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Patient-specific computational fluid dynamics (CFD) simulations can provide invaluable

insight into the interaction of left atrial appendage (LAA) morphology, hemodynamics,

and the formation of thrombi in atrial fibrillation (AF) patients. Nonetheless, CFD

solvers are notoriously time-consuming and computationally demanding, which has

sparked an ever-growing body of literature aiming to develop surrogate models of

fluid simulations based on neural networks. The present study aims at developing

a deep learning (DL) framework capable of predicting the endothelial cell activation

potential (ECAP), an in-silico index linked to the risk of thrombosis, typically derived

from CFD simulations, solely from the patient-specific LAA morphology. To this end,

a set of popular DL approaches were evaluated, including fully connected networks

(FCN), convolutional neural networks (CNN), and geometric deep learning. While the

latter directly operated over non-Euclidean domains, the FCN and CNN approaches

required previous registration or 2D mapping of the input LAA mesh. First, the superior

performance of the graph-based DL model was demonstrated in a dataset consisting of

256 synthetic and real LAA, where CFD simulations with simplified boundary conditions

were run. Subsequently, the adaptability of the geometric DL model was further proven

in a more realistic dataset of 114 cases, which included the complete patient-specific

LA and CFD simulations with more complex boundary conditions. The resulting DL

framework successfully predicted the overall distribution of the ECAP in both datasets,

based solely on anatomical features, while reducing computational times by orders of

magnitude compared to conventional CFD solvers.

Keywords: geometric deep learning, left atrial appendage, convolutional neural network, thrombus-atrial

fibrillation, computational fluid dynamics, principal component analysis

1. INTRODUCTION

Atrial fibrillation (AF) is the most common clinically significant arrhythmia, with a cumulative
lifetime development risk above 30% in individuals of European ancestry (Benjamin et al., 2019).
AF is defined by a quivering or irregular heartbeat (arrhythmia) caused by chaotic electric activity,
which leads to irregular contraction and wall rigidity of the left atrium (LA), preventing effective
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flow of the blood to the ventricles. Such hemodynamic
alterations, alongside factors such as endothelial or endocardial
dysfunction, including a state of hypercoagulability, increase
the risk of cerebrovascular accidents by allowing thrombus
formation within the LA (Watson et al., 2009); if dislodged,
such thrombi can occlude the cerebral circulation, causing a
thromboembolic (ischemic) stroke. In fact, non-valvular AF is
responsible for 15–20% of all cardioembolic ischemic strokes,
which preferentially form at the left atrial appendage (LAA)
(Cresti et al., 2019), an heterogeneous, tubular structure derived
from the anterior wall of the LA.

In this regard, researchers have explored the correlation
between LAA morphology and the risk of stroke (Yaghi et al.,
2020; Dudzińska-Szczerba et al., 2021; Słodowska et al., 2021).
Nonetheless, so far the results have been ambiguous, as the
current classifications and associated morphological parameters
of the LAA are often entirely subjective, hand-crafted features;
there is a need formore systematic shape analysis of the LAAwith
advanced and observer-independent computational tools such as
statistical atlases (Slipsager et al., 2019).

Besides, due to the critical role of blood stasis in
thrombogenesis, the interest in the analysis of LA hemodynamics
is gaining momentum. Yet, the intricate behavior of the left
atrium as a modulator of left ventricular filling (reservoir,
conduit, and booster pump function; Vieira et al., 2014), coupled
to a substantial anatomical heterogeneity, makes modeling left
atrial hemodynamics a notoriously difficult task. Consequently,
computational fluid dynamics (CFD) analyses have emerged
as an invaluable tool in analyzing the mechanistic relationship
between patient-specific organ morphology and blood stasis
(García-Isla et al., 2018; Masci et al., 2019; García-Villalba et al.,
2021). Nevertheless, conventional CFD methods are renowned
for their large memory requirements and long computing times
(Liang et al., 2018), which also involve extensive pre-processing
of each patient-specific mesh, resulting in studies with very
limited sample sizes and severely hindering its suitability for
time-sensitive clinical applications.

As a response, neural networks have increasingly been
employed in complex dynamical systems such as fluid dynamics,
resulting in highly accurate surrogate models that can be
evaluated with significantly less computational resources and
several orders of magnitude faster than conventional finite
element solvers (Hennigh, 2017). Recently, deep learning (DL)
has made its way into biological fluid modeling, aiming at
predicting blood velocity vector fields or derived hemodynamic
parameters that play a crucial role in the diagnosis and
development of several cardiovascular diseases (Liang et al.,
2018; Li et al., 2021). Nevertheless, most studies have mostly
focused on structures such as the aorta, which present a less
complex morphology and hemodynamic profile than the LA
and LAA. That being said, applying conventional DL models to
non-Euclidean domains, such as graphs and meshes, in which
medical data is often best represented, is not a trivial task, as
most widespread neural networks can only operate over regular
data such as images (Fey et al., 2018). In this regard, geometric
deep learning approaches, which are tailored to operate over
graph data, have already been applied to biomedical meshes,

especially in cardiac electrophysiological models (Grandits et al.,
2021; Meister et al., 2021).

Hence, in the present study, we have leveraged a collection
of distinct DL models, which are well-tailored to deal with mesh
data, to develop a CFD surrogate capable of learning the complex
relationship between the heterogeneous LAA morphology and
the endothelial cell activation potential (ECAP), parameter
linked to an increased risk of thrombosis. By employing neural
networks, there is no need to manually craft morphological
features, ensuring that the model only learns the most relevant
anatomical characteristics toward the automatic prediction of
ECAP. Moreover, once trained, neural networks allow the
prediction of ECAP maps in new unseen patients, orders of
magnitude faster than it is possible with current CFD solvers.
The implemented DL approaches included principal component
analysis (PCA) based shape analysis coupled to fully connected
layers, flattening the LAA morphology to a UV space to
leverage convolutional neural networks (CNN) and geometric
deep learning, which is perfectly suited to non-Euclidean data
such as meshes. All the mentioned methods were first tested on
a simplified LA model containing 256 real and synthetic LAA
(dataset 1). In addition, the best performing model was further
tested on a second, more realistic 114 patient dataset, which
incorporated the entire patient-specific LA anatomy (dataset 2).

2. METHODS

The overall pipeline employed to generate the ground-truth data
(i.e., the in-silico ECAP index from CFD simulations in the whole
dataset of 370 geometries) is shown in Figure 1. Preprocessing
slightly differed between the two datasets: LAA comprising
dataset 1 were all assembled to an oval LA, while in dataset
2, which considered the whole patient-specific LA anatomy, all
pulmonary veins (PV) were trimmed at the first branching to
define the inlets and outlets. Later, tetrahedral volumetric meshes
were generated to run the CFD simulations and compute the
ground truth ECAP maps. For the networks to capture the most
relevant morphological features, the triangular meshes employed
to describe the anatomy of each LAA had to be transformed
according to the prerequisites of each of the implemented DL
methods. Lastly, the neural networks were trained to learn the
arbitrary non-linear function linking the geometry of the LAA
and its corresponding ECAP maps. Model prototyping and fine-
tuning were completed on the synthetic LA dataset (dataset 1).
Afterward, the best-performing network was further tested in the
more realistic, complete LA dataset (dataset 2).

2.1. Data
The first dataset (dataset 1) was derived from computed
tomography (CT) images provided by the Department of
Radiology at Rigshospitalet (Copenhagen, Denmark) acquired as
part of the Copenhagen General Population Study (Nordestgaard
et al., 2012). It was comprised of 256 LAA, combining 54 real
patients and 202 synthetic LA geometries. The latter, being
borrowed from a preceding study (Morales et al., 2020), stem
from a statistical shape model (SSM) based on 103 real LAA
surfaces (Slipsager et al., 2019). In this synthetic LA model, only
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FIGURE 1 | Pipeline to generate the ground truth ECAP maps for the two datasets. LA, left atrium; LAA, left atrial appendage; PV, pulmonary veins; CFD,

computational fluid dynamics; ECAP, endothelial cell activation potential.

the geometry of the LAA was considered, as incorporating the
highly heterogeneous LA anatomy would qualitatively increase
the inter-subject variability of the hemodynamic parameters.
Thus, all appendages were assembled to a common oval
approximation of the LA (García-Isla et al., 2018), reducing
the complexity of the maps to be predicted, and ensuring that
the LAA morphology remained the only independent variable
affecting the ECAP values.

Conversely, the second dataset considered the complete
patient-specific LAmorphology during CFD simulations (dataset
2). The data was provided by Hospital Haut-Lévêque (Bordeaux,
France), originating from pre-procedural high-quality CT scans
from 114 AF patients that underwent a left atrial appendage
occlusion (LAAO) intervention. Both studies were approved
by the local Institutional Ethics Committees, and all patients
provided informed consent.

2.2. CFD Simulations
A total of 370 CFD simulations were run to generate the ground-
truth data, 256 of which corresponded to the synthetic LA
dataset, while the remaining 114 were part of dataset 2. All
synthetic LAA simulations on dataset 1 were borrowed from
a preceding study, adjusting the setup of the simulations for
the remaining 54 real morphologies accordingly (Morales et al.,
2020). First, an input velocity profile was set in the PV, based
on clinical observations (Fernández-Pérez et al., 2012). Second,
the mitral valve (MV) was considered as a wall boundary during
diastole, while an outlet pressure of 1,067 Pa was set through
systole. The motion of the LA was based on a diffusion-based
dynamic mesh emanating from the MV ring plane, adjusted
according to literature (Veronesi et al., 2008; Mill et al., 2019).
Only a single heartbeat was completed for each simulation.

On the other hand, simulations from dataset 2 featured
more complex boundary conditions (BC), with the inlet being
defined at the PV based on pressure wave measurements from
an AF patient; the velocity outlet was set on the MV based
on Doppler ultrasound velocity profiles derived from a single

patient. Therefore, while the LA morphology was completely
patient-specific, the same boundary conditions were shared
among all cases. However, all BCs were synchronized to their
corresponding patient’s electrocardiogram. The dynamic mesh
governing LA motion was changed to a spring-based model.
Unlike in dataset 1, three full heartbeats were completed for each
simulation, aiming to reach a steady state. Only the last heartbeat
was considered when computing the risk indices of thrombosis.
Lastly, whereas final tetrahedral volumetric meshes for dataset 1
consisted of∼350 k elements, each mesh from dataset 2 doubled
that figure at around 800 and 900 k elements, after a mesh
convergence study that included meshes up to 1 M elements.

Simulations were computed on Ansys Fluent 19 R32 (ANSYS
Inc,USA)1 and automatized leveraging the MATLAB AAS
toolbox,2 while post-processing was performed in Paraview3

alongside in-house python scripts. The blood was treated as a
Newtonian fluid, with a density of 1,060 Kg/m3 and a viscosity
of 0.0035 Pa/s, while using time-steps of 0.1 s.

The endothelial cell activation potential (ECAP), proposed by
Di Achille et al. (2014), was the parameter chosen to evaluate
the risk of thrombosis in the LAA. Since the pathophysiology of
thromboembolism in AF is based upon the formation of mural
thrombi, the ECAP focuses on hemodynamic behavior in the
proximity of the vessel wall. More precisely, the ECAP is defined
as the ratio between the oscillatory shear index (OSI) and the
time-averaged wall shear stress (TAWSS).

ECAP =
OSI

TAWSS
. (1)

Thereby, a dimensionless parameter related to thrombosis is
obtained, thus, avoiding the need for a more complicated neural
network architecture capable of handling temporal sequential
data. High ECAP values result from low TAWSS and high OSI
values, indicating the presence of low velocities and high flow

1https://www.ansys.com/products/fluids/ansys-fluent
2https://es.mathworks.com/products/matlab.html
3https://www.paraview.org/
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complexity, which is associated with endothelial susceptibility
and risk of thrombus formation.

2.3. Deep Learning Architectures
2.3.1. Principal Component Analysis—Fully

Connected Model
Although it is gradually being replaced by more sophisticated
non-linear models, principal component analysis (PCA), has
long been employed to learn a linear latent space of 3D registered
meshes, for tasks such as compression, reconstruction, and
animation (Zhou et al., 2020). Nevertheless, PCA requires all
meshes to be registered to a common template so that the
same topology and connectivity are shared among them. In
our case, this step was completed through non-rigid volumetric
registration of signed distance fields, based on the work by
Slipsager et al. (2019), registering all meshes to a common
template comprised of 2,466 vertices. For the PCA analysis,
the spatial coordinate of the nodes composing the mesh were
employed as the input features. Thus, the morphology of each
LAA can be expressed by a small set of scalar values through
truncated PCA following:

X = X +
M

∑

i=1

αi

√

λiWi, → αi =
WT

i (Y − Y)
√

λi
, (2)

where X is the mean shape, Wi and λi being the set of
eigenvectors and eigenvalues of the covariance matrix for the
retained number, i, of principal components (PC). Hereby, if the
variability of the dataset is explained by a small set of PCs, each
LAA anatomy can be expressed by a number i, of αi scalars that
can be fed directly to any regular neural network. For our dataset,
a total of n = 32 PCs were kept, provided that the training dataset
was large enough. By doing so, 97.6% of the morphological
variability was retained for the synthetic cases and 94.1% for
the real LAA geometries. Afterward, the non-linear mapping
between the low dimensional representation of LAAmorphology
and its corresponding ECAPmaps was completed through a fully
connected feed-forward neural network (FCN). It comprised five
hidden layers, as shown in Figure 2A, sequentially increasing the
size of each layer. The whole model was implemented in Keras,4

using TensorFlow5 as backend.

2.3.2. UV Mapping—U-Net Model
Although PCA models have been extremely successful (Tewari
et al., 2017), they often struggle to capture finer details,
since the resulting latent space is a linear combination of the
input features. Alternative models such as convolutional neural
networks (CNN) are widely employed to capture spatial features
in regular grids (Zhou et al., 2020), which owing to a combination
of desirable properties, such as local connectivity, weight sharing,
and displacement invariance, became the backbone of fields such
as computer vision. That being said, due to the irregular nature
of mesh data, spatially-shared convolution kernels cannot be

4https://keras.io/
5https://www.tensorflow.org/

directly leveraged, unless the 3D mesh data is mapped to a UV
space, also known as flattening.

Consequently, the LAA were “flattened” based on the
approach described in Acebes et al. (2021). First, each LAA was
divided into an equivalent number of isolines, based on the
geodesic distance from the ostium to the LAA apex, which was
computed through a heat equation method (Crane et al., 2013).
Subsequently, an equivalent number of vertices were sampled
from each isoline, through an angular mapping performed by
pivoting around the centroid of each isoline. Meanwhile, the
points closest to the position of the circumflex artery, which
was manually marked from the CT images, were chosen as
the reference 0–360◦ angle. Once polar coordinates had been
derived, each LAA mesh was represented as a 2D image either
as a circumferential polar plot, also known as a Bull’s eye plot
(Cerqueira et al., 2002), with the apex of the LAA located
in the center of the circumference (see Figure 2B), or as a
rectangular image whose two axes consist in the apical-ostium
distance and angular mapping. Even though the outer ring of
the bull’s eye plot undergoes distortion, it better preserves the
LAA topology avoiding the cut-off produced by the flattening
process. Conversely, the Cartesian grid representation faces
much stronger warping in the area close to the apex, which is
far overrepresented relative to its actual surface area in the 3D
mesh. Therefore, both flattened representations were included to
weigh up their trade-offs. Lastly, as shown in Figure 3, the bull’s
eye plot was padded to a rectangular image before feeding it to
the neural network. During training, the padded regions were
not taken into account when performing the loss calculation and
subsequent accuracy measurements.

With regards to the DL model, we opted for a conventional
U-Net architecture which is comprised of overlapping
convolutional layers arranged in a typical encoder-decoder
bowtie structure (Ronneberger et al., 2015), consisting in
sequential pooling operations that ensure that multi-scale
features are learned from the input data. In addition, skip
connections, encourage the network to reuse low-level features in
the decoding layers, which result in state-of-the-art performance
in several tasks such as medical segmentation. The vanilla U-Net
provided by Thuerey et al. (2020) was leveraged, which was
implemented to predict turbulent flow over a set of distinct
airfoils. In our case, the input features consisted in the spatial
coordinates of the vertices sampled from each LAA mesh
during UV mapping, arranged as a three-channel depth tensor,
analogous to an RGB image in computer vision tasks. Similarly
to the original paper, seven convolutional blocks were employed
(Figure 3), each including batch normalization layers and ReLU
activations after convolution layers, as is the standard practice.

2.3.3. Geometric Deep Learning
While UV mapping enables the direct leveraging of CNNs over
meshes, the resulting 2D image suffers from distortion as the
original mesh data must be cut and warped. Moreover, it cannot
be easily extended to more general volumetric data. Whilst
alternative workarounds such as voxelization exist, the most
efficient way of representing 3D surface shapes and topologies
is through polygonal meshes (Hanocka et al., 2019). As a
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FIGURE 2 | (A) Scheme of the principal component analysis model (PCA). Once each shape was parameterized, the ECAP values were predicted through a simple

multilayer perceptron formed by fully connected layers (FCN). Numbers below each layer represent the number of nodes in each of them. (B) The LAA morphology is

flattened to a new 2D UV space in which the new axes are represented by the geodesic apical-ostium distance and the angle formed with respect to the centroid of

each isoline, using the closest point to the circumflex artery as reference. ECAP, endothelial cell activation potential.

FIGURE 3 | Each left atrial appendage (LAA) went through UV mapping, more colloquially known as flattening, and represented as a 2D image either as Bull’s eye plot

or a polar coordinate-based Cartesian grid representation. The U-Net architecture based on the work by Thuerey et al. (2020), received the spatial coordinates of the

vertices sampled during the flattening process as the input features and then performed regression to predict their corresponding ECAP maps.

response, a set of emerging methods, under the umbrella term
of Geometric DL, are succeeding in generalizing DL models to
non-Euclidean domains such as polygonal meshes, seamlessly
extending operations such as convolutions to the native form of
the data (Bronstein et al., 2017).

Among the array of available graph CNN layers, we opted for
SplineCNN (Fey et al., 2018), since being a spatial method, it
offers several advantages when dealing withmeshes. In particular,
it avoids the need of establishing mesh correspondence.
Additionally, defining the spatial relations between vertex

features becomes trivial by employing pseudo-coordinates. In
our use case, pseudo-coordinates were obtained by computing
the relative distance in Cartesian coordinates between the
vertices of each edge. During the training process, these edge
attributes define how the input features will be aggregated in
the neighborhood of a given node. Additionally, the vertex-wise
curvature and normals were fed to the network as vertex features.

As aforementioned, besides convolution, operations such as
pooling and strided convolutions play a key role in the success
of CNNs, by allowing the network to sequentially extract larger
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FIGURE 4 | General overview of the geometric deep learning network architecture. The input vertex features consisted of the point-wise curvature and normal

vectors. The spatial relations between the nodes were stored as edge attributes through Cartesian pseudo-coordinates. Twelve consecutive SplineConv layers (Fey

et al., 2018) were employed in the local feature module, while a 1,024 feature vector was obtained after max pooling, representing the global features of each mesh.

Numbers adjacent to each layer indicate the number of output features.

scale and abstract features. Consequently, a PointNet-inspired
(Qi et al., 2016) architecture was implemented, in which a
series of consecutive layers focus on learning local features.
Subsequently, the resulting feature arrays are concatenated and
fed to a multilayer perceptron that generates a vector of global
features using max-pooling, as shown in Figure 4. An almost
identical model was employed by Meister et al. (2021) to estimate
left ventricular depolarization times, albeit using a distinct
convolutional operator. By swapping the multilayer perceptrons
employed on the original PointNet (Qi et al., 2016) for graph
convolutional layers, we expect to better exploit local correlations
and weight sharing, while providing topological information to
the network, which is explicitly absent in point cloud data.

The model was constructed by using PyTorch Geometric
(PyG),6 a Geometric DL extension of PyTorch.7 PyG offers a
broad set of convolution and pooling operations that extend
the capabilities of traditional CNNs to irregularly structured
data such as graphs and manifolds. With this in mind, the
mesh dataset resulting from the simulations were converted into
individual graphs. Together with PyVista,8 we converted each
mesh to a graph represented by G = (V ,E), with V = 1, . . . ,N
being the set of nodes, and E corresponds to the set of edges of
the triangular faces. For each vertex, we computed the curvature
and surface normal vectors, totaling four input feature channels.

2.4. Hyperparameter Tuning
A thorough grid search was carried out to fine-tune the models
by iteratively swapping several hyperparameters while keeping
a fixed seed in the dataset split. In the PCA-FCN and U-Net

6https://github.com/rusty1s/pytorch_geometric
7https://pytorch.org/
8https://docs.pyvista.org/

model, ReLU activations were employed coupled with a learning
rate of lr = 0.01 and lr = 0.0005 and trained during 150 and
300 epochs, respectively. Concerning general hyperparameters
of the geometric DL model, the exponential linear unit (ELU)
provided the best results among all activation functions, as it is
standard in many mesh-related tasks. In addition, the training
loop was carried out through 300 epochs with a batch size of 16
and a learning rate of 0.001. In regards to the parameters of the
SplineConv layer, a B-spline basis of degree 1 and a kernel size
of k = 5 were chosen, following suggestions by the authors (Fey
et al., 2018). All models employed a dropout of 0.1 and included
Adam as the optimizer. Similarly to Thuerey et al. (2020), while
alternative loss functions such as L2 Loss and smooth-L1 yielded
similar results, the L1 loss still had an edge over them.

2.5. Experimental Setup
All of the above-presented models were first tested on the
synthetic LA dataset (dataset 1). Some of the experiments aimed
to determine whether the synthetic data resulting from the
statistical shape model were sufficiently representative of real
patient data. If so, synthetic data could be of help with the data-
hungry nature of neural networks in the face of data scarcity,
which is a recurring issue in themedical field. On the one hand, k-
fold cross-validation was performed, first training in the real (n =
54) and synthetic (n = 202) cases separately, and later combining
both datasets. We have called these experiments “Cross real,”
“Cross synth,” and “Cross,” respectively. The experiment in
the real dataset was divided into 6-folds while the latter two
experiments run 8-folds to ensure the groups were even. In
addition, as only the areas of high ECAP values are pro-
thrombotic, we wanted to assess the capability of the models in
predicting the areas with the highest ECAP. For this purpose,
a binary classification was performed taking the 90th percentile
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TABLE 1 | Prediction accuracy results in terms of mean absolute error (MAE) and true positive rate (TPR) for the cross-validation experiments.

Model
Cross Cross real Cross synth Cross (%) Cross real (%) Cross synth (%)

Mean absolute error (MAE) True positive rate (TPR)

PCA-FCN 0.608 ± 0.021 0.591 ± 0.023 0.603 ± 0.008 69 41 69

Cartesian 0.651 ± 0.007 0.661 ± 0.028 0.617 ± 0.017 55 20 64

Bull’s eye 0.654 ± 0.009 0.582 ± 0.027 0.628 ± 0.009 64 33 65

Geometric 0.521 ± 0.013 0.519 ± 0.021 0.514 ± 0.017 77 57 79

PCA, principal component analysis; FCN, fully connected network. Bold signals the model with the best value for a given experiment and metric.

of the distribution as the threshold, which roughly equated to
4, following a similar approach to Di Achille et al. (2014) in
abdominal aortic aneurysms.

On the other hand, the second set of experiments was
conducted in which the amount of training data was sequentially
scaled, to monitor the generalization and accuracy improvement
(or lack thereof) on the testing dataset. Therefore, the testing
scheme from the cross-validation experiments was maintained,
but several runs were completed for each testing fold, changing
the amount of available training data on each. For the first two
experiments, which we deemed “Sequential Real” and “Sequential
synthetic,” the real and synthetic morphologies were trained
and tested separately. These experiments aimed to learn which
models performed better with few amounts of data. Alternatively,
in a third experiment, all the 202 synthetic LAA were employed
as the training baseline. On top of this baseline, real geometries
were sequentially added while testing on the remaining real
cases. The objective of this experiment, deemed as “Sequential
real+synthetic,” focused on the number of real cases required
to build a model just trained on synthetic data, being able to
properly generalize to patient-specific LAA morphologies. In all
the aforementioned experiments, 10% of all the training data was
employed as validation and used to select the best performing
model. In addition, due to the stochastic nature of the training
process in neural networks, the presented results have been
averaged across several runs.

Lastly, the best-performing model from the previous
experiments underwent further testing on dataset 2. While
the complete patient-specific LA morphology was included
during simulation, solely the LAA anatomy was fed to the
neural network during the prediction of the ECAP maps. A
single 10-fold cross-validation experiment was completed in this
dataset along with the binary classification. The 90th percentile
equalled 16 in this case.

3. RESULTS

The ECAP distributions resulting from both simulations were
distinct due to the different geometry and boundary conditions.
The ECAP maps from the LA synthetic dataset had a mean value
of µ = 2.14 ± 1.41, whereas dataset 2 exhibited a far more
lopsided distribution, with a mean value of µ = 34.82 ± 251.68
but a median equal to 0.492.

Each simulation in the synthetic LA dataset lasted around 3–4
h, whereas it took at least 24 h to complete every single dataset

2 simulation, some requiring up to 48 h. Conversely, the PCA
model was the fastest training DL network by a long margin,
only requiring an average of 2 min to train. The training runs
of the remaining two networks (i.e., UV mapping—U-net and
Geometric DL) by contrast, lasted around 15–20 min. Once the
models were trained, the prediction of ECAP maps pertaining
to new unseen cases was instantaneous. On the other hand, the
graph-based network was the lightest, with a total of 1.686.097
trainable parameters, in comparison to the 7.846.178 weights in
the PCA model, and 9.304.833 for the U-Net.

The accuracy results for the cross-validation experiments are
provided in Table 1, both in terms of the mean absolute error
(MAE) of the ECAP and the true positive error (TPR), that is,
the percentage of areas above the 90th percentile that have been
predicted as such by the network. The geometric DL network
outperformed the remaining approaches in all cross-validation
experiments for both metrics. Nonetheless, there is a noticeable
disparity between the MAE and classification results, given that
even though the cross-validation on real data has provided
accuracy on par to the other two scenarios in terms of MAE, it
has a significantly lower TPR among all models.

Additionally, a small batch of seven testing geometries from
one random fold of the “Cross” cross-validation experiment is
shown in Figure 5. Cases in rows 1–4 of the figure were derived
from the SSM model while the remaining three represent real
patient cases. The results from the remaining test samples in
the fold are provided as Supplementary Material. In order to
visually compare with the rest of the approaches, the results
derived from the flattening models were interpolated back to the
original mesh. Furthermore, the mean absolute error is provided
for each prediction instance.

In Figure 6, the results from the sequential experiments
are provided. Once again the graph-based model outscored
its counterparts by some margin. Conversely, the PCA model
struggled whenever few data was available as the maximum
number of PCs had to be lowered in folds with <32 training
instances. Interestingly, the bull’s eye representation also had
an edge over the rectangular Cartesian grid in the majority of
tasks. Furthermore, the addition of synthetic cases in the training
dataset for experiment “Sequential Real + Synthetic,” did not
improve upon the results of models solely trained on real data
for the “Sequential Real” experiment.

Lastly, some exemplary results from the Geometric PointNet
on the more complex dataset 2 are showcased in Figure 7. The
remaining test subjects are provided as Supplementary Material.
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FIGURE 5 | From left to right: ground-truth endothelial cell activation potential (ECAP) from fluid simulations; principal component analysis model (PCA-FCN)

prediction; Cartesian grid and Bull’s eye plot prediction; geometric deep learning prediction (Geometric). The mean absolute error (MAE) is also provided alongside.

Higher ECAP values (in red) are linked to a higher risk of thrombus formation.

The cross-validation resulted in a MAE= 1, 506± 0, 543, while a
TPR of 70% was achieved on the binary classification task.

4. DISCUSSION

The primary goal of this work was to accurately estimate the
ECAP, an in-silico thrombosis risk index, with a set of distinct
deep learning approaches, thus, being able to instantaneously
predict the risk indices when presented with new morphologies,
without the need of running time-intensive and computationally

demanding simulations. It is evident from Figures 5, 7 that the
developed framework, especially the one based on geometric
DL, successfully mimicked the behavior of two distinct sets of
CFD simulations with different boundary conditions, managing
to capture the global ECAP distributions solely on the basis
of LAA morphology. Moreover, the geometric DL model
seamlessly extends to realistic data without the need for template
registration or 2D mapping. More importantly, the training
and prediction of the in-silico index were completed orders of
magnitude faster than conventional solvers of fluid simulations
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FIGURE 6 | All results are shown on terms of the mean absolute error (MAE). (A) Results from the “Sequential Synthetic” experiment in which only the synthetic data

was employed for training. (B) Results from the “Sequential Real” experiment which only trained and tested on the real cases. (C) Results from the “Sequential Real +

Synthetic” test, in which all the synthetic geometries were employed as the training baseline and subsequently, batches of real data were sequentially added on top.

(i.e., tens ofminutes vs. several hours). Furthermore, once trained
inference can be completed instantaneously.

In this regard, a proper understanding of the data to be learned
by the network was imperative in simplifying the space of results
and achieving good accuracy. In our case, proper scaling of
the data turned out to be crucial in improving the results. For
instance, the input tensor to the U-Net model, containing the
spatial coordinates of the vertices was standardized. Similarly,
power transforming of the curvature data in the graph neural
network also offered superior performance. The clearest example,
however, involved the ECAP maps obtained from dataset 2
(e.g., with patient-specific LA data) which had a very marked
positive skew compared to dataset 1 (e.g., with synthetic LA),
rendering the model completely unable to learn. This issue was
easily resolved by log transforming the ECAP maps for training,
resulting in an almost symmetrical data distribution which could

then be reconstructed back to visualize the results. The resulting
distribution densities are provided as Supplementary Material.

By far, the most laborious and time-consuming aspect
of the study consisted in setting up and running the 370
CFD simulations. Several of the steps typically involved
in a geometry-specific fluid modeling pipeline (i.e., medical
image segmentation, mesh building, the definition of boundary
conditions, simulation execution), often necessitate manual
intervention (e.g., mesh corrections). This lack of automatization
represents a major bottleneck when simulating large datasets,
hence most fluid dynamics studies end up including <10 cases
when focused on complex morphologies such as the LA and
LAA. By automating several of the aforementioned procedures
we managed to streamline most of the simulation workflow,
thus enabling the formation of a dataset large enough to train
neural networks.
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FIGURE 7 | Predicted endothelial cell activation potential (ECAP) maps in a batch of left atrial appendages (LAA) from dataset 2 (i.e., patient-specific LA) alongside the

ground-truth (GT) from fluid simulations. Higher ECAP values (in red) are linked to a higher risk of thrombus formation.

4.1. Dataset 1—Synthetic LA Dataset
Careful inspection of the results presented in Table 1 indicates
that the geometric DLmodel outperformed all its counterparts in
the three designated tasks. A look at Figure 5 further supports
this hypothesis, as the geometric DL network obtains a better
accuracy than the rest of the models in 5 out of 7 of the
shown cases. Interestingly, despite having a more rudimentary
DL architecture, the PCA model was the best non-geometric DL
approach, even when trained on the real cases alone. An strong
performance of the PCA network on the synthetic dataset was to
be expected since the geometries were sampled from a statistical
shape model based on the same methodology. Regardless, the
PCA model is second only to the geometric DL network on the
“Cross real” experiment in terms of TPR and is very close to the
Bull’s eye regarding MAE, highlighting the strength of PCA as a
shape analysis tool. As for the flattening approaches, the results
obtained were ambiguous: while both the Cartesian and Bull’s
eye model perform similarly in terms of MAE in the experiments
including synthetic data (“Sequential Synthetic” and “Sequential
Real + Synthetic”), the circumferential approach generalized far
more effectively to the real dataset. In fact, the Cartesian grid
method was the only model to worsen its accuracy in the realistic
LAAs. A possible explanation may be related to the cut-off
introduced in the Cartesian grid representation when performing
the flattening, which results in the loss of the original mesh
topology. This gives rise to a discontinuity when performing
the convolution over the flattened mesh, which produces a very
prominent cut (see white arrows in Figure 5). As real geometries
are far more heterogeneous, the position of the reference 0–360◦

line marked by the circumflex artery localization might fluctuate
more often, which we hypothesize leads to inconsistent learning
of the morphological features for the Cartesian method.

On the other hand, the disparity observed between the MAE
and the TPR in the real and synthetic cases seems to stem from

a distinct distribution of the data. In this respect, the ECAP in
the real LAA dataset has a lower µ = 1.664 and a 90th percentile
equal to 3.313, whereas the synthetic cases have aµ = 2.266 and a
90th percentile of 4.343. With fewer training data encompassing
vertices with ECAP values above the 90th percentile threshold,
the model is more prone to fail when confronted with higher
ECAP values, leading to far worse TPR (see Table 1). Concerning
the gap in the distribution of ECAP values between real and
synthetic cases, we observed a prevalence of “Cauliflower” like
appendages in the synthetic geometries. These morphologies are
characterized by having several lobes, such as cases [2,3,4] in
Figure 5. As observed in these three anatomies, the ECAP in
these lobes tends to be quite high, probably due to increased
blood stasis, which might explain the disparity in the values of
ECAP between the two populations. In turn, this is the reason
that seems to jeopardize the potential accuracy improvement
from including synthetic data.

Moving on to the sequential experiments, all models keep
improving as more training data is added, which suggests that
further increasing the size of the simulation datasets could
be highly beneficial for the overall accuracy. Similarly to the
previous experiments, the geometric DL model continues to
exhibit superior performance over all the other approaches. This
time, it is the PCA-FCN network that struggles the most, as
appreciated in the “Sequential Real” and “Sequential Synthetic”
experiments, shown in Figure 6, since the amount of initial
training data in both of these experiments is well below the
32 principal components that yielded the best results with the
PCA model. In fact, the PCA approach was not able to obtain
good predictions until the training dataset amounted to about
40 geometries. More interestingly, even though the baseline
training dataset already comprised 202 synthetic geometries in
the “Sequential Real + Synthetic” experiment, the PCAmodel did
not perform well (i.e., MAE >> 1) until a minimum number
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of real geometries were provided. Finally, the “Sequential Real +
Synthetic” experiment suggests that the inclusion of the synthetic
data was not of particular help in improving the accuracy of
patient-specific LAA. One would expect that, as the amount
of real training data increases, the accuracy achieved would
eventually exceed that of the model solely trained in the 54
real cases or alternatively, that a similar level of accuracy would
be obtained but utilizing a smaller number of real geometries.
Neither of these two scenarios held true for any of the models, as
accuracy actually worsened overall. Only the geometric DLmodel
managed to achieve accuracy on par with that obtained in the
“Sequential Real” experiment, so it appears to have learned more
relevant and universal morphological features.

All things considered, the graph-based neural network was
superior not only in terms of performance but also regarding the
ease of deployment, while the PCA-FCN and flattening models
each had their strengths and weaknesses. First, the PCA-FCN
model showcased good robustness with regards to real data and
it was the faster training model by far. Nonetheless, the need
for registration was a major handicap during mesh processing,
given that mesh connectivity had to be preserved, which greatly
restricted employing tools such as remeshing, vital to avoid mesh
quality problems. Not to mention the employed registration
itself, which entailed a degree of deformation in the mesh
being registered. In regards to flattening, although altogether
bypasses the need for registration and template selection, it only
succeeded in overcoming the above approach in cases where a
very small amount of data was available for training. Besides, UV
mapping can not be easily extended to other topologies should
we consider including the full LA geometry. All that being said,
flattening representations are still very useful for visualization
and comparison of large LAA populations. Concerning the
geometric DL model, it delivered the best results while working
directly over the native form of the data, and using almost
an order of magnitude fewer weights than its counterparts.
In addition, as no correspondences were required the initial
pre-processing was minimal, thus facilitating the editing of the
meshes and avoid mesh quality issues. For all these reasons,
the graph-based model was chosen for further testing on the
second dataset.

4.2. Dataset 2—Complete LA Dataset
As aforementioned, an inspection of Figure 7 shows that the
distribution of ECAP maps in dataset 2 differs from the synthetic
LA dataset (dataset 1). The more complex boundary conditions
used in dataset 2 have strengthened the washout in the proximal
portion of the LAA. Only in those recesses and cavities in which
the inflow fails to reach, the ECAP is higher than in the first
dataset. On the other hand, the incorporation of the entire LA
geometry during simulation signifies that the ECAP no longer
solely depends on the variation of LAA morphology; other
anatomical features such as the orientation of the pulmonary
veins (García-Isla et al., 2018) will play a role in shaping the
variability of the risk index. Despite the added complexity
of the second dataset the geometric DL network effectively
learned the abstract set of anatomical features related to blood
stagnation. Unfortunately, owing to the “black box” nature of

neural networks, it is difficult to pinpoint what the model is
learning, whether it is a combination of the distance to the
ostium along with local curvature on a given bulge or some other
arrangement of features that might be challenging for humans to
grasp. Although the MAE results effectively tripled in this second
dataset relative to dataset 1, it was to be expected given the skewed
nature of the data and the extremely high values at given spots.

4.3. Limitations and Future Work
Despite the promising results, the presented study has several
limitations that must be addressed before it can be of any use in a
clinical setting.

First, the choice of the ECAP as a thrombosis risk index
may be a subject of contention, since its validity has yet to be
proven on the LAA. At first, the ECAP was chosen as it provides
a dimensionless scalar field that captures some of the most
relevant hemodynamic characteristics related to the formation
of thrombi in the LAA, which in turn, allows simplifying the
required DL model architecture. Moreover, even though the
ECAP index was originally developed in carotid and abdominal
aorta fluid models (Di Achille et al., 2014), it has already seen
some use in clinical studies exploring device-related thrombus
formation in LAA occlusion surgeries (Aguado et al., 2019;
Mill et al., 2020). In any case, the underlying mechanisms of
thrombus formation in the aforementioned situations always
involve some degree of blood stagnation or re-circulation at low
velocities that the ECAP should be able to grasp to some extent.
Furthermore, there is mounting evidence challenging the utility
of standard clinical scores such as the CHAD2DS2-VASc, which
has been long held as the main guide for anticoagulation therapy
in AF patients, highlighting the need for more advanced risk
indexes accounting for AF-specific factors such as hemodynamic
alterations (Siddiqi et al., 2021). In this regard, the geometric DL
model could seamlessly extend to 3D data allowing to predict
more recently adopted indexes of blood stagnation such as the
residence time, which offers an approximate measure of blood
stagnation time scale, based on LA flow velocity vector fields
(García-Villalba et al., 2021).

On the other hand, the hemodynamic variability arising from
the heterogeneous anatomy of the LA was completely neglected
when training the network for the sake of simplicity. Nonetheless,
since the geometric DL framework does not involve any kind
of mesh correspondence it should be fairly trivial to include the
complete LA anatomy. Moreover, the network should be capable
of learning the ECAP fluctuations caused by factors such as
the interaction between the orientation of the pulmonary veins.
Yet, an increase in the size of the input graph could render
the current local convolution scheme insufficient. In this sense,
the network could greatly benefit from widespread approaches
in computer vision such as strided convolutions or pooling,
aimed at extracting multi-scale features. Nonetheless, although
we tested several of the available approaches to construct an
encoder-decoder-like architecture such as in Hanocka et al.
(2019) and Zhou et al. (2020), for the time being, we have not
been able to successfully integrate any of them in the graph-based
model. Future work should also be focused on the interpretability
of themodels, as learning the features that the network is focusing
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on is a crucial step before being able to deploy the model in a
clinical environment.

At the moment, the model is completely agnostic to flow
dynamics and distinct boundary conditions that play a key role
in the process of thrombogenesis. To address this challenge,
we intend on capitalizing on the rapid advances in the field of
physics-informed neural networks, with examples such as the
study by Pfaff et al. (2021). This may enable the full exploitation
by artificial neural networks of the rich Spatio-temporal data
available within CFD data, which may pave the way toward the
real-time prediction of the full velocity vector field in the LA
without the need for hour-long fluid dynamics simulations.

The ground truth from fluid simulations could also be
substituted by 4D flow magnetic resonance imaging (MRI),
which enables a full non-invasive mapping of the intravascular
3D velocity field over time. Nevertheless, for the time being,
most of currently available 4D flow MRI acquisitions employ
velocity encodings (Venc) better suited to higher velocity vessels
and continue to suffer from poor signal-to-noise ratio and
spatiotemporal resolution (Jiang et al., 2015). As a result,
reliable imaging of the LAA flow field is extremely challenging,
especially in the proximity of the vessel wall, making it nearly
impossible to obtain accurate values of derived hemodynamic
indices such as the wall shear stress or the ECAP (Petersson
et al., 2012). In this regard, attempts have already been
made to tackle said limitations such as the development of
Dual-Venc acquisition sequences (Callahan et al., 2019) or
leveraging CFD simulations to obtain 4D flow super-resolution
(Ferdian et al., 2020).

Lastly, to get the full picture of the risk of thrombus formation
the inclusion of factors such as endothelial damage/dysfunction
could be of particular interest. Scar segmentation in AF
patients can be performed automatically by employing
neural networks over MRI acquisitions (Li et al., 2020;
Yang et al., 2020), allowing detection of left atrium wall fibrosis
which is independently associated with LAA thrombogenesis
(Guo et al., 2012).

5. CONCLUSION

In the present study, we have successfully leveraged a set of
deep learning frameworks to instantaneously predict the ECAP
mapping in the LAA solely from its anatomical mesh, effectively
skipping the need to run CFD simulations at inference time. All
models were effective in a simplified LA model, the graph-based
geometrical DL network repeatedly outscoring its competitors.
Moreover, this same model exhibited good predictive capability
even in more advanced simulations with improved boundary
conditions and including the entire LA anatomy. These results
could lay the foundation for real-time monitoring of LAA
thrombosis risk in the future and open exciting avenues for

future preoperative applications and interfaces in which a clinical
user could interactively change settings of a left atrial appendage
occluder device and instantaneously assess the associated risk of
device-related thrombus generation.
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Background: Focal ventricular tachycardia (VT) is a life-threating arrhythmia,
responsible for high morbidity rates and sudden cardiac death (SCD). Radiofrequency
ablation is the only curative therapy against incessant VT; however, its success
is dependent on accurate localization of its source, which is highly invasive and
time-consuming.

Objective: The goal of our study is, as a proof of concept, to demonstrate the possibility
of utilizing electrogram (EGM) recordings from cardiac implantable electronic devices
(CIEDs). To achieve this, we utilize fast and accurate whole torso electrophysiological
(EP) simulations in conjunction with convolutional neural networks (CNNs) to automate
the localization of focal VTs using simulated EGMs.

Materials and Methods: A highly detailed 3D torso model was used to simulate∼4000
focal VTs, evenly distributed across the left ventricle (LV), utilizing a rapid reaction-eikonal
environment. Solutions were subsequently combined with lead field computations on
the torso to derive accurate electrocardiograms (ECGs) and EGM traces, which were
used as inputs to CNNs to localize focal sources. We compared the localization
performance of a previously developed CNN architecture (Cartesian probability-based)
with our novel CNN algorithm utilizing universal ventricular coordinates (UVCs).

Results: Implanted device EGMs successfully localized VT sources with localization
error (8.74 mm) comparable to ECG-based localization (6.69 mm). Our novel UVC
CNN architecture outperformed the existing Cartesian probability-based algorithm
(errors = 4.06 mm and 8.07 mm for ECGs and EGMs, respectively). Overall, localization
was relatively insensitive to noise and changes in body compositions; however,
displacements in ECG electrodes and CIED leads caused performance to decrease
(errors 16–25 mm).

Conclusion: EGM recordings from implanted devices may be used to successfully, and
robustly, localize focal VT sources, and aid ablation planning.

Keywords: ventricular tachycardia, implanted devices, electrograms, automated localization, torso modeling,
deep learning
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INTRODUCTION

Ventricular tachycardia (VT) is a serious cardiac arrhythmia
that represents an important source of morbidity and, upon
degeneration into more lethal arrhythmias such as ventricular
fibrillation (VF) (Srinivasan and Schilling, 2018), sudden cardiac
death (SCD) (Harris and Lysitsas, 2016; Ritchie and Roser, 2018).
Hence, the prevention of VT, and its degeneration into VF,
is of primary clinical importance to improve morbidity and
reduce mortality.

In structurally healthy hearts, VT occurs primarily as a
consequence of abnormal ectopic firing in the ventricles,
overtaking sino-atrial activation and leading to premature
ventricular contractions (PVCs). An effective treatment against
ectopic VT is radiofrequency catheter ablation, which aims to
target the tachycardia by first locating, and then electrically
isolating the region causing the episode. However, procedure
success is heavily dependent on an accurate localization of
the VT source. Often, recordings of the focal VT, in the
form of an electrocardiogram (ECG) or implanted device
electrograms (EGM), exist prior to an ablation procedure,
which inherently contain important information related to the
focal origin of the VT source. Integration of computational
studies and deep learning approaches provides an exciting
opportunity to utilize the information contained within these
recordings to potentially facilitate automated VT localization into
clinical practice.

In recent decades, computational studies (Trayanova, 2011;
Clayton and Bishop, 2014; Henriquez, 2014; Niederer et al., 2019;
Yu et al., 2019) have enhanced greatly our knowledge of VT
mechanisms and have strengthened diagnostic, therapeutic, and
prognostic VT clinical strategies (Rantner et al., 2013; Trayanova
et al., 2017; Mendonca Costa et al., 2019; Niederer et al., 2019),
helping in the growth of personalized modeling (Prassl et al.,
2009; Relan et al., 2011; Medtronic, 2016; Cedilnik et al., 2018;
Le Bras, 2018; Potse, 2018). One limitation of the majority of
these studies is the dependence on monodomain formulations to
represent electric sources in the form of transmembrane voltages.
These models are time-consuming, and thus to achieve clinical
translation, fast reaction-eikonal (RE) simulations (Neic et al.,
2017; Cedilnik et al., 2019) have been the preferred choice. More
recently, realistic simulations of full extracellular potentials at
specific locations (e.g., ECG electrodes) have been obtained from
the combination of lead field (LF) methods (Potse, 2018) with fast
RE models (Gillette et al., 2021), achieving accuracy comparable
to pseudodomain or bidomain formulations, but within a fraction
of the computational time.

Using computational simulations of electrophysiological (EP)
behavior has also been exploited to provide training datasets
for machine and deep learning algorithms (Yang et al., 2018;
Shade et al., 2020); however, these studies did not utilize rapid
RE models (Yang et al., 2018; Shade et al., 2020), or LF
methods (Shade et al., 2020). Yang et al. (2018) were among
the first to utilize convolutional neural networks (CNNs) to
localize focal VT sources from simulated ECGs. The novelty
of the study was in the integration of computational simulated
data with CNN architectures; previous studies had in fact

attempted to localize focal VTs from either simulated ECGs—
utilizing myocardial activation imaging techniques—with no use
of artificial intelligence (van Dam et al., 2009)—or clinical ECGs
utilizing machine learning algorithms (Zhou et al., 2019).

One important limitation of Yang et al. (2018) was the
restriction of the method to the use of ECGs. Although ECGs
are widely used as a routine modality for VT management,
they are not always available for VT patients, particularly focal
VT patients in which the clinical VT is not inducible. Utilizing
cardiac implantable electronic device (CIED) EGMs, which the
majority of pre-ablation patients have in situ (Pekka Raatikainen
et al., 2014; Winterfield et al., 2018), and which continuously
record and store any abnormal arrhythmic activity, could bring
great improvements to the automated localization of focal VT.
Recent clinical studies have demonstrated that stored EGM
recordings of re-entrant VT episodes from implanted devices
can be successfully used to guide the construction of pace-
maps during an ablation procedure, with similar accuracy to
the use of ECGs, but with the advantage of ensuring that
the clinical VT is targeted (Yoshida et al., 2010; Yokokawa
et al., 2019). In our own recent work, we demonstrated how
such EGM recordings might be utilized to perform patient-
specific in silico pace-mapping (Monaci et al., 2020), improving
pre-procedural ablation planning for complex scar-related VTs.
However, literature lacks further investigation on the power of
EGM recordings for the localization of focal VTs, for which
computational models can address and answer a variety of
different questions, and their use in AI-based algorithms.

In this study, we demonstrate the utility of leveraging the
information contained within simulated implanted device EGM
recordings for the automated localization of focal VTs in the
LV. This could benefit clinical procedures by providing pre-
procedural ablation information of the VT episodes without the
necessity of acquiring ECG recordings of the focal VT, which
represents the long-term aim of our study. Although the majority
of idiopathic VTs originate in the right ventricular outflow track
(RVOT) (Srivathsan et al., 2005), focal VTs can also originate
from a variety of different locations in the LV (Ito et al., 2003;
Srivathsan et al., 2005; Yamada et al., 2008), and automating
their localization could be beneficial to clinical procedures. To
achieve our goal, we extend the previous work of Yang et al.
(2018) and utilize fast computational simulations (RE combined
with LF) on a realistic image-based torso model to generate ECG
and EGM traces, which serve as inputs to a CNN architecture.
We show the possibility of obtaining comparable localization
in Cartesian coordinates between ECG-based and EGM-based
trained CNNs. Moreover, we show improvement in the overall
localization by introducing a novel CNN algorithm, utilizing a
local ventricular-specific coordinate system (Bayer et al., 2018).

MATERIALS AND METHODS

The workflow of this study is summarized in Figure 1. Briefly,
this involved using a previously generated 3D torso model
(Monaci et al., 2020) (step 1) to rapidly simulate focal pacing
across the LV within a RE environment (step 2). These simulated
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FIGURE 1 | Study workflow. The 3D torso model, generated (step 1) from a CT TAVI planning scan, was utilized to pace the LV from different locations, within a fast
RE environment (step 2). These solutions were combined with LF matrices computed (step 3) on the 12-lead ECG electrodes and manufacture-guided CIED leads to
generate accurate ECG and EGM traces (step 4), which were then used as inputs to two CNN architectures, one Cartesian probability-based (step 5), and one novel
UVC-based (step 6). Localization of the paced beats across the LV was then computed (step 7) and compared to the actual locations of the simulated beats.

paced beats were combined with LF matrices computed on the
standard 12-lead ECG electrodes and manufacturer-guided CIED
right (RV) and left (LV) ventricular leads (step 3) to reproduce
accurate 12-lead ECG and EGM recordings of the paced beats
(step 4). The data were then processed and used as input to an
adapted version of a previously developed CNN architecture by
Yang et al. (2018) (step 5) and also to a novel network, consisting
of a two-output regression and a classification CNN (step 6), and
utilizing UVCs, to localize the paced beats (step 7).

Model Preparation
As in Monaci et al. (2020), a 3D torso model was generated
from a computed tomography (CT) trans-catheter aortic valve
implantation (TAVI) panning scan. The torso model included
all major organs, with conductivities reported in Table 1,
and a detailed four-chamber heart, extracted from a separate
cardiac CT scan. The patient did not present any visible
structural heart disease and consented to the use of their data
in ethically approved research: UK Research Ethics Committee
reference number 19/HRA/0502 and 15/LO/1803. To decrease
computational time without a loss of physiological electric
signals, the average ventricular edge length of the biventricular
mesh was kept at 738 µm. Realistic fiber orientation was

incorporated into the ventricular myocardium using a well-
established rule-based approach (Bayer et al., 2012).

The LV was geometrically divided into 17 segments, according
to the American Heart Association (AHA) guidelines (Selvadurai
et al., 2018), as shown in Figures 2A–F. In addition, each of

TABLE 1 | Organ conductivities of our torso model.

Organs Tissue conductivities (S/m)

Lungs 0.0714

Bones 0.05

Skin 0.05

Fat/Muscle 0.24725

Liver 0.1667

Spleen 0.1

Kidneys 0.1667

Aorta 0.6667

Ventricular blood pools 0.6667

Atrial blood pools and walls 0.6667

Pericardium 0.2

See also Plancke et al. (2019).
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FIGURE 2 | Patient-specific LV segment models. Generic AHA 17-segment model is shown in (F). The equivalent patient-specific model of the LV mesh is shown in
(A) with basal, mid, and apical segments illustrated in (B–E), respectively. An example of the novel 68-segment model is shown in (H) highlighting the equal division
in four parts of each of the 17 segments. (G) shows an example of how segment 1 in our mesh was divided into four equal segments.

the segments was subsequently divided into four, for a total of
68 (Figures 2G,H). These models were used as guidance for the
collection of pacing locations, for the generation of training and
testing labels for the existing CNNs, and the visualization of the
localized VT sources.

To replicate focal ectopic VTs across the LV segments, ∼3767
randomly chosen paced beats—single stimuli, with a basic cycle
length (BCL) of 400 ms—were simulated using a computationally
efficient RE formulation (Neic et al., 2017) within the Cardiac
Arrhythmia Research Package (CARP) (Vigmond et al., 2003),
utilizing the 10 Tusscher ventricular cell model (ten Tusscher
et al., 2004). Intra- and extracellular tissue conductivities were
tuned to achieve physiological QRSs (Costa et al., 2013),
comparable to equivalent pseudo bidomain simulations on
a higher-resolution mesh (Monaci et al., 2020). Intra- and
extracellular conductivities were 0.1845 S/m and 0.6628 S/m
along the fiber direction, respectively, and 0.0493 S/m and
0.1769 S/m transverse to it. The corresponding RE conduction
velocities (CVs) were 0.5455 m/s and 0.1802 m/s, along and
transverse the fiber direction, respectively.

To allow the computation of extracellular potential signals
from specific locations within the torso (Figure 3), the simulated
cardiac potentials of each paced beat were combined with the LF
Method (Potse, 2018). Specifically, LF matrices were calculated
within CARP (Vigmond et al., 2003) on the standard ECG lead
locations and on the RV and LV lead sensing parts of a standard
Boston Scientific implanted device (Antoniadis et al., 2017). This
virtual device had a non-septal RV lead, with a superior vena
cava (SVC) coil in the right atrium (RA), and a straight LV lead
through the coronary sinus, with four sensing LV tips distanced
equally at 7.5 mm. Configurations of both 12-lead ECG and CIED
are shown in Figures 4A–D. All sensing electrodes, including

the can of the implanted device (CAN), were approximated
to single points, to increase the speed of LF computations
and subsequent simulations. The computation of these matrices
was only performed once for each torso configuration and
took ∼8 min (128 cores). Their combination with the RE
solutions produced high-fidelity 12-lead ECGs and EGM traces
(Figures 4E,F) in∼20 s (256 cores) for each paced location. Eight
EGM vectors were chosen as the main EGM signals (Monaci
et al., 2020), and included far-field CAN-SVC, CAN-RV, and
SVC-RV, and near-field RV tip-RV ring and each LV tip-RV tip.
However, importantly, additional vector combinations (four for
ECGs and eight for EGMs) were added to the standard signals to
facilitate integration into the CNN algorithms (see section “CNNs
Training and Testing").

Finally, a standardized universal ventricular coordinate
(UVC) system was computed on the biventricular mesh (Bayer
et al., 2018) to facilitate the development of a novel CNN
specific to the ventricles, which should be advantageous as it
identifies and constrains the localization of the paced beats
inherently within the myocardium. As shown in Figure 5, UVCs
describe the biventricular mesh using three parameters: z—
normalized distance between apex (0) and base (1) along the
long axis, ρ —normalized distance between endocardial (0) and
epicardial (1) surfaces along the short axis, and ϕ —rotational
distance from LV septum.

CNN Architectures
In this study, we developed two separate 2D CNN architectures,
which used the same ECG and EGM traces as inputs to identify
the location of a simulated paced beat (representing an ectopic
VT). The first architecture, based on Yang et al. (2018), locates
the origin of the paced beat in Cartesian coordinates, after
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FIGURE 3 | Example of our simulation pipeline. RE single point excitations were simulated in ∼3767 different locations across the LV [an example of the activation
time map generated for a single such paced beat is shown here in (A)]. These solutions were combined with the LF matrices computed on the standard nine ECG
leads (V1–V6, RA, LA, and LL), and nine EGM sensing points (LVtip1–4, RVtip, RVring, RVcoil, SVC, and CAN = LA), here shown in (B) for LF on V1. The final signals
at each lead, shown in (C), were then combined to obtain vector combinations shown in Figures 4E,F.

FIGURE 4 | Torso setup. ECG and CIED configurations are shown in (A–D). Example of 16 combinations of pacing signals used for training and testing are
illustrated in (E) for ECGs and (F) for EGMs.

converting the outputs of the CNNs. The second utilizes a
regression and a classification CNN to locate the VT in UVC
space, naturally constraining the final localization of the focal VT
source to the myocardium.

The existing Cartesian probability-based architecture was
reproduced from Yang et al. (2018) and is composed of two
classification CNNs named Segment and EpiEndo CNNs. Segment
CNN classified in which LV segment the pacing beat originated,
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FIGURE 5 | Patient-specific bull’s-eye diagram. 3D patient-specific 17-segment model in (A,B) can be related to the 2D representation in (C) by considering UVC
coordinates ϕ and z. Specifically, z (the distance from apex to base) can be linked to the radius of the 2D diagram, as shown, separately for each apical (Za), mid
(Zm), and basal (Zb) part of the model. ϕ is linked to the segments along the spherical axis. The final patient-specific 2D 17-segment model can be seen in (D),
where the various segments (1–17) are illustrated from blue-to-red color range [mapped from panel B].

whereas EpiEndo CNN determined whether the pacing was
endocardial or epicardial (binary decision). In our study, we
developed two separate Segment CNNs: one classified between
17 LV segments (CNN with 17 output neurons) and the
other between 68 LV segments (68 output neurons). Briefly,
the structure of both Segment and EpiEndo CNNs consisted
of two hidden layers alternating with two pooling layers and
terminating with a fully connected (FC) layer. The output of
both Segment and EpiEndo CNNs was a probability distribution
(likelihood of each output neuron being the correct class). These
distributions were obtained utilizing a softmax function on
the output of the final FC layer. As performed in Yang et al.
(2018), the probability distributions (Piseg and Pjepiendo for Segment
and EpiEndo, respectively) of each output segment (largest
probability) and its adjacent segments were then combined
with the centers of gravity CoG(x, y, z)ij of the corresponding
endocardial and epicardial surfaces, as shown in Equation 1, to
localize a paced beat in Cartesian coordinates.

(Scartesian)out =
N∑

i = 1

Piseg ×

 2∑
j = 1

Pjepiendo × CoG(x, y, z)ij


(1)

The distance of the localized sources to the ground truths
(simulated sources) was expressed in terms of localization errors
(computed as Euclidean distance in millimeters).

Our novel UVC-based algorithm is composed of one
regression CNN, outputting z and ρ, and one 68-feature
classification CNN, predicting the rotational coordinate ϕ. The
structure of both CNNs was similar to the Cartesian probability-
based network (hidden layer–hidden layer–pooling layer–FC

layer), as shown in Figure 6. Because of the cyclic nature of
ϕ, a three-output regression would have not returned satisfying
and accurate results; hence, we used ϕ to divide the LV into
68 “wedges” (ϕ was grouped into intervals of 0.09 radians with
each class assigned a label from 1 to 68, spanning ϕ = − π

to ϕ = π). Using a higher number of LV “wedges” would
have not returned desirable accuracies; thus, we decided to use
a number of features (68) that had worked for Segment CNN
and that was still suitable for achieving precise localization
along ϕ. For the final localization of the paced beats, the
outputs of the 68-feature classification (“wedges” with the highest
probabilities) were converted back to ϕ, and combined with z and
ρ regression predictions.

FIGURE 6 | UVC-based convolutional neural networks (CNNs). Structure of
68-feature classification (top) and 2-output regression (bottom).
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Both Cartesian probability-based and UVC-based algorithms
were implemented in Python using Scikit-learn (Pedregosa et al.,
2011) and TensorFlow (Abadi et al., 2015).

CNN Localization Performance
Localization performance of the Cartesian probability-based
algorithm was expressed in terms of localization error in
millimeters, as described above. The same metric was used for
our novel UVC-based architecture; however, the predicted values
were first transformed from UVC space to Cartesian space [by
locating the closest node in the mesh, with appropriate scaling
of UVC coordinates (Bayer et al., 2018)] and then the distance
with the ground truths (simulated pace beats) was evaluated
(Euclidian distance, in millimeters).

For the Segment CNN of the Cartesian probability-based
architecture, testing performance was evaluated in terms of
accuracy, to allow comparison with results from Yang et al.
(2018). Accuracy is defined as the percentage of paced beats
correctly classified within each segment.

CNNs Training and Testing
Training and testing inputs of both Cartesian probability-based
and UVC-based CNNs were ECG and EGM traces computed
from 3767 pacing excitations across the LV. To facilitate the
execution of the 2D CNNs, the ECG and EGM signals had to
be placed in square matrices; hence, we added four additional
leads to the standard 12-lead ECGs [LL-RA-LA, LA-RA-LL,
RA-LA-LL, and (RA+LA+LL)/2], as performed in Yang et al.
(2018), and eight more EGM vectors to the standard eight
EGMs (CAN-each LV tip and SVC-each LV tip), to achieve
a total of 16 combinations of ECG and EGM vectors. QRSs
were then extracted and sampled in time (16 time points),
and stacked in 16 × 16 matrices, as shown in Figures 4E,F.
A total of 2767 sets of these ECG and EGM matrices were
used for training and were uniformly distributed across the
myocardium (∼36% intramural/mid-wall, ∼32% epicardial, and
∼32% endocardial), with the exception of EpiEndo training data,
which were epicardial and endocardial only (Yang et al., 2018).
White Gaussian noise with a signal-to-noise ratio (SNR) of
25 dB was then added 10 consecutive times to all 16 ECG and
EGM leads of the training set to augment the data by 10-fold
(∼27,670) and increase robustness of the CNN training. A 10-
fold cross-validation was performed in the existing Cartesian
probability-based CNNs as part of the training (Yang et al., 2018),
with a 90% (training)–10% (validation/testing) split. On the other
hand, the cross-validation was used for hyper-parameter tuning
in the UVC-based networks. After training, the localization
performance of both Cartesian probability-based and UVC-based
networks was tested by feeding the retained 1000 sets of ECG and
EGM QRSs, with a SNR of 25 dB. Parameters of both Segment
and EpiEndo CNNs were taken from Yang et al. (2018); batch
size was set to 23, number of epochs was set to 10, learning rate
was set to 0.001, and cross-entropy was used as loss function.
A ReLU function was used as the activation function for feed-
forward propagation, and a gradient-descent-projection method
was used as the back propagation algorithm. In our UVC-based
networks, we used similar parameters, except for the regression

where we set the batch size to 23 and the number of epochs to 15,
and we used mean absolute error as loss function.

Investigation of Model Uncertainties
Localization performance of both Cartesian probability-based
and UVC-based CNN architectures, trained on the data described
above, was also investigated by introducing different noise
levels to the retained 1000 sets (SNR = 5, 10, 15, 20, and
30 dB). Moreover, we investigated the localization performance
of both architectures as body compositions of the torso model
were also varied, shown in Table 2, as well as different
ECG electrode configurations (Figure 7) and different CIED
configurations (Figure 8). For all these variations, LF matrices
were recomputed (according to the new organ conductivities
or electrodes positions) and combined with the retained 1000
intramural excitations to obtain new ECG and EGM matrices.
These traces were then used to test both previously trained CNN
architectures. Some of the major organ conductivities were varied
according to physiological variations (Trakic et al., 2010; Sovilj
et al., 2014); however, we chose to pair specific changes (for
instance, liver and lungs, fat/muscle, named “bath” and liver,
and different blood pools, etc.) to challenge CNN localization
performance. ECG electrodes were displaced by 5 cm in all major
orthogonal directions, and across all leads. Specifically, we shifted
all ECGs leads upward (Figure 7A) and downward (Figure 7B)—
RA and LA were always shifted downward, and LL upward—
toward the left (Figure 7C) and the right (Figure 7D). Moreover,
in one configuration (Figure 7E), the distance between ECG leads
was increased by ∼10 cm. Finally, we simulated variations in
electrode location and diameter of the virtual implanted device,
as reported in Antoniadis et al. (2017) for different cardiac-
resynchronization therapy (CRT-D) devices available in the
market. Specifically, we changed the spacing between the sensing
electrodes of the straight LV lead, to account for shorter or longer
inter-electrode distance; in addition, we increased the diameter
of RV and LV tips to ∼2 mm. In the latter scenario, instead of
considering the EGM signals from single point electrodes, we
averaged the signals obtained from a cloud of points within a 2-
mm radius, to simulate more realistic conditions, and investigate
whether our single point approximation of the CIED leads could
affect the final localization. Finally, we considered the case of
a septal RV coil configuration, which has been tested in CRT-
D (Leclercq et al., 2016) and cardioverter defibrillators (ICD)
(Winter et al., 1998).

RESULTS

Utility of EGMs in Existing
Segment/EpiEndo-Based CNNs
We successfully reproduced the existing classification CNNs,
namely, Segment and EpiEndo, introduced by Yang et al. (2018),
to be trained and tested not only on ECG traces, but also on 16
different combinations of EGM vectors from a standard CIED
with RV and LV leads. Testing performance of Segment CNN was
similar for both ECG-based and EGM-based testing. As shown in
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TABLE 2 | Variations in body compositions.

(1) Liver: 0.023 (S/m) and lungs: 0.039 (S/m)

(2) Bath: 0.45 (S/m) (pure muscle) and lungs: 0.039 (S/m)

(3) Bath: 0.05 (S/m) (pure fat) and lungs: 0.203

(4) Liver: 0.2 (S/m) and lungs: 0.039 (S/m)

(5) Bath: 0.05 (S/m) and lungs: 0.039 (S/m)

(6) Bath: 0.45 (S/m) and lungs: 0.203 (S/m)

(7) Bath (all organs except lungs): 0.24 (S/m) and lungs: 0.07 (S/m)

(8) Skin: 0.117 (S/m)

(9) Atria, ventricles, and aorta: 0.84 (S/m)

Combinations of different organ conductivities within physiological changes are
here reported, used in our CNNs sensitivity analysis.

Figure 9A, 86.76% accuracy was achieved for ECG-based testing
and 79.70% was achieved for EGM-based testing (SNR = 25 dB).

The precision of Segment CNN in each segment, which
defined how correct the CNN is at classifying one segment, is

shown in Figure 9B. Here, we see that ECGs and EGMs have a
similar influence on the network in almost every segment, with
only few exceptions. The three highest precisions are in segments
1, 10, and 14 for ECG-based testing, and 1, 10, and 16 for EGM-
based testing. The three lowest are in 2, 3, and 15 for ECGs, and
2, 7, and 9 for EGMs.

Utility of EGMs in Cartesian
Probability-Based Localization
Localization in Cartesian space of each paced beat, from either
ECG or EGM signals, was possible by combining probability
distributions of Segment and EpiEndo CNNs (as shown in
Equation 1). The localization performance, defined as the
Euclidean distance in millimeters between an estimated source
and the real location of the simulated paced beat, for the
testing dataset of 1000 cases, is reported in Figure 10 for
ECG-based and EGM-based testing. ECG-based localization and

FIGURE 7 | Variations in ECG electrode placements. ECG leads were displaced by ∼5 cm upward (A), downward (B), toward the left (C), toward the right (D), and
by ∼10 cm (mixed displacements toward the right and left) (E).

FIGURE 8 | Variations in CIED configurations. Different CIED LV configurations according to different manufacturers (Boston Scientific, Livanova, Biotronik, and
Medtronic) are shown on the top panels. The standard configuration of RV and LV leads is illustrated on the bottom left, and the septal RV coil configuration is shown
on the bottom right. The main difference between the various configurations is the inter-electrode distance (reported above the manufacturers’ names).
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FIGURE 9 | Cartesian probability-based CNN performance. Testing
performance of 17-feature Segment CNN is here reported in terms of
accuracy (%) (A), and precision (B) for each of the 17 segments of the LV
mesh. ECG-based and EGM-based testing performances are reported in blue
and red, respectively.

EGM-based localization produced a mean localization error of
11.76± 5.32 mm and 13.25± 6.79 mm, respectively.

Application of the 68-feature Segment CNN, based on the 68-
segment LV AHA model shown in Figure 2G, was able to reduce
localization errors of both ECGs and EGMs to 6.69 ± 3.19 mm
and 8.74± 6.41 mm, respectively, as shown in Figure 10.

UVC-Based Localization
Further improvements in localization performance were made by
developing two CNNs, which returned the position of a paced
beat in a reference frame specific to the ventricles (UVCs). This
UVC-based localization outperformed the Cartesian probability-
based localization, as shown in Figure 11A, reducing localization
errors to 4.06± 2.47 mm and 8.07± 8.26 mm for ECG and EGM-
based testing, respectively.

UVC-based localized sources are visualized in 2D in a
patient-specific bull’s-eye diagram, shown in Figure 11B for
30 beats, as previously illustrated in Figure 5. Here, a paced
beat can be visualized using its UVC coordinates and can be
compared to the ground truth, revealing a close match between
all pairs. The radius of the diagram describes the distance of
a paced beat to the LV apex (center of the diagram), relatable
to UVC z, and its circumferential direction (ϕ) facilitates the
positioning of the beat within a specific segment. The intramural

location (ρ) of the beat (how far from the endocardium and/or
epicardium) is color coded.

Sensitivity to Noise
Overall, localization was only slightly affected by noise, as
seen in Figure 12A (ECG-based localization) and Figure 12B
(EGM-based localization). As SNR decreased (increased noise),
localization errors increased only slightly, with one exception
(SNR = 5 dB), where the performance of both UVC-
based and Cartesian probability-based localization was reduced.
However, all localization errors were < 12.5 mm for ECG-
based localization. Moreover, noise seemed to affect EGM-based
localization more than ECG-based localization.

Sensitivity to Electrode Locations
Displacements of ECG leads and different CIED configurations
did affect the localization performance of UVC-based and
Cartesian probability-based algorithms (errors > ∼15 mm) for
ECG- and EGM-based testing, as shown in Figures 12C,D,
respectively. ECG-based localization was more affected by
displacements away from the heart (20 mm)—right and
downward shifts. Errors in EGM-based localization were higher
(20 mm) when considering longer inter-electrode distance
(20 mm) and increased lead surface diameter (2 mm). For UVC-
based localization, a septal RV coil configuration caused errors to
increase > 20 mm as well.

Sensitivity to Tissue Conductivities in
Torso Model
A comparison between ECG-based and EGM-based localization
for different body compositions is shown in Figure 13A
(for UVC-based localization) and Figure 13B (for Cartesian
probability-based localization). ECG-based localization was only
affected by a high increase of fat in the torso bath (scenarios
3 and 5) and when the whole torso was simplified to bath and
lungs (scenario 7). In those three scenarios, mean localization
errors increased to 17.75 ± 9.88 mm, 20.72 ± 10.99 mm, and
14.08 ± 7.38 mm for UVC-based testing, respectively, and to
13.01 ± 8.89 mm, 15.07 ± 11.20 mm, and 13.88 ± 8.40 mm for
68-segment Cartesian probability-based testing. Other variations
of tissue conductivity did not affect the performance of either
algorithm (localization errors <∼8 mm).

Finally, EGM-based testing was less affected by changes
in body compositions during Cartesian probability-based
localization. Similar to above for ECG-based localization,
simplification of the torso to bath and lungs (scenario 7) caused
the highest mean error (14.83 ± 11.24 mm), but in all other
scenarios, localization ranged between 9.04 and 10.66 mm. On
the other hand, UVC-based EGM localization had a similar
trend to ECG-based localizations, with errors > 15 mm for
scenarios 3, 5, and 7.

DISCUSSION

In this study, we successfully utilized simulated implanted device
EGMs to localize virtual focal VT sources using CNNs, achieving
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FIGURE 10 | Localization performance of Cartesian probability-based algorithm. Localization errors in millimeters are reported for ECG-based (blue) and EGM-based
(red) testing. A comparison in localization performance between different Segment CNNs can also be seen; the 17-feature Segment CNN is on the left (A) and the
68-feature Segment CNN is on the right (B).

FIGURE 11 | Localization comparison between UVC-based and Cartesian probability-based algorithms. Mean localization errors (A) are reported in millimeters with
corresponding standard deviations for ECG-based (blue) and EGM-based (red) testing. An example of how ventricular tachycardia (VT) focal origins compare to
UVC-based localized sources is shown in (B); diamonds represent the ground truths, whereas the circles are the CNN outputs. The gray color bar represents the
distance from endocardial (black) to epicardial (white) surfaces of each source, whereas the blue-to-red color bar represents 1–17 patient-specific AHA segments.

accuracies that could be useful in clinical settings. A previous
algorithm (Yang et al., 2018) utilized 12-lead ECGs for a similar
purpose; here, we managed to replicate the structure of the CNN
architecture for EGM traces and improve the overall localization
by introducing a higher number of segments in the AHA LV
model. Moreover, we also improved the overall localization
precision by introducing a novel architecture composed of

regression and classification algorithms, which was able to
identify the source in a framework specific to the ventricles, easily
interpretable by clinicians. Finally, we investigated the robustness
of both CNN algorithms to the introduction of uncertainties,
such as different noise levels in the data, and possible inter-patient
variabilities (different body compositions, ECG lead positions,
and CIED configurations).
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FIGURE 12 | Localization comparison between UVC-based (light gray) and Cartesian probability-based (dark gray) networks. Localization performance for
ECG-based and EGM-based testing are here reported during sensitivity analysis for different noise levels—(A,B), respectively—and for different lead
configurations—(C,D), respectively. For all panels, mean errors with corresponding standard deviations are reported for UVC-based (light gray) and Cartesian
probability-based (dark gray) localization. Displacements of ECG leads, shown in Figure 7, results in localization errors in (C); on the other hand, different CIED
configurations, shown in Figure 8, return errors in (D). Little difference in localization is present between the two networks with similar mean localization errors.

Successful Application of EGMs in
Existing Cartesian Probability-Based
Algorithm
Simulated focal VT sources were successfully identified from 16
combinations of implanted device EGM vectors. In the previous
study, Yang et al. (2018) achieved localization precision in the
range of 10–11 mm when utilizing a combination of 16 ECG
vectors; here, we reduced localization errors to 6.69 mm and
8.74 mm for ECG and EGM traces, respectively, by incrementing
the number of segments in the LV to 68. In clinical practice, the
average diameters of catheter tips are between 4 mm and 8 mm
(Ilg et al., 2010), limiting the average lesion size to a minimum
of ∼8.5 mm (Wittkampf et al., 1989). Hence, we achieved
localization precisions in a range suitable for improving ablation
planning. Especially in patients with a non-stable condition, pre-
planning of these procedures could be expedited and aided if the
acquisition of ECG data during VT would not be required, which
can be achieved by utilizing information stored in implanted
devices. Our algorithm thus proposes a first level of investigation

that could direct clinicians to the region of interest with high
precision. Moreover, we achieved ECG-based and EGM-based
testing accuracies in ranges comparable to Yang et al. (2018)
(77%). Similar patterns to the previous study were seen when
investigating how noise affects the localization; only a loss in
accuracy and localization precision is seen with SNR = 5 dB.
Interestingly, noise seems to have a greater impact on EGM-
based localization than on ECGs. This could be explained by
the fact that implanted device sensing vectors are closer to
one another and to the cardiac electrical activity, amplifying
variations caused by noise, thus affecting EGM-based localization
to a greater degree.

Novel UVC-Based Algorithm Improves
Localization
Our novel UVC-based algorithm improves localization to
4.06 mm and 8.07 mm for ECGs and EGMs, respectively,
outperforming the existing study. Whereas the Cartesian
probability-based algorithm relies on combining probabilities of
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FIGURE 13 | Localization sensitivity to tissue conductivities. Mean localization errors are here reported for UVC-based (A) and Cartesian probability-based (B)
localization as different organ conductivities were changed in the torso model—see Table 2. Small differences are seen between ECG-based (red) and EGM-based
(blue) localization errors.

two networks with the geometrical centers of gravity of each
LV segment to locate a VT origin, our architecture predicts
the actual location of the source in terms of its (normalized)
distance from the apex, the LV septum and, most importantly,
the endocardium. Furthermore, it intrinsically bounds the
localization to the myocardium. Knowing the exact intramural
(mid-wall) location, a VT source could help in the choice of
power, tip diameter, and lesion size to apply, as well as access
direction (epicardial or endocardial), in pre-procedural planning.
Finally, our novel localization facilitates the visualization of
focal estimates, by plotting a patient-specific bull’s-eye diagram,
where the radius represents the distance from the apex and the
circumferential direction relates to septal, anterior, inferior, and
lateral LV segments.

Automated Localization Is Only Affected
by Extreme Changes in ECG Lead
Positions and Implanted Device Lead
Configurations
Focal VT localization is only marginally affected by differences
in body compositions. However, to increase the accuracy of
the results, a torso model constructed for algorithm training
should at least include all major thoracic and abdominal organs
with realistic conductivity values; our findings suggest that
representing bath and lungs (as used in Yang et al) only produce
signals that differ substantially from more complete torso models,
importantly affecting localization accuracy. Moreover, EGM-
based algorithms seem to be more robust to tissue variations,
possibly due to the closer positioning of the device leads to
the electrical cardiac source, with extracellular potentials being
less affected by the surrounding tissue/organ conductivities.

Displacements in ECG leads and differences in common
CIED configurations do seem to have an impact on the final
localization; this suggests the necessity of integrating a higher
variability in the training data, or extrapolating ECG or CIED
patient-specific information from imaging data to strengthen
future automated algorithms and allow clinical validation
and translation.

Limitations
A notable limitation of this study is the absence of clinical
validation. However, our main goal was to strengthen the
automated localization of focal VTs and investigate the properties
of our 3D pipeline that need improvement for future clinical
studies. For future validation of our in silico EGM model
and corresponding CNN localization, we will need to generate
patient-specific 3D models that have been registered and tuned
to the clinical framework used during EP mapping and ablation,
collect simulated data on such models for CNN training, and test
the latter on clinical EGM recordings of the focal VT(s), and/or
paced beats, that have been collected from CIEDs directly or
from the latter recording during the mapping. When attempting
clinical translation in the future, we will also investigate other
aspects of our work regarding patient-specific EP properties that
were not taken into consideration in this study. Our model
required certain simplifications, such as rule-based fibers and
lack of Purkinje activation, which we believe would not make
an impact in the final performance of our algorithms when
dealing with focal beats, but that could be useful to take into
account for more complex patient-specific approaches. Although
our cardiac model was static, we do not believe that the absence
of electro-mechanical feedback significantly influenced the final
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ECG or EGM signals, when considering only QRSs (ventricular
activation); many studies have validated static simulated EGM
signals against clinical data (Cardone-Noott et al., 2016; Cedilnik
et al., 2018; Gillette et al., 2021), showing that it is not necessary
to couple mechanical simulations with EP for these types of
problems. Moreover, we only considered single beats originating
in the LV. In future studies, it will be worth including focal
VTs in the RV, which is a common region of VT especially
around the outflow track (RVOT). This could be easily achieved
by using the UVC system, which covers the RV, to generate
labels and prepare simulations, facilitating both modeling and
localization pipelines. Although we believe that simulating
multiple paced beats would not have an impact in the final CNN
performance and localization, it will be necessary to achieve
more realistic scenarios, as it can influence the waveforms of
ECG and EGM traces. Furthermore, extending the automated
localization of VT to more complex episodes (for instance, in
presence of micro re-entries and/or infarction) represents an
interest of ours that will be addressed in future studies. The
investigation on how different signal uncertainties influence the
performance of our CNNs could also be extended to include
more complex and realistic ways of adding noise to customize
computational models to patient-specific settings (Barone et al.,
2020; Marcotte et al., 2021). Another aspect of this study that
could be refined is the overall structure of our novel UVC-based
architecture; both regression and classification networks were
implemented following the structure proposed by Yang et al.
(2018), although some parameters were optimized to fit the new
tasks. In future studies, deeper networks could be developed,
and different input data shapes could be investigated (e.g., 2D
vs. 1D). Moreover, to tackle the problem of computational
efficiency and decrease even further our simulation time when
dealing with more complex arrhythmias, we may investigate the
possibility of GPU-based models, which have recently opened
new perspectives in terms of real-time, physiologically detailed
simulations (Vasconcellos et al., 2020).

CONCLUSION

By integrating fast EP simulations with deep-learning algorithms,
we have demonstrated the utility of our in silico pipeline for

the simulations of EGMs stored in implanted devices, which, in
addition to 12-lead ECGs, can accurately localize focal VTs. Our
novel in silico automated algorithm, which utilizes a coordinate
frame specific to the ventricles, increased localization precision
above previous segment-classification approaches, facilitating
clinical interpretation. Moreover, we showed the necessity of
including more variability in the training data regarding lead
positions, and the stability, on the other hand, of the localization
to changes in body compositions.
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In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known

to decrease with increased structural tissue remodeling, referred to as fibrosis. In

addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable

target for catheter ablation. However, it remains an open challenge to find fibrotic

areas and to differentiate their density and transmurality. This study aims to identify

the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated

cardiac electrograms, combined with a generalized model of clinical noise, reproduce

clinically measured signals. Our hybrid dataset approach combines in silico and clinical

electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate.

This approach captures different in vivo dynamics of the electrical propagation reflected

on healthy electrogram morphology and synergistically combines it with synthetic fibrotic

electrograms from in silico experiments. The machine learning algorithm was tested

on five patients and compared against clinical voltage maps as a proof of concept,

distinguishing non-fibrotic from fibrotic tissue and characterizing the patient’s fibrotic

tissue in terms of density and transmurality. The proposed approach can be used to

overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation

targeting fibrotic areas.

Keywords: atrial fibrillation, fibrosis, machine learning, bidomain, transmurality, density, cardiac modeling

1. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is characterized by an irregular
heart rhythm, which is upheld by structurally altered fibrotic tissue (Platonov, 2017). Fibrosis
modifies the cardiac substrate and creates a heterogeneous medium for electric propagation.
Specifically, the deposition of excessive collagen fibers in the extracellularmatrix affects intercellular
connections, increases conduction anisotropy, and leads to slowed conduction. As such, fibrosis
facilitates functional and structural conduction block, promotes reentry, and provides anchors for
reentrant activity. In this way, fibrotic remodeling of the cardiac substrate favors initiation and
maintenance of cardiac arrhythmia (Hinderer and Schenke-layland, 2019).
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Catheter ablation is a first line therapy for patients with
persistent AF (Hindricks et al., 2020). Substrate ablation
strategies guided by a voltage map derived from the amplitude
of intracardiac electrograms define areas based on a cut-off
value (frequently <0.5mV during sinus rhythm) as pathological
tissue and target them for ablation (Malcolme-Lawes et al.,
2013; Kawaji et al., 2019; Nairn et al., 2020). Several clinical
studies have shown a correlation of fibrosis identified through
late gadolinium enhancementmagnetic resonance imaging (LGE-
MRI) with reduced local signal amplitude (“voltage”) in atrial
electrograms (Jadidi et al., 2013; Caixal et al., 2020). Using
low voltage areas as targets for ablation has not yet shown
an optimal and consistent reduction in the rate of recurrent
atrial fibrillation (Verma et al., 2015; Jadidi et al., 2016; Schade
et al., 2020). In addition, the interpretation of the electrograms
measured at the endocardial surface of the tissue is still poorly
understood, and there is no consensus about the voltage cut-off
value to define arrhythmogenic substrate (Tzeis et al., 2019; Nairn
et al., 2020).

In recent years, computational modeling has provided
detailed insight into the mechanistic role of fibrotic
tissue characteristics in the initiation and maintenance of
arrhythmias (McDowell et al., 2013; Roney et al., 2016; Gokhale
et al., 2017). In silico experiments showed that the morphology
of the electrograms is related to tissue heterogeneities (Keller
et al., 2014; Gokhale et al., 2017) and help to improve ablation
strategies for treating AF (Lin et al., 2016; Jadidi et al., 2020).
Controlled simulation environments provide the ideal setup
to analyze how the fibrosis characteristics volume fraction and
transmurality affect intracardiac signals and can be leveraged to
pinpoint arrhythmogenic tissue.

With the increasing amount of data available, the use of
machine learning for the interpretation of cardiac signals is
steadily increasing. Machine learning has been extensively used
in electrocardiogram analysis due to its potential to analyze
big datasets and uncover mechanistic information about cardiac
electrical function (Cabrera-Lozoya et al., 2017; Hannun et al.,
2019; Lown et al., 2020; Luongo et al., 2020).While several studies
aimed at quantifying AF mechanisms and automatically localize
reentrant drivers using in silico or clinical electrograms (Schilling
et al., 2015; McGillivray et al., 2018; Lozoya et al., 2019), less
attention has been paid to the information that intracardiac
electrograms can provide about the cardiac substrate based on
the signal morphology due to the effect of fibrosis. Campos et al.
(2013) classified different types of fibrosis based on electrogram
features using in silico experiments. However, quantification
of fibrotic volume fraction and transmurality in the atrial
substrate has not been reported yet to the best of our knowledge.
Additionally, data-driven approaches can help to overcome the
use of a single voltage cut-off value to characterize the cardiac
substrate and distinguish between non-fibrotic and fibrotic tissue
based on a more comprehensive, holistic set of criteria.

We aim to quantify the volume fraction and transmurality
of fibrosis present in the cardiac tissue by machine learning
on features extracted from intracardiac electrograms. In the
current state, clinical electrograms do not provide information
to directly characterize the fibrotic substrate. Therefore, we

created highly-detailed multi-scale biophysical simulations that
capture the electrogram signature of fibrotic tissue. Additionally,
clinical electrograms from high voltage areas and low complexity
captured the variability of healthy tissue. Combined with the
simulated electrograms, they formed the basis of a hybrid dataset
to train a machine learning algorithm based on features extracted
from intracardiac signals to characterize the atrial substrate.

2. MATERIALS AND METHODS

We created unstructured meshes to represent a patch of cardiac
tissue surrounded by a bath (blood). On top of the tissue, we
placed realistic models of two commercially available intracardiac
mapping catheters, as depicted in Figure 1. Fibrosis was modeled
with different densities and transmurality within a circular area
in the center of the patch.

2.1. Tissue Setup
Tissue patch dimensions were 30 × 30 × 2mm with an
average element length of 200 µm, as shown in Figure 1A.
To address the variability that ionic models could introduce
in the calculation of electrograms, we used two different ionic
models to simulate the electrophysiology of the human atrial
tissue to generate the hybrid dataset. Human atrial cellular
electrophysiology was characterized by the mathematical models
proposed by Courtemanche et al. (1998) and Koivumaki et al.
(2009). To reproduce the electrical remodeling in cells due
to persistent atrial fibrillation, the Courtemanche et al. (1998)
model was modified as suggested (Loewe et al., 2014), whereas
the Koivumaki et al. (2009) model was modified according
to Skibsbye et al. (2016). Cardiac bidomain conductivity ratio
between the intracellular and the extracellular medium was
adjusted in a tissue strand in two scenarios to achieve plane
wave conduction velocities of 30 and 40 cm/s (McDowell et al.,
2013). To consider different directions of electrical propagation,
the tissue was stimulated from three sides: left border, bottom
border, and top right corner.

2.2. Fibrosis Modeling
Several studies have shown the importance of the texture of
the fibrotic tissue for excitation propagation in the cardiac
substrate (Jakes et al., 2019; Dokuchaev et al., 2020; Nezlobinsky
et al., 2020). Our proposed model aims at reproducing the
deposited collagen fibers observed in tissue samples with
interstitial fibrosis (Hansen et al., 2017). Fibrotic infiltrations
were grown from the endocardial side to the epicardium with
three different degrees of transmurality: 0.5, 1, and 2mm (i.e.,
fully transmural). Fibers of collagen were placed following
uniform distributions by labeling mesh elements as collagen.
Collagen was modeled as low conductive extracellular medium
with a conductivity of 1×10−6 S/m (Lima et al., 2006; Keller
et al., 2014) and an average length of 600 ± 200µm (Jacquemet
and Henriquez, 2009; Eduardo et al., 2016). Conductivity of
myocytes within the circular fibrotic region was reduced by
53% in the longitudinal direction and increased 2.5-fold in
the transverse direction to simulate the effect of gap junction
reduction observed during persistent AF (McDowell et al., 2013).
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FIGURE 1 | (A) Dimensions of the in silico setup. Tissue dimensions, catheter position, and fibrotic dimensions are shown in the left panel. In the top right corner, bath

dimensions are depicted. A cross-section cut showing the interstitial model is depicted in the lower right corner. (B) Isometric view of the two setups used for the

in silico experiments. The left panel shows the setup using the HD Grid catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul, MN) and the fibrotic tissue. The

right panel shows the setup using the Lasso catheter (Biosense Webster, Diamond Bar, CA, USA) on top of the tissue. Reused from Sánchez et al. (2021).

Ten different random realizations were considered per density
and transmurality.

2.3. Electrogram Signals
To represent the effect of the catheter geometry on the
electrogram, we incorporated two realistic geometries of
commercially available catheters as depicted in Figure 1B. The
left panel in Figure 1B shows the geometry of an HD Grid
catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul,
MN), and the right panel shows the geometry of a Lasso
catheter (Biosense Webster, Diamond Bar, CA, USA) with an
interelectrode distance of 2mm between electrodes of one pair
and 6mm between pairs. Electrodes were modeled as a highly
conductive material (1×1012 S/m) while insulator materials were
modeled as low conductance (1×10−6 S/m).

Unipolar electrograms, sampled at 2 kHz, were extracted from
the bidomain simulations for every electrode of the catheter.
Additionally, a generalized model of noise extracted from clinical
signals from the four patients in the training set was created using
an autoregressive approach and added to the simulated unipolar

signals as depicted in Figure 2. First, ventricular far-fields were
blanked from the unipolar clinical signals as well as atrial activity,
thus keeping only the noise segments. The noise model was
created from thirteen extracted noise segments from unipolar
clinical signals. Each segment was fitted using an autoregressive
model:

Xt =
p

∑

i=1

φiXt−i + ǫ∗t , (1)

where Xt is the time series and ǫ∗t is white noise. The model order
p was determined based on the Bayesian information criterion.
The smallest Akaike information criterion value determined
the global order, and the model coefficients φi were averaged
to obtain a global model representing the clinical noise of
intracardiac signals. The generalized model was added to the
simulated unipolar signals as depicted in Figure 2.

After adding noise, both unipolar and bipolar signals were
filtered using a Butterworth second order band-pass filter
implemented in Matlab. Unipolar synthetic signals were filtered
using a band-pass between 0.05 and 900Hz. Afterward, bipolar
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FIGURE 2 | Workflow to generate the noise model and the addition to the simulated signals. In the top left corner, the different segments of the activity from a clinical

unipolar electrogram are depicted. Autoregression was applied to the noise segments. The noise model was used to estimate the simulated unipolar electrogram with

noise. Afterward, the unipolar electrograms (red and blue trace) were filtered, and the bipolar electrogram was calculated by subtracting the unipolar electrograms.

Reused from Sánchez et al. (2021).

electrograms were calculated by subtracting the signals from the
corresponding pairs of electrodes and filtered by a clinically used
band-pass filter between 30 and 300Hz (Deno et al., 2017; Unger
et al., 2019).

2.4. Numerical Simulations
Biophysical simulations were run with openCARP (Vigmond
et al., 2003; Sánchez et al., 2020) using a full bidomain model
described in Equations (1) to (6), which provides the most
physiologically-realistic representation of cardiac bioelectric
activity. The bidomain model accounts for bath-loading effects
by representing a surrounding extracellular bath and the physical
properties of the electrode as an equipotential material.

∇ · (σi∇φi)) = βIm (2)

∇ · (σe∇φe)) = −βIm − Ie,s (3)

Im = Cm
∂Vm

∂t
+ Iion(Vm, ν)− Itrans (4)

Vm = φi − φe (5)

φ represents the electrical potential, the indices i and e refer
to the intracellular and extracellular spaces, respectively. σ is
the conductivity tensor, β is the surface to volume ratio of the
myocytes, and Iion the total transmembrane ionic current density
from the cellular model. The latter is dependent on Vm and
a vector ν of further state variables. Itrans, a transmembrane
current density stimulus, and Ie,s, an extracellular current density,
describe external stimuli. If a bath surrounds a tissue, the bath is
treated as an extension of the extracellular space.

Adding (2) and (3) and incorporating it into (5) yields:

∇ · (σi + σe)∇φe = −∇ · (σi∇Vm)− Ie,s (6)

∇ · (σi∇Vm) = −∇ · (σi∇φe)+ βIm (7)

The in silico model was verified and validated by applying the
criteria suggested in the ASME VV-40-2018 standard of the
American Standard Association of Mechanical Engineers (ASME
V&V 40, 2018). The risk-informed matrix assesses the model
influence in characterizing the atrial substrate using intracardiac
signals. The software solution was verified as described by
Niederer et al. (2011). The simulated signals were compared
with clinical signals. Additionally, we considered uncertainty
by simulating different propagation scenarios, including
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FIGURE 3 | Electrogram activity detection in the Hilbert space. (A) Electrogram signal (C) in the Hilbert Space with centroid (orange trace), green arrow depicts the

distance measured from the centroid to the signal. (B) Frequency distribution of centroid to signal distance, red line represents mean value plus one standard

deviation. (C) Bipolar electrogram (blue trace) and activity segments (orange trace).

realistic geometries of two commercially available catheters, and
implementing 10 different realizations per fibrosis density and
transmurality for random, uniformly distributed collagen. Single
cells were stimulated at a basic cycle length of 600 ms for 100
cycles. The state of the cell model at the last time step was used
as the initial state for the cells in tissue level simulations. Tissue
simulations were stimulated with five pulses at a basic cycle
length of 600 ms. Electrograms were evaluated for the last cycle.
We performed a total of 1,444 full-bidomain simulations to build
the dataset of synthetic signals with a length of 2.5 s. The meshes
used in this study had an average of 2 million elements and
345,000 points. The total number of electrograms included in
the hybrid dataset was 2,338, of which 1,198 were clinical signals
and 1,140 were simulated signals.

2.5. Classification Algorithm
We implemented decision tree classifiers trained to predict binary
or multiclass responses for tissue characteristics in three settings:
(i) fibrotic vs. non-fibrotic tissue, (ii) several degrees of fibrosis
density (10, 20, 40, and 60%), and (iii) subendocardial, partially
transmural, and fully transmural fibrosis.

As input features for the decision tree, we complemented
the peak-to-peak amplitude of the electrogram signal by a
set of complexity measures derived from the electrograms
as a signature of the fibrotic substrate and its microstructure
(Figure 1A). Complexity features were extracted from the activity
segments detected in the intracardiac signal to train the classifier.
For each signal, segments of atrial activity were calculated
by tracking closed loops in Hilbert space. The distribution of
the radius of every single loop was calculated and the mean
value plus one standard deviation was chosen to distinguish
between cardiac activity and noise (Figure 3). The peak-to-
peak amplitude was calculated for each active segment. Signal
complexity was quantified for each segment of atrial activity
using different entropy measures: sample entropy (Richman
and Moorman, 2000), Shannon entropy (Shannon, 1948),
spectral entropy (Vanluchene et al., 2004), and Kolmogorov
complexity (Kolmogorov, 1968). Additionally, the fractal
dimension coefficient was calculated for the whole 2.5 s signal
segment (Muller et al., 1992).

The hybrid dataset was created by combining simulated
electrograms and clinical electrograms and used to train the
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classifier. Specifically, the class of non-fibrotic synthetic signals
was extended by clinical signals annotated as high voltage (peak-
to-peak amplitude >0.5mV) by a medical expert extracted from
four patients. Moreover, the other five patients were used to test
the classifier as a proof of concept. In silico, non-fibrotic tissue
was simulated using two different conduction velocities (30 and
40 cm/s) to capture the effect of conduction velocity variability on
peak-to-peak amplitude and active segment duration. We split
the dataset into training, validation, and test sets as a 70/15/15%
random split. All classes were guaranteed to be in all subsets.
The validation set was used by the greedy technique to optimally
tune the classifier. Furthermore, validation set accuracy was used
to check that the algorithm is not overfitting when comparing
against the test set accuracy. One hundred different realizations
were run using hold-out cross-validation to obtain the mean
accuracy of each one of the three decision tree classifiers.

The feature set considered for each classifier was selected
using a greedy forward selection method (Edmonds, 1971).
This iterative method starts with an empty feature set and
adds the feature, which leads to the highest accuracy increase
of the classifier in each iteration. The algorithm stops when
performance based on the validation set cannot be further
improved. Candidate features with a correlation coefficient
>0.6 with any of the features already included in the set
were removed. The correlation threshold was chosen as
a compromise between avoiding redundant information
and covering all physiologically relevant phenomena. The
performance of the classification algorithm was evaluated
using confusion matrices and accuracy. The classifiers
were implemented in Matlab (The Mathworks, Natick,
MA, USA).

2.6. Statistical Analysis
Data are expressed as mean ± standard error. Differences
between group means were examined using two-tailed, paired
Student’s t-test and were considered significant when p < 0.05.
The Sørensen-Dice index was used to measure the similarity
between clinical low/high voltage map and the non-fibrotic vs.
fibrotic map.

2.7. Clinical Data
This study includes nine patients recruited at Städtisches
Klinikum Karlsruhe with the diagnosis of persistent AF.
Patients were split into two groups; four patients were
used to extract the clinical noise from the unipolar signals
and train the machine learning algorithm. The other
five patients were used as a proof of concept to test our
approach to characterize the atrial tissue from clinical
electrograms. Electroanatomical maps were acquired
during sinus rhythm using the CARTO3 mapping system
(Biosense Webster, Diamond Bar, CA, USA) with the Lasso
catheter (Biosense Webster). The study was approved by
the Institutional Review Board of Freiburg University in
accordance with the Helsinki declaration. All patients gave
written informed consent.

3. RESULTS

3.1. Electrogram Features
Following the ASME V&V 40 standard (ASME V&V 40, 2018),
we created highly-detailed in silico experiments to study the
impact of structural remodeling due to AF on electrogram
morphology. Bidomain simulations combined with a generalized
intracardiac clinical noise model faithfully reproduced clinical
recordings, which, combined with in vivo electrograms, were
used to create the hybrid dataset.

