivalence to the null value. It can be used to find both ‘activated/deactivated’ and
‘not activated’ voxels or to indicate that the obtained data are not sufficient using a
single decision rule. It also allows to evaluate the data as the sample size increases and
decide to stop the experiment if the obtained data are sufficient to make a confident
inference. To demonstrate the advantages of using BPI for fMRI data group analysis, we
compare it with classical null hypothesis significance testing on empirical data. We also
use simulated data to show how BPI performs under different effect sizes, noise levels,
noise distributions and sample sizes. Finally, we consider the problem of defining the
region of practical equivalence for BPI and discuss possible applications of BPI in fMRI
studies. To facilitate ‘null effect’ assessment for fMRI practitioners, we provide Statistical
Parametric Mapping 12 based toolbox for Bayesian inference.

Keywords: null results, fMRI, Bayesian analyses, human brain, statistical parametric mapping

INTRODUCTION

In the neuroimaging field, it is a common practice to identify statistically significant differences
in local brain activity using the general linear model approach for mass-univariate null hypothesis
significance testing (NHST) (Friston et al., 1994). NHST considers the probability of obtaining the
observed data, or more extreme data, given that the null hypothesis of no difference is true. This
probability, or p-value, of 0.01, means that, on average, in one out of 100 ‘hypothetical’ replications
of the experiment, we find a difference no less than the one found under the null hypothesis. We
conventionally suppose that this is unlikely, therefore, we ‘reject the null’; that is, NHST employs
‘proof by contradiction’ (Cohen, 1994). Conversely, when the p-value is large, it is tempting to
‘accept the null.’ However, the absence of evidence is not evidence of absence (Altman and Bland,
1995). Using NHST, we can only state that we have ‘failed to reject the null.’ Therefore, in the
classical NHST framework, the question of interpreting non-significant results remains.
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The most pervasive misinterpretation of non-significant
results is that they provide evidence for the null hypothesis
that there is no difference, or ‘no effect’ (Nickerson, 2000;
Greenland et al., 2016; Wasserstein and Lazar, 2016). In fact,
non-significant results can be obtained in two cases (Dienes,
2014): (1) the data are insufficient to distinguish the alternative
from the null hypothesis, or (2) an effect is indeed null or
trivial. To date, the extent to which the problem of making ‘no
effect’ conclusions from non-significant results have affected the
field of neuroimaging remains unclear, particularly in functional
magnetic resonance imaging (fMRI) studies1. Regarding other
fields of science such as psychology, neuropsychology, and
biology, it was found that in 38–72% of surveyed articles, the null
hypothesis was accepted based on non-significant results only
(Finch et al., 2001; Schatz et al., 2005; Fidler et al., 2006; Hoekstra
et al., 2006; Aczel et al., 2018).

Not mentioning non-significant results at all is another
problem. Firstly, some authors may consider non-significant
results disappointing or not worth publishing. Secondly, papers
with non-significant results are less likely to be published.
This publishing bias is also known as the ‘file-drawer problem’
(Rosenthal, 1979; Ioannidis et al., 2014; de Winter and Dodou,
2015; for evidence in fMRI studies, see Jennings and Van Horn,
2012; Acar et al., 2018; David et al., 2018; Samartsidis et al., 2020).
Prejudice against the null hypothesis systematically biases our
knowledge of true effects (Greenwald, 1975).

This problem is further compounded by the fact that NHST is
usually based on the point-null hypothesis, that is, the hypothesis
that the effect is exactly zero. However, the probability thereof
is zero (Meehl, 1967; Friston et al., 2002a). This means that
studies with a sufficiently large sample size will find statistically
significant differences even when the effect is trivial or has no
practical significance (Cohen, 1965, 1994; Serlin and Lapsley,
1985; Kirk, 1996).

Having the means to assess non-significant results would
mitigate these problems. To this end, two main alternatives
are available: Firstly, there are frequentist approaches that shift
from point-null to interval-null hypothesis testing, for example,
equivalence testing based on the two one-sided tests (TOST)
procedure (Schuirmann, 1987; Wellek, 2010). Secondly, Bayesian
approaches that are based on posterior parameter distributions
(Lindley, 1965; Greenwald, 1975; Kruschke, 2010) and Bayes
factors (Jeffreys, 1939/1948; Kass and Raftery, 1995; Rouder
et al., 2009). The advantage of frequentist approaches is that
they do not require a substantial paradigm shift (Lakens, 2017;
Campbell and Gustafson, 2018). However, it has been argued that
Bayesian approaches may be more natural and straightforward
than frequentist approaches (Edwards et al., 1963; Lindley, 1975;
Friston et al., 2002a; Wagenmakers, 2007; Rouder et al., 2009;

1Here are some examples of ‘no effect’ conclusions that can be found in the fMRI
literature: (a) brain area was not activated, (b) brain area was not involved in the
function, (c) no effect was found in the brain area (p > 0.05), (d) both groups
showed no differences, which can be interpreted as evidence against the alternative
hypothesis; (e) patients have similar responses to both conditions (p > 0.05), that
is, they have difficulties in differentiating these conditions; (f) lack of significant
correlation during treatment suggest a protective impact of the therapy on brain
areas.

Dienes, 2014; Kruschke and Liddell, 2017b). It has long been
noted that we tend to perceive lower p-values as stronger evidence
for the alternative hypothesis, and higher p-values as evidence for
the null, i.e., the ‘inverse probability’ fallacy as it is referred to by
Cohen (1994). This is what we obtain in Bayesian approaches by
calculating posterior probabilities. Instead of considering infinite
‘hypothetical’ replications and employing probabilistic ‘proof by
contradiction,’ Bayesian approaches directly provide evidence for
the null and alternative hypotheses given the data, updating
our prior beliefs in light of new relevant information. Bayesian
inference allows us to ‘reject and accept’ the null hypothesis
on an equal footing. Moreover, it allows us to talk about ‘low
confidence,’ indicating the need to either accumulate more data
or revise the study design (see Figure 1).

Despite the importance of this issue, and the high level
of theoretical elaboration and implementation of Bayesian
methods in common neuroimaging software programs, for
example, Statistical Parametric Mapping 12 (SPM12) and
FMRIB’s Software Library (FSL), to date, only a few fMRI
studies implemented the Bayesian inference to assess ‘null effects’
(for example, see subject-level analysis in Magerkurth et al.,
2015, group-level analysis in Dandolo and Schwabe, 2019; Feng
et al., 2019). Therefore, this study is intended to introduce
fMRI practitioners to the methods for assessing ‘null effects.’ In
particular, we focus on Bayesian parameter inference (Friston
and Penny, 2003; Penny and Ridgway, 2013), as implemented
in SPM12. Although Bayesian methods have been described
elsewhere, the distinguishing feature of this study is that we
aim to demonstrate the practical implementation of Bayesian
inference to the assessment of ‘null effects,’ and reemphasize
its contributions over and above those of classical NHST. We
deliberately aim to avoid mathematical details, which can be
found elsewhere (Genovese, 2000; Friston et al., 2002a, 2007;
Friston and Penny, 2003; Penny et al., 2003, 2005, 2007;
Penny and Ridgway, 2013; Woolrich et al., 2004). Firstly, we
briefly review the frequentist and Bayesian approaches for the
assessment of the ‘null effects.’ Next, we compare the classical
NHST and Bayesian parameter inference using the Human
Connectome Project (HCP) and the UCLA Consortium for
Neuropsychiatric Phenomics datasets, focusing on group-level
analysis. We then consider the choice of the threshold of the effect
size for Bayesian parameter inference and estimate the typical
effect sizes in different fMRI task designs. To demonstrate how
the common sources of variability in empirical data influence
NHST and Bayesian parameter inference, we examined their
behavior for different sample sizes and spatial smoothing. We also
used simulated data to assess BPI performance under different
effect sizes, noise levels, noise distributions and sample sizes.
Finally, we discuss practical research and clinical applications of
Bayesian inference.

THEORY

In this section, we briefly describe the classical NHST framework
and review statistical methods which can be used to assess
the ‘null effect.’ We also considered two historical trends
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FIGURE 1 | Possible results for the same data, obtained using classical NHST and Bayesian parameter inference. Classical NHST detects only areas with a
statistically significant difference (‘number one’). Bayesian parameter inference based on the logarithm of posterior probability odds (LPO) provides us with additional
information that is not available in classical NHST: (1) it provides relative evidence for the null (H0) and alternative (H1) hypotheses, (2) it detects areas with a trivial
effect size (‘number zero’), (3) it indicates ‘low confidence’ areas surrounding the ‘number one’ and ‘number zero.’ To make this conceptual illustration, we generated
100 images consisted of 50 × 50 voxels smoothed by 2 voxel full width at half maximum (FWHM) Gaussian kernel. Data were drawn from normal distributions with
different mean, m, and standard deviation, SD. For the ‘number one,’ m = 0.1, SD = 0.37. For the ‘number zero,’ m = 0, SD = 0.6. For the ‘low confidence’ area,
m = 0.01, SD = 0.37. LPOs were calculated using an effect size threshold of 0.02. The code to recreate the illustration is available online
https://github.com/Masharipov/BPI_2021/tree/main/conceptual_illustration.

in statistical analysis: the shift from point-null hypothesis
testing to interval estimation and interval-null hypothesis
testing (Murphy and Myors, 2004; Wellek, 2010; Cumming,
2013), and the shift from frequentist to Bayesian approaches
(Kruschke and Liddell, 2017b).

Classical Null Hypothesis Significance
Testing Framework
Most task-based fMRI studies rely on the general linear model
approach (Friston et al., 1994; Poline and Brett, 2012). It provides
a simple way to separate blood-oxygenated-level dependent
(BOLD) signals associated with particular task conditions from
nuisance signals and residual noise when analyzing single-subject
data (subject-level analysis). At the same time, it allows us to
analyze mean BOLD signals within one group of subjects or
between different groups (group-level analysis). Firstly, we must
specify a general linear model and estimate its parameters:

Y = Xβ+ ε (1)

where Y are the data (further, D), X is the design matrix, which
includes regressors of interest and nuisance regressors, β are the
model parameters (‘beta values’), and ε is residual noise or error,
which is assumed to have a zero-mean normal distribution. At the
subject level of analysis, the data are BOLD-signals. At the group
level, the data are linear contrasts of parameters estimated at the
subject level, which typically reflect individual subject amplitudes
of BOLD responses evoked in particular task conditions. In
turn, the parameters of the group-level general linear model
reflect the group mean BOLD responses evoked in particular task
conditions and groups of subjects. The linear contrast of these
parameters, θ = cβ, represents the experimental effect of interest
(hereinafter ‘the effect’), expressed as the difference between
conditions or groups of subjects.

Next, we test the effect against the point-null hypothesis, H0:
θ = γ (usually, θ = 0). To do this, we use test statistics that
summarize the data in a single value, for example, the t-value. For
the one-sample case, the t-value is the ratio of the discrepancy
of the estimated effect from the hypothetical null value to its
standard error. Finally, we calculate the probability of obtaining
the observed t-value or a more extreme value, given that the null
hypothesis is true (p-value). This is also commonly formulated as
the probability of obtaining the observed data or more extreme
data, given that the null hypothesis is true (Cohen, 1994). It can
be simply written as a conditional probability P(D+|H0), where
‘D+’ denotes the observed data or more extreme data which can
be obtained in infinite ‘hypothetical’ replications under the null
(Schneider, 2014, 2018). If this probability is lower than some
conventional threshold, or alpha level (for example, α = 0.05),
then we can ‘reject the null hypothesis’ and state that we found a
statistically significant effect. When this procedure is repeated for
a massive number of voxels, it is referred to as ‘mass-univariate
analysis.’ However, if we consider m = 100 000 voxels with no true
effect and repeat significance testing for each voxel at α = 0.05, we
would expect to obtain 5000 false rejections of the null hypothesis
(false positives). To control the number of false positives, we must
reduce the alpha level for each significance test by applying the
multiple comparison correction (Genovese et al., 2002; Nichols
and Hayasaka, 2003; Nichols, 2012).

To date, the classical NHST has been the most widely used
statistical inference method in neuroscience, psychology, and
biomedicine (Szucs and Ioannidis, 2017, 2020; Ioannidis, 2019). It
is often criticized for the use of the point-null hypothesis (Meehl,
1967), also known as the ‘nil null’ (Cohen, 1994) or ‘sharp null’
hypothesis (Edwards et al., 1963). It was argued that the point-
null hypothesis could be appropriate only in hard sciences such
as physics, but it is always false in soft sciences; this problem is
sometimes known as the Meehl’s paradox (Meehl, 1967, 1978;
Serlin and Lapsley, 1985, 1993; Cohen, 1994; Kirk, 1996). In the
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case of fMRI research, we face complex brain activity which is
influenced by numerous psychophysiological factors. This means
that with a large amount of data, we find a statistically significant
effect in all voxels for any linear contrast (Friston et al., 2002a).
For example, Gonzalez-Castillo et al. (2012) showed a statistically
significant difference between simple visual stimulation and
rest in over 95% of the brain when averaging single-subject
data from 100 runs (approximately 8 h of scanning), which
consisted of five blocks of stimulation (20 s of visual stimulation,
40 s of rest). Approximately half of the brain areas showed
statistically significant positive effects or ‘activations,’ whereas
the other half showed statistically significant negative effects or
‘deactivations.’

Whole-brain ‘’activations/deactivations’ can also be found
when analyzing large datasets such as the HCP (N > 1000) or UK
Biobank (N > 10 000) datasets. For example, Smith and Nichols
(2018) showed significant positive and negative effects for the
emotion processing task (‘Emotional faces vs. Shapes’ contrast)
in 81% of voxels using data from UK Biobank (N = 12 600)
and conservative Bonferroni multiple comparison correction.
When we increase the sample size, the effect estimate does not
change much. Still, the standard error in the denominator of
the t-value becomes increasingly smaller, resulting in negligible
effects becoming statistically significant. Thus, the classical NHST
ignores the magnitude of the effect. Attempts to overcome this
problem led to the proposal of making a distinction between
‘statistical significance’ and ‘material significance’ (Hodges and
Lehmann, 1954) or ‘practical significance’ (Cohen, 1965; Kirk,
1996). That is, we can test whether the effect size is larger or
smaller than some practically meaningful value using interval-
null hypothesis testing (Friston et al., 2002a,b; Friston, 2013).
In this case, we use the terms ‘activations’ and ‘deactivations’
for those voxels that show a practically significant positive or
negative effect.

Frequentist Approach to Interval-Null
Hypothesis Testing
Interval-null hypothesis testing is widely used in medicine
and biology (Meyners, 2012). Consider, for example, a
pharmacological study designed to compare a new treatment
with an old treatment that has already shown its effectiveness.
Let βnew be the mean effect on brain activity of the new treatment
and βold the mean effect of the old treatment. Then, θ = (βnew –
βold) is the relative effect of the new treatment. The practical
significance is defined by the effect size (ES) threshold γ. If a
larger effect on brain activity is preferable, then we can test
whether there is a practically meaningful difference in a positive
direction (H1: θ > γ vs. H0: θ ≤ γ). This procedure is known
as the superiority test (see Figure 2A). We can also test whether
the effect of the new treatment is no worse (practically smaller)
than the effect of the old treatment (H1: θ > –γ vs. H0: θ ≤ –γ).
This procedure is sometimes known as the non-inferiority test
(see Figure 2B). If a smaller effect on brain activity is preferable,
we can use the superiority or non-inferiority test in the opposite
direction (see Figures 2C,D). The combination of these two
superiority tests allows us to find a practically meaningful

difference in both directions (H1: θ > γ and θ < –γ vs. H0: –
γ ≤ θ ≤ γ), that is, the minimum-effect test (see Figure 2E).
The combination of the two non-inferiority tests allows us to
reject the hypothesis of practically meaningful differences in any
direction (H1: –γ ≤ θ ≤ γ vs. H0: θ > γ and θ < –γ). This is the
most widely used approach to equivalence testing, known as the
two one-sided tests (TOST) procedure (see Figure 2F). For more
details on the superiority and minimum-effect tests, see Serlin
and Lapsley (1985, 1993), Murphy and Myors (1999, 2004). For
more details on the non-inferiority test and TOST procedure see
Schuirmann (1987), Rogers et al. (1993), Wellek (2010), Meyners
(2012), Lakens (2017).

The interval [–γ; γ] defines trivially small effect sizes that
we consider to be equivalent to the ‘null effect’ for practical
purposes. This interval is also known as the ‘equivalence interval’
(Schuirmann, 1987) or ‘region of practical equivalence (ROPE)’
(Kruschke, 2011). The TOST procedure, in contrast to classical
NHST, allows us to assess the ‘null effects.’ If we reject the
null hypothesis of a practically meaningful difference, we can
conclude that the effect is trivially small. The TOST procedure
can also be intuitively related to frequentist interval estimates,
known as confidence intervals (‘confidence interval approach,’
Westlake, 1972; Schuirmann, 1987). Confidence intervals reflect
the uncertainty in the point estimation of the parameters defined
by its standard error. The confidence level of (1 – α) means
that among infinite ‘hypothetical’ replications, (1 – α)% of the
confidence intervals will contain the true effect under the null.
Therefore, the TOST procedure is operationally identical to
considering whether the (1 – 2α)% confidence interval falls
entirely into the ROPE, as it uses two one-sided tests with an
alpha level of α.

Interval-null hypothesis testing can be used in fMRI studies
not only to compare the effects of different treatments. For
example, we can apply superiority tests in the positive and
negative directions to detect ‘activated’ and ‘deactivated’ voxels
and additionally apply the TOST procedure to detect ‘not
activated’ voxels. However, even though we can solve the Meehl’s
paradox and assess the ‘null effects’ by switching from point-
null to interval-null hypothesis testing within the frequentist
approach, this approach still has fundamental philosophical and
practical difficulties which can be effectively addressed using
Bayesian statistics.

Difficulties of the Frequentist Approach
The pitfalls of the frequentist approach have been actively
discussed by statisticians and researchers for decades. Here, we
briefly mention a few of the main problems associated with the
frequency approach.

(1) NHST is a hybrid of Fisher’s approach that focuses
on the p-value (thought to be a measure of evidence against
the null hypothesis), and Neyman-Pearson’s approach that
focuses on controlling false positives with the alpha level while
maximizing true positives in long-run replications. These two
approaches are argued to be incompatible and have given rise
to several misinterpretations among researchers, for example,
confusing the meaning of p-values and alpha levels (Edwards
et al., 1963; Gigerenzer, 1993; Goodman, 1993; Royall, 1997;

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2021 | Volume 15 | Article 73834253

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-738342 November 27, 2021 Time: 14:4 # 5

Masharipov et al. Providing Evidence for the Null Hypothesis in fMRI

FIGURE 2 | The alternative (H1) and null (H0) hypotheses for different types of interval-null hypotheses tests. (A,B) One-sided tests in the positive direction (‘the
larger is better’). (C,D) One-sided tests in the negative direction (‘the smaller is better’). (E) Combination of both superiority tests. (F) Combination of both
non-inferiority tests.

Finch et al., 2001; Berger, 2003; Hubbard and Bayarri, 2003;
Turkheimer et al., 2004; Schneider, 2014; Perezgonzalez, 2015;
Szucs and Ioannidis, 2017; Greenland, 2019).

(2) The logical structure of NHST is the same as that
of ‘proof by contradiction’ or ‘indirect proof,’ which becomes
formally invalid when applied to probabilistic statements (Pollard
and Richardson, 1987; Cohen, 1994; Falk and Greenbaum,
1995; Nickerson, 2000; Sober, 2008; Schneider, 2014, 2018;
Wagenmakers et al., 2017; but see Hagen, 1997). Valid ‘proof by
contradiction’ can be expressed in syllogistic form as: (1) ‘If A,
then B’ (Premise No 1), (2) ‘Not B’ (Premise No 2), (3) ‘Therefore
not A’ (Conclusion). Probabilistic ‘proof by contradiction’ in
relation to NHST can be formulated as: (1) ‘If H0 is true, then
D+ are highly unlikely, (2) ‘D+ was obtained,’ (3) ‘Therefore
H0 is highly unlikely.’ This problem is also referred to as
the ‘illusion of probabilistic proof by contradiction’ (Falk and
Greenbaum, 1995). To illustrate the fallacy of such logic, consider
the following example from Pollard and Richardson (1987): (1)
‘If a person is an American (H0), then he is most probably not a
member of Congress,’ (2) ‘The person is a member of Congress,’
(3) ‘Therefore the person is most probably not an American.’
Based on this, one ‘rejects the null’ and makes an obviously
wrong inference, as only American citizens can be a member
of Congress. At the same time, using Bayesian statistics, we
can show that the null hypothesis (‘the person is an American’)

is true (see the Bayesian solution of the ‘Congress example’
in the Supplementary Materials). The ‘illusion of probabilistic
proof by contradiction’ leads to widespread confusion between
the probability of obtaining the data, or more extreme data,
under the null P(D+|H0) and the probability of the null under
the data P(H0|D) (Pollard and Richardson, 1987; Gigerenzer,
1993; Cohen, 1994; Falk and Greenbaum, 1995; Nickerson,
2000; Finch et al., 2001; Hoekstra et al., 2006; Goodman, 2008;
Greenland et al., 2016; Wasserstein and Lazar, 2016; Amrhein
et al., 2017). The latter is a posterior probability calculated
based on Bayes’ rule. The fact that researchers usually treat
the p-value as a continuous measure of evidence (the Fisherian
interpretation) only exacerbates this problem. ‘The lower the
p-value, the stronger the evidence against the null’ statement
can be erroneously transformed to statements such as ‘the lower
the p-value, the stronger the evidence for the alternative’ or ‘the
higher the p-value, the stronger the evidence for the null.’ NHST
can only provide evidence against, but never for, a hypothesis.
In contrast, posterior probability provides direct evidence for a
hypothesis; hence, it has a simple intuitive interpretation.

(3) The p-value is not a plausible measure of evidence
(Berger and Berry, 1988; Berger and Sellke, 1987; Cornfield,
1966; Goodman, 1993; Hubbard and Lindsay, 2008;
Johansson, 2011; Royall, 1986; Wagenmakers, 2007;
Wagenmakers et al., 2008, 2017; Wasserstein and Lazar, 2016;
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bet see Greenland, 2019). The frequentist approach considers
infinite ‘hypothetical’ replications of the experiment (sampling
distribution); that is, the p-value depends on unobserved (‘more
extreme’) data. One of the most prominent theorists of Bayesian
statistics, Harold Jeffreys, put it as follows: ‘What the use of P
implies, therefore, is that a hypothesis that may be true may be
rejected because it has not predicted observable results that have
not occurred’ (Jeffreys, 1939/1948, p. 357). In turn, the sampling
distribution depends on the researcher’s intentions. These
intentions may include different kinds of multiplicities, such as
multiple comparisons, double-sided comparisons, secondary
analyses, subgroup analyses, exploratory analyses, preliminary
analyses, and interim analyses of sequentially obtained data with
optional stopping (Gopalan and Berry, 1998). Two researchers
with different intentions may obtain different p-values based on
the same dataset. The problem is that these intentions are usually
unknown. When null findings are considered disappointing,
it is tempting to increase the sample size until one obtains a
statistically significant result. However, a statistically significant
result may arise when the null is, in fact, true, which can be shown
by Bayesian statistics. That is, the p-value usually exaggerates
evidence against the null hypothesis. The discrepancy that may
arise between frequentist and Bayesian inference is also known
as the Jeffreys–Lindley paradox (Jeffreys, 1939/1948; Lindley,
1957). In addition, it is argued that a consistent measure of
evidence should not depend on the sample size (Cornfield,
1966). However, identical p-values provide different evidence
against the null hypothesis for small and large sample sizes
(Wagenmakers, 2007). In contrast, evidence provided by
posterior probabilities and Bayes factors depends only on the
exact observed data and the prior, and does not depend on the
testing or stopping intentions or the sample size (Wagenmakers,
2007; Kruschke and Liddell, 2017b).

(4) Although frequentist interval estimates (Cohen, 1990,
1994; Cumming, 2013) and interval-based hypothesis testing
(Murphy and Myors, 2004; Wellek, 2010; Meyners, 2012; Lakens,
2017) greatly facilitate the mitigation of the abovementioned
pitfalls in data interpretation, they are still subject to some
of the same types of problems as the p-values and classic
NHST (Cortina and Dunlap, 1997; Nickerson, 2000; Belia et al.,
2005; Wagenmakers et al., 2008; Hoekstra et al., 2014; Morey
et al., 2015; Greenland et al., 2016; Kruschke and Liddell,
2017a). Confidence intervals also depend on unobserved data
and the intentions of the researcher. Moreover, the meaning of
confidence intervals seems counterintuitive to many researchers.
For example, one of the most common misinterpretations of the
(1 – α)% confidence interval is that the probability of finding an
effect within the confidence interval is (1 – α)%. In fact, it is a
Bayesian interval estimate known as a credible interval.

Nevertheless, we would like to emphasize that we do
not advocate abandoning the frequency approach. Correctly
interpreted frequentist interval-based hypothesis testing with
a priori power analysis defining the sample size and proper
multiplicity adjustments often lead to conclusions similar to
those of Bayesian inference (Lakens et al., 2018). However,
it may be logically and practically difficult to carry out an
appropriate power analysis and make multiplicity adjustments

(Berry and Hochberg, 1999; Cramer et al., 2015; Streiner, 2015;
Schönbrodt et al., 2017; Sjölander and Vansteelandt, 2019). These
procedures may be even more complicated in fMRI research
than in psychological or social studies (see discussion on power
analysis in Mumford and Nichols, 2008; Joyce and Hayasaka,
2012; Mumford, 2012; Cremers et al., 2017; Poldrack et al., 2017;
multiple comparisons in Nichols and Hayasaka, 2003; Nichols,
2012; Eklund et al., 2016; and other types of multiplicities in
Turkheimer et al., 2004; Chen et al., 2018, 2019, 2020; Alberton
et al., 2020). For example, at the beginning of a long-term study,
one may want to check whether stimulus onset timings are
precisely synchronized with fMRI data collection and perform
preliminary analysis on the first five subjects. The question
of whether the researcher must make an adjustment for this
technical check when reporting the results for the final sample
become important in the frequentist approach. Such preliminary
analyses (or other forms of interim analyses) are generally not
considered a source of concern in Bayesian inference because
posterior probabilities do not depend on the sampling plan (for
discussion, see Berry, 1988; Berger and Berry, 1988; Edwards
et al., 1963; Wagenmakers, 2007; Kruschke and Liddell, 2017b;
Rouder, 2014; Schönbrodt et al., 2017). Or, for example, one
may want to find both ‘activated/deactivated’ and ‘not activated’
brain areas and use two superiority tests in combination with
the TOST procedure. It is not trivial to make appropriate
multiplicity adjustments in this case. In contrast, Bayesian
inference suggests a single decision rule without the need for
additional adjustments. Moreover, to our knowledge, practical
implementations of superiority tests and the TOST procedure
in common software for fMRI data analysis do not yet exist. At
the same time, Bayesian analysis has already been implemented
in SPM122 and is easily accessible to end-users. It consists of
two steps: Bayesian parameter estimation and Bayesian inference.
In general, it is not necessary to use Bayesian analysis at the
subject level of analysis to apply it at the group level. One can
combine computationally less demanding frequentist parameter
estimation for single subjects with Bayesian estimation and
inference at the group level. In the next sections, we consider the
group-level Bayesian analysis implemented in SPM12.

Bayesian Parameter Estimation
Bayesian statistics is based on Bayes’ rule:

P (H |D) =
P (D |H) P (H)

P (D)
(2)

where P(H|D) is the probability of the hypothesis given
the obtained data or posterior probability. P(D|H) is the
probability of obtaining the exact data given the hypothesis
or the likelihood (notice the difference from P(D+|H), which
includes more extreme data). P(H) is the prior probability of
the hypothesis (our knowledge of the hypothesis before we
obtain the data). P(D) is a normalizing constant ensuring that
the sum of posterior probabilities over all possible hypotheses
equals one (marginal likelihood). In the case of mutually
exclusive hypotheses, the denominator of Bayes’s rule is the

2https://www.fil.ion.ucl.ac.uk/spm/software/spm12
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sum of the probabilities of obtaining the data under any of
the possible hypotheses, multiplied by its prior probability.
For example, if we consider two mutually exclusive hypotheses
H0 and H1, then P(D) = P(D|H0) P(H0) + P(D|H1)P(H1)
and P(H0|D) + P(H1|D) = 1. When we consider continuous
hypotheses, the denominator is obtained by integrating over
all hypotheses (parameter spaces). For relatively simple models,
these integrals can be solved analytically. However, for more
complex models, the integrals become analytically intractable. In
this case, there are two main approaches to obtain the posterior
probability: (1) use computationally demanding numerical
integration (Markov chain Monte Carlo methods); (2) use less
accurate but computationally efficient analytical approximations
to the posterior distribution (e.g., Expectation Maximization or
Variational Bayes techniques). Describing these procedures go
beyond the scope of this paper and described elsewhere (for their
implementations in fMRI analysis, see Genovese, 2000; Friston
et al., 2002a, 2007; Friston and Penny, 2003; Penny et al., 2003,
2005, 2007; Penny and Ridgway, 2013; Woolrich et al., 2004).

In verbal form, Bayes’ rule can be expressed as:

Posterior ∝ Likelihood× Prior

This means that we can update our prior beliefs about the
hypothesis based on the obtained data.

One of the main difficulties in using Bayesian statistics,
in addition to the computational complexity, is the choice of
appropriate prior assumptions. The prior can be chosen based
on theoretical arguments or from independent experimental
data (full Bayes approach). At the same time, if the data are
organized hierarchically, which is the case for neuroimaging
data, priors can be specified based on the obtained data itself
using an empirical Bayes approach. The lower level of the
hierarchy corresponds to the experimental effects at any given
voxel, and the higher level of the hierarchy comprises the effect
over all voxels. Thus, the variance of the experimental effect
over all voxels can be used as the prior variance of the effect
at any given voxel. This approach is known as the parametric
empirical Bayes (PEB) with the ‘global shrinkage’ prior (Friston
and Penny, 2003). The prior variance is estimated from the
data under the assumption that the prior probability density
corresponds to a Gaussian distribution with zero mean. In other
words, a global experimental effect is assumed to be absent. An
increase in local activity can be detected in some brain areas; a
decrease can be found in others, but the total change in neural
metabolism in the whole brain is approximately zero. This is
a reasonable physiological assumption because studies of brain
energy metabolism have shown that the global metabolism is
‘remarkably constant despite widely varying mental and motoric
activity’ (Raichle and Gusnard, 2002), and ‘the changes in the
global measurements of blood flow and metabolism’ are ‘too
small to be measured’ by functional imaging techniques such as
PET and fMRI (Gusnard and Raichle, 2001).

Now, we can rewrite Bayes’ rule (eq. 2) for the effect θ = cβ:

P (θ | D) =
P (D | θ) P (θ)

P (D)
(3)

In the process of Bayesian updating with the ‘global shrinkage’
prior, the effect estimate ‘shrinks’ toward zero. The greater the
uncertainty of the effect estimate (variability) in a particular
voxel, the less confidence in this estimate, and the more it shrinks
(see Figure 3).

The assumption of a Gaussian prior, likelihood, and posterior
essentially reduces computational demands for Bayesian analysis.
However, the normality assumption can be violated for empirical
data. For example, violations can be observed in the presence
of outliers, particularly with small sample sizes or unbalanced
designs, which diminishes the validity of the statistical analysis.
This problem is not specific to Bayesian analysis but is inherent
to all group-level analyses that assume a normal distribution
of the effect. Nevertheless, in fMRI studies, the most common
approach is to use the Gaussian general linear models (Poline
and Brett, 2012), which have been shown to be robust against
violations of the normality assumption (Knief and Forstmeier,
2021). Still, we need to be ensured that these assumptions are not
violated substantially. If that is the case, one can use Bayesian
estimation based on non-Gaussian distributions. In this work,
we consider Bayesian estimation with Gaussian ‘global shrinkage’
prior implemented in SPM12.

After Bayesian parameter estimation, we can apply one of the
two main types of Bayesian inference (Penny and Ridgway, 2013):
Bayesian parameter inference (BPI) or Bayesian model inference
(BMI). BPI is also known as Bayesian parameter estimation
(Kruschke and Liddell, 2017b). However, we deliberately separate
these two terms, as they correspond to two different steps of
data analysis in SPM12. BMI is also known as Bayesian model
comparison, Bayesian model selection, or Bayesian hypothesis
testing (Kruschke and Liddell, 2017b). We chose the term BMI
as it is consonant with the term BPI.

Bayesian Parameter Inference
The BPI is based on the posterior probability of finding the
effect within or outside the ROPE. Let effects larger than
the ES threshold γ be ‘activations,’ those smaller than –γ be
‘deactivations,’ and those falling within the ROPE [–γ; γ] be
‘no activations.’ Then, we can classify voxels as ‘activated,’
‘deactivated,’ or ‘not activated’ if:

Pact = P (θ > γ | D) ≥ Pthr (4.1)

Pdeact = P (θ < −γ | D) ≥ Pthr (4.2)

Pnull = P (−γ ≤ θ ≤ γ | D) ≥ Pthr (4.3)

where Pthr is the posterior probability threshold (usually
Pthr = 95%). Note that Pact + Pdeact + Pnull = 1.

If none of the above criteria are satisfied, the data in
a particular voxel are insufficient to distinguish voxels that
are ‘activated/deactivated’ from those that are ‘not activated.’
Hereinafter, we refer to them as ‘low confidence’ voxels
(Magerkurth et al., 2015). This decision rule is also known as
the ‘ROPE-only’ rule (Kruschke and Liddell, 2017a), see also
Greenwald (1975); Wellek (2010), Liao et al. (2019). To the
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FIGURE 3 | Schematic of Bayesian updating with the ‘global shrinkage’ prior.

best of our knowledge, the application of this decision rule to
neuroimaging data was pioneered by Friston et al. (2002a; 2002b;
Friston and Penny, 2003). For convenience and visualization
purposes, we can use the natural logarithm of the posterior
probability odds (LPO), for example:

LPOnull = ln
(

Pnull

Pact + Pdeact

)
= ln

(
Pnull

1− Pnull

)
(5)

This allows us to more effectively discriminate voxels with a
posterior probability close to unity (Penny and Ridgway, 2013).
LPOnull > 3 corresponds to Pnull > 95%. In addition, LPO also
allows us to identify the connection between BPI and BMI.
The maps of the LPO are termed posterior probability maps
(PPMs) in SPM12.

Another possible decision rule considers the overlap between
ROPE and the 95% highest density interval (HDI). HDI is a
type of credible interval (Bayesian analog of the confidence
interval), which contains only the effects with the highest
posterior probability density. If the HDI falls entirely inside the
ROPE, we can classify voxels as ‘not activated.’ In contrast, if the
HDI lies completely outside the ROPE, we can classify voxels as
either ‘activated’ or ‘deactivated.’ If the HDI overlaps with the
ROPE, we cannot make a confident decision (we can consider
them to be ‘low confidence’ voxels). This decision rule is known
as the ‘HDI+ROPE’ rule (Kruschke and Liddell, 2017a). It is
more conservative than the ‘ROPE-only’ rule because it does not
consider the effects from the low-density tails of the posterior
probability distribution. Differences between the ‘HDI+ROPE’
rule and the ‘ROPE-only’ are most evident for strongly skewed
distributions. In such cases, the ROPE may contain more than
95% of the posterior probability distribution, but the 95% HDI
may overlap with the ROPE. In the case of a Gaussian posterior
probability distribution, both decision rules should produce
similar results. The ‘HDI+ROPE rule is advocated by Kruschke
and Liddell (2017a) and the ‘ROPE-only’ rule is preferred by
Friston et al. (2002a; 2002b; Friston and Penny, 2003), Wellek
(2010); Liao et al. (2019). These decision rules are illustrated in
Figure 4.

Bayesian Model Inference
With BPI, we consider the posterior probabilities of the linear
contrast of parameters θ = cβ. Instead, we can consider
models using BMI.

Let Halt and Hnull be two non-overlapping hypotheses
represented by models Malt and Mnull. These models are defined
by two parameter spaces: (1) Malt : θ > γ and θ < –γ, and (2)
Mnull: –γ ≤ θ ≤ γ.

Now, we can rewrite Bayes’ rule (eq. 2) for Malt and Mnull

P (Malt | D) =
P (D | Malt) P (Malt)

P (D)
(6.1)

P (Mnull | D) =
P (D | Mnull) P (Mnull)

P (D)
(6.2)

If we divide equation (6.1) by (6.2), P(D) is canceled out, and we
obtain:

P (Malt | D)

P (Mnull | D)
=

P (D | Malt)

P (D | Mnull)

P (Malt)

P (Mnull)
(7)

In verbal form equation (7) can be expressed as:
Posterior Odds = Bayes Factor × Prior Odds
The Bayes factor (BF) is a multiplier that converts prior model

probability odds to posterior model probability odds. It indicates
the relative evidence for one model against another. For example,
if BFnull =

p(D|Mnull)
p(D|Malt)

= 2, then the observed data are twice as
likely under the null model than under the alternative.

A connection exists between the BPI (eq. 3–5), and BMI (eq.
7) (see Morey and Rouder, 2011; Liao et al., 2019):

BFnull =

(
P(−γ ≤ θ ≤ γ|D)

1− P(−γ ≤ θ ≤ γ|D)

) (
1− P(−γ ≤ θ ≤ γ)

P(−γ ≤ θ ≤ γ)

)
(8)

or, in verbal form:

BF(ROPE)null =
Posterior(θ ∈ ROPE)

Posterior (θ /∈ ROPE)

Prior(θ /∈ ROPE)

Prior(θ ∈ ROPE)

For convenience, BF may also be expressed in the form of a
natural logarithm:

LogBF(ROPE)null = LPOnull + ln
(

Prior(θ /∈ ROPE)

Prior(θ ∈ ROPE)

)
(9)
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FIGURE 4 | Possible variants of the posterior probability distributions of the effect θ = cβ in (A) ‘activated’ voxels, (B) ‘deactivated’ voxels, (C) ‘not activated’ voxels,
(D) ‘low confidence’ voxels. The ‘ROPE only’ rule considers only the colored parts of the distributions. The ‘HDI+ROPE’ rule considers overlap between the ROPE
and 95% HDI.

logBF(ROPE)null ∝ LPOnull (10)

The calculation of BF may be computationally challenging, as it
requires integration over the parameter space. However, if the
ROPE has zero width (point-null hypothesis), then the BF has
an analytical solution known as the Savage–Dickey ratio (SDR)
(Wagenmakers et al., 2010; Friston and Penny, 2011; Rosa et al.,
2012; Penny and Ridgway, 2013). BF(SDR)null is calculated by
dividing the prior probability density by the posterior probability
density at θ = 0. The interpretation of the BF(SDR)null is simple:
if the effect size is less likely to equal zero after obtaining the data
than before, then BF(SDR)null < 1: that is, we have more evidence
for Malt . See schematic illustration of BMI based on interval-null
and point-null hypotheses and its relation to BPI in Figure 5.

Relations Between Frequentist and
Bayesian Approaches
Now we can point out the conceptual links between the
frequentist and Bayesian approaches.

(1) Parameter estimation: When we have no prior
information, that is, all parameter values are a priori
equally probable (‘flat’ prior), the PEB estimation reduces
to the frequentist parameter estimation (maximum likelihood
estimation; Friston et al., 2002a).

(2) Multiplicity adjustments: One of the major concerns
in frequentist inference is the multiplicity problem. In general,

after the Bayesian parameter estimation, it is not necessary to
classify any voxel as ‘activated/deactivated ’ or ‘not activated.’ If
we consider unthresholded maps of posterior probabilities, LPOs,
or LogBFs, the multiple comparisons problem does not arise
(Friston and Penny, 2003). However, if we apply a decision rule
to classify voxels, we should control for wrong decisions across
multiple comparisons (Woolrich et al., 2009, see also possible loss
functions in Muller et al., 2006; Kruschke and Liddell, 2017a).
The advantage of PEB with the ‘global shrinkage’ prior is that
it automatically accounts for multiple comparisons without the
need for ad hoc multiplicity adjustments (Berry, 1988; Friston
and Penny, 2003; Gelman et al., 2012). The frequentist approach
processes every voxel independently, whereas the PEB algorithm
considers joint information from all voxels. Frequentist inference
uncorrected for multiple independent comparisons is prone to
label noise-driven, random extremes as ‘statistically significant.’
Bayesian analysis specifies that extreme values are unlikely
a priori, and thus they shrink toward a common mean (Lindley,
1990; Westfall et al., 1997; Berry and Hochberg, 1999; Friston
et al., 2002a,b; Gelman et al., 2012; Kruschke and Liddell, 2017b).
If we consider thresholded maps of posterior probabilities, for
example, Pact > 95%, then as many as 5% of ‘activated’ voxels
could be falsely labeled so. This is conceptually similar to the
false discovery rate (FDR) correction (Berry and Hochberg, 1999;
Friston et al., 2002b; Friston and Penny, 2003; Storey, 2003;
Muller et al., 2006; Schwartzman et al., 2009). In practice, BPI
with γ = 0 should produce similar results (in terms of the number
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FIGURE 5 | Schematic of BFs used in BMI and their relation to LPO used in BPI. (A) BPI based on the ‘ROPE-only’ decision rule. (B) BF(ROPE) is related to the
areas under the functions of the posterior and prior probability densities inside and outside the ROPE. (C) BF(SDR) is the relation between the posterior and prior
probability at θ = 0. LPOs and BFs provide relative evidence for the null and alternative hypotheses.

of ‘activated/deactivated’ voxels) as classical NHST with FDR
correction. If we increase the ES threshold, fewer voxels will be
classified as ‘activated/deactivated,’ and at some γ value, BPI will
produce results similar to the more conservative Family Wise
Error (FWE) correction3.

(3) Interval-based hypothesis testing: Frequentist interval-
based hypothesis testing is conceptually connected with BPI,
particularly, the ‘HDI+ROPE’ decision rule. The former
considers the intersection between ROPE and the confidence
intervals. The latter considers the intersection between ROPE and
the HDI (credible intervals).

(4) BPI and BMI: BMI based on BF(ROPE) is conceptually
linked to BPI based on the ‘ROPE-only’ decision rule. The
interval-based Bayes factor BF(ROPE) is proportional to the
posterior probability odds. When ROPE is infinitesimally narrow,
BF can be approximated using the SDR. Note that even though
BF(SDR) is based on the point-null hypothesis, it can still provide
evidence for the null hypothesis, in contrast to BPI with γ = 0.
However, BF(SDR) in PEB settings has not yet been tested using
empirical fMRI data. Because the point-null hypothesis is always
false (Meehl, 1967), BPI and BF(ROPE) may be preferred over
BF(SDR).

Definition of the Effect Size Threshold
The main difficulty in applying interval-based methods is the
choice of the ES threshold γ. To date, only a few studies have
been devoted to determining the minimal relevant effect size.
One of them suggested a method to objectively define γ at
the subject level of analysis which was calibrated by clinical
experts and may be implemented for pre-surgical planning
(Magerkurth et al., 2015). At the same time, the problem of
choosing the ES threshold γ for the group-level Bayesian analysis
remains unresolved.

3FDR correction controls the rate of false discoveries (false positives in frequentist
terminology) among all significant voxels. FWE correction controls the rate of any
false positives in the whole brain.

Several ways in which to define the ES threshold are available.
Firstly, we can conduct a pilot study to determine the expected
effect sizes. Secondly, we can use data from the literature to
determine the typical effect sizes for the condition of interest.
Thirdly, we can use the default ES thresholds that are commonly
accepted in the field. One of the first ES thresholds proposed
in the neuroimaging literature was γ = 0.1% (Friston et al.,
2002b). This is the default ES threshold for the subject-level BPI
in SPM12. For the group-level BPI, the default ES threshold
is one prior standard deviation of the effect γ = 1 prior SDθ

(Friston and Penny, 2003). Fourthly, γ can be selected in such
a way as to ensure maximum similarity of the activation patterns
revealed by classical NHST and Bayesian inference. This would
allow us to reanalyze the data using Bayesian inference, reveal
similar activation patterns as was previously the case for classic
inference, and detect the ‘not activated’ and ‘low confidence’
voxels. Lastly, we can consider the posterior probabilities at
multiple ES thresholds or compute the ROPE maps (see below).

The ES threshold can be expressed as unstandardized (raw
β values or percent signal change) and standardized values (for
example, Cohen’s d). Raw β values calculated by SPM12 at the
first level of analysis represent the BOLD signal in arbitrary
units. However, they can be scaled to a more meaningful unit,
the BOLD percent signal change (PSC) (Poldrack et al., 2011;
Chen et al., 2017). Unstandardized and standardized values have
disadvantages and advantages. Different ways exist in which
to scale β values to PSC (Pernet, 2014; Chen et al., 2017),
which is problematic when comparing the results of different
studies. Standardized values represent the effect size in terms
of the standard deviation units, which supposedly facilitate the
comparison of results between different experiments. However,
standardized values are relatively more unstable between
measurements and less interpretable (Baguley, 2009; Chen et al.,
2017). Moreover, Cohen’s d is closely related to the t-value (for
one sample case, d = t/

√
N) and may share some drawbacks

with t-values. Reimold et al. (2005) showed that spatial smoothing
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has a nonlinear effect on voxel variance. Using t-values or Cohen’s
d for inference in neuroimaging may lead to spatially inaccurate
results (spatial shift of local maxima in t-maps or Cohen’s d maps
compared to PSC-maps). In this study, we focused on PSCs.

It is also important to note that effect sizes (both BOLD
PSC and Cohen’s d) depend on the MRI scanner (e.g., field
strength, coil sensitivity), acquisition parameters (e.g., echo time,
spin echo vs. gradient echo sequences) and field inhomogeneity
(UIudag et al., 2009). For example, the effect sizes may be
underestimated in brain areas near air–tissue interfaces because
of field inhomogeneities. This fact further complicates the
selection of the ES threshold. However, this does not mean that
we should ignore the effect size and return to the point-null
hypothesis. One may choose different ES thresholds for different
regions of interest, scanners or acquisition parameters.

METHODS

Datasets
Seven block-design tasks were considered from the HCP dataset,
including working memory, gambling, motor, language, social
cognition, relation processing, and emotion processing tasks
(Barch et al., 2013). Two event-related tasks, including the stop-
signal and task-switching tasks were considered from the UCLA
dataset (Poldrack et al., 2016). The length, conditions, and
number of scans of the tasks are provided in the Supplementary
Materials (Supplementary Table 1). A subset of 100 unrelated
subjects (S1200 release) was selected from the HCP dataset
(54 females, 46 males, mean age = 29.1 ± 3.7 years) for
assessment. A total of 115 subjects from the UCLA dataset
were included in the analysis (55 females, 60 males, mean
age = 31.7 ± 8.9 years) after removing subjects with no data for
the stop-signal task, a high level (>15%) of errors in the Go-trials,
and those of which the raw data were reported to be problematic
(Gorgolewski et al., 2017). See the fMRI acquisition parameters in
the Supplementary Materials, Par. 1.

Preprocessing
The minimal preprocessing pipelines for the HCP and UCLA
datasets were described by Glasser et al. (2013) and Gorgolewski
et al. (2017), respectively. Spatial smoothing was applied to the
preprocessed images with a 4 mm full width at half maximum
(FWHM) Gaussian smoothing kernel. Additionally, to compare
the extent to which the performance of classical NHST and
BPI depended on the smoothing, we applied 8 mm FWHM
smoothing to the emotion processing task. Spatial smoothing was
performed using SPM12. The results are reported for the 4 mm
FWHM smoothing filter, unless otherwise specified.

Parameter Estimation
Frequentist parameter estimation was applied at the subject
level of analysis. A detailed description of the general linear
models for each task design is available in the Supplementary
Materials, Par. 2. Fixation blocks and null events were not
modeled explicitly in any of the tasks. Twenty-four head motion
regressors were included in each subject-level model (six head

motion parameters, six head motion parameters one time point
before, and 12 corresponding squared items) to minimize head
motion artifacts (Friston et al., 1996). Raw β values were
converted to PSC relative to the mean whole-brain ‘baseline’
signal (Supplementary Materials, Par. 3). The linear contrasts
of the β values were calculated to describe the effects of interest
θ = cβ in different tasks. The sum of positive terms in the
contrast vector, c, is equal to one. The list of contrasts calculated
in the current study to explore typical effect sizes is presented
in Supplementary Table 1. At the group level of analysis, the
Bayesian parameter estimation with the ‘global shrinkage’ prior
was applied using SPM12 (v6906). We performed a one-sample
test on the linear contrasts created at the subject level of analysis.

Classical Null Hypothesis Significance
Testing and Bayesian Parameter
Inference
Classical inference was performed using voxel-wise FWE
correction with α = 0.05. This is the default SPM threshold
and is known to be conservative and to guarantee protection
from false positives (Eklund et al., 2016). Although voxel-wise
FWE correction may be too conservative for small sample
sizes, it is recommended when large sample sizes are available
(Woo et al., 2014).

