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Editorial on the Research Topic

Role of the antigen receptor in the pathogenesis of B-cell
lymphoid malignancies
This Research Topic contains nine manuscripts related to different scientific aspects of

the “Role of the Antigen Receptor in the Pathogenesis of B-Cell Lymphoid Malignancies”.

Each publication addresses pending issues, including (i) the role of the B cell receptor (BcR)

in the ontogeny of these malignancies; (ii) the clinical relevance of particular properties of

the clonotypic BcR immunoglobulin (IG) and other associated surface cell markers; and,

finally, (iii) the benefits of targeting this crucial receptor for therapeutic purposes.

The notion that antigen selection of B cells through the BcR drives the pathogenesis of

B-Cell Lymphoid Malignancies, such as CLL, is now well established. CLL is always

preceded by monoclonal B-cell lymphocytosis (MBL), defined by a clonal B cell population

of less than 5 × 109/L and no symptoms or signs of disease. In this context, the review by

Galigalidou et al. contains valuable information on the role of microenvironmental

interactions in MBL ontogenesis and its progression to CLL. More specifically, the study

of immune cell (B and T cells) receptor repertoires revealed important differences between

MBL and CLL, alluding to distinct selection forces, both in terms of the nature of the

selective antigens as well as the persistence of these interactions. Furthermore, the study of

residual B cells revealed an impaired B cell production in the bone marrow, already at the

stage of MBL. Hence, the tumor microenvironment in MBL may be pivotal for

understanding the initial steps of malignant transformation.

Along the same lines, Kolijn et al. provided relevant information about the ontogenesis

of a specific type of CLL, defined as familial CLL. Of interest, all four affected siblings of one

of the families included in the study carried BcR IG expressing the IGLV3-21 gene with the

hallmark R110 mutation. The BcR IG in 2/4 siblings were assigned to either stereotyped

subset #2 or its immunogenetic relative subset #169, both of which belong to the clinically

aggressive IGLV3-21R110 CLL subgroup. Furthermore, the CLL clones within each family

exhibited driver gene mutations previously associated with IGHV mutational status,

cytogenetic aberrations and stereotyped subsets. Altogether, these findings underline the
frontiersin.org0145
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notion that specific immunogenetic characteristics in combination

with genetic aberrations drive CLL development, at least of the

familial type.

In recent years, there has been accumulating evidence that the

BcR expression levels and its functionality may associate directly or

indirectly with other molecules. CD5 is considered among the most

relevant ones in the context of CLL, which is located close to the

BcR IG on the surface of the B cells and promotes cell survival and

proliferation. In a brief research report, Maisano et al. described a

novel peptide-based single-cell sorting methodology using the

clonotypic BcR IG as bait. Hence, this study provided a proof of

concept for the use of BcR IG ligands as probes for sorting and

analyzing CLL clones. At the scientific level, transcriptomic analysis

showed that the CD5 expression levels correlated with the

expansion of the CLL clone, revealing a novel mechanism that

could affect clonal expansion and persistence in CLL.

Over the years, immunogenetic studies in several B-Cell

Lymphoid Malignancies support the theory for antigen drive by

identifying distinct biases in the BcR IG gene repertoires. For

example, the VH CDR3 sequences of the clonotypic BcR IG in

CLL are characterized by length and amino acid composition

restrictions. Rodriguez-Caballero et al. investigated the

hydropathy index of the VH CDR3 in a large series of CLL

patients and performed associations with other prognostic factors.

Overall, two distinct subgroups of M-CLL patients emerged,

displaying a neutral versus a negatively charged VH CDR3.

Substantial differences were observed, with the M-CLL subgroup

with neutral VH CDR3 being characterized by the predominance of

the male gender, more advanced disease stage and a higher

frequency of genetic aberrations, together with a higher rate of

disease progression and shorter time-to-therapy (TTT). These

findings further corroborate the relevance of the VH CDR3 in

particular, and the BcR in general in CLL pathogenesis.

Another unique property of CLL is that a large fraction of clones

(around 40%) are characterized by the expression of stereotyped

BcR IG, which display distinct biological and clinical properties.

Furthermore, CLL BcR IG have often been shown to carry

autoreactive properties, alluding to a defect in immune tolerance

in the respective patients. In two independent studies, Bagnara et al.

and Vergani et al. performed high-throughput sequencing to

explore the presence of stereotyped BcR IG in healthy donors.

“CLL-like” stereotyped BcR IG were identified with no evidence of

preferential accumulation in specific B-cell subpopulations

(including CD5+ B cells at this pre-leukemic phase), possibly

because either the level of autoreactivity is not high enough to be

considered as dangerous by tolerance mechanisms or due to editing

of the clonotypic IG light chain genes.

The mutational load of the rearranged IGHV gene is considered

one of the most accurate prognostic markers in CLL; in detail, M-

CLL patients have better outcomes than patients with U-CLL,

probably because somatic IGHV mutations may affect the BcR IG

structure towards abolishing polyreactivity. Kaufman et al. tried to

address the latter by comparing cases with different ratios of

replacement (R) mutations that lead to non-conservative amino

acid changes (Rnc) to the combined numbers of conservative (Rc)

and silent (S) amino acid mutations. When comparing time-to-
Frontiers in Oncology 0256
first-treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1,

TTFTs were quite similar. As the authors proposed, the structure of

the BcR IG may not be the most critical factor for dictating

outcomes in CLL, yet one should keep in mind that SHMs, even

those of non-conservative nature, do not always affect the BcR IG

structure substantially.

Over the years, significant progress has been made in the

therapeutic management of CLL as well as other B-cell

malignancies; in detail, targets in the BcR signaling pathway, such

as BTK and PI3Kd, have emerged as a successful treatment strategy.

Unfortunately, a proportion of patients still relapse, indicating the

need to identify new therapeutic targets. In this context, Sana et al.

provided a comprehensive review regarding the importance of

studying and identifying new potential druggable targets, focusing

on NFAT. These transcription factors are involved in inflammation

and the development of both autoimmune and neoplastic diseases.

In more detail, NFAT1 and NFAT2 were described to affect cell

proliferation and cell death after BcR stimulation. Finally, targeting

NFAT was beneficial in treating CLL and lymphoma in preclinical

models, with ABC DLBCL cells being particularly dependent on the

activation of the NFAT pathway.

Of interest, Arbel et al. demonstrated that the BcR pathway can

be efficiently targeted in CLL cells using proteolysis targeting

chimeras (PROTACs). More specifically, the reversible non-

covalent compound (NC-1) could degrade BTK in CLL cells,

leading to decreased baseline BTK phosphorylation. Furthermore,

this led to lower levels of activation of BTK and other signaling

molecules downstream of the BcR pathway, following IgM

engagement. These effects were also found in samples from CLL

patients with clinical resistance to ibrutinib and the BTK

mutation C481Y.

Overall, this collection contains several new information, concepts,

and ideas related to the role of BCR in lymphoproliferative diseases

that can also be used as further insights for work in this field.
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Role of NFAT in Chronic
Lymphocytic Leukemia and
Other B-Cell Malignancies
Ilenia Sana1†, Maria Elena Mantione1†, Piera Angelillo1,2 and Marta Muzio1*

1 Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy, 2 Lymphoma Unit, Department of
Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy

In recent years significant progress has been made in the clinical management of chronic
lymphocytic leukemia (CLL) as well as other B-cell malignancies; targeting proximal B-cell
receptor signaling molecules such as Bruton Tyrosine Kinase (BTK) and Phosphoinositide
3-kinase (PI3Kd) has emerged as a successful treatment strategy. Unfortunately, a
proportion of patients are still not cured with available therapeutic options, thus efforts
devoted to studying and identifying new potential druggable targets are warranted. B-cell
receptor stimulation triggers a complex cascade of signaling events that eventually drives
the activation of downstream transcription factors including Nuclear Factor of Activated T
cells (NFAT). In this review, we summarize the literature on the expression and function of
NFAT family members in CLL where NFAT is not only overexpressed but also
constitutively activated; NFAT controls B-cell anergy and targeting this molecule using
specific inhibitors impacts on CLL cell viability. Next, we extend our analysis on other
mature B-cell lymphomas where a distinct pattern of expression and activation of NFAT is
reported. We discuss the therapeutic potential of strategies aimed at targeting NFAT in B-
cell malignancies not overlooking the fact that NFAT may play additional roles regulating
the inflammatory microenvironment.

Keywords: nuclear factor of activated T cells, B-cell receptor, chronic lymphocytic leukemia, lymphoma,
lymphoid malignancies
INTRODUCTION

Targeting B-Cell Receptor Signaling in Chronic Lymphocytic
Leukemia
In recent years there have been significant improvements in the field of chronic lymphocytic
leukemia (CLL) from both bench and bedside perspectives. CLL cells are addicted to different
microenvironmental stimuli with a key role being played by the B-cell receptor (BCR) stimulation
and/or constitutive cell autonomous BCR activation (1) leading to cell survival and proliferation.
Abbreviations: BCR, B cell receptor; BTK, Bruton Tyrosine Kinase; CLL, Chronic Lymphocytic Leukemia; DLBCL, Diffuse
large B-cell lymphoma; NFAT, Nuclear Factor of Activated T cells; NFkB, Nuclear Factor kappa-light-chain-enhancer of
activated B cells; PI3K, Phosphoinositide 3-kinases; TF, Transcription Factor.
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On this scientific basis, several lines of research led to the
development of small molecule inhibitors of the kinases that
transmit the signals from the proximal BCR signaling complex
to the downstream Transcription Factors (TFs) [i.e. Bruton
Tyrosine Kinase (BTK) and Phosphoinositide 3-kinases delta
(PI3Kd)] (2, 3). CLL is a disease of the elderly, but it can also
affect younger patients, who often are the most difficult to treat
given the long disease history and the frequent need for
multiple lines of treatment. To date, the only curative
approach for CLL patients, unfortunately, is allogeneic bone
marrow transplantation, a procedure burdened by a high rate
of morbidity and mortality especially in older patients.
Nowadays, one of the most powerful available tools for the
treatment of CLL, is a novel small molecule that inhibits BTK,
Ibrutinib. The drug was approved by the US Food and Drug
Administration in 2014 for the treatment of relapsed refractory
CLL and for CLL patients with the 17p deletion/mutation,
known to frequently be chemo refractory. Ibrutinib was granted
approval for first-line treatment of CLL in March 2016; since
then, data from real world practice consistently shows a
significant improvement in survival curves, in keeping with
what investigators previously observed in clinical trials (4, 5).
BTK is not the only target of novel non chemotherapeutic
agents, as both BTK and PI3Kd inhibitors are highly effective
even for the treatment of refractory or relapsed disease. These
drugs are designed to be administered until relapse/progression
or unacceptable toxicity. Patients are therefore kept under
follow-up during the administration for early detection of
signs of clinical progression or toxicity. Several factors have
been proposed as predictive markers for the emergence of
resistance (i.e. prolonged lymphocytosis) (6, 7), which is
currently an unmet clinical need. Novel therapeutic strategies
are needed to cure refractory patients and to perhaps achieve
deeper response with the intent of fully eradicating the disease.
Frontiers in Oncology | www.frontiersin.org 278
In this context, we hypothesize that exploring other
downstream signaling mediators including transcription factors
may reveal novel vulnerabilities of malignant B cells, which could
be of aid in treating CLL and other B cell malignancies. Given
that resistance to targeted agents often occurs by mutation of the
target kinase (8, 9), it is reasonable to hypothesize that blocking
downstream signaling molecules could be a strategy to block the
transmission of the survival signal to the nucleus. One of the
transcription factors involved in B-cell antigen receptor signaling
is NFAT, Nuclear factor of activated T-lymphocytes [others
being Nuclear Factor kappa-light-chain-enhancer of activated
B cells (NFkB), cMyc and activator protein 1 (AP1)]. Here, we
briefly describe the biology of NFAT followed by a discussion on
the expression pattern and functional role of NFAT transcription
factors in CLL and other lymphoid malignancies.

The Nuclear Factor of Activated T-Cells
Family of Transcription Factors
The NFAT family of TFs includes five members grouped by the
presence of the REL homology region (RHR), a highly conserved
DNA binding domain that confers a unique DNA binding
specificity to these proteins (see Figure 1 for a schematic
representation). Several alternative names exist for each NFAT
member, and they are all reported in Table 1 together with
essential information on each gene. Herein, we refer to the NFAT
family members with their official names; NFAT1, NFAT2,
NFAT3, NFAT4, and NFAT5.

Four NFAT proteins share sequence homology in the N-
term regulatory region (NHR) responsible for the modulation
by Calcium signaling, while NFAT5 is induced by osmotic
stress (10). Briefly, calcium-dependent NFATs are normally
retained in an inactive state into the cytoplasm of the cells by
different kinases that phosphorylate the NHR domain (11).
The stimulation of receptors such as the BCR in B-cells and
FIGURE 1 | Schematic representation of the structure of NFAT1-4 and NFAT5. NFAT proteins contain a REL homology region (RHR), the most conserved domain,
which binds to DNA and is common to all five NFAT family members. The NFAT homology region (NHR) is the regulatory region conserved in NFAT1-4 members but
not in NFAT5 and contains two calcineurin-binding sites, serine residues (SSR, SP), a Nuclear Localization Sequence (NLS) and a Nuclear Export Signal (NES).
NFAT5 does not display the calcineurin binding site but owns an auxiliary export domain (AED) and a NLS and possess a nuclear export sequence (NES) located at
the first 19 amino acids. All NFAT family members have a N-terminal Transactivation Domain (TAD) and a C-terminal domain which are the less conserved regions.
April 2021 | Volume 11 | Article 651057

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sana et al. NFAT in B-Cell Malignancies

Frontiers in Oncology | www.frontiersin.org 389
the T-cell receptor (TCR) in T-cells (12) generates a cascade
that induces calcium mobilization through the activation of
phospholipase C (PLCg) that hydrolyzes phosphatidylinositol-
3,4-bisphosphate (PIP2) leading to the release of diacylglycerol
(DAG) and inositol-1,4,5-trisphosphate (IP3). IP3 binds to the
IP3 receptor and causes the release of Ca2+ from the
endoplasmic reticulum and the consequent extracellular
influx of Ca2+ in the cytosol by specific calcium channels (13,
14) (see Figure 2 for a schematic representation). The presence of
Ca2+ ions cause the binding of calmodulin (CaM) to the
calcineurin phosphatase, leading to the dephosphorylation and
activation of NFAT serine residues in the regulatory domain.
Nuclear importing factors then mediate NFAT translocation into
the nucleus where it binds the DNA alone or with other factors
such as AP1, Stat3, GATA, c-Fos, c-Jun, and NFkB, to regulate
gene expression either activating or silencing target genes; most of
which are immune-related (15, 16). NFAT inactivation and the
following relocation into the cytoplasm is operated by several
kinases including glycogen-synthase kinase 3b [please refer to the
following recent reviews for molecular details on NFAT proteins
(16–19)].

The molecular activation of NFAT5 is more complex and still
partially defined. Under isotonic conditions, there is a
continuous shuttling of NFAT5 between the cytoplasm and the
nucleus that can be regulated by tonicity stress. While hypotonic
stress promotes nuclear export of the protein, hypertonic
conditions induce transcription, translation and nuclear import
of NFAT5 (20, 21). With its well-known tonicity-related
regulatory role, it is emerging that several isotonic stimuli can
promote NFAT5 activity; for instance, triggering of innate
immunity receptors such as Toll-like receptors and consequent
activation of reactive oxygen species (ROS) and mitogen
activated protein kinases (MAPK) results in NFAT5 activation
that, interestingly, shows distinctive features with respect to the
osmotic activated response (22). However, the interplay between
these two mechanisms of activation and the exact molecular
pathways involved are still elusive and yet to be fully uncovered.
Studies on Different NFAT Deficient Mice
Uncover Distinct Functional Roles in the
B-Cell Lineage
To dissect the role of these TFs, several studies analyzed the
phenotype of specific NFAT-deficient mice as well as
combinations of two or more genetic deletions. For a
comprehensive description of the murine lines please refer to
online resources (e.g., the International Mouse Phenotyping
Consortium: https://www.mousephenotype.org; MGI-Mouse
Genome Informatics-: http://www.informatics.jax.org/). Herein,
we focus on the results related to lymphocytes and the B-cell
lineage as this may help in understanding and interpreting the
specific role of individual NFAT proteins in B-cell malignancies.

With the notable exception of NFAT3, for which no specific
studies analyzed the B-cell compartment, deletion of individual
NFAT or double inactivation of NFAT genes in vivo revealed the
importance of this TF family in the regulation of lymphocyte
differentiation, proliferation, apoptosis, cytokine production, and
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inflammation. The vast majority of the immunological studies, as
well as the B cell-centered ones, focused on NFAT1 and NFAT2
that regulate different B-cell populations in diverse ways (23).
Between the two, NFAT2 deficiency has a more severe impact;
indeed, the global loss of NFAT2 determines prenatal lethality
around day 14/15 upon gestation (24, 25). However, chimeric
mice with lymphocyte-restrained NFAT2 loss showed defects in
BCR-mediated proliferation of B cells (26), and a peculiar
deficiency in peritoneal CD5+ B1a B-cells (27). Specifically, the
defect in BCR-induced proliferation is determined by NFAT2-
Frontiers in Oncology | www.frontiersin.org 4910
dependent expression of CD22, Rcan1, Tnfsf14, FasL and other
key proteins of the BCR signaling pathway. In addition, the
abrogation of NFAT2-mediated calcium flux response facilitates
activation-induced cell death (AICD), which leads to the loss of
CD5+ peritoneal B1a cells. Moreover, the lack of NFAT2-
mediated repression of IL-10 production, impacts on IFN-g
production by CD4+ T-cells, impairing the capacity of B-cells to
stimulate T cell proliferation (28). Mice lacking NFAT2 in pro-B
cells have deficient expression of an essential TF determining B-
cell lineage fate, EBF1, and a similar phenotype of EBF1-deficient
FIGURE 2 | Schematic representation of B-cell receptor induced NFAT pathway. Stimulation of the B-cell receptor (BCR) activates a cascade resulting in
phospholipase C (PLCg) activation and hydrolyzation of phosphatidylinositol-3,4-bisphosphate (PIP2) generating the release of two second messengers: diacylglycerol
(DAG) and inositol-1,4,5-trisphosphate (IP3). IP3 binds to the IP3 receptor located on the endoplasmic reticulum leading to release of Ca2+ from the ER and an
extracellular influx of Ca2+ in the cytosol that causes the binding of calmodulin (CaM) to the calcineurin phosphatase and the consequent dephosphorylation and
activation of NFAT. The nuclear translocation of NFAT is mediated by nuclear importing factors (e.g., importin). In the nucleus, NFAT binds to the DNA either alone or
with other factors regulating gene expression. Figure 2 was created using Servier Medical Art (https://smart.servier.com).
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mice (29) with defective Immunoglobulin (Ig) gene
rearrangement, and pre-BCR formation which impairs B cell
development and leads to severe B-cell lymphopenia (30). The
early developmental role of NFAT2 in peripheral B-cells was
endorsed by a recent study that characterized lymphocyte
dissemination in mice bearing deletion of NFAT2 in CD19-
positive cells. The authors confirmed NFAT2-dependent
deficiency in peritoneal CD5+ B1a B-cells that was accompanied
by increased immature and mature follicular B cell populations
(31). At later stages, NFAT2 loss of function causes functional
defects only of mature B cells that promote mild clinical course of
experimental autoimmune encephalomyelitis (28).

NFAT1-null mice have a normal development and a less
severe phenotype. Nevertheless, after 6 months a proportion of
the litters showed alterations of the immune system such as
lymph node hyperplasia and splenomegaly accompanied by
enlarged germinal centers and pronounced retardation in the
involution of the thymus. NFAT1 deficient mice also displayed a
hyperproliferative syndrome, higher B and T cell counts,
dysregulated production of IL-4, and higher primary and
secondary immune responses (32–34). Notably, NFAT1 plays a
pivotal role in regulating the response of B-cells to self-antigen,
balancing the processes of anergy and self-tolerance (35).
Moreover, NFAT1 in B cells, controls and represses the
expression of Cyclin E1 and E2, taking control of cell cycle
progression and proliferation rates (36).

NFAT4 shows amore restricted role in regulating T cell activity;
however, double deficient mice for NFAT1 andNFAT4 experience
lymphadenopathy, splenomegaly, and a strongly activated
phenotype with a substantial increase in serum IgE and IgG1
levels, similar to single knock-out mice (37). One of the origins of
the lymphadenopathy was attributed to the observed resistance to
apoptosis, due to decreased FasL expression and defective AICD
induction (38).Moreover, the absence of both NFAT1 andNFAT4
drives naive CD4 T cells into Th2 cell differentiation even in the
absence of endogenous IL-4, and boosts their responsiveness to
TCR-mediated activation and secretion of Th2-type lymphokines
(39). The elevated Th2 cytokine production also leads to
hyperactivation of mature follicular B cells but not of marginal
zone (MZ) B cells. This evidence indirectly links the loss of both
NFAT1 and NFAT4 to the altered B cell phenotype of these mice,
which have a lower representation of MZ B cells and a higher
number of mature follicular B cells (40).

Focusing on NFAT5, the tonicity-responsive member of the
family, its complete loss of function results in gestational lethality.
Heterozygous animals show a phenotype marked by lymphoid
hypocellularity, with thymus and spleen hypoplasia, defective
antigen-specific antibody responses (in particular IgG secretion)
and less mature CD4 and CD8 cells in the spleen and lymph nodes
(41). These indications highlight the role for NFAT5-mediated
adaptation to physiologic osmotic stress for lymphocyte-mediated
immunity, with a putative B-cell centered role on T-cell dependent
Ig response and proliferation, specifically under hypertonic
conditions (42). Interestingly, NFAT5 showed a tonicity-
independent role in the development and activation of
macrophages where NFAT5 accumulation and the following
Frontiers in Oncology | www.frontiersin.org 51011
increased expression of target genes such as TNF and IL6 can be
mediated by Toll-like receptors and NFkB pathway activation
(43). NFkB-mediated expression of NFAT5 also has a crucial role
in pre–T-cell receptor thymocytes where it regulates the
expression of the prosurvival factors A1 and Bcl2, and
attenuates the proapoptotic p53/Noxa axis (44).

From all these observations it emerges that not only are
NFAT1, NFAT2, and NFAT4 involved in the regulation and
homeostasis of B-cells and BCR signaling, but NFAT5 also plays
a crucial role which has yet to be fully characterized. On the
contrary, no functional data are available for NFAT3.
Nonetheless, both NFAT1 and NFAT2 are expressed by
distinct B-cell malignancies as described in detail below, while
less information is available on NFAT3, NFAT4, and NFAT5.
NFAT EXPRESSION AND
ACTIVATION IN CLL AND OTHER
LYMPHOID MALIGNANCIES

Expression and Function of NFAT
in B-Cell Lymphomas
The category of non-Hodgkin lymphomas (NHL) comprises a
large spectrum of entities ranging from indolent to highly
aggressive diseases (45). Pathogenesis of most NHLs is
unknown. For some subtypes, a chronic immune stimulation
role has been suggested, thus, gaining insight on the multistep
mechanism that leads to malignant transformation is key for the
development of new treatments.

NFAT has neither been highlighted as a prominent B-cell
lymphoma-associated molecule, nor a frequently mutated gene;
however, distinct studies reported specific molecular and
functional features of NFAT family members that may open
up interesting novel therapeutic perspectives.

First, NFAT2 could be detected by IHC in lymphoid cells in
routine biopsies of several hematologic malignancies, while
nuclear NFAT2 was observed in a proportion of Burkitt and
diffuse large B cell lymphoma (DLBCL) samples, suggesting an
ongoing activation of the pathway in this type of lymphoma (46).
In contrast, NFAT2, but not NFAT1, is downregulated by
promoter methylation in Hodgkin’s lymphoma cells (47). To
note, the pattern of expression of NFAT does not fully reflect its
role, as the activity of this TF is regulated by different
mechanisms that eventually control the shuttling between the
nucleus and the cytoplasm.

By using patients’ derived cells and cell lines, Pham et al. not
only reported constitutive activation of NFAT2 in large B-cell
lymphoma, but also demonstrated that NFAT2 and NFkB
cooperate to drive CD40L expression, which in turn triggers
pro-survival signaling. NFAT siRNA inhibitors as well as drugs
targeting NFAT activation blocked CD40L expression and
induced apoptosis (48). The same group also demonstrated
that both large B-cell lymphoma and mantle cell lymphoma
constitutively express NFAT1 and NFAT2 that control BLyS
expression and survival signaling again in cooperation with
NFkB (49). Another interesting target of NFAT2 is c-Myc that
April 2021 | Volume 11 | Article 651057
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can be transcriptionally upregulated by NFAT2 through an
epigenetic chromatin remodeling in DLBCL (50).

On the contrary, a tumor suppressive role of NFAT1 was
proposed in DLBCL where its downregulation correlated with
increased cyclin E expression; specifically, NFAT1 directly
controlled cyclin E induction by binding to its promoter in
lymphoma cell lines (36). Moreover, NFAT1 was implicated in
mediating BCR-induced cell death in Hodgkin lymphoma cells, a
phenomenon observed in selected cell lines; both Cyclosporin
and FK506 inhibited apoptotic signaling, further supporting the
functional involvement of NFAT (51).

Regarding the mechanisms responsible for NFAT
overexpression and activation in lymphoma patients, while
most of the studies suggest transcriptional and/or post-
transcriptional mechanisms of regulation of NFAT in B-cell
lymphoma, there is also evidence of NFAT gene amplification
in a proportion of DLBCL of the ABC type (52). An increase of
hexosamine biosynthetic pathway and O-GlcNAc metabolism
plays a critical role in DLBCL cell proliferation, and is
responsible for the observed NFkB and NFAT activation (53).
Constitutive ongoing BCR signaling may also explain
constitutive NFAT2 activation in DLBCL (54). However, a
recent report suggested a BCR-independent, Calcium-
dependent pathway towards NFAT2 activation in DLBCL
(55, 56).

Finally, in addition to protein phosphorylation and splicing,
distinct post-translational modifications modulate its activity
including acetylation, SUMOylation and cleavage (57).
However, no specific data on these mechanisms operating in
B-cell malignancies are available.

Expression Pattern and Functional Role
of NFAT in CLL
CLL involves mature clonal B-cells that accumulate in the
peripheral blood and lymphoid organs where they receive
supportive signals form the microenvironment. The BCR, the
key protein for every B-lymphocyte, not surprisingly modulates
CLL cells biology as well; several signaling molecules downstream
of the BCR such as kinases and TFs are involved, and they have
been recently targeted for therapeutic purposes (58, 59). Among
the most relevant BCR-mediated TFs, we focus on NFAT, not
overlooking the fact that NFkB as well as other TFs play a relevant
role and may complement the activity of NFAT itself.

In 1996, Schuh et al. demonstrated for the first time that in
contrast to normal B-cell, malignant cells isolated from the
peripheral blood of patients with CLL show nuclear/active
NFAT1 even in the absence of in vitro stimulation; in parallel,
NFkB and AP1 activation were also observed (60). CLL cells show
higher mRNA levels of expression of both NFAT1 and NFAT2 as
compared to normal lymphocytes (61); hypomethylation of the
NFAT2 promoter region as well the first intron region may
explain higher levels of both mRNA and protein in CLL as
compared to normal B-cells types (62). A comprehensive study
on the epigenome and regulatory chromatic landscape of CLL
highlighted that active chromatin regions were enriched for
binding motifs of NFAT (as well as FOX and TCF/LEF
Frontiers in Oncology | www.frontiersin.org 61112
transcription families) (63). When different groups of CLL
patients with different clinic-biological characteristics were
analyzed, NFAT promoter hypomethylation correlated with
clinical staging (64). More recently, looking for markers of a
specific subset of CLL, bearing trisomy of chromosome 12,
Abruzzo at el. discovered that NFAT1, NFAT2, and NFAT4
mRNAs are significantly overexpressed (65).

Based on all these somewhat descriptive analyses, several
authors suggested that BCR-mediated NFAT2 overexpression
may be implicated in CLL pathobiology and may potentially be
targeted for therapeutic purposes. Along this line of reasoning,
several questions emerged: Which are the target genes of NFAT
transcription factors in leukemic cells? Which are the functional
consequences of NFAT hyperactivation in CLL? Which are the
molecular mechanisms regulating NFAT activation in
malignant cells?

No specific NFAT ChIP-seq analysis was performed in CLL
cells, thus hampering a broad view of all its target genes;
nevertheless, independent studies demonstrated that distinct
genes that are typically expressed by leukemic cells are directly
regulated by NFAT family members in different cell types.

CD23 is a receptor for FcE, and a distinctive molecule
expressed on the surface of CLL cells as well as released in the
serum (66). Two different isoforms regulated by two different
promoters exist, namely CD23a and CD23b. The CD23b
promoter is specifically regulated by NFAT1 and NFAT2 in
concert with STAT6 (67); in contrast, CD23a expression is
regulated by Notch2 (68). CD23 expression can also be
upregulated by BCR stimulation in CLL cells where blocking
NFAT prevents CD23 induction (61).

CD5 expression is regulated by NFAT in normal B-cell
populations (27, 69, 70); however, it is not known if the same
occurs in CLL where it is distinctively expressed on the
cell surface.

LCK was recently identified as a direct NFAT2 target gene in
both human and mouse CLL samples (71). CD5 mediated IL10
production is regulated by NFAT in CLL cells; by cooperating
with STAT3, NFAT2 binds to IL5 and IL13 promoters and the
IL10 enhancer to upregulate their expression (72).

NFAT2 is constitutively active in approximately half of CLL
cases, the same than that characterized by concomitant MAPK
phosphorylation and anergy in terms of response to the BCR.
Despite constitutive basal levels of NFAT2 activation, it can be
further induced after BCR stimulation, at least in a group of
responding cases that are characterized by an adverse clinical
outcome (61). Not only is NFAT overexpressed and activated in
CLL, but NFAT binding sites are hypomethylated in leukemic
samples suggesting the overactivation of target genes that may be
related to autoreactive BCR (73).

To assess the functional role of NFAT during disease
development and/progression, different approaches were used
including ablation of NFAT2 in a mouse model of leukemia, and
the use of drugs targeting NFAT activation. The two approaches
address different questions whilst also being complementary;
while genetic inactivation results in complete inhibition of a
single molecule in vivo over time, drug treatment suddenly
April 2021 | Volume 11 | Article 651057
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interrupts different NFAT family members as well as any
additional off targets. Here, we focus on genetic approaches
while describing potential drug targeting in a dedicated
paragraph below for both CLL and lymphoma.

Overexpression of the TCL1 oncogene in the B-cell lineage
results in the development of a malignant disease resembling
human CLL, as characterized by the accumulation of CD5-
positive clonal B-cells in the peripheral blood and lymphoid
organs (74); this is a widely used and accepted mouse model of
leukemia. Leukemic cells of this model show constitutive
activation of NFAT2 and somewhat anergic features (71),
as previously shown for a group of CLL cases (75). Genetic
inactivation of NFAT2 in the B-cell types of these mice led
to rapid acceleration of leukemia development and progression
toward and aggressive disease resembling Richter transformation,
occurring in a small proportion of CLL patients (71). The authors
suggest that NFAT2 is a key regulator of anergy in CLL. To better
understand if NFAT deletion impacted directly on different BCR
downstream signaling or rather on clonal selection of different
BCR recombination, Muller et al. analyzed clonal evolution in
leukemic mice and found that NFAT2 signaling in CLL cells
precipitates the oligoclonal selection of preferentially unmutated
BCRs (76).

Overall, these data suggest that NFAT2, being implicated in
the maintenance of anergy, may restrict leukemia development;
however, at the same time, anergic signaling provides a survival
advantage to the cells. It is important to evaluate the effect of
NFAT2 inhibition after leukemia development, as data from
primary patient samples suggest that it may have therapeutic
activity by interrupting anergy (77).

Therapeutic Perspectives
Given the central role of NFAT in regulating the adaptive
immune response, it has been thoroughly scrutinized as a
“specific” drug target to achieve immunosuppression in the
context of organ transplantation, or to dampen excessive
autoimmune manifestations. The most widely used drugs
targeting the NFAT pathways are Cyclosporine A (CsA) and
Tacrolimus, both originally isolated from fungi, acting with
slightly different mechanisms of action. Briefly, as schematically
reported in Figure 2, they inhibit the activity of the phosphatase
Calcineurin, thus augmenting the phosphorylation state of all its
substrates including NFAT1-4 family members; to do so, CsA
binds to Cyclophilin while FK-506 (an alternative name of
Tacrolimus) binds to FKBP12 (78). Both drugs are widely used
to prevent graft-rejection or to treat autoimmune diseases;
however, several years ago, anecdotical reports suggested its
potential positive effect in the context of CLL (79, 80).

Nowadays, accumulating preclinical data frommany different
labs suggest that targeting NFAT may represent a novel
therapeutic approach to treat at least a subset of NFAT-
positive B-cell malignancies. In particular, CsA, FK-506 as well
as a short cell-permeable NFAT-specific inhibitory peptide
(called VIVIT as according to its core aminoacidic sequence)
have been tested in vitro and in vivo in mouse models of
leukemia and lymphoma (81, 82). To note, VIVIT peptide
directly binds to the NFAT-docking portion of Calcineurin,
Frontiers in Oncology | www.frontiersin.org 71213
thus being more selective towards these transcription factors as
compared to CsA.

Targeting CLL cells with the VIVIT peptide blocks BCR-
mediated NFAT2 activation and target genes in responsive cells
(61, 71); at the same time, VIVIT blocks constitutive NFAT
activation in CLL, thus rescuing leukemic cells from anergy (77).
More importantly, targeting spontaneous NFAT activation with
VIVIT not only blocked related biochemical pathways but also
induced cell death in vitro and delayed leukemia progression in
vivo in mouse models (77). These observations suggest that
NFAT controls survival signals in anergic cells, though, at the
same time keeps the cells in an indolent state. In fact, as
mentioned above, deleting the whole NFAT2 gene from cells
before leukemia development, triggers faster accumulation of the
disease and progression (71).

Cyclosporin and FK506 inhibited NFAT signaling leading to
the abrogation of pro-survival effects present in CLL cells, even in
the presence of supportive signaling given by stroma cells (64).
Interestingly, the use of the BTK signaling inhibitor, a clinically
approved drug targeting upstream BCR signaling, abrogated
NFAT activity in leukemic cells suggesting that downstream
NFAT activation may represent a novel therapeutic target in the
cases where resistance to Ibrutinib arise due to mutations in
upstream molecules of the signaling cascade (64).

Targeting the upstream BTK kinase with different inhibitors,
including Ibrutinib, blocks NFAT2 together with its targets
including IL10; to note, IL10 can control PDL1 expression
preferentially in the ABC subset of DLBCL thus suggesting that
targeting NFAT may impact on the expression of this molecule,
therefore being relevant for anti-tumor immunity (54). Along
this line, a recent paper confirmed chronic NFAT activation in
ABC-DLBCL controlling IL10 production and demonstrated the
efficacy of calcineurin inhibitors in blocking NFAT signaling and
reducing proliferation. However, the authors proposed a BCR-
independent mechanism of NFAT activation, yet a BCR-
dependent expression of NFAT protein that is dependent
on NFkB signaling. Interestingly, blocking calcineurin
synergized with BCL2 and MCL1 inhibitors to kill lymphoma
cells (55).

Based on all these observations, using CsA, FK-506, or novel
formulations of VIVT appear to be a promising therapeutic
perspective. However, the concomitant immunosuppressive
activity of these drugs may potentially counterbalance the
direct anti-tumor activity, and it should be carefully considered
for any putative future clinical approach (83). Along this line, it
will be crucial to design and engineer novel drugs targeting
NFAT in the malignant cells only. Finally, several additional
drugs targeting NFAT are emerging, and it will be important to
test them either alone or in combination with signaling
inhibitors using advanced preclinical models and primary
tumor samples.
DISCUSSION

The B-cell receptor is the key molecule regulating the
pathobiology of both normal and malignant B-lymphocytes;
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accordingly, targeting the kinases proximal to the BCR (such as
BTK and PI3Kd), has emerged as a successful treatment strategy.
Nevertheless, BCR targeting is in some cases not sufficient to
achieve disease control and, eventually, tumor cells find
alternative mechanisms to survive and proliferate. For this
reason, efforts devoted to studying and identifying additional
new potential druggable targets along the BCR signaling cascade
are warranted. In this review, we explored the biology of a key
family of transcription factors that are activated after BCR
stimulation, namely NFATs.

First, to obtain insight into the intrinsic role of different
NFATs in the B-cell context, we reported an overview of
genetically modified mice where a dual role of NFAT1 and
NFAT2 emerged, regulating both cell proliferation and cell
death after BCR stimulation. Next, we detailed the expression,
activation status, and functional role of different NFAT family
members in CLL and other B-cell malignancies. NFAT1 and
NFAT2 were described to be not only overexpressed but also
functionally implicated in the regulation of malignant B-cell
biology. In contrast, no information was available on NFAT3 and
NFAT4 in this context, while a recent paper demonstrated that
NFAT5 is overexpressed in CLL where it facilitates malignant
cells survival and activation (84); yet, NFAT5 activation is not
dependent on BCR but it is regulated by osmotic stress and
inflammatory stimuli. Overall, we described a cell autonomous
function of BCR-related NFAT activation in leukemia and
lymphoma cells. Targeting this molecule using a specific
inhibitor was shown to be beneficial in treating CLL and
lymphoma in preclinical models; however, NFAT deletion in
mouse models broke anergy with a paradoxical induction of
leukemia progression in vivo (85).