Modeling interstitial fibrotic texture allowed to study
electrogram characteristics resulting from fibrotic tissue
alterations. Fibrosis texture had a considerable impact on
the electrical propagation in the tissue and on electrogram
morphology (Figures 4E,F). Duration of atrial activity, which
corresponds to the total activation time of the tissue underneath
the electrode, calculated in Hilbert space, was increased (23.72
± 0.05ms) for low fibrosis density (10 and 20%) with respect
to the activity duration of electrograms from non-fibrotic tissue
(17.5 ± 0.04ms). For mid-density fibrosis (40%), duration was
further increased (43.80 ± 0.01ms) and high-density fibrosis
(60%) had the longest activity duration (55.31 ± 0.02ms).
Low-density fibrosis (10 and 20%) had less impact on the signal
amplitude (1.08 ± 0.01mV) compared to mid-density fibrosis
(40%) which decreased the amplitude (0.83 ± 0.01mV). High-
density fibrosis (60%) had a small amplitude (0.59 ± 0.004mV;
Figure 4E). Figure 4F shows the effect of fibrosis transmurality
for high density of fibrosis (60%). Subendocardial and partially
transmural fibrosis (0.5 and 1 mm, respectively) had a small
effect on the electrogram morphology while total transmurality
(2mm) decreased signal amplitude and prolonged its duration.
The model of interstitial fibrosis yielded reduced conduction
velocity reflected by an increased duration of active segments
depending on the density and transmurality of fibrosis.

In total, seven features to measure complexity and
morphological characteristics of the signals were calculated
from the bipolar electrograms (Figure 5). Features were
extracted from the simulated signals with and without noise.
Sample entropy and spectral entropy were robust to the addition
of noise. Sample entropy value, for electrograms of non-fibrotic
tissue, did not significantly change (0.18± 0.01 vs. 0.21± 0.01, p
> 0.05). Kolmogorov complexity was less affected by noise than
Shannon entropy. Shannon entropy and fractal dimensions did
not perform well after the addition of noise. Shannon entropy
was 0.57± 0.01 without noise and 3.33± 0.01 after adding noise
to the signal (p < 0.05). The same behavior was observed for the
fractal dimensions where the value changed from 1.15 ± 0.01
without noise to 10.2 ± 0.05 with noise (p > 0.05). Additionally,
the duration and amplitude of the signal were considerably
altered by noise.

Our in silico electrograms were validated against clinical
electrograms recorded from areas of the atria with peak-to-
peak amplitudes higher than 0.5 mV. Cross-correlation was
used to align the clinical signals and simulated electrograms
in time for maximal similarity. Simulated bipolar signals for
non-fibrotic tissue had a mean correlation of 91.13 ± 0.05%
with the clinical signals. Clinical high voltage (peak-to-peak
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FIGURE 4 | Importance of using a realistic electrode geometry and adding noise for simulated intracardiac signals. (A) Bipolar electrogram signal recorded with a

cubic electrode (blue trace) and the corresponding filtered signal (red trace). (B) Signal recorded with a cylindrical electrode (blue trace) and the resulting signal after

filtering (red trace). (C) Simulated signals recorded with a cylindrical electrode with and without noise and the resulting signals after filtering. (D) Comparison of a

simulated signal with a clinical signal. (E) Electrograms recorded on the surface of the fibrotic tissue with different densities. (F) Effect of fibrosis growth from the

endocardial surface to the epicardium (0.5, 1, 2mm) on the electrogram (60% fibrosis density). Reused from Sánchez et al. (2021).

>0.5mV) and simulated control electrograms (no fibrosis) had
a mean peak-to-peak voltage of 1.67 ± 0.05 and 2.25 ± 0.01mV,
respectively. Clinical and simulated control electrograms had a
mean duration of 18.30 ± 0.56 and 17.5 ± 0.04ms, respectively.
Using realistic geometries to represent the electrodes changes
the simulated electrogram morphology. Figure 4A shows a
simulated bipolar electrogram simulated with cubic electrodes
where the impact of filtering on the positive slope becomes
visible. Figure 4B shows a simulation with a cylindrical electrode
geometry mimicking the commercial catheters used in this study.
The resulting electrogram is not symmetric and filtering has no
marked effect on the positive slope, which is steeper than in the
electrogram simulated with the cubic electrodes. Adding noise to
the simulated signals decreases their amplitude and fractionates
the morphology (Figure 4C). Simulated bipolar electrograms
without noise have a higher amplitude of R and S peaks, which
decrease with the addition of noise. Figure 4D compares a
simulated signal with a clinical signal. Simulated electrogram
negative and positive slopes are close to the values of the clinical
signal, 0.1 and 0.25mV/ms, respectively.

3.2. Classification of Tissue Characteristics
Extracted features from the bipolar electrograms are depicted
in Figure 5. The main diagonal shows the distribution of the
calculated features for the different groups of signals (different
fibrotic densities in Figure 5A, different degrees of fibrosis

transmurality in Figure 5B). Peak-to-peak amplitude is not a
good feature to determine the degree of fibrosis due to the wide
range of amplitudes that overlap for fibrotic vs. non-fibrotic
cases. While sample entropy can distinguish between fibrotic
and non-fibrotic tissue, the distribution of the values overlaps
for different densities. The distinction between different fibrosis
transmuralities is not possible by using only one feature since
the value for all features overlap for all density or transmurality
values (Figure 5B, main diagonal). Scatter plots in Figure 5 show
how a combination of two features might help to characterize
the fibrotic substrate. For fibrosis density, scatter plots show how
combining complexity measures and commonly used features
like peak-to-peak amplitude or duration of the active segment
can help to differentiate non-fibrotic from fibrotic tissue.

A decision tree classification algorithmwas trained to separate
different fibrosis densities and degrees of transmurality. The
combination of signal complexity features was determined by
a greedy forward algorithm. The dataset was randomly divided
into 70% train, 15% test, and 15% validation. The mean accuracy
of the three classifiers was calculated by doing 100 different
realizations. Figure 6A shows the confusion matrix of the
classifier for distinguishing between non-fibrotic and fibrotic
tissue. The mean accuracy for this classifier is 97.95 ± 0.03%
with 98.81 ± 0.01% sensitivity and 97.16 ± 0.01% specificity.
The classifier slightly overestimated the fibrotic areas. Figure 6B
shows the classifier performance to identify fibrosis density
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FIGURE 5 | Feature distribution for all in vivo and in silico electrograms (including noise). Single feature distribution can be observed in the diagonal and the

combination of two features is reflected in the scatter plots. (A) Features split by different densities of fibrosis. (B) Features split by different degrees of transmurality.

Duration, duration of the active segment (ms); SmpEn, sample entropy; ShEn, shannon entropy; SpEn, spectral entropy; p2p, peak-to-peak amplitude (mV);

Kolmogorov, Kolmogorov complexity; Fractal, fractal dimension. Reused from Sánchez et al. (2021).
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FIGURE 6 | (A) Confusion matrix of the decision tree classifier for identifying non-fibrotic vs. fibrotic substrate. (B) Confusion matrix showing the performance for

identifying different fibrosis densities. (C) Confusion matrix showing the performance for identifying transmurality of fibrosis. (D) Effect of increasing the electrode

surface to tissue surface distance on the accuracy of the classifiers to distinguish fibrotic tissue, density, and transmurality. Reused from Sánchez et al. (2021).

(non-fibrotic, 10, 20, 40, and 60%) with a mean accuracy of 97.01
± 0.02% and 96.33 ± 0.03% and 99.05 ± 0.01%, for sensitivity
and mean specificity, respectively. The most relevant features
for classification of fibrosis density, determined by the greedy
forward algorithm, were sample entropy and spectral entropy
(Figure 5).

To identify transmurality of fibrosis in the tissue, the
classifier yielded a mean accuracy of 94.62 ± 0.01, 92.99
± 0.02% sensitivity, and 97.86 ± 0.01% specificity. For
fibrosis transmurality, misclassification occurred for some cases.

Nevertheless, it is able to distinguish all four classes (non-fibrotic,
0.5, 1, and 2mm). The most relevant features for classification of
transmurality were sample entropy and peak-to-peak amplitude.

Furthermore, we investigated the effect of increasing the
distance between the catheter and atrial endocardial surface and
the classifiers’ accuracy. The classifier’s accuracy dropped with
increased distance, as shown in Figure 6. The accuracy of the
classifier dropped to 0% for electrode-to-tissue distances bigger
than 4.1mm, to distinguish non-fibrotic from fibrotic tissue. For
identifying different densities, the accuracy dropped to 59.17%
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FIGURE 7 | Anterior and posterior view of patient maps for clinical low/high voltage (A) and classification results for non-fibrotic vs. fibrotic (B), fibrosis density (C),

and fibrosis transmurality (D). The green dot represents a signal at the base of the pulmonary vein which was marked as high voltage and classified as subendocardial

(0.5mm) low density (10%) fibrotic tissue. The white dot refers to a signal recorded in the pulmonary vein classified as low voltage and high density (60%), transmural

(2mm) fibrotic tissue. The yellow dot represents a high voltage area identified as non-fibrotic and the light blue dot indicates a signal collected in the pulmonary vein

annotated as high voltage and classified as low density (20%), partially transmural (1mm) fibrotic tissue. Reused from Sánchez et al. (2021).

at 1.1mm distance to tissue. Additionally, transmural accuracy
drops to 33.30% with a distance to tissue of 1.1mm.

We applied the trained classifier to intracardiac signals
measured in five patients of the test set of our cohort, which
were not used to train the classifier, to create maps of atrial
substrate characteristics. Figure 7 presents representative results
for patient 1. The yellow dot (Figure 7A, posterior view) shows
a signal annotated as high voltage and identified as non-fibrotic
tissue by the classifier. Low voltage and high voltage areas
determined by the clinical system using a cut-off value of 0.5mV
are shown in Figure 7A. The low voltage areas showed a mean
dice similarity coefficient of 69.84 ± 0.03% with the predicted
fibrotic areas for the five patients. Patients 1, 3, and 4 showed
fibrotic areas mostly within the low voltage areas. Maps for the
all the five patients are shown in Supplementary Figures 1–5.
Figure 7B shows the classified fibrotic areas based on the signal
features by the machine learning approach, where electrogram
signals were fractionated and exhibited a longer activity duration
independent from their peak-to-peak amplitude (Figure 7A,
anterior view, green and white dot). Regions annotated as high
voltage areas partly exhibited fractionated electrograms with a
peak-to-peak voltage (1.4mV) above the cut-off value of 0.5mV
(Figure 7A, posterior view, light blue dot) where these areas
were classified as low density (20%) and partially transmural
(1mm) fibrosis. Fibrotic volume fraction was estimated using
patient electrograms as input for the classifier (Figure 7C).
In general for this patient cohort, high density was located
at the core of fibrotic areas. Furthermore, Figure 7D shows
the classification of different transmuralities. Fully transmural
fibrosis was predominantly found in areas of high fibrotic density.

Thus, not all high-density fibrotic areas are entirely transmural.
In contrast to patient 3, patient 5 had a low similarity (58.76%) of
low voltage and fibrotic areas due to a generally low peak-to-peak
voltage in the electrograms (Supplementary Figure 5).

4. DISCUSSION

We investigated the effect of fibrosis on intracardiac electrogram
signals using computational models and trained machine
learning algorithms using a combined in vivo and in silico
dataset to classify the tissue according to fibrosis density and
transmurality. We found that (i) detailed bidomain models in
combination with models of clinical noise can reproduce clinical
electrograms with high fidelity; (ii) complexity measurements
help characterize fibrotic tissue from electrograms. Sample
entropy and spectral entropy were the most distinguishing
features to characterize fibrosis density, while fibrosis
transmurality was identified by sample entropy and peak-to-peak
amplitude; (iii) machine learning classifiers can characterize and
distinguish tissue properties and quantify the amount of fibrosis
density and transmurality from intracardiac signals with high
accuracy and overcome the use of a single voltage cut-off value
to localize arrhythmogenic substrate.

Bidomain simulations can reproduce the biophysical
phenomenon of cardiac depolarization and the effect of mapping
catheters on the electrograms. Bishop et al. demonstrated that
including an extracellular medium induces the bath-loading
effect, which impacts conduction velocity and translates to
changes of electrogram morphology (Bishop and Plank, 2011).
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Our results show the effect of cylindrical metal electrodes on
simulated signals. The high electrode conductivity markedly
influences the electrogram slope as it acts as a current sink
for the tissue underneath. Additionally, by using realistic
geometries of catheters, spatial resolution is taken into account
by preserving a realistic spacing of catheter electrodes. Moreover,
the impact of the directionality of the propagating wave on
bipolar electrograms was taken into account by stimulation
from three different sites as previously discussed by Hwang et al.
(2019).

Several studies investigated the influence of noise on
simulated electrograms (Sameni et al., 2007; Frisch et al., 2020).
Our simulated signals were able to reproduce the recorded
clinical signals more realistically compared to simulations that
do not consider the effect of the catheter and clinical noise.
Simulated signals, even with noise, had a higher (Figure 4C)
amplitude than clinically measured signals in line with previous
reports by Keller et al. (2014). These higher amplitudes are likely
due to two factors: Firstly, the catheter was placed directly on the
surface of the tissue with perfect contact. Secondly, intracellular
conductivity, which is related to the tissue’s conduction velocity,
can considerably increase the amplitude of the simulated signal.
For this reason, our study included two different conduction
velocities in the range of previously reported values for patients
with persistent AF (McDowell et al., 2013).

Complexity measurements obtained from simulated
intracardiac signals help understand the electrophysiology
and the fibrotic tissue structural characteristics. Other studies
showed that Shannon entropy and fractal dimensions help
to localize the core of rotational activity (Cirugeda-Roldán
et al., 2015; Rottmann et al., 2015). Cirugeda-Roldán et al.
(2015) showed that sample entropy is a robust feature to
classify complex fractionated electrograms. Our findings show
that sample entropy, as well as spectral entropy, are robust
morphological features to characterize fibrotic substrate and are
less influenced by noise compared to the other entropy measures
calculated in this study.

Our results show how in silico experiments can be used to
generate realistic data for measurements that are difficult to
obtain in vivo. Computational cardiac modeling can considerably
accelerate the process of designing and evaluating medical
devices, includingmapping systems and software to treat patients
with cardiac arrhythmia. The American Society of Mechanical
Engineers (ASME) Verification and Validation Subcommittee
standard V&V40 (Verification and Validation in Computational
Modeling of Medical Devices) outlines credibility requirements
of a computational model based on risk. We started by defining
two questions of interest (“Can synthetic data be used to train a
classifier to locate fibrotic tissue and quantify its characteristics?”
and “Can a hybrid dataset approach predict the electrical
characteristics to support ablation therapy?”). These guiding
questions helped define the required model level of detail for
the in silico experiment. In the next step, we established the
risk-informed credibility of using a full bidomain model to
simulate electrograms and using them to generate a hybrid

dataset that combines clinical and synthetic signals. Risk-
informed assessment defined the level of uncertainty and the
model’s complexity based on the context of use (CoU) of the
in silico experiments.

In this pilot study, the CoU of themodel is to generate a hybrid
dataset to train a classifier to locate and quantify fibrotic tissue
in clinical data. Different fibrosis modeling strategies change the
dynamics of the electrical propagation as described by Roney
et al. (2018), which influences the electrogram morphology.
Fibrosis modeling uncertainty was reduced by considering
several realizations of random uniformly distributed collagen
fibers with different volume fraction and transmurality. We
overcome the limitation of catheter geometry and wavefront
direction by including two models of commercially available
catheters and pacing from three different locations (Hwang
et al., 2019). Two different human atrial cardiomyocyte models
were considered to minimize the uncertainty of the action
potential morphology influence on the electrogram. Moreover,
an autoregression model of clinically measured noise artifacts
was created. The modeled clinical noise in combination with
the simulated electrograms reduced the uncertainty of simulated
with respect to measured electrograms. Considering all the above
mentioned points, the risk-informed assessment of using in silico
experiments to characterize the fibrotic substrate was defined
as medium.

Driven by the risk-informed assessment, we established the
credibility of our modeling methodology. Model credibility
refers to the trust in the predictive capability of a model for
a specific CoU. openCARP source code and calculations are
verified as described by Niederer et al. (2011). The model was
validated using the clinical electrograms for high voltage areas.
In combination with the noise model, the bidomain model
reproduced the clinical signals with a mean correlation of 91.13
± 0.05%. The strong correlation between in silico electrograms
and in vivomeasurements increased the confidence in the model.

With the increasing number of data available, data-driven
approaches can help to improve patient’s diagnosis and therapies.
Several studies used data-driven approaches with clinical data
to characterize electrocardiogram signals measured on the body
surface (Yaghouby et al., 2010; Rodrigues et al., 2017; Zhang et al.,
2018; Petmezas et al., 2021). Sahli Costabal et al. (2018) used
a hybrid dataset approach to interpret activation times during
AF and Lozoya et al. (2019) showed how model-based feature
augmentation can help to plan the targets for ablation therapy.
We developed a detailed in silico setup as a perfectly controlled
testing environment to understand intracardiac signals recorded
with two different commercial catheters. Furthermore, we trained
a decision tree classifier using clinical and simulated data
to characterize signals based on complexity measurements.
Decision trees offer a comprehensible structure to follow the
decisions taken for the classification. All three classifiers had
high accuracy, despite overlapping features for different degrees
of transmurality (Figure 5B), the combined features used to
train all decision tree classifiers distinguished non-fibrotic tissue,
fibrosis volume fraction, and all three different transmuralities
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of fibrosis from electrogram signals. Our results suggest that
combining clinical and simulated data helps to characterize
electrical tissue properties more accurately than using synthetic
data alone. In future work, the classifier could be extended to
include more training signals recorded directly at the surface of
the tissue and at certain distances above the tissue to increase the
performance when there is non-contact of the catheter with the
tissue surface.

Different ablation strategies target fibrotic areas by ablating
or isolating them (Hinderer and Schenke-layland, 2019). Both
techniques rely on a voltage cut-off value for the identification
of possible fibrotic areas. While ablating fibrotic areas try to
homogenize the fibrotic substrate, isolation encloses the fibrotic
regions and connects them to the pulmonary vein isolation lines
to prevent a potential proarrhythmic effect. This suggests that
identifying fibrotic tissue through electroanatomic mapping is
essential, and the choice of a single voltage cut-off value may
not be sufficient to decrease the recurrence of arrhythmia (Jadidi
et al., 2016). Gutbrod et al. (2015) showed the importance of
fibrosis transmurality for electric propagation during AF. Using
a hybrid dataset approach, our findings can help to standardize
the identification of non-fibrotic vs. fibrotic areas and provide
valuable information on the fibrotic tissue characteristics such
as fibrosis density and transmurality. Several studies have shown
that low-density fibrosis can modify the propagation and initiate
or maintain arrhythmia (Kazbanov et al., 2016; Jadidi et al.,
2020). High-density fibrotic areas are prone to be a point of
anchor for rotational activity (Alonso and Bär, 2013; Krul et al.,
2015; Deng et al., 2017; Roy et al., 2018) while low-density
fibrosis micro-structure can alter the propagation pattern and
maintain reentry (Balaban et al., 2018; Campos et al., 2019).
The trained classifier was used on five patients from the test
set of our patient cohort to distinguish and characterize fibrotic
tissue. For clinical data, not all low voltage areas were marked
as fibrosis when using a single cut-off value. Areas with low-
density (10%) subendocardial fibrosis (0.5mm) were annotated
as high voltage areas when using a single peak-to-peak cut-
off value of 0.5mV. Therefore, the use of hybrid datasets and
data-driven approaches could help to estimate the fibrotic tissue
characteristics to support the planning of ablation therapy. The
medium-range dice coefficient (0.7) indicates that low voltage
areas are one of the main indicators for fibrotic tissue but
synergistic combination of multiple features in e.g., a decision
tree classifier, can give a more comprehensive view beyond purely
voltage-based tissue characterization.

Our results show that current clinical standards for substrate
mapping using bipolar voltage alone are not sufficient to
characterize the atrial fibrillation substrate comprehensively.
Machine learning algorithms trained using hybrid datasets and
multi-features obtained from intracardiac signals may overcome
these limitations providing fibrosis density and transmurality
maps. This may lead to optimized therapeutic approaches.

Our modeling approach does not capture the influence
of the atrial anatomy and the tissue thickness heterogeneity.
Nevertheless, our hybrid dataset approach tries to minimize
this effect by including clinical signals from different patient.
Furthermore, increasing the catheter to tissue distance decreases

the accuracy of the classifier. The effect of the distance can likely
be minimized if the dataset is extended to also include signals
that were acquired at a certain distance to the cardiac tissue.
Additionally, we only consider a homogeneous distribution of
fibers from the endocardium to the epicardium, which may not
represent the heterogeneous tissue architecture observed in some
regions of the atria. The fibrotic regions were homogeneous and
all electrodes were located inside the fibrotic area. We did not
consider the effect of electrodes located at the border, which
could result in more complex bipolar signals. We did not include
any effect of inflammation-induced paracrine remodeling or
myofibroblast interaction (Sánchez et al., 2019a). While our
approach shows promising results and highlights the essential
features of intracardiac signals to characterize atrial substrate,
validation through independent experimental and clinical data is
desirable. Future studies could include LGE-MRI data to validate
the proposed approach and explore the arrangement of the
fibrotic tissue effect on the electrogram morphology (Sánchez
et al., 2019b).

Our modeling approach successfully answered the question of
interest: A classifier can be trained using clinical and simulated
data to characterize the cardiac substrate to support ablation
therapy by providing fibrosis density and transmurality maps.
Moreover, the credibility assessment showed that detailed cardiac
modeling could be a valuable framework. In the future, classifiers
to predict cardiac tissue characteristics could be integrated into
clinical electroanatomic mapping systems. Finally, our study
emphasizes the potential of in silico experimentation and data-
driven approaches for characterizing the patient’s substrate and
demonstrates the potential of software tools to support medical
decisions during the procedure.
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Konstantinos N. Aronis1,2* , Adityo Prakosa2, Teya Bergamaschi2, Ronald D. Berger1,
Patrick M. Boyle2, Jonathan Chrispin1, Suyeon Ju2, Joseph E. Marine1, Sunil Sinha1,
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1 Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States, 2 Department
of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States

Rationale: Patients with ischemic cardiomyopathy (ICMP) are at high risk for malignant
arrhythmias, largely due to electrophysiological remodeling of the non-infarcted
myocardium. The electrophysiological properties of the non-infarcted myocardium of
patients with ICMP remain largely unknown.

Objectives: To assess the pro-arrhythmic behavior of non-infarcted myocardium in
ICMP patients and couple computational simulations with machine learning to establish
a methodology for the development of disease-specific action potential models based
on clinically measured action potential duration restitution (APDR) data.

Methods and Results: We enrolled 22 patients undergoing left-sided ablation (10
ICMP) and compared APDRs between ICMP and structurally normal left ventricles
(SNLVs). APDRs were clinically assessed with a decremental pacing protocol. Using
genetic algorithms (GAs), we constructed populations of action potential models that
incorporate the cohort-specific APDRs. The variability in the populations of ICMP
and SNLV models was captured by clustering models based on their similarity using
unsupervised machine learning. The pro-arrhythmic potential of ICMP and SNLV
models was assessed in cell- and tissue-level simulations. Clinical measurements
established that ICMP patients have a steeper APDR slope compared to SNLV (by
38%, p < 0.01). In cell-level simulations, APD alternans were induced in ICMP models
at a longer cycle length compared to SNLV models (385–400 vs 355 ms). In tissue-
level simulations, ICMP models were more susceptible for sustained functional re-entry
compared to SNLV models.
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Conclusion: Myocardial remodeling in ICMP patients is manifested as a steeper APDR
compared to SNLV, which underlies the greater arrhythmogenic propensity in these
patients, as demonstrated by cell- and tissue-level simulations using action potential
models developed by GAs from clinical measurements. The methodology presented
here captures the uncertainty inherent to GAs model development and provides a
blueprint for use in future studies aimed at evaluating electrophysiological remodeling
resulting from other cardiac diseases.

Keywords: ischemic cardiomyopathy, action potential duration restitution, genetic algorithms, unsupervised
machine learning, patient-derived disease-specific action potential models

INTRODUCTION

Ischemic cardiomyopathy (ICMP) patients are at high risk for
malignant arrhythmias (Moss et al., 1996; Moss et al., 2002; Bardy
et al., 2005), largely due to tissue heterogeneity from infarct-
related fibrosis (structural substrate) (Haqqani et al., 2009; Roes
et al., 2009; Nakahara et al., 2010; Estner et al., 2011), and
electrophysiologic (EP) remodeling of the myocardium (Pu and
Boyden, 1997; Yue et al., 1998; Jiang et al., 2000; Huang et al.,
2001; Camelliti et al., 2004; Dun et al., 2004; Isidoro Tavares et al.,
2007; Liu et al., 2007). The role of the structural substrate of
ICMP in arrhythmogenesis has been well characterized in clinical
studies (Haqqani et al., 2009; Roes et al., 2009; Nakahara et al.,
2010). However, the EP remodeling and its contribution to the
dynamic EP behavior of the myocardium has not been established
in ICMP patients yet.

The first goal of this study is to characterize the EP
remodeling of the arrhythmogenic substrate in ICMP patients,
and specifically changes in electrical restitution. Action potential
duration restitution (APDR) is an important EP property that
contributes to tissue-level EP dynamics, and is critical in
arrhythmogenesis (Banville and Gray, 2002; Watanabe et al.,
2002; Wu et al., 2002; Pak et al., 2004; Yuuki et al., 2004;
Selvaraj et al., 2007; Benoist et al., 2012). The steepness and
dispersion of APDR are mechanistically linked to development of
malignant arrhythmias in pre-clinical studies (Banville and Gray,
2002; Watanabe et al., 2002; Wu et al., 2002; Yuuki et al., 2004;
Benoist et al., 2012) and are associated with increased arrhythmic
risk in limited clinical studies (Pak et al., 2004; Selvaraj et al.,
2007). Steep APDR is associated with the development of APD
alternans. APD alternans refer to alternating APD between two
subsequent beats with one beat having a longer APD and the
other having a shorter APD and are mechanistically linked to
development of arrhythmias (Tse et al., 2016). The APDR of the
surviving left ventricular (LV) myocardium of ICMP patients,
and its contribution to the tissue-level EP dynamics is, however,
yet to be described. Previous studies have evaluated APDR in
patients with structural heart disease (SHD) (Koller et al., 2005;

Abbreviations: AHC, agglomerative hierarchical clustering; APD, action potential
duration; APDR, action potential duration restitution; ARI, activation-recovery
interval; BOFC, Bueno-Orovio-Fenton-Cherry (action potential model); DI,
diastolic interval; dV/dt, first derivative of voltage with respect to time; EP,
electrophysiological; GA, genetic algorithm; ICMP, ischemic cardiomyopathy; LV,
left ventricle; PVC, premature ventricular complex; RV, right ventricle; SHD,
structural heart disease; SNLV, structurally normal left ventricle; UniEGMs,
unipolar electrograms; VF, ventricular fibrillation; VT, ventricular tachycardia.

Selvaraj et al., 2007; Dorenkamp et al., 2013). However, these
studies assessed APDR at the right ventricular (RV) apex, septum,
or outflow track. APDR of the RV is significantly different from
that of the LV (Srinivasan et al., 2016). Furthermore, although
these studies included ICMP patients they report combined
results for patients with any SHD. Knowledge of the APDR of the
surviving LV myocardium in ICMP patients and its contribution
to tissue-level EP dynamics is important for understanding the
pro-arrhythmic substrate of ICMP patients.

The second goal of this study is to develop a methodology
that allows for action potential model development from
experimental APDR data, that can subsequently be used in
Virtual Heart modeling, to improve clinical risk stratification and
ablation planning. Virtual Heart modeling is a powerful platform
for non-invasive ventricular tachycardia (VT) risk assessment
(Arevalo et al., 2016; Deng et al., 2016), localization (Ashikaga
et al., 2013), and ablation planning (Prakosa et al., 2018) in
ICMP patients. Virtual Heart modeling uses 3D reconstructions
of the heart derived from cross-sectional imaging to perform
simulations and assess for the emergence of arrhythmias in silico.
Incorporating the APDR of non-infarcted myocardium in Virtual
Heart models of ICMP patients is of critical importance: First,
current cardiac action potential models have been derived from
pre-clinical data (Niederer et al., 2009), and do not capture
the APDR of the non-infarcted myocardium of ICMP patients.
Second, in sensitivity analysis, APD is important in determining
the location of VT in ICMP patients (Deng et al., 2019), as well as
the trajectory of re-entrant drivers in fibrillatory rhythms (Deng
et al., 2017). Third, incorporating APDR in Virtual Heart models
will: (1) provide mechanistic insight on how the remodeled
myocardium contributes to the initiation and maintenance of VT,
and development of ventricular fibrillation (VF); and (2) allow for
development of new risk stratification and therapeutic strategies
based on more accurate computer-based simulations.

Specifically, our aims are: (1) to clinically characterize the
APDR of the surviving LV myocardium of ICMP patients and
compare it to the APDR of structurally normal left ventricles
(SNLV); (2) to develop the methodology to construct action
potential models based on clinically obtained cohort-specific
APDRs using a custom-developed genetic algorithm (GA); (3)
to compare the emerging EP dynamic behaviors between ICMP
and SNLV in cell- and tissue-level computer simulations using
the GA-derived action potential models; and (4) to capture the
uncertainty in the GA-derived action potential models and in
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the resulting cell-level and tissue-level EP behavior by combining
computer simulations with unsupervised machine learning. The
results of this study have important implications because they
improve our understanding on the EP substrate of ICMP patients
and provide a methodology for calibration of cardiac action
potential models account for the uncertainty related to model
development from clinical data. Such models can be used for the
development of personalized risk-stratification and guidance of
ablative strategies, contributing to the ongoing efforts towards
precision medicine in cardiology.

MATERIALS AND METHODS

Overview of the Study Approach
To assess the activation-repolarization dynamics in ICMP
compared to that of SNLV, we performed programmed electrical
stimulation in patients undergoing left-sided catheter ablation
procedures. We used the corresponding unipolar electrograms
(UniEGMs) to obtain APDR curves with the help of a
customized signal processing approach. We then utilized the
clinically obtained APDRs to construct populations of action
potential models of ICMP and SNLV patients, employing
a custom-developed GA. We used unsupervised machine
learning to capture the uncertainty in model development from
clinical data. We then used the developed action potential
models to characterize the dynamic pro-arrhythmic substrate
of ICMP patients.

Patient Enrollment
We prospectively enrolled consecutive patients undergoing left-
sided catheter ablation procedures at the Johns Hopkins Hospital.
Criteria for inclusion were patients older than 18 years old
undergoing any clinically indicated left-sided catheter ablation
procedure that had either ICMP or SNLV. We required that
all participants had echocardiographic assessment within 1 year
of the procedure day. The presence of ICMP was ascertained
by a positive history for coronary artery disease and decreased
left ventricular systolic function on echocardiogram, with
wall motion abnormalities consistent with the distribution of
coronary artery disease. Exclusion criteria were: patients younger
than 18 years old, pregnancy, presentation with electrical storm,
presence of cardiomyopathy other than ischemic, need for
inotropic support prior to the procedure, need for mechanical
circulatory support before or during the procedure and patients
with congenital heart diseases. All patients gave informed consent
to participate in the study. Enrollment target was a total of 20
patients (10 ICMP and 10 SNLV patients).

Clinical Protocol for Assessment of
Cardiac Activation-Repolarization
Dynamics
We evaluated activation-repolarization dynamics in the non-
infarcted myocardium of ICMP patients and the myocardium
of patients with SNLV by pacing at a fixed cycle length at
progressively decreasing cycle lengths, 20 min after completion

of the clinical ablation procedure. Specifically, we placed either
a multi-electrode mapping catheter (Pentaray 4-4-4; Biosense
Webster or LiveWire; Abbott), or a standard 4-mm tip ablation
catheter with 2 mm inter-electrode spacing (Thermocool;
Biosense Webster, Inc.) in an area (remote from scar in ICMP
patients) with a bipolar signal voltage amplitude >1.5 mV. For
each patient only one of either an ablation or a multi-electrode
catheter was used for data collection. A multi-electrode catheter
was used if the operating electrophysiologist had deemed it
necessary for clinical/procedural purposes. We then paced at
a fixed cycle length the patient from a catheter placed in the
RV apex for 20 beats at cycle lengths decrementing from 600
to 350 ms with a step of 50 ms. These pacing maneuvers were
performed with intervals of 15 s to a few minutes, allowing for
blood pressure recovery in case the blood pressure dropped with
fast pacing. We recorded UniEGM from the mapping or ablation
catheter during burst pacing (CardioLab Recording Systems;
GE Healthcare). Signals were recorded from all electrodes at a
fixed catheter location in the left ventricle and catheter stability
during recordings was confirmed fluoroscopically. The sampling
frequency of the recorded signal was 977 Hz. The recorded signal
was filtered using a high-pass filter at 0.05 Hz, a low-pass filter
at 150 Hz and a notch filter at 60 Hz (CardioLab Recording
Systems; GE Healthcare).

Signal Processing to Obtain APDR
Curves
To construct clinically obtained APDR curves, we approximated
the action potential duration (APD) at each pacing cycle length
and location using the activation-recovery interval (ARI) method
on the recorded UniEGMs. We analyzed the electrograms from
each recording site of the multi-electrode catheter separately.
The ARIs at each cycle length was assessed using the Wyatt
method (Millar et al., 1985; Haws and Lux, 1990; Yue et al.,
2004; Coronel et al., 2006; Potse et al., 2009). ARI was defined
as the interval between the steepest negative slope (min dV/dt)
of the UniEGM ventricular activation component and the
steepest positive slope (max dV/dt) of the UniEGM ventricular
repolarization component. ARIs obtained from experimental
and clinical measurements have been extensively validated as a
surrogate measure of APD (Millar et al., 1985; Haws and Lux,
1990; Yue et al., 2004; Coronel et al., 2006; Potse et al., 2009).

To maximize accuracy and reproducibility of ARI
measurement, we extracted ARI from the recorded UniEGMs
using a custom-made, semi-automatic approach that combined:
(a) signal post-processing to attenuate experimental noise and
improve ARI detection accuracy (van Duijvenboden et al., 2015);
and (b) a template-based method to enhance reproducibility in
the presence of temporal lability of ARI intervals (Berger et al.,
1997; Berger, 2003). The details and a schematic of this approach
can be found in Supplementary Materials and Methods and
Supplementary Figure 1.

To assess the APDR intercept and slope of the myocardium
of patients with ICMP and SNLV, for each recording, we
plotted the ARI of each beat against its preceding diastolic
interval (DI), constructing a clinically obtained APDR curve.
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We excluded from analysis the first three beats and the last
beat of each pacing burst, to remove UniEGM waveforms that
were not at steady-state. A logarithmic curve was fitted to the
measured ARI and its preceding DI. Since ARI approximates
APD (Millar et al., 1985; Haws and Lux, 1990; Yue et al.,
2004; Coronel et al., 2006; Potse et al., 2009), the intercept
and slope of the fitted curve approximate the intercept and
slope of the average APDR at the location of the recording. To
control for heteroskedasticity that is inherent in these data, we
fitted these curves using a bisquare robust regression approach
(MATLAB, Natick, MA, United States). Only recordings that
yielded a regression coefficient of determination R2 > 50% were
used in analysis.

Statistical Analysis
Baseline characteristics are presented stratified by ICMP/SNLV
status. Continuous variables are presented as median (inter-
quartile range) and categorical variables as count (percentage).
Comparisons between baseline characteristics in the ICMP and
SNLV groups are performed using the Wilcoxon rank-sum
test for continuous variables and the Pearson’s Chi-squared or
Fisher’s exact test for categorical variables. ARI and DI for each
pacing cycle length is reported as mean ± SEM. To compare
APDR intercept and slope between ICMP and SNLV groups
we used linear mixed-effects models. We used this approach
to account for the fact that for each patient we had multiple
measurements (multiple simultaneous recordings per patient).
ICMP/SNLV status was introduced as a fixed effect in the model
and patient number as a random effect. With this approach
each electrode recording was nested within each patient and
each patient was classified by the ICMP/SLNLV status. Robust
variance-covariance matrix estimators were used. We performed
sensitivity analysis by repeating the mixed model analysis after
excluding patients with atrial fibrillation, patients taking any
membrane active anti-arrhythmic medication (class I, class III, or
ranolazine), the patient with the highest and lowest APDR slope,
women (since we were unable to enroll women in the ICMP
cohort), and restitution curves that had a regression coefficient
of determination <60, 70, 80, and 90%. The effect of patient
diagnosis [premature ventricular complex (PVC) vs VT] and
catheter selection (Pentarray vs Livewire, vs ablation catheter)
was examined, by introducing these as fixed effect co-variates
in the mixed model analysis. All p-values are two-sided, and
the statistical significance criterion was set at an alpha of 0.05.
We performed all statistical analysis using Stata version 14.2
(StataCorp, College Station, TX, United States).

Development of Action Potential Models
Incorporating Patient-Derived APDR
Using GA
The APDRs obtained as described above are surrogates of cellular
activation-repolarization dynamics. In order to develop ICMP
and SNLV action potential models we used average APDR
derived from the ICMP and SNLV cohorts. Next, we used these
APDRs to construct populations of action potential models of
ICMP and SNLV patients that capture APDR properties. Those

action potential models were, in turn, used to characterize the
contribution of APDR to the emerging tissue-level EP behavior
and arrhythmogenesis in ICMP.

We used GA to construct the action potential models. GAs
are biologically inspired metaheuristics that are appropriate for
fitting action potential models to experimental measurements,
since action potential models have parameter spaces that are
highly nonlinear, frequently discontinuous, with multiple local
minima. To proceed with action potential model development
from the clinical data using GA, we needed a baseline
action potential model with small number of variables and
parameters that would allow for computationally tractable
execution of the GA. For this, the endocardial formulation
of the Bueno-Orovio-Fenton-Cherry (BOFC) action potential
model was selected (Bueno-Orovio et al., 2008). The BOFC
(also known as the “Minimal Ventricular Model”) is a
phenomenological action potential model, that can accurately
replicate the ventricular myocyte electrophysiologic behavior,
while having a small number of variables and parameters (4 state
variables and 28 parameters). Details regarding the numerical
aspects of our GA algorithm can be found in Supplementary
Materials and Methods.

We designed and optimized a GA that incorporates the
clinically obtained APDR curves in the BOFC model using
the local-iterative approach (Groenendaal et al., 2015; Krogh-
Madsen et al., 2017). A complete discussion on the design,
optimization, and implementation of the GA can be found in
Supplementary Materials and Methods and Supplementary
Figure 2A. Briefly, GAs iteratively assesses the “fitness” of a
population of model parameters and uses the principles of natural
selection to derive the optimal parameter set. Specifically, our GA
generated a population of 1512 random parameter sets. These
parameters were used in cell-level simulations, using a dynamic
restitution protocol, to produce an APDR. The simulation-
derived APDR was compared to the one obtained from the
clinical measurements in SNLV or ICMP patients and the error
between these two curves was expressed as mean absolute error.
The GA sought a parameter set that minimizes this error.

Classification of the Populations of
GA-Derived Models Using Machine
Learning
Optimization problems of non-linear differential equations, such
as the ones that describe cardiac action potential, do not have
unique solutions, given a finite amount of data. Consequently,
GAs yield a population of suitable derived models. These
derived models may have different emergent behaviors when
used in tissue-level simulations. Executing simulations with all
derived models would capture the variability with respect to
emergent behaviors but would be computationally not tractable.
To circumvent this, we used an unsupervised machine learning
approach to explore the entire population of derived models and
group models based on the degree of dissimilarity with respect to
their parameter values.

We explored the hierarchical organization and evaluated for
the presence of clustering in the population of derived models
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yielded by our GA using agglomerative hierarchical clustering
(AHC) (Zepeda-Mendoza and Resendis-Antonio, 2013), an
unsupervised machine learning approach. AHC groups data
over a variety of scales by creating a hierarchical cluster tree
(dendrogram). We then cut the hierarchical tree such that the
data are partitioned in the most dissimilar clusters. This resulted
in the initial parameter space to be divided in the most-dissimilar
parameter spaces. The centroid of each parameter space was
used in cell-level and tissue-level simulations. To understand
the uncertainty related to model development from clinical data,
we performed cell-level and tissue-level simulations, using the
best-fit models derived from the GA and the centroids of the
parameter spaces derived from AHC.

Cell-Level Simulations to Evaluate the
Dynamic Onset of APD Alternans
To characterize the pro-arrhythmic substrate of ICMP patients,
we performed cell-level and tissue-level simulations using the
best fit and each of the most dissimilar action potential models
derived from our GA. In cell-level simulations a single cell
was paced using a decremental dynamic restitution protocol to
explore the onset of APD alternans. The cell was paced for 10
beats at cycle lengths starting at 620 ms and decrementing to
260 ms with a step of 5 ms. We used the last two beats of each
10-beat burst for APD assessment. We defined APD at the 10%
of the peak action potential voltage (APD90). We constructed
bifurcation plots of APD over cycle length and we marked the
cycle length where APD alternans occurred. APD alternans were
defined if the difference of the APD between two consecutive beat
was greater or equal to 2 ms for two consecutive pacing cycle
lengths. Earlier onset of APD alternans (i.e., with shorter cycle
length) suggests a more proarrhythmic behavior.

Tissue-Level Simulations to Characterize
the Emerging EP Dynamic Behaviors in
ICMP
To characterize the contribution of ICMP APDR to the dynamic
EP behaviors emerging at the tissue level, we performed tissue-
level simulations using the best fit and each of the most dissimilar
action potential models derived by our GA. These simulations
were performed on a 2 cm × 2 cm × 0.25 mm isotropic cardiac
tissue slab. The cells were pre-paced of the slab for 100 beats
at a cycle length of 600 ms to achieve steady-state. First, we
performed a restitution protocol on tissue-level simulations using
the same settings with what we describe in cell-level simulations.
The purpose of this was to compare the APDR of the GA-derived
models in tissue-level simulations with that of the cell-level
simulations. We then performed a S1S2 cross-field stimulation
protocol to assess for inducibility of sustained functional re-entry.
Specifically, we delivered S1 as a single stimulus at the lower edge
of the slab (area of stimulation: 2 cm × 0.5 mm × 0.25 mm)
and S2 in a rectangular area in the lower left corner of the slab
(area of stimulation: 1 cm × 1 cm × 0.25 mm). We tested
S1S2 coupling intervals starting from 500 ms and decreasing to
50 ms by a step of 5 ms. The model was defined as inducible

for a given S1S2 coupling interval, if sustained functional re-
entry was induced and persisted for >2 s in simulation. As
we conduction velocity was not assessed in our cohort, we
executed the above-described tissue-level simulations over a wide
range of conductivity values (from 0.001 to 0.012 in steps of
0.0005 Siemens/m). This conductivity range corresponds to the
clinically observed conduction velocity range of 17–74 cm/s.
For each conductivity value, we defined the range of S1–S2
coupling intervals that the cross-field simulation resulted in
sustained functional re-entry. A wider range of coupling intervals
that result in sustained functional re-entry suggests a more
proarrhythmic behavior.

RESULTS

Patient Characteristics
We enrolled 10 ICMP patients and 12 patients with SNLV in this
study. Patient characteristics are summarized in Table 1. Mean
age was 62–69 years old and males were over-represented in
the ICMP cohort compared to the SNLV cohort (100 vs. 41%,
respectively). Left ventricular ejection fraction was significantly
lower (35 vs 60%, p < 0.001) and left ventricular end-diastolic
diameter was significantly higher (5.6 vs 4.75 cm, p = 0.002)
in ICMP patients compared to SNLV. All ICMP patients and
9/12 SNLV underwent ablation for VT or PVC. 3/12 patients
with SNVL underwent AF ablation procedure. VT was the

TABLE 1 | Baseline characteristics of patients with ICMP and SNLV.

SNLV (N = 12) ICMP (N = 10) p-value

Age (years) 62 (19) 69 (12) 0.098

Male (n, %) 5 (41) 10 (100) 0.005*

EF (%) 60 (7.5) 35 (25) <0.001*

LVEDD (cm) 4.75 (0.55) 5.6 (0.9) 0.002*

VT (n, %) 2 (16.7) 8 (80) 0.009*

AAD class IB 0 1 (10%) 0.45

AAD class IC 2 (16.7%) 0 0.48

AAD class II 6 (50%) 10 (100%) 0.02*

AAD class III 1 (8.3%) 0 4 (40%) 0.14

AAD class IV 2 (16.7%) 0 0.48

CCB-DHP 2 (16.7%) 0 0.48

Ranolazine 0 2 (20%) 0.19

ACEI 2 (16.7%) 8 (80%) 0.008*

Digoxin 0 1 (10%) 0.45

Spironolactone 0 1 (10%) 0.45

Multi-electrode catheter 6 (50%) 6 (60%) 0.69

AAD, anti-arrhythmic drugs; ACEI, angiotensin converting enzyme inhibitors; CCB-
DHP, calcium channel blockers dihydropyridine class; EF, ejection fraction; ICMP,
ischemic cardiomyopathy; LVEDD, left ventricular end-diastolic diameter; SNLV,
structurally normal left ventricle; VT, ventricular tachycardia as an indication for the
ablation procedure.
The row labeled “Multi-Electrode Catheter” summarizes the number (%) of patients
that had APDR data collected using a multi-electrode catheter (either Pentaray 4-
4-4; Biosense Webster or LiveWire; Abbott). Values in bold represent p-values less
than 0.05 which is the cut-off for statistical significance. *Denotes p-values less
than 0.05 which is the cut-off for statistical significance.
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indication of the ablation procedure more frequently in ICMP
patients compared to SNLV (80 vs 16.7%, p = 0.009). All
ICMP patients and 50% with SNLV were on beta blockers.
Four ICMP patients and one with SNLV were on amiodarone.
A similar percentage of ICMP and SNLV patients had APDR
data collected using a multi-electrode ablation catheter vs an
ablation catheter (for multi-electrode catheter 60 vs 50%, p = 0.69,
Supplementary Results).

ICMP Patients Have a Steeper APDR
Compared to Those With SNLV
A total of 231 APDR curves were used in this analysis (103
from ICMP). Mean ARI over mean DI in ICMP patients and
SNVL is presented in Figure 1 and Table 2. When pacing at
a cycle length of 600 ms, ARI was similar between SNLV and
ICMP (269.1 ± 21.8 vs 266.8 ± 19.1 ms, respectively). The
restitution curves separated when pacing at 500 ms with ARIs of
253.0 ± 15.6 and 243.8 ± 23.3 for SNLV and ICMP, respectively.
The overall variability of ARI is significantly higher in ICMP
patients compared to SNLV for the entire range of pacing cycle
lengths (SD 19.1–40.4 vs 12.0–21.8 ms, Table 2).

The APDR curve fitted to the clinical data was significantly
steeper in ICMP patients compared to SNLV. In mixed model
analysis, ICMP patients had a significantly higher APDR slope
[steeper by 30.8 ± 10 (38%), p = 0.002] and a significantly
lower intercept (by 182.3 ± 57.7 ms, p = 0.002). Variance
decomposition analysis demonstrated that APDR slope of ICMP
patients had higher within-subject and between-subject variance
compared to SNLV (within-subject SD of 29.1 vs 6.4 and

between-subject SD of 29.1 vs 13.9 for ICMP and SNLV,
respectively). Sensitivity analysis revealed that ICMP patients
have a significantly steeper APDR slope compared to those with
SNLV even after exclusion of patients with AF, patients taking any
membrane-active antiarrhythmic medication, patients with the
highest and lowest APDR slope, and women (difference in slope
of APDR – SNLV 17.9–37.7, Supplementary Table 1). APDR
remained significantly steeper in ICMP patients compared to
SNLV even after adjusting the mixed-model analysis for catheter
type (APDR slope difference: 27.3± 11.1, p = 0.014), or VT/PVC
status (APDR slope difference: 26.0± 11.1, p = 0.02). Patients that
underwent VT ablation had on average similar APDR intercept
and slope with patients that underwent PVC ablation.

ICMP Models Have Significantly Different
Parameters Compared to SNLV Models
The GA converged at 174 generations during SNLV model
derivation and at 227 generations during ICMP model derivation
(Supplementary Figure 2B). The action potential waveforms
of the derived models are shown in Figure 2. Action potential
biomarkers of the SNLV and ICMP model are presented in
Table 3. Parameters describing the depolarization phase of the
action potential are similar between the SNLV and ICMP model.
APD is shorter for the ICMP compared to the SNLV model.
The ionic currents of the SNLV and ICMP models are shown in
Figure 2. The amplitude and duration of the fast inward current
was similar between SNLV and ICMP models. The amplitude
of the slow inward and slow outward currents was decreased in
ICMP compared to SNLV.

FIGURE 1 | (A) ARI over DI in patients with SNLV (blue) and ICMP (red). Points represent mean values and error bars represent 95% confidence intervals. ARI,
activation recovery interval in ms; DI, diastolic interval in ms. (B) Box-plots demonstrating the distribution of clinically obtained APDR intercept (in ms) and slope
(unitless) in patients with SNLV (blue) and ICMP (red). Box-plots summarize the intercept and slope of the clinically obtained APDR curve fitted at each UniEGM
recording of each patient. p-values are derived from mixed model analysis as described in the main text. (C) Box-plots of the clinically obtained APDR slope in each
individual SNLV and ICMP patient, demonstrating the within- and between-subject variability of clinically obtained APDR slope.
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TABLE 2 | Activation recovery interval and diastolic interval during different pacing
cycle lengths in patients with ICMP and SNLV.

Pacing cycle
length (ms)

SNLV ICMP

DI (ms) ARI (ms) DI (ms) ARI (ms)

600 335.2 ± 29.0 269.1 ± 21.8 334.3 ± 21.1 266.8 ± 19.1

550 287.9 ± 18.1 262.2 ± 17.8 293.5 ± 21.9 256.2 ± 22.6

500 245.2 ± 16.9 253.0 ± 15.6 255.3 ± 22.7 243.8 ± 23.3

450 206.7 ± 13.2 243.2 ± 13.7 215.6 ± 25.5 234.6 ± 25.2

400 166.6 ± 11.6 233.4 ± 12.0 180.6 ± 30.7 218.8 ± 31.1

350 127.1 ± 13.2 222.3 ± 13.1 159.3 ± 41.9 190.6 ± 40.4

Results are mean ± SD.
ARI, activation-recovery interval; DI, diastolic interval; ICMP, ischemic
cardiomyopathy; SNLV, structurally normal left ventricle.

The parameters of the best fit model for SNLV and ICMP
GA-derived models are presented in Supplementary Tables 2, 3,
respectively. Overall, the parameters of GA-derived SNLV and
ICMP were significantly different (up to 16.7-fold) compared
to the baseline BOFC model. The parameters that deviated the
most from the baseline BOFC model were τw1− (16.6 and 16.7

fold-change), τsi (3.2 and 6.1 fold-change), ks (3.7 and 4.0 fold-
change), and τs2 (3.8 and 2.7 fold-change for SNLV and ICMP,
respectively, Figure 2C). τw1− controls the inactivation gate of the
slow inwards depolarizing current, τsi, directly controls the slow
inwards depolarizing current, ks and τs2 control the activation
gate of the slow inward depolarizing current. The parameters
that deviated the least from the baseline BOFC model were τw2− ,
τw+ , kso, and us. Comparing the parameter sets of GA-derived
SNLV and ICMP models, most parameters were significantly
different, by 0.4 to 1.9-fold (Figure 2F). The parameters that had
the highest fold-change were τw+ (1.8-fold increase) and τsi (1.9-
fold increase). These parameters control the inactivating gate of
the slow inward current (τw+ ), and the slow inward current itself
(τsi), respectively.

ICMP Models Result a More
Pro-arrhythmic Behavior Compared to
SNLV Models
In single cell simulations, GA-derived ICMP models developed
APD alternans at a slower pacing cycle length compared to SNLV
(390 vs 340 ms, Figure 3A). In both ICMP and SNLV models,
APD alternans developed with a fork-type bifurcation and the

FIGURE 2 | (A) Action potential waveform of the SNLV and ICMP models. (B) Fast inward current waveform of the SNLV and ICMP models. (D) Slow inward current
waveform of the SNLV and ICMP models. (E) Slow outward current waveform of the SNLV and ICMP models. Waveforms in (A,B,D,E) are derived from cell-level
simulations during pacing at 500 ms. Bold blue and red lines represent the waveforms of the best fit models, while light blue and red lines represent the wavefronts
using the centroids of the six highest clusters. Jitter has been applied to the waveforms using the centroids of the six highest clusters to facilitate visualization.
(C) Fold-difference of the parameters of SNLV (blue) and ICMP (red) compared to the endocardial parameter set of the baseline BOFC model. The parameter τw1− of
SNLV and ICMP models is 16.6- and 16.7-fold higher than the baseline BOFC model but the bar chart has been truncated at 8 for better visualization of the
remaining parameters. (F) Fold-difference of the parameters of ICMP compared to SNLV models.
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TABLE 3 | Action potential biomarkers for the base BOFC and derived SNLV and ICMP models.

Model RMP (mV) Vmax (mV) Tmax (ms) dV/dt (V/s) APD30
(ms)

APD50
(ms)

APD90
(ms)

Tri(90-30)
(ms)

Tri(30/90) Tri(90-50)
(ms)

Tri(50/90)

Base −84.0 53.8 0.48 287.2 123.7 226.5 276.3 152.6 0.45 49.8 0.82

SNLV −84.0 55.5 0.48 290.7 98.2 210.5 256.8 158.6 0.38 46.3 0.82

ICMP −84.0 57.6 0.48 295.1 77.2 197.5 242.5 165.3 0.32 45.0 0.81

Biomarkers were obtained by pacing the action potential models at 500 ms.
APD30, APD50, and APD90, action potential duration at 30, 50, and 90% repolarization; dV/dt, upstroke velocity; RMP, resting membrane potential; Tmax, time to maximal
voltage upstroke; Tri(90-30), triangulation index defined as APD90-APD30; Tri(30/90), triangulation index defined as APD30/APD90; Tri(90-50), triangulation index defined
as APD90-APD50; Tri(50/90), triangulation index defined as APD50/APD90; Vmax, maximal voltage of action potential upstroke. Tri(30/90) and Tri(50/90) are unitless.

amplitude of the alternans monotonically increased as the pacing
cycle length decreased. Tissue-level simulations had similar
APDR with cell-level simulations (Supplementary Figure 3).

In tissue level simulations, the ICMP model was inducible for
sustained functional reentry over a wider range of S1S2 coupling
intervals over the entire conductivity range, compared to the
SNLV model (Figures 3B,C). An example of that is illustrated
by Supplementary Videos 1 and 2. Using a conductivity of
0.009 S/m (corresponding to a conduction velocity of 62–
64 cm/s) the ICMP model developed sustained functional re-
entry at a S1S2 coupling interval of 295 ms (Supplementary
Video 1). The single spiral wave that was induced in this case
exhibited quasi-stability. For the same S1S2 coupling interval,
the SNLV model was not inducible, and it developed non-
sustained (<2 s) functional re-entry at an S1S2 of 330 ms
(Supplementary Video 2).

The Population of GA-Derived Models
Has Consistent Emergent Proarrhythmic
Behavior Across Clusters
The population of SNLV and ICMP action potential models were
successfully clustered using AHC. The cophenetic correlation
coefficient was 0.97 and 0.98 for SNLV and ICMP, respectively,
which suggests excellent hierarchical clustering. We present the
clustering dendrograms of the SNLV and ICMP population
of GA-derived models in Supplementary Figure 4. Based on
this dendrogram analysis we partitioned the population of
GA-derived model to the 2 and 4 most dissimilar clusters.
Clustering of the GA-derived models was asymmetric, with
the vast majority of models clustering in one large cluster
(number of GA-derived models corresponding to the highest
four branches of the dendrogram was 1506, 3, 2, and 1,
for SNLV, and 1506, 4, 1, and 1 for ICMP). Considering
the highly skewed distribution of individuals corresponding
to the highest four branches of the dendrogram, we further
performed sensitivity analysis by constraining the AHC analysis
to GA-derived models with parameter values within the 99th
and 95th percentile of the entire population of GA-derived
models. This allowed us to control for the influence of
extreme parameter values in AHC. In sensitivity analysis,
when applying AHC to GA-derived models with parameter
values within the 99th percentile of the GA-derived model
population the number of models corresponding to the highest
four branches was: 1283, 4, 2, and 2 (SNLV) and 1265, 5,

2, and 2. For parameter values within the 95th percentile
this number was 1005, 78, 26, and 2 (SNLV), and 1120, 63,
49, and 3 (ICMP).

In cell-level simulations using the parameters at the centroid
of the parameter space for the two and four clusters with the
highest hierarchy (and most dissimilarity), the proarrhythmic
behavior of the models was similar to that of cell- and tissue-level
simulations using the best-fit derived model (described in the
section above). Specifically, in cell-level simulations, the ICMP
models developed APD alternans earlier (385–400 ms) compared
to the SNLV models (355 ms, Figure 4).

In tissue-level simulations the ICMP models developed
sustained functional re-entry over a wider range of S1S2
coupling intervals for all conductivity values, compared to SNLV
(Figure 5). The results of cell-level and tissue-level simulations
using the clusters derived from sensitivity analysis (parameters
constrained to the 99th and 95th percentile of their distribution)
were similar to those when examining the entire population of
GA-derived models.

DISCUSSION

Main Findings
The goal of this study was to characterize the electrical
restitution properties of the non-infarcted myocardium in ICMP
patients, establish a methodology that enables development
of action potential models that incorporate cohort-specific
APDR, and capture the uncertainty inherent to the process
of model development from clinical data. Our main clinical
finding is that APDR of the non-infarcted LV myocardium
of ICMP patients is clinically and statistically significantly
steeper compared to SNLV. This suggests that the non-
infarcted myocardium of ICMP patients, despite having
normal (>1.5 mV) bipolar voltage amplitude on EGMs,
is remodeled and has different EP properties from SNLV.
The increased within-subject variance of APDR slope in
ICMP patients suggests heterogeneous substrate with respect
to repolarization dynamics. Furthermore, the magnitude
and statistical significance of the difference of APDR slope
between ICMP and SNLV was robust in sensitivity analysis
and independent of the PVC/VT status of the patients. This
suggests that the underlying disease process and cardiac
remodeling is what determines APDR, rather than the presenting
arrhythmic phenotype.
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FIGURE 3 | (A) Cell-level simulations of the best-fit GA-derived SNLV (blue) and ICMP (red) model. The first row demonstrates the APDR. The pink line is the patient
derived average APDR curve. These plots demonstrate good fit of the models to patient data. The second row demonstrates bifurcation plots for SNLV and ICMP
models. The onset of APD alternans (development of bifurcation) is annotated. APD alternans occur at slower cycle lengths in the ICMP model compared to SNLV
suggesting a more proarrhythmic behavior. (B) Tissue-level simulation using a conductivity of 0.009 S/m and S1S2 interval of 330 ms for the SNLV model and
295 ms for the ICMP model. Non-sustained functional re-entry was induced in the SNLV model while sustained functional re-entry was induced in the ICMP. Upper
row: snapshot of the simulation, color represents transmembrane voltage in arbitrary units. Lower row: activation isochrone maps for simulations using SNLV and
ICMP models; each isochrone represents 10 ms. (C) Range of functional re-entry inducibility of the SNLV (blue) and ICMP (red) best-fit models. X-axis represents
different tissue conductivity values in Siemens/m and Y-axis represents S1S2 coupling intervals that resulted in sustained functional re-entry. The best-fit ICMP
model has a wider range of S1–S2 intervals, for all conductivity values, that result in sustained functional re-entry suggesting a more proarrhythmic behavior.

Our main in silico finding is that GA-derived ICMP models
exhibited a more pro-arrhythmic behavior in cell-level and tissue-
level simulations compared to SNLV. This is the first study to
show that EP measurements performed with equipment routinely
available in the electrophysiology laboratory can be used to
develop action potential models. The parameters of the GA-
derived ICMP models were up to 1.9-fold different compared
to SNLV. The steeper APDR slope present in ICMP has a
critical effect in tissue-level emergent EP behavior, promoting
the development of sustained functional re-entry. Although
conduction velocity was not assessed in the patient cohort, we
performed tissue-level analysis over a wide range of conductivity
values making our results generalizable to different tissue
conductivity states. These results highlight the importance of

developing action potential models using clinically derived EP
properties such as APDR, since generic action potential models
do not capture clinically assessed EP properties of healthy or
diseased myocardium.

A novel finding is that despite the variability present in
the population of GA-derived models, GA-derived models can
be clustered in a hierarchical cluster tree and the emergent
pro-arrhythmic behavior of the highest-level (most dissimilar)
clusters are similar in cell and tissue-level simulations. This
suggests that: (a) there is significant redundancy built in the GA-
derived models; and (b) our model development approach was
reliable with small variability and uncertainty in the population of
derived models. Despite variability in individual parameter values
and the exact results produced by simulations using different

Frontiers in Physiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 68414958

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-684149 July 13, 2021 Time: 11:45 # 10

Aronis et al. EP Substrate Post-MI: Clinical and in silico

FIGURE 4 | Cell-level simulations in the 2 and 4 highest level clusters of (A) SNLV and (B) ICMP models. In the center of each sub-plot we show the four
highest-level clusters of the dendrogram produced by AHC. The two highest-level clusters are noted as 2/1 and 2/2 and the four highest level clusters are noted as
4/1, 4/2, 4/3, and 4/4. Note that ICMP clusters 2/2 and 4/4 are identical since no bifurcation of the dendrogram occurs at this level. The bifurcation plots
surrounding the dendrograms are labeled after the cluster that they have been created from (X-axis is pacing cycle length in ms and Y-axis is APD in ms). For all
clusters, onset of alternans occurred at ICMP models at longer cycle length intervals compared to SNLV models (385–400 ms vs 355 ms).

GA-derived models, the emergent behaviors that are relevant in
arrhythmogenesis were preserved.

Comparison With Results of Other
Clinical Studies Assessing APDR
There are no prior studies comparing APDR of non-infarcted
LV myocardium of ICMP patients to SNLV. Our results are
consistent with what has been previously reported in studies
assessing APDR of the RV myocardium in patients with SHD.
Our ARI measurements in the LV of ICMP patients are similar
to what has been previously reported using monophasic action
potential (MAP) catheters in the RV of patients with SHD
(274± 42 ms for 600 ms, 258± 35 ms for 500 ms, 237± 29 ms for
400 ms, and 219± 24 ms for 330 ms, n = 42) (Selvaraj et al., 2007;

Dorenkamp et al., 2013). Koller et al. (2005) using MAP catheters,
evaluated APDR in SHD patients (n = 24) and SNLV (n = 12).
Similar to our results, there was no difference in baseline APD
between SNLV and SHD patients, when pacing at 600 ms. The
reported baseline APD was similar to ours (277 ± 5 ms for
SHD and pacing cycle length of 600 ms). However, in our study
the restitution curves of SNLV and ICMP separated at longer
DIs compared to Koller et al. (2005). Our SNLV cohort had
tighter confidence intervals for both DI and ARI. Furthermore,
we demonstrated a robust and statistically significant difference
in APDR slopes between patients with SNLV and ICMP, while
the study of Koller et al. (2005) failed to show that. This may be
due to: (a) our SNLV cohort was more homogeneous compared
to that of Koller et al. (2005); (b) patients with non-ICMP
may have different APDR properties compared to ICMP and
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FIGURE 5 | Tissue-level simulations in the two and four highest-level clusters of (A) SNLV and (B) ICMP models. In the center of each sub-plot we show the four
highest-level clusters of the dendrogram produced by AHC. The two highest-level clusters are noted as 2/1 and 2/2 and the four highest clusters are noted as 4/1,
4/2, 4/3, and 4/4. Note that for ICMP clusters 2/2 and 4/4 are identical since no bifurcation of the dendrogram occurs at this level. Each plot surrounding the
dendrogram shows the S1–S2 coupling intervals that resulted in sustained functional re-entry for different conductivity values and is labeled after the cluster that it
has been created from (X-axis represents different tissue conductivity values in mS/m and Y-axis represents S1–S2 coupling intervals that resulted in sustained
functional re-entry). For all clusters, ICMP models developed sustained functional re-entry over a wider range of S1–S2 coupling intervals for the entire range of
conductivity values, compared to SNLV.

Koller et al. (2005) analyzed both groups combined; and (c)
RV septal APDR may be affected differently compared to LV
myocardium in ICMP.

Mechanistic Insights of APDR Dynamics
in ICMP
The steeper APDR observed in patients with ICMP can be
attributed to changes in the autonomic nervous tone and/or
electrophysiologic remodeling present in patients with ICMP.
Although the scope and design of this study do not allow
for conclusions regarding the cellular mechanisms underlying
the steeper APDR curves observed in ICMP, our findings
can be hypothesis generating. The steeper APDR described
in patients with ICMP is consistent with findings in patients
with heart failure (Koller et al., 2005; Selvaraj et al., 2007;

Dorenkamp et al., 2013), rather than experimental models of
acute ischemia (Dilly and Lab, 1988). Patients with heart failure
have augmented sympathetic tone (Florea and Cohn, 2014).
Activation of the sympathetic system resulted in increased
steepness of the APDR slope in a human in vivo study using MAP
recordings from the right ventricle and isoprenaline or adrenaline
administration (n = 18) (Taggart et al., 2003). Although the
electrophysiological remodeling in humans with heart failure
(including ICMP) remains to be elucidated, limited data suggest:
(a) decrease in delayed rectifying K+ currents (Beuckelmann
et al., 1993); (b) activation of late Na+ currents (Horvath and
Bers, 2014); and (c) increase in intracellular Ca++ and Ca++
transients in heart failure (Gorski et al., 2015). Experimental data
from animal studies support that all these changes can result
in steeper APDR: (a) inhibition of I Ks using chromanol 293B
resulted in a steeper APDR curve in a swine myocardial tissue
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study (Jing et al., 2014); (b) selective inhibition of late sodium
currents with GS967 resulted in flattening of the APDR in
Langendorff-perfused rat hearts (Pezhouman et al., 2014); and (c)
Suppression of Ca++ transients with thapsigargin and ryanodine
resulted in flattening of the maximum APDR slope in patch-
clamped rabbit ventricular myocytes (Goldhaber et al., 2005).

Comparison With Other Studies of Model
Fitting to Clinically Assessed APDR
There are no other studies to date that have fitted action potential
models (other than the Mitchel-Shaffer model) to APDR of
ventricular myocardium of SNLV and ICMP patients. We will
not discuss fitting of the Mitchel-Schaffer model (Relan et al.,
2011), since in this model APDR slope can be directly calculated
from model parameters (Mitchell and Schaeffer, 2003), thus its
model fitting methods are not applicable to any other action
potential model. GAs have been previously used to fit action
potential models to experimental measurements (Syed et al.,
2005; Bot et al., 2012; Kaur et al., 2014; Groenendaal et al., 2015;
Cairns et al., 2017; Devenyi et al., 2017), but this is the first
study to use GA on clinically obtained APDR. Lombardo et al.
(2016) fitted the Fenton-Karma and Koivumäki atrial models
to patient-specific APDR, action potential shape (obtained
with MAP catheters), and conduction velocity restitution from
patients with atrial fibrillation. They used simulated annealing
for model derivation. They demonstrated that patient-specific
models exhibit different dynamics compared to baseline models.
In our model derivation algorithm, we did not incorporate a
clinically derived action potential morphology or conduction
velocity restitution because they cannot be reliably assessed with
clinically available methods. We did not want to constrain our GA
to measurements with high experimental uncertainty: (a) MAP
catheters have not been validated to capture the waveform of
the cellular action potential and in a prior study MAP-derived
waveforms have different morphology compared to true trans-
membrane potential waveforms (Kondo et al., 2004); (b) accurate
estimation of conduction velocity requires construction of high-
resolution isochrones and patient-specific geometries (Cantwell
et al., 2015). Contrary to our study, Lombardo et al. (2016) did not
have a control group to compare the emergent dynamics between
healthy and diseased. Last, Lombardo et al. (2016) report the
dynamics of the “best-fit” derived model, and they do not assess
for the uncertainty in the population of derived models yielded
by simulated annealing.

Significance for Virtual Heart Modeling
Our study helps overcome critical barriers to incorporating the
EP remodeling of ICMP patients in cardiac action potential
models. First, there is a paucity of studies assessing the APDR
of the non-infarcted LV myocardium in ICMP patients. In this
study we provide absolute values of APD and APDR slope of
the non-infarcted myocardium of the LV of ICMP patients. We
also demonstrate a wide within- and between-subject variance
in APD/APDR values of the non-infarcted LV myocardium in
ICMP patients. This variance reflects the heterogeneous substrate
in ICMP patients and can be used in variability and uncertainty

quantification studies of organ-scale simulations performed for
VT localization and ablation planning in ICMP patients.

Second, there are no established methods for incorporating
clinically assessed APDR in models of cardiac EP. Previous
clinical studies have adapted the Mitchell-Schaffer model to
reproduce clinically assessed APDR by either manually adjusting
model parameters (Keldermann et al., 2008; Chen et al., 2016),
or by using deterministic optimization methods (Relan et al.,
2011). However, the Mitchell-Schaffer model is unique in having
an algebraic expression of its APDR slope directly derived from
the model parameters (Mitchell and Schaeffer, 2003) and thus
these methods cannot be applied to any other action potential
model. In this study, we provide a computational framework
and pipeline that enables development of cardiac action potential
models to clinically assessed APDR. We demonstrated that
GA-derived models capture the disease-specific pro-arrhythmic
phenotype. Whole heart simulations using GA-derived action
potential models have the potential to be more accurate in
predicting the risk and location of VTs, as well as to predict
the transition of VT to VF, but this needs to be tested in future
studies. Although our study focuses on ICMP and uses the BOFC
as a baseline model, the pipeline that we developed can be used
in any myocardial disease that affects ventricular APDR and
any phenomenological or biophysically detailed cardiac action
potential model.

Last, there is a significant uncertainty associated with the
process of model development form experimental data. This
stems from the facts that: (1) there is uncertainty with respect to
variability in experimental measurements; and (2) optimization
problems involving non-linear differential equations do not yield
unique solutions. Stochastic optimization approaches have been
used in pre-clinical studies to derive populations of models that
reproduce experimental APDR (Groenendaal et al., 2015; Cairns
et al., 2017; Devenyi et al., 2017). There is considerable variability
in the model dynamics amongst different models yielded by
this approach (Cairns et al., 2017), and there have been no
studies examining for common emergent behaviors amongst
these parameters. As described in the following section, with
this study we couple machine learning with computer-based
simulations to establish a pipeline of action potential model
development that accounts for the uncertainty related to the
process of model development from clinical data.

Significance for Clinical Risk
Stratification Using Virtual Heart
Modeling
There are no studies assessing whether the invasively acquired
slope of the APDR is related to the risk for hard clinical outcomes
such as the onset of ventricular arrhythmias and cardiac death.
Previous studies assessing ECG-derived APDR surrogates report
increased risk for ventricular arrhythmias or death in patients
with ICMP (Nicolson et al., 2014) and non-ICMP (Nicolson
et al., 2021) who have steep restitution slopes. However, the
hazard ratios reported are 4–4.1 and the ROC 0.61, suggesting
that restitution slope alone has at best, modest predictive value.
In addition to APDR slope, APDR slope spatial dispersion
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is critical for arrhythmogenesis. Virtual Heart modeling that
incorporates patient and site specific APDR has the potential to
be a superior risk prediction tool to static biomarkers such as
the APDR slope, and other well-established risk predictors of
ventricular arrhythmias or death such as LV ejection fraction
and myocardial fibrosis. In a previous study by our group,
computer-based simulations in patients with ICMP significantly
overperform well-established biomarkers such as left ventricular
ejection fraction and myocardial fibrosis on MRI (Arevalo et al.,
2016). This study indicates that Virtual Heart modeling that
has as an input patient-specific distribution of fibrosis, yields a
significantly higher predictive value compared to fibrosis itself.
Virtual Heart modeling simulations that incorporate patient-
specific distribution of APDR have the potential to yield a higher
predictive value compared to APDR itself, but this needs to be
examined in future studies.

In this study we developed action potential models using
average, cohort-specific, clinically obtained APDR, but this
pipeline could be used for development of action potential
models to patient-specific APDR and even region-specific APDR
(within the same patient), capturing the spatial dispersion
of APDR. APDR heterogeneity is a critical substrate for
arrhythmogenesis and degeneration of VT to VF (Banville and
Gray, 2002; Keldermann et al., 2008) and it is not currently
incorporated in virtual heart models. Currently, having patient-
specific or region-specific APDR information is not clinically
feasible without an invasive EP procedure. However, with
advances in electrocardiographic imaging (Cluitmans et al.,
2018), non-invasive imaging of repolarization may be feasible
in the near future. Clinical assessment of APDR would then
be possible to be performed non-invasively during non-invasive
programmed electrical stimulation. The framework that we
present here could be used to develop virtual heart models
from non-invasively acquired APDR data. However, further
optimization of the methodology that we present here would be
needed for such a task, since it is computationally intense.

Significance of Establishing a
Methodology That Captures the
Uncertainty Inherent to Action Potential
Model Development
Coupling machine learning with computer-based simulations is
an emerging approach as it provides means to comprehensively
analyze the wealth of high-dimensional, complex data produced
by simulations (Cantwell et al., 2019). In this work we
demonstrate a novel application of coupling machine learning
with computer-based simulations. We show that machine
learning can be used to effectively summarize and cluster the
population of models derived from a stochastic optimization
method. In our study, similar to other studies (Groenendaal et al.,
2015; Cairns et al., 2017; Devenyi et al., 2017; Krogh-Madsen
et al., 2017), there is considerable variability in the population
of GA-derived models. Reporting the dynamics of the “best-fit”
GA-derived model is not adequate since a unique “best-fit” model
does not truly exist. AHC allows for a simple visualization of the
distance and relationship between different parameter sets in the

entire population of derived models, effectively organizing the
space of derived models into distinct clusters. The GA-derived
model clusters that are most dissimilar can be identified using
dendrograms and the cophenetic distance metric. Simulations
can be executed with the parameter space centroids of these
clusters and the results of these simulations can be compared to
assess for differences in model dynamics.

This is important because simulations using the parameter
space centroids of clusters produce the average dynamics of the
population of derived models rather than the dynamics of the
non-unique “best-fit” model. If the emergent dynamics of interest
are the same between the best-fit model and the most dissimilar
clusters, this suggests a reliable model development with small
variability and uncertainty in the population of derived models.
Alternatively, if the emergent dynamics of interest are different
between the best-fit derived models and/or different clusters, this
suggests that either the model derivation method was inadequate
or that there is more than one emergent dynamic behavior in the
derived model population. If there are concerns of inadequate
model development, then a more detailed sensitivity analysis
and tuning of the model development algorithm is warranted.
Otherwise, the presence of more than one emergent dynamic
behaviors among different clusters demonstrates the variability
and uncertainty present in the derived model population with
respect to the emergent behaviors of interest. Should such derived
models be used in Virtual Heart modeling studies for different
hypothesis testing, then simulations should be executed using
the centroids of clusters with different emergent behaviors. This
will result in the uncertainty present in the population of derived
models to be captured in the Virtual Heart modeling study.

Limitations
This study has several limitations. First, we developed action
potential models using cell-level simulations, whereas the clinical
measurements represent a tissue-level behavior. Development
of action potential models using tissue-level simulations might
yield different parameter results. However, considering the large
population of individuals and generations that we used in the
GA, model development using tissue-level simulations would
be computationally not tractable. To address this limitation,
we performed tissue-level simulations to assess the APDR of
GA-derived models. Both for SNLV and ICMP models, APDR
in tissue-level was similar to that of cell-level simulations.
Second, we did not incorporate action potential morphology
specific to SNLV and ICMP patients in the model development
process. We rather used the same action potential morphology
template, derived from the baseline BOFC model, to constrain the
model development process (see Supplementary Materials and
Methods). Incorporating different action potential morphologies
may have resulted in different parameter estimates. Currently
there are no clinically available methods to accurately assess the
action potential morphology. Third, the differences in SNLV
and ICMP model parameters do not necessarily correspond
to in-vivo difference in cellular EP. Phenomena such as
post-repolarization refractoriness cannot be explicitly captured.
Development of action potential models that capture true cellular
EP would require cellular EP measurements and maneuvers
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(Groenendaal et al., 2015; Devenyi et al., 2017) that were outside
the scope of this study. Last, model development using the
approach that we present here is computationally intense.
This precluded us from developing multiple patient- and site-
specific models that could then subsequently used in tissue level
simulations that would incorporate heterogeneity. The focus of
this study was to demonstrate feasibility and not to optimize
performance. Fewer iterations from those that we performed in
our GA may be adequate to obtain models that capture the pro-
arrhythmic behavior of the substrate, but this needs to be tested
in future studies.

CONCLUSION

This is the first study to characterize the electrical restitution
properties of the non-infarcted LV myocardium of ICMP
patients. We clinically characterized the pro-arrhythmic substrate
of ICMP patients and demonstrated that it has a steeper APDR
compared to SNLV, indicating the presence of EP remodeling in
the non-infarcted LV myocardium. In silico, we demonstrated
that ICMP APDR contributes to a more pro-arrhythmic tissue-
level behavior. We coupled virtual heart modeling with machine
learning to establish a robust and reproducible methodology to
incorporate easily obtainable clinical EP measurements to cardiac
action potential models and capture the uncertainty inherent to
the model development process. We demonstrated that action
potential models derived from ICMP patients capture the pro-
arrhythmic potential of the underlying disease in simulations.
Importantly, we showed that despite the variability in the derived
action potential model population, even the most dissimilar
clusters formed by this population exhibit the same emergent
pro-arrhythmic behavior in cell- and tissue-level simulations. The
methods that we present here can be used for model development
in any disease state that affects ventricular repolarization and
restitution, contributing to the emergent field of precision
medicine. Virtual heart models incorporating disease-specific
EP properties have the potential to result in improved risk
stratification and therapeutic planning and this is the focus of our
future research.
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Calibration of cardiac electrophysiology models is a fundamental aspect of model

personalization for predicting the outcomes of cardiac therapies, simulation testing of

device performance for a range of phenotypes, and for fundamental research into

cardiac function. Restitution curves provide information on tissue function and can

be measured using clinically feasible measurement protocols. We introduce novel

“restitution curve emulators” as probabilistic models for performing model exploration,

sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built

by decomposing restitution curves using principal component analysis and modeling

the resulting coordinates with respect to model parameters using Gaussian processes.

Restitution curve emulators can be used to study parameter identifiability via sensitivity

analysis of restitution curve components and rapid inference of the posterior distribution

of model parameters given noisy measurements. Posterior uncertainty about parameters

is critical for making predictions from calibrated models, since many parameter

settings can be consistent with measured data and yet produce very different model

behaviors under conditions not effectively probed by the measurement protocols.

Restitution curve emulators are therefore promising probabilistic tools for calibrating

electrophysiology models.

Keywords: restitution, electrophysiology, cardiology, Gaussian processes, emulation, sensitivity analysis,

calibration, Bayesian

1. INTRODUCTION

Cardiac electrophysiology models reconstruct electrical activation of the heart at cell, tissue,
and organ scale. Biophysically detailed cardiac cell models aim to represent how ion channels,
pumps, and exchangers in the cell membrane co-operate to produce an action potential and
calcium transient (Fink et al., 2011). While they can be a good mechanistic representation, these
models have large numbers of parameters, which may not all be identifiable from data (Whittaker
et al., 2020), and when combined with a tissue model there are complex relationships between
model parameter sets and emergent properties such as restitution or spiral wave stability (Cherry
and Evans, 2008). Alongside biophysically detailed models of cardiac cellular electrophysiology,

66

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.693015
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.693015&domain=pdf&date_stamp=2021-07-22
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:coveney.sam@gmail.com
https://doi.org/10.3389/fphys.2021.693015
https://www.frontiersin.org/articles/10.3389/fphys.2021.693015/full


Coveney et al. Restitution Curve Emulators

phenomenological models have been developed that capture
action potential shape and rate dependence without an explicit
representation of ion channel behavior (Fenton and Karma, 1998;
Mitchell and Schaeffer, 2003; Corrado andNiederer, 2016). These
models have fewer parameters than more detailed models and
can be solved relatively quickly, but the association between
model parameters and emergent properties remains complex
(Fenton et al., 2002).

Cardiac models have the potential to be used to guide
interventions in the clinic (Niederer et al., 2019). Applications
in the clinical setting will require models that are not only
fast running, but can also be calibrated quickly from clinical
measurements to create personalized models (Sermesant et al.,
2012; Boyle et al., 2021). The phenomenological Mitchell-
Schaeffer model (Mitchell and Schaeffer, 2003), with relatively
few parameters, may be a good candidate in this regard (Relan
et al., 2010, 2011; Corrado et al., 2017). Clinical data are typically
noisy and sparse so recent developments have included a set
of approaches that take into account uncertainties in the data
to create probabilistic models (Konukoglu et al., 2011; Coveney
et al., 2020; Dhamala et al., 2020), as well as new models designed
with uncertainty in mind (Pathmanathan et al., 2019).

Parameter inference methods for cardiac cell models include
gradient descent (Dokos and Lovell, 2004), genetic algorithms
(Groenendaal et al., 2015; Krogh-Madsen et al., 2016; Cairns
et al., 2017; Smirnov et al., 2020), particle swarm (Loewe
et al., 2015), multivariate regression (Sarkar and Sobie, 2010),
and Markov chain Monte Carlo (Johnstone et al., 2016). In
“population of models” approaches, parameter sets that are
consistent with data are retained from an initially larger
design spanning the parameter space (Muszkiewicz et al.,
2015). However, these methods do not obtain a posterior
probability distribution for the model parameters, although
there have been some efforts to overcome this limitation
(Tixier et al., 2017; Lawson et al., 2018). Likewise, history
matching approaches accounting for uncertainty still only
find plausible parameterizations of cardiac models given data
(Coveney and Clayton, 2018).

Inference of model parameters from clinical data is
challenging because it is difficult to measure action potentials
directly in the clinical setting, especially in atrial tissue. In the
clinical setting, the rate dependence of local activation time
(LAT) and effective refractory period (ERP) can be measured
directly at different locations with pacing at different intervals.
LAT can be used to infer conduction velocity (CV) restitution,
and ERP restitution is related to action potential duration
(APD) restitution. While calibration can aim to find a single
“best fit” to the data (Corrado et al., 2017), in general there
are many parameter configurations that are consistent with
observed data. Two important questions therefore arise: are
parameters identifiable from restitution curve data, and can a
posterior distribution on model parameters can be obtained
from this data?

Markov chain Monte Carlo (MCMC) can be used to obtain
samples from the posterior distribution, but requires large
numbers of simulated restitution curves to be obtained. APD,
CV, and ERP restitution curves can be time consuming to

compute because they require many solves of a tissue model at
different diastolic intervals. Furthermore, these large numbers
of simulations cannot be pre-calculated since they must be
drawn with posterior probability determined by the data.
Expensive simulations can be supplemented with fast-running
emulators, sometimes called surrogate models, which can be
used to map model inputs onto outputs. Gaussian process
(GP) emulators, which provide a prediction and corresponding
prediction uncertainty, can be effective emulators of complex
computer models (Conti and O’Hagan, 2010). GP emulators have
been used for sensitivity analysis (Chang et al., 2015; Coveney
and Clayton, 2020) and history matching (Coveney and Clayton,
2018) of cardiac cell models, and for models of cardiac tissue
(Dhamala et al., 2020; Lawson et al., 2020) and mechanics
(Longobardi et al., 2020). Emulators are conditioned on pre-
calculated simulator data, but since they can make predictions
at new inputs they are ideal tools for MCMC.

In this paper we describe how to build Restitution Curve
Emulators (RCEs) for APD, CV, and ERP restitution curves.
We chose to base this study on the phenomenological modified
Mitchell-Schaeffer (mMS) model (Corrado and Niederer, 2016),
since this can be considered a minimal model for capturing
the shape and restitution of the cardiac action potential. The
emulation of restitution curves using Gaussian processes requires
a dimensionality reduction stage using principal component
analysis, allowing the curves to be modeled with a small number
of independent Gaussian processes. Furthermore, we develop
a novel likelihood function for ERP observations. RCEs can
then be used with MCMC to obtain the posterior distribution
of model parameters given noisy data. The structure of the
paper is as follows. First we briefly describe the mMS cellular
electrophysiology model, and how it was implemented in a tissue
strip model to calculate restitution curves. Next we explain how
these restitution curves were decomposed, and how emulators
(RCEs) of these curves were constructed. We conduct sensitivity
analysis using emulation, showing the effects of the parameters
on the principal modes of variation of the curves. Finally we
show how these emulators can be used to obtain the posterior
distribution of model parameters given noisy measurements of
CV, APD, and ERP restitutions.

2. METHODS

In sections 2.1, 2.2, and 2.3, we explain how restitution curves
were simulated, how dimensionality reduction was performed,
and how Restitution Curve Emulators were built. In section 2.4,
we explain how RCEs can be used for Sensitivity Analysis (SA).
In section 2.5, we show how RCEs can be used for probabilistic
calibration using uncertain measurements of APD, CV, and ERP
restitution curves.

2.1. Electrophysiology Model
The mMS cell model (Corrado and Niederer, 2016)
was incorporated into a monodomain model of tissue
electrophysiology with isotropic diffusion, expressed in the
following equations:
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∂Vm

∂t
= D∇2Vm + h

Vm(Vm − Vgate)(1− Vm)

τin

−(1− h)
Vm

τout
+ Jstim (1)

∂h

∂t
=

{

(1− h)/τopen if Vm ≤ Vgate

−h/τclose otherwise
(2)

where the two states are Vm, a normalized membrane voltage
varying between 0 and 1 (note Vm = Vm(z, t) where z indicates
space), and h, a gating parameter that controls recovery of
excitability. We fixed the excitation threshold Vgate to 0.1, leaving
five remaining parameters: the tissue diffusion coefficient D,
and time constants τin, τclose, τout , τopen, which correspond
to the initiation, plateau, decay, and recovery phases of the
cardiac action potential (Mitchell and Schaeffer, 2003). We
reparameterized the model by substituting D and τclose with
the transformed parameters CVmax and APDmax, based on
asymptotic expressions of model behavior:

CVmax = 0.5(1− 2Vgate)
√

2D/τin (3)

APDmax = τclose log
(

1+ τout(1− Vgate)
2/4τin

)

(4)

This reparameterization means that propagating action
potentials can be generated for values of transformed parameters
within a 5d hypercube, whereas the region of the original
parameter space from which propagating action potentials could
be generated was relatively small and highly concave. We refer to
the transformed parameters

{

CVmax, τin, τout , τopen,APDmax

}

as
parameters from now on.

We used openCARP (Plank et al., 2021) to solve these
equations and obtain CV, APD, and ERP restitution curves
for different sets of transformed parameters in a thin strip
of simulated tissue. These simulations used a 24 × 0.6 mm
triangular finite element mesh, with triangle edges of 0.3 mm and
no-flux boundary conditions, and were solved using a time step
of 0.1 ms, with a factor 10 smaller time-step for the mMS model.
Simulation geometries such as “cables” of 3D elements can be
used to reduce simulation time. However, simulation behavior
does depend on element type and space-time discretization,
so ideally calibration of computational models should utilize
restitution curves generated with a comparable simulation setup.
Our choices here were motivated by settings that we typically
utilize for atrial simulations with the mMS model.

Restitution curves for S1S2 pacing, representing the variation
of either CV or APD with respect to S1S2 intervals for a given S1
interval, which we denote by CV(S2) and APD(S2), respectively
(thus abbreviating “S1S2 interval” with S2), were obtained by
pacing from one end of the tissue strip (along the shorter edge)
using an S1S2 pacing protocol. Example restitution curves are
shown in Figure 1 below. CV was determined in the central
region of the strip from activation times obtained using a relative
threshold of 0.7, and APD was determined as the duration
between this latter threshold and a relative threshold of 0.1 (i.e.,
APD ≡ APD90, the time required for 90% repolarization). ERP
was determined as the largest S1S2 interval for which the S2
stimulus did not result in propagation reaching the strip center.

FIGURE 1 | S2 restitution curves for S1: 600 ms for CV(S2) and APD(S2),

colored by ERP(S1: 600), and plotted only for S2 > ERP(S1: 600) for clarity.

For a given set of parameters (homogeneous across the strip) and
S1 interval, the strip model was run for integer values of S1S2
interval (in ms), chosen dynamically in order to bisect ERP to a
1 ms resolution. The strip was paced with eight S1 beats and the
model state shortly after the final S1 beat was saved (we found
no appreciable difference using 16 beats). The S1S2 interval was
then varied using Algorithm 1 (reloading the saved model state)
until ERP was determined.We set the initial bracketing values for
ERP to be 100 and 2,000 ms, which helped ensure that data was
collected in both the asymptotic limit of high S1S2 interval, while
focusing most observations at S1S2 intervals nearer to ERP. We
also consider ERP(S1) restitution curves in this paper, which are
curves of ERP for different S1 interval.

2.2. Dimensionality Reduction
To build Restitution Curve Emulators requires that we obtain
simulation results (outputs) for a space-filling design of
parameters (inputs). We generated a Latin hypercube design
of 500 “points” in parameter space, optimized with respect to
a maximin criterion across 104 designs, in the ranges CVmax

0.1–1.5 m/s, τin 0.01–0.30 ms, τout 1–30 ms, τopen 65–215 ms,
APDmax 120–270 ms, which were chosen so that the range of
corresponding tissue behaviors include, and go sightly beyond,
physiologically plausible values (this helps ensure that the output
space of plausible values is well sampled). The simulation
described above was run for each parameter vector for a specific
S1 interval.

The S2 restitution curves (outputs) obtained from the
simulations are obtained for a subset of S1S2 intervals due to
the bisection method. Furthermore, since measurements at S1S2
intervals below ERP cannot bemade, the restitution curves would
not all share the same set of S1S2 interval even if the algorithm
was run for a predetermined set of S1S2 intervals. We can fit the
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Input: parameters, S1
Output: CV({S2}), APD({S2}), ERP
Initialize S2min: 100, S2max: 2000;
while S2max - S2min > 1 do

if first run then

S2← S2max;
else

S2← (S2min + S2max) / 2;
end

Simulation; save CV and APD for current S2;
if successful propagation then

S2max← S2;
else

S2min← S2;
end

end

ERP = S2min;

Algorithm 1: Strip simulation algorithm for S1S2 pacing.
For a given S1 interval and set of model parameters, the
simulation determines CV(S2) and APD(S2) restitution
curves and ERP.

restitution curve data to an analytic expression for restitution,
which allows us to resample the restitution curves to a common
S1S2 interval resolution. For the mMS model, we fitted the
following expression to the data using non-linear fitting methods
(scipy.optimize.curve_fit function in this case):

F(S2) = a
(

1− b exp (−S2/c)
)

, (5)

which fits the data with negligible residuals. The advantage of
fitting an analytic expression to each curve is that curves can
be extrapolated to obtain “virtual” values for S1S2 interval <

ERP, required for PCA since all curves must have the same
dimensionality. We refer to this region of restitution curves
as “virtual” in analogy with a virtual image in optics, found
by tracing real rays from a mirror backwards to a perceived
origin behind the mirror from which light rays cannot actually
emerge. We chose S1S2 intervals from 160 to 600 ms at
1 ms resolution (corresponding to the highest clinical pacing
resolution). For convenience, the “fitting” and “prediction” stages
of this resampling are split, such that the simulator fits and
returns these coefficients, while prediction happens “outside” of
the simulator. (This division is simply for convenience, since
the simulator is then a black box that always returns the same
number of outputs, rather than variable length arrays depending
on the path taken by the bisection algorithm).

We emphasize here that the only purpose of Equation (5)
is to calculate S2 restitution curves at a common resolution,
after which it is never used again. We discuss why emulation
of Diastolic Interval (DI) curves, (where DI = S2 − ERP such
that the curves would have no virtual region) is not a good
choice for calibration in Section 3.5. Equation (5) is a non-
linear compression of the data into three dimensions, but we
found that attempts to predict the coefficients a, b, c from the

model parameters (followed by application of Equation 5) gave
inferior results to the emulation method we present in this paper.
Importantly, for any re-parameterization of Equation (5), the
intrinsic non-linearity means that coefficient emulation with a
Gaussian process emulator results in restitution curve emulators
that are not Gaussian processes; this significantly complicates
exploratory analysis, sensitivity analysis, and calibration, since
posterior sampling would be required in all cases to make any
predictions. Furthermore, characterizing these predictions would
be more difficult, since the mean, median, and mode of these
predictions would all be different, and the distribution spread
would not be summarized by only the second-order moment,
i.e., variance.

We discuss dimensionality reduction here in terms of S2
restitution curves (where for convenience of notation S2 ≡
S1S2 interval). The resulting set of resampled restitution curves
can be thought of as a stack of 1D images (1 image per
parameter choice) with 1ms wide pixels centered on S1S2
interval, where the pixel intensity represents either CV(S2)
or APD(S2). This analogy makes it clear that although each
curve has 440 dimensions, the intensity values in many
neighboring pixels are highly correlated. Principal Component
Analysis (PCA) can be used to find an ordered set of
orthogonal directions/axes in this high dimensional space along
which the variance between different images is largest. We
perform PCA via Singular Value Decomposition (SVD) using
sklearn.decomposition.PCA, first subtracting the mean
and without scaling the data since the units are identical across
dimensions (m/s for CV, ms for APD, ms for ERP) and amplitude
of variation is intrinsically important. We obtain a set of right
singular vectors (equivalent to eigenvectors) 8c(S2) for c =
1 . . .C, where 1 ≤ C ≤ n for a dataset of size n (usually C≪ n).
Each restitution curve can be projected onto these axis to obtain
the coordinate of that curve in this new space. Each curve can
then be expressed with a linear combination of the eigenvectors
8c plus the mean 80:

F(S2) ≈ 80(S2)+
∑

c

fc ·8c(S2), (6)

where the sum is truncated to keep only the “principal
components” accounting for the majority of the variation across
the dataset (determined from the corresponding eigenvalues).

For ERP(S1) curves, obtained by running the simulator for
a range of S1 intervals, we perform PCA on the data without
any resampling in S1. It is interesting to consider that fitting a
functional form to ERP(S1) data would allow extrapolation of
ERP curves into a virtual region [e.g., if ERP(S1:375) = 360 then
ERP(S1:350) is not defined, since the tissue cannot support this
S1 pacing, but a virtual value could be defined from a functional
fit to the valid ERP(S1) values]. This would allow for keeping
additional simulation runs in the emulation dataset that would
otherwise be discarded because the ERP(S1) vector would be
undefined for some S1, preventing inclusion of those results
in PCA for ERP(S1). We do not consider this matter further
here, instead opting to discard certain simulation runs from
our emulation dataset if some ERP(S1) could not be defined
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[this means that the ERP(S1) dataset will include only data,
i.e., parameters and corresponding ERP(S1) values, for which
ERP(S1) can be defined for all S1 values in our dataset].

2.3. Restitution Curve Emulators
To create surrogate models that predict the restitution curves
F(S2) from the model parameters x, we model each coordinate
in Equation (6) as fc ≡ fc(x) using a Gaussian process (Higdon
et al., 2008; Wilkinson, 2010), with explicit basis functions
modeling the GP mean (Conti and O’Hagan, 2010). We drop
the index c to reduce clutter in the following equations, as the
same type of model is built for all coordinates. For increased
numerical stability and model regularization, we assume that the
coordinates obtained from PCA are potentially noisy, therefore
we denote these values (for a particular c) by y and the model
for these coordinates by f . For n training data

{

xi, yi
}

, where
i = 1 . . . n, we then have:

y ∼ N
(

f, (νσ )2
)

(7)

f|β , σ , θ ∼ N

(

HTβ , σ 2A
)

(8)

H =
(

h(x1), . . . , h(xn)
)

(9)

Aij = k
(

xi, xj, θ
)

(10)

where the mean function depends on basis functions h(·) and
basis coefficients β , and the kernel function k(·, ·, θ) depends on
hyperparameters θ (we have factored out the amplitude σ 2). Note
that the covariance matrix of the training data y is then given
by σ 2Ay = σ 2

(

A+ ν2In
)

, such that the (unscaled) covariance
matrix elements Aij depend on xi and xj.

We optimize the hyperparameters θ and ν (distinct
from the model parameters x) by maximizing the
(marginal) log likelihood L. Denoting n and q as the
number of data points and basis functions, respectively,
the basis coefficients and covariance amplitude are

integrated out to give β̂ and σ̂ 2, respectively (Oakley,
1999; Rasmussen and Williams, 2006; Conti and O’Hagan,
2010), giving:

β̂ = (HA−1y HT)−1HA−1y y (11)

σ̂ 2 = (n− q)−1(y−HT β̂)TA−1y (y−HT β̂) (12)

L = −
1

2

(

log |Ay| + log |HA−1y HT | + (n− q) log
(

2πσ̂ 2)
)

(13)

We chose a linear basis for modeling the mean, and the
squared exponential kernel (with automatic relevance
determination) for the covariance function. Denoting
the individual dimensions of x by k = 1 . . .m,
such that xik corresponds to the k’th dimension (e.g.,
k = 3 corresponds to τout) of the i’th row of the
dataset, then:

h(xi)
T
: = (1, xi1, . . . , xim) (14)

k(xi, xj, θ) : = exp

(

−
1

2

m
∑

k=1

∣

∣

∣

∣

xik − xjk

θk

∣

∣

∣

∣

2
)

(15)

Defining A∗ as the covariance matrix between
prediction and training data, A∗∗ as the covariance
matrix between prediction data, and H∗ as the basis
matrix for predictions, then the posterior mean
M and posterior variance V for predictions is
given by:

M = HT
∗ β̂ + AT

∗A
−1
y

(

y−HT β̂
)

(16)

V = σ̂ 2
(

A∗∗ − AT
∗A
−1
y A∗ + (H∗ −HA−1y A∗)

T(HA−1y HT)−1

(H∗ −HA−1y A∗)
)

(17)

Recalling Equation (6), and noting that applying a linear
operation to a Gaussian process results in a Gaussian process,
then the posterior distribution for the restitution curve is also a
Gaussian process, which we will refer to as a Restitution Curve
Emulator (RCE). Reintroducing the index c for different principal
components and defining 9C :=

[

81(S2), . . . ,8C(S2)
]

, the RCE
posterior distribution for prediction at x∗ for d × 1 vector S2 is
given by:

F(x∗, S2) ∼ N (M(x∗, S2),V(x∗, S2)) (18)

M(x∗, S2) = 80(S2)+9C

[

M1(x
∗), . . . ,MC(x

∗)
]T

(19)

V(x∗, S2) = 9C diag
[

V1(x
∗), . . . ,VC(x

∗)
]

9T
C (20)

such that M(x∗, S2) is a d × 1 vector and V(x∗, S2) is a d × d
matrix. Note that the correlation between F values with similar
S2 results from the principal components (S2 does not index the
random variables). RCEs are built for ERP(S1) restitution curves
in exactly the same way as for APD(S2) and CV(S2) restitution
curves. Prediction with RCEs is orders of magnitude faster than
simulation, with ∼ 104 predictions taking only a few seconds on
a laptop (i5 gen 6 processor, 8 Gb RAM).