Bayesian parameter inference, accessible via the SPM12 GUI,
allows the user to declare only whether the voxels are ‘activated’
or ‘deactivated.’ The classification of voxels as being either ‘not
activated’ or ‘low confidence’ requires the posterior mean and
variance. At the group level of analysis, SPM12 does not save the
posterior variance image. However, the posterior variance can be
reconstructed from the image of the noise hyperparameter using
a first-order Taylor series approximation (Penny and Ridgway,
2013). Therefore, in the current study, BPI was performed using
the developed SPM12-based toolbox4. For the ‘ROPE-only’ rule,
the posterior probability threshold was Pthr = 95% (LPO > 3). For
the ‘HDI+ROPE’ rule, we used the 95% HDI.

We compared the number of ‘activated’ voxels (as a percentage
of the total number of voxels) detected by Bayesian and
classical inference. We also compared the number of ‘activated,’
‘deactivated,’ and ‘not activated’ voxels detected using BPI with
the ‘ROPE-only’ and ‘HDI+ROPE’ decision rules and different
ES thresholds. To estimate the influence of the sample size on the
results, all the above-mentioned analyses were performed with
samples of different sizes: 5 to 100 subjects from the HCP dataset
(the emotion processing task, ‘Emotion > Shape’ contrast) and
5 to 115 subjects from the UCLA dataset (the stop signal task,
‘Correct Stop > Go’ contrast), in steps of 5 subjects. Ten random
groups were sampled for each step.

Effect Size Thresholds
We considered three ES thresholds: firstly, the default ES
threshold for the subject-level γ = 0.1% (BOLD PSC); secondly,
the default ES threshold for the group-level γ = 1 prior SDθ;
thirdly, the γ(Dicemax) threshold, which ensures maximum

4https://github.com/Masharipov/Bayesian_inference
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similarity of the activation patterns revealed by classical NHST
and BPI. The similarity was assessed using the Dice coefficient:

Dice (γ) =
2 ∗ Voverlap (γ)

Vclassic + Vbayesian (γ)
(11)

where Vclassic is the number of ‘activated’ voxels detected using
classical NHST, Vbayesian (γ) is the number of ‘activated’ voxels
detected using BMI with the ES threshold γ, and Voverlap is the
number of ‘activated’ voxels detected by both methods. A Dice
coefficient of 0 indicates no overlap between the patterns, and 1
indicates complete overlap. Dice coefficients were calculated for
γ ranging from 0 to 0.4% in steps of 0.001%.

Estimation of Typical Effect Sizes
In the current study, we aimed to provide a reference set of typical
effect sizes for different task designs (block and event-related) and
different contrasts (‘task-condition > control-condition,’ ‘task-
condition > baseline,’) in a set of a priori defined regions of
interest (ROI). Effect sizes were expressed in PSC and Cohen’s d.
ROI masks were defined using anatomical and a priori functional
masks. For more details, see Supplementary Materials, Par. 4.

Evaluating Bayesian Parameter Inference
on Contrasts With No Expected
Practically Significant Difference
Bayesian parameter inference should be able to detect the ‘null
effect’ in the majority of voxels when comparing samples with
no expected practically significant difference. For example, there
may be two groups of healthy adult subjects performing the
same task or two sessions with the same task instructions.
To test this, we used fMRI data from the emotion processing
task. To emulate two ‘similar’ independent samples, 100 healthy
adult subjects’ contrasts (‘Emotion > Shape’) were randomly
divided into two groups of 50 subjects. A two-sample test
comparing the ‘Group #1’ and ‘Group #2’ was performed with
the assumption of unequal variances between the groups (SPM12
default option). To emulate ‘similar’ dependent samples, we
randomized ‘Emotion > Shape’ contrasts from right-to-left (RL)
and left-to-right (LR) phase encoding sessions in the ‘Session #1’
and ‘Session #2’ samples. Each sample consisted of 50 contrasts
from the RL session and 50 from the LR session. A paired test
designed to compare ‘Session #1’ and ‘Session #2’ was equivalent
to the one-sample test on 50 ‘RL > LR session’ and 50 ‘LR > RL
session’ contrasts.

Normality Check
To check for violations of the normality assumption we
performed Shapiro-Wilk test (Shapiro and Wilk, 1965) for each
voxel for one block-design task (‘Emotion >Shape’ contrast)
and one event-related task (‘Correct Stop > Go’ contrast). We
reported the number of voxels that were significantly non-
Gaussian (using α = 0.001 uncorrected for multiple comparisons
and α = 0.05 with Bonferroni correction). We also calculated
median kurtosis and skewness across voxels. Kurtosis is a
measure of the heaviness of the tails. Skewness is a measure of
asymmetry of distribution.

Simulations
The main limitation of using empirical data to assess the
performance of statistical methods lies in the lack of knowledge
of the ground truth. Therefore, we performed group-level
simulations to better understand how the sample size and effect
size threshold affect BPI results given different known effect
sizes and noises. Simulations also allowed us to assess the
robustness of BPI to the violations of the normality assumption.
We generated the parameter maps (contrast images) similar
to Nichols and Hayasaka (2003); Schwartzman et al. (2009)
and Cremers et al. (2017). Each contrast image consisted of
‘activated’ and ‘deactivated’ voxels and ‘trivial’ background voxels
surrounding them. Locations of ‘activated’ and ‘deactivated’
voxels were specified based on the NeuroSynth meta-analysis
results (Yarkoni et al., 2011) obtained using the search terms
‘task’ and ‘default,’ respectfully (association test, α = 0.01 with
FDR correction). Data were drawn from the Pearson system
distribution (Johnson et al., 1994) with kurtosis, Ku = 2.2, 3, 7 and
skewness, Sk =−0.7, 0, 0.7. The normal distribution corresponds
to Ku = 3 and Sk = 0. Other combinations of Ku and Sk resulted in
four-parameter beta distributions. The mean effect in practically
significant (‘activated’ and ‘deactivated’) voxels was θ =± 0.1, 0.2,
0.3%. For practically non-significant or ‘trivial’ voxels, the mean
effect was θ = ± 0.04%, which can be considered equivalent to
the null value for practical purposes (‘not activated’ voxels). Noise
standard deviation was SD = 0.2, 0.3, 0.4%. The mean effect size
and noise were consistent with those observed in the empirical
data (see Supplementary Tables 11–19). Contrast-to-noise ratio
was varied from 0.25 to 1.5. For each combination of the Pearson
system distribution parameters, we generated 1000 images.

To evaluate sample size dependencies, we randomly drawn
images from the full sample (N = 1000) ranging from N = 10
to 100 (with step 10) and from N= 150 to 500 (step 50). This
procedure was repeated ten times for each step. The analysis
was limited to the single axial slice (z = 36 mm) containing 579
‘activated’ voxels, 500 ‘deactivated’ voxels and 3067 ‘trivial’ or ‘not
activated’ voxels. For classical NHST and BPI, we calculated the
number of ‘activated’ voxels in relation to the total number of
voxels. For BPI, we additionally calculated:

(1) Correct decision rate. The number of correctly classified
‘activated,’ ‘deactivated,’ and ‘not activated’ voxels to its true
number (c.f. ‘hit rate’ in detection theory or ‘true positive
rate’ in frequentist framework).

(2) Incorrect decision rate. The number of voxels incorrectly
classified as ‘activated,’ ‘deactivated,’ and ‘not activated’ to
the true number of voxels not belonging to ‘activated,’
‘deactivated,’ and ‘not activated’ categories, respectfully (c.f.
‘false alarm rate’ in detection theory or ‘false positive rate’
in frequentist framework);

(3) Low confidence decision rate. The number of ‘low
confidence’ voxels to the total number of voxels.

The code for the simulations is available online5.

5https://github.com/Masharipov/BPI_2021/tree/main/simulations
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RESULTS

Results for Contrasts With No Expected
Practically Significant Difference
Classical NHST did not show a significant difference between
‘Group #1’ and ‘Group #2’ (see Supplementary Figure 1). BPI
with the ‘ROPE-only’ decision rule and default ES threshold
γ = 1 prior SDθ = 0.190% classified 83.4% of voxels as having
‘no difference’ in which the null hypothesis was accepted (see
Supplementary Figure 1). The ‘HDI+ROPE’ rule classified
76.2% of voxels as having ‘no difference.’

Classical NHST did not reveal a significant difference between
‘Session #1’ and ‘Session #2’ (see Supplementary Figure 2). The
prior SDθ was 0.005%. In this case, using the default ES threshold
γ = 1 prior SDθ did not allow the detection of any ‘no difference’
voxels, because the ROPE was unreasonably narrow. The ‘null
effect’ was detected in all voxels beginning with a γ = 0.013%
threshold using the ‘ROPE-only’ and ‘HDI+ROPE’ decision rules
(see Supplementary Figure 2).

In this way, when comparing two ‘similar’ independent
samples (two groups of healthy subjects performing the same
task), BPI with the default group-level threshold (one prior
SDθ) allowed us to correctly label voxels as having ‘no
difference’ for the majority of the voxels of the brain. However,
when comparing two ‘similar’ dependent samples (two sessions
from the same task), the one prior SDθ threshold became
inadequately small.

Therefore, the default one prior SDθ threshold is not suitable
when the difference between dependent conditions is very small
(paired sample test or one-sample test). In such cases, one can
use an a priori defined ES threshold based on previously reported
effect sizes or provide an ES threshold at which most of the
voxels can be labeled as having ‘no difference,’ allowing the
critical reader to decide whether this speaks in favor of the
absence of differences.

Comparison of Classical Null Hypothesis
Significance Testing and Bayesian
Parameter Inference Results
Generally, classical NHST with voxel-wise FWE correction and
BPI with the ‘ROPE-only’ decision rule and default group-level
ES threshold γ = 1 prior SDθ revealed similar (de)activation
patterns in all considered contrasts (see Figure 6, Table 1,
and Supplementary Tables 2–10). The median ES threshold
based on Dicemax and median default group-level ES threshold
across all considered contrasts were close in magnitude to the
default subject-level ES threshold γ = 0.1%: γ(Dicemax) = 0.118%
and γ = 1 prior SDθ = 0.142%. The median Dicemax across
all the considered contrasts reached 0.904. At the same time,
BPI allowed us to classify ‘non-significant’ voxels as ‘not
activated’ or ‘low confidence.’ As it can be clearly seen from
Figure 6, areas with ‘non-activated’ voxels surround clusters
with ‘activated/deactivated’ voxels. Both are separated by areas
comprising ‘low confidence’ voxels.

As expected, compared with the ‘HDI+ROPE’ rule,
using the ‘ROPE-only’ rule slightly increases the number of

FIGURE 6 | Examples of results obtained with classical NHST and BPI. Four
contrasts were chosen for the illustration purposes (two event-related and two
block-design tasks). Classical NHST was implemented using voxel-wise FWE
correction (α = 0.05). BPI was implemented using the ‘ROPE-only’ decision
rule, Pthr = 95% (LPO > 3) and γ = 1 prior SDθ. Axial slice z = 18 mm
(MNI152 standard space).

‘activated/deactivated’ and ‘not activated’ voxels (see Table 1 and
Supplementary Tables 2–10). The ‘HDI+ROPE’ rule labeled
more voxels as ‘low confidence.’

Comparison of Bayesian Parameter
Inference Results With Different Effect
Size Thresholds
Here, we focus on the ‘ROPE-only’ rule. We first consider the
results for the emotional processing task and then consider other
tasks. Using the default single-subject ES threshold γ = 0.1%
for the emotional processing task (‘Emotion > Shape’ contrast),
58.8% of all voxels can be classified as ‘not activated,’ 30.8%
as ‘low confidence,’ and 10.1% as ‘activated’ (see Figure 7 and
Supplementary Table 2). The default group-level ES threshold
γ = 1 prior SDθ = 0.135% allowed us to classify 75.0% of all
voxels as ‘non-activated,’ 17.5% as ‘low confidence,’ and 7.4% as
‘activated’ (see Figure 7 and Supplementary Table 2). Both types
of thresholds were comparable to those of classical NHST for the
detection of ‘activated’ voxels. The maximum overlap between
‘activations’ patterns revealed by classical NHST and BPI was
observed at γ(Dicemax) = 0.116% (see Figure 8 and Table 1).

For the ‘2-back > 0-back,’ ‘Left Finger > baseline,’ ‘Right
Finger > baseline,’ and ‘Social > Random’ contrasts, the
three ES thresholds that were considered—0.1%, one prior
SDθ, γ(Dicemax)—produced similar results (see Table 1 and
Supplementary Tables 3, 5, 7). For the event-related stop-signal
task (‘Correct Stop > baseline’ and ‘Correct Stop > Go’ contrasts),
one prior SDθ and γ(Dicemax) were close in terms of their values
but smaller than 0.1% (see Table 1). Block designs tend to
evoke higher BOLD PSC than event-related designs; therefore,
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TABLE 1 | Maximum Dice coefficient and corresponding effect size thresholds for each task.

Contrast, θ Prior SDθ, % ‘ROPE-only’ decision rule ‘HDI+ROPE’ decision rule

γ(Dicemax), % Dicemax γ(Dicemax), % Dice

Emotion processing

Emotion > Shape 0.135 0.116 0.904 0.104 0.912

Working memory

2-back > baseline 0.325 0.136 0.925 0.125 0.932

2-back > 0-back 0.089 0.095 0.891 0.089 0.903

Language

Story > Math 0.255 0.119 0.896 0.108 0.904

Motor

Left finger > baseline 0.149 0.148 0.897 0.135 0.907

Right finger > baseline 0.171 0.160 0.886 0.144 0.897

Tongue > baseline 0.268 0.205 0.904 0.181 0.913

Gambling

Reward > baseline 0.254 0.132 0.917 0.122 0.924

Loss > baseline 0.249 0.134 0.918 0.118 0.925

Reward > Loss 0.032 0.044 0.894 0.037 0.886

Social cognition

Social > baseline 0.325 0.139 0.939 0.124 0.944

Social > Random 0.104 0.114 0.896 0.104 0.907

Relational processing

Relational > baseline 0.390 0.154 0.935 0.143 0.940

Relational > Match 0.051 0.073 0.892 0.066 0.894

Stop-signal task

Correct Stop > baseline 0.069 0.066 0.895 0.061 0.906

Correct Stop > Go 0.064 0.052 0.906 0.047 0.917

Task-switching

Switch > baseline 0.133 0.075 0.907 0.067 0.916

Switch > No switch 0.030 0.037 0.924 0.033 0.925

Summary

Median 0.142 0.118 0.904 0.106 0.913

a lower prior SDθ should be expected for event-related designs
and higher prior SDθ for block designs. Within a single design, in
contrasts such as ‘task-condition > baseline,’ higher BOLD PSC
and prior SDθ would be expected than in contrasts in which the
experimental conditions are compared directly. For example, the
contrast ‘2-back > baseline’ has prior SDθ = 0.325% and contrast
‘2-back > 0-back’ has prior SDθ = 0.089%.

As previously noted, some contrasts did not elicit robust
activations: ‘Reward > Loss,’ ‘Relational > Match,’ (Barch
et al., 2013) and ‘Switch > No switch’ (Gorgolewski et al.,
2017). The corresponding γ(Dicemax) thresholds were
0.044, 0.073, and 0.037% (see Table 1 and Supplementary
Tables 6, 8, 10). The prior SDθ were 0.032, 0.051, and
0.030%. Correspondingly, BPI with the γ = 1 prior
SDθ threshold classified 0, 18.4, and 42.2% of voxels
as ‘not activated.’ This demonstrates that when we
compare conditions with similar neural activity and
minor differences, it becomes more difficult to separate
‘activations/deactivations’ from the ‘null effects’ using the γ = 1
prior SDθ threshold.

Typical Effect Sizes in Functional
Magnetic Resonance Imaging Studies
A complete list of effect sizes (BOLD PSC and Cohen’s d)
estimated for different tasks and a priori defined ROIs is
presented in the Supplementary Materials (Supplementary
Tables 11–19). Here, we focus only on the BOLD PSC. The violin
plots for some of these are shown in Figure 9.

For example, the median BOLD PSC in the left amygdala
ROI, one of the key brain areas for emotional processing, was
0.263%, which is approximately twice as large as one prior SDθ

(see Figure 7). Thus, using this PSC as the ES threshold in future
studies may cause the ROPE to become too wide compared to the
effect sizes typical for tasks with such designs. Therefore, such a
threshold can be used to detect large and highly localized effects.
However, it may fail to detect small but widely distributed effects
previously described for HCP data (Cremers et al., 2017).

In general, median PSCs within ROIs were up to 1%
for block designs and 0.5% for event-related designs. The
maximum PSCs reached 2.5% and were usually observed in
the primary visual cortex (V1) for visual tasks comparing
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FIGURE 7 | Number of voxels classified into the four categories depending on
the ES threshold γ. The results for the emotion processing task
(‘Emotion>Shape’ contrast) are presented for illustration. L AMY, left
amygdala.

experimental conditions with baseline activity. For ‘moderate’
physiological effects, PSC varied in the range 0.1−0.2%, for

FIGURE 8 | Dependence of the Dice coefficient on the ES threshold γ.
Results for the emotion processing task (‘Emotion>Shape’ contrast). The red
lines denote γ(Dicemax ). L AMY, left amygdala.

example, for the ‘2-back > 0-back’ contrast, the median
PSC in the right dorsolateral prefrontal cortex (R DLPFC in
Figure 9) was 0.137%. Likewise, for the ‘Social > Random’
contrast, the right inferior parietal lobule (R IPL) median
PSC was 0.137%, for the ‘Correct Stop > Go,’ the right
inferior frontal gyrus/frontal operculum (R IFG/FO) median

FIGURE 9 | Typical BOLD PSC in fMRI studies. The box plots inside the violins represent the first and third quartile, and the black circles represent median values.
Contrasts from the same task are indicated in one color. L/R, left/right; AMY, amygdala; V1, primary visual cortex; DLPFC, dorsolateral prefrontal cortex; BA,
Brodmann area; STG, superior temporal gyrus; A1, primary auditory cortex; NAc, nucleus accumbens; IPL, inferior parietal lobule; IFG/FO, inferior frontal
gyrus/frontal operculum.
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PSC was 0.120%. For more ‘strong’ physiological effects,
the PSC was in the range 0.2−0.3%, for example, for the
‘Emotion > Shape’ contrast, the median PSC in the left
amygdala was 0.263%, and for the ‘Story > Math’ contrast,
the median PSC in the left Brodmann area 45 (Broca’s
area) was 0.269%. For the motor activity, for example the
‘Right Finger > baseline’ contrast, the median PSC in the
left precentral gyrus was 0.239%, in the left postcentral
gyrus was 0.362%, in the left putamen was 0.290%, and
in the right cerebellum was 0.401%. For the contrasts that
did not elicit robust activations (Barch et al., 2013), the
PSC was approximately 0.05–0.1%; for example, for the
‘Reward > Loss’ contrast, the median PSC in the left nucleus
accumbens was 0.043%, and for the ‘Relational > Match’
contrast, the median PSC in the left dorsolateral prefrontal
cortex was 0.062%.

Region of Practical Equivalence Maps
We considered BPI with two consecutive thresholding steps:
(1) calculate the LPOs (or PPMs) with a selected ES threshold
γ, (2) apply the posterior probability threshold pth = 95%
or consider the overlap between the 95% HDI and ROPE.
We can reverse the thresholding sequence and calculate
the ROPE maps.

For the ‘activated/deactivated’ voxels, the ROPE map contains
the maximum ES thresholds that allow voxels to be classified as
‘activated/deactivated’ based on the ‘ROPE-only’ or ‘HDI+ROPE’
decision rules. For the ‘not activated’ voxels, the map contains the
minimum effect size thresholds that allow voxels to be classified
as ‘not activated.’

The procedure for calculating the ROPE map can be
performed as follows. Let us consider a gradual increase
in the ROPE radius (i.e., the half-width of ROPE or the
ES threshold γ) from zero to the maximum effect size in
observed volume. (1) For voxels in which PSC is close to
zero, at a certain ROPE radius, the posterior probability of
finding the effect within the ROPE becomes higher than
95%. This width is indicated on the ROPE map for ‘not
activated’ voxels. (2) For voxels in which the PSC deviates
from zero, at a certain ROPE radius, the posterior probability
of finding the effect outside the ROPE becomes lower
than 95%. This width is indicated on the ROPE map for
‘activated/deactivated’ voxels. The same maps can be calculated
for the ‘HDI+ROPE’ decision rule.

Examples of the ROPE maps are shown in Figure 10. From
our point of view, ROPE maps, as well as unstandardized effect
size (PSC) maps, may facilitate an intuitive understanding
of the spatial distribution of a physiological effect under
investigation (Chen et al., 2017). They can also be a
valuable addition to standard PPMs, allowing researchers
to flexibly choose the ES threshold based on expected
effect size for specific experimental conditions, ROIs and
MR acquisition parameters. The default ES thresholds
may be more conservative to brain areas near air–tissue
interfaces due to signal dropout. The researcher may
choose a lower ES threshold to increase sensitivity to
these brain areas.

Effects of Spatial Smoothing on Classical
Null Hypothesis Significance Testing and
Bayesian Parameter Inference
Two main effects of spatial smoothing were identified. Firstly,
higher spatial smoothing increased the number of both
‘activated/deactivated’ and ‘not activated’ voxels classified by BPI,
reducing the number of ‘low confidence’ voxels. Secondly, higher
smoothing blurred the spatial localisation of local maxima of
t-maps and PPMs (LPO-maps) to a different extent. Consider,
for example, the emotion processing task (‘Emotion > Shape’
contrast). The broadening of two peaks in the left and right
amygdala was more noticeable on the t-map than on the PPM
(see Figure 11).

Smoothing was previously shown to have a nonlinear effect
on the voxel variances and thus to affect more t-maps than
β value maps, sometimes leading to counterintuitive artifacts
(Reimold et al., 2005). This is especially noticeable at the border
between two different tissues or between the two narrow peaks
of the local maxima. If the peak is localized close to white
matter voxels with low variability, then smoothing can shift the
peak to the white matter. If low-variance white matter voxels
separate two close peaks, then after smoothing, they may serve
as a ‘bridge’ between the two peaks. To avoid this problem,
Reimold et al. (2005) recommended using masked β value maps.
In the present study, we suggest that PPMs based on BOLD PSC
thresholding can mitigate this problem. Importantly, smoothing
artifacts can also arise on Cohen’s d maps. Therefore, PPMs
based on PSC thresholding may be preferable to PPMs based on
Cohen’s d thresholding.

Sample Size Dependencies for Classical
Null Hypothesis Significance Testing and
Bayesian Parameter Inference
An enlargement of the sample size led to an increase in the
number of ‘activated’ and ‘not activated’ voxels, and a decrease in
the number of ‘low confidence’ voxels. This is due to a decrease
in the posterior variance. The curve of the ‘activated’ voxels
rose much slower than that of the ‘not activated’ voxels. For
the emotion processing task (‘Emotion > Shape’ contrast, block-
design, two sessions, 352 scans), the largest gain in the number
of ‘activated’ and ‘not activated’ voxels can be noted from 20 to
30 subjects (see Figure 12A). With a sample size of N > 30,
the number of ‘activated’ and ‘not activated’ voxels increased less
steeply. The ‘not activated’ and ‘low confidence’ voxels curves
intersected at N = 30 subjects. After the intersection point, the
graphs reached a plateau.

Considering only half of the emotional processing task data
(one session, 176 scans), the intersection point shifted from
N = 30 to N = 60 (see Figure 12B). For the event-related task
(‘Correct Stop > Go’ contrast, the stop-signal task, 184 scans), all
considered dependencies had the same features as for the block-
design task, and the point of intersection was at N = 60 subjects
(see Figure 12C). For the fixed ES threshold, the moment at
which the graphs reach a plateau depends on task design, data
quality and the amount of data at the subject level, that is, on
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FIGURE 10 | The ROPE maps. Four contrasts were chosen for the illustration purposes (two event-related and two block-design tasks). The ROPE maps are
presented using different colors for the ‘activated,’ ‘deactivated,’ and ‘not activated’ voxels. The green bars represent the minimum ROPE radii at which voxels with
a PSC close to zero can be classified as ‘not activated’ based on the ‘ROPE-only’ decision rule. The red and blue bars represent the maximum ROPE radii at which
voxels of which the PSC deviates from zero can be classified as ‘activated’ and ‘deactivated,’ respectively.

the number of scans, blocks, and events. The task designs from
the HCP and UCLA datasets have relatively short durations (for
example, the stop-signal task has approximately 15 ‘Correct Stop’
trials per subject). Studies with a shorter scanning time generally
require a larger sample size to enable inferences to be made with
confidence. Lowering the ES threshold would also require larger
sample size to reach a plateau.

Classical NHST with the voxel-wise FWE correction showed
a steady linear increase in the number of ‘activated’ voxels with
increasing sample size (see Figure 13). With a further increase
in the sample size, the number of statistically significant voxels
revealed by classical NHST is expected to approach 100% (see,
for example, Gonzalez-Castillo et al., 2012; Smith and Nichols,
2018). In contrast, the BPI with the γ = 1 prior SDθ threshold
demonstrated hyperbolic dependencies. We observed a steeper
increase at small and moderate sample sizes (N = 15−60).
The curve of the ‘activated’ voxels flattened at large sample
sizes (N > 80). BPI offers protection against the detection of

‘trivial’ effects that can appear as a result of an increased sample
size if classical NHST with the point-null hypothesis is used
(Friston et al., 2002a; Friston, 2012; Chen et al., 2017). This is
achieved by the ES threshold γ, which eliminates physiologically
(practically) negligible effects. Figure 13 presents an illustration
of the Jeffreys-Lindley paradox, that is, the discrepancy between
results obtained using classical and Bayesian inference, which is
usually manifested at higher sample sizes (Jeffreys, 1939/1948;
Lindley, 1957; Friston, 2012).

Normality Check
For the block-design task (‘Emotion > Shape’ contrast),
the number of significantly non-Gaussian voxels was
17% with αuncorr = 0.001 and 2% with αBonf = 0.05.
The median kurtosis and skewness across voxels was
Ku = 3.77 and Sk = 0.05. For the event-related task (‘Correct
Stop > Go’ contrast), the number of significantly non-
Gaussian voxels was 19% with αuncorr = 0.001 and 4% with
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FIGURE 11 | Influence of spatial smoothing on classical NHST and BPI: results for the emotion processing task (‘Emotion > Shape’ contrast). Classical NHST was
implemented using voxel-wise FWE correction (α = 0.05). BPI was implemented using the ‘ROPE-only’ decision rule, Pthr = 95% (LPO > 3) and γ = 1 prior
SDθ = 0.135%. Axial slice z = –14 mm (MNI152 standard space). Slice images have different outlines due to spatial smoothing (higher spatial smoothing increases
the size of implicit masks for single subjects and group of subjects). In the panels on the right, 1-D images are presented for t-values and LPOs along the x-axis for
y = –4 mm. The red arrows indicate a noticeable broadening of two peaks of local maxima (left and right amygdala) at higher smoothing.

αBonf = 0.05. The median kurtosis and skewness across
voxels was Ku = 3.77 and Sk = 0.05. In general, the data
are consistent with the normality assumption, though some
voxels violate it.

Simulations
The simulations results reproduced the results obtained from
the empirical data (see Figure 14 for an overview of the
simulations). Further, they allowed us to demonstrate how
various factors affect BPI performance with the known
ground truth.

Dependence of the Number of ‘Activated’ Voxels on
the Sample Size
The number of ‘activated’ voxels revealed by BPI with the
γ = 1 prior SDθ threshold approaches the true number
of practically significant voxels and stops increasing (see
Figure 15). Classical NHST shows further increase of ‘activated’
voxels with the sample size increase, as it considers only
statistical significance. This is more evident for low and
medium noise cases (SD = 0.2, 0.3%). For the high noise
case (SD = 0.4%), the sample size should be larger than
N = 500 for the discrepancy between NHST and BPI results to
become evident.

Dependence of the Correct and Low Confidence
Decision Rates on the Sample Size
For the weak effect size (θ = 0.1%), the BPI with the γ = 1
prior SDθ threshold is more sensitive for ‘activated’ than for ‘not
activated’ voxels (see Figure 16). This is because γ = 1 prior SDθ

threshold is smaller for the weak effect size. For the moderate and
strong effects (θ = 0.2, 0.3%), this difference in sensitivity become
less evident. The low confidence decisions are prevalent in the
‘weak effect plus high noise’ case. It becomes more challenging
to distinguish between ‘activated’ and ‘not activated’ voxels when
the data are noisy, and the PSC in the ‘activated’ voxels is close
to the PSC in ‘trivial’ voxels. For the intermediate case (moderate
effect plus medium noise), the correct decision rates for ‘activated’
and ‘not activated’ voxels reached 80% at the sample sizes N = 80
and N = 150, correspondingly. For larger effect sizes and lower
noise, a smaller sample size will be required to achieve the correct
decision rate of 80% (and vice versa). The ‘ROPE-only’ decision
rule is more sensitive to both ‘activated’ and ‘not activated’ voxels
than the ‘HDI+ROPE’ decision rule.

Robustness of Bayesian Parameter Inference to
Violations of the Normality Assumption
Non-normal distributions with positive and negative skewness
increase incorrect decision rates for ‘deactivated’ and ‘activated’
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FIGURE 12 | Dependencies of the number of ‘activated,’ ‘not activated,’ and ‘low confidence’ voxels on the sample size. BPI was implemented using γ = 1 prior
SDθ. (A) The emotional processing task (‘Emotion > Shape’ contrast, two sessions). (B) The emotional processing task (‘Emotion > Shape’ contrast, one session).
(C) The stop-signal task (‘Correct Stop > Go’ contrast). The error bars represent the mean and standard deviation across ten random groups.

voxels, correspondingly (Figure 17). Application the ‘ROPE-
only’ decision rule results in higher incorrect decision rates than
the ‘HDI+ROPE’ decision rule. However, even in the worst
case (weak effect plus high noise), the incorrect decision rates
for BPI with the γ = 1 prior SDθ threshold did not exceed
5%. This result shows that BPI is robust to violations of the
normality assumption. The ‘ROPE-only’ rule may be preferable
to the ‘HDI+ROPE’ rule, as both rules protect against incorrect
decisions, but the ‘ROPE-only’ rule is more sensitive to the true
effects using γ = 1 prior SDθ threshold.

Dependence of the Correct and Incorrect Decision
Rates on the Effect Size Threshold
The optimal ES threshold should provide high sensitivity to
both ‘activated’ and ‘not activated’ voxels (e.g., higher than 80%)

while protecting against incorrect decisions (e.g., lower than 5%).
The range of ES thresholds that meets these criteria decreases
for lower true effects and higher noise (see Figure 18). At the
sample size N = 200, the default γ = 1 prior SDθ threshold
falled in the range of optimal ES thresholds in the majority
of the cases. For the weak effect plus high noise case, one
should choose between high sensitivity to ‘activated’ or ‘not
activated’ voxels. In this scenario, to achieve high sensitivity
to both types of voxels, it is necessary to obtain a very large
sample size (N > 500). In all considered cases, the default ES
threshold provided approximately equal correct decision rates
for ‘activated’ and ‘not activated’ voxels and protected against
incorrect decisions. This result confirmed that the default IS
threshold is optimal in most scenarios, except for the scenario
with low effect and high noise level.
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FIGURE 13 | Dependencies of the number of ‘activated’ voxels on the sample size. Classical NHST was implemented using FWE correction (α = 0.05). BPI was
implemented using γ = 1 prior SDθ. (A) The emotional processing task (block design, ‘Emotion > Shape’ contrast). (B) The stop-signal task (event-related design,
‘Correct Stop > Go’ contrast). The error bars represent the mean and standard deviation across ten random groups.

Example of Practical Application of
Bayesian Parameter Inference
In contrast to classical NHST, Bayesian inference allows us to:

(1) Provide evidence that there is no practically meaningful
BOLD signal change in the brain area when comparing the
two task conditions.

(2) Establish double dissociations; that is to state that one area
responds to A but not B condition and another responds to
B but not A condition (Friston et al., 2002a).

(3) Provide evidence for practically equivalent engagement of
one area under different experimental conditions in terms
of local brain activity.

(4) Provide evidence for the absence of a practically
meaningful difference in BOLD signals between groups of
subjects or repeated measures.

To illustrate a possible application of Bayesian inference
in research practice, we used a working memory task. Let us
consider an overlap between the ‘2-back > baseline’ and ‘0-
back > baseline’ contrasts (see Figure 19, purple areas). We
cannot claim that brain areas revealed by this conjunction
analysis were equally engaged in the ‘2-back’ and ‘0-back’
conditions. To provide evidence for this notion, we can use BPI
and attempt to identify voxels with a practically equivalent BOLD
signal in the ‘2-back’ and ‘0-back’ conditions (see Figure 19,
green areas). Overlap between the ‘2-back > baseline’ and ‘0-
back > baseline’ and the ‘2-back = 0-back’ effects was found in
several brain areas: visual cortex (V1, V2, V3), frontal eye field
(FEF), superior eye field (SEF), parietal eye field (PEF, or posterior
parietal cortex), lateral geniculate nucleus (LGN) and left primary
motor cortex (M1) (see Figure 19, white areas). This result can

be easily explained by the fact that both experimental conditions
require the subject to analyze perceptually similar visual stimuli
and push response buttons with the right hand, which should not
depend much on the working memory load. At the same time, it
does not follow directly from simple conjunction analysis.

DISCUSSION

Over-reliance on classical NHST promotes publication bias
toward statistically significant findings. However, the null result
can be just as valuable and exciting as the statistically significant
result. Furthermore, not every statistically significant result
has a practical significance. In recent years, statistical practice
has seen a gradual shift from point-null hypothesis testing to
interval-null hypothesis testing and interval estimation, as well
as from frequentist to Bayesian approaches. Frequentist and
Bayesian interval-based approaches allow us to assess the ‘null
effects’ and thus overcome prejudice against the null hypothesis.
While both approaches may lead to similar results (if specially
calibrated to get it), we discussed conceptual and practical
reasons for preferring the Bayesian approach. One of the main
conceptual difficulties of the frequentist approach is that it
is based on the probabilistic ‘proof by contradiction,’ which
results in the ‘inverse probability’ fallacy: that is a widespread
misinterpretation of p-values and confidence intervals as
posterior probabilities and credible intervals. Although the
Bayesian approach does not automatically guarantee correct
interpretations, it can be more intuitive and straightforward than
the frequentist approach (particularly, Bayesian inference
based on the posterior probability distributions of the
parameters or BPI).
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FIGURE 14 | Simulations overview. (A) Ground truth axial slice z = 36 mm (MNI152 standard space). ‘Activated’ and ‘deactivated’ voxels are marked in red and blue
colors, respectfully. ‘Trivial’ voxels that should be classified as ‘not activated’ (practically equivalent to the null value) are marked in green. Data were drawn from the
normal (Ku = 3, Sk = 0, the red line) and non-normal distributions. (B) Classical NHST results for N = 200 images, moderate effect and medium noise (θ = 0.2%,
SD = 0.3%), obtained using voxel-wise FWE correction (α = 0.05). (C) BPI results for N = 200 images, moderate effect and medium noise (θ = 0.2%, SD = 0.3%),
obtained using the ‘ROPE-only’ decision rule, Pthr = 95% (LPO > 3) and γ = 1 prior SDθ.

At the same time, from the frequentist point of view, the main
conceptual disadvantage of the Bayesian approach is the need to
specify our prior beliefs about the model parameters. Sometimes
it is argued that we do not want our result to depend on a
subjective prior decision. However, in the frequentist framework,
we also make prior assumptions when subjectively choosing a
model or ignoring the prior distributions of model parameters
(implicitly use ‘flat’ prior). From this point of view, the explicit
choice of the prior may be rather an advantage. We can choose
prior from theoretical arguments (e.g., biophysical or anatomical
priors) or derive prior from the hierarchically organized data
(empirical Bayes approach). In this way, we limit the subjectivity
of the choice of the prior.

Another potential obstacle to using Bayesian statistics is
its computational complexity. Integrals in Bayes’ rule can be
solved analytically only for relatively simple models. In other
cases, numerical integration approaches should be used to
calculate the posterior probability, which are particularly time-
consuming, especially when considering thousands of voxels.
Alternatively, one can use computationally efficient analytical
approximations to the posterior distributions, which, however,
can be less accurate for high-dimensional parameter spaces
(multivariate analysis).

Despite profound development of Bayesian techniques, to
date, the ‘null effect’ assessment is uncommon in neuroimaging
field and, in particular, in fMRI studies. One of the possible
reasons for this may be the lack of tools available to the
end-user. To facilitate the ‘null effect’ assessment for fMRI
practitioners, we developed SPM12 based toolbox for group-level

Bayesian inference4. We evaluated the BPI approach on empirical
and simulated data and discussed its possible application
in fMRI studies.

Bayesian parameter inference allows us to simultaneously find
‘activated/deactivated,’ ‘not activated,’ and ‘low confidence’ voxels
using a single decision rule. The ‘not activated’ decision means
that the effect is practically non-significant and can be considered
equivalent to the null for practical purposes. The ‘low confidence’
decision means we need more data to make a confident inference,
that is, we need to increase the scanning time, sample size,
data quality or revisit the task design. The use of parametrical
empirical Bayes with the ‘global shrinkage’ prior enables us to
check the results as the sample size increases and allows us to
decide whether to stop the experiment if the obtained data are
sufficient to make a confident inference. All the above features
are absent from the classical NHST framework, limited to the
point-null hypothesis with a pre-determined stopping rule.

An important advantage of Bayesian inference is that we
can use graphs such as those shown in Figure 12 to determine
when the obtained data are sufficient to make a confident
inference. We can plot such graphs for the whole brain or
for a priori defined ROIs. When the curves reach a plateau,
the data collection can be stopped. If the brain area can be
labeled as either ‘activated/deactivated’ or ‘not activated’ at a
relatively small sample size, it will be still so at larger sample
sizes. If the brain area can be labeled as ‘low confidence,’ we
must increase the sample size to make a confident inference.
At a certain sample size, it could possibly be labeled as either
‘activated/deactivated’ or ‘not activated.’ In the worst case, we can
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FIGURE 15 | Simulations results for the dependencies of the number of ‘activated’ voxels on the sample size. Data were drawn from normal distributions with
different mean effect θ and noise SD. Classical NHST was implemented using FWE correction (α = 0.05). BPI was implemented using γ = 1 prior SDθ. The error bars
represent the mean and standard deviation across ten random groups. Horizontal lines indicate the true number of practically significant voxels.
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FIGURE 16 | Simulations results for the dependencies of the correct and low confidence decision rates on the sample size. Data were drawn from normal
distributions with different mean effect θ and noise SD. BPI was implemented using γ = 1 prior SDθ. The plots for ‘deactivated’ voxels closely follow the plots for
‘activated’ voxels and have therefore been omitted for visualization purposes. The error bars represent the mean and standard deviation across ten random groups.
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FIGURE 17 | Simulations results for the dependencies of the incorrect decision rate on the sample size. Data were drawn from normal (Ku = 3, Sk = 0) and
non-normal distributions with weak effect and high noise (θ = 0.1%, SD = 0.4%). BPI was implemented using γ = 1 prior SDθ. The error bars represent the mean and
standard deviation across ten random groups.

Frontiers in Neuroinformatics | www.frontiersin.org 24 December 2021 | Volume 15 | Article 73834273

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-738342 November 27, 2021 Time: 14:4 # 25

Masharipov et al. Providing Evidence for the Null Hypothesis in fMRI

FIGURE 18 | Simulations results for the dependencies of the correct and incorrect decision rates on the ES threshold γ. Data were drawn from normal distributions
with different mean effect θ and noise SD. Sample size N = 200 images, results for one random group. The plots for ‘deactivated’ voxels closely follow the plots for
‘activated’ voxels and have therefore been omitted for visualization purposes. Vertical lines indicate the default ES threshold γ = 1 prior SDθ. The light blue areas
indicate ES thresholds at which the incorrect decision rates do not exceed 5% for both ‘activated’ and ‘not activated’ voxels. The dark blue areas indicate ES
thresholds at which the correct decision rates exceed 80% for both ‘activated’ and ‘not activated’ voxels.
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FIGURE 19 | Example of possible application of BPI based on the working memory task. L/R, left/right; V1, V2, V3, primary, secondary, and third visual cortex; FEF,
frontal eye field; SEF, superior eye field; PEF, parietal eye field; LGN, lateral geniculate nucleus; M1, primary motor cortex.

reach the plateau and still label the brain area as ‘low confidence.’
However, even in this case, we can make a definite conclusion:
the task design is not sensitive to the effect and should be
revised. Empirical Bayes with the ‘global shrinkage’ prior allows
us to monitor the evidence for the alternative or null hypotheses
after each participant without special adjustment for multiplicity
(Edwards et al., 1963; Berger and Berry, 1988; Wagenmakers,
2007; Rouder, 2014; Kruschke and Liddell, 2017b; Schönbrodt
et al., 2017). The optional stopping of the experiment not only
allows more freedom in terms of the experimental design, but
also saves limited resources and is even more ethically justified
in certain cases6 (Edwards et al., 1963; Wagenmakers, 2007). To
strike a balance between analytical flexibility and subjectivity of
analysis, one may pre-register hypotheses, models, priors and
desired level of evidence to reach without being limited by
predefined sample size.

In contrast, frequentist inference depends on the researcher’s
intention to stop data collection and thus requires a definition of
the stopping rule based on a priori power analysis. The sequential
analysis and optional stopping in frequentist inference inflate
the number of false positives and require special multiplicity
adjustments. Moreover, even if the a priori defined sample size
is reached, the researcher can still obtain a non-significant result.
In this case, the researcher can follow two controversial paths
within the classical NHST framework. Firstly, the sample size
could be further increased to force an indecisive result to a
decisive conclusion. The problem is that this conclusion would
always be against the null hypothesis. Thus, an unbounded
increase in the sample size introduces a discrepancy between
classical NHST and Bayesian inference, also known as the
Jeffreys-Lindley paradox. Secondly, one may argue that high
a priori power and non-significant results provide evidence for

6This is especially true for PET studies. The BPI method described in this work
can also be applied to PET data to reduce the sample size and thus exposure to
radioactivity (Svensson et al., 2020).

the null hypothesis (see, for example, Cohen, 1990). However,
even high a priori power and non-significant results do not
provide direct evidence for the null hypothesis. In fact, a high-
powered non-significant result may arise when the obtained data
provide no evidence for the null over the alternative hypothesis,
according to Bayesian inference (Dienes and Mclatchie, 2017).
This does not mean that power analysis is irrelevant from a
Bayesian perspective. Although power analysis is not necessary
for Bayesian inference, it can still be used within the Bayesian
framework for study planning (Kruschke and Liddell, 2017b).
At the same time, power analysis is a critical part of frequentist
inference, as it depends on researcher intentions, such as the
stopping intention.

The main difficulty with the application of BPI is the need
to define the ES threshold. However, the problem of choosing a
practically meaningful effect size is not unique to fMRI studies, as
it arises in every mature field of science. It should not discourage
us from using BPI, as the point-null hypothesis is never true
in the soft sciences. From our perspective, there are several
ways to address this problem. Firstly, the ES threshold can
be chosen based on previously reported effect sizes in studies
with a similar design or perform a pilot study to estimate the
expected effect size.

Based on the fMRI literature, the largest BOLD responses
are evoked by sensory stimulation and vary within 1–5% of the
overall mean whole-brain activity. In contrast, BOLD responses
induced by cognitive tasks vary within 0.1–0.5% (Friston et al.,
2002b; Poldrack et al., 2011; Chen et al., 2017). The results
obtained in this study support this notion. Primary sensory effects
were >1%, and motor effects were >0.3%. Cognitive effects can
be classified into three categories.

(1) ‘Strong’ effects of 0.2−0.3% (for example, emotion
processing in the amygdala, language processing in Broca’s
area),
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(2) ‘Moderate’ effects of 0.1−0.2% (for example, working
memory load in DLPFC, social cognition in IPL, response
inhibition in IFG/FO),

(3) ‘Weak’ effects of 0.05–0.1% in contrasts without robust
activations (for example, reward processing in the nucleus
accumbens, relational processing in DLPFC).

However, choosing the ES threshold based on previous
studies can be challenging because fMRI designs become
increasingly complex over time, and it can be difficult to
find previous experiments reporting unbiased effect size with
a similar design. In this case, one can use the ES threshold
equal to one prior SD of the effect (Friston and Penny, 2003),
which can be thought as a neuronal ‘background noise level’
or a level of activity that is generic to the whole brain
(Eickhoff et al., 2008). As empirical and simulation analysis
results show, BPI with this ES threshold generally works
well for both ‘activated/deactivated’ and ‘not activated’ voxel
detection. However, it may not be suitable in cases with the
weak effects and high noise. In addition, researchers who rely
more on the frequentist inference may use the γ(Dicemax)
threshold to replicate the results obtained previously with
classical NHST and additionally search for ‘not activated’
and ‘low confidence’ voxels. Finally, the degree to which the
posterior probability is contained within the ROPEs of different
widths could be specified or the ROPE maps in which the
thresholding sequence is inverted could be calculated. The
ROPE maps can be shared in public repositories, such as
Neurovault, along with PPMs, and subsequently thresholded by
any reasonable ES threshold.

The ability to provide evidence for the null hypothesis may
be especially beneficial for clinical neuroimaging. Possible issues
that can be resolved using this approach are:

(1) Let the brain activity in certain ROIs due to a
neurodegenerative process decrease by more than γ

per year on average without any treatment. To prove that a
new treatment effectively protects against neurodegenerative
processes, we can provide evidence that, within 1 year of
treatment, brain activity was reduced by less than X%.

(2) Assume that an effective treatment should change the brain
activity in certain ROIs by at least X%. Then, we can prove
that a new treatment is practically ineffective if the activity
has changed by less than X%.

(3) Consider two groups of subjects taking a new treatment
and a placebo, respectively. Using BPI, we can provide
evidence that the result of the new treatment is does not
differ from that of the placebo.

(4) Consider two groups of subjects taking an old effective
treatment and a new treatment. Using BPI, we can provide
evidence that the new treatment is no worse than the old
effective treatment.

(5) Consider a new treatment for a disease that is not related to
brain function. Using BPI, we can provide evidence that the
new treatment does not have side effects on brain activity.

CONCLUSION

Herein, a discussion of the use of the Bayesian and frequentist
approaches to assess the ‘null effects’ in fMRI studies was
presented. We demonstrated that group-level Bayesian inference
may be more intuitive and convenient in practice than
frequentist inference. Crucially, Bayesian inference can detect
‘activated/deactivated,’ ‘not activated,’ and ‘low confidence’ voxels
using a single decision rule. Moreover, it allows for interim
analysis and optional stopping when the obtained sample size
is sufficient to make a confident inference. We considered
the problem of defining a threshold for the effect size and
provided a reference set of typical effect sizes in different
fMRI designs. Bayesian inference and assessment of the ‘null
effects’ may be especially beneficial for basic and applied clinical
neuroimaging. The developed SPM12-based toolbox with a
simple GUI is expected to be useful for the assessment of ‘null
effects’ using BPI.

LIMITATIONS AND FUTURE WORK

Firstly, we did not consider BMI, which is currently
mainly used for the analysis of effective connectivity.
A promising area of future research would be to compare
the advantages of BMI and BPI when analyzing local
brain activity. Secondly, the ‘global shrinkage’ prior must
be compared with other possible priors, in particular
with priors that take into account the spatial dependency
between voxels. Thirdly, we used Bayesian statistics only
at the group level. Future studies could consider the
advantages of using the Bayesian approach at both the subject
and group levels.
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Independent Component Analysis (ICA) is a conventional approach to exclude non-
brain signals such as eye movements and muscle artifacts from electroencephalography
(EEG). A rejection of independent components (ICs) is usually performed in
semiautomatic mode and requires experts’ involvement. As also revealed by our study,
experts’ opinions about the nature of a component often disagree, highlighting the
need to develop a robust and sustainable automatic system for EEG ICs classification.
The current article presents a toolbox and crowdsourcing platform for Automatic
Labeling of Independent Components in Electroencephalography (ALICE) available via
link http://alice.adase.org/. The ALICE toolbox aims to build a sustainable algorithm
to remove artifacts and find specific patterns in EEG signals using ICA decomposition
based on accumulated experts’ knowledge. The difference from previous toolboxes is
that the ALICE project will accumulate different benchmarks based on crowdsourced
visual labeling of ICs collected from publicly available and in-house EEG recordings.
The choice of labeling is based on the estimation of IC time-series, IC amplitude
topography, and spectral power distribution. The platform allows supervised machine
learning (ML) model training and re-training on available data subsamples for better
performance in specific tasks (i.e., movement artifact detection in healthy or autistic
children). Also, current research implements the novel strategy for consentient labeling
of ICs by several experts. The provided baseline model could detect noisy IC and
components related to the functional brain oscillations such as alpha and mu rhythm.
The ALICE project implies the creation and constant replenishment of the IC database,
which will improve ML algorithms for automatic labeling and extraction of non-brain
signals from EEG. The toolbox and current dataset are open-source and freely available
to the researcher community.