It has been known for years now that the NFAT family of
transcription factors are involved in several processes which are
central for immune system function, inflammation, and the
development of both autoimmune and neoplastic diseases (86).
This is particularly important in light of the role that the tumor
microenvironment has been recognized to have for tumor
survival and progression. NFAT may exert additional effects in
different cell types, including stroma cells, by regulating
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inflammation and inflammation-associated cancer, as
previously reported by other reviews on this topic (86, 87). To
note, inflammation is a hallmark of CLL as well as other
lymphoid malignancies where infiltrating immune cells,
stroma, and vessels contribute to shape a complex tumor
microenvironment (88–90). With this in mind it is reasonable
to hypothesize that inhibition of the NFAT pathway could be
effective for the treatment of lymphoproliferative disease since it
affects cell function and survival both on and off the tumor.
Recently Bucher et al. have reported strong evidence showing
that NFAT signaling is chronically activated in DLBCL
regulating cell survival and inflammatory cytokines (55, 56). In
particular ABC DLBCL cells seem to be particularly dependent
on the activation of the NFAT pathway. Moreover, data shows
that blockade of signals generated from BCR activation is not
able to affect NFAT1/2 phosphorylation or translocation to the
nucleus. These findings suggest that other mechanisms could be
responsible for the pathway activation. In summary, evidence has
accumulated showing that the NFAT family controls biological
processes on and off the tumor, which should be carefully
analyzed in the context of targeting for any future treatment of
lymphoproliferative diseases.
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Regulates T Lymphocyte Homeostasis and CD24-Dependent T Cell
Expansion under Pathologic Hypernatremia. J Immunol (2010) 185:6624–
35. doi: 10.4049/jimmunol.1001232

45. Swerdlow SH, Campo E, Pileri SA, Lee Harris N, Stein H, Siebert R, et al. The
2016 revision of the World Health Organization classification of lymphoid
neoplasms. Blood (2016) 127:2375–90. doi: 10.1182/blood-2016-01-643569

46. Marafiot T, Pozzobon M, Hansmann M-L, Ventura R, Pileri SA, Roberton H,
et al. The NFATc1 transcription factor is widely expressed in white cells and
translocates from the cytoplasm to the nucleus in a subset of human
lymphomas. Br J Haematol (2005) 128:333–42. doi: 10.1111/j.1365-
2141.2004.05313.x

47. Akimzhanov A, Krenacs L, Schlegel T, Klein-Hessling S, Bagdi E, Stelkovics E,
et al. Epigenetic changes and suppression of the nuclear factor of activated T
cell 1 (NFATC1) promoter in human lymphomas with defects in
immunoreceptor signaling. Am J Pathol (2008) 172:215–24. doi: 10.2353/
ajpath.2008.070294

48. Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ. Constitutive NF-
kB and NFAT activation in aggressive B-cell lymphomas synergistically
activates the CD154 gene and maintains lymphoma cell survival. Blood
(2005) 106:3940–7. doi: 10.1182/blood-2005-03-1167

49. Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L, Ford RJ. Constitutive
NF-kB and NFAT activation leads to stimulation of the BLyS survival pathway
in aggressive B-cell lymphomas. Blood (2006) 107:4540–8. doi: 10.1182/blood-
2005-10-4042

50. Pham LV, Tamayo AT, Li C, Bueso-Ramos C, Ford RJ. An epigenetic
chromatin remodeling role for NFATc1 in transcriptional regulation of
growth and survival genes in diffuse large B-cell lymphomas. Blood (2010)
116:3899–906. doi: 10.1182/blood-2009-12-257378

51. Kondo E, Harashima A, Takabatake T, Takahashi H, Matsuo Y, Yoshino T,
et al. NF-ATc2 induces apoptosis in Burkitt’s lymphoma cells through
April 2021 | Volume 11 | Article 651057

https://doi.org/10.1016/S1097-2765(00)00053-8
https://doi.org/10.1016/j.ceca.2007.03.007
https://doi.org/10.1074/jbc.M111.220582
https://doi.org/10.4161/cc.7.3.5357
https://doi.org/10.1101/gad.1102703
https://doi.org/10.1016/j.bbcan.2014.07.009
https://doi.org/10.1038/nature04631
https://doi.org/10.1128/mcb.24.10.4184-4195.2004
https://doi.org/10.1128/mcb.24.10.4184-4195.2004
https://doi.org/10.1126/science.275.5308.1930
https://doi.org/10.1073/pnas.96.5.2538
https://doi.org/10.1007/s00424-002-0849-2
https://doi.org/10.1038/emm.2013.61
https://doi.org/10.1016/S1074-7613(01)00085-1
https://doi.org/10.1038/32419
https://doi.org/10.1038/32426
https://doi.org/10.1016/S1074-7613(00)80464-1
https://doi.org/10.1073/pnas.2233620100
https://doi.org/10.1073/pnas.2233620100
https://doi.org/10.1084/jem.20100945
https://doi.org/10.1084/jem.20100945
https://doi.org/10.1038/376263a0
https://doi.org/10.1038/s41423-018-0052-9
https://doi.org/10.1016/j.cellimm.2020.104048
https://doi.org/10.1126/science.272.5263.892
https://doi.org/10.1016/S1074-7613(00)80465-3
https://doi.org/10.1016/S1074-7613(00)80253-8
https://doi.org/10.4049/jimmunol.177.3.1510
https://doi.org/10.4049/jimmunol.177.3.1510
https://doi.org/10.1080/15384101.2016.1203485
https://doi.org/10.1080/15384101.2016.1203485
https://doi.org/10.1016/S1074-7613(00)80660-3
https://doi.org/10.1016/S1074-7613(00)80182-X
https://doi.org/10.1016/S1074-7613(00)80182-X
https://doi.org/10.1038/ni744
https://doi.org/10.4049/jimmunol.174.8.4797
https://doi.org/10.1073/pnas.1215934110
https://doi.org/10.1073/pnas.0403139101
https://doi.org/10.1084/jem.20111569
https://doi.org/10.1084/jem.20111569
https://doi.org/10.4049/jimmunol.1001232
https://doi.org/10.1182/blood-2016-01-643569
https://doi.org/10.1111/j.1365-2141.2004.05313.x
https://doi.org/10.1111/j.1365-2141.2004.05313.x
https://doi.org/10.2353/ajpath.2008.070294
https://doi.org/10.2353/ajpath.2008.070294
https://doi.org/10.1182/blood-2005-03-1167
https://doi.org/10.1182/blood-2005-10-4042
https://doi.org/10.1182/blood-2005-10-4042
https://doi.org/10.1182/blood-2009-12-257378
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sana et al. NFAT in B-Cell Malignancies
signaling via the B cell antigen receptor. Eur J Immunol (2003) 33:1–11.
doi: 10.1002/immu.200390000

52. Lenz G, Wright GW, Emre NCT, Kohlhammer H, Dave SS, Davis RE, et al.
Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic
pathways. Proc Natl Acad Sci USA (2008) 105:13520–5. doi: 10.1073/
pnas.0804295105

53. Pham LV, Bryant JL, Mendez R, Chen J, Tamayo AT, Xu-Monette ZY, et al.
Targeting the hexosamine biosynthetic pathway and O-linked N-
acetylglucosamine cycling for therapeutic and imaging capabilities in diffuse
large B-cell lymphoma. Oncotarget (2016) 7:80599–611. doi: 10.18632/
oncotarget.12413

54. Li L, Zhang J, Chen J, Xu-Monette ZY, Miao Y, Xiao M, et al. B-cell receptor–
mediated NFATc1 activation induces IL-10/STAT3/PD-L1 signaling in diffuse
large B-cell lymphoma. Blood (2018) 132:1805–17. doi: 10.1182/blood-2018-
03-841015

55. Bucher P, Erdmann T, Grondona P, Xu W, Schmitt A, Schürch C, et al.
Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large
B-cell lymphoma. Blood (2020) 135:121–32. doi: 10.1182/blood.2019001866

56. Muppidi JR. A role for NFAT signaling in ABC-DLBCL. Blood (2020) 135:81.
doi: 10.1182/blood.2019004199

57. Lee N, Kim D, Kim W-U. Role of NFAT5 in the Immune System and
Pathogenesis of Autoimmune Diseases. Front Immunol (2019) 10:270.
doi: 10.3389/fimmu.2019.00270

58. Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic
leukaemia. Nat Rev Cancer (2016) 16:145–62. doi: 10.1038/nrc.2016.8

59. Arnason JE, Brown JR. Targeting B Cell Signaling in Chronic Lymphocytic
Leukemia. Curr Oncol Rep (2017) 19:1–13. doi: 10.1007/s11912-017-0620-7

60. Schuh K, Avots A, Tony HP, Serfling E, Kneitz C. Nuclear NF-ATp is a
hallmark of unstimulated B cells from B-CLL patients. Leuk Lymphoma
(1996) 23:583–92. doi: 10.3109/10428199609054868

61. Le Roy C, Deglesne PA, Chevallier N, Beitar T, Eclache V, Quettier M, et al.
The degree of BCR and NFAT activation predicts clinical outcomes in chronic
lymphocytic leukemia. Blood (2012) 120:356–65. doi: 10.1182/blood-2011-12-
397158

62. Pei L, Choi JH, Liu J, Lee EJ, McCarthy B, Wilson JM, et al. Genome-wide
DNA methylation analysis reveals novel epigenetic changes in chronic
lymphocytic leukemia. Epigenetics (2012) 7:567–78. doi: 10.4161/epi.20237

63. Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N,
Martens JHA, et al. The reference epigenome and regulatory chromatin
landscape of chronic lymphocytic leukemia. Nat Med (2018) 24:868–80.
doi: 10.1038/s41591-018-0028-4

64. Wolf C, Garding A, Filarsky K, Bahlo J, Robrecht S, Becker N, et al. NFATC1
activation by DNA hypomethylation in chronic lymphocytic leukemia
correlates with clinical staging and can be inhibited by ibrutinib. Int J
Cancer (2018) 142:322–33. doi: 10.1002/ijc.31057

65. Abruzzo LV, Herling CD, Calin GA, Oakes C, Barron LL, Banks HE, et al.
Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated
and targetable pathways. Haematologica (2018) 103:2069–78. doi: 10.3324/
haematol.2018.190132

66. Rawstron AC, Kreuzer KA, Soosapilla A, Spacek M, Stehlikova O, Gambell P,
et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow
cytometry: An European Research Initiative on CLL (ERIC) & European
Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytom
Part B - Clin Cytom (2018) 94:121–8. doi: 10.1002/cyto.b.21595

67. Kneitz C, Goller M, Tony HP, Simon A, Stibbe C, König T, et al. The CD23b
promoter is a target for NF-AT transcription factors in B-CLL cells. Biochim
Biophys Acta - Mol Basis Dis (2002) 1588:41–7. doi: 10.1016/S0925-4439(02)
00114-X

68. Hubmann R, Schwarzmeier JD, Shehata M, Hilgarth M, Duechler M, Dettke M,
et al. Notch2 is involved in the overexpression of CD23 in B-cell chronic
lymphocytic leukemia. Blood (2002) 99:3742–7. doi: 10.1182/blood.v99.10.3742

69. Teutsch M, Higer M,Wang D, Wortis HW. Induction of CD5 on B and T cells
is suppressed by cyclosporin A, FK-520 and rapamycin. Int Immunol (1995)
7:381–92. doi: 10.1093/intimm/7.3.381

70. Berland R, Wortis HH. An NFAT-dependent enhancer is necessary for anti-
IgM-mediated induction of murine CD5 expression in primary splenic B cells.
J Immunol (1998) 161:277–85.
Frontiers in Oncology | www.frontiersin.org 101516
71. Märklin M, Heitmann JS, Fuchs AR, Truckenmüller FM, Gutknecht M,
Bugl S, et al. NFAT2 is a critical regulator of the anergic phenotype in
chronic lymphocytic leukaemia. Nat Commun (2017) 8:1–14. doi: 10.1038/
s41467-017-00830-y

72. Garaud S, Morva A, Lemoine S, Hillion S, Bordron A, Pers J-O, et al. CD5
Promotes IL-10 Production in Chronic Lymphocytic Leukemia B Cells
through STAT3 and NFAT2 Activation. J Immunol (2011) 186:4835–44.
doi: 10.4049/jimmunol.1003050

73. Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, et al.
DNAmethylation dynamics during B cell maturation underlie a continuum of
disease phenotypes in chronic lymphocytic leukemia. Nat Genet (2016)
48:253–64. doi: 10.1038/ng.3488

74. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human
chronic lymphocytic leukemia modeled in mouse by targeted TCL1
expression. Proc Natl Acad Sci USA (2002) 99:6955–60. doi: 10.1073/
pnas.102181599

75. Muzio M, Apollonio B, Scielzo C, Frenquelli M, Vandoni I, Boussiotis V, et al.
Constitutive activation of distinct BCR-signaling pathways in a subset of CLL
patients: a molecular signature of anergy. Blood (2008) 112:188–95.
doi: 10.1182/blood-2007-09-111344

76. Müller DJ, Wirths S, Fuchs AR, Märklin M, Heitmann JS, Sturm M, et al. Loss
of NFAT2 expression results in the acceleration of clonal evolution in chronic
lymphocytic leukemia. J Leukoc Biol (2019) 105:531–8. doi: 10.1002/
JLB.2AB0218-076RR

77. Apollonio B, Scielzo C, Bertilaccio MTS, Ten Hacken E, Scarfò L, Ranghetti P,
et al. Targeting B-cell anergy in chronic lymphocytic leukemia. Blood (2013)
121:3879–88. doi: 10.1182/blood-2012-12-474718

78. Lee JU, Kim LK, Choi JM. Revisiting the concept of targeting NFAT to control
T cell immunity and autoimmune diseases. Front Immunol (2018) 9:2747.
doi: 10.3389/fimmu.2018.02747

79. Wright SJ, Keating MJ. Cyclosporine a in chronic lymphocytic leukemia: Dual
anti-leukemic and immunosuppressive role? Leuk Lymphoma (1995) 20:131–
6. doi: 10.3109/10428199509054764

80. Kyasa MJ, Parrish RS, Schichman SA, Zent CS. Autoimmune cytopenia
does not predict poor prognosis in chronic lymphocytic eukemia/
small lymphocytic lymphoma. Am J Hematol (2003) 74:1–8. doi: 10.1002/
ajh.10369

81. Yu H, Van Berkel TJC, Biessen EAL. Therapeutic potential of VIVIT, a
selective peptide inhibitor of nuclear factor of activated T cells, in
cardiovascular disorders. Cardiovasc Drug Rev (2007) 25:175–87.
doi: 10.1111/j.1527-3466.2007.00011.x
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Yotam Bronstein1, Talia Kamdjou2, Anat Globerson Levin4, Chava Perry1,2, Irit Avivi 1,2,
Nir London3 and Yair Herishanu1,2*

1 Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel, 2 Department of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv, Israel, 3 Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel,
4 Immunology Research Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

Proteolysis targeting chimeras (PROTACs) are small molecules that form ternary
complexes between their target and E3 ligase, resulting in ubiquitination and
proteasomal degradation of the target protein. Using our own designed Bruton’s
tyrosine kinase (BTK) PROTAC compounds, we show herein efficient BTK degradation
in chronic lymphocytic leukemia (CLL) cells. The reversible non-covalent compound
(NC-1) was the most potent and therefore we focused on this PROTAC to investigate its
subsequent effects on the BCR pathway. NC-1 decreased baseline BTK phosphorylation
as well as activation of BTK and other signaling molecules downstream of the BCR
pathway, following IgM engagement. These effects were also obtained in samples from
CLL patients with clinical resistance to ibrutinib and mutations at C481. NC-1 treatment
further decreased baseline CD69 surface levels, completely abrogated its upregulation
following IgM activation, decreased CLL cells migration toward SDF-1 and overcame
stromal anti-apoptotic protection. In conclusion, our results indicate that targeting BTK
using the PROTAC strategy could be a potential novel therapeutic approach for CLL.

Keywords: PROTACs (proteolysis targeting chimeras), BTK - Bruton’s tyrosine kinase, CLL (Chronic Lymphocytic
Leukemia), ibrutinib, BCR (B cell receptor) signaling
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world (1).
Although in recent years there has been considerable progress in the treatment options for CLL, a
definitive cure is still only achievable with allogeneic stem cell transplantation (2). When
considering the essential role of BCR signaling in CLL pathogenesis (3), this pathway has
become a target for anti-CLL therapy. Small molecules directed against kinases of the BCR
pathway show impressive clinical activity. One of these molecules is ibrutinib, an irreversible
inhibitor of Bruton’s tyrosine kinase (BTK) which has a critical role in the amplification of the BCR
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signal. Nevertheless, due to side effects and resistance that
emerges over-time, there is a need to develop novel approaches
to target the BCR pathway (4–7).

Proteolysis-targeting chimeras (PROTACs), a novel strategy
that utilizes the intracellular ubiquitin-proteasome system to
induce targeted protein degradation, are receiving much
attention in the field of targeted therapies. This technology is
based on using hetero-bifunctional molecules that direct a ligand
to bind with the target protein, linked with another ligand to
recruit an E3 ubiquitin ligase. When the ternary complex (target-
PROTAC-E3) is formed, the recruited E3 employs an E2
ubiquitin-conjugating enzyme to transfer ubiquitin to the
surface of the targeted protein. This process leads to
proteasomal degradation of the target protein (8–12).

PROTACs have a number of advantages over standard
chemical inhibitors, including increased selectivity, inhibition
of all target protein functions (13–16), longer lasting effects due
to the need for a new synthesis of target (17) and induction of
degradation by sub-stoichiometric concentrations of PROTAC
(18). BTK is an established target for non-covalent PROTACs
(19–24). Our previous results showed efficient BTK degradation
with reversible covalent PROTACs, as well as their non-covalent
and irreversible counterparts (25).

In this study we examined the effect of the PROTACs on BCR
signaling, activation, migration and apoptosis in CLL cells. We
show efficient inhibition of the BCR signaling pathway while
using PROTACs in both wild-type (WT) and BTK mutated CLL
cells. These results provide a basis for further preclinical study of
BTK PROTACs as a novel strategy for CLL therapy.
Frontiers in Oncology | www.frontiersin.org 21819
MATERIALS AND METHODS

Patients and Samples
Cells were obtained from peripheral blood samples donated by
patients fulfilling the standard criteria for CLL after signing
informed consent approved by the Tel-Aviv Sourasky
Medical’s Institutional Review Board according to the Helsinki
Accords (Table 1). Peripheral blood mononuclear cells (PBMC)
were isolated by Ficoll density-gradient centrifugation. Viable
frozen cells were kept in FCS containing 10% DMSO and stored
in liquid nitrogen. Before use, frozen cells were thawed and
cultured at 37°C, 5% CO2, in RPMI medium supplemented with
10% FCS, penicillin, streptomycin, and L-glutamine. The
samples used contained more than 90% CLL cells.

Antibodies and Reagents
ERK1/2, Phospho-ERK1/2 (Thr202/Tyr204), Akt (pan),
phospho-Akt (S473),PLC g2, pPLC g2(Tyr1217),BTK,
Phospho-BTK (Tyr223),Lyn(5G2), cleaved PARP (Asp214),
CD79a, phospho-CD79a (Tyr182), Syk,phospho-Syk (Tyr525/
526), SHIP1 and phospho-SHIP1 (Tyr1020) antibodies were
from Cell Signaling Technology (Beverly, MA). Anti-SRC
family (phospho Y418)-Phospho-Lyn (Y396) was obtained
from Abcam (Cambridge,UK).Purified anti-human actin
antibody was obtained from MP Biomedicals (Illkirch,France).
Goat anti Rabbit IgG (H+L)-HRP conjugate and Goat anti
Mouse IgG (H+L)-HRP conjugate and Goat F(ab’)2 anti-
human IgM or IgG were from Jackson Immunoresearch
Laboratories, (West Grove, PA). Dynabeads Human T-
TABLE 1 | Patient characteristics.

Patient Gender/ Age (y) Binet stage ALC(x109/L) IGHV mutational status FISH/TP53

CLL_01 M/67 A 102 M-IGHV Del13q
CLL_02 M/72 B 203 UM-IGHV Del11q
CLL_03 F/61 B 193 UM-IGHV Del13q
CLL_04 F/64 C 194 M-IGHV Del13q
CLL_05 M/76 C 117 M-IGHV Del17p
CLL_06 M/71 A 70 UM-IGHV Del17p/TP53mut
CLL_07 M/56 B 76 UM-IGHV Del17p/TP53mut
CLL_08 M/43 A 120 UM-IGHV Del17p
CLL_09 M/57 B 66 UM-IGHV Del11q
CLL_10 M/57 B 144 UM-IGHV Del11q
CLL_11 M/70 B 87 UM-IGHV Del11q
CLL_12 F/71 B 121 UM-IGHV Del13q
CLL_13 M/52 A 146 UM-IGHV Del11q
CLL_14 F/72 A 190 M-IGHV Del13q
CLL_15 M/54 B 61 M-IGHV Normal
CLL_16 M/76 A 59 M-IGHV Del13q
CLL_17 M/67 B 88 UM-IGHV Normal
CLL_18 M/60 B 219 UM-IGHV Del11q
CLL_19
C481Y-mutation

M/64 C 33 UM-IGHV Del11q/TP53mut

CLL_20
C481S-mutation

M/60 C 71 UM-IGHV Del17p/TP53mut

CLL_21
C481F-mutation

F/54 C 40 UM-IGHV Del17p/TP53mut

CLL_22 F/70 C 70 ND ND
May 2021 | Volume 11
M, male; F, female; y, years; ALC, absolute lymphocyte count; M-IGHV, mutated IGHV; UM-IGHV-IGHV, unmutated IGHV; TP53mut, TP53 gene mutated; ND-no data.
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Activator CD3/CD28 were obtained from Thermo Scientific
(Rockford, IL). All antibodies utilized in the study were used in
concentrations according to the manufacturer’s instructions.
Ficoll-Paque PLUS from GE healthcare (Uppsala, Sweden),
dimethyl sulfoxide (DMSO) from Merck (Darmstadt,
Germany), RPMI, fetal calf serum (FCS), Dulbecco’s phosphate
buffered saline (PBS), L-glutamine and penicillin-streptomycin
were from Biological Industries (Beit-Haemek, Israel). BTK
PROTACs RC-2, IR-2 and NC-1 (Supplementary Figure 1)
were designed as previously described (25).

Targeting BTK in CLL Cells
CLL cells were incubated with PROTACs (RC-2, IR-2 and NC-1)
at the indicated doses and time intervals at 37°C. The PROTACs
were dissolved in DMSO, and controls were treated with
DMSO accordingly.

Western Blotting
CLLcellswere lysed inRIPAlysisbuffer (Cell SignalingTechnology,
Beverly, MA) containing phosphatase inhibitor cocktail 2 and
protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO).
Extract from cell lysates were separated on 4–15% Criterion™

TGX™ Precast Midi Protein Gel (Bio-Rad Laboratories) and
transferred electrophoretically to nitrocellulose membrane (Bio-
Rad Laboratories). The membranes were incubated with the
designated antibodies and HRP conjugated secondary antibodies
according to the manufacturer’s instructions. Bands were detected
using MyECL Imager (Thermo Scientific, Rockford, IL).

Flow Cytometry
For activation marker analysis, CLL and normal B-cells (5x106

cells/mL, 500,000 cells per tube) were stained with APC Mouse
Anti-human CD19 and PE Mouse Anti-human CD69 (BD
Biosciences, CA, USA) and incubated for 30 minutes on ice.
For normal T cell activation analysis, peripheral blood
mononuclear cells were stained with APC Mouse anti-human
CD3 and PE Mouse anti-human CD69 (BD Biosciences, CA,
USA). Isotype controls were APC Mouse IgG1, k and PE Mouse
IgG1, k (BD Biosciences, CA, USA). Cells were washed and then
suspended in 0.5 mL PBS/1% FCS. For cell viability and
apoptosis analysis, CLL cells (5x106 cells/mL, 500,000 cells per
tube) were stained with the Annexin V/propidium Iodide
MEBCYTO® Apoptosis Kit (MBL, Nagoya, Japan), according
to the manufacturer’s instructions. In both assays samples were
acquired by BD FACSCanto II and analyzed using BD
FACSDiva software.

Migration Assay
Peripheral blood CLL cells were cultured in 6-well dishes (5x106

cells/mL in RPMI 10% FCS) and incubated with 100 nM NC-1
BTK PROTAC for 18 hours.DMSO treated cells served as
controls. A total of 100 mL, containing 5 × 105 cells, was added
to the top chamber of a 6.5-mm diameter Transwell culture
inserts (Costar, Cambridge, MA) with a pore size of 5 mm. Filters
then were transferred to wells containing medium with 100 ng/
mL SDF-1a (Merck). Wells containing medium without SDF-1a
Frontiers in Oncology | www.frontiersin.org 31920
served as a negative control. The chambers were incubated for 2
hours at 37°C in 5% CO2. After this incubation, the cells in the
lower chamber were suspended and divided into aliquots for
counting. The experiments were performed in triplicates.

Co-Culture Assay
CLL cells (10x106 cells/mL) were co-cultured with HS-5
(ATCC® CRL-11882™) in 20:1 ratio in 6-well dishes. The
medium for co-culture was DMEM (ATCC® 30-2002™)
supplemented with 5% FCS and 1% penicillin-streptomycin.
The cells were incubated with 100nM NC-1 PROTAC for 48
hours at 37°C. Proteins were extracted from cells treated with
PROTAC and controls and analyzed by Western blotting.

Statistical Analysis
In order to compare between the two paired groups, within each
type of experiment, the Student’s t test was applied to compare
the means of normal distributed dependent variables and the
Wilcoxon Signed-rank test was applied in order to compare the
distribution of non-parametric dependent variables. All
statistical analyses were performed using GraphPad Prism 8.0
software (GraphPad Software, San Diego, CA, USA). A P-value
of <0.05 was considered as statistically significant.
RESULTS

Efficient PROTAC-Mediated BTK
Degradation in CLL Cells
We evaluated the ability of reversible covalent (RC-2),
irreversible covalent (IR-2) and reversible non-covalent (NC-1)
compounds (Supplementary Figure 1) to induce BTK
degradation in CLL cell. The cells were treated for 18 hours
based on our previous results using the three compounds in
Ramos cells (25), as well as a time course experiment in CLL cells
treated with 100 nM NC-1 PROTAC. Treatment with NC-1
decreased BTK in a time dependent manner and completely
abolished BTK after 18 hours of incubation (Supplementary
Figure 2). We also measured the expression levels of other
proteins of the BCR pathway to test off-target effects. Proteins
were extracted from cells treated with PROTACs and controls
and analyzed by Western blotting. In our previous report (25),
we showed that the three compounds decreased BTK levels, an
effect that was more pronounced at the higher doses of 100-1000
nM. The NC-1 compound completely abolished BTK at ≥100
nM, and had a higher degradation potency compared to RC-2
and IR-2. In this work, total Lyn and Syk levels were also
evaluated to confirm specificity of the PROTACs to BTK.
Consistent with our previous report in the Ramos cell line,
NC-1 and IR-2 also reduced Lyn levels, which is compatible
with the known off-target effect of ibrutinib (26) (Figures 1A, C).
Then, the effect of the most potent PROTAC, NC-1, at 100 nM
was evaluated in 8 patients with different chromosomal
abnormalities and/or TP53 mutation. In all samples, the NC-1
compound led to BTK as well as Lyn degradation. Total Syk and
May 2021 | Volume 11 | Article 646971
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PLCg2 levels were not affected by this treatment (Figures 1D, E).
In order to analyze the effect of the PROTACs on cell viability we
tested cleaved PARP levels as a measure of apoptosis. Cleaved-
PARP levels show a mild increase in apoptosis after 18 hours of
PROTAC treatment (Figures 1B–E).
Frontiers in Oncology | www.frontiersin.org 42021
In order to validate the mechanism of PROTAC-mediated
BTK degradation, CLL cells were treated with bortezomib, a
proteasome inhibitor (27), for 1 hour before treatment with 100
nM NC-1. We analyzed BTK levels after additional 4 hours.
PROTAC treatment was assessed for 4 hours due to the
A

B

D

E

C

FIGURE 1 | Efficient BTK degradation in CLL cells. Peripheral blood CLL cells of three patients were cultured in 6-well dishes (20x106 cells/mL in RPMI 10% FCS)
and incubated with BTK PROTACs in different concentrations (1000 nM, 100 nM and 10 nM) for 18 hours at 37° in a humidified 5% CO2 atmosphere. DMSO
treated cells served as controls. Then, proteins were extracted and analyzed by Western blot. (A) A Western blot analysis showing total BTK, Lyn and Syk levels.
Actin was used to verify equal loading. (B) Cleaved PARP levels in cells treated with different types and concentrations of PROTAC as a marker to measure

apoptosis levels. (C) Quantification of BTK, Lyn, Syk and cleaved PARP levels in A and B by normalization to actin using myImageAnalysis™ Software (n=3).
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (D, E) Peripheral blood CLL cells of 8 patients with various genetic abnormalities were cultured in 6-well dishes
(20x106 cells/mL in RPMI 10% FCS) and incubated with 100nM NC-1 for 18 hours at 37° in a humidified 5% CO2 atmosphere. DMSO treated cells served as
controls. Then, proteins were extracted and analyzed by Western blot analysis. Levels of BTK, PLCg2, Lyn, Syk and cleaved PARP (cPARP) are indicated (n=8).
*p<0.05, ****p<0.0001.
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concomitant presence of bortezomib, which could cause cell
death. Compatible with our previous results in Mino cells (25),
bortezomib significantly inhibited degradation, suggesting
proteasome-mediated degradation (Supplementary Figure 3).

BTK PROTAC Leads to BCR Signaling
Pathway Inhibition
After demonstrating that the NC-1 PROTAC leads to effective
BTK degradation, its effect on downstream elements in the BCR
signaling pathway was tested. Peripheral blood CLL cells were
treated with NC-1 or ibrutinib, and then activated with goat F
(ab’)2 anti-human IgM. Cells that were not treated or stimulated
served as controls. Western blot analysis revealed that pre-
treatment with NC-1 resulted in abolishment of BTK
phosphorylation, and partial inhibition of phosphorylation
increase in Akt, ERK and PLCү2 following IgM cross-linking
(Figures 2A, B). The inhibitory effect of ibrutinib on the BCR
signaling was less prominent compared to that of NC-1 (Figures
2A, B). Since we have previously shown that Lyn is an off target
of NC-1, we also analyzed the effect of this PROTAC on
phosphorylation of proximal BCR elements. Treatment with
100nM NC-1 compound decreased Lyn levels, as well as
phosphorylation of this protein and of CD79a after BCR
activation (Figures 2C, D). The effect of NC-1 on Syk and
Ship1 phosphorylation was heterogeneous and statistically non-
significant, however in some samples (n=4) treatment with NC-1
clearly inhibited Syk phosphorylation after BCR activation
(Figures 2C, D). The effect of ibrutinib on phosphorylation of
the upstream signaling molecules of BCR pathway was not
statistically significant (Figures 2C, D).

Efficient BCR Signaling Pathway Inhibition
in Ibrutinib Resistant CLL Cells
In the next experiments, we analyzed the effect of the PROTACs
on the BCR signaling pathway in ibrutinib resistant cells.
Ibrutinib binds BTK at the cysteine 481 residues and
mutations at this position have been identified as the most
frequent mutations in patients with CLL who develop clinical
resistance. Peripheral blood CLL cells from patients with
resistance to ibrutinib were treated with PROTACs or ibrutinib
and then activated with goat F(ab’)2 anti-human IgM. Cells that
were not treated or stimulated served as controls. Western blot
analysis shows a substantial decrease in BTK levels in a dose-
dependent manner in ibrutinib resistant cells (C481Y) treated
with PROTACs (Figure 3A). In order to prove ibrutinib
resistance, we analyzed its effect on phosphorylation levels of
BTK in cells before and after acquiring the BTK C481Y
mutation. It is important to emphasize that the mutations in
BTK are heterozygous and in all experiments the cells from
resistant patients were collected while patients continued
ibrutinib treatment, and before further line of treatment.
Because BTK mutations at C481 disrupt the covalent binding
of ibrutinib to BTK, the cells treated with ibrutinib were washed
before activation. As shown in Figure 3B, the relative decrease in
pBTK levels after the cells were treated with ibrutinib was more
prominent before the cells acquired the BTK C481Y mutation.
Frontiers in Oncology | www.frontiersin.org 52122
Treatment with PROTACs led to a decrease in BTK and pBTK
levels in cells resistant to ibrutinib (Figure 3B). We also show
that there is no significant difference in the levels of BTK and
pBTK between cells treated with PROTACs and washed before
activation and those that were not washed (Figure 3B). The effect
of the PROTAC NC-1 on BTK levels was also evaluated in cells
with other BTK mutations, C481S and C481F. Figure 3C
demonstrates BTK degradation in these ibrutinib resistant
cells. Next, we analyzed the effect of NC-1 on downstream
BCR signaling elements in cells from patients with ibrutinib
clinical resistance. A representative Western blot analysis shows
inhibition of the phosphorylation of BTK, Akt and ERK in cells
treated with the PROTAC, an effect that was not observed when
cells were treated with ibrutinib (Figures 3D, E). These results
demonstrate that the PROTAC appears to be effective in
degradation of BTK protein as well as inhibiting the
downstream elements of the BCR signaling in BTKmutated cells.

BTK PROTAC Blocks CLL Cell Activation
in Response to BCR Engagement
B-cell activation is generally accompanied by upregulation of cell
surface expression of certain functional molecules. CLL cells present
the phenotype of activated B cells based on the overexpression of the
activation markers such as CD69, an early activation marker (28).
CLL cells were treated with 100 nM NC-1, and then surface CD69
levels were determined by flow cytometry. As we expected,
activation of the B cells with F(ab’) 2 anti-human IgM caused an
increase in CD69 expression (Figures 4A, B). In cells treated with
NC-1 there was a decrease in CD69 expression both at baseline and
after activation (Figures 4A, B). NC-1 PROTAC treatment also
decreased CD69 expression in BTK C481S mutated cells, whereas
ibrutinib did not alter CD69 expression at baseline or after
activation (Figure 4C). Our results show that PROTAC treatment
blocks BCR-mediated activation in both WT and mutated BTK
CLL cells. The effect of NC-1 compound on activation marker
expression was also tested in normal B and T cells. The PROTAC
decreased CD69 surface levels in both normal B and T cells after
activation. However, there was no significant effect on this marker in
resting cells treated with 100 nMNC-1 compound (Figures 4D, E).

BTK PROTAC Induces Apoptosis, Inhibits
Migration and Overcomes the Protective
Effect of Stromal Cells on CLL Cells
After demonstrating the efficacy of PROTAC in suppressing
elements in the BCR pathway and decreasing activation marker
expression, we analyzed its effect on apoptosis. For this purpose,
CLL cells were treated with 100 nM NC-1 PROTAC or left
untreated. The concentrations of PROTAC used in the
experiments are equivalent to the plasma therapeutic levels of
ibrutinib in patients with CLL (29). Cells viability was
determined by flow cytometry immediately after thawing, after
48 and 96 hours of incubation, using an Annexin V/PI apoptosis
detection kit. As we expected, there was a decrease in cell viability
over time. This effect was approximately 10% higher in cells that
were treated with NC-1 BTK PROTAC (Figures 5A, B). The
differences in cell viability between the treated cells and the
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control were statistically significant after 48 hours of incubation
(P<0.049). These results confirm that BTK inhibition in the
therapeutic range induces only mild apoptosis in CLL.

BTK has a role in mediating signal transduction that
modulates migration and adhesion of B-cells to the tissue
Frontiers in Oncology | www.frontiersin.org 62223
microenvironment, promoting cell survival and proliferation
(30, 31). Given that fact, we analyzed the effect of NC-1
PROTAC on CLL cells migration toward stromal cell-derived
factor-1 (SDF-1). It is already known that CLL cells express high
levels of the chemokine receptor CXCR4 and that stromal cells
A C

B D

FIGURE 2 | BTK PROTAC leads to BCR signaling pathway inhibition. Peripheral blood CLL cells were cultured in 6-well dishes (20x106 cells/mL in RPMI 10% FCS)
and incubated with 100 nM NC-1 for 18 hours or with ibrutinib (IBR) for 1 hour, at 37° in a humidified 5% CO2 atmosphere. DMSO treated cells served as controls.
Following treatment, cells were incubated with goat F (ab’) 2 anti-human IgM (10 µg/mL) for 15 minutes or left unstimulated. Cells treated with ibrutinib were washed
before activation. Then, proteins were extracted and analyzed by Western blot analysis. (A) A representative Western blot showing BTK (Tyr223), PLCg2 (Tyr1217),
Akt (S473) and ERK (T202/Y204) phosphorylation, as well as total amount of these proteins. Actin was used to verify equal loading. (B) Quantification of BTK, pBTK,

pPLCg2, pAkt and pERK levels in A by normalization to actin using myImageAnalysis™ Software (n=9). *p<0.05, **p<0.01, ***p<0.001. (C) A representative Western
blot showing pLyn (Tyr396), pCD79a (Tyr182), pSyk (Tyr525/526) and pShip1 (Tyr1020) levels,as well as total amount of these proteins. Actin was used to verify

equal loading. (D) Quantification of Lyn, pLyn, pCD79a, pSyk and pShip1 levels in C by normalization to actin using myImageAnalysis™ Software (n=8). *p<0.05,
**p<0.01, ***p<0.001.
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secrete high amounts of SDF-1, thereby they can attract CLL cells
via this receptor. This process can govern the homing and
survival of CLL cells in vivo (31, 32). CLL cells were incubated
with 100 nM NC-1 for 18 hours or left untreated. A total of 100
Frontiers in Oncology | www.frontiersin.org 72324
mL, containing 5 × 105 cells was added to the top chamber of
transwell culture inserts. Filters then were transferred to wells
containing medium with 100 ng/mL SDF-1a. Wells containing
medium without SDF-1a served as a negative control. After 2
A E

B

C D

FIGURE 3 | Efficient BCR signaling pathway inhibition in ibrutinib resistant CLL cells. Peripheral blood CLL cells of ibrutinib resistant patients were cultured in 6-well
dishes (20x106 cells/mL in RPMI 10% FCS) and incubated with BTK PROTACs for 18 hours or with ibrutinib (IBR) for 1 hour at 37° in a humidified 5% CO2
atmosphere. DMSO treated cells served as controls. Following treatment, cells were incubated with goat F(ab’) 2 anti-human IgM (10 µg/mL) for 15 minutes or left
unstimulated. Cells treated with ibrutinib were washed before activation. Then, proteins were extracted and analyzed by Western blot analysis. (A) A representative
Western blot showing BTK levels in C481Y CLL cells in response to various concentrations (1000 nM, 100 nM and 10 nM) of RC-2, IR-2 and NC-1 PROTACs. Total
Lyn levels were evaluated to confirm specificity of the PROTACs to BTK. Actin was used to verify equal loading. (B) A Western blot analysis showing pBTK and BTK
levels in response to treatment with 100 nM RC-2, IR-2, NC-1 or ibrutinib and activation with goat F(ab’)2 anti-human IgM in CLL cells before and after acquiring
BTK C481Y mutation. PROTACs-treated cells were washed (W) or not washed prior to activation. (C) Total BTK levels in BTK mutated cells (C481S, C481Y and
C481F) in response to 100nM NC-1 or ibrutinib. (D) A representative Western blot showing BTK (Tyr223), ERK (T202/Y204) and Akt (S473) phosphorylation, as well
as total amount of these proteins, following treatment with 100 nM NC-1 or ibrutinib and activation with goat F(ab’)2 anti-human IgM in BTK C481S CLL cells.

(E) Quantification of BTK, pBTK, pERK and pAkt levels in ibrutinib resistant cells (representative analysis, D) by normalization to actin using myImageAnalysis™

Software (n=4). *p<0.05, **p<0.01.
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hours of incubation, the cells in the lower chamber were counted.
The results are the average ± S.D. of seven individual patients.
The chemotaxis of CLL cells to SDF-1a was significantly
inhibited by preincubation of the input cells with 100 nM NC-
1 PROTAC (Figure 5C).

To study the capability of BTK PROTAC to overcome the
supporting effect of mesenchymal stromal cells on CLL cells, CLL
cells were co-cultured with HS-5, human bone marrow-derived
stromal cells, and treated with 100 nM NC-1 for 48 hours.
Proteins were extracted from CLL cells treated with PROTAC
and controls and analyzed by Western blotting. Cleaved PARP
levels were lower in CLL cells co-cultured with stromal cells
compared to those incubated in medium alone. The addition of
NC-1 to the co-culture system abrogated the anti-apoptotic effect
of the stromal cells (Figures 5D, E). Taken together, these results
demonstrate that PROTAC can overcome supporting effects of
the tissue microenvironment on CLL cells.
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DISCUSSION

In this study we demonstrate that the BCR pathway in CLL cells
can be efficiently inhibited with PROTACs directed towards
BTK. We show that non-covalent (NC-1), irreversible covalent
(IR-2) and also reversible covalent (RC-2) PROTACs are able to
degrade BTK in CLL cells. The NC-1 compound has a higher
degradation potency compared with the IR-2 and RC-2
PROTACs. The efficacy of NC-1 was also observed in patients
with poor genomic abnormalities, including del17p and TP53
mutation. The higher potency of non-covalent NC-1 may be
attributed to its rapid binding and dissociation equilibrium (25),
as well as potentially improved stability and permeability.
Furthermore, the non-covalent binding of NC-1 may explain
its more prominent reduction of Lyn levels. While ibrutinib is a
400-fold weaker inhibitor of Lyn than BTK (26), efficient
degradation of kinases by PROTACs was shown also based on
A

B D E

C

FIGURE 4 | The effect of PROTAC on activation marker expression. Peripheral blood CLL cells were cultured in 6-well dishes (5x106 cells/mL in RPMI 10% FCS)
and incubated with 100 nM NC-1 BTK PROTAC for 18 hours or with 100nM ibrutinib for 1 hour at 37° in a humidified 5% CO2 atmosphere. DMSO treated cells
served as controls. Following treatment, cells were incubated with goat F(ab’)2 anti-human IgM (10 µg/mL) for 3 hours or left unstimulated. After incubation, the cells
were stained with APC Mouse Anti-Human CD19 and PE Mouse Anti-Human CD69 and incubated for 30 minutes on ice. Isotype controls were APC Mouse IgG1,
k and PE Mouse IgG1, k. Samples were acquired by a FACSCanto II (BD) and analyzed using BD FACSDiva software. (A) Flow cytometric dot-plots of CD19-
APC versus CD69-PE expression on samples of one representative CLL case. (B) Quantification of CD69+/CD19+ cells in samples obtained from CLL patients
(n=10). *p<0.05, ***p<0.001. (C) Flow cytometric dot-plots of CD19-APC versus CD69-PE expression on samples of ibrutinib resistant CLL patient (C481S BTK).
(D, E) Peripheral blood mononuclear cells (PBMC) isolated from healthy donors were incubated with 100 nM NC-1 for 18 hours. DMSO treated cells served as
controls. Following treatment, cells were incubated with goat F(ab’)2 anti-human IgG (10 µg/mL) or with Dynabeads Human T-Activator CD3/CD28 for 3 hours or left
unstimulated. After incubation, the cells were stained with APC Mouse Anti-Human CD19 or CD3, respectively, and PE Mouse Anti-Human CD69. Percentages of
CD69+ in CD19+ (n=7) and in CD3+ (n=8) populations were calculated. *p<0.05, **p<0.01.
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weak binding inhibitors (13). Nevertheless, the reduction in Lyn
levels can in fact have a beneficial therapeutic effect in CLL. Lyn
plays a crucial role in the onset and progression of CLL and its
targeting by dasatinib has been shown to inhibit BCR signaling in
CLL cells (33).

Because of the higher NC-1 potency, we focused on this
PROTAC to investigate its further effects on BCR signaling,
activation, apoptosis and migration. In accordance with BTK
degradation by NC-1, phosphorylation of BTK was abolished
and activation of its downstream elements (PLCg2, Akt and
ERK) was partially blocked in response to IgM engagement.
Although treatment with ibrutinib resulted in a reduction in
BTK phosphorylation and also inhibition of BCR downstream
elements, the latter effect was less prominent, to some extent,
Frontiers in Oncology | www.frontiersin.org 92526
than that of NC-1. Given that Lyn is an off target of NC-1
compound, we also analyzed the effect of this PROTAC on
phosphorylation of proximal BCR elements. The treatment led to
decrease in phosphorylation of CD79a and Lyn, which can
contribute to further inhibition of BCR pathway.

Treatment of ibrutinib-resistant CLL cells with mutations at
C481 using NC-1 led to a decrease in BTK and pBTK levels, as
well as in phosphorylation of Akt and ERK. As expected in BTK
mutated cells, ibrutinib did not inhibit the phosphorylation of
these elements. Taken together, our results demonstrate that the
PROTACs are effective in degradation of BTK as well as
inhibiting the downstream elements of the BCR signaling,
including inhibitory activity in ibrutinib resistant cells with
mutations at C481. From a therapeutic point of view, although
A B

D EC

FIGURE 5 | BTK PROTAC induces apoptosis, inhibits migration and overcomes anti-apoptotic protection of stromal cell on CLL cells. Peripheral blood CLL cells
were cultured in 24-well dishes (5x106 cells/mL in RPMI 10% FCS) and incubated with 100 nM NC-1 PROTAC at 37° in 5% humidified CO2 atmosphere. DMSO
treated cells served as controls. Cells viability was evaluated by flow cytometry immediately after thawing, after 48 and 96 hours of incubation, using an Annexin V/PI
apoptosis detection kit. (A) A representative flow cytometry analyses of annexin V-propidium iodide double staining CLL-treated cells and controls at 2 and 3 time
points respectively. The left lower quadrant represents remaining live cells (percentages are indicated). The right lower quadrant represents the population of early
apoptotic cells. The right upper quadrant represents the accumulation of late apoptotic cells. (B) Viability percentages of cells treated with PROTAC and controls
(n=11) measured by flow cytometry after thawing, after 48 and 96 hours of incubation. (C) Peripheral blood CLL cells were cultured in 6-well dishes (5x106 cells/mL
in RPMI 10% FCS and incubated with 100 nM NC-1 BTK PROTAC for 18 hours. DMSO treated cells served as controls. A total of 100 mL, containing 5 × 105 cells,
was added to the top chamber of a 6.5-mm diameter Transwell culture inserts with a pore size of 5 mm. Filters then were transferred to wells containing medium
with 100 ng/mL SDF-1a.Wells containing medium without SDF-1a served as a negative control. The chambers were incubated for 2 hours at 37°C in 5% CO2. After
this incubation, the cells in the lower chamber were suspended and divided into aliquots for counting. The experiments were performed in triplicates (n=7). The averages +
S.D. are shown. **p<0.01. (D, E) Peripheral blood CLL cells (10x106 cells/mL) were co-cultured with HS-5 bone marrow stromal cells in 6-well dishes and treated with
100 nM NC-1. DMSO treated cells served as control. After 48 hours of incubation, proteins were extracted and analyzed by Western blot. A representative Western blot
analysis showing cleaved PARP levels as a marker to measure apoptosis. Actin was used to verify equal loading (n=5). *p<0.05, **p<0.01.
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PRTOACs have impressive activity in the targeting of BTK in
CLL cells, over time compensatory molecules and pathways may
arise that will oppose their activity, so in the future a
combination of drugs should be studied.

CLL cells often present a phenotype of activated B cells with
overexpression of surface activation markers including CD69
(28). Therefore, we analyzed the effect of the BTK PROTAC NC-
1 on the expression of the early activation marker CD69.
Treatment with NC-1 decreased the baseline CD69 surface
levels, and completely abrogated the upregulation of CD69
following BCR activation both in BTK WT and mutated CLL
cells. These results reinforce our findings that PROATCs directed
to BTK are capable of blocking both “tonic” and “antigen-
triggered” BCR signals in CLL cells. The effect of the PROTAC
on this activation marker expression was also tested in normal B
and T cells. As we expected, NC-1 compound decreased CD69
surface levels in activated normal B cells as they express BTK as
part of their BCR complex. The PROTAC also decreased CD69
expression in activated normal T cells. This result can be
explained by the possibility that NC-1 degraded the known
ibrutinib off-target ITK in the T cells (26). In contrast to CLL
cells, in normal cells there was no significant effect on CD69
levels in resting cells treated with 100 nM NC-1 compound. Our
results indicate that in activated cells the effect of PROTAC is
more pronounced and therefore it is an effective treatment
strategy for CLL patients in whom the B cells have both
“tonic” and “antigen –triggered” signals.