2.4. Sensitivity Analysis
Since RCEs allow probabilistic prediction of restitution curves
from model parameters, they can be used to study how changes
in parameters cause changes in restitution curves. RCEs are
therefore ideal for exploratory model analysis. An additional
advantage of the RCE approach is that global sensitivity analysis
(SA), requiring a large number of model evaluations, can be
performed across the entire parameter space. Such analysis can be
performed for restitution curve values at particular S1S2 interval,
e.g., APD(S2:300), but here we apply SA to the individual RCE
components. The advantage to this analysis is that it is global
in two different senses: (i) the SA is across the entire parameter
space, rather than at a single point as for local methods; (ii) the
results can be parsimoniously interpreted in terms of the effects
of parameters on the entire restitution curve.

We use SALib (Herman andUsher, 2017) to calculate various
sensitivity indices via (Saltelli’s extensions to) Sobol sequences
(Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010), which require only
model inputs (parameters) and outputs (in this case, posterior
means of each RCE component). Borrowing slightly from the
terminology described by SALib Toolkit, we calculate three
indices: (S1) first-order sensitivity indices, which measure the
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contribution to the output variance from variation of a single
parameter alone; (S2) second-order sensitivity indices, which
measure the contribution to the output variance caused by the
interaction of two parameters; (ST) total-effect indices, which
measure the total contribution to the output variance caused by
a parameter (first-order effects and all higher-order interactions).
Sensitivity indices can be calculated by applying SA to posterior
samples from the full joint posterior between all parameter values
required for the Saltelli/Sobol sequence, such that the posterior
variance of the emulators is accounted for and SA confidence
intervals can be obtained, but we do not do that here.

2.5. Calibration
Given noisy observations Y from either a CV(S2) or APD(S2)
restitution curve, observed for S1S2 intervals S2Y, we will
assume a normal error model with homoscedastic variance
σ 2
Y linking the RCE to the observations. Although APD(S2)

measurements are difficult to make, we include them here
as part of our study of parameter identifiability, in order to
understand whether calibration of some parameters requires
APD(S2)measurements. Sincemeasurements from S2 restitution
curves involve S1 pacing across many beats in between each
premature S2 beat, it is likely that errors are in fact independent,
and for the purposes of investigating fundamental parameter
recoverability/identifiability, a normal error model is probably a
good default choice. The likelihood p(Y|x, σY ) is then given by:

Y|F(x, S2Y) ∼ N (F(x, S2Y), σ
2
YI)

Y ∼ N (M(x, S2Y),V(x, S2Y)+ σ 2
YI)

(21)

Measurements of ERP using an S1S2 protocol are, in fact, only
observations of the S1S2 interval in which ERP lies. Representing
the lower endpoint of this interval by Y and the interval width by
1S2, the likelihood for a given parameter x would be p(ERP ∈
(Y ,Y +1S2)|x) = p(F(x, S2Y ) ∈ (Y ,Y +1S2)|x), which would
need to be evaluated by quadrature (this likelihood would also
pose difficult problems for MCMC, although this is somewhat
mitigated since F is a distribution with infinite support). Rather
than model Y = ERP− ǫ using ǫ ∼ uniform(0,1S2), we instead
model Y = ERP − δ where δ and ǫ have approximately the same
distribution. We chose the following mixture of Gaussians:

p(δ) =
N
∑

i=1

1

N

1
√
2πs2

exp

(

−
1

2s2
(δ −mi)

2
)

(22)

where mi = (i − 1/2)1S2 and we choose s = 1S2/N. This
approximates uniform(0,1S2) but has infinite support. We can
then write δ as

δ = Z +
N
∑

i=1
I(K = i)mi (23)

whereZ ∼ N (0, s2), I is the indicator function, andK is a random
variable where P(K = i) = 1/N for i = 1 . . .N. If the RCE
prediction for ERP given x isF(x) ∼ N (M,V) then we can write

Y = F(x)− Z −
N
∑

i=1
I(K = i)mi (24)

from which we can identify that the likelihood is

p(Y|x) =
N
∑

i=1

1

N

1
√

2π(s2 + V)

exp

(

−
1

2(s2 + V)
(Y +mi −M)

2
)

(25)

Note that Y +mi are the centers of N regular intervals spanning
the ERP bracket. This likelihood has two main advantages for
our calibration using RCEs: (1) it is analytical and requires no
quadrature to be performed, as would be the case for a truncated
uniform error model for ERP; (2) the distribution is continuous
and has infinite support (but can be sharpened by simply adding
more terms to the sum). We choose N = 10, which results in
approximately 82% of the probability density for δ falling within
the edges of the truncated uniform distribution (20 terms gives
≈ 90%, and 50 terms gives≈ 96%), which we find works well for
calibration. What is most important is that between the brackets
the likelihood is virtually flat, which is what we require for ERP
measured with an S1S2 protocol. Note that the log-likelihood,
almost always utilized for optimization (and used here), should
be calculated using the readily available logsumexp function,
to prevent numerical underflow.

The total loglikelihood, accounting for measurements from
different restitution curves, can be calculated by simply adding
the different corresponding loglikelihoods together. Using Y and
σY to represent all measurements, then the posterior distribution
is given (up to a constant) by:

p(x, σY|Y) ∝ p(Y|x, σY)p(x)p(σY) (26)

We chose the prior p(x) to be truncated uniform across the same
range of parameters specified in section 2.2. It is then possible to
find themaximum a posteriori (MAP) estimate for x and σY, and
also to perform Markov Chain Monte Carlo (MCMC) to obtain
samples from the posterior distribution. These estimates take into
account uncertainty about the observations as well as uncertainty
in RCE predictions.

We use noisy measurements generated from the mMS model
to demonstrate probabilistic calibration with RCEs, which also
allows us to study parameter identifiability. We use CV(S2) and
APD(S2) for S1: 600 ms, and ERP(S1) for S1: 400, 500, 600 ms.
Since it should always be possible to collect observations for the
S1 beat prior to the S2 beat, we include an observation at S2 =
S1 for every S2 observation. This helps the method to learn the
noise and therefore to focus on the more important question of
the shape of the S2 restitution curve rather than its asymptotic
limit (which can be measured much more efficiently with an S1
protocol). For simplicity of presentation and also to focus on
parameter recoverability, we first obtain the MAP estimate of the
parameters and the noise amplitude σY , and for MCMC we fix
the noise amplitude to its MAP value (for calibration to real data,
σY should be included in MCMC in order to obtain its posterior
distribution, but for studying identifiability it may be useful to fix
it as done here). We perform MCMC using the Python package
EMCEE (Foreman-Mackey et al., 2013), for 2,000 samples using
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FIGURE 2 | PCA components and means for CV(S2) curves and APD(S2)

curves for S1: 600 ms.

32 chains initialized with the MAP estimate (plus a small amount
of jitter), fromwhich we discard the first 1,000 samples as burn-in
and use a thinning factor of 5.

3. RESULTS

We ran the simulator from S1 350 to 700 ms at 25 ms intervals
using a maximin-optimized Latin hypercube design of 500
parameters in the ranges specified in section 2.2. We discarded
166 runs where ERP(S1) was not defined for all S1, which
restricted the dataset to contain ERP <350 ms, leaving 334
simulation runs with the highest remaining ERP being 337 ms.
Note that RCEs can be used to create a more careful design of
parameters that produce outputs only within a desired range, but
initially this is not possible since the map between the simulator
inputs and outputs is not known. We restrict our analysis of
S2 restitution curves to S1: 600 ms throughout, with other S1
intervals utilized for ERP(S1) only. In plots below, we denote τout

as “Tout” etc, to assist readability.

3.1. Restitution Curve Emulators for CV(S2)
and APD(S2)
The CV(S2) and APD(S2) restitution curves resampled to 1ms
resolution are shown in Figure 1, colored by ERP(S1: 600) and
plotted only for S1S2 intervals > ERP (the region in which
observations can be collected) to aid visualization. The data
means and the principal components are shown in Figure 2. We
established that three principal components were sufficient to
explain over 99% the variance in the dataset (of the variance
retained for three components, it was divided as follows: 8CV

c :
78.637, 20.460, 0.897%, for 8APD

c : 68.690, 29.131, 2.148%), so

FIGURE 3 | R2 scores for S2 restitution curves from 5-fold cross-validation.

Performance decreases with S2, although these validation scores include RCE

prediction at S2 ≤ ERP(S1) corresponding to virtual regions of the curves

where no measurements can be made.

we retain only three components for the RCEs. Note that there
is no particular reason why a linear basis should require the
same number of components as coefficients in the original non-
linear mapping Equation (5), and we found that emulation of a
fourth component was possible (i.e., not all higher components
are just “noise”). In both cases, the first principal component,
representing the direction in which the curves vary the most,
represents mainly the height of the curves in the limit of long
S1S2 interval, i.e., the asymptotic region. However, for CV(S2)
this component is much flatter with respect to S2 than for
APD(S2). For the second component the opposite is the case,
showing much less variation across S2 for APD(S2) compared to
CV(S2). The third components represents more subtle curvature
of the “knee” of the curve, when the restitution curves begins
to fall away rapidly, and is very similar for both CV(S2) and
APD(S2), most notably showing the peak in approximately the
same S2 location.

We fit an RCE for both CV(S2) and APD(S2) for S1: 600 ms.
For validation, we used 5-fold cross validation and calculated
the average R2 score over the folds for each S1S2 interval. The
RCE validation results are shown in Figure 3, showing that the
performance is extremely good, especially for long S1S2 intervals.
The dependence of performance based on S1S2 interval is likely
to be linked to resampling the curves into virtual regions where
S2 ≤ ERP, where it is not unreasonable to suppose that the
resampling itself may contain errors since resampling here is only
extrapolation. RCEs do not actually need to make predictions
in these regions because no measurements can be obtained
here anyway. Also, RCEs predict a distribution rather than a
single number. Our training dataset of 334 simulation runs was
relatively small: for comparison, 35 = 243 points would be
required to place a data point at the corners, face centers, and
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body centers of a five-dimensional hypercube. In general, having
validated RCEs for a particular model and range of parameters,
we would consider then collecting a larger training dataset
(with a more carefully chosen parameter range) for building
more accurate RCEs, which would both improve accuracy and
reduce posterior variance of the RCE predictions. However,

FIGURE 4 | Sensitivity indices of the coordinates fc of the principal

components 8c for the model parameters for S1: 600 ms. The total-effect

indices are plotted semi-transparently, with the first-order indices (which

contribute to the total-effect indices) overlaid with opaque shading.

we do not do this here as the validation scores are already
extremely good.

The sensitivity analyses for total-effect indices and first-order
effects are shown in Figure 4, and second-order interaction
effects are shown in Figure 5. In Figure 4, the total-effects are
shown faded, with more opaque regions representing the first-
order effects. The faded region therefore shows all higher-order
effects of the parameters on the principal components. It is
notable that higher-order effects are less present in the primary
principal components, particularly for 8CV

1 (S2) meaning that
the asymptotic region of the restitution curve is almost entirely
determined by CVmax as would be expected. 8APD

1 is determined
most strongly by first-order effects of τout and APDmax, which
can be seen to effect recovery in Equation (2) approximately for
phases 2 and 3 of the action potential.

Of particular note is that 8CV
2 (S2) is strongly effected by the

same parameters that mainly determine 8APD
1 (S2), which makes

sense since 8CV
2 (S2) mainly codes for differences between the

highest and lowest values in the restitution curves, and CV takes
its lowest observable values when pacing rate is close to APD.
The effects of CVmax on 8APD

2 (S2) are also extremely important.
We had initially supposed that these effects may be artifacts, but
further analysis (with a longer simulation strip, more S1 beats,
and so on) revealed that this was not the case. In fact, inspection
of Equation (1) reveals that such a causal effects ought to be
expected: the diffusion term in Equation (1) not only depends
explicitly on D (where CVmax ∝

√
D), but the magnitude of

the diffusion term ∇2Vm precisely depends on spatial differences
which are determined by the electrical wave-front propagation
velocity. This is a good example of sensitivity analysis providing
insight into the model, and shows why APD restitution curves

FIGURE 5 | Second-order interaction effects for S1: 600 ms, with text labels applied in cells where the effects are at least 0.01 (i.e., account for at least 1% of the

overall variance).
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for calibration should be calculated in a tissue model rather than
only from a cellular model (and since this is significantly more
time consuming, is a strong motivating factor for using RCEs).

Parameter τopen only shows first-order effects above 10% for
the third principal component of both CV(S2) and APD(S2), for
which it has the largest total effect of all parameters. The variance
contributed by this third component to both curves is relatively
small, and given that the magnitude of higher-order effects for
τopen is comparable to its first-order effects, it may be difficult to
precisely calibrate τopen using noisy measurements. Parameter τin

shows a modest effect on 8APD
2 , likely due to the contribution to

action potential duration resulting from differences in upstroke,
perhaps through the same effects of electrical propagation on
tissue repolarization discussed above.

Since PCA gives a linear basis, we tested using least squares
to fit the basis to noisy data. This gives a Maximum Likelihood
estimate under the assumption of normally distributed noise,
also giving a variance measure on the fit coordinates. We had
hoped that this information, considered alongside the sensitivity
indices, would allow us to judge whether certain parameters were
recoverable for a particular restitution curve. Unfortunately this
methodwas not robust, often resulting in completely nonphysical
restitution curves (that minimized the least squares problem, but
which have zero probability i.e., cannot be produced from the
simulator), and does not help to calibrate the model parameters.

3.2. Restitution Curve Emulators for
ERP(S1)
RCEs were built for ERP(S1) for S1: 350–700 ms with 25 ms
intervals (we did not resample these curves), using the first
two principal components (the variance captured by these two
components was divided 99.432 and 0.549%). The smallest R2
score was above 0.999, with little variation across S1 interval.
These components are shown in Figure 6 along with the
sensitivity indices [the higher-order effects are very small, so
we don’t show the interaction effects for ERP(S1)]. The first
component almost entirely determines the height of the curve,
with the lack of curvature demonstrating that the height can
change verymuch independently of the difference between values
at lowest and higher S1 interval (in other words the gradient).
The second component codesmainly for the gradient of the curve
(changing the difference between the lowest and highest values).

Interestingly, τopen has the largest first-order effect and total-
effect on 82

ERP(S1), though the first-order effects are similar to
APDmax and only twice the τout first-order effects. Nonetheless,
it is interesting to ask whether ERP(S1) observations could be
used to calibrate τopen, given that it may be difficult to calibrate
from noisy S2 restitution curve measurements. Figure 7 shows
how RCEs can be used for exploratory model analysis, in this case
visualizing the effects of particular parameters in different regions
of the parameter space: we set CVmax and τin to the centers of
their ranges, and each subplot corresponds to a different τout

and APDmax combination, while τopen is varied across its entire
range within each subplot. These results clearly demonstrate the
effects of τopen on the ERP(S1) curves (in line with the sensitivity
analysis), but show that it would be difficult to calibrate τopen

FIGURE 6 | ERP(S1) restitution curves, showing (top) principal components

and mean, and (bottom) first-order and total-effect sensitivity indices for the

coordinates of the principal components.

without a small resolution for the S1S2 protocol (even if the other
four parameters were already known, which of course they would
not be). In fact, there are regions on the ERP(S1) curve (where
the curve appears to twist) where τopen does not effect the value
of the curve at all (and the S1 location of this point changes with
respect to other parameters).

3.3. Probabilistic Calibration
To demonstrate calibration using RCEs, we rebuilt the RCEs for
S1: 600 ms on 95% of the dataset, retaining 5% to use as a ground
truth. From these ground truth restitution curves, we picked one
for which the parameters were not too close to the edges of the
parameter range so as to falsely imply a more precise calibration
than is generally possible, but our results below are representative
for the mMS model. We show calibration for several different
combinations of measurements, explained below. A noisy dataset
was generated from the ground truth restitution curves using an
S1S2 interval resolution of 10 ms (this also determines the ERP
resolution, as explained in section 2.5) from 170 to 360 ms for
measurements [with CV and APD measurements for S2 below
ERP(600) discarded], adding normally distributed noise with
standard deviation 0.05m/s for CV and 5ms for APD.We would
argue that these measurements are probably overly precise, but
we chose these values to emphasize the difficulties of precise
calibration even with high signal-to-noise ratio. We use ERP(S1)
measurements for S1: 600, 500, 400 ms (in section 3.4, we address
whether S2 restitution curves for multiple S1 are useful).

Figure 8 shows MAP estimates of the restitution curves fitted
to noisy CV(S2) and ERP(S1) data (left) and noisy APD(S2) and

Frontiers in Physiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 69301574

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Coveney et al. Restitution Curve Emulators

FIGURE 7 | RCE predictions to explore the effects of τopen on ERP(S1) across the parameter space.

FIGURE 8 | The RCE prediction from maximum a posteriori (MAP) parameter estimates given noisy measurements for (left) CV(S2) and ERP(S1), (right) APD(S2) and

ERP(S1), shown as light shaded regions representing RCE 95% confidence intervals. The orange dashed curves show these intervals including the observation error,

also learned from MAP fitting. The noisy S2 restitution data are shown as crosses, while the red shaded bars represent observed intervals containing ERP: (top): bars

horizontally span ERP(S1:600) interval; (bottom) bars vertically span ERP(S1) interval for several S1. The solid black lines in all plots represent the corresponding

ground truth curves.
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FIGURE 9 | RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given

the same measurements shown in Figure 8 [black crosses are noisy S2 restitution data, red bars are observed ERP intervals, (left) MCMC with CV(S2) and ERP(S1)

data, (right) MCMC with APD(S2) and ERP(S1) data].

ERP(S1) data (right). The true restitution curves (from which
the noisy observations were generated) are shown as black lines,
with the cross-markers showing the noisy measurements. The
ERP(S1:600) bracket (showing the S1S2 interval in which ERP
is determined to lie) is plotted as a shaded interval in the S2
restitution plots, while for the ERP(S1) restitution plots thick
vertical bars extend between the observed ERP brackets [the
two ERP plots show the same ground truth and observed S2
intervals, but with different MAP fits CV (left) and APD (right)].
The posterior distribution of the RCE predictions with the MAP
parameter estimates are shown as the 95% shaded confidence
intervals, with the posterior mean falling exactly between these
intervals but omitted for clarity. The orange dashed lines shows
the confidence intervals including the estimated noise i.e., M ±
1.98

√

V + σ 2
Y ). It is clear that the MAP estimate has identified

plausible restitution curves given the noisy data.
The MAP estimates, while representing the best fits to the

data, should be interpreted cautiously, as they tell us nothing
about the posterior distribution for the parameters. Another
randomdraw of noisymeasurements from the same ground truth
would likely result in completely different MAP estimates for the
parameters. For the MCMC results for the posterior distribution
below, we fix the noise σY to the values obtained from the MAP
estimate, in order to restrict plots and uncertainty to the model
parameters (due to the S2 = S1 data, the noise was estimated
extremely well, but posterior uncertainty about the noise level
is generally of interest). We used MCMC to obtain samples
from the posterior distribution of the parameters, as described
in section 2.5, for the same data as in Figure 8. Figure 9 shows
the RCE posterior means for 100 random samples from the

posterior distribution obtained with MCMC. In these plots, the
95% confidence intervals have been plotted semi-transparently
to assist with visualization of density. For the S2 restitution
curves the density decreases away from the data, whereas for
ERP(S1) restitution the density is much more uniform due to
the approximately uniform error model [but will not be uniform
since multiple data have been used, as opposed to data only for
ERP(S1) for a single S1].

Figures 10, 11 show the posterior distribution in parameter
space for the data corresponding to Figure 9 (for all posterior
samples after burn-in and thinning). The subplot axes span the
parameter ranges given in section 2.2. Since we are presenting
results for a particular ground truth curve, and the particular
results will vary for every random draw of the measurement
errors, we will focus on reporting the aspects of the results that
are representative of the mMS model generally. However, in the
Discussion we accept the difficulty of making generalizations
about parameter identifiability from restitution curves. For
Figure 10 [CV(S2) and ERP(S1) measurements], we see that the
posterior uncertainty about all parameters except CVmax and
τopen is quite large (by which we mean that the marginal widths
of the distribution are comparable to the parameter ranges).
Generally for CV(S2) and ERP(S1) measurements, both τin and
τopen are quite imprecisely calibrated, but in this particular case
τopen has been calibrated fairly precisely, simply because the
particular errors present in the measurements allowed for this
and because the signal-to-noise ratio in this case is high because
the overall value of the CV(S2) is reasonably high, allowing 83

3 to
be learned. It can be seen for the (τout ,APDmax) panels that these
parameters appear to be constrained to a slice through parameter
space, and the broad marginal histograms reflect this. This latter
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FIGURE 10 | The posterior parameter distribution for fits to CV(S2) and

ERP(S1) measurements. The intersection of vertical and horizontal lines mark

the true parameter value. The lower diagonal shows the density via hexbin

plots, while the upper diagonal shows the log likelihood values for each

sample plotted in order of increasing likelihood. The diagonals show the

marginal histograms of each parameter.

result could probably have been inferred from the sensitivity
analysis, since these parameters both strongly influence 8APD

1
and ERP(S1).

For Figure 11 [APD(S2) and ERP(S1) measurements], the
posterior distribution is quite different to that obtained with
CV(S2) and ERP(S1), although there are similarities. CVmax

is poorly calibrated, which is not surprising in the absence
of CV(S2) data. The posterior distribution is again spread
as a strip through (τout ,APDmax), indicating the difficulty of
distinguishing between different contributions to APD even
when the APD(S2) measurements are available. However, the
peak of the posterior distributionmatches the ground truth better
for these parameters, which we generally find to be the case
for APD(S2) and ERP(S1) measurements. Despite the ERP(S1)
observations being identical to those for the CV(S2) and ERP(S1)
calibration, τopen is imprecisely calibrated here, which suggests
that the precision shown in Figure 11 was the result of good
estimation of 8CV

3 (S2) rather than ERP(S1) measurements. Note
that the first-order sensitivity to τopen is almost twice as large
for 8CV

3 (S2) than for 8APD
3 (S2), so we should expect better

calibration of τopen to CV(S2) generally. However, the signal-
to-noise ratio matters a great deal, since the third principal
components are relatively subtle effects.

Figure 12 shows plots of RCE predictions for the posterior
distribution obtained from MCMC using CV(S2), APD(S2),
and ERP(S1) measurements simultaneously. The distribution
of curves in these plots appears narrower but visually similar
to Figure 9. However, Figure 13 shows that the posterior
distribution of parameters is far better constrained compared

FIGURE 11 | The posterior parameter distribution for fits to APD(S2) and

ERP(S1) measurements. The intersection of vertical and horizontal lines mark

the true parameter value. The lower diagonal shows the density via hexbin

plots, while the upper diagonal shows the log-likelihood values for each

sample plotted in order of increasing likelihood. The diagonals show the

marginal histograms of each parameter.

to either Figure 10 or Figure 11. The peak of the distributions
captures the ground truth parameter extremely well. While one
reason for contraction of the posterior distribution is simply
the increased amount of data, the effects are mainly down to
how the data provide partially orthogonal information about the
parameters. It should still be noted that these results depend
highly on the particular draw of errors, and how ERP(S1) “lines
up” with the intervals for S1S2 protocol resolution. Generally,
we find that τopen is the most imprecisely calibrated parameter,
followed by τin. Note that the shape of the posterior distribution
across (τout ,APDmax) is still strip shaped.

3.4. Restitution Surfaces
S2 restitution curves can be obtained for a range of S1 values,
and the resulting data arranged into a 2D space of S1 and S2
to give restitution surfaces. Each S1S2 combination corresponds
to a dimension in the output space, and PCA can be performed
on these 2D images. The resulting principal components can be
visualized by plotting the elements of the principal components
against their corresponding S1 and S1S2 interval. Figure 14

shows the mean and first three principal components of
the CV(S1,S2) and APD(S1,S2) restitution surfaces, plotted as
contours in order to help with visualization (the colorbars are not
shown as they are not required for our discussion). RCEs could be
built with these principal components (such emulators might be
called Restitution Surface Emulators) such that the surfaces could
be predicted from the parameters.

Figure 14 shows that the principal components vary relatively
little with S1 interval, since the contour lines are nearly parallel
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FIGURE 12 | RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution

given the same measurements shown in Figure 8 (black crosses are noisy S2 restitution data, red bars are observed ERP intervals). MCMC utilized CV(S2), APD(S2),

and ERP(S1) data simultaneously, unlike in Figures 8, 9.

FIGURE 13 | The posterior parameter distribution for calibration to CV(S2),

APD(S2), and ERP(S1) measurements simultaneously. The intersection of

vertical and horizontal lines mark the true parameter value. The lower diagonal

shows the density via hexbin plots, while the upper diagonal shows the log

likelihood values for each sample plotted in order of increasing likelihood. The

diagonals show the marginal histograms of each parameter.

to the S1 axis. This means that the restitution surfaces are highly
correlated with S1 interval. For the third component around
S1S2 intervals of 275 ms, the peak in the restitution curve seen

in the S2 restitution curve is now a ridge in the restitution
surface, decreasing in height with decreasing S1 interval. These
images show that collecting restitution curves for e.g., CV(S1:
400 ms) will be very similar to CV(S1: 600 ms, S2: 400 ms)
etc., such that S1 pacing could be used to collect similar data
more efficiently with S1 pacing rather than an S1S2 protocol, for
values of S1 interval for which steady pacing is possible. However,
learning the principal modes of variation of the surfaces (as
with the curves) requires measurements at S1S2 interval far
below values of S1 interval that can be used for steady pacing
in the clinical setting, so it is not clear that such measurements
would be useful. Furthermore, restitution curves for higher S1
interval have a larger variation in values over S2 (even only
considering values for S2 < 350ms, as can be seen in the third
component in particular), making calibration with noisy data
more robust for higher S1 as the signal-to-noise ratio will be
higher (equivalently, differentiation between different curves is
easier). Upper values of S1 interval are limited by the heart’s
own natural pacemaker behavior, so S1: 600 ms is probably a
conservative choice for clinical pacing. In summary, it is probably
not worth collecting restitution data for a variety of S1 values,
except when it is obtained for free due to pacing at different S1
intervals to obtain ERP(S1).

3.5. Diastolic Interval Restitution Curves
We also investigated RCEs of Diastolic Interval (DI) restitution
curves, where DI = S2 − ERP, such that all curves begin
at DI = 0, which seem advantageous since the resampling
would not produce any “virtual” regions (as for S2 restitutions
for S1S2 interval < ERP). The worst effect that these virtual
regions can have for S2 restitution is that PCA will account for
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FIGURE 14 | Principal components and means of CV(S1,S2) and APD(S1,S2)

restitution surfaces, displayed as contour plots where dark/light colors

represent low/high values, respectively. These surfaces are 2D analogues to

the curves in Figure 2.

variation between curves that considers these “virtual” regions,
so the dimensionality reduction for DI curves may be slightly
more optimal than for S2 curves (although there may be errors
in DI curves caused by a finite ERP resolution). Alternative
restitution curve fits that are asymptotic for S2 < ERP (such
as a sigmoid curve, which fits the restitution curves from
many electrophysiology models) might reduce these effects from
the virtual region. However, it is trivial to simply increase
the number of principal components in RCEs if required. S2
restitution curves can be calibrated to data with and without
ERP measurements, but this is not the case for DI restitution
curves, since the assignment of DI to the measured data requires
predicting ERP. This makes calibration highly dependent on
ERP prediction, but in a purely artificial way caused by the
way the problem is posed. Furthermore, given that RCEs
predict a distribution, the likelihood calculations would involve
a convolution, or “blurring,” of predictions across DI, since the
DI “label” of the data would have a distribution. Since these
difficulties are completely avoided by simply using S2 restitution
curves, we do not currently see any benefit to emulating DI
restitution curves.

4. DISCUSSION

In the present study, we have demonstrated a way to
emulate restitution curves by using Gaussian processes to
predict the principal component coordinates of restitution
curves from model parameters. These Restitution Curve
Emulators (RCEs) make it possible to rapidly and accurately
predict CV, APD, and ERP restitution curves from model
parameters, allowing for sensitivity analysis, model exploration,
and Bayesian calibration to noisy data. We also developed

an analytical likelihood function for ERP observations, which
is especially useful for calibration with RCEs. The main
benefits of RCEs are prediction speed and quantification of
prediction uncertainty, but an additional advantage is their
parsimonious structure: sensitivity analysis can be performed
for the separate principal components, and the problem of
recoverability can be interpreted as the problem of learning
features of restitution curves that are sensitive to changes
in parameters.

It is difficult to guess what combination of measurements
will be required to identify model parameters. Larger first-
order sensitivity indices for more primary features suggest
higher identifiability, and if several parameters have similar
effects on a feature then it will be difficult to distinguish them
from data about that feature alone. However, it is difficult
to make general statements about identifiability/recoverability
of parameters given a pacing protocol: it may turn out that
parameters are recoverable in some parts of parameter space
but not others, or that calibration is extremely sensitive to
measurement errors, or that pacing resolution does not allow
to resolve different restitution curves effectively. It is even
quite difficult to generalize about how the credible intervals
in the posterior distribution depend on the noise levels/pacing
resolution in the data, although RCEs could be used to
empirically determine this relation via brute force sampling
throughout the parameter space. RCEs could find application in
the design of clinical data collection protocols intended for the
calibration of personalized models.

The identifiability of model parameters, as well as the
practical consideration of whether parameters can be recovered
from sparse and noisy clinical data, remain challenging issues
(Whittaker et al., 2020) even with the mMS model, which
can be considered a minimal model. It remains to be seen
if more detailed models that have been designed to minimize
the number of free parameters can overcome these obstacles
(Pathmanathan et al., 2019). Model discrepancy can be an issue
with calibrating models, often manifesting as an inability to
simultaneously reproduce two behaviors (Coveney and Clayton,
2018; Lawson et al., 2018). In our framework, the error
variance can include variance from noise as well as discrepancy
variance (Vernon et al., 2010), but more complex modeling of
discrepancy would also be possible (Brynjarsdóttir and O’Hagan,
2014), such as modeling systematic offset using a bias term in
the likelihood.

Extending our approach to biophysically detailed cell
models is a logical next step, which could be used either
to examine the properties of these models in detail, and
to examine parameter recoverability for simulated clinical
measurements. Since our approach involves emulating
the principal components of restitution curves, we expect
that it can be extended to more detailed models without
incurring computational costs apart from those involved
in computing the initial set of restitution curves. Another
option is the use of more complex stimulation protocols
(Groenendaal et al., 2015; Beattie et al., 2018), which can
work well for the experimental setting but could be difficult to
deploy clinically.
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Posterior uncertainty in calibration for model personalization
should not be overlooked, as it is important that uncertainty is
propagated forward to predictions when personalized models
are used for diagnosis or decision support in the clinical
setting. Calibration methods that obtain parameterizations
consistent with observations but without obtaining the
posterior distribution, and especially methods that provide
only a single fit to the data, are not well-suited to this task.
The methods presented in this paper were motivated by
the need to perform probabilistic calibration with clinical
data such as restitution curves. We suggest that the English
idiom “How long is a piece of string?”, used to reply to
questions that require an answer to be calculated on a case-
by-case basis, be used as a rule-of-thumb when considering
questions about the identifiability of electrophysiology
model parameters from restitution curve measurements.
We believe the answer requires calculating the posterior
distribution of the model parameters given the data, and
that RCEs are an extremely effective tool with which to
do this.
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A Corrigendum on

Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators

by Coveney, S., Corrado, C., Oakley, J. E., Wilkinson, R. D., Niederer, S. A., and Clayton, R. H. (2021).
Front. Physiol. 12:693015. doi: 10.3389/fphys.2021.693015

In the original article, there was an omission. Equations for the posterior distribution of Restitution
Curve Emulators for prediction at multiple S2 values were not provided, but these equations are
required in Equation (21). Equations (18)–(20) should have been generalized from scalar S2 to
vector S2.

A correction has been made to the last paragraph of Section 2. Methods, Sub-section 2.3
Restitution Curve Emulators:

Recalling Equation (6), and noting that applying a linear operation to a Gaussian process results
in a Gaussian process, then the posterior distribution for the restitution curve is also a Gaussian
process, which we will refer to as a Restitution Curve Emulator (RCE). Reintroducing the index c
for different principal components and defining 9C :=

[

81(S2), . . . ,8C(S2)
]

, the RCE posterior
distribution for prediction at x∗ for d× 1 vector S2 is given by:

F(x∗, S2) ∼ N (M(x∗, S2),V(x∗, S2)) (18)

M(x∗, S2) = 80(S2)+ 9C

[

M1(x
∗), . . . ,MC(x

∗)
]T

(19)

V(x∗, S2) = 9C diag
[

V1(x
∗), . . . ,VC(x

∗)
]

9T
C (20)
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FIGURE 8 | The RCE prediction from maximum a posteriori (MAP) parameter estimates given noisy measurements for (left) CV(S2) and ERP(S1), (right) APD(S2) and

ERP(S1), shown as light shaded regions representing RCE 95% confidence intervals. The orange dashed curves show these intervals including the observation error,

also learned from MAP fitting. The noisy S2 restitution data are shown as crosses, while the red shaded bars represent observed intervals containing ERP: (top): bars

horizontally span ERP(S1:600) interval; (bottom) bars vertically span ERP(S1) interval for several S1. The solid black lines in all plots represent the corresponding

ground truth curves.

FIGURE 9 | RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given

the same measurements shown in Figure 8 [black crosses are noisy S2 restitution data, red bars are observed ERP intervals, (left) MCMC with CV(S2) and ERP(S1)

data, (right) MCMC with APD(S2) and ERP(S1) data].

such that M(x∗, S2) is a d × 1 vector and V(x∗, S2) is a d × d
matrix. Note that the correlation between F values with similar
S2 results from the principal components (S2 does not index the
random variables). RCEs are built for ERP(S1) restitution curves
in exactly the same way as for APD(S2) and CV(S2) restitution
curves. Prediction with RCEs is orders of magnitude faster than

simulation, with ∼ 104 predictions taking only a few seconds on
a laptop (i5 gen 6 processor, 8 Gb RAM).

In the original article, there was an omission. Equation (21)
was missing an identity matrix factor.

A correction has been made to Section 2. Methods, Subsection
2.5 Calibration, Equation 21:
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FIGURE 10 | The posterior parameter distribution for fits to CV(S2) and

ERP(S1) measurements. The intersection of vertical and horizontal lines mark

the true parameter value. The lower diagonal shows the density via hexbin

plots, while the upper diagonal shows the log likelihood values for each

sample plotted in order of increasing likelihood. The diagonals show the

marginal histograms of each parameter.

Y|F(x, S2Y) ∼ N (F(x, S2Y), σ
2
YI)

Y ∼ N (M(x, S2Y),V(x, S2Y)+ σ 2
YI)

(21)

Figure Correction
In the original article, there was a mistake in Figures 8–13 as
published. The computer code for the likelihood function for

FIGURE 11 | The posterior parameter distribution for fits to APD(S2) and

ERP(S1) measurements. The intersection of vertical and horizontal lines mark

the true parameter value. The lower diagonal shows the density via hexbin

plots, while the upper diagonal shows the log-likelihood values for each

sample plotted in order of increasing likelihood. The diagonals show the

marginal histograms of each parameter.

CV(S2) and APD(S2), used for our MCMC simulations, only
accounted for the diagonal of the posterior variance matrix
V(x, S2Y). The corrected Figures 8–13 shown here.

The authors apologize for this error and state that this does
not change the scientific conclusions of the article in any way.
The original article has been updated.
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FIGURE 12 | RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution

given the same measurements shown in Figure 8 (black crosses are noisy S2 restitution data, red bars are observed ERP intervals). MCMC utilized CV(S2), APD(S2),

and ERP(S1) data simultaneously, unlike in Figures 8, 9.

FIGURE 13 | The posterior parameter distribution for calibration to CV(S2),

APD(S2), and ERP(S1) measurements simultaneously. The intersection of

vertical and horizontal lines mark the true parameter value. The lower diagonal

shows the density via hexbin plots, while the upper diagonal shows the log

likelihood values for each sample plotted in order of increasing likelihood. The

diagonals show the marginal histograms of each parameter.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Coveney, Corrado, Oakley, Wilkinson, Niederer and

Clayton. This is an open-access article distributed under the terms of the

Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 76562285

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


fphys-12-709230 July 28, 2021 Time: 13:38 # 1

REVIEW
published: 03 August 2021

doi: 10.3389/fphys.2021.709230

Edited by:
Linwei Wang,

Rochester Institute of Technology,
United States

Reviewed by:
Lin Gu,

RIKEN Yokohama, Japan
Chunliang Wang,

Royal Institute of Technology, Sweden

*Correspondence:
Yinzhe Wu

yinzhe.wu18@imperial.ac.uk
Guang Yang

g.yang@imperial.ac.uk

Specialty section:
This article was submitted to

Computational Physiology
and Medicine,

a section of the journal
Frontiers in Physiology

Received: 13 May 2021
Accepted: 28 June 2021

Published: 03 August 2021

Citation:
Wu Y, Tang Z, Li B, Firmin D and
Yang G (2021) Recent Advances

in Fibrosis and Scar Segmentation
From Cardiac MRI: A State-of-the-Art

Review and Future Perspectives.
Front. Physiol. 12:709230.

doi: 10.3389/fphys.2021.709230

Recent Advances in Fibrosis and
Scar Segmentation From Cardiac
MRI: A State-of-the-Art Review and
Future Perspectives
Yinzhe Wu1,2* , Zeyu Tang1,2, Binghuan Li2, David Firmin1,3 and Guang Yang1,3*

1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom, 2 Department
of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom, 3 Cardiovascular Biomedical
Research Unit, Royal Brompton Hospital, London, United Kingdom

Segmentation of cardiac fibrosis and scars is essential for clinical diagnosis and can
provide invaluable guidance for the treatment of cardiac diseases. Late Gadolinium
enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful
in guiding the clinical diagnosis and treatment reliably. For LGE CMR, many methods
have demonstrated success in accurately segmenting scarring regions. Co-registration
with other non-contrast-agent (non-CA) modalities [e.g., balanced steady-state free
precession (bSSFP) cine magnetic resonance imaging (MRI)] can further enhance
the efficacy of automated segmentation of cardiac anatomies. Many conventional
methods have been proposed to provide automated or semi-automated segmentation
of scars. With the development of deep learning in recent years, we can also see more
advanced methods that are more efficient in providing more accurate segmentations.
This paper conducts a state-of-the-art review of conventional and current state-
of-the-art approaches utilizing different modalities for accurate cardiac fibrosis and
scar segmentation.

Keywords: cardiac magnetic resonance, late gadolinium enhancement, scar segmentation, deep learning, atrial
fibrillation, myocardial infarction

1. INTRODUCTION

Necrosis regions found in the heart (including left atrium (LA) pre-ablation fibrosis, LA post-
ablation scar and left ventricle (LV) infarction), depending on the location and size, can have various
implications on the cardiac conditions of the patients. For example, ventricular scars can be signs
of earlier episodes of myocardial infarction (MI) (Choi et al., 2001; Krittayaphong et al., 2008; Wu
et al., 2008; Larose et al., 2010). Locating and quantifying the fibrosis and scars have also been
demonstrated as a valuable tool for the treatment stratification of patients with atrial fibrillation
(AF) (Allessie, 2002; Boldt, 2004) or ventricular tachycardia (Ukwatta et al., 2015) and provide
guidance information for the surgical or ablation based procedures (Vergara and Marrouche, 2011).
Imaging of post-ablation scars may also give valuable information on treatment outcomes (Peters
et al., 2007; Badger et al., 2010).
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Cardiovascular magnetic resonance (CMR) has been one
of the modern imaging techniques, which is widely used for
qualitative and quantitative evaluation of cardiac conditions
and to support diagnosis, monitoring disease progression and
treatment planning (Kim et al., 2009). In particular, Late
Gadolinium enhancement (LGE) CMR has been an emerging
technique for locating and quantifying regions of fibrosis and
scars across the LA and the LV (Peters et al., 2007; McGann
et al., 2008; Oakes et al., 2009; Akkaya et al., 2013; Bisbal
et al., 2014). LGE CMR has also been shown to improve
ablation strategy planning, treatment stratification and prognosis
by pre-ablation fibrosis quantification via clinical validations
(Akoum et al., 2011). It also enabled computationally guided and
personalized targeted ablation in treating AF in clinical practices
(Boyle et al., 2019).

Many algorithms have been developed for the segmentation
of cardiac scarring regions, and a few challenges have
benchmarked some of the high-performing methodologies
(Table 1). Among these, 2-SD (standard deviation) has been
advocated by the official guidelines (Kramer et al., 2013),
while the full width at half maximum (FWHM) technique
has been advocated as the most reproducible method to
segment ventricular scars (Flett et al., 2011) (see Section 3.2
for descriptions of 2-SD and FWHM methods). As these
algorithms are usually based on successful segmentation of the
corresponding anatomical regions beforehand as an accurate
initialization, there has also been rising attention to the
automated segmentation of LA and LV anatomy from the LGE
CMR images (Table 1).

With the development of artificial intelligence techniques,
we can observe a rising number of various deep learning
models using convolutional neural networks [e.g., fully
connected neural network (FCNN) (Szegedy et al., 2016)
and U-Net (Ronneberger et al., 2015)], which have demonstrated
encouraging results in segmentations of cardiac substructures
in recent years (Chen C. et al., 2020). It has also been
found that deep learning can be directly applied to scar
segmentation as a fully automated end-to-end solution
for the input LGE CMR images. With co-registration of
different modalities together and deep learning based transfer
learning, the combination of LGE CMR with other CMR
imaging modalities [e.g., balanced steady-state free precession
(bSSFP)] may further improve the efficacy and efficiency of the
segmentation results.

The use of Gadolinium-based contrast agent (GBCA) has led
to concerns over the patient’s safety, particularly for the patient
with renal impairments (Ledneva et al., 2009). With deep learning
based methods, cardiac scarring regions can now be localized and
quantified in non-Gadolinium enhanced CMR images without
GBCA injections (Zhang et al., 2019).

As all pre-2016 and pre-2013 cardiac scarring segmentation
have been carefully benchmarked and summarized by Karim
et al. (2013, 2016), this paper instead focuses on the survey of
all post-2016 methodologies in fibrosis and scars delineation and
segmentation of the LA and LV anatomy from LGE CMR images.
This study also discusses the potential use of the modalities other
than LGE CMR in locating and quantifying the scars.

1.1 Search Criteria
To identify related contributions, search engines like Scopus
and Google Scholar were queried for papers on or after 01
Jan 2016 containing (“atrial” OR “ventricular”) and (“cardiac”)
and (“segmentation”) with or without (“scar”) in their titles or
abstracts. Papers that do not primarily focus on the segmentation
of cardiac scar or scar-related cardiac anatomy were excluded.
Each paper was reviewed and agreed upon by at least two of
us (Y.W., Z.T., B.L.) before inclusion. We found 4,384 papers
from the search engines and shortlisted 110 of them following
the criterion above (Figure 1). After full-text screening for
their relevances to the topic, we eventually included 47 of
them into this study. The last update to the included papers
was on 13 May 2021.

2. IMAGING MODALITIES

2.1 LGE CMR
Fibrosis found in LA are signs of atrial structural remodeling
and can be considered as a major risk factor in the progression
of the atrial fibrillation (AF) (Allessie, 2002; Boldt, 2004), where
the identification of scarring and fibrosis regions in LA has been
crucial for diagnosis, prognosis and treatment planning. Native
pre-ablation fibrosis can be a sign of AF recurrence (Oakes
et al., 2009), and post-ablation detection of ablation induced
scars can facilitate the identification of post-ablation ablation
line gaps, which is the main reason of ablation failures (Peters
et al., 2007; Badger et al., 2010). In contrast to the traditional
method of the electro-anatomical mapping (EAM) system, which
is an invasive technique in localization of the atrial scar and the
fibrosis with suboptimal accuracy (Zhong et al., 2007; Schmidt
et al., 2009), LGE CMR enables the atrial scarring and fibrosis
regions to be localized and quantified non-invasively without
ionizing radiation. LGE CMR employs the slow washout kinetics
of Gadolinium in these regions to highlight these scarring and
fibrosis regions (Peters et al., 2007; McGann et al., 2008; Oakes
et al., 2009; Akkaya et al., 2013; Bisbal et al., 2014).

In addition to the atrium, LGE CMR has also been considered
as a gold-standard modality for the assessment and quantification
of the scarring regions in the left ventricle (Simonetti et al.,
2001; Wu et al., 2001; Wagner et al., 2003a; Hendel et al., 2006),
where fibrotic and scarring regions found can be considered
as a sign of earlier or current episodes of the MI (Choi et al.,
2001; Krittayaphong et al., 2008; Wu et al., 2008; Larose et al.,
2010). In addition to MI, with growing prognostic evidence,
LGE has been successful in the identification of scarring regions
in cardiomyopathy, inflammatory and infiltrative conditions
(Wagner et al., 2003b; Maceira et al., 2005; Smedema et al., 2005;
Flett et al., 2009).

However, the LGE CMR modality often suffers from poor
image qualities, which may be due to residual respiratory
motions, variabilities in the heart rate and gadolinium wash-
out during the currently long acquisition time (Yang et al.,
2017). Particularly, the spatial resolution of the left atrium in
the LGE CMR image is limited (To et al., 2011), considering
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TABLE 1 | List of challenges in segmentation of LV and LA anatomy and scar in LGE CMR.

Year Challenge/Dataset Conference (MICCAI/IBSI etc.) Modality (data size n) Target Pathology

2012 LV scar segmentation challenge
(Karim et al., 2016)

MICCAI LGE MRI (30) LV scar MI

2013 LA scar segmentation
challenge (Karim et al., 2013)

ISBI LGE MRI (30) LA scar AF

2018 LA segmentation challenge
(Xiong et al., 2021)

MICCAI LGE MRI (150) LA cavity AF

2019 Multi-sequence Cardiac MR
Segmentation Challenge
(MS-CMR) (MS-CMR
Challenge, 2019)

MICCAI LGE MRI, T2 MRI, bSSFP
MRI (45, coregistered)

LV blood pool, RV blood pool,
LV myocardium

MI

2020 Myocardial pathology
segmentation combining
multi-sequence CMR (MyoPS)
(MyoPS Challenge, 2020)

MICCAI LGE MRI, T2 MRI, bSSFP
MRI (45, coregistered)

LV blood pool, RV blood pool,
LV normal myocardium, LV

myocardial oedema, LV
myocardial scar

MI

• Published on or after 01 Jan 2016
• Contain (“atrial” OR “ventricular”) AND (“cardiac”) AND (“segmentation”)

Contain (“scar”) OR (“fibrosis”) OR (“infarction”) OR (“necrosis”)

Contain (“LGE”) OR (“Gadolinium”)

SHORTLISTED
(cardiac scar segmentation)

n = 91

SHORTLISTED
(LGE CMR related myocardium segmentation)

n = 19
EXCLUDE

YES (n = 4,384)

YES

YES

NO

NO

NO

FIGURE 1 | Flowchart to demonstrate the search criterion.

the thin transmural thickness of the atrial wall [mean = 2.2–
2.5 mm (Saìnchez-Quintana et al., 2005)] (Figure 2). The variable
anatomical morphological shapes of the LA and pulmonary
veins (PV) also impose an additional challenge to the LGE
CMR segmentations. To improve the visualization of these scar
regions, we can see a successful attempt by maximum intensity
projection (MIP) to enhance intensities on post-ablation LA
LGE CMR (Knowles et al., 2010). Moreover, some irrelevant
cardiac substructures may be highlighted in LGE CMR images
as well, in addition to the scarring and fibrosis regions. These
may be due to, for example, the navigator beam artifact,
which is often seen near the right PV, Gadolinium uptake
by the aortic wall and valves, and confounded enhancement
in the spine, esophagus, etc. (Karim et al., 2013; Yang et al.,
2017). As a result, these can lead to a poor result in the
delineation of LA and LV scar or fibrosis regions and even a
significant amount of false positives in segmentations of these
structures and regions.

In addition, although LGE CMR has been successful in being
the gold standard reference technique for AF and MI, including
LGE in MRI significantly extends the scanning time. There have
been also increasingly growing concerns regarding the safety of
the Gadolinium based contrast agent used, particularly for the
patient with renal impairments (Ledneva et al., 2009).

2.2 LGE CMR With Other Modalities
In addition to LGE MRI, which could highlight the scarring
regions, segmentation of the anatomy and scarring regions can
also utilize other modalities (Figure 3) to further improve the
accuracy if applied with LGR CMR by co-registering different
modalities together (Zhuang, 2019).

There have been challenges benchmarking a range of
algorithms for the cross-modality fusion based segmentation of
anatomy, scar and oedema.

(1) MS-CMR challenge (MS-CMR Challenge, 2019; Pop et al.,
2020) presented a range of algorithms taking multiple
modalities in to further improve the segmentation
accuracy of LV myocardium, LV blood cavity and RV.

(2) MyoPS challenge (MyoPS Challenge, 2020; Zhuang
and Li, 2020) presented algorithms to delineate LV
myocardium with scarring and oedema.

Other modalities and sequences can include:

(1) Magnetic resonance angiography (MRA) sequence – to
image LA and PV with high contrasts, which has been
demonstrated by Tao et al. (2016) to improve the error
distance in segmenting LA anatomy to within 1.5 mm.
However, MRA is usually ungated and usually acquired
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FIGURE 2 | Examples of LGE CMR images acquired at (A) LA and (B) LV,
with the fibrosis/infarction regions highlighted in green. By comparing (A2) and
(B2), we can see the fibrosis region in LA is rather more discrete and thinner
compared to LV infarction, making LA fibrosis regions more difficult to be
accurately fully localized and quantified. Image source: (A) was extracted from
pre-ablation CMR images in ISBI 2013 cDERMIS dataset (http://www.cardia
catlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/).
(B) was extracted from MICCAI 2012 Ventricular Infarct Segmentation
challenge dataset (http://www.cardiacatlas.org/challenges/ventricular-infarct
-segmentation/).

in an inspiratory breath-hold, making anatomy delineated
from MRA significantly distorted from LGE CMR.

(2) Balanced steady-state free precession (bSSFP) – provides
a clear boundary between the myocardium and blood
cavity under movements, which is usually respiratory
and cardiac gated. It can offer cine CMR with a
uniform texture.

(3) T2 – high intensities in T2 presents myocardial oedema
with high specificity and sensitivity (Gannon et al., 2019),
T2 could be helpful in segmenting myocardial oedema
and scar simultaneously if incorporated with LGE-CMR

and bSSFP (Zhu et al., 2017). Identification of oedema
on CMR can help clinicians to differentiate between
acute and remote myocardial infarction (Friedrich, 2017).
The presence of oedema in patients without extensive
irreversible injury (e.g., scar) can serve as a marker for
clinicians to predict the recovery of LV systolic functions
(Vermes et al., 2014).

3. CONVENTIONAL METHODS

Conventionally, a two-stage approach is adopted in the
identification and evaluation of fibrotic and scarring tissue –
(1) segmentation of the relevant anatomical structure (LA and
PV in the case of LA fibrosis/scar segmentation and LV in the
case of LV infarction segmentation) and (2) then segmentation
of the fibrotic and scarring regions. This two-stage approach is
particularly beneficial for LA and PV, as LA and PV are highly
morphological variables and relatively small in size. We shall
then elaborate on the recent developments of methodologies
for each of them.

3.1 Segmentation of Anatomical
Structures
The delineation of anatomical structures, e.g., LA and LV wall,
from others can be difficult in LGE CMR images. In LGE scarring
tissues are significantly enhanced while the signals from the
healthy tissues are attenuated (Keegan et al., 2015), making the
segmentation of LA, PV and LV anatomical structures very
challenging.

3.1.1 Why Is Accurate Segmentation of Anatomical
Structure Necessary Before Scar Segmentation?
Accurate segmentation of the anatomy (LA or LV wall) is essential
as it gives an accurate initialization for the scar segmentation.
Therefore, traditionally, the segmentation of these structures
were all done manually.

We could see in the cDEMRIS challenge in ISBI 2012
(Karim et al., 2013) algorithms with manually initialized LA
segmentation showed significantly better performance than
Others. It demonstrated the need for an accurate anatomy

FIGURE 3 | Example images using different CMR sequences acquired by (A) LGE CMR (B) T2 CMR (C) bSSFP CMR. As denoted by the green arrows, we can see
(A) LGE CMR accentuates the scar tissue by high intensities on the images; (B) T2 CMR accentuates myocardial oedema by high intensities on the image; and (C)
bSSFP CMR shows the distinct endo- and epi-cardial boundary of the myocardium clearly on the image. Image source: (A–C) extracted from the MS-CMR open
challenge dataset (MS-CMR Challenge, 2019).
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segmentation ahead of the scar segmentation along with Rajchl
et al. (2015). Moccia et al. (2018) also demonstrated that manual
and accurate segmentation of the LV wall could improve the deep
learning based segmentation of the LV infarction.

3.1.2 Conventional Methods in Segmenting
Anatomical Structures
In the early 21st century, radiologists looked between LGE CMR
and cine CMR back and forth to delineate the myocardium
region. To mimic that, we can see methods in the first decade
and early second decade of this century utilizing both LGE and
cine modalities by, for example, non-rigid registration to achieve
high accuracy in segmentation of myocardium over LGE CMR
(Dikici et al., 2004; Ciofolo et al., 2008; Wei et al., 2011, 2013).
However, by doing so, the result may suffer from registration
misalignment between LGE and cine modalities and the model
may be computationally demanding. As such, from 2014 we
can see methods that are less computationally demanding and
using LGE modality only (Albà et al., 2014; Kurzendorfer et al.,
2017a,b,c).

Conventional methods in medical image segmentation usually
have limited efficacy. Representative methods are summarized in
Table 2, which mainly include the following methodologies.

(1) Random forest (Kurzendorfer et al., 2017b).
(2) Image registration (Kurzendorfer et al., 2017c).
(3) Markov random field (MRF) model (Albà et al., 2014).
(4) Atlas-based modeling with active contour model

(Kurzendorfer et al., 2017a).
(5) Principal component analysis (PCA) technique

(Kurzendorfer et al., 2017c).

For LA, in particular, the methods involving pre-defined shape
priors (Zhu et al., 2013; Veni et al., 2017) often suffer from
relatively poor error distance, which is more than 1–2 mm
required (Xiong et al., 2021) under the clinical setting considering
the thin LA wall (Zhao et al., 2017). However, one of them
reported a relatively high Dice score (79%) (Zhu et al., 2013).

3.2 Segmentation of Scarring Regions
Upon successful segmentation of the anatomy, the scarring
regions can be identified by a range of approaches. These
approaches can be mainly divided into the following categories:
threshold based methods, classification methods, or the
combination of both.

3.2.1 Fixed Threshold Based Methods (n-SD and
FWHM)
Traditionally, the scarring regions can be detected as they are
accentuated in LGE CMR. Among a range of conventional
techniques, 2-SD has been advocated by official guidelines
(Kramer et al., 2013), while the full width at half maximum
(FWHM) technique has been advocated as the most reproducible
method to segment ventricular scars (Flett et al., 2011).

2-SD and FWHM are both fixed threshold methods in
segmenting the scarring region, where pixels with intensities
above a fixed threshold would be labeled as the scar. 2-SD or
even n-SD methods define such threshold as the sum of the mean

and two or n standard deviations of signal intensities in a remote
reference region, whereas FWHM defines such threshold as the
half of the maximum signal intensity within the scar.

Karim et al. (2016) evaluated 2, 3, 4, 5, 6 -SD and FWHM
methods on a public human LV infarct dataset and showed
that FWHM superseded all n-SD methods tested by its Dice
Scores and that the Dice Scores went slightly higher with the
threshold rising from 2 to 6 -SD. However, it is not the case
when Karim et al. (2013) evaluated 2, 3, 4 -SD and FWHM on
a public human LA fibrosis/scar dataset. For pre-ablation LA
fibrosis, FWHM performed much worse than all n-SD methods
tested. For post-ablation LA scar, FWHM gave similar Dice
Scores as 2-SD’s with 3, 4, 6 -SD methods’ Dice Scores much
lower than these two.

However, these fixed-threshold techniques, including n-SD
and FWHM, are unlikely to handle variations well (Oakes
et al., 2009). The variations can come from two sources –
scar itself and external circumstances. Scars are highly variable
in their morphology and their brightness distribution on LGE
CMR. Varied external factors including resolution, contrast,
signal-to-noise ratio (SNR), inversion time and surface coil
intensity variation can also adversely impact the accuracy of the
segmentation. This is particularly the case for pulmonary veins,
which are highly morphological variables.

3.2.2 Conventional Adaptive Methods
An LV scar segmentation challenge (Karim et al., 2016) organized
in MICCAI 2012 and LA scar segmentation (Karim et al.,
2013) challenge organized in ISBI 2013 carefully benchmarked
and summarized the majority of the pre-2013 conventional
methods. In the LV segmentation challenge in 2012, it
showed all of the algorithms benchmarked did not exhibit
superiority against FWHM, although they did perform better
than n-SD methods.

3.2.2.1 Adaptive thresholding based methods
Conventional threshold based approaches are summarized in
Table 3A, which mainly include the following methodologies.

(1) Otsu thresholding (Otsu, 1979; Tao et al., 2010).
(2) Histogram analysis (Karim et al., 2013).
(3) Hysteresis thresholding (Karim et al., 2013).
(4) Constrained watershed segmentation (Hennemuth et al.,

2008).

3.2.2.2 Classification based methods
In addition, conventional classification approaches are
summarized in Table 3B, which mainly include the
following methodologies.

(1) K-means clustering (Karim et al., 2013).
(2) Graph cuts (Karim et al., 2013, 2014).
(3) Active contour with EM-fitting (Karim et al., 2013).
(4) Simple linear iterative clustering (SLIC) and support

vector machine (Yang et al., 2018b).
(5) Random forest classification (Kurzendorfer et al., 2018).
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TABLE 2 | Summary of representative conventional methodologies for segmentation of the myocardium on LGE-MRI.

Reference Modalities Methodology description Pros Cons Quantitative result
(myocardium)

Dataset

Dikici et al., 2004 LGE MRI, cine MRI (1) Define LV border –
non-rigid registration of cine
and LGE MRI
(2) LV pixel classification –
SVM

Automatic segmentation of
LGE-MRI with CINE-MRI
information

No longitudinal axis (LAX)
consideration, resulting in
inter-slice misalignment;
Need to register with other
modality (CINE MRI)

Average contour pixel location
error = 1.54 pixel

Private (LV LGE + cine
MRI, n = 45)

Ciofolo et al., 2008 LGE MRI, cine MRI 2D segmentation with a
geometrical template (LGE
only) and 3D mesh
alignment (LGE + CINE)

Overcome
non-homogeneous intensity
of the myocardium in LGE
infarcted regions

Meshes focus only on features
in the SAX slices, no inter-slice
consideration and thus
inter-slice misalignment;
Need to register with other
modality (CINE MRI)

ASD = 2.2 mm (endocardial),
2.0 mm (epicardial)

Private (LV LGE + cine
MRI, n = 27)

Wei et al., 2011 LGE MRI, cine MRI (1) Affine transformation
estimation
(2) non-rigid registration of
LGE and cine MRI
(3) myocardial contour
generation by simplex
mesh geometry

Utilize information better in
connecting cine and LGE MRI

No LAX consideration, resulting
in inter-slice misalignment;
Need to register with other
modality (CINE MRI)

Mean Dice = 0.8249;
ASD = 0.97 pixel (endocardial),
0.93 pixel (epicardial)

Private (LV LGE + cine
MRI, n = 10)

Wei et al., 2013 LGE MRI, cine MRI Translational registration of
LGE and cine MRI data; 3D
non-rigid deformation of the
myocardial meshes by both
short axis (SAX) and
longitudinal axis (LAX) data

Consistent and robust
segmentation;
Consider both SAX and LAX
data to reduce interslice
misalignment

Need to register with other
modality (CINE MRI)

Mean Dice = 0.9409;
ASD = 0.67 mm (endocardial),
0.69 mm (epicardial)

Private (LV LGE + cine
MRI, n = 21)

Albà et al., 2014 LGE MRI Slice-by-slice graph cuts
(GC) with interslice and
shape constraints

Impose morphological
constraints that are common
across MRI sequences – no
need for subject-specific
tuning or for user initialization
and generalizable for other
sequences (CINE-MRI);
Achieve robustness to
variations in grey-level
appearance and to image
inhomogeneities – more
robust to the presence of
abnormalities;
Consider interslice
interactions;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Give poorer result when
generalized to CINE-MRI (due
to many artefacts in the dataset
tested)

Mean Dice = 0.81;
ASD = 1.83 mm (endocardial),
2.38 mm (epicardial)

Private (LV LGE MRI,
n = 20)

(Continued)
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TABLE 2 | Continued

Reference Modalities Methodology description Pros Cons Quantitative result
(myocardium)

Dataset

Kurzendorfer et al.,
2017c

LGE MRI (1) LV localization – image
registration
(2) short axis estimation –
principal component analysis
(PCA)
(3) endocardial refinement – a
minimal cost path search (MCP)
in polar space using the edge
and scar information
(4) epicardial refinement - by
shape and inter-slice
smoothness constraints
(5) surface extraction – 3D
mesh generation by marching
cube algorithm (Lorensen and
Cline, 1987)

Fast speed and low
computational workload by
using simple texture features;
Consider image data along
the longitudinal axis in
addition to the short axis,
improving inter-slice
smoothness and avoid
inter-slice shift;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, poor accuracy
in basal regions;
Since this method is texture
based, the distribution of scar
and the small size of the atrium
adversely affect its performance

Mean Dice = 0.92;
ASD = 1.35 mm

Private (LV LGE MRI,
n = 30)

Kurzendorfer et al.,
2017a

LGE MRI (1) LV detection – circular
Hough transforms
(2) LV blood pool detection –
morphological active contours
approach without edges
(MACWE)
(3) endocardial boundary
extraction – a minimal cost path
search (MCP) in polar space
using the edge and scar
information
(4) epicardial boundary
extraction – by edge
information while considering
endocardial contour extracted

Fast speed and low
computational workload by
using simple texture features;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, poor accuracy
in basal regions;
Since this method is texture
based, distribution of scar
adversely affect its performance

Mean Dice = 0.85
(endocardial), 0.84 (epicardial);
ASD = 2.54 mm (endocardial),
3.32 mm (epicardial)

Private (LV LGE MRI,
n = 26)

Kurzendorfer et al.,
2017b

LGE MRI (1) LV detection – circular
Hough transforms, Otsu
thresholding and circularity
measures
(2) ROI detection –
morphological active contours
approach without edges
(MACWE)
(3) endocardial boundary
extraction – random forest
classifier
(4) epicardial boundary
extraction – minimal cost path
search to the boundary cost
array in polar space

Fast speed and low
computational workload by
using simple texture features;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, resulting in
poor accuracy in basal regions
and poor ASD result

Mean Dice = 0.83
(endocardial), 0.83 (epicardial);
ASD = 3.55 mm (endocardial),
4.12 mm (epicardial)

Private (LV LGE MRI,
n = 100)

ASD: average surface distance.
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TABLE 3 | Summary of representative conventional methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.

Type of method Reference Method Description Pros Cons Quantitative result
(scar/fibrosis)

Dataset

(A) Thresholding Hennemuth et al., 2008 Histogram analysis with
constrained watershed
segmentation

Automatic threshold
determination;
No training (supervision)
needed;

Based on fixed models –
mismatches occur for
some cases

* Private (LGE MRI, n = 21)

Tao et al., 2010 Otsu thresholding (Otsu, 1979)
Refine segmentation – (accept
false rejection) connectivity
filtering and (reject false
acceptance) region growing

Automatic threshold
determination;
No training (supervision)
needed;
No specific density model
assumed – no overfitting;
Region growing technique can
be useful for small MI

Connectivity filtering and
region growing may not be
suitable for discrete LA
fibrosis regions

Mean Dice = 0.83 Private (LV LGE MRI,
n = 20)

Cates et al. (2013) (part of
Karim et al., 2013)

Histogram analysis and simple
thresholding

Simple and accurate
processing

Time consuming (require
manual work);
Manual variance may be
significant for the thin LA
wall

Median Dice = 0.42
(pre-ablation); Median
Dice = 0.78 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

Bai et al. (2013) (part of
Karim et al., 2013)

Hysteresis thresholding (Canny,
1986)

Coherent segmentation
(adjacent faint scar sections
can still be segmented)

Fixed parameterized model
relying on empirical data

Median Dice = 0.37
(pre-ablation); Median
Dice = 0.76 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

(B) Classification Perry et al. (2013) (part of
Karim et al., 2013)

K-means clustering Relatively higher performance in
pre-ablation fibrosis
segmentation result
benchmarking;
No training (supervision)
needed

Cluster number to be
determined beforehand;
Variance in LA scar
segmented

Median Dice = 0.45
(pre-ablation); Median
Dice = 0.72 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

Karim et al. (2013) (part of
Karim et al., 2013)

Markov random fields (MRF)
model with graph-cuts

Relatively higher performance in
pre-ablation fibrosis result
benchmarking;

Require necessary
post-processing steps to
refine clustering

Median Dice = 0.30
(pre-ablation); Median
Dice = 0.78 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 30 (pre-ablation), 30
(post-ablation)]

Gao et al. (2013) (part of
Karim et al., 2013)

Active contour with
expectation-maximization
(EM)-fitting

Counteract region leaking
problem in region growing
techniques

Fixed number of Gaussian
mixtures in model

Median Dice = 0.42
(pre-ablation); Median
Dice = 0.78 (post-ablation)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MRI,
n = 15 (post-ablation)]

Karim et al., 2014 Graph cuts Does not requires manual
outlining of base-line healthy
myocardium

Require additional modality
(bSSFP)

* Private (LA LGE + bSSFP
MRI, n = 15)

Yang et al., 2018b Simple linear iterative
Clustering (SLIC) + support
vector machine

Fully automatic scar
segmentation;
Able to complement minor
flaws in manual annotation

Require collection of
b-SSFP modality;
Supervised learning – need
paired manual labels for
training

Mean Dice = 0.79 Private [LA LGE + bSSFP
MRI, n = 11 (pre-ablation),
26 (post-ablation)]

Kurzendorfer et al., 2018 Fractal Analysis and Random
Forest Classification

Utilize texture information in
addition to clustering

Require accurate
segmentation of the
myocardium

Mean Dice = 0.66 Private (LV LGE MRI,
n = 30)

*Overall quantitative metric for the whole result population was not found. Please refer to the original article for more information of the result.
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4. DEEP LEARNING BASED METHODS

Deep learning based methods are constructed from deep
artificial neural networks. In this section, we will briefly
introduce the common types of artificial neural networks
(ANNs) and then focus on their variants targeting cardiac
anatomy and scar segmentations. The authors would also
like to recommend interested readers to refer to Goodfellow
et al. (2016) for more detailed explanations and mathematical
illustrations of these networks and Chen C. et al. (2020) for more
thorough demonstrations of these networks in general cardiac
imaging analysis.

4.1 Neural Networks of Deep Learning in
Image Analysis
Convoluted neural networks (CNNs), particularly fully
convoluted neural networks (FCNNs), have demonstrated
success in delineating anatomical structures in medical images
(Shelhamer et al., 2017), especially in cardiac MR (Chen C. et al.,
2020). Successful examples include ResNet (Szegedy et al., 2016),
U-Net (Ronneberger et al., 2015), and etc. U-Net (Ronneberger
et al., 2015), in particular, has been known for its ability to
gather latent information in medical image analysis and thus
to gain better performance in segmentation, which has become
the most popular CNN backbone architecture, especially after
demonstrating success in the ISBI cell tracking challenge in 2015.

The recurrent neural network (RNN) is another type of ANNs.
The RNN is rather more useful in processing sequential data, as it
could ’memorize’ past data and utilize its ’memory’ to assist with
its current prediction. Widely used structures of RNNs include
long-short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) and gated recurrent unit (GRU) (Cho et al., 2014).

Autoencoders (AEs) are also a type of ANNs, which are able
to learn latent features of imaging data. Unlike CNNs and RNNs,
AEs learn these features without supervision. With latent features
gathered by AEs, it could be used to guide the segmentation of
medical images (Oktay et al., 2016; Yue et al., 2019).

Generative Adversarial Networks (GANs) was initially
proposed for image synthesis (Goodfellow et al., 2014). With
its two-player model structure (a generator network to give
a synthesized image and a discriminator network to try to
differentiate that synthesized image from a true image), the
model can enhance the resolution of the synthesized image
by adversarial training. The GAN could also be used for
segmentation, where its discriminator network would rather
attempt to see if the output label is in an anatomically plausible
shape (Luc et al., 2016).

4.2 Segmentation of Anatomical
Structures
4.2.1 Why Use Deep Learning in the Anatomical
Structure Segmentation?
There are a few challenges recently organized to benchmark
the new methodologies proposed for the cardiac anatomy
segmentation – 2018 LA Segmentation Challenge in MICCAI
2018 (LASC’18) (Xiong et al., 2021) for LA, MS-CMR (MS-CMR

Challenge, 2019; Pop et al., 2020) in MICCAI 2019, and MyoPS
2020 (MyoPS Challenge, 2020; Zhuang and Li, 2020) in MICCAI
2020 for LV. With the recent development in deep learning, we
can observe a range of methodologies developed for LA and LV
segmentation in LGE CMR (Jamart et al., 2020).

In particular, in LASC’18, all deep learning methods had their
mean surface distance in LA wall segmentation below 1.7 mm,
with the minimum mean value of 0.748 mm. This demonstrated
the efficacy of the deep learning based methods by the surface
distance, which is required to be less than 1–2 mm under the
clinical setting (Xiong et al., 2021).

4.2.2 Deep Learning Methodologies in the Anatomical
Structure Segmentation
Successful networks demonstrating success in delineating
anatomical structures include VGG-net (Simonyan and
Zisserman, 2014), U-Net (Zabihollahy et al., 2019b), and V-Net
(Milletari et al., 2016). To further exploit the information on the
z-axis, LSTM and its variants (Yang et al., 2018a; Zhang et al.,
2020) and dilated residual learning blocks (Yang et al., 2018a)
can be introduced to the widely used U-Net.

On top of the U-Net, Xiong et al. (2019) proposed a dual
path U-Net variant, which is demonstrated to have the best Dice
Score (0.942) followed by VGGNet (0.864) in their benchmarking
of a range of popular CNNs including the original U-Net and
one non-deep-learning based method (Zhu et al., 2013) in LA
segmentation. Multi-view learning, incorporating axial, sagittal
and coronal views together, gave superior performance compared
to models based on one view only (Xiao et al., 2020).

On the contrary, further research showed that structural
variations in U-Net are unlikely to cause a significant
improvement of its performance in LA segmentation from
LGE CMR (Wang et al., 2019), and that deep supervision and
attention blocks are unlikely to further improve LA segmentation
performance either (Borra et al., 2020b).

In addition to these supervised learning based methods,
Chen J. et al. (2019) proposed a feature-matching based
semi-supervised learning technique to further improve the
segmentation efficacy.

All the methods discussed above are summarized in Table 4.

4.3 Segmentation of Scarring Regions
We can observe a range of deep learning based methods in
segmenting scars (Table 5).

4.3.1 LA Scar Segmentation Models
For LA (Table 5A), Yang et al. (2017) proposed a deep learning
based method using Stacked Sparse Auto-Encoders to delineate
the LA fibrosis region, which is based on accurate anatomical
structure delineation. Li et al. (2020) proposed a graph-cuts
framework based on multi-scale CNN to further incorporate local
and global texture information of the images.

4.3.2 LV Scar Segmentation Models
For LV (Table 5B), E-Net (Moccia et al., 2018) and FCNN
(Moccia et al., 2019) were demonstrated for its high accuracy if
with manually segmented LV walls. Then, multi-view U-Net has
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TABLE 4 | Summary of representative deep learning based methodologies for segmentation of the myocardium on LGE-MRI.

Reference Model backbone Method description Pros/cons Quantitative result (myocardium) Dataset

Zabihollahy et al., 2019b U-Net Standard U-Net Fast processing; deep
latent network

Mean Dice = 0.8661 Private (LV LGE MRI, n = 24)

Zhang et al., 2020 U-Net U-Net with bidirectional
convolutional LSTM

Process spatial sequential
information

Mean Dice = 0.906 LASC’18 (Xiong et al., 2021)
(LA LGE MRI, n = 100)

Yang et al., 2018a U-Net U-Net with multiview
sequential learning via
convolutional LSTM and
dilated residual learning

Process spatial sequential
information on all 3 spatial
axes

Mean Dice = 0.897 Private (LA LGE MRI, n = 100)

Xiong et al., 2019 FCNN Dual-path FCNN
concerning both local and
global view

Mitigate class imbalance;
Less input image size –
save GPU memory

Dice = 0.942 Benchmarking (Dice) Private [LA LGE MRI, n = 40
(pre-ablation), 70
(post-ablation)]

U-Net
(Ronneberger et al.,
2015)

0.642

Dilated U-Net (Men
et al., 2017)

0.687

VGGNet (Men
et al., 2017)

0.684

Inception (Szegedy
et al., 2015)

0.792

ResNet (He et al.,
2016)

0.804

DCN-8 (Long et al.,
2015)

0.558

DeconvNet (Noh
et al., 2015)

0.500

SegNet
(Badrinarayanan
et al., 2017)

0.656

V-Net (Milletari
et al., 2016)

0.696

DeepOrgan (Roth
et al., 2015)

0.632

Zhu et al., 2013 0.821

Xiao et al., 2020 FCNN 3D FCNN with 3D view
fusion

Process spatial information
on all 3 spatial axes
volumetrically;
Greater amount of GPU
memory occupied

Dice = 0.912 LASC’18 (Xiong et al., 2021)
(LA LGE MRI, n = 100)

Chen J. et al., 2019 Double-sided FCNN Semi-supervised learning –
discriminative feature
learning via double-sided
domain adaptation

Achieve a fusion of the
feature spaces of labeled
data and unlabeled data to
achieve semi-supervision

Mean Dice = 0.9078 Private (LA LGE MRI,
two-center, n1 = 175, n2 = 94)

We included the benchmarking quantitative results from Xiong et al. (2019) for readers’ interests, as they covered nearly all popular deep learning models for general image processing.
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TABLE 5 | Summary of representative deep learning based methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.

LA/LV Reference Model backbone Model description Pros/Cons Quantitative results
(scar/fibrosis)

Dataset

(A) LA Yang et al., 2017 Auto Encoder Stacked Sparse
Auto-Encoders

Significantly higher
accuracy;
Misenhancement in
valves, etc. can cause
false positive;
Hyper-parameter
sensitive

Mean Dice = 0.82 Private [LA LGE MRI,
n = 10 (pre-ablation),
10 (post-ablation)]

Li et al., 2020 CNN Graph-cuts framework
based on multi-scale
CNN

Multi-scale consideration
enables both local and
global feature extraction;
Surface projection
mitigate difficulty in
accurate LA wall
delineation;
Require collection of
b-SSFP

Mean Dice = 0.898 Private [LA + bSSFP,
LGE MRI, n = 58
(post-ablation)]

(B) LV Moccia et al., 2018 E-Net E-Net on manually
segmented
myocardium region only

Significantly higher
accuracy;
Require manual
intervention in
myocardium
segmentation

Dice = 0.86 Private (LV LGE MRI,
n = 30)

Moccia et al., 2019 FCNN FCNN on manually
segmented
myocardium region only

Significantly higher
accuracy;
Require manual
intervention in
myocardium
segmentation

Median Dice = 0.7125 Private (LV LGE MRI,
n = 30)

Zabihollahy et al., 2020 U-Net Cascaded multi-view
U-Net via majority vote
multi-view fusion

Consider sequential
spatial information on all
three axes

Median Dice = 0.8861 Private (LV LGE MRI,
n = 34)

also been developed in segmenting the scar in a cascaded way
(Zabihollahy et al., 2020).

4.4 End-to-End Automated Fibrosis and
Scar Segmentation
4.4.1 Development of End-To-End Scar Segmentation
Models Instead of Staged Segmentation Networks
With more recent developments of deep learning, the models
can extract further latent information from the LGE CMR
images and segment the scar directly from LGE CMR
images without acquiring accurate segmentation of the relevant
cardiac anatomical structures (e.g., LA wall) in advance while
maintaining the accuracy. There has also been a range of
methods (Table 6) that can complete the segmentation of both
the anatomy of cardiac chambers and the scar simultaneously
(referred to as "two tasks" below). This is particularly the
case for LV, where there is much less variability in its
anatomical shape.

4.4.2 LA End-To-End Scar Segmentation Models
For LA (Table 6A), due to the thin LA wall, it is particularly
difficult to achieve an end-to-end segmentation of scar directly
from LGE CMR. A multi-view two task (MVTT) deep learning
based method with dilated attention network was proposed

to complete the two tasks simultaneously (Chen et al., 2018;
Yang et al., 2020). This study also benchmarked a range of
popular deep learning networks such as U-Net and V-Net on each
of the two tasks. It compared the performance of its network with
conventional methods such as 2-SD and k-means to demonstrate
the superiority of its network in completing both of the two tasks
accurately on both pre-ablation and post-ablation datasets (Yang
et al., 2020). This study also suggested that 2-SD, k-means and
fuzzy c-means methods clearly over-estimated the enhanced LA
scar region (Yang et al., 2020).

Later, with a joint GAN discriminator, Chen et al. were able
to further improve the segmentation accuracy by dealing with
the significantly unbalanced two LA targets (LA wall and scar)
(Chen et al., 2021; Table 7). In their method, cascaded learning,
a widely applied technique in learning labels with unbalanced
classes in natural image segmentation (Dai et al., 2016; Murthy
et al., 2016; Li et al., 2017; Lin et al., 2017; Ouyang et al., 2017;
Cai and Vasconcelos, 2018; Chen K. et al., 2019), demonstrated
superiority in learning.

4.4.3 LV End-To-End Scar Segmentation Models
As LV has less variant morphology and greater size, there have
been more successful methods demonstrating their efficacies and
efficiencies in LV scar segmentation (Table 6B). E-Net (Moccia
et al., 2018) and FCNN (Moccia et al., 2019) were the first few
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TABLE 6 | Summary of representative end-to-end deep learning based methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.

LA/LV Reference Model backbone Model description Pros/Cons Quantitative results
(scar/fibrosis)

Dataset

(A) LA Yang et al., 2020* ResNet Multi-view based
dilated attention and
residual network with
sequential learning via
convolutional LSTM

Spatial sequential
information processing;
Attention network to
tackle class imbalance

Mean Dice = 0.8258 Private [LGE MRI,
n = 190 (97 pre- and
93 post-ablation)]

Chen et al., 2021 GAN Adaptive attention
cascade network for
simultaneous
estimation of
unbalanced targets +
joint discriminative
network for adversarial
regularization

Inter-cascade adversarial
learning paradigm to
tackle class imbalance
and regularize the output

Mean Dice = 0.946 Private [LGE MRI,
n = 192 (97 pre- and
95 post-ablation)]

(B) LV Moccia et al., 2018 E-Net E-Net Relatively low accuracy;
Unable to tackle class
imbalance well

Dice = 0.55 Private (LV LGE MRI,
n = 30)

Moccia et al., 2019 FCNN FCNN Relatively low accuracy;
Unable to tackle class
imbalance well

Median Dice = 0.5400 Private (LV LGE MRI,
n = 30)

Zabihollahy et al., 2019a CNN Volume patch based
3D CNN

utilize small volume
patches for accurate
local view inspection

Mean Dice = 0.9363 Private (LV LGE MRI,
n = 10)

Fahmy et al., 2020 U-Net U-Net based 3D CNN Sub-volume design
utilizes small volume
patches for accurate
local view inspection

Mean Dice = 0.54 Private (LV LGE MRI,
multi-vendor n = 1073)

*As (Yang et al., 2020) and (Chen et al., 2018) reported very similar methodologies, we reported (Yang et al., 2020) only in this table.

TABLE 7 | Result of a private benchmarking (Chen et al., 2021) of different algorithms on the LASC’18 dataset, reported in their mean ± SD.

LA and PVs LA scar

Dice Scores ASD (mm) Dice Scores ASD (mm)

2D U-Net 0.898 ± 0.034 3.38 ± 4.53 0.526 ± 0.118 1.83 ± 0.891

3D U-Net 0.895 ± 0.032 3.81 ± 3.89 0.508 ± 0.106 1.90 ± 0.837

MVTT (Yang et al., 2020) 0.902 ± 0.037 2.25 ± 1.39 0.613 ± 0.131 1.39 ± 1.03

JAS-GAN (Chen et al., 2021) 0.913 ± 0.027 2.24 ± 2.73 0.621 ± 0.110 1.24 ± 1.04

ASD, average surface distance.

networks that demonstrated the ability to segment scar directly
from LGE CMR. Although with relatively low Dice scores, they
demonstrated that with an accurately segmented myocardium
label it could perform better.

Recently, many deep learning methods have been proposed
and demonstrated significantly higher efficacy compared
to traditional threshold based methods. Zabihollahy et al.
developed a CNN based network to classify each pixel by
considering small volume patches around that pixel to
greatly improve the mean segmentation accuracy in terms
of its mean Dice score to 93.63, compared to the mean
Dice scores of K-nearest neighbor (KNN) (77.85), FWHM
(61.77), and 2SD (48.33) in their private benchmarking
(Zabihollahy et al., 2019a).

In addition, Fahmy et al. (2020) proved that a 3D CNN
deep learning based approach could be applied for LV scar
segmentation for patients with hypertrophic cardiomyopathy
(HCM) via a multicenter multivendor study.

Inspired by the two-stage approach, a multi-view cascaded
U-Net driving for even higher efficacy in segmentation was
developed to cascade the two tasks sequentially while considering
sagittal, axial and coronal views (Moccia et al., 2019).

4.5 Segment LGE CMR Jointly With
Other Modalities
As explained in Section 3.1.2, traditionally, clinicians check
both bSSFP cine and LGE MRI modalities to ensure accurate
segmentation of the myocardium and then the scar. Therefore,
many methods suggested the use of both bSSFP cine and LGE
modalities in delineating anatomical structures and scar to mimic
that. For LA, it is also known that MRA gives a clear boundary
in PV to help with LA wall segmentation. We can see many
methods taking MRA as an extra modality into their models
to enhance their segmentation accuracy. However, many studies
chose bSSFP over MRA, as bSSFP can be acquired in the
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same phase as LGE CMR by cardiac gating. Although MRA
provides better resolution, MRA is not cardiac gated and can
be difficult and error-prone in co-registration with LGE CMR,
causing misalignments in registered images. Additionally, as
explained in Section 2.2, integration with other modality (e.g.,
T2) may enable more findings from the CMR (e.g., oedema) in
addition to scars.

There are few challenges benchmarking a range of algorithms
for the cross-modality fusion based segmentation of anatomy,
scar and oedema. MS-CMR challenge (MS-CMR Challenge,
2019; Pop et al., 2020) presented a range of algorithms taking
multiple modalities in to further improve the segmentation
accuracy of LV myocardium, LV blood cavity and RV.
MyoPS challenge (MyoPS Challenge, 2020; Zhuang and Li,
2020) presented algorithms to delineate LV myocardium with
scarring and oedema.

Common methods to segment anatomy and scar from
multiple modalities include:

(1) Cross-modality style and feature propagation (typically
from bSSFP to LGE-MRI) [e.g., multi-atlas label fusion
(MAS) (Zhu et al., 2017)].

(2) Combination of multiple paired sequences and modalities
for segmentation by either cross-modality image style
transfer [e.g., Cycle-GAN (Zhu et al., 2017) and UNIT
style transfer (Huang et al., 2018; Chen J. et al., 2020)]
or multi-input models [e.g., Multi-variable mixture model
(MvMM) (Zhuang, 2019)].

(3) A two-stage approach to firstly co-registering anatomical
segmentation from one modality to another (typically
from bSSFP segmentation to LGE-MRI) and then
segment scars based on the co-registered anatomy
segmentation (Leong et al., 2019).

However, respiratory and/or cardiac motion complications
between acquisitions of different modalities can still cause errors
in registration and possible misalignments.

5. SCAR SEGMENTATION WITH
NON-CONTRAST-AGENT (NON-CA)
ENHANCED IMAGING MODALITY ONLY

Although LGE CMR has been very successful in being the
gold standard reference technique for AF and MI, including
LGE in an MRI scanning significantly extends the scanning
Time. Moreover, there have been increasingly growing concerns
regarding the safety of the Gadolinium based contrast agent used,
particularly for the patient with renal impairments (Ledneva
et al., 2009). There has been a rising attention in exploring
methods to segment scars without injecting contrast agents to the
patients on non-CA modalities. Non-CA modality based cardiac
scar segmentation methods have been widely demonstrated
for LV scar delineations but has not been realized for LA
scar delineations.

Dastidar et al. (2019) and Liu et al. (2018) demonstrated
the potential of pre-contrast scar segmentation by comparing

the inter-modality manual observations of myocardial infarction
regions on LGE CMR and native-T1 mapping without the
Gadolinium contrast agents.

5.1 Relaxation Time Based Scar
Segmentation in T2
T1 and T2 (Messroghli et al., 2017) are modalities that are not
enhanced by any contrast materials, where relaxation times in
MI is longer compared to the healthy myocardium and could
be referenced for MI region segmentation reproducibly (Abdel-
Aty et al., 2004; Kali et al., 2014; Smulders et al., 2015). However,
the relaxation time is field strength specific (Raman et al., 2013;
Haaf et al., 2017) and requires the acquisition of images for
additional breath holds, which significantly extends the CMR
acquisition time.

5.2 MRI Feature Tracking
Magnetic resonance imaging feature tracking is also an approach
to differentiate MI induced cardiac wall abnormalities from
normal myocardium, which can be acquired as part of a standard
CMR scanning examination (Muser et al., 2017; Ogawa et al.,
2017). However, this technique can only detect and locate the
position of MI without quantifying it.

5.3 Scar Segmentation in CINE MRI
To further improve scar segmentation on non-contrast enhanced
CMR, trained by co-registered LGE and cine MRI modalities,
SVM based texture analysis in pre-contrast cine MRI only can
discriminate between nonviable, viable and remote segments
(Larroza et al., 2018). Non-contrasted enhanced CMR scar
segmentation has also been demonstrated via neighborhood
approximation forests (Bleton et al., 2016), Simple Linear
Iterative Clustering (SLIC) (Achanta et al., 2012) based
supervoxels (Popescu et al., 2017).

5.3.1 Deep Learning Based Scar Segmentation in
CINE MRI
With the development of deep learning, a method based on
a combination of Long short-term memory (LSTM), recurrent
neural network (RNN) and fully convoluted neural network
(FCNN) (Xu et al., 2017) and a GAN based method (Xu et al.,
2018) have been demonstrated accuracy in detecting, locating
and quantifying LV scarring regions from non-contrast enhanced
CMR images. Zhang et al. proposed a deep learning based
framework to greatly improve the efficacy of the segmentation
of LV scar on cine MRI (with its stages consisting of (1)
ROI localization, (2) RNN based motion pattern extraction,
and (3) pixel classification by FCNN) and assess their network
extensively under a clinical setting (Zhang et al., 2019). Xu et al.
(2020) on top of the deep learning based workflow, proposed
a progressive sequential causal generative adversarial network
(GAN) to simultaneously synthesize LGE-equivalent images and
multi-class tissue segmentation (including LV blood cavity, LV
myocardium and scar region) from cine CMR images. A detailed
summary and results of a private benchmarking of all these
algorithms can be found in Table 8.
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TABLE 8 | Summary of representative machine learning/deep learning based scar segmentation in cine MRI for segmentation of cardiac scar regions on cine bSSFP MRI.

Reference Method description Pros/Cons Private Benchmarking
Accuracy (%) (Xu et al.,

2020) (scar)

Dataset

Xu et al., 2020 (1) priori coarse tissue mask generation
GAN,
(2) condition LGE-equivalent image
synthesis GAN,
(3) fine segmentation GAN

Segment more than just LV
scar – LV blood pool,
myocardium and scar regions;
Further improve
temporal-spatial learning by a
two-stream structure that
includes a spatial perceptual
pathway, a temporal perceptual
pathway, and a multi-attention
weighing unit.

97.13 Private [SAX cine bSSFP
MRI, Xu et al. (2020),
n = 280]

Zhang et al., 2019 (1) LV localization – ROI detection by
CNN
(2) Motion feature extraction
(2.1) global motion feature – dense
motion flow estimation
(2.2) local motion feature – LSTM-RNN
(3) infarction discrimination – FCNN

Combine both LSTM-RNN
based local motion analysis and
dense motion flow estimation
based global motion analysis

95.03

Xu et al., 2018 GAN
(A) Generator:
(A1) LV morphology and kinematic
abnormalities – spatio-temporal feature
extraction network through 3D
successive convolution
(A2) complementarity between
segmentation and quantification - joint
feature learning network for multitask
learning;
(B) Discriminator:
(B1) intrinsic pattern between tasks –
uses task relatedness network for
adversarial learning

Introduce adversarial learning
and task relatedness to reduce
divergence

96.77

Xu et al., 2017 (1) Heart localization – FAST R-CNN
(Girshick, 2015)
(2) Motion statistical feature –
LSTM-RNN
(3) discriminative layer – FCNN

Combine both ROI based local
motion analysis and deep
optical flow based global
motion analysis

94.93

Popescu et al., 2017 Simple Linear Iterative Clustering (SLIC)
based supervoxels (Achanta et al.,
2012)

Only radial strain analyzed,
excluding longitudinal and
circumferential strains;
K-means clustering used
requires an empirical definition
of the number of clusters

86.47

Bleton et al., 2016 Neighborhood approximation forests Consider myocardial thickness
and its temporal variations

84.39

6. EVALUATION METRICS

A range of evaluation metrics can be employed for assessing
the results of the segmentation of the anatomy. These include
Dice score, sensitivity, specificity, Hausdorff distance (HD) and
surface-to-surface distance (STSD).

(1) Dice Score
The Dice Score coefficient, DICE, is one of the most widely used
evaluation metrics in segmentation accuracy evaluations. It is
particularly sensitive to the difference between the ground truth
label and the result label.

Given a 3D prediction label tensor, A, and 3D ground truth
label tensor, B, the Dice score can be defined as:

DICE (A, B) =
2 |A ∩ B|
|A| + |B|

(1)

(2) Sensitivity
Sensitivity score, also known as True Positive Rate, can be
adapted to reflect the success of the algorithm for segmenting the
foreground (cardiac anatomy) as:

Sensitivity =
TP

TP+ FN
(2)

where TP stands for true positive and FN stands for false negative.
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(3) Specificity
Sensitivity score, also known as True Negative Rate, reflects the
success of the algorithm for segmenting the background as:

Specificity =
TN

TN+ FP
(3)

where TN stands for true negative and FP stands for false positive.

(4) Hausdorff Distance
Hausdorff distance, HD, is an important parameter in evaluating
the geometrical characteristics which measures the maximum
local distance between the surfaces of the predicted LA volume
label tensor, A, and the ground truth label tensor, B, given by:

HD (A, B) = max
b∈B

{
min
a∈A

{√
a2 − b2

}}
(4)

where a and b are all pixels locations within A and B.
In practice, the HD is not generally recommended to use it

directly since it has a great sensitivity to outliers, and as noises
and outliers are quite common in medical image segmentation
(Gerig et al., 2001; Zhang and Lu, 2004). However, Huttenlocher
et al. (1993) proposed a way to handle outliers by defining the
HD as the qth quantile of distance instead of the maximum to
exclude the outliers.

(5) Surface-to-Surface Distance
Surface-to-surface distance, STSD, measures the average distance
error between the surfaces of the predicted LA volume and the
ground truth.

STSD (A, B) =
1

nA + nB

 nA∑
p = 1

√
p2 − B2 +

nB∑
p′ = 1

√
p′2 − A2


(5)

where nA and nB are the numbers of pixels in A and B,
respectively. Variables p and p

′

describe all point between
A and B.

The maximum error distance acceptable in the LA wall
segmentation should be 1–2 mm under the clinical setting
considering the thin LA wall (Xiong et al., 2021).

(6) Error of the Anterior-Posterior
Diameter of the Anatomical Structure
The anterior-posterior diameters of LA and LV are widely used as
an essential clinical measure in clinical diagnosis and treatments.

The diameters can be estimated by finding the maximum
Euclidean distance along the anterior-posterior axis of each CMR
scan (Xiong et al., 2021).

(7) Error of Volume of the Anatomical
Structure
The anatomical volumes of LA and LV are widely used as an
essential clinical measure in clinical diagnosis and treatments.

The volume of the structure can be found as the sum of
positively labeled voxels. Given the volume of the predicted

anatomical structure, VA, and the volume of the ground truth,
VA, the total volume error can be defined as:

δV = |VA − VB| (6)

(8) Scar Volume Percentage
In addition to the ones mentioned above, scar segmentation also
employs a scar volume based metric in assessing the segmentation
result, which is much more widely used as the quantification of
scar is important for clinical use. They calculate the volumetric
percentages of the scarring regions and compare them across the
predicted and the ground truth labels.

The scar percentage is defined as the percentage of the volume
of the scarring region, Vscar , relative to the volume of the relevant
anatomical wall, Vwall (e.g., LA wall) (Tao et al., 2010).

[%] scar =
Vscar

Vwall
× 100% (7)

7. DISCUSSION

7.1 Dataset Acquisition
7.1.1 Inter-Observer Variability in the Manual
Annotation of Ground Truth Labels
For validation and benchmarking of different methods and
training of deep learning based methods, accurate, consistent and
reproducible acquisition of ground truth labels is essential.

Validation by employing labels from a single clinician may
not be ideal as these labels may exhibit bias and intra-observer
variances when the same clinician is asked to repeat their labeling.
Thus, it is recommended that we take observations from multiple
clinicians and fuse them together.

However, we can see significant inter-observer variances,
particularly for LA anatomical segmentation in LGE-MRI where
the boundaries of the LA walls are very blurred. Kurzendorfer
et al. (2017c) attempted to compensate for inter-observer
variances by additional smoothing but ended up with slight
improvement in Dice Scores (+0.04).

It is recommended that the data source reports the inter- and
intra- observer variances by employing evaluation metrics such as
the Dice Score coefficient. The currently widely used method of
label fusing is obtaining a 70% consensus label among multiple
annotations, which can be low in their consistency levels. The
level of each observer’s expertise (novice, medical student, trainee,
junior clinician or senior clinician) must also be clearly noted,
particularly when multiple observers are involved. It may be also
recommended that the observers should all be experienced senior
clinicians to maintain the high accuracy and low variance in the
manual annotation.

7.1.2 Dataset Sources
Many methods use single-vendor single-center datasets to
validate their methods, which may not demonstrate the ability
to generalize the accurate segmentation methodology to centers
with CMR machines of different settings and compositions.

There have been some trials assessing the performance
of models based on multi-vendor and multi-center data
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(Engblom et al., 2016; Fahmy et al., 2020). However, evaluation
based on multi-vendor and multi-center data with a more
significant patient population should be introduced for a more
comprehensive unbiased validation, comparison of performances
of different methods and assessment for their scalability.

7.1.3 Quantitative Result Reporting
We would like to alert readers that nearly all studies summarized
in this study used their own distinct private datasets when
reporting results. Biased conclusion may be derived when directly
comparing these quantitative metrics across studies. The authors
would like to ask all readers to refer to the experimental settings
in acquisitions of the datasets stated in their original articles when
comparing quantitative results across different studies, instead of
only looking at these numbers stated. We would also look forward
to a public benchmarking of all these methods as a fairer review
of their performances.

Also, the authors would like to ask readers to be cautious when
directly comparing Dice Scores reported for the segmentation of
the LV infarction than the LA necrosis’. As the LA is much smaller
than the LV, an equivalent volume of discrepancy may trigger a
more significant reduction in the LA necrosis’ Dice Score ratios
than the LV infarction’s. Additionally, the LA necrosis tends to
be more challenging to be accurately segmented than the LV
infarction explained above.

In addition, the image quality, contrast, class imbalance
and other factors of the image data can directly impact
the result generated from it and thus the accuracy reported.
In particular, the authors would advocate future literature
to report (1) scar to blood pool contrast ratios (SC-BP)
(Karim et al., 2014) to show the scar contrast, (2) signal-
to-noise ratio (SNR) to show the noise variation along with
evaluation metrics in results, so the readers can have a better
understanding of the experimental settings before interpreting all
the metrics reported quantitatively. These two additional metrics
are essential, particularly when it comes to LA scar segmentation,
where the scar segmentation is more difficult and where higher
SC-BP can give higher Dice Scores in the results generated
(Karim et al., 2014).

7.2 Conventional Methods
7.2.1 Advantages – Computational Load and
Explainability
Obviously, as conventional methods are less demanding on the
composition of the computing device, they can be deployed for
wider clinical uses more easily. This is an advantage when it
comes to the scalability and generalizability of the product, where
a standard computer is enough for its deployment.

Conventional methods are also more explainable than deep
learning. The explainability also guarantees easier acceptance
from the clinicians, as the product may appear more trustworthy
and more reliable.

7.2.2 How Reliable Are the Conventional Methods?
7.2.2.1 Fixed threshold conventional methods
Fixed threshold methods may not fit some LGE CMR images, as
they are unlikely to handle variations well (Oakes et al., 2009).