Keywords: EEG, automatic preprocessing, ICA, children, automatic artifact detection, machine learning
algorithms

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2021 | Volume 15 | Article 72022981

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.720229
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2021.720229
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.720229&domain=pdf&date_stamp=2021-12-02
https://www.frontiersin.org/articles/10.3389/fninf.2021.720229/full
http://alice.adase.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-720229 December 2, 2021 Time: 13:6 # 2

Soghoyan et al. Automatic Labeling of Independent Components in EEG

INTRODUCTION

Electroencephalography (EEG) signal reflects the bioelectrical
activity of brain neuronal networks. For more than a century,
human neuroscience and clinical research applied scalp
EEG recording to study and assess a broad scope of sensory
and cognitive functions. One of the crucial steps of EEG
preprocessing is “purifying” the brain signal by extraction of the
electrical activity of non-neuronal origins such as eye movements
and muscle artifacts. For recent decades, Independent
Component Analysis (ICA) offered a solution to this problem
based on the isolation of statistically independent sources called
independent components (ICs) as linear combinations of signals
from electrodes (Makeig et al., 1996; Delorme and Makeig, 2004).
A source of each IC can be projected onto the electrode cap
and estimated via timecourse and spectral power. For example,
ICA allows identifying components related to eye-movement
and muscle artifacts based on their bioelectrical signals’ specific
characteristics, e.g., frequency and spatial distribution (Chaumon
et al., 2015; Frølich et al., 2015). However, due to other frequent
contaminations of EEG, a rejection of non-brain ICs is usually
performed in the semiautomatic mode under the visual
inspection of researchers. Herewith, labelings of ICs by different
experts can substantially disagree, which might considerably
affect the further analysis and reproducibility of EEG results
(Robbins et al., 2020). Artifact rejection by ICA in children
and patient EEG is especially challenging even for experts.
The dependence of EEG analysis from subjective opinions of
experts may explain that EEG data have been rarely included
in large-scale studies or meta-analyses. For this reason, the
automatic algorithms for EEG processing are the main objectives
of many research groups (Nolan et al., 2010; Mognon et al., 2011;
Winkler et al., 2011; da Cruz et al., 2018; Tamburro et al., 2018;
Pedroni et al., 2019).

To create a robust and sustainable automatic system for EEG
ICs classification, one needs to extract the most informative
features from ICs and have an appropriate machine learning
(ML) model inside the system. The accurate labeling of ICs is the
crucial step in training and validating this model. The training of
ML algorithms to automatically identify artifactual ICs will allow
to set up a more objective methodology for EEG preprocessing.

Currently, a limited number of projects aims to create an
automatic cleaning system of the EEG signal. For example,
Automatic EEG artifact Detection based on the Joint Use of
Spatial and Temporal features (ADJUST) (Mognon et al., 2011)
and Fully Automated Statistical Thresholding for EEG artifact
Rejection (FASTER) (Nolan et al., 2010) use empirical threshold-
based algorithms. Machine learning approach was introduced
in Multiple Artifact Rejection Algorithm (MARA) (Winkler
et al., 2011), algorithms from the studies of Frølich et al.
(2015) and Tamburro et al. (2018). SASICA software (Chaumon
et al., 2015) is an EEGLAB Matlab plug-in (Chaumon et al.,
2015), includes ADJUST, MARA, FASTER, and some other
methods. The more novel study describes Adjusted-ADJUST
approach (Leach et al., 2020) that is known as an advanced
version for the previously described ADJUST software. It is
aiming to produce automatic labeling for the pediatric ICA

that differs from the ICA of adults because of infant EEG
features. The suggested approach shows the higher quality even
for adult data. All these studies used their private datasets for
training and validation purposes. Those datasets were relatively
small, consisting of several hundred ICs. In most cases, each
IC was annotated by only one expert, which complicates the
estimation of algorithm actual performance and comparison with
other algorithms. Moreover, the lack of a large dataset with
verified annotation limits the potential performance of machine
learning models.

Pion-Tonachini et al. (2019) addressed this problem by
proposing ICLabel Toolbox, which includes the annotation tool
with crowdsourcing mechanics, datasets, and several machine
learning algorithms. The annotation tool provides an interface
to label a particular IC from the database by visualizing different
components’ characteristics. In this toolbox, the ML algorithms
are based on artificial neural networks and claimed to be the
fastest and most accurate than other studies.

While the ICLabel project is an excellent resource for
automatic artifact rejection in EEG, it has several drawbacks.
The first one is potentially insufficient annotation quality as
a non-expert user can annotate ICs. It means that even if an
ML algorithm has high accuracy, the predicted classes may
be wrong as ICs have no order or intrinsic interpretations
and their classification by experts requires practice. Potential
technical issues that prevent the best performance from experts
are inability to see other ICs from the same EEG record, which
is helpful in ambiguous cases (e.g., horizontal eyes component
can consist of two ICs, so seeing them in parallel helps to infer
their nature) and limitation of component time-window plots to
only 3 s ranges. Clinical experts usually require at least 30 s to
properly detect various slow-wave components or alpha rhythm,
hardly detected in a short time interval. Another limitation of
ICLabel that the authors themselves pointed to is a limited variety
of EEG data (Pion-Tonachini et al., 2019), as their dataset does
not contain data from infants and most clinical groups.

The current study presents a toolbox and crowdsourcing
platform for Automatic Labeling of Independent Components in
Electroencephalography (ALICE), which is available via link http:
//alice.adase.org/. The ALICE toolbox aims to build a sustainable
algorithm to remove artifacts and find specific patterns in EEG
signals using ICA decomposition. The presented toolbox was also
designed to overcome the limitations of the previous approaches
mentioned above.

For developing a sustainable ML-based EEG component
classification, the proposed toolbox should have two components:
a high-quality labeled dataset of ICs and a proper ML pipeline to
train and validate models.

Thus, the first aim of the ALICE project was to create a high-
quality dataset with IC labels. In order to achieve this goal, we
performed the following steps:

• The definition of a rigorous set of possible IC classes
that would cover a wide variety of cases and be easily
understandable by experts.
• The annotation of IC reliability by combining opinions

from multiple experts.
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• Resolving the possible poor concordance between experts
by various merging strategies.
• Attracting researchers to share their datasets, including

unique EEG recordings from rare clinical groups.

The second aim of the ALICE project was to develop a robust
but flexible ML pipeline for automated IC classification. The
ML module includes implementing various features (both well-
established and original), multiple ML models, and the validation
pipeline. The ALICE project also invites the research community
to develop their models using our dataset, which is available via
link http://alice.adase.org/downloads.

The other ambitious goal for ALICE development is the
automatic identification of components related to the functional
brain oscillations, such as alpha and mu rhythm. Mu rhythm
overlaps with alpha rhythm in a frequency range of 8-13 Hz
but has a different oscillation shape and localization at scalp
electrodes. While alpha rhythm is recorded predominantly from
the occipital lobes with closed eyes and suppressed when eyes
open (Berger, 1931), mu rhythm emerges over the sensorimotor
cortex and is attenuated during movements. Importantly, mu
rhythm does not react to opening or closing the eyes (Kuhlman,
1978). Despite the described differences, the automatic separation
of mu from alpha waves in EEG is challenging and drawing
the attention of many methodological studies (Cuellar and del
Toro, 2017; Garakh et al., 2020). Still, the identification of mu
rhythm often requires visual inspection and expertise. The ALICE
toolbox aims to accumulate expert labeling of alpha and mu
rhythms to improve automatic identification of functional brain
oscillations by supervised ML.

MATERIALS AND METHODS

Automatic Labeling of Independent
Components in Electroencephalography
Toolbox High-Level Architecture
Automatic Labeling of Independent Components in
Electroencephalography contains two modules (Figure 1):

• Annotation module, which consists of a user interface (UI)
and ICs database. An HTTP API allows uploading
ICs data to the database. Web-based UI allows
experts to label uploaded data for future ML models
training and validation.
• ML module is based on a Python library, which trains ML

models based on expert annotations and uses pre-trained
ML models to apply to new IC data.

Annotation Module
By annotation, we mean a process of manual IC labeling by
experts based on various data visualization tools available at the
ALICE platform, such as IC topographic mapping, plots of time
series, and power spectrum. An expert may choose IC labels from
a predefined number of options.

We propose a set of IC component labels including major
artifact types with subtypes as well as brain signal subtypes:

• Eye artifacts – eye movement artifacts of any type.
• Horizontal eye movements – components that represent

activity during eye movements in horizontal directions.
• Vertical eye movements – components that represent

activity during eye movements in vertical directions.
• Line noise – line current noise evoked by surrounding

electrical devices.
• Channel noise – the noise associated with channels that can

be Or.
• Brain activity – brain activity of any type.
• Alpha activity – alpha rhythm with oscillation in the

frequency band of 8–13 Hz with predominance in the
occipital lobe channels.
• Mu activity – mu rhythm with oscillation in the frequency

band of 8–13 Hz with predominance or dipole localization
in the frontal-central-parietal area.
• Muscle activity – artifacts from a recording of muscle

activity on the head surface.
• Heartbeat artifacts – artifacts that represent

electrocardiographic activity.
• Other – components with explicit nature that label is not

listed in the labeling system, for example, breathing (experts
could comment on the label choice in the comments
section, the ALICE developers collect data from comments
and expand the list of labels in the subsequent versions
of the toolbox).
• Uncertain – components with unclear nature.

The web-based UI supports the annotation process (Figure 2).
An expert has the following data visualization options:

• Topomap of IC weights.
• Power spectrum density plot.
• Plot of all ICs time series for the current subject (the time-

series length is 30 s with the possibility of scrolling and
zooming selected time interval).
• Epoch image illustrates the color-coded amplitude

fluctuations of the IC in all available EEG epochs and
averaged ICs time series values.
• This plot is helpful for the annotation of epoched data.

After a particular expert has finished the labeling process, the
data of ICs with annotations can be packed into an archive by the
annotation module by an administrator. Then, annotated data
becomes available at the Downloads page of the ALICE toolbox
and could be used both by the experts and ALICE data scientists.

Machine Learning Pipeline
There could be many discrepancies between experts’ annotations
due to ambiguities in IC patterns, data quality, and differences
at the expert level. The annotation inconsistency means that we
need to create final IC labels in the dataset as a function of
the individual annotations. So, before conventional ML pipeline
steps, such as Feature calculation and ML model training and
selection, we need to include an additional step – Data label
aggregation. The whole data processing and ML pipeline are
presented in Figure 3, and each step is discussed in detail below.
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FIGURE 1 | ALICE toolbox high-level architecture and user roles. Annotation module UI serves for Data Owners to upload IC data to the database and for Experts to
provide annotation on existing or newly uploaded data. Data Scientists and Researchers work with ML module: the former train models based on selected samples
from the database, the latter take pretrained models to work with their own data (online or offline). Online version of the ALICE toolbox is available at
http://alice.adase.org/.

Data Labels Aggregation
This part aims to create a boolean variable between each
component and each IC class, reflecting whether a specific activity
is present or not in a particular component. The first step is
to create an annotation table (Figure 4A). The annotation is a
term denoting the labeling produced by an expert to a particular
component. Experts have their own unique opinion about the
component’s ICA class. Our goal is to develop an approach
to grouping expert annotations to form a common opinion
on each component.

A simple voting strategy seems to be a logically correct
option: if most experts choose that a component contains
a particular activity, for example, an eye artifact, then this
component is classified as an eye artifact. This approach
is the basis of Strategy 1, which we called “Majority vote,”
although it does not require that the majority (more than
50%) of the experts assign the component this particular
label. The threshold value can be changed. We provided an
example where it equals to 33% which means we expect
agreement over 33% of experts. In other words, by grouping
experts’ annotations, we form the average of the experts’
votes (Figure 4C). We will consider this average value as the
probability of assigning the component to a specific class. If
the probability is higher than the threshold, we assume that
the component encodes the given IC class; otherwise, it does
not (Figure 4D).

Nevertheless, if an expert assigned a component to several
classes, it means s/he recognizes several types of activity present
in the IC. This situation can lead to ambiguous results if
the expert acted with an approach where s/he labels mixed
components with all types of activity s/he believes are potentially
intermixed in a particular IC. If we were to use Majority vote for
such situations, it would lead to low quality of the target variable
as IC with only one label is a more genuine representation of this
class than the component that contains a mixture of artificial and
brain activity. An example of what this can affect is illustrated
in Figure 5. We see that the component, due to such markup, is
assigned to all classes simultaneously.

In order to overcome this situation, Strategy 2 was developed
and titled “Probabilistic vote.” Imagine that, when labeling
a component, an expert has one vote, which they equally
distributed among all the classes to which they attributed
this component. In other words, if a person marks a
component as eyes and as muscles, and as heart, then with
a probability of 0.33, they assign it to each of these classes
(Figure 4B). Further, these probabilities are again averaged
(Figure 4C). Then, a threshold is chosen, according to
which it is decided whether this weighted probability will be
transformed to 1 or 0 (Figure 4D). The threshold of 0.33
was chosen as the optimal threshold for the current data,
assuming that components that consist of three or fewer labels
still represent the simple pattern of interest for the model.
This approach is rather valuable for cases where the mixed
nature of components can affect the target variable; Figure 5
provides the example.

The threshold value is highly dependent on the level of
agreement between experts since a too tight threshold with a low
agreement will significantly reduce the number of objects. On the
other hand, a weak threshold with a high agreement will lead to
noisy, ambiguous components in the training set. We decided to
use an equal threshold of 0.33 for both strategies. The threshold
change for Majority vote will make sense with an increase in the
number of experts.

Agreement Between Experts
We also computed metrics of expert agreement to be able to
compare annotation quality of various classes as well as datasets.
For the case of two experts, we propose using Cohen’s kappa
(Cohen, 1960).

κ =
p0 − pe
1 − pe

Where p0 is the relative observed agreement (similar to
accuracy), pe is the hypothetical probability of agreement
by chance.

For the case of multiple experts, we propose using
Fleiss’ kappa (Fleiss and Cohen, 1973), which has a similar
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FIGURE 2 | Annotation module interface. Top row: IC topomap and spectrum as well as Epochs image, illustrating the color-coded amplitude fluctuations (arbitrary
units) of the IC in all available epochs (time relative to sound presentation on the x-axis, epochs on the y-axis). Image at the bottom shows averaged values of ICs
timeseries; bottom row: all IC for considered subject are plotted together.

formula with a different definition of p0 and pe, that
depend on weighted estimates. Basically, that shows the
level agreement between the multiple experts above the
value of agreement expected by chance for details refer to
Fleiss and Cohen (1973).

Based on the metrics from Pion-Tonachini et al. (2019),
we computed the inter-expert correlation between experts to

compare our level of agreement with the level of agreement in
ICLabel.

IEC =
1
N

N∑
n=1

Corr(v1,n, v2,n)

N, number of components marked by both experts; v1,n,
annotation vector made by the 1st expert corresponding to the
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FIGURE 3 | Data processing and machine learning pipeline in ALICE. Raw ICs data with annotations are passed to Data labels aggregation and Feature calculation
blocks to form a labeled dataset and extract informative features from ICs. Three ML models are trained with repeated train-test validation and different model quality
metrics are calculated. The best model is then selected and could be exported as a Python pickle-object.

FIGURE 4 | Data labeling strategies. There are several annotations for one component from various experts, but we strive to designate its belonging to a particular
class strategies of data belling aggregation, those are “Majority vote” and “Probabilistic vote.” (A) Is a table of annotations of a specific component. (B) Transform
into a matrix of probabilities that each component belongs to a particular class. (C) Group the experts’ opinions using the mean of the probabilities to obtain a
weighted probability. (D) Determine whether the weighted probability is higher than the threshold or not.
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FIGURE 5 | Discrepancies in experts’ opinions and difference in strategies handling. Experts may have different approaches in labeling samples with mixed nature of
activity. Expert 1 marked such components with all activity types that are present in the component. Expert 2 instead focused on the components that have a clear
pattern of a single IC class. Within a provided example we can see how the difference in their approaches lead to different annotations for the same IC component.
The application of “Majority vote” and “Probabilistic vote” strategies for the suggested example affect significantly the final label of the component. With the first one
the component corresponds to many IC classes, while in the second case the component is assigned only as a Brain activity.

nth component; v2,n, annotation vector made by the 2nd expert
corresponding to the nth component.

All computational details about data label aggregation are
available via link https://github.com/ledovsky/alice-eeg-ml that
we share with interested researchers who might achieve higher
performance rates on our dataset using their settings for
strategies and thresholds.

Features Calculation
To reduce data dimensionality while preserving the most
characteristic information for each IC class, we calculate specific
temporal and spatial features of each signal. Most features
are well established and based on previous research. Still, we
introduced some modifications to existing ones and treated them
as new features.

Among the established features are:

• Kurtosis of the component time series (Nolan et al., 2010;
Mognon et al., 2011; Winkler et al., 2011; Tamburro et al.,
2018). By definition, kurtosis is the fourth standardized
moment of the time series. In epoched data, we calculate
an average of the feature computed for each epoch

separately. It helps to distinguish ICs that correspond to
eyes and brain activity.
• Maximum Epoch Variance (Mognon et al., 2011; Tamburro

et al., 2018) is used to detect eye movements. The value of
this feature is a ratio between the maximum of the signal
variance over epochs and the mean signal variance. As
proposed in Mognon et al. (2011), we excluded one percent
of the largest variance values to improve its robustness
when calculating this feature.
• Spatial Average Difference (SAD), Spatial Variance

Difference (SVD), and Spatial Eye Difference (SED). Spatial
features proposed in Mognon et al. (2011) depend on IC
weights of eyes-related electrodes. SAD is calculated as the
difference between channel weight averages over frontal
and posterior regions. SVD is the difference between
weight variances in these regions. These are used to
distinguish vertical eye movements. SED is the difference
between the absolute values of weight averages in the
left eye and right areas. This feature detects horizontal
eye movements.
• Myogenic identification feature (MIF) (Tamburro et al.,

2018) is used to detect muscle activity and is calculated as
the relative strength of the signal in the 20–100 Hz band.
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• Correlations with manually selected signal patterns
(Tamburro et al., 2018). We use these to detect eye blinks
and eye movements.

The ALICE toolbox also offers a possibility of mu and alpha
rhythms annotation and classification. Thus, some features must
be specific to these components’ spatial and temporal properties.

Alpha rhythm is known to be localized in occipital and
parietal areas with increased power in 8–12 Hz for adults.
Close to the alpha band frequency, mu rhythm is generated
in central and frontal areas. We used those electrodes that
maximally emphasize the contrast between mu and alpha
localization by the topography-related features. Thus, the original
features include:

• Mu topography (MT): A feature which is sensitive to
topomaps of mu rhythm ICs, where Mu is the following set
of electrodes in 10–20: “Fp1,” “Fpz,” “Fp2,” “F3,” “Fz,” “F4,”
“Fc3,” “Fcz,” “Fc4,” “C3,” “Cz,” “C4.”

MT =
∑
e∈Mu

|we| −
∑
e/∈Mu

|we|

• Alpha topography (AT): A feature which is sensitive to
topomaps of alpha rhythm ICs where A is the following set
of electrodes in 10–20: “C3,” “Cz,” “C4,” “Cp3,” “Cpz,” “Cp4,”
“P3,” “Pz,” “P4,” “O1,” “Oz,” “O2.”

AT =
∑
e∈A

|we| −
∑
e/∈A

|we|

• Average magnitude in alpha band (AMALB): The ratio
between average amplitude in the alpha band (6–12 Hz)
and average amplitude in other frequencies (0–6 Hz; 13–
125 Hz) is sensitive to alpha ICs. The alpha range was
expended to 6 Hz because alpha band tends to be in the
lower frequency range for children (Marshall et al., 2002;
Lyakso et al., 2020).

AMALB =

∑
f∈[6, 12] x(f )∑
f /∈[6, 12] x(f )

Source code used to compute the features can be found via link
https://github.com/ledovsky/alice-eeg-ml.

Machine Learning Models Training and Selection
The current version of ALICE Toolbox provides three different
machine learning models: logistic regression (LR), linear
support vector machine (SVM), and gradient boosting (XGB).
These models are built on different principles and are
relatively simple compared to neural networks and deep
neural networks. Keeping in mind a relatively small initial
dataset, we considered the three models mentioned above as
an optimal initial model choice. All of them are optionally
available for new training and testing procedures in ALICE.
In particular, we used the LR implementation from scikit-
learn package (Pedregosa et al., 2011) with default parameters
(including regularization parameter C = 1.0, L2 penalty
and liblinear solver). Linear SVM is taken from scikit-
learn package (Pedregosa et al., 2011) with default parameters
(including regularization parameter C = 1.0). Finally, we used the

XGB model implementation from XGBoost package (Chen and
Guestrin, 2016) with default patameters of 30 estimators with a
maximal depth of 4.

In the ALICE, we implement the repeated train-test split
cross-validation technique. We trained the model on 70% of
samples and validated on the rest 30% with repeated train-test
cross-validation and did not optimize any hyperparameters on
cross-validation. We performed this procedure 50 times using
different random train-test splits, estimating three main metrics
of classification accuracy: Area Under the Receiver Operating
Characteristic Curve (ROC-AUC), Area Under the Precision-
Recall Curve (PR-AUC) and F1-score using the implementation
of scikit-learn package (Pedregosa et al., 2011). ROC-AUC and
PR-AUC were used as overall metrics of model performance for
different thresholds and considered the main ones. F1 was used as
a performance metric of optimal model splits and was considered
as an additional metric.

Thorough code used for computations is open access
https://github.com/ledovsky/alice-eeg-ml/blob/main/Basic%
20Pipeline.ipynb. Thus, any person can go through our pipeline
and make his/her changes to achieve higher results and easily
compare them with our original performance rates. The Basic
Pipeline explains how the models may be applied to any dataset.

Initial Dataset
The ALICE project aims to involve the neurophysiological
community in labeling existing publicly available and new IC
datasets to improve ML models’ quality. However, the Baseline
model trained on the dataset provided by IHNA&NPh RAS is
already available to users.

Electroencephalography data were recorded using the
NeuroTravel amplifier (EB Neuro, Italy) with sampling rate
500 Hz, and with 31-scalp electrodes arranged according to
the international 10–10 system and included the following
electrodes: “Fp1,” “Fpz,” “Fp2,” “F3,” “Fz,” “F4,” “F7,” “F8,” “FC3,”
“FCz,” “FC4,” “FT7,” “FT8,” “C3,” “Cz,” “C4,” “CP3,” “CPz,”
“CP4,” “P3,” “Pz,” “P4,” “TP8,” “TP7,” “T3,” “T4,” “T5,” “T6,” “O1,”
“Oz,” “O2.” Ear lobe electrodes were used as reference, and the
grounding electrode was placed centrally on the forehead. The
initial dataset consists of recordings from 20 typically developing
children aged 5–14 years. Within the experiment’s framework,
sound stimulation was performed according to the odd-ball
paradigm with a standard stimulus of 1,000 Hz and two deviant
stimuli at 980 and 1,020 Hz. The interstimulus interval was
400 ms. Stimulus intensity were 75 dB.

Obtained data were filtered (0.1–40 Hz) and divided into
epochs (−500; 800 s), where noisy epochs were removed by
threshold (350 mV). Only the first 650 epochs of recording gained
from the first 650 presentations of stimuli were used for posterior
ICA decomposition (FASTICA) with resampling on the level of
250 Hz. Final data that were uploaded into ALICE consisted of
30 ICA components. All preprocessing steps were done using the
MNE Python package (Gramfort, 2013).

The data annotation for training the Baseline model was
carried out by two experts – experienced scientists of the Institute
of Higher Nervous Activity and Neurophysiology of RAS. The
first expert is a clinical neurologist, while the second one clinical
psychologist; both experts had more that 15 years of experience
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in analysis of pediatric EEG ICA. For the correct work with
the program, they received an instruction, which outlined the
main steps they took when working with ALICE. Experts’ main
task was set as follows – to mark each component using the
set of labels: Eyes, Horizontal eye movements, Vertical eye
movements, Line noise, Channel noise, Brain, Alpha activity,
Mu activity, Muscle activity, Other, Uncertain. Following the
instructions, if an expert saw that a component consisted of
several activity types, s/he can assign the component to several
classes. For example, among annotated components, there were
often components marked both as eye artifacts and muscle
activity simultaneously.

Additional Datasets
For additional validation we used another dataset with children
EEG. The recordings of 17 children aged 5–14 years were
decomposed using ICA. Data were recorded using the same
EEG system as in initial dataset. Participants watched series of
videos in terms of the experimental paradigm. The collected
data were filtered in the range 3–40 Hz, no other processing
steps were applied. The same experts were asked to mark only
those components that correspond to eye artifacts. The overall
number of components was 149. The dataset is marked as
Children dataset 2.

To test how ALICE performs on adult data the recordings of
21 adults were added to the ALICE platform. The experimental
design, EEG system and data processing steps were the same as we
used in the initial dataset. The data were annotated by four new
experts. To facilitate the labeling process, the task for experts was
to label only those components that correspond to eye artifacts.
The datasets is called Adults’ dataset.

These additional datasets allowed us to estimate model
performance when trained using initial dataset and re-trained
on additional datasets. Moreover, it was mentioned previously
that adult ICA and children ICA automatic labeling require
different approaches to modeling. Thus, the second dataset
allowed us to check whether suggested approach is suitable
for EEG of any age, whereas the first dataset was acquired
from the same cohort of participants. In order to assess model
generalizability, data preprocessing was also different: the first
dataset was prepared with different ICA method – AMICA
(Palmer et al., 2011).

Ethics Statement
The datasets were obtained from the research project (A
physiological profile of autism spectrum disorders: a study of
brain rhythms and auditory evoked potentials). It is conducted
according to the guidelines of the Declaration of Helsinki and
approved by the Ethics Committee of the Institute of Higher
Nervous Activity and Neurophysiology (protocol code 3, date
of approval July 10, 2020). All children provided their verbal
consent to participate in the study and were informed about
their right to withdraw from the study at any time during the
testing. Written informed consent was also obtained from a
parent/guardian of each child.

RESULTS

Data Labeling Aggregation
First, we explored the level of consistency between two annotators
for various IC classes. Due to limited available data and only
two annotators, we decided to merge some classes with a small
number of label matches between annotators. One reason for
this small number could be the possible difference in labeling
strategies between the experts, as was discussed in the section
“Materials and Methods.” The final manipulations with class
labels are:

• Eyes, Horizontal eye movement, Vertical eye movement
were merged to the one Eye movement class.
• Line noise labels were dropped due to a lack of actual line

noise in available data.
• Alpha and mu labels were checked to be marked as a

Brain label too.

For the rest of the IC classes, we used the following aggregation
strategies based on each class’s total number of positive samples
(see Table 1). When the samples of a particular class were
poorly represented, we took Majority vote strategy to have
enough labeled samples for the model fitting; otherwise, we
took Probabilistic vote strategy. The details of Majority vote and
Probabilistic vote are explained in the section “Materials and
Methods.”

The final number of positive labels and concordance between
the two experts are shown in Table 2.

According to arbitrary settled thresholds (Landis and Koch,
1977), the agreement between two experts’ opinions was highest
but still moderate (<0.4) only for labeling the ICs of brain signals.
The other ICs were labeled with a relatively poor agreement
between experts (Table 2). The Inter-expert correlation between
our experts equals 0.43, and the approximate level of agreement
was also reviewed (Pion-Tonachini et al., 2019). Based on the
experts’ comments, we understood that many IC components
contain more than one activity type. This mixture led to
uncertainty for experts’ labeling strategy. Summing up their
annotations and based on the comments, we can conclude that
one expert was inclined to label only those components where
a clear pattern of chosen IC class could be detected. Another
expert labeled all activity types present at given components,
even when there was only a slight indication of its presence in
multi-nature ICs. This difference in labeling strategies produced
relatively poor agreement even for (usually well recognized) Eyes
activity. The annotation dataset is available via http://alice.adase.
org/downloads.

Independent Component Classification
As it can be seen from Table 2, many classes are relatively small.
This leads to imbalanced classification tasks, for example, for
Alpha, Mu, and Channel noise IC classes. In this case, Precision-
Recall (PR) curve better reflects classifier performance compared
to the conventional ROC-AUC curve. So, we explored LR, XGB,
and SVM as ML models and calculated both ROC-AUC and
PR-AUC scores as performance measures. We selected among
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TABLE 1 | IC classes and corresponding aggregation strategies based on the total number of positive samples of each class.

IC class Brain activity Alpha brain activity Mu brain activity Eyes Muscles Heart Channel noise

Strategy 2 1 1 2 2 1 2

TABLE 2 | Number of samples and Cohen’s kappa for each class.

Label Number of samples Cohen’s kappa

Brain 449 0.47

Alpha 60 0.13

Mu 92 0.22

Eyes 78 0.10

Muscles 135 0.36

Heart 231 0.04

Channel noise 48 0.12

three models for each IC type separately. All the models showed
comparable performance for most ICs classes (see Figure 6 for
ROC curves and Table 3 for values) based on ROC-AUC curves.
Brain, Eyes, and Muscles models showed the best performance
among others with ROC-AUC greater than 0.9. We could not
train a good model for Heart ICs detection due to inadequate
labeling as suggested by the lack of consistency among experts
and probably not specific extracted features.

However, the picture was different when analyzing PR curves
and PR-AUC values (see Figure 7 and Table 4). As we mentioned,
PR curves better indicate classification performance in case of
imbalanced data, which results in worse performance for Alpha,
Mu, and Eyes IC types, all of which have fewer positive labels
than Brain or Muscles IC classes. It also can be seen that
for Heart and Channel Noise classes, all of the models and
SVM in particular performed poorly. The possible reasons for

this might be both a small number of samples in each class
and a low level of agreement between the annotators resulting
in poor labeling quality and lack of robustness. Probably,
new robust predictive features should be developed to address
these types of artifacts. We also provided F1-score values
(see Table 5), alternative statistics based on precision-recall
interaction. The need for further investigation of the models’
performance on Heart and Channel Noise IC classes is also
backed up by the low F1-score, which is significantly lower than
the rest IC types.

It is worth mentioning that the main reason for measuring
PR-AUC was to compare the performance of the models with
each other. In general, specific PR-AUC values, unlike ROC-
AUC, do not reflect the model’s performance. For that, it is
better to refer to the PR curve itself. Each point on this curve
corresponds to certain precision and recall levels closely related
to type I and II errors, respectively. We could achieve this
by choosing the appropriate threshold (by default, each model
predicts probabilities for each class that can be interpreted as
either True or False by comparing with the threshold value).
To better illustrate this idea, we suggest the following example.
Supposing, we want to detect muscles with the recall of 0.75 (that
is, we will detect 75% ICs with muscular activities). Then, by
looking at Figure 7, we can see that SVM will achieve a precision
value of about 0.7, which means that out of all ICs selected, about
70% will correspond to Muscles.

We chose an ML model for each IC type based on the ROC-
AUC score if the class is relatively balanced (Brain and Heart and

FIGURE 6 | Aggregated Receiver Operating Characteristic (ROC) curves for all IC types and ML models. The solid line indicates the mean curve and the colored
area indicates the 95% confidence interval for the ROC curve. The best classification results were achieved for the Brain Muscles and Eyes ICs. For the Alpha Mu
and Channel Noise classes, the scores are also high, however, the stability is lower, especially in the case of detecting Channel Noise using SVM. Finally, the
performance on Heart components was poor, which could be due to low expert concordance. The blue line on each plot represents the no-skill classifier which
assigns labels at random. Thus, we can consider the performance of a particular model on a particular label type statistically significant, if the confidence interval lies
above the blue line. Thus, most of our models classify the components significantly better than at chance, expert for SVM that was not able to do it for Heart and
Channel noise component.
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TABLE 3 | Average ROC-AUC values and their standard deviations.

ROC-AUC Brain Alpha Mu Eyes Muscles Heart Channel noise

Logistic regression 0.93 (±0.02) 0.83 (±0.05) 0.83 (±0.03) 0.91 (±0.03) 0.89 (±0.03) 0.64 (±0.04) 0.81 (±0.05)

XGBoost 0.92 (±0.02) 0.81 (±0.05) 0.83 (±0.03) 0.89 (±0.04) 0.88 (±0.02) 0.61 (±0.03) 0.77 (±0.05)

Support vector machine 0.93 (±0.02) 0.81 (±0.05) 0.82 (±0.03) 0.92 (±0.03) 0.90 (±0.03) 0.55 (±0.10) 0.61 (±0.09)

Mean ± St. deviation.

FIGURE 7 | Aggregated Precision Recall (PR) curves for all IC types and ML models. The solid line indicates the mean curve and the colored area indicates the 95%
confidence interval for the PR curve. PR curves better indicate classification performance in case of imbalanced data, which can be seen in worse results for Alpha,
Mu, Eyes, and especially Channel Noise IC types, all of which have fewer positive labels compared to Brain or Muscles IC classes. As with the ROC curves, we can
claim that on all IC types except for Heart and Channel Noise, our models perform significantly better than the unskilled classifier.

TABLE 4 | Average PR-AUC values and their standard deviations.

PR-AUC Brain Alpha Mu Eyes Muscles Heart Channel noise

Logistic regression 0.96 (±0.02) 0.59 (±0.08) 0.50 (±0.07) 0.74 (±0.06) 0.77 (±0.05) 0.46 (±0.04) 0.23 (±0.06)

XGBoost 0.96 (±0.01) 0.54 (±0.10) 0.48 (±0.07) 0.71 (±0.07) 0.75 (±0.05) 0.45 (±0.03) 0.27 (±0.09)

Support vector machine 0.96 (±0.02) 0.59 (±0.08) 0.49 (±0.07) 0.76 (±0.06) 0.79 (±0.05) 0.41 (±0.07) 0.13 (±0.04)

Mean ± St. deviation.

TABLE 5 | Average F1-scores and their standard deviations.

PR-AUC Brain Alpha Mu Eyes Muscles Heart Channel noise

Logistic regression 0.92 (±0.01) 0.50 (±0.11) 0.31 (±0.08) 0.62 (±0.08) 0.66 (±0.05) 0.14 (±0.05) 0.00 (±0.00)

XGBoost 0.91 (±0.01) 0.50 (±0.12) 0.39 (±0.08) 0.64 (±0.07) 0.69 (±0.04) 0.40 (±0.04) 0.18 (±0.11)

Support vector machine 0.92 (±0.01) 0.42 (±0.10) 0.20 (±0.09) 0.63 (±0.07) 0.72 (±0.04) 0.01 (±0.02) 0.00 (±0.00)

Mean ± St. deviation.

Muscles) and based on PR-AUC if the class is unbalanced. Thus,
we selected PR for Brain, Alpha Mu, and Heart, XGB for Channel
Noise, and SVM for Eyes and Muscles.

Additional Tests
The obtained models were applied to additional datasets
to decode eye artifacts. The model trained on the main
dataset showed a controversial result while being tested on
Children dataset 2 (F1-score = 0.12; PR-AUC = 0.18; ROC-
AUC = 0.5). Nonetheless, the models perform well after
retraining (Figure 8A) with PR-AUC values on the level of
0.94 (see Table 6). The latter implies that model re-training is

beneficial for new datasets (even of the same age cohort) making
model flexibility an important part of the proposed framework.
After aggregation of experts labeling the dataset consisted of 64
eye components out of 527.

We also tested model performance on eye components from
Adults’ dataset (with 61 labeled eye-components out of 337).
The model trained on initial dataset again performed weakly
(F1 = 0.36; ROC-AUC = 0.61; PR-AUC = 0.65), while the re-
trained models showed a dramatic increase in all quality measures
(see Figure 8B). The obtained performance rate makes up 0.95
for PR-AUC. Thus, we examined that ALICE machine learning
pipeline is also appropriate for adult EEG.
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FIGURE 8 | PR curves and ROC curves for Eyes class for additional datasets. The performance rate for additional datasets illustrated using ROC-curve and
PR-curve. The solid line indicates the mean curve and the colored area indicates the 95% confidence interval for the curves. (A) Is a pair of plots for Children dataset
2 and we observe that both plots illustrate high quality of predictions for Eye components. (B) Is a pair of plots that show a high performance rate for Eye
components for Adults’ dataset.

TABLE 6 | Performance rate on additional datasets.

Children dataset 2 Adults’ dataset

ROC-AUC PR-AUC F1-score ROC-AUC PR-AUC F1-score

Logistic
regression

0.96 0.81 0.76 0.97 0.94 0.83

Support vector
machine

0.96 0.81 0.76 0.97 0.94 0.83

DISCUSSION

Independent component analysis is a powerful tool for the
segregation of various types of activities from the raw EEG data.
It is widely used for the detection of different artifacts such
as eye blinks or muscle contractions. Nevertheless, IC signals’
correspondence to any class of activity largely depends on a
particular expert, affecting the study results. This issue is worth
highlighting as the application of ICA in EEG studies becomes
more and more popular. The ALICE toolbox is a particular
instrument to resolve these issues.

The developed web application stores ICA data and makes
it publicly available. This data includes IC annotations given
by experts, which assign each component to the appropriate
category. Moreover, the annotated dataset expands using the
interface where each expert can make their labeling. ALICE’s
goal is to build a community where experts from neuroscience,
neurophysiology, and other related areas, share their ICA data
and encourage each other to make the annotations. Our study’s
low Cohen’s kappa coefficient and low inter-expert correlation
in IC annotation point to high disagreement in components
annotation evident even between two experts. Noteworthy, the
only other crowdsourcing platform for IC classification [ICLabel,
(Pion-Tonachini et al., 2019)] also report similar results: their
mean inter-expert correlation was 0.50, ranging from 0.46 to
0.65, clearly pointing to different strategies of identification ICs.

This finding emphasizes the need to study the reason for such
low agreement between experts and to develop an automatic IC
classification toolbox that will work objectively.

The ALICE has the potential to unite the efforts of experts
from different fields that are vital to developing an ML model
that could be used in EEG studies for the objective assessment
of various artifacts. Our baseline model is clear evidence
that ICA artifacts selection can be easily automated using
ML approaches. The novel aspects of the work include the
algorithm for mu and alpha rhythm detection. The critical
point is that the model is publicly available and additionally
can be used as a pre-trained model for posterior modifications
for other tasks.

Subjective labeling and ML training was performed on a
dataset of ICs obtained on EEG data recorded in pre-school and
school-age children, a population with usually many artifacts.
This type of dataset is relatively unrepresented in the previous
research on automatic IC extraction. The main work with infant
ICA was done by Adjusted ADJUST algorithm (Leach et al.,
2020) does not rely on machine learning techniques. The dataset
consists of 630 ICA components acquired from 20 children,
making up a unique publicly available dataset that can be
used for various goals, e.g., for refitting new private models
for ICA detection.

There are several points for future development of the project
related to the annotation module and the ML module. The
annotation module advances are related to the reorganization of
available classes to mark into a hierarchical structure. Users can
first select the artifact and specify it more precisely, for example,
Eyes->Horizontal eye movements. Moreover, the first trial of
expert annotations forces us to reestablish an expert policy and
force them to choose no more than two IC classes to train our
models using representative samples.

The ML module showed a high-performance rate for most
classes. Although the Heart class was not detected, the reason
for that is the lack of class representatives and a low agreement
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between the annotators. Moreover, the Mu/Alpha rhythms
and Eyes results were also obtained with fewer data samples.
Nevertheless, the ALICE approach (including newly designed
features for Mu and Alpha classes) showed good classification
accuracy for ICs labeling even though the agreement between
expert opinions was relatively poor. Still, for Heart and Channel
Noise classes, none of the trained models worked well. Probably
new robust predictive features or more complex ML models
(i.e., based on convolutional neural networks) should also be
developed to address these types of artifacts. We compared the
performance of our algorithms with results reported in other
studies. In Pion-Tonachini et al. (2019) authors report ROC
curves with F1 scores. Eyes class F1 score is greater than 0.9, brain
and muscles classes are in the range between 0.8 and 0.9, which is
higher than results obtained using our model; at the same time,
the heart class, like in our case, is reported as uninformative. In
Tamburro et al. (2018), the authors reported accuracy, sensitivity,
and false omission rates and provided complete data for eye
movements, eye blinks, and muscle activity. The resulted F1
scores were greater than 0.9. In terms of our model, the low
agreement between experts as an outcome of different labeling
approaches might affect the final score.

Nevertheless, with additional datasets we discovered that the
result can gain higher values for Eyes IC class with F1 score on
the level of 0.87. Such values can be achieved for both adult EEG
as well as for children EEG. This result implies that ALICE ML
pipeline is robust to datasets of different ages. On the other hand,
models require retraining to be suitable for data of different age or
data of different ICA algorithm. This observation examined that
database requires more components to show stable result over
any type of dataset.

The current performance of ML algorithms in the ALICE
toolbox is based mainly on two experts’ estimations, whereas a
manifold of professional annotations produces more objective
estimates for components labeling. In future research, we aim
to invite the wider expert community to label their datasets and
expand current models’ abilities or future models to define the
functional nature of IC components. Thus, we encourage any
reader to become a part of the ALICE project. More information
about the potential contribution is provided on our web site
http://alice.adase.org/docs/contribute.

To summarize, the main improvements implemented in
ALICE as compared to previously developed toolboxes are the
following:

• The ALICE toolbox allows not only detection of noisy IC
but also automatic identifications of components related
to the functional brain oscillations such as alpha and mu-
rhythm.
• The ALICE project accumulates different benchmarks

based on crowdsourced visual labeling of ICs collected from
publicly available and in-house EEG recordings, resulting in
a constantly growing high-quality IC dataset.
• ALICE implements the new strategy for consentient

labeling of ICs by several experts.
• ALICE allows supervised ML model training and

re-training on available data subsamples for better

performance in specific tasks (i.e., movement artifact
detection in healthy or autistic children).
• Finally, ALICE provides a platform for EEG artifact

detection model comparison as well as a platform
for neuroscientist self-assessment based on established
performance metrics.

Thus, strength of the ALICE project implies the creation
and constant updating of the IC database, which will be used
for continuous improvement of ML algorithms for automatic
labeling and extraction of non-brain signals from EEG. The
developed toolbox will be available to the scientific community
in an online service and open-source codes.
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Computational tools can transform the manner by which neuroscientists perform their

experiments. More than helping researchers to manage the complexity of experimental

data, these tools can increase the value of experiments by enabling reproducibility and

supporting the sharing and reuse of data. Despite the remarkable advances made

in the Neuroinformatics field in recent years, there is still a lack of open-source

computational tools to cope with the heterogeneity and volume of neuroscientific data

and the related metadata that needs to be collected during an experiment and stored

for posterior analysis. In this work, we present the Neuroscience Experiments System

(NES), a free software to assist researchers in data collecting routines of clinical,

electrophysiological, and behavioral experiments. NES enables researchers to efficiently

perform the management of their experimental data in a secure and user-friendly

environment, providing a unified repository for the experimental data of an entire research

group. Furthermore, its modular software architecture is aligned with several initiatives of

the neuroscience community and promotes standardized data formats for experiments

and analysis reporting.

Keywords: neuroscience, experiment data, data management, data provenance, open-source software

1. INTRODUCTION

Although the overlap between neuroscience and informatics has been growing rapidly in the
recent years, collection and organization of experimental data are still frequently done manually.
A neuroscience experiment may involve the generation and manipulation of large amounts of
both raw and processed data. There is a wide variability in the types of data that are collected,
from the form and behavior of individual neurons to measures of brain functioning. This large
quantity and variety of information requires a type of database that is especially designed for this
purpose. However, the provenance information of raw data is too often lost or, when digitized,
ends up as text files or spread-sheets without a standardized structure (Koslow, 2000). Within
this context, the reproducibility of experiments—a core scientific principle—and the reuse of
data may be seriously compromised. Efforts to develop best practices must be made on four
foundational principles—Findability, Accessibility, Interoperability and Reusability (FAIR), as
described by Wilkinson et al. in the FAIR Guiding Principles for scientific data management and
stewardship (Abrams et al., 2021).
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TABLE 1 | Software tools for neuroscience experiments management.

System Focus Ontology Open Source

aEEGBase EEG/ERP OEN Yes

bG-node Neurophysiology odML Yes

cPsychopy Experimental protocol No Yes

dExpyrement Experimental protocol No Yes

eOpenSesame Experimental protocol No No

ahttps://eegdatabase.kiv.zcu.cz/; bhttp://www.g-node.org/; chttp://www.psychopy.org/;
dhttp://www.expyriment.org/; ehttp://osdoc.cogsci.nl/.

This scenario calls for the use of computational tools
to document each step of an experiment and to facilitate
the electronic data capture. Although some tools have been
developed and applied for this purpose (Mouček et al., 2014;
Sobolev et al., 2014), there is still a lack of user-friendly software
platforms that researchers can use to register different types
of experiments and their working environment in a unified
repository. These platforms should allow scientists to examine
the data and metadata and know exactly how these were
obtained, as well as how the experiment was performed. Such
tools should be as easy to use as possible to reduce the time
spent documenting experiments, while being able to support a
wide variety of experimental designs (Peirce, 2009). Moreover,
it should be platform-independent and a free/libre open-source
software (FLOSS).

Addressing this problem, the Research, Innovation and
Dissemination Center for Neuromathematics (NeuroMat),
hosted by the University of São Paulo Research, Brazil1 has
developed the Neuroscience Experiments System (NES), a
FLOSS that assists neuroscientists in the management of
experimental data while providing provenance recording
and interoperability. NES is a Web system that offers a user-
friendly interface, allowing quick learning. Its data model
combines several proposals from the scientific community for
neuroscience data and metadata representation.

The NES modular structure provides functionalities for
the registration of participant data and for experiment
management. The participant registration functionality
allows the collection and storage of personal and social-
demographic data and medical evaluations. The experiment
management includes experimental protocol registration (e.g.,
definition of tasks, stimuli, instructions, and configuration
of equipment) and electrophysiological data and metadata
storage. Presently, NES is equipped with modules allowing data
collection from experiments performed in humans involving
electroencephalography (EEG), electromyography (EMG),
transcranial magnetic stimulation (TMS), and response times.

This article presents the approach used in the NES to
manage data and metadata of neuroscience experiments. The
NES innovative data model was designed to provide support for
a wide range of experimental designs and to allow the efficient

1https://neuromat.numec.prp.usp.br/

management of all steps of the experimental protocol and their
different types of data.

The remainder of this article is organized as follows.
Section 2.1 provides a brief characterization of the experimental
data used in neuroscience, while section 2.2 analyzes some
software tools for management of this kind of data. Section 2.3
describes the NES data model and the main functionalities it
supports. Section 3 presents the NES software architecture and
details about its implementation. It also presents an example
of use of NES in the creation of an open database. Finally, the
concluding remarks, including a discussion of the limitations of
NES and future directions, are presented in section 4.

2. METHODS

2.1. Experimental Data in Neuroscience:
Characterization
Designing an experiment includes a number of stages where
the parameters and structure of the experiment are made clear.
There are different types of neuroscience experiments (e.g.,
behavioral, cognitive, electrophysiological, and neuroimaging)
with a great variability of experimental processes and a high
heterogeneity of formats of collected data. An experimental
process can be understood as comprising an experimental design
and an experimental protocol. An experimental design includes
the overall set-up of the experiment, in so far as it specifies
the experimental context (e.g., how and where objects are to
be arranged) and the materials and methods to be used (e.g.,
equipment settings). The experimental protocol is the set of step-
by-step instructions that an investigator follows each time he or
she runs an experiment (Sullivan, 2009). It includes a group of
participants who will take part in the experiment. The steps
of the experimental protocol can be performed sequentially or
in parallel. After the approval of the experiment design and the
experimental protocol, the group of participants is selected and
the data collection starts.

The great heterogeneity of data collected in neuroscience
experiments (e.g., EEG, EMG, fMRI, questionnaire responses)
makes collaboration between members of the community
difficult, since research groups would have to make a significant
effort to standardize their lexicons and their data before
collaboration could add value to such joint efforts (Hall
et al., 2012). Furthermore, the information concerning the
experimental process is too often lost or when digitized, it ends
up becoming text files or spread-sheets without a standardized
structure, or poor quality data with insufficient documentation.
Sometimes, the data lacks metadata, standardized representation,
or a legible structure (Barkhof, 2012).

To enhance the reproducibility of neuroscience studies,
researchers need to know the precise acquisition parameters,
the experimental conditions, and how the raw data were
acquired. These different types of information, generally called
provenance information, are metadata which is used to record the
experimental process, the purpose of the experiment and details
about its data results, as well as formal annotations and notes
made by scientists.
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FIGURE 1 | Main data modules of NES (Experiment, Research Organization, Participant, and Questionnaire) with their entity types and

relationships. In the diagram, the rectangles represent entity types, the lines ending with black diamonds represent composition relationships, the lines ending with

white diamonds represent aggregation relationships, and the conventional lines represent association relationships. The “1” and “*” (that means “many”) near the lines

indicate the cardinalities of the relationships. For example: a Group aggregates one ExperimentalProtocol and many Subjects; an Experiment is

composed of one or more Groups; a Subject can have many DataCollections, but a DataCollection is associated with only one Subject.