We also tested the effect of the PROTAC on apoptosis of CLL
cells. Cleaved PARP analysis revealed a mild apoptosis after 18
hours of PROTAC treatment. Flow cytometry analysis using
annexin V/PI staining revealed a decrease in cell viability after 48
and 96 hours of incubation, an effect that was approximately 10%
higher in cells that were pre-treated with 100 nM NC-1 PROTAC,
which is compatible with the mild apoptotic effect of ibrutinib using
equivalent therapeutic plasma concentrations in CLL (50-100 nM)
(29). It has been reported that ibrutinib can induce more marked
apoptosis of CLL cells, but this has been achieved at supra-
therapeutic concentrations up to 100 times higher than the
concentration we used (6). These findings further support the
concept that a central in-vivo mechanism of action of ibrutinib is
displacement of CLL cells from their supportive microenvironment,
leading to CLL cell redistribution from tissues into the blood,
followed by cell death as a result of “death by neglect” (34).

It is already been previously published that CLL cells express
high levels of CXCR4 and the stromal cells secrete SDF-1,
thereby they can attract the CLL cells and subsequently govern
their homing and survival (31, 32). BTK has a role in trafficking
of CLL cells, and its inhibition results in impaired CXCR4
expression, signaling and function in CLL, as was seen while
using ibrutinib (35, 36). In this study, the effect of NC-1
PROTAC on CLL cells migration toward SDF-1 was tested,
using transwell migration assay. The chemotaxis of CLL
cells to SDF-1a was significantly inhibited by preincubation of
the cells with 100 nMNC-1 PROTAC. These results demonstrate
that the PROTAC is effective in inhibiting an additional
aspect of CLL cells physiology, which may cause in vivo
Frontiers in Oncology | www.frontiersin.org 102627
blockade of CLL cell migration to secondary lymphoid tissues
and bone marrow.

Given the importance of the stromal niche in CLL cells
survival in vivo, the impact of PROTAC treatment on
apoptosis in the presence of stromal support was investigated.
Our results further show that NC-1 can overcome the anti-
apoptotic protection of co-cultured stromal cells on CLL cells.

BTK PROTACs have already been developed (19–24) and the
first designed BTK-targeted PROTACs were reported by Sun et al.
(20). These studies showed a reduction in the level of BTK protein,
inhibition of ERK phosphorylation in Ramos cell line (24), and
degradation of BTK in CLL patient samples including C481S (22).
The novelty of our work that we show the more comprehensive
effects of PROTACs to BTK on proximal and downstream BCR
signaling, activation, migration and apoptosis in patients derived
CLL cells including those with different BTK mutations at C481. In
addition, the use of PROTAC designed by us, has made it possible
to further investigate the effect of compounds with different binding
properties to BTK on CLL cells.

Taken together, PROTACs represent a very promising and
powerful approach for the development of targeted therapy
drugs, as was recently underscored by the first PROTAC,
ARV-110, to enter clinical trials (12). For BTK, PROTACs
such as NC-1 have advantages over irreversible inhibitors since
they are not sensitive to mutations in C481 (Figure 3) as well as
other reversible BTK inhibitors due to their longer duration of
action. Furthermore, this work demonstrates the potential of
BTK PROTACs to inhibit the BCR pathway, and paves the way
for future development of this novel therapeutic modality in
CLL. However, more efforts will be required to obtain deeper
insight into the efficacy and safety of PROTACs in
clinical settings.
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The immunoglobulin B cell receptor (IgBCR) expressed by chronic lymphocytic leukemia
(CLL) B cells plays a pivotal role in tumorigenesis, supporting neoplastic transformation,
survival, and expansion of tumor clones. We demonstrated that in the same patient, two
or more CLL clones could coexist, recognized by the expression of different variable
regions of the heavy chain of IgBCR, composing the antigen-binding site. In this regard,
phage display screening could be considered the easier and most advantageous
methodology for the identification of small peptide molecules able to mimic the natural
antigen of the tumor IgBCRs. These molecules, properly functionalized, could be used as
a probe to specifically identify and isolate single CLL subpopulations, for a deeper analysis
in terms of drug resistance, phenotype, and gene expression. Furthermore, CLL cells
express another surface membrane receptor, the CD5, which is commonly expressed by
normal T cells. Piece of evidence supports a possible contribution of CD5 to the selection
andmaintenance of autoreactivity in B cells and the constitutive expression of CD5 on CLL
cells could induce pro-survival stimuli. In this brief research report, we describe a peptide-
based single-cell sorting using as bait the IgBCR of tumor cells; in the next step, we
performed a quantitative analysis of CD5 expression by qRT-PCR related to the
expressed IgBCR. Our approach could open a new perspective for the identification,
isolation, and investigation of all subsets of IgBCR-related CLL clones, with particular
attention to the more aggressive clones.

Keywords: chronic lymphocytic leukemia, phage display, immunoglobulin B cell receptor, peptide-based sorting,
gene expression
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INTRODUCTION

CD5 is a membrane surface receptor expressed by thymocytes,
mature T cells, B1a subset of B cells, and leukemic B cells of
chronic lymphocytic leukemia (B-CLL) disease (1, 2). Called also
Leu-1, it is a 67-kDa type I transmembrane glycoprotein
monomer and a member of the scavenger receptor cysteine-
rich (SRCR) family (3). The extracellular region is composed of
three different domains (D1, D2, and D3) and represents the
putative binding region, while the intracellular domain contains
the Immunoreceptor Tyrosine-based Activation Motif (ITAM)
sequence as the docking site for phosphorylated Src homology 2
(SH2) domain-containing proteins (4).

CD5 is not expressed in normal B cells, except the B1 subgroup,
while it is mostly expressed in B-CLL cells (2); this suggests a
possible critical role of CD5 in self-maintenance and progression of
neoplastic B cells (5, 6). This hypothesis is supported by the
evidence that CD5 activates multiple signaling pathways,
including mitogen-activated protein kinase (MAPK) (Ras/Erk)
pathway, the Ca2+–calmodulin–calcineurin–NFAT pathway, and
the PI3-K/Akt/mTOR pathway (7). Further, in transgenic mice, the
expression of CD5 correlates with the self-reactivity in B cell
populations, supporting a possible contribution to the selection
and maintenance of autoreactivity in B cells (8).

CLL is the most frequent adult leukemia in western countries,
with a variable clinical course and the occurrence of a
heterogeneous tumor population (9, 10). Increasing evidence
supports the hypothesis that CLL pathogenesis is an antigen-
driven process by a continuous triggering of the immunoglobulin
B cell receptor (IgBCR) (11–15), resulting in the no random
choice of heavy chain variable region (VH) family during B cell
development and the consequential expression of the stereotyped
IgBCRs, frequently found in different patients (16). The
expression of peculiar IgBCRs is often related to the
aggressiveness of the disease (17). Indeed, the unmutated CLL
(U-CLL), with less than 2% of mutation in comparison with the
germline sequence, seems to be more aggressive with respect to
the mutated CLL (M-CLL), which shows a higher percentage of
mutations in the variable region of the heavy chain (18).
Furthermore, in the U-CLL subgroup, the rearrangement
VH1-69 is the most representative (about 25%), and patients
showed an aggressive disease with the expansion of CLL clones
expressing the unmutated IgBCRs, drug resistance, and often a
fatal outcome (16, 19).

Since CD5 seems to be located close to the surface IgBCR on
the B cell surface (6) and seems to be a potential ligand of
peculiar Ig heavy chain framework sequences in malignant B
cells (5), these findings suggest that CD5 could be a self-antigen
recognized by the CLL-IgBCRs, promoting survival and
proliferation signaling.

In our last published work, we analyzed two CLL patients
(named CLL1 and CLL5) for 2-years observation, demonstrating
the coexisting of several leukemic subpopulations identified by
different IgBCRs, but the most representative subpopulation
identified by the rearrangement VH1-69 persisted during all
the time (20). So, based on the evidence mentioned above, we
Frontiers in Oncology | www.frontiersin.org 23031
asked whether the survival and progression of the VH1-69
subpopulation could be related to higher CD5 gene expression
levels compared to the other coexisting clones. Taking advantage
of the previously selected peptide (named p1), able to specifically
target the leukemic cells expressing the rearrangement VH1-69
(20), we performed a peptide-based cell sorting, in order to
isolate the VH1-69 clones from peripheral blood of both
oligoclonal CLL1 and CLL5 patients. p1 positive sorted clones
(corresponding to the VH1-69 clones) were analyzed by qRT-
PCR for the expression of CD5, compared to the other CLL
clones (p1 negative clones).

Our results demonstrate that this approach, extended to all
IgBCR subsets, could open new strategies for a deeper
comprehension of the most aggressive clones, analyzing a wide
range of molecular mechanisms and drug resistance - related genes.
METHODS

Peptide-Based Cell Sorting
Frozen B-CLL cells previously isolated from CLL patients were
gently thawed and 24h-cultured in RPMI medium supplemented
with 10% fetal bovine serum. Then, cells (1 × 107 cells) were first
labelled with anti CD19-APC (Miltenyi Biotec, Germany, cat.n.
170-078-090) and anti-CD5-PE. (Miltenyi Biotec – Germany,
cat.n. 130-110-990) antibodies, for setting the gate of B-CLL cells.
Bulk CLL cells were incubated with FITC-conjugated peptide p1
(1 ng/ml) at 4°C for 20 min, analyzed by flow cytometry, and p1-
positive cells were sorted by BD FACSAria III TM (Becton
Dickinson). Gating was done using the BD FACSDiva™

software (Becton, Dickinson Biosciences). Cell sorting was
performed with 70-mm nozzle size and sorted directly into 5-
ml tubes containing 3 ml of staining media in order to minimize
cellular stress. Cells were gated in FSC-A vs SSC-A and single
cells gated in FSC-H vs FSC-A. Stringent gating strategies to
exclude debris or dead cells that exhibit autofluorescence and
CD5 negative cells were applied.

qRT-PCR for CD5 Gene Expression
Total mRNA was extracted from CLL cells (bulk or sorted cells) by
TRIzol RNA Isolation Reagents (Invitrogen) according to the
manufacturer’s instructions and quantified by spectrophotometer.
500ng of total mRNA was retrotranscribed into cDNA using the
iScript™ cDNA Synthesis Kit (BioRad).

qRT-PCR was performed using the CD5 primers (forward 5′
CAGAAGAAGCAGCGCCAGT 3′; reverse 5′ TCCTGGGA
GGTTGGCTGTATT 3′). The general reaction conditions were
as follows: initial denaturation step at 95°C for 10 min; 40 cycles
of denaturation at 95°C for 10 s; annealing at 57°C for 10 s; and
elongation at 72°C. All reactions were performed in triplicate
employing the CFX96 Touch Deep Well Real-Time PCR System
(BioRad). The results normalized to the GAPDH housekeeping
gene and determined by DDCt method were represented as log10
fold expression ± SD of triplicate assessments. Statistical
significance was evaluated using one-way analysis of variance
(ANOVA), followed by Bonferroni’s test for multiple
June 2021 | Volume 11 | Article 703254
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comparisons. Bars show mean values ± 95% confidence intervals
based on three biological replications.
RESULTS

The two CLL patients (named CLL1 and CLL5) were previously
analyzed on 2 years observation (20). In particular, the patient
CLL1 was analyzed at Binet stage A at months 1 and 5 (CLL1A
and CLL1B, respectively) and Binet stage C at month 8 (CLL1C);
the patient CLL5, being Binet stage A all the time, was analyzed
at months 1, 12, and 24 (CLL5A, CLL5B, and CLL5C,
respectively) (Table 1). As reported by Table 1, the VH1-69
subpopulation persisted all the time, at different percentages of
representativeness with respect to the other leukemic clones,
related to the aggressiveness of the disease. We firstly analyzed by
qRT-PCR the CD5 expression levels in total CD5 positive B-CLL
cells of CLL1 and CLL5 patients at different times of disease. As
shown in Figure 1A, relative gene expression of CD5 was slightly
increased, but not statistically significant comparing CLL1A to
CLL1B (both Binet stage A). However, a significant increase in
CD5 expression was associated with the expansion of VH1-69
Frontiers in Oncology | www.frontiersin.org 33132
clone in the passage from Binet stage A to C (CLL1A fold 1.00±
0.19; CLL1C fold 1.37±0.06), passing from 50% to 60% up to
80% of representativeness. Differently, in CLL5 patient CD5
expression levels significantly decreased comparing CLL5A and
CLL5B, associated to a representativeness decrease of VH1-69
clone, passing from 75% to 35%; further, relative gene expression
of CD5 was slightly decreased, but not statistically significant
comparing CLL5B to CLL5C (Figure 1B). These observations
suggested that the expression level of CD5 correlated with the
percentage of the existing VH1-69 CLL clones.

To deepen our analysis, we took advantage of the previously
identified peptide p1 as a specific ligand of the VH1-69
unmutated subpopulation in CLL1 and CLL5 patients (20).
Indeed, in this work, we used the peptide p1 as a probe to sort
the VH1-69 subpopulation from the total B-CLL cells of CLL1
and CLL5 patients. Figure 2 shows the coexisting of a p1 positive
and a p1 negative population in the total CLL cells of CLL1
(Figure 2A) and CLL5 (Figure 2B) patients. After peptide-
based sorting, IgBCRs sequence was analyzed both in p1-
positive and p1-negative fraction, to validate the sorting
procedures. No VH1-69 rearrangement was found in the p1-
negative fraction.
TABLE 1 | Clinical and molecular data of CLL1 and CLL5 patients.

Patient Sample (collection time) WBC (% of CD19/CD5 positive) Binet stage VH1-69 subpopulation/total
CLL cells (%)

CLL1 65-years old male CLL1A (month 1) 40,410/mmc (90%) A 60%
CLL1B (month 5) 69,070/mmc (92%) A 50%
CLL1C (month 8) 92,670/mmc (99%) C 80%

CLL5 80-years old female CLL5A (month 1) 57,210/mmc (95%) A 75%
CLL5B (month 12) 119,999/mmc (98%) A 45%
CLL5C (month 24) 86,500/mmc (96%) A 35%
June 2021
Peripheral blood samples of CLL1 and CLL5 patients were collected at the indicated time. CLL stage was defined according to Binet classification (Cancer.Net Editorial Board, 10/2017).
The percentage of VH1-69 subpopulation cells was determined by IgBCR sequencing as previously reported (20). The nucleotide sequences of CLL IgBCRs were deposited (GenBank
accession numbers MT334403 to MT334414).
A B

FIGURE 1 | Relative expression of CD5 in CLL clones of CLL1 and CLL5 patients. Relative CD5 gene expression in total B-CLL cells from CLL1 (A) and CLL5
(B) patient. The results were normalized to the GAPDH housekeeping gene, determined by DDCt method, and represented as log10 fold expression ± SD of
triplicate assessments. Statistical significance was evaluated using one-way analysis of variance (ANOVA), followed by Bonferroni’s test for multiple comparisons.
Bars show mean values ± 95% confidence intervals based on three biological replications. *P ≤ 0.01; ****P ≤ 0.0001.
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Then, we analyzed by qRT-PCR the CD5 expression levels in p1-
positive and p1-negative cells, compared to the bulk. As shown in
Figure 3, a higher expression of CD5 was observed in p1-positive
cells (representing the VH 1-69 clone) as compared to p1-negative
cells (the remaining CLL clones with IgBCR rearrangements
differing from VH 1-69), both in CLL1 (Figure 3A) and CLL5
patient (Figure 3B), indicating that CD5 expression levels were
related to the expression of VH1-69 rearrangement of IgBCR.
DISCUSSION

CLL clinical course could be characterized by the presence of
different tumor B cell clones that could appear or disappear over
time, recognized only by the different variable regions of the
expressed IgBCRs. These clonal populations may influence the
Frontiers in Oncology | www.frontiersin.org 43233
prognosis of the disease, establishing a balanced condition in
which the patient remains stable for many years without therapy
requirement, or one of them could escape from the apoptosis and
proliferation checkpoints, resulting in tumor progression, the
need for therapy, and in some cases fatal outcome.

In this scenario, it is interesting the investigation of molecular
mechanisms which allow that particular B cell tumor clones to be
more aggressive compared to the other tumor populations
coexisting in the same patient.

Several studies were conducted in the field of predicting
prognosis factors, including the presence or absence of zeta-
chain-associated protein kinase (ZAP)-70 or CD38 (21),
genomic alterations (10), TP53 status (22), and mutational
status of the IgBCR (18).

In particular, the mutational status was one of the first
prognostic factors evaluated in CLL patients, observing that
A

B

FIGURE 2 | CD19/CD5 positive B-CLL cells isolated from CLL1C (month 8, panel A) and CLL5C (month 24, panel B) patients were stained with FITC-
conjugated peptide p1 or unstained. p1-positive cells corresponding to the VH 1-69 clones were 70% of total B-CLL population in CLL1C patient and 32% in
CLL5C patient.
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patients with unmutated immunoglobulins showed a poor
prognosis with drug resistance and rebound (18).

The keystone could be peculiar IgBCR rearrangements that
result in self-stimulation through binding to intrinsic motifs of
the IgBCR (14, 15) or, on the other side, the presence of a
persistent stimulation guided and triggered by endogenous and
exogenous epitopes (23–25).

Further, the sequence analysis of IgBCRs expressed by CLL
cells, compared to normal B cells, revealed the expression of
quasi-identical Ig receptors circa in 30% of diagnosed patients,
defined stereotyped IgBCRs (26). These observations fit with the
hypothesis of a common exogenous or endogenous antigen
stimulating the tumor IgBCRs (14, 15, 23–25).

Reported data describe the capability of the IgBCR to induce
the transcription of CD5 by B cells in a murine model (27),
which, in turn, transduces pro-survival signaling, such as the IL-
10 production (28). Furthermore, it was previously demonstrated
that circulating CLL cells, that have been activated recently in
proliferating centers, express high levels of surface CD5, which is
progressively downregulated as the cells enter into an anergy
state, suggesting that the CD5 expression levels could be
correlated with the aggressive behavior of the CLL cells (29).
Thus, CD5 seems to bind to the Ig heavy chain framework
sequence of CLL cells, with a preference for the VH1-69
rearrangement (5), which could promote the selective
expansion of B cell clones harboring specific VH genes in CLL.

Our study could represent the proof of concept of the
potential use of specific peptide ligands of IgBCRs as probes
for sorting and analyzing single tumor subpopulations in CLL
patients. Thanks to this new methodology, and according to all
well-reported data mentioned above, we observed that the CD5
expression level was increased with the expansion of a specific
Frontiers in Oncology | www.frontiersin.org 53334
CLL subpopulation, in our case the unmutated VH1-69 clone,
and this could be part of the mechanism of clonal expansion and
persistence during the observation, representing additional
information for CLL prognosis. More specifically, we
demonstrated that single CLL clones could express variable
CD5 expression levels, according to their tumorigenic behavior
and IgBCR rearrangement.

In perspective, this research line could be extended to all
tumor populations of CLL, allowing a wide gene expression
analysis, for associating a peculiar IgBCR rearrangement to a
specific panel of up or down- regulated genes. We are confident
that this approach could get further insights into mechanisms of
tumor progression and patient-specific molecular therapy.
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11 Department of Immunology, LUMC, Leiden, Netherlands

Key processes in the onset and evolution of chronic lymphocytic leukemia (CLL) are
thought to include chronic (antigenic) activation of mature B cells through the B cell
receptor (BcR), signals from the microenvironment, and acquisition of genetic alterations.
Here we describe three families in which two or more siblings were affected by CLL. We
investigated whether there are immunogenetic similarities in the leukemia-specific
immunoglobulin heavy (IGH) and light (IGL/IGK) chain gene rearrangements of the
siblings in each family. Furthermore, we performed array analysis to study if similarities
in CLL-associated chromosomal aberrations are present within each family and screened
for somatic mutations using paired tumor/normal whole-genome sequencing (WGS). In
two families a consistent IGHV gene mutational status (one IGHV-unmutated, one IGHV-
mutated) was observed. Intriguingly, the third family with four affected siblings was
characterized by usage of the lambda IGLV3-21 gene, with the hallmark R110 mutation
of the recently described clinically aggressive IGLV3-21R110 subset. In this family, the CLL-
specific rearrangements in two siblings could be assigned to either stereotyped subset #2
or the immunogenetically related subset #169, both of which belong to the broader
IGLV3-21R110 subgroup. Consistent patterns of cytogenetic aberrations were
encountered in all three families. Furthermore, the CLL clones carried somatic
mutations previously associated with IGHV mutational status, cytogenetic aberrations
and stereotyped subsets, respectively. From these findings, we conclude that similarities
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in immunogenetic characteristics in familial CLL, in combination with genetic aberrations
acquired, point towards shared underlying mechanisms behind CLL development within
each family.
Keywords: CLL (Chronic Lymphocytic Leukemia), Familial CLL, BCR stereotypy, IGLV3-21 R110, CLL development
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common
leukemia in Western countries (1). Sex and age are important
risk factors for CLL, with a two-fold increased risk of developing
CLL for men compared to women and a median age at CLL
diagnosis of around 70 years (2). Although no single genetic
lesion drives CLL, a range of recurrent cytogenetic aberrations
and somatic mutations have been identified in CLL (2–4).

Cytogenetic aberrations are common in CLL, with around
80% of CLL patients carrying at least one of the four common
chromosomal alterations, i.e. del(13q), del(11q), del(17p) and
trisomy 12 (2, 5). Of these four alterations, del(13q) is the most
frequent and, as a sole aberration, is associated with indolent
disease (6). Del(11q) and del(17p) are associated with an
unfavorable prognosis, through loss of function of the ATM
and TP53 gene, respectively (3, 7–9). Lastly, trisomy 12 is
associated with an intermediate prognosis (10, 11). Several key
whole-exome sequencing (WES) and whole-genome sequencing
(WGS) studies have revealed over 50 recurrently mutated genes
(4, 12–15). However, the majority of these putative CLL driver
mutations are present at low frequency (<5% of cases), with only
a handful of more common mutations in genes such as TP53,
ATM, SF3B1, NOTCH1 and BIRC3 (4, 12).

Another important facet of risk stratification of patients with
CLL is the somatic hypermutation (SHM) status of the B cell
receptor (BcR) immunoglobulin heavy variable (IGHV) gene
(16). CLL patients with a mutated IGHV-gene (M-CLL), i.e.
showing lower than 98% IGHV gene similarity to its closest
germline counterpart, generally have a more indolent disease
course than CLL patients with an unmutated IGHV gene with a
germline identity equal to or above 98% (U-CLL) (2).
Furthermore, stereotyped or (quasi)identical BcR IGs are
observed in more than 40% of CLL patients (16). Patients with
shared BcR IG motifs can be assigned to distinct stereotyped
subsets associated with particular presentation and outcomes
(17, 18). One of the stereotyped subsets with the worst clinical
outcome is subset #2 (IGHV3-21/IGLV3-21), which displays a
mixed IGHV mutation status and an enrichment of SF3B1
mutations (17–19). An important new subset is the clinically
aggressive IGLV3-21R110 subset, which also includes subset #2,
that is characterized by shared usage of the lambda IGLV3-21*01
or *04 allele, along with a hallmark substitution of Gly to Arg at
amino acid position 110 at the very end of the IGLJ gene (20, 21).
The IGLV3-21*01 and *04 alleles encode a Lys at position 16 and
two Asp residues at position 50 and 52 in the CDR2 region of the
light chain variable region (VL), which interact with the R110
light chain residue, resulting in constitutive autostimulation of
the BcR, putatively contributing to CLL pathogenesis (20).
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Although the aforementioned genetic features mostly occur
sporadically, evidence exists for germline predisposition for CLL
(17, 22). The incidence of CLL varies geographically, with highest
incidence among individuals with European ancestry (23). This
hereditary element of CLL is also reflected in familial
predisposition, as relatives of CLL patients have an increased
risk of developing CLL as well as other B-cell malignancies (24).
Furthermore, monoclonal B-cell lymphocytosis (MBL), the
asymptomatic pre-stage to CLL, is more often seen in first-
degree relatives of CLL patients and is particularly common
among healthy relatives of patients with high-risk familial CLL
(i.e. families with two or more relatives with CLL) with a
prevalence of around 15% among individuals older than 40
years (23, 25). Genome-wide association studies (GWAS) have
captured part of this familial predisposition by screening for
single nucleotide polymorphisms (SNP) associated with familial
CLL, yielding low-risk SNPs distributed over nearly 30 loci
(22, 26–33).

In this context, through a combination of immunogenetic,
SNP-array and WGS analysis, we here aimed to gain insight into
the contribution of BcR composition, cytogenetic aberrations
and CLL driver mutations to familial CLL occurrence by
studying three families with multiple siblings diagnosed
with CLL.
MATERIALS AND METHODS

Samples
Peripheral blood was obtained from ten CLL patients from three
families (Figure 1). Informed consent was provided in accordance
with the declaration of Helsinki and the study was approved
by the hospital medical ethics committee (METC2015-741).
Familial connection was confirmed through STR analysis.
Peripheral blood mononuclear cells (PBMCs) were isolated by
Ficoll Paque (GE Healthcare, Little Chalfont, UK) gradient
centrifugation. CLL cells and T lymphocytes were sorted from
PBMCs using a FACSAria cell sorter (BD Biosciences, San Jose,
CA, USA). Immediately after sorting, cells were lysed in RLT+
buffer (Qiagen, Valencia, CA, USA) complemented with b-
mercapto-ethanol and stored at -80°C until further processing.
DNA and RNA was isolated with the DNA/RNA/miRNA easy
kit (Qiagen) according to the manufacturer’s protocol. In the event
that DNA was isolated from total PBMC, spin-column kits and the
QIAcube platform (Qiagen) were used. cDNA was synthesized
using the SuperScript™ III First-Strand Synthesis System
(Thermo Fisher Scientific, Waltham, MA, USA), according to
manufacturer’s instructions.
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A

B

C

FIGURE 1 | Family trees and BcR IG characteristics of familial CLL cases. (A) Family 1 consists of two brothers and two sisters who carry mutated IGHV genes.
(B) Family 2 consists of two brothers who both carry unmutated IGHV genes. (C) Family 3 consists of two brothers and two sisters. In all four siblings, the CLL clone
utilizes the IGLV3-21*04 gene with the characteristic R110 mutation and the K16 and YDSD motifs. Additionally, siblings 3B and 3C express similar IGHV genes, i.e.
IGHV3-21 and IGHV3-48, and belong to stereotyped subsets #2 and #169, respectively.
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IG Gene Rearrangement Analysis
Immunoglobulin heavy (IGH) and IG kappa/lambda (IGK/IGL)
gene rearrangements were amplified from 100 ng gDNA isolated
from the total PBMC fraction with multiplex PCR utilizing the
BIOMED-2 IGH primers and IG light chain consensus primers,
following ERIC guidelines (34, 35). Clonal PCR products were
separated by heteroduplex gel electrophoresis and were purified by
gel extraction. Rearrangements were determined through Sanger
sequencing on anABI 3130xl instrument (ThermoFisher Scientific,
Waltham, MA, USA). Sequencing results were analyzed using the
IMGT/V-QUEST tool on the IMGT website (www.imgt.org,
version 3.3.1). Stereotyped subsets were defined by the following
parameters: (1) usage of IGHV genes from the same phylogenetic
clan, (2) aminimumof 50% amino acid identity and 70% similarity
within the heavy chain CDR3, (3) identical heavy chain CDR3
length and, (4) identical offset of the shared amino acid pattern (28).
The IGLV3-21R110 mutation was confirmed using IGLV3-21
primers on cDNA for 3 out of 4 members of family 3. As no RNA
was available for sibling 3C, the R110 mutation was instead
confirmed based on the WGS results analyzed by an extension of
the ARResT/Interrogate immunoprofiler for the analysis of IG/TR
rearrangements in non-amplicon sequencing data such as from
WGS, WES and RNA-seq (36, 37).

SNP Array Analysis
Two hundred fifty ng of genomic DNA was used for single
nucleotide polymorphism (SNP) array analysis on the Illumina
Human OmniExpress Beadchip (Illumina, San Diego, CA, USA).
Data were analyzed with Beadstudio software (Illumina). The log
R ratio and B allele frequency data were analyzed using Nexus
Copy Number (Nexus BioDiscovery, El Segundo, CA, USA). The
results were compared with a database of known copy-number
variations (Department of Clinical Genetics, Erasmus MC,
Rotterdam, The Netherlands) and a public copy-number
variations dataset containing approximately 3500 healthy
controls (dataset of genomic variants). The affected locations
detected were analyzed in Ensembl Genome Browser 95 (www.
ensembl.org) and screened for loci previously linked to CLL in
GWAS studies. The used SNP array contained more than 700K
probes, and the genome was analyzed with an average resolution of
150 kb, or smaller when it contained at least 10 consecutive probes.

Whole-Genome Sequencing
One hundred ng of genomic DNA was used for construction of
WGS libraries using the TruSeq Nano Kit (Illumina Inc.) and
sequenced in paired-endmode (2x150bp) on the IlluminaHiSeqX
Ten system (Illumina Inc.) with 30× target coverage. The bcl files
were converted to FASTQ using bcl2fastq and subsequently
processed using Piper, a pipeline built on top of GATK queue.
Reads from each library were aligned to the Grch37 reference
genome using BWA mem and merged and de-duplicated using
Picard. Re-alignment around known and novel indel-sites was
performed with GATK. All SAM/BAM-conversion steps were
completed using SAMtools. Germline samples (T-lymphocytes or
PBMC) were compared to reference genome GRCh37 using
GATK. However, as the PBMC samples also included CLL cells,
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no distinction could bemade between somatic mutations or novel
germline variants for these patients; instead, the PBMC samples of
patients 1B and 2B were used to confirm if germline variants
identified in sibling(s)were shared. Somatic variation inCLL clone
vs germline was annotated by the Strelka2 Small Variant Caller.
The Variant Call Format (VCF) files were filtered for PASS
variants, annotated with VEP and converted to Mutation
Annotation Format (MAF) files using VCF2MAF. MAF-files
were analyzed using the maftools R package (38). Somatic
mutations in CLL-associated genes were annotated by the
Ensembl Variant Effect Predictor (VEP, ensembl.org/info/docs/
tools/vep/index.html). The panel of CLL driver genes was based
on landmark WGS and WES studies (4, 12), for the full panel see
Supplementary Table 1. Additional screening was then performed
for genes in KEGG pathways related to DNA replication, DNA
repair, BcR, p53 signaling, cell cycle and the spliceosome. Germline
variants were filtered based on clinical significance in ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/), allele frequency, SIFT,
PolyPhen and CADD score. All somatic mutations were screened
for disease recurrence in CLL and cancer in COSMIC (39)
(cancer.sanger.ac.uk) and Intogen (www.intogen.org). The WGS
dataset and immunogenetic sequencing data are available upon
request to the corresponding author through the SciLifeLab
repository (DOI: 10.17044/scilifelab.14932062).
RESULTS

Families With Multiple CLL Patients
In family 1 (Figure 1A) four (out of a total ten) siblings, i.e. two
brothers and two sisters, suffered from CLL. They were
diagnosed at advanced age [85 (1A), 86 (1B), 79 (1C), and 60
(1D)] and were followed until late age (98, 91, 84 and 82 years,
respectively) (40). All ten siblings grew up on a Dutch farm,
where cattle breeding and agriculture were practiced. No record
was kept of pesticide use at the farm. All of the other six siblings
had passed away at time of inclusion, without showing clinical
signs of hematological or immunological disease. Both male
patients (1A and 1B) moved out during adolescence, while the
female patients 1C and 1D remained at the farm until they were
middle-aged. Only patient 1A, who also presented with
lymphadenopathy, received treatment for CLL (chlorambucil),
twelve years after diagnosis (40). The two brothers of family 2
(Figure 1B) were diagnosed with CLL at age 77 (2A) and 71 (2B)
years. Family 3 also consisted of two brothers and two sisters
with CLL, who were diagnosed in the age range from 64 until 81
years (Figure 1C). Sibling 3B was treated with fludarabine.
Members of both family 2 and family 3 had the Dutch
nationality and were Caucasian. Additional clinical data and
descriptive information were unfortunately not available for
families 2 and 3.

Familial CLL Shows Consistent
BcR IG Characteristics
Through IG Sanger sequencing of genomic DNA from total
PBMC fractions from CLL patients in each of the three CLL
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families, we discovered strikingly similar immunogenetic features
within each family (Figure 1). For family 1, a consistent somatic
hypermutation (SHM) status of the IGHV gene was observed, with
each of the four siblings harboring a M-CLL clone with an IGHV
gene germline identity below 98% (Table 1). Moreover, two siblings,
1B and 1D had multiple CLL clones, each of which expressed a
mutated IGHV gene. Although CLL is generally of monoclonal
origin, multiple productive IGH rearrangements have been
observed in around 2% of CLL cases (16). These can arise from a
single CLL clone (biallelic rearrangement) or reflect biclonal CLL
disease (41, 42). Interestingly, family member 1D appeared to have
biclonal CLL consisting of a SmIgk+ and a SmIgl+ CLL clone as
determined by flow cytometry (data not shown). Since we detected
three productive IGH rearrangements, one of the two CLL clones
likely expresses two IGH alleles. The multiple productive IGH
rearrangements identified for family member 1B may also be
biallelic but could not be discerned as only one rearranged Ig
light chain gene was expressed. Previously, multiple additional IGH
bands were detected for these family members in Southern blot
analysis (40), but these were now all found to be unproductive.
Altogether, family 1 is characterized by M-CLL, with multiple
productive and unproductive rearrangements in two individuals.

In family 2, both siblings expressed unmutated IGHV genes
(U-CLL). Notably, each sibling expressed IGHV4 (IGHV4-31 or
IGHV4-34), IGHJ6 and IGK light chain genes, but no BcR IG
stereotypy was observed (Table 1). Hence, the key defining
feature of family 2 is the U-CLL type.

Finally, the CLL clone of all siblings of family 3 expressed an
IGHV gene with (near) borderline IGHV mutational status
(germline identity ranging from 96.4 - 98.2%; borderline IGHV
mutational status is classically defined as 97-97.9% germline
identity) (43). Notably, the CLL clone in all four siblings utilized
the lambda IGLV3-21*04 gene, suggestive of membership of the
recently discovered IGLV3-21R110 subset (20, 21), which usually
has a borderline mutation status. As the BIOMED-2 IGLV/IGLJ
light chain consensus primers did not capture the essential final
nucleotide of the IGLJ gene to verify the R110 status, we repeated
sequencing with adapted primers on cDNA in cases where RNA
was available. We confirmed the somatic R110 mutation and
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germline configuration of the K16 and YDSD motifs in all four
members of family 3 (Supplementary Figure 1). Regarding the
heavy chain, two family members (3B and 3C) belonged to the
closely related and clinically aggressive subsets #2 and #169,
respectively (44). The respective IGHV genes of these heavy
chain stereotypic CLL subsets, IGHV3-21 and IGHV3-48, were
97% identical. The CLL clone of sibling 3B also expressed the
IGHV3-48 gene, though the variable heavy CDR3 (VH CDR3) of
this patient did not match a stereotyped subset (Table 1). Thus,
family 3 is paradigmatic for the IGLV3-21R110 subset with a
borderline IGHV mutation status.

CLL Families Show Similar Genomic
Profiles
To further explore the genomic profiles in these immunogenetically
paradigmatic families, we utilized SNP array analysis. We detected
genomic aberrations in all three families (Table 2). For family 1 and
3 we observed the most common deletion in CLL, del(13q), in the
CLL clone(s) of all members, whereas the two brothers of family 2
carried trisomy 12. Additionally, sibling 3C carried del(11q), which
is in line with previous reports of subset #2 patients having an
increased incidence of 11q deletions (45). Lastly, sibling 1C carried a
2q34-2q35 deletion, a chromosomal aberration not previously
associated with CLL, though deletions of 2q37 encompassing
SP140 and SP110 have been reported (12, 46). Furthermore, the
SNP array revealed a distinct loss of heterozygosity (LOH) profile
for each family, composed of loci previously linked to CLL in
GWAS (Supplementary Table 3) (26, 29–33). All three families
shared LOH in the MHC locus (6p22.1) and the CASP8 and
CASP10 locus (2q33.1). LOH of chromosome region 11q22.3,
where the ATM gene is located, was detected in members of
family 1. Additionally, we observed LOH of 14q32.2-q32.33 in
family 2, which is interesting as 10% of CLL patients with trisomy 12
were previously observed to have an additional translocation in
14q32 (11). Furthermore, we observed LOH in the 2q22.1 locus in
family 2 and family 3, which was recently identified as a novel CLL
risk locus using shared genomic segment analysis and was found to
include the full CXCR4 gene. Although there were no cytogenetic
data available, we have used SNP array data to define genomic
TABLE 1 | Overview of BcR IG sequencing results.

Family member Stereotyped subset IGHV gene HCDR3 IGLV/IGKV gene LCDR3

1A – V1-3 CARGVRFLEFLLYGDDAFDIW IGKV1-33
IGK1-9

CQQYDNLPPALATVCQQVNSYPRITF

1B – V4-34
V3-15

CARSLVVPAAYGPNSWFDSW
CATGGHCGGACYSPYFDYW

IGLV2-18 CSLYTGTKTIF

1C – V3-7 CAKHDNTGDFHLDNW IGKV1-16
IGLV2-11

CQQYNSYPALTF
CCSYAGSHTYVF

1D – V1-8
V2-5
V3-15

CARHPSRRCSGDFCSTGNWFDPW
CLGHWVRGIMTPFDYW

CNYYVMDVW

IGKV3-20
IGLV2-14

CQQYGSSPNTF
CSSYTSSNTLVF

2A – V4-31 CARLLAGLHYYYYYAMDVW IGKV1-33 CQQYDNLPPYTF
2B – V4-34 CARERRDSNYGSGIFYYYYGMDVW IGKV4-1 CQQYYSTPRTF
3A IGLV3-21R110 V1-46 CARAWSSAWKYYFDY IGLV3-21 CQVWDSGSDHPWVF
3B IGLV3-21R110/#169 V3-48 CARDGVGAPY IGLV3-21 CQVWDSGTDHPWVF
3C IGLV3-21R110/#2 V3-21 CARDQNGMDV IGLV3-21 CQVWDSSSDHPWVF
3D IGLV3-21R110 V3-48 CARDGGPCGDCYQ IGLV3-21 CLVWDSGSDHPYVF
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complexity. In none of the patients a high genomic complexity was
indicated (Table 2), defined as 5 or more unbalanced aberrations
according to Leeksma et al. (47–49). Only two patients (1C and 3C)
presented with three or four aberrations (Supplementary Table 4).
In conclusion, SNP-array analysis revealed shared CLL-associated
chromosomal aberrations within each family and LOH in several
CLL risk loci, and no complex karyotype cases in any of the families.

Whole-Genome Sequencing Identifies
Germline Variants in CLL-Related
Pathways in All Three Families
To investigate somatic mutations in the CLL clones and review
potential contributing germline variants, we performed WGS on
both sorted CLL samples and normal T cells of all three families.
Unfortunately, for patients 1B, 2B and 3B, sufficient CLL-derived
genomic material for WGS was not available (Supplementary
Table 3). However, for patient 1B and 2B, we were able to
sequence leftover DNA from unsorted PBMCs, allowing us to
screen for potential shared germline variants that were found in
the families or their members. We performed an initial screen for
germline variants and somatic mutations and in CLL driver
genes previously identified in WGS and WES studies and then
followed up with KEGG pathway analysis to screen for novel
CLL-related genes (Figure 2 and Supplementary Table 5).

First, we catalogued the germline variants in each of the families.
We identified a germline frameshift deletion in CHEK2
(p.T410Mfs*15) in siblings 1A, 1B and 1D, but not in sibling 1C
(Figure 2A and Supplementary Table 5). Deleterious germline
CHEK2 variants have been associated with an increased risk of
developing primarily breast cancer and colorectal cancer (50).
Moreover, somatic CHEK2 alterations have been reported in CLL
(4, 51). Additionally, we identified a rare germline missense variant
(p.R325C) in PIK3R3 in sibling 1A, 1C and 1D, but not in sibling
1B. PIK3R3 is a regulatory subunit of phosphatidylinositol 3-kinase
(PI3K) and thus an essential part of the PI3K/AKT signaling
pathway involved in cell survival and proliferation (52–54).

Notably, we observed a rare germline missense variant in
NFKBIA (p.T185M) in both siblings of family 2, predicted to be
pathogenic by variant effect predictor tools. NFKBIA inhibits
NF-kB/REL complexes during inflammatory response. NFKBIA
is also a part of the BcR signaling pathway (55). In family 3,
sibling 3A and 3C carried a germline missense variant in the
ERCC6 gene (p.R666C), which encodes a protein involved in the
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base excision repair pathway. Altogether, some interesting
germline variants were observed, but many were of unknown
significance and most variants were not shared by all siblings
with CLL, making a strong causal relationship in familial CLL
less straightforward than for previously described somatic
mutations in CLL.

Known and Novel Somatic Mutations in
CLL-Driver Genes and Related Pathways
in All Three Families
Next, we characterized somatic mutations specific to the CLL
clone (Figure 2B). We encountered a somatic frameshift deletion
and missense mutation in ATM in sibling 1A, which in
combination with the LOH of chromosome region 11q22.3
results in bi-allelic loss of ATM. This same clone had an
additional p.G13D somatic missense KRAS mutation and a
somatic frameshift deletion in the BAX gene. Lastly, we
observed a somatic missense mutation (p.D470H) in sibling 1A
in the PRKCB gene, involved in many different signaling
pathways, including B-cell activation.

The CLL clone of sibling 1C carried two somatic missense
mutations of interest, a p.D594N mutation in BRAF previously
observed in CLL, and a novel CD19 mutation (p.L495P). Sibling
1D presented with biclonal CLL, one SmIgk+ and one SmIgl+

CLL clone. In each CLL clone, a known CLL driver gene was
affected; the IGK+ clone carried a truncating mutation inMED12
(56), while the IGL+ clone carried a missense mutation at the
CLL hotspot (L273P) inMYD88 (57). Furthermore, we observed
a somatic missense mutation (p.G2R) in both the SmIgk+ and
SmIgl+ clones in LYN, a gene directly downstream of the BcR.

In family member 2A we detected somatic frameshift deletions
in FBXW7 and NOTCH1 and a missense mutation in KRAS, all of
which have been previously associated with the occurrence of
trisomy 12 in CLL (11, 58–60). Unfortunately, the lack of somatic
data from patient 2B prevented us from confirming if the somatic
mutational profile matched between siblings.

In family 3, we observed a somatic mutation in one of the CLL
hotspots (p.G742D) of SF3B1 for sibling 3A. SF3B1 mutations
are common in CLL and particularly associated with subset #2
and the IGLV3-21R110 subset (20, 21). Sibling 3C carried somatic
mutations in several low-frequency mutated genes in CLL:
IGLL5, DYRK1A and BAZ2A (4, 12). The somatic mutation in
IGLL5 is likely the result of aberrant SHM (61). Additionally,
TABLE 2 | Cytogenetic aberrations encountered for each of the three families.