Scars are highly variable in their morphology and their
brightness distribution on LGE CMR. Some severe LV cardiac
scar may appear bright in its surroundings and very dark in
its center, as the center of the scar is so severely infarcted
that very little GBCA carrying perfusion arrives there. N-SD
and FWHM, which require the pixel intensity to be more than
a certain threshold for that pixel to be recognized as a scar,
may not label these dark centers as the scar. Additionally, due
to the partial volume effect, fibrotic regions containing both
intermingling bundles of fibrotic and viable myocytes will be
darker than the complete necrosis region. The low intensity
exhibited from such fibrotic regions may be below the fixed
threshold set and make these fibrotic regions be falsely recognized
as healthy myocardium.

Varied external factors including resolution, contrast, signal-
to-noise ratio (SNR), inversion time and surface coil intensity
variation can also adversely affect the accuracy of the scar
segmentation. LGE CMR modality often suffers from poor
image quality, which may be due to residual respiratory motion,
variability in the heart rate and gadolinium wash-out during the
currently long acquisition time (Yang et al., 2017). Considering
the thin transmural thickness of the atrial wall [mean = 2.2–
2.5 mm (Saìnchez-Quintana et al., 2005)] (Figure 2), the
spatial resolution of LGE CMR images is relatively limited,
particularly for the left atrium (To et al., 2011). The variable
anatomical morphological shapes of pulmonary veins (PV) also
impose an additional challenge to the LGE CMR segmentations.
In addition, some uninterested cardiac substructures may be
highlighted in LGE CMR images as well in addition to
the scarring and fibrosis regions. These may be due to the
navigator beam artifact (which is often seen near the right PV),
Gadolinium uptake by the aortic wall and valves and confounded
enhancement in the spine, esophagus, etc. (Karim et al., 2013;
Yang et al., 2017).

7.2.2.2 Conventional adaptive methods
Although adaptive conventional methods may mitigate adverse
impacts from variable scar shapes and varied external
factors, adaptive conventional methods can also be affected
by sizes, variances and artifacts in testing image data as
they utilize prior information learned. Kurzendorfer et al.
(2017c) showed that a particular scar distribution over
the myocardium could adversely affect their methods in
segmenting endocardial contours. Such vulnerability may be
more problematic when it comes to LA anatomical structures,
as PV is a very morphological variable and LA walls are much
smaller and thinner.

7.3 Deep Learning Based Methods
7.3.1 How We Could Make the Deep Learning
Perform Even Better?
For detailed designs of the deep learning networks, LASC’18
benchmarked (Xiong et al., 2021) a range of U-Net variants
in LA wall segmentation from LGE CMR. This challenge,
along with other literature for cardiac scar segmentation,
demonstrated the following.
(1) Image Sources
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(a) Higher image qualities (as in signal-to-noise ratio) would
result in a higher Dice Score, although not statistically
significantly linearly related.

(b) In addition, models with contrast normalization as a pre-
processing technique performed significantly better than
the ones without using normalization.

(2) Model Backbone

(a) CNN based methods delivered better results compared to
the atlas based methods.

(b) U-Net based methods outperformed other networks using
VGGNet, ResNet, etc.

(c) There was no statistical difference between the
segmentation performances of the models based on 2D
CNNs and models based on 3D CNNs. However, further
research showed that 3D CNNs greatly outperformed 2D
CNNs with the same model architecture in terms
of the Dice Scores of their segmentation results
(Borra et al., 2020a).

(3) Segment on ROI or the Whole Image?

(a) Centring LA on ROI as an input to the second sequential
model would make the model perform significantly better
compared to the model with non-centered ROIs.

(b) Class imbalance induced by significantly big or small ROI
size could lead to an adverse effect on the segmentation
results in terms of Dice scores.

(c) Double sequential CNNs (Li et al., 2019; Xia et al., 2019;
Yang et al., 2019; Xiong et al., 2021) (one detecting
the region of interest first and then the second model
performing regional segmentation within the region of
interests (ROI) detected) achieved much better results
compared to the methods with only one single CNN.

(d) Double sequential 3D CNN outperformed single 2D CNN
and single 3D CNN models regarding its Dice scores,
surface distance, LA diameter error and LA volume error.

(4) Model Architecture

(a) Models with residual connections performed significantly
better compared to the ones without residual connections.

(b) The use of dropout blocks did not perform significantly
better than the one without using dropout.

(c) Rectified Linear Unit (ReLU) trained models did not
perform significantly better than the Parametric Rectified
Linear Unit (PReLU) trained models.

(5) Loss Functions

(a) Dice loss trained models performed significantly better
than the cross-entropy trained models.

7.3.2 Problems With Deep Learning in Segmentation
7.3.2.1 Computational load
Although we are able to observe much better results generated
from deep learning based methods, we can also observe a rise in
computational demand from deep learning networks. For deep
learning based methods, high-end computer graphics processing

units (GPUs) become a necessity when deploying these models,
whereas standard computers with CPUs only are sufficient for
most of the conventional methods to run. Under a clinical setting,
hiring a GPU is not always possible, as it is not part of a standard
clinical computing workstation. The requirement of a high-end
computer with GPU in deploying a deep learning based method
may significantly limit the ability of these methods to scale.

However, if a standard computer was only used to infer
a deep learning model, its runtime may be a bit long but
still falls within the maximum time limit that clinicians can
accept (usually a few minutes per slice for models that
are not extra complex). Therefore, we can see these models
can be deployed and scaled only if they are sophisticatedly
trained, as training on the clinician’s side, where unlikely they
have a GPU, is not usually possible. As the inference time
may vary significantly across different models over CPUs and
depend on their architectures and complexities, reporting of
inference time per slice on a standard computer without a
GPU should also be mandatory in addition to the inference
time over a GPU.

7.3.2.2 Scarcity of annotated data
Training datasets with abundant paired labels are essential to
the success of deep learning model training. However, there has
been a scarcity of labels due to the tedious process of manually
annotating the ground truths in medical imaging. In order to
mitigate such scarcity in ground truth labels, several methods can
be adopted, including the following.

(1) Data augmentation,
(2) Transfer learning with fine-tuning (Bai et al., 2018; Chen

S. et al., 2019; Khened et al., 2019),
(3) Weak and semi-supervised learning (Bai et al., 2017, 2018;

Can et al., 2018; Chartsias et al., 2018, 2019; Kervadec
et al., 2019),

(4) Self-supervised learning (Bai et al., 2019) and,
(5) Unsupervised learning (Joyce et al., 2018).

In addition, to mitigate the challenging training process
brought by the great data size required to train a scalable
network, active learning (Mahapatra et al., 2018) has been
introduced to reduce manual annotation workloads as well as the
computational loads.

7.3.2.3 Explainability in deep learning
Although there has been a wide range of evidence demonstrating
the efficacy of deep learning in medical image analysis, the
deep learning networks behave more like a ’black box,’ where
its interpretability is poor. It has been shown that these deep
learning networks can be attacked by adversarial noises or
even just rotation in medical images (Finlayson et al., 2019),
questioning the reliability and scalability of these deep learning
models in assisting diagnosis. For alerting users of these possible
failures, segmentation quality scores (Robinson et al., 2019) and
confidence maps [e.g., uncertainty maps (Sander et al., 2019) and
attention maps (Heo et al., 2018)] should be provided to highlight
uncertainties in the model prediction.
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7.4 Non-CA Modality Segmentation:
Bye-Bye to Gadolinium?
Although many methods can accurately segment scars on non-
CA cine MRI, the impact from different numbers of cardiac
phases on cine MRI has not been assessed.

In addition, the binary class of either normal or scar may be
too simplistic. Quantification of the so-called “gray-zone,” which
has been proposed for the clinical implication of ventricular
arrhythmia (Jablonowski et al., 2017), immediately surrounding
the ventricular scar may be useful clinically.

Also, gadolinium based contrast agent is not only applied for
scar imaging but also for assessing myocardial perfusion, which
is usually assessed together in LGE CMR, for which additional
classification and differentiation of ischemic and remote regions
of myocardium would be useful (Leiner, 2019). To achieve
that, Liu et al. (2016) demonstrated non-Gadolinium contrast
adenosine stress and rest T1 Mapping for identification and
classification of normal, infarcted, ischemic and remote regions
in LV myocardium.

We are glad to see a range of algorithms demonstrated for
LV scar segmentation in non-contrast enhanced CMR. However,
this has not been realized for CMR images of LA, which is more
difficult as the LA scarring regions in CMR suffers from greater
variances in morphology and relatively lower resolution of CMR.
Moreover, LA scars can appear in discrete regions (Figure 2),
which imposes further challenges to the LA scar segmentation
from non-CA modalities.

CONCLUSION

This study summarizes the recent developments in cardiac
scar segmentation, covering a wide range of conventional
and deep learning techniques. In particular, we presented and
discussed the usefulness of non-LGE modalities in cardiac

anatomy and scar segmentation. We then further discussed
the recent progress in segmenting the cardiac scarring region
from non-contrast-enhanced images. We hope this review can
provide a comprehensive understanding of the segmentation
methodologies for cardiac scar and fibrosis and increase the
awareness of common challenges in these fields that can call for
future research and contributions.
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Mathematical models of cardiac ion channels have been widely used to study and

predict the behaviour of ion currents. Typically models are built using biophysically-based

mechanistic principles such as Hodgkin-Huxley or Markov state transitions. These

models provide an abstract description of the underlying conformational changes of

the ion channels. However, due to the abstracted conformation states and assumptions

for the rates of transition between them, there are differences between the models and

reality—termedmodel discrepancy or misspecification. In this paper, we demonstrate the

feasibility of using a mechanistically-inspired neural network differential equation model,

a hybrid non-parametric model, to model ion channel kinetics. We apply it to the hERG

potassium ion channel as an example, with the aim of providing an alternative modelling

approach that could alleviate certain limitations of the traditional approach. We compare

and discuss multiple ways of using a neural network to approximate extra hidden states

or alternative transition rates. In particular we assess their ability to learn the missing

dynamics, and ask whether we can use these models to handle model discrepancy.

Finally, we discuss the practicality and limitations of using neural networks and their

potential applications.

Keywords: neural networks, differential equations, electrophysiology, ion channels, mathematical modelling,

model discrepancy, human Ether-à-go-go-Related Gene, neural ODEs

1. INTRODUCTION

Electrophysiology modelling has provided insights insights into physiological mechanisms, from
the ion channel to whole organ scales. Mathematical models of many ion channels, pumps,
and exchangers form models describing the cellular action potential, based on the pioneering
work of Hodgkin and Huxley (1952). These models of ion channels are typically a collection of
mathematical functions governed by systems of ordinary differential equations (ODEs), using the
Hodgkin-Huxley formulation or the Markov model structure (Rudy and Silva, 2006; Whittaker
et al., 2020), and form the foundation of many cellular action potential, including neurons
(Hodgkin and Huxley, 1952; Traub et al., 1994; Kole et al., 2008; Hay et al., 2011), cardiomyocytes
(Noble, 1962; ten Tusscher et al., 2004; Grandi et al., 2011; O’Hara et al., 2011), pancreatic islet cells
(Chay and Keizer, 1983; Sherman et al., 1988; Fridlyand et al., 2003; Cha et al., 2011), etc.

Both formulations of ion channel models provide an abstract description for the underlying
conformational changes of the ion channels. The Hodgkin-Huxley formulation models the
channels as independently-acting channel “gates” which can be open and closed. For example, a
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commonly used model for potassium ion channels is a
combination of an activation gate and an inactivation gate.
As the names imply, each of the gates attempts to describe a
different behaviour that gives rise to the characteristic dynamics
of the currents.

Many ion channels involved in generating action potentials
are voltage-gated. A Hodgkin-Huxley gate for voltage-gated ion
channels is usually modelled as

closed
α(V)
−−−⇀↽−−−
β(V)

open, (1)

where α and β are the transition rates between the open and
closed states, and V is the membrane voltage. Then the open
probability of the gate, x, can be expressed as

dx

dt
= f (x,V), (2)

f (x,V) = α(V)(1− x)− β(V)x, (3)

α(V) = Aα exp(BαV), (4)

β(V) = Aβ exp(BβV), (5)

where f (x,V) represents a function for the rate at which
gating occurs. In the case of Equation (1), mass-action kinetics
dictate that f (x,V) takes the form shown in Equation (3)
in terms of α(V) and β(V) (as introduced by Hodgkin
and Huxley, 1952). A canonical form for α(V) and β(V) is
shown in Equations (4, 5), so that {Aα ,Bα ,Aβ ,Bβ} are the
four constants/parameters governing this gate. The voltage-
dependence shown in Equations (4, 5) is not always used for all
rates in Hodgkin-Huxley models [indeed in all three of the gates
in their original model Hodgkin and Huxley (1952) used this
form for only one of the two rates, fitting the other empirically]
but it has some biophysical justification in terms of Eyring
transition rate theory to support the exponential form of the
dependence on voltage (Lei et al., 2019a). Indeed it is more
common to see Equations (4, 5) used for Markov model state
transition rates, but we and others have found it works very well
for Hodgkin-Huxley models for a range of currents (Lei et al.,
2019a; Houston et al., 2020). One could also construct a model
with multiple closed states to describe different dynamics (see
section 2.6, and Rudy and Silva, 2006 for a review).

Often we find we have a more predictive model for some
of the processes than the others. For example, for the rapid
delayed rectifier current (IKr) a simple Hodgkin-Huxley gate
can describe the fast inactivation process better than the slower
activation process (Beattie et al., 2018; Lei et al., 2019a,b). We
might then wish to “correct” the model discrepancy of the slower
activation process, but “trust” the mechanistic model for the
faster inactivation process. We propose to use neural networks
as a universal approximator to learn the dynamics of individual
gating processes of ion channels. In such a case, we would then
alter just part of the model (some of the equations).

Neural networks have a kind of universality which can be used
to approximate any arbitrary (well-behaved) function (Cybenko,
1989; Leshno et al., 1993; Pinkus, 1999). One could attempt
to learn the output (current) or the discrepancy of the output

directly using such an approximator, similar to the modelling
approach for the discrepancy term described in Kennedy and
O’Hagan (2001). However, Lei et al. (2020c) investigated such
an approach and discussed its limitations, and suggested the
need for passing in the “history” of the simulation to the
approximator to predict the next time points when modelling
dynamical systems.

Recently, there has been a growing amount of research
in data-driven approaches or equation-learning methods for
(numerically) modelling dynamical systems. Some of which work
by approximating derivatives of states from data and regressing
on these variables (e.g.,Wu andXiu, 2019); whilst others combine
machine learning methods, such as deep neural networks, with
prior domain knowledge encoded in differential equations (Chen
et al., 2018; Rackauckas et al., 2020). A similar approach has
recently been applied tomodel a simple cardiac electrophysiology
system for replacing numerical integration of partial differential
equations (Ayed et al., 2019). Given the success of modelling
the dynamics of ion channels using a relatively simple ODE
system (for IKr, e.g., Beattie et al., 2018; Lei et al., 2019a,b), it
would make sense to approximate or improve the right-hand
side of the already “useful” ODE instead of trying to learn all the
already well-captured biophysics from scratch. Such an approach
is sometimes referred to as a neural ODE (Chen et al., 2018;
Bonnaffé et al., 2021) or ODE-Net (Zhong et al., 2020). Note that
we refer to “neural ODEs” as leveraging neural network terms
within ODEs, which is different to some of the classification
applications described in Chen et al. (2018) but similar to their
ODE applications.

In this paper, we use the human Ether-à-go-go-Related Gene
(hERG) potassium ion channel, which carries the cardiac
current IKr (Sanguinetti et al., 1995), as a working example
to demonstrate the feasibility and practicality of using neural
ODEs to model ion channel kinetics. We provide an alternative
modelling approach that could alleviate certain restrictions, such
as the exponential form of the transition rates and the linear
relationship of the states in Equation (3). We compare and
discuss multiple ways of using a neural network to approximate
the hidden states, the dynamics of hERG. Their ability to handle
model discrepancy is assessed through synthetic data studies.
We also apply variants of neural ODEs to real experimental
data. Finally, we discuss the practicality of this approach and its
potential applications.

2. MATERIALS AND METHODS

We first introduce a Hodgkin-Huxley ion channel model which
we adopt as our case study for this article. We then present the
neural network modifications to the mechanistic ODE models,
and methods to train the neural network models. Finally we
describe synthetic data studies that we performed, and an
application to real experimental data.

2.1. A Hodgkin-Huxley Ion Channel Model
We used a simple Hodgkin and Huxley-style hERG model
as the working model (as used in Beattie et al., 2018).
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In this model, the current is modelled with a standard
Ohmic expression,

I = g · a · r · (V − E), (6)

where g is the maximal conductance, a is a Hodgkin-Huxley-style
activation gate, and r is an inactivation gate. Both of these gates
have transition rates following the form shown in Equations (2–
5). E is the reversal potential for this potassium ion current,
also known as the Nernst potential, which is not inferred but is
calculated directly using

E =
RT

zF
ln

(

[K+]o
[K+]i

)

, (7)

where R is the ideal gas constant, T is the absolute temperature
(T = 294.55K for the data we use later), F is the Faraday
constant, and z is the valency of the ions (equal to 1 for
potassium ions). [K+]o and [K+]i denote the extracellular
and intracellular concentrations of potassium ions, respectively,
which are determined by the experimental solutions ([K+]o =
4mM and [K+]i = 110mM in the data we use later). The two
gates are (independently) modelled using Equation (3), giving a
total of 8 parameters, each of which is to be determined from the
experimental current recordings.

For hERG, the dynamics of inactivation (r gate kinetics)
happen on a time scale much faster than the activation (a gate). A
typical time scale of interest for action potential modelling is tens
to hundreds ofmilliseconds. As a result, we observemore obvious
errors in the dynamics of the a gate, provided the steady state
of r is sufficiently accurate. In the rest of this paper, we assume
the r gate equation and parameters after fitting to the data is
accurate and we correct only the dynamics of the activation—the
a gate—using the methods described in the next section.

2.2. Ion Channel Model With Neural
Networks
To relax the assumption of the linearity of the gate variable
relationship and the exponential rate constants we trialled
modelling the entire gating dynamics using a neural network,
replacing Equation (2) with:

dx

dt
= N(V , x), (8)

where N(V , x) denotes a neural network that takes the voltage V
and the state x as inputs (see next section for more details). This is
perhaps the most flexible way to describe a Hodgkin-Huxley gate,
as we allow a neural network to fully approximate the right-hand
side of a gate’s ODE (which we will call “NN-full” or “NN-f ”).

Instead of replacing the whole right-hand side of the ODE
with a neural network, we also trialled using a neural network
to model the discrepancy (“NN-discrepancy” or “NN-d”) between
the ordinarymechanistic model f and the data generating process
(or the true system), replacing Equation (2) with:

dx

dt
= f (x,V)+N(V , x). (9)

In this case f (x,V) = α(1 − x) − βx as in Equation (3), but it
could represent any other candidate model of the gate. The NN-d
approach is similar to the “augment incomplete physical models
for identifying and forecasting complex dynamics” framework
proposed by Yin et al. (2020). In theory, given the flexibility of the
neural network, as a universal approximator, Equation (9) should
be able to provide a similar approximation as Equation (8).

The first approach is a purely data-driven neural ODE, where
the entire dynamics are described by the neural network, making
good use of their universal approximator property. The second
approach utilises prior knowledge of the biophysics of the gating
process, which perhaps gives us a good initial guess of the neural
network should be around zero, treating the neural network as a
model discrepancy term.

2.3. Neural Networks
We used a feedforward neural network, a multi-layer perceptron
model (Goodfellow et al., 2016), to approximate the dynamics
(hidden states) and/or to correct its discrepancy. A feedforward
neural network defines a (nonlinear) map of an input vector to
an output vector. Let N be an operator for a feedforward neural
network with M hidden layers, such that it has p inputs and q
outputs (Rp −→ R

q). Given the inputs x = [x1, x2, . . . , xp]T ∈
R
p, the weights Wm between the mth and the (m + 1)th layers,

and the activation functions hm :R −→ R for each “neuron” or
“node” in themth layer, the feedforward neural network computes
the outputs y = [y1, y2, . . . , yq]T ∈ R

q. The mapping can be
expressed as

y = N(x;2) = WM+1 ◦ (hM ◦WM) ◦ · · · ◦ (h1 ◦W1)(x), (10)

where 2 is the parameters of the network weights, and ◦ denotes
operator composition. The weight matrices include the network
biases; the activation functions are applied in a component-
wise manner.

For the models specified in section 2.2, the inputs x were
the membrane voltage V and the ODE state x. The output y
was the derivative of the state dx/dt for Equation (8) or the
discrepancy in the derivative when using the mechanistic model
f for Equation (9).

There are multiple ways of training such a neural network
embedded within (part of) the right-hand side of the differential
equation system. Su et al. (2021) suggested using pairs of
consecutive time series data points as the training data for the
neural networks; an alternative would be the adjoint method
proposed by Chen et al. (2018), see section 4. The method
proposed by Su et al. (2021) is equivalent to estimating the
derivative of the data (without smoothing) using a first order
forward finite difference scheme. Here we propose an alternative
method that we term “state space estimation,” which can be
used to train the neural network for learning the dynamics of
the gating processes in a similar manner, as described in the
next section.

2.4. State Space Estimation
In voltage-clamp experiments, we measure the current from
the cell by holding the membrane voltage at various levels.
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The current model in Equation (6) can be generalised for any
Hodgkin-Huxley current as

I = g ·
∏

k

(xk)
nk · (V − E), (11)

where k indexes the distinct gating variables xk, each of which is
governed by its ownODE (Equation 2), and is raised to an integer
power nk, and g,E are constants as discussed above. We assume
that we are interested in estimating the state space of the gate xi,
and that we can model the other gates x!i (where the subscript
!i represents all k except i) and can observe only the current I
directly. Here for the models of interest, the state space of the
gate xi is its derivative dxi/dt as a function of xi and V (see later
Figure 2 that shows an example of the state space in the synthetic
data studies).

There are two ways of estimating the state space of the
gate xi. First, we can directly estimate the state by rearranging
Equation (11) in terms of modelled/known quantities

xi =

(

I

g ·
∏

k6=i x
nk
k

· (V − E)

)
1
ni

. (12)

Then we can approximate the derivative of Equation (12)
by fitting either a spline or some differentiable closed-form
expression (such as sums of exponential functions for fixed
voltage levels), which gives us an estimate of dxi/dt as a function
of xi and V for V 6= E and xk 6= 0 for all k 6= i.
However, the denominator of Equation (12) can get arbitrarily
close to zero, which can amplify noise in the current I, causing
very different noise levels at different regions of the signal
for fitting.

Alternatively, to derive the derivative of xi, we assume we
have models which will provide the numerical derivatives for
all x!i; usually we have the analytical form of the derivatives
for all x!i. We would also need to estimate the derivative for I
numerically, for example by fitting a spline to I (usually we do not
have simple differentiable closed-form expression for I); we used
a univariate smoothing cubic spline provided by Python SciPy
(Virtanen et al., 2020), and we fitted a separate spline on each
discontinuous step in V to capture discontinuities in I as a result
of a sudden change in the driving term (V − E) in Equation (6).
An example of the spline fitting results is shown for the synthetic
data studies. By applying product rule to Equation (11) we notice
that the current derivative approximated by a spline is also
equal to

dI

dt
= g · (V − E) ·



nix
(ni−1)
i

dxi
dt

∏

k6=i

x
nk
k

+ x
ni
i

∑

j

njx
(nj−1)
j

dxj
dt

∏

k6=i,j

x
nk
k



+ g
∏

k

x
nk
k

dV

dt
, (13)

which can be rearranged to get an estimate for the derivative of
the state of interest

dxi
dt

∣

∣

∣

∣

(xi ,V)
=

1

nix
(ni−1)
i

∏

k6=i x
nk
k





1

(V − E)

(

1

g

dI

dt
−
∏

k

x
nk
k

dV

dt

)

−
∑

j

njx
(nj−1)
j

dxj
dt

∏

k6=j

x
nk
k



 . (14)

With Equations (14) and (12), we again obtain dxi/dt as a
function of xi and V for V 6= E and xk 6= 0 for all k 6= i.

These results of state space estimation can then be used as
the training data for the neural networks in section 2.2. This
method can also be useful to check either Equation (3) is a
good approximation to the gating dynamics (e.g., if dxi/dt is
linear in xi) or Equations (8) or (9) is needed to approximate the
surface dxi/dt.

2.5. Data Preparation and Network Training
The raw time series data were processed by using the state-space
estimation, giving a set of tuples (a,V , da/dt). We normalised the
data by a simple scaling normalisation by (1, 100, 1, 000) such that
each variable in the tuples isO(1), which is commonly advised to
preprocess neural network training data (Bishop et al., 1995). The
loss function is defined as the mean squared error,

Lf (2) =
1

T

T
∑

t=1

(

da

dt

∣

∣

∣

∣

t

−N(xt ,Vt;2)

)2

, (15)

for the NN-f model, where T is the number of data points; the
loss function for the NN-d model is

Ld(2) =
1

T

T
∑

t=1

(

da

dt

∣

∣

∣

∣

t

− f (xt ,Vt)−N(xt ,Vt;2)

)2

, (16)

where f is the candidate model for the activation a-gate specified
by Equation (3). By minimising the loss function, we obtained
a set of trained neural network parameters 2∗. For any given
new initial conditions or voltage clamp, we can use the trained
model to perform predictions. The equations were solved using
the Runge-Kutta of order five of Dormand-Prince-Shampine
(dopri5) via the open source package torchdiffeq by Chen et al.
(2018), with tolerance settings for the solver set to atol = 10−6

and rtol = 10−8. All codes and data are freely available at:
https://github.com/chonlei/neural-ode-ion-channels.

For all the neural network models, we used a fully connected
network with five hidden layers, each of which has 200 nodes,
and with the leaky-rectified linear unit (ReLU) as the activation
function to account for the nonlinearity between the inputs and
outputs. The nodes in the input layer consisted of the scaled
state variable a (activation gate) and the scaled control variable V
(membrane voltage), and the output layer is the scaled derivative
of the state variable da/dt. Networks with different depth and
width have been investigated; grid search across {1, 5, 10} layers
and {10, 100, 200, 500} nodes were performed with the NN-f
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FIGURE 1 | Models of hERG used in synthetic data studies. studies. From left to right shows the original Hodgkin-Huxley model (candidate model), the activation

modelled using a neural network (NN-f), the activation with a neural network discrepancy term (NN-d), and the activation modelled with a three-state model (ground

truth). All models have the same (independent) inactivation.

FIGURE 2 | An example of the state space simulated in synthetic data studies. The state space of the candidate model (blue surface) is shown as blue surfaces. The

simulated activation steady-state protocol (Pr3, orange lines) and the simulated deactivation time constant protocol (Pr5, purple lines) are shown for (A) the candidate

model and (B) the ground truth model. Each dot at the two ends of the lines indicates a voltage step jump in the protocols.

model for the real cell dataset and the results are shown in
Supplementary Table 1. All neural network models were trained
using Adam’s algorithm (Kingma and Ba, 2017) via the open
source PyTorch library (Paszke et al., 2019).

2.6. Synthetic Data Studies
We performed synthetic data studies to assess whether the neural
network, in the forms of NN-f and NN-d, can approximate
the missing dynamics of the activation in the Hodgkin-Huxley
model in Equation (6). We used a different model, a “ground
truth” model, to generate the synthetic data, such that this
synthetic data study inherently had discrepancy between the
candidate model and the data; as well as using the ground
truth model to generate data (with model discrepancy), we
tested the approach using the candidate model (with no model
discrepancy) and showed that the neural ODE models were
fully capable of capturing the kinetics of the candidate model
(see later of this section). We used a three-state Markov
model for the activation to be the ground truth model for
generating the synthetic data. The simpler two-state model of
the activation was the candidate model, which cannot fully
capture the dynamics of certain parameterisation of the ground
truth model. This sets the challenge to use the methods in

section 2.2 to capture the missing dynamics. Figure 1 shows the
model structures of the two models (Markov representations of
these two models are shown in Supplementary Figure 1) and
schematics for the NN-f and NN-d models. Note that we do
not necessarily believe one model is better than the other, as
we noticed neither the candidate model nor the “ground truth”
model could capture the full dynamics of real experimental
hERG data.

We generated the synthetic data by simulating the current
I, with some fixed known parameter sets, voltage protocol
V(t), initial conditions, and sampling time (time-step). We
used the kinetic parameters identified from a previous study
(Lei et al., 2019b) in the synthetic data studies, as given
in Supplementary Table 2, whilst setting the maximum
conductance g to 1 µS. For the voltage protocol, we used
an activation steady state protocol (Pr3) and a deactivation
protocol (Pr5) from Beattie et al. (2018) for training the
activation process of the models—the same protocols will
later be used for the real data in section 2.7. Figure 2 shows
the state space of the activation a-gate model covered by the
training protocols. These protocols were designed to explore
the dynamics for the activation process in hERG, making them
an appropriate choice for training hERG activation kinetics;
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they were also able to elicit currents that allow identifiability for
the candidate hERG model parameters (see e.g., “Method 3” in
Clerx et al., 2019a). For the initial conditions, since the cells in
the experiments in Beattie et al. (2018) were held at −80mV
prior to running the voltage protocols, we use the steady state
values of −80mV as the initial conditions; we also used the
same sampling time points as the data. After simulating the
outputs using the ground truth model, we added independent
and identically distributed Gaussian noise (with zero nA mean
and 0.1nA standard deviation) to the outputs, to generate the
synthetic dataset.

We applied the state-space estimation methods to postprocess
the noisy time series data for training the neural networks;
Supplementary Figure 2 shows an example of the spline fitting
results. Figure 2B shows the discrepancy in the state space
between the candidate model and the ground truth model
simulated with the training protocols that the neural network
models will learn. The candidate model was fitted using a Python
open source package PINTS (Clerx et al., 2019b), with the fitted
parameters given in Supplementary Table 3. After training the
models, we further assessed the model by predicting unseen
protocols, including an inactivation time constant protocol
(Pr4), the “sinusoidal” protocol (Pr7), and a collection of
action potential wave forms (Pr6) that featured in Beattie et al.
(2018). This check ensures the models learned the appropriate
dynamics of the underlying system instead of simply overfitting
(Whittaker et al., 2020).

To demonstrate the neural network models are fully
capable of modelling the candidate model, we also repeated
this synthetic data study with data generated from the
candidate model (i.e., no discrepancy). The results are shown
in Supplementary Figures 3, 4, showing both neural network
models were able to fully capture the dynamics of the
candidate model.

2.7. Application to Experimental Data
We applied the neural network differential equation models,
NN-f and NN-d, to experimental data taken from Beattie et al.
(2018, Cell #5). In brief, manual patch-clamp recordings were
performed at room temperature (between 21 and 22◦C) in
Chinese hamster ovary (CHO) cells stably expressing hERG1a
which encodes the α subunit of the channel carrying IKr. The
experiments consisted of seven protocols, Pr1–Pr7 with the
numbering matching the original publication; see Beattie et al.
(2018) for details on postprocessing experimental data. Following
Beattie et al. (2018), capacitance artifacts were removed from
the experimental data by discarding the first 5ms after each
discontinuous voltage step.

Similar to the synthetic data studies, we applied the state-
space estimation methods to postprocess the time series data
measured with the activation steady state protocol (Pr3) and
the deactivation protocol (Pr5) for training the neural network
models. The trained models were then used to predict unseen
protocols: the inactivation time constant protocol (Pr4), the
sinusoidal protocol (Pr7), and a series of action potential wave
forms (Pr6).

3. RESULTS

3.1. Neural Network ODEs Capture Missing
Dynamics in Synthetic Data
In the synthetic data studies, we attempted to fit a standard
Hodgkin-Huxley a-gate model (Equation 3, candidate model),
the NN-f model (Equation 8), and the NN-d model (Equation 9)
to the synthetic data, where the data were generated using a three-
state activationmodel. The training results are shown in Figure 3,
comparing the ability of the neural ODE models to learn the
dynamic behaviour of the system under the training data sets: the
activation steady-state protocol (Pr3) and the deactivation time
constant protocol (Pr5). The candidate model (blue) was not able
to fit to some of the “two time constant” dynamics at the end
of the activation protocol (magnification shown in orange) and
the beginning of the deactivation protocol (magnification shown
in blue).

The NN-f model (orange), where the entire a-gate was
modelled with a neural network, was able to learn the dynamics
of hERG activation. This model is purely data-driven, without
any predefined mathematical equations, but is still able to
capture the dynamics of the ground truth model, slightly better
than the candidate model. The NN-d model (green), where a
neural network was used to model the discrepancy between the
candidate model and the data generating process (the ground
truth model), performed similarly to the NN-d model. There is
an inherent limitation to modelling the data-generating process
dynamics as it requires (at least) two ODEs (hence three states)
to fully describe the activation dynamics while we allow only one.
However, the neural network models were able to approximate
part of the dynamics via the nonlinear mapping between the state
variable and its derivative; whereas the candidate model assumes
a linear relationship between the state variable and its derivative.

The differences between the three models become even more
obvious when it comes to predicting unseen voltage-clamp
protocols. Figure 4A shows the first three steps of the inactivation
protocol (Pr4) in Beattie et al. (2018). The inactivation r-gate is
the same for all the models (including the ground truth model);
the differences are due to the activation a-gates. The ground
truth model is equivalent to a model with a second order ODE
(Supplementary Material, section S1), see section 4 for more
details, whose solution is a sum of two independent exponential
functions at constant voltage. Due to the linear relationship
between da/dt and a for the candidate a-gatemodel, by definition
the solution a for this model can exhibit only a single exponential
behaviour at a fixed voltage. Therefore, the candidate model
(blue) is incapable of predicting the large “two-time-constant”
deactivation current at the end of Pr4. Interestingly, the two
neural network models, NN-f (orange) and NN-d (green), were
able to predict those deactivation currents quite well, which is
thought to be due to the nonlinear da/dt-a relationship learned
by the networks.

For the sinusoidal protocol and the action potential protocol
in Figures 4B,C, the two neural network models (orange and
green) were able to predict slightly better than the candidate
model (blue), which can be seen in the magnifications of the
two protocol predictions. For example, a similar deactivation
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FIGURE 3 | Training results for the synthetic data studies. The training data generated using the ground truth model (grey) are compared against the original

candidate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows

the activation steady-state protocol (Pr3) and (B) shows the deactivation time constant protocol (Pr5). The top panels show the voltage-clamp protocols, the middle

panels show the currents, and the bottom panels show the magnification of part of the currents. All figures with a blue background are synthetic data examples.

current was elicited at the end of the sinusoidal protocol (the
thirdmagnification in Figure 4B, blue); the candidatemodel gave
a single-exponential behaviour whilst the two neural network
models closely matched the grey synthetic data generated by the
ground truth model. Moreover, there were parts of the sinusoidal
protocol and the action potential protocols where the candidate
model under-predicted the current, see for example the first
magnification in Figure 4B (green) and the last magnification
in Figure 4C (blue), whilst the predictions by neural network
models were closer to the data. Table 1 shows the mean absolute
error of the model simulations (compared against the synthetic
data) for each of the protocols (including both the training and
prediction results).

3.2. Applications to CHO Cell Data With
Neural Network ODEs
Next we applied the same approach we took in the synthetic
data studies to the experimental data collected from a CHO cell
overexpressing hERG1a (Beattie et al., 2018). The parameters
for the candidate model were adapted from Clerx et al. (2019a,
Method 3). The training results with the activation steady-state
protocol (Pr3) and the deactivation time constant protocol (Pr5)
are shown in Figure 5. The candidate model (blue) failed to
capture the transients to the steady state, during the long varying
holding steps in Pr3, as shown in the bottom left magnification
(green). The two neural network models on the other hand were
able to capture such transients to the steady state during the same
protocol. A larger magnification to this part of the protocol is
shown in Supplementary Figure 5.

The three trained models were used to predict unseen
voltage-clamp protocols measured in the same cell during
the experiments. Figure 6 shows the prediction results for
(Figure 6A) the first three steps of the inactivation protocol,
(Figure 6B) the sinusoidal protocol, and (Figure 6C) the action
potential wave form protocol. Similarly to the synthetic data
studies, the two neural network models were able to better
predict the first three steps of the inactivation protocol (Pr4),
demonstrating a better description of the deactivation process,
as shown in Figure 6A.

However, interestingly the two improved activation models
with the neural networks did not show any obvious improvement
for the sinusoidal protocol (Figure 6B) and the action potential
wave form protocol (Figure 6C); all the three models performed
similarly for predicting these two protocols. This could be the fact
that the sinusoidal protocol explores the faster dynamics of the
hERG current (Beattie et al., 2018), whilst the activation process
is rather slow compared to this; similarly for the series of action
potential wave forms, as demonstrated in the simulated “phase
diagrams” by Clerx et al. (2019a). Therefore, the two neural
networkmodels did not show any obvious improvement for these
two protocols. Table 2 shows the error of the model simulations
for each of the training and prediction protocols.

4. DISCUSSION

In this paper, we have demonstrated the use of neural networks
to model ion channel kinetics. We have shown two approaches
for doing this: the first one uses a neural network to fully model
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FIGURE 4 | Prediction results for the synthetic data studies. Comparison of the synthetic data generated using the ground truth model (grey) against the candidate

a-gate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows a

part of the inactivation protocol (Pr4), showing the first three steps of the protocol. (B) Shows the sinusoidal protocol. (C) Shows a protocol consists of a series of

action potentials. All figures with a blue background are synthetic data examples.
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the right-hand side of the ODEs; the second one uses a neural
network to model only the missing dynamics of the model—
discrepancy between a model and the true system. Assessing the
model discrepancy in ion channel kinetics is vital to constructing
accurate action potential models (Mirams et al., 2016; Clayton
et al., 2020; Pathmanathan et al., 2020), but most studies assume
correct ion channel kinetics models when fitting maximum
conductances of different current types in an action potential
model (Kaur et al., 2014; Groenendaal et al., 2015; Johnstone
et al., 2016; Lei et al., 2017; Pouranbarani et al., 2019). Previous
studies attempted to use different machine learning techniques
and statistical methods to model the differences between the
mechanistic model and the data. For example, Lei et al. (2020c)
used a Gaussian process and autoregressive-moving-average

TABLE 1 | Mean absolute error of the model simulations for the synthetic data

study.

Training Prediction

Pr3 Pr5 Pr4 Sinusoidal APs

Original 0.144 0.166 0.388 0.695 0.463

NN-f 0.113 0.110 0.167 0.453 0.299

NN-d 0.146 0.128 0.165 0.507 0.294

Comparing the original candidate model, the a-gate modelled using a neural network (NN-

f), and the a-gate with a neural network discrepancy term (NN-d) for training results: the

activation steady-state protocol (Pr3), and the deactivation time constant protocol (Pr5);

and the prediction results: the inactivation protocol (Pr4), the sinusoidal protocol, and the

action potential protocol (APs).

models, respectively, to account for the discrepancy term in
ionic currents, the observables, i.e., the differences between the
solutions of the ODE models and the data. Similarly Creswell
et al. (2020) used a flexible noise model to describe the
experimental noise, although the residual terms modelled by the
flexible noise model were thought to be both correlated noise and
model discrepancy. However, given the biophysical justification
of the differential equations, we believe the discrepancy is rooted
in the mathematical terms of the right-hand side of the ODEs,
instead of the solutions of the ODEs. Therefore, we included
the discrepancy term, the neural networks, into the ODEs—
neural ODEs.

One of the features of neural networks is their flexibility,
which is perhaps both an advantage and a limitation. This
flexibility enables neural networks to approximate (almost)
any function, making them a powerful universal approximator.
However, experimental data are generally imperfect; there
are experimental artefacts in the data, for example imperfect
series resistance and membrane capacitance compensations,
imperfect leak correction, etc., as discussed in Marty and
Neher (1995), Sherman et al. (1999), Raba et al. (2013),
Lei et al. (2020a,b), and Montnach et al. (2021). Unlike
(smaller) biophysical models, with limited flexibility, neural
networks might easily absorb such undesired, non-biophysical
artefacts into the model, hence making non-physiologically-
relevant predictions. It is worth noting that large biophysically-
inspired models could also run into the same overfitting issue
(Whittaker et al., 2020).

Clerx et al. (2019a) compared the performances of using
conventional protocols (such as Pr3, Pr4, and Pr5) and using

FIGURE 5 | Training results for the experimental data from Beattie et al. (2018). Comparison of the experimental data (grey) against the candidate a-gate model (blue),

the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows the activation

steady-state protocol (Pr3) and (B) shows the deactivation time constant protocol (Pr5). All figures with a green background are real data examples.
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FIGURE 6 | Prediction results for the experimental data from Beattie et al. (2018). Comparison of the experimental data (grey) against the candidate a-gate model

(blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows a part of the

inactivation protocol (Pr4), showing the first three steps of the protocol. (B) Shows the sinusoidal protocol. (C) Shows a protocol consists of a series of action

potentials. All figures with a green background are real data examples.
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TABLE 2 | Mean absolute error of the model simulations for the CHO cell data.

Training Prediction

Pr3 Pr5 Pr4 Sinusoidal APs

Original 0.044 0.027 0.066 0.035 0.060

NN-f 0.025 0.025 0.044 0.052 0.107

NN-d 0.029 0.027 0.049 0.035 0.087

Comparing the original candidate model, the a-gate modelled using a neural network (NN-

f), and the a-gate with a neural network discrepancy term (NN-d) for training results: the

activation steady-state protocol (Pr3), and the deactivation time constant protocol (Pr5);

and the prediction results: the inactivation protocol (Pr4), the sinusoidal protocol, and the

action potential protocol (APs).

a condensed protocol (such as the sinusoidal protocol) when
fitting an ion channel model. The authors concluded that it was
advantageous to use the sinusoidal protocol when fitting the
candidate Hodgkin-Huxley model of hERG used in this paper
(Figure 1). The biggest differences between the neural network
models and the candidate model are the predefined model
structure and the number of degrees of freedom. Some of the
condensed protocols, such as the sinusoidal protocol in Beattie
et al. (2018) and the “staircase” protocol in Lei et al. (2019a,b),
were designed to explore the dynamics of a given model rapidly.
However, in this case, given the lack of model structure for
the neural network models, these condensed protocol designs
may not be the most appropriate choices. When training neural
ODEs, it has been suggested to use large numbers of short
time series data (Chen et al., 2018; Zhong et al., 2020; Su
et al., 2021); however, it is often not practical to collect large
numbers of short time series by restarting the voltage-clamp
experiments, as it would require bringing the cell to steady
state many times in order to obtain reliable initial conditions
for solving the differential equations. The central idea of using
multiple shorter time series data is to explore different regions
of dynamics for the system to be modelled (Wu and Xiu,
2019; Su et al., 2021), which is the same as exploring the state
space in our approach. We therefore decided to choose training
protocols that cover the state space as much as possible; this also
ensures the trained neural network models do not extrapolate—
make predictions outside the training space (see later for a
demonstration of such a pitfall). Supplementary Figure 6 shows
the state space covered by the sinusoidal protocol, which is not
as wide as those shown in Figure 2. When training neural ODE
models it may therefore be more suitable to use protocols that
cover the possible input space as widely as possible—here a
combination of Pr3 and Pr5 for hERG activation appears to do
this well.

In this paper, we have proposed a novel way of estimating
the dynamics of the ion channel model, termed “state space
estimation.” The underpinning of the proposedmethod is similar
to some methods suggested in the literature for training neural
ODEs. For example, Su et al. (2021) suggested using pairs of state
variables at two adjacent time instants as the training data for
the neural networks, where their neural network structure is a
variant of residual networks. They were effectively approximating

the derivatives using the first-order forward finite difference
method with a fixed time step, although this would greatly
amplify any noise present in the data (Chartrand, 2011). We
have relaxed this limitation by allowing variable time steps
and have estimated the derivatives using splines, one could
also use different methods for estimating the derivatives under
our framework (such as Chartrand, 2011; Van Breugel et al.,
2020). Su et al. (2021) also assumed one could independently
observe all the gating variables, which is not feasible in
standard electrophysiology experiments that record only the
total current.

Another approach for training neural ODEs is the adjoint
method suggested by Chen et al. (2018), which back-propagates
the derivatives of the neural network parameters from the
solutions for constant memory cost. Such a method is an
attractive alternative to our method, however when modelling
typically long and dense time series data from voltage-clamp
experiments, training neural networks using backpropagation
through the ODE solutions is extremely slow. Our method
provides a computational speed up at a low memory cost, which
makes it even possible to train on CPUs.

Neural networks are excellent as a universal approximation
mechanism, but they are not a reliable function extrapolation
mechanism (Haley and Soloway, 1992; Chapter 6 of Livshin,
2019). That means these neural networks are excellent in
predicting the approximated function values within the training
space. However, they are not suitable for predicting the function
values outside the training space. To demonstrate this issue, here
we attempt to deliberately use a combination of the activation
steady state protocol (Pr3) and the inactivation protocol (Pr4),
which were not designed to thoroughly probe the activation of
hERG, to train our NN-f model.

Figure 7 shows the training (Figures 7A,B) and prediction
(Figure 7C) results, where the “badly trained” NN-f model
failed to predict the parts of the deactivation protocol (Pr5)
that are highlighted in red, whilst still performing very well
with the training protocols. To illustrate the probable cause,
Figure 8A shows a two-dimensional state space explored by
the training protocols (see also Supplementary Figure 7). We
see that there is a large “unexplored” region in the training
protocols Pr3/4. This region is used for predictions of Pr5,
and the worst predictions (indicated in red in Figures 7C, 8B)
are those toward the centre of the “unexplored” region. This
cautionary example suggests that Pr3/4 would be inappropriate
training for a neural ODE and it is particularly important that
we choose appropriate voltage-clamp protocols when training
a neural ODE model. That is, we believe the training space
should cover the full dynamics of interest within the state space,
such that when we use the model to perform “predictions,”
we are predicting a different state space trajectory within,
or very close to, the trained state space. Note that Figure 7

also shows that a mechanistic model (candidate model, blue)
fitted to Pr3 and Pr4 would give “reasonable” predictions
for Pr5, although not as good as those in Figure 5 (see
Clerx et al., 2019a). This performance is thought to be due
to the mechanistic equations appropriately restricting model
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FIGURE 7 | An example of neural ODE performance using an inappropriate choice of training protocols. Comparison of the experimental data (grey) against the

a-gate modelled using an “incorrectly” trained candidate model (blue) and neural network (NN-f, orange). The neural network was trained using (A) the activation

steady state protocol (Pr3) and (B) the inactivation protocol (Pr4), where only parts of the protocols are shown for visualization purpose. (C) Shows the mechanistic

candidate model makes reasonable predictions (blue) for this deactivation time constant protocol (Pr5) but the NN-f model failed to predict accurately, with four of the

currents under higher test voltages (−70 to −40mV) highlighted in red. All figures with red backgrounds are trained on Pr3/Pr4.

FIGURE 8 | Two-dimensional state spaces illustrating the inappropriate training protocol for a neural ODE. The lines on these diagrams indicate states occupied at

some point in time in simulations using the candidate model, with a dot for the state at the start and end of each voltage step. (A) Shows the state space spanned by

the Pr3 and Pr4 training protocols (blue). The grey dashed line highlights a large region of very sparse training data. (B) The same state space with trajectories required

by the prediction protocol, Pr5, highlighted (orange and red). The sections highlighted in red in Figure 7 with very bad predictions are also shown in red here. It is

evident that the neural ODE makes “bad” predictions when extrapolating into the centre of the sparse region of training samples. All figures with red backgrounds are

trained on Pr3/Pr4.
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predictions—resulting in far more reliable and biophysically-
based extrapolation.

In this paper we have used voltage-gated ion channels as an
example, one could also generalise the neural network model to
include other external effects or control variables in a similar
fashion as we demonstrated with the membrane voltage V in
voltage-clamp experiments. We can write the neural network
models in Equations (2) and (9) as

dx

dt
= N(x, u) (17)

and

dx

dt
= f +N(x, u), (18)

which explicitly includes an external control variable u. These
external effects could be for example compound concentration,
energy source (e.g., ATP concentration for pumps), luminance
levels for light-gated ion channels, etc. However, the drawback
of including more (input/control) variables to the model is
that we have to train a model in higher dimensions (see
discussion below).

The proposed ways of embedding a neural network into the
ODEs, NN-f, and NN-d, are two of many possible ways of
structuring the neural network models. For example Zhong et al.
(2020) and Yazdani et al. (2020) suggested replacing only part of
an ODE system with a neural network. For Hodgkin-Huxley or
Markov models, a way of doing this would be to relax the rate
assumptions. That is, instead of using an exponential form to
model the transition rates α(V) and β(V), we could model them
with a neural network such that Equation (3) becomes

f (x,V) = Nα(V)(1− x)−Nβ (V)x. (19)

Nα and Nβ are the outputs of a neural network N with an input
V . This form indeed imposes good mechanistic structure, and is
easier to interpret and train compared to the two proposed neural
network models in this work; this particular form implicitly
defines the bounds for the solution x to be [0, 1], making x can
still be interpreted as the open probability. However, depending
on the form of discrepancy, Equation (19) may not be flexible
enough to model the missing dynamics. It implicitly assumes that
the rate of the state dx/dt is linear in the state x, which is not
suitable to correct the differences shown in Figure 3 (two time
constants of deactivation) as our methods did.

In theory, we can evenmodel the gating dynamics using higher
order ODEs. For example, a second order ODE in general can be
written as

d2x

dt2
= N

(

V , x,
dx

dt

)

. (20)

This type of second order ODE can be solved as a system of first
order ODEs by considering it as

dv

dt
= N(V , x, v) (21)

dx

dt
= v, (22)

which is a type of augmented neural differential equation
(Norcliffe et al., 2020). Such a model is equivalent to a
generalised three-state Markov model with one open state
(Supplementary Material, section S1 shows how to rewrite a
three-state model into a second order ODE, where its right-hand
side is replaced by a neural network in a similar fashion to the
NN-f model). In general, to model an nth order ODE, we could
have a neural ODE of the form

dnx

dtn
= N

(

V , x,
dx

dt
, . . . ,

dn−1x

dtn−1

)

. (23)

We therefore run back into a model selection challenge, which
is one of the main challenges within conventional ion channel
modelling—which model is the most suitable one to use—except
we need to select the model in terms of the order of the neural
ODEs and how to best include the neural network in the ODEs.
Another challenge is that the higher the order, the higher the state
space dimension (for an (n + 1)th order ODE, we have (n + 2)-
dimensions: V , x, dx/dt, . . ., dnx/dtn) and the harder it is to
train a neural network. With the concept of covering the state
space for training the dynamics, we are faced with the curse of
dimensionality as we go to higher orders, because it is practically
impossible to collect training data that cover a large proportion
of the hyper-volume within the state space in high dimensions.
Also, neural ODE models of this form do not impose bounds to
the solutions in general, and predictions for probabilities by these
models could go outside [0, 1] during extrapolation.

On the note of model selection, Menon et al. (2009) attempted
to theoretically optimise model structure in addition to the
rate parameters through a genetic algorithm; Mangold et al.
(2021) suggested a systematic way of proposing a set of Markov
models by treating Markov structures as different graphs. Both
approaches try to deal with a large scale of model selection; in
particular Mangold et al. (2021) showed that there are more
than 108 unique graphs (Markov model structures) even for
only ten-state models. The number of possible unique graphs
combinatorially explodes as the number of states increases,
although a benefit of exploring differentMarkov structures is that
the obtained best model has a potentially-explainable biophysical
structure. On the other hand, for up to 10-state models, neural
ODEs would, in theory, simplify the model selection problem
from > 108 models to 10 models—by selecting the correct order
of the ODE, although we anticipate a neural network model
with nine hidden states would be extremely difficult to train
accurately. This simplification is achieved by absorbing the
selection of all the possible unique graphs for a given number
of states (the order of the ODEs) into a single optimisation
problem (i.e., training the neural network weights). Moreover,
using neural networks to model the right-hand side of the ODE
could allow some out-of-formalism behaviour (e.g., Lowen et al.,
1999)—if the real channels are doing anything more exotic than
the models assume. Although we see great potential in using
neural ODE modelling approaches that we demonstrated in this

Frontiers in Physiology | www.frontiersin.org 13 August 2021 | Volume 12 | Article 708944121

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lei and Mirams Neural ODEs for Ion Channels

paper for ion channel modelling, we believe this approach is
still in its infancy; there are several limitations that we have
to overcome before these neural ODE models can be used as
confidently as the standard ion channel models.

5. CONCLUSION

In this paper, we have developed a method for training neural
ODEs for ion channel models. We assessed the performance
of neural ODEs with synthetic data studies and applied them
to experimental data for hERG. We found that the neural
ODEs were able to recover some of the missing dynamics in
the synthetic data studies, whilst they were not particularly
outperforming a standard Hodgkin and Huxley-style model used
in the literature when applied to experimental data. Neural
ODE modelling approach has great potential for handling model
discrepancy or misspecification, although currently it still has
strong limitations in terms of reliable extrapolation and training
for higher order ODEs.
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Cardiomyocyte growth can occur in both physiological (exercised-induced) and
pathological (e.g., volume overload and pressure overload) conditions leading to
left ventricular (LV) hypertrophy. Studies using animal models and histology have
demonstrated the growth and remodeling process at the organ level and tissue–cellular
level, respectively. However, the driving factors of growth and the mechanistic link
between organ, tissue, and cellular growth remains poorly understood. Computational
models have the potential to bridge this gap by using constitutive models that describe
the growth and remodeling process of the myocardium coupled with finite element (FE)
analysis to model the biomechanics of the heart at the organ level. Using subject-
specific imaging data of the LV geometry at two different time points, an FE model
can be created with the inverse method to characterize the growth parameters of
each subject. In this study, we developed a framework that takes in vivo cardiac
magnetic resonance (CMR) imaging data of exercised porcine model and uses FE
and Bayesian optimization to characterize myocardium growth in the transverse and
longitudinal directions. The efficacy of this framework was demonstrated by successfully
predicting growth parameters of 18 synthetic LV targeted masks which were generated
from three LV porcine geometries. The framework was further used to characterize
growth parameters in 4 swine subjects that had been exercised. The study suggested
that exercise-induced growth in swine is prone to longitudinal cardiomyocyte growth
(58.0± 19.6% after 6 weeks and 79.3± 15.6% after 12 weeks) compared to transverse
growth (4.0 ± 8.0% after 6 weeks and 7.8 ± 9.4% after 12 weeks). This framework can
be used to characterize myocardial growth in different phenotypes of LV hypertrophy and
can be incorporated with other growth constitutive models to study different hypothetical
growth mechanisms.
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INTRODUCTION

is known to lead to chronic physiological changes in the
cardiovascular system such as an increase in contractility and a
decrease in vascular resistance, heart rate, and blood pressure
as a results of parasympathetic mediation (Fernandes et al.,
2011). In addition, it induces morphological changes to the
heart, which are typically referred to as cardiac growth or
hypertrophy. Cardiac growth can be categorized into two
types at the macroscopic level: eccentric growth – where the
ventricular volume increases, and concentric growth – where
the ventricular wall thickness increases. At the microscopic level,
growth is the result of increasing size of the cardiomyocytes
and, similarly to the macroscopic observations, in vitro studies
have shown that cardiomyocytes have two growth phenotypes:
longitudinal and transverse sarcomerogenesis (Yang et al.,
2016). Moreover, it has been hypothesized that longitudinal
and transverse growth at the microscopic level, result in
eccentric and concentric growth at the macroscopic level
(Göktepe et al., 2010). These distinctions in growth types are
important since different types of exercise produce different
types of macroscopic growth – anaerobic exercise is typically
associated with concentric growth, while aerobic exercise leads
to eccentric growth (Mihl et al., 2008; Fernandes et al.,
2011) – and, more importantly, growth can also be triggered
by pathologic causes such as pressure-overload, with similar
hypertrophic phenotypes, but leading to heart failure instead of
improved cardiac function. The root cause of the discrepancy
between physiologic and pathologic growth remains unclear
except for histology studies showing that the latter is also
accompanied by microstructure remodeling (e.g., interstitial
fibrosis, non-uniform cardiomyocyte alignment, and excessive
collagen deposition) (Vega et al., 2017).

There is a long history of studying myocardial growth
experimentally, both in vitro and in vivo (Aboelkassem et al.,
2019; Niestrawska et al., 2020). In vitro studies apply static
loads on isolated cardiomyocytes in the longitudinal (Mansour
et al., 2004) or transverse direction (Yang et al., 2016) to
mimic the conditions of volume overload or pressure overload,
respectively. These studies showed sarcomerogenesis in series or
in parallel corroborates the current understanding of longitudinal
or transverse growth in response to these pathological loadings.
In vivo studies on cardiac growth rely on small and large
animal models of pathological growth resulting from volume
overload or pressure overload (Aboelkassem et al., 2019). Volume
overload models, associated with eccentric hypertrophy, have
been generated by either cutting the chordae tendineae to
induce mitral regurgitation (Sahli Costabal et al., 2019; Li et al.,
2020) or by implanting a pacemaker to repeatedly introduce
premature ventricular contraction (PVC) (Torrado et al., 2021).
Pressure overload models, which are usually linked to concentric
hypertrophy, have been created by aortic banding (Olver et al.,
2019; Torres et al., 2020), diet modification (Holzem et al.,
2015; Olver et al., 2019), or genetic modification (LeGrice
et al., 2012; Wilson et al., 2017). On the other hand, exercised-
induced hypertrophic models have also been created in both

small and large animals by swim training, wheel running, or
treadmill running (Wang et al., 2010). Most of these in vivo
studies evaluate the effects of growth on the cardiac function
(e.g., ejection fraction, cardiac output, hemodynamics) as well as
morphological changes of the left ventricular (LV) (e.g., relative
wall thickness). A few studies have used histology, acquired
either ex vivo at the end of the study or through invasive
biopsy, to quantify the level of cardiomyocyte growth (Olver
et al., 2019; Sahli Costabal et al., 2019; Li et al., 2020) or
the changes in collagen fiber orientation (Torres et al., 2020).
Due to the limitations associated with ex vivo analysis and
the added complexity and risks of in vivo biopsies, there is
a profound paucity of data on the microstructural changes of
the myocardium during LV growth and remodeling. Thus, the
mechanistic link of growth between the organ level and tissue–
cellular level remains poorly understood.

Computational models that try to develop quantitative links
between growth observations at the organ level and tissue–
cellular level are promising tools to give better insights into
growth mechanisms (Niestrawska et al., 2020). Currently, there
are two main types of growth constitutive models: kinematic
growth and constrained mixture growth. Kinematic growth is
a phenomenon-based model which has been used to create
finite element (FE) models for both concentric (Göktepe et al.,
2010; Rausch et al., 2011; Genet et al., 2016) and eccentric
hypertrophy (Göktepe et al., 2010; Genet et al., 2016; Sahli
Costabal et al., 2019). Both stress-driven and strain-driven
growth laws have been tested in these studies. Constrained
mixture growth is a microstructure-based model. It has been
used mostly in the context of vascular growth which involves
simpler geometry and isotropic properties due to the associated
complexity of implementation and high computational cost
(Niestrawska et al., 2020).

Although computational models provide a powerful platform
to test different hypothetical growth mechanisms, large amounts
of experimental data either at the tissue level (for kinematic
growth) or at the cellular level (for constrained mixture growth)
are required to facilitate the simulations and validate the models.
To date, histology is the most commonly used approach that
can provide details about the microstructural changes of the
myocardium. However, histology is typically limited to in vitro
or ex vivo studies. Moreover, it is typically evaluated in a small
number of regions with a reduced field of view. Consequently,
it requires researchers to identify which areas are to be sampled
beforehand and, more crucially, it is challenging to repeat
longitudinally on the same subject without invasive biopsy.
On the other hand, non-invasive imaging techniques such as
cardiac magnetic resonance (CMR) can provide information
about the macrostructural and functional changes of the heart in
multiple pathological and physiological states, including cardiac
remodeling (Anand et al., 2002; Sipola et al., 2011; Alkema et al.,
2016). Moreover, the non-invasive nature of CMR allows imaging
of the same subject at multiple time points, hence, enabling
longitudinal studies. The main limitation of CMR compared to
histology is its relatively low resolution, on the order of mm,
which impedes the direct observation of cellular shape changes
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in the heart.1 In order to perform in vivo assessments of the
microstructural changes occurring during diseases or exercise,
it is necessary to bridge the gap between the macrostructural
changes observed with CMR and the underlying microstructural
changes in the myocardium.

With CMR data, FE can be used as a forward model to
build subject-specific growth simulations and predict the LV
morphological changes for given growth parameters. Assuming
the governing laws of growth are valid, it is possible to estimate a
set of growth parameters that predict the LV geometry observed
post-growth from CMR using iterative optimization approaches.
Such a technique would provide a quantitative link between
growth in myocardial microstructure and morphological changes
in the LV geometry. However, subject-specific FE models are
computationally expensive and consequently running a large
number of iterations within an optimization algorithm becomes
prohibitive. In this context, Bayesian optimization (BO) was
developed as a gradient-free optimization technique designed to
optimize cost functions that are expensive to evaluate. Hence, BO
can be used to optimize over parameterized FE models of the
heart without evaluating a grid search, which could take weeks
or months to compute per subject.

The aim of this work is to propose an optimization framework
to estimate the microstructural changes in the myocardial tissue
by combining CMR imaging with FE-based computational
models and BO. In short, our approach parameterizes the
possible myocardial growth mechanisms (e.g., transverse or
longitudinal growth) within an FE model and then estimates
the growth parameters that best describe the heart geometry
observed with CMR after growth. Since the heart is imaged
in its entirety and non-invasively, it is also possible to
assess whole-heart changes and perform longitudinal studies
to assess progression within the same subject. In this study,
we illustrated the accuracy of the FE + BO framework by
testing it on multiple synthetic and animal growth models.
In all cases, initial and final (post-growth) geometries were
obtained and the FE + BO algorithm was used to predict which
combination of transverse/longitudinal microstructural growth
occurred in the myocardium.

MATERIALS AND METHODS

We developed an inverse-problem approach to non-invasively
characterize cardiomyocyte growth from CMR and FE models,
as described in Figure 1. Specifically, we acquired two CMR
volumes of the LV at two time points – pre-growth (before
starting exercise) and post-growth (after the exercise regime).
Next, we built FE models of both LV geometries and applied
hemodynamic loading and pericardial constraints to each.
Finally, we applied cardiac growth to the pre-growth model and
used it to estimate the microstructural cardiac growth parameters
that best describes the macrostructural cardiac shape observed
in the post-growth model. The overall method is composed

1There exist MRI-based technologies, such as T1, T2, or diffusion CMR, which can
provide microstructural information of the tissue, but not direct observations of
the shape of the myocytes.

of three main components, the myocyte growth model, the
computational FE model and the estimation of the growth
parameters performed with BO.

Myocardium Growth Model
Since we used MRI data as the input information, kinematic
growth was chosen instead of constrained mixture growth as
the resolution of MRI is better suited for imaging at the
macrostructural/tissue level. Kinematic growth theory introduces
volumetric deformation to a continuum formulation with an
approach similar to thermal-elastic coupling. In other words, the
growth resulting from cardiomyocyte hypertrophy is modeled
as volume increase in the myocardium. Under the kinematic
growth framework, the total deformation gradient (F) can be
multiplicatively decomposed into an elastic response (Fe) and
a growth multiplier (Fg) as shown in Eq. 1. The former is
used to determine the stress in the stress-strain constitutive
model and the latter defines the growth magnitude in the three
local orthogonal directions of the cardiac microstructure (fiber,
sheetlet, and sheet-normal).

F = Fe Fg (1)

As discussed earlier, cardiomyocyte has two main modes of
growth, longitudinal and transverse growth, which correspond
to series and parallel sarcomerogenesis, respectively. Therefore,
we modeled the growth as transversely isotropic, where growth
in the fiber direction is associated with longitudinal growth and
growth in the sheetlet and sheet-normal directions are associated
with transverse growth. The growth multiplier has the form:

Fg
= (1 + αf)f⊗ f + (1 + αn)(n⊗ n + s⊗ s), (2)

where f, s, and n are unit vectors corresponding to the fiber,
sheetlet, and sheet-normal directions that are orthogonal to each
other. Similarly, αf and αn are the longitudinal and transverse
growth coefficients.

For the elastic response of myocardium, the invariant-based
hyperelastic model purposed by Holzapfel and Ogden (2009) was
used. The strain energy density function of the model is shown in
Eq. 3, where Ie

1, Ie
4f , Ie

4s, and Ie
8fs are invariants of the right Cauchy

green tensor (Ce
= FeTFe) and a, b, af , bf , as, bs, afs, and bfs

are material parameters (Holzapfel and Ogden, 2009). The “a”
parameters have units of MPa and “b” parameters correspond
to an exponential constant that is dimensionless. We adopted
the material parameters characterized by Sack et al. (2018) from
swine models, where a = 1.05 kPa, b = 7.542, af = 3.465 kPa,
bf = 14.472, as = 0.481 kPa, bs = 12.548, afs = 0.283 kPa, and
bfs = 3.088.

ψ =
a

2b
exp

(
b(Ie

1 − 3)
)
+

∑
i=f,s

ai

2bi
{exp(bi(Ie

4i−1)
2
− 1)}

+
afs

2bfs
[exp(bfsIe

8fs
2)− 1] (3)

In the FE models which will be described in the next section,
all the elastic material properties are kept constant while growth
parameters αf and αn are varied from model to model in
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FIGURE 1 | Overview of the workflow used to characterize cardiomyocyte growth. The workflow contains three modules: (1) in vivo data collection, (2) building finite
element model (FEM) of the pre-growth and post-growth LV geometries with idealized fiber orientation and boundary conditions (BCs) such as end-diastolic pressure
and pericardium constraint, and (3) growth optimization.

the workflow. With the kinematic growth frame work (Eq. 1),
Fe can be derived from F and Fg , in which the former is
computed as the gradient of the continuous deformation map
and the latter is explicitly defined as in Eq. 2. The second
Piola–Kirchhoff stress can then be computed from Fe and strain
energy density function (Eq. 3) as S = ∂ψ

∂Ce . More details of the
kinematic growth in the continuum mechanics framework are
described in Genet et al. (2016).

Finite Element Model
Finite element models (FEM) apply constitutive models that
describe the growth behavior at the tissue level into each element
and enable the evaluation of deformation and morphology
changes at the organ level. To start building a FEM of the
LV, a 3D volumetric model of its geometry is required. In this
study, the LV geometries at end-diastole were generated from
in vivo CMR imaging using semi-automatic segmentation tool
Segment (Medviso) (Heiberg et al., 2010). In order to avoid
through-slice discontinuities, the epicardium and endocardium
contours from each slice were further smoothed by fitting a
smoothing B-spline to the mask control points along the slice
direction (Prakosa et al., 2014). The contours were used to
create the 3D shape of the LV in FE software Abaqus 2018
(Dassault Systèmes, Providence, RI, United States) (Dassault
Systèmes, 2018). The LV was meshed with hexahedron elements
(C3D8) with element edge length of approximately 1.5 mm
(i.e., a 1.5 mm × 1.5 mm × 1.5 mm element), resulting in
4–5 layers of elements across the myocardial wall. An idealized

fiber orientation was applied using the Laplace–Dirichlet Rule-
Based (LDRB) algorithm (Bayer et al., 2012) with epicardial–
endocardial helix angle of −60◦ to 60◦. Standard Abaqus user
subroutines VUHYPER and VUEXPAN (Dassault Systèmes,
2018) were used to implement the Holzapfel–Ogden hyperelastic
model and transversely isotropic growth model in Abaqus. To
create pericardial constraints at the epicardium, a 3D shell
geometry was obtained from the epicardial surface to model the
geometry of the pericardium explicitly. The pericardium was
meshed with quadrilateral shell elements (S4) and modeled as
a linear elastic material with a Young’s modulus of 10 MPa
(Lin et al., 2013). A frictionless contact interaction was applied
between the epicardium surface (0epi) and the pericardium
surface (0epri) using the penalty contact algorithm (Dassault
Systèmes, 2018). A penalty pressure, which is linearly dependent
on the overclosure distance (h), was applied on the two surfaces
(Eqs 4a–c). A Dirichlet BC was applied at the basal plane
(0base) and the basal ring of the pericardium ({base−ring) to
prevent movement of body in the longitudinal direction (Eq. 4d).
A preload step followed by a growth step was implemented into
the model. Assuming that the segmented LV geometry is closed
to the stress-free configuration, an end-diastolic pressure (ped) of
10 mmHg was applied on the endocardial surface to obtain the
preloaded LV shape in the preload step. The LV pressure was
kept constant in the growth step while kinematic growth in the
transverse and longitudinal directions were implemented. All the
BCs of the model are summarized in Eqs 4a–f.

FSn = pepin on Γepi (4a)
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FSn = −pepin on Γperi (4b)

pepi = 2h (4c)

(where h is the overclosure distance between the two contacted
surfaces)

uz= 0 on Γbase, {base−ring (4d)

FSn = pendon on Γendo (4e)

pendo =

{
pedt t ∈ [0, 1] (preload step)

ped t ∈ [1, 2] (growth step)
(4f)

Due to non-linearities (large deformation, non-linear material
model, and contact) in the model, the Abaqus/Explicit solver
was used to conduct a quasi-static analysis (Dassault Systèmes,
2018). The Explicit Dynamic Analysis in Abaqus is designed
to solve the dynamic equilibrium (Eq. 5). When the inertial
force (Mü) is small enough, the equation reduces to the
static form of equilibrium and therefore leads to a quasi-static
problem. The explicit solver uses the forward Euler method,
in which the equations of motion are updated using previous
information as shown in Eqs 6, 7. Preload and growth step
time periods were set to 1 using a mass scaling technique and
small stable time increments of 5 × 10−6 to ensure that the
kinetic energy was negligible (<5%) compared to the total energy,
as suggested in the Abaqus manual for quasi-static analysis
(Dassault Systèmes, 2018). Hence, the “time” is an arbitrary
value that indicates the loading magnitude but does not reflect
the actual loading rate. For example, a growth simulation that
linearly increases the transverse growth magnitude from 0 to
α0 can provide intermediate outputs at time t ∈ [0, 1] as the
solution of growth with transverse growth magnitude equals
α0t. Figure 2 illustrates the macroscopic growth produced by
three types of microscopic growth: transverse, longitudinal, and
isotropic. Transverse growth increased the wall thickness of the
LV, longitudinal growth dilated the LV chamber and isotropic
growth resulted in both wall-thickening and LV chamber dilation.
Both the transverse and longitudinal results agree with clinical
observations and histological findings of eccentric and concentric
hypertrophy (Gerdes, 2002).

Mü = P− I (5)

(where M is the lumped element mass matrix, ü is acceleration, P
is the external force vector, and I is the internal force vector)

u̇(i + 1
2 )
= u̇(i− 1

2 )
+
4t(i + 1)

+ 4t(i)

2
ü(i) (6)

u(i + 1)
= u(i)

+ 4t(i + 1)u̇(i + 1
2 ) (7)

FIGURE 2 | Different types of growth evolution predicted by the FE model, (A)
transverse growth, (B) longitudinal growth, (C) isotropic growth.
(D) Demonstration of transverse and longitudinal growth directions in a block
of myocardium from endocardium to epicardium.

(where u is displacement and u̇ is velocity, the superscript (i)
indicates the increment number and i− 1

2 and i + 1
2 refer to

mid-increment values)

Growth Parameter Estimation With
Bayesian Optimization
The cardiac growth parameters (αf , αn) were estimated by
maximizing the similarity between the LV geometries obtained
from the growth FE model and from the LV geometry imaged
with the second scan. Specifically, we maximized the DICE score
(Dice, 1945) between the masks of the FE and CMR geometries
(MFE(αf , αn) andMCMR, respectively):

max
αf ,αn

2
∣∣MFE(αf , αn) ∩ MCMR

∣∣∣∣MFE(αf , αn)
∣∣+ |MCMR|

(8)

Unfortunately, the cost function in this maximization problem
requires solving an FE growth model over the parameters
(αf , αn) numerically. Hence, it is non-linear, does not have
an analytical expression and each iteration is computationally
expensive (around 2 h per iteration). These limitations impede
using gradient-descent methods (Nocedal and Wright, 2000;
Boyd and Vandenberghe, 2004) and is computationally infeasible
for classical gradient-free methods (Nelder and Mead, 1965;
Powell, 2009). Instead, we used BO, which is a gradient-
free optimization method designed for problems whose cost
function can only be evaluated at discrete points and which are
expensive to compute (Jones et al., 1998; Osborne et al., 2009;
Hutter et al., 2011). At each iteration, BO interpolates the cost
function with a Gaussian process (Rasmussen and Williams,
2006) using the samples evaluated in previous iterations and
then proposes a new point to evaluate within a bounded search
space. The optimization is effectively performed in the process
of proposing new points to evaluate. These are generated by
maximizing an analytical acquisition function that balances
the exploration of the search space against the exploitation of
current local maxima to further improve the current best result.
There have been multiple acquisition functions proposed in the
literature, each providing different balances between exploration
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and exploitation (Kushner, 1964; Srinivas et al., 2010; Hoffman
et al., 2011; Hernández-Lobato et al., 2015), and allowing for
the introduction of non-linear constraints to the optimization
(Hernández-Lobato et al., 2015; Ariafar et al., 2019). In this work,
we used the Upper Confidence Bound (Srinivas et al., 2010),
which maximizes the following trade-off between the mean µ(x)
and variance σ(x) of the Gaussian Process, balanced by the scalar
parameter β:

max
x

µ(x)+β · σ(x) (9)

As discussed, the cost function used in BO was the DICE score
(DSC) between the masks of the predicted and imaged LV
geometries. Evaluation of this cost function requires generating
a 3D mask of the LV using the 3D coordinates of the nodes
that constitute the FE mesh. In order to generate such mask, we
determined which voxels in the 3D volume belong within the
LV by interpolating a binary function in each voxel. Specifically,
we used kernel density estimation with B-spline interpolation
(kernel width of 4 voxels) and interpolated values of “1” at the
position of the FE nodes. Finally, we implanted a threshold
for the interpolated values at >0.25 and further filtered the
resulting binary mask with a morphological closing filter with
an element size of 6 voxels to avoid holes in the LV. To ensure
that both the FE and CMR masks were aligned, we registered
them with a rigid registration algorithm of their nodes in 3D
(Myronenko and Song, 2009).

Experiments
We tested our method with a series of synthetic experiments and
further illustrated its application in a real scenario with animal
models of exercise-induced cardiac growth. All experiments were
done under IACUC-approved protocols at the Massachusetts
General Hospital. Four Yucatan swine (2 months old) underwent
treadmill exercise training for 12 weeks and were imaged in vivo
at weeks 0, 6, and 12 after onset of exercise (one swine could
not finish exercise before the submission). Cardiac imaging was
performed on a 3T clinical MRI system (MAGNETOM Prisma
or a Connectome, Siemens Healthineers, Erlangen, Germany) set
at max 80 mT/m gradient strength and a standard 32-channel
anterior–posterior surface coil. The animals were anesthetized,
placed on a ventilator, and then imaged with a retrospectively
ECG gated CINE MRI flow compensated gradient echo sequence
(repetition time = 5.8 ms, echo time = 3.2 ms, flip angle = 20◦, 4
averages, 1.4 mm× 1.4 mm× 2.5 mm, 25 cardiac phases).

After imaging, the LV at end-diastole was segmented to
generate an FE model as described in the previous section. The
FE model and the LV masks at weeks 6 and 12 were then
introduced into the optimization framework to estimate the
transverse (αn) and longitudinal (αf ) growth of the myocardium.
The optimization was performed in python using the BO
implementation in the BoTorch package (Balandat et al., 2020)
with UCB as the acquisition function. The parameter β, which
balances exploration and exploitation in UCB, was somewhat
arbitrarily set to 10 since it provided balance between the mean
and variance of the Gaussian Process estimate after initialization.
The maximum growth was set to 1 (equivalent to doubling of

size), resulting into a search space bounded between 0 and 1
for both growth parameters. The optimization was initialized
with 3 samples of growth parameters set to [0, 1], [1, 0], and
[1, 1] and BO was run for 10 iterations. Given the numerical
nature of the quasi-static FE model, it provided intermediate
outputs of growth that could be used as additional samples
within the Gaussian Process fitting in BO. Consequently, each
growth simulation provided five valid cost-function evaluations
between zero-growth and the selected combination of transverse
and longitudinal growth parameters, and these were introduced
into each iteration of the BO algorithm to improve the estimate
of the Gaussian Process.

In order to evaluate the results, synthetic growth was applied
to three LV geometries from the previously described swine
models. For each LV geometry, the ventricle was modified with
six randomly prescribed transverse and longitudinal growth
parameters. The growth parameters were set to be equal across
geometries to reliably compare the results across subjects.
Hence, the resulting synthetic dataset consisted of a total of 18
simulations (3 geometries × 6 growth realizations), each with
known ground truth for their respective growth parameters. In
order to avoid committing an inverse crime “noise” was added in
the form of forward model differences between the generation of
the synthetic data and the model used within the optimization.
Specifically, the synthetic data were generated with increased
spatial resolution in the FE meshes (element size reduced to 1 mm
from 1.5 mm) and smaller increment step size in the quasi-static
growth model (reduced from 5 × 10−6 to 1 × 10−6) in the
Abaqus/Explicit solver.

We evaluated the parameter estimation error in the synthetic
experiments with the normalized prediction error between
the ground truth (αGT

f , αGT
s ) and predicted (α

p
s , α

p
f ) growth

parameters:

Error =

√√√√√ (αGT
f −α

p
f )

2
+(αGT

s −α
p
s )

2

αGT
f

2
+αGT

s
2

(10)

For all experiments, including the real-case examples, we report
the final DICE score (DSC) between the predicted growth model
and the true LV geometry, and illustrate the similarity between
LV geometries with 3D plots, as well as contour plots of the LV
masks in short and long axis views.

RESULTS

An overview of the outputs generated with the FE + BO
framework is shown in Figure 3. The heatmap in Figure 3A
shows the DICE score distribution across two axes of transverse
and longitudinal growth parameters. Regions with high DICE
score were indicative of good alignment between the predicted
and true geometries and the parameters with the highest DICE
score (typically >90%) were identified as the final prediction
(indicated with a blue star). The LV geometries that correspond
to several iterations in the BO optimization are shown in
Figures 3B,C. The 3D views (B) provide clear morphology of the
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FIGURE 3 | An overview of the results. (A) Heatmap of DICE scores (DSC) for different sets of growth parameters. (B) 3D views comparing predicted and targeted
geometries at three different scenarios indicated on the heatmap. (C) 2D contour comparison of predicted and targeted geometries from the long and short axis
views. (1) to (3) indicate three different sets of growth parameters that were tested during the optimization process. From (1) to (3), the BO method increasingly finds
solutions that improve the DICE score.

predicted and imaged LVs and the yellow intersection illustrates
the volume overlap between them after registration. Similarly, the
2D contours (C), provide a more detailed comparison between
target and prediction in two planes. Figure 3 illustrates three
samples obtained along the optimization and sorted from low to
high DICE scores.2 The first example (top row) with parameters
αf = 0.1 and αn = 1 showed a thickened LV wall and an
elongated chamber, compared to the target LV. The second
example (middle row) presented lower transverse growth but
higher longitudinal growth (αf = 0.4 and αn = 0.4). In this
case, the geometry was more similar to the target one and was
characterized by smaller wall thickness and smaller apex-to-base
distance. Due to larger longitudinal growth, the chamber was
more dilated in the radial direction, compared to the targeted
LV. The best example (bottom row) was found for parameters
αf = 0.17 and αn = 0.33. Both the 2D contours and the
3D plots show improved similarity with the target LV than that
obtained with the previous examples, albeit the LV size was
slightly under-predicted.

The DICE score heatmaps of the synthetic experiments are
shown in Figure 4. These illustrate how the FE+ BO framework
was capable of estimating growth parameters in the synthetic
models. In all cases, the DICE score heatmaps resulted in

2Note that, given the exploration–exploitation nature of BO, there is no guarantee
that the scores obtained along consecutive iterations are monotonically increasing.

a single local maximum with a peak in the vicinity of the
true parameters. Consequently, the estimated growth parameters
were similar to those of the ground truths across different LV
geometries and growth scenarios. Figures 5B,C shows a scatter
plot with the estimated and true growth parameters. Both the
estimated transverse and longitudinal growth resulted in good
alignment with the ground truth (points are near the identity
line), although these were, respectively, underestimated and
overestimated (below and above the identity line). Quantitatively,
the normalized error of the growth parameters, shown in
Figure 5A, was 5.5± 5.8% and there was no significant difference
in error across different LV geometries. The 2D contours of the
predicted and true masks are shown in Figure 6. These resulted
in good subjective alignment of the predicted LV geometry and
that of the ground truth.

An example of the true end-diastolic LV geometries segmented
from MRI along different time points during the exercise training
(weeks 0, 6, and 12) is shown in Figure 7. Figures 7A–
C show examples of the epicardial and endocardial contours
identified from short-axis CINE slices under different training
time points. From Figures 7D,E, the long-axis view comparisons
after rigid registration between the two geometries show LV
chamber elongation and dilation is relatively minimum at week
6 but substantial at week 12. Similarly, the short-axis views
(Figures 7F,G) show that wall thickening effect is more evident in
week 12 than week 6. Quantitative evaluation of LV shape changes
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FIGURE 4 | DICE score heatmap results of the synthetic experiments. The top row shows the three LV geometries that were used in the synthetic experiments. The
final prediction and ground truth are indicated in each heatmap as a blue star and red dot, respectively. For each LV geometry, two out of all six cases are shown.
The middle row includes examples of growth that is largely dominated by longitudinal growth (αf = 0.9, αn = 0.3) and the bottom shows examples of growth that
is largely dominated by transverse growth (αf = 0.1, αn = 0.3).

FIGURE 5 | Quantitative analysis of the results from 18 synthetic experiments. (A) Boxplot of normalized error across different subjects. (Boxplots show median,
interquartile ranges, and whiskers show range. P-values were calculated using standard t-test). (B) Scatter plot of predicted longitudinal growth vs. ground truth
longitudinal growth. (C) Scatter plot of predicted transverse growth vs. ground truth longitudinal growth. Dash lines in panels (B,C) indicate the identity line where
predictions with zero error should locate on.

during exercise training are shown in Figure 8. The LV (n = 4)
shows an increased end-diastolic (ED) volume (Figure 8A), and
a significant increase in myocardial volume (Figure 8B) as the
exercise program progresses. These results are consistent with
eccentric hypertrophy.

The results of growth characterization on these four exercised
animals are shown in Figure 9. As reported in the synthetic
experiments, all DICE score heatmaps resulted in a single local
maximum within the search space. Since this data was obtained

in vivo, there is no ground truth for the growth parameters.
However, the estimated parameters consistently resulted in larger
longitudinal growth than transverse growth. In fact, transverse
growth values were almost negligible for most of the cases
while a continuous increase in longitudinal growth was observed
between weeks 6 and 12, except for Swine 1. On average, all
animals (n = 4) that underwent exercise training resulted in
growth parameters (αf = 0.580± 0.196 and αn = 0.040± 0.080) at
week 6 and (αf = 0.793 ± 0.156 and αn = 0.078 ± 0.094) at week
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FIGURE 6 | Contour plots comparing the predicted and target LV geometry from the short axis and long axis views. The top row (A) includes the longitudinal growth
examples (αf = 0.9, αn = 0.3) and the bottom row (B) includes the transverse growth examples (αf = 0.1, αn = 0.3).

FIGURE 7 | A comparison of the LV geometries before and after exercise-induced growth. (A–C) MRI short-axis views of the LVs at weeks 0, 6, and 12 during
exercise training. (D,E) Long-axis views comparing weeks 0–6 and 12 LV geometries. (F,G) Short-axis views comparing weeks 0–12 LV geometries. Rigid
registrations were performed between the two geometries in panels (D–G).

FIGURE 8 | Quantitative comparisons of LV end-diastolic volume (A) and myocardium volume (B) between weeks 0, 6, and 12 during exercise training. (Boxplots
show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test).

12. The estimated growth parameters for each swine and session
are reported in Table 1.

Both the 3D plots and 2D contours of the predicted and target
LV geometries are compared in Figure 10 for all four animals

at week 12. Both visualizations of the LV geometries show that
the FE + BO framework was able to find growth parameters that
resulted in similar predicted LV geometries to those observed in
the in vivo data. The 2D long-axis views show that the method
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FIGURE 9 | DICE score heatmaps of growth parameter prediction for four exercised animals at two different time points (weeks 6 and 12).

tends to underpredict chamber elongation, except for Swine 2.
On the contrary, overprediction on wall thickening is shown
in the short-axis views. From the 3D overlapping views, it is
clear that rigid registration realigned the two geometries before
calculating the DSC. ED volume and myocardial volume of the
preloaded LVs and growth model predicted LVs at weeks 6 and
12 are shown in Figure 11. The optimized growth simulations
predicted a continuous increase of myocardium volume at weeks
6 and 12 similar to experimental measurements in Figure 8B.
However, the trend for ED volume elevation, which is shown
in the experimental data, was not reproduced in the growth
simulations. This indicates that the pericardium constraint may
have been over-estimated in the FE model such that longitudinal
growth did not provide a sufficient level of LV chamber dilation.
Overall, the method shows that exercise growth is more prone to
longitudinal growth than transverse growth.

DISCUSSION

The results of synthetic experiments suggest that the proposed
FE + BO framework is capable of estimating the growth
parameters of the myocardium with inputs of pre- and post-
growth LV geometries. The overall normalized error was
5.5 ± 5.8% and there were no significant differences across heart

TABLE 1 | Predictions of growth parameters in four exercised animals at two time
points (weeks 6 and 12).

Swine 1 Swine 2 Swine 3 Swine 4

αf αn αf αn αf αn αf αn

Week 6 0.86 0.16 0.54 0.00 0.40 0.00 0.52 0.00

Week 12 0.65 0.19 0.70 0.00 0.82 0.12 1.00 0.00

geometries. In the cases with lower level of growth, especially
in the longitudinal direction, the predictions have higher errors.
This indicates that the DSC score is more sensitive to transverse
growth than longitudinal growth. All DICE scores at the optimal
parameters were higher than 90%, presented a single global
maxima and the optimized LV geometries were similar to their
corresponding ground truths (Figure 6), providing confidence on
the stability of the estimated parameters.

Moreover, the results from the animal model predicted
significantly higher levels of longitudinal growth (58% for week
6 and 79.3% for week 12) than transverse growth (4% for week
6 and 7.8% for week 12). Longitudinally, all animals show an
increase of growth level in the longitudinal direction from weeks
6 to 12, expect for Swine 1 in which the predicted level of
longitudinal growth reduces from 86% at week 6 to 65% at
week 12. Although minimal, the transverse growth level predicted
in Swine 1 and 3 also increases over time during the exercise
training process. Performing such longitudinal analysis without
the FE+ BO framework would only be possible with invasive and
potentially hazardous biopsies of the heart. Overall, the growth
characterization results suggest that exercise-induced myocardial
growth is more prone to longitudinal growth. This is not only
consistent with the qualitative LV imaging comparisons showing
LV elongation and dilation (Figures 7, 8), but also agrees with the
literature where running – categorized as aerobic exercise – has
been reported to lead to eccentric hypertrophy with longitudinal
growth at the cardiomyocyte level in different species (Mihl
et al., 2008; Fernandes et al., 2011). However, the predicted level
of growth in the longitudinal direction is much higher than
reported cardiomyocyte dimensional increase (15–35%) from
literature (Wang et al., 2010). This discrepancy is likely due to the
over-simplified FE model with generalized material properties,
fiber orientation and hemodynamic BCs such that it cannot
simultaneously represent concentric and eccentric hypertrophy.
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FIGURE 10 | Plots of 3D geometries and 2D LV contours to compare the predicted and targeted LV geometries of exercised animals at week 12.

FIGURE 11 | Quantitative comparison of end-diastolic volume (A) and myocardium volume (B) between the preloaded LVs at week 0 and the predicted growth LVs
at weeks 6 and 12. (Boxplots show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test).

In order to refine the subject-specific model, myocardium
properties can be characterized using CINE data and dynamic LV
models and more realistic fiber orientation can be assigned using
cardiac structural information from diffusion tensor imaging data
(Sack et al., 2016). While LV pressure is difficult to assess non-
invasively, the preload step could be improved by using the
early-diastolic filling geometry (Zhang et al., 2018) instead of
the end-diastolic geometry as the reference configuration such
that the preloaded LV configuration is more representative of
the ED state. Despite its computational cost, an even more
rigorous approach would be to use inverse methods to identify
the stress-free LV configuration so that the subsequent preloaded
LV geometry should be equivalent to the true ED geometry
(Rausch et al., 2017; Wang et al., 2020). Moreover, the cardiac
growth process in the swine models was monitored from 2 to

6 months old during which time the animals also grow in size.
Thus, the results we are seeing may not only contain exercise-
induced growth but also physical growth where the LV mass
increases as the body weight increases. Further validation of our
results with histology is warranted.

The current growth model was designed to characterize
growth with two unique parameters for the entire geometry.
However, spatially heterogeneous growth is prevalent in
patients with hypertrophic cardiomyopathy (Maron et al.,
2009). To address spatially dependent characterizations, the
current model could be extended to include a parameterized
spatial distribution of growth and optimize those parameters.
Moreover, this framework can be further extended to more
sophisticated growth laws (e.g., stretch-driven growth and
strain-driven growth). An example of such a model is the
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work by Sahli Costabal et al. (2019), who introduced a
probabilistic model to connect sub-cellular remodeling to
strain-driven myocardium growth. Combination of this method
with our current FE + BO framework and optimization of
biologically significant parameters such as magnitude, rate, and
biomechanical driving factors of growth could yield interesting
mechanistic findings. To further improve the capability of
our framework to investigate growth at the cellular level,
a constrained mixture model can be incorporated. Despite
its complexity and high computational cost, this model can
provide a more powerful framework to reveal the mechanistic
link between biomechanics at the organ level and biological
factors at the tissue–cellular level (Niestrawska et al., 2020).
Implementing these growth models into our framework would
enable efficient in silico testing of different growth hypotheses
with multi-scale models.

Furthermore, this framework is not limited to growth
parameter characterization. Ideally, it can be used as a generic
method to characterize material parameters as long as the
undeformed and deformed geometries of the object are given
in the application. Theoretically, it would be possible to run
a grid search parametric study to determine the optimal
parameters in these models. However, grid search quickly
becomes computationally intractable in the context of FE models
due to their expensive computationally costs (around 2 h with
10 CPUs for each evaluation). For example, for an accuracy
of 90% in the growth model presented, it would be needed
to compute a grid search with spacing of 0.05. This search
would require computing 400 simulations, resulting in 800 h
(33.3 days) of computation. Instead, the FE + BO approach
resolved the maxima within 10 iterations, corresponding to
about 20 h of computation. Similarly, classical optimization
methods (e.g., Simplex, Monte-Carlo) would not be feasible due
to the high computational costs of each FE model evaluation.
These limitations are set to increase with more complex growth
models (longer compute time) or increased dimension of the
parameterization (exponentially larger search space). Moreover,
the current FE + BO method could be further modified to
improve its accuracy and speed-to-convergence. One immediate
source of improvement is to modify the acquisition function
to incorporate knowledge of the multiple samples generated
during the quasi-static FE model evaluations. Currently, we
incorporate these samples in the Gaussian process estimation,
but the optimization of the acquisition function is done with
off-the-shelf UCB, which assumes a single evaluation of the cost
function will be provided. This modification would facilitate
more efficient sampling of the search space in each BO iteration.
Similarly, the selection of the trade-off β parameter in UCB
should be done more systematically before the first iteration to
balance the mean and variance of the Gaussian Process estimated
during initialization.

Limitations
The experimental limitations arise from two aspects: (1)
acquisition of the MRI data and (2) segmentation of the LV
geometry. The MRI data was acquired with two different scanners
with different resolutions (mostly 1.4 × 1.4 × 2.5 mm with two
exceptions of 1.3 × 1.3 × 2.5 mm and 1.8 × 1.8 × 6 mm).

Lower resolution could reduce the accuracy of segmented LV
geometry. The data was acquired along the short axis of the LV,
and the actual positions of where the first and last slices reach
the base and apex of the LV affect the length of the reconstructed
LV geometry. Slice thickness of 2.5 mm is large enough to
compare the growth magnitude, especially in the longitudinal
direction. Therefore, one or two long axis views of MRI should
be acquired and used in future segmentations. A semi-automatic
segmentation approach was used in this study and then manually
corrected to identify the LV contours in Segment (Medviso)
(Heiberg et al., 2010). Further, there are motion artifacts and
distortion around the free wall due to field homogeneity caused
by the liver. The automatic segmentation method underperforms
in these regions and manual corrections are subjective. A more
robust automatic segmentation method should be used with
minimal manual correction in order to increase reproducibility
and reduce human bias.

Another limitation of this framework is introduced by
the selection of BCs and tissue properties in the FE model.
Model mis-specification can lead to errors in the optimization
and result in unrealistic growth parameters. Identifying which
models and parameters are most important for an accurate
growth selection will be essential in future work. During the
development of this study, we found that pericardial constraints
are critical for creating realistic concentric hypertrophy in the
transverse growth model. In this context, constraints from the
pericardium and surrounding tissue at the epicardium surface
is even more difficult since there is no clear consensus in
the literature about what model to use for dynamic heart
modeling. Some studies propose explicitly creating surrounding
structures (Fritz et al., 2014), while others propose using “spring-
dashpot” surrogates (Pfaller et al., 2019) to apply the constraints
in dynamic heart modeling. Both models demonstrated the
importance of including pericardial constraints on dynamic
heart modeling. However, these models might not be applicable
in the context of cardiac growth modeling since the heart
undergoes gradual deformation at a much longer time scale.
Within these time periods, the pericardium and surrounding
tissue are likely to undergo their own remodeling, hence changing
the constraints to the LV growth. Applying a constant linear
elastic material models on the pericardium is likely to over-
constrain the epicardium resulting in severe wall-thickening and
chamber volume reduction which is shown in Figure 11. For
future work, it will be important to consider the remodeling of
pericardium and surrounding tissue so that more realistic BCs
can be applied to the FE model. In addition to the pericardial
constraints, sensitivity studies on the LV pressure BC and the
initial configuration should be conducted. In this study, the ED
state was used for the initial configuration since it is the state that
can be consistently identified with CINE MRI and is a geometry
that is relatively unaffected by external forces compared to the
end-systolic state. For future studies, the growth simulation could
be initiated from alternative configurations in the diastolic part
of the cardiac cycle (e.g., early-diastolic filling, or diastasis) with
different diastolic pressure BCs to check whether the growth
optimization results are sensitive to any of these variations.

A limitation of the synthetic experiments is the simplistic
source of “noise” added to the generated data which could
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lead to an overestimation of the accuracy of the synthetic
results. In future work more representative noise could include
segmentation variability (Tate et al., 2020), and the post-
growth geometry could be generated with a more biologically
relevant growth model (e.g., stress/strain-driven growth or
constrained mixture growth) to further evaluate the framework
performance. However, with our current implementation,
such growth models are computationally impractical for
whole LV geometries. Further validation is warranted for
the animal experiments by comparing histological imaging
results to the growth parameters estimated by the model
(Sahli Costabal et al., 2019).

CONCLUSION

In summary, this study introduces a Bayesian optimized
framework that can be used to non-invasively characterize
growth at the tissue level at multiple time points. The FE
modeling in this framework enables discernment of mechanistic
links between macrostructural imaging and microstructural
changes at the tissue level. As such, we believe that the
framework can be a powerful tool to reveal fundamental insights
into myocardial growth and remodeling mechanisms. In the
future, this framework could facilitate the longitudinal study
of multiple physiological and pathological conditions and may
have practical utility in assessing cardiac disease progression or
response to therapy.
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Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from

myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy

propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical

signalling in the heart, however, the connection between different arrangements of

blockage and various arrhythmic consequences remains poorly understood. Where a

mechanism defies traditional understanding, machine learning can be invaluable for

enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in

terms of predictor variables (such as the arrangement or pattern of obstructive scarring).

In this study, we simulate the propagation of the action potential (AP) in tissue affected

by fibrotic changes and hence detect sites that initiate re-entrant activation patterns.

By separately considering multiple different stimulus regimes, we directly observe and

quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region.

Then, by extracting the fibrotic structures around locations that both do and do not

initiate re-entries, we use neural networks to determine to what extent re-entry initiation

is predictable, and over what spatial scale conduction heterogeneities appear to act to

produce this effect. We find that structural information within about 0.5mm of a given

point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.

Keywords: machine learning, neural networks, fibrosis, cardiac electrophysiology, arrhythmia, monodomain

model, re-entry, unidirectional block

1. INTRODUCTION

According to the WHO, in 2016, 17.9 million people worldwide died of cardiovascular diseases
(31% of all deaths). These diseases are the most common cause of death in the world. Although
the function and dysfunction of the heart have been extensively studied, the sheer complexity of
the spatiotemporal dynamics underlying its electrical signalling process leaves much still poorly
understood. This is particularly true when complicating factors are present, such as cardiac fibrosis.

Cardiac fibrosis, the over-activity of fibroblasts in the heart, poses significant health
risks (Hinderer and Schenke-Layland, 2019). Fibroblasts deposit extracellular matrix proteins that
can separate myocytes, resulting in tortuous paths of activation that increase the risk of signalling
malfunctions. This risk depends critically on the extent and arrangement of afflicted tissue, but
this dependency is intricate and very difficult to quantify. Efforts have been made to classify
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different types of fibrotic patterning with the suggestion that
might help stratify risk (de Jong et al., 2011) but with little
attempt to explain why or how these different types of pattern
present different levels of risk. A separate approach focuses on
small-scale structures that produce key behaviours underlying
re-entry and arrhythmia. The pro-arrhythmic mechanisms of
fibrosis are well understood (Nguyen et al., 2014), but the
precise patterns that do or do not trigger those mechanisms are
not well understood. The computational simulation presents a
powerful tool for investigating these structures mechanistically,
and machine learning (ML) provides the opportunity to
automate identification.