A unified data model for handling metadata is still an open
research problem. The problem is compounded when the volume
of collected data begins to grow. Unlike the progress in workflow-
based systems, which provide consistent mechanisms to manage
the provenance of derived data generated through scientific
workflows, the availability of open data models and free software
tools to support raw data routine collection is limited. Thus, the
creation of standardizedmodels and formats for representing and
storing raw data and its provenance information is not a trivial
task and depends on collaborative efforts from the neuroscience
community (Ruiz-Olazar et al., 2016).

Due to the great variability in experimental processes
and the heterogeneity of collected data formats, neuroscience
experimental raw data and information relating to provenance
require specific and innovative ways of representation and
storage. The guidelines of Gibson et al. (2008), Poldrack et al.
(2008), and Frishkoff et al. (2011) include information that is
considered important for data analysis and for understanding the
experiment performed. However, these guidelines are neither
complete data representation models nor data storage models.

2.2. Related Software Tools
A brief review of the open-source software tools created to
support themanagement of neuroscience experiments shows that
most of these systems can be divided in two groups: (i) those

that focus on the storing and sharing of electrophysiological
data and (ii) those that focus on the management of
experimental protocols. Some of those that are in the first
group provide interfaces to manipulate electrophysiological data
objects, such as data arrays, events, regions of interest, etc.,
or extensively annotate these specific data objects. Those in
the second group provide the management of the experimental
protocol, accurate presentation of stimuli, and mechanisms
for the collection of participant responses. Software tools
from the two groups can be combined in order to help
researchers in their data collecting routine throughout a
neuroscience experiment. Table 1 compares some software tools
for neuroscience experiment management.

Among the software tools that are in the first group is
EEGBase (Mouček et al., 2014), which was designed to enable
data exchange based on files. The EEGbase is a system for
storage and management of EEG/ERP (electroencephalography,
event-related potentials) resources, such as data, metadata,
analysis tools, and documents related to experiments in respect
of EEG/ERP. It provides the possibility to work offline by
using a client-server approach, and data and metadata can
be registered using a tablet or mobile phone based on a
client-mobile system. These platforms can synchronize data
with the EEGBase Web-based portal. Through this portal,
researchers can store, manage, search, and share EEG/ERP
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FIGURE 2 | The Experimental Protocol conceptual data schema. In the diagram, the rectangles represent entity types and some of their main attributes, the lines

ending with black diamonds represent composition relationships, and the lines ending with triangles represent inheritance relationships. For example: Stimulus,

Task, Questionnaire, and EEG are subtypes of Step, each one of them inherits the properties of Step. An ExperimentalProtocol is composed of a Block

(of blocks) of StepConfigurations which define how the protocol Steps are performed.

data. The data and metadata are implemented according
to a defined ontology and registered using predefined
HTML forms. However, the metadata is registered in
textual mode.

The German Neuroinformatics Node, G-node (Sobolev
et al., 2014), provides a data management system with
interfaces to operate with electrophysiology raw data
objects. G-node is a data platform and Python library that
implements tools, standards, and conventions established in
an electrophysiological context. This approach is based on
combining a standardized data model, NEO (Garcia et al., 2014),
with a flexible and extensible metadata format, odML (Grewe
et al., 2011). OdML uses the open metadata Markup Language
to annotate data with information about the stimulus, data
acquisition, and experimental conditions. In contrast, its
extensible “key-value pairs” format does not specify the relevant
information that should be registered, but it depends on the
experimenter. NEO provides a flexible method of manipulating
neurophysiological data and its I/O library can read a wide
range of neurophysiological file formats. However, it cannot
currently read relevant information such as the number of used

channels, sample rate, frequency, etc. In addition, G-node offers
integration with other Python tools that use these data models.
However, these data models focus on cellular and intra-cellular
experiments, without providing a comprehensible data schema
to represent electrophysiological data such as EEG and EMG
results.

Among the software tools that allow management of the
experimental protocol, accurate presentation of stimuli, and
collection of participant responses are Psychopy (Peirce, 2007)
and Expyrement (Krause and Lindemann, 2014). Both provide an
open-source software library that allows a very range of visual and
auditory stimuli and a great variety of experimental designs to
be generated within a framework based on Python. Expyrement
aims at designing and conducting behavioral and neuroimaging
experiments. Nevertheless, they do not offer a graphical interface
that many users have come to expect. These packages require
some effort from the users in respect of writing scripts in standard
Python syntax to generate a variety of behavioral experiments.

Another related tool is OpenSesame (Mathôt et al., 2012),
which provides a graphical and scripting interface to create
a wide range of experiments, including psychophysical
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FIGURE 3 | EEG Setting and Equipment Register conceptual data schemas. The EEG Equipment Register schema contains the entity types with the technical

characterization associated to a given EEG setup, such as amplifier, filter, electrode net, electrode cap, electrode localization system, etc. The EEG Setting schema

contains the entity types which represent the configurations of the EEG equipment used in each step of an EEG experiment.

experiments, speed response time tasks, eye-tracking studies,
and questionnaires. Some kinds of tasks need to be defined
using Python scripting, since the tool does not provide a good
graphical interface to support their definition.

The software packages described above focus on specific types
of scenarios and fail to describe other types of experimental
protocols. Although they provide models to store data and
metadata, these models are very extensible, making the
subsequent generation of queries to track the provenance
information in the experiment more difficult. This information
is frequently written in a non-understandable form, hindering
its interpretation by other experimenters who cannot therefore
later reproduce or verify the findings (Ruiz-Olazar et al., 2016).
The users of software packages that are part of the second group
require technical knowledge to write scripts in Python to define
the experimental protocols and later execute them. Neuroscience
labs need tools with as wide a range of experimental designs as
possible that assist the experimenter in the management of all

steps of the neuroscience experiments, without being required
to have knowledge of a variety of software and programming
languages to be able to use them.

2.3. The NES Data Model and Main
Functionalities
Based on an exhaustive literature research and interviews
with domain specialists, we have identified the requirements
a software tool should satisfy to support data management
in the daily lab routine. In this section, we present the
set of functionalities implemented in NES to meet these
requirements and the data model that support them. These
functionalities provide a complete interface for the storage
and management of data and metadata from all the steps
of a neuroscience experimental protocol. They are related
to a set of database modules represented in the diagram
in Figure 1: Experiment, Research Organization,
Participant, and Questionnaire. The diagram shows
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FIGURE 4 | Data collection conceptual data schema. There are several subtypes of data collection: EEG data, EMG data, questionnaire responses, and additional

data (for other unlisted data types). Except for the questionnaire responses, all the data collections are files uploaded to the system.

the main entity types of each module and the relationships
between them.

According to the NES data model, a research project can
have one or more experiments. Each experiment is composed of
equipment configurations and one or more groups of subjects,
i.e., the individuals that take part in the experiment. Each group
can have its own experimental protocol, which is composed of
a set of steps. Moreover, each item of data collected in an
experiment is associated with a specific step executed in the
experimental protocol and the subjects who took part in it. For
this reason, to be able to start storing the primary data collected
in an experiment in NES, the researcher first needs to register in
detail each step involved in the experimental protocol (e.g., the
specific preparation for the realization of the experiment).

The NES database modules were designed to store the kinds of
data whose structure is common to all experiments, i.e., data that
can be described in terms of a standardized structure defined by
a database schema. The data model used in NES is aligned with
several formats used in neuroscience, enabling interoperability
with the most promising initiatives for standardization of data
representation for electrophysiology, as much as with guidelines
to report neuroscience experiments (e.g., MINI Gibson et al.,

2008, MINEMO Frishkoff et al., 2011, and fMRI Poldrack et al.,
2008). NES is able to manage several types of electrophysiological
data and metadata used by the neuroscience community.

In the following sections, we provide more details about the
database schema of each module. Figures 1–4 are conceptual
database schemas expressed using UML Class Diagrams. They
purposely abstract details about the real database structure in
order to make the diagrams easier to read and understand.

2.3.1. Participant Module
The Participant module supports functionalities to manage
information related to the participants in the experiments.
Its data schema specifies attributes of the participants that are
significant for the experiments’ design and interpretation.

In the Participant data schema, as can be seen in
Figure 1, the participant data is divided in five components:

• Personal data contains participants’ basic information—
identification, name, gender, birth date, address, and phone
numbers.

• Social Demographic data registers the participants’ native
country, occupation, religion, and race.
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FIGURE 5 | Directory structure of an experiment dataset exported from NES (adapted from Peschanski et al., 2020). The root directory (A), NEX_EXPORT, contains

the directory data, with the data package files, and the file datapackage.json, which describes the structure and contents of the data package (as prescribed by

the Frictionless Data standard). The experiment data is organized in two directories: Participant_data (B) and Experiment_data (C). The former contains the

data from the participants (including their responses for questionnaires applied outside the context of experiments), while the latter contains all data collected within

the steps of the experimental protocol (and their metadata).

• Substance Use History data allows to register participants’
history of use of alcohol, tobacco, and other drugs.

• Medical Evaluation allows storage of participants’ medical
records (including diagnosis with ICD codes and medical
tests).

• Questionnaire Response includes the participants’ answers to
the questionnaires that are part of experimental protocols.

2.3.2. Experiment Module
The Experiment module is the core of NES. It supports
functionalities for experiment registration and configuration as
well as data collection. Its data schema was designed to be

able to represent the structure and data of types of experiments
frequently performed in humans, in addition to data stored in
other widely used formats in neuroscience without any loss of
information. For this purpose, the data schema organizes data
related to the experiments, the groups of subjects, the steps of
their experimental protocols, and the equipment settings. Each
of these types of entities is described in more detail below.

• Experiment: It stores information that identifies the
experiments and their purposes, the responsible researchers,
and the resulting publications.

• Experimental Protocol: An experimental protocol is modeled
in NES as a workflow composed of blocks of parallel or
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FIGURE 6 | NES software architecture, composed by the Django Web framework components and third-party libraries to convert data and provide interoperability

with other tools.

sequential steps. There are several types of steps that a
block may contain (e.g., task, stimuli, TMS, instructions,
EEG, EMG, questionnaire administration, and other types
of data collection). Each block or step can have its own
configuration, such as the number of times it must be repeated,
the time interval between repetitions, and its order in the
protocol workflow, which can be deterministic or random.
Figure 2 shows the conceptual schema of the experimental
protocol data.

• Group: Several groups of subjects can be created for an
experiment. Each group is associated with an experimental
protocol and the participants who take part of it, as shown in
Figure 1.

• Equipment Setting: It stores information about equipment
and materials of an eletrophysiology experiment. Each setting
is associated with a step in an experimental protocol. NES
can store the settings of the equipment used to record
raw data, as well as the type of materials used in each
data acquisition procedure. For EEG settings, as shown in
Figure 3, NES can store amplifier settings and filter settings.
The amplifier settings include gain, number of channels,
common mode rejection rate, input impedance, and unit
of impedance, among other information. The filter settings
include information about the filter type, high pass cutoff, low
pass cutoff, and order.

Another important item of information considered in the
Equipment Setting data schema is the electrode layout. NES

allows electrode settings to be recorded individually or using
an electrode net system, as the 10–20 system2. It also allows the
registration of the electrode model, the electrode positions and
their channel index. The spatial coordinates of each electrode,
its position reference, and its default channel index can also
be registered.

For EMG experiments, in addition to storing information
about the equipment and materials, NES can store systems
for electrode placement, such as the SENIAM system (Surface
ElectroMyoGraphy for Non-invasive Assessment of Muscles).
Additionally, a list of muscles and its subdivision where the
electrodes will be located can be recorded.

For the Transcranial Magnetic Stimulation (TMS) setting,
NES can store data about the TMS device and the coil model
used in the experiment.

• Data Collection: This is another key component of the
Experiment module. It supports the functionalities related
to the management of data collected during the execution
of the experimental protocol steps. NES attaches the data
collection for each step of an experiment to the subject who
took part in it. As shown in the conceptual schema of Figure 4,
NES is able to handle several types of data collections: raw
data obtained from a signal acquisition equipment (e.g., EEG
and EMG), questionnaire responses, and any other type

2The 10–20 system is an internationally recognized method to describe and apply

the location of scalp electrodes in EEG experiments.
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FIGURE 7 | NES graphical interface for registering the basic information about an experiment.

of additional files (such as spreadsheets, videos, and textual
notes) that can be collected or generated in an experiment.
The possibility of uploading additional files is also useful to
store processed data alongside the raw data collected during
the experiment. For example, a researcher can add one or
more data collection steps at the end of the protocol of an
experiment specifically to register the data (files) derived from

the raw data collected in the previous steps. Information about
how the derived data was produced can be registered in the
form of textual notes.

The data model allows information about the file type
format, and the date and time of the acquisition to be stored.
In the case of EEG data acquisition, it is possible to record, for
each participant, the size of the electrode cap and information
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FIGURE 8 | NES graphical interface for registering an experimental protocol for a group of participants.

related to electrode positions and their status (e.g., used or
not used) at the moment of the capture. The settings of
the equipment and materials used in each data acquisition
procedure can also be stored. This information is fundamental
to enable the sharing and reuse of the raw data.

In NES, it is possible to create copies of an experiment (with
or without the associated data collections). The copies are fully
accessible through the user interface. This is useful for versioning
control. One can also export an experiment and generate a .zip
file with all the experiments’ data and metadata. The .zip file can
be later imported into other studies or NES installations. Other
details about the export features are provided in section 2.3.5.

2.3.3. Questionnaire Module
Questionnaires are a very flexible way to collect data from study
participants. In NES, a questionnaire can be configured as a step
of an experimental protocol.

As questionnaires vary from study to study, they are difficult to
be stored in a rigid, fixed database structure. To conveniently deal
with this problem and also to provide more quality and security
to data collected through questionnaires, a questionnaire

management system, the LimeSurvey3, was integrated into NES.
This kind of system is a powerful, easy-to-use tool to create
electronic question-and-answer surveys.

2.3.4. Research Organization Module
The Research Organization module supports
functionalities to register information of the researchers that
are working on the studies, their projects and the institutions
involved. Its data schema stores data about the researchers,
laboratories, and projects associated with the experiments.
NES allows multiple experiments within the same research
project, where each experiment can involve a different group
of researchers. Researchers participating in an experiment have
their own access and permissions to manage the experiment
in NES.

NES implements a role-based control access (RBAC) approach
to restrict system access to authorized users. RBAC is defined
around roles (of users) and permissions (to perform particular
system functions). Multiple permissions can be granted to a
role, and a user can have multiple roles. Thus, it is simple

3https://www.limesurvey.org/
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FIGURE 9 | Example of diagram generated by NES from an experimental

protocol definition.

to manage permissions since users can be grouped according
to their roles. NES has some default groups of users (such
as Administrator, Junior Researcher, and Senior Researcher).
However, using the Administration Interface, one may add or
change roles and the permissions for each role to best suit the
needs of the research institution. Examples of permissions which
can be attributed to groups are: “Can view research project,” “Can
add study,” “Can change subject,” “Can delete survey,” and “Can
export experiment.”

2.3.5. Data Export Functionality
An important functionality provided by NES which is connected
with all its data modules is the export of experimental
data and metadata. This functionality includes the data from
participants (e.g., clinical diagnoses, socio-demographics), the
data collected in the experiment execution (e.g., questionnaire
responses, electrophysiological raw data), and metadata about

the experimental protocol (e.g., description of the purpose of
the experiment, description of the protocol steps, equipment
configuration, and notes made by researchers).

Through the NES export functionality, a researcher is able
to download experimental data and metadata in interoperable
formats. It was implemented within the Frictionless Data
philosophical and technical framework in order to decrease
friction that is commonly associated with understanding data
and metadata (Peschanski et al., 2020). Frictionless Data is an
open-source framework for building data infrastructure. It was
established by the Open Knowledge Foundation4 to provide
technical support to open science strategies. The framework
includes various data standards to help to describe data. Its core
specification, the Data Package, is a container format used for
storing metadata alongside a dataset expressed as a simple JSON
file named datapackage.json (Fowler et al., 2017).

NES offers two types of file organization in an export:
per participant and per experiment. In both types, one can
filter the group of participants whose data will be exported.
The participants can be filtered, for example, by gender,
location, diagnosis, and age. One can also select the participant
data fields to be included in the export. For experiments
with questionnaires, it is possible to choose the questions to
be included.

Figure 5 shows the directory structure of an experiment
dataset exported from NES. The structured data is exported in
plain-text files in the CSV (comma separated values), containing
both textual and numeric data. The equipment configuration is
exported in JSON format. The EEG raw data can also be exported
in the Neurodata Without Border (NWB 1) format (Teeters
et al., 2015), a prominent initiative for standardization of data
representation for neurophysiology. An NWB 1 file consists of
several main groups, each of which is a container (similar to
a directory) for different subsets of the data. In NES, the data
included in the NWB 1 file is organized in three main groups:
General metadata, Device configuration, and Data acquisition.
General metadata contains information about the description of
the experiment and some demographics data of the participants
[e.g., experiment, subject id, sex, genotype (flesh tone), subject
(natural of)]. Device configuration group contains the settings of
the devices used in the EEG data collection (e.g., amplifier, filter
device, electrode net layout). TheData acquisition group contains
the raw data and metadata collected for each session of EEG
(e.g., data, time, number of samples, electrode indexes, number
of channels).

3. RESULTS

3.1. The Developed Software System
The functionalities and the data model described in section 2.3
were implemented in a platform-independent Web system,
whose architecture is depicted at a high level in Figure 6. It is a
standard three-tier Web architecture, with a data storage tier, an
application layer, and a presentation tier.

4https://okfn.org/
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The data storage tier is implemented as a relational database
in the open-source database management system PostgreSQL5.
The database is used to store all the structured data, according
to the models described in section 2.3. Physical files, such as the
EEG and EMG recordings and user additional data, are stored in
the file-server system.

The application layer consists of a group of libraries that
perform the execution engine of the system in the server side.
NES was implemented in Python, using the Django Web
framework6. This platform offers many benefits, such as scientific
libraries, extensive documentation, and an active community.
Python is an open-source programming language that has
become one of the most popular programming language used
in neuroscience systems.

NES uses third party libraries (e.g., MNE7, NWB8 and JSON-
RPC9) to provide interoperability with other neuroscience tools.
The MNE is an open-source Python software for exploring,
visualizing, and analyzing human neurophysiological data such
as Magnetoencephalography (MEG), EEG, sEEG and more. NES
uses MNE to read and visualize several raw EEG data formats.
The NWB-API is a Python API that NES uses to create NWB
1 files.

NES integrates with LimeSurvey to support the use of
electronic questionnaires to collect data in experiments.
LimeSurvey is an open-source, Web server-based software.
It enables the storage of all data collected through the
questionnaires in a “private” server. It relies on an underlying
database management software which can be deployed on
a server that is deemed appropriate to store the target data
and customized to support different data access policies. With
this structure, NES has full control over LimeSurvey data
storage and access. NES communicates with the LimeSurvey
application through the RemoteControl 2 API10. This API is a
XML-RPC/JSON-RPC based Web service which offers several
functions for questionnaire management.

Users access NES via a browser. The presentation tier
is implemented using the Twitter Bootstrap11 framework to
generate the application layout and make it responsive, adjusting
the Web pages dynamically according to the device used (e.g.,
desktop, mobile, tablet). Additionally, JavaScript was used to
facilitate the implementation of some functionalities.

NES is an internationalized software, it can be adapted to
various languages and regions without engineering changes.
Currently, NES is localized to Brazilian Portuguese (pt-br) and
English (en), but it can be localized to other languages by simply
translating text and adding locale-specific components.

Figures 7–12 show some screenshots from the NES Web
interface. Figure 7 presents the NES page for registering the basic
information about an experiment. It enables users to include
groups of subjects for the experiment and equipment settings

5https://www.postgresql.org/
6https://www.djangoproject.com/
7https://mne.tools/
8https://pynwb.readthedocs.io/
9https://www.jsonrpc.org/
10https://manual.limesurvey.org/RemoteControl_2_API
11https://getbootstrap.com/

for the electrophysiology data captures. Figure 8 shows the page
for the definition of the experimental protocol of a group of
subjects of an experiment. The experimental protocol is described
as a workflow, which can contain blocks of sequential or parallel
steps of several types. An example of workflow diagram NES
automatically generates from a protocol definition is shown in
Figure 9. In the protocol illustrated by the diagram, the Stimulus
presentation and the EEG registering are, respectively, a block of
stimulus steps and a data collection step which are performed in
parallel in the experiment, according to the protocol. Figure 10

shows the page for listing participants and data collections of an
experiment. In Figure 11, the NES interface shows the position
of the electrodes used in an EEG data collection. The interface
allows the working electrodes used in the EEG recording to be
indicated. Finally, Figure 12 shows some configurations a user
can set in the export of experimental data and metadata.

NES is licensed under the Mozilla Public License version 2.0
and its source code and documentation are available at https://
github.com/neuromat/nes. The online software documentation
and User Guide, with comprehensive descriptions of the NES
functionalities, are available at https://nes.readthedocs.io/en/
latest/.

3.2. Using NES to Create Open Databases
NES is a software that can be installed by a laboratory or a
research group to locally manage experiments and their data.
Besides, NES can also be used to support the generation of
well-documented, anonymized datasets that can be published
to openly share experimental data. An example of such an
application can be seen in the NeuroMat Open Database
(NeuroMat DB)12, an initiative that provides an open-access
platform for sharing and searching data and metadata from
neuroscience experiments. Electroencephalographic (Martins
et al., 2017; Hernández et al., 2021) and clinical data (Patroclo
et al., 2019; Ramalho et al., 2019) collected within NeuroMat
and organized in NES were made publicly available through the
NeuroMat DBWeb portal. Figure 13 shows a page that lists these
datasets.

Through NES, a researcher is able to send data and metadata
of his/her experiments to the Open Database (as illustrated
in Figure 14). Before sending the data, NES replaces the
experiment participant’s identifiers with random numbers in
order to anonymize them. Personally identifiable information
such as name, document number, address, and phone number
can not be sent. In principle, the researcher is responsible for
choosing among the study data what is going to be sent to the
portal. All data is cryptographed upon transmission to the Open
Database. When a new dataset arrives at the Open Database, it
is evaluated by a curatorial committee who decides whether it
is appropriate for publication. The committee then guarantees
that no sensitive information will be made publicly available in
the open database. If approved by the committee, the dataset is
published on the portal.

12http://neuromatdb.numec.prp.usp.br/
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FIGURE 10 | NES graphical interface for listing participants and data collections of an experiment.

3.2.1. The Brachial Plexus Injury Database: A Case

Study
The Center for Research in Neuroscience and Rehabilitation
(NPNR) of the Deolindo Couto Institute of Neurology (INDC)
at the Federal University of Rio de Janeiro (UFRJ), in
collaboration with NeuroMat, investigated the brain plasticity
that follows traumatic brachial plexus injury (TBPI) and its
surgical reconstruction. The brachial plexus is composed of a
set of peripheral nerves responsible for the sensory, motor, and
autonomic innervation of the upper limbs. Injury to peripheral
nerve structures and/or medullary avulsion as a result of a TBPI
lead to changes in cortical representations and are also often
associated with neuropathic pain (Torres et al., 2019). In recent
years, the frequency of this type of injury (mainly caused by
motorcycles accidents) has grown considerably in developing
countries and has already become a public health concern.
NPNR is using NES to collect, store and manage data from the
TBPI studies, which are mainly made up of electrophysiological

recording, responses to clinical questionnaires, and behavioral
data from more than 170 patients. An anonymized portion from
the TBPI database on NES was made publicly available on the
NeuroMat Open Database Web portal13. As far as we know, this
is the first worldwide open digital database centered on adult
TBPI (Patroclo et al., 2019).

4. DISCUSSION

We identified the guidelines and models most widely used by
neuroscientists in the representation and storage of experimental
data (Ruiz-Olazar et al., 2016) and incorporated them in NES.
To the best of our knowledge, there are no other open-source
software tools which provide facilities to record the data and
metadata involved in all steps of a neuroscience experiment.

13https://neuromatdb.numec.prp.usp.br/experiments/brachial-plexus-injury-

database/
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FIGURE 11 | NES graphical interface for registering electrode status in EEG data collection.

NES provides a structured and comprehensive platform with
robust tracking of data provenance that is fundamental to
enable the reproduction of the experiment. It was developed
to keep together experimental data and information on its
provenance, defined by the seven W’s (Who, What, Where,
Why, When, Which, (W) how). Examples of provenance
information maintained by NES are: information about the
scientists responsible for the experiment and collection of data
and the description of the subject groups (who); the details
about the recording protocol or behavioral data collection (e.g.,
the types of data collection performed) (what); the details of
the experimental protocol used in the collection of primary
data (how); the start/end date-time for data collection (when);
the purpose of the experiment (why); the information about
the experimental conditions to which the groups of subjects
are submitted, such as tasks performed and stimuli applied
(which); the information about the laboratory where data was
collected (where) and even publications or other results that
have arisen from the study of the collected data. Scientists
can also record additional details for each participant in the
experiment, such as information about his/her clinical history
and social-demographic data.

It is worth mentioning that NES is not a new way to
standardize the representation of experimental data. There
are several models and formats (e.g., NeoHDF5 Garcia et al.,
2014, NWB Teeters et al., 2015, and NIX Stoewer et al., 2014)
currently in development to address this issue. These models are
appropriate for organizing and exchanging data of a particular
type and from a particular experiment. However, they do not
replace the function of a database system, as provided by NES.

A database system keeps large data volumes and provides
functionalities for access control, data consistency, fault tolerance
and efficient data recovery. Furthermore, in a database it is
possible to store the relationships between different types of
data from different experiments, allowing for more sophisticated
data analysis which are especially valuable to support research in
multidisciplinary domains.

The NES Web interface and modular format provide an
intuitive use of its data management functionalities and do
not depend on any specific knowledge on informatics. NES
was developed using open technologies and tools— such as
the Django web framework and the PostgreSQL database
management system—which can be easily installed and used in
any research laboratory. Moreover, these tools make it capable of
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FIGURE 12 | NES graphical interface for selecting data export options.

supporting a large number of simultaneous users and handling
large amounts of data. All the structured data managed by NES
is stored in PostgreSQL. This includes the participant records,
the description of the experimental protocols, the equipment
settings, the research organization data, among others. This kind
of data is efficiently handled with PostgreSQL.

All the files uploaded by users in NES, e.g., the EEG and EMG
recordings and other types of data collections, are stored in the
file-server system to facilitate their manipulation. This approach
also enables the use of a distributed file system, a network storage
device, or a cloud file storage to have storage scalability in a
transparent way for NES.

NES is being used to manage experimental data of studies
conducted in the NeuroMat research center. In particular, it
has been used to construct an open database with data from
TBPI studies. This initiative may allow the identification of
functional markers related to the patients clinical improvement

and foster the development of new investigative tools to unveil its
mechanisms. Moreover, it aims at reducing the distance between
clinical and experimental practice and encourage data sharing
and reuse.

4.1. Limitations and Future Directions
NES provides basic functionalities for the registration of
medical records because these data are required in several
kinds of neuroscience experiments. However, it is important to
emphasize that NES is not an electronic data capture (EDC) nor
an electronicmedical record (EMR) system andwas not designed
for these purposes. NES is not able to register information of
nonhuman subjects. But the Participant data model can
be easily extended to accommodate this type of data. Examples
of attributes that should be considered for nonhuman subjects
are identification, age, species, sex, stock or strain, house, and
genetic characterization.
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FIGURE 13 | NeuroMat Open Database (NeuroMat DB) home page.

FIGURE 14 | Data capture with NES and public sharing in the NeuroMat Open Database.
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NES has some simple features for data search and filtering.
For instance, one can search for a given participant in a given
study and perform basic filtering in the exportation module.
Also, data filtering can be employed upon data transference
to the NeuroMat Open Database (NeuroMat DB) portal. The
portal supports data search using keywords via an Elasticsearch
mechanism. To improve the tool with more advanced querying
features, a new module for Data Searching and Visualization
which will index all the data stored in the NES database is
being designed.

NES has special functionalities that facilitate the management
of electrophysiological data and metadata (i.e., EEG and EMG).
However, currently it has limited support for experiments
involving neuroimaging. For example, NES can read several EEG
data formats and extract metadata from them, but it does not
have an equivalent functionality to handle MRI and fMRI data.
The extension of NES with a neuroimaging module will be
implemented in the context of a scientific collaboration recently
established with researchers from the Polytechnic Faculty of the
National University of Asunción. In order to provide scalable
storage for neuroimages, NES will be transformed into a
cloud native system. This cooperative project also foresees the
deploying of NES in research laboratories of the Neurology
service of the Central Hospital of the Social Security Institute, in
Asunción, Paraguay, to support studies of neurological disorders.
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Intracranial stereoelectroencephalography (SEEG) is broadly used in the presurgical

evaluation of intractable epilepsy, due to its high temporal resolution in neural

activity recording and high spatial resolution within suspected epileptogenic zones.

Neurosurgeons or technicians face the challenge of conducting a workflow of post-

processing operations with the multimodal data (e.g., MRI, CT, and EEG) after the

implantation surgery, such as brain surface reconstruction, electrode contact localization,

and SEEG data analysis. Several software or toolboxes have been developed to

take one or more steps in the workflow but without an end-to-end solution. In this

study, we introduced BrainQuake, an open-source Python software for the SEEG

spatiotemporal analysis, integrating modules and pipelines in surface reconstruction,

electrode localization, seizure onset zone (SOZ) prediction based on ictal and interictal

SEEG analysis, and final visualizations, each of which is highly automated with a user-

friendly graphical user interface (GUI). BrainQuake also supports remote communications

with a public server, which is facilitated with automated and standardized preprocessing

pipelines, high-performance computing power, and data curation management to

provide a time-saving and compatible platform for neurosurgeons and researchers.

Keywords: epilepsy, stereoelectroencephalography, electrode localization, Epileptogenicity Index, interictal high-

frequency oscillation, Hough Transform

INTRODUCTION

Nearly 30% of the patients with epilepsy eventually become intractable patients resistant
to antiepileptic drugs (Kwan and Brodie, 2000). To these patients, the intracranial
stereoelectroencephalography (SEEG) surgery, first developed by Talairach and Bancaud at
the Hospital Sainte Anne, Paris (Bancaud et al., 1965), is now a common clinical approach to
consider about. SEEG aims at identifying the epileptogenic zones (EZs; Rosenow and Lüders,
2001) in the suspicious area of the brain of an individual by implanting depth electrodes and
capturing the abnormal neural activities, followed by a resection or thermocoagulation surgery
(Cossu et al., 2015; Wang et al., 2020). During this procedure, a large number of neurodata
with multiple modalities occur. Presurgical MRI T1 structural image and CT image after the
implantation surgery can, respectively, be taken as information for brain surface reconstruction
and SEEG electrode localization (Behrens et al., 1994; Dykstra et al., 2012). Neural activities before
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the resection surgery are recorded with SEEG electrodes for EZ
localization and lesion analysis, usually lasting for 2 weeks. The
neural activity acquired during the 2-week SEEG recording is
vital to the presurgical planning (Cossu et al., 2015) and of great
value to brain research (Zhang et al., 2019; Akkol et al., 2021).
However, exploiting the large number of multimodal neurodata
and managing them effectively remain a problem to be solved.

The SEEG electrode localization procedure using co-
registered MR and CT images provides neurosurgeons with
accurate anatomical positions of the implanted electrode
contacts (Dykstra et al., 2012). The traditional and broadly used
method of electrode contact localization mostly depends on
visual checking and manual operations (Darcey and Roberts,
2010). After the registration of MR and CT images, technicians
view the CT image slice by slice, locating highlighted contact
voxels and mapping the positions onto the MRI (Darcey and
Roberts, 2010). Trouble occurs since every patient may have 100
contacts implanted on average, and one should check the slices
back and forth for a highlighted contact centroid, which is a
complicated and time-consuming task. Several previous studies
have proposed semiautomated methods (Blenkmann et al., 2017;
Hamilton et al., 2017; Narizzano et al., 2017; Qin et al., 2017;
Li et al., 2019) to improve the effectiveness and precision of
electrode contact localization. The SEEG Assistant (SEEGA)
extension of the 3D Slicer applies an algorithm of the center-of-
mass convergence for the contact segmentation step (Arnulfo
et al., 2015; Narizzano et al., 2017), which shows great feasibility
and robustness in locating contacts along each electrode shaft.
However, this method requires a prior manually defined fiducial
file of the planned starting and ending points of each electrode
and an additional presurgical CT scanning. Another study (Qin
et al., 2017) inherits the convergence algorithm and develops
a preprocessing workflow to reduce the required input. This
workflow includes MRI and CT registration, masking, eroding,
and clustering steps but still needs to insert several pause points
for visual checking and manual adjustments. Another toolbox
(Blenkmann et al., 2017) implements a k-means clustering
algorithm to segment contacts along each electrode, in which
the voxels of each electrode should be carefully thresholded,
otherwise the contacts may not be completely segmented.

In the clinical SEEG data analysis, doctors are mainly
concerned about the effect of a few episodes of ictal data for the
location of EZs. Channels with relatively early abnormal activity
during the seizure often indicate the potential EZs. A previous
study defined an Epileptogenicity Index (EI) using the onset
of high-frequency energy to predict the onset area (Bartolomei
et al., 2008). However, in some cases, the onset period may
not be captured to provide sufficient diagnostic information. In
contrast to only a few seizures during the monitoring period,
most of the SEEG signals recorded are seemingly ordinary
interictal data. The sporadic abnormal activities in the interictal
interval, such as spikes or high-frequency oscillations (HFOs),
can be used as plausible pathological markers of EZs. Because
the intracranial EEG recording consumes huge storage space,
recording an 80-channel intracranial EEG at a sampling rate of
2,000Hz for 24 h may generate a data volume of about 50 GB.
It is time-consuming for surgeons to extract sparse interictal

pathological activities from the long-term SEEG. Currently,
the interictal data cannot be fully and effectively traversed by
surgeons and thus is usually deleted. The value of the interictal
data is mostly underestimated. Therefore, there is an urgent
need to detect abnormal activities in interictal SEEG data to
extract pathological information and reduce the workload of
clinicians. Both HFO activities (Navarrete et al., 2016) and
spike detection algorithms (Barkmeier et al., 2012) have been
developed based on waveform morphology, but indexation
methods that efficiently extract interictal epileptic discharge
events are yet to be developed. In addition, the performance of
current interictal event detectionmethods heavily depends on the
manual selection of the parameters (Remakanthakurup Sindhu
et al., 2020). Our interictal data analysis module is designed to
minimize manual interference by implementing an automatic
HFO detection method and retaining only necessary parameter
settings such as filter ranges and channel selections.

After electrode localization and data analysis, cortical surface
reconstruction is an essential step for better visualization. Several
previous studies have developed the reconstruction procedure
(Dale et al., 1999; Fischl, 2012; Henschel et al., 2020; Zöllei
et al., 2020). FreeSurfer group releases tools and pipelines publicly
(Fischl, 2012). They built a reconstruction pipeline, “recon-all,”
covering from primary operations such as motion correction and
skull-stripping, to final steps such as segmentation and cortical
parcellation. Several subsequent studies have also proposed
advanced reconstruction tools such as specifically, “infant-
FreeSurfer” (Zöllei et al., 2020) for covering all ages of subjects
and “FastSurfer” deep learning pipeline (Henschel et al., 2020)
for solving the time-consuming problem. However, FreeSurfer
software and its advanced tools can only be executed on Linux-
based operating systems (OS). Virtual machine configuration and
the usage of terminal lines can be troublesome for someWindows
users. Moreover, there is often a lack of local computing power
for rapid surface reconstruction in the clinical setting.

In this study, we present BrainQuake, an open-source
Python software, providing epilepsy surgeons with tools and
integrated pipelines of surface reconstruction, electrode contact
localization, and ictal and interictal SEEG analysis for presurgical
evaluations. The integration aims at automatically executing the
whole workflow with fewer input files and fewer pause points.
BrainQuake is designed as an end-to-end, highly automated,
time-saving software, free to be downloaded and compatible
with both Linux and Windows OS. With a comprehensive data
processing platform established, surgeons can take the most
advantage of neurodata andmake reliable presurgical evaluations
for those epilepsy patients. We hope this software can be helpful
to clinical practice and human neuroscience studies using SEEG.

MATERIALS AND REQUIREMENTS

Software Overview
BrainQuake is an open-source Python software for image and
SEEG data processing of refractory epilepsy patients. BrainQuake
consists of four modules, namely, surface module, electrode
module, ictal module, and interictal modules (Figure 1). The
surface module is used for surface reconstruction of the MRI
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T1 image of the patient. We incorporated a GUI, a client-
server communication mode, a public server with powerful
graphics processing units (GPUs), and a data curation system,
to ensure that users share a time-saving, private, and stable
data preprocessing pipeline. The electrode module consists of
a pipeline to locate and anatomically label the SEEG electrode
contacts using both preoperative T1 image and postoperative
CT image. The ictal module and interictal module analyzed the
recorded SEEG data and then pinpoint the suspicious seizure
onset zones (SOZs) using EI and High-Frequency Events Index
(HI), respectively. Finally, BrainQuake provides a comprehensive
visualization result of the 3D brain surface of an individualized
patient, with SEEG contacts and SOZ predictions projected on
it. We developed GUIs for all these modules (Figure 2), and
tutorials can be found along with installation packages.

Data
Subjects
The SEEG electrodes, or intracranial depth electrodes, were used
in human subjects undergoing epilepsy surgical treatment. We
analyzed the data from five patients temporarily implanted with
SEEG electrodes (8–16 contacts per electrode, 2mm diameter,
and 3.5-mm center-to-center spacing). Intracranial EEG was
continuously recorded for 2 weeks on average, and MRI and
CT images were, respectively, acquired before and after the
implantation operation. The surgeries were conducted in the
Department of Neurosurgery and Epilepsy Center, Tsinghua
Yuquan Hospital. Data collection and scientific workup were
approved by its Institutional Review Board.

Example Data
We provided eight sets of sample data so that potential users
can follow the data format and file structure and go through the
procedures in BrainQuake. Sample data are available at https://
doi.org/10.5281/zenodo.5675459, such as MRI T1 image, CT
image in NIfTI-1 type, and recordings of ictal and interictal
EEG data (up to 2 h per patient) for each sample. The file
structure is shown in Figure 3. FreeSurfer “recon-all” results
are also included since we used some of their intermediate
files (mri/orig.mgz, brainmask.mgz; surf/lh.pial, rh.pial) in
our modules. Two separate directories, namely, BrainQuake
dataset and FreeSurfer dataset, will be configured during the
initialization of the software.

Operating Requirements
The codes are divided into the client part and the server part.
Computers running either Linux, Mac OS X, or Windows should
run the client Python GUI code. For the server part, it should
be running on Linux or Mac OS X, since FreeSurfer works
only on Linux. We recommended users install the client GUI
code and communicate with a public server we provided and
leave all the time-consuming works (e.g., surface reconstruction,
CT and MRI image registration) to it. Essential processed
data for functional modules in BrainQuake can be downloaded
from the server. If facilitated with a Linux-based server at
local, one can still download and install the server codes and
run the whole pipeline within their own workspace. On the

remote server side, FreeSurfer (version 6 or higher) should be
properly installed as well as the packages mentioned previously.
Full installation tutorials can be found on https://github.com/
HongLabTHU/Brainquake. Detailed operating requirements are
listed as follows:

1. Computers running on Linux, Mac OS X, and Windows
should run the client codes (i.e., Python scripts outside the
“Server_codes” folder on the GitHub of BrainQuake).

2. Server codes should be run on a Linux-based server, with
FreeSurfer (version 6 or higher) installed.

3. Processor speed: 2.0 GHz or higher recommended.
4. RAM: 8 GB or higher recommended.
5. Python version: 3.6 or higher.
6. Third-party dependencies: numpy, nibabel, matplotlib, scikit-

learn, scipy, mne, vtk, and mayavi.

The public server [Ubuntu 18.04, 40 central processing
units (CPUs), 2.10 GHz] we provided assigns eight cores to
each “recon-all” task for parallel computing and can hold
up to three tasks running simultaneously. Each “recon-all”
task lasts 3 h on average. Server codes are also provided
on the GitHub of BrainQuake so that one can facilitate
their own server for reference. The output package of
a surface reconstruction task from the server pipeline of
BrainQuake includes a typical reconstruction result folder
(produced by FreeSurfer), an “orig.nii.gz” file (produced
by FreeSurfer command “mri_convert”), a “mask.mgz” file
(produced by FreeSurfer command “mri_binarize”), and a
registered “<name>_CT_Reg.nii.gz” file (produced by FSL
command “flirt” with “orig.nii.gz” as its reference image).
Producing all of these files and folders requires FreeSurfer
installed in the operating environment, so if a potential user
prefers not to apply the client-server mode, one can always
import their own “recon-all” folders with all these Supplementary
Files prepared.

METHODS

Image Processing Modules
Surface Module
FreeSurfer provides a complete pipeline, “recon-all,” for surface
reconstruction, which is compiled with abundant tools such
as skull-stripping, image registration, cortical reconstruction,
and segmentation. More time-saving or specific pipelines
such as “FastSurfer” (Henschel et al., 2020) and “infant-
FreeSurfer” (Zöllei et al., 2020) have been released in recent
years. We integrated all those pipelines in the provided
server and also provided processing options in the surface
module GUI so that users no longer need to deal with
the terminal when using “recon-all” or wait too long for
a reconstruction result since the server is facilitated with
GPUs and the average processing time is 3.5 h for “recon-
all” and only 30min for “FastSurfer” and “infant-FreeSurfer.”
Windows users need not configure a virtual machine for
installing FreeSurfer locally since our server can undertake all the
preprocessing works.
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FIGURE 1 | General overview of BrainQuake structure. BrainQuake is designed to analyze the SEEG data (ictal and interictal), CT images, and MRI T1 images. Ictal

and interictal modules are used to predict suspect contacts within seizure onset zones (SOZs). The electrode module exploits the graphic information from a CT image

to locate the stereoelectroencephalography (SEEG) electrodes and contacts, as well as project them onto the brain surface, which is reconstructed by the surface

module. The locations of suspect contacts are marked (blue) on the 3D plot of the surface and electrodes, giving a brief overview of the presurgical evaluation results.

Electrode Module
Either processedmanually or semiautomatically, the main idea of
electrode contact segmentation is to identify the brightest voxels
in a CT image as contact positions along each depth electrode.
To conduct an autonomous pipeline of contact segmentation,
we should make the best use of the image properties. The
electrode module of BrainQuake requires the input data of only
a postsurgical CT NIfTI image and a result package of surface
reconstruction. The pipeline in the module includes three parts,
namely, image preprocessing, electrode clustering, and contact
recognition (Figure 4).

Preprocessing
Before we could autonomously identify an electrode or contact,
we must ensure that the image contains only the intracranial

area of a brain since the skulls, teeth, or some electrode supports
outside the brain are hard to be distinguished from the electrodes
based on the voxel value difference of a CT image. In the
preprocessing step, we registered the CT with the standardized
MR image generated in the surface module. This registration
step uses FSL “flirt” (Jenkinson et al., 2012) after surface
reconstruction in the surface module. Then, the registered CT
can be masked with a skull-stripped MR image in the surface
data package to remove the extracranial part of the CT data since
they are now in the same coordinate. At this time, the CT image
contains only the information about the intracranial brain and
the electrodes, the two of which show a significant difference
in their voxel value ranges. Electrode voxels are much brighter
in the image, so they can be extracted simply by thresholding
(Figure 4A).
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FIGURE 2 | The graphical user interfaces (GUIs) of the main window of BrainQuake and the four functional submodules. (A) BrainQuake main window; (B) Surface

module; (C) Electrode module; (D) Interictal module; (E) Ictal module.

Hough Transform and Gaussian Mixture Model
After extracting the electrode voxels into point clouds
(Figure 4B), we need to identify the number and axes of
electrodes and label each voxel into different electrode clusters.
This step is completed in most of the previous works by
clustering algorithm with manual adjustment. In BrainQuake,
we developed a method of combining 3D Hough Transform,
a pattern recognition algorithm, and Gaussian Mixture Model,
a clustering algorithm, to label voxels into different electrode
clusters (Figure 5).

Normal clustering algorithms randomly pick some centroids
in CT images, classify the voxels into clusters, and calculate
the new centroid of each cluster. After multiple iterations,
theoretically, voxels belonging to the same electrode can be
assigned to the same cluster. However, the clustering algorithm
is strongly dependent on the initial selection of centroids. With
an improper initialization of the random centroids, the true
distribution of electrode clusters can be difficult to estimate.
There is a high probability that we would get a locally optimal

clustering result, definitely requiring a manual intervention here
to fix it, for example, to merge some of the clusters to form a real
electrode or to split two or more electrodes in the same cluster.

Our method fixes this issue by adding a Hough Transform
before clustering. Hough Transform is a common method used
in computer vision or digital image processing (Illingworth and
Kittler, 1988). It can be used to detect a certain class of shapes
in an image automatically. The main idea of Hough Transform
is that for a specific shape, we have chosen a set of parameters
and created a parameter space. For example, the parameter we
usually used to describe circles can be center and diameter, while
the parameter of 2D lines can be slope and intercept. Suppose
we have a raw image with a mixture of dots on it. Each dot
will vote in the parameter space for every possible parameter
set they can contribute. Positions in the space with the highest
votes are recognized as the parameter sets describing the most
obvious shape in the raw image. In our case, SEEG electrodes in
a CT image are a combination of line-shaped objects in 3D space.
The parameter space is established to represent the line direction
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FIGURE 3 | File structures of two datasets implemented in BrainQuake. Temporary and final results are saved under the folders of each subject.

(horizontal orientation and altitude) and the distance between
the coordinate origin and the line.

First, we transformed those voxels into point clouds
(Figure 5A). Then, we applied a 3D line Hough Transform to
detect line-shaped trajectories (Jeltsch et al., 2016; Dalitz et al.,
2017) in the point clouds, returning centroid and axis direction of
each electrode cluster. At this stage, we got a set of approximate
but not precise results representing the position of each cluster
(Figure 5B), which can be a good set of prior knowledge to
start clustering. After that, we used the Gaussian Mixture Model
(Reynolds, 2009; Pedregosa et al., 2011) to assign each point to
the electrode cluster it belongs, since the point clouds can be
viewed as a mixture of different line-shaped 3D Gaussian kernels
(Figure 5C). After a successful clustering, the axes directions
of electrodes can be regressed (Pedregosa et al., 2011). This
combinatory method makes use of both electrode geometric
prior and voxel distribution in a CT image, which shows excellent
accuracy and robustness in our experiments.

Contact Segmentation
In the SEEG contact segmentation step, our general goal was
to automatically recognize the relatively brightest voxels, which
are viewed as contact positions, along each electrode shaft. We
mainly divided the process into four sub-steps, namely, locating
the head voxel, locating the target contact, stepping toward the
next contact, and locating the rest contacts along the shaft.

First, we applied a linear regression (Pedregosa et al., 2011)
to each electrode cluster of voxels to get the direction parameter
(coefficients between x-y/y-z/z-x axes) of the electrode shaft track
in the 3D space coordinate. We then used the direction to locate
two voxels, respectively, to be the head and tail of the cluster. As
a general assumption that the head voxel is always closer to the
center of the brain (i.e., the center of the image space), we can

locate the position of the head voxel, which is much close to the
target contact.

Second, we applied a “center-of-mass” convergence algorithm
(Arnulfo et al., 2015) to locate the target contact. We viewed each
voxel value as the “mass” of a single voxel or “weight” of this
point. In this way, the center-of-mass is defined as the “heaviest”
point within a small region of voxels. After finding out the
head voxel, we calculated the center-of-mass of its surrounding
region (a geometry-restricted cubic volume with respect to the
actual contact size, 2 × 2 × 2mm cube in our case). We then
again calculated the next center-of-mass within the surroundings
of the newly found center-of-mass. After 1–2 iterations of this
procedure, the calculated center-of-mass eventually converges to
the brightest voxel around the head of the electrode (i.e., the real
target contact position).

Third, as we already knew the electrode track direction and
the target contact, stepping out a specific distance along the
direction from the target contact can give us a position close
to the next contact. The step size should equal the real distance
between two adjacent contacts (3.5mm in our case). In this
case, we made sure that the position found was close enough
to the next contact, which was ready for another center-of-mass
convergence procedure.

Finally, using the same center-of-mass convergence and the
stepping strategy, the rest contacts can be recognized one by
one. In this iterative process, we also set a geometrical restriction
to ensure that the directed positions are always settled within
the cluster by doubling the weights of the voxels in the cluster
(Figure 4D).