Family member del(13q) +12 del(11q) del(17p) del(2)(q34q35) total abberations*

Sibling 1A yes no no no no 2
Sibling 1B yes no no no no 1
Sibling 1C yes no no no yes 4
Sibling 1D yes no no no no 1
Sibling 2A no yes no no no 1
Sibling 2B no yes no no no 1
Sibling 3A yes no no no no 1
Sibling 3B yes no no no no 1
Sibling 3C yes no yes no no 3
Sibling 3D yes no no no no 1
August 2021 | Volume
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sibling 3C carried a somatic truncating mutation in RPA2, a gene
involved in DNA replication and repair. In contrast, no
noteworthy somatic mutations were observed in sibling 3D.

In summary, the WGS results yielded several somatic
mutations in recurrently mutated genes in CLL, as well as four
germline variants in genes in CLL-associated pathways, though
there was limited overlap in the genes affected by the somatic
mutations in members within and across families.
DISCUSSION

In this study, we describe three families that represent distinct
immunogenetic subgroups of CLL, presenting a unique opportunity
to study the contribution of genetics and immunogenetics in CLL
pathobiology. Each of the three families developed CLL with a
consistent IGHV SHM status, encompassing one of three
prototypes of the IGHV SHM spectrum: i.e. U-CLL, M-CLL and
borderline mutated CLL. While families 1 and 2 reflect the M-CLL
and U-CLL subgroups, respectively, family 3 presented with
borderline mutated CLL and all family members carried the
lambda IGLV3-21 light chain. Furthermore, family 3 expressed
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the IGLV3-21*04 allele and displayed the R110 mutation
characteristic of the IGLV3-21R110 subset. This light chain was
paired with a stereotyped VH CDR3 of the immunogenetically
related subsets #2 and #169, both of which belong to the broader
IGLV3-21R110 category. We observed distinct profiles of genetic
alterations for each of these families, with further unique somatic
mutations for each sibling. While our results are consistent with
previous associations between IGHV SHM mutational status and
specific genetic aberrations in CLL driver genes, the similarities in
(immuno)genetic features within each family highlight their
important contribution to the onset and evolution of familial CLL.

The dichotomy between U-CLL and M-CLL is thought to
originate from the B-cell maturation process after antigen
activation (62). For M-CLL, the antigen-activated B cell follows
the traditional path of T cell-dependent germinal center B cell
maturation. For U-CLL, the antigen-activated B cell is thought to
mature largely independent of the T cell influence (62).
Throughout these processes, chronic antigenic stimulation
through (auto)antigens would keep the B cell in a constant
state of activation. For the IGLV3-21R110 subset, this constant
activation is most probably the result of autostimulation through
BcR aggregates on the cell surface.
A

B

FIGURE 2 | Somatic mutations and germline variants detected by whole genome sequencing of the CLL families. In this figure, both germline variants (A) and
somatic genetic alterations (B) detected in the CLL families are shown. The genes highlighted in bold text are genes, which have previously been identified as CLL
driver genes. Genes that are not in bold text were identified during KEGG pathway analysis. Only mutations/variants with likely functional consequences related to
CLL development are shown; mutations/variants that were previously reported to be benign or evaluated as benign by variant effect predictors were not shown.
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Aswouldhavebeenexpectedbasedontheassociationof IGLV3-
21 with CLL with limited SHM activity, the IGLV3-21R110 subset is
characterized by a (near) borderline mutational status (63).
Correspondingly, no cases of IGLV3-21R110 with 100% IGHV
germline identity have been encountered, thus supporting SHM
as the mechanism for the introduction of the somatic R110
mutation (20). The IGHV germline identities of the IGLV3-
21R110 CLL family 3 follow a similar pattern, ranging from a
germline identity of 96.4% to 98.2%. Interestingly, usage of the
IGLV3-21*01 or *04 alleles gives an inherent risk of IGLV3-21R110-
related CLL, due to the germline presence of the K16 and YDSD
motifs (20). Our findings in the current study would support the
theory that this inherent risk contributes to the increased incidence
of CLL among relatives of CLL patients.

We additionally observed a somatic mutation in SF3B1 for
sibling 3A. SF3B1mutations are common in CLL and particularly
associated within the IGLV3-21R110 subset (20, 21). As the SF3B1
protein is a component of the spliceosome, we screened for
additional mutations in the spliceosome pathway. We discovered
that sibling 3C carried a splice site alteration in SF3B2. Unlike
SF3B1, SF3B2 has never been independently linked to CLL. The
finding of a splice site alteration in SF3B2 in sibling 3C suggests that
the alterations in other genes involved in the spliceosome may be
relevant for the IGLV3-21R110 subset as well, although this awaits
further confirmation in larger cohorts.

We identified several germline variants of unknown
significance (VUS) in each of the families by KEGG pathway
analysis. Family 1 presented with germline variants in CHEK2
and PI3KR3, while family 2 carried a germline variant in
NFKBIA and two siblings of family 3 carried a germline
variant in ERCC6. CHEK2 is a gene associated with DNA
damage and repair as well as cell cycle regulation and
apoptosis in response to DNA damage (51). Somatic CHEK2
mutations have been identified as putative CLL drivers, while
CHEK2 germline variants have recently been indicated as a novel
predisposition gene in CLL, implying that CLL may belong to the
spectrum of malignancies associated with germline variant in
CHEK2 (54). In addition, three out of four siblings with CLL
carried a rare germline variant in PIK3R3, an essential
component of the PI3K/AKT signaling pathway. Recently,
altered activation of the PI3K/AKT signaling-pathway was
identified as a critical component of sustained proliferation
and survival in CLL (64). During this process, autonomous
autoreactive BcR signaling typically converges with activation
of the PI3K/AKT signaling-pathway (64). While germline
variants in components of the PI3K/AKT pathway could
theoretically contribute to this aspect of CLL development, no
convincing supporting evidence for a role of any germline
variant has this far been reported. NFKBIA is part of the NF-
kB and BcR signaling pathways and its expression has been
suggested as a biomarker for risk stratification in DLBCL (55).
ERCC6 has a role in base excision repair, particularly
during transcription.

Our study was limited by its sample size as well as by the
amount of material available for each patient. Additionally,
clinical follow up data was not available for family 2 and 3 and
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no material was available from healthy family members. Lastly,
the absence of conventional chromosomal analysis may have
affected the identification of complex rearrangements (>3
abnormalities), a prognostic factor in CLL, although we feel
that based on SNP array data we could exclude the occurrence of
complex karyotype cases. Nevertheless, we feel that the three
families are paradigmatic for the main CLL subgroups and as
such provide a platform for further studies into the link between
immunogenetics and genetic predisposition. That said,
environmental factors like pesticides, herbicides and pathogens
could be relevant risk factors in familial CLL as well. This would
especially apply to the siblings of family 1, who all grew up on the
same farm (65). Unfortunately, as no toxicological or biological
measurements were done, the contribution of these factors to
CLL development in family 1 remains unclear.

In summary, we evaluated immunogenetic, cytogenetic,
germline and somatic lesions in familial CLL. In each family, a
consistency of IGHV mutational status was observed, with the
particularly intriguing finding that all individuals in one of the
families belonged to the IGLV3-21R110 CLL subset. Furthermore, we
highlight the co-occurrence of specific genetic aberrations and
germline variants within each family, pointing towards shared
underlying mechanisms in CLL development. Our data warrants
a more comprehensive evaluation of this potential association
between germline predisposition and immunogenetic features in
the development of CLL.
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The HCDR3 sequences of the B-cell receptor (BCR) undergo constraints in length, amino
acid use, and charge during maturation of B-cell precursors and after antigen encounter,
leading to BCR and antibodies with high affinity to specific antigens. Chronic lymphocytic
leukemia consists of an expansion of B-cells with a mixed immature and “antigen-
experienced” phenotype, with either a mutated (M-CLL) or unmutated (U-CLL) tumor
BCR, associated with distinct patient outcomes. Here, we investigated the hydropathy
index of the BCR of 138 CLL patients and its association with the IGHV mutational status
and patient outcome. Overall, two clearly distinct subgroups of M-CLL patients emerged,
based on a neutral (mean hydropathy index of -0.1) vs. negatively charged BCR (mean
hydropathy index of -1.1) with molecular features closer to those of B-cell precursors and
peripheral/mature B-cells, respectively. Despite that M-CLL with neutral HCDR3 did not
show traits associated with a mature B-cell repertoire, important differences in IGHV gene
usage of tumor cells and patient outcome were observed in this subgroup of patients
once compared to both U-CLL and M-CLL with negatively charged HCDR3 sequences.
Compared to M-CLL with negatively charged HCDR3 sequences, M-CLL with neutral
HCDR3 sequences showed predominance of men, more advanced stages of the disease,
and a greater frequency of genetic alterations—e.g., del(17p)—together with a higher rate
of disease progression and shorter time to therapy (TTT), independently of other
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prognostic factors. Our data suggest that the hydropathy index of the HCDR3 sequences of CLL
cells allows the identification of a subgroup of M-CLL with intermediate prognostic features
between U-CLL and the more favorable subgroup of M-CLL with a negatively charged BCR.
Keywords: hydropathy index, neutral HCDR3, negatively charged HCDR3, mutated CLL (M-CLL), disease progression
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most prevalent
leukemia in adults in the Western world, which is characterized
by an expansion of mature-appearing CD5+CD20lo B-cells
showing an antigen-experienced CD27+, IgM+, and/or IgD+

unswitched phenotype, in association with either an unmutated
(U-CLL) or mutated (M-CLL) B-cell receptor (BCR) (1). At
diagnosis, most CLL patients show stable disease with a variable
number of tumor B-cells in blood (always >5,000 cells/ml) and
bone marrow (BM), in the absence of organomegalies, and they
do not require active therapy (2). Despite this, a significant
fraction of patients shows more advanced disease already at
diagnosis or they experience disease progression during follow-
up, which translates into the need for active cytotoxic therapy (3).

In the last decades, themutational status of the immunoglobulin
(IG) heavy-chain variable (IGHV) genes that code for the BCR,
together with disease stage and tumor cytogenetics, has emerged
among other variables, as relevant prognostic factors in CLL (4).
Thus, U-CLL patients show a significantly poorer outcome
compared to M-CLL (4). Thereby, analysis of the IGHV status is
currently part of the core variables investigated in the diagnostic
workup of this disease (3, 5). Despite this, M-CLL patients have a
heterogeneous outcome (6, 7).

From a pathogenic point of view, U-CLL cells resemble “pre-
germinal center” (pre-GC) B-cells, whereas M-CLL cells mimic
“post-GC” B-lymphocytes (8, 9). However, tumor cells from
both CLL groups typically display a mixed immature (CD5+

CD23+) and “antigen-experienced” (CD27+) B-cell phenotype
(10), suggesting they might represent the leukemic counterpart
of B-lymphocytes that might have undergone BCR stimulation in
the GC (M-CLL) vs. peripheral tissues, following selection of B-
cell precursors in BM (U-CLL). In line with this hypothesis, the
IGHV1-69/IGHJ6 genes which show highly similar junctional
regions to those of normal peripheral blood (PB) CD5+ GC B-
cells are more frequently represented among U-CLL, supporting
a close relationship between U-CLL cells and the B-cells
responsible for the natural antibody repertoire (11). This
potential relationship is further supported by the fact that most
normal CD5+ B-cells isolated from blood correspond to
immature and (early) naïve B-cells that express unmutated VH
gene regions (12). In turn, B-cell activation via T-cell-dependent
antigens leads to the expansion of hypermutated germinal center
(GC)-derived B-cells (13), suggesting that M-CLL might be
associated with the “classical unswitched memory B-cell”
compartment, despite that some M-CLL also show BCR
features that overlap with those of natural antibodies (14).

Another important biological feature of CLL is the usage of a
biased IGHV-D-J repertoire (the so-called “stereotyped” BCR)
tiersin.org 24849
(9) in around one-third of cases, particularly in U-CLL patients,
with important pathogenic and prognostic implications (15, 16).
In contrast to U-CLL, the higher load of somatic mutations in the
BCR of M-CLL cases makes recognition of common amino acid
(aa) patterns in the HCDR3 region more difficult (17). However,
other HCDR3 characteristics, such as its overall charge and
hydropathy index, might also contribute to better understand
the ontogeny of tumor B-cells in CLL, the affinity and specificity
profile of their BCR, and its relationship with antigen-driven B-
cell responses, even at earlier stages of B-cell maturation (18). In
fact, the HCDR3 sequence of the BCR undergoes constraints in
length, amino acid use, and charge along the B-cell development
and maturation (19). Consequently, the BCR repertoire of early
B-cell progenitors is first focused into what appears to be a
preferred range for functional antigen recognition by mature B-
cells, and subsequently modified after antigen recognition, in
order to generate high-affinity antigen-specific antibodies and
memory B-cells (19, 20). Interestingly, receptor prototypes based
on HCDR3 charge and its association with certain V gene
characteristics have been defined in CLL cells with the
possibility that such receptor restrictions could reflect
selections of the BCR repertoire that have occurred among
both antigen-experienced and naive B cells (21). Despite this,
the hydropathy features of HCDR3 and its association with the
IGHVmutational status and other clinical and biological features
of the disease have not been systematically explored in large
series of CLL and related with patient outcome.

Here we investigated the hydropathy index of the BCR of
tumor cells from 138 CLL patients, and its potential association
with other features of the disease, including the BCR mutational
status and patient outcome.
MATERIALS AND METHODS

Patients and Samples
A total of 138 untreated CLL patients—81 males and 57 females;
median age (range) at diagnosis of 63 years (y) (33–84 y)—
diagnosed at the University Hospital of Salamanca (Salamanca,
Spain) were studied. Most cases (95/138) had Binet stage A CLL,
and 43 had more advanced CLL (Binet B, 22; and Binet C, 21
patients). Median follow-up at the time of study closure was 8 y; at
that time, 65 patients (47%) had progressed and required therapy
and 24 (17%) had died (Table 1). In every patient, genomic DNA
(gDNA) from purified CLL B-cells was obtained for molecular
investigations. The study was approved by the local institutional
Ethics Committee (approval code: CEIC-PI4705/2017).
All patients gave their written informed consent to participate to
the study in agreement with the Declaration of Helsinki.
October 2021 | Volume 11 | Article 723722
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IGHV-D-J Gene Rearrangement Studies
Analysis of the tumor IGHV-D-J gene rearrangements was
performed by polymerase chain reaction (PCR) of gDNA from
fluorescence-activated cell sorting (FACS)-purified tumor CLL
cells according to the ERIC protocols (22), as previously
described in detail (23, 24). For IGHV sequencing, PCR
amplicons were subjected to direct sequencing on both strands.
Sequence data were analyzed using the IMGT databases and the
IMGT/V-QUEST tool (http://www.imgt.org). Classification into
the U-CLL vs. M-CLL categories was based on the well-
established 98% cutoff identity to the germline sequence (U-
CLL: 98%–100%; M-CLL: <98%) (21).

Calculation of the Hydropathy Index of
HCDR3 Protein Sequences
To determine the hydropathy index—grand average of hydropathy
(GRAVY) score—of the HCDR3 protein sequences, the ProtScale
Tool from the ExPASy Bioinformatics Resource Portal (https://
Frontiers in Oncology | www.frontiersin.org 34950
web.expasy.org/protscale/) and the amino acid (aa) scale values, as
defined by Kyte and Doolittle (25), were used (Supplementary
Figures 1A, B). The Gravy score (GS) was calculated for each
HCDR3 sequence by summing up the hydropathy index value of
each amino acid residue in the individual HCDR3 sequences and
dividing the sum obtained by the number of amino acids in each
specific sequence (23) (Supplementary Table 1 and
Supplementary Figures 1B, C). Since the HCDR3 hydropathy
index in humans follows a Gaussian distribution centered in the
neutral/hydrophilic range (average charge: -0.5) (19), each HCDR3
sequence was classified into the neutral HCDR3 (GS ≥ -0.5) or
negatively charged HCDR3 (GS < -0.5) categories.
Cytogenetic Analyses
The most common cytogenetic alterations associated with CLL—
i.e., del(13q14), trisomy 12, del(11q) (ATM), and del(17p)
(TP53)—were investigated by iFISH on FACS-purified (single)
tumor B cells (≥95% purity), as described elsewhere (23, 26).
TABLE 1 | Clinical and biological features of CLL patients classified according to the HCDR3 hydropathy index.

Patient features CLL with neutral HCDR3 (N = 65) CLL with negatively charged HCDR3 (N = 73) p-value

Age at diagnosis (years) 63 (33–84) 65 (35–84) 0.47
Men/women# 47/18 (72%/28%) 34/39 (47%/53%) 0.002
Binet stage#

A 37 (57%) 58 (79%) 0.006
B 12 (18%) 10 (14%)
C 16 (25%) 5 (7%)

Rai stage#

0 30/65 (46%) 54/73 (74%) 0.01
I 6/65 (9%) 7/73 (10%)
II 9/65 (14%) 5/73 (7%)
III 6/65 (9%) 2/73 (3%)
IV 14/65 (21%) 5/73 (7%)

Hemoglobin (g/L) 140 (70–180) 130 (90–170) 0.94
Anemia (<100 g of hemoglobin/L)# 7/65 (11%) 3/71 (4%) 0.13
N. of platelets (×109/L) 154 (15–429) 157 (48–448) 0.11
Thrombocytopenia (<100 × 109 platelets/L)# 14/65 (21%) 5/70 (7%) 0.01
N. of PB leukocytes (×109/L) 36 (6–352) 34 (8–576) 0.40
N. of PB total T-cells (×109/L) 3.2 (0.8–7.4) 2.8 (0.5–14) 0.68
N. of PB CD4+ T-cells (×109/L) 1.6 (0.5–4.4) 1.7 (0.3–5.9) 0.64
N. of PB CD8+ T-cells (×109/L) 0.8 (0.1–3.5) 0.9 (0.1–8) 0.60
N. of PB monocytes (×109/L) 0.6 (0.01–2) 0.4 (0.01–2.9) 0.24
N. of PB neutrophils (×109/L) 6.4 (0.9–20.7) 6.1 (0.2–19.4) 0.50
N. of PB basophils (×109/L) 0.07 (0.005–0.5) 0.06 (0.015–0.6) 1.0
N. of PB eosinophils (×109/L) 0.2 (0.02–1.7) 0.2 (0.01–1.2) 0.16
N. of PB NK cells (×109/L) 0.6 (0.04–2.1) 0.5 (0.04–3.2) 0.60

Tumor B-cell clone size in blood (×109/L) 41.4 (1.4–334.8) 20.9 (0.8–278.9) 0.11
U-CLL/M-CLL# 35 (54%)/30 (46%) 25 (34%)/48 (66%) 0.02
% IGHV homology with germ line counterpart
HCDR3 length of CLL clone (N. of aa)

99% (86%–100%)
19 (8–28)

96% (85%–100%)
16 (7–25)

0.04
0.004

Cytogenetically altered CLL patients# 55/65 (85%) 59/72 (82%) 0.43
Del(13q14)(D13S25)# 22/65 (34%) 32/72 (44%) 0.14
Trisomy12# 16/65 (25%) 11/72 (15%) 0.12
Del(11q)(ATM)# 6/65 (9%) 6/72 (10%) 0.54
Del(17p)# 3/62 (5%) 1/69 (1%) 0.29

N. of cytogenetically altered CLL cells (×109/L) 19 (0–233) 11 (0–185) 0.19
Disease progression# 39/65 (60%) 26/73 (36%) 0.003
TTT < 2 years# 20/65 (31%) 8/73 (11%) 0.004
Deaths# 11/65 (17%) 13/73 (18%) 0.54
October 2021 | Volume 11 | Article
Results expressed as median (range) or as # number of cases (percentage).
aa, amino acids; CLL, chronic lymphocytic leukemia; M, mutated IGHV; N, number; PB, peripheral blood; TTT, time to therapy; U, unmutated IGHV.
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Statistical Methods
For all continuous variables, median (range) values were
calculated, while for categorical variables, frequencies were
used. Either the Mann–Whitney U test or the chi-squared test
was used to establish the statistical significance of differences
observed between two groups, for continuous and categorical
variables, respectively. To avoid associations occurring by chance
due to multiple simultaneous comparisons, p-values were
Bonferroni-adjusted for comparisons of continuous variables
among three study groups. Time from diagnosis to (first)
therapy (TTT) curves were built using the Kaplan–Meier
method and compared by the (one-sided) log-rank test.
Receiver operating characteristic (ROC) curve analysis was
performed to determine the cutoff values of continuous
variables that best distinguish disease progression. Multivariate
analysis using the Cox regression model was performed to
identify those variables independently associated with a
greater/lower risk of disease progression (in terms of TTT)
among M-CLL patients. All statistical analyses were performed
with SPSS 25.0 (SPSS-IBM, Armonk, NY), and statistical
significance was set at p-values ≤ 0.05, unless Bonferroni-
adjusted p-values were applied (≤0.013).
RESULTS

HCDR3 Hydropathy Index in CLL and Its
Relationship With Other Disease Features
Overall, a similar frequency of CLL patients with neutral (GS ≥
-0.5) and negatively charged (GS < -0.5) HCDR3 amino acid
sequences was observed in our cohort: 65/138 (47%) vs. 73/138
Frontiers in Oncology | www.frontiersin.org 45051
(53%) CLL patients (p = 0.46), respectively (Figure 1). CLL
patients with neutral or negatively charged HCDR3 showed no
significant (p > 0.05) differences in age distribution, hemoglobin
levels, leukocyte or platelet counts, CLL cell counts in blood, and
the overall tumor cell cytogenetic profiles (Table 1).

In contrast, CLL patients with neutral HCDR3 sequences
showed a significant predominance of men vs. women (72% vs.
47%, p = 0.002), together with a lower percentage of Rai stage 0
(46% vs. 74%, p = 0.01) and Binet stage A cases (57% vs. 79%, p =
0.006), a higher proportion of cases with thrombocytopenia (21%
of cases vs. 7%, p = 0.01), a lower proportion of M-CLL cases
(46% vs. 66%, p = 0.02), and a lower median percentage of IGHV
mutations (1% vs. 4%, p = 0.04) with longer HCDR3 sequences
(median: 19 vs. 16 amino acids, p = 0.004) compared to CLL
patients with negatively charged HCDR3 (Table 1). This CLL
profile with neutral HCDR3 sequences translated into a
significantly (p = 0.003) higher risk of disease progression
(60% vs. 36%) and thereby also a higher percentage of cases
that had required therapy at 2 y from diagnosis (31% vs. 11%, p =
0.004) (Table 1), and a significantly shortened TTT—median
(95% confidence interval): 6 y (4–8 y) vs. not reached, p = 0.003
(Figure 2A). Of note, the prognostic impact of the HCDR3
hydropathy index was specifically restricted to M-CLL patients,
while it did not show an impact on the already poorer outcome of
U-CLL cases (Figure 2B).

HCDR3 Hydropathy Index in M-CLL vs.
U-CLL and Its Association With Other
Disease Features
Based on the above findings, we subdivided M-CLL patients into
cases with neutral HCDR3 (mean GS of -0.1) and patients with
negatively charged HCDR3 sequences (mean GS of -1.1) and
FIGURE 1 | Distribution of CLL patients according to the hydropathy index—Gravy score (GS)—of the HCDR3 aa sequence of their BCR. Bars represent the
number of CLL patients (N = 138) with different HCDR3 GS. Black bars correspond to M-CLL patients with a GS ≥ -0.5 (neutral HCDR3; N = 65), light gray bars
correspond to M-CLL patients with GS < -0.5 (negatively charged HCDR3; N = 73), and dark gray bars represent cases with a ≥98% identity to the V(H) germline
(U-CLL) independently of their GS.
October 2021 | Volume 11 | Article 723722
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compared the features of these two subgroups of M-CLL vs. U-
CLL cases (Table 2). Thus, Rai stage 0 (p = 0.007) predominated
in the two M-CLL patient subgroups vs. U-CLL (Table 2). In
contrast, greater median hemoglobin levels (150 vs. 130 g/L, p =
0.004) were found in M-CLL patients with a neutral HCDR3 (but
not within those with a negatively charged HCDR3) vs. U-CLL.
Frontiers in Oncology | www.frontiersin.org 55152
Overall, the number of PB leukocytes, total T cells, CD8+ T-cells,
and tumor CLL cells, in blood, were all significantly increased in
U-CLL compared with the two M-CLL patient groups, in the
absence of significant differences between the later M-CLL
groups (Table 2). Despite this, M-CLL with neutral HCDR3
sequences showed an intermediate frequency of cytogenetically
A

B

FIGURE 2 | Time to therapy (TTT) survival curves of CLL patients distributed according to the hydropathy index of the HCDR3 aa sequence and the mutational
status of their tumor cell BCR. Prognostic impact of the HCDR3 hydropathy index (A) and both the HCDR3 hydropathy index and the IGHV mutational status (B) on
the outcome of CLL patients assessed by their survival from diagnosis to first therapy (TTT).
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altered cases between U-CLL and M-CLL with negatively
charged HCDR3 (80% vs. 92% and 74%, respectively) together
with a significantly greater proportion of del(17p)+ patients (11%
vs. 0% and 2%, respectively; p = 0.02) (Table 2).

Regarding outcome, M-CLL with neutral HCDR3 sequences
showed an intermediate rate of disease progression (37%)
compared to both U-CLL patients (75%) (p < 0.001) and M-
CLL with negatively charged HCDR3 sequences (19%), after a
similar median follow-up (Table 2). This was associated with a
significantly lower percentage of M-CLL cases with negatively
charged HCDR3 sequences that required therapy during the first
2 years after diagnosis (2%) compared to U-CLL (37%, p < 0.001)
and M-CLL with a neutral HCDR3 (17%, p = 0.03) (Table 2).
This translated into significantly prolonged TTT among M-CLL
with negatively charged HCDR3 sequences compared to both M-
Frontiers in Oncology | www.frontiersin.org 65253
CLL patients with a neutral HCDR3 sequence and U-CLL
patients—75th percentile TTT (95% confidence interval): not
reached vs. 4.2 and 0.9 y, respectively; p < 0.001) (Figure 2B).

Based on the results above, we specifically investigated the
prognostic impact of the hydropathy index of the HCDR3
sequence of the tumor cell BCR compared to other clinical and
laboratory variables in patients with M-CLL. Among all variables
analyzed, Binet stage (p < 0.001), the number of total T-cells (p <
0.001), CD4+ T-cells (p = 0.002), CD8+ T-cells (p = 0.001),
basophils (p = 0.04), the size of the tumor B-cell clone in blood
(p = 0.003), del(11q) and/or del(17p) (p = 0.04) and the number
of cytogenetically altered CLL cells (p = 0.001) in addition to the
hydropathy index of the HCDR3 sequences of the tumor B-cell
clone (p < 0.001) all showed a prognostic impact in the univariate
analysis (Table 3). Multivariate analysis confirmed the
TABLE 2 | Clinical and biological features of CLL patients classified according to their IGHV mutational status and the HCDR3 hydropathy index.

Patient features U-CLL (N = 60) M-CLL (N = 78) p-value

Neutral HCDR3 (N = 30) Negatively charged HCDR3 (N = 48)

Age at diagnosis (years) 64 (33–84) 61 (38–81) 63 (35–84) 0.21
Men/women# 38/22 (63%/37%) 20/10 (67%/33%) 23/25 (48%/52%) 0.16; 0.08b,c

Binet stage#
A 37 (62%) 21 (70%) 37 (77%) 0.14
B 14 (23%) 2 (7%) 6 (13%)
C 9 (15%) 7 (23%) 5 (10%)

Rai stage#

0 29/60 (48%) 19/30 (63%) 36/48 (75%) 0.007; 0.02a; 0.04b

I 6/60 (10%) 4/30 (13%) 3/48 (6%)
II 12/60 (20%) 0/30 (0%) 2/48 (4%)
III 6/60 (10%) 0/30 (0%) 2/48 (4%)
IV 7/60 (12%) 7/30 (23%) 5/48 (10%)

Hemoglobin (g/L) 130 (70–170) 150 (100–180) 130 (90–170) 0.010; 0.004a

Anemia (<100 g of hemoglobin/L)# 7/59 (12%) 0/30 (0%) 3/47 (6%) 0.12
N. of platelets (×109/L) 149 (15–448) 158 (62–429) 164 (48–344) 0.63
Thrombocytopenia (<100 × 109 platelets/L)# 7/58 (12%) 7/30 (23%) 5/47 (11%) 0.25
N. of PB leukocytes (×109/L) 55 (10–576) 23 (6–245) 26 (8–241) 0.001; 0.010b

N. of PB total T-cells (×109/L) 4 (0.5–14) 2.7 (0.9–7.4) 2.6 (0.6–9) 0.006; 0.003b

N. of PB CD4+ T-cells (×109/L) 1.8 (0.6–6) 1.5 (0.5–4) 1.5 (0.3–4.3) 0.04
N. of PB CD8+ T-cells (×109/L) 1.4 (0.1–8) 0.7 (0.2–5) 0.8 (0.1–5) 0.007; 0.005a

N. of PB monocytes (×109/L) 0.7 (0.01–3) 0.5 (0.02–1.4) 0.4 (0.01–2) 0.12
N. of PB neutrophils (×109/L) 6.3 (0.9–21) 6.3 (0.9–16) 6.0 (0.2–12) 0.47
N. of PB basophils (×109/L) 0.07 (0.005–0.6) 0.06 (0.02–0.5) 0.06 (0.01–0.3) 0.66
N. of PB eosinophils (×109/L) 0.2 (0.01–1.2) 0.2 (0.02–1.7) 0.2 (0.05–1) 0.66
N. of PB NK cells (×109/L) 0.7 (0.04–3) 0.6 (0.05–1.5) 0.4 (0.04–2.2) 0.014

Tumor B-cell clone size in blood (×109/L) 47 (0.8–335) 16 (1.4–238) 17 (4.4–219) 0.001; 0.011b

% IGHV homology with germ line counterpart
HCDR3 length of CLL clone (N. of aa)

99.6 (98.8–100)
21 (12–28)

93.7 (86–98)
16 (8–24)

93.3 (85–98)
16 (7–24)

<0.001; <0.001a,b

<0.001;<0.001a,b

Cytogenetically altered CLL patients# 55/60 (92%) 24/30 (80%) 35/47 (74%) 0.05; 0.02b

Del(13q14)(D13S25)# 25/60 (42%) 11/30 (37%) 18/47 (38%) 0.88
Trisomy12# 17/60 (28%) 3/30 (10%) 7/47 (15%) 0.07; 0.04a

Del(11q)(ATM)# 9/60 (15%) 1/30 (3%) 2/47 (4%) 0.07; 0.06b

Del(17p)# 0/57 (0%) 3/28 (11%) 1/46 (2%) 0.02; 0.03a

N. of cytogenetically altered CLL cells (×109/L) 28 (0–208) 8.6 (0–233) 6.3 (0–185) 0.12
Disease progression# 45/60 (75%) 11/30 (37%) 9/48 (19%) <0.001; <0.001a,b

TTT < 2 years# 22/60 (37%) 5/30 (17%) 1/48 (2%) <0.001; 0.04a; <0.001b; 0.03c

Deaths# 16/60 (27%) 2/30 (7%) 6/48 (12%) 0.03; 0.02a
October 2021
Results expressed as median (range) or as # number of cases (percentage).
aU-CLL vs. M-CLL with neutral HCDR3.
bU-CLL vs. M-CLL with negatively charged HCDR3.
cM-CLL with neutral HCDR3 vs. M-CLL with negatively charged HCDR3.
CLL, chronic lymphocytic leukemia; M, mutated IGHV; N, number; PB, peripheral blood; TTT, time to therapy; U, unmutated IGHV.
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independent adverse prognostic impact of neutral HCDR3
sequence of BCR (hazard ratio (HR), 12; 95% confidence interval
(CI), 1.8 to 81; p = 0.01) together with an advanced Binet stage B/C
(HR, 42.8; 95% CI, 1.7 to 1,073; p = 0.02) (Table 3).

Distinctive Molecular Features of the BCR
of M-CLL With Neutral vs. Negatively
Charged HCDR3 Sequences
Interestingly, no significant differences were found between the
two groups of M-CLL patients defined by having a neutral vs.
negatively charged HCDR3, as regards the frequency of V(H) gene
families used (Table 4). Despite this, both groups of M-CLL
patients (with neutral and negatively charged HCDR3 sequences)
more frequently used the VH3 gene at the expense of a lower
frequency of VH1 gene usage compared to U-CLL patients—53%
and 52% vs. 32%, (p = 0.05) and 17% and 8% vs. 47%, (p < 0.001),
respectively (Table 4). In more detail, usage of the VH1-69 gene
family was significantly associated with U-CLL—27% vs. 0% and
4%, p < 0.001—while VH4-34 was more frequently used in the
two groups of (neutral and negatively charged HCDR3) M-CLL
patients vs. U-CLL—17% and 21% vs. 3%, p = 0.02, respectively.
Interestingly, VH3-7 was significantly associated with M-CLL
with neutral HCDR3 sequences (17%) while rarely found in U-
CLL (2%) (p = 0.01) (Table 3). Likewise, usage of the D(H)2 genes
was more frequently observed in M-CLL with neutral HCDR3
sequences (43%) than in M-CLL with negatively charged HCDR3
(19%, p = 0.02) and U-CLL (22%, p = 0.03) patients (Table 4).
Within the D(H)2 gene family, D(H)2-15 and D(H)2-21 were
those family members more frequently expressed in M-CLL with
neutral HCDR3 sequences vs. U-CLL (13% and 20% vs. 2% and
5%, respectively) (Table 4). In turn, U-CLL showed a higher
frequency of D(H)3 than M-CLL patients (p = 0.001), the D(H)3-
3 gene family mostly accounting for these differences as it was
found in 30% of U-CLL vs. 7% of M-CLL with neutral HCDR3
and 12% of M-CLL with negatively charged HCDR3 sequences
(p = 0.01) (Table 4).

Regarding J(H) gene usage, M-CLL with negatively charged
HCDR3 sequences showed a significantly higher frequency of J
(H)4 genes (60%) than both M-CLL with a neutral HCDR3
(23%) (p = 0.001) and U-CLL (33%) (p = 0.004) patients
(Table 4). Likewise, a significantly lower percentage of M-CLL
with negatively charged HCDR3 sequences showed J(H)6 gene
usage (21%) compared to U-CLL (48%, p = 0.003) (Table 4).
Interestingly, the lower use of JH6 and DH2 genes in M-CLL
with negatively charged HCDR3 sequences was associated with
different charges of the specific HCDR3 amino acids comprised
by these coding genes vs. U-CLL patients (p = 0.010 and p =
0.003, respectively) (Table 4). In contrast, the charge of the
HCDR3 amino acids comprised by JH4 and DH3 genes did not
show differences between U-CLL and both M-CLL groups
(Table 4). It should be noted, however, that the HCDR3
fraction comprised by nucleotides distinct to those included in
the above referred JH and DH gene sequences showed always a
significantly lower charge in M-CLL patients with negatively
charged sequences compared to M-CLL with neutral HCDR3
sequences (Table 4).
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As expected, U-CLL had longer HCDR3 (median: 21 amino
acids) than M-CLL (median: 16 amino acids) (p < 0.001)
(Table 2). However, since the length of the BCR HCDR3
sequences differs between B-cells from younger and older
subjects (27), we grouped our patients into younger adults
(≤65 y) and older (>65 y) patients. Interestingly, older M-CLL
patients with a negatively charged HCDR3 showed shorter
HCDR3 sequences (median: 15 amino acids) than M-CLL with
neutral HCDR3 (median: 18 amino acids) (p = 0.013) (Table 4).
Furthermore, older M-CLL patients with neutral HCDR3 had
similarly longer HCDR3 sequences (median: 18 amino acids) to
those of U-CLL patients (median: 20 amino acids) (p = 0.47)
(Table 4). Finally, M-CLL with negatively charged HCDR3
sequences showed a significantly lower frequency of
stereotyped IGHV sequences (10%) compared to U-CLL (28%)
(p = 0.02) (Table 4), with a similarly low incidence of stereotyped
IGHV sequences corresponding to the more aggressive (#1, #2,
#8) CLL subsets (Table 4).
DISCUSSION

B-cells are a key component of the adaptive immune system (28).
Their function is typically triggered through BCR-mediated
recognition of specific antigens (28). Specific binding of BCR
to antigens is mostly mediated through unique HCDR3 (and also
LCDR3) regions capable of identifying and attaching to
complementary epitopes in the recognized antigen (28). For
adequate binding to the antigen, electrostatic links with the
BCR are required (29). Thereby, the HCDR3 charge plays a
critical role in antigen binding to the BCR and recognition by B-
cells (30). Importantly, during antigen-driven maturation, B-
cells modify their HCDR3 sequences to enhance their affinity for
specific antigen triggers (30). This includes acquisition of
somatic mutations involving the HCDR3 region, which
progressively confer more negatively charged amino acid
sequences for higher affinity antigen binding by both the BCR
and the future B-cell derived (higher-affinity) antibodies (31). In
addition, due to its key role in antigen recognition, the
interaction of the BCR with the BM microenvironment also
plays a critical role at an earlier stage, during lymphopoiesis, in
selecting B-cell precursors that carry a functional BCR (31).

For decades now, studies have accumulated which support an
important role for BCR-mediated expansion of tumor cells in CLL
(32, 33) in the absence of a common genetic driver (6). Thus, CLL
cells show biased usage of specific IGHV(D)J gene families, with
overrepresentation of some genes such as IGHV1-69, IGHV4-34,
and IGHV3-21 (34). Of note, these genes are differentially
distributed among the two major prognostic subgroups of CLL
defined according to the mutational status of the BCR (U-CLL and
M-CLL) (35). Accordingly, U-CLL cells have polyreactive BCRs
that may respond to a wide spectrum of epitopes (36, 37), as
typically required during selection of recently produced immature
B-lymphocytes in BM (38), whereas M-CLL cells are more mature
B-cells that have undergone somatic hypermutation, whose BCRs
are (potentially) less responsive to external signals, while more
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TABLE 3 | Univariate and multivariate analyses of prognostic factors with an impact on disease progression in M-CLL (N = 78).

Variables N Univariate analysis on disease progression Multivariate analysis on disease progression

Median (95% CI) (y) p-value HR (95% CI) p-value

Age at diagnosis
≤ 65 y 50 NR 0.12
> 65 y 28 NR

Sex
Men 43 NR 0.88
Women 35 NR

Binet stage
A 58 NR
B/C 20 8 (1.6–14.4) <0.001 42.8 (1.7–1,073) 0.02

Anemia
<100 g hemoglobin/L 3 9.9 (5–15.9) 0.27
≥100 g hemoglobin/L 74 NR

Thrombocytopenia
<100 platelets × 109/L 12 9.9 0.08
≥100 platelets × 109/L 65 NR

N. of PB leukocytes (×109/L)
≤51.4 57 NR 0.06
>51.4 20 NR

N. of PB total T-cells (×109/L)
≤3.2 56 NR <0.001
>3.2 21 6.2 (2.7–9.7)

N. of PB CD4+ T-cells (×109/L)
≤2.1 60 NR 0.002
>2.1 15 8.7 (4.1–13.2)

N. of PB CD8+ T-cells (×109/L)
≤1.7 63 NR 0.001
>1.7 12 6.1 (5.9–6.4)

N. of PB monocytes (×109/L)
≤1.04 67 NR 0.27
>1.04 7 NR

N. of PB neutrophils (×109/L)
≤11.4 73 NR 0.07
>11.4 3 6.1

N. of PB basophils (×109/L)
≤0.13 51 NR 0.04
>0.13 5 8.7 (1.4–16)

N. of PB eosinophils (×109/L)
≤0.12 24 NR 0.08
>0.12 50 NR

N. of PB NK cells (×109/L)
≤0.53 39 NR 0.31
>0.53 32 NR

Tumor B-cell clone size in blood (×109/L)
≤37.7 53 NR 0.003
>37.7 23 9.93

HCDR3 hydropathy index
Neutral 30 4.2 (75th percentile: NR) <0.001 12 (1.8–81) 0.01
Negatively charged 48 NR (75th percentile: NR)

% IGHV homology
≤96 65 NR 0.56
>96 13 NR

HCDR3 length of CLL clone
≤21 aa 73 NR
>21 aa 5 NR 0.86

DH2 gene usage 22 NR 0.70
JH6 gene usage 21 NR 0.86
Del (11q) and/or del(17p) 7 4.2 (2.8–5.6) 0.04
N. of cytogenetically altered CLL cells (×109/L)
≤33 57 NR
>33 18 7.4 (2.2–12.5) 0.001
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specific for a given epitope (39–41).Amongother factors, thismight
also contribute to explain the more aggressive clinical course (42,
43) and the shortened survival of U-CLL vs. M-CLL (44). As a
consequence, the IGHV genemutational status currently represents
one of the most relevant prognostic determinants in CLL (44).

Similarly to normal B-cells (31), here we show that CLL cells
also display a Gaussian distribution according to the hydropathy
index of their BCR, slightly skewed toward negatively charged
HCDR3 amino acid sequences. Interestingly, when we divided
our patients into cases with neutral (mean GS of -0.1) vs. more
negatively charged (mean GS of -1.1) HCDR3 sequences, two
subgroups of CLL patients with clearly distinct clinical and
biological features emerged. Thus, CLL patients with neutral
HCDR3 sequences showed a clear predominance of men, U-CLL
with longer HCDR3 sequences, a lower frequency of IGHV gene
mutation, and higher frequency of more advanced stages of the
disease, in association with a higher rate of disease progression
and shorter TTT. Interestingly, shortening of HCDR3 sequences
with a trend to negatively charged BCRs is a typical feature of
selection of B-cell precursors in BM required for the survival of
B-cells that will enter the mature B-cell repertoire (31). Based on
these findings, our results suggest that expanded CLL cells in
Frontiers in Oncology | www.frontiersin.org 95556
patients with neutral and longer HCDR3 sequences might reflect
an earlier tumor cell origin in BM (45–47). Among other factors,
this might also contribute to explain the greater frequency of
more advanced stages of disease at diagnosis (48), together with
an increased rate of disease progression vs. patients with
negatively charged HCDR3 sequences. Nevertheless, these
differences could be potentially due to the fact that CLL cases
with neutral HCDR3 sequences included a higher fraction of U-
CLL vs. M-CLL patients.

To investigate the potential independent value of both
variables (the BCR mutational status and its hydropathy
index), we separately studied the features of CLL patients with
neutral vs. negatively charged HCDR3 sequences among U-CLL
and M-CLL cases. Thus, U-CLL cases with a neutral and
negatively charged HCDR3 showed similar clinical and
biological features associated with a uniformly poorer outcome,
in line with previous observations (49–51). In contrast, the
HCDR3 hydropathy index identified two different prognostic
subgroups of M-CLL. These included a subgroup of M-CLL with
neutral HCDR3 who displayed intermediate clinical, genetic, and
prognostic features between the classical U-CLL and M-CLL
patients with a negatively charged BCR. Thus, M-CLL with
TABLE 4 | IGHV(D)J gene usage in CLL patients classified according to their IGHV mutational status and the HCDR3 hydropathy index.