In this study, we consider the risk of re-entry posed by
many different fundamental structures of fibrosis. The specific
pattern of fibrosis plays two important roles in the promotion
of re-entry or micro-re-entry: through re-entrant paths within
the damaged region that are long enough to accommodate the
wavelength of the propagating action potential (AP) and by
the presence of structures that facilitate one-way block of AP
propagation. We concentrate on the latter, that is, structures that
selectively block conduction, for example, permitting conduction
in one direction but not the other. This phenomenon of a
unidirectional block is a critical precursor to re-entry (Quan and
Rudy, 1990).

Computational studies have successfully reproduced re-
entries from fibrosis for different types of diseases, such as
atrial fibrillation (Alonso et al., 2016; Vigmond et al., 2016),
myocardial infarction (Sachetto Oliveira et al., 2018a), and
many other pathologies related, for instance, to hypoxia and
fibrosis including hypertrophic cardiomyopathy, hypertensive
heart disease, recurrent myocardial infarction, obstructive
pulmonary disease, obstructive sleep apnoea, and cystic
fibrosis (Sachetto Oliveira et al., 2018b). However, as we do
not know which kind of patterns within the fibrotic substrate
are pro-arrhythmic, these studies depend on the generation
of hundreds of thousands of fibrosis patterns, followed by
Monte Carlo simulations and statistical analysis. These studies
have investigated, for example, the probability of re-entry as a
function of the fraction of damaged tissue. Nevertheless, the
kind of patterns that facilitate unidirectional blocks and how
often these patterns are present in damaged tissues are important
open questions.

Machine learning (ML), as with most fields, has begun to see
a considerable application to cardiac electrophysiology. These
include automated extraction of subtle information from the
electrogram (Yang et al., 2018; Mincholé et al., 2019) and
the identification of promising targets or success rates for
ablation (Zahid et al., 2016; Muffoletto et al., 2019, 2021; Shade
et al., 2020). In this study, we generate a large number of
different realisations of fibrotic arrangement corresponding to
significantly damaged tissue and then apply a single stimulus
originating frommany different points. This creates a rich dataset
of structures that give rise to re-entry. We then isolate regions
of selective block and train a classifier model that identifies
with high accuracy whether a given pattern of fibrosis generates
this pro-arrhythmic behaviour. Importantly, this successful
classification is a first step to address fundamental questions

relating anatomical heterogeneity to re-entry risk, and over what
spatial scale these effects manifest.

2. MATERIALS AND METHODS

2.1. Simulation of Cardiac Activity
We simulate cardiac activity inside the regions afflicted
with fibrosis, examining the patternings of obstacles to
conduction that initiate re-entries sustained inside these fibrotic
regions. These micro-re-entries cause fibrotic regions to act
potentially as ectopic pacemakers that drive tachycardia or
other arrhythmia (Hansen et al., 2015). As our focus is on the
initiation and immediate sustainment of re-entry, we do not
simulate how waves of activation produced by a fibrotic region
interact with healthy surrounding tissue, nor do we consider
scenarios such as fast pacing that indicate the existence of prior
signalling dysfunction.

Cardiac electrophysiological dynamics were simulated using
the monodomain formulation (Sundnes et al., 2006),

Cm
∂V

∂t
= ∇ ·

(

D∇V
)

− Iion, (1)

which treats cardiac cells as capacitive and hence describes the
change in their membrane potential in terms of the current
that flows diffusively to/from neighbouring cells through gap
junctions and by ion transport through the ion channels of
the cell membrane. We use a capacitance density of Cm =
1 µFm−2 and electrical conductivity D = 2.5× 10−4mS. Cell
APs were simulated using the Bueno-Orovio–Cherry–Fenton
(BOCF) model, a reduced model that nevertheless accurately
captures the most important electrophysiological dynamics of
ventricular myocytes (Bueno-Orovio et al., 2008). To represent
the effects of significant tissue damage on APs Shaw and Rudy
(1997); Sachetto Oliveira et al. (2018b), we modified model
parameters to shorten AP duration (APD) to approximately
50ms (see Figure 1A and Table 1). This results in a conduction
velocity of 23 cm s−1, reflecting the decreased gap junction
functionality in diseased tissue (Duffy, 2012; Nguyen et al., 2014).

Simulations were carried out in two-dimensional, 2 × 2 cm
slices of isotropically conductive cardiac tissue. We chose a
larger amount of tissue than the minimum needed to support
re-entry as reported for these types of conditions (0.7 ×
0.7 cm; Sachetto Oliveira et al., 2018b), so as to increase the
number of re-entries present in our generated data. The effect
of fibrosis on conduction was represented by the presence of
non-conducting obstacles (for example collagen), a common
approach taken for both ventricular tissue (Ten Tusscher and
Panfilov, 2007; McDowell et al., 2011) and atrial tissue (Cherry
et al., 2007; McDowell et al., 2015), as well as highly-detailed
microscopicmodels of cardiac tissue where cells are disconnected
by barriers or dead cells (Jacquemet and Henriquez, 2009;
Hubbard and Henriquez, 2014; Gouvêa de Barros et al., 2015).
This approach is in contrast to approaches that represent fibrotic
obstacles indirectly through modifications to conductivity in
afflicted areas, often in response to imaging data informing
fibroblast density (Zahid et al., 2016; Roy et al., 2020).
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FIGURE 1 | Graphical demonstration of some of the methods used in this study. (A) The action potential (AP) of the Bueno-Orovio-Cherry-Fenton (BOCF) model

modified to represent strongly fibrosis-afflicted tissue (parameters in Table 1), and the original BOCF model. Remodelled myocytes repolarise very rapidly with a

triangular-shaped AP. (B) An example fibrotic structure, visualised to highlight the ‘diagonal’ connectivity inherent to placing nodes on element vertices. (C) The

stimulus locations (yellow) used across separate simulations to generate wavefronts travelling in different directions and hence bolster identification of structures that

produce re-entry. (D) Re-entry vulnerability index (RVI) values observed for the structure pictured in (B), showing the identification (by significantly negative value) of

locations that demonstrate selective conduction block.

TABLE 1 | The parameters of the Bueno-Orovio-Cherry-Fenton (BOCF) model,

modified to represent cardiac tissue with significant fibrosis.

Parameter Value Parameter Value Parameter Value

Cm 1 τ+
v 1.4506 τs1 2.7342

uv 0.3 τ
−
v1 60 τs2 16

u−v 0.006 τ
−
v2 1150 τfi 0.11Cm

uw 0.13 τ+
w 200 τsi 2.8

u−w 0.03 τ
−
w1 60 τso1 30.0181

uo 0.006 τ
−
w2 15 τso2 0.9957

us 0.9087 τw∞ 0.07 ks 2.0994

uso 0.4 τo1 400 k−w 65

uu 1.2 τo2 6 kso 2.0458

w∗
∞ 0.94

Parameter notation is that of Bueno-Orovio et al. (2008).

Obstacles were seeded randomly through the domain by
randomly replacing each grid element with a non-conductive
element with some fixed probability ρ, a typical approach used
for modelling diffuse fibrosis (Kazbanov et al., 2016). We did not
explicitly consider the other types of fibrotic microtexture (such
as compact or patchy fibrosis de Jong et al., 2011). However, by
choosing ρ ∼ 0.5 and simulating many different realisations,

we have considered a very broad range of patterns on the fine-
scale that we analyse in this study. It is worth noting that other
types of fibrotic patterning could be directly incorporated into
our machine learning workflow through recent techniques for
computer generation of large numbers of realisations of different
fibrotic patterns (Clayton, 2018; Jakes et al., 2019).

Equation (1) was discretised using a vertex-centred
control volume finite element method that integrates
bilinear interpolants over the square-shaped elements. This
generates a non-diagonal mass matrix and significantly
reduces discretisation error in this sharp-fronted wavefront
setting (Pathmanathan et al., 2012). For a vertex-centred
mesh where nodes are at element vertices, excitation can
still propagate through the “crack” between diagonally
opposed obstructions, owing to a node being there. As
such, to make our visualisations of fibrotic structures
more intuitive, we display fibrotic obstructions such that
these diagonal connections are respected (Figure 1B).
Timestepping used the second-order generalisation of the
Rush–Larsen method put forward by Perego and Veneziani
(2009), with 1t = 0.05ms. Simulations continued until
all cardiac activity died out, or t = 2 s was reached. These
simulations were carried out on the Barbora supercomputer
(Czech Republic).
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2.2. Re-entries and Conduction Block
Our study concentrates solely on the effect of structure on
the initiation of re-entrant patterns of activation. As such,
each individual simulation used only one stimulus pulse so
as to preclude other conflating factors such as repolarisation
heterogeneity in scarred tissue (Gough et al., 1985). However, to
maximise the opportunity to identify pro-arrhythmic structures,
we increased robustness to specific propagation directions
and patterns of activation by separately using 13 different
stimulus sites for each fibrotic realisation (Figure 1C). To
obtain sufficient data featuring re-entry, a sweep through values
0.4 ≤ ρ ≤ 0.6 was first used to determine those extents of
fibrosis prone to re-entry. For each density value considered,
50 different realisations of fibrosis were created. Re-entry was
detected by the activation of any boundary nodes more than
one time (Figure 2), capturing ectopic waves that successfully
escape the fibrotic region being simulated. A realisation of
fibrotic structure that generated a re-entry for any of the
possible stimulus sites was then labelled as a substrate for re-
entry.

Following initial observations, our high-throughput
simulation protocol concentrated on the range ρ ∈ [0.46, 0.50]
as the values most prone to re-entry. For each ρ value in this
range (in increments of 0.01), an additional 800 fibrotic patterns
were created, and the same simulation protocol as above then

applied to each. Table 2 summarises the size, and basic qualities,
of the resulting data.

To detect specific micro-structures that promote re-entry,
we used the re-entry vulnerability index (RVI) (Orini et al.,
2017; Orini et al., 2019). This index calculates the difference
in activation time for a node and the repolarisation time
of its neighbours, and hence indicates potential for re-entry
formation (Figure 1D). In particular negative values occur when
a neighbouring node has already activated and repolarised when a
node first activates, allowing the node to spread its activation back
to that neighbour and potentially much more of the tissue. This
scenario arises when conduction blocks despite the existence of
waiting excitable tissue, for example, due to excessive electrotonic
loss (Nguyen et al., 2014). An example of conduction dying
out due to source-sink mismatch, only for wave propagation to
succeed in travelling through the same structure from a different
direction, is provided in Figure 3.

Significantly negative RVI values further indicate a likelihood
that surrounding tissue will also be ready to excite, increasing the
risk that a re-entrant event develops into an ectopic wavefront
significant enough to escape and hence trigger extrasystole. We,
therefore, find all locations that exhibited RVI values below a
threshold RVI ≤ −50. When multiple locations were detected
together as a contiguous group, these were simplified to a single
location. Around each detected site, the patterning of fibrosis

FIGURE 2 | A re-entry formed in fibrotic tissue (red arrow indicates the direction of AP propagation), and its detection. An AP initialised on the left border propagates

through the tissue, failing to conduct through the bottom passage. Then, when the excitation turns around (about 250ms), it transmits through this bottom passage

and successfully re-emerges into the remainder of tissue, forming a re-entry (about 375ms). Only re-entries that might escape back into the tissue surrounding the

afflicted region are counted, as detected by nodes sitting on the boundary of the domain being activated more than one time (marked with a red asterisk on

the boundaries).
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(as an array of binary values) was extracted, and labelled as
a “discriminative” structure, reflecting its inconsistent passing
along the excitation dependent on wavefront direction or other

TABLE 2 | Summary of the simulations performed, and the resulting data used for

machine learning (ML) (using one structure size as an example).

65,650 Total simulations

3,902 Simulations featuring a re-entry (that reached the boundary)

5,050 Unique arrangements of fibrosis

1,907 Fibrotic arrangements that generated re-entry

228,659 11×11 binary patterns exhibiting selective block

228,571 11×11 binary patterns not exhibiting selective block

conditions. To complete the dataset, this set of structures was
complemented by a set of ‘indiscriminate’ structures of the same
size, selected by finding locations that satisfied two conditions.
First, indiscriminate structures have to be activated (at least 40%
of their constituent excitable tissue), so that their effects on
wavefront propagation had been tested by the simulation they
came from. Second, indiscriminate structures could not contain
any locations identified by RVI values under the threshold
as discriminative.

2.3. Pattern Classification
To explore how much information regarding re-entry risk
is contained in the patterning of fibrosis, we considered the
ability of neural networks (NN) to successfully classify different

FIGURE 3 | Snapshots of AP propagation demonstrating an event of the unidirectional block. Visualised is one section of the full fibrotic region, detected by our

RVI-based approach. The brightness of colour indicates level of activation, and the red arrows indicate the overall direction of propagation. (A) The wave propagates

from the bottom-right to the bottom-left corner of the section, attempting also to propagate through the central passage but failing due to an imbalance between

excited and excitable tissue. (B) When the wavefront later propagates through the top portion of this structure, it is able to successfully propagate downwards through

the central passage, re-entering into the tissue in the bottom portion.

FIGURE 4 | Re-entry formation depends critically on the amount of fibrotic obstructions. Only a specific range of values of ρ, the probability that any individual mesh

element is obstructed, permits re-entry formation. Shown are the probabilities that a given fibrotic realisation produced a re-entry for (A) at least one stimulus scenario

and (B) for an individual stimulus scenario. A comparison of these two histograms highlights the importance of considering multiple stimulus locations when evaluating

a structure for potential as an arrhythmic substrate.
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structures as discriminative about excitation transfer or not.
The datasets were made balanced by detecting and adding
indiscriminate structures until these were the same in number as
the discriminative structures. As each structure is a binary mask,
they can simply be converted to a vector of 0 and 1 values to serve
as input to an NN. The NN then outputs a single value indicating
a category to which structure belongs (discriminative or not).

A variety of NN architectures were considered, using densely
interconnected layers and zero to four hidden layers. Layer
size varied from 100 to 1,200 neurons. All NN training and
evaluation used the Keras application programming interface
(API) (Chollet, Francois et al., 2015), a popular Python library
for machine learning. We used the Adam optimiser with a binary
cross-entropy loss function to optimise the neural network. The
rectified linear activation function (ReLU) activation function
was used in the inner layers and a sigmoid activation function in
the outer layer. To explore the spatial scale on which patterning
acts to create selective block of conduction and hence re-entry, we
also considered the ability to identify selectively blocking patterns
when working with structures of various sizes. In particular
we take the element identified via RVI as the centre of a
square binary pattern, with side lengths varying from 5 elements
(0.5mm) to 23 elements (2.3mm).

3. RESULTS

3.1. Preliminary Results
As brieflymentioned inMethods, re-entries were found to appear
only within a rather selective range of ρ values (Figure 4),
matching observations of previous studies considering micro re-
entry in untextured fibrosis (Sachetto Oliveira et al., 2018a,b).
This effect is caused by the requirement for both a sufficient
amount of obstruction to create the structures that produce a
source-sink mismatch, and a sufficiently conductive structure for
any resulting re-entrant event to successfully reach the domain
boundary and hence produce an ectopic beat. This balance is
strongly related to the percolation threshold, and we note that
the critical range of 0.45 ≤ ρ ≤ 0.52 for re-entry is here
larger than in the previous studies, as vertex-centred meshes are
naturally more conductive. Figure 4 also compares the chance
of re-entry for any individual simulation (one stimulus site),
with the chance per pattern realisation (for at least one re-entry
across all stimulus sites). Even given that a structure can produce
re-entries that escape the fibrotic region, only very few choices
of stimulus location result in this behaviour, demonstrating a
significant sensitivity to activation pattern.

Figure 5 compares the frequency with which selectively
blocking micropatterns were identified across the large-scale
fibrotic realisations (4 cm2) that did or did not result in re-entry.
The cases exhibiting re-entry showed on average more than two
times as many selectively blocking sites than those that did not.
This confirms the intuition that the presence of microstructures
that may initiate re-entry correlates significantly with the overall
risk posed by a fibrotic region. However, even those realisations
that did not produce re-entry under any stimulus scenario still
produced many individual events of unidirectional or other
selective block of conduction. This shows that the mutual spatial

arrangement of these initiator patterns, and the larger-scale
structure more generally, is also critical to the formation of
re-entries that persist and escape into the surrounding tissue.
Notably, there exists a positive feedback effect when it comes to
simply counting detected discriminative microstructures, and as
once a re-entry has successfully formed, there is an additional
opportunity for repolarisation heterogeneity to produce further
block events in vulnerable microstructures.

Individual examples of micropatterns capable or incapable of
initiating re-entry, as detected by our methods, are presented
in Figure 6. As shown by the arrows indicating the direction
of AP propagation (or block), the pro-arrhythmic patterns (left
side) all result in unidirectional block. Examining the fine-scale
structures that produce this effect reveals broad correspondence
to the AP emerging from thin passages into larger regions
of open tissue. This is the classical example of structural
heterogeneity producing unidirectional block through source-
sink mismatch (Ciaccio et al., 2018). However, the rich diversity
of patterning in these structures and the presence of visually
similar arrangements in the structures observed to permit normal
conduction (right side of figure) highlight the difficulty of
differentiating by eye alone patterns that may or may not
initiate re-entry. This motivates the use of machine learning
as a more accurate, and automated, means of carrying out
this classification.

3.2. Classification of Micropatterns That
Can Initiate Re-entry
The micropatterns that do or do not exhibit selective
(unidirectional, or inconsistent) conduction block were
learned by training a NN classifier, as described in Methods.
Depending on the NN architecture and micropattern size, the
overall accuracy of the classifier (as evaluated using unseen test

FIGURE 5 | Boxplots showing the frequency of microstructures that

selectively block condution (as detected by significant negative RVI) occurring

in large-scale fibrotic realisations that did or did not exhibit re-entry. The higher

the number of such discriminative structures found, the more likely a re-entrant

AP will survive and then escape into the surrounding tissue.
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FIGURE 6 | Examples of pro-arrhythmic (A–D) and non-arrhythmogenic (E–H) micropatterns (23×23 elements), and a close-up view of the structure at their centre.

Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block.

data) ranged from approximately 75 to 91%. Specificity and
sensitivity ranged from 74 to 91%, and the area under the receiver
operating characteristic curve (ROC) curve ranged from 0.82 to
0.95. The dependence of performance on network architecture,
for a fixed micropattern size, is summarised in Table 3, where
it can be seen that maximal classification accuracy of 91% was
obtained by using two hidden layers of 1,000 neurons each.
This architecture strikes the balance between including enough
neurons to capture the high complexity of the classification
problem, and the risks of training difficulties or overfitting
posed by a network with too many neurons. The classification
problems using other micropattern sizes showed very similar
relationships between accuracy and network architecture.
In Table 4 is shown the confusion matrix of the NN for
micropatterns of size 23 × 23, and 9 × 9. These results confirm

that NN performance is balanced, that is, the NN can detect
pro-arrhythmic as well as non pro-arrhythmic structures with
the same accuracy.

The classifier models with appropriate architectures obtain
very good accuracy, considering they are attempting to identify
a complex phenomenon such as unidirectional or otherwise
selective block only from binary micropattern data. On one hand,
we have considered many different patterns of activation (by
using different choices of stimulus site) to generate these data,
and so structures identified as pro-arrhythmic might still exist
safely in a scar region if they never experienced waves travelling in
the necessary direction to trigger the initial re-entry. On the other
hand, structures identified as non-arrhythmogenic will have
been subjected to multiple different AP propagation scenarios.
This suggests that microstructures identified as indiscriminate
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TABLE 3 | The resulting accuracy/area under the curve (AUC) of the neural network (NN) for the size of the micropattern 9.

Hidden layers

0 1 2 3 4

Neurons in layer

100 0.758/0.837 0.791/0.871 0.804/0.881 0.809/0.887 0.817/0.891

200 0.778/0.855 0.844/0.91 0.864/0.925 0.865/0.925 0.866/0.925

400 0.81/0.884 0.893/0.937 0.886/0.938 0.895/0.941 0.882/0.933

600 0.833/0.898 0.899/0.943 0.901/0.945 0.901/0.946 0.9/0.946

800 0.848/0.907 0.894/0.938 0.9/0.945 0.904/0.947 0.894/0.938

1000 0.855/0.915 0.904/0.946 0.911/0.952 0.909/0.951 0.903/0.948

1200 0.856/0.915 0.908/0.947 0.91/0.95 0.905/0.946 0.897/0.947

TABLE 4 | (A) The confusion matrix of the NN for 23×23 micropatterns, with four

hidden layers and 800 neurons in each layer.

True state

Pro-arrhythmic Not pro-arrhythmic

(A)

Prediction
Pro-arrhythmic 17,179 4,611

Not pro-arrhythmic 4,616 17,174

(B)

Prediction
Pro-arrhythmic 20911 2,090

Not pro-arrhythmic 2,094 20,915

(B) The confusion matrix of the NN for 9×9 micropatterns, using three hidden layers and

1,000 neurons in each layer.

could potentially be considered safe independent of the factor of
wavefront direction.

Classifier accuracy also allows us to consider the information
necessary in order to identify pro-arrhythmic micropatterns of
obstruction. In this study, we have varied the size of these
micropatterns, and thus can gain some understanding regarding
the spatial scale on which the dynamics of unidirectional
or selective block truly acts. On one hand, if the structures
considered are too small to correctly identify the relevant source-
sink interactions, accuracy will suffer due to this lack of requisite
information. On the other hand, when redundant information
is included by using a too large micropattern size, this only
increases the dimensionality of the learning problem without
supplying anything useful, and accuracy suffers due to the
negatively shifted the balance between dimension and amount of
training data.

Figure 7 shows how changes to micropattern size impact the
accuracy of the resulting classifier models. Accuracy peaks for
patterns of size 9×9, suggesting that the balance of source-
sink mismatch for a wavefront is meaningfully controlled by
the surrounding structure on a length scale of about 0.4–1mm.
The larger end of this range arises from the observation that
with increased amounts of training data, higher-dimensional
datasets may have exhibited even higher classification accuracy.
Saliency maps, which show the respective levels of contribution
of the individual elements of a structure towards the resulting
classification output by a NN, also showed a tendency to

FIGURE 7 | Graph of resulting accuracy dependence on micropattern size for

two hidden layers and 1,000 neurons.

concentrate importance on a small central subsection of the
larger micropatterns (Figure 8). This provides further evidence
towards the conclusion that selective and unidrectional block
events are governed by structure over only a small length scale.

3.3. Generalisation to New Data
In discussing classifier model accuracy, we have been referring
to the performance of the model in classifying micropatterns not
seen by it during the training process, but still sourcing from the
same overall batch of simulations from which the training data
were taken.

In this study, we test the classifier model in a more demanding
fashion by evaluating its performance on a new batch of
simulations designed to more directly examine events of the
selective block. These simulations were carried out on smaller
fibrotic domains (46×46 elements total), with single stimuli
triggered separately on all four edges of the domain to increase
the chance of observing unidirectional block where it might
arise. The best-performing classifier model was then used to try
to identify which microstructures in these new realisations of
fibrosis would or would not show this type of block.

Figure 9 shows a range of example patterns, including those
(both susceptible and not susceptible to unidirectional block)
that the classifier model successfully identified, and some of the
pro-arrhythmic structures that the model failed to detect. The
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FIGURE 8 | Example saliency maps for a selection of 21×21 (A–D) patterns classified by a neural network with zero hidden layers and 1,200 neurons in one layer and

9×9 patterns (E–H) with two hidden layers and 1,000 neurons in one layer. The lightness of grid sites indicates their level of contribution towards the decision of the

classifier for the different micropatterns tested. In the case of the larger patterns (A–D), site importance is concentrated around the centre of the pattern, whereas

smaller patterns more consistently use sites throughout the pattern to evaluate a structure for selective conduction block. This supports the conclusion that the vast

majority of these proarrhythmic phenomena take place on smaller spatial scales.

same archetypal structure of channels connecting to open regions
to produce unidirectional block is observed, although again
identification by eye is significantly challenging. For example,
structures exhibiting omnidirectional block (Figures 9D,E) do
not seem to be immediately separable from those exhibiting
unidirectional block (Figures 9A–C,G–I), but only the latter
structures are able to initiate a re-entry. Our classifier model
allows for the identification of this property beyond a simple
human search for the obvious, qualitative patterns.

However, some patterns that show unidirectional block when
simulated were not detected by the NN classifier, despite its high
accuracy on the data originally used to test its performance.
There could be several reasons for this. The unidirectional block
events observed in false-negative cases often occur very close
to the micropattern boundary (Figures 9H,I). In such cases,
there is insufficient information about the structure around the
wavefront at the critical location of the block, and so the classifier
model struggles to predict it. Additionally, in these smaller-
scale simulations, many more of the micropatterns evaluated
for testing will fall closer to the domain boundaries, where the
balance of source and sink can be affected by the initial stimulus
and the inability of travelling wavefronts to form their full ‘tail’
of activated cells that provide an additional electrotonic sources
of depolarisation. This is likely due to the fact that the structure
responsible for conduction block (unidirectional or otherwise)
will not precisely coincide with the location where the wavefront
dies out. We discuss this further in Conclusions.

4. CONCLUSIONS

We have used high-throughput simulation to approach an
exhaustive exploration of the issue of re-entry initiation in

fibrosis-afflicted tissue, a key precursor to arrhythmia (Hansen
et al., 2015; Sachetto Oliveira et al., 2018a). It is known, at least
for randomly placed obstructions as considered here, that the
probability a site is obstructed is a critical determinant of re-
entry formation (Vigmond et al., 2016; Sachetto Oliveira et al.,
2018b). This finding was recapitulated in this study, for a different
type of computational mesh and was extended by also exploring
how different patterns of activation interact with these regions of
afflicted tissue. In particular, we have demonstrated that for the
most risk-associated extents of fibrosis (ρ ∼ 0.49), a majority
of fibrotic realisations were in fact capable of initiating re-entry
from a single stimulus but only for waves sourcing from a select
few pattern-specific locations. This suggests that lower rates of
initiation previously reported (Sachetto Oliveira et al., 2018b)
are largely a function of only a single stimulus pattern being
considered in that study. This additionally sheds light on one
role of ectopic beats in arrhythmia initiation; if one of the
stimulus scenarios is said to correspond to a healthy sinus rhythm
activation pattern, then the other stimulus scenarios are related
to events such as premature contractions and can often initiate
re-entry even when the typical activation sequence does not.

Although we observed activation sequence to be similarly as
important as structure in terms of producing re-entrant waves
that escape the scar region, the fine-scale events of selective block
required to initiate any re-entrant activity were not expected
to be overly dependent on activation sequence. This intuition
was seen to hold, with a NN classifier model trained only
using binary arrays of fibrosis occupancy (no activation pattern
information) obtaining very good accuracy (up to 91% for
this very challenging learning problem). We also used classifier
accuracy to suggest the important length scale for identifying the
unidirectional block in these fibrotic micropatterns, observing
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FIGURE 9 | Conduction patterns in completely unseen structures from new simulations, and the corresponding predictions of the classifier model. Shown are

examples of correctly identified pro-arrhythmic (A–C) and non-arrhythmogenic (D–F) micropatterns, and undetected pro-arrhythmic (G–I) micropatterns. All are of

size 9×9 elements. Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block. Notably, the classifier model can

successfully identify structures that result in a complete block from all directions (D,E) but could not successfully identify all pro-arrhythmic structures, particularly

those where block occurs near the micropattern boundary (H,I).

9×9 patterns to best balance information content and learning
problem dimensionality for the NNs. This suggests the effective
length scale for individual events of unidirectional (or other
selective) conduction block to be∼ 0.5mm or a little larger.

When the classifier was tested on completely new data (new
simulations not used for training, validation, or testing), it
remained able to detect the key structures involved in generating
unidirectional block events. Impressively, completely-blocking
structures (i.e., blocking from all directions) could be correctly
classified. This more challenging test of the classifier model did
expose some of the limitations of the approach used in this
study, however. First, our RVI-based detection method picks
out the locations where activation dies out, but this does not
always perfectly correspond to the structure most responsible
for the failure to propagate. For example, a wavefront emerging

from a thin channel into a bay of excitable tissue may die out a
little way into the bay, even though the structure surrounding
where the channel ends is the most important. One potential
direction forward is improving the block detection algorithm, so
it better localises the structure responsible for the unidirectional
block instead of wave die-out points. Another direction is to
move away from detecting specific sites of unidirectional block
altogether, and instead attempt to classify micropatterns using
data generated by simulating AP propagation across the micro
patterns themselves.

As the focus of this study was purely on how much
fibrotic structure itself can inform the risk of re-entry, we have
not considered the importance of specific electrophysiological
conditions for the initiation and sustainment of re-entrant
activation patterns. Some examination of the effects of parameter
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variability in this context has already been carried out (Lawson
et al., 2020), but it is a limitation of this study that we
have not explicitly considered how different electrophysiological
conditions impact the importance of structure vs. activation
sequence or the ability to predict structures that selectively block.
We suspect that if the conductivity of unobstructed tissue was
adjusted, or a different cell model (or parameter values for the
BOCF model) was used, the general conclusions we have drawn
here would remain valid, but of course classifier models would
need to be retrained. Anisotropic conduction, in particular, might
also have a pronounced effect on our observations here, especially
considering that different ‘textures’ of fibrosis meaningfully act
to change the effective anisotropy of afflicted tissue (Nezlobinsky
et al., 2020).

We have used a generously sized region of afflicted
tissue for data generation in this study, larger than the
minimal size required to support re-entry in similar
simulations (Sachetto Oliveira et al., 2018b) and larger than
micro-re-entrant paths observed in explanted hearts (Hansen
et al., 2015). Domain size certainly effects the probability of
observing a sustained re-entry, but the observation that the
direction of the initial wavefront is critical for re-entry initiation
should be robust to the domain size. We have demonstrated that
the individual micro-structures that do or do not exhibit selective
or unidirecitonal block act on a length scale of about ∼0.5mm,
much smaller than the size of the full simulation domain. A
bigger limitation of our choice of domain is its two-dimensional
nature, a necessity for carrying out the number of simulations
performed here. In three-dimensions, critical length scales and
fibrotic extents of highest risk would be expected to change,
owing to the differences in source/sink balance (Xie et al., 2010;
Sachetto Oliveira et al., 2018b).

In summary, a new pipeline was implemented to generate
two datasets for pro-arrhythmic and non-arrhythmic fibrotic
patterns. The pipeline involves simulations of re-entries within
fibrotic substrates augmented by stimulations coming from
multiple sites and the automatic identification of unidirectional
blocks via the RVI method. These datasets were used to
train and test a neural network that was able to successfully
classify (accuracy up to 91%) micropatterns by only taking
as input their structures. Therefore, our results suggest that

machine learning provides tools that can be further exploited to
address fundamental questions such as the relationship between
anatomical heterogeneity and re-entry risk, and over what spatial
scale this heterogeneity should be considered.
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The electrical activity in the heart varies significantly between men and women and

results in a sex-specific response to drugs. Recent evidence suggests that women are

more than twice as likely as men to develop drug-induced arrhythmia with potentially

fatal consequences. Yet, the sex-specific differences in drug-induced arrhythmogenesis

remain poorly understood. Here we integrate multiscale modeling and machine learning

to gain mechanistic insight into the sex-specific origin of drug-induced cardiac arrhythmia

at differing drug concentrations. To quantify critical drug concentrations in male and

female hearts, we identify the most important ion channels that trigger male and female

arrhythmogenesis, and create and train a sex-specific multi-fidelity arrhythmogenic risk

classifier. Our study reveals that sex differences in ion channel activity, tissue conductivity,

and heart dimensions trigger longer QT-intervals in women than in men. We quantify

the critical drug concentration for dofetilide, a high risk drug, to be seven times lower

for women than for men. Our results emphasize the importance of including sex

as an independent biological variable in risk assessment during drug development.

Acknowledging and understanding sex differences in drug safety evaluation is critical

when developing novel therapeutic treatments on a personalized basis. The general

trends of this study have significant implications on the development of safe and

efficacious new drugs and the prescription of existing drugs in combination with

other drugs.

Keywords: multiscale modeling and simulation, cardiac electrophysiology, machine learning, multi-fidelity

Gaussian process classification, active learning, sex differences, arrhythmia, drugs

1. INTRODUCTION

It is well-established that there are important discrepancies between male and female cardiac
electrophysiology. Electrocardiogram differences between men and women include a faster resting
heart rate in women, a longer corrected QT interval, and a lower QT dispersion (James et al., 2007;
Yarnoz and Curtis, 2008). Despite an increasing recognition, essential knowledge gaps remain in
the mechanistic understanding of these sex differences, warranting further investigation (Asatryan
et al., 2021). Here, to focus, we demonstrate the effect that sex differences play for one particular
example, drug-induced arrhythmogenicity.

Drugs often have undesired side effects. In the heart, they can induce global changes in the
electrical activity of the tissue by interacting with specific ionic channels in cardiac cells. Doing
so, some compounds can induce arrhythmia known to precipitate into ventricular fibrillation
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and sudden cardiac death. These arrhythmia are typically
associated with drugs that prolong the repolarization stage
of the cardiomyocyte action potential (Po et al., 1999).
Consequently, before any drug can enter the market, its pro-
arrhythmic risk needs to be assessed. Currently, the gold standard
for cardiac safety assessment focuses on the experimental
measurement of the pharmacological block of the rapid delayed
potassium rectifier current in single cell experiments (Redfern
et al., 2003) and electrocardiographic analyses looking for QT
prolongation in animal models or humans (Gintant et al., 2016).
These biomarkers show good sensitivity but low specificity,
potentially preventing useful drugs to reach the market (Sager,
2008). Moreover, these risk assessment procedures are slow
and expensive to conduct. A recent initiative of regulatory
agencies, drug design companies, and cardiovascular researchers
suggested to address these limitations by new mechanistic
assays that predict the pro-arrhythmic risk of new drugs using
computational modeling (Sager et al., 2014). In response to
this initiative, a collection of novel mechanistic computational
paradigms for drug-induced arrhythmogenesis prediction have
been proposed ranging in complexity from ventricular myocyte
models (Mirams et al., 2011; Passini et al., 2017) to transmural
cable simulations (Moreno et al., 2013; Romero et al., 2018),
and from planar and cubic tissue slabs (Kubo et al., 2017;
Yang et al., 2020; Margara et al., 2021) to ultra-high resolution,
multiscale heart models (Wilhelms et al., 2012; Okada et al.,
2015; Sahli Costabal et al., 2018a; Hwang et al., 2019). Over the
past few years, these physics-based modeling approaches have
been increasingly combinedwithmachine learning approaches to
further improve mechanistic arrhythmogenic risk classification
(Lancaster and Sobie, 2016; Polak et al., 2018; Sahli Costabal et al.,
2019a,c).

Even though drug-induced arrhythmogenicity has been
reported to occur twice as often in women than in men
(Makkar, 1993; Coker, 2008), the role that sex differences play in
arrhythmogenic risk classification remains largely understudied.
Current computational mechanistic risk predictors use
mathematical models of cardiac cells calibrated on in vitro
studies, that often tend to be male-dominated (Ramirez et al.,
2017). As such, sex bias can be expected to propagate through
these models into the actual risk stratification. Consequently,
there is a strong need to study the multiscale sex differences
in cardiac electrophysiology and how these discrepancies
translate into sex-specific arrhythmogenic risk stratification in
more detail.

Figure 1 provides a schematic overview of our study. Here,
we build independent male and female low-fidelity cell-scale
and high-fidelity multiscale cardiac electrophysiology exposure-
response simulators incorporating experimentally quantified
sex differences at the subcellular, cellular, tissue and organ
level. Using logistic regression, we studied the pro- and anti-
arrhythmic effects that drug-induced ion channel blocking
has on the male and female heart individually. Combining
high-performance computing and multiscale modeling with
machine learning techniques, including multi-fidelity Gaussian
process classification and active learning, we developed two
sex-specific drug-induced multi-fidelity arrhythmogenic risk

classifiers. Finally, both classifiers were used to quantify the male
and female arrhythmogenic susceptibility of a high, intermediate,
and low risk drug.

2. MATERIALS AND METHODS

2.1. Multiscale Modeling of Cardiac
Electrophysiology
We model the electrophysiological behavior of cardiac
tissue using the monodomain model (Clayton et al., 2011;
Sahli Costabal et al., 2018a). This model’s main variable is the
transmembrane potential φ, the difference between the intra-
and extra-cellular potentials. The transmembrane potential is
governed by a reaction-diffusion equation (Krishnamoorthi
et al., 2014),

φ̇ = div(D · ∇φ)+ f φ , (1)

Here, we introduce the source term f φ which represents the ionic
currents across the cell membrane and the conductivity tensor
D that accounts for a fast signal propagation of D‖ parallel to the
cardiac muscle fiber direction f and a slow signal propagationD⊥

perpendicular to it (Clerc, 1976; Plank et al., 2008; Goktepe and
Kuhl, 2009),

D = D‖f ⊗ f + D⊥[I − f ⊗ f ] (2)

In general, the ionic currents f φ are functions of the
transmembrane potential φ and a set of state variables q(φ)
(Wong et al., 2013; Lee et al., 2016), f φ(φ, q(φ); t) where the
state variables themselves are governed by ordinary differential
equations, q̇ = g(φ, q(φ); t) . The number of currents and state
variables determines the complexity of the cell model and varies
for different cell types. For human Purkinje fiber cells, we adopt
the Stewart model (Stewart et al., 2009) which tracks 14 ionic
currents using 20 state variables

Iion = ICaL + INa + ICab + INab + IKr + IKs + IK1 + Ito

+ If + Isus + INaK + IpCa + IpK + INaCa
(3)

To represent electrophyiological behavior of human ventricular
cardiomyocytes, we adopt the O’Hara-Rudymodel (O’Hara et al.,
2011) with a minor modification (Priest et al., 2016) of the
fast sodium current INa (ten Tusscher et al., 2004). Studies
have shown that this INa substitution leads to a physiological
conduction velocity restitution behavior, with a minor impact
on the action potential behavior (Elshrif and Cherry, 2014). The
resulting model tracks 15 ionic currents defined through a total
of 39 state variables,

Iion = ICaL + INa + ICaNa + ICaK + ICab + INab + IKb + IKr

+ IKs + IK1 + Ito + INaK + IpCa + INaCa,i + INaCa,ss
(4)

To incorporate drug effects into our multiscale models, we
selectively block the relevant ionic currents in the Purkinje and
cardiomyocyte cell models (Sahli Costabal et al., 2018b). These
blocks are informed by experimental patch-clamp experiments
that study the fractional blockage β of different ion channels
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FIGURE 1 | Sex differences in drug-induced arrhythmogenesis: a combined multiscale modeling and machine learning approach. We develop individual

male and female low-fidelity cell and high-fidelity multiscale exposure-response simulators. These simulators take into account differences in subcellular ion channel

activity between men and women for the low-fidelity exposure-response proxy. The high-fidelity model also takes into account sex differences tissue-level conductivity

and organ-scale geometry. We perform an arrhythmic sensitivity study of the male and female heart to drug-specific ion channel blocking and susbsequently combine

low-fidelity cell-scale and high-fidelity multiscale modeling to delineate arrhythmogenic risk classification boundaries for men and women.

at varying drug concentrations (McMillan et al., 2017). We
implement these fractional blockings using fitted Hill-type
equations of the form,

β =
Ch

ICh
50 + Ch

(5)

which are characterized by the exponent h and the concentration
ICh

50 required to achieve a 50% current block. To apply a
specific drug, we select a desired concentration C, calculated the
fractional blockage βion for each considered ion channel, and
scale the corresponding ion current channels by the fractional
blockage [1− β],

I
drug
ion = [1− β]Iion (6)

2.2. Sex-Specific Cardiac
Electrophysiology
2.2.1. Sex-Specific Subcellular Ion Channel Activity
We deduced sex-based differences in ventricular ion channel
activity from the expression level of key cardiac ion channel
subunit proteins, quantified using western blotting, and genes,
assessed through polymerase chain reaction analysis, in endo-
and epicardial ventricular tissue from non-diseased explanted
male and female human hearts (Gaborit et al., 2010). More
specifically, we use the protein expression of NaV1.5 to scale
the late sodium current INaL ion channel activities, the mRNA
expression of ATP2B4 (Ca2+ ATPase 4) to scale the sarcolemmal
calcium pump current IpCa, the protein expression of hERG to
scale the rapid delayed rectifier potassium current IKr, the protein
expression of MinK to scale the slow delayed rectifier potassium
current IKs, the mRNA expression of KCNJ4 (Kir2.3) to scale the
inward rectifier potassium current IK1, the mRNA expression of

SLC8A1 (NCX1) to scale the sodium calcium exchange currents
INaCa,i and INaCa,ss, the mRNA expression of ATP1A1 and
ATP1A3 (Na+/K+ ATPase α1 and α3) expression to scale the
sodium potassium pump current INaK, and themRNA expression
of KCNA5 (KV1.5) expression to scale the background potassium
current IKb. Moreover, we use the the mRNA expression of the
RYR2 gene to scale the activity of the Ca2+ release channels,
the mRNA expression of ATP2A2/SERCA2 (Ca2+ ATPase 2) to
scale the activity of the Ca2+ uptake channels, and the mRNA
expression of CALM3 expression to scale the Ca2+ buffering
capacity through the calmodulin 3 concentration [CMDN].
Table A1 provides an in-depth overview of the sex-specific and
transmurally varying mRNA/protein expression data. To deduce
ion channel activities from the ion channel subunit expression,
we followed transcriptional and functional scaling rules (O’Hara
et al., 2011; Yang and Clancy, 2012).

The baseline endocardial O’Hara-Rudy model was developed,
calibrated and thoroughly validated on experimental data
collected from non-diseased ventricular tissue of 140 human
donors, of which 78 were male. Therefore, we consider this
baseline model to be a linear interpolated, 56% male and
44% female representation of the sex-specific representative
endocardial cell models. By applying this linear interpolation rule
to the aforementioned sex-specificmRNA and protein expression
in the endocardial tissue, we computed the sex-specific ion
channel activity ratio for the endocardial cardiomyocytes
disclosed in Table 1. These ratios are relative scalings to the
ion channel conductivities of the baseline endocardial model.
Based on the transmural electrophysiological heterogeneity of
the healthy human myocardial wall (Drouin et al., 1995;
Glukhov et al., 2010; Okada et al., 2011), we parameterize
three different transmural cell types: endocardial, midwall,
and epicardial cells (O’Hara et al., 2011). To prescribe the

Frontiers in Physiology | www.frontiersin.org 3 August 2021 | Volume 12 | Article 708435153

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Peirlinck et al. Sex Differences in Drug-Induced Arrhythmogenesis

TABLE 1 | Sex-specific subcellular ion channel activity.

Male Female

Epi Mid Endo Epi Mid Endo

INaL 0.77 1.06 1.06 0.65 0.93 0.93

Ito 4.00 4.00 1.00 4.00 4.00 1.00

IpCa 0.70 1.97 0.79 1.26 3.17 1.27

IKr 1.20 0.88 1.10 0.96 0.70 0.87

IKs 1.16 1.10 1.10 0.93 0.88 0.88

IK1 1.07 1.39 1.07 0.76 1.18 0.91

INaCa,i / INaCa,ss 1.10 1.41 1.01 1.07 1.38 0.99

INaK 0.92 0.70 1.00 0.87 0.70 1.00

IKb 0.82 1.25 1.25 0.42 0.68 0.68

Ca2+ release 1.13 1.68 0.99 0.89 1.72 1.01

Ca2+ uptake 1.33 0.94 0.94 1.85 1.08 1.08

[CMDN] 0.97 0.92 0.92 1.28 1.11 1.11

Sex-specific subcellular ion channel activity. Sex-specific and transmurally varying

subcellular ion channel activity scaling used in computational models based onmRNA and

protein ion channel subunit expression and functional data (Näbauer et al., 1996; Szabó

et al., 2005; Soltysinska et al., 2009; Gaborit et al., 2010; O’Hara et al., 2011; Yang and

Clancy, 2012).

epicardial ion channel activity, we use the reported relative
epi/endo mRNA and protein expression data (Gaborit et al.,
2010), following the expression/current activity correlations
discussed before. To define the midwall ion channel activity,
we implement relative mid/endo and epi/mid ratios (O’Hara
et al., 2011). These ratios were deduced from reported epicardial
vs. midwall protein expression data (Szabó et al., 2005) and
midwall vs. endocardial mRNA expression data (Soltysinska
et al., 2009). Finally, the midwall and epicardial activity
of the transient outward potassium channel Ito was scaled
based on functional patch-clamp data collected on myocytes
isolated from the human non-failing left ventricle (Näbauer
et al., 1996). The complete set of sex-specific and transmurally
varying ion channel activity ratios relative to the baseline
endocardial model can be found in Table 1. Given the current
lack of an extensive experimental human dataset on genetic,
transcription, or functional sex differences in ion channel
activity for Purkinje fibers, we do not introduce any sex-specific
ion channel scaling in the baseline Purkinje cell model by
Stewart et al. (2009).

The baseline Purkinje and sex-specific endo-, mid- and
epicardial temporal transmembrane potential evolutions is
computed by solving Equations (3) and (4), and their intrinsic
systems of ordinary differential equations governing channel-
specific gating variables in Myokit (Clerx et al., 2016). To
achieve a steady state, we prepace each cell type for 1,000
cycles at a frequency of 1 Hz and then simulate five additional
beats. To study the cellular restitution behavior, we compare
the action potential duration at 90% repolarization after steady
state S1 pacing at cycle length 1,000 ms, followed by a single
S2 extrasystolic stimulus delivered at various diastolic intervals
ranging between 0 and 1,000 ms.

2.2.2. Sex-Specific Tissue Conductivity
We introduce tissue-level differences between both sexes by
rescaling the average anisotropic conductivities parallel, D‖,
and perpendicular, D⊥, to the myofiber directions f . These
scalings are informed by the sex-specific mRNA expression
of connexin43, the primary ventricular gap-junction subunit
(Dhillon et al., 2013). Assuming D‖ = 0.090 mm2/ms and
D⊥ = 0.012 mm2/ms (Niederer et al., 2011) represents the
anisotropic conductivity in the average, 50% male / 50% female,
human heart, the 50% higher connexin43 expression in male vs.
female cardiomyocytes (Gaborit et al., 2010) leads to D‖ = 0.108
mm2/ms and D⊥ = 0.014 mm2/ms, and D‖ = 0.072 mm2/ms
and D⊥ = 0.010 mm2/ms, for male and female myocardial
tissue, respectively.

2.2.3. Sex-Specific Organ Geometry
To model the multiscale cardiac electrophysiological behavior
across the male and female heart, respectively, we discretize
the governing Equations (1)–(4) in space using finite elements
(Goktepe and Kuhl, 2009) and in time using finite differences
(Sahli Costabal et al., 2018a). Temporally, we utilize an explicit
time integration scheme for both the reaction-diffusion equation
(Equation 1) and the Purkinje and cardiomyocyte (Equations 3
and 4) ionic models, with a fixed time step size 1t = 0.005 ms.
Spatially, we use a full three-dimensional representation of the
human ventricles, created from magnetic resonance images of a
healthy, 21-year old, 50th percentile U.S. male (Baillargeon et al.,
2014; Zygote Media Group Inc., 2014; Peirlinck et al., 2021). We
infer the female geometry as a 90% isometric scaling of the male
geometry, following the reported average female to male adult
left ventricular mass ratio of 72% (de Simone et al., 1995). Both
geometries are subdivided using linear hexagonal finite elements
with a constant edge length of 0.3 and 0.27 mm for the male
and female model, respectively. This results in 6,878,459 regular
linear hexagonal finite elements, with a total of 7,519,918 nodes.
By solving a series of Laplace problems with different essential
boundary conditions on this solid mesh (Perotti et al., 2015), we
incorporate the transmural heterogeneity of the ventricular wall
as showcased in Figure 2. This 20% endocardial, 30% midwall,
50% epicardial tissue arrangement ensures positive T-waves to
simulate a healthy baseline electrocardiogram (Okada et al.,
2011). In a similar fashion, we assign local myofiber orientations
f to each and every element, accounting for the heart’s intrinsic
myofiber architecture (Lombaert et al., 2012; Peirlinck et al.,
2018). We generate the Purkinje fiber network by growing a
fractal tree on the endocardial surface of the heart (Sahli Costabal
et al., 2015), and discretize it using 39,772 linear cable elements
and 39,842 nodes. The terminals of this network are connected
to the ventricular myocardium using 3545 resistor elements with
a resistance of 1.78�m (Niederer et al., 2011). We excite the
Purkinje network at the atrioventricular node every second, and
study the excitation profile of the heart over a period of 5,000
ms. To solve the resulting system of equations, we use the finite
element software package Abaqus (Dassault Systèmes Simulia
Corp., 2020), typically taking 24 h using 240 CPUs (Towns et al.,
2014). In this verified implementation (Niederer et al., 2011;
Sahli Costabal et al., 2019c), we exploit the structural similarities
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FIGURE 2 | Sex-specific multiscale exposure-response simulators. Male and female human heart model created from high resolution magnetic resonance

images of a healthy male adult and isogeometrically scaled according to the average adult male/female ventricular mass ratio. The ventricular walls are discretized with

6,878,459 regular linear hexagonal finite elements. The Purkinje fiber networks are discretized with 39,772 linear cable elements and are connected to the ventricles at

their terminals through 3,545 resistor elements. Endocardial, midwall, and epicardial cells are marked in median, light and dark green and purple, respectively; Purkinje

cells are shown in black. Long-axis transmural slices are shown in the anterior view representations. Short-axis transmural slices are shown in the enlarged posterior

views.

between the continuum equations and a classical heat transfer
problem with a non-linear heat source (Sahli Costabal et al.,
2018a).

Finally, we post-process the spatiotemporal excitation profiles
to calculate pseudo-electrocardiograms φe (xe) at a virtual
precordial electrode location xe two centimeters away from the
left ventricular wall (Kotikanyadanam et al., 2010; Sahli Costabal
et al., 2018b). In summary, at every point x of the heart,
we project the gradient of the transmembrane potential ∇φ

onto the direction vector ∇(1/‖r‖) with r = xe−x, and
integrate this projection across the entire cardiac domain �:
φe (xe) = −

∫

�
∇φ · ∇(1/‖r‖)dV. We manually labeled

the electrophysiological behavior as non-arrhythmogenic or
arrhythmogenic, based on the absence or presence of non-regular
chaotic twisting QRS complexes during the last five simulated
beats. These electrocardiographic hallmarks of arrhythmogenesis
are caused by regional early afterdepolarizations overtaking the
regular depolarization wave initiated by the Purkinje network.

2.3. Data-Driven Arrhythmogenic Risk
Classification
Using the male and female multiscale cardiac electrophysiology
models, we develop two sex-specific arrhythmogenic risk
classifiers based on drug- and dose-specific ion channel
blockage. Given the high computational cost of evaluating

arrhythmogenesis for a single full organ-scale and drug-induced
ion-channel blockage combination, we combine multiple
machine learning techniques to create and train sex-specific
arrhythmogenic drug risk classifiers. We first narrow the drug
effect parameter space by studying the cellular drug sensitivity
to various ion channel blockings. For this sensitivity analysis,
we use multivariable logistic regression techniques, as they have
been proven to be computationally more efficient than one-at-a-
time parameter sensitivity analyses (Lee et al., 2013) and highly
suitable for studying processes with binary outcomes (Morotti
and Grandi, 2017). Next, we apply the developed sex-specific
high-fidelity multiscale exposure-response simulators to quantify
the risk of drug-induced arrhythmogenesis within the identified
critical drug-induced ion channel blocking parameter space. To
reduce the computational cost of exploring this parameter space,
we develop and train multi-fidelity risk classifiers that have
been shown to outperform single high-fidelity risk classifiers
(Sahli Costabal et al., 2019b). More specifically, we combine
low-fidelity mid-wall cardiomyocyte simulations and high-
fidelity heart simulations to train a Gaussian process classifier
that characterizes the probability of arrhythmogenicity based
on the two most important ion channel blockage features for
arrhythmogenesis. Using active learning, we maximize the
information gained by each possible low-and high-fidelity
sample we evaluate, keeping the computational costs of training
our arrhythmogenic risk classifiers as low as possible.
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2.3.1. Sensitivity to Drug-Induced Ion Channel

Blockage
To explore the male and female arrhythmogenic sensitivity
to drug-induced ion channel blocking in a computationally
tractable way, we focus on seven specific ion channel currents
IKr, INa, INaL, ICaL, IKs, Ito, and IK1 identified to be important
in both depolarization and repolarization of the cardiac action
potential (Crumb et al., 2016; Fermini et al., 2016). As it has
been shown that early afterdepolarizations and repolarization
abnormalities are a precursor of arrhythmia at the cellular
level (Qu et al., 2013), we identify which channels have the
most significant impact on de- and repolarization abnormality
development (Sahli Costabal et al., 2020). We systematically
create 10,000 cellular drug-blocking samples by performing
Latin hypercube sampling on a seven-dimensional blockage
parameter space [0.0, 0.95]7, resulting in a sample set B =
{βKr,βNa,βNaL,βCaL,βKs,βto,βK1} ∈ [0.0, 0.95]10,000×7. For
each sample, we pre-pace the male and female cell model for
1,000 cycles at a frequency of 1Hz, and subsequently simulate the
corresponding ion channel blockage effect on the cardiomyocyte
action potential.We do this for themale and femalemidwall cells,
as previous work has shown that arrhythmogenic risk assessment
is particularly sensitive tomidwall cell distributions (Antzelevitch
and Sicouri, 1994; Sahli Costabal et al., 2018b). For each sample,
we define de- or repolarization abnormalities as the occurrence
of a change in potential greater than 0.1 mV/ms, or the
transmembrane potential not dropping below −40 mV, between
the 50 and 1,000 ms time marks of each beat (Sahli Costabal
et al., 2019c). Subsequently, we perform a male and female
logistic regression trained on the blockage samples and the
post-processed absence/presence of abnormalities. By extracting
the marginal effects (Norton et al., 2019), we quantify the
arrhythmogenic risk of each channel blockade and select the two
most important opposing anti-arrhythmic and pro-arrhythmic
ion channel blocking feature β− and β+ for arrhythmogenic
risk classification.

2.3.2. Gaussian Process Risk Classification

Single-Fidelity Gaussian Process Classifier
We use physics-based electrophysiological modeling (section
2.1) to generate a dataset comprised of cell- or whole heart
input/output pairs

D =
{

(

xi, yi
)N

i=1

}

= {X, y}. (7)

Here, the inputs xi contain the twomost important drug-induced
ion channel blocking arrhythmogenicity features brought
forward in section 2.3.1. We set the most anti-arrhythmic β−
and pro-arrhythmic β+ ion channel blocking feature to vary
between 0 and 95%. As such, X = {β−,β+} ∈ [0.0, 0.95]N×2

for N training samples. In this arrhythmogenic risk assessment,
the outputs yi can only take on two binary values: zero and one,
representing the absence or presence of de- and repolarization
abnormalities for cell level simulations and arrhythmogenesis for
whole heart simulations. As such, y ∈ {0, 1}N .

To set up the Gaussian process classifier, we put forward
a latent function f (x) (Rasmussen, 2004) and standardize our

dataset D so we can work with a zero-mean Gaussian process
(GP) prior of the form

f ∼ GP
(

0, k
(

x, x′ ; θ
))

. (8)

Here, k (·, · ; θ) is a covariance kernel function depending
on a set of parameters θ , which we will determine using
Bayesian inference, ex infra. By passing the Gaussian process
output f through a logistic sigmoid warping function σ , we
constrain the output to [0, 1]. These outputs entail meaningful
class probabilities.

To set up our Bayesian inference framework, we define the
conditional class probability as

π(x) = p(y = 1 | x) = σ (f (x)) (9)

and assume the class labels are independent according to
a Bernoulli likelihood with probability σ (y) (Nickisch and
Rasmussen, 2008). Following our prior work (Sahli Costabal
et al., 2019b), we choose an automatic-relevance determination
squared exponential kernel,

k
(

x, x′ ; θ
)

= η exp

[

−
M

∑

m=1

(

xm − x′m
)2

/
(

2ℓ2m
)

]

(10)

parameterized by θ : = {η, ℓ1, . . . , ℓM}. We set η ∼
HalfNormal(σ = 5) and ℓm ∼ Gamma(α = 2,β = 2) for m =
1, . . . ,M length scales as weakly informative prior distributions.
Lacking an analytic solution for the posterior distribution, we
resort to approximate-inference techniques to calibrate this
model on the available generated data. Here, we use the NO-U-
Turn sampling algorithm (Hoffman and Gelman, 2014), which is
a self-tuningMarkov Chain variant of HamiltonianMonte Carlo,
as implemented in PyMC3 (Salvatier et al., 2016).

To utilize the Gaussian process classifier for arrhythmogenic
risk stratification, we use the resulting posterior θ distribution to
make class predictions y∗ at new locations x∗. We first compute
the predictive random variable f ∗(x∗) using the covariance
matrix K ∈ R

N×N , which we obtain from evaluating the kernel
function at the location of the input training data. Next, we
sample f ∗ from the estimated posterior distributions. Finally, we
run these f ∗ evaluations through the logistic sigmoid function σ

to obtain a distribution of class probabilities y∗ (Sahli Costabal
et al., 2019b).

Multi-Fidelity Gaussian Process Classifier
We employ physics-based electrophysiological modeling (section
2.1) to generate a dataset

D =
{[

(

xLi , yLi
)NL

i=1

]

,
[

(

xHi , yHi

)NH

i=1

]}

=
{

[XL,XH] ,
[

yL, yH
]}

= {X, y}
(11)

comprised of NL low-fidelity midwall cell input/output pairs
and NH high-fidelity whole heart input/output pairs. Both
low- and high-fidelity input sets explore the two-dimensional
[0.0, 0.95]2 ion channel blockage parameter space identified in
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section 2.3.1. Both low-and high-fidelity outputs comprise binary
variables yLi , yHi = {0, 1}.

We model the cross-correlation structure between the low-
and high-fidelity level using an autoregressive model for the
latent function fH (Kennedy, 2000),

fH(x) = ρfL(x)+ δ(x) (12)

where ρ is a scalar parameter that needs to be inferred, capturing
linear correlations between the high- and low-fidelity levels. The
function δ aims to capture the bias in the predictions of the low-
fidelity level. To complete the Gaussian model framework, we
assume independent Gaussian priors for

δ ∼ GP
(

0, k
(

x, x′; θH
))

(13)

fL ∼ GP
(

0, k
(

x, x′; θL
))

(14)

where k (·, · ; θH) and k (·, · ; θL) are automatic-relevance
determination squared exponential kernels conform Equation
(10), resulting in parameters θH : =

(

ηH , ℓH1 , . . . , ℓHM

)

, and
θL : =

(

ηL, ℓL1 , . . . , ℓLM
)

. To infer these parameters and the
aforementioned scalar factor ρ, we set ηH , ηL ∼ HalfNormal
(σ = 5), ℓHm , ℓLm ∼ Gamma(α = 2,β = 2) with m = 1, . . . ,M
length scales and ρ ∼ Normal(µ = 0, σ = 10) as weakly
informative prior distributions. We perform Bayesian inference
following the same approach as for the single-fidelity Gaussian
process classifier before.

2.3.3. Active Learning
Given the high computational cost of our multiscale cardiac
electrophysiology simulations, we apply an active learning
strategy to maximally enhance the accuracy of our single- and
multi-fidelity arrhythmogenic risk classifiers with a minimal
amount of additional sample evaluations in the studied
parameter space. More specifically, we exploit the posterior
uncertainty estimates of our Bayesian models to select the next
sampling point expected to increase the accuracy of our classifier
the most.We pick the next sampling point based on the following
minimization problem:

xnew = argmin
x∈Xcand

|µ̂(x)|
√

6̂(x)
(15)

where µ̂ and 6̂ are the Monte Carlo estimates of the mean and
variance of f (x). Here, we apply Latin hypercube sampling to
generate a set of 1,000 candidate locations Xcand to sample. Next,
we compute the electrophysiological response and class label ynew

for the selected sample xnew, and add this input/output pair to
the dataset. We subsequently re-train the classifier for this new
dataset and repeat this process until we reach a well-defined
classification border or computational resources are depleted
(Sahli Costabal et al., 2019b).

2.3.4. Multi-, Low-, and High-Fidelity Arrhythmogenic

Risk Classification
We start by training a male and female single-fidelity classifier
based on low-fidelity mid-wall cell simulations. We explore

the input space with 25 Latin hypercube samples and evaluate
whether or not the resulting ion channel blockings lead to de-
or repolarization abnormalities as defined in section 2.2.1. We
train a single-fidelity classifier based on this dataset D (Equation
7) and further explore and exploit the resulting low-fidelity
arrhythmogenesis classification boundaries using 25 additional
active learning samples.

Next, we combine the 50 low-fidelity input/output pairs with
10 Latin hypercube drug blocking sample evaluations of the full
heart models as described in section 2.2.3. We use this combined
low- and high-fidelity dataset D (Equation 11) to train a multi-
fidelity arrhythmogenic risk classifier. Subsequently, we improve
the accuracy of the classification boundary using 15 additional
high-fidelity active learning sample evaluations.

2.4. Drug Risk Stratification
Using our multi-fidelity arrhythmogenicity classification
boundary, we estimate the arrhythmogenic risk of three drugs,
a high, intermediate and low risk drug (Li et al., 2018), by
computing the critical drug concentration at which arrhythmia
will start developing. We select three drugs for which the
concentration-block response curve is well-described (McMillan
et al., 2017) for the two cardiac currents that have the most
significant impact on arrhythmogenic risk prediction (section
2.3.1). The critical drug concentration is found at the intersection
of the multi-fidelity arrhythmogenesis classification boundary
and the two-dimensional concentration-block trajectory
described by Equation (5). If the drug’s concentration-block
trajectory does not cross the risk boundary, that drug can be
considered safe for the studied sex.

3. RESULTS

3.1. Sex-Specific Cardiac
Electrophysiology
3.1.1. Cell Level Differences
Figure 3 highlights the sex differences in electrophysiological
behavior for endocardial, midwall and epicardial cells based on
the experimentally quantified ion channel activity discussed in
section 2.2.1. Here, the green and purple lines represent the male
and female action potential evolutions, respectively. The black
line in the endocardial cell subplot represents the action potential
profile for the baseline O’Hara-Rudy model for the endocardial
cell, which results from the underlying 56/44% interpolation of
the male and female ion channel activities disclosed in Table 1.
Relative to male cells, the female sex-specific baseline action
potential durations are substantially larger for all transmural cell
types. More specifically, the male and female endocardial action
potential duration at 90% repolarization at 1 Hz pacing amounts
to 233 and 314 ms, respectively. Similarly, it takes 309 and 379
ms for male and female midwall cells, and 221 and 296 ms for
male and female epicardial cells to repolarize, respectively. The
male and female endocardial action potential duration restitution
amounted to 208 and 270 ms at a diastolic interval of 100 ms,
to 217 and 284 ms at a diastolic interval of 200 ms, and 229
and 309 ms at a diastolic interval of 500 ms. Similarly, male and
female action potential duration restitution for the midwall cell
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FIGURE 3 | Sex differences in transmural ventricular cardiomyocyte behavior. Sex-specific differences in endocardial, midwall and epicardial ventricular action

potentials based on the experimentally quantified differences in ion channel activity. The green and purple lines represent the male and female steady state action

potentials (Top) and action potential duration restitution curves (Bottom) for each transmural cell line. For the endocardial cell, the baseline steady-state action

potential evolution and restitution curve of the calibrated and validated O’Hara-Rudy model for the 56% male / 44% female mixed-population is shown in black.

lines amounted to 262 and 348 ms, 275 and 358 ms, and 301 and
371 ms for diastolic intervals 100, 200, and 500 ms, respectively.
For the epicardial cell lines, we computed male and female action
potential duration restitutions of 204 and 272 ms, 215 and 280
ms, and 233 and 288 ms for diastolic intervals 100, 200, and 500
ms, respectively.

3.1.2. Organ Level Differences
Figure 4 showcases the baseline spatiotemporal excitation profile
for the male and female heart. The ten snapshots illustrate the
combined effect that sex-differences in subcellular ion channel
activity, tissue-level conductivity and organ-scale geometry
have on the spatiotemporal transmembrane potential evolution,
without the effect of any drugs. In both the male and female
heart, the Purkinje network drives a sharp depolarization front
propagating rapidly from apex to base and across the heart.
At 100 ms, both the male and female ventricles are fully
excited. In the male heart, the repolarization phase, during
which the heart returns to its resting state, is finished between
300 and 400 ms. For the female heart, this repolarization
takes longer, finishing between 400 and 500 ms. The exact
duration between the beginning of the depolarization and the
end of the repolarization is showcased in the electrocardiogram
recordings computed for the male and female baseline heart
model in Figure 5. The QRS complex lasts 73 and 69 ms
for the male and female heart, respectively. This difference
in QRS duration was mainly driven by the smaller female
vs. male heart size and reduced conductivity. In parallel, the
prolongation of the T wave with respect to the end of the

QRS complex results mainly from the sex-specific differences
in ion channel activity at the subcellular level. The multiscale
combined effect of these sex differences amounts to QT
intervals of 348 and 411 ms for the male and female baseline
heart, respectively.

3.2. Sex-Specific Drug-Response
Characteristics
Figure 6 represents the male and female anti- or pro-arrhythmic
sensitivity to drug-induced ion channel blocking. As can be
seen in the upper two plots, the female midwall cells are
more sensitive to drug-induced ion channel blocking than male
midwall cells. For the same set of ion channel blocking samples
B = {βKr,βNa,βNaL,βCaL,βKs,βto,βK1} ∈ [0.0, 0.95]10,000×7,
we recorded 760 and 4,450 abnormalities for the male and female
midwall cell, respectively.

The lower panel plots in Figure 6 depict the normalized
marginal effects of drug-induced ion channel blocking on de- and
repolarization abnormalities. For both male and female midwall
cardiomyocytes, IKr blocking has a strong pro-arrhythmic effect,
whilst ICaL blocking has the largest anti-arrhythmic strength.
The male and female normalized marginal effect of L-type Ca2+

channel blocking amounted to −0.272 and −0.190, respectively.
As such, we selected drug-induced blocking of the rapid delayed
rectifier potassium current, βKr, and the L-type Ca2+ current
channel, βCaL as the two main pro-arrhythmic and anti-
arrhythmic input features β+ and β− for our male and female
arrhythmogenic risk classifier.
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FIGURE 4 | Baseline spatiotemporal excitation profiles for the male and female heart. Evolution of the transmembrane potential for the male and female heart

without drugs. Snapshots are taken from the last simulated beat. During depolarization, the Purkinje fibers drive the sharp depolarization front from apex to base.

During repolarization, both ventricles gradually return to their resting state. The combined sex-differences in ion channel activity, tissue conductivity and organ-scale

geometry lead to a slower depolarization in the female heart than the male heart.

FIGURE 5 | Baseline electrocardiogram recordings for the male and

female heart. Electrocardiogram recordings for the male and female heart

models without drugs. Both male and female electocardiograms display

regular periodic activation patterns, as shown in the upper right inlay plot. The

repolarization delay between the male and female heart is shown in more detail

in the main plot, focusing on the first 500 ms of the last simulated beat. The

resulting male and female QT interval amounted to 348 and 411 ms,

respectively, as shown in the lower right inlay plot.

3.3. Sex-Specific Risk Classifiers
In training our multi-fidelity arrhythmogenic risk classifiers,
we first trained a single fidelity de- and repolarization
classifier for the male and female midwall cell, respectively.
Figures A1, A2 summarize the de- and repolarization
abnormality classification boundary delineation in the

studied {βCaL,βKr} parameter space. The upper panel
plots showcase the initial exploration phase to train these
Gaussian process classifiers. The lower panel plots depict
the subsequent exploration and exploitation phase through
active learning.

The subsequent training and development of the male
multi-fidelity arrhythmogenic risk classifier is showcased in
Figure 7. The upper panel plots showcase the evaluation
of 10 high-fidelity evaluations of {βCaL,βKr} on male drug-
induced arrhythmogenesis. Left, the virtual electrocardiograms
showcase the effect that various drug-induced ion channel
blocking combinations have on the male heart. Here, only one
exploratory sample (βCaL = 6.7%, βKr = 92.6%) resulted in
reentrant arrhythmia in the male heart. The other {βCaL,βKr}
combinations affected the QT interval, but did not lead to
arrhythmogenesis. In the upper middle plot, the NL = 50
low-fidelity evaluations are shown together with the first 10
exploratory high fidelity arrhythmogenicity classifications. On
the upper right, the initial multi-fidelity Gaussian process risk
classifier for male arrhythmogenesis is shown. Concomitantly,
Figure A3 showcases a male single-fidelity risk classifier, only
taking into account these high-fidelity arrhythmia development
evaluations. Comparing the upper panel plots of Figure 7 with
Figure A3, it can be seen that taking the low-fidelity classification
data into account in training a Gaussian process classifier
significantly aids the precision of the high-fidelity classifier with
a limited amount of samples. This is the power of multi-fidelity
Gaussian process classification. In the lower panel plots of
Figure 7, we showcase the multiscale evaluation of 15 additional
high-fidelity active learning samples. These samples allowed us
to capture the bias in the low-fidelity predictions (see Equation
13) showcased in more detail in Figure A5 (left). The virtual
electrocardiogram recordings of a subset of these active learning
samples, four arrhythmic and four non-arrhythmic samples, are
shown in the lower left and mid plots, respectively. Finally, the
fully explored and exploited male multi-fidelity arrhythmogenic

Frontiers in Physiology | www.frontiersin.org 9 August 2021 | Volume 12 | Article 708435159



Peirlinck et al. Sex Differences in Drug-Induced Arrhythmogenesis

FIGURE 6 | Sex-specific sensitivity analysis drug-induced ion channel blocking on de- and repolarization abnormalities. (Upper) The effect of

drug-induced ion channel blocking on the male (left) and female (right) midwall transmembrane potential evolution. The black lines represent the baseline male and

female action potential, without any ion channel blocking. The green and purple lines represent the transmembrane potential evolution for 5,000 distinct IKr, INa, INaL,

ICaL, IKs, Ito, and IK1 ion channel blocking combinations. (Lower) Normalized marginal effects of ion channel blocking on early afterdepolarizations development in

male (left) and female (right) midwall cells. Negative normalized marginal effects highlight ion channel blocking leading to anti-arrhythmic effects, whilst positive

marginal effects highlight the ion channels for which drug-induced blocking can have important pro-arrhythmic consequences.

risk classifier is shown in the lower-right plot, with NL = 50 and
NH = 25 low- and high-fidelity risk evaluations, respectively.

Figure 8 showcases the training of the female multi-fidelity
arrhythmogenic risk classifier. In evaluating 10 high-fidelity Latin
hypercube samples, five ion channel blocking samples drove the
female heart to arrhythmogenesis, as shown in the upper middle
plot. The electrocardiograms of two arrhythmic and two non-
arrhythmic samples are shown in the upper left plots. The upper
right plot depicts the initial female multi-fidelity drug-induced
arrhythmogenicity classifier, taking into account all low-fidelity
abnormality classification samples and the first 10 exploratory
high-fidelity drug-induced arrhythmogenesis evaluations. Again,
comparing this multi-fidelity classifier to the single-fidelity
multiscale classifier shown in Figure A4 showcases the power of
multi-fidelity Gaussian process risk classification. Through active
learning, the low- to multi-fidelity bias (Equation 13) is inferred
from 15 additional high-fidelity arrhythmogenic risk evaluations
and depicted in Figure A5. Compared to the male heart, our
results showcase a larger low- to multi-fidelity bias for the
female heart. The lower left and mid plots in Figure 8 delineate
the virtual electrocardiograms of four arrhythmogenic and
four non-arrhythmogenic high-fidelity active learning sample

evaluations, respectively. The final female multi-fidelity drug-
induced arrhythmogenic risk classifier is shown in the lower-
right plot.

Both male and female multi-fidelity drug-induced
arrhythmogenicity classifiers highlight the pro-arrhythmic
effect of IKr ion channel blocking and the anti-arrhythmic effect
of ICaL ion channel blocking. For the male heart, we predict
drug-induced arrhythmogenicity at 81.7% IKr blocking when
there is no ICaL blocking. At 25.0, 50.0, and 75.0% ICaL blocking,
the critical βKr is 83.8, 88.6, and 94.6%, respectively. For 100%
ICaL blocking, no arrhythmia develops, regardless of the amount
of IKr blocking. For the female heart, our risk classifier predicts
drug-induced arrhythmogenesis at 43.7% blocking without any
ICaL blocking. For 25.0, 50.0, 75.0, and 100% ICaL blocking,
arrhythmia develops at 48.1, 52.2, 56.5, and 59.9% IKr blocking,
respectively. Overall, the female heart can be expected to be
significantly more prone to drug-induced arrhythmogenicity.

3.4. Sex-Specific Drug Risk Stratification
Figure 9 demonstrates how we use our male and female
multifidelity arrhythmogenicity classification boundary to
perform a sex-specific drug risk assessment. More specifically, we
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FIGURE 7 | Male multi-fidelity drug-induced arrhythmogenic risk classifier. (Upper) Initial exploration of the male drug-induced arrhythmogenic risk parameter

space. The first 10 internal Latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for male drug-induced arrhythmogenicity, as showcased

in the upper middle plot with “dot” markers. Here, the low-fidelity samples from training the low-fidelity male midwall Gaussian process classifier are shown with “x”

markers. Virtual electrocardiograms of one arrhythmic and three normal {βKr,βCaL} samples are shown in the upper left column plots. The resulting drug-induced

arrhythmogenicity probabilities for the male heart is shown in the upper right plot. (Lower) Active learning exploration and exploitation of the male drug-induced

arrhythmogenic risk classification boundary. The multi-fidelity Gaussian process classifier was trained further using 15 additional active learning high-evaluations of

{βKr,βCaL} effects. On the lower left, four additional arrhythmic sample evaluations are shown. The lower panel middle plot showcases four additional sample

evaluations showcasing normal heartbeats. The final male multi-fidelity drug-induced arrhythmogenicity classification boundary is shown in the lower right plot.

calculate the drug-induced arrhythmogenic risk for dofetilide, a
high risk drug, chlorpromazine, an intermediate risk drug, and
diltiazem, a low risk drug. For each of these drugs, the drug-
specific color-coded block-concentration characteristics map
onto a trajectory in the βCaL/βKr plane. The intersection of this
trajectory with our trained classification boundary defines the
critical drug concentration at which arrhythmia can be expected
to develop. For dofetilide, the block-concentration curve
crosses the male and female arrhythmogenicity classification
boundary at 26.0x and 3.5x the drug’s effective free therapeutic
plasma concentration, respectively. For chlorpromazine, the
block-concentration curve does not cross the male classification
boundary, signifying this drug can be considered safe for men.
For women, the chlorpromazine block-concentration and
classification boundary intersect at a critical concentration of

80.1x. For diltiazem, the block-concentration trajectory does not
cross the male, nor the female arrhythmogenicity classification
boundary, showcasing this drug to be safe for both sexes.

4. DISCUSSION

4.1. Our Motivation for Multiscale Modeling
Until recently, the gold standard to assess pharmacological
pro-arrhythmic risk consisted of assessing the potential of a
drug (1) to cause pharmacological block of the rapid-delayed
rectifier potassium IKr current encoded by the human ether-
à-gogo related gene and (2) to prolong the QT interval in
electrocardiographic animal and human studies. Although these
biomarkers show good sensitivity, they are costly and have
poor specificity, potentially blocking safe new drugs from
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FIGURE 8 | Female multi-fidelity drug-induced arrhythmogenic risk classifier. (Upper) Initial exploration of the female drug-induced arrhythmogenic risk

parameter space. The first 10 internal Latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for female drug-induced arrhythmogenesis, as

showcased in the upper middle plot with “dot” markers. Here, the low-fidelity samples from training the low-fidelity female midwall Gaussian process classifier are

shown with “x” markers. Virtual electrocardiograms of two arrhythmic and two non-arrhythmic {βKr,βCaL} samples are shown in the upper left column plots. The

resulting drug-induced arrhythmogenicity probabilities for the female heart is shown in the upper right plot. (Lower) Active learning exploration and exploitation of the

female drug-induced arrhythmogenic risk classification boundary. The multi-fidelity Gaussian process classifier was trained further using 15 additional active learning

high-evaluations of {βKr,βCaL} effects. On the lower left, four additional arrhythmic sample evaluations are shown. The lower middle plot showcases four additional

non-arrhythmic sample evaluations. The final female multi-fidelity drug-induced arrhythmogenic risk classification boundary is shown in the lower right plot.

ever reaching the market (Sager, 2008). In response to this
problem, the Comprehensive in vitro Proarrhythmia initiative
was launched (Sager et al., 2014). This incentive aimed to
develop novel drug-induced arrhythmia biomarkers through a
combined in vitro and in silico approach. in vitro, insights into
the effect of drugs on multiple ion channels in the cardiomyocyte
were collected. In silico, these insights were used to develop
a mechanistic understanding how these ion channel blockings
affect cardiac electrophysiology and function. Over the past
decade, our in silico mechanistic understanding of the effects of
drugs on cardiac electrophysiology has taken big leaps forward.
As such, drug cardiotoxicity has been extensively studied in
ventricular myocyte models (Mirams et al., 2011; Passini et al.,
2017), transmural cable simulations (Moreno et al., 2013; Romero
et al., 2018), planar and cubic tissue slabs (Kubo et al., 2017;

Yang et al., 2020; Margara et al., 2021), and even ultra-high
resolution, multiscale heart models (Wilhelms et al., 2012;
Okada et al., 2015; Sahli Costabal et al., 2018a; Hwang et al.,
2019). Within this paradigm, multiple groups have used such
models to develop arrhythmogenic risk classifiers. These in
silico augmented biomarkers showcase improved sensitivity and
specificity with respect to the gold standard human ether-à-gogo
and QT prolongation guidelines (Passini et al., 2017; Li et al.,
2019). Currently, these in silico arrhythmogenicity biomarkers
focus mainly on lower-fidelity isolated cardiac cell models
(Lancaster and Sobie, 2016; Britton et al., 2017; Fogli Iseppe et al.,
2021) or simplified cable simulations (Polak et al., 2018; Romero
et al., 2018; Yang et al., 2020). The underlying motivation for
such an approach is the role of cellular early afterdepolarizations
and repolarization failures in providing a trigger for the
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FIGURE 9 | Sex-specific drug-induced arrhythmogenic risk assessment. Male (Upper) and female (Lower) drug-induced arrhythmogenic risk assessment for

dofetilide, a high risk drug, chlorpromazine, an intermediate risk drug, and diltiazem, a low risk drug. The color-coded line represents drug-specific

concentration-dependent ICaL/IKr ion channel blocking trajectory, normalized with respect to the drug’s effective free therapeutic plasma concentration. The gray

diamond shaped marker highlights the critical concentration, annotated in the plot’s bottom corner, at which the drug’s block-concentration trajectory crosses the

mean multi-fidelity arrhythmogenicity classification boundary.

development of arrhythmia. Nevertheless, arrhythmogenicity
is not completely governed by, nor exclusively limited to,
depolarization or repolarization abnormalities (Pugsley et al.,
2015). Overall, the spatial dispersion of repolarization within
the ventricular myocardium has been identified as the principal
arrhythmogenic substrate (Antzelevitch and Burashnikov, 2011).
A recent computational multiscale cardiac electrophysiology
study showcased that the electrotonic coupling effect in tissue
is an essential factor to predict drug effects on the living organ
(Kubo et al., 2017). More specifically, computational 2D tissue
slab results revealed no tachyarrhythmia in the presence of early
afterdepolarizations at the cellular level, and arrhythmogenic
induction in between the endocardial and midwall tissue
layers, rather than in the midwall tissue itself. As such, it
can be appreciated that accurate mechanistic understanding of
arrhythmogenesis requires a high-fidelity multiscale modeling
approach coupling the effect of drugs to subcellular ion channel
activity, to cell-to-cell coupling at the tissue scale, and the tissue’s
three-dimensional heterogeneous and anisotropic organization
at the organ scale.

4.2. Our Motivation for Multi-Fidelity
Gaussian Process Classification
The current lack of multiscale computional modeling in the
development of novel in silico augmented arrhythmogenic
risk classifiers can be associated to their computational cost.
Whereas a single cell action potential takes seconds to compute
on a single CPU, a coupled cell-tissue-organ scale exposure-
response simulator can easily take multiple hours to compute
on a high performance computing cluster (Towns et al., 2014;
Sahli Costabal et al., 2018a). Upon developing a risk classifier that
evaluates the arrhythmogenic susceptibility to a whole series of
drugs at multiple drug concentrations, the computational burden
of performing a multiscale evaluation for each case becomes too
high. To overcome this limitation, our study took a different
approach. Instead of evaluating the case-by-case drug- and
concentration-specific response, we trained a risk classifier based
on the most important drug-induced ion channel blockings. We
used a combined multiscale modeling and machine learning
approach, entailing logistic regression, single- and multi-fidelity
Gaussian process classification, and active learning techniques.
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First, we quantified the principal role that drug-affected ion
channel currents play in developing arrhythmia. Using these
insights, we established a two-dimensional drug blocking
parameter space in which we evaluated the arrhythmogenic
susceptibility of various drug-induced ion channel blocking
combinations. Next, we relied on Gaussian process classification
to delineate the arrhythmogenicity border within the considered
parameter space. Given the high computational cost of each
multiscale evaluation, we set up a multi-fidelity framework.
Here, we used cellular midwall cell evaluations as a low-
fidelity proxy for arrhythmogenic risk classification. This low-
fidelity classifier was subsequently used to inform the underlying
shape of the multi-fidelity classifier. Doing so, we minimize
the amount of high-fidelity evaluations within the studied
parameter space, and still end up with a precise multiscale
arrhythmogenic risk classification boundary. This multi-fidelity
ion channel blocking classifier subsequently allows us to post-
process the intrinsic arrhythmogenic risk for each possible drug
and concentration at no additional computational cost, without
losing accuracy of the underlyingmultiscale arrhythmic and non-
arrhythmic classification. We took advantage of the probabilistic
nature of our Gaussian process classifiers to implement an
effective data acquisition via active learning strategies. These
strategies sought a balance between parameter space exploration
and classification boundary exploitation. Consequently, our
methodology allowed us to maximized classifier accuracy under
a constrained computational budget and provided a significant
advantage over other classifiers including logistic regression and
support vector machines.

4.3. Our Motivation for Studying Sex
Differences
About a century ago, sex differences in cardiac electrophysiology
were reported for the first time (Bazett, 1920). Throughout
the past two decades, these insights have matured into the
recognition that female sex is an essential risk factor for multiple
adverse cardiac events (Yarnoz and Curtis, 2008). Especially for
drug-induced arrhythmogenesis, women turn out to be impacted
twice as much as men (Makkar, 1993; James et al., 2007; Coker,
2008). Nevertheless, the effect of sex differences on cardiac
electrophysiology and drug-induced arrhythmogenicity remain
largely underexplored. With current sex-agnostic population-
based models (Muszkiewicz et al., 2016; Li et al., 2019) being
calibrated on in-vitro studies, which tend to be male-dominated
(Ramirez et al., 2017), sex bias is expected to propagate through
these novel in silico augmented arrhythmogenic risk classifiers.
This study sought to take female sex into account as an
independent biological variable by developing two sex-specific
in silico augmented multiscale arrhythmogenic risk classifiers.
To accomplish this, we first extended the multiscale envelope of
studying sex-differences in cardiac electrophysiology beyond the
cell or tissue level (Yang et al., 2017; Fogli Iseppe et al., 2021)
up to the organ scale. Next, we used the developed framework
to delineate male vs. female arrhythmogenic sensitivity to drugs.

4.4. Male vs. Female Cardiac
Electrophysiology Across the Scales
Our male and female cell models were based on a high-
throughput quantitative assessment of genome-scale sex
differences in male and female human endo- and epicardial tissue
(Gaborit et al., 2010). The resulting female endo- and epicardial
action potential duration is significantly longer than the male
action potential durations. Both the male and female endo- and
epicardial action potential durations in this study are smaller
than those computed in other studies (Yang and Clancy, 2012).
Whereas other studies considered the baseline O’Hara-Rudy
model and ion channel conductances to form the male baseline
cell model (Yang and Clancy, 2012), our approach acknowledged
the originally reported data population (O’Hara et al., 2011)
and regarded the baseline model as a mixed 56% male / 44%
female generalized model. Despite these differing views, our
computed action potential durations fall well within the reported
ranges based on experimental variability (Gaborit et al., 2010;
Yang and Clancy, 2012). Similarly, the range of our sex-specific
endo- and epicardial action potential durations are in agreement
with reported populations of ventricular cell models (Britton
et al., 2017). Our midwall cell action potential durations also fall
within the same reported population variability. Averaged over
the three cell types, our simulated female cells take 30% longer
to repolarize than their male counterparts, which is consistent
with the reported 29% relative female-to-male action potential
differences for human ventricular myocytes (Verkerk et al.,
2005). Focusing on the restitution behavior, our reported male
and female action potential durations at 90% repolarization in
Figure 3 agree favorably with previously reported experimental
data for human tissue (Morgan et al., 1992; Drouin et al., 1995;
Li et al., 1998; ten Tusscher et al., 2004; O’Hara et al., 2011).

At the organ scale, the combined effect of sex-specific
cell-scale ion channel activity, tissue-scale conductivity and
organ-scale geometry results in a shorter QRS and longer QT
interval for women. Both results are in agreement with clinical
population studies. Female vs. male QRS shortening of 5 ms,
vs. 4 ms here, and a QT prolongation of 20 ms, vs. 63 ms here,
have been reported in the literature (Vicente et al., 2014). The
mismatch between a recorded 29%AP prolongation and a clinical
QT prolongation of ‘only’ 2-6% has been hypothesized to be
related to the mismatch between single isolated cell behavior and
three-dimensional electrophysiologically coupled heterogeneous
tissue (Verkerk et al., 2005). Indeed, our multiscale models
showcase that a 30% action potential prolongation between both
sexes at the cell scale only resulted in a male QT interval which
was 15% shorter than the female QT interval at the organ scale.
Nevertheless, this sex difference in QT interval duration is still on
the higher end. This discrepancy seems to be related to our male
multiscale heart model. The computed male QT interval of 348
ms corresponds to the 5th percentile of the clinically reported
ranges for men (Asatryan et al., 2021), whereas our computed
female QT interval of 411 ms aligns perfectly with the clinically
reported range of 386–445 ms (Vicente et al., 2014). As our
multiscale models demonstrated the dominant role that changes
in ion channel activity have on the timing of the T wave end,
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there is a strong need for an in-depth experimental study on the
sex-specific differences in functional ion channel activity of non-
diseased human ventricular myocytes. Unfortunately, we are not
aware of such data being currently available. Similarly, studies
have shown that the inclusion of interventricular and apicobasal
ion channel gradients at the tissue scale can further impact ECG
morphology (Okada et al., 2011). Emerging electrocardiographic
imaging techniques show great potential to study sex differences
in healthy tissue-scale conductivity in more detail but remain
challenging (Cluitmans et al., 2018; Andrews et al., 2019).

4.5. A Novel Multiscale Sex-Specific
Arrhythmogenic Risk Classification
Given the high amount of ionic currents constituting
the electrophysiological behavior of human ventricular
cardiomyocytes (Equation 4), studying the drug-induced
risk to develop arrhythmia requires the exploration of a large
parameter space constituting different amounts of drug-induced
blocking of each and every possible ion channel. To keep the
parameter space computationally tractable, we focused on
the seven most important ion channels for arrhythmogenic
risk stratification, and used logistic regression to quantify
their relative importance. The normalized marginal effects of
drug-induced ion channel blocking on arrhythmic sensitivity
in Figure 6 identify βKr and βCaL as the key pro-arrhythmic
and anti-arrhythmic ion channel blockings, respectively. This
conclusion is consistent with previous sex-agnostic risk analyses
(Crumb et al., 2016), and is thus found to hold true across men
and women. Interestingly, our analysis highlights a relatively
decreased protective role of L-type Ca2+ channel blocking in
women. The higher amount of recorded de- and repolarization
abnormalities confirmed the higher susceptibility of female
cardiomyocytes to drug-induced arrhythmogenicity. These
results agree well with experimental exploratory studies on
cell-scale sex differences in drug-induced arrhythmogenicity
(Liu et al., 1999; Verkerk et al., 2005). The male and female
multi-fidelity arrhythmogenic risk classifiers in Figures 7, 8,
respectively quantify this differing risk with increased fidelity,
as shown in Figure A5. Overall, we found the female heart to
demonstrate arrhythmogenicity at lower drug-induced IKr and
ICaL ion channel blocking than the male heart. Interestingly, our
previous work on sex-agnostic arrhythmia risk assessment in the
heart showcased an arrhythmogenic risk classification boundary
in between the male and female arrhythmia risk classification
boundary developed in this study (Sahli Costabal et al., 2019c).
As such, we conclude that a generalized sex-agnostic arrhythmia
risk classification underestimates and overestimates the cardiac
toxicity of drugs for women and men, respectively. This directly
puts women at higher risk for drug-induced arrhythmogenicity
events, explaining the higher incidence reported in women
(Makkar, 1993; James et al., 2007; Coker, 2008).

In applying our novel sex-specific arrhythmogenic risk
classifier to a high, intermediate and low risk drug, we quantify
this increased risk for women in more detail. For dofetilide,
a class III anti-arrhythmic agent, both the male and female
arrhythmia risk classifier confirm the general notion that

dofetilide can have dramatic consequences if not dosed correctly
(Briceño and Supple, 2017). For men, our risk classifier predicts
a spontaneous transition from a sharp but smoothly propagating
excitation pattern into rapid, irregular, asynchronous activation
patterns at a critical concentration of 26.0x. For women, the
same risk is predicted at 3.5 times the drug’s free therapeutic
plasma concentration. These results agree well with clinical trials
where female sex was associated with three-fold higher odds
of dofetilide discontinuations or dose reductions relative to the
male sex (Pokorney et al., 2018). Most dosage reductions led
to half of the recommended dosage for women. Interestingly,
women were highly underrepresented in original clinical trials
assessing the safety of dofetilide, only accounting for 28 and
16% of the total amount of enrolled patients (Køber et al.,
2000; Singh et al., 2000). For chlorpromazine, an antipsychotic
drug, our female arrhythmogenic risk classifier estimated a
risk for arrhythmogenesis at 80.1x concentration, whilst for
men no arrhythmogenicity was predicted. As expected from
such a high critical risk concentration, chlorpromazine-induced
arrhythmogenicity can be expected to be uncommon. Indeed,
a comprehensive literature search spanning four decades of
clinical case report data identified only seven published cases
of chlorpromazine-associated ventricular arrhythmia. All
these cases involved women (Hoehns et al., 2001). Finally,
for diltiazem, a calcium channel blocker used to manage blood
pressure and chest pain, the drug’s concentration-block trajectory
does not cross ourmale nor female multi-fidelity arrhythmogenic
risk classification boundary. Consequently, we predict no
arrhythmogenesis for diltiazem and consider this drug to be
safe, both for men and women. This risk assessment corresponds
well with diltiazem’s ‘low/no arrhythmia risk’ classification by
a team of clinical cardiologists and electrophysiologists based
on publicly available data and expert opinion (Colatsky et al.,
2016). Additionally, the arrhythmogenic safety of diltiazem
was also confirmed by recent sex-agnostic population-based
arrhythmia risk classifiers from other research groups (Lancaster
and Sobie, 2016; Li et al., 2019). Importantly, these sex-specific
drug-induced arrhythmogenic risk assessments assume no other
medications to be taken concomitantly with these drugs.

In this study, we first build a multiscale mechanistic
understanding of arrhythmogenesis in the male and female
heart, and subsequently use these computational insights
to evaluate the sex-specific drug-induced arrhythmogenic
risk. This approach is inherently different from a recent first
approach toward sex-specific drug-induced arrhythmogenicity
classification (Fogli Iseppe et al., 2021). In this study, the authors
focus on the in silico computed effect of drugs onmale and female
human epicardial cardiomyocytes. Using statistical learning
techniques, they identify the key synthetic action potential
biomarkers contributing to the most accurate prediction of
arrhythmogenicity outcomes for men and women specifically.
This approach relied on a ground truth classification assumption
that risky drugs are dangerous for men and women, and safe
drugs are safe for both men and women. These classifications
were deduced from reported adverse event analyses performed
within the Adverse Drug Event Causality Analysis (Woosley
et al., 2017). With female sex reported to be historically highly
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underrepresented in clinical studies (Vitale et al., 2017), such
an assumption could potentially be problematic, especially
for older drugs. Our study offers the benefit of using a full
multiscale framework to inform arrhythmogenic risk from a
mechanistic understanding. Apart from this differing approach
to arrhythmogenic risk classifier development, our study also
takes into account the effect of midwall cells in an individual’s
predisposition to arrhythmogenesis (Drouin et al., 1995; O’Hara
et al., 2011) and did not assume the baseline O’Hara-Rudy
model to represent a purely male endocardial cell model,
as discussed in section 2.2.1. Consequently, these differing
approaches render a one-on-one comparison between our
studies difficult. Nonetheless, for chlorpromazine, the only
drug that was studied in both studies, both our studies classify
this drug safe for men and at medium risk for women. Based
on our sex-specific arrhythmia risk classifiers in which the
male arrhythmogenic {βCaL, βKr} risk zone ⊂ the female
arrhythmogenic {βCaL, βKr} risk zone, our classifiers do not
predict any drug to have a higher risk for women than for
men. Interestingly though, the alternative approach identified
specific drugs that are safer for women than for men (Fogli
Iseppe et al., 2021). This disagreement might be associated with
the current ambiguity on functional sex differences in Ca2+

handling (Parks and Howlett, 2013; Parks et al., 2014) which led
the authors to disregard the genomic sex differences in sodium
potassium INaK pump and Ca2+ uptake channel activities
and relatively upscale the female sodium calcium exchange
currents we deduced in Table 1. Currently, experimental data
on Ca2+ in healthy human myocardium are lacking, and
further investigation on these functional sex differences is
warranted to improve our sex-specific arrhythmogenic risk
classifiers in the future. Additionally, limiting our risk classifier
to only take βCaL and βKr into account might not uncover
this behavior. It can for example be seen from Figure 6 that
βNaL has a stronger anti-arrhythmic effect for female midwall
cardiomyocytes than it does for men, and thus including this
feature as a third drug-induced ion channel blocking input
feature to our arrhythmia risk classifier might lead to male
and female three-dimensional arrhythmogenic risk zones that
do not completely overlap. Apart from these discrepancies,
the overall conclusion is the same: including sex as a new
independent factor in preclinical cardiotoxicity risk assessment
is crucial to avoid potentially life-threatening consequences for
the female population (Chorin et al., 2017). Given the absence of
reliable large-scale arrhythmogenic risk assessments for women
specifically, and the male dominance in clinical studies, our study
forms an important first step toward mechanistically uncovering
the role that sex differences on the subcellular, cellular, tissue,
and organ scale play in drug-induced arrhythmogenicity. An
improved understanding of these sex-specific mechanisms will
be crucial to provide new therapeutic approaches that do no
longer put women at increased risk.

4.6. Limitations and Outlook
Although our proposed methodology holds great promise to
rapidly assess the sex-specific risk of a new drug, without relying
on clinically reported adverse event occurrence, it has a few

limitations: first, our sex-specific multiscale exposure-response
simulators are only as good as their input. In the long term, more
sex-specific human cell and tissue experiments are needed to
fine-tune the cell- and tissue-scale sex differences in ion channel
activity and conductivity currently deduced from genomic data.
Such experimental data would also be highly desirable to resolve
the current debate on the existence or non-existence of sex
differences in Ca2+ handling. The lacking human experimental
data for more in-depth sex-specific validation of our multiscale
simulation outcomes suggest important avenues for further
studies. Novel developments of male and female hIPSC-derived
cell lines might provide an interesting route to study this further
(Huo et al., 2019). Second, our developed risk classifiers currently
focused on the risk of drug-induced IKr and ICaL blocking. Even
though we identified these ion channel blockings to be the most
critical channels for drug-induced arrhythmogenesis for both
the male and female heart, arrythmogenic risk stratification for
drugs that mainly target other channels might require including
additional ion channel blockings to our risk classifiers. As our
results in Figure 6 showcase, extending both the male and female
risk classifiers to take into account drug-induced IKs and INaL
blocking would be the most logical next step. Third, given the
role that the excitation rate has on the electrophysiological
behavior of the human heart, we aim to extend our classifiers
to take into account heart rate in our future work. Fourth,
at this point, we did not take into account male and female
population variability. As additional experimental data becomes
available, more in-depth sex-specific population studies form an
interesting next step. We have developed efficient frameworks to
quantify and propagate such uncertainty through computational
models in the past (Peirlinck et al., 2019; Sahli Costabal et al.,
2019a), and look forward to apply these techniques to this
problem. Prior to this, a critical and logical next step would be
to validate our method using our own independent experiments
with human adult cardiomyocytes, and ideally, healthy human
volunteers. Ultimately, with a view toward precision cardiology,
this sex-specific approach forms an important initial step toward
identifying the optimal course of care for each individual patient
based on personalized block-concentration characteristics and
personalized cardiac heart models (Trayanova, 2018; Peirlinck
et al., 2021; Rodero et al., 2021).

5. CONCLUSION

The objective of this study was to quantify sex differences in
drug-induced arrhythmogenesis. Toward this goal, we created
sex-specific male and female multiscale exposure-response
simulators. These simulators differ in subcellular ion channel
activity, tissue-level conductivity, and organ-scale geometry.
Using logistic regression, we identified the rapid delayed rectifier
potassium channel IKr and the L-type calcium channel ICaL as
the most importance ion channels to modulate male and female
arrhythmogenesis on the cellular level. Based on these findings,
we created an exploratory ion channel block parameter space
and combined low-fidelity cell-scale and high-fidelity multiscale
modeling to delineate arrhythmogenic risk classification
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boundaries. Our study quantitatively confirms and delineates
women’s intrinsically higher risk for drug-induced arrhythmia
both on the cell and organ scales. We applied our new sex-
specific multi-fidelity pharmacological risk classifiers to assess
critical drug concentrations for a high, an intermediate, and a
low risk drug. For the high risk drug dofetilide, our predicted
critical drug concentration for female hearts is seven times
lower than for male hearts. This result explains, at least in part,
why women are more likely than men to develop drug-induced
arrhythmia. Acknowledging and understanding sex differences
in drug safety evaluation is critical when developing new drugs
and prescribing existing drugs in combination with other drugs.
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A. APPENDIX

A.1. Single-Fidelity Cell-Scale Risk
Classifiers
Figures A1, A2 showcase the exploration and exploitation
progress in training a single-fidelity Gaussian process classifier
for drug-induced de- and repolarization abnormalities in male
and female midwall cardiomyocytes respectively. In the upper
middle plots, we summarize the binary risk classifications in 25
latin hypercube samples of the B = {βKr,βCaL} using Myokit.
We highlight two exploratory {βKr,βCaL} sample evaluations
from each class in the upper left plot. Using this initial B

classification dataset, we trained the initial risk classifier shown
in the upper right plot. Subsequently, the risk classification

FIGURE A1 | Male single-fidelity drug-induced risk classifier. (Upper) Initial exploration of the drug-induced de- and repolarization abnormality risk parameter space.