Validation Method of Electrode Localization
We used two methods to validate the results of the electrode
module, namely, visual inspection of the electrode positions and

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2022 | Volume 15 | Article 773890118

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Cai et al. SEEG Analysis Toolbox

FIGURE 4 | The pipeline of electrode localization and contact segmentation procedures in the electrode module. (A) The preprocessing step includes image

registration from the raw CT of a subject to MRI (orig.mgz after surface reconstruction), skull-stripping of registered CT (using brainmask.mgz after surface

reconstruction), and thresholding of electrodes in the CT data. (B) The coordinates of electrode voxels in the CT image after thresholding can be extracted and

plotted, viewing as a mix of point clouds. (C) After applying a Hough Transform and Gaussian Mixture Model algorithm, the electrodes are clustered and labeled by

different colors. (D) Contact segmentation step: contact positions are recognized one by one by converging to the center-of-mass based on voxel values. Contact

positions are marked as red asterisks. (E) The results of the contact segmentation pipeline are projected onto the 3D surface space.

quantitative measurements of the electrode contact distribution.
The recognized contacts were projected onto the 2D slice of the
fusion of MR and CT images. Then, we scanned through all these
slices and visually checked if the electrodes and the highlighted
electrode shaft on CT slices were overlapped.

To quantitatively estimate the accuracy of contact localization,
we must define a gold standard of contact positions and then
estimate the contact deviation error one by one. Usually, a
group of clinical experts should be invited to view through all
those image slices and mark the contact positions manually.
However, due to the artifacts of each contact in the CT images,
one may find it tough to segment those contacts since the
adjacent contact pairs are usually merged. Thus, we could not
trust the manual segmentation results as a gold standard. In this
study, we estimated two indirect metrics, namely, axis-contact
distance (i.e., distances between contacts and their estimated
shaft axis) and adjacent contact distance of each adjacent contact
pair (Arnulfo et al., 2015; Narizzano et al., 2017). Both of the
metrics are based on the geometric properties of the SEEG

electrodes. Contacts along the same electrode shaft are line-
shaped regressed, and the axis-contact distance ideally can be
close to 0mm. The axis-contact distance is defined as the distance
between the contact position and the regression line of the
electrode shaft. It reveals how straight the contacts are located.
The electrodes we used have a fixed spacing distance of 3.5mm
between neighboring contacts, so the adjacent contact distance
we estimated should be distributed similarly to a Gaussian with
a mean of 3.5mm and a trivial variance as much as possible.
However, it is often the case that the electrode shaft bends slightly
and the contacts deviate from the line after the implantation
surgery, which in some way causes these two distributions to be
not so ideal (refer to the “Discussion” section).

SEEG Data Analysis Modules
Ictal Module
For ictal data, clinicians tend to mark the areas where the
pathological activity occurs earlier as the potential SOZs. Based
on this consensus, an EI method is commonly used to predict the
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FIGURE 5 | Three examples of electrode point clouds have been 3D Hough-transformed and then clustered using the Gaussian Mixture Model. (A) The initial point

clouds of electrodes are extracted from the CT intracranial image of an individual after several preprocessing steps. (B) The centroids and directions (showing by the

red arrows) of SEEG electrodes are detected by the Hough Transform algorithm of a line in 3D coordinates. (C) The clustered electrodes are marked using different

colors, after applying the Gaussian Mixture Model and the prior knowledge of the centroids and directions of clusters generated from (B).

SOZs (Bartolomei et al., 2008). In this study, we implemented a
simplified EI measurement in BrainQuake, predicting the SOZs
by quantifying the combined effect of the timing order and the
strength of high-gamma energy change in each channel during
the onset process of the seizure (Zhao et al., 2019).

Before we did any automatic computation, we first filtered
the raw signals into high-gamma frequency bands (60–140Hz,
power noise at 50Hz) using a second-order IIR notch digital filter
and a fifth-order Butterworth IIR filter (Virtanen et al., 2020).We
then manually selected a segment of the baseline (BL) data, as
well as a segment of the target data containing the initial onset
process of seizure. The BL data should be located before the
seizure onset, and a range of around 60 s should be enough for
it. The target data should cover the seizure onset process, that is,
to start somewhere before the onset and end within the seizure.
The length of the target data is not limited as long as it covers the
seizure onset process.

After the manual selection, we calculated an EI for each
channel. First, the band-passed signals are transformed into
a high-frequency energy spectrum by amplitude squaring and
window smoothing (500-ms window length, 1 sample point
per step). Second, we calculated the average value of the high-
frequency energy of the BL data, which is used to normalize the
high-frequency energy by division. In this way, we obtained the

normalized high-frequency energy (NHFE) (Figure 6A). Third, a
threshold of onset time was calculated for each channel i, which
is 10 times the standard deviation (SD) of baseline (BL) NHFE
above its maximum value as follows:

threi = max
(

NHFEBL, i
)

+ 10σ (NHFEBL, i)

For each channel, once the normalized energy in the target data
exceeds its corresponding threshold, we decided this moment as
the onset time of its abnormal activity. Fourth, we sorted the
channels by their onset time and defined the time coefficient (TC)
as the reciprocal of the order of each channel (i.e., 1, 1/2, and 1/3).
Also, we calculated the average energy of each channel in a 250-
ms period right after the earliest onset time as energy coefficient
(EC) using the NHFE. Finally, the EI of each channel i is obtained
by the following:

EIi =
√

TCi × ECi

As we can notice, EI, combining the effect of timing and energy
strength, can be used to quantify the degree of epileptogenicity of
each electrode channel (Figure 6A).

Interictal Module
A previous study on the SEEG interictal data found that both
HFOs and spikes are the reliable biomarkers of SOZ, while HFO
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FIGURE 6 | Methods of ictal and interictal SEEG data analysis. (A) Onset timing order and energy strength during the initial stage of seizures are sorted to calculate

the Epileptogenicity Index (EI). (B) Numbers of over-threshold high-frequency events are counted as High-Frequency Events Index (HI).
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has better specificity for SOZ than spikes (Wang et al., 2017;
Roehri and Bartolomei, 2019). The HFO subcategory, 80–250Hz
ripple component, is relatively more common than a higher
frequency component (Wang et al., 2013). This frequency band
can also take into account the spike activity, which is similar to a
full-band signal (Roehri et al., 2017; Cai et al., 2021). Therefore,
for the interictal data, we extracted the pathological activity
by detecting the short-term abnormal energy enhancement in
the 80–250Hz band, providing an efficient indexation method
through unified energy detection. Specifically, we used the
Hilbert transform to extract the energy envelope in the 80–250Hz
band of the signal (i.e., users can adjust the frequency range for
their own cases). The filter setting applied is a second-order IIR
notch digital filter with a quality factor set to be 30, followed
by a five-order Butterworth band-pass filter (Virtanen et al.,
2020). We calculated the median value of the whole envelope
(global, Sglobal) and the median value of each contact (local, Si).
Considering both of them, we set a synergistic threshold for each
contact as follows:

threi = 2×max(median (Si) , median(Sglobal))

The time range where the envelop exceeds the threshold is
marked as abnormal activity (Figure 6B). When the interval
between two adjacent abnormal activities is too small (<20ms),
they are considered to belong to the same event and merged,
and the abnormal activities of the very short duration (<50ms)
are excluded. Finally, the number of abnormal activities (HI)
calculated for each channel is used as an index to measure the
relative likelihood of each contact of being in the SOZ.

RESULTS AND VALIDATION

We processed all four functional modules using the MRI/CT
images and the SEEG data acquired from 8 epilepsy patients.
The time required for surface reconstruction was either around
0.5 h using FastSurfer or 3.5 h using FreeSurfer recon-all on the
public server (40 cores, 2.1 GHz, 64 GB RAM). The preprocessing
step in the electrode module for each subject is around 15min,
mostly spent on the image registrations of MRI and CT using the
FSL “flirt” command. Contact localization consumes only 30 s for
each subject on average. A 70-s interictal SEEG costs around 40 s
for EI calculation, and the 2-h interictal data costs around 20min
for HI calculation.

Electrode Module Validation
We processed 74 electrodes with 743 contacts implanted
in eight patients in total. During visual inspection, all 74
electrodes were perfectly matched with the highlighted electrode
shaft artifacts on CT images (Figures 7A,B). For quantitative
validation, we estimated two metrics, namely, axis-contact
distance and adjacent contact distance error, to measure whether
the distributions of recognized contacts obey the geometric rules
of the SEEG electrode. In statistics, 95% of the contacts were
<0.1mm, deviating from their estimated axes (Figure 7C). By
the subtraction of 3.5mm (real adjacent contact distance) mean,
the adjacent contact distance error was distributed around 0mm

with a Gaussian-like distribution. Notably, 95% of the contact
distance fell in the range of 3.5 ± 1mm, and 50% of the contact
distance fell in the range of 3.5 ± 0.3mm (Figure 7D). These
two estimates show comparable results with the Contact Position
Estimator (CPE) Module of 3D Slicer (Narizzano et al., 2017).

SEEG Analysis Validation
To evaluate the accuracy of predicting SOZ using EI and HI
methods, the selection of the clinician of the SOZ electrode
contacts of patients was used as the ground truth. The receiver
operator curve (ROC) and the corresponding area under the
curve (AUC) were further used to evaluate the consistency
between the index-based prediction and the clinical diagnosis.
The average AUC of EI and HI on five patients are 0.83 and 0.80,
respectively (with EI of S2 excluded) (Figures 8A,B). We could
observe that on patient S1, both EI andHI have achieved excellent
SOZ prediction results, which suggests a valid estimation of SOZs
using both methods. The AUC value of S2 based on EI is close
to 0.5 and has no predictive effect, due to the fact that the ictal
data of S2 displays similar seizure onset activities within every
single channel, and the EI method cannot tell the difference
from either their timing orders or energy strengths. In contrast,
the AUC of S2 based on interictal HI reaches 0.83, which is
highly consistent with the clinically annotated SOZs. The case
of S2 suggests that when the ictal data cannot provide sufficient
diagnostic information, the interictal data can be used to provide
extra information for SOZ location, showing the essential value
of the interictal SEEG data analysis. In addition, the AUC value
of S3 based on HI is 0.49, while its AUC based on HI reaches
0.99. The HI results of S3 performed poorly because those false-
positive channels recorded plentiful high-frequency noises. The
cases of S2 and S3 suggested the cross-reference value of EI
and HI. Finally, we displayed SOZ predictions on reconstructed
cortical volume for clinicians to verify the results with imaging
evidence (Figure 8C). For the case of S2, we marked the clinically
annotated contacts as larger spheres and the HI-based SOZs as
red spheres, which shows consistency between these two groups.
Moreover, we tried a similar EI module in a software, AnyWave
(Colombet et al., 2015), to our ictal dataset, and it shows that the
EI predictions of BrainQuake have higher ROCs in most cases
(Figures 9A,B). The comparisons also show that the AUC of
BrainQuake EI and HI both is significantly higher than that of
AnyWave EI (p= 0.0078 and p= 0.0391, respectively, two-sided
Wilcoxon signed-rank test, Figure 9C).

DISCUSSION AND CONCLUSION

The intracranial SEEG data provide abundant
electrophysiological information from the human brain for
surgical planning and brain research. With the prevalence of
SEEG recording in recent years, a large number of neurodata
have been generated while researchers are exploring a way to
make the best use of it. The challenge lies in both the fusion
of multimodal neurodata and intensive computation during
the SEEG analysis. In this study, we have introduced a self-
sustained Python toolbox, i.e., BrainQuake, integrating multiple
approaches to form a complete solution. For the structural
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FIGURE 7 | Validation of electrode localization accuracy. Visual checking of the electrodes and contacts of an example subject projected onto the CT image of an

individual. The raw CT brain (A) shows electrode positions as highlighted line-shaped voxels. Our recognized electrodes (red spheres) are plotted on (B), showing that

they are overlapped with each other. Contact positions are quantitatively estimated by two metrics, namely, axis-contact distance and adjacent contact distance error.

(C) Axis-contact distance estimates the distribution of deviation distance between each contact and its regressed electrode shaft line. Of note, 95% of the contacts

were less than 0.1mm, deviating from their estimated shaft line. (D) Adjacent inter-contact distance error estimates the distribution of the distance between each pair

of adjacent contacts. The actual adjacent contact distance size, 3.5mm, is subtracted from the estimated distances, so here we have shown the distribution of the

adjacent contact distance error. Notably, 95% of the contact distance fell in the range of 0 ± 1mm, and 50% of the contact distance fell in the range of 0 ± 0.3mm,

i.e., the adjacent contact distance distribution is 3.5 ± 1mm (95%) and 3.5 ± 0.3mm (50%).

data, the electrode module and the surface module provide
fast and automated pipelines for surface reconstruction and
electrode localization, with only raw MRI T1 and CT images
needed for processing. For the functional data, both ictal and
interictal modules exploit the long range of SEEG data and
provide a presurgical estimation of SOZs. Blending structural
and functional results, we provided neurosurgeons with a
comprehensive tool for surgical planning. Neuroscientists who

are using SEEG to study human brains will also be benefited
from our toolbox.

The electrode localization approach implemented in
BrainQuake divides the problem into two parts, namely, a
global level of electrode clustering and a local level of contact
segmentation. BrainQuake innovates in the level of automatic
electrode voxel clustering. The semiautonomous methods
require either additional input messages or a graphical user
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FIGURE 8 | Validations of the SOZ prediction results of BrainQuake comparing with clinically annotated SOZs. (A) The receiver operator curve (ROC) and area under

the curve (AUC) results of SOZ prediction, based on EI. Case S2 shows a low AUC of 0.51 (low predictive effect), while HI-guided prediction of S2 is 0.83, which is

highly consistent with the clinically annotated SOZs. That is because the ictal data of S2 displays similar seizure onset activities within each channel, and the EI

method cannot tell the difference from either their timing orders or their energy strengths. The case of S2 suggests that when the ictal data cannot provide sufficient

diagnostic information, the interictal data can be used to provide extra information for SOZ location, showing the essential value of interictal SEEG data analysis. (B)

The ROC and AUC results of SOZ prediction, based on HI. Case S3 shows a low AUC of 0.49 based on HI but a high AUC of 0.99 based on EI. The HI results of S3

performed poorly because those false positive channels recorded plentiful high-frequency noises. EI and HI methods provide prediction results from different

perspectives of views, so we recommended surgeons take a comprehensive consideration on both of them. (C) The HI results of S2 (marked with larger scales of

contacts) and cortical reconstruction are displayed at the same time with clinically annotated SOZs (marked with red color).

FIGURE 9 | Comparisons between AnyWave EI method and the EI and HI of BrainQuake. (A) The ROC and AUC results of SOZ predictions, based on BrainQuake EI.

(B) The ROC and AUC results of SOZ prediction, based on AnyWave EI. In most cases, BrainQuake EI shows a greater prediction effect than AnyWave EI. (C)

Comparisons of AUC values between AnyWave EI and BrainQuake EI and HI. A Wilcoxon signed-rank test was performed between the prediction results of AnyWave

and BrainQuake. The AUC of BrainQuake EI and HI are both significantly higher than that of AnyWave EI (p = 0.0078 and p = 0.0391, respectively, two-sided

Wilcoxon signed-rank test, *p < 0.05, **p < 0.01).

interface (GUI) to complete this process, i.e., the efficiency
and user experience of which highly depends on the quality of
images and preprocessing steps. Our algorithm, which is the
combination of 3D Hough Transform and Gaussian Mixture
Model, managed to take advantage of both geometric prior and
graphical information embedded in CT images. The Hough
Transform helps to detect the geometric characteristic of the
objects in the image. Whatever the image resolution is high or
low, electrode shafts are always straight and highlighted from
the background. From this perspective, a pattern recognition
algorithm can, in fact, be used to exploit the image instead of
scanning it slice by slice. To our knowledge, this valid and useful
geometric property has never been utilized in any other SEEG
electrode localization method before. The Hough Transform
makes electrode shafts be recognized automatically, although it
may not return us a precise result. The recognized directions
may deviate slightly from the shaft, or a recognized centroid

may not be in the exact center of the actual electrode. However,
the result can be much close to the true state, which is a good
starting point for initializing the clustering algorithm. Thus, we
removed the complicated manual intervention, that is, to replace
the procedure of telling a software where the electrodes locate
with automatic splicing of algorithms, and the pipeline consumes
much less time than previous tools.

As for the subsequent step of contact segmentation for every
single electrode, the algorithm of the center-of-mass convergence
(Arnulfo et al., 2015) has shown interpretable principles and
valid results. In our pipeline, we applied this algorithm to each
electrode one by one after electrode clustering and acquire
the final contact coordinates. We used axis-contact distance
and adjacent contact distance error to estimate the geometric
characteristics of the segmentation results. However, those two
parameters are, in fact, the indirect ways of validating whether the
contacts are properly located. Several factors may influence the
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error distributions. An electrode can bend slightly in the brain,
in which case there is a possibility that fluctuations occur in the
distributions of both parameters. It can generate some outliers
in the distribution of axis-contact distance since the contacts are
no longer scattered along a straight line and the deviations of
contacts from the regressed line, in fact, exist. Moreover, due to
the bending, the adjacent contact distance may shrink slightly
as the contacts bear the force to be compressed to each other.
Reflecting on Figure 7D, there are more distance errors lying
in the negative half range than in the positive half range. In
other cases, failures do exist due to the quality of the raw CT
images. There are possibilities that the algorithm cannot find a
local center-of-mass in a region and keep looking for highlights
along the direction and finally converge to the next contact. This
can explain the positive outliers in Figure 7D. We encountered a
worse situation that the two regions of highlights were too close
to each other and so the converging point just kept jumping from
one optimal to another.We fixed this problem by implementing a
counting index of convergence in the algorithm setting a forcing
scheme to stop the infinite loop and choosing a voxel with higher
voxel values just in case. We could notice that the design of
the center-of-mass convergence algorithm does have its deficits
and may not give us highly precise results. The recommended
redeeming method is still visual checking. As for the essentiality
of precise contact locations and then the locations of potential
SOZs, one must not skip the procedure of manual checking. By
projecting the contact results onto the registered CT image on
a NIfTI image reading software such as “Freeview” (Figure 7B),
we could go through the slices to check if the contacts recognized
are matched with the highlighted voxels in the image. If an error
is detected, surely one can erase a misplaced contact and add a
new one by hand.

The automatic SOZ prediction methods usually use the onset
order of high-frequency activity at each contact during the
seizure or the specific distribution of abnormal activity during the
interictal period as pathological features (Bartolomei et al., 2008;
Barkmeier et al., 2012; Navarrete et al., 2016) These methods
have already been integrated into some software independently
(Tadel et al., 2011; Colombet et al., 2015). We tried a similar
EI module in a software, AnyWave (Colombet et al., 2015), to
our ictal dataset, and the comparison results show that the EI
predictions of BrainQuake have higher ROCs in most of the cases
(Figures 9A,B). Although the seizure data are considered to be
more relevant to SOZ prediction, it may be difficult to capture
or it may not provide enough information for the diagnosis,
resulting in a relatively low AUC. Meanwhile, a large amount
of interictal SEEG has not been fully utilized. The pathological
information extracted from the long-term data may also have
good predictive power on SOZ and is more immune to noises
than the ictal data. As shown in our results (Figure 9C), HI
derived from the interictal data is a good supplement to the EI
method, and clinicians can compare the consistency between
them. BrainQuake may serve as a platform for exploring the
causal relationships between these two kinds of predictions and
ultimately lead to better clinical diagnoses.

The processing of the long-term interictal data also gives
rise to the challenge of computing power. The progress in deep
learning has led to the development of high-performance parallel

computing, and meanwhile, the acceleration capability of GPUs
may be a solution to massive SEEG data and its high-load
computing. At present, the mechanisms of seizures and interictal
discharges are still unclear, and they may reflect different aspects
of the epileptic network (Jiruska et al., 2017; Grinenko et al.,
2018). In the future, we plan to implement a GPU module for
the long-term interictal SEEG analysis in BrainQuake, and the
prediction methods from the perspective of epileptic networks
are to be explored.

BrainQuake is designed to be an auxiliary tool for epilepsy
neurosurgeons and technicians, trying to convey a presurgical
evaluation solution with blended functional and structural
neurodata. Most current software or toolboxes focus on one or
a few steps, developing splendid algorithms or techniques for
data processing, but in clinical practice, it is a cumbersome task
to merge all kinds of results into one system or coordinate.
Also, several steps consume a lot of time and effort to do
repeated work, resulting in an inefficient working procedure.
BrainQuake commits to freeing surgeons and technicians
from tedious and time-consuming work, allowing them to
concentrate on the steps that rely more on common sense
and medical expertise short in machine algorithms. In the
upcoming era of big neurodata, this kind of human-computer
synergy is an efficient approach to data utilization, and we
believe that it will eventually promote the fields of both
neurology and neuroscience.
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Analyses of brain function and anatomy using shared neuroimaging data is an important
development, and have acquired the potential to be scaled up with the specification of
a new Brain Imaging Data Structure (BIDS) standard. To date, a variety of software tools
help researchers in converting their source data to BIDS but often require programming
skills or are tailored to specific institutes, data sets, or data formats. In this paper, we
introduce BIDScoin, a cross-platform, flexible, and user-friendly converter that provides
a graphical user interface (GUI) to help users finding their way in BIDS standard.
BIDScoin does not require programming skills to be set up and used and supports
plugins to extend their functionality. In this paper, we show its design and demonstrate
how it can be applied to a downloadable tutorial data set. BIDScoin is distributed as
free and open-source software to foster the community-driven effort to promote and
facilitate the use of BIDS standard.

Keywords: BIDS, GUI, conversion, neuroimaging, data sharing, open-source software, Python, plugin

INTRODUCTION

In the last few decades, neuroimaging data have become an increasingly rich source of information
for studying the working of the brain in health and disease. Typically, the acquisition of such data
sets is expensive and often difficult to collect from a large number of participants. Contemporary
neuroscientific and clinical research questions are based on ever advancing analysis methods that
require the availability of data sets that are very large (also known as “big data”) or of superior
quality, or both. Several initiatives have been undertaken to address this problem by pooling the
data from individual studies across the globe and by sharing data in online repositories (see, e.g.,
Turner et al., 2016, for a special issue overview).

The initial lack of data-structure standardization, data-sharing tools, and data-sharing mindset
(Poline et al., 2012; Nichols et al., 2017; White et al., 2020) have led to the use of a large variety
of file formats and data management methods, and to the lack of metadata descriptions, leaving
researchers with the daunting task of adapting all the collected data in a custom format to run
their analysis pipelines. Recently, the Brain Imaging Data Structure (BIDS; Gorgolewski et al.,
2016) was introduced to alleviate this task to increase data sharing and usage and to facilitate
reproducibility studies.

In essence, BIDS is a specification that prescribes how data collections should be organized and
formatted on disk, in a computer and human readable way: it specifies the folder structure, the
file names, the metadata fields, and its file formats. The BIDS standard was initially developed for
MRI data but has since been embraced by the wider neuroimaging community, as indicated by
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extensions of the standard to MEG, EEG, iEEG, genetic, and
PET data (Niso et al., 2018; Holdgraf et al., 2019; Pernet
et al., 2019; Knudsen et al., 2020; Moreau et al., 2020), by a
large number of BIDS Extension Proposals,1 a surge in BIDS
apps (Gorgolewski et al., 2017), and a wide adoption of BIDS
being used in publications. BIDS standard has moved the
burden of homogenizing the data from the end user to the
researchers who have collected the data set – and, importantly,
who have the best knowledge about that data. In addition, the
development of BIDS apps2 has provided researchers with easy
to use, standardized processing pipelines that are typically well
tested and documented.

Nevertheless, a limiting factor in the adoption of BIDS
standard is that many of the neuroscientists who collect data
do not have the programming skills to reformat their data in
an efficient or automated manner. Various BIDS conversion
command-line tools3 to support researchers have been made
available, ranging from institute- or study-specific solutions, to
community developed software, and from poorly documented
tools to more advanced packages with programmatic interfaces.
Among these, many use the well-known dcm2niix converter
(Li et al., 2016) under the hood to perform the actual data
conversion, such as the popular HeuDiConv (Halchenko et al.,
2020), dcm2bids,4 and the related bidskit5 tools. HeuDiConv is
a powerful tool but requires Python programming skills, albeit
basic, and its rule-base heuristics design has a relatively steep
learning curve and requires technical knowledge about the data.
Dcm2bids uses a mapping approach that is easier to use although
users still need to manually write their own configuration files.
Solutions also exist for non-MRI data such as EEG or MEG
data converters such as MNE-BIDS (Appelhoff et al., 2019),
FieldTrip,6 and EEGLAB7.

A common limitation of the available tools is that they
generally lack graphical user interfaces (GUIs) that can lower the
barrier to adopt BIDS standard. To our knowledge, only a few
converters come with a GUI. A service named as ezBIDS8 allows
researchers to use a web browser to upload their DICOM data to
a web server, to configure the dcm2niix-based data conversion,
and to download a converted BIDS data set. Furthermore, a
plugin9 for the Horos/OsiriX DICOM viewer uses dcm2niix
to convert DICOM data to BIDS. Finally, pyBIDSconv,10 is an
MRI-centered wrapper around dcm2niix, DataLad-hirni11 is an
extension for DataLad (Halchenko et al., 2021), and Biscuit12 is
an MEG-centered wrapper around MNE-BIDS. However, these

1https://bids.neuroimaging.io/get_involved.html#extending-the-bids-
specification.
2https://bids-apps.neuroimaging.io.
3https://bids.neuroimaging.io/benefits.html#converters.
4https://github.com/cbedetti/Dcm2Bids.
5https://github.com/jmtyszka/bidskit.
6https://www.fieldtriptoolbox.org/reference/data2bids.
7https://github.com/arnodelorme/bids-matlab-tools.
8https://github.com/brainlife/ezbids.
9https://github.com/mslw/horos-bids-output.
10https://github.com/DrMichaelLindner/pyBIDSconv.
11https://github.com/psychoinformatics-de/datalad-hirni.
12https://github.com/Macquarie-MEG-Research/Biscuit.

three converters no longer seem to be under active development
and do not support recent extensions to BIDS standard.

With the BIDScoin application suite presented in this paper,
we aim to further promote the usage of BIDS by providing a
flexible framework to convert any kind of source data to BIDS
in a user-friendly way, which requires no previous programming
knowledge. To achieve this goal, BIDScoin uses an intelligent
mapping approach to associate raw source data types with BIDS
target data types. The approach exploits as much of the digitally
available information about the data as possible as well as the
information that is typically known only by the researcher. The
mapping approach of BIDScoin is intuitive for neuroimaging
researchers as (1) it resembles the way they often think about
their data types (they can recognize the data types they have
collected when they see them, but do not know how to uniquely
and reliably identify them technically), (2) it is simple and flexible
as a virtually unlimited number of concurrent mappings can be
established, and (3) it offers a GUI for users to directly and easily
edit the mappings to their needs.

METHOD

All BIDScoin codes are freely available at github13 and pypi,14

and the documentation can be found on Read the Docs.15 The
latest BIDScoin version 3.7 as described in this paper is written
in Python 3.6 and dependent on the freely available PyQt5
(Riverbank Computing Limited, Dorchester, England) software
library for the GUI.

The BIDScoin Workflow
The workflow of BIDScoin to convert source data into BIDS
standard consists of three steps (Figure 1):

(1a) To start with, the researcher runs a command-line
application named as “bidsmapper” to perform the data
discovery on their source data set (i.e., the folder containing
all the input files). In this step, a so-called “template
bidsmap” is used to scan the entire source data set and
automatically create what will be referred to as a “study
bidsmap.” Conceptually, the template bidsmap can be
thought of as a set of broad filters, each of which maps
a source data type onto a single BIDS output data type
(e.g., anat, func, fmap, and dwi), onto an “exclude” data
type that is not converted to BIDS, or, if none of the
filters match, onto an unknown “extra_data” data type.
Whenever a template filter matches with a source data type,
the bidsmapper narrows the filter to exactly match to this
particular source data type only and adds it to the study
bidsmap if not present there yet. In this way, a mapping
shortlist is built up in the study bidsmap, representing all of
the unique source data types that are present in the source
data folder. Note that a single broad filter from the template
bidsmap can result in multiple narrow filters in the study

13https://github.com/Donders-Institute/bidscoin.
14https://pypi.org/project/bidscoin.
15https://bidscoin.readthedocs.io.
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FIGURE 1 | Creation and application of a study bidsmap. The user runs the “bidsmapper” executable with a “template bidsmap” as an input and with a “study
bidsmap” as an output with the suggested Brain Imaging Data Structure (BIDS) data types, entities, and metadata. The study bidsmap is verified and edited
interactively with the “bidseditor” graphical user interface (GUI). Finally, the study bidsmap is passed to the “bidscoiner” to convert the source data to BIDS.

bidsmap, for instance when two similar anatomical MRI
scans are collected with different spatial resolutions. In
the rest of this paper, we will refer to a bidsmap filter
that maps to a BIDS data type (including the output file
names and metadata) as a “BIDS mapping.” A template
bidsmap is generic and typically created once, whereas a
study bidsmap is tailored to the data at hand and therefore
stored together with the output data.

(1b) After the study bidsmap has been created, a GUI
application named as “bidseditor” is launched, either
automatically by the bidsmapper or manually. The
bidseditor reads in the study bidsmap and opens a
main window that shows the shortlist of the discovered
source data types and their suggested mappings to BIDS
(Figure 2). From the main window, researchers can open
subwindows to enrich or correct each of the suggested
mappings using the knowledge they have about the data
(Figure 3). In BIDScoin, prior (e.g., research center-
specific) knowledge about the data can be represented
in the template bidsmap: the more of this knowledge is
represented, the larger the number of correctly suggested
mappings will be, and the lesser edits the researcher
needs to make. When the template bidsmap is unsuited
or lacks any prior intelligence, all source data types will
be classified as “extra_data” and the researcher will have
to edit each mapping to the correct BIDS data type.
Still, in such a worst-case scenario, the researcher has to
perform only a limited amount of work on a short list of
items. The bidsmap and all the user edits are immediately
validated against the public BIDS schema files to ensure
the specification of all mandatory fields and produce the
correct metadata and valid naming of all the output files.

(2) After the data discovery and editing are done, the final step
in the workflow is to call the “bidscoiner” application to
automatically convert (“coin”) the source data set to a BIDS
data set, as specified by the mappings in the study bidsmap.
Note that as the number of mappings is independent from

the number of subjects or sessions, the bidscoiner can
be re-run every time new subects or sessions are added
to the source dataset, without the need to re-run the
bidsmapper or editor. If new scan protocols are employed
for subsequent data, the researcher can repeat steps 1a and
1b first, which will reload the previously edited mappings
and add the mappings for the new data samples to the list.

The Bidsmap
Brain Imaging Data Structure Mapping
Thus far, we have referred to the bidsmap as a collection of
BIDS mappings (filters) that define how the different source
data types should be converted to the BIDS output data. Source
data typically comes with two sources of information about
the datatype and acquisition parameters, namely (1) metadata
that is inherent to the filesystem, such as parts of the folder
or file name, and (2) metadata that is intrinsic to the data
itself, such as information represented in the header of the
binary file. Depending on the imaging modality and on the
data management plan, researchers often use either one of these
sources or both. For instance, as opposed to MRI data in the
DICOM format, most EEG data formats contain rather limited
header information. Similarly, in the BIDS format, metadata
is also stored (3) in the file path and file name and (4) in
an accompanying json sidecar file. Hence, to be as versatile as
possible, all four sources of information are represented in a BIDS
mapping:

1. The file system metadata is contained in an input
dictionary named “properties.” This dictionary contains
file system properties of the data sample, i.e., the file path
(in POSIX-style), the file name, the file size on disk, and
the number of files in the containing folder. Depending
on ones’ data management, this information allows or
can help to identify the different data types in the source
data repository.

2. The intrinsic metadata is contained in an input dictionary
named “attributes.” This dictionary normally consists of a
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FIGURE 2 | The bidseditor main window with an overview of the data types in the source data (left column) with a preview of the BIDS output names (right column).
The green or red color indicates whether manual editing of the BIDS mapping is necessary, while the strikeout text indicates that the data type will not be converted,
which is useful for handling irrelevant data. The user can edit the “subject” and “session” property values if needed (“session” can be left empty to be omitted) and
the result is immediately reflected in the preview. Different tabs represent different data formats in the source data set, i.e., DICOM and PAR, which are represented
as separate sections in the bidsmap. In addition, there is a tab to edit the study-specific “Options” and a tab in which the user can browse the organization of the
source data and inspection of the data.

minimal subset of the available intrinsic metadata that is
effective to identify the different data types in the source
data repository.

3. The BIDS entities that define the file name after the
conversion are contained in an output dictionary named
“bids.”

4. The BIDS metadata is contained in an output dictionary
named “meta.” The meta dictionary contains the custom
key-value pairs that are added to a new or an existing json
sidecar file by the bidscoiner plugins (further described
later).

When source data is scanned by a BIDScoin routine, the
keys of these input dictionaries indicate which metadata is
to be extracted from the source data and matched against
the dictionary value. In this identification procedure, the
input dictionary values are interpreted by BIDScoin as regular
expression patterns,16 and as such define the abovementioned
broadness of the template or study bidsmap filters.

For instance, in a template bidsmap, a key-
value pair of an attribute dictionary could be
{ProtocolName: .*(mprage|T1w).*},,17 which would

16https://docs.python.org/3/library/re.html.
17The Python syntax that is used throughout this paper of a key-value
pair is {key: value}. Here, the .*(mprage|T1w).* value is taken
as a regular expression pattern. In regular expressions, the “.∗” in the
pattern denotes a wildcard, the “| ” denotes an OR statement, and the
parenthesis indicate a grouping. The expression is evaluated in Python as:
match = re.fullmatch(pattern, string).

extract the attribute string for “ProtocolName” from the
DICOM18 header and tests if that string contains either
a “mprage” or a “T1w” substring. BIDScoin will test all
the key-value pairs of the input dictionaries and will
consider it an overall match only if all of them tested
positively. During the bidsmapper runtime, the existing
attribute values are then replaced (expanded) by the full
string values that were extracted from the header, e.g.,
{ProtocolName: t1_mprage_sag_p2_iso_1.0}, and
then stored in the study bidsmap as a new BIDS mapping.

The expanded values will not contain broadly matching
wildcards (.∗) or Boolean “OR” operators (|), and hence act as
very narrow regular expressions that make exact matches only.
Note that the initial pattern from the template contains the prior
knowledge that the data type is most likely “T1w” if the DICOM
ProtocolName contains a “mprage” or “T1w” substring, but that
the exact “t1_mprage_sag_p2_iso_1.0” substring is study-specific
and cannot be predicted a priori. In this way, BIDScoin will
collect all the source data types and will notify any unintended
deviation from the data acquisition protocol.

Within a bidsmap, BIDS mappings are hierarchically grouped
in BIDS data types, such as “anat,” “dwi,” and “func,” and
accompanied with a “subject” and a “session” key-value pair for
extracting BIDS subject and session labels. A snippet of a study
bidsmap in the YAML19 format can be seen in Figure 4.

18http://dicom.nema.org.
19http://yaml.org.
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FIGURE 3 | The BIDS mapping edit window featuring filename matching (.*\.IMA) and dynamic metadata values (e.g., “TimeZero”). The BIDS values that are
restricted to a limited set are presented with a drop-down menu (here the “Data type,” the “rec,” and the “suffix” value). The user can immediately see the results of
their edits in the preview of the BIDS output file name. A green file name indicates that the name is compliant with BIDS standard, whereas a red name indicates that
the user still needs to fill out one or more compulsory BIDS values (with a pop-up window appearing if the user ignores it). Hoovering with the mouse over dictionary
keys pops up explanatory text from the BIDS schema files, as highlighted for “TimeZero”. Double clicking on the DICOM file name opens a new window displaying
the full header information with all attributes. The user can export the customized mapping to a different bidsmap on disk.

Dynamic Values
In the BIDScoin workflow, users can directly set the bidsmap
values as they like, but often these values are already
available as file attributes or properties or may vary between
acquisitions. BIDScoin allows researchers to capture such cases
with so-called “dynamic values.” Bidsmap values are treated
as “dynamic” when they are captured between single (<>)
or double brackets (<<>>), in which case the value should
correspond to an attribute or a property key for which
the value can be extracted from the data. Single brackets
will always be extracted directly by BIDScoin routines and
are typically part of a template bidsmap. Hence, when the
template bidsmap is converted to a study bidsmap, the
dynamic values are extracted and presented to the user for
further editing. For instance, {acq: <ProtocolName>} in
the bids output dictionary of the template bidsmap will
appear as{acq: t1mpragesagp2iso10}in the study bidsmap
(Figure 2). Double bracket dynamic values will remain as they
are and will only be extracted during (bidscoiner) runtime, as
explained further below.

Single bracket dynamic values are most useful as an
intelligent first guess for the output dictionary values that
vary only between data types, but not between acquisitions,
such as the MRI sequence parameters “ProtocolName” or
“FlipAngle.” Double bracket values can be useful for the

dictionary values that vary more often, such as between
subjects, sessions, or runs20 of the same data type. For instance,
the value {Comments: <<PatientComments>>} in the
meta dictionary (Figure 2) will extract the comments
for that specific subject or session, while the value
{subject: <<filepath:/sub-(.*?)/>>}21 will extract
“003” (i.e., the shortest string between “/sub-“ and “/”) if
the data for that subject is in “/data/raw/sub-003/ses-01.”
The latter example illustrates how a colon-separated regular
expression can be appended to the “filepath” or “filename”
property keys to extract a substring as researchers often
encode multiple values or key-value pairs in a single filepath
or filename. This mechanism to extract substrings is not
limited to the file path or file name property keys but can be

20In BIDS, a run is defined as: an uninterrupted repetition of data acquisition
that has the same acquisition parameters and task (however, events can change
from run to run due to a different subject response or randomized nature of the
stimuli). Run is a synonym of a data acquisition. Note that “uninterrupted” may
look different by modality due to the nature of the recording. For example, in MRI
or MEG, if a subject leaves the scanner, the acquisition must be restarted. For some
types of PET acquisitions, a subject may leave and re-enter the scanner without
interrupting the scan.
21In regular expressions, the “.∗?” pattern denotes a non-greedy
wildcard. The substring that matches with the pattern between the
parentheses is captured as the expression is evaluated in Python as:
substring = re.findall(pattern, string).
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FIGURE 4 | A snippet of study bidsmap in the YAML format. The bidsmap contains separate sections for each source data format (here “DICOM”) and subsections
for the BIDS data types (here “anat”). The provenance field contains the pathname of a source data sample that is representative of the run-item. The provenance
data is not strictly necessary but very useful for a deeper inspection of the source data and for back-tracing, e.g., in case of encountering unexpected results. The
arrow illustrates how the “properties” and “attributes” input dictionaries are mapped onto the “bids” and “meta” output dictionaries. This BIDS mapping together with
the provenance item, i.e., the run-item, is the fundamental building block of a bidsmap. Note that the “part” value in the bids dictionary is a list, which is presented in
the bidseditor GUI as a drop-down menu (with the first empty item being selected). Also, note that the special double bracket dynamic values (<<1>> and
<<PatientComments>>) are explained in section “Dynamic Values.”

applied to any dynamic property or attribute key. For instance,
{subject: <<PatientName:ID_(.*?)_>>}would likewise
have extracted “003” if the DICOM attribute PatientName was,
e.g., “ID_003_anon.” To test out dynamic values (either with or
without appended regular expressions), users can handily enter
them in the bidseditor within single brackets to instantly obtain
their resulting value.

Dynamic values can handle many use cases and can
be used throughout BIDScoin. Yet, two exceptions in the
output dictionaries cannot always be handled directly with
dynamic values. The first exception is the “run” index in the
bids dictionary as this index cannot usually be determined
from the data file alone. In that case, if the run-index is a
dynamic number (e.g., {run: <<1>>}) and another output
file with that run-index already exists, then during bidscoiner
runtime this number will be incremented in compliance
with BIDS standard (e.g., {run: 2}). If the run index is
encoded in the header or file name, then the index can

unambiguously be extracted using dynamic values. For
instance, using {run: <<ProtolName:run-(.*?)_>>}
will extract “3” if the DICOM ProtocolName is
“t1_mprage_sag_run-3_iso_1.0.” The second exception
not covered by dynamic values is the “IntendedFor”22

value in the meta dictionary, which also depends on the
presence of other output files. Researchers can therefore
specify IntendedFor images using a dynamic value with
Unix shell-style wildcards. The bidscoiner will use these
wildcards to lookup the appropriate images on disk. For
instance, using {IntendedFor: <<task>>} will select
all functional runs in the BIDS subject[/session] folder (as
these runs always have “task” in their file name), and using

22IntendedFor values are used in BIDS to semantically indicate the association of
an acquired data file with other acquired data files. A prominent example is a field-
map that is acquired to correct fMRI images.
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{IntendedFor: <<Stop*Go><Reward>>} will select all
“Stop1Go”-, “Stop2Go”-, and “Reward”-runs.

The Plugin Interface for Interacting With
Source Data
The BIDS community is working continuously to further
improve and expand BIDS standard with new data types.
Architecturally, to facilitate the implementation of such
developments, all interactions of BIDScoin routines with the
source data are done via a plugin layer that interacts in a
data format-independent way. This paragraph describes the
requirements and structure of plugins to allow advanced users
and developers to write their own plugin and extend or customize
BIDScoin to their needs. A BIDScoin plugin is a Python module
with the following programming interface (functions):

- test(): A function to test the plugin and its options (see
section “User Options”).

- is_sourcefile(): A function to assess whether a source
file is supported by the plugin. The return value should
correspond to a data format section in the bidsmap.

- get_attribute(): A function to read an attribute value
from a source file.

- bidsmapper_plugin(): A function to discover BIDS
mappings in a source data session. To avoid code
duplications and minimize plugin development time,
various support functions are available to the plugin
programmer in BIDScoin’s library module named as
“bids.”

- bidscoiner_plugin(): A function to convert a single source
data session to bids according to the specified BIDS
mappings. Various support functions are available in the
“bids” library module.

Each plugin has its own section in a bidsmap to store and
edit its discovered BIDS mappings. Plugins can be installed by
the user but the plugins described in the following sections
come pre-installed.

Dcm2niix2bids: A Plugin for DICOM and PAR/XML
Data
The “dcm2niix2bids” plugin is a wrapper around the well-known
pydicom (Mason et al., 2020), nibabel (Brett et al., 2020), and
dcm2niix tools (Li et al., 2016) for interacting with and converting
the DICOM and Philips PAR(/REC)/XML source data. Pydicom
is used to read DICOM attributes, nibabel is used to read
PAR/XML attribute values, and dcm2niix is used to convert the
DICOM and PAR/XML source data to NIfTI23 and create BIDS
sidecar files. These sidecar files contain standard metadata but,
to give more control to the user, this metadata is appended
or overwritten by the user data in the BIDS mapping meta
dictionary. Dcm2niix2bids expects the source data files to be
organized in:

• A “Series” subfolder organization. A Series folder is a
subject[/session]24-subfolder that contains files of a single

23http://nifti.nimh.nih.gov.
24Brackets indicate that this subfolder is optional.

data type, which are typically acquired in a single run – a.k.a
“Series” in the DICOM standard. This format is often used
by researchers in academic centers.

• A “DICOMDIR” organization with a DICOMDIR file
in a single subject[/session] folder. A DICOMDIR is a
dictionary file that indicates various places in a folder
hierarchy of the available DICOM files. DICOMDIRs are
often used in clinical settings.

• A flat DICOM organization. In a flat DICOM organization,
all the DICOM files of all of the different Series are stored
on a single subject[/session] folder. This organization is
sometimes used when exporting data in clinical settings.

• A “PAR/XML” organization. All PAR/XML files of all the
different Series in one folder. This organization is how
users often export their data from Philips scanners in
research settings (the session subfolder is optional): The
PAR/XML session-data is expected to be organized in a
single subject[/session] folder.

Spec2nii2bids: A Plugin for MR Spectroscopy Data
The “spec2nii2bids” plugin is a wrapper around the recent
spec2nii25 Python library for interacting with and converting the
MR spectroscopy source data. Presently, the spec2nii2bids plugin
is the first implementation that supports the conversion to BIDS
for Philips SPAR/SDAT files, Siemens Twix files, and GE P-files.
As with the dcm2niix2bids plugin, the produced sidecar files
already contain the standard metadata that is complemented or
overruled by the metadata that users specified in the bidseditor.
Also, spec2nii2bids expects the source data to be organized in
subject[/session] folders.

Phys2bidscoin: A Plugin for Physiological Data
The “phys2bidscoin” plugin is a wrapper around the phys2bids
Python library (The phys2bids developers et al., 2019) for
interacting with and converting physiological source data.
Phys2bids currently supports the conversion of labchart
(ADInstruments, Sydney, Australia) and AcqKnowledge
(BIOPAC, Goleta, CA, United States) source files to compressed
tab-separated value (“.tsv.gz”) files and create their json sidecar
files, as per BIDS specifications. As in the other plugins, the
sidecar files contain the standard metadata that is overwritten by
the user data entered in the bidseditor. Phys2bidscoin expects the
source data files to be organized in subject[/session] folders. This
plugin has been developed during the OHBM hackathon 2021
and is still considered experimental at the moment of writing.

User Options
A bidsmap contains a separate “Options” section with
dictionaries for the options and settings of BIDScoin and
its plugins. Only plugins that are listed in the Options will be
used by the BIDScoin routines, which allow researchers to use
different plugins for different data sets. The template bidsmap
Options are taken as default and can be adjusted using the
bidseditor (Figure 5).

25https://github.com/wtclarke/spec2nii.
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FIGURE 5 | The bidsmap options for BIDScoin and its plugins. Note that how the GUI automatically adapts with a new “Physio” tab due to the presence of
physiological data in the repository, i.e., a “Physio” section in the study bidsmap. The user can manage the plugins that will be used with the “Add” and “Remove”
buttons, and save the current options to the template bidsmap using the “Set default” button.

The BIDScoin Options
• version: Used to check for version conflicts between

the installed version and the original version in the
bidsmap (e.g., when upgrading the software after creating
the bidsmap) or between the installed version and the
latest online version.

• bidsignore: A semicolon-separated list of non-BIDS data
types that are added to the .bidsignore file.

• subprefix: The subject prefix of the source data, e.g., “sub-.”
• sesprefix: The session prefix of the source data, e.g., “ses-.”
• datatypes: The list of data types that are converted to BIDS.
• unknowntypes: The list of data types that are converted to

BIDS-like data type folders.
• ignoretypes: The list of data types that are excluded/not

converted to BIDS.

The Dcm2niix2bids Plugin Options
• command: The command to run dcm2niix on the user

system, e.g., “module add dcm2niix; dcm2niix.”
• args: Argument string that is passed to dcm2niix to

customize its behavior, e.g., −z n −i y for ignoring

the derived data and having the uncompressed output
data. The [Test] button can be used to test the proper
working of the plugin.

• anon: Anonymization option (y/n) to round off age and
discard acquisition date from the metadata.

The Spec2nii2bids Plugin Options
• command: The command to run spec2nii on the user

system, e.g., “module add spec2nii; spec2nii.”
• args: Argument string that is passed to spec2nii to

customize its behavior.
• anon: Anonymization option (y/n) to round off age and

discard acquisition date from the metadata.
• multiraid: A spec2nii (mapVBVD) argument for selecting

the multiraid Twix file to load (default 2).

The Phys2bidscoin Plugin Options
The options and settings of this plugin are still
under development.
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RESULTS

BIDScoin has been developed in the Donders Institute for
Cognitive Neuroimaging at the Radboud University. A large
number of researchers inside and outside this institute have
successfully used BIDScoin to convert their data sets to BIDS,
exposing it to a wide range of source data formats, data types,
data organizations, experimental paradigms, and equipment
manufacturers. In this paper, we present a full workflow using
tutorial MRI data. The goal of this tutorial is to demonstrate
BIDScoin’s functionality using the data that is representative of
what researchers acquire in a standard neuroimaging experiment.

Tutorial MRI Data
The following steps are part of a tutorial that allows users to
download phantom MRI data, to test the complete BIDScoin
workflow, and to compare it to a reference output. It is assumed
that BIDScoin 3.7 is installed and that the path string for
“dcm2niix” in the template bidsmap “Options” section has been
set correctly (see section “The Dcm2niix2bids Plugin Options”).

Data Preparation
Before we can launch the GUI application and convert the data,
we need to obtain a minimally organized source data set. In a shell
terminal, create a tutorial playground folder by executing these
commands:

$ bidscoin --download . # Download the tutorial data

(use a “.” for the current folder or adapt it to your

needs)

$ cd bidscointutorial # Go to the downloaded data

(or provide the path to the subfolders when calling

the bidscoin tools)

The new “bidscointutorial” folder contains a “raw” source data
folder and a “bids_ref” reference BIDS folder. The aim of this
tutorial is to reproduce this bids_ref data folder. In the raw folder,
these DICOM series (aka “runs”) will be found:

- 001-localizer_32ch-head: A localizer scan that is
not scientifically relevant and can be left out of
the BIDS data set.