BCR features U-CLL (N = 60) M-CLL (N = 78) p-value

Neutral HCDR3 (N = 30) Negatively charged HCDR3 (N = 48)

V(H) gene family usage#

V1 28/60 (47%) 5/30 (17%) 4/48 (8%) <0.001; 0.004a; 0.000b

V1-69 16/60 (27%) 0/30 (0%) 2/48 (4%) <0.001; 0.001a,b

V3 19/60 (32%) 16/30 (53%) 25/48 (52%) 0.05; 0.04a; 0.03b

V3-7 1/60 (2%) 5/30 (17%) 5/48 (10%) 0.03; 0.01a

V4 9/60 (15%) 8/30 (27%) 17/48 (35%) 0.05; 0.01b

V4-34 2/60 (3%) 5/30 (17%) 10/48 (21%) 0.02; 0.04a; 0.005b

D(H) gene family usage#

D2 13/60 (22%) 13/30 (43%) 9/48 (19%) 0.04; 0.03a; 0.02c

D2-2 9/60 (15%) 3/30 (10%) 3/48 (6%) 0.34
D2-15 1/60 (2%) 4/30 (13%) 3/48 (6%) 0.08; 0.04a

D2-21 3/60 (5%) 6/30 (20%) 3/48 (6%) 0.04; 0.03a

D3 35/60 (58%) 6/30 (20%) 16/48 (33%) 0.001; 0.001a; 0.01b

D3-3 18/60 (30%) 2/30 (7%) 6/48 (12%) 0.01; 0.01a; 0.03b

J(H) gene family usage#

J4 20/60 (33%) 7/30 (23%) 29/48 (60%) 0.002; 0.004b; 0.001c

J6 29/60 (48%) 11/30 (37%) 10/48 (21%) 0.01; 0.003b

Charge of HCDR3:
J4 gene fraction -0.167 (-0.296–0.029) -0.076 (-0.325–0.115) -0.209 (-0.946–0.115) 0.25
Non-J4 V(N1)D(N2) nucleotides -0.392 (-1.150–0.447) -0.107 (-0.346–0.670) -0.936 (-1.702–-0.350) <0.001; <0.001b,c

J6 gene fraction -0.130 (-0.225–0.014) -0.016 (-0.347–0.194) -0.003 (-0.222–0.168) 0.010; 0.010b

Non-J6 V(N1)D(N2) nucleotides -0.084 (-0.890–0.996) -0.170 (-0.419–0.577) -0.941 (-1.490–-0.572) <0.001; <0.005b,c

D2 gene fraction 0.329 (-0.382–1.032) 0.010 (-0.286–0.698) -0.258 (-0.596–0.029) 0.013; 0.003b

Non-D2 V(N1)(N2)J nucleotides -0.502 (-1.380–-0.006) -0.070 (-0.441–0.491) -0.777 (-1.126–-0.471) 0.001; <0.010a; <0.001c

D3 gene fraction -0.256 (-0.565–0.849) -0.113 (-0.444–0.707) -0.365 (-0.742–0.302) 0.10
Non-D3 V(N1)(N2)J nucleotides -0.347 (-1.553–0.208) 0.007 (-0.570–0.351) -0.712 (-1.057–-0.349) 0.001; <0.01b; 0.013c

HCDR3 length in patients aged ≤65y 21 (12–28) 14 (8–24) 16 (7–23) 0.001; 0.001a; 0.008b

HCDR3 length in patients aged >65y 20 (13–28) 18 (15–24) 15 (9–24) <0.001; <0.001b; 0.013c

Stereotyped IGHV# 17/60 (28%) 5/30 (17%) 5/48 (10%) 0.06; 0.02b

Subsets (1,2,8)# 4/60 (7%) 2/30 (7%) 1/48 (2%) 0.50
October 2021 | Vo
Results expressed as median (range) or as # number of cases (percentage).
aU-CLL vs. M-CLL with neutral HCDR3.
bU-CLL vs. M-CLL with negatively charged HCDR3.
cM-CLL with neutral HCDR3 vs. M-CLL with negatively charged HCDR3.
CLL, chronic lymphocytic leukemia; M, mutated IGHV; N, number; U, unmutated IGHV.
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neutral HCDR3 showed predominance of men—similar to that
found in U-CLL, but with significantly higher hemoglobin levels
—in association with a higher frequency of thrombocytopenia
and an intermediate frequency of cytogenetically altered cases
between U-CLL and the other M-CLL patients, at the expense of
a greater frequency of del(17p). At present, it is well established
that progression of MBL toward CLL is associated with a more
prominent male predominance and greater frequency of U-CLL
(52). Male predominance among M-CLL cases with neutral
HCDR3 might also contribute to explain the greater
hemoglobin levels observed in these patients, which contrasts
with the higher frequency of thrombocytopenia compared to M-
CLL with negatively charged HCDR3 sequences. This together
with the greater frequency of more advanced stage of the disease
among M-CLL with a neutral vs. negatively charged HCDR3
would support a poorer outcome within M-CLL for the former
patient group, as confirmed here via an adverse impact on the
time elapsed from diagnosis to first therapy among M-CLL
patients with neutral vs. negatively charged HCDR3 sequences.

From the molecular point of view, M-CLL with neutral
HCDR3 showed DJ footprints compatible with a more
immature BCR repertoire associated with preferential usage of
D(H)2 IGHV gene segments (53), in the absence of a biased use
of JH4 gene segments, as found in M-CLL cases with negatively
charged HCDR3 sequences, being biased use of JH4 gene
segments a typical feature of more mature PB B lymphocytes
(54). In addition, we also observed longer HCDR3 sequences in
older (>65 y) patients who had U-CLL and M-CLL with neutral
HCDR3 vs. M-CLL with negatively charged HCDR3 sequences,
in line with what might be expected among older subjects (27).
Despite U-CLL andM-CLL with neutral HCDR3 shared HCDR3
sequences which typically had no traits associated with a mature
B-cell repertoire, important differences were still observed in the
IGHV repertoire of CLL cells of both patient groups as regards
the usage of the VH1 and VH3 gene segments, further
emphasizing also the biological differences between them.

Altogether, our findings show that based on the HCDR3
hydropathy index of HCDR3 sequences, two clearly distinct
subgroups of M-CLL patients with different clinical, genetic,
and prognostic features can be identified which are characterized
by neutral vs. negatively charged BCRs, associated with
molecular features of precursor vs. peripheral/mature B-cells,
respectively. Further studies are needed to elucidate the precise
mechanisms involved in determining the role of these different
BCR profiles (compared to other prognostic factors such as
ZAP70) in the distinct clinical behavior and outcome of both
groups of M-CLL patients and facilitate implementation of
assays for routine assessment of the HCDR3 hydropathy index
in M-CLL in the clinical settings.
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Supplementary Figure 1 | Kyte-Doolittle numerical scaleof aminoacids (aa) and the
formula to calculate the Gravy Score (GS) of HCDR3 (hydropathy index). The
biochemical nature of aa according to their Kyte-Doolittle value and the algorithm used
to calculate the GS of the HCDR3 sequence in our patients are shown in (A, B),
Frontiers in Oncology | www.frontiersin.org 115758
respectively. In (C), four different HCDR3 sequences with their corresponding GS
(where the sum of the Kyte-Doolittle values for individual aa divided by HCDR3 length
provides the specific GS of individual sequences). As shown, different patients can
share the same GS of their HCDR3, despite having different aa sequences.
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The term monoclonal B-cell lymphocytosis (MBL) describes the presence of a clonal B cell
population with a count of less than 5 × 109/L and no symptoms or signs of disease.
Based on the B cell count, MBL is further classified into 2 distinct subtypes: ‘low-count’
and ‘high-count’ MBL. High-count MBL shares a series of biological and clinical features
with chronic lymphocytic leukemia (CLL), at least of the indolent type, and evolves to CLL
requiring treatment at a rate of 1-2% per year, whereas ‘low-count’ MBL seems to be
distinct, likely representing an immunological rather than a pre-malignant condition. That
notwithstanding, both subtypes of MBL can carry ‘CLL-specific’ genomic aberrations
such as cytogenetic abnormalities and gene mutations, yet to a much lesser extent
compared to CLL. These findings suggest that such aberrations are mostly relevant for
disease progression rather than disease onset, indirectly pointing to microenvironmental
drive as a key contributor to the emergence of MBL. Understanding microenvironmental
interactions is therefore anticipated to elucidate MBL ontogeny and, most importantly, the
relationship between MBL and CLL.

Keywords: monoclonal B cell lymphocytosis (MBL), chronic Lymphocutic Leukemia (CLL), genetics,
immunogenetics, tumor microenvironment, ontogenesis, B cell receptor, immunoglobulin
INTRODUCTION

Epidemiology
Monoclonal B cell lymphocytosis (MBL) is an asymptomatic hematological condition characterized
by the presence of clonal B cell expansion(s) in otherwise healthy individuals. The
immunophenotype of the B cell clones in approximately 75% of all MBL cases is similar to that
observed in chronic lymphocytic leukemia (CLL): CD5+, CD19+, CD20dim, CD23+ and low levels
(dim) of surface immunoglobulin (sIgdim) that in most cases is IgM with or without IgD. Other
immunophenotypic characteristics include the absence of FMC7 and the weak or no expression of
CD79b and CD22. Based on this constellation of features, the most common subtype of MBL is
November 2021 | Volume 11 | Article 76961215960

https://www.frontiersin.org/articles/10.3389/fonc.2021.769612/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.769612/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.769612/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.769612/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:agathan@biol.uoa.gr
https://doi.org/10.3389/fonc.2021.769612
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.769612
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.769612&domain=pdf&date_stamp=2021-11-11


Galigalidou et al. Genetics and Microenvironment in MBL
defined as ‘CLL-like’. Another immunophenotype occasionally
observed in MBL is characterized by strong expression of CD20
and sIg along with absence of CD23 (CD5+, CD19+, CD20high,
CD23+, sIghigh); this MBL subtype is described as ‘atypical’MBL.
The last, most infrequent, MBL subtype is ‘CD5-negative’ MBL,
in which the complete immunophenotypic characterization is
CD5neg, CD19+, CD20+ with moderate to high sIg expression,
with the ratio of k: l sIg being strongly skewed (either more than
3:1 or less than 1:3) (1–4).

Immunophenotypic Subtypes of MBL
Significant differences exist between the three MBL
immunophenotypic subtypes regarding the expression of several
cell surface markers, such as CD23, CD79b, and FMC7. Moreover,
several established CLL risk factors are also differentially expressed
between the immunophenotypic subtypes of MBL; for instance,
markers associated with aggressive CLL, such as CD38, ZAP70, and
CD49d are highly expressed in the majority of ‘atypical’MBL cases
yet are rarely expressed in ‘CLL-like’ MBL (1, 5). Moreover, the B
cell memory marker CD27 shows higher expression in the ‘CLL-
like’ type of MBL compared to ‘atypical’ and ‘CD5-negative’ MBL,
while, in contrast, CD22, CD79a, CD79b, and CD1c (BDCA-1) are
mainly expressed in the ‘non CLL-like’ types. Furthermore, FMC7
and CD43 are also characterized by differential expression among
the three immunophenotypic types of MBL; more specifically,
FMC7 exhibits low expression levels in ‘CLL-like’ MBL,
intermediate levels in atypical, and high levels in the ‘CD5-
negative’ type of MBL, while the exact opposite pattern is evident
for CD43 expression (6). Differences are also observed regarding the
expression of sIg, which is significantly lower in ‘CLL-like’ MBL
compared to either the ‘atypical’ or the ‘CD5-negative’ types (1).
Finally, expression of the ROR1 gene was statistically different
among the three immunophenotypic subtypes of MBL being
significantly higher in ‘CLL-like’ MBL versus the others (1).

MBL Risk Factors
Moving from the immunophenotype, the diagnostic criteria for
distinguishing between MBL from CLL are primarily based on
the number of circulating monoclonal B cells. Two distinct MBL
subtypes are recognized: high-count MBL (HC-MBL), or
‘clinical’ MBL, with 0.5-4.99× 109 clonal B cells/L and low-
count MBL (LC-MBL), or ‘general ’ population MBL,
characterized by <0.5 × 109 clonal B cells/L (4). It should be
noted that most individuals diagnosed with MBL display a
normal absolute B cell count, with the clonal B cell population
accounting for less than 10% of the total number of B cells (3).

The incidence of MBL gradually increases with advancing
age; in fact, MBL is very rarely detected in individuals under 40
years old, whereas it is present in more than 20% of individuals
older than 70 years old and can reach even 75% among patients
aged more than 90 years (3). Age is not the only factor strongly
associated with MBL, as a familial history of hematological or
solid malignancies has also been reported; in fact, 17% of first-
degree relatives with no personal history of lymphoproliferative
disorders from families with at least two cases of CLL were found
to have MBL, in some cases at a young age (less than 40 years
old) (7). Gender is another factor connected to the prevalence of
Frontiers in Oncology | www.frontiersin.org 26061
MBL as, similar to CLL, males have a significantly higher risk for
developing MBL compared to females (8).

Exposure to infections and immunodeficiency may also
predispose to MBL development, at least in certain instances,
especially when combined with advanced age and male gender. A
characteristic example concerns the high frequency of MBL
among patients with hepatitis C virus (HCV) infection (9). On
the other hand, MBL was found to be significantly less common
among individuals vaccinated against pneumococcal or influenza
infections (3).

Risk of Progression to CLL
Unmutated somatic hypermutation (SHM) status of the
rearranged immunoglobulin heavy variable (IGHV) gene and/
or ‘CLL-related’ cytogenetic aberrations related to aggressive
disease represent risk factors of progression from MBL to CLL
and shorter overall survival (OS) (10). Furthermore, over 50% of
HC-MBL cases carry at least one gene mutation in a CLL
putative driver, evident up to 41 months before the
progression to CLL. Thus, genomic characterization can be
used to identify those MBL cases who will progress to CLL
requiring treatment; this was more pronounced in cases with
subclonal expansion of driver mutations (11, 12).

Along these lines, the genetic distance between LC-MBL and
CLL is clearly greater than that of HC-MBL (13) and, thus, the
question whether LC-MBL represents a very early stage in the
natural history of CLL, remains elusive.
HC-MBL PROGRESSING TO CLL

Monoclonal B cell populations can be detected long before CLL
diagnosis, even up to 6.4 years (13). However, the majority of
‘CLL-like’ HC-MBL cases remain stable overtime; progression to
CLL has been estimated at a rate of 1-4% per year (1). In more
detail, a longitudinal analysis in 185 individuals with ‘CLL-like’
HC-MBL revealed a progressive lymphocytosis in 28% of the
cases with a median follow-up of 6.7 years. However, only 7% of
the cases progressed to CLL requiring treatment with the overall
rate of progression to CLL being 1.1% per year (14). In a
retrospective study by the Mayo Clinic, 302 ‘CLL-like’ HC-
MBL cases were monitored for a median of 18 months
with ~1.4% of cases per year requiring treatment due to
disease progression. This study proposed a B cell count
threshold of 10 x 109/L for discriminating between two
categories of ‘CLL-like’ HC-MBL cases with higher and lower
probability of treatment. This proposal was subsequently tested
and validated in the GIMEMA database (15, 16). Finally, in an
Italian study, 123 ‘CLL-like’HC-MBL cases were monitored for a
median of 43 months with 4% per year requiring treatment in the
first 7 years (17). Irrespective of progression to CLL, periodic
hematological follow-up was recommended after the detection of
HC-MBL, since this group has shorter overall survival compared
to the general population (18).

Many of the biological characteristics of HC-MBL are similar
to CLL Rai stage 0 (19). Nowadays, the strongest predictive
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marker for MBL progressing to CLL is the B cell count. This has
emerged after the establishment of a B cell count-based system
transition for discriminating MBL from CLL. This has led to a
sizeable fraction of patients, considered as Rai stage 0 CLL,
ending up classified as HC-MBL (20, 21). Relevant findings
suggested that the B cell count appears to be a better predictor
of TFS and OS when a defined lymphocyte threshold is applied
(10). In a relevant study, the authors proposed a distinction of 2
‘CLL‐like’ cell count thresholds for the identification of a very
low risk group (<1.2x109/L) and a high risk group (>3.7x109/L)
within HC-MBL (10, 17).

Subsequent studies appraised the impact of the size of the
MBL clone on several clinical metrics, such as progression-free-
survival (PFS), TFS and OS. In regard to the former, it is rather
difficult to draw robust conclusions, given that a slight increase in
cell numbers in HC-MBL cases with clone sizes near the
mathematical cutoff of 5.0x109/L could be classified as disease
progression. On the other hand, the assessment of TFS through
standard NCI/iwCLL criteria may be more informative (22).

In CLL, the study of prognostic markers for time-to-first-
treatment (TTFT) and OS has been of great interest, especially
towards the development of a multifactorial risk score. In this
context, 28 individual prognostic variables were assessed in a
series of 969 individuals with CLL Rai 0 or HC-MBL leading to
the development of the CLL international Prognostic Index
(CLL-IPI). Implementation of the CLL-IPI score led to the
identification of 4 risk groups (low, intermediate, high, and
very-high risk) with different 5-year OS (93%, 79%, 63%, and
23%, respectively). Multivariate analysis of absolute B-cell count
with individual factors of the CLL-IPI showed that five
parameters, namely age, Rai stage, serum beta-2 microglobulin,
unmutated IGHV genes, and del(17p) or TP53 mutation were
associated with shorter TTFT and OS. Overall, the CLL-IPI risk
score, despite some limitations, is able to predict TTFT and OS in
previously untreated CLL patients whose only disease symptom
is the presence of a circulating clonal B cell population (23).
Despite these advances, the relevance of CLL-IPI for the
evolution of HC-MBL to CLL remains to be fully elucidated.

Several markers have been studied at MBL diagnosis for their
capacity to predict progression to CLL, including B cell receptor
immunoglobulin (BcR IG) stereotypy, ZAP70 expression, Hb,
platelet count and LDH, however none of them was clearly
associated with progression to CLL (p≥0.05 in all instances). In
contrast, the SHM status of the clonotypic IGHV gene, high
expression of CD38 (≥30%), high expression of CD49d (≥30%)
and chromosomal abnormalities were found to be significant on
univariate analysis regarding prediction of TTFT. However, on
multivariate analysis trisomy 12 and del (16) (p13) were the sole
independent predictors of treatment-free survival (TFS) in MBL
after adjusting for IGHV SHM status and CD38 expression (5, 14).
PERSISTENCE OF LC-MBL OVER TIME

HC-MBL represents the vast majority of MBL cases
(approximately 85%) identified in the context of clinical
Frontiers in Oncology | www.frontiersin.org 36162
practice following the investigation of lymphocytosis, with a
median ‘CLL-like’ B cell count above 1.9x109/L. On the contrary,
around 85% of MBL cases detected in population screening
studies have a ‘CLL-like’ B cell count below 0.5x109/L, with
40% of them bearing fewer than 0.05x109 clonal B cells/L (24).
Previous findings support a bimodal distribution with a lower
peak below 0.05x109 clonal B cells/L, very few cases in the range
of 0.05-0.5 x109 clonal B cells/L, and another peak accounting for
cases with a clonal B cell count ranging between 0.5-5x109 clonal
B cells/L. A possible explanation could be a bias towards the
selection of cases with high lymphocyte counts against those with
mild or borderline lymphocytosis in the hematology clinical
routine (22). An alternative biological explanation is offered by
the distinct immunogenetic profiles of HC-MBL and LC-MBL,
whereby pronounced clonal expansions are seen only when cells
with ‘CLL-like’ phenotype express BcR IG with certain
distinctive features (19). Longitudinal studies support the latter
explanation, since most of the LC-MBL cases persisted over large
periods of time (up to 34 months), without any progression to
clinically overt disease. In fact, LC-MBL seems to be stable over
time, a characteristic that is more pronounced in ‘CLL-like’ LC-
MBL (90%) compared to other immunophenotypic variants,
such as atypical (44.4%) and CD5-negative MBL (66.7%) (2).

Even though progression to HC-MBL is very rare, LC-MBL
cases may often display a small increase in the size of the B cell
clone. Studies focusing on clonal dynamics revealed a correlation
between clonal size and clonality; in specific, the majority of
monoclonal cases increased in size over time, while a much
smaller number of biclonal and multiclonal cases behaved
accordingly (25). Mathematical modeling of these results led to
the conclusion that, in most cases, the estimated time for the
progression of LC-MBL to CLL far exceeds a normal life
expectancy. However, assessment of the clinical impact of LC-
MBL, if any, through the comparison against age- and sex-
matched non-MBL subjects showed that the OS observed for
individuals with LC-MBL was significantly shorter than that of
the control group. Moreover, individuals with LC-MBL showed a
significantly shortened survival compared to that of age-matched
individuals of the general population from the same geographical
region. Infections, cancer and cardiovascular diseases were the
main causes of mortality among individuals with LC-MBL. On
the other hand, non-infectious respiratory tract diseases or
genitourinary diseases, diabetes, dementia or other nervous
system disorders accounted for almost 30% of deaths in the
age- and sex-matched general population cohort. In the entire
cohort, advanced age, co-existing cardiovascular diseases, solid
tumors and, to a lesser extent, the presence of LC-MBL clones,
were independently associated with a shorter OS (25).
‘CLL-SPECIFIC’ CYTOGENETIC
ABERRATIONS ARE DETECTED IN MBL

The cytogenetic profile of HC-MBL is highly similar to that of
CLL, especially of the indolent type (Rai 0 stage), in that del
(13q14) was found to be the most frequent aberration followed
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by trisomy 12 (1). On the other hand, compared to Rai 0 CLL,
HC-MBL displayed a lower prevalence of cytogenetic aberrations
related to aggressive disease, such as del(11q) and del(17p), that
were often acquired as secondary abnormalities (17).

In contrast, LC-MBL showed a significantly lower frequency of
‘CLL-specific’ cytogenetic aberrations compared to HC-MBL and
CLL (26). At the individual aberration level, a tendency was
observed towards a greater frequency of del(13q) and trisomy 12
from LC-MBL to HC-MBL and CLL, yet the individual
frequencies were not significantly different between the three.
On these grounds, one could speculate that these lesions
occur rather early during the development of MBL and
may be associated with the acquisition of the ‘CLL-like’
immunophenotypic profile rather than overt disease (26). A
much lower prevalence of del(11q) and del(17p) was observed
in LC-MBL; even so, such cases were detected, with the aberration
being present in the majority of clonal B cells (2). This finding
indicates that the presence of del(17p) per se does not
axiomatically correlate with aggressive disease, as also reported
for a small group of patients with CLL carrying this abnormality
yet remaining stable for prolonged periods, especially when
expressing mutated IGHV genes (27, 28). The distribution of
the most common “CLL-related” cytogenetic aberrations among
LC-MBL, HC-MBL and CLL is depicted in Figure 1. Of note,
although LC-MBL appears to display a relatively simple
cytogenetic profile, longitudinal analysis disclosed a significant
increase in the overall frequency of cytogenetic aberrations after
seven years of follow-up (29% at baseline versus 62% at follow-up):
importantly, all cytogenetic aberrations observed at baseline also
persisted at follow-up (25).

Overall, these findings support that the progression from LC-
MBL to HC-MBL and CLL is accompanied by the progressive
acquisition of recurrent cytogenetic aberrations, each one of
them enriched at specific stages along the natural history of the
disease. In more detail, del(13q) and trisomy 12 occur rather
Frontiers in Oncology | www.frontiersin.org 46263
early, at the LC-MBL stage, whereas del(17p) and del(11q) seem
to emerge later, as secondary events at either the HC-MBL or the
CLL stages. In line with this, the study of telomere length (TL) in
both subtypes of MBL, indolent CLL and healthy subjects
revealed the presence of significantly shorter telomeres already
at the level of HC-MBL, suggesting that it may be part of the
initial events in the process of CLL pathogenesis (26, 29).

Very few data is available for the profile of cytogenetic
aberrations in ‘atypical’ and ‘CD5-negative’ subtypes of MBL;
having said that, cases with del(13q), trisomy 12 and even del
(17p) have been identified (1).
RECURRENT GENE MUTATIONS IN MBL

TP53 aberrations, including mutations, have an established role
in shaping the outcome of CLL and, for this reason, their
assessment is considered mandatory before treatment initiation
(30). In recent years, the advent of NGS technologies led to the
identification of additional gene mutations with putative clinical
relevance in CLL. In particular, recurrent mutations in the
NOTCH1, SF3B1, and BIRC3 genes were associated with
distinct outcomes and were utilized in risk stratification
schemes in the pivotal studies (31–33). Subsequent studies by
several groups, including ours, have identified mutations in
additional genes, e.g. RPS15, NFKBIE and EGR2, revealing a
much more complicated genetic landscape for CLL (34–36). To
complicate things even more, the detailed study of the clonal
architecture in CLL in comparison to treatment revealed that the
presence of mutations in putative CLL driver genes can adversely
impact the clinical outcome of the disease, even when present in
minor subclones, at least for certain mutations (37).

Some of the same recurrent gene mutations have been also
found in HC-MBL. That said, at the individual gene level,
NOTCH1 mutations exhibited a significantly lower prevalence
FIGURE 1 | The distribution of “CLL-specific” cytogenetic aberrations in LC-MBL, HC-MBL and indolent CLL. Data was extracted from the studies by Rossi et al
(17), Fazi et al. (2) and Henriques et al. (26).
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in HC-MBL compared to CLL (3.2% versus 11.6%, respectively)
(P=0.050) (38); moreover, SF3B1 mutations were even more
scarce in HC-MBL (1.5%) versus CLL (~10%) (39). Interestingly,
however, when larger cohorts were analyzed, the incidence of
NOTCH1 and SF3B1 mutations was not significantly different
between HC-MBL and Rai 0-CLL (NOTCH1: 8.2% vs.
13.1%; SF3B1: 4.7% vs. 3.8%) (Figure 2) (21). This finding
supports the claim that MBL and early stage CLL are closely
similar, differing only in clonal size, with MBL simply requiring
more time to expand. This claim is further corroborated by the
fact that low variant allele frequencies (VAF) were observed in
almost all MBL cases but only in about half of CLL cases (41).

At the clinical level, both CLL and MBL cases bearing a
NOTCH1mutation had a shorter progression free survival (PFS)
compared to wildtype ones (41). Thus, arguably, gene mutations
could be used as biomarkers for identifying those MBL cases that
would eventually progress to CLL requiring treatment. Indeed, in
a longitudinal analysis, 60% of MBL cases that progressed to
require treatment exhibited a subclonal expansion bearing a
driver gene mutation, compared to only 14% of untreated
cases (11). On the other hand, a longitudinal analysis of eight
MBL cases by whole exome sequencing (WES) at two time points
of 65 months apart, revealed that the four cases who developed
detectable lymphadenopathy by physical exam yet without need
for treatment carried mutations in putative CLL driver genes,
including ATM, DDX3X, EGR2, FBXW7, SAMHD1 and SF3B1
(42). Targeted re-sequencing not only validated the WES results,
but also led to the identification of additional mutations in the
BIRC3, POT1 and NOTCH1 genes. Interestingly, a damaging
mutation affecting PRDM1 was identified in a fifth case, which is
frequently inactivated in diffuse large B-cell lymphomas. Of
all, FBXW7 was the only gene recurrently mutated and all
mutations were found in highly evolutionarily conserved
regions and considered damaging by PolyPhen and
MutationTaster (42). This data supports the notion that ‘CLL-
Frontiers in Oncology | www.frontiersin.org 56364
associated’ gene mutations are not necessarily clinically relevant
when detected in MBL.

Along these lines, in our recent characterization of the genetic
landscape in both subtypes of MBL as well as indolent CLL, we
were able to detect gene mutations in CLL putative driver genes
in all 3 entities, yet these were infrequent and did not have any
obvious impact on disease progression after a prolonged follow
up. On these grounds, we proposed that gene mutations may
represent late events related mostly to disease progression,
whereas interactions between the cell clone and its
microenvironment, such as those mediated through the B cell
receptor (BcR), could represent the major driver in the early
stages of the natural history of CLL (40).
B CELL CLONAL DYNAMICS IN MBL:
MONOCLONAL VERSUS
MULTICLONAL CASES

Findings from low-throughput studies using mostly subcloning
techniques studies reported that oligoclonality is a common
feature of ‘CLL-like’ MBL (43), present in both LC-MBL and
HC-MBL cases. In 2011, similar findings were obtained in the
first relevant NGS study of 9 individuals with HC-MBL in whom
multiple, immunogenetically independent MBL clones were
identified, clearly suggesting distinct origins (44). The
coexistence of multiple B cell expansions was also observed in
a subsequent study as well, where the authors concluded that
different subsets of normal B cells in the same individual may be
targets for oncogenetic events involved in lymphomagenesis,
arguing that bi- and multi-clonal MBL cases may be associated
with distinct chronic antigen-driven immune responses (44),.
This could be particularly frequent at earlier stages (LC-MBL),
further evidence for the potential reactive nature of MBL among
FIGURE 2 | Incidence of NOTCH1 and SF3B1 gene mutations in HC-MBL and indolent CLL. Respective values for LC-MBL were 0% in both cases. Data regarding
the presence of gene mutations in LC-MBL was extracted from Agathangelidis et al. (40), data regarding NOTCH1 mutations in HC-MBL and CLL from the study by
Rasi et al. (38), and finally, the frequency of SF3B1 mutations in HC-MBL and CLL from the studies by Greco et al. (39) and Rossi et al. (33), respectively.
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individuals with normal lymphocyte counts, prior to the stepwise
acquisition of genomic alterations and the (infrequent)
progression to HC-MBL and CLL (45).

Of note, in the latter study, the median numbers of clonal B cells
in both ‘CLL-like’ HC-MBL and CLL were significantly lower in
multiclonal than in monoclonal cases (41). In contrast, the median
number of clonal cells in ‘CLL-like’ LC-MBL was significantly
higher in multiclonal than monoclonal cases. Yet, longitudinal
analysis showed a significant increase in size in monoclonal
compared to bi- and multi-clonal LC-MBL cases (86% versus
54%, respectively; p=0.004). In most studies, no statistically
significant differences in IGHV gene usage were identified in
monoclonal versus multiclonal cases. Interestingly, the number of
multiclonal cases with stereotyped BcR IG was significantly higher
than that of monoclonal cases. Finally, the frequency of cytogenetic
alterations as well as genetic complexity in both ‘CLL-like’MBL and
CLL clones from multiclonal cases was significantly lower than that
of monoclonal cases from these entities (45).

More recently, employing NGS, we systematically assessed
the immunogenetic characteristics of LC-MBL. We found that
75% samples displayed a monoclonal profile characterized by the
presence of a single clonotype dominating the repertoire
(frequency range: 42.5-97.9%), whereas the remaining 25% of
samples turned out to be oligoclonal (46). Clonality levels
seemed to correlate with clone size, in line with previous
studies reporting a lower frequency of oligoclonality along the
transition from LC-MBL to HC-MBL and, eventually, CLL (47).
Figure 3 summarizes graphically the distribution of monoclonal
and oligoclonal cases among the 2 subtypes of MBL and CLL.

Arguably, differences in clonality patterns among LC-MBL
cases could indicate that these are captured at different stages
along the ontogenetic trajectory. In this scenario, LC-MBL could
initially involve a polyclonal B cell population that at some point
acquired the CLL phenotype due to persistent antigenic
stimulation. Microenvironmental interactions would induce
Frontiers in Oncology | www.frontiersin.org 66465
further proliferation, eventually favoring the acquisition of
genomic lesions, hence underlying the progressive transition to
oligoclonal and, eventually, monoclonal LC-MBL cell
populations. This evolutionary path could go in parallel with a
continuous increase in clonal size, perhaps explaining the
existence of multiclonal HC-MBL and CLL cases (25, 48).
LC-MBL HAS A DIFFERENT
IMMUNOGENETIC PROFILE FROM
EITHER HC-MBL OR CLL

The first studies reporting significant IGHV gene usage biases in
the repertoire of CLL date from the 1990s (49). Subsequent
studies in larger patient cohorts (50–52) cemented the notion
that skewing of the IGHV repertoire in CLL results from strong
selective pressures acting on the CLL progenitor cells by of a
restricted group of antigens.

In order to obtain more insight into the reasons/ontogenetic
timing repertoire skewing, several groups undertook
comparative analyses of the IGHV gene repertoire in CLL and
MBL. Early studies compared Rai 0 CLL with HC-MBL, yet the
differences found were not statistically significant (17, 21).
However, when comparisons extended to LC-MBL, that latter
was found to display a distinct profile, including frequent
expression of the IGHV4-59 and IGHV4-61 genes (rather
infrequent in CLL), as well as pronounced scarcity of the
IGHV4-34 and IGHV1-69 genes (26, 53). These findings
suggested that HC-MBL and indolent CLL are closely related
at the immunogenetic level, whereas LC-MBL is characterized by
a rather unique repertoire, raising questions regarding its precise
relationship to CLL (17, 43).

In the largest relevant study, our group applied Sanger
sequencing in a cohort of 333 ‘CLL-like’ MBL cases and
FIGURE 3 | Monoclonal versus oligoclonal case distribution in LC-MBL, HC-MBL and CLL. Data regarding LC-MBL were extracted from Agathangelidis et al. (46)
and Henriques et al. (26), whereas the data concerning HC-MBL and CLL were obtained from the latter.
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reported significant differences in the IGHV gene repertoire
between HC-MBL versus LC-MBL; several genes were frequent
only in the former (namely IGHV1-69, IGHV2-5, IGHV3-23,
IGHV3-33, IGHV3-48 and IGHV4-34), whereas the IGHV4-59/
61 genes was significantly more frequent in the latter. Comparison
of both MBL subtypes against exclusively Rai-0 CLL cases or CLL
cases from all stages disclosed several significant differences, again
highlighting the distinct nature of the LC-MBL repertoire
(Figure 4) (54). These findings strengthened the hypothesis that
LC-MBL may not constitute a true pre-leukemic state but rather
represent a manifestation of immune senescence.

More recently, we re-appraised the immunogenetic profile of
LC-MBL employing a high-throughput approach (46). More
particularly, employing NGS, we studied the IGHV gene
repertoire from clonal and normal B cell samples from 23
individuals with LC-MBL, which we compared against the
corresponding repertoires of naïve and memory B cell samples
from 6 healthy individuals. The most intriguing finding of our
study concerned the stronger repertoire skewing in normal B
cells from individuals with LC-MBL compared to healthy
individuals. This argues for different selection processes and
functions of these B cell subpopulations in LC-MBL compared
to healthy individuals (55).
DIFFERENT PATTERNS OF SOMATIC
HYPERMUTATION IN MBL COMPARED
TO CLL

The SHM status of the clonotypic IGHV gene is now considered
one of the most accurate biomarkers for clinical decision making
in CLL (30). Based on the SHM status, CLL patients can be
robustly classified CLL into 2 distinct groups: (i) CLL with
unmutated IGHV genes (U-CLL), with few or no SHM [i.e.
cases with a germline identity equal to or higher than 98%]; and,
Frontiers in Oncology | www.frontiersin.org 76566
(ii) CLL with mutated IGHV genes (M-CLL), with a considerable
SHM load and a germline identity below 98%. This classification
scheme holds strong prognostic relevance, with U-CLL cases
generally experiencing a worse prognosis and a more aggressive
disease accompanied by early need for treatment compared to
M-CLL (56, 57). It has been postulated that these two groups
might also have distinct ontogeny, with M-CLL possibly deriving
from B cells that have been activated by antigen(s) and have
participated in the germinal center (GC) reaction, and U-CLL
cases possibly originating from B cells following GC-
independent maturation pathways (48, 58).

Following the same, CLL-relevant 98% identity cut-off value,
several studies analysed the distribution of mutated and
unmutated cases in MBL. In our series, out of the 355 IGH
gene rearrangements analysed from 333 ‘CLL-like’ MBL cases,
267 (75.2%) were classified as mutated, while the rest (24.8%)
were assigned to the unmutated subgroup. The distribution of
unmutated and mutated IGH gene rearrangements in LC-MBL
and HC-MBL was similar, and also comparable to Rai 0-CLL
(26.4%, 24.4% and 25%, respectively). These 3 groups, however,
differed significantly when compared against a CLL cohort
containing 7,424 CLL patients from all stages, in which the
frequency of unmutated cases was 45.1% (Figure 5) (54). In line
with the above, both HC-MBL and Rai 0-CLL unmutated cases
have been found to display distinct gene and miRNA expression
profiles from the mutated MBL/CLL cases, independently of
their classification (21).
STEREOTYPED BCR IG ARE INFREQUENT
IN LC-MBL

A distinctive feature of the IG gene repertoire of CLL concerns
the presence of (quasi)identical BcR IG shared by different
patients, a phenomenon termed BcR IG stereotypy. At odds
FIGURE 4 | IGHV gene repertoire differences between LC-MBL, HC-MBL, Rai 0 CLL as well as in CLL from all stages. Data was obtained from Vardi et al. (54).
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with serendipity, whereby stereotyped BcR IG would be found
with a negligible frequency (in the range of 10-12-10-16),
stereotypy occurs in CLL at a remarkable frequency of 41%
(59). Groups of patients expressing such restricted BCR IG are
known as stereotyped subsets: they can be found in both U-CLL
and M-CLL and vary in size from a handful to hundreds of cases,
in which case they are deemed ‘major’ (52, 59). Notably,
similarities between cases in stereotyped subsets extend from
the primary IG sequences to biological and clinical profiles.
Indeed, consistent clinical outcomes have been reported for
patients assigned to the same subset (60–62), likely linked to
consistent biological profiles: these pertain, amongst others, to
distinctive gene expression, cytogenetic aberrations, BcR
structure and signalling capacity, epigenetic modifications and
antigenic reactivity profiles (63–71) that are also distinct between
subsets but also from non-subset cases even of the same
mutational category (i.e. U-CLL or M-CLL).

In this context, investigating whether ‘CLL-like’ stereotyped
BcR IG could be detected also in MBL was a logical next step.
When comparing HC-MBL with Rai 0-CLL, no significant
differences were found, whereas, in sharp contrast, stereotyped
BcR IG were exceedingly scarce in LC-MBL (17, 21).
Interestingly, a correlation between the incidence of stereotypy
and the absolute count of ‘CLL-like’ cells was identified: 5.5% in
LC-MBL, 21.9% in HC-MBL, 20.2% in Rai 0-CLL, and 30.4% in
CLL of all clinical stages (Figure 6) (54).

The scarcity of BcR IG stereotypes in LC-MBL was also
evident in our recent high-throughput study. Of the few
stereotyped clonotypes, virtually all were classified to minor
subsets with a small minority corresponding to stereotypes
defining major CLL stereotyped subsets, particularly those
associated with aggressive disease. On these grounds, we
proposed that LC-MBL is immunogenetically distinct from
CLL, at least for those cases with aggressive clinical behavior (46).
Frontiers in Oncology | www.frontiersin.org 86667
T CELLS IN MBL AND CLL

Multifarious abnormalities in the T cell compartment constitute
a well characterized feature of the tumor microenvironment in
CLL (72–75). However, although our understanding of the
interactions between T cells and CLL leukemic cells is
continuously growing, several important questions remain, not
lest regarding the precise role of T cells i.e. whether they exert
pro- or anti-neoplastic actions.

CLL is characterized by a relative loss of naïve CD4+ T cells
accompanied by enrichment of antigen-experienced, memory
and effector CD4+ T cells (73, 76). CD4+ T cells in CLL express
higher levels of PD-1, human leukocyte antigen (HLA)-DR and
Ki67, which are all activation markers (73, 77, 78). In vitro as well
as in vivo studies in xenograft mouse models suggested that
CD4+ T cells could enhance the survival and proliferation of
clonal cells in CLL, a finding that was supported by correlations
between CD4+ T cell counts and clinical outcome (79, 80).

CD8+ T cells from patients with CLL display high expression of
PD-1 and other inhibitory receptors, accompanied by defective
immune synapse formation (also occurring in CD4+ T cells as well)
(78, 81). For these reasons, CD8+ T cells in CLL have been described
as “pseudoexhausted” (78). Relevant experiments in mice showed
that the exhaustion of T cells was anatomically restricted, being
observed mainly in spleen samples and to a much lower extent in
the blood (81). Impaired immune synapse formation was observed
ex vivo when T cells from healthy donors were co-cultured with
clonal CLL cells, suggesting that this defect was largely induced by
the CLL cells themselves. Of interest, blocking inhibitory ligands,
such as CD200, PD-L1, or CD276 with neutralizing antibodies led
to restored immune synapse formation capacity (82). Regarding the
biological function of CD8+ T cells in CLL, apparently they may
recognize tumor specific antigens, however they ultimately fail to
control the disease likely due to their functional exhaustion (76).
FIGURE 5 | Somatic hypermutation status in cohorts from LC-MBL, HC-MBL and CLL. Data was obtained from Vardi et al. (54).
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Characteristic T cell receptor (TR) gene repertoire restrictions
have been established in CLL, mainly in the CD8+ but also in the
CD4+ compartment (83). Even though clonal expansions occur
frequently in the T cell repertoire of the elderly, restrictions were
more pronounced in CLL, indicating the existence of stronger
and perhaps different selective pressures. Whether these
pressures are exerted by the same antigens interacting with the
CLL clone or by CLL-derived antigens remains to be elucidated
(83, 84).

Comparative analysis between HC-MBL, U-CLL and M-CLL
cases revealed similar CD4+ T cell counts in all three conditions.
In contrast, the CD8+ T cell count was higher in U-CLL
compared to M-CLL patients and significantly higher than that
of HC-MBL (85). Interestingly, both CD4+ and CD8+ clonal T
cell expansions were identified in HC-MBL, similar to CLL.
CD4+ T cell clonal expansions appeared to follow the numerical
increase of clonal B cells, thus being more pronounced in CLL
compared to HC-MBL (85). This finding suggests that CD4+ TR
repertoire restrictions may be somehow influenced by the size of
B cell clonal expansions, occurring early in clonal evolution and
increasing concurrently with tumor progression. The fact that
CLL displays higher T cell repertoire restrictions could also
reflect the loss of effector T cell clones restraining CLL clonal
expansions. In line with this, treatment with the Bruton’s
tyrosine kinase inhibitor ibrutinib, led to an increase in the T
cell repertoire diversity; this suggests that the eradication of the
CLL malignant cells sets the stage for T cell reconstitution (86).

Concerning the clonality of the CD8+ T cell fraction, no
significant differences were detected between HC-MBL and CLL
(87). Furthermore, a longitudinal analysis showed that T cell
clones, mainly from the CD8+ compartment, persisted over time
in all MBL samples analyzed, similar to what was previously
reported in CLL (83, 88), suggesting that interactions between CLL
and T cells are evident prior to/at the early stages of CLL
development (87). Moreover, decreased numbers of CD4+CD8+

double positive T cells were identified in HC-MBL compared to
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healthy control samples, alluding to impaired immunosurveillance
which may actually favor the emergence of MBL clones.
Furthermore, Tregs appeared increased in CLL, but not in MBL,
compared to healthy controls (89).