The first 25 internal latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for male midwall cell abnormalities, as showcased in the upper

middle plot. Transmembrane potential evolution profiles of two normal and two early depolarizing samples are shown on the upper left plot. Using this exploratory B

dataset, an initial single-fidelity drug-induced risk classifier was trained for the male midwall cell, see upper right subplot. (Lower) Exploration and exploitation of the

drug-induced risk classification boundary using active learning. The Gaussian process classifier was trained further using 25 additional active learning {βKr,βCaL}
samples. On the lower left, four active learning sample evaluations resulting in abnormalities are shown. The lower middle plot showcases four active learning sample

evaluations that showed normal action potentials. The final male cellular drug-induced risk classification boundary is shown in the lower right plot.

boundary was further explored and exploited using active
learning. By actively sampling new {βKr,βCaL} samples with
high variance in the posterior Gaussian Process classification
distribution close to the classification boundary, we cost-
effectively enhance the accuracy of our classification boundary.
We showcase four active learning samples for which we recorded
de- or repolation abnormalities in the lower left plots, and four
active learning samples for which no abnormalities were recorded
in the lower middle plots. With a total of 25 additional active
learning samples, we produced the cellular male and female
single-fidelity risk classifier displayed in the lower right plots of
Figures A1, A2 respectively. Comparing the initial and final risk
classifier, we showcase the power of active learning to improve
classification confidence.
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FIGURE A2 | Female single-fidelity drug-induced risk classifier. (Upper) Initial exploration of the drug-induced de- and repolarization abnormality risk parameter space.

The first 25 internal latin hypercube samples of the B = {βKr,βCaL} parameter space were evaluated for female midwall cell abnormalities, as showcased in the upper

middle plot. Transmembrane potential evolution profiles of two normal and two early depolarizing samples are shown on the upper left plot. Using this exploratory B

dataset, an initial single-fidelity drug-induced risk classifier was trained for the female midwall cell, see upper right subplot. (Lower) Exploration and exploitation of the

drug-induced risk classification boundary using active learning. The Gaussian process classifier was trained further using 25 additional active learning {βKr,βCaL}
samples. On the lower left, four active learning sample evaluations resulting in abnormalities are shown. The lower middle plot showcases four active learning sample

evaluations that showed normal action potentials. The final female cellular drug-induced risk classification boundary is shown in the lower right plot.

A.2. Single-Fidelity Multiscale
Arrhythmogenic Risk Classifiers
Figure A3 showcases the exploration of male drug-induced
arrhythmogenic risk classification based on 10 high-fidelity
evaluations of the B = {βKr,βCaL} parameter space. By
training a single-fidelity Gaussian process classifier with a dataset
that comprised one arrhythmogenic and nine non-arrhythmic
{βKr,βCaL} samples (see Figure A3 - left and mid), the resulting
exploratory Gaussian process risk classifier (Figure A3 - right)
predicts a low probability for drug-induced arrhythmogenesis.
It can be expected that a significant amount of additional
computationally expensive high-fidelity sample evaluations
would be needed to accurately detect the yH = 1 region
(Sahli Costabal et al., 2019b). If we compare this exploratory
single-fidelity arrhythmogenic risk classifier to the exploratory

multi-fidelity arrhythmia risk classifier shown in the upper panels
of Figure 7, it can be seen that the multi-fidelity classifiers
greatly benefits from the candidate boundary encoded in the
low-fidelity data. As such, for the same amount of high-fidelity
evaluations, the exploratory multi-fidelity arrhythmogenic risk
classifier in Figure 7 showcases a significantly higher precision
and accuracy than the exploratory single-fidelity arrhythmia
risk classifier in Figure A3. This power of multi-fidelity risk
classification, opposed to single-fidelity risk classification, can
also be appreciated in Figure A4. Even though the initial
exploratory dataset consisted of five arrhythmogenic and five
non-arrhythmic samples (see Figure A4 - left and mid), the
resulting single-fidelity risk classifier (Figure A4 - right) provides
lower classification confidence than the exploratory multi-fidelity
risk classifier in Figure 8 (top).
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FIGURE A3 | Male single-fidelity multiscale arrhythmia risk classifier. Initial single high-fidelity exploration of the male drug-induced arrhythmogenic risk parameter

space. The middle plot showcases 10 internal latin hypercube {βKr,βCaL} sample evaluations of arrhythmogenesis in the male heart. The virtual electrocardiograms for

one arrhythmogenic and three non-arrhythmic sample evaluations are shown in the left plots. The resulting exploratory male single high-fidelity drug-induced

arrhythmogenic risk classifier is shown in the right plot.

FIGURE A4 | Female single-fidelity multiscale arrhythmogenic risk classifier. Initial single high-fidelity exploration of the female drug-induced arhhythmogenic risk

parameter space. The middle plot showcases 10 internal latin hypercube {βKr,βCaL} sample evaluations of arrhythmogenesis in the female heart. The virtual

electrocardiograms for two arrhythmogenic and 2 non-arrhythmic sample evaluations are shown in the left plots. The resulting exploratory female single high-fidelity

drug-induced arrhythmogenic risk classifier is shown in the right plot.

A.3. Low- Versus Multi-Fidelity
Arrhythmogenicity Bias
Figure A5 highlights the recorded mismatch between the use
of a low-fidelity midwall cell proxy for arrhythmogenic risk
classification and a multi-fidelity risk classifier taking into
account high-fidelity multiscale evaluations of the drug effect on
the transmembrane potential evolution at the cell, tissue, and
organ scale.

It can be seen that for the male arrhythmogenicity classifier,
this mismatch is rather limited. However, for the female
arrhythmogenic risk classification boundaries, the low-fidelity
risk classification boundary predicts arrhythmogenesis at lower
drug-induced {IKr, ICaL} blocking combinations. This mismatch
showcases the importance of taking the effect of electrotonic
coupling and repolarization dispersion across the three-
dimensional heterogeneous tissue organization into account.
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FIGURE A5 | Low- vs. multi-fidelity arrhythmogenicity mismatch. Mismatch between the low-fidelity midwall cell proxy and the full high-fidelity multiscale simulations

for arrhythmogenic risk classification. For the male arrhythmogenic risk classification (Left), this mismatch is limited. For the female arrhythmogenicity classification

(Right), the multi-fidelity classifier predicts arrhythmogenesis at larger {IKr, ICaL} channel blocking combinations than the low-fidelity risk classifier.
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TABLE A1 | Sex-based differences in ion channel subunit expression from non-diseased human ventricles.

Ion channel Gene/protein Epi Endo Mid

male female male female interp male female

INaL NaV1.5 310.6 260.8 426.8 373.8 403.5

Ratio 0.77 0.65 1.06 0.93 1.06 0.93

Based on 1NaV1.5 expression (O’Hara et al., 2011).

IpCa Ca2+ ATPase 4 377.0 682.1 426.8 685.2 540.5

Ratio 0.70 1.26 0.79 1.27 1.97 3.17

Based on 1Ca2+ ATPase 4 expression (Yang and Clancy, 2012).

IKr hERG 179.5 144.2 164.8 130.5 149.7

Ratio 1.20 0.96 1.10 0.87 0.88 0.70

Based on 1hERG expression (O’Hara et al., 2011).

IKs MinK 13.6 7.3 11.9 5.8 9.2

Ratio 1.16 0.93 1.10 0.88 1.10 0.88

Based on 1/3 1 MinK expression (Yang and Clancy, 2012).

IK1 Kir2.3 91.2 21.4 92.7 55.2 76.2

Ratio 1.07 0.76 1.07 0.91 1.39 1.18

Based on 1/3 1 Kir2.3 expression (Yang and Clancy, 2012).

INaCa,i/ss NCX1 821.1 801.4 754.5 739 747.7

Ratio 1.10 1.07 1.01 0.99 1.41 1.38

Based on 1 NCX1 expression (O’Hara et al., 2011).

INaK Na+/K+ ATPase α1 207.7 513.4 269 622.5 424.54

Na+/K+ ATPase α3 1481 917.8 1547.6 1014.2 1312.904

Ratio 0.92 0.87 1.00 1.00 0.70 0.70

Based on 1/3 1Na+/K+ ATPase α1 and 2/3 1Na+/K+ ATPase α3 expression (Yang and Clancy, 2012).

IKb KV1.5 12.7 6.5 19.5 10.5 15.54

Ratio 0.82 0.42 1.25 0.68 1.25 0.68

Based on 1KV1.5 expression (O’Hara et al., 2011).

Ca2+ release RYR2 6213.7 4890.6 5463.9 5582.5 5516.084

Ratio 1.13 0.89 0.99 1.01 1.68 1.72

Based on 1RYR2 expression (O’Hara et al., 2011).

Ca2+ uptake SERCA2 4850.5 6728.4 3410.4 3921.9 3635.46

Ratio 1.33 1.85 0.94 1.08 0.94 1.08

Based on 1SERCA2 expression (Yang and Clancy, 2012).

[CMDN] CALM3 1326.9 1955.5 1206.9 1600.5 1380.084

Ratio 0.97 1.28 0.92 1.11 0.92 1.11

Based on 2/3 1 CALM3 expression (Yang and Clancy, 2012).

Overview of the sex differences in ion channel subunit expression for the channels used in our cell-scale and multi-scale computational models. The gene/protein data represents the

normalized relative expression (2-1Ct) deduced from Gaborit et al. (2010). The endocardial interp column represents the relative ion channel subunit expression for the hypothesized

56% male, 44% female model that the original endocardial O’Hara Rudy cell model was based on. To compute the individual ion channel activity scalings, we followed scaling rules

established by O’Hara et al. (2011) and Yang and Clancy (2012), as reported below each set of scaling ratios.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia and currently affects more 
than 650,000 people in the United Kingdom alone. Catheter ablation (CA) is the only AF 
treatment with a long-term curative effect as it involves destroying arrhythmogenic tissue 
in the atria. However, its success rate is suboptimal, approximately 50% after a 2-year 
follow-up, and this high AF recurrence rate warrants significant improvements. Image-
guidance of CA procedures have shown clinical promise, enabling the identification of 
key patient anatomical and pathological (such as fibrosis) features of atrial tissue, which 
require ablation. However, the latter approach still suffers from a lack of functional 
information and the need to interpret structures in the images by a clinician. Deep learning 
plays an increasingly important role in biomedicine, facilitating efficient diagnosis and 
treatment of clinical problems. This study applies deep reinforcement learning in 
combination with patient imaging (to provide structural information of the atria) and image-
based modelling (to provide functional information) to design patient-specific CA strategies 
to guide clinicians and improve treatment success rates. To achieve this, patient-specific 
2D left atrial (LA) models were derived from late-gadolinium enhancement (LGE) MRI 
scans of AF patients and were used to simulate patient-specific AF scenarios. Then a 
reinforcement Q-learning algorithm was created, where an ablating agent moved around 
the 2D LA, applying CA lesions to terminate AF and learning through feedback imposed 
by a reward policy. The agent achieved 84% success rate in terminating AF during training 
and 72% success rate in testing. Finally, AF recurrence rate was measured by attempting 
to re-initiate AF in the 2D atrial models after CA with 11% recurrence showing a great 
improvement on the existing therapies. Thus, reinforcement Q-learning algorithms can 
predict successful CA strategies from patient MRI data and help to improve the patient-
specific guidance of CA therapy.

Keywords: atrial fibrillation, catheter ablation, patient imaging, reinforcement learning, deep learning
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INTRODUCTION

Atrial fibrillation (AF) is one of the most common cardiac 
arrhythmias, affecting about 1–1.5% of the general population 
with prevalence predicted to double by 2050 (Lip et  al., 2007). 
Currently, the first-line treatment for AF is antiarrhythmic drug 
therapy, which can restore and maintain sinus rhythm 
(Zimetbaum, 2012). However, it has limited efficacy and can 
cause significant toxicity to organs outside the heart (Pollak, 
1999). Catheter ablation (CA) is being increasingly used as a 
first-line treatment for AF with clinical trials demonstrating 
its superiority over antiarrhythmic drugs (Bunch and Michael, 
2015). CA therapy is typically performed by the delivery of 
radiofrequency energy through a catheter which creates 
non-conductive lesions and thus, electrically isolates abnormal 
arrhythmogenic tissue from the rest of the heart.

AF is initiated by electrical triggers outside of the sinus 
node, typically near the pulmonary veins (PVs) – hence, 
pulmonary vein isolation (PVI) has become one of the 
cornerstones of CA (Bunch and Michael, 2015). However, a 
crucial issue concerning PVI and other ablation strategies is 
the high recurrence rate of AF post ablation (Jiang et  al., 
2014). This is often caused by PV reconnection post-ablation, 
which can occur in 94% of cases (Bunch and Michael, 2015). 
Moreover, multiple clinical trials have reported arrhythmia-free 
survival of only 50–75% at 1-year post ablation, with the 
highest recurrence rates associated with persistent AF cases 
(Kirchhof and Calkins, 2017) characterised by the presence of 
new AF triggers and drivers outside of the PVs. The latter 
have been strongly linked with atrial fibrosis (Nattel, 2016).

Fibrosis promotes AF via excessive collagen deposition in 
atrial tissue, which provides slow-conductive substrate for 
re-entrant drivers (rotors; Everett and Olgin, 2007; Boyle et al., 
2019). Late gadolinium enhancement (LGE) MRI has proved 
to be  an effective tool for non-invasive fibrosis quantification 
in AF patients, providing important information on spatial 
distributions of atrial fibrosis (Platonov, 2017). The availability 
of such data has also led to the development of patient-specific 
atrial models that link fibrosis distributions with the dynamics 
of rotors sustaining AF (McDowell et al., 2012; Boyle et al., 2019; 
Roy et  al., 2020).

Recently, patient imaging data and image-based models are 
increasingly used in combination with novel artificial intelligence 
(AI) algorithms (Davenport and Kalakota, 2019), specifically 
to understand the mechanisms of AF and improve CA therapy 
(Lozoya et  al., 2019; Feeny et  al., 2020). Deep learning in 
particular is becoming widely used in applications such as 
image segmentation and patient classification (Yang et al., 2020). 
A promising, but less explored area of AI is Reinforcement 
Learning, where an algorithm learns based on a reward structure, 
similar to how a child learns by receiving rewards and penalties 
(Qiang and Zhongli, 2011).

Reinforcement Learning operates by allowing a free-moving 
agent to explore and interact with a given environment. The 
agent learns not from a predefined set of rules, but rather 
from the consequence of the actions it takes. This provides a 
perfect analogy with an ablation procedure, where a catheter 

moves in an environment of a patient atrial image (or an 
image-based model), and the reward comes in the form of a 
successful procedure, whereas failure to treat AF is a natural 
penalty; optimisation of the procedure comes from a large 
number of trials. Thus, the Q-learning process is similar to a 
cardiologist performing multiple image-guided ablation 
procedures on different patients and learning to apply the most 
suitable lesions in each case.

This study uses Reinforcement Q-learning algorithms to 
predict patient-specific CA strategies on a set of LGE-MRI 
based atrial models. These models include main structural 
features of the left atrium (LA), such as PVs, and employ 
advanced image-processing techniques to represent patient-
specific fibrosis distributions and computational modelling to 
simulate AF scenarios.

MATERIALS AND METHODS

Image-Based 2D Atrial Models
LGE-MRI data was acquired from two different sources. First, 
86 scans were obtained from the 2018 STACOM segmentation 
challenge (Xiong et  al., 2021), with resolution of 
0.625 × 0.625 × 0.625 mm3, and corresponding segmentations of 
the LA, and the second dataset was acquired from St Thomas’ 
Hospital (Chubb et  al., 2018) from 18 AF patients, comprising 
of an additional 36 LGE-MRI images with a resolution of 
1.3 × 1.3 × 4.0 mm3, reconstructed to 0.94 × 0.94 × 2.0 mm3. The 
patient images were processed in CemrgApp (Razeghi et  al., 
2020) using the scar quantification pipeline to first produce 
patient-specific 3D LA geometries with raw LGE intensity 
distributions. Then, the image intensity ratio thresholding 
technique was applied to clearly differentiate between fibrotic 
regions and healthy tissue (Roy et  al., 2018). The resulting 
3D LA dataset was then fed into an existing algorithm which 
unwrapped to a standardised 2D LA disk (Williams et  al., 
2017). The workflow of the image-based 2D LA tissue model 
generation is shown in Figure  1.

The final 2D LA models were used to simulate patient-
specific AF scenarios, as described previously (Muffoletto et al., 
2021). The monodomain equations were combined with the 
ionic Fenton-Karma equations (Roy et  al., 2018) and solved 
on the 2D LA disks using the forward Euler method, using 
a temporal discretisation of 0.05 ms and a spatial discretisation 
of 0.3 mm. Zero-flux boundary conditions were implemented 
at the outer boundary of the disks and around the PVs. To 
model the slow-conducting properties of fibrosis, the 
monodomain diffusion coefficient was reduced from 0.05 mm2/s 
in healthy tissue to 0.0075 mm2/s in fibrotic patches.

Two AF scenarios were simulated for each LA model, each 
sustained by a rotor initiated in the tissue using a cross-field 
protocol, as shown in Figure  2. One rotor was initiated below 
the left superior PV (to initiate a rotor around the LSPV), 
while another was initiated between the inferior PVs (to initiate 
a free moving rotor). The distance between the two rotor 
initiation points was fixed at ~2.5 cm. In the example shown 
in Figure  2, a plane wave is initiated at the top of the tissue 
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and travels down two-thirds of the tissue, where the voltage 
on the left side of the tissue is then set to zero, initiating one 
rotor. The 2D LA models with simulated AF provided the 
environment for the Q-learning algorithm (see sections 
“Reinforcement Q-Learning Algorithm and Q-Learning Reward 
Structure” below). The same two AF scenarios (initial rotor 
locations) were used in both testing and training.

Once training and testing were completed, the successfully 
ablated tissue models were tested for rotor recurrence by 
attempting to initiate rotors in four different locations spread 
through the 2D LA tissue (resulting in simulation Scenarios 
1, 2, 3, and 4). This was done to see whether the ablation 
strategy that was successful in termination of rotors would 
also work in preventing the emergence of new rotors. Recurrence 
testing helps to evaluate the long-term success due to the 
issue with AF reoccurrence after current ablation strategies.

Reinforcement Q-Learning Algorithm
Q-Learning is initiated with a blank Q-table that assigns a 
value to each possible state to find the optimal policy for a 
given reward structure and therefore to maximise cumulative 
reward. The values in the table need to be  enumerated by 

doing an extensive search over the action state space and 
recording, which combinations lead to positive or negative 
rewards. The best path to take in the Q-Learning process is 
mathematically described by Bellman’s Optimality equation 
(Moni, 2021):

 V s max R s,a + V s( ) = ( ) ( )( )¢a g

Here, s is a particular state, a is the action, s′ is the state 
to which the agent moves to, γ is the discount factor, R(s,a) 
is the reward function, which takes a state s and action a 
and outputs a reward value, and V(s) is the value of a total 
reward for a particular state. This formula allows the agent 
to choose the path with the highest reward.

The 2D LA tissue model and simulated AF were used as 
an input for the Q-learning algorithm. Specifically, the agent’s 
environment is set to be  the combination of the 2D diffusion 
matrix (the diffusion coefficients assigned per pixel of the 2D 
tissue), the simulated voltage at every point in the 2D tissue 
and, the values of activation variables at those same space–time 
points. These variables present different structural and functional 
properties of the same 2D LA tissue model that was used as 
the environment for the ablating agent. Figure  3 shows the 

A B

C

D

FIGURE 1 | Generating image-based 2D left atrial tissues. (A) LGE-MR image (greyscale) with segmented LA (red). (B) The 3D LA with LGE-MRI intensity 
distribution and the PVs and LA appendage (LAA) clipped. (C) The thresholded 3D LA with fibrosis in red and healthy tissue in blue. (D) The LA unwrapped onto a 
standardised 2D disk, with fixed four PVs and the LAA and fibrotic areas mapped. PVs and LAA are labelled in (B,D).

A B C D

FIGURE 2 | Rotor initialisation in a 2D LA tissue model. Voltage distributions in consecutive moments of time are shown in (A)–(D), with red corresponding to high 
voltage, blue to the resting potential, and black to the PVs and area of fibrosis; yellow arrows show the directions of wave propagation. Green crosses show the 
locations of rotor initiation in two AF scenarios: a rotor illustrated in this figure corresponds to the lower right location, as seen in (C).
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most relevant part of the environment: 2D LA tissue structure 
with the voltage distribution in the form of a re-entrant wave, 
and the agent moving through this structure trying to terminate 
re-entry.

These variables were updated within an episode loop, which 
ran one different 2D LA tissue every episode, restarting the 
simulation with a new 2D tissue when a termination condition 
was reached. The LA tissues were shuffled during training and 
testing. Each batch consists of 64 randomly selected tissues. 
Within this episode loop, the initial state of the simulation 
was input into the environment and the agent was initiated 
and started to explore the 2D LA tissue and search for the 
best ablation technique. The agent moved with a 10-ms step, 
at each step ablating a small area of 9 × 9 pixels and then 
moving into a new position. The ablator in this simulation 
worked by setting the diffusion coefficient to 0  in the small 
ablated area. Similarly, an agent was trained using a 50-ms 
ablation interval to evaluate the effect of the speed of ablation.

At first, the agent moved randomly ablating at each step, 
receiving positive or negative rewards. With time, the agent 
learned to predict that the most beneficial moves maximise 
the cumulative reward, which due to the nature of the reward 
structure, was achieved when AF was terminated. At each 
time step, the current state – the agent’s position, the action 
it made, the corresponding reward acquired – as well as the 
new state after the move was completed and whether it was 
a terminal state, were stored. This process is schematically 
illustrated in Figure 3. The success rate was stored and compared 
to previous success rates every 50 episodes, and if the success 
rate was higher than any previous one, the algorithm saved 
the Q-values corresponding to this reward structure, which 
was later used in testing on an unseen set of 2D LA tissues.

Q-Learning Reward Structure
To learn how to predict the value of actions, the agent needs 
an assignment of numerical values to sets of states, which is 

called as the reward policy. This acts as a ground truth from 
the perspective of the agent and is therefore essential in this 
algorithm. The first reward to be  implemented was a positive 
reward if the ablation strategy was successful. This was defined 
by rotor termination when the voltage at every point in the 
tissue was lower than a threshold of 0.2. This would mean 
that the episode was completed, and the agent had successfully 
terminated the rotor, rewarding the agent with +420 points, 
the highest reward possible.

On the other hand, there was also a negative reward, which 
was implemented every time the agent took a step. This was 
done to avoid too much scarring of the tissue, making the agent 
look for the fastest way of terminating AF; the episode was 
aborted if too much tissue was ablated. This was implemented 
by calculating the percentage of tissue being ablated and stopping 
the episode if it reached a rate of 40% ablation of healthy tissue, 
giving the agent −50 reward and terminating the episode. Moreover, 
the agent was given a negative reward each time, and it took 
a step to make it prioritise faster routes to a successful ablation, 
further avoiding destroying healthy tissue. The agent was also 
given a negative reward for stepping on the same tissue it had 
already ablated. The reward structure was further enhanced to 
prevent the agent from going in a straight line as that was the 
easiest way to stop a rotor by creating an obstacle between two 
boundaries of the 2D tissue. This was done by giving the agent 
an exponentially growing negative reward the more consecutive 
moves in the same direction it made.

Rotor tip locations were calculated at each ablation time 
step, and the agent was rewarded for moving closer to the 
rotor tip and was given a negative reward for moving away 
from it. Pre-determined successful lesions (such as PVI and 
fibrosis-based ablation) have been obtained for the 2D LA 
tissues (Muffoletto et  al., 2021) and used to train the agent, 
giving it a reward of 15 for moving closer to these lesions 
and −15 for moving further away from them. All the rewards 
used to train the agent are summarised in Table  1.

FIGURE 3 | A schematic overview of how a deep Q-Learning network functions. Initially a state is observed, which is then passed through a CNN. The output of 
this network maps to the predicted Q values of all eight actions available. From here the action is chosen via a ɛ-greedy action selection policy. One notable addition 
to the implementation used in this paper is there are two copies of the network to ensure stability.
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Deep Learning Networks
Two identical CNNs were created to ensure stable predictions 
for the Q-values of the available actions. These were both 
initialised with the same weights. This was done to have a 
time delayed version of the network for prediction, while the 
other network was trained. After five episodes the predicting 
network was updated to share the same parameters as the 
trained network. This was done with the purpose of increasing 
stability in the network and to create a classifier, which avoids 
overfitting. To select an action for the agent to take, the state 
consisting of 150 × 150 RGB image was observed. This state 
was recorded and passed through the CNN.

Both CNNs were built using the Keras Sequential package 
in Python, starting with a 150 × 150 × 3 input layer using separate 
RGB channels, the input being the 2D LA tissue with the 
initiated rotor wave. The input is connected to a 2D convolutional 
layer with 3 × 3 kernel size and a dimensionality of the output 
space equal to 256, which signifies the number of output filters 
in the convolution. A 2D maximum pooling layer (with the 
pooling layer size of 2 × 2) was then added in order to down 
sample the input and only take into account the maximum 
values. A dropout layer of 0.2 was then added to subsample 
the input and avoid overfitting.

All the layers mentioned above, starting from the 2D convolution 
layer, were then repeated and flattened and densed in order to 
obtain a 1D feature map from the 3D input. Finally, the output 
of this was put through another dense layer with the size of 
the action space and a linear activation function. A mean square 
error loss function and an ADAM optimiser were used.

ɛ-greedy action selection policy was used to choose an 
action. This action selection policy employs a global parameter 
ɛ, which defines the probability that the action with the highest 

predicted Q-value is chosen. In the case, it is not chosen, the 
selected action will be  uniformly sampled from the other 
available actions. During training, ɛ is decayed, which serves 
the purpose of defining a balance between an exploration vs. 
exploitation regime. Once the action has been chosen, the 
agent alters the environment by ablating the underlying tissue. 
Subsequently, the next state is observed and the cycle repeats.

Based on the reward structure and the Q-values, the agent 
learns to better predict the value of actions, which allows it 
to move in the best possible direction, avoiding negative rewards. 
This could be  compared to losing points in a game. This 
network is able to distinguish different features in the 
environment, for example, where the wave currently is and 
how it is moving, as well as the areas of fibrosis, making the 
agent’s movements more informed.

RESULTS

Q-Learning Algorithm Training
The agent was trained for 900 episodes, exploring the environment 
of 2D atrial tissues with AF and learning the ablation strategies 
that provided the highest reward. During training, the success 
rate was stored every 50 episodes for which the minimum, 
maximum, and final success rate per 50 episodes can be  seen 
in Figure  4A. The agent rapidly improved in the first few 
episodes, then fluctuated and settled around episode 500 at 
approximately 78% success.

The success rate in this case signifies the percentage of 
successfully terminated rotors per 50 episodes. The highest 
success rate per 50 episodes the agent was able to achieve 
after training for 900 episodes was 84%. The model which 
achieved the highest success rate was then used for testing. 
Figure  5 shows the agent successfully being able to ablate the 
tissue using an equivalent of the rotor technique – trying to 
follow the tip of the rotor in order to terminate it during 
training. The ablator was rewarded for trying to minimise 
proximity to the rotor tip.

Q-Learning Algorithm Testing
During testing, the process was similar to training, except the 
known ablation strategies and, the rotor tip positions were 
not included in the state passed to the agent, and the most 
successful network determined in training was used. In this 
case, for the 10-ms ablation interval, the model with 84% 
success was used. After testing the model on 100 unseen 2D 
tissues for 100 episodes, the testing success rate was at 72%. 
The slight decrease of success rate in testing was expected, 
since in training the ablating agent was rewarded for moving 
close to the successful ablation lesions known from earlier 
simulations – whereas during testing the agent had no information 
on the location of such lesions, and hence was operating in 
a more difficult environment. Note also that overfitting in this 
case is highly unlikely, given the huge number of possible AF 
scenarios (i.e., movements of one or more re-entrant waves 
over greatly variable trajectories in a large number of LA tissue 
models with different spatial characteristics). Figure  6 shows 

TABLE 1 | Summary of the reward structure, how many points the agent 
receives as a reward and whether it is a terminal state.

Reward structure

Action Points rewarded Terminal state

Successful CA – the voltage 
at every point is lower than 
0.2

420 Yes

40% of healthy tissue is 
ablated

−50 Yes

80 steps have been taken by 
the agent

−50 Yes

At each step taken −1 No
Ablating already ablated 
tissue

−5 No

Moving in the same direction 0.01*exp(N), where N is 
number of movements in 

the same direction

No

Moving closer to the rotor tip 15 No
Moving further away from 
rotor tip

−15 No

Moving closer to pre-
determined successful CA 
lesion

15 No

Moving further away from 
pre-determined CA lesions

−15 No
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the agent successfully terminating the rotor during a test. 
During testing, all the ablation points for each 2D tissue model 
were saved to be used later in the respective AF recurrence check.

Figure  4B quantifies the tissue damage during ablation. As 
expected, the average number of ablated points in cases when 
AF was terminated successfully was lower than in the overall 
number of cases. The number of ablated points was about the 
same in training and testing.

Recurrence Testing
The ablation strategies developed by the Q-learning algorithm 
were also tested for success in preventing AF recurrence, specifically 
to check whether the existing ablation lesions would prevent the 
rotors from restarting. This was done by attempting to initiate 
four different rotors in 2D atrial tissue models after ablation 
(with the non-conductive CA lesions present) and to check 
whether the lesions saved in testing would stop the rotors, and 
thus prevent the recurrence. Note that this test did not involve 
any Q-learning process, but only LA model simulations.

In Figure  7, successful ablation lesions created by the agent 
during the testing can be  seen preventing the newly initiated 
rotor from propagating (Scenario 1), meaning that this AF 
scenario was not sustained. To check this result was independent 
of the initial rotor location, another scenario for the rotor 

initiation was tested: again, the rotor also was not sustained 
(Scenario 2). Simulations were also repeated for two more 
rotor locations (Scenarios 3 and 4, not shown). In all four 
scenarios, the rotors failed to sustain AF in most 2D LA tissues. 
Specifically, the success rate of recurrence testing was 98% for 
a single scenario and 89% for all four scenarios. This means 
that rotors were terminated by ablation patterns determined 
by the Q-learning agent during testing in 89% of the cases.

DISCUSSION

This study shows that Reinforcement Q-Learning algorithms 
supported by CNNs can predict patient-specific ablation strategies 
that are effective in both terminating AF and preventing its 
recurrence in LGE-MRI-based 2D LA tissue models. This was 
achieved by simulating AF scenarios in 2D atrial models and 
using them as the environment for a Q-learning algorithm. 
The algorithm was further tested on an unseen set of 2D LA 
tissue models by using the most successful version of the 
Q-learning network, as well as by using ablation lesions produced 
during the testing to check for the likelihood of AF recurrence 
in these models. The ablation success rate was 84% in training 
and 72% in testing (at 10-ms ablation interval), showing that 

A B

FIGURE 4 | Performance characteristics of the ablating agent. (A) The minimum, maximum and final ablation success rate achieved during training for 10 ms (blue) 
and 50 ms (orange) ablation intervals. (B) Average number of ablated points (9 × 9  pixel lesions) in cases when AF was terminated successfully and the overall 
number of cases during training (blue) and testing (orange).

FIGURE 5 | Training sequence at 10 ms ablation interval with the ablator (green) successfully ablating the rotor by following its tip. Same colour code is used for the 
voltage maps as in Figure 2. Ablated tissue is shown by 9 × 9 pixel yellow rectangles.
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the agent explored the environment and learned to ablate 
successfully, and that Q-learning can be  a viable method to 
improve CA strategies for patient-specific AF cases. Furthermore, 
the overall recurrence prevention success over 89% (i.e., 11% 
recurrence), surpassing that of existing CA methods, which 
resulted in about 55–80% recurrence rates (Dretzke et al., 2020).

When a longer 50-ms ablation interval is used, the ablation 
patterns were similar to those of the 10-ms ablation interval 
for the same tissues. As seen in Figure  8, the 50-ms interval 
ablation points can be  found in the same positions for the 
10-ms interval ablations but less tissue was ablated. The main 
difference between the two cases was the total ablation time, 
and since the 10-ms ablation interval ablates more frequently, 

it has additional ablation points added, before AF is terminated. 
This suggests that the Q-learning algorithm prioritised the 
atrial tissue structure (such as location of fibrosis) and function 
(location of the wave at the time of ablation) over the ablation 
interval. This implies that simulations do not necessarily have 
to be run for long periods of time in order to find the optimal 
patient-specific ablation pattern. In effect, shorter simulations 
could be  run, and computational expense could be  reduced.

Note also that the action space of the ablating agent in 
this study was discrete: the agent could only choose a set of 
discrete actions to perform. This may be  more limited than 
using a continuous action space, in which the agent can perform 
a continuous set of actions – in our study, a continuous range 

FIGURE 6 | Testing sequence, where the ablator (green) uses the pre-existing model and Q-values from training to successfully terminate the rotor. Same colour 
code is used as in Figure 5. Voltage distributions in consecutive moments of time are shown in (I)–(VIII).

FIGURE 7 | Prevention of AF recurrence is shown using the successful ablation strategy identified by the agent during testing. This happens when rotor is re-
initiated with both Scenario 1 (top row) and Scenario 2 (bottom row). Green crosses show the four locations of rotor initiation; the locations were chosen to produce 
most stable rotors pre-ablation. Voltage distributions in consecutive moments of time are shown in (I)–(IV).
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of movements in the LA tissue. However, when comparing 
continuous vs. discrete deep reinforcement learning algorithms, 
it has been shown that with a limited number of trials the 
discretised approach outperforms the continuous one (Smart 
and Laelbling, 2000; Stopforth and Moodley, 2019). Moreover, 
the action space is discretised to enable the use of a deep 
Q-learning network, which requires a discrete action space as 
the size of the output layer of the network corresponds with 
the size of the action space.

One limitation of the approach used in the current study 
is that the Q-learning algorithm appeared to learn less from 
pre-determined successful ablation strategies (such as PVI), 
mostly preferring the “rotor” strategy aimed at ablating the 
tip of the rotor, similar to previous research (Muffoletto et  al., 
2021) during which a classifier was trained to find the best 
ablation strategy and found the “rotor” was the preferred 
strategy. Such information, however, will not be  available for 
real patients. Given more time for training, the algorithm could 
further improve and learn more information from the tissues. 
However, this was hindered by significant computational expense, 
making it impractical to train on a large number of tissues 
if the ablation interval is long. Moreover, the reward structure 
could still be  improved, as the ablator does not always take 
the shortest path, which can be  seen in Figure  6, and often 
tries to ablate previously ablated tissue. Ideally the agent should 
move through the shortest path possible.

To improve this work in future, the computational load 
should be  minimised, as currently the 10-ms ablation interval 
technique takes 30 min to run per episode while a 50-ms 
ablation interval takes about 5 h 30 min per episode. Using a 
similar approach in a clinical setting will require the application 
of GPU to accelerate simulation time. Furthermore, a more 
clinically relevant approach will require patient-specific 3D 
atrial models instead of 2D models as input into the Q-learning 
algorithm to produce more accurate results.

Data augmentation techniques could also be  applied to 
enhance the patient datasets. In the previous study (Muffoletto 
et  al., 2021), 122 real patient-specific LA images have been 
used to create additional synthetic images by taking random 
weighted averages of all the real data set to introduce new 
fibrotic patterns, and also varying size of the PVs. In the 

current study, 50 such synthetic images were used for additional 
testing, with the success rate remaining at 72%.

Machine learning has been applied in this field before, thus 
Lozoya et  al. (2019) have achieved 97.2% accuracy in finding 
ablation targets using biophysical cardiac electrophysiology 
models to augment ventricular image features. However, their 
feature augmentation algorithm used supervised learning, whereas 
Q-learning is neither supervised nor unsupervised. A study 
by Liu et  al. (2020) used computed tomography images of the 
atria to train a CNN and create a prediction model of the 
non-PV triggers for AF, reaching an accuracy of 82%. However, 
instead of predicting ablation techniques, their method simply 
identified patients with a high risk of non-PV triggers.

Building upon the recent advancements in applications of 
deep learning in cardiac imaging and modelling, our study 
provides a unique approach to tackle the problem of AF ablation 
leading to recurrence. The developed approach could be translated 
to the clinic, with routine LGE MRI scans used to create patient-
specific LA models and the trained Q-learning algorithm then 
applied to predict a suitable ablation strategy for the patient. 
The predicted pattern can then integrated into the ablation image-
guidance system to provide additional information for cardiologists 
performing the ablation procedure. Thus, after further clinical 
validation, our proof-of-concept Q-learning technique can 
be  applied both to improve understanding of patient-specific 
ablation therapy and to enhance current clinical treatment methods.
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FIGURE 8 | The same patient-specific 2D LA tissue models ablation 
performed by the agent at (A) 10 ms interval and (B) 50 ms interval. The 
ablation patterns are similar but not identical.
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One of the essential diagnostic tools of cardiac arrhythmia is activation mapping.

Noninvasive current mapping procedures include electrocardiographic imaging. It allows

reconstructing heart surface potentials from measured body surface potentials. Then,

activation maps are generated using the heart surface potentials. Recently, a study

suggests to deploy artificial neural networks to estimate activation maps directly from

body surface potential measurements. Here we carry out a comparative study between

the data-driven approach DirectMap and noninvasive classic technique based on

reconstructed heart surface potentials using both Finite element method combined

with L1-norm regularization (FEM-L1) and the spatial adaptation of Time-delay neural

networks (SATDNN-AT). In this work, we assess the performance of the three approaches

using a synthetic single paced-rhythm dataset generated on the atria surface. The

results show that data-driven approach DirectMap quantitatively outperforms the two

other methods. In fact, we observe an absolute activation time error and a correlation

coefficient, respectively, equal to 7.20 ms, 93.2% using DirectMap, 14.60 ms, 76.2%

using FEM-L1 and 13.58 ms, 79.6% using SATDNN-AT. In addition, results show that

data-driven approaches (DirectMap and SATDNN-AT) are strongly robust against additive

gaussian noise compared to FEM-L1.

Keywords: data-driven approaches, physics-based approaches, ECGI inverse problem, cardiac activation

mapping, neural networks, deep learning

1. INTRODUCTION

Cardiac activation mapping is an important tool for guiding medical treatments (catheter ablation)
of different cardiac pathologies such as atrial fibrillation and ventricular tachycardia. It consists
of inserting a catheter into the cardiac chambers and recording the electrical activity of the tissue
at a given location. This process is repeated at multiple sites in order to cover a specific area or
sometimes the whole cardiac chamber. Then, activation times are derived from thesemeasurements
by determining the point of maximum negative slope (IDT: intrinsic deflection time) or the
point of maximal signal amplitude (Zipes and Jalife, 2009). The chosen technique depends on
the signal nature: unipolar or bipolar. Finally, these activation times are interpolated to create a
complete activation map of the heart chamber that helps the doctors localizing the target sites for
catheter ablation.
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This procedure is known to have some drawbacks. First, it
doesn’t allow to have a complete map of the chamber activation
due to a reasonable limited number of stimulations. This raises
different issues such as using inappropriate interpolation
approach which can lead to irrelevant activation map
reconstructions or mismapping catheter positions during
the clinical procedure. Then, the most notable drawback is
being invasive.

To address this problem, noninvasive electrocardiographic
mapping suggests a battery of approaches to noninvasively
reconstruct activation maps from noninvasively recorded
body surface potentials (BSPs) and a heart-torso
geometry reconstruction based on CT-Scan images using
computational methods.

For example, in Cedilnik and Sermesant (2019), authors
suggest a model personalization based on eikonal equation to
compute activation times. In Van Dam et al. (2009), authors
suggest to estimate activation times directly from BSPs using
the equivalent double layer source model. In Yang et al. (2018),
authors propose a novel formulation of ECGI inverse problem
in the frequency domain. In other studies (Zemzemi et al.,
2013; Giffard-Roisin et al., 2017), the kernel ridge regression
is used to solve the inverse problem and reconstruct activation
patterns. Besides, Duchateau et al. have suggested in Duchateau
et al. (2016) to improve ECGI mapping by estimating activation
delays between neighbor locations and construct an activation
map from local activations and delay estimations. From another
perspective, researches represented in Liu et al. (2006), Han et al.
(2008), and Zhou et al. (2016) different approaches to reconstruct
activation patterns using cardiac electric source imaging by
identifying current densities in the heart.

However, these approaches use generally inverse methods that
are known to be ill-posed and require applying regularization
techniques on the solution. This yields smoothed solutions which
makes it difficult to detect activation times.

Recent studies conducted a comparison between invasive and
noninvasive mapping (Sapp et al., 2012; Cluitmans et al., 2017;
Budanova et al., 2019; Duchateau et al., 2019). In Duchateau et al.
(2019), authors provide a comparison between invasive contact
mapping and noninvasive electrocardiographic imaging (ECGI)
activation mapping using 59 clinically acquired activation maps.
It states that ECGI mapping should be improved since the
agreement between ECGI and invasive mapping results is poor.
In fact, it shows that mean activation time error is 20.4 ± 8.6 ms
and the between-map correlation is 3± 43%.

In this context, few researches were made in order to reach
a better accuracy in localizing target sites for guiding catheter
ablation using fewer invasive measurements Kania et al. (2018),
Arrieula et al. (2019). Recent studies for localizing ventricular
activation origin and ventricular tachycardia from the 12-lead
ECG using machine learning methods (Zhou et al., 2019; Missel
et al., 2020) have shown good performances in the identification
of the arrhytmia origin. Godoy et al. suggested in Godoy
et al. (2018a,b) a machine learning pipeline to localize atrial
ectopic foci using the body surface potential integral maps
(BSPMs). Another study developed a machine learning model to
identify the site of origin of outflow tract ventricular arrhythmias

from simulated patient-specific electrical information (BSPMs,
ECGs,. . . ) Doste et al. (2019). In Lozoya et al. (2019), authors
suggest an image-based machine learning approach to detect
cardiac radio-frequency ablation targets. In the same context,
researchers conducted studies to improve efficacy of targeted
persistant AF ablation (Alhusseini et al., 2019; Boyle et al., 2019).
Recently, few reviews report all these studies and many others
related to the application of machine learning approaches to
arrhythmias and electrophysiology (Cantwell et al., 2019; Feeny
et al., 2020; Trayanova et al., 2021).

In pursuit of the same goal, a previous study (Karoui et al.,
2019a) suggests for the first time using artificial neural networks
to estimate activation times directly from BSPs. It provides a
proof-of-concept by building a model called DirectMap and
assessing its performance using in silico data. Another recent
study introduced a physics-informed neural networks for cardiac
activation mapping (Sahli Costabal et al., 2020). In continuity
with our previous works, we conduct a comparative study
to evaluate quantitatively the performance of the data-driven
methods: DirectMap (Karoui et al., 2019a) and the Spatial
Adaptation of Time-Delay Neural Network (SATDNN-AT)
(Karoui et al., 2019b) compared to the classic inverse method:
Finite Element Method combined with L1-norm regularization
(FEM-L1) (Karoui et al., 2018). The choice of these two methods
is based on their performance results reported in Karoui et al.
(2018) and Karoui et al. (2019b). The study is conducted using
atrial paced in-silico data.

This manuscript is organized as follows: in section 2.1, we
introduce the 3 methods, the synthetic data we use and the
evaluation metrics. In section 3, we detail the results. Then,
we end with a discussion, an evaluation of limitations and
perspectives of this work, and we conclude in section 4.

2. MATERIALS AND METHODS

2.1. Database
We build a synthetic paced-rhythm dataset of 101 simulations
of BSPs and their correspondent activation time (AT) maps
on the atrial outer surface. Each sample of BSPs and AT map
corresponds to a single stimulation site randomly distributed on
the atrial surface. We use the monodomain reaction-diffusion
model to simulate the electrical wave propagation inside the
heart. In order to simulate the BSPs, we first need to compute
the extracellular potential in the heart (EGMs). Then, we use
a Laplace’s equation in the torso with a Dirichlet boundary
condition on the heart-torso interface to compute the BSPs.
For more details, see Zemzemi et al. (2013). Activation times
are derived from the simulated EGMs by determining the IDT
(Intrinsic Deflection Time) at each point of the atrial mesh. Let
ui(t) be the unipolar signal at point Xi at time t, the IDT T̂i is:

T̂i = arg min
t∈[0,T]

dui(t)

dt
, (1)

where T is the simulation duration. The finite element
discretization of the realistic 3D atria-Torso geometry contains
264 nodes for the torso and 1994 nodes on the atrial surface.
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Each sample contains 400 time steps but the training is performed
using only the first 200 time steps corresponding to the p-wave.
The data used in the sections 3.1–3.3 are without additive noise.

2.2. Physics-Based Inverse Methods:
FEM-L1
The study conducted in Karoui et al. (2018) evaluates
the performance of fifteen algorithms combining different
discretization and regularization techniques for reconstructing
heart surface potentials (HSPs). According to this study, the finite
element method combined with the L1-norm regularization
(FEM-L1) of the current density over the heart surface
provides the best results to solve the inverse problem of
electrocardiography in terms of heart surface potential and
pacing site localization. As it’s mentioned in the state-of-the-art,
the inverse problem is mathematically expressed as follows:

Ax = b (2)

where A is the transfer matrix generated using the finite element
method, b is the boundary condition vector and x is the unknown
potential vector.

Due to its ill-posedness, the inverse problem has to be solved
using regularization. In this case, it turns out to minimize the
objective function using L1-Norm regularization given by:

min
x

‖Ax− b‖2 + λ2‖∇x.nH‖1, (3)

where nH is the outward unit normal to the epicardium surface
and λ is the regularization parameter.

Using the Finite Element Method, we can define the Dirichlet-
To-Neumann operatorD satisfying:







∂x1
∂n
...

∂xn
∂n






= D







x1
...
xn






, (4)

where D is an n-by-n matrix where n is the number of nodes in
the heart surface.

Therefore, the objective function (3) can be expressed
as follows:

min
x

‖Ax− b‖2 + λ2‖Dx‖1. (5)

Using an approximation of L1-Norm as an L2-norm, the linear
problem to be solved is then simplified in a way that it can be
seen as a first-order Tikhonov regularization.

In fact, following Karl (2005), we can smoothly approximate
the L1-Norm of the derivative by:

‖Dx‖1 =
n

∑

i=1

|⌊Dx⌋i| ≈
n

∑

i=1

√

|⌊Dx⌋i|2 + β , (6)

where β is a small constant satisfying β > 0 and ⌊Dx⌋i the ith
component of the vector Dx.

This approximation leads to a set of equations whose
resolution as β −→ 0 gives an estimate of the solution of (5)
by solving the following linear problem:

[

ATA+ λ2DTWβ (x)D
]

x = ATb, (7)

where Wβ (x) is a diagonal matrix called weight matrix,
expressed by:

Wβ (x) =
1

2
diag

[

1
√

|⌊Dx⌋i|2 + β

]

. (8)

Then, thanks to the diagonality of Wβ (x), (7) can be written
such that:

[

ATA+ λ2D̃T(x)D̃(x)
]

x = ATb, (9)

where D̃(x) =
√

Wβ (x)D.
Computationally, the equation (9) is non-linear since the

weighting matrixWβ (x) depends on the solution x. To overcome
this constraint, we suggest to use the Finite Element zero-order
Tikhonov solution x0. Thus, we solve the problem expressed by:

[

ATA+ λ2D̃T(x0)D̃(x0)
]

x = ATb. (10)

2.3. Data-Driven Inverse Methods
In this section, we suggest two approaches for cardiac activation
mapping based on artificial neural networks.

2.3.1. Direct Cardiac Activation Mapping Using

Electrocardiograms: DirectMap
We suggest here to reconstruct activation time maps directly
from ECGs without using electrograms (EGMs). To do so, we
build a classic architecture of a neural network constituted of
fully-connected and non-linear activation layers (ReLU). The
network architecture is represented in Figure 1A where N is
the number of measurement points on the body surface, M
is the number of nodes on the heart surface and T is the
sequence length.

To compute the optimal weights, the model has to
minimize the following objective function with respect to the
network parameters:

min
M1,2,3 ,b1,2,3

‖ATc − ATe‖2, (11)

where ATc is the estimated activation times vector and ATe is the
target one. According to the neural network architecture, ATc is
defined as follows:

ATc = M3
[

ReLU
(

M2
[

ReLU
(

M1BSP + b1
)]

+ b2
)]

+ b3.
(12)

Here,M1,2,3 are network layer weights and b1,2,3 are biases.
The method consists of using the ECGs of a heartbeat

sequence as input to the artificial neural network in order to
estimate the corresponding activation time map.
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FIGURE 1 | Architecture diagrams of (A) the direct activation mapping neural network (DirectMap) and (B) the spatial adaptation of the time-delay neural

network (SATDNN-AT).

A study is conducted over the neural network layers size.
The aim is to determine the optimal model architecture for a
given dataset. In order to guarantee a predefined accuracy on
activation times reconstruction with the lower possible dataset
size, we conducted a grid search procedure, allowing to determine
simultaneously the maximal sparsity in the training data set and
the optimal architecture of the neural network. We defined a
threshold equal to 15 ms in terms of absolute error to choose
the model with the minimal dataset size achieving a performance
under this threshold. Results are reported in section 3.1.

2.3.2. Cardiac Activation Mapping Using

Reconstructed Electrograms by SATDNN-AT
The SATDNN-AT method was firstly introduced in Karoui et al.
(2019b). It consists of reconstructing a heart surface potential
at a time step t from body surface potential measurements at
time step t and its previous values t − 1, t − 2, etc. The main
idea is that the body surface potential at a time step t is highly
dependent to its values at previous time steps t − 1, t − 2, etc.
Thus, TDNN (Waibel et al., 1989) is a good candidate to get use
of this dependence. In fact, each neuron in the TDNN uses the
current and its d previous values of the BSP input to estimate the
HSP target at the given time step t where d is the time-window
size to fix.

Similarly to the temporal correlation, the heart surface
potential in a given point P is strongly dependent on its
recorded values at the adjacent points due to the propagation
phenomenon. Hence, we use the spatial adjacency matrix as a
representation of the relation between the target spatial location

and its adjacent locations. According to Karoui et al. (2019b), this
model called SATDNN-AT is made with two hidden layers. The
first layer is identical to the TDNN where D(d) is the time delay
window of size d as represented in Figure 1B. Then, we perform
an element-wisemultiplication of the first layer output by the first
order adjacency matrix Adj(1). This allows, for each point, to only
keep the weights corresponding to its adjacent points and reduces
the others to zero.

In the interest of betterment, the model is here improved
by building an autoencoder-like architecture represented in
Figure 1B. It consists in building a bottleneck in the neural
network that provides a compressed information representation
which allows the model to ignore signal noise. The effect of this
modification will be discussed in section 4.

2.4. Implementation
Data-driven models are implemented using Pytorch (Paszke
et al., 2019). To train our models over labeled data, we use
the mean squared error as an optimization criterion and the
stochastic gradient descent as an optimization algorithm. K-fold
cross validation (Refaeilzadeh et al., 2009) is used to evaluate
the model performance on unseen data. It generally results on
a less biased estimation of the target. The procedure consists
on splitting the dataset on a training-validation dataset and a
testing dataset. Then, K-fold cross validation is applied on the
training-validation dataset. In fact, this latter is splitted into K
groups. Each unique group is once kept as a validation dataset
and all the remaining ones are used for training the model. In
the end, the trained models are evaluated over the testing dataset.
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The training phase ends when the optimization criterion stops
improving over the validation dataset. Hyper-parameters of the
models are tuned empirically based on the performance of the
models on the validation dataset. Learning rate and momentum
are, respectively, 0.00001 and 0.8. The cross validation parameter
K is equal to 4. Training and validation subsets are shuffled at
each epoch of the training process. The time-window size d of
SATDNN-AT is equal to 2.

Concerning the physics-based method, we developed the
numerical tools into MUSIC software (Multi-modality Platform
for Specific Imaging in Cardiology) (Cochet et al., 2014).
More information about the MUSIC platform could be
found in the following link: https://www.ihu-liryc.fr/en/music.
MUSIC is intended for cardiac imaging processing, cardiac
mapping analysis and electrocardiographic imaging inverse
problem resolution.

For both potential based methods SATDNN-AT and FEM-L1,
we post process the computed EGM signals using a Butterworth
low-pass filter that eliminates the high frequency fluctuations.

2.5. Evaluation Criteria
To assess the precision of reconstructed activation maps, a point-
based absolute activation time error (AATE) is computed as the
absolute value of the difference between the exact and computed
activation times at each point of the atrial mesh. Given ATe

i,j the

exact activation time at point j of the simulation i, AATEij can be
expressed as follows:

AATEij = |ATe
i,j − ATc

i,j|, (13)

where ATc
i,j is the computed activation time at point j of the

simulation i. Then, an average over all the mesh is computed.
Pearson correlation coefficients (CC) are also computed between
each activation time map pair for every simulation. To assess
pacing site localization, we use the geodesic distance between
estimated and exact pacing sites. These latter correspond,
respectively to the node that has the minimum of estimated and
exact activation times.

3. RESULTS

3.1. Database Dependency Analysis
In this section, we present the results of the database dependency
analysis performed on DirectMap. As it’s mentioned in section
2.1, the database contains 101 simulations. To assess the database
dependency, we suggest selecting subsets from the original
dataset using the geodesic distance between stimulation sites
as a selection criterion. In fact, we first compute the geodesic
distances between all the stimulation sites corresponding to the
101 simulations. Then, we select the simulations whose distance
between stimulation sites is above a fixed threshold. Using this
approach, we succeed to select 9 subsets containing, respectively,
100, 85, 63, 50, 32, 25, 18, 16, 12, 10, and 8 simulations
corresponding to a minimal distance between stimulation sites
equal to 0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2, and 10.2 mm,
respectively. The subsets have been constructed by computing

the minimal (mindist) and maximal (maxdist) inter pacing sites
distances, discretizing the interval [mindist, maxdist] by 1mm,
finding the subsets corresponding to each discretization step
and removing the subsets containing <8 cases. This approach
characterizes the spatial sparsity of each training data with its
inter pacing site distance.

Figure 2 shows the evolution of mean and standard deviation
of absolute activation time error and correlation coefficient
over the testing subset with respect to dataset size. Each row
corresponds to the results obtained using, respectively (from top
to bottom) 5, 10, 100, 1000, 2000, and 8000 neurons per hidden
layer in the neural network.

To select the most appropriate model, we refer to the study
conducted by Duchateau et al. (2019), where mean absolute error
between invasive and noninvasive estimated activation times
is equal to 20.04 ms. Considering the fact that this study is
performed using in-silico data, we use a threshold in terms of
absolute error equal to 15 ms represented in the Figure 2 by the
dashed line. Another important selection criterion is the standard
deviation. In fact, a high standard deviation means that results
fluctuate between the folds and thus the model is not stable and
vice versa.

By taking into account all these criteria, we observe that the
model using 1000 neurons per hidden layer is the most stable
for all the dataset sizes. We observe also that absolute activation
time errors and correlation coefficients improve by increasing
the dataset size. The sub-figure corresponding to the model
using 1000 neurons per hidden layer shows that starting from
32 simulations, the results are below the threshold in terms of
absolute error and above 80% in terms of correlation coefficient.

Therefore, results of the next phase of the study correspond
to the chosen model using 1000 neurons per hidden layer and
trained using the subset that contains 32 simulations. This subset
corresponds to the case where the inter-pacing site distance is at
least equal to 4.2mm.

3.2. Cardiac Activation Mapping Results
In this section, we detail the results of the 3 methods and
compare their performances based on the point-wise absolute
activation time error and correlation coefficient. To do so, we
choose the best model, in the sense of validation, from the 4 built
models using the k-fold cross validation approach for DirectMap
and SATDNN-AT. Figure 3 shows the absolute activation time
error and correlation coefficient for every simulation of the
training, validation and testing datasets using the methods
DirectMap, SATDNN-AT and FEM-L1. If we concentrate on
the testing results, we observe that DirectMap performs better
than FEM-L1 and SATDNN-AT in terms of absolute errors
and correlation coefficients. In fact, the average and standard
deviation of the absolute errors and correlation coefficients are,
respectively, equal to 7.20± 3.42ms, 93.2± 2% using DirectMap,
14.60 ± 1.36 ms, 76.2 ± 5% using FEM-L1 and 13.58 ± 3.42 ms,
79.6 ± 11% using SATDNN-AT. These results are reported in
Tables 1, 2.

When looking into SATDNN-AT results, we observe little
fluctuations in the reconstructed EGMs which, for instance, can
mislead the computation activation time estimation due to the
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FIGURE 2 | (A) Activation time absolute errors and (B) correlation coefficients with respect to dataset size. Each subfigure corresponds to trained neural network with

the mentioned number of neurons per layer (nbNeurons).
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FIGURE 3 | Comparison of the computed electrograms at different location of the atria: Exact solution (red line), solution using SATDNN-AT method (EGM_NN, blue

line), SATDNN-AT with filter (EGM_NN_Filt, orange line) and FEM-L1 (EGM_FEM, green line). Points correspond to the estimated activation times. Each plot

corresponds to a different node of the atria mesh.

TABLE 1 | Means and standard deviations of absolute errors over training, validation, testing datasets and over all data (ms).

Training data Validation data Testing data All data

DirectMap 4.4 ± 3.1 3.9 ± 1.8 7.2 ± 3.4 4.9 ± 3.2

SATDNN-AT 8.4 ± 0.5 8.4 ± 0.5 15.1 ± 3.8 9.9 ± 3.3

FEM-L1 15.14 ± 1.9 15.47 ± 1.5 14.60 ± 1.3 15.08 ± 1.7

SATDNN-AT_Filt 6.6 ± 0.3 6.7 ± 0.5 13.58 ± 3.4 8.1 ± 3.2

FEM-L1_Filt 14.5 ± 1.8 14.8± 1.6 14.3 ± 1.3 14.4 ± 1.7

TABLE 2 | Means and standard deviations of correlation coefficients over training, validation, testing datasets and over all data (%).

Training data Validation data Testing data All data

DirectMap 94.6 ± 3 94.9 ± 3 93.2 ± 2 94.3 ± 3

SATDNN-AT 95.8 ± 2 95.9 ± 2 79.6 ± 11 92.3 ± 8

FEM-L1 72.2 ± 11 73.2 ± 5 76.2 ± 5 73.2 ± 9

SATDNN-AT_Filt 96.9 ± 1 96.2 ± 1 83.1 ± 8 93.7 ± 7

FEM-L1_Filt 74± 10 73± 8 77.2 ± 4 74 ± 8
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FIGURE 4 | Comparison of (A) absolute errors and (B) correlation coefficients between exact and computed activation times using FEM-L1, DirectMap, SATDNN-AT

and SATDNN-AT with filter for the 32 simulations.

fact that the AT is computed using the IDT. In order to solve
this issue, we post process the computed EGM signals using a
Butterworth low-pass filter that eliminates the high frequency
fluctuations. Figure 4 represents exact and reconstructed EGMs

using SATDNN-AT and SATDNN-AT after filtering at some
selected points on the atrial surface. We observe that filtering
either narrows or keeps the gap between exact and estimated
activation times in almost all the nodes. In average, Tables 1, 2
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FIGURE 5 | (A) Exact and reconstructed pacing sites using (B) FEM-L1, (C) SATDNN-AT with filter and (D) DirectMap for a test simulation. Numbers are geodesic

distances between exact and estimated pacing sites.

show that results using the filtering technique are better than
without filtering. To make a fair comparison, the same low-pass
filter used for post-processing SATDDN-AT electrograms is
applied to EGMs reconstructed by FEM-L1.

3.3. Pacing Site Localization Results
To assess the pacing site localization performance, we use the
geodesic distance between exact and reconstructed pacing sites as
an evaluation metric. According to the observed results, there is
an exception where we reconstruct the pacing site differently. In
the case where the minimum value of activation times is shared
by multiple nodes, as shown in Figure 5, we choose to take the
gravity center of the nodes having the minimal AT value as the
reconstructed pacing site.

In Figure 6, we show the simulations of the testing dataset
with the reconstructed pacing sites and the geodesic errors.
We observe that in average, geodesic distances using FEM-
L1, SATDNN-AT and DirectMap are, respectively, 9.5 mm ±
8.1, 13.2 mm ± 5.7, and 7.6 mm ± 4.2. We conclude that
DirectMap outperforms the two other methods in terms of
pacing site localization.

3.4. Robustness Against Added Gaussian
Noise to the Testing Data
To assess and compare the robustness of the three methods
against additive Gaussian noise, we represent in this section
their results in terms of absolute activation time errors and
correlation coefficients after adding to ECGs different noise
levels in the range between 5 and 50% of the maximum signal
amplitude. These tests are performed only on the testing data.
Tables 3, 4 show that DirectMap is insensitive to noise addition in
terms of both absolute error and correlation coefficient. Besides,
SATDNN-AT ismore robust than FEM-L1 against additive noise.

Considering that the 3 methods behave the same way for all
the simulations, Figure 7 represents results of a simulation of the
testing dataset that confirms the previous deductions. In fact, we
observe that FEM-L1 absolute error deteriorates from 15 to 32ms
then from 32 to 43 ms for, respectively, 5 and 50% of noise level.
The same applies to correlation coefficient that decreases from 79
to 38% then from 38 to 18% for, respectively, 5 and 50% of noise.

Figure 8 shows exact and estimated electrograms by FEM-
L1 and SATDNN-AT using different noise levels going from
5 to 50%. We observe that the reconstruction quality of the
electrograms using FEM-L1 deteriorates proportionally to the
added noise level. However, the reconstructed electrograms using

SATDNN-AT are slightly affected by the added Gaussian noise,
which explains the difference between SATDNN-AT and FEM-L1
results in terms of activation time estimation.

3.5. Robustness Against Added Gaussian
Noise to the Training Data
In this section, we study DirectMap model performance when
trained and tested using noisy data. To do so, we generate
noisy ECGs by adding 25% of noise. Then, activation maps are
contaminated by adding a uniformly distributed noise between
−5 and 5 ms, −10 and 10 ms, −20 and 20 ms, −30 and
30 ms. Figure 9 presents the average performance of the trained
models using the noisy data with respect to the intensity of the
added noise. We observe that the model performance deteriorate
when the noise intensity increases. The mean absolute activation
time error increases from 8.8 to 19.02 ms and the correlation
coefficients decreases from 96 to 80% when using±5 and±30ms
of noise, respectively.

3.6. Robustness Against Geometric
Uncertainties During the Testing Phase
To assess the robustness of the methods against geometric
uncertainties, we modify the torso geometry by applying an
inflation of a 1.2 factor as represented in the Figure 10.
ECGs are simulated by solving the forward problem using the
inflated geometry.

First, the modified ECGs are used to test the initial model
DirectMap. Mean absolute error and correlation coefficient are
equal to 14.08 ± 2.38 ms and 94.2 ± 35%, respectively. Using
FEM-L1, results are 25.9 ± 5.6 ms and 43.7 ± 20.1%. Finally,
we observe an absolute activation time error and a correlation
coefficient equal to 23.5 ± 6.2 ms and 57.8 ± 11.9% using
SATDNN-AT. To plot a complete comparison between the
methods, we compute the evaluation metrics for SATDNN-AT
and FEM-L1 after filtering. Results are 24.3 ± 5.2 ms and 53.5 ±
22.1% using FEM-L1 with filter and 21.2±4.7ms and 66.8±7.8%
using SATDNN-AT with filter.

Then, Table 5 reports the evolution of absolute errors and
correlation coefficients with respect to noise added to activation
maps using the inflated torso geometry during the testing phase.
We observe a deterioration in terms of absolute errors and
correlation coefficients. The absolute error increases when using
a noise between −5 and 5 ms from 17.6 ms to 19.9ms when we
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FIGURE 6 | (A) Exact and estimated pacing sites using (B) FEM-L1, (C) SATDNN-AT with filter and (D) DirectMap for 7 different test simulations. Numbers are

geodesic distances between exact and estimated pacing sites.

add a noise between −30 and 30 ms. The correlation coefficient
decreases from 91.5 to 85.9%.

4. DISCUSSION AND CONCLUSION

This study addresses two different issues: First, it studies
the DirectMap generalization performance with respect to

dataset size and the neural network architecture. Then,
it compares DirectMap with two methods of the state-
of-the-art cardiac activation mapping. The results confirm
that the larger the dataset, the greater the performance.
According to Duchateau et al. (2019), mean activation time
absolute error using non-invasive cardiac activation mapping
methods assessed on clinical data is equal to 20.04 ms.
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TABLE 3 | Means and standard deviations of absolute activation time errors of the testing dataset with respect to noise level (ms).

Noise (%) 0 5 10 30 50

DirectMap 7.2 ± 3.4 7.2 ± 3.4 7.2 ± 3.4 7.2 ±3.3 7.2 ± 3.3

SATDNN-AT 15.1 ± 3.8 15.6 ± 3.5 16.4 ± 5 19.1 ± 3.6 21.8 ± 5

FEM-L1 14.6 ± 1.3 39.4 ± 4.4 43.3 ± 4 48 ± 3 49.5 ± 2.1

SATDNN-AT_Filt 13.5 ± 3.4 13.7 ± 3.4 13.8 ± 3.3 15.1 ± 3.1 16.3 ± 3.6

FEM-L1_Filt 14.6 ± 1.3 26.9 ±3.6 36.4 ± 3.1 45.5 ± 2.5 46.4 ± 3.5

TABLE 4 | Means and standard deviations of correlation coefficients of the testing dataset with respect to noise level (%).

Noise (%) 0 5 10 30 50

DirectMap 93.2 ± 2 93.2 ± 2 93.2 ± 2 93.2 ± 2 93.2 ± 2

SATDNN-AT 79.6 ±11 79.6 ± 6 75.5 ± 7 72± 8 64.6± 14

FEM-L1 76.2 ± 5 23.9 ± 6 11.2 ±3 3.2 ± 6 -1.5 ± 9

SATDNN-AT_Filt 83.1 ± 8 82.3 ± 8 81.7 ± 8 75.9 ± 9 70.5 ± 13

FEM-L1_Filt 76.2 ± 5 49.5 ± 6.3 26.2 ± 7 11.2 ± 3.1 7.5 ± 6.1

FIGURE 7 | Evolution of (A) absolute errors and (B) correlation coefficients between exact and estimated activation times with respect to noise level using FEM-L1,

DirectMap and SATDNN-AT.

So, by fixing a threshold equal to 15 ms we deduce that
using 32 simulations as a training dataset provides a great
generalization performance.

Based on these results, a comparison study is conducted
between DirectMap, SATDNN-AT and FEM-L1. It shows that
DirectMap outperforms the two other methods. In terms of
cardiac activationmapping, DirectMap achieves an improvement
of nearly 7 ms in absolute error and, respectively, 10%, 17% in
terms of correlation coefficient compared to SATDNN-AT and
FEM-L1. A robustness analysis against noise was also conducted.
First, it shows that DirectMap is strongly robust against eventual
additive gaussian noise present in ECGs compared to SATDNN-
AT and FEM-L1. Results show also that SATDNN-AT is more
robust than FEM-L1 whose performance massively deteriorates.
This study shows that data-driven methods are more robust

than physics-based methods. This is due to the use of auto-
encoder architecture which is known for its great performance
in denoising data. In fact, it allows the neural network to
learn from a reduced representation of the input information
by ignoring noise features. Second, DirectMap performance
was assessed when trained and tested using noisy data. As
expected, the study shows that the performance deteriorates
proportionally to the added amount of noise but it is still under
the fixed threshold even when the noise added to activation
maps ranges between −20 and 20 ms. Geometric uncertainties
were also considered by inflating the torso geometry by a 1.2
factor. Testing the different approaches with these data shows
a decline in the evaluation metrics. Nevertheless, DirectMap
still achieves the best performance compared to FEM-L1
and SATDNN-AT.
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FIGURE 8 | Exact and estimated electrograms using (A) FEM-L1 (EGM_FEM_Filt) and (B) SATDNN-AT (EGM_NN_Filt) with respect to the added noise level.

Although DirectMap has promising results compared to
SATDNN-AT and FEM-L1, many limitations are still to be
addressed in future works. First, we have to admit that the built

model has a basic neural network architecture which can be
improved to meet the complexity of the problem. We have to
notice that the size of the database has been optimized on the
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basis of DirectMap performance results and used later to evaluate
the performance of the two other methods. This doesn’t affect the
FEM-L1 results. However, this choice might not be optimal for
SATDNN-AT. Then, as we mentioned in Karoui et al. (2019a),
tests are performed using perfect data with the same heart-torso
geometry which is not compatible with real cases. So, geometry
standardization would be one step forward in data-driven cardiac
activation mapping. We also have to notice that using intrinsic
deflection time as the computation method of activation time

FIGURE 9 | Inflated torso geometry generated by inflating the original

geometry by a factor 1.2.

from the inverse solution computed with SATDNN-AT and
FEM-L1 may not be optimal to compare these two methods
to DirectMap. Besides, we observe that low-pass filtering of
the inverse solutions EGMs improved the reconstruction of the
activation maps. Moreover, since cardiac activation mapping
is a diagnostic tool of cardiac diseases, our model would be
more credible if trained and tested using data illustrating some
specific cardiac pathologies. Like all the methods used in ECGI
mapping, in order to take into account real-life data acquisition
inaccuracies, it’s important to quantify the performance of the
model with respect to uncertainties such as misplacement of
electrodes, shift and/or rotation of the atrial geometry within the
body volume, different forward and inverse calculations, different
electrode setups and number of electrodes, for example using
standard 12-lead ECG instead of BSPMs. Geneser et al. (2007),
Fikal et al. (2019), Tate et al. (2021), and Multerer and Pezzuto
(2021) Finally, our study is still a proof-of-concept until sufficient
clinical data would be available to validate our results.

Even though our model achieves valuable results, it is still not
applicable in clinical cases due to the high number of required
stimulations. To address this issue, future works will focus on
data augmentation techniques in order to enrich the dataset
without performing many pacings. One of the options is to
combine data-driven and physics-based methods as it’s presented
in a recent study conducted by Sahli Costabal et al. (2020).

FIGURE 10 | Bar graphs of the evolution of (A) absolute errors and (B) correlation coefficients with respect to noise added to activation maps. The results correspond

to the testing phase.

TABLE 5 | Means and standard deviations of absolute errors and correlation coefficients of the inflated testing dataset with respect to noise added to activation maps.

Noise (ms) 5 10 20 30

AATE (ms) 17.6 ± 2.6 17.7 ± 2.7 18.6 ± 3.1 19.9 ± 3.8

CC (%) 91.5 ± 33 91 ± 33 88.9 ± 33 85.9 ± 31
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After proving the feasibility and applicability of DirectMap, this
work attests that it outperforms at least two of state-of-the-art
methods: SATDNN-AT and FEM-L1. In summary, this study
is encouraging and suggests that DirectMap technique needs
further investigation and may have potential to become a useful
noninvasive cardiac activation mapping tool.
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The combination of machine learning methods together with computational modeling

and simulation of the cardiovascular system brings the possibility of obtaining very

valuable information about new therapies or clinical devices through in-silico experiments.

However, the application of machine learning methods demands access to large cohorts

of patients. As an alternative to medical data acquisition and processing, which often

requires some degree of manual intervention, the generation of virtual cohorts made of

synthetic patients can be automated. However, the generation of a synthetic sample can

still be computationally demanding to guarantee that it is clinically meaningful and that it

reflects enough inter-patient variability. This paper addresses the problem of generating

virtual patient cohorts of thoracic aorta geometries that can be used for in-silico trials.

In particular, we focus on the problem of generating a cohort of patients that meet a

particular clinical criterion, regardless the access to a reference sample of that phenotype.

We formalize the problem of clinically-driven sampling and assess several sampling

strategies with two goals, sampling efficiency, i.e., that the generated individuals actually

belong to the target population, and that the statistical properties of the cohort can be

controlled. Our results show that generative adversarial networks can produce reliable,

clinically-driven cohorts of thoracic aortas with good efficiency. Moreover, non-linear

predictors can serve as an efficient alternative to the sometimes expensive evaluation

of anatomical or functional parameters of the organ of interest.

Keywords: virtual cohort, thoracic-aorta, digital twin, synthetic population, clinically-driven sampling, support

vector machine, generative adversarial network, in-silico trials

1. INTRODUCTION

In the last decades, the development of computational models able to account for personalized
data has proven to be an essential tool in the path to precision cardiology (Lamata et al., 2014).
When applied to large cohorts of patients, these models allow to perform in-silico clinical trials on
the so-called digital twins (Lopez-Perez et al., 2019; Corral-Acero et al., 2020; Gillette et al., 2021;
Peirlinck et al., 2021), which can focus on target sub-populations (Lange et al., 2016) for particular
applications. One enabling pillar to in-silico analysis is the availiability of 3D image datasets,
acquired via techniques such as Computerized Tomography orMagnetic Resonance Imaging scans.
These techniques provide a spatial description from which the organs of interest are segmented
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and, typically, transformed into a mesh which can be used to
provide patient-specific or population representative computer
models (Lopez-Perez et al., 2015).

However, clinical adoption of digital twin technologies is
limited to the scarce availability of clinical anatomical data
with enough level of detail, specially in the case of rare
conditions. The segmentation of clinical images is time-
consuming and suffers from observer variability. Despite the
promising results in the automation of the process via machine
learning approaches (Bratt et al., 2019; Hepp et al., 2020; Gilbert
et al., 2021), these models fail to generalize well if the object of
interest is infrequent in the population. Thus, in clinical practice,
image processing and segmentation remains mostly a semi-
automatic task. Finally, common approaches used to build virtual
populations are based on statistical shape modeling (Young and
Frangi, 2009; Casciaro et al., 2014), or other descriptive statistics
that rely on the geometrical variability of the samples, that is,
are data-driven (Rodero et al., 2021). As opposed, clinically-
driven approaches must produce virtual cohorts with a common
underlying clinical characteristic or phenotype, and typically
depend on the anatomical or functional properties of the organ
of interest (Romero et al., 2009; Britton et al., 2013).

Some studies based on statistical shape modeling, i.e.,
data-driven approaches, have tried to find correlations with
anatomical phenotype. In Cosentino et al. (2020), they aimed
to explore the aortic morphology and the associations between
shape and function, obtaining shape modes that were associated
to specific morphological features of aneurysmal aortas. In
Bruse et al. (2017), unsupervised hierarchical clustering was
used to cluster anatomical shape data of patient populations to
obtain clinically meaningful shape clusters of aortic arches. More
recently, Thamsen et al. (2021) developed a clinically-oriented
methodology for generating a large database of synthetic cases
to train machine learning models, with characteristics similar
to clinical cohorts of patients with coarctation of the aorta. In
that case, in addition to the geometrical data, flow fields and
simulation results were used to define the virtual cohorts, by
filtering out the virtual population samples that did not meet
some clinical restrictions. This is a common approach, since
random generation of individuals does not guarantee that the
resulting anatomic case will be physiologically plausible or will
belong to the target population. Thus, the generated sample has
to be filtered through different acceptance criteria, which can
range from mere outlier rejection, based on a real observed
cohort when available, to more sophisticated tests to restrict the
sample to a particular phenotype (Niederer et al., 2020).

Nonetheless, the application of acceptance criteria implies
that part of the effort done to generate and assess synthetic
cases will be discarded. This waste of effort can be dramatic if
the acceptance criteria are computationally demanding, e.g., if
the decision depends on the result of a Computational Fluid
Dynamics simulation (Thamsen et al., 2021), or if the target
cohort is infrequent in the population.

The main goal of this paper is to assess different strategies to
increase the efficiency of the generation of thoracic aorta cohorts,
understanding the efficiency as the ratio of accepted cases with
respect to the total number of cases generated and evaluated. We

focus on clinically-driven criteria, and rely on machine learning
techniques to accelerate the acceptance criteria evaluation when
computationally demanding tasks are involved. The problem can
then be recasted into one of classification, where we want to find
the anatomies that meet a given criteria before evaluating it.

Considering the cases in which the evaluation of the
acceptance criterion is expensive, e.g., when simulations are
involved, we propose the substitution of this computation by
machine learning surrogates. In particular, we build functions,
based on Support Vector Machines (SVM), that predict the
outcome of the biomarkers and of the acceptance criteria without
having to compute them explicitly. This strategy can substantially
accelerate the process in those cases in which the evaluation of the
acceptance criterion is computationally demanding.

2. MATERIALS AND METHODS

2.1. Problem Statement
In order to properly define the problem we consider a starting
cohort, C0, which is determined by a set of n-dimensional
vectors, {ai}i=1,...,K0 , in some feature space. Each vector ai ∈ R

n

represents the codification of the aorta anatomy of an individual.
This cohort is a sample of an underlying population P0, which
corresponds to the set of physiologically viable aortas of the
phenotype of interest. The goal of the cohort synthesis problem
is to generate a new cohort C1 = {aj}j=1,...,K1 , with K1 ≫ K0,
and with the property that C1 ⊂ P0. In order to decide whether
a particular aorta belongs to the population, we can use whatever
prior information we have about it, which can range from the
statistical plausibility of a particular vector, compared to the
original cohort, to the evaluation of its anatomical or functional
properties. We can express this by means of a acceptance
function, A :R

n → {0, 1}, with A(a) = 1 ⇐⇒ a ∈ P0.
Provided that we have some computable estimation of A, and
following the scheme depicted by Niederer et al. (2020), the
procedure can be barely described as: draw vectors aj, and add
them to C1 ifA(a) = 1, until |C1| = K1.

As one can expect, this problem has a small efficiency ratio
using a simple draw-and-test strategy. As an example, let us
consider the problem of generating a cohort of patients from
one of the three disjoint phenotypes proposed by Schaefer et al.
(2008). In that study, the authors classify the aortic root based
on the relationship between the radius of the Sinuses of Valsalva,
the sino-tubular junction and the mid-ascending aorta (Figure 1,
left, shows the definition of the three phenotypes). Given an
initial cohort C0 containing the three phenotypes in different
proportions, the goal of the experiment is to generate a virtual
cohort that only includes one of them. Figure 2 shows that, even
though aortas of the three classes can be easily separated in the
clinical biomarkers space (Figure 2, left), the distribution of a
particular class in the feature space can bemuch harder to infer. If
the target class has a low relative frequency (e.g., phenotypeN has
a frequency below 15%), then a simple draw-and-accept strategy
will lead to a very low success ratio. Our study addresses this
limitation by reviewing several sampling methods and assessing
them in terms of efficiency. In addition, we propose the use of
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FIGURE 1 | Geometric biomarkers and phenotypes used in the study. Left, graphical representation of some of the considered anatomical biomarkers superimposed

on the anatomy of an aorta. Right, the three phenotypes defined by Schaefer et al. (2008), that are used in the clinically-driven cohort generation. The reader can refer

to Table 1 for the detailed meaning of the acronyms.

FIGURE 2 | A sample with the three aortic root phenotypes (labeled as N, A, and E) defined in Schaefer et al. (2008) represented in the biomarkers space (left) and in

the feature space (right). Each point represents an aorta. In the biomarkers representation, the coordinates correspond to the three biomarkers involved in the

phenotype definition, in millimeters (refer to Figure 1 and Table 1 for acronym meanings and phenotype definitions). In the feature space representation, the

coordinates are the coefficients of the three deformation modes, c3, c6 and c9, that are most discriminant in this problem. Phenotype N is represented in red,

phenotype A in green and phenotype E in blue. While in the biomarkers space the three phenotypes are clearly separable, the region occupied by a particular group in

the feature space is much harder to identify and exploit for cohort synthesis.

machine learning surrogates to reduce the number of acceptance
function evaluations.

2.2. Geometric Aorta Representation
For this study, we used a retrospective dataset of 26 thoracic
aortas that corresponded to patients with ascending aorta

aneurysm. The patients, with ages ranging from 78 to
89 years old, were diagnosed with aortic valve stenosis
and were prescribed a valve implantation. Data had been
previously segmented manually by expert radiologists from the
Computerized Tomography scans in themesosystole phase of the
cardiac cycle prior to the intervention. The supra-aortic branches
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were removed in all the cases. The final input data used in this
study was the set of 26 anonymized triangular surface meshes.
This original dataset from which meshes were segmented met the
requirements of the Declaration of Helsinki and was approved by
the institutional ethics committee.

In our study, we represent the aorta geometry following the
approach described by Romero et al. (2019), which is partly
equivalent to the description proposed by Meister et al. (2020).
The representation starts by approximating the centerline of
the thoracic aorta as a cubic B-spline, α :[0, 1] → R

3. Then,
for each point on the wall x, we compute the closest point on
the centerline, α(s), and its polar coordinates, (θ , ρ), in a local
reference frame, 〈t, v1, v2〉 centered in α(s), with t the unitary
tangent to the curve. After building a set of points (s, θ , ρ), we
compute a bivariate cubic polynomial that fits ρ as a function
of (s, θ). Using this information, any point on the surface can be
parameterized as

x(s, θ) = α(s)+ ρ(s, θ)(cos(θ)v1(s)+ sin(θ)v2(s)),

s ∈ [0, 1], θ ∈ [0, 2π]. (1)

A high dimensional feature vector for the aorta anatomy is
formed by the coefficients of the polynomials that approximate
the centerline and the radius in Equation (1). Based on this
representation, any anatomy in a cohort of aortas can be
described using a mean aorta plus the sum of a reduced set
of deformation modes, computed with a Principal Component
Analysis (PCA). Eachmode of deformation is a high dimensional
feature vector that, when added to the mean aorta feature vector,
leads to a variation of shape that is relevant in the observed
cohort. The representation of a specific aorta in feature space
consists of the set of coefficients corresponding to the modes of
deformation [the reader can refer to the work by Varela et al.
(2017) for further detail on the approach]. In our experiments, we
will use low dimensional feature vectors obtained in this feature
space generated by the PCA. The dimensionality will be chosen so
that it is able to explain a substantial part of the observed shape
variation and to account for the particular anatomical traits that
are relevant in the experiments. In all the experiments, the feature
space that will be used is the one identified from the cohort or
real patients’ anatomies. This approach is often referred to as
Statistical Shape Modeling (Cootes et al., 1995), where the set of
shapes that can be described by the feature space is limited to the
deformation modes observed in the real cohort. Thus, there is no
guarantee that there is a feature vector accurately representing
a given anatomy, specially if its phenotype is very different to
those observed.

2.3. Anatomical Biomarkers on the Aorta
In order to define different acceptance criteria and target
phenotypes for which to generate synthetic cohorts, we are
going to use a set of 11 anatomical biomarkers of the thoracic
aorta, previously described in the literature (Schaefer et al., 2008;
Craiem et al., 2012; Casciaro et al., 2014; Bruse et al., 2016; Liang
et al., 2017; Sophocleous et al., 2018). Table 1 gives a description
of the biomarkers used here, while Figure 1 shows some of
them sketched over the anatomy of an aorta from the original

TABLE 1 | List of biomarkers used to describe the thoracic aorta geometry.

Label Biomarker description

SoV Radius of the aorta in the middle of the sinuses of Valsalva (mm)

PA Radius at a point in the ascending aorta, close to the sinotubular

junction (mm)

MA Radius at a point in mid ascending (mm)

PT Radius at a point in the top of the aortic arch (mm)

PD Radius at a point in the descending aorta, opposite to PA (mm)

LPD Length of centerline from valve to PD (mm)

k Mean analytic curvature of the centerline from PA to PD ( 1
mm

)

h Height from PT to the level of PA/PD (mm)

w Width of the arch, measured as the distance from PA to PD (mm)

h/w Height-to-width ratio

tor Tortuosity, defined as 1− W
LPD

cohort. For each feature vector, the set of 11 biomarkers are
computed automatically after reconstructing its geometry. Those
biomarkers that are defined as the radius of a cross-section are
always computed as the semi-major axis of the best fitting ellipse.

2.4. Sampling Methodology
The feature space generated after the PCA (described in
section 2.2) can also be exploited to draw new random individuals
by means of Statistical Shape Modeling (Heimann and Meinzer,
2009). Given a feature vector a = (a1, . . . , an), each component ai
is interpreted as the coefficient associated to the i-th deformation
mode, and the corresponding anatomy can be reconstructed by
adding all these deformation modes to the mean aorta shape.
Thus, by means of the generation of random feature vectors,
new anatomies can be synthesized (Liang et al., 2017; Rodero
et al., 2021; Thamsen et al., 2021). We have grouped the sampling
strategies in three main categories: non-parametric sampling,
parametric sampling and Neural Network based generation.

2.4.1. Non-parametric Sampling
If we have a small sample, we can make use of a bootstrapping
technique. Bootstrapping allows to generate a new sample of
larger size, with similar statistical properties to the original
reduced dataset (Efron, 1979; Efron and Tibshirani, 1993).
Essentially, bootstrapping generates a new feature vector a =
(a1, . . . , an) in which each component is chosen randomly from
the observed values in the original, small sample. Starting from
the reference cohort of size K0 = 26, formed by aortas of
real patients, we project their geometric description onto the
reduced dimension feature vector. Next, using the coordinates of
the resulting K0 feature vectors we generate a larger size cohort
using bootstrapping.

2.4.2. Parametric Sampling
An alternative to non-parametric sampling is to assume some
hypothesis on the probability distribution of each coefficient, ai.
Then, the hyper-parameter of the distributions can be inferred
from the original sample. Synthetic samples can be directly
drawn with pseudo-random number generator that mimics the
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inferred distribution. In this work we used multivariate Gaussian
distribution, which is typically assumed when dealing with
natural phenomena, and uniform distribution typically related to
Monte Carlo experiments. Given the multidimensional dataset,
{a}K0

i=1, where ai = (ai1, . . . , a
i
n), the Gaussian distribution,

N (µ,6) is determined by the mean, µ and covariance matrix 6,

that can be estimated with the sample mean ā = 1
K0

∑K0
i=1 a

i and

the sample covariance matrixQ = 1
K0−1

∑K0
i=1(a

i − ā) · (ai − ā)T .
The uniform distribution, U(lj, uj) is determined by the lower and
upper extrema of the intervals for each dimension 1 ≤ j ≤ n.
Sample min, lj = min

1≤i≤K0
{aj} and max,uj = max

1≤i≤K0
{aj} are used

as estimates.

2.4.3. Generative Adversarial Networks
Generative adversarial networks (GAN), proposed
by Goodfellow et al. (2020), offer a sample generation strategy
from the machine learning perspective. The model consists of
a combination of two artificial neural networks, a Generator
(G) and a Discriminator (D). The generator uses a density
distribution to generate new data. Opposed to the generator,
the discriminator acts as a classifier trying to detect whether
the observed data are coming from G or come from the real
dataset. This learning model is based on the zero-sum or
minimax strategy for non-cooperative games. Within this
learning strategy, D is trying to maximize its accuracy at
classifying data between real and fake, while, G is trying to
minimize D’s accuracy, by fooling it. A GAN model converges
when discriminator and generator reach a Nash equilibrium, or
optimal point for the minimax problem. For the use of GAN to
generate new samples we start with the reference cohort C0 for
which we want to obtain a larger sample. During the training
process, we will present to the GAN the observed feature vectors
as real samples.

2.5. Cohort Generation Experiments
Each experiment will be aimed to evaluate the efficiency of the
different sampling methodologies in a particular scenario. Each
scenario is defined by a reference cohort C0 (with size K0) and an
acceptance function A :R

n → {0, 1} that takes the value 1 on a
feature vector a if and only if a represents an aorta that meets the
defined acceptance criterion. During the experiment, a sample C1

of size K1 ≫ K0 aortas will be generated and evaluated using A.
The outcome of the experiment for a given sampling strategy will
be an efficiency ratio defined as

e =
|{a ∈ C1 :A(a) = 1}|

K1
. (2)

Based on this common scheme we define three main scenarios.
Data-driven cohort generation, clinically-driven cohort
generation and feature space acceptance criterion usage.
Next, we describe these three problems, together with the
different acceptance criteria that are used. Each experimental
setup is repeated for all the sampling strategies discussed
in section 2.4. The acceptance functions involve the set of
biomarkers described in section 2.3. Thus, the evaluation of an
acceptance function involves the reconstruction of the surface

of the aorta, from the description defined in section 2.2, and
the automatic computation of the biomarkers. Figure 3 shows
an scheme of the workflow along with the complete set of
experiments that are performed.

Problem 1: Data-Driven Acceptance Criteria
Given a reference cohort C0, we consider data-driven cohort
synthesis as the sampling of a larger cohort C1 with the only
acceptance criteria of being compatible with C0. In this first set
of experiments the acceptance function must be some measure of
how likely is a particular observation a, provided that it belongs
to the same population from which C0 was drawn. In our data-
driven cohort generation experiments, the reference cohort is
the sample formed by 26 aorta geometries acquired from real
patients described in section 2.2. The generated cohort will have
a size K1 = 3, 000.

The particular definition of A can depend on our goals when
generating C1; e.g., if we want to simulate and assess the effect
on a biomarker of a clinical intervention, we will favor a cohort
that provides a good statistical description of the underlying
population; on the contrary, if C1 is to be used as the training set
for a nonlinear model, then we may require that the population
is more evenly sampled to prevent unbalanced classes, regardless
the actual frequency of each group in the population. For this
reason we use three acceptance functions and present the results
for discussion, indicating in which contexts they could be of
interest. All three criteria are based on an acceptance interval for
the values of the biomarkers, and differ in the way this interval
is defined.

The first acceptance criterion is based on the mere range of the
observed biomarkers in C0. In order to accept a feature vector
a, the associated geometry must have all biomarkers within the
observed ranges. We will refer to the acceptance function for this
criterion asAr .

The second acceptance criterion takes into account the
dispersion observed in the original cohort to perform a sort
of outlier rejection. More precisely, we define intervals that
accumulate the 95% of the probability of finding each biomarker.
In absence of any other information about the actual distribution
of the different biomarkers, we rely on Chebyshev’s theorem.
This theorem sets a bound for the probability accumulated in
the tails of a distribution based on the mean µ, the variance σ

and the mode M. Assuming unimodality, Chebyshev’s theorem
establishes that the interval defined by M ± 3B, where B =
√

σ 2 + (M − σ )2 contains at least 95% of the area under the
probability function1. Refer to the work by Amidan et al. (2005)
for further detail. The acceptance criterion is met by a vector if
all the biomarkers fall into the corresponding interval, computed
with the estimators on the sample C0. We will refer to the
associated acceptance function asAM .

The third acceptance criterion assumes normality in the
distribution of the biomarkers. Since we are dealing with a
sample of a natural population it is reasonable to consider
the possibility that at least some of the biomarkers follow a

1If unimodality cannot be assumed, then the same interval contains, at least, 91%
of the probability density of the distribution.
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FIGURE 3 | An scheme of the workflow followed in our experimental setup. On the left track, the data-driven cohort generation scenario is shown; the reference

cohort C0, that is characterized using PCA to generate new samples CB, CG, CU, and CGAN, which are assessed with the acceptance functions AX . The middle track,

representing the clinically-driven experiments, starts splitting the samples of the boostrapping cohort, CB, generated on the previous scenario, onto the three target

phenotypes, N, A and E and, then, new cohorts CX
B, C

X
G
, CX

U and CX
GAN

are generated and, again, assessed by the corresponding acceptance functions AX . Finally the

rightmost blocks represents the development of Machine Learning surrogates to predict the acceptance functions. The synthetic cohort CB is used to train two SVM

models, Pp and P
µ

d (PD in the chart), that predict the outcome of Aµ and the aorta phenotype, respectively. The models are evaluated with CU, that was not used

during training. For any item of the picture, a purple frame means data-driven and an orange frame means clinically-driven. The reader can refer to the text for

further detail.
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TABLE 2 | Statistical description of each one of the biomarkers measured on the aorta.

Biomarker µ M σ B [min, max] (Ar ) M ± 3B (AM) µ ± 2σ (Aµ)

PA 14.77 14.71 1.40 1.40 [12.38,17.50] [10.50,18.92] [11.97,17.57]

PD 11.96 11.35 1.12 1.27 [10.24,14.32] [7.53,15.17] [ 9.73,14.20]

PT 13.38 12.78 1.55 1.67 [10.19,17.32] [7.78,17.78] [10.28,16.49]

LPD 233.69 211.36 25.25 33.71 [175.4,274.16] [110.22,312.49] [183.19,284.20]

MA 17.28 15.19 1.79 2.75 [15.19,21.5] [6.95,23.44] [13.71,20.85]

SoV 15.30 15.49 2.12 2.13 [11.78,21.0] [9.10,21.89] [11.06,19.54]

k 7.42 7.49 0.44 0.45 [6.74,8.40] [6.15,8.84] [6.53,8.30]

h 92.12 82.80 15.21 17.85 [70.21,139.42] [29.26,136.33] [61.69,122.55]

w 70.72 60.70 10.76 14.71 [50.25,88.56] [16.56,104.83] [49.19,92.25]

h/w 1.33 1.18 0.29 0.32 [0.91,1.91] [0.22,2.15] [0.76,1.90]

tor 0.70 0.71 0.02 0.02 [0.66,0.73] [0.63,0.78] [0.65,0.74]

From left to right, the first four columns correspond to the mean, µ, the mode M, the standard deviation, and the 95% Chebyshev’s theorem bound. The last three columns contain the

intervals considered in the different acceptance functions A
r ,AM, andA

µ (further detail can be found in the text). All units are in millimeters, except for k, which is expressed in mm−1,

and h/w and tor which are adimensional.

Gaussian distribution. Since the previous acceptance criterion is
rather permissive, as it is completely agnostic of the probability
density functions of the biomarkers, we consider pertinent
adding a more restrictive acceptance interval. Thus, we add the
criterion that all the biomarkers of a synthetic aorta must lie
within two standard deviations from the mean, and denote the
corresponding acceptance functionAµ.

Table 2 presents the values of the statistics for the different
biomarkers proposed and the resulting intervals defined by the
three acceptance criteria. These data correspond to the sample
statistics of the observed cohort C0 formed by the 26 patient
derived anatomies.

As we stated earlier, in some contexts it is important that
the distribution of a biomarker in the virtual cohort is a good
estimation of the original population distribution, e.g., when
we want to draw conclusions about the probability of certain
output variable that results from that biomarker. To provide
some insight on this regard, we will perform an additional test on
the generated cohorts. In order to detect if the distribution of the
biomarkers differ from that in the original sample, we carry out
a Mann-Whitney-Wilcoxson’s hypothesis contrast test (MWW)
on the observed distribution of each one of them. Note that this
test will not be involved on the computation of the efficiency of
the sampling methods, but will point toward their possible loss of
statistical fidelity.

Problem 2: Clinically-Driven Acceptance Criteria
We refer to clinically-driven cohort generation as the process of
generating a sample C1 with an acceptance criterion that is not
based on a reference cohort C0, but on a clinical requirement.
This does not mean the absence of C0, but only that the
acceptance function will not depend on the statistical properties
ofC0. If a reference cohort is used, e.g., to estimate the parameters
for parametric sampling, then it has to be taken into account that
it can bias the generation process. We are interested in the case
in which we do not have access to a representative sample of
the target population. In this case, we can use a sample from a

larger population that contains the subpopulation defined by the
acceptance criterion.

In order to set several acceptance criteria for our experiments,
we refer to the phenotype classification of the aortic root defined
by Schaefer et al. (2008). In their work, they consider three
disjoint classes according to the radius of the sinuses of Valsalva
(SoV), of the sino-tubular junction (PA) and of a point in mid-
ascending aorta (MA). The three phenotypes are defined as:

• Phenotype N : SoV > PA and SoV >=MA,
• Phenotype A : SoV > PA and SoV < MA,
• Phenotype E : SoV <= PA.

In our experiments we will use a different reference cohort for
each phenotype. Since the observed sample of real aortas is too
small to have a proper representation of the three phenotypes, we
will rely on a bootstrapped sample of size K0 = 3, 000 obtained
by resampling the clinical cohort. Let CB be this sample. Given
a phenotype X ∈ {N,A,E}, we define its reference cohort as
CX
0 = {a ∈ CB : a is of phenotype X}.
We will evaluate the efficiency of the sampling strategies

studied by generating a new sample of size K1 = 1, 000 for
each phenotype and augmentation method. Then, we analyze the
results obtained from three different points of view, clinically-
driven criteria, data-driven criteria, and the intersection of both.
We do this for phenotype X ∈ {N,A,E} as follows; first,
the phenotype acceptance criterion AX , that accepts an aorta
if it belongs to phenotype X, will be checked; also, the three
acceptance criteria defined for the data-driven cohort will be
measured (Ar , Aµ and AM); and, finally, simultaneously data-
driven and clinically-driven criteria are evaluated, retaining
aortas that meet both,Ar∩X ,Aµ∩X , andAM∩X .

Problem 3: Feature Space Acceptance Criteria
If the acceptance ratio is low during the sampling process,
generating large cohorts can involve a really high burden. In
order to reduce the amount of unsuccessful evaluations of
the acceptance criteria, our last proposal is to substitute the
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FIGURE 4 | Amount of shape variation explained by each of the components of the feature vector in the space defined by the PCA, in order of importance.

Importance is computed by training a Random Forest model and computing the decrease of impurity of each subtree. The first n = 16 features are capable of

explaining 95% of the shape variation.

acceptance functions A by efficient surrogates that provide a
prediction of the outcome ofA without actually evaluating them.