- 002-AAHead_Scout_32ch-head: A localizer scan that
is not scientifically relevant and can be left out of
the BIDS data set.

- 007-t1_mprage_sag_ipat2_1p0iso: An anatomical T1-
weighted scan.

- 047-cmrr_2p4iso_mb8_TR0700_SBRef: A single-
band reference scan of the subsequent multi-band
functional MRI scan.

- 048-cmrr_2p4iso_mb8_TR0700: A multi-band
functional MRI scan.

- 049-field_map_2p4iso: The field-map magnitude images
of the first and second echo. Set as “magnitude1,”
bidscoiner will recognize the format. This field-map is
intended for the previous functional MRI scan.

- 050-field_map_2p4iso: The field-map phase difference
image of the first and second echo.

- 059-cmrr_2p5iso_mb3me3_TR1500_SBRef: A single-
band reference scan of the subsequent multi-echo
functional MRI scan.

- 060-cmrr_2p5iso_mb3me3_TR1500: A multi-band
multi-echo functional MRI scan.

- 061-field_map_2p5iso: Idem, the field-map magnitude
images of the first and second echo, intended for the
previous functional MRI scan.

- 062-field_map_2p5iso: Idem, the field-map phase
difference image of the first and second echo.

Start with inspecting the raw data:

• Are the DICOM files for all the “bids/sub-∗” folders
organized in series-subfolders (e.g., “sub-001/ses-01/003-
T1MPRAGE/0001.dcm,” etc.)? BIDScoin’s “dicomsort”
utility can be used if this is not the case (hint: for didactical
reasons this is not the case for sub-002). A help text for all
BIDScoin tools is available by running the tool with the “-h”
flag (e.g., “rawmapper –h”).

• The “rawmapper” utility can be used to print out
the DICOM values of the “EchoTime,” “Sex,” and
“AcquisitionDate” of the fMRI series in the “raw” folder.

Brain Imaging Data Structure Mapping
Now, a study bidsmap can be made, i.e., the mapping from
DICOM source files to BIDS target files. To that end, scan all
folders in the raw data collection by running this “bidsmapper”
command:

$ bidsmapper raw bids

• In the GUI that appears at the end, edit the task and
acquisition labels of the functional scans into something
more readable, e.g., “task-Reward” for the “acq-mb8” scans
and “task-Stop” for the “acq-mb3me3 scans.” Also, make
the name of the T1 scan more user-friendly, e.g., by naming
the acquisition label simply “acq-mprage.”

• Add a search pattern to the “IntendedFor” field such that
the first field-map will select the “Reward” runs and the
second field-map the “Stop” runs.

• Since for this data set, we only have one session per subject,
remove the session label (and note how the output names
simplify, omitting the session subfolders and labels).

• When all done, go to the “Options” tab and change the
“dcm2niix” settings to get the uncompressed NIfTI output
data (i.e., “∗.nii” instead of “∗.nii.gz”). Test the tool to see
if it can run and, as a final step, save the study bidsmap.
Close the editor and re-edit the study bidsmap by running:
$ bidseditor bids. See what happens if you remove
the compulsory task label of a functional scan or if you
enter values in the output dictionaries that are not BIDS-
compliant, such as non-alphabetic characters.

Brain Imaging Data Structure Coining
The next step, converting the source data into a BIDS collection,
is straightforward and can be repeated whenever the new data has
come in. To convert the data, run the “bidscoiner” command-line
tool (note that the input is the same as for the bidsmapper):
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$ bidsmapper raw bids

• Check the “bids/code/bidscoin/bidscoiner.log” file and note
that it contains the complete terminal output. Check the
“bids/code/bidscoin/bidscoiner.errors” file and see if any
warnings or errors did occur.

• Compare the results in the “bids/sub-∗” subject folders with
the in “bids_ref” reference result. Are the file and folder
names the same (ignore the multi-echo and “extra_data”
images)? Also check the json sidecar files of the field-maps.
Do they have the right “EchoTime” and “IntendedFor”
fields?

• Re-run the bidscoiner command. Are the same subjects
processed again? Forcefully re-run “sub-001.”

Finishing Up
Once the source data has been converted to BIDS, one still
needs to do some additional work to make it ready for data
analysis and sharing.

• Inspect the “participants.tsv” file and decide if it is ok.
• Update the “dataset_description.json” and

“README” files.
• Combine the echoes using the “echocombine” tool, such

that the individual echo images are replaced by the echo-
combined image.

• Deface the anatomical scans using the “deface” tool. This
will take a while but will obviously not work as normal for
the (faceless) tutorial phantom data set. Therefore, store the
“defaced” output in the “derivatives” folder (instead of, e.g.,
overwriting the existing images).

• As a final step, run the bids-validator26 on your
“bids_tutorial” folder. Is the BIDS repository now
ready to be shared?

DISCUSSION

Brain Imaging Data Structure standard is paving the way for more
sharing of neuroimaging data that can efficiently be processed
in a standardized manner. In this paper, we have demonstrated
the use case for and main working of our flexible and user-
friendly BIDScoin application that can convert a variety of
raw neuroimaging data formats to the latest BIDS version 1.6.
BIDScoin adopts an intelligent mapping strategy to discover
and convert source data as opposed to using programmatic
logic. BIDScoin is designed to make as much use as possible
of the information available on disk, i.e., the file properties and
attributes, as well as of the information that can be retrieved
directly from the user.

An important part in the workflow is a step in which the
user can edit the resulting output file names and add additional
metadata. This, in itself, is not a trivial task as BIDS standard is
ever increasing and many of its entities are not self-explanatory.
The bidseditor GUI is therefore equipped with many help
functions, such as help texts, tooltips, visual cues, informative

26https://bids-standard.github.io/bids-validator.

pop-up windows, field input validations, reset buttons, and data
inspection windows. In addition, users can consult the online
documentation or, for instance, ask questions on the GitHub
BIDScoin issue page. The user-friendliness of applications such as
BIDScoin is important as it reduces the amount of non-scientific
work in the scientific process and, hence, allows neuroscientists
to devote more time and energy to address their research
questions of interest.

Advantages of BIDScoin
BIDScoin is a flexible framework for various reasons. It is written
in Python and packaged and publicly released to pypi, hence
the installation on multiple platforms is supported, including
Linux, Windows, and macOS. Architecturally, BIDScoin makes
the use of installable plugins, which increases the user-facing
flexibility (e.g., to non-MRI data) and decreases the programmer-
facing development costs. Researchers can modify or create their
own plugins for specific data types without having to modify
BIDScoin. As the entire framework is free and open-source, users
are welcome and encouraged to contribute in this way.

Another feature contributing to BIDScoin’s flexibility is an
option to use regular expressions in the bidsmap, which are
well known for their powerful string-searching algorithms and
usage in many programming languages. Nevertheless, researchers
normally do not need to know about or interact with regular
expressions as these are typically used in the template bidsmap
and are already created by advanced users or developers.

Different researchers and research institutes use different data
acquisition and management conventions. To accommodate for
this, BIDScoin users can customize the data discovery intelligence
in the default template bidsmap and reduce the number of edits
they need to make in the GUI. Such customization can be as
simple as changing the attribute or property strings to reflect their
prior knowledge about the data – a task that does not require any
programming knowledge from the user.

BIDScoin errors, warnings, and normal operations on the
bidsmap or on the data are printed in a standard human readable
format in the terminal and simultaneously stored in logfiles in the
BIDS output folder. The study bidsmap itself, with all its mapping
values and options, is also stored in the BIDS output folder. The
provenance of the data and its conversion to BIDS are therefore
always searchable, verifiable, and reproducible.

Converting source data to BIDS cannot always be done using
a single application. BIDScoin only adds data and does not delete
or overwrite the existing data (unless the user specifies so) and is
therefore safe to use in conjunction with other BIDS applications.

Limitations
While BIDScoin offers a convenient and flexible infrastructure
for converting source data to BIDS, there are a few
limitations to consider.

First, BIDScoin uses regular expressions instead of
programmatic logic to map out source data. While this is
a main feature, it also comes with the drawback that in
certain situations the list of BIDS mappings in the bidsmap can
become quite long and somewhat labor intensive to maintain
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or edit. This may become apparent when researchers have very
irregular ways to acquire the data, such as manually entered file
names that vary slightly. Moreover, in a mapping approach, it
may be more difficult to deal with exceptional sessions in which
certain runs need to be treated differently from others. In those
situations, users may need to write a (small) plugin to solve such
cases programmatically.

Second, BIDScoin has initially been developed with MRI data
in mind. This means that the current support for other source
data formats is not as mature as that of MRI, or not (yet) present.
Researchers may therefore need to do post-processing with
additional software to obtain a fully converted BIDS-compliant
data set. A common example that is not handled by BIDScoin
is the conversion to BIDS of stimulus presentation logfiles. This
conversion is difficult to automate in a generic way as the logfiles
typically vary between experimental paradigms and researchers.

Third, while the BIDScoin GUI provides an easy way for
researchers to add their knowledge about the different data
types to the BIDS output folder, it does not do so for the few
modality agnostic files, such as the “dataset_description.json”
file in the root of the BIDS folder. BIDScoin creates these
files with placeholder content if they are not present already,
but users still need to open these files with a text editor
afterward to add content.

Finally, BIDScoin requires a minimally organized source data
repository with a subject[/session] folder structure. Although
this is very common practice, some researchers may have a
different organization or use data management solutions such as
PACS (Choplin, 1992), XNAT (Marcus et al., 2007), or DataLad
(Halchenko et al., 2021). In those cases, researchers may need to
export or reorganize their source data or write a custom plugin
before they can use BIDScoin.

Conclusion and Future Developments
BIDScoin is a new free and open-source framework for
converting source data to BIDS. Its main features are flexibility
and user-friendliness, that facilitate further adoption of BIDS
standard, thus promoting data sharing and reproducibility.
Currently, a plugin for physiological recordings is implemented
and under testing, and a new PET plugin is under development.

However, as the BIDS community and standard are continuously
expanding, there is a need to develop more plugins to support
more data formats and interface with data management solutions
such as DataLad. With such a growing codebase in mind, it is
important to grow a larger community of BIDScoin developers
and to improve quality control by increasing the code coverage
of the automated tests. An additional planned development is
to release containerized versions of the software (Nichols et al.,
2017) to deal with potentially increasingly complex dependencies
and ensure exact reproducibility. At present, there is already a
configuration file for Linux users to build their own BIDScoin
Singularity container.
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Quality assessment of tree-like structures obtained from a neuron reconstruction

algorithm is necessary for evaluating the performance of the algorithm. The lack of

user-friendly software for calculating common metrics motivated us to develop a Python

toolbox called PyNeval, which is the first open-source toolbox designed to evaluate

reconstruction results conveniently as far as we know. The toolbox supports popular

metrics in two major categories, geometrical metrics and topological metrics, with an

easy way to configure custom parameters for each metric. We tested the toolbox on both

synthetic data and real data to show its reliability and robustness. As a demonstration

of the toolbox in real applications, we used the toolbox to improve the performance of a

tracing algorithm successfully by integrating it into an optimization procedure.

Keywords: PyNeval, metric, quantitative analysis, neuron tracing, neuron reconstruction, toolbox

1. INTRODUCTION

Reconstructing tree structures of labeled neurons in light microscope images is a critical step for
neuroscientists to study neural circuits (Parekh and Ascoli, 2013; Peng et al., 2015). Researchers
have longed for automating this process of neuron reconstruction, also called neuron tracing, to
overcome the bottleneck of manual annotation or proofreading (Gillette et al., 2011b; Peng et al.,
2011). Despite decades of efforts (Halavi et al., 2012; Acciai et al., 2016), however, there is still no
computer algorithm that can be as reliable as human labor. Besides being a complex computer
vision problem itself, neuron tracing has baffled developers on how an algorithm should be
evaluated. Unlike many image segmentation problems, neuron tracing has no universally accepted
metric to measure its performance. In fact, it is infeasible to design one metric for all applications,
which have different tolerance to different types of reconstruction errors. The real problem here
is a lack of easy access to evaluation metrics. As a result, researchers have to implement a metric
by themselves or compromise on metric properness for convenience. This has caused two issues
in the literature. First, performance evaluation was often limited to one or two metrics that were
not sufficient to offer comprehensive comparisons. Second, the metrics applied were ambiguous in
general without open implementations, causing potential inconsistency and low reproducibility.

This problem can be addressed by open-source user-friendly software that allows evaluating
neuron reconstruction qualities in various ways. Such software should cover the two major
categories of reconstruction metrics, geometrical metrics and topological metrics. Geometrical
metrics measure how well a reconstructed model overlaps with the underlying gold standard or
ground truth model, while topological metrics measure the topological similarity between the two
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models. Geometrical metrics are often computed by
summarizing spatial matching between the two models,
such as counting the number of matched nodes as done in the
popular substantial spatial distance (SSD) metric (Peng et al.,
2010) or measuring the length of overlapped branches in the
so called length metric (Wang et al., 2011). These metrics are
straightforward for telling where branches are missing or over-
traced in reconstruction, but they are not suitable for evaluating
topological accuracy, which is crucial in some applications
such as electrophysiological simulation. For the latter situation,
topological metrics such as the Digital Reconstruction of Axonal
and Dendritic Morphology (DIADEM) metric (Gillette et al.,
2011a), tree edit distance (Bille, 2005), and critical node (CN)
metric (Feng et al., 2015) are preferred.

Hence, we introduce a Python toolbox called PyNeval, which
is the first open-source toolbox designed to provide multiple
choices for evaluating the qualities of reconstruction results
conveniently. In specific, PyNeval is designed to have the
following features:

• PyNeval has a user-friendly command-line interface for easy
use and a flexible way of configuring parameters for covering
a broad range of user requirements.
• PyNeval provides various evaluation methods for measuring

both geometrical and topological qualities of reconstructions.
• PyNeval provides an interface for optimizing any

reconstruction algorithm that converts an image into an
SWC file with adjustable parameters.

In this paper, we formulate each evaluation method
implemented in PyNeval under a mathematical framework
if it has not been clearly defined in the literature. Our
implementation follows those formulations, which give users
a clear and unambiguous picture of what PyNeval computes.
We apply PyNeval to randomly perturbed data to show that
PyNeval can produce reliable evaluation scores from different
metrics. The difference among the metrics can be seen in their
results of manually-designed special cases. Besides comparing
different tracing algorithms, PyNeval can be used to optimize
any reconstruction algorithm with tunable parameters, as
demonstrated in our experiment on mouse brain data acquired
by fMOST (Gong et al., 2016).

2. METHOD

2.1. SWC Format
The PyNeval toolbox is designed based on the SWC format
(Cannon et al., 1998), the common format of neuron
reconstruction results. The format represents the shape of
a neuron in a tree structure that consists of a set of hierarchically
organized nodes (Feng et al., 2015):

T = {ni = (xi, ri,nj) | i = 1, ...,NT ,nj ∈ T ∪ n0, i 6= j,

xi ∈ R
3, ri ∈ R} (1)

where NT = |T| is the number of nodes of T, the ith node ni is
a sphere centering at xi = (xi, yi, zi) with radius ri, and n0 is a
virtual node. In this definition, nj is called the parent of ni, and

a node with a virtual node as its parent is called a root node. For
convenience, we also define the following functions:

• Parent of a node: ρ :(xi, ri,nj) ∈ T 7→ nj ∈ T ∪ n0
• Position of a node: x :(xi, ri,nj) ∈ T 7→ xi ∈ R

3

• Radius of a node: r :(xi, ri,nj) ∈ T 7→ ri ∈ R

The edge set of the model T is defined as

E(T) = {ei | ei = (ni, ρ(ni)),ni ∈ T} (2)

One important constraint on the SWC model T is that the
graph G = (T ∪ n0,E(T)) has no loop, which means that it is
a tree.

2.2. Software Design
Assuming that the reconstruction results are in the SWC format,
PyNeval takes a gold standard SWC file as well as one or more
testing SWC files and outputs the quality scores for each testing
SWC. Since PyNeval supports multiple metrics, it should also
allow the user to specify metric options. As a consequence, input
SWC files andmetric options form the essential parameters of the
main PyNeval command. While this provides a straightforward
interface for an application, it is not flexible enough to adapt to
more subtle user requirements such as setting specific parameters
for a certain metric or checking evaluation details. Therefore,
PyNeval has a flexible but friendly way of accepting optional
parameters, allowing the user to specify these parameters without
having to check extensive documents. PyNeval can output
carefully formatted results to the screen for easy reading or
save the results with more details to a file for further analysis,
depending on the user’s choice of the output parameters. For
example, the -detail option can be used to produce an SWC
file that labels each node in the test structure with a specific type
to indicate what kind of error is associated with that node. The
overall architecture of PyNeval is shown in Figure 1.

2.3. Metrics
PyNeval supports four commonly used metrics in both
geometrical and topological categories, although it can be easily
extended tomoremetrics. To explain themetrics implemented in
PyNeval unambiguously, we use the notations listed in Table 1.

More specifically, some of the notations can be interpreted
as follows:

• Besides always assuming that eij = (ni,nj) and ei = (ni, ρ(ni)),
we also use n and e to represent a node and an edge,
respectively, when there is no need to index them.
• Node interpolation

I(n, λ) =







((1− λ)x(n) +λx(ρ(n)), (1− λ)r(n)
+λr(ρ(n)), ρ(n))), 0 ≤ λ < 1

ρ(n), λ = 1
(3)

• Interpolation between two nodes, no matter if they
are connected

I(ni,nj, λ) =







((1− λ)xi +λxj, (1− λ)ri
+λrj,nj), 0 ≤ λ < 1

nj, λ = 1
(4)
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FIGURE 1 | The overview of PyNeval, which can take a gold standard model and a test model from the same image as input through a command line interface and

outputs quality scores of the test model, as well as more details about reconstruction errors. Four different metrics, including the length and substantial spatial

distance (SSD) metrics in the geometrical category and the DIADEM and critical node (CN) metrics in the topological category, are available in PyNeval.

TABLE 1 | Mathematical notations used for explaining the metrics.

Symbol Meaning

Tg Gold standard SWC model

Tt SWC model for evaluation

ni A node in a SWC model with an unique index i

E(T ) Set of all edges in T

ei Edge from node ni to node ρ(ni )

d(x, y) Distance between two objects, which can be nodes, edges or trees

L Length of an edge or an edge set

M Matched node or edge set

I Interpolation function

• Node distances

d(ni,nj) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (5)

dxy(ni,nj) =
√

(xi − xj)2 + (yi − yj)2 (6)

dz(ni,nj) = |zi − zj| (7)

d(n, ei) = min
λ

d(n, I(ni, λ)) (8)

d(n,T) = min
e∈E(T)

d(n, e) (9)

• Node length

L(n) =

{

0, n is a root node

d(n, ρ(n)), otherwise
(10)

• Edge lengths

L(eij) = d(ni,nj) (11)

L(E(T)) =
∑

e∈E(T)

L(e) (12)

• Tree length

L(T) = L(E(T)) (13)

2.3.1. Length Metric
It is natural to evaluate the quality of a reconstruction Tt by
measuring how well its branches overlap with the gold standard
model Tg . This can be computed by matching edges between Tt
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and Tg and then summing up the lengths of the matched edges
in Tt and Tg , respectively, to produce the common precision and
recall metrics. Before proceeding to explain the length metric in
detail, we first need to define some more notations

• A segment lying on an edge (n, ρ(n)) is

C(n, λ1, λ2) = {x(I(n, λ))|0 ≤ λ1 ≤ λ ≤ λ2 ≤ 1} (14)

and its length is L(C(n, λ1, λ2)) = (λ2 − λ1)L(n).
• The overlap ratio between two segments C1, C2 with respect to

the edge (n, ρ(n)) is defined as O(C1,C2). Suppose that C1 =

(ni,α1,α2), C2 = C(nj,β1,β2), the overlap ratioO(C1,C2) is

O(C1,C2) =











max(0,min(α2 − α1,

β2 − β1,α2 − β1,β2 − α1)), i = j

0, i 6= j

(15)

• A simple path between two points on a tree is

P((ns, λs), (nt , λt)) =

{

{C(ns, min(λs, λt), max(λs, λt))}, s = t

{C(nik ,αk,βk)|k = 1 · · ·K}, s 6= t

(16)
where i1 = s, iK = t, nik−1 = ρ(nik ) ornik = ρ(nik−1 ), K is the
number of edges on the path and

(αk,βk) =































(0, λs), k = 1 and ns = ρ(ni2 )

(λs, 1), k = 1 and ρ(ns) = ni2
(0, λt), k = K and nt = ρ(niK−1 )

(λt , 1), k = K and ρ(nt) = niK−1
(0, 1), otherwise

(17)

In our implementation, we construct the matched edge set
between Tt and Tg as demonstrated in Algorithm 1.

2.3.2. SSD Metric
The SSD metric (Peng et al., 2010) can be viewed as a variant of
the length metric in terms of what it tries to measure. Instead of
matching edges directly, however, SSD counts how many nodes
are matched without excluding duplicated matches. Besides, SSD
provides an additional metric to measure how far the unmatched
nodes are away from the counterpart model. One extra step of
SSD metric is resampling each branch of Tt and Tg uniformly to
reach a sufficient density εsp

R(T) = {n
(i)
k
|ni ∈ T, k = 0, 1, . . . ,Ki} (18)

where n
(i)
k
= I(ni,n

(i)
k+1

, k
k+1

), n
(i)
Ki
= n

(j)
0 , ρ(ni) = nj, Kiεsp ≤

L(eij), and (Ki + 1)εsp > L(eij).
After that, like computing the length metric, the SSD metric

can be obtained by constructing the matched node set Mn

between two SWCmodels Tg and Tt shown in Algorithm 2.

2.3.3. CN Metric
The CN metric measures how many CNs are reconstructed
correctly. A critical node is either a branching or terminal

Algorithm 1: Length metric.

Input: Tg ,Tt , ǫl ∈ R
+, ǫo ∈ R

+, ǫd ∈ R
+

Output: precision, recall
1: Mt ← ∅,Mg ← ∅

2: for eij in E(Tt) do
3: I(n′g1 , λ1)← argminn′∈∪n∈Tg {I(n,λ)|0≤λ≤1} d(ni,n

′)

4: I(n′g2 , λ2)← argminn′∈∪n∈Tg {I(n,λ)|0≤λ≤1} d(nj,n
′)

5: ifmax(d(ni, I(n
′
g1
, λ1)), d(nj, I(n

′
g2
, λ2))) < ǫd then

6: P((n′g1 , λ1), (n
′
g2
, λ2)) is the simple path between

I(n′g1 , λ1) and I(n′g2 , λ2)

7: if
|L(eij)−L(P((n′g1 ,λ1),(n

′
g2
,λ2))|

L(eij)
< εl and

max
C1∈P((n′g1 ,λ1),(n

′
g2
,λ2)),C2∈Mg

O(C1,C2) < εo then

8: Mt ← Mt ∪ {eij}

9: Mg ← Mg ∪ P((n′g1 , λ1), (n
′
g2
, λ2))

10: end if

11: end if

12: end for

13: precision← L(Mt)
L(Tt)

14: recall←
L(Mg )

L(Tg )

15: return precision, recall

Algorithm 2: SSD metric.

Input: R(Tg),R(Tt), ǫsp ∈ R
+, ǫssd ∈ R

+

Output: precision, recall, SSD cost
1: Mn(Tg ,Tt)← ∅,Mn(Tt ,Tg)← ∅
2: for ni inR(Tg) do
3: if min

nj∈R(Tt)
d(ni,nj) < εssd then

4: Mn(Tg ,Tt)← Mn(Tg ,Tt) ∪ {ni}
5: end if

6: end for

7:

8: for ni inR(Tt) do
9: if min

nj∈R(Tg )
d(ni,nj) < εssd then

10: Mn(Tt ,Tg)← Mn(Tt ,Tg) ∪ {ni}
11: end if

12: end for

13:

14: precision←
|Mn(R(Tt),R(Tg ))|

|R(Tt)|

15: recall←
|Mn(R(Tg ),R(Tt))|

|R(Tg )|

16: SSD cost←
SSD(R(Tt),R(Tg ))+SSD(R(Tg ),R(Tt))

2
17: return precision, recall, SSD cost

node, which determines the topology of an SWC model.
Mathematically, the set of the CNs of an SWC model T is
defined as

K(T) = {n|n ∈ T,DT(n) 6= 2} (19)

where DT(n) is the degree of node n in the tree T.
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Algorithm 3: Critical node metric.

Input: K(Tg),K(Tt), ǫbr ∈ R
+

Output: precision, recall
1: Vb ← K(Tt) ∪K(Tg)

2: Eb ← {(n
(t),n(g))|n(t) ∈ K(Tt),n

(g) ∈ K(Tg), d(n
(t),n(g)) <

εbr}

3: Gb ← (Vb,Eb)
4: M∗

b
← argmaxMb

|Mb| #Mb is a matching in Gb, i.e., Mb

is a subgraph of Gb and all of its nodes
5: have degree 1.

6: precision←
|M∗

b
|

|K(Tt)|

7: recall←
|M∗

b
|

|K(Tg )|

8: return precision, recall

Algorithm 4: Diadem metric.

Input: K(Tg),K(Tt), ǫxy ∈ R
+, ǫz ∈ R

+, , ǫld ∈ R
+

Output: DIADEM score
1: for ni ∈ K(Tg) do
2: for nj ∈ K(Tt) do
3: if dxy(ni,nj) < ǫxy and dz(ni,nj) < ǫz then

4: # search for α(n), the ancestor of n on the path between
n and its root n0.

5: # n
(g)
0 , n

(t)
0 are the roots of gold and test trees

respectively.

6: for α(ni) in P((ni, 0), (n
(g)
0 , 0)) do

7: for α(nj) in P((nj, 0), (n
(t)
0 , 0)) do

8: if α(ni) matches α(nj) and
|L(P(ni ,α(ni)))−L(P(nj,α(nj)))|

L(P(ni ,α(ni)))
< ǫld then

9: Md ← Md ∪ {ni}

10: end if

11: end for

12: end for

13: end if

14: end for

15: end for

16: DIADEM score =

∑

n∈Md

DTg (n)

∑

n∈K(Tg )

DTg (n)

17: return DIADEM score

With the CNs, we can compute the CN metric with
Algorithm 3.

2.3.4. DIADEM Metric
Introduced by Gillette et al. (2011a) for the DIADEM challenge
(Gillette et al., 2011b), the DIADEM metric evaluates the
similarity between two models by comparing their branching
structures. Like the CNmetric, the DIADEMmetric is also based
on matching CNs in K(Tg) and K(Tt), here K(T) is defined in
equation (19). But its matching criteria are more complicated
than simply checking the distances. A brief description of the
DIADEMmetric is proposed as Algorithm 4.

TABLE 2 | Summary of neuron reconstructions from six image stacks.

ID Number of nodes Number of roots Source

BN1 4,966 7 BigNeuron

BN2 852 7 BigNeuron

BN3 432 2 BigNeuron

BN4 4,251 4 BigNeuron

FM1 5,160 63 fMOST

FM2 674 9 fMOST

There are also several rounds of scanning to deal with the
problem that nj ∈ K(Tt) is not the only node that meets the
conditions, and labels every unmatched CN in Tg as a match if it
is on a matched path. More details can be found in the reference
(Gillette et al., 2011a).

2.4. Implementation
PyNeval is implemented in Python 3 (Oliphant, 2007) using
several powerful open-source packages, including Numpy (Van
Der Walt et al., 2011) for numerical computation, Anytree
(Anytree., 2020) for handling the SWC data structure, and kdtree
as well as Rtree (KDtree., 2017; Rtree., 2020) for fast search of
closest edges and nodes.

3. RESULTS

3.1. Robustness Test
We applied PyNeval to randomly perturbed gold standard
reconstructions to characterize each metric and evaluate the
robustness of our program. The perturbed dataset is constructed
by randomly moving a portion of nodes in the original
reconstructions, which are gold standard SWC models from the
standard BigNeuron dataset (Peng et al., 2015) as well as our
custom dataset acquired from fMOST (Gong et al., 2016). As
listed in Table 2, a total of six reconstructions with a large variety
of sizes were used for the test.

A reasonable metric should produce decreasing quality
scores as the perturbation ratio increases. This can be seen
in the experimental results plotted in Figure 2, in which each
curve shows the trend of a metric score along the increasing
perturbation ratio. Each metric score at a perturbation ratio
was averaged from 10 trials for a sequence of 11 perturbation
ratios increasing by the step of 0.1 from 0 to 1. As expected, the
curves are consistently similar among different models, in spite
of their different morphologies. They all follow the right trend
that more perturbation results in a worse score. We can also see
that, topological metrics have higher variance than geometrical
metrics, which is not surprising because how a perturbation
affects the topology highly depends on the positions of the
perturbed nodes. This suggests that when we use a topological
metric to evaluate an algorithm, more samples or trials might be
needed to draw a reliable conclusion.

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2022 | Volume 15 | Article 767936144

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Zhang et al. PyNeval Toolbox for Reconstruction Assessment

FIGURE 2 | Result of robustness test. Each row represents a metric and each column represents an swc model. In each chart, the x-axis is the perturbed proportion

and the y-axis is the corresponding metric value.

3.2. Special Case Analysis
In addition to the perturbation experiment, we also tested the
behaviors of the metrics on some special cases to show their
differences more clearly. We constructed four special cases for
geometrical metrics and the other four for topological metrics,
including Figure 3:

• Test cases for geometrical metrics

1. Both ends of an edge in Tg have matched nodes in Tt , but
Tt has an extra node that deviates the path from the edge
segment in Tg .

2. Tg manages to find a match path in Tt , but its nodes
do not match those on the same path in Tg due to the
sampling rate.

3. A straight path in Tg is reconstructed as a bifurcation in Tt

by mistake.
4. Tt distorts a relatively straight path in Tg into a zigzag path.

• Test cases for topological metrics

1. The nodes are matched but a wrong connection in Tt

changes the root to a non-CN.
2. Tt has wrong connections, but all the CNs are still matched

between Tt and Tg .
3. The reconstruction moves a node and all its descendants to

a different location.
4. Connection mistakes in Tt break the original model into

several isolated graphs.

Table 3 shows different results on the same special cases
produced by the SSD and length metrics. The SSD metric tends
to output higher F1 scores than the length metric does, but it is
not necessarily better or worse. In some cases (Figures 3A,B), the
SSD scores look more reasonable because their more granulated
matching can capture partial matching of a path. In other cases
(Figures 3C,D), where the errors aremore complicated, however,
the SSD metric can overestimate reconstruction qualities by
counting duplicated matches.

The difference between the two topological metrics can be
seen in Figure 4 and Table 4. The CN metric fails to detect
reconstruction errors in Figures 4A,D because the errors do not
add or remove a critical node. The DIADEM metric can avoid
such a problem by including path comparison. In this sense, the
DIADEM metric is more comprehensive than the other three
metrics in PyNeval as it actually considers both topological and
geometrical features. Nevertheless, we should note that it may
not correlate well with the amount of editing work needed to fix
errors. For example, the test model in case 2 can be more readily
fixed than case 3, despite that it has a lower DIADEM score. In
other words, the DIADEM metric can be misleading when we
expect an automatic method to minimize manual work.

3.3. Reconstruction Parameter
Optimization Using PyNeval
Besides comparing different reconstruction algorithms, another
important application of PyNeval is to optimize parameters of
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FIGURE 3 | (A–D) Four manually constructed cases for testing geometrical metrics.

TABLE 3 | PyNeval results of the SSD and length metrics for the geometrical

cases are shown in Figures 3A–D.

Method Index File name

A B C D

SSD metric SSD score 1.66 1.60 0.51 1.49

Recall 0.33 0.86 1.00 0.27

Precision 0.36 0.83 0.95 0.18

F1 score 0.35 0.85 0.98 0.21

Length metric Recall 0.00 0.47 1.00 0.00

Precision 0.00 0.50 0.54 0.00

F1 score 0.00 0.48 0.70 0.00

the same tracing algorithm. We can treat this as a numerical
optimization problem. For any tunable reconstruction program
P(I|θ), in which image I and parameteres θ are inputs and SWC
model is the output, we define the optimization problem as

min
textbf θ

E(L(P(I|θ),Tg(I))|I) (20)

where L is the loss function that can be computed from
reconstruction metrics.

In real applications, we expect parameters optimized on a
training dataset can be generalized to other images from the same
imaging protocol. Therefore, we carried out a cross-validation
experiment on four image blocks (Figure 5) from a whole mouse

brain sample acquired by fMOST (Gong et al., 2016). The cross-
validation searched for the best parameters for each block and
used these optimized parameters to trace other blocks. In our
experiment, we used the F1 score of the SSD metric as the
loss function to optimize the automatic neuron tracing method
used in neuTube (Zhao et al., 2011), which has two numerical
parameters for adjusting the sensitivity of branch detection.
The optimization process was performed by simulated annealing
(Van Laarhoven and Aarts, 1987), which searches the parameters
iteratively. A new parameter θ (k+1) at the kth iteration was
calculated by

θ (k+1) = θ (k) + 20
u

|u|
∗ tk ∗ ((1+

1

tk
)|u| − 1) (21)

where u was drawn randomly from [−1, 1]\0 and tk was the
temperature at the kth iteration. Starting from t1 = 0.01, the
temperature was decreased every 25 iterations at the rate of 0.96.
The stop criterion was that the temperature was below 10−5 or
the optimal value had not been improved for 20 iterations.

The results show that the optimized parameters outperformed
the default parameters consistently, no matter which image
block was used in parameter searching (Figure 6), presenting
a successful example of using PyNeval in improving automatic
neuron tracing.
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FIGURE 4 | (A–D) Four manually constructed cases for testing topological metrics.

TABLE 4 | PyNeval results of the DIADEM and length metrics for the topological

cases are shown in Figures 4A–D.

Method Index file name

A B C D

Diadem metric Score 0.625 0.56 0.69 0.72

Critical node metric Recall 0.80 1.00 0.70 1.00

Precision 1.00 1.00 0.70 1.00

F1 score 0.89 1.00 0.70 1.00

4. CONCLUSION AND FUTURE WORK

Motivated by the difficulties of evaluating automatic neuron
tracing methods, we have developed PyNeval, a user-friendly
Python toolbox to help method developers focus on algorithm
development and method users choose a proper method for
their own applications. PyNeval has made four popular metrics
that cover both the geometrical and topological categories
easily accessible to the community. A user can easily install
PyNeval through common Python packagemanagers and run the
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FIGURE 5 | Four 3D neuron images used in the optimization experiment. Each image and its gold standard reconstruction is rendered side by side in each panel

labeled by the corresponding dataset ID. (A) FM3, (B) FM4, (C) FM5, and (D) FM6.

FIGURE 6 | Cross-validation results of parameter optimization for neuron reconstruction. The scores of the optimized parameters are consistently better than those of

the default parameters for all the test images.
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program as a command line with a straightforward but flexible
interface. We have also shared the source code of PyNeval on
https://github.com/CSDLLab/PyNeval to show how the metrics
were implemented exactly as well as inspire further development.

To facilitate further development, PyNeval has a well-
modularized architecture for maximizing its extensibility. It is
straightforward to add more metrics such as the NetMets metric
(Mayerich et al., 2012) in the future while keeping backward
compatibility. Another important plan for further development
is to make PyNeval an easy-to-use Python library as well, so that,
other users can easily call functions in PyNeval from Python code
directly, or even contribute their own metrics to PyNeval.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Zhejiang
University.

AUTHOR CONTRIBUTIONS

TZ and NZ designed and supervised the project.
HZ wrote most part of the software with help
from YY and TZ. HZ, CL, and JD performed data
analysis. HZ, TZ, and NZ wrote the manuscript. All
authors contributed to the article and approved the
submitted version.

FUNDING

This work is supported by the National Key R&D Program
of China (2020YFB1313501), Zhejiang Provincial Natural
Science Foundation (LR19F020005), National Natural
Science Foundation of China (61972347, 61976089), and
Hunan Provincial Science & Technology Project Foundation
(2018RS3065, 2018TP1018).

ACKNOWLEDGMENTS

We thank Wenzhi Sun and Wei Wu for providing fMOST data.

REFERENCES

Acciai, L., Soda, P., and Iannello, G. (2016). Automated neuron

tracing methods: an updated account. Neuroinformatics 14, 353–367.

doi: 10.1007/s12021-016-9310-0

Anytree. (2020). https://pypi.org/project/anytree/ (accessed Auguest 31, 2021).

Bille, P. (2005). A survey on tree edit distance and related problems. Theor.

Comput. Sci. 337, 217–239. doi: 10.1016/j.tcs.2004.12.030

Cannon, R. C., Turner, D. A., Pyapali, G. K., and Wheal, H. V. (1998). An on-line

archive of reconstructed hippocampal neurons. J. Neurosci Methods 84, 49–54.

doi: 10.1016/S0165-0270(98)00091-0

Feng, L., Zhao, T., and Kim, J. (2015). neutube 1.0: a new design for efficient neuron

reconstruction software based on the swc format. eNeuro 2:ENEURO.0049-

14.2014. doi: 10.1523/ENEURO.0049-14.2014

Gillette, T. A., Brown, K. M., and Ascoli, G. A. (2011a). The diadem metric:

comparing multiple reconstructions of the same neuron. Neuroinformatics 9,

233–245. doi: 10.1007/s12021-011-9117-y

Gillette, T. A., Brown, K. M., Svoboda, K., Liu, Y., and Ascoli, G. A. (2011b).

Diademchallenge. org: a compendium of resources fostering the continuous

development of automated neuronal reconstruction. Neuroinformatics 9,

303–304. doi: 10.1007/s12021-011-9104-3

Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-

throughput dual-colour precision imaging for brain-wide connectome with

cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7:12142.

doi: 10.1038/ncomms12142

Halavi, M., Hamilton, K. A., Parekh, R., and Ascoli, G. (2012).

Digital reconstructions of neuronal morphology: three decades

of research trends. Front. Neurosci. 6:49. doi: 10.3389/fnins.2012.

00049

KDtree. (2017). https://pypi.org/project/kdtree/ (accessed Auguest 31, 2021).

Mayerich, D., Bjornsson, C., Taylor, J., and Roysam, B. (2012). Netmets: software

for quantifying and visualizing errors in biological network segmentation. BMC

Bioinformatics 13, S7. doi: 10.1186/1471-2105-13-S8-S7

Oliphant, T. E. (2007). Python for scientific computing.Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Parekh, R., and Ascoli, G. A. (2013). Neuronal morphology goes digital: a

research hub for cellular and system neuroscience. Neuron 77, 1017–1038.

doi: 10.1016/j.neuron.2013.03.008

Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering,

E., et al. (2015). Bigneuron: large-scale 3d neuron reconstruction from

optical microscopy images. Neuron 87, 252–256. doi: 10.1016/j.neuron.201

5.06.036

Peng, H., Long, F., Zhao, T., and Myers, E. (2011). Proof-editing is the bottleneck

of 3d neuron reconstruction: the problem and solutions. Neuroinformatics 9,

103–105. doi: 10.1007/s12021-010-9090-x

Peng, H., Ruan, Z., Long, F., Simpson, J. H., and Myers, E. W. (2010). V3d enables

real-time 3d visualization and quantitative analysis of large-scale biological

image data sets. Nat. Biotechnol. 28, 348–353. doi: 10.1038/nbt.1612

Rtree. (2020). https://pypi.org/project/rtree/ (accessed Auguest 31, 2021).

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array:

a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

doi: 10.1109/MCSE.2011.37

Van Laarhoven, P. J., and Aarts, E. H. (1987). “Simulated annealing,” in Simulated

annealing: Theory and applications (Berlin: Springer), 7–15.

Wang, Y., Narayanaswamy, A., Tsai, C.-L., and Roysam, B. (2011). A

broadly applicable 3-d neuron tracing method based on open-curve snake.

Neuroinformatics 9, 193–217. doi: 10.1007/s12021-011-9110-5

Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al.

(2011). Automated reconstruction of neuronal morphology based on local

geometrical and global structural models. Neuroinformatics 9, 247–261.

doi: 10.1007/s12021-011-9120-3

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhang, Liu, Yu, Dai, Zhao and Zheng. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2022 | Volume 15 | Article 767936149

https://github.com/CSDLLab/PyNeval
https://doi.org/10.1007/s12021-016-9310-0
https://pypi.org/project/anytree/
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/S0165-0270(98)00091-0
https://doi.org/10.1523/ENEURO.0049-14.2014
https://doi.org/10.1007/s12021-011-9117-y
https://doi.org/10.1007/s12021-011-9104-3
https://doi.org/10.1038/ncomms12142
https://doi.org/10.3389/fnins.2012.00049
https://pypi.org/project/kdtree/
https://doi.org/10.1186/1471-2105-13-S8-S7
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1016/j.neuron.2013.03.008
https://doi.org/10.1016/j.neuron.2015.06.036
https://doi.org/10.1007/s12021-010-9090-x
https://doi.org/10.1038/nbt.1612
https://pypi.org/project/rtree/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1007/s12021-011-9110-5
https://doi.org/10.1007/s12021-011-9120-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


TECHNOLOGY AND CODE
published: 15 February 2022

doi: 10.3389/fninf.2022.828787

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2022 | Volume 16 | Article 828787

Edited by:

William T. Katz,

Janelia Research Campus,

United States

Reviewed by:

Yongsoo Kim,

Penn State Milton S. Hershey Medical

Center, United States

Pat Gunn,

Flatiron Institute, United States

*Correspondence:

Brock Wester

brock.wester@jhuapl.edu

†These authors have contributed

equally to this work

Received: 04 December 2021

Accepted: 10 January 2022

Published: 15 February 2022

Citation:

Hider R Jr, Kleissas D, Gion T,

Xenes D, Matelsky J, Pryor D,

Rodriguez L, Johnson EC,

Gray-Roncal W and Wester B (2022)

The Brain Observatory Storage

Service and Database (BossDB): A

Cloud-Native Approach for Petascale

Neuroscience Discovery.

Front. Neuroinform. 16:828787.

doi: 10.3389/fninf.2022.828787

The Brain Observatory Storage
Service and Database (BossDB): A
Cloud-Native Approach for Petascale
Neuroscience Discovery
Robert Hider Jr. †, Dean Kleissas †, Timothy Gion, Daniel Xenes, Jordan Matelsky,

Derek Pryor, Luis Rodriguez, Erik C. Johnson, William Gray-Roncal † and Brock Wester*†

Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD,

United States

Technological advances in imaging and data acquisition are leading to the development

of petabyte-scale neuroscience image datasets. These large-scale volumetric datasets

pose unique challenges since analyses often span the entire volume, requiring a unified

platform to access it. In this paper, we describe the Brain Observatory Storage Service

and Database (BossDB), a cloud-based solution for storing and accessing petascale

image datasets. BossDB provides support for data ingest, storage, visualization, and

sharing through a RESTful Application Programming Interface (API). A key feature is the

scalable indexing of spatial data and automatic and manual annotations to facilitate data

discovery. Our project is open source and can be easily and cost effectively used for a

variety of modalities and applications, and has effectively worked with datasets over a

petabyte in size.

Keywords: connectome, software, cloud, data, storage, imaging, electron microscopy, X-ray

1. INTRODUCTION

Mapping the brain to better understand cognitive processes and the biological basis for disease
is a fundamental challenge of the BRAIN Initiative. Technological advances in neuroimaging
have grown rapidly over the last ten years, making it almost routine to image high-resolution
(sub-micron) brain volumes in many laboratories around the world using Electron Microscopy
(EM) and X-Ray Microtomography (XRM), among other imaging modalities (Bock et al., 2011;
Helmstaedter et al., 2013; Kasthuri et al., 2015; Lee et al., 2016; Dupre and Yuste, 2017; Witvliet
et al., 2021). These datasets, which provide the means to resolve individual neurons and the
individual connections (synapses) between them, are highly valuable for providing key insights into
neural connectivity and neuroanatomical features. As these high resolution neuroimaging volumes
grow in extent, however, substantial challenges have emerged, including efficient data storage, the
computational and financial cost of indexing and querying, and the technical difficulty of big-data
visualization (Helmstaedter et al., 2013; Lichtman et al., 2014).

As new tools for interrogating neuroimaging datasets at high resolutions advance and become
more common, a centralized data-access and data-processing paradigm is needed in order to take
advantage of economies of scale when operating at the tera- to petascale level. While research
groups are beginning to embrace data archives, most treat the system as simply a place to

150

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.828787
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.828787&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:brock.wester@jhuapl.edu
https://doi.org/10.3389/fninf.2022.828787
https://www.frontiersin.org/articles/10.3389/fninf.2022.828787/full


Hider et al. Brain Observatory Storage Service and Database

deposit finalized data, with raw datasets generated and stored in a
custom format and analyzed and inspected with custom software.
At increasing data scale, it is quickly becoming impossible for
researchers to characterize many of the underlying properties.
For many recently-generated image volumes approaching the
petascale, it is likely that most of the dataset is never viewed
in detail by a human. Additionally, conventional approaches
for automatically or semi-automatically reconstructing neuronal
maps focus on building methods for small volumes, and scaling
these tools to operate onmulti-terabyte or petabyte data volumes,
is often significantly beyond the capabilities and budgets of a
single research group.

Large datasets are incredibly rich in scientific content which
should be shared with others to best leverage the investment of
time and resources, and to fully exploit the value of the data. Due
to the challenges in collection, storage, and analysis of terascale
and petascale data volumes, few public datasets of this size are
routinely shared, even though many such volumes exist on local,
private storage, and many petabytes of new data are anticipated
in the future from programs like the BRAIN Initiative and other
future large scale programming (Mikula, 2016; Dorkenwald et al.,
2019; Wilson et al., 2019; Morgan and Lichtman, 2020; Scheffer
et al., 2020; Phelps et al., 2021; Witvliet et al., 2021).

We considered use cases such as the first fully-automated
pipelines for processing and assessing XRM (Dyer et al., 2017)
and EM datasets (Bock et al., 2011; Kasthuri et al., 2015; Lee et al.,
2016) and work by many academic laboratories around the world
to understand state-of-the-art approaches and their limitations.
We emphasize that high-performance and scalable data storage
is an essential component of any modern connectomics effort,
due to the need for rapid, multi-user data access. In designing
our Brain Observatory Storage Service and Database (BossDB),
we researched several related efforts, including DVID1 (Katz
and Plaza, 2019) which excels in versioned terascale storage;
CATMAID and Knossos (Saalfeld et al., 2009; Helmstaedter et al.,
2011) which provide a mature manual annotation platform. We
previously worked with NeuroData to develop ndstore (Burns
et al., 2013), which originated and implemented many of the
design principles necessary to store and access high-dimensional
imaging datasets. These principles include (1) an efficient internal
data representation and associated spatial indexing scheme; (2)
an API to remotely access services; and (3) MATLAB and Python
toolkits to facilitate usability. Based on this prior research and an
understanding of the evolving requirements driven by new and
maturing imaging modalities, we created a robust, cloud-native
petascale datastore with a number of services and support tools
(Figure 1).

2. METHODS

To enable large-scale, collaborative research we developed and
deployed a cloud-native data archive to support the storage,
analysis, and sharing of large spatial datasets. Service-oriented
architectures have continued to grow in popularity and possess

1Distributed, Versioned, Image-Oriented Dataservice. Available online at: https://

github.com/janelia-flyem/dvid (accessed October 10, 2017).

many appealing properties when designing a cloud-based data
archive (Vogelstein et al., 2016). Our solution, BossDB, is
deployed within the Amazon Web Services (AWS) ecosystem
and has been robustly designed to leverage cloud capabilities
and ensure a highly-available, scalable, and cost-efficient system.
Other research teams have previously deployed their own
instantiations of BossDB (Vogelstein et al., 2016; Dyer et al.,
2017).

2.1. Spatial Database
The spatial database is the foundation of BossDB, and uses the
strengths of the cloud to efficiently store and indexmassivemulti-
dimensional image and annotation datasets (i.e., multi-channel
3D image volumes). A core concept is our managed storage
hierarchy, which automatically migrates data between affordable,
durable object storage (i.e., Amazon Simple Storage Service or
S3) and an in-memory data store (i.e., Redis), which operates as
read and write cache database for faster IO performance with a
tradeoff of higher cost. The BossDB cache manages a lookup
index to determine the fastest way to return data to the user,
taking advantage of data stored in the hierarchy. While this
requires the use of provisioned (non-serverless) resources, this
allows for storage of large volumes at a low cost, while providing
low latency to commonly accessed regions. We utilize AWS
Lambda to perform parallel IO operations between the object
store layer andmemory cache layer andDynamoDB for indexing.
These serverless technologies allow BossDB to rapidly and
automatically scale resources during periods of heavy operation
without incurring additional costs while idle.