Regarding LC-MBL, early studies reported an increase in the
size of clonal T cell populations compared to the general
population, especially for double positive CD4+CD8+ T cells,
suggesting a general deregulation of the immune system, possibly
related to chronic antigenic stimulation (90). Recently, a follow-
up study of LC-MBL revealed statistically significant increase of
total T cells as well as CD4+, CD8+ and the double negative cell
subpopulations over time. Interestingly, LC-MBL with larger
clone sizes over time also showed significantly higher (P<0.05)
numbers of the distinct normal residual T cell subsets at follow
up compared to the baseline, especially for CD4+ T cells (79, 91).
This might imply that signals emanating from immune cells of
the CLL microenvironment, potentially promoting activation,
proliferation and/or survival of B cells, could contribute to the
expansion of ‘CLL-like’ B cell clones at the earliest stages of
CLL (25).

In our recent study of the TR beta chain gene repertoire in
LC-MBL by NGS, we reported more pronounced T cell
expansions in LC-MBL compared to aged-matched healthy
individuals, yet lower than CLL. We attributed this finding to
different antigenic pressures, leading to more pronounced T cell
expansions in CLL versus LC-MBL versus healthy individuals
(92). Moreover, a significant correlation between the level of T
cell clonality and the size of the MBL clone was shown, in line
with previous findings in CLL, further supporting the notion that
T cell expansions could be driven by CLL-associated antigens
(83, 88). Pairwise comparisons between all entities revealed
distinct TRBV gene repertoire biases; this could perhaps imply
that different antigen selection pressures operate in LC-MBL,
CLL or healthy individuals. The latter assumption was further
supported by the fact that shared clonotypes between different
entities were scant. The nature of the implicated antigens and
FIGURE 6 | Frequency of BcR IG stereotypy in LC-MBL, HC-MBL, Rai 0 CLL and CLL from all clinical stages. Data was extracted from Vardi et al. (54).
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whether they are related to the expanded ‘CLL-like’ cell clones
remains to be clarified (92).
THE NUMBERS OF RESIDUAL
NORMAL B CELLS ARE REDUCED
PRIOR TO CLL ONSET

Several defects in both the innate and the adaptive immune
responses have been ident ified in CLL, inc luding
hypogammaglobulinemia (93). The exact mechanisms
underlying these defects are poorly characterized, whereas even
less information is available regarding the disease stage during
which they take place. In this context, Criado and colleagues (55)
studied the residual normal B cell compartment in the blood of
individuals with LC-MBL and HC-MBL compared to Rai 0-CLL
in order to get insight into the mechanisms that may contribute
to the emergence of hypogammaglobulinemia in CLL. Both HC-
MBL and Rai 0-CLL showed significantly reduced normal B cell
counts, mostly at the expense of pre-GC B cells, both immature
and naïve, suggesting diminished production and/or release of
these cells in the circulation at the early stages of CLL.
Considering that no such decrease has been identified in
circulating immature and naïve B cell counts in relation to
ageing (94), the decreased numbers of circulating pre-GC B
cells in individuals with HC-MBL alludes to impaired production
of newly generated B cells in the BM, even prior to the
development of CLL (55).

When focusing on the memory B cells (MBC) and plasma
cells (PC), there were no significant differences in either MBL
(both subtypes) or CLL compared to healthy controls with the
exception of PC counts between HC-MBL and the healthy
controls. Of note, both MBC and PC showed significantly
different distribution among B cell subsets, expressing distinct
IG subclasses in both MBL and CLL. Of importance, the extent of
these changes was greater from LC-MBL to HC-MBL and finally
Rai0-CLL. Thus, the possibility of a progressive impairment of B
cell responses driven by newly encountered antigens along the
transition from LC-MBL to HC-MBL and finally Rai 0-CLL was
proposed; impaired pre-GC B cell production has been
considered as largely responsible, since it could lead to a
progressive reduction of the diversity of the BcR IG repertoire
from LC-MBL to HC-MBL and Rai 0-CLL (55). This would be in
line with other features of CLL but also MBL, such as the launch
of active, but silent, responses against common pathogens,
particularly viruses such as cytomegalovirus (CMV) and the
Epstein Barr virus (EBV), as well as bacteria such as S.
pneumoniae (95). Additional, longitudinal studies in larger
MBL and CLL cohorts would be necessary to support
this hypothesis.
CONCLUSIONS

MBL detection is based on the identification of B cell expansions
in the blood circulation with the characteristic “CLL-specific”
Frontiers in Oncology | www.frontiersin.org 106869
phenotype, yet of a smaller size than the one required for CLL
diagnosis. This criterion, based solely on a mathematical cutoff is
devoid of any biological context, perhaps hampering our
understanding of the mechanisms driving disease onset. Thus,
the in-depth characterization of MBL holds great potential for
understanding the mechanisms that represent major drivers in
the process of its transformation to CLL.

Nowadays, it is well established that CLL is characterized by a
highly complicated genomic landscape, including a series of
cytogenetic aberrations as well as gene mutations. That said,
the overall simple genetic background of MBL pointed towards
the BcR IG as one of the major “players” prior to disease onset.
The study of BcR IG clonality, especially through NGS-based
methodologies, revealed much a much higher frequency of
oligoclonality in MBL, especially LC-MBL, compared to CLL,
most likely reflecting different staged along the ontogenetic
trajectory. Relevant to mention, the BcR IG repertoire in HC-
MBL was similar to CLL regarding both the IGHV gene
repertoire as well as BcR IG stereotypy, whereas LC-MBL
showed a highly distinct repertoire characterized by the
dominance of different IGHV genes and a very low prevalence
of stereotypes, alluding to different antigenic pressures shaping
the BcR IG repertoire in LC-MBL versus HC-MBL and CLL.
Further support for an early role of the microenvironment in
CLL ontogenesis came from the study of the TR repertoire in
both LC- and HC-MBL. Similar to CLL, T cell expansions were
evident in both subtypes of MBL yet at a lower extent. As above,
the TR repertoire was characterized by different biases in the
repertoire of TRBV genes and the absence of shared clonotyped
among MBL and CLL pointing towards different selection
mechanisms. Last, the study of residual B cells in MBL and
CLL revealed an impaired production of newly generated B cells
in the BM, even prior to the development of CLL, as well as a
progressive impairment of B cell responses driven by newly
encountered antigens along the transition from LC-MBL to
HC-MBL and finally Rai 0-CLL that could account for the
clinical impact of MBL detection.

Overall, even if major questions still remain, parallel analysis
of the B cell clone(s) and the tumor microenvironment in MBL
holds strong potential for characterizing the mechanisms that are
required for the emergence and malignant transformation of a
monoclonal B cell population.
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Chronic Lymphocytic Leukemia (CLL) is characterized by the accumulation of monoclonal
CD5+ B cells with low surface immunoglobulins (IG). About 40% of CLL clones utilize
quasi-identical B cell receptors, defined as stereotyped BCR. CLL-like stereotyped-IG
rearrangements are present in normal B cells as a part of the public IG repertoire. In this
study, we collected details on the representation and features of CLL-like stereotyped-IG
in the IGH repertoire of B-cell subpopulations purified from the peripheral blood of nine
healthy donors. The B-cell subpopulations were also fractioned according to the
expression of surface CD5 molecules and IG light chain, IGk and IGl. IG
rearrangements, obtained by high throughput sequencing, were scanned for the
presence of CLL-like stereotyped-IG. CLL-like stereotyped-IG did not accumulate
preferentially in the CD5+ B cells, nor in specific B-cell subpopulations or the CD5+ cell
fraction thereof, and their distribution was not restricted to a single IG light chain type.
CLL-like stereotyped-IG shared with the corresponding CLL stereotype rearrangements
the IGHV mutational status. Instead, for other features such as IGHV genes and
frequency, CLL stereotyped-IGs presented a CLL-like subset specific behavior which
could, or could not, be consistent with CLL stereotyped-IGs. Therefore, as opposed to
the immuno-phenotype, the features of the CLL stereotyped-IG repertoire suggest a CLL
stereotyped subset-specific ontogeny. Overall, these findings suggest that the immune-
genotype can provide essential details in tracking and defining the CLL cell of origin.

Keywords: chronic lymphocytic leukemia (CLL), immunoglobulin repertoire, B-cells, CD5, IGHV somatic mutations,
Ig light chain, CLL stereotyped BCR
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INTRODUCTION

Chronic Lymphocytic Leukemia (CLL) is characterized by the
accumulation of monoclonal B lymphocytes expressing CD5,
CD23, and low surface immunoglobulin in blood, bone marrow,
and lymphoid tissues (1, 2). Analyses of many CLL clones
demonstrated that the IG gene rearrangements encoding the CLL
B cell receptor (BCR) exhibit a striking skewed use of IGHV genes
resulting in an IG repertoire different from that of normal B
lymphocytes (3–5). Moreover, despite the enormous diversity
potentially generated by the recombination of IGHV-IGHD-IGHJ
genes, up to 40% of the CLL clones (6, 7) exhibit highly similar
stereotyped BCR, which has led to the categorization of the CLL
clones with stereotyped BCR into subsets based on their similarities.
Although several hundred CLL subsets have been identified, those
most frequently encountered, defined as “major subsets,” are limited
in numbers. Stereotyped BCRs are determined based on the VH
CDR3 features of at least 50% of amino acids identity and 70% of
amino acid motif similarities, identical VH CDR3 length and
location of a shared pattern(s) among sequences of the same
group (6, 8), and the use of IGHV genes belonging to the same
phylogenetic clan. IGHV clans are IGHV family genes with
structural similarities (9). Conceptually, the stereotyped gene
rearrangements should be considered part of the public IG
repertoire because different individuals share them (10). In
addition, CLL clones of the same stereotyped subsets show IG
light chain restrictions (e.g., #1, #2, #4, #6, #8, #64b, and #99) (6,
11–13) and IGKV-IGKJ/IGLV-IGLJ gene rearrangements
presenting stereotypy features similar to those of IGHV
rearrangements with limitations in IG light chain gene usage and
VL CDR3 composition.

The above observations support the notion of a role for BCR
stimulation in CLL ontogeny (14–16); moreover, the results of
therapies with inhibitors of BCR-associated kinases suggest that
stimulation via BCR may be critical for the survival/proliferation
of CLL cells in full-blown leukemia (17).

Previous studies have identified IGHV-IGHD-IGHJ
rearrangements sharing features with that characteristic of CLL
subsets in splenic and circulating B cells from normal subjects
(18–20). These rearrangements, from now onward defined as
CLL-like stereotyped-IG or CLS-IG, can be observed in different
B cell subpopulations, even though they accumulate in the CD5+

B-cells (20, 21).
This study used high-throughput sequencing technology on

peripheral blood B cell subsets to elucidate CLS-IG’s features and
cellular distribution. For this purpose, the cells, separated into
defined subsets, were also fractionated according to CD5 or IG
light chain expression. The data obtained provide a new
perspective for interpreting the origin of CLL cell repertoire
and possibly for disease ontogeny.
MATERIALS AND METHODS

Samples
Peripheral blood cells were obtained from the leukopak of
anonymous blood donors (nine donors aged 55 to 64 years old)
Frontiers in Oncology | www.frontiersin.org 27475
at the San Martino Hospital Blood Center presentation. Each
leukopak is derived from ~500ml of blood. B cells were enriched
with RosetteSep Human B Cell Enrichment Cocktail (Stemcell
Technologies, Vancouver, Canada), obtaining on average 42x106

B cells per donor (24x106 to 60x106) (Supplementary Table S1).

Isolation of PB B Cell Subpopulations and
Fractionation of CD5+, CD5- B Cells, and
IGk and IGl
B cells enriched cell fractions were stained with the following
combination of mAbs: anti-IgD Alexa Vio770 (BioLegend, San
Diego, CA, USA); anti-IgM PerCP_Cy5.5, anti-CD27 PE-CF594,
anti-CD38 PE-Cy7, anti-CD24 Alexa Fluor 647 and anti-CD5
BV 421, anti-IGk FITC, anti-IGl PE, anti-IgA VioGreen (BD). B
cell subsets were isolated by FACS sorting (FACSAria, Becton
Dickinson, Franklin Lakes, NJ, USA) after depleting IgA+ and
dead cells with a two-step sorting approach: 1) a four-way pre-
sort with yield setting was used to separate enriched B cells into
IGk+/CD5+, IGk+/CD5-, IGl+/CD5+,and IGl+/CD5-B cells; 2)
each of the above cell fractions were then sorted into six main B
cell subpopulations (after excluding CD38highCD24-

plasmablasts) : CD24highCD38high transit ional (TR),
IgDhighIgM+CD38-CD27- naive (N), IgDlow IgM+CD38-CD27+

marginal zone-like (MZ), IgM+IgD-CD38-CD27+ IgM-only
memory (MO), IgM-IgD-CD38-CD27+ switch-memory (SM),
and IgM-IgD-CD38-CD27- double negative (DN) B cells. See
also Figure 1 and Supplementary Figure S1 for details.

Library Preparation and Sequencing
IGH sequencing and analysis were performed as previously
reported in detail (22). Briefly, the library was prepared from
mRNA with a multiplex approach with IGHV-specific forward
primers on the leader sequence and reverse primers on the
constant region. The primer set was kindly provided by TIB
Molbiol srl (Genoa, Italy). The amplicons obtained included the
entire IGHV-IGHD-IGHJ gene and enough constant region to
FIGURE 1 | B-cell separation strategy.
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assign the isotype; UMIs (14 to 16 nucleotides) were inserted
during ds-cDNA synthesis. The libraries were indexed with
Illumina Nextera XT V2 kit (Illumina, San Diego, CA, USA)
and sequenced on Illumina MiSeq (MiSeq V3, 2x300 kit,
Illumina). DNA sequences were deposited on the NCBI
Sequence Read Archive (SRA) portal with BioProject
ID: PRJNA807871.

Bioinformatics Analysis
Raw reads were processed with a custom-built workflow using
pRESTO (23) as previously described (20); processed sequences
were then annotated by IMGT/HighV-QUEST (24). Only
productive rearrangements derived from the consensus of two
or more raw reads without N nucleotide passed the quality filter.
ChangeO (25) was used to define and annotate clonotypes as
sequences with identical amino acid VH CDR3 sequence using
the same IGHV gene and IGHJ gene.

CLL Subsets Assignment
To identify CLL-like stereotyped sequences (CLS-IG), we first
selected the sequences in our database consistent with the core
features (IGHV clan, IGHV mutational status, and VH CDR3
length) (26) of each of the 19 major CLL stereotyped subsets and
then submitted them to ARResT/AssignSubsets (26) for the
assignment. Sequences assigned to CLL stereotyped subsets
with a confidence “average” or higher were considered CLS-IG.
Sequences not assigned to CLL stereotyped subsets were defined
as non-CLS-IG. The entire analysis was then performed at the
clonal level, i.e., for each clonotype, a single representative
sequence was considered.

To identify VH CDR3 aa sequences consistent with a CLL
stereotyped subset but with the reverse (r) mutational status
compared to the core feature of CLL stereotypies (rCLS-IG), we
re-submitted to aRResT the IGHV-IGHD-IGHJ rearrangements
sequences in which the original IGHV gene region was replaced
with one with the opposite mutational status, generating an in
silico chimeric sequence.

Statistics
Statistical analyses were performed in R. Paired Wilcoxon tests or
binomial test with Bonferroni correction applied to assess
differences in CLS-IG or VH gene frequency (*p ≤ 0.05, **p ≤
0.01, ***p ≤ 0.001). The pairedWilcoxon test was calculated only if
three or more donors presented data for both points. CLS-IGs’
frequency was calculated only when the number of CLS-IG
sequences in the group was two or more. Frequencies obtained
from only one CLS-IG sequence within a group were not
considered informative and therefore not plotted unless specified.
RESULTS

Identification of CLL-Like Stereotyped-IGs
in B-Cell Subpopulations
Peripheral blood B cell samples from each of nine donors were
separated into 24 phenotypically distinct cell fractions. First, B
cells were divided into four fractions according to the presence or
Frontiers in Oncology | www.frontiersin.org 37576
absence of surface CD5 and surface IG light chain expression (IGk
or IGl). From each of the four B cell fractions, six different B-cell
subpopulations (B-subset) were isolated: transitional (TR), naive
(N), marginal zone-like (MZ), IgM only memory (MO), IgG
switched memory (SM), and double-negative (DN); see
Figure 1, Methods and Supplementary Figure S1 for
phenotypes and details. After quality filtering, a total of
2,679,224 productive, unique IGHV-IGHD-IGHJ sequences
were obtained from 8,043,500 sorted B cells. Curated sequences
were subsequently clustered into 2,184,656 clonotypes (detailed in
Supplementary Table S2), of which 1754 (0.08%) were assigned
to one of the major CLL stereotyped subsets (CLL-subset) with
ARResT/AssignSubsets (26) (as detailed in Methods) and defined
as CLL-like stereotypes-IG (CLS-IG) (detailed in Supplementary
Table S3). Clonal families were used as references for the
entire analysis.

Correlation of the Higher CLL-Like
Stereotyped-IG Representation in CD5+ B
Cells With an Asymmetrical Distribution of
U and M IGHV Rearrangements in CD5+

and CD5- B Cells
First, sequences from all CD5+ or CD5- subpopulations respectively
were pooled and analyzed for the presence of CSL-IG to see
whether the CSL-IG were predominant in the CD5+ cell fraction,
and we found that the proportion of CLS-IG was significantly
higher in CD5+ than in CD5- B cells (Figure 2A). However, when
the IGHV gene rearrangements were separated into mutated (≥2%
IGHV gene mutations, M-IG) and unmutated (<2% mutations, U-
IG), there was no difference in the frequency of CLS-IG between
CD5+ and CD5- B cells within a single mutational status group
(Figure 2B). Furthermore, U-IG clonotypes had more CLS-IG
than M-IG clonotypes in both CD5+ and the CD5- populations.
When looking at the average IGHV mutation frequency, the CD5+

clonotypes appear to be enriched in U-IG, contrary to CD5-

clonotypes enriched in M-IG (Figure 2C).

Presence of CLL-Like Stereotyped-IG in
B-Cell Subpopulations
CLS-IG were found in all B-subsets, although in different
proportions (Figure 3A); i.e., N and TR B cells had a
significantly higher CLS-IG representation (0.09%) than MZ
(0.05%) and SM (0.03%) B cells. N and TR B cells also had the
highest U-IG sequences (Figure 3C). Further fractionation of
each B-subset into CD5+ and CD5- cells did not show a
significant predominance of CLS-IG in any of the CD5+ cell
fractions (Figure 3B). In most cases, SM, DN, and MO B-subsets
presented none or just one CLS-IG per donor. It must be noted
that these B-subsets have the lower frequency of CD5+ cells and,
therefore, the least IGH sequences (Supplementary Table S2).

Different Frequencies of CLL-Like
Stereotyped-IG Subsets in Normal B Cells
and CLL Clones
Overall, the median frequency of CLS-IGs clonotypes of
individual CLL subsets was within the range of 0.019% to
June 2022 | Volume 12 | Article 894419
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undetectable in circulating B cells (Figure 4A). Subset #5 was the
most represented (403 clonotypes, 0.019%), followed by subset
#2 (307 clonotypes, 0.017%), subset #64B (294 clonotypes,
0.014%), subset #3 (220 clonotypes, 0.008%), subset #14 (201
clonotypes, 0.006%), and subset #1 (103 clonotypes, 0.005%),
whereas other CLL subsets were represented at a lower level.
CLS-IG frequency was comparable between CD5+ and CD5- B
Frontiers in Oncology | www.frontiersin.org 47677
cells for every CLL subset except subset #5 where CD5+ presented
statistically more CLS-IGs than CD5-, and subset #14, where CD5+

presented statistically fewer CLS-IGs than CD5+ (Figure 4B). For
CLL subsets with U-IGs, we identified CLS-IG consistently only in
N and TR B-subsets, whereas for CLL subsets with M-IGs (#2 and
#14), CLS-IG were reproducibly detected also in MZ, MO, SM, and
DN B-subsets (Figure 4C).
A B

C

FIGURE 3 | Frequency of CLS-IG in circulating B-subset. (A) Frequency of CLS-IG in B-subset (B). Frequency of CLS-IG in the same B-subset fractionated further
for CD5+ and CD5– B cells. Paired Wilcoxon test was performed, only significant statistics are shown (*p ≤ 0.05, **p ≤ 0.01; ns, not significant). CLS-IG identified in
the CD5+ fraction of MZ, MO, SM, and DN B cells were insufficient for statistical analysis. (C) IGHV genes mutation distribution in the B cell subsets-sub divided by
CD5 expression. The percentage of unmutated IGs (< 2%) in each B cell population is shown at the bottom of the figure.
A B C

FIGURE 2 | Frequency of CLS-IG in CD5+ and CD5- B cells. (A) CLS-IG frequency in CD5+ and CD5- B cells analyzed in bulk. (B) Frequency of CLS-IG in the M
and U IGHV rearrangements of CD5+ and CD5- B cells analyzed separately. (C) IGHV genes mutation distribution in CD5+ and CD5- B cells. Paired Wilcoxon test
was performed, only significant statistics are shown (**p ≤ 0.01, ***p ≤ 0.001).
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The CLS-IG frequency among the CLL subsets in our dataset
was compared to CLL stereotyped-IGs reported in the study by
Agathangelidis et al. (6). While the distribution of most CLL
subsets did present statistically significant differences between
Frontiers in Oncology | www.frontiersin.org 57778
CLL stereotyped IG and CLS-IG, only a few differed substantially
(Figure 4D). Subset #1, which is relatively frequent in CLL, was
much less represented in the CLS-IG of peripheral blood,
whereas subsets #5, #14, and #64B, the most abundant
A

B

D

C

FIGURE 4 | Frequency of CLS-IG subsets. (A) Frequency of CLS-IGs for individual CLL subsets in healthy donors among all IGHV-IGHD-IGHJ clonotypes.
(B) Frequency of CLS-IGs for each CLL subset in CD5+ and CD5- B cells. Frequency data derived from only one donor was not considered informative and not
plotted. Paired Wilcoxon test was performed, only significant statistics are shown (*p ≤ 0.05). (C) Frequency of CLS-IGs for each CLL subset in B cell subsets.
Frequency data derived from only one donor was not considered informative and not plotted. (D) Frequency of CLS-IGs for individual CLL subsets among all CLS-
IGCLL subset frequency of CLS-IGs relative frequency compared with CLL stereotyped clones (6). Binomial test was performed, only significant statistics are shown
(*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001; ns, not significant).
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innormal B cells, were much less frequent in the CLL
dataset. Other subsets were absent (#4 and #16) or rarely
observed (#6, #8, #12, #31, #77, and #201).

Absence of IG Light Chain Restriction in
CLL-Like Stereotyped-IGs
Many CLL clones with stereotyped receptors have restricted IG
light chain usage (27, 28). This is particularly evident in leukemic
clones utilizing subsets #1, #2, #4, #6, #8, #64b, and #99 (6, 12).
We investigated whether CLS-IG from normal B cells showed
light chain restriction. As each B-subset was fractionated starting
from pre-sorted IGk+ or IGl+ B-cells and sequenced
independently, we could obtain the CLS-IG distribution in
both IGk and IGl-bearing cells. Among the CLL subsets for
which clear evidence of IG light chain restriction is present in
CLL clones, sufficient sequences for an informative analysis were
obtained from subsets #1, #2, #64b, and #9 (Figure 5). There was
no statistically significant difference in the IG light chain
association for any CLS-IG analyzed. Only CLS-IG of subset
#2 showed a trend indicating enrichment in IGk+ normal B cells;
this contrasts with CLL clones of the same subset that
consistently show a pairing with IGl. The entire distribution
of the IG light chain among CLS-IG stereotypes is reported in
Supplementary Figure S2.

Similar Utilization of Mutated and
Unmutated IGHV Genes by CLL Clones
and CLL- Like Stereotyped-IGs
Most CLL stereotyped rearrangements are restricted to the
utilization of U or M IGHV genes (6, 18). This characterizing
Frontiers in Oncology | www.frontiersin.org 67879
feature is used by ARResT for CLL stereotyped subset
assignment, meaning that a VH CDR3, potentially showing
stereotyped features, will be excluded from a given subset if the
IGHV gene, concomitantly utilized, fails to share the mutational
status expected for that subset. Based on these considerations, we
analyzed all the sequences from normal cells identified in this
study to see whether there were restrictions to a specific
mutational status for CLS-IG. To this end, we investigated
whether VH CDR3 aa sequences, consistent with a CLL
stereotyped subset, were present independently of the IGHV
mutational status by extending the analysis to sequences with a
reversed (r) mutational status compared to the core feature of the
CLL subset (rCLS-IG) (see Methods). We observed that the “r”
rearrangements were significantly less frequently classified as
stereotyped than the native ones (Figure 6A). The same trend
was observed for CLS-IG and rCLS-IG from individual CLL
subsets when sufficient data were available for analysis (#1, #5,
and #14, Figure 6B). The median mutation values of CLS-IG
from the major CLL subsets followed a pattern like that of the
corresponding CLL stereotyped-IGs (Figure 6C). For example,
#1 was preferentially unmutated, #2 had around 2% mutations,
and #14 was mutated. This pattern was similar for both the IGk
and IGl B-cells.

Identification of “Typical” and “Non-
Typical” CLL-Like Stereotyped-IGs
One of the core features defining each CLL stereotyped subset is
represented by the VH clan utilized, and, in each CLL subset, the
rearranged IGHV genes often present a restriction at this level (6).
This restriction ranges from about half the genes within a clan to a
FIGURE 5 | Frequency of individual CLS-IG in sequences from normal B cells expressing either IGk and IGl chains in CLL stereotyped subsets with reported IG
light chainIGL bias (6, 12). Paired Wilcoxon test was performed. ns, not significant
June 2022 | Volume 12 | Article 894419
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single gene (i.e., #4 - IGHV4-34, #8 - IGHV4-39). Again, all the
CLS-IG sequences of this study were analyzed and classified as
“typical” if expressing an IGHV gene of those found at least once in
their respective CLL counterparts (6) and “non-typical” if
expressing a different IGHV gene within the VH clan. For each
CLL subset, the CLS-IG VH genes usage distribution was
compared to control sequences from the same dataset. Control
sequences were defined as sharing the core features of the CLL
subset in consideration (6) (e.g., #1 - the use of a clan I VH gene, a
U-IGHV gene, and a VH CDR3 length of 13 aa). The patterns
observed varied among subsets (see Figure 7) and can be
summarized in three broad categories as follows: i) CLS-IG
falling almost exclusively in the typical category as in subset #1,
where even though all rearrangements but one (1/379) were typical,
the IGHV gene usage followed a distribution that was not
consistent with that observed in either CLL or control non-CLS-
IG sequences. ii) CLS-IG distributed in typical and non-typical
categories with an IGHV gene distribution like non-CLS-IG
control sequences and not presenting the CLL IGHV bias. Two
examples of this condition were the CLS-IG sequences from subsets
Frontiers in Oncology | www.frontiersin.org 77980
#2 and #3, which utilized several IGHV genes (with a frequency
similar to that of non-CLS-IG control sequences) rather than the
IGHV3-21 and the IGHV1-69 genes characterizing the #2 and #3
CLL subset, respectively. iii) CLS-IG showing the same bias toward
the utilization of a specific IGHV gene marking the CLL
stereotyped subset. An example is subset #14, where most CLS-
IG expressed the IGHV4-4 gene like the CLL stereotyped-IG and,
in this respect, were different from non-CLS-IG control sequences.
When separating the sequences by the IG light chain used, some
fluctuation in the IGHV gene used could be observed; nevertheless,
the general pattern described above remained valid for sequences
from both the IGk and IGl group (see Supplementary Figure S3).
Figures 7B, C summarize some statistics of what is shown in
Figure 7A. In half of the informative CLL subsets (#1, #2, #5, #7H,
#12, #14, and #99), we observed a significantly higher
representation of typical IGHV genes in CLS-IG compared to
controls (Figure 7B). As for the predominant IGHV gene often
noticed in each single CLL subset, we observed that this bias
generally was not present in CLS-IG. Indeed nine out of the 12
CLS-IG did not show evidence for this condition (Figure 7C).
A B

C

FIGURE 6 | Similar utilization of IGHV mutated and unmutated genes by CLS-IG and CLL stereotypes. (A) CLS-IG and rCLS-IG frequency in normal B cells.
(B) Frequency of CLS-IG and rCLS-IG of the #1, #5 and #14 CLL subsets in normal B cells. Paired Wilcoxon test was performed, only significant statistics are
shown (*p ≤ 0.05, **p ≤ 0.01; ns, not significant). (C) Mutation pattern of the IGHV genes utilized by CLS-IG from normal B cells subdivided for the indicated CLL
subsets; the horizontal lines indicate the median mutation for each subset. The dotted line indicates the 2% mutation threshold separating U and M sequences. The
percentage of CLL stereotypes with unmutated IGHV in each CLL subset is shown at the bottom of the figure.
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DISCUSSION

The identification of CLL clones’ stereotypical IG receptors
indicates that different individuals share immunoglobulin
rearrangements with these specific features. This aspect
Frontiers in Oncology | www.frontiersin.org 88081
reminds the existence of identical CDR3 aa sequences
between individuals, which defines the so-called public
repertoire (10, 29). More recently, the definition of public
repertoire has been made less stringent by including
rearrangements with a high degree of similarity (30). In this
A

B

C

FIGURE 7 | (A) Frequency of IGHV gene used in typical and non-typical CLS-IG (red). Blue bars indicate non-CLS-IG control sequences (i.e., sharing the same core
features as the CLL subset in consideration - IGHV clan, IGHV mutational status, and VH CDR3 length). These rearrangements were used as controls. Black
horizontal lines indicate the level of IGHV representation in the reference CLL cohort. The predominant IGHV gene was identified as the most represented within a
CLL subset. (B) Frequency of typical IGHV genes in CLS-IG clonotypes compared to control sequences. The control sequences are the same reported in panel
(A) (C) Frequency of the predominant IGHV gene observed in CLL stereotyped IGs compared to CLS-IGs usage of the same IGHV gene. Binomial test was
performed, only significant statistics are shown (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001; ns, not significant).
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respect, the public repertoire could enclose stereotypic
rearrangements recognized in CLL clones.

The scope of this study was that of investigating whether, in
healthy donors, CLL IG stereotyped sequences were present in
the IG repertoire of any of the circulating B-subsets and to which
extent. The donors analyzed did not have evidence of
lymphocytosis, thus excluding the possibility of introducing
biases due to some type of preleukemic stage, which may result
in B-cell repertoire alterations (31). Blood samples were collected
from donors with a median age of 58.8 (range 56-67), which is in
the range of possible identification of clonotypes ascribable to
CLL clones that became clinically evident later. Indeed, it has
been reported that clonotypes attributable to the leukemic clone
can be identified in the PB up to 16 years before CLL diagnosis
(32). It is, however, unknown whether phenotypic changes were
present in the PB B lymphocytes at this early stage. The age
choice appears relevant for comparison with CLL, given that
changes in B cell repertoire within single B-cell subsets may
occur with advancing age and may influence the cell population
in which leukemogenesis occurs. In addition, it has been
reported that changes in the representation of certain CLS-IG
can be observed in aging individuals (19).

Although CLL stereotyped receptors have been reported in
healthy donors (18, 19, 33–35), our approach provides more
details on their phenotypic features, considering, for instance, the
expression of IG light chains and CD5 expression within B-
subsets. The identification and characterization of CLL
stereotyped IG in healthy donors could provide information on
the cell(s) of origin of CLL. Attempts to identify a specific B-
subset as a compartment of origin for CLL have been
unsatisfying. Here we attempt to lay the ground for a better
understanding of the CLL cell of origin.

Consistent with previous reports (20, 21), our data show a
significantly higher presence of CLS-IG in bulk CD5+ compared
to bulk CD5- B cells. Nevertheless, analysis of U- and M-IGHV
gene rearrangements within CD5+ and CD5- B cells highlighted
no enrichment of CLS-IG in CD5+ compared to CD5- B cells
within each mutational category (Figure 2B). Instead, CLS-IGs
were enriched in U-IGHV genes regardless of being expressed by
CD5+ or CD5- B cells.

CLS-IG representation was also investigated in B-subset and
their respective CD5+ and CD5- fractions. The analysis showed a
higher CLS-IG percentage in TR and N than in MZ and SM B-
subset (Figure 3A), a finding in line with a previous study from
our group on splenic CLS-IG carrying the IGHV-1 family genes
(20). Since TR and N cells utilize almost exclusively U-IGHV
rearrangements (Figure 3C), the higher representation of CLS-
IG in these cell fractions is likely related to the predominance of
U-IGHV rearrangements. The analysis of CD5+ and CD5- cells
from each B-subset separately showed no dominant presence of
CLS-IG in any of the cell fractions studied (Figure 3B). However,
MZ shows an evident trend where CD5+ have more CLS-IG than
CD5-. It must be noticed that MZ presents a considerable
amount of U-IGs concentrated in the CD5+ fraction
(Figure 3C). It must be mentioned that because CD5+ B cells
are scarce in predominantly mutated B cells subsets, a limited
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number of IG rearrangements were obtained in some CD5+ B-
cell fractions (i.e., MO, SM, DN), impairing the possibility of
statistical analysis (see Supplementary Table S2 for details).
Altogether, our data do not present evidence of a phenotypically
distinct B-subset with a significant accumulation of CLS-IG.
Their predominance in CD5+ N and TR B cells depends upon the
higher presence of U-IG rearrangements in these B-cell fractions.

The relative distribution of CLL subsets in normal B cells did
not follow that typically reported for CLL (Figure 4B). For
example, CLL subsets #4 and #8, relatively frequent among the
CLL major subsets, were rarely (or never) identified. A
preferential representation of individual CLS-IG in the IGk or
IGl expressing B-subset was not observed. In contrast, specific
CLL subsets (e.g., #1, #2, #4, #6, #8, #64b, and #99) show, in CLL,
marked IG-light chain use restrictions (6, 12, 36). It might be
worth mentioning that CLS-IG #2 showed a trend indicating a
higher representation in IGk+ normal B-cells. This would be
compatible with the observation that, in some instances, CLL
clones belonging to subset #2 show functional rearrangements of
the IGk light chain inactivated with a Kappa Deleting Element
(37). Thus IG-receptor editing may operate in this apparently
large proportion of CLS-IG subset #2/IGk+ B cells. These
observations indicate no major structural constraints
contributing to certain IGH-IG light chain pairing in the CLS-
IG of a normal B-cell repertoire. This is in keeping with what has
been reported about the possibility of CLL subset #2 IGHV
rearrangement to pair with “non-native” (e.g., other than
IGLV3.21 encoded IGl light chain) IG light chains (38).

The IGHV genes used by CLS-IG rearrangements within each
CLL subset showed a heterogeneous pattern. Their overall
utilization was not always as restricted as CLL stereotyped IG.
For instance, the IGHV1-69 gene was virtually absent in CLS-IG
from CLL subset #1, even though this gene is one of the IGHV1
genes highly represented in control IGs. CLS-IG in CLL subsets #1
and #3 exemplify the absence of IGHV selection, whereas CLS-IG
in CLL subset #14 acts closely to what is observed in CLL with a
highly prevalent representation of the IGHV4-4 gene. This
indicates that specific VH CDR3 sequences may have a non-
random association with IGHV genes within a VH clan, possibly
related to restrictions during IGHV-IGHD-IGHJ rearrangements
and/or positive and negative selection in ontogenesis or the course
of early antigenic challenges. The absence of IGk and IGl
restriction for each of these CLS-IG subsets points out, at this
stage, negligible participation of the IG light chains. Altogether, the
leukemogenic process likely involves a further selection of IGHV
genes and the IG light chains in a CLL stereotype-specific manner.

The mutational status of CLS-IG deserves particular
comment. When the CLS-IG analysis was extended by
removing the IGHV mutational status as a prerequisite for
classification (see Methods), the representation of CLS-IG
mainly followed the mutational status characterizing the
original CLL clones. For instance, subset #1 (always unmutated
in CLL) was identified predominantly in the U-IG repertoire of
normal donors and the majority of subset #14 CLS-IG (mutated
in CLL) were recognized in the M-IG repertoire. Likewise, subset
#2 CLS-IG were found in the U and M CLS-IG repertoire, as
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observed in the CLL cohorts. The observation that the
mutational status of CLS-IG parallels that of CLL IG
stereotypes suggests that specific IG rearrangements could
influence clonal function, e.g., by limiting the generation of a
post-germinal center progeny (CLL subset #1) or by determining
an accumulation of memory B cells (CLL subset #14).

Thus, single CLS-IG in recirculating B cell has only
marginally superimposable features compared to those
encountered in CLL clones and each one appears to have its
characteristics. For instance, subsets #4 and #8 are substantially
absent in the CLG-IG repertoire; subset #1 CLS-IG shows the
utilization of IGHV genes closer to CLL stereotypes, whereas that
of CLS-IG, subset #3 is more random. It can be presumed that
the trajectory determining the emergence of CLL clones is
very heterogeneous.

The above data demonstrate that CLS-IG detected in peripheral
B cells from donors with no evidence of peripheral lymphocytosis
have different features than those typically identified in leukemic
clones, suggesting the shaping of CLL BCR repertoire and the
emergence of the leukemic clones is dictated by numerous selecting
factors. A recent study (32) showed that skewing of the B-cell
repertoire is observable in some clusters before the clinical
presentation of CLL. Thus, subjects in a pre-leukemic phase or
predisposed to developing CLL are likely to have a different
condition than the donors analyzed here. The observations that
CLS-IGs are not enriched in PB derived B cells with a defined
phenotype can be interpreted in different ways: 1) CLL cells
originate from non-circulating B cells residing in solid lymphoid
tissue, 2) CLL cells originate from B cells with a different phenotype
than the ones explored in this study, 3) CLL cells originate from B
cells without a defined immunophenotype. The above
interpretations may not be mutually exclusive. In addition, it is
possible that the leukemogenic process can be accompanied by
immunophenotypic changes that encompass an elevated expression
of CD5 typically observed in CLL and MBL cells and presumably
the pre-monoclonal B-cell lymphocytosis described by Kolijn, P.
et al. (32)

In this context, B-cell immune-genotype appears to be a
relevant factor in the quest to identify the CLL clones’ cell of
origin, adding additional elements useful for understanding CLL
emergence routes.
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Supplementary Figure 1 | FACS sorting gating strategy (A) Rosettesep
enriched B cells were depleted of IgA+ and aqua dead cells in all of the sorting
procedures (B) four-way pre-sort with yield setting to separate enriched viable B
cells into IGk+/CD5+, IGk+/CD5-, IGl+/CD5+ and IGl+/CD5- B cells (C) IGk+/
CD5- B cells subset (here shown as representative of all the other above
subsets) was further sorted by gating CD24-CD38high B cells to exclude
plasmablasts and separated into CD24highCD38high transitional (TR). Gating
CD38-/+ B cells were then separated based upon IgD and CD27 expression
markers and sorted as IgD++CD27- naive (N), IgDlowCD27+ marginal zone-like
(MZ), IgD-CD27- double negative (DN) B cells. IgD-CD27+ memory B cells were
gated to isolate IgM+IgD-CD27+ IgM-only memory (MO) and IgM-IgD-CD27+
switch-memory (SM) B cells.

Supplementary Figure 2 | Frequency of individual CLS-IG in sequences from
normal B cells expressing either IGk and IGl chains in CLL stereotyped subsets.

Supplementary Figure 3 | Frequency of IGHV genes used in typical and non-
typical CLS-IG (red). Blue bars indicate non-CLS-IG control sequences (i.e., sharing
the same core features as the CLL subset in consideration - IGHV clan, IGHV
mutational status, and VH CDR3 length). These rearrangements were used as
controls. Black horizontal lines indicate the level of IGHV representation in the
reference CLL cohort.
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University of Cincinnati College of Medicine, Cincinnati, OH, United States, 9 Department of Internal Medicine - Hematology
and Oncology and Department of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine,
Masaryk University, Brno, Czechia, 10 Chronic Lymphocytic Leukemia Center, Dana-Farber Cancer Institute, Boston, MA,
United States, 11 Clinical Hematology, Belfast City Hospital, Belfast, Ireland, 12 Department of Molecular Pathology, Royal
Bournemouth Hospital, Bournemouth, United Kingdom, 13 Department of Hematology, Royal Bournemouth Hospital,
Bournemouth, United Kingdom, 14 Department of Hematology & Oncology, Niguarda Cancer Center, Niguarda Hospital, Milan,
Italy, 15 Hematology Unit, Department of Medicine-(DIMED), University of Padua University Hospital, Padua, Italy, 16 Department of
Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden, 17 Division of Experimental Oncology, IRCCS
Ospedale San Raffaele, Milan, Italy, 18 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at
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Patients with CLL with mutated IGHV genes (M-CLL) have better outcomes than patients
with unmutated IGHVs (U-CLL). Since U-CLL usually express immunoglobulins (IGs) that
are more autoreactive and more effectively transduce signals to leukemic B cells, B-cell
receptor (BCR) signaling is likely at the heart of the worse outcomes of CLL cases without/
few IGHV mutations. A corollary of this conclusion is that M-CLL follow less aggressive
clinical courses because somatic IGHV mutations have altered BCR structures and no
longer bind stimulatory (auto)antigens and so cannot deliver trophic signals to leukemic B
cells. However, the latter assumption has not been confirmed in a large patient cohort. We
tried to address the latter by measuring the relative numbers of replacement (R) mutations
that lead to non-conservative amino acid changes (Rnc) to the combined numbers of
conservative (Rc) and silent (S) amino acid R mutations that likely do not or cannot change
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amino acids, “(S+Rc) to Rnc IGHV mutation ratio”. When comparing time-to-first-
treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1, TTFTs were similar, even
after matching groups for equal numbers of samples and identical numbers of mutations
per sample. Thus, BCR structural change might not be the main reason for better
outcomes for M-CLL. Since the total number of IGHV mutations associated better with
longer TTFT, better clinical courses appear due to the biologic state of a B cell having
undergone many stimulatory events leading to IGHV mutations. Analyses of larger patient
cohorts will be needed to definitively answer this question.
Keywords: chronic lymphocytic leukemia, CLL, somatic mutations, immunoglobulin variable domain, prognosis
INTRODUCTION

Patients with chronic lymphocytic leukemia (CLL) whose
leukemic clone uses a mutated immunoglobulin heavy variable
(IGHV) gene (M-CLL) typically have less aggressive disease than
patients with CLL that use an unmutated IGHV gene (U-CLL)
(1, 2). This observation has had a major direct impact on
predicting the prognosis of CLL and a significant influence on
its understanding and management (3, 4). Documenting this
gene distinction is now considered a reliable prognostic factor,
and the International Workshop on CLL (5) recommend
checking this as a guideline for patient care and management.
Moreover, IGHV-mutation status can help predict outcome for
patients treated with chemoimmunotherapy (fludarabine,
cyclophosphamide, and rituximab) (6–8), and for U-CLL
patients treated with ibrutinib vs. chemoimmunotherapy (9).
Moreover, IGHV-mutation status, along with other parameters,
is incorporated into several prognostic algorithms (10–12).