In the context of our work, we will train two models to
predict the outcome of some of the acceptance functions that
have been defined: a function P

µ

d
:R

n → {0, 1} that predicts if
a feature vector a ∈ R

n will be accepted by Aµ, and a function
Pp :R

n → {N,A,E} that predicts the phenotype of the aorta
associated to a feature vector a ∈ R

n. Pµ

d
will be based on

a Support Vector Machine (SVM), while Pp will be a Support
Vector Classifier (SVC) that, internally, uses several one-vs.-one
SVM classifiers to decide the class (Bishop, 2006). After the
predictors have been trained, they can be used to evaluate very
efficiently every feature vector that is drawn during the sampling
process. Then, only those anatomies that have passed the first
evaluation are then assessed by the real acceptance function.
Note that, in the previous two experiments, the efficiency was
measured in terms of the amount of feature vectors generated.
Now, when the evaluation of A is substantially higher than the
random generation of a vector, the efficiency can be defined as
the ratio between the number of successful evaluations of A and
the total number of evaluations of A. As a consequence, the
efficiency of the overall process will be the sensitivity or recall of
the SVM predictor.

To test this approach, the two predictors will be trained
using cross validation over generated cohorts of aortas where no

acceptance criterion has been applied. In addition, a completely
new generated cohort will be used as a final test set. The rightmost
part of Figure 3 shows the populations and schemes used to train
and test the two different classifiers proposed in this section.

3. RESULTS

Figure 4 shows the variance associated to each mode of
deformation, and the accumulated variation explained by
considering the first n features of the PCA. The first 16 variation
modes can explain 95% of the anatomical variability in the
observed sample of 26 aortas. Moreover, a correlation analysis
indicates that the R2 between the 16 first PCA modes and
the 3 biomarkers of interest that define the clinical acceptance
criteria PA, MA, and SoV, are 93.4, 97.4, and 96.9%, respectively,
indicating that the 16 dimensional space is an adequate basis to
tackle the problem.

3.1. Data-Driven Acceptance Criteria
After performing the PCA on the reference cohort C0, of size
K0 = 26, we have generated a cohort C1 of K1 = 3, 000
synthetic shapes by sampling the space using several methods:
bootstraping, uniform sampling, Gaussian sampling and a GAN.
These cohorts are represented in Figure 3 as CB, CU , CG and
CGAN , respectively. In the case of the GAN, it was trained
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FIGURE 5 | Violin plots for the distribution of biomarkers on the original samples, alongside with those generated using the proposed methods: Bootstrap (Bts),

Gaussian (Gau), Uniform (Unf) and generative adversarial network (GAN). Horizontal lines mark the bounds for the different acceptance criteria defined in section 2.5:

A
r , with dotted lines, Aµ, with dash-doted lines, and A

M with dashed lines. The units of the vertical axis are in millimeters, except for biomarkers k, which is

expressed in mm−1, and h/w and tor which are a dimensional.

increasing the epochs from 100 until it reached stability in the
accuracy, which was met with a total of 2,000 epochs. The size of
the batches used in each epoch was set to 5, that is approximately
a fifth of the size of the cohort C0.

For all the aortas in the synthetic cohorts, the different
biomarkers were computed. The resulting biomarker
distributions are presented in Figure 5 by means of violin
charts. Horizontal lines in the figure mark the bounds for the
different acceptance criteria defined in section 2.5: Ar , with
dotted lines, Aµ, with dash-doted lines, and AM with dashed
lines. The figure shows that all sampling methods generate
distributions of the biomarkers that surpass the range defined
by Ar , higher variability than that observed in the original
cohort C0.

One of the properties of the acceptance functions is that, in
most cases, Ar tends to be the most restrictive one due to the
limited variability observed for each biomarker inC0. Most likely,
this is due to the small size of that sample that leaves the tails
of the underlying distribution underrepresented. However, there
are exceptions, such as in the distribution for SoV or h, where
the upper bound is remarkably high compared to that of AM

and Aµ. Among these two acceptance functions, the criterion
based on Aµ is more restrictive than that based on AM , which
is an expected result based on their definition. Figure 6 shows
the anatomy of four synthetic aortas that fall within the different
acceptance intervals. From left to right, an aorta that meets Ar ,

an aorta that meets Aµ but not Ar , an aorta that meets AM but
notAµ and an aorta that does not meet any of the criteria.

Table 3 shows the efficiency of each method measured using
the different acceptance criteria, as defined in section 2.5. The
sampling strategies are arranged in rows, while each column
correspond to an acceptance function. In addition, the last
column shows the results of applying the MWW hypothesis
contrast test to compare the distribution of each biomarker
obtained in C1 to that observed in C0. Consistently with the
ranges observed for Ar , the acceptance ratio for this criterion is
notably smaller than that for the other criteria.

The results show substantial differences between the four
sampling strategies, making them suitable for different scenarios.
Both Gaussian and bootstrapping sampling show similar
efficiency results and are the two that have no biomarker
distributions rejected by the MWW test. These distributions
would be the most adequate to retain the statistical information
of C0. If we are interested on having a denser representation
of any phenotype, despite its actual distribution in the true
population, then uniform sampling provides longer tails for the
different biomarker distributions. This is at the price of having a
very low efficiency if the application of an acceptance function
is compulsory; e.g., in the case of considering Aµ more than
half the feature vectors are disregarded. If we are considering a
clinical scenario in which the biomarkers are the result of costly
simulations (Rodero et al., 2021; Thamsen et al., 2021), this has to
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FIGURE 6 | Examples of four synthetic aortas with decreasing feasibility of the biomarkers according to the acceptance functions. From left to right: the first one is

accepted by all of the criteria; the second one is rejected by Ar , but not by the other acceptance functions; the third one is only accepted by AM and the last one is

rejected by all the criteria.

TABLE 3 | Results of the generation of synthetic aorta cohorts with different sampling methods.

Method Ar Aµ AM MWW test

Bootstrapping 0.599 0.786 0.979 0 / 11 reject H0

Gaussian 0.625 0.739 0.966 0 / 11 reject H0

Uniform 0.293 0.424 0.893 7 / 11 reject H0

GAN 0.808 0.950 0.999 2 / 11 reject H0

The last column shows the number of biomarker distributions significantly different to the original according to the MWW test (refer to the text for further detail). The columns labeled

A
α ,α ∈ {r,µ,M}, indicate the efficiency of the data augmentation methods when considering each acceptance function.

be taken into account. On the opposite side, the cohort generated
by a GAN has the narrowest distributions for all the biomarkers
among the three methods, since the generated anatomies are
closer to the mean in the PCA space. This results in an efficiency
increment on all the criteria, at the price of having much shorter
tails and leaving some plausible regions under represented.

3.2. Clinically-Driven Acceptance Criteria
We start by building three reference samples, CX

0 ,X ∈ {N,A,E}.
Our starting point is the bootstrapped synthetic cohort, CB,
with size 3, 000, that was generated in the previous section. This
sample has been divided in the three reference clinically-based
cohorts:CN

0 , of sizeK0 = 330 aortas (11% ofCB),CA
0 , of sizeK0 =

1, 605 aortas (53, 5%), and CE
0 with the remaining K0 = 1, 065

aortas (35.5%). For each phenotype, X, we take CX
0 and apply

the four sampling methods described in section 2.5 to generate
the corresponding synthetic cohort CX

1 of size K1 = 1, 000. Even
though the definition of the different acceptance functions can be
found in section 2.5, for the sake of clarity we present a summary
of the meaning of the used criteria in Table 4. Furthermore, we
have added subscript DD for data-driven criteria and subscript
CD for clinically-driven criteria.

Results are shown in Table 5. Each row corresponds to a
sampling method and a phenotype, and shows the results for that
particular synthetic cohort. In the case of the data-driven criteria,
the efficiencies have a meaning similar to those in Table 3; it is
the ratio of aortas that are plausible according to the observed
sample of size K0 = 26. In the case of the clinically-driven
criteria, results can be interpreted like a confusion matrix for
each method. For instance, in Gaussian sampling and phenotype
N, a value of 0.141 under AA

CD means that 141 of aortas in
the synthetic cohort generated to be of class N, actually are of
phenotype A. The efficiencies are the elements of the diagonal in

TABLE 4 | List of the acceptance functions that are used in the experiments

related to clinically-driven-cohort generation.

Label Acceptance function description

A
r
DD Accepts an aorta if all biomarkers are within the corresponding

observed range in C0

A
µ

DD Accepts an aorta if all biomarkers are within the range µ ± 2σ for

that biomarker in C0

A
M
DD Accepts an aorta if all biomarkers are within the range M± 3σ for

that biomarker in C0

A
X
CD

With X ∈ {N,A,E}, accepts an aorta if it belongs to phenotype X

A
α∩X With α ∈ {r,µ,M}, and X ∈ {N,A,E}, accepts an aorta if it is

accepted by both and A
α
DD and A

X
CD

Subscript DD stands for data-driven and subscript CD satnds for clinically-driven. Refer

to section 2.5 for a detailed description.

each method’s block. The last three columns in Table 5 show the
result of requiring both a data-driven acceptance function with
the acceptance criterion of the phenotype for the row.

The results indicate that clinically-driven cohort synthesis is
a much harder problem than data-driven synthesis, in terms of
efficiency. The data-driven columns in the table indicate that,
in general, the anatomies generated are within what is observed
in CB, even for the uniform distribution. However, the columns
for Clinically-driven efficiency point out that a phenotype that
is easily identified in the biomarkers space can occupy a region
in the feature space that is mangled with aortas of a different
phenotype as it was anticipated in section 2.1 and Figure 2.

Again, the GAN is the sampling strategy that provides a higher
efficiency. However, on the contrary to what happened in the
data-driven generation, in this case this does not imply narrower
biomarker distributions, at least in the three values that define
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TABLE 5 | Efficiency values achieved by each method and for each biomarker.

Data-driven Clinically-driven (Data ∩ Clinically)-driven

Method Phenot. Ar
DD

A
µ

DD
AM

DD
AN

CD
AA

CD
AE

CD
Ar∩X Aµ∩X AM∩X

N 0.978 0.650 0.954 0.695 0.301 0.004 0.679 0.457 0.662

A 0.973 0.675 0.957 0.231 0.557 0.212 0.551 0.404 0.529Bootstrap

E 0.969 0.720 0.958 0.008 0.253 0.739 0.724 0.568 0.720

N 0.954 0.753 0.960 0.858 0.141 0.001 0.820 0.655 0.826

A 0.983 0.735 0.968 0.052 0.874 0.074 0.863 0.654 0.845Gaussian

E 0.975 0.722 0.967 0.003 0.117 0.880 0.862 0.646 0.855

N 0.999 0.807 1.000 0.887 0.113 0.000 0.886 0.716 0.887

A 0.979 0.534 0.908 0.135 0.616 0.249 0.605 0.346 0.566Uniform

E 0.954 0.554 0.957 0.009 0.210 0.781 0.753 0.446 0.755

N 0.974 0.806 0.979 0.895 0.102 0.003 0.874 0.736 0.878

A 0.963 0.733 0.958 0.089 0.855 0.056 0.846 0.669 0.833GAN

E 0.931 0.573 0.931 0.000 0.104 0.896 0.840 0.521 0.833

The efficiency of each row is the result of using the method of the first column in the cohort CX
0 , where X is the phenotype corresponding to the row, as specified in the Phenot. column.

Refer to the text for the details on the interpretation of the data. Row colors follow the same convention used in previous figures for phenotypes: red for phenotype N, green for phenotype

A, and blue for phenotype E.

the phenotypes, as it can be inferred from Figure 7. Indeed, this
wider span of the distributions leads to lower acceptance ratios in
the data-driven criteria.

It also noteworthy that the results can be very dependent
on the particular target phenotype in the generated cohort. In
our experiments, phenotype N is, in general, easier to sample
efficiently, while phenotype A yields the worst results in all
sampling methods except in the Gaussian distribution. This
indicates that sampling in the feature space can be very inefficient
depending on the target cohort distribution.

3.3. Machine Learning Surrogates for
Acceptance Criteria
We address now the problem of training predictors for different
acceptance functions. The aim of this SVM classifier is to predict
if a random sample can be considered as an aorta from the
observed distribution of 3,000 bootstrapped aortas. Figure 3

shows the scheme of the training and validation process that is
described next.

We start by building a predictor for one of the data-driven
acceptance functions; a Support Vector Machine (SVM) model,
P

µ

d
was trained, and acted as a predictor of A

µ

DD defined in
section 2.5. A large training set of 15, 000 aortas was generated
using a Gaussian sampling. The reason for using the Gaussian
distribution in this case is that we want a reasonable amount of
infeasible aortas in the training set and, according to the results
of section 3.1, this is the method that samples best the tails of
the biomarkers distributions. To label the elements of this set,
the acceptance functions were applied to all of them. In this case,
since the original sample of size 26 is small, the statistics used to
evaluate Aµ

DD have been those obtained from the set CB of 3,000
bootstrapped aortas. In order to prevent overfitting, a 5 fold cross

validation process has been used to train the model. The accuracy
obtained in the cross validation process with this model was 0.9
with a radial basis function for the SVM kernel.

We can trust Pµ

d
to build our cohort very efficiently, but at the

risk of including some aortas that would not pass the actual test.
If we want to prevent this, we will need to evaluate Aµ

DD on the
aortas accepted by P

µ

d
. If this is the case, the relevant indicator

from the efficiency perspective is the sensitivity of Pµ

d
(ratio of

correctly accepted aortas with respect to the total number of
accepted aortas). An assessment of the sensitivity of the model
was performed using the samples generated with the uniform
distribution (size K0 = 3, 000), a dataset that is different to the
one used in the training process. The resulting confusion matrix
is presented in Figure 8 (left). It shows that the sensitivity is
0.884, meaning that only 11.6% of the aortas evaluated by A

µ

DD

will be discarded after using P
µ

d
. Note that, even though the

number of false negatives is not relevant from the efficiency point
of view –rejected aortas will not lead to any evaluation of the
acceptance function–, they lead to a bias in the resulting cohort;
the aortas that result in false negatives will not be represented in
any cohort that has been generated with a surrogate acceptance
function. Thus, this possible bias has to be taken into account if
the statistical properties of the resulting cohort is very relevant
in our study. In our case, for P

µ

d
, the aortas wrongly rejected

represent about a 6% of the total sample of size 3,000 and nearly
a 16% of the aortas that should be accepted.

The second classifier, Pp, aims to learn a function able to
classify, in the PCA feature space, the three phenotypes used
in the clinically-driven cohort generation experiments. A SVC
was trained using the set of 3,000 bootstrapped aortas, since
this set represents properly the considered phenotype. The best
accuracy for this model was 0.92, obtained during 5 fold cross
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FIGURE 7 | Distributions of the three biomarkers that define the target phenotypes (SoV, PA, and MA) in the set of aortas that actually belong to each one of the three

classes. All the values are in millimeters.
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FIGURE 8 | Confusion Matrices obtained for the P
µ

d and Pp models.

validation using a linear kernel. Again, we tested the performance
of Pp by applying the model to the sample of 3,000 aortas
generated with a uniform distribution, which is different to the
one used during the training process. Figure 8 (right) shows the
confusion matrix obtained during this evaluation. We provide
a graphical representation of the confusion matrix for Pp in
Figure 9. The figure shows an example of an aorta for each one
of the scenarios described by that confusion matrix. If our goal is
to generate a cohort of only one class, either N, A or E, then the
corresponding column of the matrix throws information about
the resulting efficiency. For phenotype N, we can see that the
efficiency (sensitivity) in the test sample is nearly 94% and that
the prediction of type E presents an efficiency of 93%. On the
lower side, phenotype A has a ratio of true positives of 89%,
leading to the rejection of 11% of the generated geometries.
Regarding false negatives, it is noteworthy that class N is the one
that has higher ratio of improperly rejected aortas, with nearly
a 13%.

Training prediction models opens the possibility of assessing
which features are the most relevant for the particular problem
we are facing. In the case of the phenotype classifier, Pp, we
have performed an analysis of the importance of each feature
in the decision process. Feature importance has been provided
by training a Random Forest model and computing the mean
decrease in impurity within each subtree. Figure 10 (left) shows
the importance obtained for each feature in the classification
problem. As expected, the most important features are those
related to the biomarkers involved in the classes definition. For
example an inspection of the effect of feature nine on the anatomy
shows that the associated deformation mode has a big impact
on the Sinuses of Valsalva radius (SoV), which is related to the
definition of all three phenotypes.

The training was performed not only for the complete feature
vector of dimension 16, but also for the first n = 3, 4, . . . , 16
components, sorted by importance. Figure 10 (right) shows the
evolution of accuracy –obtained during the cross validation
process– of Pp as the number of features increases, using both

the SVM (linear kernel) and the random forest model. Results
indicate that, in order to properly separate the three classes, at
least 14 features are needed.

In summary, the SVM models are very useful to obtain the
decision boundaries of the populations under study, and the data
augmentation techniques can take advantage of this ability. The
straightforward application is the use of classification models as
fast rejection sampling mechanisms in the PCA space, in order to
improve the accuracy of the data augmentation technique used at
lower cost than rejecting samples in the biomarkers space.

4. DISCUSSION

In this study we have shown that there is no universal data-driven
cohort generation method, but that the right election highly
depends on the purpose of the study. Next, we discuss how the
different methods assessed in this paper can be useful according
to the needs of the reader. A summary of our findings can also be
found in Table 6.

If the goal is to reproduce the existing sample, in what we
call data-driven cohort generation then bootstrapping yields
trustworthy results. Gaussian sampling achieves similar results.
Nonetheless, for some particular biomarkers it leads to longer
tails than bootstrapping, while for others to shorter ones.
In conclusion, if the actual distribution of the biomarkers is
unknown, this can not be assured. On the other hand, the
uniform sampling can be well suited if the goal is to obtain
the maximum variability, as in machine learning scenarios.
The GAN sampling achieved the best acceptance efficiency in
most of the criteria measured in this work. However, statistical
conclusions should be drawn carefully since there is no guarantee
of preserving the underlying probability distributions. On the
contrary, bootstrapping and Gaussian have proven to be robust
with more moderate values of efficiency. The use of non-linear
methods to predict the anatomical or functional phenotype
of interest from a compact PCA representation is the most
efficient method to generate virtual cohorts, but at the cost
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FIGURE 9 | Graphic representation of the confusion matrix of Pp. Examples of aortas of phenotype N, A and E row-wise, with the phenotype predicted

column-wise arranged.

of losing statistical characteristics that will be better preserved
with bootstrapping.

Over the last years, virtual populations have been built for a
variety of applications in the area of cardiac modeling. Britton
et al. (2013) generate a population of 10,000 ionic cellular
models by varying randomly a specific set of parameters, as
in bootstrapping method, to study the variability in cardiac
cellular electrophysiology. Haidar et al. (2013) apply Markov
Chain Monte Carlo methodology to generate a cohort of Type
1 Diabetes subjects and test glucose controllers. In a similar
approach to our work, Allen et al. (2016) present a strategy to
efficiently sample and filter virtual populations of pharmacology
models, taking empirical data to build data-driven acceptance
criteria. Notwithstanding these works do not focus on the
anatomy, they share with our research the essential methodology,
especially in the last case.

Other authors do focus in shape generation, mainly with
medical image as the source of information. Gilbert et al. (2021)
generate synthetic 2D, labeled echocardiography images using
GAN, and then train a convolutional neural network segment
the left ventricle and left atrium using only synthetic images.
Rodero et al. (2021) link the main deformations of a cohort
of 19 healthy hearts with the electrophysiological biomarkers
acquired via simulation. Instead of randomly sampling, the
authors perform a sensitivity analysis over a grid on the PCA
space, formed by the 9 main modes of variability (covering 90%
of variation). They validate the synthetic cohort comparing the
obtained biomakers with distributions from literature. Related to
thoracic aorta cohorts, in Liang et al. (2017) use 25 geometries
of ascending aortic aneurysm to generate a synthetic cohort
of 729 shapes in order to asses aneurysm rupture risk using
an SVM. They use uniform sampling in the intervals [µ −
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FIGURE 10 | Left: Features importance. Right: Subpopulation classification accuracy as the number of features increases.

TABLE 6 | A summary of the conclusions that can be obtained from the results of the study presented in this paper.

Method Remarks Sampling scenarios

Bootstrapping Well suited when there is no prior knowledge over the variables

defining the cohort.

It preserves statistical properties of the original sample.

Appropriate if the statistical properties of the resulting sample are

relevant, e.g., when the goal is to perform an in-silico trial.

Gaussian distribution

sampling

Results comparable to bootstrapping in both data-driven and

clinically-driven scenarios.

It is the most consistent sampling method across the experiments.

Gaussian distribution sampling can provide denser sampling of the

tails than bootstrapping, specially if the reference cohort is small.

Anatomies far from the mean in feature space can still be

underrepresented, leading to unbalanced training sets for Machine

Learning models.

Assuming normality can bias the sample if the underlying

distribution is not Gaussian.

Uniform distribution

sampling

Increases the variance of the synthetic sample more than any

other method. Oversamples the tails of the observed distribution

where less plausible individuals can be found, leading to low

efficiency for data-driven acceptance functions.

Not suitable for reproducing the original statistical properties

observed in the reference cohort, it can provide better balanced

training sets for Machine Learning models.

Generative Adversarial

Networks

Achieves good results in the clinically driven scenario, with high

efficiency and variance.

Sensitive to training set size. Worse results than probability

distribution methods if the reference cohort is small. The sample

variance was substantially reduced in our data-driven experiments

with 26 aortas.

The limitation of the sample size must be taken into account for the

sampling scenario.

Statistical properties of the original sample can be lost, specially

with small reference cohorts.

Machine Learning

surrogates

Combined with a sampling method, they can be used to reduce

the number of evaluations of acceptance functions.

It still requires building a starting sample to be used as training set.

Statistical properties of the resulting cohort depend on the

sampling method. High rates of false negatives can bias the

sample by reducing its density in certain regions of the space of

aortas.

For each of the techniques evaluated, we present the main remarks and discuss possible strengths and limitations under different sampling scenarios.

2σ ,µ + 2σ ] for the first three modes of variation of the PCA.
In each one of these works, a particular sampling methodology
is chosen, according to the goals of their research. In our paper,
we do not focus on a particular clinical outcome but on the
methodology itself, providing a systematic comparison of some
of these methods.

A common question in any computational anatomy study is
the ability of our parametric space to capture the desired real
clinical variability. This is pretty difficult to ascertain, and a

surrogate metric is the compactness of the PCA basis. In this
respect, our study required 16 modes to capture 90% of the
variance from a sample of diseased aortas presenting ascending
aortic aneurysm. A healthy subset of aortas, by Casciaro, required
only 6 modes to capture 84%, and another congenital set of
aortas, required 19 modes to capture 90%. In Bruse et al. (2017),
thoracic aorta geometry is encoded in a PCA space to solve a
classification problem by means of hierarchical clustering. They
retain the 19 modes of deformation covering 90% of the variance.
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Liang et al. (2017) cover 80% of variance with the first three
modes of deformation. Our results thus fit within the range of
variability seen in previous results.

Clinically-driven generation have proven to be much difficult
to achieve. The efficiency of the generation of the synthetic cohort
has considerable dependence on the acceptance criteria. Our
results show this in the low efficiency achieved for aortas of
type A, which contrasts with the high efficiency obtained with
phenotypeN. In the work by Thamsen et al. (2021), they achieved
an efficiency below 0.27 using a Gaussian distribution. They
generate a first synthetic cohort of more than 10,000 individuals
and apply what they call a stepwise filtering to limit the cohort to
aortas suffering from coarctation.

We have seen that classical statistical methods in many cases
obtained considerably lower values of efficiency than the GAN,
which outperformed the rest of the methods in both, variance
and acceptance. This notable increase in the throughput of the
GAN is likely to be related with the increase in the training set.
In the data-driven scenario, the training set was formed by 26
samples, while in the clinically-driven, initial synthetic cohorts
were much larger (between 330 and 1,000 cases). It is also worth
to mention that Gaussian achieved results noticeably better than
bootstrap and Uniform. This is partly explained by the fact that
multivariate Gaussian distribution accounts for the co-variance
of the cohort, what makes the drawn samples scatter around the
mean and be mainly distributed in the main axes of variation.
This is, in general, not true for uniform distribution. Otherwise,
the bootstrapping method has a particular limitation in our
case; each reference cohort CX

0 , was extracted from an already
synthetic cohort, CB also generated by bootstrapping from the
cohort of real aortas, with size 26. This reduces the set of possible
values from which to sample when drawing each coordinate of
the feature vector. In any case, the efficiency of the sampling
methods for the clinically-driven criteria suggested that there is
an overlap in the PCA space between the phenotypes N and A,
and phenotypes A and E.

The evaluation of the acceptance functions A can require
a non-negligible amount of computation. Any vector a, has to
be translated from the feature space to the biomarkers space
to take the decision, being this computation of the biomarkers
part of the evaluation of A. In the cases considered here,
where only distances in the anatomy are involved, this process
requires evaluations of the polynomials that describe the aorta
wall. However, biomarkers derived from hemodynamics or from
the cardiac function (Liang et al., 2017; Rodero et al., 2021;
Thamsen et al., 2021), require the simulation of the process
of interest to obtain the involved biomarkers. Even with low
resolution models, this process can require a computation time
in the range of minutes to hours on a modern workstation.
Machine learning and deep neural networks are already being
used to accelerate different processes related to simulation of
hemodynamics in the aorta or perform diagnosis (Xiao et al.,
2016; Liang et al., 2018, 2020; Feiger et al., 2020). We show that,
in the generation of virtual patients cohorts, machine learning
can replace the evaluation of acceptance functions with high
accuracy. We choose to use SVM bacause they are known to
be capable of avoid over-fitting in situations where reduced size

dataset are available. This means that this strategy could be used
without requiring thousands of samples as used in this work,
what makes it feasible for simulation-based clinical criteria.

This last point, however, has to be taken into account when
using machine learning surrogates to estimate the acceptance
functions. In order to fit the model, a training set still needs to
be built. While in models such as SVM the required dataset can
be relatively small, for GAN and other network-based models
are more sensitive to this limitation, as we have seen in the poor
performance achieved by the GANwhen trained with the original
cohort of size 26. Thus, a first cohort generation task has to be
completed using the original acceptance functions, no matter
how expensive they are. This effort, however, can later pay off by
including the training set in the final cohort.

Another limitation of our study is the size of the original
sample, with a total of 26 aortas. This limitation, however, also
underpins the fact that cohort generation can be addressed even
without having large reference datasets. Indeed, the original
sample only had 3 aortas of class N, and we conjecture that it is
feasible to generate phenotypes that are absent from the reference
cohort provided that the anatomy can be properly described by
the resulting PCA representation.

Among the possible future extensions to our work we consider
the addition of Markov Chain Monte Carlo methods to the set
of sampling strategies. All the experiments have been performed
using a reduces sample of aortas with the same pathology. The
proposedmethodology could be applied to a larger, perhapsmore
heterogeneous, reference dataset. This could be of special interest
to better assess the performance of GAN in the data-driven
experiments. Also, we would like to validate our hypothesis that
it is possible to generate clinically-driven cohorts that are not
present at all in the reference dataset.

5. CONCLUSIONS

The generation of synthetic cohorts of patients is a methodology
of increasing utility in cardiovascular modeling. In this paper, we
have addressed some of the problems faced by the generation
of clinically meaningful virtual cohorts. Using the case of aorta
cohort synthesis, we have performed a systematic evaluation of
sampling methods that are commonly used in Statistical Shape
Modeling. According to our experiments, the sampling strategy
and the verification of the generated cases can have a great impact
on the efficiency of the process and on the quality of the resulting
cohort. We identify several scenarios and discuss the quality of
the results of the assessedmethodologies in each case. In addition,
we propose the use of machine learning models to accelerate the
cohort generation.

As simulation models in physiology increase their quality, and
the application of machine learning models become ubiquitous,
the use of virtual cohorts will become more frequent in therapy
design, patient stratification or in-silico trials. The results of this
paper can guide other authors in the process of reliably building
synthetic populations.
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Parameterised patient-specific models of the heart enable quantitative analysis of cardiac

function as well as estimation of regional stress and intrinsic tissue stiffness. However, the

development of personalised models and subsequent simulations have often required

lengthy manual setup, from image labelling through to generating the finite element

model and assigning boundary conditions. Recently, rapid patient-specific finite element

modelling has been made possible through the use of machine learning techniques.

In this paper, utilising multiple neural networks for image labelling and detection of

valve landmarks, together with streamlined data integration, a pipeline for generating

patient-specific biventricular models is applied to clinically-acquired data from a diverse

cohort of individuals, including hypertrophic and dilated cardiomyopathy patients and

healthy volunteers. Valve motion from tracked landmarks as well as cavity volumes

measured from labelled images are used to drive realistic motion and estimate passive

tissue stiffness values. The neural networks are shown to accurately label cardiac

regions and features for these diverse morphologies. Furthermore, differences in global

intrinsic parameters, such as tissue anisotropy and normalised active tension, between

groups illustrate respective underlying changes in tissue composition and/or structure

as a result of pathology. This study shows the successful application of a generic

pipeline for biventricular modelling, incorporating artificial intelligence solutions, within a

diverse cohort.

Keywords: personalised modelling, biventricular mechanics, parameter identification, automatic segmentation,

valve landmark identification

1. INTRODUCTION

Cardiovascular disease causes changes in cardiac anatomy, structure, and function—all resulting
in changes to the active and passive biomechanics of the myocardium. However, it is difficult to
assess intrinsic properties from imaging data alone. Patient-specific computational models can be
used to simulate cardiac mechanics and measure quantities such as stress and strain and have
the potential to augment current steps in therapy planning, allowing clinicians to test devices,
such as left ventricular assist devices (Sack et al., 2018b), and therapies, such as septal myectomy
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(Huang et al., 2021). Personalised models can also be used
to create “virtual cohorts,” running large-scale trials on large
numbers of realistic heart models in concert with animal and
human studies (Peirlinck et al., 2021).

Personalised models have been used to estimate both passive
(e.g., Augenstein et al., 2006) and active (e.g., Marchesseau
et al., 2013) parameters. Differences between global stiffness
parameters have been identified between healthy and diseased
cohorts through the use of patient-specific modelling
(Hadjicharalambous et al., 2017; Wang et al., 2018). These
passive parameters could be used as an additional diagnostic
tool or to track disease progression. Additionally, estimation of
heterogeneous stiffness parameters demonstrate the feasibility
to identify local differences in tissue properties (Balaban et al.,
2018), which can give an indication of regional changes. The
optimisation of material parameters has been formulated as a
nonlinear optimisation problem which aims to minimise an
objective function based on the observation error, typically using
displacement (Wang et al., 2018), strain (Augenstein et al., 2005;
Wang et al., 2009), or geometric metrics (Nasopoulou et al.,
2017). Filtering approaches, such as the use of Kalman filters,
have also demonstrated robust and accurate estimation of passive
parameters in the presence of noise (Xi et al., 2011). Regional
contractility parameters estimated in personalised models have
been shown to decrease in infarcted regions (Chabiniok et al.,
2012). Although personalised modelling has been demonstrated
to offer insights into intrinsic properties of the heart in health and
disease, key challenges remain including automation of many
cumbersome steps in model development as well as integration
of key biomechanical information. For example, most studies
have utilised manual segmentation for model development.
Additionally, many studies developing personalised models have
relied on data which is not typically acquired in a clinical scan
(e.g., tagged MRI or intraventricular pressure measurements),
thus limiting the size of their cohorts.

The process of generating patient-specific models was once
a time-consuming task, requiring manual annotation and
segmentation of images to construct an accurate geometric
model (Heijman et al., 2008). The advent of and advances in
machine learning have enabled automation of many of these
tasks, with results ranging in accuracy and reliability (Henglin
et al., 2017; Leiner et al., 2019). Deep learning is a subset of
the machine learning field of techniques focusing on artificial
neural networks which are constructed as deeply interconnected
neural structures (Zhang et al., 2018). Neural networks have
greater capacity to learn more complex problems than other
machine learning methods with a greater ability to generalise
to unseen data. These can be applied directly to the labelling of
anatomical structures by assigning each pixel/voxel of an image
a category probability which associates them with one or more
structures. This allows the automation of cardiac segmentation
such that an entire short-axis cine dataset can be labelled in
seconds without manual initialisation or intervention, rather
than hours (e.g., Bai et al., 2018; Chen et al., 2020). Cardiac
segmentations can then be used to automatically calculate clinical
metrics such as ejection fraction and long-axis strain (Ruijsink
et al., 2019), and can be combined with other networks to

perform disease classification (Martin-Isla et al., 2020) and
feature detection (Bizopoulos and Koutsouris, 2018). In addition
to expediting segmentation, trained neural networks can also
lead to consistent and standardised results improving reliability
and reproducibility. Neural network segmentations can then
be used to automate the process of generating patient-specific
geometric models.

In order to extend personalised modelling into the clinical
domain, there is a need to develop a robust pipeline to not
only generate models for diverse cardiac morphologies, but
also to run biomechanical simulations using data acquired
within a clinical scan. This study presents an AI-driven
pipeline for the development of personalised biventricular
mechanical models which were used to simulate passive and
active mechanics. Novel boundary conditions, driven by neural
network derived landmarks, were used to constrain valve motion
and cavity volumes. The pipeline was tested in a diverse cohort
which included healthy volunteers, patients with DCM and
hypertrophic cardiomyopathy (HCM), using only a short-axis
cine stack and three long-axis image planes, equivalent to images
that would be collected in a standard clinical MR scan.

2. MATERIALS AND METHODS

For all cases in this study, a balanced steady-state free precession
sequence was used to collect cine images at short-axis slice
locations and three long-axis imaging planes including two
(2CH), three (3CH), and four-chamber (4CH) views. Between
20 and 40 images were acquired per cardiac cycle depending
on the individual’s heart rate. All images were acquired on a
Philips Achieva 1.5 T scanner at St. Thomas’ Hospital in London.
Written informed consent was obtained from all participants
prior to scanning. The study protocols for the DCM patients
and healthy volunteers (study number 12/LO/1456) and HCM
patients (study number 15/NS/0030) were approved by the
London Bridge National Research Ethics Service. This initial
study includes a cohort of patients with HCM (n = 4), DCM
(n = 4), and healthy volunteers (n = 4). Patients with HCM
demonstrated heterogeneous patterns of wall thickening, in
keeping with the underlying diagnosis. The entire processing
pipeline for each case is shown in Figure 3. Each block within the
figure will be discussed in greater detail in the following sections.

2.1. Neural Network Image Labelling
Cine images were passed to two neural networks. The first
of which labelled the left ventricular (LV) blood pool, LV
myocardium and right ventricular (RV) blood pool in all short
and long-axis images, whereas the second returned labels of 10
valve landmarks identifying leaflet insertion points in all long-
axis images.

2.1.1. Cine Image Labelling
Full-cycle three-label segmentation was accomplished using
a UNet-derived (Ronneberger et al., 2015; Kerfoot et al.,
2018, 2019) neural network. Left-ventricular blood pool, left-
ventricular myocardium, and right-ventricular blood pool were
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FIGURE 1 | The segmentation network is implemented as a stack of blocks illustrated here. The encode and decode paths along with the skip connection are defined

in the same block. The “Next Layer” is either another such block or the bottom encoding block comprised of convolution/normalisation/activation sequences. The

overall structure of the network is shown on the right, with the dimensions of tensors passing between layers given relative to an input of shape (1, N, W).

identified by this network by analysing each two-dimensional
slice from a full short-axis stack individually.

The network architecture is composed of a stack of blocks
incorporating the encode and decode paths of the UNet structure
(Figure 1). Data flows through the encode side on the left
where it passes through a residual unit (He et al., 2016) of
convolution/normalisation/activation layers. The output from
this unit passes to the next layer in the stack, which is either a
further layer of such encode/decode pathways or a final residual
unit. The data from the encode path is concatenated with the
output from the layer below before being passed through another
residual unit in the decode side.

The dataset used for training consisted of 9,095 segmented
MR short-axis images (Kerfoot et al., 2019). These were derived
from the ACDC challenge dataset (Bernard et al., 2018) of
100 cases and 175 UK Biobank healthy cases. Of the latter, an
expert clinician at St. Thomas’ Hospital in London segmented
100 healthy cases, 50 cardiomyopathy cases, and 25 randomly
selected cases that exhibited sufficient image quality for use as
input. Additionally, 215 cases were acquired on a 1.5 T Philips
Ingenia scanner at St. Thomas’ Hospital in London, and 116
cases from a Siemens Trio 3T scanner (Siemens Healthineers,
Erlangen, Germany), and were also segmented by an expert
clinician at St. Thomas’ Hospital. These cases consisted of
healthy volunteers, HCM patients, and patients with cardiac
resynchronisation therapy (CRT).

The network was trained for 10,000 iterations. For each
iteration, a mini-batch was created by selecting 250 randomly
selected images from the dataset. A random selection of
flip, transpose, 90◦ rotation, shift and non-rigid deformation

operations were applied to the image and segmentation pairs. The
loss function used was a simple Dice loss (Dice, 1945).

2.1.2. Valve Landmark Identification
Landmark coordinates in the three long-axis views were used
to identify the locations of the leaflet insertions into the
myocardium. Ten landmark locations in total were estimated: six
mitral valve locations (two from each view), two aortic locations
in the three-chamber view, and two tricuspid locations in the
four-chamber view. These landmarks were estimated using a
convolutional neural network implemented as a regression from
two-dimensional images to a landmark coordinate array (Kerfoot
et al., 2021). See Figure 3: Valve Landmark Identification. Briefly,
the network was trained on 8,574 long-axis images collected from
HCM (n = 3,069) and myocardial infarction (MI, n = 5,505)
patients. Further details of the dataset used for training can be
found in Kerfoot et al. (2021).

Figure 2C illustrates the general architecture of the network
composed of a sequence of densely-connected blocks of
convolutions. The output data from these blocks is then passed
to a series of small neural networks trained to recognise
the 10 different landmark coordinates. Having condensed the
information from the input image to a deep representation,
each sub-network learns to recognise which view is represented
and determine a location from this representation. From each
long-axis image, all ten landmarks are identified. However, the
landmarks which do not occur in the input image are inferred to
be in the top-left corner at coordinate [0,0].

Figures 2A,B illustrates the architecture of the
densely-connected blocks (Huang et al., 2017). Within
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FIGURE 2 | The valve estimation network is composed primarily of a series of densely-connected convolutional layers. Each dense block is composed of three

residual units containing 2D convolutions using progressively larger dilation rates. A final convolution reduces the spatial dimension of the volume by 2. The regression

network is implemented as a sequence of densely-connected blocks followed by a series of small fully-connected networks relating the final output volume to each

landmark coordinate. (A) Residual unit, (B) dilated dense block, (C) network definition.

each block is a residual unit composed of two sets of
convolution/normalisation/regularisation layers. The dilation
value for the convolutions increments for each succeeding unit,
which allows convolutions to recognise features of different
scales in the input volume. The output from each unit is
concatenated with outputs from previous units. This combined
volume is used as the input to the next unit. All such outputs, plus
the original input, are concatenated into the final output volume.
A final convolution/normalisation/regularisation reduces the
output volume in the spatial dimensions by a factor of two.

During training, data augmentation was applied to the
images from the manually-annotated dataset. A randomised
combination of flip, transpose, zoom, rotate, shift, and non-rigid
deformation operations were applied to the image and ground-
truth landmark pairs to be fed into the network during training.
The images were further augmented with added noise, smooth
image intensity variation and k-space dropout to simulate a poor-
quality acquisition. The objective of these augmentations was to
vary the data the network is trained with to reduce overfitting and
improve its generalisation to unseen image types.

2.1.3. Label Quality Control
For the short and long-axis segmentations, labels were cleaned
(a) by removing labelled regions with fewer than 50 pixels,
disregarding improperly labelled “islands” far from the heart

as well as (b) filling holes in the labelled regions. Since
valve landmarks were identified for each 2D long-axis image
independently (not incorporating temporal continuity), an
additional step was implemented to automatically identify
landmarks which were incorrectly labelled in order to omit
these points. Then, a linear interpolation step was used to
interpolate missing points before applying a low-pass filter to
temporally smooth landmark displacements. Valve landmarks
were used both as input to the model fitting step as well
as boundary conditions to constrain valve annuli motion
throughout simulations of the cardiac cycle.

2.2. Segmentations to Models
Short-axis alignment was performed using the IRTK
toolbox (Schnabel et al., 2001) which applies a rigid
transformation to individual short-axis planes in order
to optimise the overlap between short-axis masks and a
model template. Starting with the rigid registration tool’s
default initialisation, the short-axis images are rigidly moved
in the in-plane dimension to account for misalignment
during acquisition.

Subsequently, long-axis images were rigidly registered to the
short-axis aligned images using the rigid registration algorithm
in the IRTK package, also using the tool’s default initialisation.
Dice scores along the line of intersection between each short and
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long-axis mask were used to (a) automatically determine which
short-axis slices would be used for the model fitting by omitting
slices with a dice score <0.5 and (b) to assign weights to each
contour point based on their overlap with other data. In this
way, long-axis slices which were poorly registered to the short-
axis data, even after running the registration step, did not skew
or greatly impact the final fitted model.

A biventricular template was then fitted to the segmentations
using the two-step iterative method developed in Mauger et al.
(2018). In order to do this, contours were automatically generated
from the short and long-axis labels (i.e., LV endocardium, RV
septum, RV free wall, epicardium, RV insertion points, apex, etc.)
in order to fit model surfaces to the contour points. Locations of
the mitral, tricuspid, and aortic valve annuli were obtained from
the annotated valve landmarks. Due to a lack of segmentation of
the RV myocardium, RV epicardial contours were automatically
generated by projecting the RV free wall contours in the normal
direction at a distance of 3 mm. Briefly, a series of stiff linear
least squares fits with a high D-affine regularisation weight
was performed to provide an adequate first solution. For each
iteration, the Jacobians on 4 × 4 × 4 Gaussian quadrature
points were calculated. If all were positive, the model was
updated, the regularisation weight was decreased and another
iteration was performed. If not, the model was not updated and
another optimisation step was performed using diffeomorphic
constraints based on the magnitude of the displacement. Models
were fit to segmentations at all frames of the cardiac cycle. Surface
meshes were used to construct cavity volume curves throughout
the cardiac cycle as well as quantify metrics such as wall thickness
and ejection fraction.

From the fitted surface meshes, tetrahedral meshes were
generated for the end-systolic time point using SimModeler
(Simmetrix1). Mesh metrics, including number of nodes and
element quality, can be found in Supplementary Table 1.
Biventricular fibre fields were created using a rule-based method
adapted from Doste et al. (2019) and Bayer et al. (2012). Fibre
angles varied from −60 to 60◦ and −25 to 90◦ from the
epicardium to endocardium in the LV and RV, respectively.
Fibre angles at the valve annuli were determined based
on high-resolution DTI measurements from ex-vivo porcine
hearts. Specific angles at each boundary can be found in
Supplementary Table 1. An example fibre field can be seen in
Figure 3, Rule-based Fibres.

2.3. Biventricular Modelling
The personalised mechanical models were solved using
energy potential minimisation, following (Asner et al., 2017;
Hadjicharalambous et al., 2017). In brief, the myocardium
is defined by the reference domain �0 ⊂ R

3 with initial
coordinates X ∈ �0. The biventricular domain, �0, consists of
boundaries on the endocardial sides of the LV and RV (denoted
Ŵlv
0 and Ŵrv

0 ), the wall marking the rings for the mitral (Ŵmv
0 ),

aortic (Ŵav
0 ), tricuspid (Ŵtv

0 ), and pulmonary valves (Ŵ
pv
0 ), as

well as the epicardium (Ŵ
epi
0 ). The orientation of local tissue

microstructure across the myocardial wall is given by the fibre,

1http://www.simmetrix.com/.

sheet and sheet normal vector fields, (f0, s0,n0). Similarly, at each
valve boundary, a circumferential vector field is defined (denoted
fk0 for Ŵk

0 , k ∈ V = {mv, av, tv, pv}) which describes the local
orientation of connective tissue that comprises each valve orifice.
Finally, to enable variations between the LV/septum and the RV,
we define a labelling field, φ, where φ = 1 in the LV/LV septum
and φ = 0 in the RV/RV septum.

For simulating myocardial function, imaging data is extracted
to describe functional changes through time. The change in
LV and RV luminal volumes is extracted from images and
interpolated to provide {Vk(t)}k∈E describing the mean volume
trace as computed over a truncated region of each endocardial
lumen, E = {lv, rv}. The truncation planes are similarly defined
by normal vectors {nk(t)}k∈E across both LV and RV lumens.
The pressure is given over the cardiac cycle by {Pk(t)}k∈E
and can be defined either via invasive measures, coupled via
a full-circulation model (Arts et al., 2005), or estimated from
noninvasive data (Asner et al., 2015). Finally, the motion of each
valve plane is encapsulated by the estimated motion of the centre
of mass, {ukcom(t)}k∈V , interpolated over time for each valve,
V = {mv, av, tv, pv}.

As the biventricular model deforms, the physical domain
at time t, �(t), is described using coordinates of its current
position x = X + u(t), where u denotes displacement. Typically
the displacement is used to describe the deformation gradient
tensor F = ∇0u + I, its determinant J = det F > 0, as
well as the material stretch described by the right Cauchy-Green
strain tensor C = FTF. The displacement of the heart is solved
by considering either the quasi-static (Asner et al., 2017) or
dynamic (Chabiniok et al., 2012; Sermesant et al., 2012) principle
of virtual work, with the additional state variables of pressure
(p), activation state in LV / RV (αlv,αrv), and the forces present
at each valve plane ({λk}k∈V ). In this study, at each time point,
t ∈ [0,T], we seek to find the state variables u(t) ∈ U , p(t) ∈ P ,
αlv(t),αrv(t) ∈ R, and λmv(t), . . . λpv(t) ∈ R

3 satisfying the
quasi-static virtual work equation,
∫

�0

Pmyo :∇0w+ q(K[J − 1+ k ln J]− p(t))d�0

+
∑

k∈V

∫

Ŵk
0

Pkvalve :∇0wdŴ0

+
∑

k∈E

∫

Ŵk
0

Pk(t)JF
−TN · wdŴ0

+
∑

k∈V

qk

(

∫

Ŵk
0

Ikb(t)(u(t)+ X) · JF−TNdŴ0 − Vk(t)

)

+
∑

k∈V

∫

Ŵk
0

λk(t) · w− qk · (ukcom(t)− u(t))dŴ0 = 0,

∀ w ∈ U , q ∈ P , qlv, qrv ∈ R
2, and qmv, . . . qpv ∈ R

3.
(1)

The virtual work equation describes the internal myocardial
stresses and balance of volumetric/pressure change (blue term),
the stresses induced by the collagenous valve tissue (red term), the
internal pressure exerted by the blood (gold term), the constraint
on chamber volumes (purple term), and the added forces required
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FIGURE 3 | Short and long-axis cine MR images are simultaneously fed into two neural networks, one for labelling the LV blood pool (red), LV myocardium (green),

and RV blood pool (blue) and the second labelling ten valve landmarks throughout the cardiac cycle. The segmentations are converted to labelled contours and a

biventricular template surface mesh is fitted to the labelled contours. Volumes, derived from the network generated cavity labels, as well as valve annuli motion are

used as boundary conditions in the biomechanical simulations. Passive parameters are optimised by minimising the difference between the model and imaged

geometries at end-diastole.

to ensure motion of the valve orifices (green). The specifics of
these terms are detailed below.

The internal stresses (blue term) are given by the first Piola-
Kirchhoff tensor, Pmyo, which is described by the hyperelastic-
strain energy,9 , that can be broken into passive, volumetric, and
active strain energy components,

Pmyo(C, p,αlv,αrv) =
∂9

∂F
=

∂9p(C)

∂F
+

∂9vol(J, p)

∂F

+
∂9act(αlv,αrv, If )

∂F
, (2)

where

∂9p

∂F
= a0

exp{b0(I1 − 3)}
J2/3

(

F−
I1

3
F−T

)

+ 2af (If − 1)+ exp{bf (If − 1)2+ }f⊗ f0, (3a)

∂9vol

∂F
= pJF−T , (3b)

∂9act

∂F
= (αlvφ + αrv[1− φ]) tanh

{

2
(√

If − 0.8
)

+

}(

f⊗ f0 +
1

3
F

)

,

(3c)

and f = Ff0 describes the deformed fibre direction. Here
the passive component (Equation 3a) follows the reduced form
of the Holzapfel-Ogden model (Holzapfel and Ogden, 2009;
Hadjicharalambous et al., 2014a, 2017; Asner et al., 2015)
adapted for appropriate use within a nearly-incompressible
framework (Nolan et al., 2014) (though numerous alternative
models exist, see Chabiniok et al., 2016). The parameters a0 and
af linearly scale the stiffness of the ground substrate and fibre
direction, respectively, and have units of stress whereas b0 and
bf scale the exponential behaviour of the isotropic and fibre

components and are unitless. I1 is the isochoric form of the first
invariant of the right Cauchy-Green strain tensor (I1 = C : I)
and If is the fibre pseudo-invariant If = C :(f0 ⊗ f0). To ensure
unique parameters, the number of personalised parameters was
reduced to two: a and af . The values of b0 and bf were each
set to 5.0 to ensure physiological pressure-volume response
(Hadjicharalambous et al., 2014a).

The resulting stress from volumetric effects (Equation 3b)
results from the nearly-incompressible strain energy,

9vol(J, p) = p(J − 1)−
1

2K
p2,
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which also governs the relation between volume change and
hydrostatic pressure (second part of the blue term). The
parameter, K, denotes the bulk modulus of the tissue (in this
study K = 1, 000 kPa).

The active stress, given in Equation (3c), defines the
amount of contraction as well as the length dependent
mechanisms (Kerckhoffs et al., 2003). Here, stresses were also
applied both along fibres as well as across fibres based on
knownmyofibre dispersion (Tangney et al., 2013; Krishnamurthy
et al., 2016). Note that the active scalings, αlv,αrv, are dotted
with the region identifier, φ, in order to selectively activate LV
and RV chambers. While regional activation can be defined
based on eikonal activation times (Tomlinson et al., 2002) or
monodomain/bidomain simulations (Potse et al., 2006); here,
the contraction of the chambers was approximated by uniform
contraction parameters, αlv and αrv.

Additional stresses were added along the surface of each
valve orifice (red term), reflecting the fact that each valve
annulus is comprised of thin cartilaginous tissue (Hamdan et al.,
2012; Gunning and Murphy, 2014). This tissue, comprised of
circumferential collagen fibres, is extremely flexible but exhibits
strong resistance to annular dilation (e.g., stretch of the collagen
fibres). This was incorporated into the model by adding stresses,
Pk
valve

, applied over each annular plane, Ŵk
0 , where

Pkvalve(C) =
∂9k

valve

∂F
= c1

(

exp{c2(Ikf − 1)} − 1
)

fk ⊗ fk0. (4)

Here, fk = Ffk0 describes the deformed circumferential direction

of collagen fibres in the kth−annulus and Ik
f
= C :(fk0 ⊗ fk0) is the

pseudo-invariant along collagen fibres. As the stresses induced
are exerted along an extremely thin area, and were principally
oriented along fibres, the added stresses were incorporated over
the annular surfaces. The parameter c1 accounts for the collagen
stiffness scaled by the thickness while the parameter c2 allows for
exponential growth in the fibre stresses. Here, a value of c1 = 0.1
kPa and c2 = 0.5 were selected for all valves based on achieving
a consistent qualitative annular dilation as typically found in vivo
and were unchanged across patients (assuming the collagenous
structures around the valves was consistent).

Instead of using parameter estimation techniques (Chabiniok
et al., 2012; Marchesseau et al., 2013; Asner et al., 2015)
to determine the activation of the myocardium, the LV/RV
activation was solved for as part of the forward model problem.
In this context, the active parameters αlv,αrv act as Lagrange
multipliers with the constraint held being that both chambers
follow the volume trends observed in the data (purple term).
Here, the first term provides the model predicted volumes which
must be equal to the volumes prescribed by Vk(t) (where I

k
b
(t) =

(1/2)β(X)(I − nk ⊗ nk) and β(X) is a binary variable taking the
value of 1 below and 0 above the truncation plane) (Asner et al.,
2017). As the pressure at each time point is given (gold term), the
active tension scalings are found which enable matching between
the model/data. Note, for consistency and stability, the applied
pressure Pk(t) must be greater or equal to the passive pressure at
the specified volume Vk(t).

Valve plane motion was prescribed (green terms) using the
valve landmark displacements, ukcom, extracted from the points
predicted by the neural network (discussed in section 2.1). For
each valve, the average position over the cardiac cycle was
enforced using Lagrange multipliers, λk. The pulmonary annulus
is not visible in any of the long-axis images acquired in this
study. It can be viewed in a right ventricular outflow tract
(RVOT) view, which is not always acquired in clinical scans.
Therefore, in this study, an average displacement, computed
from the displacements of the other three valves, was applied to
the pulmonary valve. The green terms introduce the multipliers
(that can be thought of as reference tractions) which constrain
the motion of the centre of mass to move as observed in
the data.

Since the unloaded state of myocardium is unknown, the
end-systolic geometry was used as the reference geometry.
Some studies have used inverse methods to estimate the
reference geometry (Krishnamurthy et al., 2013; Wang Y.
et al., 2020). These methods are dependent on the choice
of material law, constitutive parameters and boundary
conditions. An analysis illustrating the impact of these choices
and ramifications of boundary conditions is presented in
Hadjicharalambous et al. (2021).

Personalised models were solved in a finite element
framework with displacements and pressure defined using
linear P

1 elements, see Supplementary Material for further
details. Endocardial and valve Lagrange multipliers were scalars.
All problems were solved in CHeart, a multi-physics finite
element solver (Lee et al., 2016).

2.4. Diastolic Inflation and Passive
Parameter Estimation
Estimation of both a0 and af is not feasible using displacements
alone when driving simulations with cavity volumes. However,
due to the linear parameter dependence of a0 and af in the
reduced Holzapfel-Ogden law, both passive parameters scale
linearly with pressure. Therefore, each model was personalised
by estimating, γ = a0/af , describing the anisotropy of the
tissue from displacements and then using an end-diastolic
pressure value to obtain a0 and af . To do this, simulations of
diastolic inflation were first run starting from the end-systolic
geometry, prescribing cavity volumes, and valve motion. This
was done by solving Equation (1), assuming αlv,αrv were zero,
and considering Plv, Prv as state variables (Asner et al., 2017). In
this first phase, the LV/RV volumes were inflated to their end
diastolic state, after which the volume was kept constant and
values of γ were swept between 1.0 and 0.1. Practically, this was
done by setting asim0 and asim

f
to 1.0 kPa during inflation. Then,

during the sweep, asim
f

was kept constant and asim was varied.

Absolute values of a0 and af were then retrieved by scaling them
by the ratio between an end-diastolic pressure value appropriate
for each patient group (EDP

g

lv
) and the simulated end-diastolic

pressure (pED
lv

). The EDPirv for each individual case was then
found by using the values of a0 since the stiffness scales with both
EDP in the left and right ventricles.
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a0 = asim0
EDP

g

lv

pED
lv

= γ asimf
EDP

g

lv

pED
lv

, af = asimf
EDP

g

lv

pED
lv

,

EDPirv = pEDrv
a0

asim0
. (5)

For each value of γ , the objective function, J was calculated
as the root mean square of the distance between contour points
obtained from the neural network labels and the deformedmodel
surface, Ŵlv (see Equation 6). The objective function utilised only
contour points from the LV epicardium, LV endocardium and RV
septal wall, omitting RV free wall points.

J =

√

√

√

√

1

N

N
∑

n=1

min
x∈Ŵlv

‖xn − x‖2 (6)

Since all data used were acquired from a standard clinical
scan, no catheter pressure measurements were acquired. Filling
pressures have previously been estimated from the E/A ratio
measured from echocardiography (Nagueh et al., 1997) which
requires blood flow measurements through the mitral valve. In
the absence of echo and 4D flow MRI data, end-diastolic and
end-systolic pressure values were found from literature in studies
which obtained invasive catheter pressure measurements from
within the LV in each patient group (see Table 1). Additionally,
normal end-diastolic and end-systolic pressures were taken from
Klingensmith et al. (2012). Taking the mean (weighted by sample
size) of pressure values from literature, LV end-diastolic pressures
(EDP

g

lv
) were assigned to be 8 mmHg (1.1 kPa), 20.2 mmHg

(2.7 kPa), and 24.2 mmHg (3.2 kPa) for the healthy volunteers,
DCM patients and HCM patients, respectively. Similarly, ESP

g

lv
values were set to 120.0 mmHg (16.0 kPa), 120.0 mmHg (16.0
kPa), and 183.1 mmHg (24.4 kPa) for each group, respectively.
A representative pressure trace (Russell et al., 2012) was scaled
to group pressure values at end-diastole and end-systole for both
the LV and RV. Then, each segment of the pressure trace (i.e., ED
to eIVC, eIVC to ES, ES to eIVR, eIVR to diastasis, and diastasis
to ED) was temporally scaled for each individual based on valve
opening and closing times in the cine images.

3. RESULTS

3.1. Neural Network Segmentation and
Landmark Labelling
All short and long-axis images were manually segmented at the
end-diastolic state in order to measure accuracy of the network.
Boxplots in Figure 4 plot dice scores measuring similarity
betweenmanual and neural network segmentations for each label
and group. Results show that the largest errors occur in the
segmentation of the myocardium, with HCM cases having the
lowest dice scores for this label.

Errors (in mm) between predicted and manually annotated
valve landmarks are shown in Figure 5 and were generally
within 3 mm of the manually annotated position (∼2
pixels). Six landmarks are labelled for the mitral valve
(in the 2CH, 3CH, and 4CH images) whereas only two
landmarks are labelled for the aortic and tricuspid valves

TABLE 1 | Left ventricular pressure measurements from literature denoting mean

pressure ± one standard deviation as well as sample sizes in each study.

References Group Mean ± Std

(mmHg)

Sample

size (n)

End-diastolic pressures

Opherk et al. (1983) Idiopathic DCM 18.6 ± 11.4 12

Kass et al. (1999) DCM 24.8 ± 7.8 18

Hayashida et al. (1990) DCM 14.0 ± 10.0 17

Nagueh et al. (2005) HCM 23.0 ± 6.0 35

Nishimura et al. (1996a) HCM 25.0 ± 9.0 54

End-systolic pressures

Romeo et al. (1989) Idiopathic DCM 120.0 ± 20.0 69

Nishimura et al. (1996a) HCM 183.0 ± 42.0 54

Nishimura et al. (1996b) Obstructive HCM 196.0 ± 43.0 21

Nishimura et al. (1996b) Non-obstructive HCM 150.0 ± 29.0 8

FIGURE 4 | Boxplots illustrate dice scores for each label: LV blood pool (LV),

LV myocardium (Myo), and RV blood pool are shown for the healthy volunteers

(V), DCM patients (D), and HCM patients (H). The centre line of each boxplot

represents the median and the whiskers denote the 25th and 75th percentiles.

each. Generally, landmarks were more accurately identified in
the HCM group.

3.2. Model Fitting and Geometric
Measurements
The model fitting algorithm was able to accurately represent
the various morphologies within the diverse cohort. Figure 6
illustrates models fit to a healthy volunteer, a DCM patient and
an HCM patient with septal hypertrophy at the end-systolic
time point. Clinical metrics, such as end-diastolic volumes, end-
systolic volumes and wall thickness are reported for each case
in Table 2. Compared to the healthy volunteers, the DCM cases
have a higher mean LV end-diastolic (EDV) and end-systolic
volume (ESV). Conversely, HCM patients have both reduced
EDV and ESV in the left ventricle. Healthy volunteers and HCM
patients demonstrate LV ejection fractions (EF) in a normal
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FIGURE 5 | Boxplots of valve annotation errors for all 10 valve landmarks are shown for selected healthy volunteers (V), DCM patients (D), and HCM patients (H) in

which valve landmarks were manually identified over the entire cardiac cycle. Each boxplot represents errors throughout the cardiac cycle. The centre line of each

boxplot represents the median and the whiskers denote the 25th and 75th percentiles. The 10 valve landmarks correspond to those shown in Figure 3, Valve

Landmark Identification.

FIGURE 6 | Three representative cases for the healthy volunteer, DCM and HCM groups are shown below with models fit to the neural network segmentations. Model

surfaces at end-systole (purple) are overlayed on a single long-axis and short-axis image.

range (50% < EF < 70%) whereas DCM patients exhibit a
depressed EF by definition. In all groups, RVEF values fell
between (37.9% < EF < 55.9%) without discernible differences
between group means. Wall thickness was greatest in the HCM
cohort and showed minimal changes in the DCM group between
ED and ES.

3.3. Passive and Active Parameterisation
The fibre stiffness ratio, γ , was estimated for all cases using
parameter sweeps and the optimal values are listed in Table 3,

along with the end-diastolic pressure values used to scale a0
and af to meaningful stiffness estimates. Values of γ close to 1
indicate that the material is more isotropic whereas a value of 0.1
would indicate a highly anisotropic material. The value of γ also
influences the final inflated geometry where larger values result in
a more spherical shape. The mean value of γ for the volunteers is
less than that for the DCM (p= 0.2) and HCM (p= 0.05) patient
groups, indicating that healthymyocardiummay be slightly more
anisotropic in this small cohort. Additionally, larger γ values are
in line with more spherical shapes observed in DCM hearts.
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TABLE 2 | Functional and geometric indices: end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), wall thickness (WT).

Left ventricle Right ventricle

Case EDV (mL) ESV (mL) EF (%) WTED (mm) WTES (mm) EDV (mL) ESV (mL) EF (%)

Healthy volunteers

v1 172.7 80.8 53.2 7.2 8.7 104.2 64.2 38.4

v2 169.9 79.4 53.3 6.3 8.3 114.4 48.9 57.3

v3 170.1 76.7 54.9 7.2 8.8 104.9 47.6 54.6

v4 123.7 48.6 60.7 6.4 7.9 81.1 42.0 48.2

Mean 159.1 71.4 55.5 6.8 8.4 101.1 50.7 49.6

Std 23.7 15.3 3.5 0.5 0.4 14.2 9.5 8.4

DCM patients

d1 124.4 73.7 40.8 7.4 8.9 57.9 36.4 37.1

d2 231.8 130.0 44.0 8.8 9.0 106.8 57.8 45.9

d3 172.7 90.1 47.8 7.7 9.1 126.5 58.4 53.8

d4 171.0 99.9 41.5 10.0 9.6 87.8 46.4 47.2

Mean 175.0 98.4 43.5 8.4 9.1 94.7 49.8 46.0

Std 44.0 23.6 3.2 1.2 0.3 29.2 10.5 6.9

HCM patients

h1 125.8 59.2 52.9 11.7 13.4 69.9 34.4 50.8

h2 105.8 35.1 66.8 9.1 9.8 65.2 31.7 51.4

h3 134.9 55.3 59.1 9.2 11.4 87.0 44.1 49.3

h4 113.7 41.0 63.9 9.5 11.6 98.4 44.8 54.5

Mean 120.0 47.6 60.7 9.8 11.5 80.1 38.7 51.5

Std 12.9 11.5 6.1 1.2 1.5 15.4 6.7 2.2

Two active tension scaling parameters, for the LV and RV, were
estimated throughout the cardiac cycle for each case. Normalised
time-to-peak (t̂max

lv
and t̂max

rv ) as well as peak scaling parameters
(αmax

lv
and αmax

rv ) are listed in Table 3. It should be noted that
the traces of αlv and αrv are dependent on volume changes as
well as pressures. Since higher ESP values were assigned in the
HCM cases, it can be seen that the peak values of αmax

lv
and αmax

rv

are greater in this group. There were no significant differences
between time to peak activation. Figure 7 shows mean active
fibre stress over the cardiac cycle in the LV and RV as well as
panels showing fibre stress patterns throughout the model for a
single case (v1) at three time points during systole. The highest
stresses are seen near the base of the left and right ventricles.
Fibre stretch with respect to the end-diastolic state is plotted for
a representative case illustrating model deformation and regional
stretch patterns over the cardiac cycle (Figure 8). A bullseye plot
of fibre stretch at end-systole illustrates that the largest values
(<0.55) are seen in the LV free wall whereas fibre stretch is
restricted in the basal septal region near the valves.

Both mean active fibre stress and mean fibre stretch in
the LV are plotted for 16 AHA segments for all cases in
Figure 9, illustrating group differences. Peak fibre stretch is
smaller in DCM cases when compared to healthy volunteers in
12 out of 16 AHA regions (p < 0.05). Regional fibre stretch

demonstrates that, in some DCM cases, some segments exhibit
further stretching of fibres (values>1.0) in early phases of systolic
contraction. Circumferential and longitudinal stretch, common
clinical metrics, are also plotted for 16 AHA segments for all
cases in Supplementary Figure 8. The mean for each segment
and group are listed in Supplementary Table 4.

4. DISCUSSION

The primary goal of this study was to implement a pipeline for
running full-cycle simulations using personalised biventricular
models generated entirely from neural-network labels. In this
process, no manual segmentation was done for the cases
presented, other than for analysis of the accuracy of each
network. The time and computational resources used for the
pipeline are given in Supplementary Table 5 and demonstrate
a clear advantage over manual methods. Additionally, all data
used in this study was obtained using sequences common to
any standard clinical MR scan. Due to its ability to be applied
to diverse datasets, this pipeline could be used to develop an
in silico cohort based on true patient data. This virtual cohort
would be invaluable for testing novel therapies and devices
alongside human and animal studies. Additionally, personalised
metrics obtained from the models (e.g., anisotropy, material
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TABLE 3 | Personalised passive and active parameters.

Case γ LVEDP (kPa) a0 (kPa) af (kPa) LVESP (kPa) αmax
lv t̂maxlv RVESP (kPa) αmax

rv t̂maxrv

Healthy volunteers

v1 0.31

1.07

0.27 0.86

16.0

248.1 0.75

4.0

129.9 0.69

v2 0.49 0.20 0.41 236.8 0.75 124.4 0.83

v3 0.34 0.32 0.94 271.9 0.85 204.8 0.77

v4 0.43 0.16 0.38 164.5 0.83 162.5 0.67

Mean 0.39 0.24 0.65 230.3 0.80 155.4 0.74

Std 0.08 0.07 0.30 46.3 0.05 37.0 0.08

DCM patients

d1 0.64

2.69

2.68 4.19

16.0

242.0 0.82

4.0

70.7 0.99

d2 0.44 2.21 5.03 221.8 0.81 303.5 0.63

d3 0.34 1.39 4.071 163.7 0.88 244.4 0.82

d4 0.93 2.17 2.33 295.0 0.83 50.0 0.84

Mean 0.59 2.11 3.91 230.6 0.84 167.1 0.82

Std 0.26 0.54 1.14 54.3 0.03 125.9 0.15

HCM patients

h1 0.64

3.23

1.76 2.74

24.4

303.0 0.70

6.1

173.7 0.83

h2 0.61 0.31 0.50 365.5 0.84 217.7 0.73

h3 0.40 0.61 1.52 278.5 0.83 231.7 0.75

h4 0.58 0.42 0.72 337.1 0.87 200.3 0.75

Mean 0.56 0.77 1.37 321.0 0.81 205.8 0.76

Std 0.11 0.67 1.02 38.2 0.08 25.0 0.05

γ represents the anisotropic stiffness ratio (a0/af ). Times to peak activation (t̂
max ) in the LV and RV are represented as a percentage of the systolic phase.

FIGURE 7 | Mean active fibre stress over the cardiac cycle in both the LV and RV for a single case (v1) illustrating the active stress distribution over the entire heart at

three points during active contraction: early systole (t = 50 ms), peak active contraction (t = 230 ms), and end-systole (t = 360 ms). The bullseye plot shows the

regional distribution of mean active fibre stress over the 17 AHA regions at end-systole.
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FIGURE 8 | Mean fibre stretch over the cardiac cycle is shown for both the LV and RV for a single case (v1). Fibre stretch over the cardiac cycle is also plotted for nine

time points with the reference state model (ES) shown as a wireframe mesh. The bullseye plot illustrates differences in regional stretch at the end-systolic state in the

17 AHA regions.

stiffness) could be further used to either classify patients or mark
disease progression. However, larger sample sizes are needed in
order to better understand differences between patient classes.
Additional data, where available, could be used to augment
the robustness of the personalised models, such as the use of
tagged MR data for passive parameterisation (Asner et al., 2015).
The use of a biventricular template along with fitting weights
assigned to contours based on data fidelity enabled the generation
of high-quality meshes suitable for biomechanical simulations
withminimal user intervention. Neural-network identified leaflet
landmarks were used to prescribe average valve motion on each
valve in the model, allowing for physiological basal motion of
both ventricles.

4.1. Neural Networks
The neural network was able to accurately label the left and
right ventricles from standard clinical images in a diverse cohort.
The network captured the varied morphology of heart shapes
in both DCM and HCM patients. Dice scores for labelling
the LV blood pool were comparable to those from other
segmentation networks (Wang et al., 2021) and the RV dice

scores demonstrated greater accuracy than previous studies (Luo
et al., 2016; Tran, 2016). However, the largest errors arose in labels
of the myocardium. Although a comparison to inter-observer
error was not done as part of this study, previous groups have
compared annotations from multiple observers using the UK
Biobank (Attar et al., 2019) as well as ACDC (Bernard et al., 2018)
data sets. Similar to results shown in Figure 4, inter-observer
errors for myocardium are greater than those for both the LV
and RV blood pools in both data sets. Dice scores observed in
this study are higher than the inter-observer dice scores reported
for the LV and RV blood pools in Attar et al. (2019). One
possible reason for the larger errors in the segmentation of the
myocardium could be due to its annular shape which has a larger
perimeter. Any equal overlap shifts would produce a greater error
when compared to any shift in segmentation of the blood pools.

The second neural network labelled 10 different valve
landmarks in each long-axis image to within 2–3 pixels of
accuracy. These errors are similar to those encountered using
common tracking algorithms and the method does not require
manual initialisation (Kerfoot et al., 2021). Of the 10 valve
landmarks, four demonstrated lower neural network predicted
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FIGURE 9 | (A) Mean active fibre stress and (B) fibre stretch over the cardiac cycle in 16 AHA regions of the LV for healthy (black), DCM (blue), and HCM (red) groups.
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FIGURE 10 | Selected long-axis images which were part of the 12 cases (h1, h4, d2, d4) used in this study which demonstrate poor image quality due to imaging

artefacts. In the first row, the LV blood pool and myocardial segmentations obtained using the neural network are overlain on top of each image to qualitatively show

the impact of the image quality on the network segmentation. In the second row, the final fitted model surface is shown on top of the image.

errors than interobserver errors (Kerfoot et al., 2021). The
error can vary considerably throughout the cycle and between
patients as each image is treated individually—i.e., no temporal
consistency is taken into account in the neural network. There
was no single patient that performed worse than others. Higher
errors seen in the identification of landmark 8, on the septal
side of the aortic valve can be attributed to image artefacts
during systolic blood flow through the aortic outflow tract.
Although improvements can be made in future work to increase
the accuracy of both neural networks, the study focused on
demonstrating their utility in driving model generation and
biomechanical personalisation for a diverse set of patients.

In order to have a pipeline that is robust to the presence
of noise and artefacts in the imaging data, the neural network
training process introduces noise to the images in various ways
(e.g., dropout in k-space) so that it learns to account for the
noise it may encounter in the imaging data. Additionally, due
to the use of a model template fit to all short- and long-axis
contours simultaneously, the pipeline is robust to the presence
of a single or even multiple poor-quality images within a dataset.
This, however, can result in a smooth surface that does not
conform to small features. To demonstrate the robustness of
the neural network segmentation and resulting pipeline, selected
poor-quality images are shown in Figure 10 which were part
of the 12 datasets used in this study. The poor image quality
resulted in deteriorated segmentations. However, the final fitted
model, which also takes into account all short-axis information,
produced an adequate estimate of the long-axis shape. The

pipeline could be improved by further augmenting the neural
network with images that mimic typical artefacts found in
MR images.

4.2. Clinical Metrics
Beyond improving the generation of computational models,
trained neural networks provide a mechanism for automatically
characterising common clinical metrics. In the DCM group, the
mean EDV and ESV were greater than those measured in the
healthy volunteers. Similarly, the mean LVEF was less than that
in both the healthy group, marking the deteriorated contractile
and diastolic filling function typically clinically associated with
DCM (Rihal et al., 1991). Conversely, the mean EDV and ESV
values were slightly smaller in the HCM group when compared to
the healthy volunteers. As commonly reported in HCM patients,
the LVEF in this group was slightly elevated when compared to
the healthy group (Haland et al., 2017). HCM patients exhibited
greater wall thickness at both end-diastole and end-systole when
compared to both the DCM patients and healthy volunteers.
Typically, HCM is characterised by a wall thickness >12 mm
during diastole. Although the wall thickness values shown in
Table 2 report mean values <12 mm, isolated hypertrophic
regions in each patient demonstrate areas of hypertrophy >12
mm. Regional plots of wall thickness averaged over each cohort
are shown in Supplementary Figure 4 using the 17-segment
AHA model. In each of these three groups, no significant
differences were observed in the mean RVEF. However, the HCM
patients demonstrated lower values of EDV and ESV in the RV
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than the other two groups. This pipeline has demonstrated the
ability to rapidly generate common clinical metrics such as EF
and wall thickness as well as cavity volumes over the entire
cardiac cycle without the need for manual processing. Aside from
using these values in clinical decision making, they can also be
used as input into personalised biomechanical models.

4.3. Valve Motion
This study presents a novel means of constraining valve
motion. Displacement was prescribed to valve centroids based
on the motion of the identified landmarks from the neural
network. In other cardiac modelling studies, basal motion is
often constrained by restricting longitudinal motion (e.g., Sack
et al., 2018b; Finsberg et al., 2019; Wang Z. J. et al., 2020) or
applying an average motion measured from imaging data (e.g.,
Hadjicharalambous et al., 2017). In another study, basal motion
was constrained by tethering the pulmonary outflow tract to a
fixed point (Sack et al., 2018a). In truncated models, without the
inclusion of anatomical landmarks, tagged magnetic resonance
imaging (MRI) data is necessary to measure longitudinal motion,
which may not be available in all clinical scans. The use of a
biventricular model with all four valve annuli along with the
neural network-defined leaflet insertion points allowed for the
integration of longitudinal motion measured from imaging data
into the computational model. Further, to impose a constraint
similar to the stiff valve annulus, an additional stiffness term was
used to restrict annular dilation.

4.4. Model Personalisation
Integration of imaging data with personalised biomechanical
models enables estimation of intrinsic material stiffness
parameters, providing important information about the
mechanical state of the myocardium. In this study, we focused
on determination of bulk and fibre material parameters, fit
by adjusting their ratio, γ . The mean value of γ , which is
independent of pressure, was smaller for the healthy volunteers
than those estimated for the DCM and HCM patient groups.
These weak differences may indicate that the myocardium in
healthy individuals is more anisotropic than in pathological
hearts. However, these differences were not statistically
significant. A power analysis suggests that using eight samples
would enable these differences to reach significance. In order to
demonstrate statistically significant differences between αmax

values in the LV for DCM and HCM groups, 11 samples would
be needed. To distinguish differences between the time to peak
contraction in diseased patients and healthy volunteers, 46
samples are needed. Therefore, future studies will aim to expand
the sample size to demonstrate the pipeline’s utility in providing
metrics which distinguish between patient groups.

Simulation outcomes such as strain are relatively independent
of the estimated value of γ since the simulations are driven by
cavity volumes. However, stress would be more affected by a
change in passive material properties. Fibrosis, common in both
DCM and HCM patients (Aurigemma et al., 2006; Marian and
Braunwald, 2017), results from the growth of collagen within
cardiac tissue and may impact tissue anisotropy. The estimated
value of γ is also strongly influenced by the angles defined in the

rule-based fibre field (Asner et al., 2015; Hadjicharalambous et al.,
2017; Campos et al., 2020). As rapid in vivo diffusion tensor MRI
sequences improve (Stoeck et al., 2018), personalised fibre fields
will augment the robustness of the presented pipeline. Methods
of using low-resolution in vivo data along with statistical
models of population fibre fields may provide a new means of
personalisation without significantly adding to the clinical scan
time (Stimm et al., 2021).

The objective function used for determining the optimal value
of γ utilised LV contour points only. The RV deformation is
impacted significantly by epicardial boundary conditions due to
its thin wall. Various approaches have been used in previous
studies to constrain epicardial dilation, such as a spring force
acting in the normal direction (Levrero-Florencio et al., 2020;
Strocchi et al., 2020) or parallel spring and dashpot forces (Pfaller
et al., 2019). However, there remains a lack of clear consensus
on the role of the pericardium in restricting myocardial motion
and whether or not the inclusion of epicardial constraints
improves model personalisation. Therefore, simulations in this
study were run without the addition of boundary conditions on
the epicardium. However, without these constraints, the right
ventricular deformation did not sufficiently match the imaging
data (Supplementary Figure 6). Objective function curves with
and without the inclusion of RV free wall points are shown
in Supplementary Figure 7. Including the RV in the objective
function resulted in larger errors and, in some cases, resulted
in curves with no unique minimum. The inclusion of the RV in
the mechanics problem, however, plays a vital role in restricting
motion of the septum (Hadjicharalambous et al., 2017). In future
studies, RV epicardial boundary conditions should be tested
which result in accurate RV deformation.

This method also presents an elegant solution for estimating
dynamically varying active scaling parameters in both the LV and
RV in the forward model problem. It avoids data assimilation
methods which often require repeated simulations and thus, the
presented method reduces computation time. In some diseased
states, contractility can vary regionally over the whole heart, such
as the case in patients with a myocardial infarction (Chabiniok
et al., 2012). In this case, utilising additional constraints on
regional displacements, the current method could be adapted to
have a spatially varying activation parameter. The method could
be also be augmented by adding a time-varying activation model,
such as an Eikonal model (Keener, 1991), to specify the spatially
varying sequence of activation.

4.5. Regional Stress and Strain
From full-cycle simulations, active fibre stress and fibre stretch
were plotted over 16 AHA regions in Figure 9 illustrating
regional differences. In some DCM cases, fibre stretch in some
regions was greater than one in early systole, signifying dilation.
This may be due to regional systolic dysfunction in these cases.
In general, DCM cases showed smaller magnitudes of fibre
stretch than healthy and HCM groups, in line with typical
systolic dysfunction marked in DCM (Hayashida et al., 1990).
Fibre stretch, as opposed to circumferential and longitudinal
stretch, could provide more direct measurements of how
muscle fibres change with disease. Circumferential stretch
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measured from the models, plotted in Supplementary Figure 8,
were comparable to circumferential strain measured from
ultrasound in healthy individuals (Hurlburt et al., 2007;
Leitman et al., 2010; Duan et al., 2012). However, model-
derived longitudinal stretch was underestimated compared with
longitudinal strain from ultrasound. Longitudinal strain is largely
dependent on the defined fibre orientation and the model
used to describe active contraction. In future, patient-specific
fibres as well as constitutive models should be adapted to
achieve physiological longitudinal strains. Stress and strain from
personalised simulations such as these can provide valuable
insights into cardiac function on an individual basis.

4.6. Limitations
In previous cardiac modelling studies, inverse methods have
been used to estimate the unloaded geometry of the heart
(Krishnamurthy et al., 2013; Wang Y. et al., 2020) which are
dependent on the choice of material law, stiffness parameters
and boundary conditions. In other studies, various points in the
cardiac cycle have been used as the reference geometry including
end-systole (Wang et al., 2009), early-diastole (Xi et al., 2013),
and diastasis (Wang et al., 2018). However, physiologically, the
heart is never in an entirely unloaded state. In early diastole,
residual active stress may be present and in all phases of
diastolic filling, the cavity pressure is never zero. Although
passive parameter estimates have been shown to be minimally
affected by changing the reference state from end-systolic to
early-diastolic geometries (Hadjicharalambous et al., 2014b), the
impact of the choice of reference state is examined further
in Hadjicharalambous et al. (2021) and should be assessed in
biventricular patient-specific modelling.

The personalised parameters in this study, e.g., a0, af , αlv,
and αrv, are all dependent on pressure estimates. If available,
catheter measurements from within the LV cavity would enable
accurate scaling of these parameters for each individual, and
better certainty on model data. LV filling pressures can also be
approximated with knowledge of the peak blood flow through
the mitral valve as well as the mitral valve peak annular velocity
(Nagueh et al., 1997). Given that the mitral valve annular
velocity can be obtained in the current pipeline using the
landmark predicted valve points, the additional acquisition of 4D
flow MR imaging could provide measurements of peak blood
flow, enabling appropriate personalisation of all parameters
through non-invasive imaging. New methods, such as the use
of microbubbles within the LV (Forsberg et al., 2005; Dave
et al., 2012), may soon enable more accurate non-invasive cavity
pressure measurements. Here, we demonstrate the feasibility of
the personalised modelling method using standardised pressure
data. If available, pressure data can easily be incorporated into the
current pipeline.

5. CONCLUSIONS

This work presents a pipeline using neural networks for
generating high quality biventricular models from standard MR
cine data. A cohort of 12 individuals were used to demonstrate
the pipeline in three different groups: healthy volunteers, DCM

patients and HCM patients. Despite the varied morphology and
motion of each case, the automated pipeline robustly allowed for
determination of a unique passive material parameter describing
the tissue anisotropy (γ ) as well as two active scaling parameters
controlling systolic contraction in the LV and RV (αlv and αrv).
The entire pipeline was run using only images from a typical
clinical scan, demonstrating its potential to be applied to a large
cohort of retrospective data. The use of neural networks along
with the model fitting step significantly sped up the process for
creating high-quality finite element models. cardiac cycle. This
study demonstrates a pipeline that is suitable to model cardiac
mechanics and estimate personalised parameters in a diverse
cohort of individuals including healthy volunteers, DCM and
HCM patients with varying morphologies.
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The numerical simulation of multiple scenarios easily becomes computationally

prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity,

full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs)

for parametrized PDEs to speed up the solution of the aforementioned problems

can be problematic. This is primarily due to the strong variability characterizing the

solution set and to the nonlinear nature of the input-output maps that we intend to

reconstruct numerically. To enhance ROM efficiency, we proposed a new generation

of non-intrusive, nonlinear ROMs, based on deep learning (DL) algorithms, such as

convolutional, feedforward, and autoencoder neural networks. In the proposed DL-

ROM, both the nonlinear solution manifold and the nonlinear reduced dynamics used

to model the system evolution on that manifold can be learnt in a non-intrusive

way thanks to DL algorithms trained on a set of FOM snapshots. DL-ROMs were

shown to be able to accurately capture complex front propagation processes, both

in physiological and pathological cardiac EP, very rapidly once neural networks were

trained, however, at the expense of huge training costs. In this study, we show that

performing a prior dimensionality reduction on FOM snapshots through randomized

proper orthogonal decomposition (POD) enables to speed up training times and to

decrease networks complexity. Accuracy and efficiency of this strategy, which we refer

to as POD-DL-ROM, are assessed in the context of cardiac EP on an idealized left

atrium (LA) geometry and considering snapshots arising from a NURBS (non-uniform

rational B-splines)-based isogeometric analysis (IGA) discretization. Once the ROMs have

been trained, POD-DL-ROMs can efficiently solve both physiological and pathological

cardiac EP problems, for any new scenario, in real-time, even in extremely challenging

contexts such as those featuring circuit re-entries, that are among the factors triggering

cardiac arrhythmias.

Keywords: cardiac electrophysiology, reduced order modeling, deep learning, proper orthogonal decomposition,

bidomain equations, left atrium, isogeometric analysis
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1. INTRODUCTION

Computational cardiac electrophysiology (EP) is built upon
mathematical and numerical models that aim at simulating
both physiological and pathological heart rhythm, such as, e.g.,
ventricular tachycardia and atrial fibrillation (see, e.g., Vigmond
et al., 2002, 2008; Niederer et al., 2009, 2011; Trayanova, 2011;
Prakosa et al., 2018; Strocchi et al., 2020). Simulating the electrical
behavior of the heart, from the cellular scale to the tissue
level, requires the numerical approximation of coupled nonlinear
dynamical systems, such as, e.g. the Bidomain equations (see,
e.g., Colli Franzone et al., 2005, 2006), coupled with suitable
ionic models, such as the FitzHugh-Nagumo (FitzHugh, 1961;
Nagumo et al., 1962), the Aliev-Panfilov (Aliev and Panfilov,
1996; Nash and Panfilov, 2004), the Roger-McCulloch (Rogers
and McCulloch, 1994), the ten Tusscher-Panfilov (ten Tusscher
and Panfilov, 2006), or the Mitchell and Schaeffer models
(Mitchell and Schaeffer, 2003). Multiple solutions of these
systems, corresponding to different model inputs parameters
and data, such as, e.g., electrical conductivities, ionic model
parameters, and applied currents, need to be computed to
evaluate outputs of clinical interest, such as activation maps
(ACs) and action potential (AP) duration. All these instances can
be cast either in multi-query or real-time contexts. In the former
case, the input-output map is repetitively evaluated in order
to perform multi-scenario analysis, to deal with uncertainties
and with inter- and intra-subject variability and to consider
specific pathological scenarios; in the latter, outputs of interest
must be computed in a very limited amount of time, in view
of a possible integration in the clinical setting. Performing the
numerical approximation of cardiac EP problems in multi-
query context or solving them in real-time is in general out of
reach for high-fidelity techniques or full order models (FOMs),
such as the finite element (FE) method (Quarteroni and Valli,
1994) or isogeometric analysis (IGA) (Cottrell et al., 2009). To
enhance their computational efficiency, multi-query and real-
time problems may benefit from suitable surrogate models that
can be built according to different strategies (see, e.g., Niederer
et al., 2020 for a recent review). In particular, reduced order
modeling techniques, can potentially provide more accurate
approximations than data fitting techniques such as, e.g., data-
driven emulators built through polynomial chaos expansions
or gaussian processes. Moreover, they yield more significant
computational savings than low-fidelity models (such as, e.g.,
FOMs built on coarser meshes) by replacing the FOM by a
reduced order model (ROM), featuring a much lower dimension,
yet capable to express the physical features of the problem
at hand.

Cardiac EP problems are extremely challenging for traditional
ROMs. Indeed, the latters tend to be inaccurate and/or
computationally inefficient. This is primarily due to the high
variability characterizing the solution manifold (with respect to
the problem parameters), as well as to the nonlinear nature of
the input-output maps that are more frequently approximated.
Indeed, cardiac EP models feature coherent structures that
propagate over time. In particular, as soon as re-entries, the most
recognized cellular mechanisms sustaining atrial tachycardia and

atrial fibrillation (Nattel, 2002) are considered, and wavefronts
show abnormal activation patterns. These systems can hardly
be reduced to lower dimensional problems by traditional ROMs
for parametrized problems such as, e.g., the reduced basis (RB)
method (Quarteroni et al., 2016). The most advanced example
of efficient and accurate ROM in cardiac EP can be found in
Pagani et al. (2018), where a local POD-Galerkin ROM has been
proposed to handle physiological cardiac EP described in terms
of the simpler Monodomain equation. However, to the best of
our knowledge, no attempt to construct a comprehensive and
systematic ROM framework to efficiently deal with parameter-
dependent Bidomain equations involving pathological scenarios,
such as re-entries, has been made yet.

Recently, we have introduced a new class of non-intrusive—
since just a collection of FOM snapshots is required—nonlinear
ROM techniques based on deep learning (DL) algorithms,
named DL-ROMs, for the construction of efficient ROMs for
parameter-dependent PDEs; in particular, we have focused so
far on the Monodomain equations for cardiac EP, both in
physiological and pathological scenarios (Fresca et al., 2020), as
well as on several other nonlinear time-dependent parametrized
problems, see (Fresca et al., 2021). DL-ROMs proved to be
computationally efficient during the testing stage, that is, for
any new scenario unseen during the training stage, but they
might imply overwhelming training costs (and times) when the
FOM dimension becomes moderately large. POD-enhanced DL-
ROMs, first introduced and analyzed in Fresca et al. (2020), also
enable fast training stages, improving on the weakest aspect—
however, taking advantage of the key properties—of DL-ROMs.

So far, limited attempts have been made to solve, by means
of DL algorithms, problems featuring traveling waves or front
propagation processes. For example, recurrent and convolutional
deep neural networks have been employed to predict the
propagation of surface waves in Fotiadis et al. (2020). Regarding
the cardiac EP context, in Cantwell et al. (2019) machine learning
(ML) techniques have been considered for time prediction or
parameters estimation, and EP-nets have been proposed in Ayed
et al. (2019) and Kashtanova et al. (2021) to replace numerical
integration of PDEs. On the other hand, deep neural networks
have been extensively exploited to address several issues in
computational fluid dynamics (see, e.g., Kutz, 2017; Bhatnagar
et al., 2019; Ströfer et al., 2019; Brunton et al., 2020; Thuerey et al.,
2020; Eichinger et al., 2021; Fresca and Manzoni, 2021b).

In this study, we show that POD-DL-ROMs can handle
parametrized problems in cardiac EP effectively and provide fast
and accurate solutions to EP problems set on realistic geometries.
In particular, the performance of POD-DL-ROMs is assessed
on cardiac EP on a left atrium (LA) surface geometry, both
in physiological and pathological scenarios. These problems are
challenging for traditional ROMs, due to (i) the presence of steep
wavefronts, (ii) the complex activation patterns associated with
pathological scenarios, (iii) the high FOM dimension, and (iv)
the geometrical complexity. POD-DL-ROMs yield accurate and
extremely efficient numerical approximations, irrespectively of
the concurrence of these challenging features. This is particularly
useful in view of the evaluation of patient-specific features to
enable the integration of computational methods in current
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clinical practice; indeed, outputs of clinical interest, such as
ACs, APs, electrograms, and ablation targets, can be more
efficiently evaluated by the POD-DL-ROMs than by a FOM,
while maintaining a high level of accuracy. The numerical tests
carried out in this study represent a proof-of-concept of the POD
DL-ROM technique ability to investigate intra- and inter-subjects
variability toward performing multi-scenario analyses in real-
time and, ultimately, supporting decisions in clinical practice.

To build our ROMs, we rely on a FOM obtained by means
of an IGA spatial discretization. This choice is motivated by
the suitability of high order polynomials, with high order global
continuity, to control and limit numerical dispersions and, thus,
to accurately capture wavefronts (Dedè et al., 2015; Pegolotti
et al., 2019) and the smoothness in the representation of the
computational domain (Cottrell et al., 2009). These relevant
features have been exploited to address cardiac EP problems in
Patelli et al. (2017), Pegolotti et al. (2019), and Bucelli et al. (2021).
It is also worthy to highlight that, so far, only few works provide a
combination of IGA-based FOMs and reduced order modeling
techniques. IGA POD-Galerkin ROMs have been first applied
to potential flows (Manzoni et al., 2015) and shell structural
problems (Rinaldi, 2015), then to linear parabolic PDEs (Zhu
et al., 2017a) and time-dependent parameterized acoustic wave
equations (Zhu et al., 2017b); see also (Salmoiraghi et al., 2016;
Garotta et al., 2020).

The structure of this study is as follows. In section 2, we
introduce the FOMused to approximate the problem at hand and
the POD-DL-ROM technique. The numerical assessment of this
latter is carried out in section 3 on three different test cases; a
more in-depth discussion is reported in section 4.

2. MATERIALS AND METHODS

This section provides an overview of the mathematical and
numerical models describing cardiac EP, including the reduced
order modeling technique we employ to achieve computational
efficiency in the solution of the Bidomain equations.

2.1. Mathematical Models for Cardiac
Electrophysiology
The electrical activation of the heart, which drives its contraction,
is the result of two processes (Klabunde, 2011; Colli Franzone
et al., 2014): the generation of ionic currents through the cellular
membrane producing a local AP, at the microscopic scale, and
the propagation of the AP from cell to cell in the form of a
transmembrane potential, at the macroscopic scale. The latter
process can be described by means of PDEs, suitably coupled
with systems of ODEs accounting for the former (Quarteroni
et al., 2017, 2019). To model the propagation of the electrical
signal in the heart, we may consider the so-called Bidomain
equations (Geselowitz and Miller III, 1983; Colli Franzone et al.,
2014) in a domain � ⊂ R

d, with d = 2, 3, representing
a portion of the myocardium, considered as a continuum
composed of two interpenetrating domains, the intracellular
and the extracellular spaces. Each point x ∈ � is associated
with the intracellular potential ui, the extracellular potential

ue, and the transmembrane potential u = ui − ue. Coupling
the parabolic-elliptic formulation of the Bidomain model for
the transmembrane potential u = u(x, t) and the extracellular
potential ue = ue(x, t) with a phenomenological1 model for the
ionic currents—involving a single gating variable w = w(x, t)—
results in the following nonlinear time-dependent system:



























































∂u

∂t
− div(Di∇u)− div(Di∇ue)+ Iion(u,w) = Iiapp (x, t) ∈ � × (0,T),

−div(Di∇u)− div((Di +De)∇ue) = Iiapp + Ieapp (x, t) ∈ � × (0,T),

∂w

∂t
+ g(u,w) = 0 (x, t) ∈ � × (0,T),

Di∇(u+ ue) · n = 0 (x, t) ∈ ∂� × (0,T),

(Di +De)∇ue · n+Di∇u · n = 0 (x, t) ∈ ∂� × (0,T),

u(x, 0) = u0, w(x, 0) = w0 x ∈ �.
(1)

Here, t and u denote a rescaled and dimensionless time
and trasmembrane potential, depending on the ionic model
considered2, n denotes the outward directed unit vector normal
to the boundary ∂� of �, whereas Iiapp = Iiapp(x, t) and
Ieapp = Ieapp(x, t) are the intracellular and the extracellular
applied currents representing, e.g., the initial activation of the
tissue. The parabolic nonlinear diffusion-reaction equation for
u is two-way coupled with the ODE system; this latter must
be solved, in principle, at any point x ∈ �. Indeed, both Iion
and g depend on u and w, and the most common choices to
efficiently reproduce the AP are, e.g., the FitzHugh-Nagumo
(FitzHugh, 1961; Nagumo et al., 1962), the Aliev-Panfilov
(Aliev and Panfilov, 1996; Nash and Panfilov, 2004), the Roger-
McCulloch (Rogers and McCulloch, 1994), or the Mitchell-
Schaeffer models (Mitchell and Schaeffer, 2003). The diffusivity
tensors Di,De usually depend on the fibers-sheet structure of the
tissue, affecting directional conduction velocities and direction.
In particular, by assuming an axisymmetric distribution of the
fibers, the intracellular and extracellular conductivity tensors
take the form

Di(x) = σ i
t I+ (σ i

l − σ i
t ) f0(x)⊗ f0(x),

De(x) = σ e
t I+ (σ e

l − σ e
t ) f0(x)⊗ f0(x), (2)

where σ i
l
, σ e

l
and σ i

t , σ
e
t are the electrical conductivities in the

fibers and the transversal directions, for the intracellular and
extracellular conductivity tensors. A simplified model is given by
the Monodomain equation (Colli Franzone et al., 2014), written
only in terms of the transmembrane potential u.

For most of the basic phenomenological ionic models, such
as the FitzHugh-Nagumo, the Aliev-Panfilov (A-P) (Aliev and

1We can distringuish among phenomenological, first generation, and second
generation ionic models (Sundnes et al., 2006; Colli Franzone et al., 2014).
Compared to phenomenological models, first, and second-generation models
attempt to include also a description of the cell mechanisms, with the latter
also including sub-cellular processes. In the following, we will focus only on
phenomenological models.
2In the A-P ionic model, dimensional times and potentials are given by t̃ =
12.9t [ms] and ũ = (100u− 80) [mV]. The transmembrane potential ranges from
the resting state of−80 mV to the excited state of+20 mV.
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Panfilov, 1996) or the Roger-McCulloch (R-M) (Rogers and
McCulloch, 1994) model, the ionic current takes the form of
a cubic nonlinear function of u and a single (dimensionless)
gating variable plays the role of a recovery function, allowing to
model cell refractoriness. In this study, we focus on the simple
phenomenological A-P and R-M ionic models in order to lessen
the computational costs associated with the approximation of
Equation (1) through a FOM. The A-P model consists in taking

Iion(u,w) = Ku(u− a)(u− 1)+ uw,

g(u,w) =
(

ǫ0 +
c1w

c2 + u

)

(−w− Ku(u− b− 1)), (3)

where the parameters K, a, b, ε0, c1, c2 are related to the cell.
Here, a represents an oscillation threshold, the weighting factor
ε0 + c1w

c2+u was introduced in Aliev and Panfilov (1996) to tune
the restitution curve to experimental observations by adjusting
the parameters c1 and c2, whereas K and b are coefficients set
according to Aliev and Panfilov (1996); see, e.g., (Clayton et al.,
2011; Colli Franzone et al., 2014) for a detailed review. For the
R-M ionic model, we rely on the following variant provided
in Rogers and McCulloch (1994)

Iion(u,w) = Gu
(

1−
u

uth

)(

1−
u

up

)

+ η1uw,

g(u,w) = η2

( u

up
− η3w

)

, (4)

where G, η1, η2, η3 are positive coefficients, vth is a threshold
potential, and vp is the peak potential.

The coupled system (Equation 1) depends on several
parameters representing either functional or geometric data such
as, e.g., material properties, initial and boundary conditions,
or the shape of the domain. In the remaining part of the
study, we denote by µ ∈ P ⊂ R

nµ a parameter vector
listing all the nµ input parameters characterizing physical
(and, possibly, geometrical) properties; P is a subset of Rnµ ,
denoting the parameter space. Relevant physical situations are
those in which input parameters affect the diffusivity matrix
D (through the conduction velocities) and the applied current
Iapp; for previous analyses focused instead on the gating variable
dynamics (through g) and the ionic current Iion in the case of the
Monodomain equation (see, e.g., Pagani et al., 2018).