The BossDB spatial database is designed to store petascale,
multi-dimensional image data (i.e., multi-channel three-
dimensional image volumes, with optional time series support,
Figure 2) and associated coregistered voxel annotations
(Figure 3). In this context, voxel annotations are unsigned
64-bit integer (uint64) labels stored in a separate channel that
is in the same coordinate frame as the source image data. Each
unique uint64 value represents a unique object (e.g., neuron,
synapse, organelle). A user can leverage annotations within
various channels (e.g., “segmentation,” “mitochondria”) to create
groups of voxels to define objects that have some semantic
meaning, typically the result of manual annotation or automated
processing. The database maintains an index of annotation
locations, enabling efficient spatial querying and data retrieval
(Figure 4).

The internal representation of volumetric data utilizes small
cuboids, or 3D chunks of data (i.e., 512 × 512 × 16 voxels,
which can vary in dimension), which are stored in Amazon
S3 as compressed C-order arrays. Cuboids are indexed using a
Morton-order space-filling curve, which maps the 3D location
of each cuboid to a single dimension. In addition, annotations
are indexed so BossDB can quickly retrieve which annotation
IDs exist in an individual cuboid, and in which cuboids a unique
ID exists. With these indices, all of which are stored in auto-
scaling AmazonDynamoDB tables, theBossDBAPI can provide
spatial querying of annotations by ID and efficient retrieval of
arbitrary data volumes. The database will also render and store
a resolution hierarchy through downsampling of a dataset, which
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FIGURE 1 | A high-level schematic of BossDB platform.

FIGURE 2 | An illustration showing image slices (left) being composed into 3D

cuboid volumes (middle). Arbitrary requests may be made to extract image

regions of interest (right).

is critical for visualization applications to efficiently provide low-
resolution views and useful when processing large datasets. The
spatial database supports various bit-depths (including uint8,
uint16 image channels and uint64 annotation channels) and we
will provide additional bit-depth and data formats as needed.

Additionally, BossDB is able to store various mesh files
associated with voxel annotation channel ID values, including
precomputed format (Maitin-Shepard, 2021), which can be
accessed through our API by visualization applications.

2.2. Single Sign-On Identity Provider
A centralized and standalone authentication server provides
single sign-on functionality for BossDB and integrated tools
and applications. This allows BossDB to control permissions
internally and operate securely, while maintaining the ability to
federate with other data archives in the future.

FIGURE 3 | An illustration showing annotations, composed of voxel labels

(left) and how a unique annotation identifier can represent a unique object in

the image data (right).

We use the open source software package Keycloak as an
identity provider to manage users and roles. We created a Django
OpenID Connect plugin to simplify the integration of services
with the SSO provider.

Our identity provider server intentionally runs independently
from the rest of BossDB system, forcing the BossDB API
to authenticate just like any other SSO integrated tool or
application, and making future federation with other data
archives or authentication systems easy. The Keycloak server is
deployed in an auto-scaling group that sits behind an Elastic Load
Balancer in order to achieve high-throughput database requests
with minimal latency.

2.3. Application Programming Interface
As the primary interface to BossDB, the API provides a
collection of versioned, RESTful web services. It enforces access
permissions and organizes data in a logical data model for
spatial and functional results. Because the API is versioned,
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FIGURE 4 | An illustration showing how large 2D image slices generated by EM imaging are re-formatted as cuboids, which fit into a larger 3D volume, indexed using

a z-order curve.

the BossDB storage engine can support significant changes
while still maintaining backwards compatibility with legacy
applications and tools. This BossDBAPI was designed from first
principles to be versioned, and so this feature adds little in the
way of day-to-day engineering complexity. All requests to the
API are authenticated through the SSO service or via a long-lived
API token, which enables tracking usage and throttling requests
as needed to manage cost and ensure reliable performance (e.g.,
high bandwidth power user vs. a limited guest user). The services
BossDB provides are summarized below:

2.3.1. SSO Management and User Authorization
A set of services to manage users, roles, groups, and permissions.
Roles limit what actions a user can perform on the system,
while permissions limit what data users can access or manipulate.
Permissions are applied to BossDB datasets via groups, making
it easy to manage and control access for both individuals and
teams. Through the application of permissions, a researcher or
administrator can choose to keep a dataset private, share with
collaborators, or make it publicly available.

2.3.2. Dataset Management
The BossDBAPI organizes data into a logical hierarchy to group
related data together (e.g., source image data and associated
annotations, 2-photon and EM datasets from the same tissue
sample). This service provides interfaces to create and manage
datasets and their properties.

2.3.3. Ingest Service
A critical challenge when using a centralized data archive is the
ingest of large datasets to standardized formats from diverse local
storage formats and organization paradigms. The Ingest Service
enables the moving of large datasets of varying data formats
(Table 1) from local or cloud storage intoBossDB by performing
the upload of data into the cloud and then ingesting that data
into the spatial database format, allowing independent scaling
and failure recovery. The service provides methods to create a
new ingest job, monitor the status of a job, join an upload client
worker to a job, and cancel a job. Unlike general upload tools
that run on client-side compute infrastructure, or commands
like the aws command-line offerings that may run on a single
host, the ingest client is able to perform ingests on arbitrarily
many compute nodes, with graceful error management even

TABLE 1 | Data types and associated data formats that are supported by tile and

chunk/volumetric based ingest service processes.

Data type Data format Ingest type

JPEG 8-bit, 16-bit Tile

PNG 8-bit, 16-bit Tile

TIFF 8-bit, 16-bit Tile

CATMAID Native format Tile

HDF5 Any encoding Tile/Chunk

N5 Any encoding Tile/Chunk

Zarr Any encoding Tile/Chunk

CloudVolume Native format Tile/Chunk

DVID Native format Tile/Chunk

Nifti Any encoding Tile/Chunk

Dicom Any encoding Tile/Chunk

Knossos Any encoding Tile/Chunk

in the case that a compute node powers down during an
ingest job.

2.3.3.1. Tile Ingest
As demonstrated in Figure 5, the ingest process directly leverages
AWS infrastructure, scaling on demand. First, using the ingest
client a user uploads an ingest job configuration file to the API
(1) which populates a task queue, enumerating all tiles that must
be uploaded, and returns temporary AWS credentials. Next, the
ingest client retrieves a task from the Upload Task Queue (2),
and loads the requested local file into memory as an image tile
(3), and uploads the tile data to an S3 bucket (4). The ingest
client then writes a message to the index queue signaling it is
finished with this tile (5). An AWS Lambda automatically fires
when a message enters the Index Queue and it uses DynamoDB
to track which tiles are successfully written to the tile bucket (6),
(7) and when enough tiles in a region have arrived to generate the
BossDB cuboid data representation, a second Lambda function
is triggered (8). This Ingest Lambda function then loads the
specified tiles, reformats them into cuboids, inserts them into
the Spatial DB S3 bucket, updates the Spatial DB cuboid index,
and finally marks the temporary tiles for deletion (9). The ingest
client supports both parallel and distributed operation, allowing
users to maximize their network bandwidth, especially in the case
where source data is organized into numerous small image files.
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FIGURE 5 | A diagram outlining the data ingest service process.

2.3.3.2. Volumetric Ingest
The ingest process also supports uploading three-dimensional
chunks of data in the CloudVolume format2; this interface
can be straightforwardly extended to other formats. Similar to
Tile Ingest, the ingest client is used to upload an ingest-job
configuration file to the API, populating a task queue with all
chunks to be uploaded. The ingest client then retrieves a task
from the Upload Task Queue, and loads that chunk into memory.
The memory chunk is divided into multiple BossDB cuboids
(512 x 512 x 16) and each cuboid is uploaded to an AWS S3
bucket. Upon uploading, the S3 update will trigger an AWS
Lambda that copies the cuboid into main s3 store, adds an entry
in DynamoDB, and marks the original cuboid for deletion.

2.3.4. Dataset Metadata
BossDB can store arbitrary key-value pairs linked to data
model items, which is useful to track experimental metadata
and provenance (e.g., voxel size, animal information, annotation
algorithm used). This service provides an interface to
query, create, update, and delete key-value pairs associated
with a dataset.

2.3.5. Cutout Service
BossDB provides the cutout service, which enables users to
interact with the Spatial Database by reading and writing
arbitrary data volumes. While BossDB stores all data internally
using a standardized format, the cutout service uses HTTP
content negotiation to determine the data format of a request,
allowing users to request specific database-supported formats
when downloading data (e.g., compressed C-order blob, hdf5 file,
pickled numpy array). The same is true of data-uploads: A user-
provided content annotation enables BossDB to accept data in
a variety of volumetric and image-based formats. This service
enables scalable analytics by letting users access arbitrary chunks
of data in parallel, perform automated processing, and write the

2CloudVolume Is a Python Library for Reading and Writing Chunked Numpy

Arrays From Neuroglancer Volumes in “precomputed” Format. Available online

at: https://github.com/seung-lab/cloud-volume.

annotation result back to BossDB. It also supports querying
for the spatial properties of annotations, such as the bounding
box of an annotation or identifying which annotations exist
within a region.

2.3.6. Image Service
In addition to our volumetric cutout service, we provide an
image service to meet common user needs, which retrieves a
2D slice of data from the spatial database along one of the
three orthogonal planes (i.e., XY, XZ, YZ), encoded as an image
file. Again, HTTP content negotiation is used to determine the
format of the response (e.g., png, jpeg). The service supports
arbitrary image sizes or a fixed tile size, which is often used by
visualization tools.

2.3.7. Downsample Service
To allow users to quickly assess, process, and interact with
their data, BossDB iteratively builds a resolution hierarchy
for each dataset by downsampling the source data. This is a
workflow that is run infrequently and on-demand, and needs
to scale from gigabytes to petabytes of data. We developed a
serverless architecture built on AWS Step Functions to manage
failures and track process state. AWS Lambda is used to
perform the underlying image processing in a parallel, scalable
fashion. This approach helps to minimize costs since resources
are only provisioned when needed and scale on-demand in
a fully-automated paradigm. It is also possible to perform a
partial downsample when only a portion of the original dataset
has changed, saving the time and expense of re-running the
process on the entire dataset. Image volumes with anisotropic
native voxel sizes (e.g., x = 4 nm, y = 4 nm, z = 40
nm) are downsampled in the image plane dimensions (e.g.,
downsampling factors of x = 2, y = 2, z = 1) until block sizes
reach near-isotropy (e.g. third downsample to resolution of x =

32 nm, y= 32 nm, z= 40 nm), after which they are downsampled
equally in all dimensions. This remaining anisotropy diminishes
higher in the downsampled hierarchy. In general, these levels are
used primarily for visualization, andmost analyses are performed
at native or near-native resolutions (resolution 0 or 1).
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2.4. User Tools
User facing tools are required to make a data archive truly useful,
easy to use, and well documented. We currently offer a web-
based management console, an ingest client, and a client-side
Python module called intern for programmatic interaction3

(Matelsky et al., 2021). We have also integrated 3rd-party web-
based data visualization tools. While BossDB API provides a
rich interface to interact with the system, user friendly tools
built on top of the API are important to increase utility and
adoption by the community. We expect to mature and expand
the scope of this tool library as community users build on the
core BossDB technologies.

2.4.1. Web-Based Management Console
BossDB has a web interface that lets users perform common
actions interactively in their browser (e.g., create a dataset,
monitor an ingest job, share a dataset with a user). This Django-
backed web application is the primary interface for most users
and will expose much of the API’s functionality through an
intuitive graphical interface. From the console, a researcher is
able to manage datasets, discover new data, and launch the
visualization tool.

2.4.2. Web-Based Visualization
A critical capability to any data archive is the ability to
easily visualize stored data. Whether inspecting ingested data,
exploring a dataset, or sharing an interesting sample with a
collaborator, the most common interaction with stored data
will be through visualization. We integrated a version of
Neuroglancer (Maitin-Shepard, 2021) to let users visually explore
data stored in BossDB, and enable other visualization methods
that provide abstraction over much of the API’s complexity. The
Neuroglancer interface may be used on all modern browsers and
operating systems that support WebGL, including (as of the time
of publication) Chrome version 51 or greater, Firefox version 46
or greater, and Safari 15.0 or greater. Through use of the imagery
API, BossDB also supports mobile-friendly data visualization
tools such as Substrate (Matelsky et al., 2020).

2.4.3. Immersive Visualization and Annotation
The BossDB volumetric API likewise supports 3D collaborative
annotation through immersive virtual reality (VR) tools
such as syGlass (Pidhorskyi et al., 2018), which can enable
high-throughput annotation of large volumes of dense
imagery. VR takes advantage of the natural parallax of
stereoscopic vision, which can improve the visual perception of
complex 3D structures.

2.4.4. Ingest Client
We have developed an open source ingest client in Python to
manage uploading data to BossDB. The ingest process operates
on a upload task queue which contains tasks specifying individual
2D tiles or 3D chunks of data to upload. To deal with the unique
formats and file organization methods of diverse users, the client
uses a simple plug-in design to import custom snippets of code

3Intern Software Development Kit (sdk) Tools Page on Bossdb.org. Available

online at: https://bossdb.org/tools/intern (accessed December 03, 2021).

responsible for taking a task, finding the right file, and loading
the data into memory, which is then uploaded by the client.
The work queue design allows copies of the client to be run
distributed across compute nodes and in parallel on a single
machine, substantially increasing throughput.

2.4.5. Python Software Development Kit (SDK)
To support developers and researchers who want to
programmatically interact with BossDB, we developed a
pip-installable Python library that provides abstraction over
much of the complexity in the API. Data cutouts of arbitrary
size can be efficiently retrieved from our archive, enabling
easy integration with analytics tools. The current SDK, called
intern, will continue to be expanded and supported to
accommodate updates and additions to the existing BossDB
system and user requests.

3. RESULTS

3.1. Motivating Application
Many of our design requirements for the BossDB ecosystem
were motivated by the activities planned for the Intelligent
Advanced Research Projects Activity (IARPA) Machine
Intelligent from Cortical Networks (MICrONS) Program4.
This effort seeks to enable the rapid advancement of
artificial intelligence capabilities by creating novel machine
learning algorithms that use neurally-inspired architectures
and mathematical abstractions of the representations,
transformations, and learning rules employed by the brain4. To
guide the construction of these algorithms, the program centers
around massive co-registered functional (e.g., two-photon
calcium imaging) and structural (e.g., EM) neuroimaging
experiments aimed at estimating the synapse-resolution
connectome of a 1mm3 volume of mouse visual cortex,
represented by nearly a petabyte of image and segmentation
data, and using that information to constrain machine learning
architectures. Our goal was to organize, store, and support the
analysis of these large functional and anatomical datasets, and
eventually enable public dissemination.

3.2. Deployment
We envision that this data archive will facilitate neuroscience
inquiries through extensible, scalable processes, with a
sample workflow outlined that includes data generation,
data ingest, intra- and cross-dataset analysis, and multi-user
data visualization in various workflows (e.g., data proofreading)
outlined in Figure 6. During the IARPA MICrONS Program, a
deployed instance of our BossDB system enabled concurrent
proofreading operation by dozens of users, as well as the
storage of a highly-available contiguous image volume that
approached 2 PB of lossless EM image data (Bishop et al.,
2021) using the blosc compression standard5. In addition to

4MICrONS: Machine Intelligence From Cortical Networks. Available online

at: http://iarpa.gov/index.php/research-programs/microns (accessed October 31,

2017).
5Blosc Compressor. Available online at: http://blosc.org (accessed December 03,

2021).

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2022 | Volume 16 | Article 828787155

https://bossdb.org/
https://bossdb.org/tools/intern
http://iarpa.gov/index.php/research-programs/microns
http://blosc.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Hider et al. Brain Observatory Storage Service and Database

FIGURE 6 | A diagram outlining an example user story showing utilization of the BossDB infrastructure. A typical research group collecting data for a hypothesis will

move sequentially from (1)–(4). Other groups will extend these analyses using steps (3) and (4). Sample data included for demonstration (see text footnote 4).

EM and segmentation datasets from the IARPA MICrONS
program (https://bossdb.org/project/microns-minnie, https://
bossdb.org/project/microns-pinky), we currently publicly store
highly-available data for over 30 large-scale volumetric image
collections, with multiple contiguous image volumes exceeding
100 TB in size (https://bossdb.org/projects/).

3.2.1. Implementation
Figure 7 shows the architecture of BossDB. The system has two
user facing services: Authentication and Web Server Endpoint,
both of which sit behind AWS elastic load balancers. The system
uses Keycloak servers in a high-availability configuration for
single sign-on authentication. The web server endpoints use
Django API, to provide access to the majority of the services
in BossDB.

BossDB uses serverless computing and storage, with AWS
Lambda, SQS, S3, and DynamoDB to provide all of the other
services mentioned in Section 2: Ingest, Metadata, Cutout, Image,
and Downsample. Using serverless computing and storage for
these components will automatically scale with demand and
eliminate the need to maintain components.

BossDB is installed using the AWS CloudFormation service
along with Salt and Packer to manage our infrastructure. This

allows us to quickly duplicate the environment for testing
and development and even change instance sizes within the
new environments.

3.2.2. Data Generation
Researchers collect experimental data; stitching, alignment, and
registration take part prior to upload to BossDB. Users create
new resources in BossDB to identify and store their datasets,
recording their experimental parameters and dataset properties
(e.g., voxel dimensions, bit depth, spatial extent) prior to upload.
An example screenshot from our web console is shown in
Figure 8; this setup can be accomplished programmatically using
intern as well.

3.2.3. Data Ingest
Once available, a researcher uploads image data via one of several
methods supported by BossDB (e.g., REST API, ingest client),
safely and efficiently storing data in BossDB. Large datasets can
be uploaded incrementally, with data available for read as soon as
it has been ingested, providing access to collaborators in minutes,
not months.

The ingest client has already been used to upload petabytes of
EM and calcium imaging data; many of these uploads proceed

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2022 | Volume 16 | Article 828787156

https://bossdb.org/project/microns-minnie
https://bossdb.org/project/microns-pinky
https://bossdb.org/projects/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Hider et al. Brain Observatory Storage Service and Database

FIGURE 7 | A high-level architecture diagram of BossDB as deployed using Amazon Web Services architecture, highlighting a number of services, including ingest

processes on the left. Sample data included for demonstration (see text footnote 4).

without any intervention from the developer team with the
system automatically scaling to meet user’s needs.

Previous testing of the ingest process reached a sustained
ingest throughput of 230 GB/Min (Figure 9) using the
volumetric ingest-client into BossDB. The ingest client
was run on 750 kubernetes pods across eight large servers
uploading data from an AWS Bucket. AWS Lambda scaled
to over 5000 concurrent executing functions to handle
the load.

To perform at this speed we were running 12 Endpoint servers
sized with m4.2xlarge instances, an RDS database backed with a
db.m4.xlarge instance, and DynamoDB table sized at 2,000 read /
4,000 write capacity.

This test shows the how BossDB will autoscale to meet
demands (Figure 10). The same 3.2 million tiles from a 225-GB
dataset were uploaded during each test. Each test used a different
number of kubernetes pods running the ingest-client (100, 200,
400). BossDB automatically scaled endpoints, DynamoDB read
and write demand to handle the throughput efficiently.

BossDB has monitoring capability at several levels. In
Figure 11 you see a snippet of our Ingest Dashboard which allows

the administrator to see how much stress any one component
of the system is under. Notifications will also go out if any key
components fail, and when the system hits cost milestones.

3.2.4. Data Analytics
Many big data research analyses are enabled by BossDB features
(e.g., standardized interfaces, arbitrary cutouts, spatial indexing),
accelerating the scientific process.

One common use for BossDB is acting as a backend
for local data analysis pipelines. Users download chunks of
data from BossDB using intern and process it to create
annotation labels using humans or machines. The resulting
annotation data is uploaded via a choice of methods (python
API, ingest client), below we include an example of such
use case.

# import intern package
from i n t e r n import a r r a y

# specify data location
COLL_NAME = ’test_collection’
EXP_NAME = ’test_experiment’
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FIGURE 8 | An example screenshot from our BossDB console for the MICrONS Pinky dataset (see text footnote 4).

CHAN_NAME = ’test_channel’

# Use a URI to identify the data location:
chan = f "bossdb://{COLL_NAME}/{EXP_NAME}/
{CHAN_NAME}"

# Create a numpy-like pointer to the data,
# specifying the downsample-level:
d a t a s e t = a r r a y ( chan , r e s o l u t i o n =0)
# ...with access to dataset.shape,
dataset.dtype, etc.

# Download the cutout from the channel into
a 3D numpy array
da t a = d a t a s e t [ 0 : 1 0 , 0 : 5 1 2 , 0 : 1 0 2 4 ] .

3.2.5. Data Visualization and Publication
Data can be quickly visualized using applications such as
Neuroglancer (Figure 12).

Data are published along with initial analysis, and made
widely accessible through BossDB. Other research teams can
then conduct additional analysis, extending and validating the
existing scientific findings.

4. DISCUSSION

Our data archive will enable scientists to easily access and process
large datasets, and to scale up their approaches with minimal
alterations and without needing large local storage. Because the
results are anchored to a universally-accessible datastore, it is
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FIGURE 9 | Volumetric Ingest throughput demonstrated over the complete ingest of a 50TB dataset in about 4 h.

FIGURE 10 | Tile Ingest throughput on demand of a 200 GB EM dataset using various scales of ingest operation.

easier for others to inspect the results, improve upon them, and
reproduce processing pipelines by leveraging common interfaces.

When considering a cloud-native approach, vendor lock-in is
one potential concern – as we not only use the AWS cloud to
deploy BossDB, but have integrated many of its services into the
system to substantially accelerate development and performance.
To minimize the development impact of expanding to an
additional cloud provider or on-premise cluster, future work is
needed to create a layer of abstraction between the core software
and AWS services. We plan to continue to develop toward a
microservices style architecture, which will decrease coupling

between sub-components. This will allow BossDB to be able
to independently scale sub-components and increase the ability
to easily deploy, update, and manage services. We believe that
storage engines will continue to specialize around datatypes (e.g.,
multi-dimensional image data, video data, gene sequence data)
and be applicable to multiple research communities through
the creation of domain-specific APIs that maintain the unique
formats, organization, and needs of that community.

We intend to continue to provide BossDB as a reliable
and scalable storage resource to the general microscopy and
biology communities in perpetuity. We expect that as the
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FIGURE 11 | A CloudWatch dashboard monitoring during ingestion.

FIGURE 12 | An example Neuroglancer web visualization backended by BossDB, showing public EM, segmentation, and mesh data generated during the IARPA

MICrONS Program (see text footnote 4).

community uses our data archive, additional tools will be
developed to address new researcher needs, such as a universal,
robust object-level metadata system and additional visualization
engines. Several other research groups have leveraged BossDB
deployments, including NeuroData (Vogelstein et al., 2018)
which serves a diverse range of collaborators utilizing several
imaging modalities (e.g., light microscopy, array tomography,
serial multi-photon tomography) and added several new tools
and capabilities to the BossDB ecosystem.

One concern about running a cloud data archive is estimating
and managing cost. BossDB architecture was designed to allow
dynamic scaling of resources to balance cost with performance
and throughput capacity. As our software stack continues
to mature, we plan to further optimize our tiered storage
architecture (e.g., automatic migration data between S3 Standard,
Infrequent Access, and Glacier tiers). The proposed system will
provide a framework that is able to trivially scale from terabytes

to petabytes while maintaining a balance between cost efficiency
and performance.

As modern neuroscience datasets continue to grow in size, the
community is fortunate to have several options to store and share
their data. The precomputed format (Maitin-Shepard, 2021)
offers a flexible, lightweight option that is readily deployable in
both local and cloud settings. As mentioned above, DVID (see
text footnote 1) is used to manage immutable and versioned
annotations at the terascale level. We believe that our BossDB
solution offers key advantages in scalability and indexing
(adaptable from gigabyte to petabyte storage); authentication to
manage user access workloads and costs; indexing to promote
data exploration and discovery; and managed services to ensure
that data is maintained and available in an efficient manner for a
variety of user workflows. For a given research lab (or even within
the lifecycle of a scientific question), one or more of these storage
solutions may be most appropriate to enable and share results.
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The standardization and scalability provided by our data
archive will support a fundamental change in how researchers
design and execute their experiments, and will rapidly accelerate
the processing and reuse of high-quality neuroscience, most
immediately for the large, petascale image, and annotation
volumes produced by IARPA MICrONS. No previously existing
platform met the operational and scaling requirements of
the program, including managing an estimated 3–5 petabytes
of image and annotation data—much larger than public
neuroanatomical data archives. The BossDB software and
documentation is open source and we are eager to expand
the user community, supported modalities, and features.
More information, examples and support are available at
https://bossdb.org and https://github.com/jhuapl-boss/.
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Benefiting from the rapid development of electron microscopy imaging and deep
learning technologies, an increasing number of brain image datasets with segmentation
and synapse detection are published. Most of the automated segmentation methods
label voxels rather than producing neuron skeletons directly. A further skeletonization
step is necessary for quantitative morphological analysis. Currently, several tools are
published for skeletonization as well as morphological and synaptic connectivity analysis
using different computer languages and environments. Recently the Julia programming
language, notable for elegant syntax and high performance, has gained rapid adoption
in the scientific computing community. Here, we present a Julia package, called
RealNeuralNetworks.jl, for efficient sparse skeletonization, morphological analysis, and
synaptic connectivity analysis. Based on a large-scale Zebrafish segmentation dataset,
we illustrate the software features by performing distributed skeletonization in Google
Cloud, clustering the neurons using the NBLAST algorithm, combining morphological
similarity and synaptic connectivity to study their relationship. We demonstrate that
RealNeuralNetworks.jl is suitable for use in terabyte-scale electron microscopy image
segmentation datasets.

Keywords: skeletonization, morphological analysis, clustering, connectomics, Julia language, neuron
morphology, neuron connectivity

INTRODUCTION

Neural morphology and synaptic connectivity are closely related to brain function. With both
nanometer resolution and a large field of view, advanced Electron Microscopes can produce large-
scale image stacks (Kornfeld and Denk, 2018; Yin et al., 2020). Image voxels, pixels in a 3D image
volume, can be clustered as individual neurons manually (Kasthuri et al., 2015) or automatically
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using computer vision technologies (Lee et al., 2017, 2019, 2021;
Januszewski et al., 2018; Macrina et al., 2021). Benefiting from
the rapid development of deep learning (LeCun et al., 2015),
the performance of automated segmentation approaches has
greatly improved (Beier et al., 2017; Lee et al., 2017, 2019).
With additional help from proofreading (Kim et al., 2014; Zhao
et al., 2018; Dorkenwald et al., 2020; Hubbard et al., 2020),
reconstructed neurons with synaptic connectivity can be used for
scientific discovery (Deutsch et al., 2020; Januszewski et al., 2020;
Vishwanathan et al., 2020).

Neurons are like trees and their skeletons can be used for
morphological analysis. Skeleton or centerline representation
is widely used in the morphological analysis (Stepanyants and
Chklovskii, 2005; Halavi et al., 2008; Cuntz et al., 2011; Parekh
and Ascoli, 2013; Armañanzas and Ascoli, 2015). In contrast
to manual tracing and getting a neuron skeleton directly, most
existing automated segmentation methods produce voxel labeling
and are skeletonized in another step.

Synapses can also be detected automatically (Huang et al.,
2018; Turner et al., 2020; Buhmann et al., 2021; Liu and Ji,
2021). Synaptic connectivity analysis can be used to detect motifs
or communities. Although several software tools exist for each
processing or analysis step, they were normally implemented
using different computer languages. There is a lack of a consistent
computational environment for the whole analysis pipeline,
and users have to switch back and forth between different
programming languages and environments.

Traditionally, developers normally use an interpreted
language for prototyping, such as Python or MATLAB
(MathWorks, Inc., Natick, MA, United States), and then
translate the code to a compiled language, such as C or C++,
to speed up the computation for large scale deployment. This
was called a “two-language problem.” Although some packages,
such as Cython and pypy, can be used to help generate lower-
level code, there still exist a lot of restrictions. Recently, a
programming language with both intuitive syntax and high
performance, called Julia (Bezanson et al., 2017), was designed
to tackle this problem and has gotten more and more popular in
the scientific computing community (Perkel, 2019). Benefiting
from this design, prototype code can be compiled just in time
and transformed into efficient binary code. As a result, we do
not need to rewrite the prototype code using another low-level
language, such as C or C++. Motivated by this elegant design,
we use Julia to implement some essential analysis steps, including
skeletonization, morphological analysis, and connectivity
analysis, in two software packages called RealNeuralNetworks.jl
and BigArrays.jl.

MATERIALS

We demonstrate the usage of RealNeuralNetworks.jl by analyzing
a dataset with some proofread neurons. The details of this dataset,
including sample preparation, imaging, automated segmentation,
proofreading, was previously reported (Vishwanathan et al., 2017,
2021). Briefly, a sample (about 250 µm× 120 µm× 80 µm) from
a zebrafish larvae brainstem was stained, sectioned, and imaged

using a Zeiss Sigma field emitting scanning electron microscope.
The image voxel size is 5 nm× 5 nm× 45 nm, and the final image
volume size is over four terabytes with a voxel bit-depth of 8
(256 gray levels). Images are aligned and segmented automatically
using a convolutional neural network (Lee et al., 2017; Wu
et al., 2021). Based on the automated segmentation, about three
thousand objects, including neurons or orphan neurites, were
proofread using a modified Eyewire system (Kim et al., 2014;
Greene et al., 2016; Bae et al., 2018; Vishwanathan et al., 2021).
The final plain segmentation was exported to Google Cloud and
visualized using Neuroglancer (Maitin-Shepard, 2021; Figure 1).

METHODS AND RESULTS

Data Storage
Segmentation and skeleton data are stored in Google Cloud
Storage. The cutout and saving of segmentation chunks are
implemented in a standalone Julia package, called BigArrays.jl
(see section “Code Availability”). This is similar in functionality
to the Python package CloudVolume (Charles et al., 2020;
Silversmith et al., 2021b), and the data format is compatible
with both packages. The cutout and saving of chunks were
implemented on the client, so no intermediate server was needed.
Benefiting from the distributed storage system in the cloud,
the cutout and saving performance scales linearly with the
number of operations. Besides skeletonization, BigArrays.jl was
designed for general usage and could be used to handle arrays
that are too large to fit in RAM. For example, a potential
application is solving the out-of-memory issue in the simulation
of quantum computing using tensor networks (Fishman et al.,
2020) (Personal Communication).

For skeletonization, we can store the results in several formats.
Currently, we support SWC with plain text encoding (Ascoli
et al., 2001) which is widely used in most other analysis tools.
Additionally, We also created a customized binary representation
of SWC and all the numbers are encoded as binary scalar values
directly and the loading and saving speed is greatly accelerated.
For the synapses, it was detected externally and the result was
saved using a language agnostic format “CSV.”

Additionally, the data, including segmentation volume and
skeletons, are formatted following Neuroglancer Precomputed.
As a result, the data could be visualized directly using
Neuroglancer (Maitin-Shepard, 2021) once they are uploaded to
the cloud storage without any additional work.

Distributed Skeletonization of Neurons
To speed up skeletonization, we implemented the hybrid cloud
distributed computation architecture in python-based chunkflow
(Wu et al., 2021). The object IDs were used to define tasks and
all the IDs were ingested to a queue in Amazon Simple Queue
Service (SQS) using a Julia package called AWSSDK.jl (2021). The
skeletonization of each neuron is independent of each other, so
performance scales linearly with the number of nodes allocated.

Because task management (in SQS) and storage management
are both distributed, we can launch workers on any computer
with an internet connection and cloud authentication. Each
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FIGURE 1 | Sparse segmentation after proofreading. (A) Some of the neurons are proofread and the fragments are agglomerated as individual neurons. (B) Some of
the proofread neurons are visualized.

FIGURE 2 | Skeletonization computation in a worker.

task performs skeletonization for one object, called sparse
skeletonization. The computation pipeline on the worker
uses a modified TEASAR algorithm (Sato et al., 2000;
Bae et al., 2018; Silversmith et al., 2021a). Briefly, the steps are as
follows (Figure 2).

1. A worker fetches a task from SQS;
2. It then fetches the segmentation chunk list covering that

object or neuron;

3. It extracts the point cloud of that object; It computes the
distance from the boundary of the binary mask of that
object;

4. It finds a point with the largest distance to the boundary as
a seed;

5. If not all the points are visited, find a new central path
by computing the shortest path from seed to the furthest
unvisited point and then mark all the nearby points as
unvisited;
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FIGURE 3 | (A) Skeletonize of a single neuron. Note that broken parts were reconnected. (B) All the skeletons with a random color. The spheres represent cell
bodies with varying diameters.

6. If all the points have already been visited, the
skeletonization is done and it switches to postprocessing,
including removing redundant nodes, removing hair
by comparing the diameter and path length, removing
branches inside the cell body, resampling the node
density to make it more evenly distributed along the path,
removing empty branches, smoothing.

Given a sparsely or densely segmented volume, we extract the
centerline or skeleton of its neurites one by one using a modified
TEASAR algorithm (Sato et al., 2000; Bae et al., 2018; Silversmith
et al., 2021a). Given a bit-packed binary volume representing a
neuron, the foreground voxels are extracted as a point cloud. The
distance from each point to the nearest boundary was computed
as a Distance from Boundary Field (DBF). Find the point with the
largest DBF as a seed point. Construct an undirected graph with
points as nodes and neighboring points are connected with edges.
Find the farthest unvisited point as the destination and compute
the shortest path as the skeleton using Dijkstra’s algorithm

TABLE 1 | Features for single neuron morphology analysis.

Features Description

Segment order The order increases from the root node while
branching

Segment length The path length of a single segment

Branching angle The angle of two segments in a branching point

Tortuosity The curvature of a segment

Distance to root path length The minimum path distance from the segment to
root node

Average radius The mean of all the nodes radius in the segment

Radius from soma For each node, the Euclidean distance from the
soma

Terminal segment path
length

The path length of each terminal segment

The ratio of neck diameter
to head

Could be used to identify spines

(Dijkstra, 1959). Points around the skeleton are marked as visited
and not used in the following computation. Find the unvisited
point closest to visited points as the new seed and iterate until all
the points are visited. If the segmentation voxel is not continuous,
we can look for the nearest terminal node (Supplementary
Figure 1) to reconnect within a distance threshold. Note that the
binary representation was bit-packed and the memory usage was
reduced by 8 fold.

As a result, all proofread neurons are skeletonized (Figure 3).
The distributed computation was performed in Google Cloud.

Morphological Features for Single
Neuron Analysis
We decompose each neuron into segments or single nodes and
compute their features. Definitions of node, branching node,
root node, terminal node, segment, and the terminal segment
are in Supplementary Figure 1. Additionally, an irreducible
node corresponds to a soma, branching node, or terminal
node. Based on existing literature (Uylings and van Pelt, 2002;
Schierwagen, 2008; Schierwagen et al., 2010; Cuntz et al., 2011),
we implemented some widely used morphological features for
the skeletons and demonstrated the results using our zebrafish
dataset (Table 1 and Figure 4). In the spines of mammalian
brains, the diameter of the neck is normally much smaller than
the head, thus we added a feature to measure the ratio of neck
diameter to head (Figure 4H).

Morphological Features of Many
Neurons
For a number of neurons, we would like to encode each neuron
using a feature vector, which could be used in neuron type
clustering. Based on the literature, we have also implemented
several widely used features (Table 2) and applied them to our
zebrafish dataset (Supplementary Figure 2; Uylings and van Pelt,
2002; Schierwagen, 2008; Schierwagen et al., 2010; Cuntz et al.,
2011; Wanner et al., 2016).
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FIGURE 4 | Some morphological features of a single neuron. (A) The morphology of a neuron is visualized in Jupyter Notebook. (B) Histogram of tortuosity of
neuron segments. (C) Histogram of neighboring node distance. (D) Histogram of path length to the root node. (E) Sholl analysis. (F) Segment path length versus
segment order. (G) Branching angle in radians versus tortuosity of segments. (H) Terminal segment path length versus terminal segment neck-head radius ratio.

Morphological Clustering Using NBLAST
Most of traditional morphological features do not measure
the spatial distribution of neurons. An automatic neuron type
classification method, called NBLAST (Costa et al., 2016),
measures the spatial distribution and is getting popular. The
original method was implemented in R and C++. In order
to incorporate this method in our analysis ecosystem, we
implemented this algorithm from scratch using Julia. We
performed hierarchical clustering (Supplementary Figure 3)
using Clustering.jl (Stukalov and Lin, 2021) and classified the
neurons into 23 types based on the NBLAST similarity scores
(Figure 5). The visualization was created using Neuroglancer.

Synaptic Connectivity Combined With
Morphology
After neuron segmentation and synapse detection were done
externally, we can construct a graph of the neural network.
Within the graph, the neurons are nodes and the synapses are
edges. We use the synapse number as a connectedness metric

for neurons. The more synapses connecting two neurons, the
closer they are. Based on the distance matrix, we can perform
hierarchical clustering, reorder the connectivity matrix, and
identify some communities (Figure 6A).

Once we have the skeleton morphological features and
synaptic connectivity, we can combine them. We can order
the neurons in the connectivity matrix using NBLAST
hierarchical clustering. As a result (Figure 6B), there are
some morphologically similar neurons highly connected with
each other. Morphologically similar neurons tend to have
stronger synaptic connections as well (Figure 6C), which is
consistent with previous findings in the mouse visual cortex
(Lee et al., 2016).

DISCUSSION

RealNeuralNetworks.jl was built to process voxel segmentation
datasets from Serial Section Electron Microscopy images.

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2022 | Volume 16 | Article 828169167

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-828169 February 24, 2022 Time: 18:2 # 6

Wu et al. RealNeuralNetworks.jl

TABLE 2 | Features of a single neuron.

Features Description

Distance from soma to the
center of skeleton mass

A metric to measure symmetricity centered by
soma

Total path length The physical length of all the skeleton paths

The number of branching
points

Median segment length The median segment length of all the segments
starts and ends at irreducible nodes

3D Sholl Analysis (Sholl, 1953) Count the intersections to spheres centered on
the root node

Average branching radian The mean of the branching angles

Average tortuosity The average value of the ratio of the path length
to the Euclidean distance between irreducible
nodes

Asymmetry The distance of the soma node to the arbor
center of mass

Typical radius The Euclidian distance of the dendritic arbor
points to the center of mass

Fractal dimension Measures similarity across scales

Root node radius The radius of the root node which is normally
the soma

Total dendrite path length If the dendrite segments are classified

Longest segment path length

Convex hull volume

Surface area

Post-synapse number Number of postsynaptic sites

Pre-synapse number Number of presynaptic sites

Some components, such as skeletonization and morphological
analysis, can be reused for sparsely labeled neurons in Light
Microscopy images.

Comparison With Related Tools
Most existing tools are specifically designed for one or two
analysis steps, rather than providing a one-stop solution and
a consistent computational environment. Compared with some
related software, RealNeuralNetworks.jl has a more complete
toolset for the analysis (Table 3).

NeuTu (Zhao et al., 2018) was built mainly for proofreading
neuron reconstruction from Electron Microscopy images.
Besides that, it can also measure neuron shape similarity and
perform clustering of neuron types (Zhao and Plaza, 2014).
The measurement is built upon arbor density maps which is
much more computationally heavy than skeleton-based NBLAST
(Costa et al., 2016). Although the sparse skeletonization of
NeuTu was also built upon the TEASAR algorithm (Sato et al.,
2000), the geodesic distance between neighboring voxels is
measured using the image intensity rather than distance map in
our implementation. Thus, the skeleton accuracy is correlated
with image quality.

Currently, RealNeuralNetworks.jl only has some widely used
morphological features and is not as complete as L-Measure
(Scorcioni et al., 2008) and TREES toolbox (Cuntz et al., 2010).
Vaa3D (Peng et al., 2010, 2014) was built for light microscopy

image processing, especially neuron tracing, and has a much
richer set of tracing algorithms.

Kimimaro (Silversmith et al., 2021a) was built for dense
skeletonization rather than sparse skeletonization. Currently, it
does not have a bit-packed binary representation of segmentation
volume and requires much more memory for sparse usage.

Why Julia
Julia is a modern language with nice features for both
scientific computing and general programming (Bezanson et al.,
2017; Perkel, 2019). It performs just-in-time compilation for
the code, so performance can be comparable with C/C++.
In addition, it has an intuitive syntax and an interactive
programming interface like MATLAB (MathWorks, Inc., Natick,
MA, United States), which is useful for prototyping and
experiments. It is open-source with a permissive license,
so it is much easier to deploy in the cloud compared
with commercial languages requiring a license, such as
MATLAB (MathWorks, Inc., Natick, MA, United States).
Julia can be used interactively in Jupyter Notebooks (The
“Ju” is from the name of Julia) (Perkel, 2019). Julia is
increasingly popular in the scientific computing community.
It has been downloaded over 25 million times and over 5000
packages are registered.

For most of the interpretable languages, such as Python
and MATLAB, manipulating single elements in one or
nesting loop is normally tens or hundreds of times slower
than low-level languages, such as C and C++. For good
performance, programmers are limited to using “vectorized”
operations which were actually implemented in lower-level
languages. In our applications, we perform a lot of voxel
manipulations that are hard to express in “vectorized”
operations. Benefiting from the just-in-time compilation,
all of such operations can be implemented directly in Julia with
good performance.

For the computation in local cluster or supercomputer, Julia
was designed for distributed computing at the beginning and
has gained a dramatic rise in the high-performance computing
community. Our packages are expected to be adaptable in
a local cluster.

Limitations
The skeletonization module was designed for sparse
skeletonization rather than dense skeletonization. For
sparse skeletonization, we can skeletonize some neurons
of interest while the proofreading is ongoing. It would be
too computationally expensive to iterate over the neurons
individually in a terabyte-scale or petabyte-scale image volume.
For dense skeletonization, Kimimaro is a better alternative
(Silversmith et al., 2021a).

Currently, RealNeuralNetworks.jl only has limited support
for visualization, such as functions for skeleton visualization.
For more complicated plots, users must build their own scripts
or Jupyter Notebooks based on other Julia visualization
packages. Compared with the TREES toolbox (Cuntz
et al., 2010, 2011), RealNeuralNetworks.jl does not have
an interactive skeleton editing interface. Compared with
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FIGURE 5 | NBLAST classification of neurons. The scale bar in the last image is 100 µm.
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FIGURE 6 | Combine morphological NBLAST clustering and synaptic connectivity. (A) The synaptic connectivity matrix was reordered by hierarchical clustering
based on connectivity distance. (B) The synaptic connectivity matrix was reordered according to hierarchical clustering based on the NBLAST score. The synapse
number is encoded in the point diameter and color. (C) For each neuron pair, the relationship between NBLAST morphological similarity and number of synapses.

TABLE 3 | Comparison of software tools.

Tool/Feature References Language Skeletonization Morphological features NBLAST similarity Synaptic connectivity

L-Measure Scorcioni et al., 2008 Java X

NBLAST Costa et al., 2016 R, C++ X

NeuroM Palacios et al., 2021 Python X

NeuTu Zhao and Plaza, 2014 C++ X

TREES toolbox Cuntz et al., 2010 MATLAB X

Vaa3D Peng et al., 2014 C++ X X

CBLAST Januszewski et al., 2020 Python, R, C++ X* X

3D BrainCV Wu et al., 2014 MATLAB X X

Kimimaro Silversmith et al., 2021a Python, C++ X

RealNeuralNetworks.jl Julia X X X X

*CBLAST uses NBLAST for similarity measure.

L-Measure, there are some missing morphological features in
RealNeuralNetworks.jl.

Julia is a young language with rapid development and
adoption in the scientific computing community. However, many
of the packages are still evolving and are not yet stable.

CONCLUSION

In summary, we present a Julia-based tool, called
RealNeuralNetworks.jl, for sparse skeletonization, morphological
analysis, and synaptic connectivity analysis. We provide
an integrated computational environment for the analysis
pipeline. We have demonstrated the utility of this package
by processing a Zebrafish segmentation dataset. We hope
that it could be useful for other connectomics projects
in the future.

CODE AVAILABILITY

The code is open-sourced in GitHub: https://github.com/
seung-lab/RealNeuralNetworks.jl. The BigArrays.jl is available in
GitHub as well: https://github.com/seung-lab/BigArrays.jl. The
Jupyter Notebooks are available in GitHub: https://github.com/
jingpengw/realneuralnetworks-notebook.
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This article describes an open-source educational software, called Panama, developed
using R, that simulates the biophysics of voltage-gated ion channels. It is made
publicly available as an R package called Panama and as a web app at http://www.
neuronsimulator.com. A need for such a tool was observed after surveying available
software packages. Available packages are either not robust enough to simulate multiple
ion channels, too complicated, usable only as desktop software, not optimized for
mobile devices, not interactive, lack intuitive graphical controls, or not appropriate for
educational purposes. This app simulates the physiology of voltage-gated sodium,
potassium, and chlorine channels; A channel; M channel; AHP channel; calcium-
activated potassium channel; transient-calcium channel; and leak-calcium channel,
under current-clamp or voltage-clamp conditions. As the input values on the app
are changed, the output can be instantaneously visualized on the web browser and
downloaded as a data table to be further analyzed in a spreadsheet program. This
app is a first-of-its-kind, mobile-friendly, and touchscreen-friendly online tool that can be
used as an installable R package. It has intuitive touch-optimized controls, instantaneous
graphical output, and yet is pedagogically robust for educational purposes.

Keywords: Hodgkin–Huxley simulation, web app for neuroscience, educational purposes, ion channels,
biophysics

INTRODUCTION

The Hodgkin–Huxley (Hodgkin et al., 1952) model is one of the fundamental neuronal models. Its
mathematical form is a set of differential equations that are used before moving on to more complex
models. Computational simulations using this model strengthen the concepts of action potentials
and ion channels.

Existing simulation programs, such as NEURON (Hines and Carnevale, 1997) and GENESIS
(Bower et al., 2003), serve as powerful tools for simulating the response of whole-cell or single-
channel parameters to electrical or pharmacological stimuli. Although such software tools are free
and could be used for educational or research purposes, they require substantial training and may
not be suitable for casual use by students with less computational knowledge. Some effort has been
directed toward making educational packages that demonstrate ion channel biophysics that is freely
available. These are good tools to know about action potentials, ion channel currents, and voltages.
However, each of these tools has its own disadvantages. Some of them have been highlighted below.
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HHsim1 (Touretzky et al., 2003) requires the software to be
downloaded and a matching version of MATLAB installed on
the desktop computer. Neurophysiology Virtual Lab2 (Sridharan
et al., 2016) requires a signup procedure and is not mobile-
friendly. NeuroLab3 (Schettino, 2014) requires a special software
environment called Netlogo. Others, such as Phet,4 are cartoon
reconstructions of ion channel physiology with restricted
features. Nerve5 is not touch- or mobile-optimized whereas other
programs (Molitor et al., 2006) are MATLAB packages. Any
software package that is dependent on MATLAB is not ideal for
wide distribution because of the overwhelming cost of MATLAB
and the requirement to preinstall MATLAB. Also, any software
package dependent on Java in the browser is not ideal because of
the unavailability of built-in Java support in some modern web
browsers.

Thus, a need was felt to make a tool that had the
following characteristics: (1) mobile-friendly, (2) touchscreen-
friendly, (3) pedagogically adequate for neurophysiological
education, (4) completely online, (5) not reliant on MATLAB
or Java software, (6) built with open-sourced code, and (7)
usable by students that want an intuitive way to change
ion channel parameters and download the data. To date,
no electrophysiology simulation tool exists that satisfied all
these criteria.

In this article, a new web app for simulating the biophysics
of voltage-gated ion channels is described. It has been
made publicly available at http://www.neuronsimulator.com
and as a downloadable R package called Panama through
GitHub. Its associated scripts are available at https://github.
com/anuj2054/panama. R software is available at https://
www.r-project.org/. Shiny Server is available at https://www.
rstudio.com/products/shiny/. Lattice software is available at
https://cran.r-project.org/web/packages/lattice/index.html. The
design of the Panama software overcomes the limitations
of previous simulators and satisfies all the criteria listed
previously. R (R Core Team, 2014), Shiny package (Chang
et al., 2017), and Lattice package (Sarkar, 2008) were used
to code the software. It has multiple input controls for
both voltage-clamp and current-clamp conditions. It outputs
the voltage, current, and conductance values as graphs for
each ion channel.

METHODS

Numerical Design of the Simulator
The 11 channels simulated in this app were voltage-gated sodium,
potassium, and chloride channels; calcium-activated potassium
channels (KCa); T-type calcium channels (CaT); L-type calcium
channels (CaL), leak sodium (NaLeak), and leak potassium
(KLeak) channels; A current channels; M current channels; and

1http://www.cs.cmu.edu/~dst/HHsim/
2http://vlab.amrita.edu/?sub=3&brch=43
3http://sites.lafayette.edu/schettil/neurolab/
4https://phet.colorado.edu/en/simulation/neuron
5http://nerve.bsd.uchicago.edu/

AHP current channels. Each channel was represented by its
maximal conductance or permeability (gn or pn where n is the
specific ion channel), its ionic current (In), its reversal potential
(En), and its associated gating parameters. Total ionic current
(Inet) was modeled as the sum of all those individual Hodgkin–
Huxley style ionic currents: iNa, iK , iCl, iNaLeak, iKLeak,iA, iM ,
iKCa, iAHP, iKCa, iM , iCaT , and iCaL. The models for these
channels were modified from those used in the EOTN software
(Campbell, 1996).