There is speculation that the relationship between less
aggressive disease and expression of mutated IGHVs is due to
a loss or attenuation of autoreactivity of membrane
immunoglobulin (IG), a major component of the B-cell
antigen receptor (BCR), which limits the ability of the receptor
to deliver trophic signals to the leukemic B cells. There is ample
support for this concept. For example, U-CLL-derived IGs are
extensively autoreactive, binding multiple self-molecules (13–
15), especially those generated by apoptosis and protein catalysis
(16–18). These are often referred to as natural autoantibodies. In
contrast, M-CLL IGs are much less autoreactive. Notably,
reverting M-CLL IGs to their germline sequence can lead to
autoantigen binding, implying that those B cells that became
leukemic in vivo might have been self-reactive prior to
accumulating IGHV mutations (17, 19, 20). Thus, the process
of losing autoantigen binding by somatic IGHV mutations can
occur normally during B cell maturation, validating the
speculation that this could explain the extended clinical course
of patients with M-CLL. Additionally, CLL clones differ in their
responsiveness to BCR engagement, with surrogate antigen
binding, e.g., interaction with anti-IG antibodies, being more
effective in stimulating U-CLL than M-CLL cases (21–23), and
the ability to deliver a signal via the BCR correlating with worse
clinical outcomes (24, 25). Finally, and possibly most
convincingly, inhibition of BCR signaling by blocking the
28687
action of Bruton’s tyrosine kinase (BTK) (26–29) or of
phosphoinositide 3’ kinase delta (PI3Kd) (30–33) has a very
significant effect on CLL cell survival, growth, and trafficking (9,
34–38). Such signaling inhibitors have had a major impact on the
quality of patient lives, along with very high overall response
rates and, in combination with other reagents, improving overall
survival (39–42).

Nevertheless, the concept that the loss of polyreactive antigen
binding and BCR signaling is at the root of better prognosis has
not been directly confirmed in a large patient cohort, and that
correlation is the intention of this investigation and report. For
this process to be in play in most instances, only replacement (R)
mutations and, in particular non-conservative R (Rnc)
mutations, would be most relevant, since only R, and especially
Rnc mutations can change the amino acid composition of an
IGHV-IGHD-IGHJ rearrangement, thereby potentially altering
(auto)antigen binding and eliminating or reducing BCR
signaling. Conservative R (Rc) amino acid changes are less
likely to alter protein structure and thereby (auto)antigen
binding, and silent (S) mutations, by definition, cannot. Hence,
since Rnc mutations more often alter amino acid structure, they
are more prone to reduce BCR binding, and preempt cell
signaling. In general terms, Rnc mutations yield an amino acid
that has features opposite or distinct from those of the original
one, e.g., hydrophilic vs. hydrophobic or non-polar vs. charged
polar amino acids (43, 44). Additionally, in some instances, only
a single R can lead to major alterations in protein structure and
result in disease, e.g., cystic fibrosis and sickle cell anemia.

Here, we investigated the roles of S, Rc, and Rnc mutations on
time-to-first-treatment (TTFT) of patients with CLL. This was
addressed using a database of IGHV-IGHD-IGHJ DNA
sequences with linked clinical information obtained from
institutions in the United States of America and Europe. Our
findings suggest that the relative frequencies of (S + Rc) IGHV
mutations, which are less likely to create a major BCR structural
change, are as important and correlate equally well with
improved clinical course as Rnc mutations that are more likely
to create a major BCR structural change. Moreover, our data
suggest that the total number of mutations in the clonotypic
rearranged IGHV gene of a CLL cell might be more central to
better prognosis, suggesting that an overriding reason that IGHV
mutations associate with better clinical course is the biologic
state of a B cell that has undergone several rounds of stimulation
July 2022 | Volume 12 | Article 897280
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leading to germinal center reactions, possibly varying in the
follicular and extra-follicular types.
METHODS

Patient Information and IGHV
Sequence Data
Patient and corresponding IGHV-IGHD-IGHJ DNA sequence
information (n = 3,598) were received from two large consortia
studying CLL and BCR structure: the NIH-sponsored CLL
Research Consortium (CRC) and the European Research
Initiative on CLL/ImMunoGeneTics (ERIC/IMGT). CLL was
defined as suggested by the latest guidelines from the
International Workshops on CLL (5).

Analysis of Immunogenetic Characteristics
The same IGMT software and tools were used by both consortia
to analyze IGHV-IGHD-IGHJ sequences from the leukemic
clones of CLL patients and to characterize and define if IGHV
mutations could change amino acid sequence (S vs. R) and if R
mutations were conservative (Rc) or non-conservative (Rnc), as
determined by charge, hydropathy, and size.

Analysis of Time to First Treatment
TTFT was defined as the number of years between the date of
diagnosis and the date of initial therapy. The survival package of
the R (statistical computing platform: https://www.r-project.org/)
was used to estimate TTFT (Kaplan-Meier plots) through the
survfit function. The impact of an independent variable on TTFT
was determined by the Cox proportional hazard model (Cox
regression) using the coxph function. To create graphic
representations of TTFT in the figures in this document, Prism
software and the log rank test were used. Nominal P-values are
presented, without adjustment for multiplicity of testing.

Division of Individual IGHV-IGHD-IGHJ
Sequences Into Groups Based on the
Ratio of IGHV Mutations More or Less
Prone to Lead to a Significant BCR
Structural Change
IGHV-IGHD-IGHJ gene rearrangement sequences were
segregated based on the ratio of the combined number of S +
Rc IGHV mutations divided by the number of Rnc IGHV
mutations: (S+Rc)/Rnc. To allow mathematical comparisons
should any type of mutation be absent, a value of 0.05 was
added to each ratio component, (S+Rc +0.05)/(Rnc+0.05). For
simplicity, the latter is represented in the text as “(S+Rc/Rnc”. An
arbitrary (S+Rc)/Rnc percentage cutoff was chosen so that the
calculated value would indicate the likelihood that amino acid
change could appreciably alter BCR structure. Sequences with
values of ≤ 1.0, based on the (S+Rc)/Rnc calculation, were
considered more likely to lead to a major BCR structural
change and are referred to as being in the “Low Ratio Group”;
those sequences with values of > 1.0, were considered less likely
to lead to a major structural change and are referred to as being
Frontiers in Oncology | www.frontiersin.org 38788
in the “High Ratio Group”. Also, when another threshold cutoff
value was used, i.e., the median value of all (S+Rc)/Rnc
percentages (1.91), the reported findings were essentially the
unchanged (Figure S1). For sequences with no IGHV somatic
mutation, (S+Rc)/Rnc is not defined.

Multiparameter Analysis of TTFT
Comparing (S+Rc)/Rnc Percentage and
Total Number of Mutations, Regardless of
Type (S, Rc, Rnc)
A two-variable Cox regression was used to compare the total
number of mutations (≥ 1) as the first variable, and logarithm-
transformed mutation type ratio (S+Rc+0.5)/(Rnc+0.5) as the
second variable, was used. A log-transformed ratio variable was
employed as that more accurately followed a normal distribution
than the ratio variable itself. The underlying assumption of the
multivariable Cox regression was that the total number of
mutations and the log-ratio jointly contribute to TTFT in an
additive manner, and the contribution is averaged over the entire
range of the variable values.
RESULTS

Comparing and Coalescing the IGHV-
IGHD-IGHJ Gene Rearrangement
Sequence Data From the Two Consortia
To assure that merging the IGHV-IGHD-IGHJ gene
rearrangement data from the CRC and ERIC/IMGT was
appropriate, the distribution of sequences bearing the various
types of somatic mutations was compared (Table 1). The
sequence data from the CRC were collected from 1,690
patients with CLL; 36% were 100% unmutated (0 Mut), 2%
had only S mutations (S only), 7% had only R mutations (R
only), and 55% had a combination of S and R mutations (S+R).
The DNA sequences from ERIC/IMGT were from 1,908 patients;
34% were 0 Mut, 1.6% S only, 6.4% R only, and 58% S+R. Thus,
the IGHV mutations were similar in types, patterns, and
distributions between the two data sets.

Moreover, although the methodologies to obtain IGHV-
IGHD-IGHJ sequence data were not uniform among all the
institutions in the two consortia, the same IMGT tools were used
to analyze the data.

Therefore, based on very similar patient mutation parameters
and uniform analytic approaches, the data from the two sites were
pooled and used in the findings described here. The breakdown
for the combined IGHV sequence data for the combined 3,598
patients with CLL was 35% 0 Mut (n = 1,259), 1.8% S only (n =
65), 7% R only (n = 236), and 57% S+R (n = 2,038).

TTFT Defined by the Classical IGHV-
Mutation Status Approach
As per convention, we first divided all 3,598 patients, using the
standard 2% difference from germline cutoff, into IGHV-
unmutated (U-CLL; n = 1,713) and IGHV-mutated (M-CLL;
n = 1,885) subgroups, and then used the Kaplan-Meier approach
July 2022 | Volume 12 | Article 897280
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to estimate TTFT. In this way, as expected, M-CLL patients had a
significantly longer TTFT than U-CLL patients (Figure 1A;
median TTFT: 9.00 vs. 2.22yrs; P < 0.0001), consistent with
established, published clinical observations and assuring that the
combined cohort was a fair representation of the real-world
patient base.
Categorizing IGHV-IGHD-IGHJ Gene
Rearrangement Sequences Containing
Somatic IGHV Mutations Into Those With
Mutation Types More or Less Likely to
Change BCR Amino Acid Structure
The most direct way to address BCR structural change as being
responsible for differences in TTFT would be to compare the
clinical courses of CLL patients bearing somatically mutated
IGHVs comprised of only S mutations to those patients whose
IGHVs have only R mutations, or preferably, solely Rnc
mutations. This would require having an extremely large
database containing sequences with at least 5-6 somatic
mutations of solely one type, since, depending on the
individual IGHV gene expressed by a CLL clone, 5 or 6
mutations are needed to exceed the 2% mutation difference
from germline and hence be tested in the standard IGHV-
mutation analysis. This was not possible for our patient cohort,
since none of the IGHV sequences exhibiting only S mutations
reached the required ≥ 5 level, and only 44 sequences contained ≥
5 R only mutations.
Frontiers in Oncology | www.frontiersin.org 48889
Therefore, we devised an approach that incorporated all
patient sequences with IGHVs containing ≥ 1 mutation of any
type (n = 2,339), and then segregated these based on the ratios of
S + Rc mutations divided by Rnc mutations, (S+Rc)/Rnc. Since
BCR ratios ≤ 1.0 (“Low Ratio Group”) would have a greater
number of Rnc changes, such mutations would more likely lead
to significant alterations in (auto)antigen binding. Likewise,
BCRs with ratios > 1.0 (“High Ratio Group”) would be skewed
to having a greater number of S and Rc mutations that would be
less likely to change (auto)antigen binding (see Methods
for details).

After dividing the CLL patients with IGHV mutations in the
original cohort into these two ratio groups, we went on to analyze
TTFT. Thus, in the following analyses, the TTFT for patients in
the Low and High Ratio Groups (Figure 2), as well as a subgroup
that was created based on equal numbers of samples and
mutations per sample (Figure 5), were compared in two ways:
independently; after dividing each by the 2% IGHV-mutation
cutoff; and based on the data obtained disregarding the < 2% or
the ≥ 2% cutoff categories.

TTFT for Patients in the Low and High
Ratio Groups
When dividing the Low Ratio Group (n = 405) into categories
below (worse outcome) and above (better outcome) the 2%
cutoff, a clear and significant difference in TTFT was found
(Figure 2A; median TTFT: 1.91 vs. 6.78 yrs; P < 0.0001). To
illustrate how this result related to the standard IGHV-mutation
A B

FIGURE 1 | Kaplan-Meier estimates of time to first treatment (TTFT) using the classical IGHV-mutation status parameters. (A) Comparison of TTFT based on the < 2%
vs. ≥ 2% difference from the germline IGHV sequence. All 3,598 sequences were used without regard for the types of somatic IGHV mutations. M-CLL: 1,885 patients,
856 treated; U-CLL: 1,713 patients, 1,369 treated. Data analyzed using the Log-rank (Mantel-Cox) test. (B) Comparison of TTFT based on the < 2% vs. ≥ 2%
difference from the germline IGHV sequence analyzing only those patients with ≥ 1 IGHV mutation. < 2%: 454 patients, 351 treated; ≥ 2% 1,885 patients, 856 treated.
TABLE 1 | Distributions of mutation types between the CLL Research Consortium (CRC) and the European Research Initiative on CLL/ImMunoGeneTics (ERIC/IMGT).

CRC ERIC/IMGT Total

0 mutations
(100% homology with germline)

36.0% (609) 34.1% (650) 35.0% (1,259)

Silent (S) mutations only 2.0% (34) 1.6% (31) 1.8% (65)
Replacement (R) mutations only 6.8% (114) 6.4% (122) 6.6% (236)
Silent + Replacement mutations (S+R) 55.2% (933) 57.9% (1,105) 56.6% (2,038)
Total 100% (1,690) 100% (1,908) 100% (3,598)
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analysis using all patient sequences (Figure 1B), the two sets of
tracings were overlaid. This indicated that the > 2% category in
the Low Ratio Group was different from the same category for all
patients (Figure 2B; P < 0.01). Thus, the > 2% category for the
Low Ratio Group has less patients in the better outcome category
than the standard IGHV-mutation analysis using all patients; the
statistical significance of this finding was not adjusted for
multiple comparisons.

When segregating the High Ratio Group (n = 1,934) into the
2% cutoff categories and then comparing TTFT, again a highly
significant difference was seen (Figure 2C; median TTFT: 2.59
vs. 9.38 years; P < 0.0001). Additionally, overlaying the curves
from the High Ratio Group with those found using all IGHV-
mutated patients (Figure 1B), TTFT for both the ≥ 2% and < 2%
categories overlapped (Figure 2C). Thus, for the High Ratio
Group, the relative numbers of patients in each of the two 2%
cutoff categories are similar to those from the standard analysis
using all patients (Figure 2D); this suggests that the High Ratio
Group better reflects the IGHV mutation status distribution of
the unseparated IGHV-mutated cohort.

Next, we calculated the degree of difference in TTFT of the ≥
2% and < 2% categories between the Low and High Ratio
Groups. This indicated that the High Ratio Group had
Frontiers in Oncology | www.frontiersin.org 58990
significantly longer TTFTs for the ≥ 2% (Figure 3A; median
TTFT: 6.78 vs. 9.38 yrs; P = 0.0009) and the < 2% (Figure 3B;
median TTFT: 1.91 vs. 2.59 yrs; P = 0.0053) categories than the
Low Ratio Group.

Finally, we compared TTFT for patients in the Low vs. High
Ratio Groups without dividing them into < or ≥ 2% categories.
This also indicated that the patients in the High Ratio Group
had significantly better clinical courses than those in the Low
Ratio Group (Figure 4A; median TTFT: 3.56 vs. 8.03 yrs; P
< 0.0001).

Collectively, these calculations indicate that the both the High
Ratio and the Low Ratio Groups contain patients with mutated
IGHVs with better or worse clinical courses. Also, the inter-
group comparisons suggest that the High Ratio Group might
have a better TTFT than the Low Ratio Group in more accurately
discerning important patient clinical outcomes.

Correcting Analyses for Differences in the
Numbers of Sequences of Various Types
and in the Number of Mutations Per Type
The above estimates of TTFT using the various comparisons
were unexpected in that they suggested that IGHV mutations
which would likely change or likely not change BCR structure
A B

C D

FIGURE 2 | Kaplan-Meier estimates of TTFT of patients with IGHV sequences bearing at least 1 somatic mutation divided into Low or High (S+Rc)/Rnc Ratio
Groups. (A) TTFT of patients with IGHV genes falling into the “Low Ratio Group”, ≤ 1.0 (S+Rc)/Rnc (n = 405) were compared based on the < 2% vs. ≥ 2% difference
from the germline IGHV sequence. Number of cases in the < 2% difference group: 183, 152 treated (median TTFT = 1.91 years); number of cases in the ≥ 2%
difference group: 222, 119 treated (median TTFT = 6.78 years) (P < 0.0001). (B) TTFT of all patients (Figure 1B) and those sequences in Low Ratio Group based on
the < 2% vs. ≥ 2% difference from the germline IGHV sequence. ** = P < 0.01 Pair-wise Log-rank (Mantel-Cox) test. (C) TTFT of patients in the High Ratio Group, >
1.0 (S+Rc)/Rnc) (n = 1,934) compared based on the 2% cutoff. Number of cases in the < 2% difference group: 271, 199 treated (median TTFT = 2.59 years);
number of cases in the ≥ 2% difference group: 1,663, 737 treated (median TTFT = 9.38 years) (P < 0.0001). (D) TTFT based on the < 2% vs. ≥ 2% difference from
the germline IGHV sequence using all patient sequences (Figure 1B) and those sequences in High Ratio group. ** = P < 0.01.
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impact clinical course in a similar manner in general, and that
the TTFT of High Ratio Group is even better. One confounding
factor in the comparisons, however, is that the total number of
patients in the Low Ratio Group is significantly less than in the
High Ratio Group (Low: n = 405; High: n = 1,934). In addition,
the DNA sequences of the individual patients in the High Ratio
Group had a higher number of IGHV mutations (of any type)
than the Low Ratio Group (Figure S2). Thus, a significantly
smaller number of cases fell into the ≥ 2% category in the Low
Ratio than the High Ratio Group (n = 222 vs 1,663).

Therefore, to rule out that the TTFT findings above were
artefactual and not reflecting a true biologic effect, we modified
the Groups to assure that the numbers of cases in the Low and
High Ratio Groups were equal and that the numbers of
mutations per sequence in each Group were similar. This was
Frontiers in Oncology | www.frontiersin.org 69091
achieved using an exact match approach (45). Specifically, for
each sample in the Low Ratio Group, a sample from the High
Ratio Group was randomly picked that had the same number of
total mutations. The end result was a one-to-one matching in
sample size (n = 405) and mutation number between the Low
and High Ratio Groups (range: 1 – 36).

Since the number of cases in the Low Ratio Group was
constant, the TTFT comparisons for this Group, based on the
2% cutoff, were those already shown in Figure 2A (P < 0.0001).
The TTFT findings for the High Ratio Group were still very
significant (Figure 5A; median TTFT: 2.42 vs. 8.50 yrs; P <
0.0001), and the curves based on the 2% cutoff overlapped that of
the original High Ratio Group (Figure 5B). Moreover, this
double matching approach reduced the differences between the
Low and High Ratio Groups seen in Figure 3 to insignificant
A B

FIGURE 3 | Comparison of estimated TTFT in the < 2% and ≥ 2% mutation categories of the Low Ratio Group and the High Ratio Group. (A) Comparison of TTFT
in ≥ 2% mutation category of Low vs. High Ratio Groups (P = 0.0009). Number of cases from Low Ratio group: 222, 119 treated (median TTFT = 6.78 years).
Number of cases from High Ratio group: 1663, 737 treated (median TTFT = 9.38 years). (B) Comparison of TTFT in < 2% mutation category of Low vs. High Ratio
Groups (P = 0.0053). Number of cases from Low Ratio group: 183, 152 treated (median TTFT = 1.91 years). Number of cases from High Ratio group: 271, 199
treated (median TTFT = 2.59 years).
A B

FIGURE 4 | Comparison of estimated TTFT between the Low Ratio Group and the High Ratio Group. (A) Comparison of TTFT between the Low and High Ratio
Groups using all patients in the respective groups (P < 0.0001). Number in Low Group = 405, median = 3.56 years; number in High Group = 1934, median = 8.03
years. (B) Comparison of TTFT after matching the Low and High Ratio Groups for equal numbers of patients (n = 405) with equal numbers of mutations per
sequence (range: 1 – 36). Low Group median = 3.56 years, and High Group median = 4.08 years; P = 0.0626.
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levels (difference between > 2% categories: P = 0.089; difference
between < 2% categories: P = 0.203).

Finally, we found that TTFT was equal for patients matched as
above in the Low vs. High Ratio Groups without dividing them
using the 2% cutoff (Figure 4B; TTFT: 3.56 vs. 4.08 yrs; P = 0.0626).

Collectively, these findings, especially when using cohorts of
equal size and bearing the same number of mutations per sequence,
suggest that the relative types of IGHV mutations with a higher
(Low Ratio Group) or lower (High Ratio Group) probability of
altering BCR structure have the same effect on TTFT. Thus,
although somatic mutation altered BCR structure is likely a factor
involved in lengthening TTFT in certain instances, it does not
appear to be the most influential variable for this patient cohort.

Total Numbers of Mutations, Regardless
of Type, Correlate With TTFT After
Exceeding a Minimum and Reaching an
Apparent Maximum
Since both types of mutations appear to affect TTFT similarly, this
implies that the total number of IGHV mutations might correlate
better with clinical course in CLL. To test this, we re-ran the
IGHV-mutation analysis on the original total patient cohort using
Frontiers in Oncology | www.frontiersin.org 79192
all samples with ≥ 1 IGHVmutation, choosing a series of arbitrary
mutation number cutoffs, ranging from 1 to > 21 (Figure 6).
Notably, this approach indicated that the extent of TTFT increased
significantly after the number of IGHV mutations reached and
exceeded 5-6 mutations (the classical 2% cutoff) and reached a
plateau for TTFT at ≥ 10 mutations. This again highlights that the
≥ 2% cutoff is effective in segregating cases into a better outcome
group. Additionally, outcomes continue to improve as the
number of total mutations increases at least to the level of ~10
mutations/sequence. Another study of patients treated with
chemoimmunotherapy found that clinical outcome improved
progressively as IGHV mutations increased (46). Notably,
incorporating the (S+Rc)/Rnc variable into these arbitrary
mutation intervals did not improve clinical course prediction
(Figure S3).

Multiparameter Analysis Comparing
(S+Rc)/Rc Percentage and Total Number
of Mutations, Regardless of Type,
in Defining TTFT
Finally, we used a two-variable Cox regression to compare the total
number of mutations (≥ 1) as the first variable, and logarithm-
A B

C D

FIGURE 5 | Estimated TTFT of patients in the Low or High Ratio Groups matched for numbers of patients and mutations per sequence. A, B, C, (D) Layout of
graphs as per Figure 2. An exact matching approach with random sampling was used to achieve equal numbers of patients (n = 405) with the same number of
IGHV mutations per patient (1-36) in the Low Ratio and High Ratio Groups. (A) Number of cases in the < 2% difference group: 187, 148 treated (median TTFT =
2.42 years); number of cases in the ≥ 2% difference group: 218, 101 treated (median TTFT = 8.50 years) (P < 0.0001). (B) TTFT based on the < 2% vs. ≥ 2%
difference from the germline IGHV sequence using all patient sequences (Figure 1B) and those sequences in Matched High Ratio group. (C) Number of cases from
Low Ratio group: 222, 119 treated (median TTFT = 6.78 years). Number of cases from Matched High Ratio group: 218, 101 treated (median TTFT = 8.50 years).
(D) Number of cases from Low Ratio group: 183, 152 treated (median TTFT = 1.91 years). Number of cases from High Ratio group: 187, 148 treated (median
TTFT = 2.42 years).
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transformed mutation type ratio (S+Rc+0.5)/(Rnc+0.5) as the
second variable (see Methods). The P-value for testing the null
hypothesis that the total number of mutation variable does not
contribute to the hazard ratio, is < 0.0001. The hazard ratio
(increment of one mutation) is 0.955 (95% confidence interval:
0.948-0.962).
DISCUSSION

Defining the IGHV gene mutation status of a patient’s
leukemic B cell clone is a cornerstone of prognosis in CLL
(3, 47). Although several studies have addressed the best cutoff
to be used in this analysis (46, 48–52), there has not been a
detailed investigation aimed at determining if a loss of (auto)
antigen – BCR interaction, which could obviate or reduce
transmission of ongoing survival signals to the leukemic B
cell, is the feature that is most responsible for defining M-CLL
patients with better clinical outcomes. Here, we have tried to
address this issue.

Although the most robust way to address the issue would be
to compare the clinical courses and outcomes of CLL patients
with IGHV genes expressing solely S vs. patients with solely R,
especially Rnc, mutations, our database did not contain sufficient
numbers of such cases with only S or only R or Rnc mutations to
allow this. Therefore, we compared IGHV mutated sequences
segregated based on skewing of the relative frequencies towards
(S+Rc) or Rnc mutations, as the former are less likely to make a
significant change in BCR structure than the latter. This was
done for the entire population of samples with one or more
Frontiers in Oncology | www.frontiersin.org 89293
somatic mutations and after normalizing the number of cases
within the two (S+Rc)/Rnc High and Low Ratio Groups for
numbers of samples and mutations per sequence.

Both relative mutation ratio options, < 1 and ≥ 1 (S+Rc)/Rnc,
indicated similar TTFT, suggesting that the ability or inability to
carry out BCR-mediated signaling is not the only reason that
somatic mutations that lead to a ≥ 2% difference in nucleotide
sequence influence clinical course.

However, several caveats need to be considered before
excluding that a change in BCR structure is a major driver in
determining clinical course. First, it is clear that for some
antigens changing a single or only a very few amino acids in
the IG variable domain can significantly alter auto- and foreign-
antigen binding (53–55). This is the case for CLL B cells as well
(56–58). Moreover, changing a single amino acid residue can
affect the transmission of “autonomous BCR signaling” (59)
based on BCR-BCR autoreactivity (60, 61), which appears to
be a key factor in CLL B cell survival (59). Also, the apparent
autoreactivity of IGs encoded by unmutated IGHV genes
depends upon the proper pairing of IG heavy and light chains
and the somatically generated VH CRD3s. As such,
autoreactivity should not be considered an intrinsic property of
unmutated rearranged IGHV genes commonly used in CLL (e.g.,
IGHV1-69), suggesting that autoreactivity can be a selected
binding activity (19). Finally, it is possible that Rnc mutations
lead to enhanced (auto)antigen binding and continuous binding
site occupancy, thereby resulting in an anergic state (22, 62) that
reduces cell division, clonal burden, and disease progression.

Second, our analyses only relate to potential structural
changes involving the IGHV portion of the BCR. Changes in
other parts, including the IGK/LV-IGK/LJ gene rearrangement
and the VH CDR3 are not considered in this examination, and it
is well documented that changes in each of these BCR regions are
critical for (auto)antigen binding. Indeed, a characteristic
mutation in the IGLV3-21 gene is directly associated with
clinical course for CLL patients (63, 64), albeit in the opposite,
more adverse, direction than would be predicted by IGHV-
mutation analysis.

Nevertheless, the finding that TTFT increases as the number
of total mutations increases is compatible with clinical courses
being affected by the number of times a CLL cell precursor was
signaled to undergo cell division and potentially a germinal
center reaction. In this regard, the number of mutations
accrued by a normal B lymphocyte is a function of the number
of times a cell is stimulated to experience a germinal center
reaction, with each episode leading to one mutation (65, 66). In
this scenario, a given clinical course would not necessarily be
directly affected by the types of IGHV mutations; rather,
mutation amounts would imply the number of BCR signals
received and the cell divisions undergone. This is consistent
with the documentation that clinical outcomes of patients treated
with chemoimmunotherapy are reflected by a continuum in the
number of mutations a CLL B cells exhibits [Figure 6 and (46)].
Thus, the physiologic state and the biologic properties of a cell
that has undergone many rounds of stimulation and
FIGURE 6 | Comparison of TTFT for patients based on IGHV nucleotide
mutation number intervals, regardless of mutation type. All patients with ≥ 1
mutation per IGHV sequence were segregated into nucleotide mutation number
ranges, and then TTFT compared without using a 2% cutoff. Patients bearing
clones without any IGHV mutations are provided for comparison. TTFT and
numbers of patients in the various intervals: 1-4: median TTFT - 2.19 yrs, n =
389; 5-6: median TTFT - 2.43 yrs, n = 173; 7-9: median TTFT - 6.06 yrs, n =
232; 10-12: median TTFT - 11.21 yrs, n = 221; 13-15: median TTFT - 10 yrs, n
= 257; 16-18: median TTFT - 10.33 yrs, n = 297; 19-21: median TTFT - 10.58
yrs, n = 240; >21: median TTFT - 9.36 yrs, n = 539. ** < 0.01; *** < 0.001.
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accumulated multiple mutations, regardless of a BCR structural
change, could have a major prognostic impact. This situation is
consistent with the phenotype (67), telomere (68), and
methylation (69–71) features of CLL B cells, suggesting that all
CLL cases, U-CLL as well as M-CLL, are derivatives of
chronically stimulated, memory-like B cells. In this regard, it is
important to recognize that there are several ways that antigen-
experience and germinal center reactions can be initiated and
where they can occur (72), e.g., within a lymphoid follicle in a
classical germinal center with a well-defined cellular
microenvironment, or outside of a follicle (extra-follicular),
where the tissue architecture is not as rigidly set as in a
germinal center within a follicle. Thus, the biologic
characteristics of B cells that mutate in response to different
types of (auto)antigenic challenges and within different tissue
microenvironments might differ, as might the types and relative
quantities of S, Rc, and Rnc mutations that are selected for or
against. The similarities and differences in the follicular and
extra-follicular B cell differentiation pathways are reviewed in
(73, 74).

Finally, the two possibilities, i.e., BCR structural change and
the number of CLL precursor B cell divisions, are not mutually
exclusive. Certainly, the more often a cell undergoes a germinal
center reaction the more likely a key R mutation could occur,
especially since only a single or a few key amino acid changes can
have dramatic influences on (auto)antigen binding. Moreover,
the number of mutations in the IGHV gene, regardless of type,
could be a surrogate for what has happened in the VH CDR3 or
in the IGHK/LV-IGK/LJ genes. In this regard, one could
postulate that the clinical courses of patients in the (S+Rc)/Rnc
Low Ratio Group are a direct consequence of BCR structural
changes in the IGHV domain of the BCR, and the clinical courses
of those patients in the (S+Rc)/Rnc High Ratio Group could be
the consequence of structural change that occurred outside of the
IGHV domain. Future studies with larger numbers of CLL
pat ient sequences might enable a more definit ive
understanding of the relative influences of these two
parameters on the prognosis of CLL patients with the IGHV-
mutated subtype.
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CLL stereotyped B-cell receptor
immunoglobulin sequences are
recurrent in the B-cell repertoire
of healthy individuals: Apparent
lack of central and early
peripheral tolerance censoring

Stefano Vergani1, Davide Bagnara1, Andreas Agathangelidis2,3,
Anita Kar Yun Ng1, Gerardo Ferrer1, Andrea N. Mazzarello1,
Florencia Palacios1, Sophia Yancopoulos4, Xiao-Jie Yan1,
Jaqueline C. Barrientos1, Kanti R. Rai1, Kostas Stamatopoulos2

and Nicholas Chiorazzi1*

1Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health,
Manhasset, NY, United States, 2Centre for Research and Technology Hellas, Institute of Applied
Biosciences, Thessaloniki, Greece, 3Department of Biology, School of Science, National and Kapodistrian
University of Athens, Athens, Greece, 4New York Genome Center, New York, NY, United States
Introduction: The leukemic cells of patients with chronic lymphocytic leukemia

(CLL) are often unique, expressing remarkably similar IGHV-IGHD-IGHJ gene

rearrangements, “stereotyped BCRs”. The B-cell receptors (BCRs) on CLL cells

are also distinctive in often deriving from autoreactive B lymphocytes, leading to

the assumption of a defect in immune tolerance.

Results: Using bulk and single-cell immunoglobulin heavy and light chain

variable domain sequencing, we enumerated CLL stereotype-like IGHV-IGHD-

IGHJ sequences (CLL-SLS) in B cells from cord blood (CB) and adult peripheral

blood (PBMC) and bone marrow (BM of healthy donors. CLL-SLS were found at

similar frequencies among CB, BM, and PBMC, suggesting that age does not

influence CLL-SLS levels. Moreover, the frequencies of CLL-SLS did not differ

among B lymphocytes in the BM at early stages of development, and only re-

circulating marginal zone B cells contained significantly higher CLL-SLS

frequencies than other mature B-cell subpopulations. Although we identified

CLL-SLS corresponding to most of the CLL major stereotyped subsets, CLL-SLS

frequencies did not correlate with those found in patients. Interestingly, in CB

samples, half of the CLL-SLS identified were attributed to two IGHV-mutated

subsets. We also found satellite CLL-SLS among the same normal samples, and

they were also enriched in naïve B cells but unexpectedly, these were ~10-fold

higher than standard CLL-SLS. In general, IGHV-mutated CLL-SLS subsets were

enriched among antigen-experienced B-cell subpopulations, and IGHV-

unmutated CLL-SLS were found mostly in antigen-inexperienced B cells.

Nevertheless, CLL-SLS with an IGHV-mutation status matching that of CLL

clones varied among the normal B-cell subpopulations, suggesting that

specific CLL-SLS could originate from distinct subpopulations of normal B
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cells. Lastly, using single-cell DNA sequencing, we identified paired IGH and IGL

rearrangements in normal B lymphocytes resembling those of stereotyped BCRs

in CLL, although some differed from those in patients based on IG isotype or

somatic mutation.

Discussion: CLL-SLS are present in normal B-lymphocyte populations at all

stages of development. Thus, despite their autoreactive profile they are not

deleted by central tolerance mechanisms, possibly because the level of

autoreactivity is not registered as dangerous by deletion mechanisms or

because editing of L-chain variable genes occurred which our experimental

approach could not identify.
KEYWORDS

CLL (chronic lymphocytic leukemia), B cell development and differentiation, B cell
repertoire, stereotyped antigen receptors, VDJ sequencing
Introduction

Chronic lymphocytic leukemia (CLL) is a disease characterized by

the expansion of a CD5+ B cell clone in the peripheral blood, bone

marrow (BM), and secondary lymphoid tissues (1). The development

of the disease strongly correlates with age, with a median age at

diagnosis of ~70 years. The antigen receptor on the surface

membrane of a B cell (BCR) plays a key role in the development

and evolution of CLL as indicated by multiple studies (2–7). Most

extraordinary among these studies is the remarkable similarity in the

amino acid sequences of the antigen binding domains of the BCRs

from certain CLL patients (8, 9). Analyses of large patient cohorts

indicate that this is a recurrent feature in at least 40% of CLL clones

(10). Indeed, patients can be divided into specific stereotyped subsets

based on similarity in the VH CDR3 of the IGHV-IGHD-IGHJ

(IGHV-D-J) rearrangement, and patients bearing discrete stereotyped

BCRs can have unique clinical features and outcomes and have

leukemic clones with distinct specific genomic aberrations (11, 12).

Based on the structural distinctiveness and clinical importance

of BCRs in the disease, recombinant CLL IGs have been studied for

antigen reactivity, revealing binding to a variety of exo- and auto-

antigens (13–17). Documentation that reversion to the germline

IGHV sequence converted certain exo-reactive to auto-reactive IGs

(13, 14) led to the notion that CLL derives from an autoreactive

B lymphocyte.

Because of the potentially harmful capacities of autoreactive

clones for healthy people, evolutionarily a series of immunologic

censoring mechanisms have evolved to eliminate or to reduce the

avidity of autoreactive B cells during the early phase of development

(18). In this regard, the existence of apparently “CLL-specific

IGHV-D-J rearrangements” in the healthy B-cell repertoire is an

important but relatively unstudied issue as current information is

only available for mature circulating and splenic B cells (19–22).

Whether such B cells from normal individuals, which would be

expected to be self-reactive, are subjected to immunologic censoring

mechanisms during development is not known.
029899
Using a sensitive IGHV-D-J deep-sequencing approach (23), we

sought to identify stereotyped IGHV-D-J rearrangements in B

lymphocytes from healthy people at various stages of B-cell

maturation In particular, considering the auto-reactive nature of CLL

IGs, we set out to determine at which checkpoints such stereotyped

rearrangements were triaged from the B-cell repertoires of normal

individuals to maintain immune tolerance.

Our studies indicate that IGHV-D-J gene sequences resembling

stereotyped CLL BCRs and belonging to one of the 29 major CLL

stereotyped subsets are present in the normal B-cell repertoire. They

are found at different sites, such as cord blood (CB), BM, and

peripheral blood. Despite their autoreactive features, they do not

appear to be purged during early B-cell development, the first

checkpoints to sustain immunologic tolerance in the healthy setting.
Material and methods

Samples

The study was approved by the Institutional Review Board of

Northwell Health. Bone marrow (BM) samples were collected as

discarded bone segments from anonymized patients who had

undergone joint replacement surgery. Persons with a history of any

autoimmune disease or condition and of any cancer were excluded

from the study. Peripheral blood and umbilical cord blood samples

were similarly collected from anonymous healthy donors.

Mononuclear cell (MC) fractions were separated by density gradient

centrifugation (Ficoll, GE Healthcare), frozen (10% DMSO 45% FBS

and 45% RPMI1640) and stored in liquid nitrogen until used.
Processing of BM samples

BM samples were placed in a large Petri dish containing cold

PBS with 2.5% BSA, and the tissue was gently dissociated using the
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plunger of a 60 ml sterile plastic syringe. Bone fragments were

broken into small pieces using scissors and rinsed with the same

buffer to extract cells from tissue niches. Cell suspensions were then

passed through a 70uM cell strainer into a 50 ml tube. To optimize

the yield, after processing Petri dishes were rinsed with buffer used

for the dissociation, and the contents were added to the previously

filtered suspension. BMMCs were separated by Ficoll density

gradient centrifugation, frozen (10% DMSO 90%FBS), and stored

in liquid nitrogen until used.
Isolation of various B-cell subpopulations
by cell sorting

BM cell suspensions were incubated with V500 anti-CD19 and

with PE-cy7 anti-CD10 mAbs (both BD Biosciences) for 20 minutes

at 4°C, and after washing were sorted into CD10+ and CD10-

fractions. Non-B cells were excluded by using efluor-450 anti-CD3

and anti-CD16 mAbs, and dead cells were triaged by Sytox Blue

(ThermoFisher) staining. The CD10+ fractions were then

additionally stained with FITC anti-CD34 (BD Biosciences), PE

anti-IgM (Ebioscience) and eflour-450 anti-CD27 (Ebioscience) to

further prohibit contamination with mature B cells. Pro B cells

(PRO, CD34+IgM-), Pre B cells (PRE, CD34-IgM-) and immature B

cells (IMM, CD34-IgM+) were collected.

CD10- fractions were also stained with PerCPcy5.5 anti-CD38

(BioLegend), FITC anti-IgD (ThermoFisher), APC anti-CD27 (BD

Bioscience), and PE anti-CD24 (Bioscience) to discriminate naïve

(NAÏVE, CD24+IgD+CD27-) and memory (MEM, CD24+IgD-

CD27+) B cells and plasmablasts/plasma cells (PB/PC, CD24-

CD38++).

PBMCs from normal blood donors were incubated with the

following anti-human Abs for 20 minutes at 4°C: V500 anti-CD19

(BD Biosciences), PerCPcy5.5 anti-CD38 (BioLegend), PE-cy7 anti-

CD24 (BioLegend), FITC anti-IgD (ThermoFisher), and

allophycocyanin anti-CD27 (BD Bioscience), and then sorted to

isolate Transitional (TRANS; IgD+CD27-CD10+CD38+), NAIVE

(CD27-IgD+), recirculating Marginal Zone (rcMZ; IgD+CD27+

(24), MEM (IgD-CD27+) and double negative (DN; IgD-CD27-)

B cells.

Total CD19+IgD+CD27- B cells were sorted from umbilical cord

blood samples. In both cases, non-B cells were excluded with efluor-

450 anti-CD3 and anti-CD16 mAbs, and dead cells barred with

Sytox Blue (ThermoFisher) staining.

For all samples, B cells were sorted directly into 200µl PCR

tubes containing 100µl Dynabeads Oligo(dT) (ThermoFisher) lysis

buffer and stored at -80°C.
Library preparation and sequencing

mRNA isolation from B-cell lysates was performed in 96-well

plates using Dynabeads Oligo(dT) (ThermoFisher) according to the

manufacture’s protocol. mRNA was used in its entirely for reverse

transcription in 10 µl (50°C 1h, 72°C 10min) using SuperScript III
Frontiers in Oncology 0399100
Enzyme (ThermoFisher) in solid phase with Dynabeads Oligo(dT) as

primer. After RNase H treatment, second-strand synthesis was

performed (37°C 20 min, 98°C 30s, 62°C 2min and 72°C 10min) in

solid phase in 10µl using Q5 Polymerase (NEB) and a mix of 13

primers covering all IGHV leader sequence segments reported in the

IMGT database (25); primers contained a maximum of one

mismatch, along with 13 to 16 random nt and partial Illumina

adaptor sequences. Double-stranded cDNA was washed 3 times in

10mM tris-HCl to remove the remaining primers, and the entire

sample was utilized as template for PCR amplification in 10 µl using

Q5 Polymerase with universal FW primer and mix of reverse isotype

specific primers (98°C 30s; 10 cycles at 98°C for 10s, 58°C for 15s, and

72°C for 1min; 72°C 10min). Two µl of the PCR product were used

for a semi-nested PCR with inner RV primers for the constant region

which also introduce partial Ilumina adaptors. This reaction was

carried out in 20µl (98°C 30s; 15 cycles at 98°C for 10s, 58°C for 15s,

and 72°C for 1min; 72°C 10min). The PCR product was purified with

Ampure XP beads at a ratio of 1:1, and 1 - 10ng were used to add

Illumina Indices with Nextera XT kit (Illumina). The MiSeq Illumina

(v3 2 x 300 kit, Illumina MS-102-3003) was used to sequence the

library. The library was loaded at 12pM with 10% PhiX [14].
9G4 Antibody labeling

The 9G4 rat anti-IGHV4-34 mAb (26) was labeled with Alexa

Fluor ™ 488 according to the manufacturer’s recommendations

(Alexa Fluor™ 488 Antibody Labeling Kit, ThermoFisher). Briefly,

antibody solution was mix with1/10th of 1M sodium bicarbonate

and then incubated with Alexa Fluor™ 488 dye for 1h at room

temperature. After the recommended period, the solution was

placed in the provided purification column and labeled antibody

was collected from the flow through.
Analysis of IGHV4-34 IG heavy and light
chain rearrangements in single B cells

To analyze the paired IG heavy and light chain IGHV-D-J and

IGLVkJk sequences of B cells expressing IGHV4-34, we used 10x

methodology. After exposing normal Naïve, MZ, MEM, and DN B

cell populations to the Alexa Fluor™ 488-labeled 9G4mAb, labeled

cells were enriched by FACS (Figure S6A). For each sample, cells

were washed and resuspended in 31.7 ul of PBS (0.04% BSA)

immediately after sorting. Single-cell libraries were then generated

using the Chromium Controller, Chromium Single Cell 5’ Library &

Gel Bead Kit v2 and i7 Multiplex Kit (10x Genomics, Pleasanton,

CA, USA), according to the manufacturer’s protocols. Target

enrichment from cDNA was performed using the Chromium

Single Cell V(D)J Enrichment Kit, Human B Cell (10x

Genomics), followed by adaptor ligation. Enriched libraries were

quantified on an Agilent Bioanalyzer High Sensitivity chip, and

then sequenced on an Illumina Nextseq500 instrument (Illumina,

San Diego, CA, USA) with the paired-end (2x150bp) mid output kit

(300 cycles) according to manufacturer’s protocols.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1112879
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Vergani et al. 10.3389/fonc.2023.1112879
Bioinformatic analysis
of immunoglobulin repertoire

For bulk VDJ-seq, processing of raw reads was performed using

a custom workflow built with pRESTO (REpertoire Sequencing

TOolkit) (27). The IGHV-D-J sequences obtained were submitted

to IMGT/HighV-QUEST and analyzed using ChangeO and custom

R scripts (23, 27).