Voltage or current across the membrane was held constant
depending on the clamping conditions. For the current-clamp
case, Inet was held for the clamp duration at the applied current
provided by the user; Vnet was determined from Kirchhoff’s
current law by solving a differential equation given in Equation 1.
The membrane capacitance per area represented byC in Equation
1 is input by the user and set to a default value of 0.01 nFarads.

dVnet

dt
=

1
C

(Inet − iNaleak − iKleak − INa − iK − iCl − iCaL

−iKCa − i_CaT − iA − iAHP − iM) (1)

For the voltage-clamp case, Vnet was held for the clamp
duration (set to a default of 50 ms) at the applied voltage provided
by the user; Inet was determined from Kirchhoff’s current law as
shown in Equation 2.

Inet = (−iKleak − iKleak − INa − iK − iCl − iCaL

−iKCa − i_CaT − iA − iAHP − iM) (2)

The default simulation time was set to 70 ms, with
10 ms being the preclamp and 10 ms being the postclamp
duration. This helped to avoid data overflow issues. However,
the clamp duration, preclamp duration, and postclamp
duration can be changed to increase the total simulation
time to 1,000 ms.

In all models, voltage was measured in mVolt, current in
nAmp, time in msec, conductance in µSiemens, and capacitance
in nFarads. We derived the model parameters for sodium
channels from data of other groups (Huguenard et al., 1988). The
potassium-channel model used was of a general delayed rectifier.
T-type calcium channel (iCaT) was modeled using the constant
field equation. L-type calcium channel (iCaL) was also modeled
using the constant field equation as in iCaT , except that it was
considered to not inactivate. iCaL was based upon the data of
another team (Kay and Wong, 1987) from isolated hippocampal
pyramidal cells. Calcium-activated potassium channel (iKCa) was
modeled according to the procedure used by other groups
(Yamada, 1989). We also used the same group (Yamada, 1989)
to model the AHP current according to the model in bullfrog
sympathetic cells. The A current was modeled to inactivate with
two-time constants. The first component consisting of m1A and
h1A contributes 60% to the total value of the gating variables. The
second component consisting of m2A and h2A contributes 40% to
the total value of the gating variables. We adapted the M current
model from other groups (Adams et al., 1982).
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FIGURE 1 | Software architecture of the simulator. The server side consists of the Shiny package and the Lattice package. The Shiny package is used for
server-side computations. The Lattice package is used for graphical display. The computations and the graphs are served to the client browser through the
webserver built into the Shiny package.

Software Design of the Simulator
The web app was created using the R-programming language.
After an initial survey of different languages and packages
available in each language, the R language was chosen for its
availability of Shiny and Lattice packages which are both excellent
packages for web development and graphics development.

Euler’s method was the mathematical algorithm used to
solve the differential equations. The differential equations were
coded into the script using only R, without using any external
differential equation solver packages, such as deSolve.

The Shiny package was used to serve the webpages. The
Twitter bootstrap toolkit was used as the theme for user interface
controls. Sliders from the bootstrap UI toolkit were used to make
the input controls touch-friendly, so that users do not have to type
the values in a textbox.

The Lattice package was used to create the graphs that were
embedded into the webpage. The output of the web app is a set
of voltage, current, and conductance graphs for the channels.
These can be visualized instantaneously while changing the input
values on the app after pressing the update button, or they can be
downloaded as CSV tables and analyzed in spreadsheet software.
The code is open-sourced and deposited at http://www.github.
com/anuj2054/panama. The front end of the software is coded
in a file ui.R, and the backend is coded in a file server as shown in
Figure 1.

The app is hosted on a Shiny server located at the high-
performance computing center facilities at Oklahoma State
University. The computations for the equations all occur on the
server’s side, so that there is no load on the user’s computer.

RESULTS AND DISCUSSION

There are three ways to access Panama. The first and the easiest
way to access it is at http://www.neuronsimulator.com/. A second

way that does not require a constant internet connection to
work with the software is using the command runUrl6 on the
R terminal. The command downloads the required files into
an R folder and executes the software from the user’s local
computer. A third way to access the app is using the command
shiny::runGitHub (“panama,” “anuj2054”) on the R terminal
given that the user has preinstalled Shiny. In the second and
third methods, once the required command is run and the code
is automatically downloaded to the local computer, access to the
internet is not required anymore.

On a desktop web browser, the input controls appear as in
Figure 2.

However, on a mobile device, the three columns of the input
controls are merged into one column for easy scrolling. On a
mobile device, the use of sliders eases the process of entering
values for individual parameters of the model. However, precision
is not sacrificed. The user can change the input parameter values
by hovering above the slider and using the keyboard to fine-tune
the exact number they want to three significant decimal places.
The default values on the app can be reloaded by refreshing
the web browser.

The app outputs conductance, voltage, and current data as
both a graphical display and as downloadable CSV tables. The
ability to download the output data as CSV tables enables the user
to use their own spreadsheet software, such as Excel, to further
analyze the data or embed the graphs in their own documents.
On a desktop web browser, the output graphs appear as shown in
Figure 3.

Each of the lines inside the graphs is color-coded and
described with the name of the channel inside its respective
colored rectangle. During the current-clamp mode, the current
injection can be made more noticeable in the current graph
by increasing the applied current and observing the steep red

6https://github.com/anuj2054/panama
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FIGURE 2 | The input controls of the app on a desktop. The user first must select the current clamp or voltage clamp conditions from the drop-down menu. After
selecting the clamping conditions, various parameters can be changed using the scrollbar. Pressing the Update button will update the output graphs depending on
the values input. The user must click on Update each time they change the parameters. Clicking on the Download button will download the time series voltage,
current and conductance of the ion channels in a CSV format.

line that appears after the preclamp duration. The user can
increase the clamp duration to see numerous action potentials
that resemble neural spikes.

When using the app for educational purposes, it is encouraged
to use it in conjunction with a textbook about ion channels and
their electrical properties. The default ion concentrations and
channel conductance can be changed to those for different types
of cells, such as squid axon cells, and observe its effect on the
current and voltage of the cell. The default values used in the
app are for a mammalian cell at room temperature (Lodish et al.,
2008). This app has been particularly helpful in pointing out the
reasons for the changes observed in the action potentials when
different types of channels are activated. Changing the default
capacitance and conductance values demonstrates how different
conditions of a cell membrane affect the electrical properties of
the cell. This practice gives a hands-on approach toward learning
neurophysiology that would otherwise only get from a textbook
or from an expensive electrophysiology rig.

The numerical output of the simulator was tested against
NEURON with similar parameters. Both programs returned
equivalent results. The app was also tested under different
operating systems (Windows, Android, iOS, Mac, and Linux)
and under different browsers (Chrome, Firefox, and Internet
Explorer). It was found to operate consistently across all
platforms. This app can be used by educators, students
of pharmacology, physiological science, neurobiology, and
neuroscience, who are interested in simulating particular ion
channels and in knowing their physiological properties so that it
can be used to understand the physiological properties of voltage-
gated ion channel, which acts as a triggering signal for various
pathological conditions.

Future versions of the app will have phase space graphs to
help users better understand membrane dynamics. It will also
model synaptic currents where the chloride channels would play
an important role. A better help section, tutorials, and an even
cleaner user interface is also being planned.
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FIGURE 3 | Output graphs of the app on a desktop. The simulator gives as output the time series representation of voltage, current, and conductance. The lines in
the graph are color coded to represent different ion channels. In this graph, only sodium and potassium channels have been activated. The output graphs can also
be replicated by downloading the CSV file and using a spreadsheet program to draw the graphs.

Panama is a first-of-its-kind, a touch-friendly, mobile-friendly
online tool that models electrophysiology of 11 different
types of ion channels using Hodgkin–Huxley-style differential
equations. It requires no user training for installation and no
infrastructure for downloading, which makes it suitable for
educational purposes. Virtual learning has been an important
pedagogical tool in the physical and biological sciences. Even
though the science of physics and chemistry has benefitted
from having a wealth of virtual simulation tools for education,
biology still lags behind in the use of such tools for
education. Such portable apps can act as a virtual laboratory
where there is a lack of physical resources in classrooms
to purchase a high-cost electrophysiology workstation. Virtual
simulation environments can improve the quality of education
by providing computer-based skills in developed countries at
a minimal cost. In future, such apps can provide beneficial
web training by means of Massive Open Online Courses
(MOOCs). Such tools should also be expanded for other
areas of biological studies, such as cell biology, ecology, and
population studies.
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Here we developed an open-source Python-based library called Python rodent Analysis

and Tracking (PyRAT). Our library analyzes tracking data to classify distinct behaviors,

estimate traveled distance, speed and area occupancy. To classify and cluster

behaviors, we used two unsupervised algorithms: hierarchical agglomerative clustering

and t-distributed stochastic neighbor embedding (t-SNE). Finally, we built algorithms

that associate the detected behaviors with synchronized neural data and facilitate

the visualization of this association in the pixel space. PyRAT is fully available on

GitHub: https://github.com/pyratlib/pyrat.

Keywords: deep learning, unsupervised learning, behavioral analysis, animal tracking, electrophysiology,

neuroscience method

1. INTRODUCTION

Deep learning (DL) and computer vision research fields are improving the performance of image,
video and audio data processing (Krizhevsky et al., 2012). The use of these approaches to estimate
human and animal pose is increasing rapidly. This new direction stems from several factors,
including improved feature extraction, high scalability to data, availability of low-cost hardware
designed for DL, and pre-trained models ready for deployment (Toshev and Szegedy, 2014;
Redmon et al., 2016; Ilg et al., 2017; Levine et al., 2018; Nath et al., 2019).

Evaluation of animal behavior by human assessment is commonly subjected to inter-rater
variability and requires several hours of manual video data evaluation (Spink et al., 2001).
Commercial automation software for animal behavior assessment is expensive and rarely provides
complex behavioral information. This software uses classical approaches of image processing to
track animals’ position using contrast or shape data, but they are less reliable to extract detailed
information from images (Geuther et al., 2019). In contrast, DL models identify patterns in image
data allowing to track the complex movement of specific body parts. Also, DL models allow 3D
reconstruction of subjects using single or multiple camera setups instead of complex body markers
or light sources to track positions (Nath et al., 2019; Nourizonoz et al., 2020; Dunn et al., 2021).

In the last decade, the scientific community has been incorporating DL algorithms to analyze
complex behavior (Gris et al., 2017; Mathis et al., 2018; Jin et al., 2020). Usually, tracking body parts
is the first step to classify and/or predict animal behavior. There are several open-source software
based on DL to extract body coordinates from videos. However, they only provide the coordinate
position for body parts and researchers must implement routines to infer these metrics.

Here, we present a toolbox called Python in Rodent Analysis and Tracking (PyRAT), which is a
Python library capable of performing the most common analysis of animal behavior from tracking
data. Our user-friendly library can integrate neural data with kinematic metrics, such as velocity,
acceleration, presence in areas, and object exploration. We also implemented an unsupervised
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algorithm to identify and cluster distinct animal behaviors.
PyRAT is available in a public repository and can be found
at: https://github.com/pyratlib/pyrat.

We believe PyRAT is a useful tool because it can be easily
employed to infer some of the most common video analysis
metrics through a collection of Python scripts. We developed
the library to address real use cases of video analysis, frequently
performed in the behavioral field. The outputs of our functions
are designed to produce graphics and tables, allowing the
selection of subjects and/or time window in each experiment
or trial to compare groups. Other open-source libraries presents
similar features, however, the behavioral community can benefit
from PyRAT simpler and direct approach. We documented the
library features with Jupyter notebooks in our repository to guide
users to apply our code to their data.

2. MATERIALS AND METHODS

2.1. Data
To develop the PyRAT, we used datasets from the Edmond and
Lily Safra International Institute of Neuroscience. Adult male
Wistar rats (n = 12) were placed in an open field arena (59x59 cm
with 45 cm tall walls) for 20 min per day for 3 consecutive days.
Twenty-four hours later, animals were exposed to two identical
objects presented in the open field arena for 5 min. We analyzed
48 videos recorded from a top-down view perspective with a
Microsoft LifeCam camera at a resolution of 640 x 480 pixels at
30 frames per second (FPS). Alongside these experiments, neural
data from the dorsal hippocampus were collected. All procedures
were in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and approved by a
local Animal Care and Use Committee.

Furthermore, we used datasets provided by Sturman et al.
(2020) and Fujisawa et al. (2008, 2015) to develop and test PyRAT
functions in different scenarios. Sturman et al. (2020) used
DeepLabCut to extract poses from mice in an elevated plus maze
and an open field arena and provided the videos and the tracking
data. Fujisawa et al. (2008) recorded single unit activity in rats
performing a working memory task. The dataset is composed
of extracellular recordings from the medial prefrontal cortex (64
channels) and dorsal CA1 (a subdivision of the hippocampus, 32
channels) in three rats.

2.2. Video Analysis
For body part tracking, we used DeepLabCut (DLC, version
2.2rc3) (Mathis et al., 2018; Nath et al., 2019). Specifically,
we labeled 200 frames (Figure 1A) taken from 5 videos for
each scenario (then 95% was used for training). We used a
ResNet-50 neural network (Insafutdinov et al., 2016) with default
parameters for 3,20,000 training iterations. We validated with
1 number of shuffles and found the test error was: 4.32 pixels,
train: 2.69 pixels (image size was 640 by 480). We then used
a p-cutoff of 0.9 to condition the X, Y coordinates for future
analysis. This network was then used to analyze videos from
similar experimental settings.

2.3. Library Design and Implementation
Our library is designed to receive as input the DLC tracking
data. However, the functions work on pixel space and then
can receive any tracking data after applying a few adjustments
such as removing the file header, if present and renaming the
columns. We developed an example using tracking data from
Plexon - available on GitHUb. PyRAT was implemented using
Python 3 and the following libraries: NumPy, pandas, scikit-
learn, and matplotlib, and hosted in Anaconda and Python
Package Index (PyPi).

2.4. Unsupervised Behavior Classification
A common task in animal behavior analysis is the identification
of distinct behaviors, such as rearing, grooming, nesting,
immobility, and left and right turns. To automatically classify
behaviors, we used a combination of two unsupervised
approaches on each video frame. We used the hierarchical
agglomerative clustering algorithm to label the clusters
(Lukasová, 1979) and a non-linear technique for dimensionality
reduction called t-distributed stochastic neighbor embedding
(t-SNE) to visualize the result (Van der Maaten and Hinton,
2008). The input of both algorithms is the distances between
labeled body parts. This approach was chosen because the
relative distance between body parts is invariant to the animal
position in the pixel space. Combining these techniques, we
created a map where the distances between the body parts of
each frame are transformed into 2D space using t-SNE and the
color of each point is determined by the label from hierarchical
agglomerative clustering (Figure 3A).

To enhance cluster visualization, we optimize the t-SNE
hyperparameters according to the heuristics reported in Kobak
and Berens (2019). Their approach is based on three steps,
(1) the use of Principal Component Analysis (PCA) in t-
SNE initialization to preserve the data structure in lower
dimensions; (2) set the learning rate as η = n/12,
where n is the number of data points (frames); and (3) set
the perplexity hyperparameter, which controls the similarity
between points and governs their attraction, as n/100. In
addition, we implemented three metrics to quantify the quality
of the t-SNE output (Kobak and Berens, 2019), (1) the KNN
(k-nearest neighbors), which quantifies the preservation
of the local structure; (2) the KNC (k-nearest class),
which quantifies the preservation of the mesoscale structure;
and (3) the CPD (Spearman correlation between
pairwise distances), which quantifies the preservation of
the global structure.

Since the hyperparameters are not optimized by the learning
algorithm, they must be defined a priori and selected by trial
and error or searching approaches. However, it must be noted
that these heuristics have been proven to be useful in empirical
tests (Kobak and Berens, 2019).

3. RESULTS

3.1. Library Features
Python in Rodent Analysis and Tracking is a Python toolbox
for the analysis of animal tracking data that is easily accessible
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by new programmers, entirely developed in Python due to its
popularity in the scientific community. The only prerequisite
for using our toolbox is having minimal to moderate skills in
Python and pandas library. We implemented the functions in a
procedural approach instead of using the object-oriented features
from Python as we believe that the procedural approach is more
user friendly to non-programmers. Moreover, each function
encapsulates an analysis, returning all inferred information and
graphics. As we employed well-known Python libraries such as
pandas, PyRAT can be used with other Python data science
libraries such as scipy, sklearn, seaborn, matplotlib, and others.

Python in Rodent Analysis and Tracking functions receive
as input a pandas DataFrame with cartesian coordinates of
labeled body parts to plot the graphics (data example available on
GitHub). The input format is based on the DLC output, which
consists of two columns in pixel space (x and y) for each tracked
body part. However, any coordinate data organized in DataFrame
format can be loaded in PyRAT if it follows the structure of x and
y columns for each body part.

To visualize the animal trajectory, we developed two
functions. The function Trajectory() plots the body part
coordinates across time using amatplotlib colormap (Figure 1B).
Here, we use a scatter plot of x and y points and add a third
dimension to represent time to facilitate trajectory dynamics.
The other function, Heatmap()), generates a heatmap of the
animal occupancy in the arena (Figure 1C). The occupancy plot
is a 2D histogram that shows the body part occurrence in each
spatial bin. We also evaluated the functions in a public dataset
of mice performing the open field and the elevated plus maze
tasks (Sturman et al., 2020).

To perform quantitative analyses, we developed the function
MotionMetrics(), which estimates speed, acceleration,
and traveled distance for each animal (Figure 1D and
Supplementary Material). To estimate these metrics, we
transform the data from the pixel space to the centimeters
space, using a known physical reference, applying the function
pixel2centimeters(). Also, the user can define a
time interval as an input parameter to calculate the metrics
(Figure 1E) and plot trajectory (Figure 2A). To test the accuracy
of PyRAT functions, we used a public dataset previously analyzed
with EthoVision software (Sturman et al., 2020), and we found
equivalent results (data available on PyRAT’s GitHub).

Experimental designs that access pathological states or drug
effects can use PyRAT to extract head orientation and locomotor
activity to compare treatment or conditions (Gulley et al., 2003;
Aonuma et al., 2020). The function HeadOrientation()
returns head position and orientation in each frame using two
points to calculate the element-wise arc tangent between them.
The head orientationmust be estimated using the neck and snout;
however, the same function can estimate body orientation as
shown in Figure 2B, using the tail base and snout.

To represent the pattern of object interaction among animal
groups, the Heatmap() function can also be used to plot
concatenated data, facilitating visual comparison between days,
groups, or trials (Figure 2C).

In addition, we developed the FieldDetermination()
and Interaction() functions to evaluate the interaction of

the animal with defined areas in the pixel space. For this feature,
the user must first use the function FieldDetermination()
to create circular or a rectangular area. Once the bounding
areas are determined, the user must call the function
Interaction(), which estimates animal interaction
with the areas and returns a DataFrame that reports the
beginning and end of each interaction in chronological
order. To visualize these outputs, we developed the function
PlotInteraction() (Figure 2D).

To summarize data from several subjects and facilitate
visualization of behavioral metrics, we included the function
Reports(), which combines MotionMetrics() and
PlotInteraction() and creates a unified report. The
input of this function is a list of the tracking data from
each animal and the output is a single DataFrame (examples
in Supplementary Material).

The function ClassifyBehavior() was developed to
identify and classify different behaviors. We test this function
in two different animal models in the open field task. In rats,
12 clusters were found automatically. The function returns a 2-
dimensional color map, a histogram, and a dendrogram to better
visualize the results (Figure 3). In addition, the histogram helps
to detect mislabeled behaviors considering the number of frames
in a cluster. For example, Clusters 7 and 8 presented a small
number of frames, and after visual inspection, we confirmed
that they were miss-classified samples (Figure 3B). Then, an
experienced researcher must inspect the clusters to determine the
type of behavior. The dendrogram shows the proximity between
clusters and helps to identify the ramifications that represent
a class of behavior (Figure 3C). In mice, 5 behavioral clusters
were identified (locomotion, left/right turns, sniffing, rearing,
and exploration), suggesting that PyRAT is easily generalizable
to different experimental setups (data available on PyRAT’s
GitHub).

We developed a function to facilitate coupling the tracking
data with the analysis of neural signals, in this way, we
implemented the SignalSubset() function to extract time
windows of defined events based on the interactions (function
Interaction() output), the behavioral clusters or even from
a list of timestamps (Figure 4A).

The function SpatialNeuralActivity can be used to
create a map associating a neural activity to the pixel space. The
input of this function is a Dataframe with the x and y of each
frame together with a third column with the neural activity to
be visualized. The output is a 2D NumPy array with the mean
activity in each discrete space of the map. We used neural data
published in Fujisawa et al. (2008) to develop an example of spike
triggered activity for some units in a T-maze (Figure 4B). We are
still developing this function to add more features, e.g., to plot
the mean band of an LFP channel in the map instead of the spike
data. The results and the code are available on PyRAT’s GitHub.

3.2. User Guide
Python in Rodent Analysis and Tracking is a user-friendly
Python toolbox to automate the analysis of animal tracking and
neural data. Toolbox functions are documented, and here, we
describe how to use the key features. PyRAT can be installed
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FIGURE 1 | (A) Representative image showing the marks of body parts used to train the network and the rat skeleton generated based on these marks. (B)

Representative trajectory plots of a rat during the exploration sessions of an open field arena carried out on 3 consecutive days. Color variation indicates the moment

in time at the rat’s location. (C) Heatmaps of average trajectories during each exploration session. (D) Average distance traveled during each exploration session. (E)

Average distance traveled during each exploration session is shown in blocks of 5 min per day. Data are expressed as mean ± SD.
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FIGURE 2 | (A) Image showing the trajectory of one rat for 120 s based on the snout coordinates. (B) Image showing rat body orientation during the entire object

exploration session. (C) Average heatmap during the entire object exploration session. (D) Top: Object interaction across the entire object exploration session; Bottom

left: Bar plot showing interaction time with objects A and A’; Bottom right: Bar plot showing the number of interactions with object A and A’. Data are expressed as

mean ± SD.

using pip install pyratlib. Then, it is necessary to
import the following libraries:

import pyratlib as rat
import pandas as pd

Subsequently, the user must read tracking data as a
DataFrame, e.g., using the read_csv() function from pandas.
This Dataframe will be used as input on the majority of PyRAT
functions. Here, we show how to plot the trajectories and the
heatmap:

data = pd.read_csv(’your_data_path.csv’)

rat.Trajectory(data, bodyPart = ’tail’, bodyPartBox = ’tail’)
rat.Heatmap(data, bodyPart = ’tail’, bins = 10, vmax = 50)

To plot the trajectory, the user must define a body part in
the function Trajectory using the bodyPart parameter
which is the column name of the chosen body part. The function
Heatmap() uses the bodyPart and the parameters bins and
vmax, which determine the resolution and color scale of the plot.
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FIGURE 3 | (A) Bidimensional projection representing each cluster found by the unsupervised algorithm of behavior classification. (B) Histogram showing the number

of frames in each cluster. (C) Top left: Dendrogram presenting the proximity of the clusters. Clusters with similar behaviors were grouped after visual inspection. We

identified five behavioral clusters: immobility, sniffing, locomotion, rearing, and nesting/sleeping. The other images are representative frames showing some of the

behavioral clusters identified.

Another PyRAT feature is the quantification of the interaction
between a body part and an area. This interaction can be
calculated with the function Interaction() and defining
a bounding area by passing the size and coordinates of the
vertices. The function FieldDetermination() allows the
visualization of areas in the pixel space, according to the tracking
data. Also, we developed the function PlotInteraction()
to plot the beginning, end, and duration of interactions with each
bounding area across time:

obj_dict = {’Obj_1’: [1,0,0,0,430, 35,90,75],
’Obj_2’: [1,0,0,0,430,380,90,75]}

objects = rat.FieldDetermination(posit = obj_dict)
interactions = rat.Interaction(data,’snout’,objects)
rat.PlotInteraction(interactions)

In the example above, two areas representing objects in
distinct positions were passed as input, and the output is a
DataFrame with the timestamps of each object interaction.
The function PlotInteraction() plots object interactions
across time (Figure 2D).

The function ClassifyBehavior() is a behavioral
classifier and receives as parameters the tracking DataFrame, the
video directory, the selected body parts, and the distance:

rat.ClassifyBehavior(df,

video = ’path’,

bp_list = [’snout’, ’ear_R’, ’ear_L’, ’tail’],

distance = 28)

The distance metric passed in this function is Ward’s distance
and defines the threshold above which the clusters will not be
merged.

To facilitate the analysis of neural signals recorded during
behavioral tasks, we developed the function Interaction()
to extract timestamps of events of interest and the function
SignalSubset() to extract epochs of the neural
signal. An example of neural data input is available in
Supplementary Material. We used files from Plexon and
Blackrock Neurotech, but data from other acquisition systems
can be used.

subsets = rat.SignalSubset(signal, freq = 1000,
fields = interactions)

SignalSubset() returns the extracted data organized
in a dictionary with the number of the epoch as the
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FIGURE 4 | (A) Overview of SignalSubset function. Left column: The SignalSubset function receives as input neural data (e.g., raw LFP) and the clustermap produced

by ClassifyBehavior. Right column: SignalSubset function returns a list of extracted neural data corresponding to time windows of a determined behavior (e.g., Cluster

11). We also show a representative spectrogram of extracted data. (B) Overview of SpatialNeuralActivity function. Left column: The SpatialNeuralActivity function

receives as input the neural data (e.g., single unit spike rasterplot) to be shown in pixel space, and the tracking as spatial data. Right column: The SpatialNeuralActivity

function returns the quantification of neural activity (spike firing) in each part of the pixel space.
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key. In addition, it can extract the time of a selected
behavioral cluster. For this, it is necessary to use the
cluster output from ClassifyBehavior() as input to
the IntervalBehaviors() function, which will return a
dictionary with the time windows when each behavior was
manifested (documented in GitHub). This function facilitates
data processing and allows saving the dictionary, speeding up
data loading.

The function Reports(), which summarizes data from
several animals, receives as input the lists with DataFrames and
the file names, as well as the body part of interest to extract the
metrics and, if necessary, an area to calculate interactions:

list_df = [df01,df02,df03,df04,df05,df06,
df07,df08,df09,df10,df11,df12]

names = [’RAT01’,’RAT02’,’RAT03’,’RAT04’,’RAT05’,’RAT06’,
’RAT07’,’RAT08’,’RAT09’,’RAT10’,’RAT11’,’RAT12’]

report = rat.Reports(df_list = list_df,list_name = names,
bodypart = ’snout’,fields = objects)

4. DISCUSSION

We presented the PyRAT, a library for animal tracking
data analysis developed to be accessible to less experienced
programmers. We implemented functions to infer common
animal behavioral metrics used in the literature, such as object
interaction (duration and number of interactions), traveled
distance, speed, and time spent in different areas (Lima et al.,
2009; Gonzalez et al., 2019; Rossato et al., 2019; Moura et al.,
2020). Also, we implemented functions to infer animal behavior
from tracked body parts in each frame using unsupervised
approaches. If video recordings are synchronized with neural
data, PyRAT can be used to extract epochs based on specific
behaviors or metrics. Finally, our results indicate that PyRAT
analyzes tracking data from different animal models if videos
were acquired from a top-down perspective.

There is similar software that can analyze tracking data
as PyRAT, such as Traja, DLCAnalyzer, SimBA, and B-SOiD.
Traja is a Python library that can analyze tracking data from
coordinate data from any setup but does not infer behavioral
metrics. DLCAnalyzer is a collection of R scripts that processes
DLC files and quantifies motion metrics and behavior using
supervised algorithms (Sturman et al., 2020). Simple Behavioral
Analysis (SimBA) is software with an easy-to-use interface
that analyzes video or tracking data and applies a pre-trained
supervised classifier to cluster behaviors (Nilsson et al., 2020).
However, the SimBA interface only works in Windows, limiting
its usability on other platforms. B-SOiD is an open-source
package that identifies behavior by combining supervised and
unsupervised algorithms (Hsu and Yttri, 2021) and works in
mice, rats, and humans. B-SOiD analyzes videos acquired from
different perspectives, showing the best results from bottom-up
recordings. For further discussion and comparison between these
tools refer to Panadeiro et al. (2021); von Ziegler et al. (2021). In

contrast with other tools, PyRAT can be used in any operational
system, does not need pre-trained classifiers, works without a
graphic interface, and provides interactive documentation using
Jupyter notebooks.

Python in Rodent Analysis and Tracking is easier to use
than other alternatives as it is a collection of functions, and
the user just needs to input the tracking data to get the results
and graphics following the step-by-step tutorial included in the
documentation. In addition, PyRAT has a low learning curve,
as its implementation is based on procedural programming.
We designed the library to display metrics and graphics for all
recorded sessions with a few lines of code. It does not have
software requirements besides Python and widely used libraries,
such as sklearn, pandas, and matplotlib. In summary, we present
an open-source Python library to process tracking data, extract
behavior and associate this information with neural data in a
user-friendly approach.
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Neuroscientists can leverage technological advances to image neural tissue across a

range of different scales, potentially forming the basis for the next generation of brain

atlases and circuit reconstructions at submicron resolution, using Electron Microscopy

and X-ray Microtomography modalities. However, there is variability in data collection,

annotation, and storage approaches, which limits effective comparative and secondary

analysis. There has been great progress in standardizing interfaces for large-scale spatial

image data, but more work is needed to standardize annotations, especially metadata

associated with neuroanatomical entities. Standardization will enable validation, sharing,

and replication, greatly amplifying investment throughout the connectomics community.

We share key design considerations and a usecase developed for metadata for a recent

large-scale dataset.

Keywords: connectome, annotation, software, standard, queries, reproducibility

1. INTRODUCTION

In an effort to better understand structural organization and anatomy of nervous systems
at nanoscale spatial resolution, increasingly large, even petascale, connectomics datasets have
been collected using Electron Microscopy (EM) and X-Ray Microtomography (XRM) (Kasthuri
et al., 2015; Schneider-Mizell et al., 2020; Xu et al., 2020; Consortium et al., 2021; Shapson-
Coe et al., 2021; Witvliet et al., 2021). Currently, researchers and automated algorithms can
label cells, subcellular components, and connections between cells to generate brain networks.
Formats of such annotations, however, can vary greatly between datasets and institutions. As
such, the computational expertise required to explore large, unfamiliar datasets and understand
heterogeneous raw annotations remains a serious barrier to their widespread reuse, such as
for downstream analysis of previously-collected and potentially unfamiliar data. Consequently,
there is demand for simple community-adopted standards for storing key information about
neuroanatomical entities represented in EM, XRM, and correlated light microscopy (LM) datasets
as well as software tools built upon these standards to allow any researcher to quickly and easily
extract information on annotated bodies without grappling with raw annotation downloads and
lab-specific post-processing pipelines. This work focuses on filling a key need for the community
by addressing a central aspect of annotation variability. It calls for standardized storage of
metadata associated with key neuroanatomical entities, such as neurons, synapses, and organelles
to supplement raw annotations. It also suggests an approach to metadata standardization through
the use of community-adopted definitions, and demonstrates an example of how such standards
can facilitate the development of simple data exploration interfaces.
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Raw annotations may have any or all of the following formats:
segmentations, anatomical skeletons and meshes, synaptic
connectivity networks, and information in the form of tables
or network attributes. From dataset to dataset, each of these
primary data formats and associated documentation can vary in
terms of structure, meaning, and transparency, making it difficult
to use them to accurately extract relevant information about
commonly-studied entities and test simple hypotheses that may
not rely on spatial representations of the data. This motivates the
use of standardized formats for storing annotated objects along
with key attributes, separate from a lab’s chosen raw annotation
format, which may store such information indirectly. (i.e., The
number of synapses on a neurite can be extracted through
segmentation post-processing).

In this period of growth in EM, XRM, and correlated
LM imaging, and their increased adoption and utilization
in neuroscience, it would be advantageous to implement
standards that ensure interoperability and sustainability, beyond
just availability of these datasets through public release.
This will promote rapid analysis, true openness, sharing
between laboratories, and reproducible results in connectomics
research. Existing annotation formats serve their purposes
within labs, but extraction of neuroanatomical entities and
properties in a standardized format can facilitate cross-
institutional collaboration and exploration that existing formats
do not always permit. Further, such standardization will enable
the development of existing, as well as additional shared
computational tools with user-friendly interfaces for querying
these unique data for scientific discovery regardless of a user’s
computational expertise.

Because these datasets are large and complex, it is
especially important to promote data exploration and discovery.
Visualization and querying tools exist already, but are often
lab- or dataset-specific (Clements et al., 2020). Furthermore,
developers of new software must choose a data representation
to support, which limits each new tool’s broad applicability. One
benefit of annotation standards is the potential for mitigation
of this challenge through design and modification of software
tools to build upon annotation standards. Visualization and
querying software such as Neuroglancer (Maitin-Shepard, 2020),
Neuromorpho (Ascoli et al., 2007), DotMotif (Matelsky et al.,
2021), Webknossos (Boergens et al., 2017), NeuPrint (Clements
et al., 2020), and others (Yatsenko et al., 2015) can be modified
to support community-developed annotation standards and even
integrated into a standards-supported, centralized discovery
portal geared toward users without extensive computational
backgrounds. Such a centralized connectomics discovery
platform that allows exploration of datasets across imaging
modalities, organisms, and institutions, is an exciting prospect,
and is most feasible once metadata standardization is adopted.

This work will discuss the need for annotation metadata
standards, propose a framework for such standardization, and
demonstrate an application of such standards. To demonstrate
potential impacts of standards on analysis software, we provide
a case study in which we build tools to store and query a large
emerging human connectome dataset, H01 (Shapson-Coe et al.,
2021).

2. ANNOTATION STANDARDS

An acknowledged challenge in the field of connectomics is
mitigating the impact of highly varied annotation representation
on software and institution-level interoperability (Plaza et al.,
2014). As the field grows and data volumes increase, the
necessity for sharing data through remote and programmatic
interfaces increases, and, in turn, the need for community-
developed algorithms and software to extract and process that
data also grows. Answering this challenge requires creating
and popularizing annotation representation standards which
enable parsing and understanding the scenes present in these
nanoscale neuroimaging volumes, without alienating researchers
with existing analysis pipelines.

Because the fields of EM and XRM data are still emerging,
defining standards for these communities is timely. In order
to enable community-oriented connectomics frameworks and
collaboration, new annotation standards and software tools
built to support those standards must strike a balance
between organization and flexibility which is why we focus on
standardized, expandable neuroanatomical entity definitions to
store metadata as opposed to restricting raw annotation formats.

2.1. Support Common Raw Annotation
Formats
The call for metadata standardization does not necessitate
abandonment of existing raw annotation representation formats.
Abandoning these formats could lead to obsolescence of existing,
useful annotation, and analysis software (Ascoli et al., 2007;
Saalfeld et al., 2009; Boergens et al., 2017; Berger et al., 2018) and
ultimately alienation of institutions with incompatible formats,
and is not the focus of this article. Instead, we hope to provide a
blueprint for a new export format and urge institutions to build
import/export tools. New standards, therefore, can continue to
support a variety of common data representations.

Though not the focus of this article, the authors recognize
that raw annotation formats could benefit from improvements as
well, specifically in terms of documentation. Further work could
better connect metadata to raw annotations and convey how
neuroanatomical entities are represented in raw annotation data.

2.2. Facilitate Connections Between
Datasets
Additionally, community-adopted annotation standards can
enable linkage between data modalities and datasets. This
facilitates comparison, meta-analysis, and registration with
other datasets and imaging modalities. Links to different data
modalities such as those between structural and functional LM
data for the same subject, can encourage exciting research
relating structure to function at the synaptic level (Consortium
et al., 2021), and links between datasets can facilitate analysis
across brain regions, individuals, and species, paving the way for
understanding what is conserved and what differs across datasets
and enabling large-scale discovery.
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2.3. Metadata Standardization
Storage of metadata associated with neuroanatomical entities
needs to be standardized to promote reproducibility,
extensibility, and queryability of connectomics metadata.
As such, new metadata standards must be built around the core
knowledge products extracted from neurons, synapses, and their
relationships (e.g., connectivity). Further, because user needs
for data processing are diverse, standards must be conducive
to common nanoscale connectomics research questions, such
as those pertaining to location, topology, morphology, and
cell types (LaGrow et al., 2018) as well as those surrounding
connectivity at a local or circuit level (Matelsky et al., 2021)
and even at higher-levels pertaining to brain regions and
white matter tracts (Sporns et al., 2004; Bassett and Bullmore,
2006).

To satisfy diverse user needs as well as the need for
standardization, we propose that the community agree upon
definitions and minimum required attributes for key entities
extracted from connectomics data, which are relevant to a
variety of research areas. In Table 1, we define several areas
and examples for annotation metadata standardization. For
each neuroanatomical entity in the dataset (e.g., neuron,
synapse, neurite, etc.) data owners should provide the URI,
data representation, type, and, when applicable, links to other
entities. Additionally, entities can be either user-defined or
community-defined. Though data owners have the option
to define new entities (e.g., user-defined), there are several
entities which should have community-adopted definitions
and properties. This combination of entities appropriately
balances structure and flexibility in a way that allows software
built upon standards to extract information uniformly across
datasets while also allowing researchers to store additional non-
standardized entities and metadata as desired. It also allows
researchers to choose the level of granularity at which to
store a dataset. Though community definitions will exist for
multiple levels (e.g., from vesicles and mitochondria to neurons
and layers), not every dataset needs to include all of these
entities. Larger datasets, for example, may only include higher-
level entities, while smaller datasets might contain lower-level
entities. The only stipulation is that if a dataset chooses to
include a particular entity, that entity’s minimum properties
must be satisfied.

Our approach to annotation representation and
metadata follows a neuroscience schema, previously
used internally, called Reusable Annotation Markup
for Open Neuroscience (RAMON) (Gray Roncal et al.,
2015). RAMON defines a minimum set of annotation
types and associated metadata that capture important
biological information as well as relationships between
annotations that are critical for connectome generation
and neuroscientific exploration.

In particular, the H01 synapse annotation type includes
metadata such as synapse id, type, and associated neurons.
Currently, RAMON defines metadata standards for biological
entities which are used commonly across connectomics datasets,
such as neurons, synapses, and organelles, although this can be
extended to additional entity types as needed.

3. ANNOTATION QUERIES

As mentioned previously, one benefit of metadata
standardization is that it enables the development of tools
to query data, regardless of its origin. Through queries,
researchers can characterize networks, extract patterns, and
relate these patterns to function. Currently, however, asking even
basic, fundamental questions (e.g., how many, how much) about
a new dataset can be challenging from both a standardization
and computational complexity perspective. Though previous
work has presented information extraction tools for specific
datasets and institutions (Clements et al., 2020), metadata
standardization has the potential to expand the use of existing
tools cross-institutionally, foster the development of new ones,
and facilitate integration of numerous tools into a single location.
The community would benefit from a shared discovery portal
built upon community archives and standards (Ascoli et al.,
2007; Sunkin et al., 2012; Vogelstein et al., 2018; Rübel et al.,
2019), which provides broad accessibility to EM and XRM
data and annotations through query submission tools to enable
deeper understanding of these data. In this work, we demonstrate
this particular benefit of metadata standardization through the
development of a simple querying tool built upon RAMON.

Ideally, researchers should be able to easily query counts,
distributions, properties, and connectivity of neuroanatomical
entities as well as image and graph metrics for any connectomics
dataset, regardless of source institution. Queries such as number
of synapses in a given region, or the distribution of synapses
on a particular neuron type could help answer a variety of
research questions, but the broad community interested in brain
atlases and neuroanatomy has traditionally had little access to
and experience with large-scale EM and XRM datasets. Tools
for executing standardized queries could, therefore, enable a new
wave of discoveries.

4. CASE STUDY: H01 HUMAN DATA

Here, we present a case study, in which we store annotations
from a petascale human cortex dataset, theH01 dataset (Shapson-
Coe et al., 2021) and build tools to that allow users to access
and query that data through a web application. The H01 dataset
consists of a cubic millimeter volume with annotations for 50,000
cells, hundreds of millions of neurites, and 150 million synapses,
taken from a human surgical sample from the temporal lobe
of the cerebral cortex. This dataset was chosen because of its
size, breadth of annotation types, and significance as the first
large, nanoscale human connectomics dataset. To demonstrate
the robustness and generalizability of our approach, we also
include a second dataset (Kasthuri et al., 2015) in our database
and query engine.

4.1. Software Architecture
As a demonstration of the power of metadata standardization,
and to shed light on neuroanatomy in the human cortex,
we developed a connectomics query engine which supports
the analysis of the H01 dataset. Our application, called the
H01 Community Discovery Portal, is currently deployed in the
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TABLE 1 | Key annotation metadata definitions.

Uniform resource identifier (URI) A link to specify where source data is located

Links URIs to parent, child, sibling relationships

Data representation The format used to represent a neuroanatomical entity (e.g., skeletons, meshes, or pixels)

Entity An object with neuroscience significance (e.g., RAMON types: neurons, synapses, organelles); has properties

Property An attribute and value such as weight, cell type, or layer

Community-defined entity An entity with a community-adopted definition and a minimum set of required properties; can be extended

Community-defined property A property with a community-adopted definition

User-defined entity An entity without a community-adopted definition or minimum set of required properties; an entity defined by the user

User-defined property A property without a community-adopted definition; a property defined by the user

Amazon Web Services cloud and follows the Representational
State Transfer (REST) software architecture to ensure flexibility
for storage of neuroanatomical metadata. The discovery portal
consists of a Flask-based (Grinberg, 2018) web application, which
serves as a user-friendly interface for researchers to explore and
query the H01 dataset, a standards-supported H01 database,
and a Flask-based Application Programming Interface (API) to
enable easy access to the H01 dataset.We note that this is a simple
example demonstrating the concepts outlined in this article and
additional systems (e.g., neuPrint, CATMAID) might be used as
robust alternatives with an appropriate schema.

The API is a web service consisting of eight RESTful web
endpoints which retrieve and return H01 synapse, neuron, and
layer data when a specific URL is accessed over Hypertext
Transfer Protocol. The H01 Community Discovery Portal
stores annotation metadata in a document-oriented, MongoDB
(Chodorow, 2013) database.

4.2. Storing and Accessing the H01 Data
In the H01 database, we store nearly 27 GB of synapse, neuron,
and layer properties along with their properties as MongoDB
collections as described below:

• Neuron Object: Neuron ID (Integer), Volume
(NumberLong), No. Outgoing Synapses (Integer), No.
Incoming Synapses (Integer), No. Incoming Excitatory
Synapses (Integer), No. Incoming Inhibitory Synapses
(Integer), No. Dendrite Skeleton Nodes (Integer), No.
Axon Skeleton Nodes (Integer), No. Dendritic Spines Skeleton
Nodes (Integer), No. Cilia Skeleton Nodes (Integer), No. Axon
Initial Segment Skeleton Nodes (Integer), No. Myelinated
Axon Skeleton Nodes (Integer), Spinyness (Double), Layer
(Integer), Neuron Type (Integer), Excitatory/Inhibitory
Synapse Balance (Double)

• Layer Object: Layer Width (Integer)
• Synapse Object: Synapse ID (ObjectID), Synapse Type

(Integer), Pre-synaptic site (Object), Post-synaptic partner
(Object), Location (Integer), Bounding Box (Integer), Layer
(Integer)

Each H01 synapse, neuron, and layer entity has an arbitrary
amount of key-value properties which represent the object’s
metadata and attributes. Currently, each layer object has one
attribute, each neuron object has 19 attributes, and each synapse
object has seven attributes. Additionally, some attributes link

to other entities with their own properties. For example, the
synapse object has attributes, pre-synaptic site and post-synaptic
partner, which contain sub-attributes, such as the associated
neuron’s id and class type. The document-oriented storage
approach allows for H01 annotation attributes to be stored as
arbitrary key-value pairs in which attributes can be easily added,
queried, and indexed.This method served its primary purpose of
demonstrating metadata standardization benefits, and we did not
explore other database types.

4.3. Querying Data
We demonstrate a querying tool which performs standard
queries relevant to a variety of connectomics research areas from
the H01 dataset using the RAMON API. It is in the form of
a web application with a user-friendly interface and provides a
centralized location where users can easily explore the dataset
individually through a personal query page (Figure 1), only
accessible after the user is authenticated, as well as collaboratively
through a “Popular Queries” page, accessible to all users.

The web application, located at metadata.bossdb.org, is also a
Flask app which uses SQLite to store query and user information.
It provides users with the ability to extract data via dropdown
menus, enables visualization of cells and their synapses via
Neuroglancer, supports reporting of potentially problematic
annotations, compiles questions and answers from all users to
generate a “Popular Queries” page, and even allows users to
suggest new queries for integration into the app. At the moment,
users can ask seven types of questions about the H01 dataset for
a total of 119 questions shown below:

1. How many [Synapse Type] synapses are made in [Location]?
2. Which layer has the [Most/Fewest] [Synapse Type] synapses?
3. How wide is [Layer]?
4. What is the [Average/Total] length of neurons in [Location]?
5. Show me the neuron with the greatest number of [Synapse

Type] synapses in [Location].
6. Show me a neuron with an E

E+I value of [Value between 0 and
1] in [Location].

7. List all neurons with an E
E+I value of [Greater/Less] than

[Value between 0 and 1] in [Location].

where synapse types include all synapses, excitatory and
inhibitory synapses, and those onto axon initial segments or
dendrites, locations include the entire volume or any of the seven
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FIGURE 1 | H01 personal query page. Users can ask questions about the H01 dataset using dropdown menus and text boxes. Some answers are well-suited for

visualization. The app uses Neuroglancer to display neurons related to such answers.

layers, and E and I are the number of incoming excitatory and
inhibitory synapses, respectively.

This list of question types will continue to expand as
functionality is added. We hope to continue to incorporate query
types, especially those discussed in Section 3.

5. DISCUSSION

Nanoscale connectomics is an exciting field that has the potential

to answer a wide range of questions in neuroscience and the

potential to impact exciting and diverse application areas. The
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number and size of EM and XRM datasets are growing, and
with that growth comes an increased need for standardization
of both imaging data and annotations. Work to standardize
imaging data is underway, while standards to address annotation
format and content variability are still emerging. As the field
exists today, extracting relevant information about labeled
entities requires both a significant computational background
and a deep understanding of how that particular data is
stored. Consequently, data access tools built upon annotation
standards will increase accessibility and ease of access to these
exciting datasets.

Standardization of metadata, while maintaining the flexible
spirit embodied by an emerging field lays the groundwork
for community-adopted standards which enable reproducible
analysis as well as natural standards evolution over time.
RAMON, RAMON API, and the H01 Community Discovery
Portal demonstrate one example of how annotation standards
and software tools can interact to support both collaborative
and individual scientific discovery, but the possibilities are
endless. The H01 Discovery Portal demonstrates how metadata
standardization can push the field of connectomics toward
solving potential applications by reducing redundant data
processing code and encouraging data exploration and
collaboration. All three of these tools have the potential
to evolve to include additional queries, data sources, and
annotation types.

Although it would be convenient to develop fully-automated
pipelines to convert from lab-specific implementations to a
common schema, due to the diversity in storage formats
currently implemented, this will require future work. However,
the process of understanding and translating important datasets
has relatively low-resource requirements and can be simplified
by focusing on the final, published data, which tends to be
more standardized and common than intermediate products.
The authors extended the portal to include a query page for
Kasthuri et al. (2015) in addition to the H01 dataset. Though
this data contained different entities, it existed in a tabular format
similar to RAMON, which allowed for quick integration into the
software stack.

The authors note, however, that the implementations of
these tools may not be optimal as they were built primarily
for standards demonstration purposes and thus serve as a
proof of concept. For example, only MongoDB was considered
for storing H01. In order to determine the best type of
database to use for metadata storage, additional options such
as DynamoDB, Google Cloud Firestore, Cassandra, and Azure
Cosmos DB must be explored. Additionally, the web interface
went through a small number of internal design cycles with
particular emphasis on simple, clear, and intuitive querying. A
more polished portal would necessitate an extensive design and
feedback process. The authors hope to develop similar tools once
standards are developed that allow for intuitive exploration of
numerous datasets in a centralized location through expansion
and integration of existing tools as well as development of
new ones.

Further, we note that a top-down, universal specification
of metadata standardsis unlikely to satisfy all stakeholders.
For future work, we will ,therefore, seek a data-driven
approach leveraging existing published data (Hider et al.,
2019) and explicit community input. Standardization is
often a balance between flexibility and usability, and we
believe a fruitful path forward is to concentrate initially on
published products.

Given the current limited accessibility of connectomics
data, the patterns in brain networks may remain hidden
behind these complex data, and scientific discovery
could be limited. We look forward to building on these
initial tools and formats through community engagement
and feedback.
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