Cellranger vdj pipeline was used to analyze sequencing data

obtained from 10x Chromium V(D)J libraries.
Attribution of IGHV-IGHD-IGHJ
rearrangements to stereotyped
CLL subsets

IGHV-IGHD-IGHJ gene rearrangements were analyzed for

similarity to stereotyped CLL BCRs using our established

bioinformatics method (10). In more specific, the subsequent

clustering criteria were applied: (i) utilization of IGHV genes

belonging to the same phylogenetic clan, (ii) ≥ 50% amino acid

identity and ≥ 70% similarity within the VH CDR3, (iii) equal VH

CDR3 length and, (iv) identical offset of the common amino

acid motif.

Satellite CLL-SLS, i.e. sequences with strong immunogenetic

similarities with major CLL subsets, were identified using a

purpose-built bioinformatics algorithm, which is based on a set of

previously described parameters (10) (1): utilization of

phylogenetically associated IGHV genes (2), maximum VH CDR3

length difference of 2 amino acids, and (3), presence of the “subset-

specific” VH CDR3 sequence motifs with an offset of ± 2 amino

acids. This analysis was performed individually for each

major subset.
Statistical analyses

Statistical analyses and identification of outliers were performed

in Graphpad Prism 9. Tests for statistical significance are described

in figure legends for the relevant graphs.
Results

Identification of CLL stereotyped IGHV-D-J
sequences in the B-cell repertoires of
normal individuals

First, we asked if and to what extent B lymphocytes expressing

BCRs closely resembling CLL-stereotyped BCRs exist in healthy

people. To do so, we collected samples from CB of neonates (n=5),

BM (n=11) of elderly people (≥ 70 years of age) who had undergone

hip replacement surgery, and peripheral blood mononuclear cells
Frontiers in Oncology 04100101
(PBMC) of adult volunteers (35-60 years of age; n=16) (Figures

S1A, B).

Total CD19+ B cells were FACS isolated from CB. Whereas

from BM we isolated several B-cell subsets representative of the

distinct B-cell developmental stages, using a combination of surface

membrane markers (Figure S1A).

From each of the 3 different cell sources (CB, BM, PBMC), we

were able to identify B cells bearing an IGHV-D-J rearrangement

that corresponded to that of a known CLL stereotyped subset. For

convenience, we refer to this type of rearrangement found in B cells

from normal individuals as a “CLL stereotype-like sequence” (CLL-

SLS). Table S1 summarizes the number of unique CLL-SLS obtained

for each cell population sorted from the various sites. We identified

a total of 123, 513, and 999 CLL-SLS in CB, BM, and PBMC,

respectively. The average frequencies were relatively comparable

among the three (CB: 0.044%; BM: 0.037%; PBMC: 0.051%)

(Figures 1A, S1C).

We then compared the distribution in BM of CLL-SLS at the

various stages of B-cell development and among mature B-cell

subsets. The highest frequency values were found among B-cell

populations representative of the first stages of maturation: PRO-B,

PRE-B, IMM, and NAIVE B cells (average frequencies: 0.046%,

0.048%, 0.031%, and 0.037%, respectively). The average frequency

of CLL-SLS in MEM (0.023%) was lower, although these values did

not reach statistical significance despite the number of total

sequences queried being similar (Table S1). Interestingly, the PB/

PC population harbored cells carrying CLL-SLS rearrangements at

higher frequencies than immature/naïve stages (0.059%)

(Figures 1B, S1D).

CLL-SLS were identified in each of the circulating B-cell subsets

in PBMC: TRANS, NAIVE, rcMZ, MEM, and DN B cells (average

frequencies: 0.047%, 0.047%, 0.076%, 0.032%, and 0.03%,

respectively) (Figures 1C, S1B). CLL-SLSs were significantly

higher in rcMZ compared to MEM and DN B-cell subsets (rcMZ

vs MEM and DN, P ≤ 0.05) (Figures 1C, S1E). Lastly, we did not

find a difference of CLL-SLS frequencies between NAÏVE from BM

and NAÏVE from PBMC (Figure 1D).

In summary, normal B cells expressing standard CLL-SLS exist

in the repertoires of healthy subjects and are present at similar

frequencies from tissues that dramatically differs in age. Moreover,

CLL-SLS are found at all stages of B-cell development, but,

interestingly, at significantly higher frequencies in the PB/PC

compartment in the BM and significantly higher frequencies in

the rcMZ B-cell subset isolated from PBMCs.

Together, these findings suggest that CLL-SLS are not triaged

during first stages of B cell development by clonal deletion. Since

our data are generated from whole B-cell subpopulations, we cannot

determine if receptor editing could have occurred in these dells,

which also would allow them to transit through B-cell maturation.

In addition, their presence in antigen-experienced B cell subsets,

e.g., MZ and MEM, and among antibody-secreting B cells in the

BM, could represent class switch recombination (CSR) and SHM

along with positive selection by a particular antigen.
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Identification of satellite CLL-SLS in the
B-cell repertoire of normal individuals

Next, we extended our analysis to IGHV-D-J sequences that

resemble those referred to as “satellites” of known CLL stereotyped

subsets (10). Satellite stereotyped sequences resemble the VH CDR3

motif of CLL stereotyped subsets but differ in certain amino acid

residues at specific positions in the IGHV-D-J rearrangement or

vary in VH CDR3 length. Although satellites are only in a minor

component of the total number of stereotyped subsets found in CLL

patients (10), we identified a ≥ 10-fold enrichment of “satellite”

CLL-SLS compared to standard CLL-SLS in every tissue (CB: 3,545

vs 123; BM: 6,145 vs 513; PBMC: 11,707 vs 999; Tables S1, S2).

Notably, the highest frequency of satellite CLL-SLS was measured in

CB, where they reached an average frequency of 1.31% of the total

IG sequence (Figures 2A, S2A).

When examining satellite CLL-SLS at the different stages of B-

cell development, we were able to detect satellite sequences in every

B-cell subset isolated from the BM (PRO-B: 0.27%; PRE-B: 0.42%;

IMM: 0.40%; NAÏVE: 0.70%; MEM: 0.20%; PB/PC: 0.39%).

Differently from the standard we observed a statistically

significant enrichment in satellite CLL-SLS in BM NAÏVE

compared to BM PRO-B (P = 0.0089) and NAÏVE to PBMC

MEM (P = 0.0016) (Figures 2B, S2B).

Similarly, in PBMC samples, satellite CLL-SLS were present at

discrete frequencies inn all the BB cell subsets analyzed but we only

observed a significant difference in satellite CLL-SLS frequencies

when comparing the average of NAÏVE to MEM and DN cells

(NAÏVE: 0.798 vs. MEM: 0.37%, P = 0.0007; NAÏVE vs DN 0.61%

vs MEM: 0.37%, P = 0.0011; Figures 2C, S2C).

Like what we observed in the case of standard CLL-SLS, we did

not detect any differences in the frequencies of satellite CLL-SLS

when comparing NAÏVE from BM and PBMC samples (Figure 2D).

Thus, we identified satellite CLL-SLS in the B-cell repertoires of

healthy donors. However, unlike CLL patients, where satellite

subsets comprised only 3% of the total cohort versus 13.5%

assigned to major subsets (10), satellite CLL-SLS in normal

individuals were found at higher frequencies and numbers than

standard CLL-SLS. This difference might be the result of their
Frontiers in Oncology 05101102
immunogenetic properties together with the selection forces

shaping the normal B cell repertoire.

Finally, the highest frequency of satellite CLL-SLS was found in

NAÏVE B cells coming from BM and PBMC, in contrast to what we

observed in the context of standard CLL-SLS where the highest

frequencies were found in PB/PC and rcMZ. Thus, similarly to what

observed for standard CLL-SLS, the presence of satellite CLL-SLS

distributed along all B cell differentiation axis further strengthens the

idea that CLL-like BCRs are not subjected to elimination by central

tolerance mechanisms and are present in the normal B-cell repertoire.
Assignment of the CLL-SLS in normal,
healthy people to specific, standard
CLL stereotypes

The second tier of analysis was directed at understanding to which

specific standard stereotyped CLL subset the CLL-SLS belong, and at

determining if the distribution of the CLL-SLS differs from the standard

stereotyped sequences observed in cohorts of CLL patient (Figures 3A–

D). When comparing the distribution of standard CLL-SLS resembling

the 29 most prominent subsets identified in patients with CLL across

the 3 different cell sources (Figures 3B–D), we found at least one

sequence belonging to each of the major CLL stereotyped subset from

each site apart from subsets #16 and #7D3 (Table S3). When

examining CB B cells, 39.8% of the CLL-SLSs were members of

subset #14 and 13.01% of subset #73 (Figure 3B). Together these two

subsets made up ~50% of all the CLL-SLS in the CB. Interestingly, these

subsets were not the most prevalent ones among the major CLL subsets

(Figure 3A). Finding these at increased frequencies in the CB, where

most B cells have not encountered foreign antigen and have not

undergone somatic hypermutation (SHM), was also surprising

because, among CLL patients, these two subsets display mutated

IGHVs. However, for subsets # 73 and 14, most of the CLL-SLS

sequences were IGHV-unmutated (75% and 84%, respectively).

In the BM, the most recurrent subsets were # 148B, #14, #28A, #12

and #1 (15.8%, 12.3%, 12.1%, 7.4% and 5.1 respectively; Figure 3C).

Like the CB, these abundant subsets were not the most frequently

found in patients (Figure 3A). CLL B cells belonging to subsets #1 and
B C DA

FIGURE 1

(A-C) Frequencies of CLL-SLS resembling standard stereotyped CLL BCRs identified in: (A) CB B cells (n=5); (B) BM B cell subsets (n=11); and (C)
PBMC B cell populations (n=16). Statistical analyses were calculated with Kruskal-Wallis test. (D) Comparison of CLL-SLS in naïve B cells from BM
and PBMC. Bars display minimum and maximum values. * p ≤ 0.05.
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#28A are part of the IGHV-unmutated (U-CLL) group and are

encoded by IGHV1-69 (subset #1) and IGHV1-2 (subset #28A),

respectively. Conversely, CLLs falling into subsets #148B and #14

express IGHV2-5 and IGHV4-4, respectively, and belong to the

IGHV-mutated (M-CLL) group. For those CLL-SLS identified
Frontiers in Oncology 06102103
among PBMCs, again subsets # 148b and #14 were highly

represented (25.8% and 13%), followed by subsets # 73, #28A and

#7C2 (10.9%, 6.0, and 5.8% of the total CLL-SLS) (Figure 3D).

Finally, when comparing among the three tissues, we found that

BM and PBMC display a very similar distribution of CLL-SLS with
B

C

D

A

FIGURE 3

(A) Frequency distribution of the 29 different major standard stereotyped subsets among CLL patients. Each pie slice identifies a specific subset in a
different color. (B) Left panel: Frequency distribution of the standard CLL-SLS in the CB. Each pie slice identifies a specific subset following color code in
(A) Table below the chart indicates the top 5 most frequently found standard CLL-SLS. Right panel: Comparison of the frequencies of major CLL
stereotyped subsets in patients and in CLL-SLS from CB. (C) Left panel: Frequency distribution of the standard CLL-SLS in the BM. Right panel:
Comparison between the frequencies of major CLL stereotyped subsets in patients and in CLL-SLS from BM. (D) Left panel: Frequency distribution of the
standard CLL-SLS in the PBMC. Right panel: Comparison of the frequencies of major CLL stereotyped subsets in patients and in CLL-SLS from PBMC.
B C DA

FIGURE 2

(A-C) Frequencies of CLL-SLS resembling satellite stereotyped CLL BCRs identified in: (A) CB B cells (n=5); (B) BM B cell subsets (n=11); and (C)
PBMC B cell populations (n=16). Statistical analyses were calculated with Kruskal-Wallis test. (D) Comparison of CLL-SLS frequencies in naïve B cells
from BM and PBMC. Bars display minimum and maximum values. * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 .
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a statistically significant difference in the frequencies only for

subset #148b (Figure S3A).

In conclusion, the distribution of certain standard CLL-SLS

found in normal individuals can be dramatically different from the

distribution found in CLL patients. However, since little is known

about the immunogenetic properties of most of the subsets found

frequently in the normal repertoire, it is difficult to speculate about

the underlying biological process or force that preferentially selected

for a B cell expressing a particular stereotyped sequence. In addition,

we did not observe major differences in the distribution of CLL-SLS

subsets when comparing BM and PMBC samples. Nevertheless, we

noticed a discrete difference when comparing these to CB sample,

where 50% of CLL-SLS are attributed to two subsets. Finding such

high-level restriction in the CB is not necessarily paradoxical, given

the absence of terminal deoxynucleotidyl transferase expression with

the consequent lack of non-templated additions during the neonatal

period, which often significantly limits diversity in the VH CDR3.
Assignment of CLL-SLS found in
normal individuals to specific satellite
CLL stereotypes

We next analyzed the distribution of satellite CLL-SLS as above.

This identified several differences from that found for the standard
Frontiers in Oncology 07103104
CLL-SLS. For example, in CB, 50% of CLL-SLS were satellites of

subsets # 77, #73, #31, #12, #2, and #169 (Figure 4A and Table S3).

Within the BM, we also found that the most recurrent subsets were

# 2, #169, #12, and #73 (17.5%, 12.9%, 8.8%, 9.1%, respectively;

Figure 4B). Similarly, for the peripheral blood samples, subsets # 2

and #169 were among the most frequent (19.1% and 21.1%,

respectively), making up to 40% of the total sequences

(Figures 4C, S4A). It is noteworthy that the satellite sequence for

subset #169 was found among the top-ranking group for each of the

three sites of collection.

Furthermore, when we compared the frequencies of standard

and satellites subsets, we observed two different scenarios. For some

specific subsets we found a significant increase in satellite CLL-SLS

compared to the standard ones. For example, #169 and its

companion #2 comprise 30 to 40% of all the sequences in PBCM

and BM whereas only a minor fraction of standard CLL-SLS were

attributed to subset #2 and #169 in both tissues examined (BM: #2,

2.9% and #169, 2.5%; PBMC: #2, 4.8% and #169, 2.3%) (Figures 4D,

E). However, we also found an opposite behavior for some of most

frequent standard subsets that instead were underrepresented in the

satellites, e.g., # 148b, 28A, and 14 (Figures 4D, E).

Overall, the satellite CLL-SLS subsets enriched in specific B-cell

subpopulations can differ significantly from the standard CLL-SLS,

especially in PBMC and BM. Among individual satellite subsets, # 2

and #169 seem to be over-represented in both PBCM and BM, and
B C

D E

A

FIGURE 4

(A-C) Pie chart displays the frequency distributions of satellite CLL-SLS in (A) CB; (B) BM. Each pie slice identifies a specific satellite stereotyped
subset following color code in the legend. (D, E) Plot summarizes the changes in frequencies of the depicted subsets between standard and satellite
CLL-SLS in (D) BM and (E) PBMC. Statistical analyses were performed with Kruskal-Wallis test. * p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001,
# = subset number.
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they both significantly increase in frequencies when compared to

their standard subset counterparts. Alternatively, some of the most

frequent subsets in the standard CLL-SLS analysis were

underrepresented in the satellite analysis. This last observation is

in accord to what is observed in CLL patients, where satellite

represent only a minor fraction of the total subset sequences.

Instead, the significant increase in satellite CLL-SLS attributed

to #2 and #169 suggest a selection pressure of these type of

sequences compared to the standard counterpart that only occurs

in the normal repertoire.
Distribution of CLL-SLS corresponding to
IGHV-unmutated and IGHV-mutated CLL
subsets among B-cell subpopulations at
different stages of B-cell development

Like CLL clones (4), stereotyped subsets can be segregated based

on IGHV-mutation status (10, 28). Therefore, we next determined

if the U-CLL CLL-SLS were enriched in the earlier stages of B-cell

development and if the M-CLL CLL-SLS were enriched in the later

stages of B-cell maturation (Figures 5B, C). Since the incidence of

standard CLL-SLS differed significantly from satellite CLL-SLS, for

the following analysis, we only analyzed the former (Figure 5A).

Since we did not find proof for negative selection of any individual

CLL-SLS at the early maturation stages in the BM and at the

transitional stage in the blood (Figure 5B), we checked for such

evidence at later stages of maturation, by examining specific patterns

of distribution of individual CLL-SLS. This analysis revealed that CLL-

SLS belonging to the IGHV-mutated subsets were found at different

frequencies than the IGHV-unmutated among the various antigen-

experienced B cell subsets (Figures 5B, C).

Using subsets #2 and #169 as examples of IGHV-mutated standard

subsets, for subset #2, there was a statistically significant enrichment in

NAIVE and rcMZ compared to B cells at the earlier stages of

development; a significant level of different was not found with B

cells at the later stages of maturation, although there was a trend in this

regard. The principal was the same for subset #169, except there were

also statistically significant differences for theMEM andDN. There was

a similar trend for enrichment in PC/PB, but this did not reach

statistical significance. Since subsets # 2 and #169 are members of

the IGHV-mutated subtype, this pattern of distribution in the mature

stages of B-cell development seems consistent. Similar trends were

found for M-CLL subsets # 73, #77, and #188 (Figure S5A).

In contrast, those CLL-SLS expressing unmutated IGHVs were

detected in B-cell subpopulations at the early stages of development

and in TRANS and NAIVE; they were virtually absent from the

IGHV-mutated MEM and rcMZ populations. Examples are CLL-SLS

belonging to U-CLL subsets # 12 and 31 (among the most frequent

ones, Figure 5D); a similar trend was observed for subsets # 8, 8B, and

59 (Figure S5B). Surprisingly, however, CLL-SLS attributed to U-CLL

subsets were significantly enriched in DN B cells, an Ag-experienced,

usually IGHV-mutated B cell subpopulation that plays a role in auto-

reactive conditions and infectious disease (29). The reason for the

abundance in this IGHV-mutated B-cell subpopulation is

not obvious.
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In summary, when examining individual CLL-SLS subsets,

CLL-SLS bearing IGHV-mutated IGs are most frequent in naïve

and Ag-experienced B cells, whereas CLL-SLS attributed to IGHV-

unmutated subsets in general are restricted to the early stages of B-

cell maturation and to naive B cells, with DN B cells being

the exception.
Pattern of SHM found among CLL-SLS
from normal, healthy people

Next, we examined if the CLL-SLS enriched at different B-cell

maturation stages in PBMCs exhibited the same IGHV-mutation

status as that found in standard CLL stereotyped subsets

(Figures 6A, B).

First, we analyzed CLL-SLS attributed to U-CLL subsets,

observing that ~94% of CLL-SLS found in TRANS and NAIVE B

cells matched the IGHV-mutation status of the stereotyped subsets

in CLL patients (Figure 6A). This situation changed when

examining the more mature B-cell subsets in PBMC. In the case

of MZ and DN, there was a fall in the frequencies of IGHV-

unmutated CLL-SLS matching the IGHV-mutation status of the

patient-defined CLL subsets (61% and 72%, Figure 6A). This drop

was most evident for CLL-SLS inMEM B cells, where 72% displayed

SHM and only 28% matched the original SHM status (Figure 6A).

When examining CLL-SLS belonging to M-CLL subsets

(Figure 6B), we found the opposite: only a minor fraction present

in the NAIVE and TRANS B-cell compartments displays SHMs and

hence matches the IGHV-mutation status in CLL (8% and 5.7%,

respectively). The majority in MEM (88.4%), MZ (68%), and DN

(54.5%) were mutated and thus in agreement with CLL SHM status.

Thus, CLL-SLS that are IGHV-unmutated in patients are found

more often in the normal repertoire among B cells at the earlier

stages of B-cell maturation, which have usually not interacted with

foreign antigens and therefore have not undergone SHM and

developed IGV mutations. In contrast, CLL-SLS that are IGHV-

mutated in patients are found more often in the normal repertoire

among B-cell subpopulations at the later stages of B-cell maturation

when SHM is common. So, in general, these results are consistent

with U-CLL clones originating from and TRANS, NAÏVE, and MZ

B-cell populations, and M-CLL clones coming from more antigen-

experienced subsets such as MZ, MEM, and DN. However, the fact

that some U-CLL-associated CLL-SLS can bear somatic IGHV

mutations and can be enriched in antigen-experienced B cells

suggests a positive selective driving away from the corresponding

CLL-associated IGHV-mutation phenotype for these CLL-SLS.

We next expanded this type of analysis to individual CLL-SLS

from the major CLL stereotyped subsets, examining the distribution

patterns of U-CLL-like and M-CLL-like SLS sequences among the

different B cell subpopulations (Figures 6C–F). This revealed 7

distinct patterns (Figures 6C–F). In the case of U-CLL subsets

exhibiting pattern 1, the vast majority of IGHV-unmutated CLL-

SLS belonging to subsets # 6, #7C2, #8, and #8B match the IGHV-

mutation status of the CLL patients, independent of the B-cell

subset in which they were found (Figures 6C, D). Regarding the

other patterns, most were still characterized by high frequencies of
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CLL-SLS matching the SHM pattern of CLL patients; these were

mainly restricted to the NAIVE and TRANS B cell stages. However,

there were obvious differences in the other B-cell subsets. For

example, in the case of subsets belonging to pattern 3 (subsets
Frontiers in Oncology 09105106
#202, #28A, #59, and #99), only a median of 65% DN, 32.9% MZ,

and 7.7%MEMCLL-SLS matched the original CLL IGHVmutation

status. Similarly, by looking at CLL-SLS attributed to M-CLL

subsets, we observed that the most frequent ones found in our
B

C
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A

FIGURE 5

(A) Left Panel: Summary plot comparing frequencies of standard and satellites CLL-SLS in different B cell subsets in BM. Right Panel: Summary plot
comparing frequencies of standard and satellites CLL-SLS in different B cell subsets in PBMC. (B) Upper panel: Table summarizes average frequency
of the most frequent satellite CLL-SLS divided by subsets through different stages of B cell development. Lower panel: Table summarizes average
frequency of the less frequent satellite CLL-SLS divided by subsets through different stages of B cell development. (C) Summary plot of satellite CLL-
SLS frequencies attributed to subset #2 and #169 through different stage of B cell development (Mean with SEM). Statistical analysis and multiple
comparisons were performed with Kruskal-Wallis test. (D) Summary plot of satellite CLL-SLS frequencies attributed to subset #12 and #31 through
different stage of B cell development (Mean with SEM). Statistical analysis and multiple comparisons were performed with Kruskal-Wallis test.
* p ≤ 0.05, **p ≤ 0.01,***p ≤ 0.001, ****p ≤ 0.0001. ns, not significant.
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analysis, such as # 2, #73, and #169, group together in pattern 6

(Figures 6E, F). In this case, MEM display the highest median

frequencies of CLL-SLS matching the original CLL IGHVmutation,

whereas there was a progressive decline in both MZ and DN

populations. In other cases, such as those subsets belonging to

pattern 5, both MZ and MEM were similarly enriched in CLL-SLS
Frontiers in Oncology 10106107
matching the IGHV mutation status of the original CLL subsets

(Figures 6E, F).

Thus, when examining the SHM status of individual CLL-SLS,

different patterns can be identified. These patterns suggest that

specific CLL stereotyped subsets might originate from particular

subpopulations in the normal B-cell repertoire.
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FIGURE 6

(A) Summary plot of the frequencies of IGHV-unmutated CLL-SLS with matching U-CLL stereotyped subsets (median). (B) Summary plot of the
frequencies of IGHV-mutated CLL-SLS with matching M-CLL stereotyped subsets (median). (C) Table with median frequencies of IGHV-unmutated
CLL-SLS with matching U-CLL stereotyped subsets divided by subsets. (D) Left panel: CLL-SLS attributed to U-CLL subsets were grouped in pattern
based on the matching frequencies. Right panel: Plots showing the median frequency of CLL-SLS matching U-CLL status. Each plot represents one
of the patterns indicated in the left panel. (E) Table with median frequencies of IGHV-mutated CLL-SLS with matching M-CLL stereotyped subsets
divided by subsets. (F) Left panel: CLL-SLS attributed to M-CLL subsets were grouped in pattern based on the matching frequencies. Right panel:
Plots showing the median frequency of CLL-SLS matching M-CLL status. Each plot represents one of the patterns indicated in the left panel.
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More precise documentation and
assignment of CLL-SLS to normal B-cell
subsets based on expression of IGKV
and IGLV genes

The preceding data indicate that CLL-SLS are present in

normal, healthy people, and that the frequencies at which these

exist in the normal B-cell repertoire do not appear to decrease when

progressing from developing to mature B cells. Since CLL B cells

appear to derive from autoreactive precursors (13) and CLL IGs are

often autoreactive (13–17), finding CLL-SLS in healthy individuals

at all stages of maturation is not consistent with the elimination of

autoreactive BCRs/IGs from the normal B-lymphocyte repertoire

(18). Alternatively, the IGK/LV-J rearrangements paired with the

CLL-SLS IGHV-D-J could differ from those in CLL cells, thereby

neutralizing or preventing autoreactivity. Since several of the major

stereotyped subsets display IGK/LV gene restrictions, we isolated

cells based on membrane L chain expression (k or l) and defined

the frequencies at which certain specific CLL-SLS IGHV-D-J

rearrangements were found in the k and l chain populations.

As representatives of those subsets that display IGK/LV L chain

restriction, we examined subset #2 and its companion subset #169,

both of which always express lambda light chains encoded by

IGLV3-21. Notably, when sorting NAIVE, MZ, and MEM cells

from a normal, healthy person based on L chain isotype, we

observed a similar distribution of CLL-SLS subsets # 2 and 169

within the k and l chain expressing B-cell populations. Thus, for

these subsets there was a lack of skewing toward l light chain

use (Figure 7A).

We then looked at CLL-SLS subsets characterized by the

expression of IGHV4-34, such as subsets #201, #77, and #4

(Figure 7B). For subset #201, which always uses IGLVl1-44, we
found CLL-SLS only in the l-expressing fraction of MEM B cells.

Whereas for subsets # 77 and 4, whose IGHVs always pair with

IGLV10-54 or IGKV2-30, respectively, we did not observe a

particular bias toward the usage of a specific light chain type

(Figure 7A). Thus, we found the CLL-SLS in the appropriate light

chain population depending on the specific subset. However, by

taking this approach, we could not determine the specific IG light

chain expressed by CLL-SLS.

To overcome this challenge, we performed single cell IGHV-D-J

sequencing of B cells in PBMCs that express IGHV4-34 by sorting

using the 9G4 mAb which reacts specifically with IGs bearing this

gene (30). This strategy allowed us to enrich for subsets that use

IGHV4-34 and, at same time, to identify the matching L chain and

its DNA sequence. After sorting 20,000 NAIVE, 4,274 MZ, 9,547

MEM, and 340 DN B cells (Figure S6A), we identified IGHV-D-J

sequences from 5,406 NAIVE, 1,205 MZ, 2,386 MEM, and 122 DN

cells. A large majority of clonotypes identified expressed IGHV4-34,

as depicted by V to J heatmap (Figure S6B). In this way, we

identified CLL-SLS representative of several stereotyped subsets

associated with IGHV4-34 (Figure 7C) in 110 Naïve, 2 rcMZ, 7

MEM, and 5 DN cells.

When looking specifically at CLL-SLS sequences resembling

subset # 201, we identified 6 such sequences, all in naïve B cells.

However, none were paired with a l light chain (Figure 7D).
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However, although subset #201 CLL clones show a strong

restriction for l light chain use, there are a few identified

instances where subset #201 stereotyped sequences were paired

with the k light chain gene IGKV4-1. Notably, one of our CLL-SLS

sequences attributed to subset #201 had an IGKV4-1 gene partner.

Moreover, the VK CDR3 sequence of that cell was remarkably like

the CLL stereotype and the CLL-SLS (Figure 7D). Thus, this

apparently normal B cell could be a precursor to a subset #201

CLL clone.

Similarly, when examining CLL-SLS resembling subset #4, we

found an IGHV-D-J gene rearrangement paired with IGKV 2-30,

the gene most often co-expressed in this leukemic subset

(Figures 7E, F). However, this CLL-SLS did not bear IGHV

mutations, which all subset #4 rearrangements have. Nor did it

carry a characteristic amino acid at a specific position in the IGKV-J

rearrangement corresponding to the standard stereotyped CLL

BCRs, i.e., an aspartic acid at position 66 in the VK FR3 that is

introduced by SHM in CLL cells. Thus, this apparent precursor of

standard CLL stereotyped subsets # 4 does exhibit the complete

subset #4 CLL sequence.
Discussion

Using our efficient IGHV-D-J sequencing approach that

provides considerable depth of analysis (23), we demonstrated

that CLL-SLS are present in B lymphocytes from normal

individuals isolated from three sources that differ in B-cell

composition and age. In line with a recent report finding such

rearrangements in fetal liver-derived B cells (31), our studies

indicate that CLL-SLS are present at the first stages of

developmental time, in our instance, human cord blood. Since the

median age of diagnosis of CLL is ~70, it might be expected that

samples from aged individuals would contain higher frequencies of

CLL-SLS. Notably, however, despite the age differences in the sites

we sampled, the frequencies of CLL-SLS in the CB, PBMC and BM

were similar, suggesting that CLL-SLS accumulation does not

change with aging.

In addition, when focusing on the adult PBMC and BM

repertoires, we did not find a fall in the frequency of normal B

cells bearing CLL-SLS suggesting that censoring by central tolerance

mechanisms had not occurred in the BM This was surprising since

CLL IGHV-D-J rearrangements, including stereotyped

rearrangements, generally derive from autoreactive B cells that

normally would be eliminated (32, 33). This lack of censoring

suggests that CLL-SLS do not recognize self-antigen with

sufficient affinity to activate clonal deletion mechanisms. This

conclusion, however, might be premature since, in the main, we

analyzed solely IGHV-D-J rearrangements and not their

accompanying IGKV-J and IGLV-J rearrangements, both of

which are often needed for autoantigen binding. Thus, receptor

editing of IGK/LV genes (18), another mechanism to maintain

tolerance, could have taken place in B cell carrying CLL-like BCRs

and could explain why CLL-SLS are relatively overabundant in

normal people. Consistent with this possibility, certain major CLL

stereotyped subsets use specific IGK/LV genes (34). So, this L chain
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feature might reflect the actions of an operative, normal tolerance

mechanism and represent a level of negative selection for B cells

bearing potentially harmful autoreactive BCRs in people without

CLL. Finally, CLL-SLS might evade negative selection in the BM if

the B cell carrying those rearrangement go through receptor

revision of the H chain (35, 36).

We did find a fall in the frequencies of CLL-SLS among B-cell

subsets in PBMC. Specifically, the highest level of such sequences

was identified in NAIVE, TRANS, and rcMZ B cells with a decrease

in the MEM and DN compartments. These observations suggest

that CLL-SLS were not purged at the TRANS level, another point in

early development where autoreactive B cells can be triaged from

the repertoire (37, 38). Consequently, normal B cells bearing BCRs

with acceptable, not intolerably high reactivity with autoantigens,

could expand, possibly by tonic BCR signaling, and move into the

mature B-cell pool (37–39). Hence, the lack of apparent negative

selection at this stage would again be consistent with the CLL-SLS
Frontiers in Oncology 12108109
bearing lower affinity BCRs to autoantigens than registered by the

immune system as dangerous.

However, the decrease in MEM and DN B cells suggests that the

next set of immune tolerance mechanisms that prevent entry of

unwanted, high affinity specificities B cells with into the more

mature stages is effective in normal people. Hence, at least some

CLL-SLS are prevented from engaging in germinal center-like

responses. This could especially be the case for those CLL subsets

using IGHV4-34, e.g., #4 and #201, since IGHV4-34-bearing

normal B lymphocytes are usually excluded from GC reactions

and prohibited to differentiate to antibody-secreting cells due their

inherent autoreactive profile (40, 41). However, this does not totally

exclude the possibility that processes such as SHM and CSR,

occurring during GC reactions could redeem those potentially

self-reactive CLL-SLS and allow them to mature to MEM and DN

B cells. Lastly, CLL-SLS B cells that make it into the MEM and DN

pool could become anergic, and therefore not increase numerically.
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FIGURE 7

(A, B) Summary plots comparing the mean frequencies of CLL-SLS in the IG k and IG l fractions of the indicated B cell populations. Each plot refers
to a particular CLL subsets. Statistical analysis and multiple comparisons were performed with Anova, Holm-Sidak test. (C) Pie charts of the
frequency distribution of the CLL-SLS found after single cell RNA sequencing of the indicated B cell population. Each pie slice identifies a specific
satellite subset following the color code in the legend. (D-F) Table of features of IGHV and matching IGK/LV attributed to (D). subset #201; subset
#4; Subset #8. *p ≤ 0.05, **p ≤ 0.01, ns, not significant.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1112879
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Vergani et al. 10.3389/fonc.2023.1112879
Finding cells with CLL-SLS BCRs in the MZ B subpopulation at

frequencies higher than naïve could appear contrary to this

principle. However, this might be explained by the features of the

MZ B-cell subset. Indeed, even though IgM-expressing MZ B cells

can be antigen-experienced, they can be generated through GC-

independent process and they are poorly recruited to GC reaction

and can be generated through a GC-independent process (42).

Additionally, TRANS B cells can bypass the NAÏVE stage and

differentiate in the MZ (43). Thus, high frequencies of CLL-SLS in

the MZ B-cell compartment might be the combined result of a

distinctive B-cell developmental route and of reduced involvement

in GC reactions. This result differs from that reported recently,

where CLL-SLS were present at significantly lower percentages in

rcMZ B cells (21). This inconsistency might be due to different

criteria and bioinformatics tools used to identify CLL-SLS.

In addition to those CLL-SLS attributed to standard stereotyped

CLL subsets, we identified an unexpectedly high number of satellite

CLL-SLS. Indeed, there was a ≥ 10-fold enrichment compared to

standard CLL-SLS in every tissue. Interestingly, this is the opposite

of what is seen in CLL patients, where satellites are only a minor

component of the stereotyped subsets identified. A plausible

explanation for the higher frequency of satellite CLL-SLS

compared to the standard CLL-SLS is the more relaxed criteria

used to identify satellite sequences. However, if that was the only

factor involved, then the same observations would be also made in

CLL. Hence, the frequency of standard and satellite CLL-SLS in our

cohort could be the result of their immunogenetic properties

together with selection forces shaping the normal B-cell repertoire.

Like standard CLL-SLS, satellite CLL-SLS were found at

different frequencies throughout all stages of B-cell development

with a significant enrichment in Naïve B cells in the BM and PBMC.

This observation also suggests that satellite CLL-SLS are not

subjected to negative selection during first steps of B-cell

maturation. On the other end, a decrease in both MEM and DN

B cells, is consistent with antigenic selection representing a barrier

for B cells carrying CLL-like BCRs. Finally, this decrease might

represent dilution of B cells bearing CLL-SLS in favor of positively

selected non-CLL-SLS normal B cells by foreign antigen.

Regarding standard CLL-SLS, it was notable that those subsets

found most recurrent in the CB, BM, and PB (#14, #73, #148b,

#28A) were not those that are the most prominent in patients with

CLL (#1, #2, #4, #6, and #8). Since there is not sufficient information

available about the standard subsets found enriched in the normal

repertoire, we can only propose that this distinction reflects a lesser

necessity to remove or edit the former rearrangements and/or a

greater need to remove the latter.

In this regard, it is noteworthy that the vast majority of CLL-SLS

found in the CB are attributed to only two subsets (#14 and #73),

both of which are in IGHV-mutated in CLL. However, most of the

CLL-SLS sequences attributed to these two subsets are IGHV-

unmutated in the CB.

Moreover, an uneven distribution of stereotyped subsets in the

CB could reflect restrictions which, in many cases, are defined by

unique combinations of IGHV, IGHD and IGHJ genes (‘germline
Frontiers in Oncology 13109110
motifs’) with less significant contribution by the IGHV-IGHD and

IGHD-IGHJ gene junctions. Finding such high-level restriction in

the CB is not necessarily paradoxical, given the absence of terminal

deoxynucleotidyl transferase expression with the consequent lack of

non-templated additions during the neonatal period, which can

leads to severe limitations of diversity in the VH CDR3 (44, 45).

Of interest, when looking at satellite CLL-SLS, the findings were

different. Strikingly, in both BM and PBMC, the most recurrent

subsets identified were satellites of subsets #2 and #169, which fit

into the set selected against in standard stereotyped instance,

suggesting that negative selection for such satellite sequences had

not occurred.

When assigning CLL-SLS to distinct normal B-cell

subpopulations differing in foreign antigen experience based on

IGHV mutations, we found some CLL-SLS predominate in

subpopulations matching or not their IGHV-mutation status. For

example, as expected, CLL-SLS attributed to the U-CLL type were

mainly found in TRANS and NAIVE B-cell subpopulations (#

12, #31, #8, #8B and #59), whereas, unexpectedly, some CLL-SLS

that do not carry mutations in CLL patients (#59 and #99) were

highest in IGHV-mutated MEM cells. Likewise, CLL-SLS of the M-

CLL type predominated in rcMZ, MEM, and DN (e.g., #201 and

#4). Nevertheless, the majority of subset #2 and #169 CLL-SLS were

IGHV-mutated and found in the MEM, and ~50% of the subset #2

and #169 CLL-SLS in the DN compartment exhibited somatically

mutated BCRs. Thus, those B cells bearing BCRs that are discordant

in IGHV-mutation status between the CLL setting and the normal

setting would not be identified as the normal counterpart of

leukemic clones. We can only speculate whether B cells carrying

CLL-SLS that were found in M-CLL subsets but had discordant

SHM status and were found in the NAÏVE compartment might

represent a candidate precursor of CLL. Indeed, those cells have the

potential to differentiate and accumulate SHMs and become

identical to the original CLL counterpart.

As mentioned, several standard CLL-SLS can exhibit striking

light chain gene sequence restriction. We took advantage of this

issue by sorting B-cell subpopulations based on surface expression

of k or l L chains and then asking if certain CLL-SLS, defined by the

presence of either IGKV or IGLV genes in CLL, were enriched in

normal B cells expressing that L chain isotype. Notably, for subsets #

2 and 169, we did not find such a restriction in L chain use as CLL-

SLS attributed to these subsets were present in the l-expressing and
the k-expressing fractions of the different B-cell populations sorted.
Different, however, was the case for BCRs belonging to CLL subset

#201, for which we found subset #201-like CLL-SLS only in the l-
expressing fraction of normal IgM memory B cells, consistent with

the findings in patients with CLL. Thus, some CLL-SLS in normal

B-cell populations express both the particular H and L chain

subtypes reminiscent of a CLL cell and others do not. Subsets # 2

and 169, are examples of the latter and again suggest that these

would not lead to CLL.

To formally address the possibility that a single normal B cell

could express a CLL-SLS BCR IG carrying a single IGHV-D-J and

IGKLV-J as found in patients with CLL, we performed single cell V
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(D)J sequencing analysis of B-cell populations sorted for surface

membrane expression of IGHV4-34 using the 9G4 mAb. When

checking IGHV4-34+ sequences bearing the subset #201 IGHV-D-J

rearrangement, we did not find any of these paired with the expected

l gene. However, we did identify a subset #201 CLL-SLS along with a

companion IGKV2-30 gene that is used in some CLL subset # 201

clones. However, this pair was only found in the naïve B-cell

population, not in the more mature subsets that bear IGHV

mutations as subset #201 usually does. Thus, finding a H-L BCR

pair resembling the standard stereotype CLL BCR in the NAIVE but

not in an antigen-experienced B-cell subset is consistent with effective

peripheral tolerance censoring in normal individuals (40, 41).

Likewise, we identified other cells bearing the subset #4 CLL-

SLS that were paired with the specific k L chain gene rearrangement

corresponding to that found in CLL. Interestingly, however, the

expressed IGHV of this cell was not somatically mutated and did

not carry a characteristic amino acid present at a specific position in

the light chain variable region that is found in that standard

stereotyped CLL BCR. Thus, in this instance, either there was a

negative selection triaging against such specificities entering the

mature B-cell repertoire or the antigenic drive needed to initiate

these mutations did not occur in the normal setting.

These single cells analyses, thus, provided two examples of B

lymphocytes within the B-cell repertoire of apparently normal

people that differed in the potential to be a CLL precursor. The

first example (CLL-SLS #201) was not consistent with this,

suggesting either that the potential precursor was blocked from

attaining or was negatively selected after attaining the canonical

subset #4 CLL sequence. The second (CLL-SLS #4) is consistent

with this finding and suggests that censoring of a CLL precursor

does not necessarily occur. Single cell sequencing at depths greater

than those we achieved will be necessary to determine which of

these possibilities is correct.

Finally, finding certain, specific CLL-SLS in discrete normal B-

cell populations raises the possibility that the final transformation

event for that stereotyped subset occurred in that population or at

that anatomic site. Thus, one could speculate that certain normal

B-cell populations represent reservoirs in which specific

stereotyped CLL clones are transformed. In this regard, SHM

could act to control or promote CLL-SLS expression and

transformation in the various mature B-cell repertoires.

However, the possibility that transformation happens earlier but

the transformed cells retain the ability to respond to specific types

of antigens and to follow distinct maturation pathways, which lead

to over or under abundance in distinct B-cell populations, cannot

be excluded.

Collectively, our findings are consistent with CLL stereotypes

not being sufficiently autoreactive to be censored by central and

early (TRANS level) tolerance mechanisms, and therefore being

permitted to enter the NAIVE subpopulation. Nevertheless, after

arriving in the NAIVE repertoire, peripheral tolerance mechanisms

for some CLL-SLS appear to restrict the number of cells entering the
Frontiers in Oncology 14110111
more mature B-cell repertoires in normal individuals, except

possibly for the MZ. In patients with CLL, however, the later

tolerance checkpoints might be faulty, allowing these CLL-SLS to

be enriched in antigen experienced and memory B cells. In addition,

some of those B cells with BCRs resembling those in CLL that do

differentiate to MEM, DN, and PB/PC do not necessarily exhibit a

H-L pairing, consistent with CLL, or differ in IGHV-mutation

status or IG isotype from the CLL counterpart, thereby retaining

tolerance constraints. The precision of our analysis at this level,

however, is not sufficient to assert this with complete confidence.

Thus, in patients with CLL, the effectiveness of receptor editing and

GC reaction checkpoints might be reduced, allowing putatively

dangerous H-L CLL pairing to occur and to be recruited into a GC

response, where they can differentiate into antigen-experienced cells

with or without accumulation of specific SHMs and isotypes.
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