Regarding the spatial discretization of the system (Equation
1), we consider NURBS-based IGA on surfaces (e.g., the LA),
in the framework of Galerkin methods (Quarteroni, 2017).
Here, the same NURBS basis functions are employed both to
define the computational domain and to construct the finite-
dimensional space in which the numerical solution of the PDE
is sought (Cottrell et al., 2009). Globally high order continuous
polynomials have proved to control and limit numerical
dispersion (Dedè et al., 2015), which may lead to artificial
fractionated potential fronts, when dealing with the sharp but
smooth fronts arising in cardiac EP. To correctly describe cardiac
EP, capturing propagating fronts and their velocity is essential.
The use of NURBS basis functions with high polynomial
degree (say, p) and global high order continuity (say, Cp−1) is

beneficial, in terms of both accuracy and efficiency, to deal with
Monodomain/Bidomain equations since they limit dispersion
effects typical of traveling wave phenomena (Patelli et al., 2017;
Pegolotti et al., 2019). Moreover, NURBS basis functions also
allow a smooth representation of the computational domain
starting from medical images, compared to methods exploiting
polyhedral elements, as it usually happens when dealing with
finite element approximations (Cottrell et al., 2009). In particular,
we employ a two-dimensional NURBS surface of the LA built
starting from B-spline basis functions of degree p = 2. For
further details on the construction of the LA computational
domain, we refer to Patelli et al. (2017). The smoothness of the
computational domain, together with the regularity of NURBS
basis functions, makes IGA well-suited for surface problems
requiring high order polynomials.

2.2. Proper Orthogonal
Decomposition-Enhanced Deep
Learning-Based Reduced Order Models
(POD-DL-ROMs)
From an algebraic standpoint, the spatial discretization
of the system (Equation 1) through a NURBS-based IGA
approximation yields the following nonlinear dynamical system
for uh = uh(t,µ), ue,h = ue,h(t,µ) and wh = wh(t,µ),
representing our FOM:







































M(µ)
∂uh

∂t
+ Ai(µ)uh + Ai(µ)ue,h = Iiapp(t;µ) t ∈ (0,T),

+Iion(t, uh,wh;µ)
Ai(µ)uh + A(µ)ue,h = Iiapp(t;µ)+ Ieapp(t;µ) t ∈ (0,T),

∂wh

∂t
= g(uh,wh;µ) t ∈ (0,T),

uh(0) = u0(µ), wh(0) = w0(µ),
(5)

where uh, ue,h, and wh ∈ R
Nh , being the dimension Nh related

to the dimension of the NURBS space, and µ ∈ P ⊂ R
nµ . In the

remaining part of this study, we consider as initial data u0(µ) = 0

and w0(µ) = 0. A detailed derivation of the FOM (Equation 5) is
reported in the Supplementary Material.

Solving (Equation 5) is computationally demanding and far
beyond the possibility to provide solutions or compute outputs
of interest in real-time applications. Indeed, the propagation
of the electrical signal is characterized by the fast dynamics
of very steep fronts, thus requiring very fine space and time
discretizations (Colli Franzone and Pavarino, 2004; Sundnes
et al., 2006). This is even more true if such a coupled
system must be solved for several parameters instances, that
is, in a multi-query context, in order to investigate different
scenarios or intra- and inter-subject variability. ROM techniques
replace the FOM (Equation 5) by a model featuring a much
lower complexity but still able to retain the physical features
of the problem at hand. Traditional projection-based ROMs
built, e.g., through the RB method (Quarteroni et al., 2016),
yields inefficient ROMs when dealing with nonlinear time-
dependent parametrized PDE-ODE system as the one arising
from cardiac EP (Fresca et al., 2020). To overcome the limitation
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of traditional projection-based ROMs, we have recently proposed
in Fresca et al. (2021) a strategy to construct, in a non-
intrusive/data-driven way (indeed neither access or solution to
the governing equations are required), DL-based ROMs (DL-
ROMs) for nonlinear time-dependent parametrized problems,
exploiting deep neural networks (Goodfellow et al., 2016) as a
main building block, and a set of FOM snapshots. A first attempt
to solve, by means of DL-ROMs, parametrized benchmark test
cases in cardiac EP described by the Monodomain equations,
has been carried out in Fresca et al. (2020). Although extremely
efficient at testing (i.e., online) time, when evaluating the
problem solution for any new testing-parameter instance, DL-
ROMs require an expensive training (i.e., offline) stage, because
of the extremely large number of network parameters to be
estimated. POD-DL-ROMs provide a possible enhancement
of DL-ROMs, which avoids expensive training stages, by (i)
performing a prior dimensionality reduction through proper
orthogonal decomposition (POD), and (ii) using a multi-
fidelity pretraining stage, where different physical models can be
efficiently combined, as recently shown in Fresca and Manzoni
(2021a). In particular, through the use of randomized POD,
the POD-DL-ROM training phase is extremely fast, especially
if compared to the training stage of DL-ROMs. For example,
in Fresca and Manzoni (2021a), where we consider the solution
of the parametrized Monodomain equation in a square slab of
cardiac tissue on a FOM dimension Nh = 4096, the use of the
POD-enhanced DL-ROM reduces the GPU training time from
15 h to 24 min, while preserving extremely efficient testing times.

Tailored on the applications at hand, the goal of POD-DL-
ROMs is to approximate the map (t,µ) 7→ uh(t,µ), where
t ∈ (0,T) denotes time, µ ∈ P ⊂ R

nµ a vector of input
parameters, and uh(t,µ) ∈ R

Nh the trasmembrane potential
solution of Equation (5). This may be achieved without taking
into account, and then expensively solving, the dynamics of the
extracellular potential ue,h(t,µ) and the gating variable wh(t,µ)
in the construction of the ROM. More precisely, we build a
nonlinear ROM to approximate VTuh(t;µ) ≈ ũN(t;µ) by

ũN(t;µ) = 9N(un(t;µ)), (6)

where 9N :R
n → R

N ,9N : sn 7→ 9N(sn), n≪N, is a nonlinear,
differentiable function and V ∈ R

Nh×N is the rPOD basis matrix
of a N-dimensional subspace of RNh . In particular, the columns
of V form an orthonormal basis of dimension N, computed by
means of randomized SVD (rSVD) (Halko et al., 2011). In this
way, the manifold SN = {VTuh(t;µ) | t ∈ [0,T) and µ ∈
P ⊂ R

nµ} ⊂ R
N is approximated by the n-dimensional reduced

nonlinear trial manifold

S̃n = {9N(un(t;µ)) | un(t;µ) ∈ R
n,

t ∈ [0,T) and µ ∈ P ⊂ R
nµ} ⊂ R

N , (7)

where ũN :[0,T) × P → S̃n. The function un :[0,T) × P → R
n

denotes the minimal coordinates of ũN on the nonlinear trial
manifold S̃n. Our goal is to set-up a ROM whose dimension n is
as close as possible to the intrinsic dimension nµ + 1 (time plays
the role of an additional coordinate) of the solution manifold Sh,

i.e. n ≥ nµ + 1, to correctly capture the degrees of freedom of
the set SN by containing its size (Lee and Carlberg, 2020). To
model the relationship between each pair (t,µ) 7→ un(t,µ), and
to describe the reduced dynamics on the reduced nonlinear trial
manifold S̃n, we consider a nonlinear map under the form

un(t;µ) = 8n(t,µ), (8)

where 8n :[0,T) × R
nµ → R

n is a differentiable,
nonlinear function. As for DL-ROMs (see e.g., Fresca et al.,
2021), both the reduced dynamics and the reduced nonlinear
manifold where the ROM solution is sought (or trial manifold)
must be learnt. In particular,

• reduced dynamics learning: We aim at learning the dynamics
of the set SN on the nonlinear trial manifold S̃n in terms of
minimal coordinates, by means of a deep feedforward neural
network (DFNN). Indeed, we set the function 8n in Equation
(8) equal to

8n(t;µ, θDF) = φDF
n (t;µ, θDF),

where θDF denotes the vector of parameters of the DFNN,
collecting all the corresponding weights and biases of each
layer of the DFNN;

• nonlinear trial manifold learning: We employ the decoder
function of a convolutional autoencoder (AE), that is, we
define the function in Equation (6) as

9N(un(t;µ, θDF); θD) = fDN(un(t;µ, θDF); θD),

where fDN depends on the vector θD of parameters of the
convolutional/dense layers of the decoder.

By combining the two previous stages, the POD-DL-ROM
approximation ũN finally takes the form

ũN(t;µ, θDF , θD) = fDN(φ
DF
n (t;µ, θDF); θD). (9)

The encoder function of the convolutional AE can then be
exploited to map the intrinsic coordinates VTuh associated to
(t,µ) onto a low-dimensional representation

ũn(t;µ, θE) = fEn(V
Tuh(t;µ); θE),

where fEn denotes the encoder function, depending upon a vector
θE of parameters. The architecture of the POD-DL-ROM neural
network, employed at training time, is the one shown in Figure 1.
At testing time we can discard the encoder function.

Computing the POD-DL-ROM approximation (Equation 9)
thus consists of solving the optimization problem

min
θ

J (θ) = min
θ

1

Ns

Ntrain
∑

i=1

Nt
∑

k=1

L(tk,µi; θ), (10)

where the per-example loss function is given by

L(tk,µi; θ) =
ωh

2
‖VTuh(t

k;µi)− ũN(t
k;µi, θDF , θD)‖2

+
1− ωh

2
‖ũn(tk;µi, θE)− un(t

k;µi, θDF)‖2, (11)
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FIGURE 1 | Starting from the FOM solution uh(t;µ), the intrinsic coordinates VTuh(t;µ) are computed through rSVD; their approximation ũN (t;µ) is provided by the

neural network as output, so that the reconstructed solution ũh(t;µ) is recovered through the rPOD basis matrix. In particular, the intrinsic coordinates VTuh(t;µ) are
provided as input to block (A), which returns as output ũn (t;µ). The same parameter instance (t;µ) enters block (B), which provides as output un(t;µ), and the error

between the low-dimensional vectors is accumulated. The minimal coordinates un(t;µ) are given as input to block (C), which returns the approximated intrinsic

coordinates ũN (t;µ). Then, the reconstruction error is computed.

Ntrain andNtest are the number of training- and testing-parameter
instances, respectively, Nt is the number of time instances, Ns =
NtrainNt , and ωh ∈ [0, 1]. The POD-DL-ROM approximation of
the FOM solution ũh(t;µ) ≈ uh(t;µ) is then recovered bymeans
of the rPOD basis matrix as.

ũh(t;µ, θDF , θD) = VũN(t;µ, θDF , θD).

3. RESULTS

In this section, we apply the POD-DL-ROM technique to
relevant problems in cardiac EP, both in physiological and
pathological scenarios, solved on a rectangular slab and a left
atrium surface geometry. Dealing with realistic geometries, large-
scale problems, i.e., high FOM dimensions Nh, and pathological
scenarios, such as re-entries, show the feasibility of POD-DL-
ROM to be integrated in to the clinical practice in order to
compute outputs of interest, e.g., ACs, action potential durations,
electrograms, and location of cores of rotors. To evaluate the
performance of POD-DL-ROM, we rely on the loss function
(Equation 11) and on:

• the error indicator ǫrel ∈ R given by

ǫrel = ǫrel(uh, ũh)

=
1

Ntest

Ntest
∑

i=1





√

∑Nt

k=1 ||u
k
h
(µtest,i)− ũk

h
(µtest,i)||2

√

∑Nt

k=1 ||u
k
h
(µtest,i)||2



 ; (12)

• the relative error ǫk ∈ R
Nh , for k = 1, . . . ,Nt , defined as

ǫk = ǫk(uh, ũh) =
|uk

h
(µtest)− ũk

h
(µtest)|

√

1
Nt

∑Nt

k=1 ||u
k
h
(µtest)||2

. (13)

While Equation (12) is a synthetic indicator, the quantity defined
in Equation (13) is instead a spatially distributed function.

The configuration of the POD DL-ROM neural network,
together with the values of the hyperparameters not reported in
this study, used for our numerical tests is the same provided as in
Fresca and Manzoni (2021a). The FOM simulations are carried
out on aMacBook Pro Intel Core i7 6-core with 16GBRAMCPU,
while the POD-DL-ROM training and testing phases on a Tesla
V100 32GB GPU.

3.1. Test 1: Slab and Left Atrium Surface
Geometry by Varying Conductivities
3.1.1. Test 1.1: Slab Geometry
We consider the Bidomain Equation (1) coupled with the R-
M ionic model (Equation 4) in a two-dimensional rectangular
slab of cardiac tissue � = (0, 10) cm × (0, 2) cm. In order to
characterize the bidomain nature of the tissue, we focus on the
reconstruction of both the transmembrane and the extracellular
potentials. To achieve this task, the intrinsic coordinates of the
two field variables, i.e. vh(t) and ue,h(t), are stacked together, thus
forming a tensor with d = 2 input channels, which represent
the actual input (output) of the POD-DL-ROM neural network.
The parameter (nµ = 1) consists of the electrical extracellular
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FIGURE 2 | Test 1.1: FOM solution (top) and POD-DL-ROM one (center), with n = 2 and N = 256, along with the relative error ǫk for uh (bottom-left) and ue,h
(bottom-right), for the testing-parameter instance µtest = 0.0143 �−1cm−1 at t = 150 ms.

conductivity in the longitudinal direction to the fibers, i.e., the
conductivity tensorDe(x;µ) takes the form

De(x;µ) = σ e
t I+ (µ − σ e

t )f0 ⊗ f0,

where f0 = (1, 0)T and the parameter space is P =
1.5 · [10−3, 10−2] �−1cm−1. The remaining intracellular and
extracellular conductivities are set equal to σ i

l
= 2.3 ×

10−3 �−1cm−1, σ i
t = 2.4 × 10−4 �−1cm−1, and σ e

t = 1 ×
10−3 �−1cm−1, respectively. The parameters of the R-M ionic
model are given by uth = 13 mV, vp = 100 mV, G = 1.5 ms−1,
η1 = 4.4 ms−1, η2 = 1.2× 10−2, and η3 = 1 (see, e.g., Gerardo-
Giorda, 2007). We provide snapshots computed by means of
P3/C2 NURBS basis functions, where Nh = 165 × 35 = 5705,
with nel = 5120 mesh elements. Time integration is performed
over the interval (0,T), with T = 150 ms and a time-step 1t =
0.05 ms, through a BDF of order 2. The intracellular applied
current takes the form

Iiapp(x, t) = C1�app (x)1[ti ,tf ](t), (14)

where C = 100 mA, �app = {x ∈ � : x ≤ 0.2}, ti = 0 ms, and

tf = 1 ms.
For the training phase, we consider Nt = 1500 time instances

in the interval (0,T) and Ntrain = 11 training-parameter

instances uniformly distributed in the parameter space. For the
testing phase, Ntest = 10 testing-parameter instances have been
considered, each of them corresponding to the midpoint of
two consecutive training-parameter instances. The maximum
number of epochs is Nepochs = 20, 000, the batch size is Nb = 40,
and regarding the early-stopping criterion, we stop the training
if the loss function does not decrease along 1,000 epochs. In
Figure 2, we report both the FOM and the POD-DL-ROM
solution, the latter with n = 2 and N = 256, together with
the resulting relative error, both for the transmembrane and
the extracellular potentials, for the testing-parameter instance
µtest = 0.0143 �−1cm−1 at t = 150 ms.

The trend of the mean (with respect to the spatial coordinates)
of the relative error ǫk over time, for the selected testing-
parameter instance µtest = 0.0143 �−1cm−1, is shown in
Figure 3, for both the trasmembrane (left) and the extracellular
(right) potentials. We highlight that the errors are, on average,
always smaller than 0.15%. The distribution of the errors is
almost uniform over time; indeed, due to the fact that the
snapshots associated with different time instances are treated as
independent by the POD-DL-ROM, errors do not accumulate
over time. In this manner, neither instability issues nor specific
error patterns are found. In particular, the error related to the
extracellular potential is higher than the one associated with
the transmembrane potential. As a matter of fact, the former
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FIGURE 3 | Test 1.1: Relative error ǫk , averaged with respect to the spatial coordinates, for the transmembrane (A) and the extracellular (B) potentials, for the

testing-parameter instance µtest = 0.0143 �−1cm−1, over time.

TABLE 1 | Test 1.1: POD-DL-ROM and DL-ROM computational times.

DL-ROM: total (offline) POD-DL-ROM:

total (offline)

POD-DL-ROM:

testing (online)

29 h 4 h 0.053 s

can be more difficult to approximate than the latter, because of
the different ranges the extracellular potential can vary in for
different parameters and time instances—and on the other hand,
the transmembrane potential always takes values in the [0, 100]
mV range.

In Table 1, we report the GPU POD-DL-ROM total training
and validation times, together with the testing time, and the DL-
ROM total time; the time needed to assemble the snapshot matrix
S is not included. Using a POD-DL-ROM, that is, employing
a prior dimensionality reduction through rSVD, drastically
accelerates the training stage. We point out that in this test case,
in contrast with the following ones, we did not perform any
sampling in time, considering all the time instances provided by
the IGA solver.

3.1.2. Test 1.2: Left Atrium Surface Geometry
We now consider the solution of the Bidomain (Equation 1)
coupled with the A-P ionic model (Equation 3) on an idealized
LA surface geometry. We are interested in the reconstruction of
both the transmembrane and the extracellular potentials as in the
previous test. The direction of the cardiac fibers is determined
by following the same strategy adopted in Rossi et al. (2014) and
Patelli et al. (2017), where a vector field directed as the gradient
of the solution of a Laplace problem defined on the atrial surface
is assigned to the LA. The resulting distribution of fibers on the
atrial surface is displayed in the Supplementary Material.

System Equation (1) has been first discretized in space by
means of P2 NURBS basis functions, with a global C1 continuity,
yielding a FOM dimension equal to Nh = 61, 732. Time
integration over (0,T), with T = 200 ms, has been performed
introducing a time-step 1t = 0.2 ms. Provided the position of

the Bachmann bundle x̄ = (x̄, ȳ, z̄)T = (−1.51, 0.1,−1.71)T cm,
the intracellular applied stimulus is given by

Iiapp(x, t) = C1�app (x)1[ti ,tf ](t),

with C = 1 mA, �app = {x ∈ � :(x− x̄)2 + (y− ȳ)2 + (z− z̄)2 ≤
(0.5)2}, ti = 0 ms and tf = 5 ms.

The parameter (nµ = 1) consists of the electrical intracellular
conductivity in the longitudinal direction to the fibers, i.e., the
conductivity tensorDi(x;µ) takes the form

Di(x;µ) = σ i
t I+ (µ − σ i

t )f0(x)⊗ f0(x),

where the parameter space is P = 3.1 · [10−4, 10−2] �−1cm−1.
The remaining intracellular and extracellular conductivities are
equal to σ i

t = 2 × 10−2 �−1cm−1, σ e
l
= 1.3 × 10−4 �−1cm−1,

and σ e
t = 2 × 10−3 �−1cm−1. The parameters of the A-P ionic

model (Equation 3) are given by K = 8, a = 0.1, ǫ0 = 0.01,
b = 0.1, c2 = 0.3, and c1 = 0.05 (ten Tusscher, 2004).

For the training phase, we uniformly sample Nt = 500
time instances in the interval (0,T) and consider Ntrain = 11
training-parameter instances, uniformly distributed over P . For
the testing phase, Ntest = 10 testing-parameter instances have
been considered, each of them corresponding to the midpoint
of two consecutive training-parameter instances. The maximum
number of epochs is set to Nepochs = 20, 000, the batch size is
Nb = 40, and regarding the early-stopping criterion, we stop
the training if the loss function does not decrease along 1,000
epochs. In Figures 4, 5, we report the FOM transmembrane and
extracellular potentials and their POD-DL-ROM approximation,
obtained by selecting n = 2 and N = 256, for the testing-
parameter instance µtest = 0.0295 �−1cm−1 at t = 52.8 ms and
t = 112 ms.

In Figure 6, we show the FOM and POD-DL-ROM APs and
extracellular potentials evaluated at a point x∗, with n = 2 and
N = 256, for the testing-parameter instance µtest = 0.0295
�−1cm−1. Despite the POD-DL-ROM solution is affected by
some tiny oscillations related to the truncated rPOD modes, it is
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FIGURE 4 | Test 1.2: FOM solution (left) and POD-DL-ROM one (right), with n = 2 and N = 256, for the testing-parameter instance µtest = 0.0295 �−1cm−1 at

t = 52.8 ms (A) and t = 112 ms (B).

able to capture the shape and the different phases of the electrical
propagation over time.

In Table 2, we report the CPU computational time needed to
solve the FOM by means of NURBS-based IGA and the GPU
POD-DL-ROM total training and validation times, together with
the testing time. Also in this case, the time needed to assemble
the snapshot matrix S is not included. We notice that, using a
POD-DL-ROM, we achieve the possibility to solve the problem in
several different scenarios, during the testing stage, in real-time,
since the final time T = 0.2 s coincides with the computational
time entailed by the evaluation of the POD-DL-ROM.

3.2. Test 2: Left Atrium Surface Geometry
by Varying Stimulation Site
We still consider the LA surface geometry and the direction of
cardiac fibers as in test 1.2 and deal with the Bidomain (Equation
1) coupled with the R-M model (Equation 4), thus selecting a
different ionic model than the one of the previous example. The
equations have been discretized in space by means of P2 NURBS
basis functions, with a global C1 continuity, yielding a FOM
dimension equal to Nh = 154, 036; time integration has been
performed over the interval (0,T), with T = 200 ms and a

time-step 1t = 0.1 ms. Here, we consider nµ = 3 parameters,
consisting of the coordinates of the center of an intracellular
applied current, and belonging to the subregion highlighted
in Figure 7—and the portion of the domain affected by the
corresponding stimulus is highlighted, too. The intracellular
applied current is thus defined by setting C = 100 mA and

Iiapp(x, t) = C1�app(µ)(x)1[ti ,tf ](t),

with �app(µ) = {x ∈ � :(x − µ1)2 + (y − µ2)2 + (z − µ3)2 ≤
(0.5)2}, ti = 0 ms, and tf = 5 ms.

We set the rPOD dimension equal to N = 256 and the
dimension n of the POD-DL-ROM approximation equal to n =
nµ + 1 = 4. For the training phase, we uniformly sample Nt =
200 time instances in the interval (0,T) and consider Ntrain =
18 training-parameter instances randomly sampled from the
parameter space. For the testing phase, Ntest = 14 randomly
sampled testing-parameter instances have been considered. The
maximum number of epochs is Nepochs = 40, 000, the batch size
is Nb = 40, the starting learning rate is η = 2 · 10−4, and
regarding the early-stopping criterion, we stop the training if the
loss function does not decrease along 2,000 epochs.
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FIGURE 5 | Test 1.2: FOM solution (left) and POD-DL-ROM one (right), with n = 2 and N = 256, for the testing-parameter instance µtest = 0.0295 �−1cm−1 at

t = 52.8 ms (A) and t = 112 ms (B).

FIGURE 6 | Test 1.2: FOM and POD-DL-ROM, with n = 2 and N = 256, APs

for the testing-parameter instance µtest = 0.0295 �−1cm−1.

We remark that the POD-DL-ROM approximation to the
FOM solution is also efficient in computing several outputs of
interest. We compare, for instance, the ACs obtained through

the FOM and by POD-DL-ROM. Given the transmembrane
potential u = u(x, t;µ), the (unipolar) AC at a point x ∈ � is
evaluated as the minimum time which the AP peak reaches the
point x at,

AC(x;µ) = arg min
t∈(0,T)

(

u(x, t;µ) = max
t∈(0,T)

u(x, t;µ)
)

.

In Figure 8, we compare the FOM and the POD-
DL-ROM outputs, together with the associated
relative error ǫk, for the testing-parameter instances
µtest = (1.7168,−0.353198, −1.70097) cm and
µtest = (1.43862,−0.803806,−1.43678) cm. We highlight
the strong variability of the solution over the parameter
space, shown by the different shape of the contour lines in
Figures 8A,B, and the ability of the POD-DL-ROM to capture
it accurately.

Finally, in Table 3 we report the FOM CPU computational
time and the POD-DL-ROM GPU training and testing times;
the time needed to assemble the snapshot matrix S is not
included. Solving the FOM, for a single testing-parameter
instance, requires 10 h, with respect to the POD-DL-ROM
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total training and validation time, which is equal to 5
h. POD-DL-ROM also proves to be extremely efficient at
testing time, since it provides, once again, accurate results in
almost real-time.

TABLE 2 | Test 1.2: FOM and POD-DL-ROM computational times.

FOM POD-DL-ROM: total (offline) POD-DL-ROM: testing (online)

2 h 1.8 h 0.3 s

FIGURE 7 | Test 2: Parameter space (dark magenta region) and portion of

domain affected by the stimulus (light magenta region).

3.3. Test 3: Figure of Eight Re-entry on Left
Atrium Surface Geometry
We finally investigate the generation of the figure of eight re-
entries on the left atrium surface geometry as a consequence of
a S1-S2 electrical stimulation protocol, to highlight the ability of
the POD-DL-ROM the technique of solving cardiac EP problems
in a more challenging pathological scenario as well. The set-up
of the FOM is the one provided in the Supplementary Material,
except for the final time equal to T = 500 ms. Here, we
consider nµ = 3 parameters, consisting of the coordinates of
the center of the S2 intracellular applied currents, which can
vary in the three-dimensional region highlighted in Figure 10

(left). The choice of the parameter space is motivated by the
fact that ectopic complexes usually arise in correspondence of
pulmonary veins (PVs). We first apply a physiological stimulus
(S1) in correspondence of the posterior septum and then a
second stimulus (S2) acting on �2(µ) = {x ∈ � :(x −

TABLE 3 | Test 2: FOM and POD-DL-ROM computational times.

FOM POD-DL-ROM: training POD-DL-ROM: testing

10 h 5 h 0.2 s

FIGURE 8 | Test 3: FOM (left) and POD-DL-ROM (center), with n = 4 and N = 256, ACs and relative error ǫk (right), for the testing-parameter instances

µtest = (1.7168,−0.353198,−1.70097) cm (A) and µtest = (1.43862,−0.803806,−1.43678) cm (B).
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TABLE 4 | Test 3: FOM and POD-DL-ROM computational times.

FOM POD-DL-ROM: training POD-DL-ROM: testing ne

N = 256 7.2 h 4.9 h 0.32 s 8,849

N = 1, 024 7.2 h 20 h 0.77 s 30,000

µ1)2 + (y − µ2)2 + (z − µ3)2 ≤ (0.5)2}, which takes
the form

Ii,2app(x, t) = C1�2(µ)(x)1[ti2 ,t
f
2]
(t),

with C = 100 mA, ti2 = 210 ms, and t
f
2 = 215 ms.

This test case represents a proof-of-concept of the strategy
used in the clinical practice to identify possible re-entrant
circuits, part of which may be latent, by conducting a virtual
multi-site delivery of electrical stimuli from a number of possible
atrial locations (Arevalo et al., 2016; Boyle et al., 2018; Prakosa
et al., 2018).

As before, we set the rPOD dimension equal to N = 256, and
the dimension n of the POD-DL-ROM approximation equal to
n = nµ + 1 = 4. We consider Nt = 1, 000 time instances
in the interval (300, 500) ms and randomly sample Ntrain = 15
training-parameter and Ntest = 5 testing-parameter instances
from the parameter space. The maximum number of epochs is
Nepochs = 30, 000, the batch size is Nb = 40, and regarding
the early-stopping criterion, we stop the training if the loss
function does not decrease along 2,000 epochs. Choosing the
rPOD dimension equal to N = 256 yields, over the testing
set, a projection error indicator ǫrel(uh,VV

Tuh) = 6.8 × 10−2

and the projection relative error ǫk(uh,VV
Tuh) shown in the

Supplementary Material. This value can be used as the lower
bound of the reconstruction error indicator, being smaller than
the previous values over the testing set.

In Figure 9A, we compare the FOM and POD-DL-ROM
solutions, the latter with n = 4 andN = 256, together with ǫk, for
the testing-parameter instance µtest = (0.2508, 0.7932, 1.66) cm
at t = 316.4 ms. The error indicator ǫrel(uh, ũh) is equal to 7.06×
10−2, meaning that the projection error provides an upper bound
to the error ǫrel(uh, ũh) over the testing set. However, the POD-
DL-ROM is able to completely capture the location and the shape
of the re-entry, and the moving front; the error is indeed related
to the reconstruction of the steep fronts. Obtained results are
thus satisfying, keeping into account the extreme complexity of
the problem at hand. Then, we investigate the impact of a higher
value for the rPOD dimension, setting it equal to N = 1, 024. In
this case, the projection error indicator ǫrel(uh,VV

Tuh) is equal
to 2.84 × 10−2 and the error indicator (Equation 12) becomes
ǫrel = 5.4 × 10−2. In Figure 9B, we report the FOM solution
and the POD-DL-ROM approximation, obtained with n = 4 and
N = 1, 024, together with the relative error (Equation 13), for
the testing-parameter instance µtest = (0.2508, 0.7932, 1.66) cm
at t = 316.4 ms. By comparing Figures 9A,B, we can note how
the use of a larger N leads to only slightly more accurate results.

In Table 4, we report the FOM CPU computational time and
the POD-DL-ROM GPU total, i.e., training and validation time,
and testing times, and the total number of epochs ne, by varying
N. As expected, both the training and the testing times are larger
forN = 1, 024 than forN = 256, since the number of parameters
of the neural network is higher in the former case. We highlight
that, if we do not take into account the time needed to assemble
the snapshot matrix, the time required to train the POD-DL-
ROM over the parameter space, for N = 256, is smaller than
performing a FOM simulation for a single parameter instance.
We remark that we started from a learning rate equal to η =
2 · 10−4 for N = 256 and η = 10−4 for N = 1, 024, the latter
resulting in a longer total training and validation time; indeed,
in this case training stops because of the maximum number of
epochs achieved, however, yielding a higher accuracy. At testing
time, both the networks show to be extremely efficient.

As done in Fresca et al. (2020), we increase the complexity of
the problem by enlarging the dimension of the parameter space,
thus considering both re-entry and non re-entry dynamics. We
randomly sample Ntrain = 20 + 20 = 40 training-parameter
and Ntest = 10 + 10 = 20 testing-parameter instances from
the parameter space. We set the rPOD dimension equal to
N = 1, 024. In this case, the projection error indicator value is
ǫrel(uh,VV

Tuh) = 4.34× 10−2, while the reconstruction error is
ǫrel(uh, ũh) = 7.7×10−2. We set themaximumnumber of epochs
Nepochs to 30,000—by increasing this value it is possible to achieve
a reconstruction error equal to the projection one. The parameter
space is the one shown in Figure 10 (right).

In Figure 11, we report the FOM and POD-DL-ROM
solutions, with n = 4 and N = 1, 024, along with ǫk, for the
testing-parameter instances µtest = (0.3162, 0.8638, 0.6864) cm
and µtest = (0.2508, 0.7932, 0.8895) cm at t = 300.8 ms. The
POD-DL-ROM is then able to reproduce the main features of the
dynamics of the solution, and the error is mainly associated with
the truncated POD modes.

4. DISCUSSION

The cardiac EP problems addressed in this paper fit into both
(i) a multi-query context, since repetitive evaluations of the
input-output map are required in order to perform multi-
scenario analysis, in order to deal with inter- and intra-subject
variability and to consider specific pathological scenarios, and
a (ii) real-time context, due to the need, in a clinical setting, to
compute outputs of interest in a very limited amount of time.
Performing the numerical approximation of cardiac EP problems
in these contexts, by means of traditional FOMs, such as the FE
method or NURBS-based IGA, is prohibitive because of the huge
computational costs associated to the solution of the equations.
Indeed, small time-step sizes must be selected to ensure stability;
small mesh sizes are required in order to capture the steep fronts
and preserve accuracy.

We have taken advantage of a recently proposed technique
(Fresca and Manzoni, 2021a) to build low-dimensional ROMs
by exploiting DL algorithms. This strategy allows us to
overcome typical computational bottlenecks shown by classical,
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FIGURE 9 | Test 3: FOM (left) and POD-DL-ROM (center) solutions, the latter obtained with n = 4 and N = 256 (A), and n = 4 and N = 1, 024 (B), together with ǫk

(right), for the testing-parameter instance µtest = (0.2508, 0.7932, 1.66) cm at t = 316.4 ms.

FIGURE 10 | Test 3: Possible sites of S2 stimulus applications in the case of re-entry dynamics (magenta region) (A) and including both re-entry and non-re-entry

dynamics (magenta region) (B). The coordinates of the points belonging to the highlighted region are the input parameters.
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FIGURE 11 | Test 3: FOM (left) and POD-DL-ROM (center) solutions, the latter obtained with n = 4 and N = 1, 024, together with ǫk (right), for the testing-parameter

instances µtest = (0.3162, 0.8638, 0.6864) cm (A) and µtest = (0.2508, 0.7932, 0.8895) cm (B) at t = 300.8 ms.

linear projection-based ROM techniques (such as POD-
Galerkin ROMs) when dealing with problems featuring coherent
structures propagating over time. The DL-ROM technique allows
to approximate the solution manifold of a given parametrized
nonlinear, time-dependent PDE by means of a low-dimensional,
nonlinear trial manifold, and the nonlinear dynamics of the
generalized coordinates on such reduced manifold, as a function
of the time coordinate and the parameters. Both the nonlinear
trial manifold and the reduced dynamics are learnt in a non-
intrusive way, thus avoiding to query the FOM high-dimensional
arrays. The solution manifold is learnt by means of the decoder
function of a convolutional AE neural network; the reduced
dynamics is approximated through a DFNN and the encoder
function of the convolutional AE. Through the use of the
DL-ROM, it is possible to boost the solution of parametrized
problems in cardiac EP remarkably, thus overcoming the main
computational bottlenecks that affect POD-Galerkin ROMs in
this context (Fresca et al., 2020). A key aspect in the setting of
DL-ROMs concerns their computational efficiency during the
offline (or training) stage, which is also related with the curse
of dimensionality entailed by the (possibly, extremely large)
dimension of the FOM. This gain, which makes the offline
training stage dramatically faster, hinges upon (i) a preliminary
dimensionality reduction in the FOM snapshots, by means
of rPOD, and (ii) a suitable multi-fidelity pretraining stage,
exploiting snapshots computed through different low-fidelity

models to initialize the parameters of the neural networks in a
sequential procedure.

So far, only few works have focused on the solution, by
means of DL algorithms, of problems featuring traveling waves
or front propagation processes in the cardiac EP context.
For example, in Court and Kunisch (2021) the ionic model
is designed to exploit an artificial neural network, in order
to identify the nonlinearity in the Monodomain model from
given data, yet without providing information about neither the
spatial distribution of the electrical signal in the heart, nor the
whole range of time and spatial scales of the transmembrane
potential. The reconstruction of ACs by means of a physics-
informed neural network (PINN) trained by minimizing the
residual associated with the Eikonal equation is addressed by
Sahli Costabal et al. (2020); several techniques based on ML
algorithms are reviewed in Cantwell et al. (2019), for the sake
of addressing either classification or estimation problems, such
as, e.g., prediction making from the contact electrogram. Finally,
neural networks are used for the numerical integration of
the Monodomain equation coupled with the Mitchell-Schaeffer
ionic model, assessing their performance on two-dimensional
benchmarks, in Ayed et al. (2019) and Kashtanova et al. (2021).

In this study, we assessed the performance of the POD DL-
ROM technique when applied to the solution of cardiac EP
problems on a left atrium geometry, in both physiological and
pathological scenarios, by showing its ability in providing an
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accurate and efficient ROM, which multi-query and real-time
problems may rely on. Indeed, POD-DL-ROMs enable to explore
the parameter space, thus accounting for different scenarios,
and it not only provide real-time solutions to parametrized
cardiac EP problems at the testing stage—being able to match the
intrinsic dimension of the problems investigated—but can also
be trained very efficiently. Moreover, we point out that it is also
possible to include more complex ionic models in the FOM, for a
more accurate description of the electrical activity of the heart
at the microscopic level, without affecting the computational
times of the POD-DL-ROM. Indeed, due to the non-intrusive
nature of this technique, the dynamics of the gating variables
is not taken explicitly into account by the networks in order to
compute the electrical potential. In the same way, the choice of a
particular model of fibers and the definition of the conductivity
tensor (possibly accounting for the presence of ischemic, non-
conductive regions as in Fresca et al., 2020; Kashtanova et al.,
2021), are considered by the neural network only through the
effects they produce on the FOM snapshots. The accuracy and the
efficiency obtained by the POD-DL-ROM approximations make
them amenable, in the clinical setting, to replace high-fidelity,
FOM solvers, for the computation of quantities of interest, such
as ACs and APs.

Finally, we highlight that a possible pitfall of the proposed
methodology is represented by the amount/quality of training
data: If too few (or low-quality) snapshots are considered, further
operations like (i) increasing the number of parameters of the
network, (ii) training the network for a larger number of epochs,
or (iii) generating more data by means of data augmentation
techniques can be required. A relevant issue is also related to the
generalization properties of the network outside the parameter
range and/or the time interval where snapshots are sampled.
Ensuring good approximation properties when interested in
long-time scenarios, even in presence of almost periodic regimes,
without more specific network architectures, is an open issue our
efforts are focusing on; however, this represents a general aspect
shared by several ROM techniques.

To the best of our knowledge, this study represents the first
attempt of reducing the computational complexity associated
with the reconstruction of both the transmembrane and the
extracellular potentials and re-entry problems, this virtually

opening a new path toward the model personalization in
real-time, even when dealing with extremely challenging,
and computationally involved, settings. We remark that the
performance of the POD-DL-ROM technique evaluated on
new, unseen scenarios with respect to the ones used during
the training phase of the network, thus virtually allowing
to compute, during interventions, outputs related to subject-
specific data such as, e.g., ACs o voltage maps, in real-time.
The possibility to perform real-time numerical simulations, in
cardiac EP, can be seen as the first step toward the translation
of computational methods into the clinical practice enabling a
cooperation for supporting decisions, quantifying risks related to
cardiac pathologies, planning therapies, and interventions.
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Type-B Aortic Dissection (TBAD) is one of the most serious cardiovascular events

characterized by a growing yearly incidence, and the severity of disease prognosis.

Currently, computed tomography angiography (CTA) has been widely adopted for

the diagnosis and prognosis of TBAD. Accurate segmentation of true lumen (TL),

false lumen (FL), and false lumen thrombus (FLT) in CTA are crucial for the precise

quantification of anatomical features. However, existing works only focus on only TL

and FL without considering FLT. In this paper, we propose ImageTBAD, the first 3D

computed tomography angiography (CTA) image dataset of TBAD with annotation of

TL, FL, and FLT. The proposed dataset contains 100 TBAD CTA images, which is of

decent size compared with existing medical imaging datasets. As FLT can appear almost

anywhere along the aorta with irregular shapes, segmentation of FLT presents a wide

class of segmentation problems where targets exist in a variety of positions with irregular

shapes. We further propose a baseline method for automatic segmentation of TBAD.

Results show that the baseline method can achieve comparable results with existing

works on aorta and TL segmentation. However, the segmentation accuracy of FLT is

only 52%, which leaves large room for improvement and also shows the challenge of our

dataset. To facilitate further research on this challenging problem, our dataset and codes

are released to the public (Dataset, 2020).

Keywords: type-B aortic dissection, automatic segmentation, computed tomography, dataset, deep neural

networks

1. INTRODUCTION

Type-B aortic dissection (TBAD) is the surging of blood through a tear in the aortic intima with
separation of the intima and media, and creation of a false lumen (channel) as shown in Figure 1,
which is one of the most serious cardiovascular events. TBAD affecting 3–4 per 100,000 people
per year (Karthikesalingam et al., 2010). Approximately 20% of patients with TBAD die before
admission (Karthikesalingam et al., 2010), without treatment, 1–3% patients die per hour during
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FIGURE 1 | Visualization of TBAD in a 3D model including FLT (yellow), TL (red), and FL (blue), and the corresponding CTA image with axial, coronal, and sagittal views.

the first 24 h, 30% at the first week, 80% at 2 weeks, and 90% at
the first year (Hagan et al., 2000). With the thoracic endovascular
aortic repair (TEVAR) surgery and proper treatment patients are
reportedly yielding an impressively low 30-day mortality rate of
10% or less (Hagan et al., 2000). Recently, TBAD has attracted a
lot of attention due to its growing yearly incidence (Suzuki et al.,
2003), and the severity of disease prognosis.

Computed Tomography Angiography (CTA) is routinely
adopted for the diagnosis, surgical planning, and prognosis
of TBAD. Particularly, quantification assessment of anatomical
features in CTA plays a key role in surgical procedure and
treatment planning for prognosis. And segmentation of true
lumen (TL), false lumen (FL) , and false lumen thrombus
(FLT) is a significant step of the quantification assessment.
However, manual segmentation by slice is time-consuming and
requires expertise, while current computer-aided approaches
focus on the segmentation of the entire aorta, which is unable to
segment TL, FL, or FLT, automatic segmentation of substructures
of TBAD is urgently needed. And there are already some
studies trying to solve this problem. Specifically, Melito et
al. use the adaptive algorithm together and the meta-model
technique of Polynomial-Chaos Kriging define the areas in the
cross-section plane in which a point can be used to enrich
the dissected segmentation for aorta dissection reconstruction.
During establishing the mathematical and computational models
of aorta dissection, the level of uncertainty is extremely high.
They point out that “One of the leading causes of this uncertainty
is the lack of useful datasets” (Melito and Ellermann, 2019).
Gamechi et al. propose a fully automatic method combining
multi-atlas registration, aorta centerline extraction, and an
optimal surface segmentation approach to extract the aorta
surface around the centerline. The fully automatic method they
propose can assess diameters in the thoracic aorta reliably even
in non-ECG-gated, non-contrast CT scans, which could be a
promising tool to assess aorta dilatation in screening and in
clinical practice. However, the method they propose still has no
FLT detection ability mainly due to the lack of FLT enabled
dataset (Gamechi et al., 2019). Particularly, there are already
some works using neural networks to automatically segment
TL, FL, and Aorta (Li et al., 2018; Cao et al., 2019). Li et al.
report a fully automatic approach based on a 3-Dmulti-task deep
convolutional neural network that segments the entire aorta and
true-false lumen from CTA images in a unified framework. The

approach they report achieves a mean dice similarity score(DSC)
of 0.910, 0.849, and 0.821 for the entire aorta, true lumen, and
false lumen, respectively. Cao et al. also use a convolutional
neural network to solve the problems and achieves above
90% of the mean Dice coefficients of each lumen of TBAD
when not considering FLT. They provide a promising approach
for accurate and efficient segmentation of TBAD and make
it possible for automated measurements of TBAD anatomical
features. However, existing works nowadays only focus on one
of or both TL and FL (Li et al., 2018; Cao et al., 2019; Gamechi
et al., 2019; Melito and Ellermann, 2019), and FLT information is
poorly explored, partially because of the lack of a dataset. There
are some other works considering thrombus in other diseases
such as an abdominal aortic aneurysm (Lisowska et al., 2017;
Yong et al., 2017; López-Linares et al., 2018), however, TBAD
research has not yet advanced to the quantitative measurement
of FLT like abdominal aortic aneurysm.

In fact, quantification assessment of FLT is also critical for
surgical planning and prognosis. First, the FLT description
in clinical radiology reports plays a pivotal role in guiding
the endovascular intervention surgery (Dohle et al., 2017).
Second, FLT greatly affects patients’ postoperative complications
(Higashigaito et al., 2019) thus is also a significant independent
predictor of post-discharge mortality in prognosis (Trimarchi
et al., 2013; Higashigaito et al., 2019). Automatic, efficient, and
accurate assessment of FLT is particularly useful for doctors to
make a decision on TBAD.

In this paper, we propose ImageTBAD, the first 3D CTA
image dataset of TBAD with annotation of TL, FL , and FLT.
For simplification of discussion, FL is the part of traditional
FL without FLT in our paper. The proposed dataset contains
100 TBAD CTA images, which is of decent size compared
with existing medical imaging datasets. Compared with TL and
FL, FLT can appear in almost anywhere along the aorta with
irregular shapes, which introduces many challenges to accurate
segmentation of it. FLT segmentation represents a wide class
of segmentation problems where targets exist in a variety of
positions with irregular shapes. We further proposed a baseline
method based on 3D U-net (Çiçek et al., 2016) for automatic
segmentation of TBAD. Results show that the baseline method
can achieve comparable results with existing works on the aorta
and TL segmentation. However, the segmentation accuracy of
FLT is the only 52%, which leaves large room for improvement
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TABLE 1 | Characteristics of the ImageTBAD dataset.

Parameters N

Sex = Female (%) 31 (31%)

Age (Mean ± SD) 52.5 ± 11.3

Manufacturer = Philips (%) 77 (77%)

Spacing between slice (mm) 0.75

Size of the images (pixels) 512× 512× (135–416)

Typical voxel size (mm3 ) 0.25 × 0.25 × 0.25

and also shows the challenge of our dataset. To facilitate further
research on this challenging topic, our dataset and codes are
released to the public (Dataset, 2020).

2. THE IMAGE-TBAD DATASET

The ImageTBAD dataset consists of a total of 100 3D CTA
images gathered from Guangdong Provincial Peoples’ Hospital
from January 1, 2013, to April 23, 2015. Images are acquired
from two kinds of scanners (Siemens SOMATOM Force, and
Philips 256-slice Brilliance iCT system), the characteristics of
the ImageTBAD dataset is detailed in Table 1. All the images
are pre-operative TBAD CTA images whose top and bottom are
around the neck and the brachiocephalic vessels, respectively, in
the axial view. The segmentation labeling is performed by a team
of two cardiovascular radiologists who have extensive experience
with TBAD. The segmentation label of each image is fulfilled
by one radiologist and checked by the other. The time to label
each image is around 1–1.5 h. The segmentation includes three
substructures: TL, FL, and FLT. There are 68 images containing
FLT while 32 images are free of FLT.

By analyzing all the labels, we find the segmentation of FLT
is challenging due to the following two reasons. First, FLT can
appear almost anywhere along the aorta, with irregular shapes,
although most FLT appear at the top of the aorta. Figure 2 shows
a variety of relative positions of FLT. Figures 2A–C show the
most common locations of FLT, while Figure 2D is also common
in clinic. Figures 2E–H show some typical cases where FLT is
distributed along with the whole FL and discontinued in multiple
locations. Most FLTs exist at the surface of the aorta, but there are
also some located at the center of the aorta and between the FL
and the TF. Within the eight cases in Figure 2, we can notice the
largest variety of the shapes of FLT. Most FLTs are rather thin
and long, while some others are a pile at the top of the aorta.
In addition, some FLTs are small which is relatively difficult to
segment as shown in Figure 2G. Second, the contrast between
FLT and other tissues is rather low. As shown in Figure 3, the
intensity of the FLT and the nearby tissues are almost the same
which is not easy to be visually recognized. By zooming the area
of the boundary in, we can notice some parts of the boundary as
shown in Figures 3A,B, but some are still with high uncertainty
as shown in Figure 3C. The low contrast would bring more
challenges to FLT segmentation.

3. METHOD AND EXPERIMENT

3.1. The Baseline Method
By analyzing the dataset, we discover the following three
phenomenons. First, the segmentation area is usually rather long
in the axial view, which needs to be considered in the design of
the input size. Second, the target segmentation is rather small
compared with the size of the input, and processing the whole
image is not efficient. Third, in most conditions, the combination
of TL, FL, and FLT has a similar shape of the aorta. In fact, the part
corresponding to FLT is a part of the aorta in normal anatomy.
We can also obtain FLT by removing TL and FL from the
combination of the three. This approach is expected to be more
effective than direct segmentation of FLT because the complexity
of shapes and positions of FLT can be avoided. For simplicity
of discussion, the combination of the three parts is donated as
the aorta.

Based on the above observations, we propose a baseline
method which is a processing pipeline shown in Figure 4. The
processing pipeline includes two steps: region of interest (RoI)
extraction, and RoI segmentation.

3.1.1. RoI Extraction
The RoI extraction aims to obtain a precise bounding box of
the target area, which is fulfilled with two croppings. The first
cropping obtains a rough bounding box by segmenting the aorta
on a resized input (original size to 64 × 64 × 64) using 3D
U-net. Based on the rough bounding box, the rough RoI is
cropped from the original input, and then resized to S×S×2S.
The cropping refinement is further proceeded on the rough RoI
for aorta segmentation, and a relatively more precise bounding
box of the RoI is obtained.

3.1.2. RoI Segmentation
The RoI segmentation performs segmentation tasks on
the refined RoI. We discuss two approaches: Approach A,
we combine the TL and FL segmentation, and the aorta
segmentation; Approach B, we perform direct segmentation of
the three. In Approach A, we suppose to easily get FLT once we
obtain both TL and FL and aorta according to our discovery.
Note that all the modules adopt the same 3D U-net structure as
shown in Figure 4. Four resolution levels are adopted each of
which contains two convolutional layers and one pooling/up-
convolutional layer. The number of filters is N, 2N, 4N, and 8N
for the four resolution levels, respectively. N and the input size
vary for different modules as discussed above. Post-processing
only including upsampling to the original size is performed.

3.2. Experiment
3.2.1. Experimental Setup
We implemented our baseline method using PyTorch based on
Isensee et al. (2018). Both Dice loss and cross entropy loss were
used, and the number of training epochs was 5 for all 3D U-
nets. Data augmentation and normalization were also adopted
with the same configuration as in Payer et al. (2017) for 3D
U-net. For both networks and all the analyses, three-fold cross
validation was performed (about 33 images for testing, and 67
images for training). We split the dataset so that the number

Frontiers in Physiology | www.frontiersin.org 3 September 2021 | Volume 12 | Article 732711257

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Yao et al. ImageTBAD: Dataset for TBAD

FIGURE 2 | Examples of various relative position including (A) top, (B) middle, (C) top and middle, (D) bottom, (E–G) whole, and (H) multiple position in TBAD. The

red, blue, and yellow parts correspond to TL, FL, and FLT, respectively. Best viewed in color.

FIGURE 3 | Example of low contrast images in the ImageTBAD dataset in three views: (A) coronal view, (B) axial view, and (C) sagittal view. Red and yellow lines

denote to the boundary of TL and FLT, respectively.

FIGURE 4 | Processing pipeline of the proposed baseline method. Best viewed in color.
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TABLE 2 | Mean and standard deviation of Dice score of baseline method, and t-test value between the Approach A and Approach B for four substructures

segmentation in TBAD.

Approach A Approach B t-value p

S = 64 TL 0.82 ± 0.08 0.79 ± 0.07 2.327 <0.05

FL 0.72 ± 0.20 0.68 ± 0.20 1.166 <0.05

FLT 0.44 ± 0.42 0.50 ± 0.40 0.853 <0.05

Aorta 0.89 ± 0.03 – – –

S = 96 TL 0.86 ± 0.08 0.85 ± 0.07 0.776 <0.05

FL 0.77 ± 0.22 0.78 ± 0.21 0.271 <0.05

FLT 0.44 ± 0.43 0.52 ± 0.40 1.123 <0.05

Aorta 0.91 ± 0.04 – – –

TABLE 3 | Mean and standard deviation of Hausdorff distance of baseline method, and t-test value between the Approach A and Approach B for four substructures

segmentation in TBAD.

Approach A Approach B t-value p

S = 64 TL 298.4 ± 275.2 565.0 ± 222.4 6.213 <0.05

FL 597.5 ± 1117.3 1089.5 ± 1161.8 2.517 <0.05

FLT 1095.1 ± 1879.9 1641.7 ± 1591.8 1.829 <0.05

Aorta 300.2 ± 273.6 – – –

S = 96 TL 516.3 ± 482.5 288.4 ± 426 30.334 <0.05

FL 1273.1 ± 2554.4 643.7 ± 1999.5 1.599 <0.05

FLT 1564.3 ± 3453.5 978.6 ± 2887.3 1.072 <0.05

Aorta 667.4 ± 612.3 – – –

of images containing FLT in each fold were the same. We
implemented two configurations, with S = 64 and S = 96,
respectively. Accordingly, N = 64 and the batch size was 4 when
S = 64, and N = 32 and the batch size was 3 when S = 96.
All the experiments ran on a Nvidia GTX 1080Ti GPU with
11 GB memory.

Dice score and Hausdorff distance were selected as the metrics
for evaluation. For images without FLT, the Dice score is 1 if
there is no FLT in the segmentation result, otherwise 0. As
Approach B in RoI segmentation is similar to the methods that
achieves the SOTA results in the TBAD (Li et al., 2018; Cao et al.,
2019), we compared our method with theirs though their dataset
and methods focused on the segmentation of FLT. Meanwhile,
Hausdorff distance evaluated the shape similarity of propose
method, which is formulated as follow,

H(G, S) = max

{

sup
x∈G

inf
y∈S

‖x− y‖, sup
y∈S

inf
x∈G

‖x− y‖

}

, (1)

where G and S represent ground truth and prediction
segmentation, respectively.

3.2.2. Statistical Analysis
Differences between results are compared using the independent
two-sample t-test. A p-value of <0.05 in the independent two-
sample t-test is considered as statistical significance.

4. RESULTS AND DISCUSSION

4.1. Overall Results
Tables 2, 3 demonstrate that the mean and standard deviation
of Dice score and Hausdorff distance of baseline methods
(Approach A and Approach B), and their t-test value and p-value
for four substructures segmentation in TBAD, respectively. In
terms of different substructures, both Approach A and Approach
B achieves the highest scores on aorta with small Hausdorff
distances. However, both two methods fail to segment the TL,
FL, and FLT well, for the three are parts of the aorta without
remarkable boundaries, thus relatively harder to segment them.
The Dice score and Hausdorff distance of TL beats that of FL,
which may be caused by the low contrast between FL and FLT.
FLT obtains the lowest performance due to its great challenges
discussed in section 2. As for the two methods, though Approach
A with a multi-task segmentation module achieves a bit higher
Dice score with a lower Hausdorff distance than Approach B
using direct segmentation, it fail to achieve higher performance
on the other two parts especially on FLT. Approach B obtains
a large improvement over Approach A on FLT. This may due
to the fact that direct segmentation has more constraint to
more accurately define FLT than multi-task segmentation. On
the other hand, we also notice some impacts from the input
size. The Dice score of S = 96 is slightly higher than that of
S = 64 due to the higher resolution of S = 96. However, the
improvement is small, and there is no improvement for FLT,
which indicates that higher resolution has very limited success on
FLT segmentation. Particularly, for all the 32 images without FLT,
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FIGURE 5 | Examples of good segmentation results (A,B,E,F) with its corresponding ground truth (C,D,G,H). Best viewed in color.

FIGURE 6 | Examples of poor segmentation results (A,B,C,D,E) with their corresponding ground truth, segmentation difference, original CTA image, zoomed, and

labeled CTA images. The original pictures and zoomed area of each cases are accompanied. segment failed part showed the impact of the shape and margin of

thrombus in segmentation process. Especially, case (D) is the same CT scan picture of Figure 3B with 180 degrees flips vertically. Best viewed in color and position.
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the baseline method with both configurations correctly obtain
the results with Dice score of 1, which indicates that the FLT
segmentation accuracy for images with FLT are much lower
(about 20%) than 52%.

Existing works most relevant to ours are the works proposed
by a group from Tsinghua University (Li et al., 2018; Cao et al.,
2019) though the dataset and labels are different. The method
Li et al. (2018) achieves Dice scores of 0.92, 0.85, and 0.85
on aorta, TL, and FL, respectively on the same machine (11
GB GPU memory) as ours. The improved version (Cao et al.,
2019) obtains Dice scores of 0.93, 0.93, and 0.91, on aorta,
TL, and FL, respectively on a more powerful machine (32 GB
GPU memory). Compared with Li et al. (2018), ours achieves
almost the same performance on aorta and TL, but much lower
on FL. While compared with Cao et al. (2019), ours obtains
comparable performance only on aorta, but much lower on
TL and FL.

The comparable results on aorta indicates that our baseline
method is also a powerful one. The gaps in TL and FL
may due to the difference on datasets, labels, and method
details. Though with these difference, we can still notice that
accurate segmentation of FLT is rather challenging. We hope our
dataset and baseline method could help fill the gap and tackle
this challenge.

4.2. Good Segmentation
Examples of good segmentation results are shown in Figure 5.
Overall, the segmentation results have a good match with the
ground truth. However, we can still notice that compared with
TL and FL, FLT has more segmentation flaws, which corresponds
well to the Dice scores in Table 2. There is a tiny FL island at
the top of the aorta which should be FLT as shown in Figure 5A.
Another three tiny FLT islands exist at the similar position
which should be FL as shown in Figures 5F–H, respectively. The
most serious flaw of FLT is the inaccurate segmentation of its
boundaries. As shown in Figures 5B,E,F, there is noticeable error
of the boundary segmentation. The situations in Figures 5G,H

is much worse, and a large part of FLT is misclassified as FL.
Most of the inaccurate boundary segmentation happens at the
descending aorta. Its low performance is usually caused by the
low contrast, which also degrades the segmentation performance
of FL. TL usually has a much better performance as its contrast
is much higher, and there are only some tiny flaws as shown
in Figure 5C.

4.3. Poor Segmentation
Examples of poor segmentation results are shown in Figure 6.
Overall, there exists serious segmentation error especially for
FLT. With the context of TL and FL, the shape of FLT
in Figure 6A can be easily recognized by humans. However,
only part of the shape is correctly segmented because of the
low contrast as shown in the zoomed CTA image. A part
of FLT is lost in Figures 6D,E which is due to the low
contrast. The qualities get worse in both Figures 6B,C in which
LFT are almost totally lost. The boundaries is difficult to
visually tell in Figures 6B,C. There are also some inaccurate
segmentation between TL and FL shown in Figures 6D,E.

The incorrect connection exists between TL and FL in
Figure 6D, and the low contrast in CTA images leads to
the inaccurate segmentation between FL and TL as shown
in Figure 6E.

5. CONCLUSION

In this paper we introduce the ImageTBAD dataset to the
community, which is the first 3D computed tomography
angiography (CTA) image dataset of TBAD with annotation of
true lumen (TL), false lumen (FL), and false lumen thrombus
(FLT). We further propose a baseline method based on 3D
U-net for automatic segmentation of TBAD. Results show
that the baseline method can achieve comparable results with
existing works on aorta and TL segmentations. However, the
segmentation accuracy of FLT is only 52%, which leaves large
room for improvement and proves the challenge of our dataset.
FLT segmentation represents a wide class of segmentation
problems where targets exist in a variety of positions with
irregular shapes. We hope that the open-sourced code of our
baseline method and dataset can encourage the community to
tackle this problem.
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Introduction: Computational models of the cardiovascular system are widely used
to simulate cardiac (dys)function. Personalization of such models for patient-specific
simulation of cardiac function remains challenging. Measurement uncertainty affects
accuracy of parameter estimations. In this study, we present a methodology for
patient-specific estimation and uncertainty quantification of parameters in the closed-
loop CircAdapt model of the human heart and circulation using echocardiographic
deformation imaging. Based on patient-specific estimated parameters we aim to
reveal the mechanical substrate underlying deformation abnormalities in patients with
arrhythmogenic cardiomyopathy (AC).

Methods: We used adaptive multiple importance sampling to estimate the posterior
distribution of regional myocardial tissue properties. This methodology is implemented
in the CircAdapt cardiovascular modeling platform and applied to estimate active
and passive tissue properties underlying regional deformation patterns, left ventricular
volumes, and right ventricular diameter. First, we tested the accuracy of this method
and its inter- and intraobserver variability using nine datasets obtained in AC patients.
Second, we tested the trueness of the estimation using nine in silico generated virtual
patient datasets representative for various stages of AC. Finally, we applied this method
to two longitudinal series of echocardiograms of two pathogenic mutation carriers
without established myocardial disease at baseline.

Results: Tissue characteristics of virtual patients were accurately estimated with a
highest density interval containing the true parameter value of 9% (95% CI [0–79]).
Variances of estimated posterior distributions in patient data and virtual data were
comparable, supporting the reliability of the patient estimations. Estimations were
highly reproducible with an overlap in posterior distributions of 89.9% (95% CI [60.1–
95.9]). Clinically measured deformation, ejection fraction, and end-diastolic volume were
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accurately simulated. In presence of worsening of deformation over time, estimated
tissue properties also revealed functional deterioration.

Conclusion: This method facilitates patient-specific simulation-based estimation of
regional ventricular tissue properties from non-invasive imaging data, taking into account
both measurement and model uncertainties. Two proof-of-principle case studies
suggested that this cardiac digital twin technology enables quantitative monitoring of
AC disease progression in early stages of disease.

Keywords: arrhythmogenic right ventricular cardiomyopathy, speckle-tracking echocardiography, deformation
imaging, cardiac computational model, adaptive multiple importance sampling

INTRODUCTION

Computational models of the cardiovascular system are widely
used to simulate cardiac (dys)function and related clinical
application of therapies for cardiac disease (Niederer et al.,
2019). Various attempts to generate a digital twin of the human
heart have been made (Corral-Acero et al., 2020). Previously,
we proposed a framework to create a digital twin (van Osta
et al., 2020) for quantification of the disease substrate underlying
abnormal tissue deformation in patients with arrhythmogenic
cardiomyopathy (AC) (van Osta et al., 2021).

Inheritable AC primarily affects the right ventricle (RV) and
predisposes to ventricular arrhythmias and sudden cardiac death
in young individuals (Thiene et al., 1988; Basso et al., 2009).
Therefore, early disease detection is important. We previously
determined an in silico disease substrate with decreased regional
RV contractility and compliance, with the potential to predict
disease progression on a patient-specific level (van Osta et al.,
2021). This method was, however, not able to include uncertainty
present in both measurement and model.

Uncertainty will inevitably play a role in comparing estimated
properties and thus Bayesian inference methods should be used
to estimate the posterior distribution of model parameters,
rather than only providing point estimates. Cardiovascular
computational models are in general complex, meaning that the
posterior distribution cannot be calculated analytically. Various
techniques have been proposed to solve this problem, in which
Markov chain Monte Carlo (MCMC) methods are often used
(Schiavazzi et al., 2017; Dhamala et al., 2018; Meiburg et al., 2021).
Adaptive multiple importance sampling (AMIS) is an important
alternative to MCMC since it enables estimation of the posterior
distribution in a model with a relatively high number of input
parameters (Cornuet et al., 2012; Bugallo et al., 2017).

In this study, we apply AMIS to quantify parameter
uncertainties in digital twins based on echocardiographic
deformation imaging. We validate the methodology based on
both in silico generated virtual data and datasets obtained from
patients with AC and mutation positive family-members at risk
of developing the disease. Furthermore, we use longitudinal
series of echocardiograms in two AC patients to validate clinical
applicability of this methodology.

MATERIALS AND METHODS

This section and Figure 1 elucidate the methodology used
to estimate parameters and related uncertainties using the
CircAdapt model. First, we elaborate the mathematical basis
and implementation of AMIS, which is generally applicable.
Secondly, we describe the mathematical problem and introduce
the included clinical measurements and the computational
model used for the likelihood function. Finally, we explain
the simulation protocol. More detailed information is shown
in Supplementary Material, including pseudocodes of the
algorithm. The source code as well as the virtual patient
datasets are available.

Mathematical Basis of Adaptive Multiple
Importance Sampling
We consider an nθ -dimensional vector as a set of parameters
θ of a numerical model z =M (θ). This model M : Rnθ →

Rnz maps the parameter vector to an nz-dimensional vector of
modeled data z. Measurement uncertainties are included in the
likelihood function p (z | θ) representing the similarity between
patient observation and model output. The posterior distribution
p (θ | z) is the probability of having parameters θ given the
observation z and is given by Bayes’ rule as

p (θ | z) =
p (z | θ) p (θ)

p (z)
∝ p (z | θ) p (θ) , (1)

with p (θ) the prior knowledge of the parameters and p(z) the
normalizing constant. No prior knowledge of the parameters
p (θ) is known, so p (θ) was assumed to be uniform.

Importance sampling is an algorithm which estimates the
posterior distribution p (θ | z) (Bugallo et al., 2017). The set of
samples 2 =

{
θ ∼ q (θ)

}
drawn from the proposal distribution

q (θ) form an empirical estimation of the posterior distribution
p (θ | z) in which each sample is weighted with the sample weight
w described by

w (θ) ∝
p (θ | z)

q (θ)
. (2)

The weights are normalized such that
∑

θ∈2 w (θ) = 1.
Importance sampling is most effective when the proposal
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FIGURE 1 | Non-invasive measurements were used as input for a fully automatic automated uncertainty quantification algorithm. This algorithm produced a digital
twin based on estimated parameters with accompanying uncertainty. This digital twin can be used to get more insight in the estimated tissue properties. RVfw, right
ventricle free wall; LVfw, left ventricle free wall; IVS, inter ventricular septum; HR, heart rate; EDV, end-diastolic volume; EF, ejection fraction; RVD, right ventricular
diameter.

distribution q(θ) is close to the posterior distribution p (θ | z)
such that variance in weight of the samples is small and the
effective sample size is close to the actual sample size. Since no
information was available on the posterior distribution, we used
adaptive importance sampling in which the proposal distribution
is iteratively updated to better describe the posterior distribution
(Bugallo et al., 2017).

The computational cost of calculating the likelihood p (z | θ)
in cardiovascular models is relatively high compared to the cost
of calculating the probability density function of the proposal
distribution q (θ), so the samples from all previous iterations were
included in defining the proposal distribution q (θ) to optimally
recycle past simulations following the AMIS (see Figure 2)
(Cornuet et al., 2012).

Each iteration in this algorithm consists of two stages. First,
samples are drawn from the proposal distribution and weights
of all samples are updated. Second, the proposal distribution is
updated based on the new sample weights.

Draw Samples and Calculate Sample Weights
At the start of each iteration i, 100 samples are drawn from the
current proposal distribution πi (θ). Samples are drawn without
statistical dependencies between parameters, which may result
in non-physiological combinations of parameters. For example,
the model is not parameterized for a low contractile heart to

be able to supply a high cardiac output (CO) and is therefore
likely to become numerically instable. To circumvent this, only a
small uniform distribution around the reference is used as initial
proposal distribution q0 (θ). AMIS will increase and decrease the
search area of the proposal distribution and will move this to the
area of interest in which physiological samples will be drawn close
to the desired posterior distribution.

Each iteration, the weights are updated based on the proposal
function and likelihood (Equation 2). The probability density
function of all previous proposal distributions is given by the sum
of all individual proposal distributions

qi (θ) =
1

Nsamples

niter−1∑
i=0

nsamples, i · πi (θ), (3)

with nsamples, i the number of samples in iteration i and Nsamples =∑niter−1
i=0 nsamples, i the total number of samples. Samples drawn

from poorly performing proposal distributions are eliminated
through the erosion of their low weights (Cornuet et al., 2012).

The likelihood function is defined based on the normalized
dimensionless summed squared error X ()2. This X(θ)2 is
problem dependent and the X2 used in this study is described in
section “Likelihood Function.” We assumed a non-informative
uniform prior and neglected all interactions between individual
errors. Furthermore, annealed adaptive importance sampling (Li
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FIGURE 2 | Visualization of adaptive multiple importance sampling. In the first iteration, samples θ are drawn from a uniform distribution and stored in the sample set
2. For each sample, the corresponding sample weight w is calculated. Then, based on all previous samples θ in the sample set 2 and corresponding sample
weight w, the next proposal distribution is defined and new samples are added to the sample set 2. This iterates niter times.

and Lin, 2015) was used to prevent the algorithm from premature
convergence (Černý, 1985; Neal, 2001), resulting in a likelihood

p (z | θ, Ti) ∝ e−
X(θ)2

Ti , (4)

in which Ti = 1 in each iteration i and represents the
annealing temperature. This method is included to control
convergence rate, thereby improving global search capabilities
and limiting premature convergence toward local minima. The
initial temperature is set to Tmax = 10, and decreases each
iteration i such that

Ti + 1 =

{
min

(
10, Ti + X2

opt

)
if X2 is improved

max (1, 0.8 · Ti) else
(5)

with X2
opt the difference between the old and new X2 of

the best sample.

Update Proposal Distribution
Each iteration, the proposal distribution is updated based on
all drawn samples in the sample set 2 and its corresponding
weight w. Details on the definition of the proposal distribution are
shown in Supplementary Material 1.1. In the updated proposal
distributions, samples were drawn along the principal component
axes of the weighted sample set 2.

This protocol ran for at least 500 iterations. Additional
iterations were performed in the case that the effective sample size

Neff > 10 · nθ was not fulfilled. The Kish effective sample size was
Neff used (Beskos et al., 2014), which is defined as

Neff =

[∑
θ∈2 w (θ)

]2∑
θ∈2

(
w (θ)2) . (6)

Problem Description
Clinical Data
Patient-specific simulations were based on echocardiographic
data from AC mutation carriers in various disease stages.
Besides clinically measured LV and RV regional deformation
imaging data, the LV end-diastolic volume (EDV), LV ejection
fraction (EF), and right ventricular basal diameter (RVD) were
used as model input. We used echocardiographic data of nine
pathogenic AC mutation carriers which were evaluated in the
University Medical Center Utrecht, Netherlands. As previously
described (van Osta et al., 2021), deformation analyses of these
echocardiograms were performed twice by two observers to
determine clinical inter- and intra-observer variability. Lastly,
longitudinal datasets with >2 echocardiograms per patient at
different time points were used to explore applicability of
the model for follow-up of tissue properties over time. These
longitudinal datasets were acquired from AC mutations carriers
which were evaluated in the Oslo University Hospital, Norway.

All echocardiographic data were obtained on a Vivid 7,
Vivid 9, or Vivid E95 ultrasound machine (GE Vingmed,
Horten, Norway). The echocardiographic protocol was described
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previously (Kirkels et al., 2021). In this study, we focused on
the right ventricular free wall (RVfw). This is typically the
most affected area in AC mutation carriers (Marcus et al.,
2010), which is expressed in typical deformation abnormalities
(delayed onset of shortening, decreased peak systolic strain, post-
systolic shortening, and increased RV mechanical dispersion)
(Kirkels et al., 2021). Therefore, deformation patterns of three
RVfw segments (apical, mid-ventricular, and basal) were used as
input for our modeling framework (Figure 1) (van Osta et al.,
2021). Additionally, LV free wall (LVfw) and interventricular
septal (IVS) deformation patterns were included to ensure
realistic mechanical boundary conditions for the RVfw in
terms of ventricular interaction. These patterns were obtained
by averaging the 12 LVfw and 6 IVS segmental deformation
curves, respectively, using the standardized 18-segment model
(Voigt et al., 2015).

Computational Model of Heart and Circulation
Clinical measures were simulated using the CircAdapt model.
This model is a fast biomechanical lumped parameter model of
the heart and circulation. Via the one fiber model (Arts et al.,
2005), wall stress is related to cavity pressure. The TriSeg module
allows inter-ventricular interaction over the IVS (Lumens et al.,
2009). Phenomenological material laws prescribe the stress–
strain relation in the spherical walls. The MultiPatch module
allows for regional heterogeneity of tissue properties within a
single wall (Walmsley et al., 2015) and is used to describe the
heterogeneity in the RVfw. Three segments were created in
the RVfw to model the mechanics in the three different RVfw
segments (apical, mid-ventricular, and basal).

The parameter subset θ included for estimation was based
on a previous sensitivity analysis (van Osta et al., 2021) and is
shown in Table 1. Parameters included were regional parameters
describing the constitutive behavior of active (SfAct) and passive
stress (k1), activation delay (dT), reference wall area (AmRef),
and global parameters relative systole duration (RSD), and
CO. Heart rate (HR) in the model was set to match clinically
measured HR to ensure equal cycle lengths in measured and
modeled signals.

Strain was defined as the segmental displacement relative to
its reference length at end diastole (see Supplementary Material

1.2). Additionally, EF, EDV, and RVD were included. Modeled
EDV was defined as the maximum cavity volume of the LV cavity
assuming perfect valve behavior. EF was defined as the ratio of
stroke volume over maximum volume. RVD was defined as the
maximum cavity diameter between the RVfw and IVS.

Likelihood Function
As shown in Equation 4, the likelihood function was based on
the summed squared error X2. This error consists of the error in
strain of the five segments and on the error in EF, EDV, and RVD.
Because the measured diastolic strain is less reliable due to the
drift affecting most of this phase, we only included strain during
the systolic phase in this study. This systolic phase was defined
from the onset of the QRS complex until 100 ms after peak strain
of the segment with longest shortening phase.

To account for dependencies in strain, we included weighted
dimensionless errors based on strain (e2

ε, seg), strain rate (e2
ε̇, seg),

and inter-segmental strain differences (e2
εinter

). Errors in EF
(e2

EF), EDV (e2
EDV ), and RVD (e2

RVD) were assumed independent,
resulting in the X2 to be the sum of all individual weighted
dimensionless errors e2:

X2
=

∑
seg∈segments

(
e2
ε, seg + e2

ε̇, seg

)
+

∑
inter∈interseg

e2
1εinter

(7)

+

∑
m∈[EF, EDV, RVD]

e2
m.

Standard deviations used to normalize each individual term were
manually estimated a priori to meet differences between the
inter- and intraobserver datasets. Standard deviations used to
normalize EF, EDV, and RVD were set a priori in consultation
with clinical partners. A more detailed description of the
likelihood function is included in Supplementary Material 1.2.

Right Ventricle Tissue Properties
To relate our simulations to clinical measures, four RV tissue
properties were investigated, namely contractility, activation
delay, compliance, and myocardial work. These measures are
explained in more detail in Supplementary Material 1.5. In
brief, segmental contractility was defined as the maximum rate
of active stress rise, which can be seen as the equivalent of the

TABLE 1 | parameters included in this study.

Model parameter Unit Description Sample
distribution

Parameter range N parameters

SfAct kPa Active stress
scaling factor

logit-uniform [0, 1000] 5 [LVfw, IVS, RVapex, RVmid, RVbase]

k1 – Stiffness
exponent

logit-uniform [1, 100] 5 [LVfw, IVS, RVapex, RVmid, RVbase]

dT ms Activation delay logit-uniform [−200, 800] 5 [LVfw, IVS, RVapex, RVmid, RVbase]

AmRef cm2 Eccentric
hypertrophy

log-uniform [0,∞] 3 [LVfw, IVS, RVfw]

RSD – Global systolic
duration scaling

log-uniform [0,∞] 1 Global

Q0 L/min Cardiac Output log-uniform [0,∞] 1 Global

20
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maximum rate of ventricular systolic pressure rise (dP/dtmax) on
a local tissue level. Segmental wall compliance was defined as the
slope of the end-diastolic myofibre stress–strain relationship at
time before first ventricular activation and can be interpreted as
the regional equivalent of the slope of the global end-diastolic
pressure–volume relation. Myocardial work density was defined
as the area within the stress–strain loop and can be interpreted as
the regional equivalent of global stroke work.

Simulation Protocol
Uncertainty Quantification of Real Patient Datasets
Nine clinical datasets in which the echocardiographic images
were analyzed twice by two independent observers were included
to test reproducibility, leading to 36 datasets. For each individual
dataset, parameters were estimated three times resulting in 108
estimations in total. Since no ground truth exists for estimated
model parameters, only the reproducibility of estimations was
evaluated. Three kinds of reproducibility were investigated,
namely computational reproducibility, reproducibility including
interobserver variability, and reproducibility including
intraobserver variability. First, computational reproducibility was
defined as the reproducibility of the exact same clinical dataset
and quantified by the mutual information (MI) between two
model parameter estimations. The same protocol was repeated
three times with a different random seed. To calculate the MI,
two distributions were discretized into 100 bins. The MI was then
defined as the overlap divided by the union of the distributions.
Secondly, reproducibility including interobserver variability was
tested on the nine patient datasets, whereby a second blinded
observer performed deformation imaging analysis on the same
echocardiographic loops as the first observer. It was defined as
MI between two estimated model parameter distributions from
two datasets observed by the two different observers. Finally,
reproducibility including intraobserver variability was quantified
similarly from two different datasets, whereby the observer
performed the deformation analysis again after at least 2 weeks,
blinded to previous results. The median MI with 95% confidence
interval (CI) of all parameter estimations was reported. In
case the estimations from different observations fully overlap,
MI = 100%. In case of no overlap at all, MI = 0%.

Uncertainty Quantification of Virtual Patient Datasets
To test the trueness of the estimation, in silico generated virtual
patients were generated. To ensure these virtual patients to be
representable for real AC patients, nine virtual patients were
created based on the nine real patient datasets. For each real
patient, the simulation with maximum likelihood was selected.
The output of this simulation was used as virtual patient dataset,
which was used as input of the modeling framework.

Trueness of the virtual estimations was tested by comparing
the estimated distribution with the known true parameter values.
For each parameter, the highest density interval (HDI) for which
the true value is in the interval was calculated. The HDI was
defined as the area of the distribution for which the posterior
holds p (θ | z) = p(θtrue|z). The distribution was approximated
with a histogram with bin width defined by the Freedman–
Diaconis rule (Freedman and Diaconis, 1981). The HDI for each

parameter should be near 0% meaning the true value is near the
maximum a posteriori.

Application in Longitudinal Datasets
Two subjects with a baseline and two follow-up echocardiograms
were selected (Table 2). For all six datasets, clinical data was
extracted and the datasets were estimated independently of each
other, similarly as described above. The two longitudinal sets
of estimated tissue properties were investigated. Due to the
retrospective nature of this study, LV EDV was only available at
baseline. We assumed that it did not change during follow-up.

Code Implementation
The CircAdapt model was written in C++. All other code was
written in Python. Each individual dataset was solved sequentially
and independently. The source code of the CircAdapt model
has been made available before (van Osta et al., 2020). All
other source code is publicly available on Zenodo1. Datasets
were estimated in parallel with Python 3.9.4 on a AMD Ryzen
Threadripper 3970X.

RESULTS

Uncertainty Quantification of Real
Patient Datasets
Regional deformation characteristics were accurately simulated
close to the measured deformation and with reasonable
uncertainty {X2

opt = 9.4 (95% CI [5.4− 20.9])}. Figure 3 (left)
shows a representative example. The modeled strain followed
the pattern of clinically measured strain during systole and
heterogeneity between the segments was well captured. A 1D
representation of the convergence of the proposal distribution,
corresponding to the estimated model parameters is shown in
Figure 4. In the first 50 iterations, the proposal distribution
decreased, increased, and moved to the area of interest. From
the 50th iteration, most proposal distributions stabilized. This
behavior was also observed in estimations in other datasets (see
Supplementary Material 2.2).

The estimated posterior distributions of the model parameters
(Figure 4) of most parameters were estimated with small
variances, except for parameters SfAct and k1, because they
were unidentifiable in some segments. The posterior correlation
matrix (Figure 5, top) shows the correlation between estimated
posterior distributions. Notable are the correlations between

1https://doi.org/10.5281/zenodo.5084657

TABLE 2 | Patient characteristics of the two subjects at baseline and follow-up
used in the likelihood function.

Subject 1 Subject 2

Time after
baseline (year)

0 4.5 9.1 0 5.2 7.3

LV EDV (mL) 112 150

LV EF (%) 61 61 61 59 64 57

RVD (mm) 43 43 42 45 38 40
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FIGURE 3 | Measured and estimated strain of real subject (left) and violin plots of estimated parameters (right). Deformation patterns and regional heterogeneity was
well captured by the model. The best simulation in the sample set was in good agreement with to the patients dataset (X2

opt = 8.9).

model parameters SfAct, k1, dT, and AmRef describing
mechanics in the same wall segment. Additionally, there was
a high correlation between different segments for the model
parameters dT and AmRef. From the two global parameters, only
RSD seemed to correlate with dT.

Figure 3 (right) shows the estimated regional RV model
parameters and the RV tissue properties contractility, activation
delay, compliance, and work density. The RV tissue properties
were estimated with distributions with a smaller variance
compared to the estimated model parameters. A decrease in basal
contractility, compliance, and work density with respect to the
apical and mid segment was found which is in line with the
abnormal basal deformation pattern.

Figure 5 (bottom) shows the correlation between posterior
model parameter distributions with the RV tissue properties
contractility, compliance, and work density. Contractility was
mostly correlated with SfAct, AmRef, and CO. In the RVapex
and RVmid, contractility was not only dependent on the
parameters prescribing its own segmental mechanics, but also
on the parameters prescribing other segmental mechanics.
Similar results were observed for compliance, which was
correlated with SfAct, k1, and dT. Compliance showed no
correlation with AmRef, RSD, and CO. Work density was mostly
correlated with CO.

Estimated model parameters were highly reproducible.
Computational reproducibility was found with an MI of
89.9% (95% CI [60.1–95.9]). The reproducibility error given
inter- and intraobserver variability were estimated with

an MI of 86.5% (95% CI [46.0–95.2]) and 85.9% (95% CI
[43.7–95.3]), respectively. More details on reproducibility
and inter- and intraobserver variability are shown in
Supplementary Material 2.1.

Uncertainty Quantification of Virtual
Patient Datasets
Nine virtual patients were created based on the nine real-
patient estimations. As an example, Figure 6 shows the virtual
patient based on the patient results described above. Regional
deformation characteristics were simulated close to the virtual
patients deformation characteristics (X2

opt = 2.0 (95% CI =
[1.2− 3.0]). The true parameter values were well captured by the
estimated distributions. The HDI of the true parameter values
was 9% (95% CI [0–79]). Heterogeneity in model parameters was
well preserved. The width of the distribution in virtual fits was
similar to that in the original patient estimation.

Application: Longitudinal Datasets
Two subjects with a baseline and two follow-up echocardiograms
were included in this study (Table 2). The first subject had a
follow-up examination after 4.5 and 9.1 years and the second
subject after 5.2 and 7.3 years. Results of these case studies are
shown in Figures 7, 8.

Subject 1 developed an abnormal deformation pattern of
the basal RV segment at last follow-up which was not seen
at baseline. Computer simulations showed homogeneous RV
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FIGURE 4 | Convergence of estimated model parameters. The distributions on the right show the final estimated posterior distribution.

contractility, activation delay, compliance, and work at baseline.
In the last follow-up examination, an apex-to-base heterogeneity
in compliance and work density was present.

Subject 2 showed normal RV deformation patterns at
baseline and did not develop clear deformation abnormalities
during follow-up. Contractility, activation delay, compliance,
and work density were estimated homogeneously at baseline.
In the final follow-up, a small apex-to-base heterogeneity in
compliance was present.

DISCUSSION

In this work, we successfully applied AMIS to estimate posterior
distributions of model parameters describing local passive and
active tissue behavior based on echocardiographic deformation
measurements. Estimated deformation closely resembled the
clinically measured myocardial deformation with a realistic
level of uncertainty originating from both the measurement
and the model. Estimated RV tissue properties reflected
progression of the disease substrate over time present in the
clinical case studies.

Model-Based Inference
Personalization of cardiac computational models is becoming
more popular and several approaches have been proposed.
Schiavazzi et al. (2017) used MCMC to estimate model
parameters in a simplified model of the single-ventricular heart in
a close-looped circulation, based on clinically measured pressures
and flows. Corrado et al. (2015) used a Reduced Order Unscented
Kalman Filter to estimate model parameters to optimize
body surface potential maps and myocardial displacement.

Meiburg et al. (2021) used the Unscented Kalman Filter to
predict post-intervention hemodynamics after trans-aortic valve
implantation. Zenker (2010) used importance sampling to
estimate model parameters in a cardiovascular model. Dhamala
et al. (2020) used high-dimensional Bayesian optimization
for parameter personalization of a cardiac electrophysiological
model. Coveney and Clayton (2018) used history matching
to calibrate the maximum conductance of ion channels and
exchangers in two detailed models of the human atrial action
potential against measurements of action potential biomarkers.
Daly et al. (2017) used sequential Monte Carlo Approximate
Bayesian Inference to quantify the uncertainty amplification
resulting in a cellular action potential model. Camps et al.
(2021) used the same technique to estimate key ventricular
activation properties based on non-invasive electrocardiography
and cardiac magnetic resonance imaging.

These studies used computational models with different levels
of model complexity in both anatomical and physiological
detail. Complex models allow personalization with a high
number of details, however, they suffer from a high-dimensional
unknown space increasing the difficulty of personalization due to
unidentifiability of the model parameters. This problem can be
solved by reducing the complexity of the optimization problem
by assuming global model parameters (Davies et al., 2019) or
regional model parameters (Dhamala et al., 2017). However,
this does not reduce the computational cost and increases
model discrepancy. It is suggested to use a surrogate model
to approximate the exact posterior probability density function
(Paun et al., 2019), but this creates a new source of uncertainty.
Including model discrepancy in the estimation often fails due to
the non-identifiability between model parameter estimations and
model discrepancy (Lei et al., 2020). The pseudo-true parameter
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FIGURE 5 | Posterior correlation matrix of the estimated model parameters (top) and the correlation between the posterior distribution of model parameters and
derived tissue properties (bottom).
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FIGURE 6 | Measured and estimated strain of virtual subject (left) and violin plots of estimated parameters (right). The estimated properties are close to the true
properties of the virtual patient (black dot) and the heterogeneity is well captured. The best simulation in the sample set was closely related to the virtual patients
dataset (X2

opt = 2.0).

value found by ignoring model discrepancy can still be valuable
for clinical interpretation.

Another approach is to reduce the complexity of the model.
Various lumped parameter models of the heart and circulation
have been used for fast personalization (Zenker, 2010; Schiavazzi
et al., 2017; Meiburg et al., 2021). The cost of low complexity
may lead to an increase in model discrepancy due to model
assumptions and simplifications (Lei et al., 2020). It was, however,
demonstrated before that the CircAdapt model is highly efficient
in simulating regional mechanics and is able to simulate realistic
hemodynamics (Arts et al., 2012; Walmsley et al., 2015). We
previously showed that the CircAdapt model can simulate
segmental mechanics with a similar spatial resolution as in
clinical strain imaging measurements with low discrepancy
(Walmsley et al., 2015; van Osta et al., 2021). Therefore, we
assume the CircAdapt model is a suitable model for modeling
regional strain in AC patients.

In this study, we chose importance sampling because it is
highly effective for complex high-dimensional models (Bugallo
et al., 2017). The computational cost of our model was
approximately 1000 times higher compared to the calculation
of the probability density of a sample drawn from the proposal
distribution. Therefore, AMIS was the most suitable variant to
optimally reuse all samples (Cornuet et al., 2012).

Efficiency of AMIS heavily depends on the definition of the
proposal distribution (Bugallo et al., 2017). A wider proposal

distribution ensures to visit the full input space of interest,
but is accompanied by a risk of non-converging estimations
due to the high number of samples with a low sample weight.
On the other hand, a more narrowed search has the risk
of finding a local minimum in which the wrong posterior is
estimated, or the risk of collapsing when the weight of the
found minimum drops to zero. As the number of samples
goes to infinity, the sample weight will be equally distributed.
However, for the limited number of samples drawn, an optimal
balance should be found. We successfully implemented annealed
adaptive importance sampling to prevent the model from
premature convergence while still being able to narrow the
proposal distribution in the later iterations. More research
should go into defining the proposal distribution or the initial
proposal distribution.

In this study, it took approximately 16 h per dataset
to converge. This time includes generating the proposal
distributions, generating samples, running simulations,
obtaining the likelihood function, and calculating the sample
weights. The total duration mainly depends on the duration of
each individual simulation, since the number of iterations in
the estimations was equal or close to 500. The duration of each
simulation depended on HR, numerical stability, and number
of beats needed to get a hemodynamically stable solution.
Computational time can be reduced in future studies, since
AMIS allows parallel calculation of simulations. This reduction
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FIGURE 7 | Longitudinal estimations subject 1. Echocardiographic deformation imaging was performed at baseline, and after 4.5 and 9.1 years of follow-up.
Computer simulations showed homogeneous RV contractility, activation delay, compliance, and work at baseline. At last follow-up, subject 1 developed an abnormal
deformation pattern of the basal RV. Estimation of RV tissue properties from these deformation data showed an apex-to-base heterogeneity in activation delay,
compliance, and work density.

in computational time will be essential for clinical application of
our method on a larger scale.

Uncertainty Quantification in
Arrhythmogenic Cardiomyopathy
Cardiovascular models are, in general, complex models with
a multitude of parameters. To create digital twins with the
CircAdapt model, we used a parameter subset that we determined
in a previous study (van Osta et al., 2020). This subset includes
model parameters related to regional RV contractile function,
compliance, and activation delay. This is in line with functional
and structural myocardial changes found in AC patients [e.g.,
fibro-fatty replacement of myocytes (Basso et al., 2009), altered
calcium handling (van Opbergen et al., 2019), and fibrosis (Tandri
et al., 2005)] and early generic simulation based hypotheses (Mast
et al., 2016). These structural changes might cause abnormal
electrical activation observed in patients with AC (Haqqani
et al., 2012). The RV tissue properties are useful to quantify
the substrate, however, the model cannot distinguish the cellular
origin of the substrate.

The likelihood function was based on our prior knowledge of
the pathology. It is not trivial how to include this information
as the amount of uncertainty and its dependencies is not known
but heavily affects the posterior distribution. In this study,
we limited the objectives in the likelihood function to only

that information in the longitudinal study that our model can
simulate realistically. The main contributor is regional RV strain,
as regional deformation abnormalities are found in early stages
of the disease (Sarvari et al., 2011; Mast et al., 2016, 2019;
Leren et al., 2017; Lie et al., 2018; Malik et al., 2020). LV
strain, RVD, LV EF, and LV EDV are included in the likelihood
to personalize geometric properties of the model. Because of
the complex geometry of the thin-walled RV, our 2D imaging
methods did not provide a comprehensive measure of RV size
and wall thickness. In future studies, 3D imaging methods might
provide a more comprehensive inclusion of geometric variability
of the RV. The RVD was included to account for large geometrical
differences between patients and geometrical changes over time.
Wall volumes were not included in the parameter subset because
they were unidentifiable given the available measurements.

Dependencies in strain were partially included by including
strain rate and strain differences. Based on the used likelihood
function, posterior distributions were estimated with a relatively
wide variance (Figure 4), suggesting not all parameters are
identifiable. The low reproducibility in some parameters (HDI
95% CI [0–79%]) is probably related to this unidentifiability.
Heterogeneity in model parameters is, however, well preserved,
suggesting that measurements that are sensitive to segment-
averaged model parameters should also be included in
the likelihood function. Further prospective studies could
investigate the error propagation of dependent and independent
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FIGURE 8 | Longitudinal estimations subject 2. Echocardiographic deformation imaging was performed at baseline, and after 5.2 and 7.3 years of follow-up. Subject
2 had normal RV deformation patterns at baseline and did not develop clear deformation abnormalities during follow-up. Contractility, compliance, and work density
were estimated homogeneously at baseline.

uncertainties, whether all components of the likelihood are
essential to include, and which other measurements should be
included to increase the identifiability of the model parameters.

Derived tissue properties were estimated more precise and
reproducible compared to model parameters, suggesting that
different parameter combinations can result in the same
hemodynamic state. Mechanics of the three RV segments were
modeled with the same mathematical equations, however, they
have different interactions with the surrounding walls as shown
in Figure 5. Compliance in the basal segment was estimated
more precise compared to the other segments (Figure 6). This
results from the non-linear behavior of the model, as basal model
parameters were differently estimated due to basal deformation
abnormalities. Therefore, compliance in the basal segment was
less correlated with the other segments.

In this study, we used a single definition for myocardial
contractility and compliance related to other more global
definitions. There is no consensus on a single indicator for
contractility and compliance, and often multiple (non-invasive)
measures are used to get an impression. For contractility,
the maximum pressure–time derivative dP/dtmax is the
most commonly used index of contractility in the field of
drug safety assessment (Sarazan et al., 2011). Although this
measure is preload and afterload dependent, the regional
stress–time derivative as local equivalent gives insight in
the regional differences in RV contractile function. Other
global measures have been proposed to bypass preload

and afterload dependencies, such as dP/dtmax at a specific
pressure (Sarazan et al., 2011) or end-systolic pressure–
volume relation (Suga and Sagawa, 1974). New techniques
might be useful for future validation of RV tissue properties,
such as shear wave imaging (Pernot et al., 2011) to quantify
cardiac stiffness.

The gold-standard assessment of RV stiffness (inverse of
compliance) is the end-diastolic pressure–volume relation (El
Hajj et al., 2020). The local equivalent is the models material
law describing the stress–sarcomere length relation. The actual
amount of stress prescribed by this law depends on the sarcomere
length during the cycle (Arts et al., 2005). Due to the complexity
of the model, which includes mechanics based on sarcomere
length, an accurate estimation of compliance is difficult. The
compliance measure as used in this study only includes the
compliance at the end diastolic sarcomere length and is therefore
load-dependent. To obtain a load-independent measure, more
information on the loading conditions should be included in the
likelihood distribution.

Case Study and Future Research
Directions
The two subjects included in the case study showed different
behavior over time. The first subject developed an abnormal basal
RV deformation pattern during follow-up which was reflected
in changes in estimated local tissue properties. The second
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subject did not develop clear deformation abnormalities, but
did develop slight abnormal heterogeneity in tissue properties.
In both cases, only small changes in estimations were observed
from baseline to follow-up. It has previously been shown that
heterogeneity in deformation patterns has prognostic value for
disease progression (Mast et al., 2019) and life-threatening
arrhythmia (Sarvari et al., 2011). Although no further follow-up
of these subjects was available, we can hypothesize our model
might identify abnormal tissue substrates before this is clearly
visible in deformation patterns. Further studies should investigate
whether our approach is able to detect AC in an early stage and
whether it has added prognostic value.

In this study, we estimated model parameters to predict
tissue mechanics under mechanical loading similar to loading
during measurement. To achieve this, we included CO in the
parameter subset and EDV and EF in the likelihood function.
The model could be used for predicting the behavior of the
heart under different loading conditions. This could facilitate the
study of loading effects of drug interventions in the digital twin.
Besides, the effect of exercise, which is an important modulator
of phenotypic expression of AC (Prior and La Gerche, 2020),
could be studied in the digital twin. For the latter, a virtual
cardiac exercise performance test as proposed by van Loon
et al. (2020) could be used to give more insight in the severity
of the substrate and possible triggers for disease progressions.
To allow the CircAdapt model to extrapolate its state to
other loading conditions such as exercise, more information
should be included.

Limitations
Uncertainties are assumed statistically independent and additive,
however, this is in fact more complicated. Measurements have
multiple sources for uncertainty. We have only included inter-
and intra-observer variability of the speckle tracking imaging
in our study. Global longitudinal strain has proven to be
reproducible, however, it has been shown that beat-to-beat
variability affects segmental peak strain, end systolic strain and
post-systolic strain (Mirea et al., 2018). More research should
elucidate the origin of this uncertainty, its effect on normalized
strain morphology as included in our study, and how to optimally
include uncertainty in defining the likelihood function. This
could also facilitate inclusion of realistic noise on virtual patient
datasets, which was outside the scope of this study.

Arrhythmogenic cardiomyopathy is not only characterized
by structural disease manifestation, but electrophysiologic
substrates play an important role as well (Groeneweg et al.,
2015). Currently, the CircAdapt model only contains the lumped
effect of electrophysiology to describe the mechanical behavior.
Future studies could extend the model with a more detailed
electromechanical coupling, such as proposed by Lyon et al.
(2020), to be able to describe the electrophysiologic substrate.

CONCLUSION

We presented a patient-specific modeling approach taking
into account uncertainties. With this approach, we were able

to reproduce regional ventricular deformation patterns and
estimate the underlying tissue properties in AC mutation carriers
with an acceptable level of uncertainty. Virtual estimations were
precise and real-world estimations were highly reproducible.
Two subjects in our case study revealed the evolution of early-
stage AC disease over time using longitudinal follow-up datasets.
Future studies should apply our method on a larger cohort and
investigate the course of early stage RV disease development at
individual as well as patient population levels.
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Černý, V. (1985). Thermodynamical approach to the traveling salesman problem:
an efficient simulation algorithm. J. Optim. Theory. Appl. 45, 41–51. doi: 10.
1007/BF00940812

Cornuet, J. M., Marin, J. M., Mira, A., and Robert, C. P. (2012). Adaptive multiple
importance sampling. Scand. J. Stat. 39, 798–812. doi: 10.1111/j.1467-9469.
2011.00756.x

Corrado, C., Gerbeau, J. F., and Moireau, P. (2015). Identification of weakly
coupled multiphysics problems. Application to the inverse problem of
electrocardiography. J. Comput. Phys. 283, 271–298. doi: 10.1016/j.jcp.2014.11.
041

Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y.,
et al. (2020). The ‘Digital Twin’ to enable the vision of precision cardiology.
Eur. Heart J. 41, 4556–4564. doi: 10.1093/eurheartj/ehaa159

Coveney, S., and Clayton, R. H. (2018). Fitting two human atrial cell models to
experimental data using Bayesian history matching. Prog. Biophys. Mol. Biol.
139, 43–58. doi: 10.1016/j.pbiomolbio.2018.08.001

Daly, A. C., Cooper, J., Gavaghan, D. J., and Holmes, C. (2017). Comparing two
sequential Monte Carlo samplers for exact and approximate Bayesian inference
on biological models. J. R. Soc. Interface 14:20170340. doi: 10.1098/rsif.2017.
0340

Davies, V., Noè, U., Lazarus, A., Gao, H., Macdonald, B., Berry, C., et al. (2019).
Fast parameter inference in a biomechanical model of the left ventricle by
using statistical emulation. J. R. Stat. Soc. Ser. C Appl. Stat. 68, 1555–1576.
doi: 10.1111/rssc.12374

Dhamala, J., Arevalo, H. J., Sapp, J., Horácek, B. M., Wu, K. C., Trayanova, N. A.,
et al. (2018). Quantifying the uncertainty in model parameters using Gaussian
process-based Markov chain Monte Carlo in cardiac electrophysiology. Med.
Image Anal. 48, 43–57. doi: 10.1016/j.media.2018.05.007

Dhamala, J., Arevalo, H. J., Sapp, J., Horacek, M., Wu, K. C., Trayanova,
N. A., et al. (2017). Spatially adaptive multi-scale optimization
for local parameter estimation in cardiac electrophysiology. IEEE
Trans. Med. Imaging 36, 1966–1978. doi: 10.1109/TMI.2017.2697
820

Dhamala, J., Bajracharya, P., Arevalo, H. J., Sapp, J. L. L., Horácek, B. M., Wu,
K. C., et al. (2020). Embedding high-dimensional Bayesian optimization via
generative modeling: parameter personalization of cardiac electrophysiological
models. Med. Image Anal. 62:101670. doi: 10.1016/j.media.2020.101670

El Hajj, M. C., Viray, M. C., and Tedford, R. J. (2020). Right heart failure: a
hemodynamic review. Cardiol. Clin. 38, 161–173. doi: 10.1016/j.ccl.2020.01.001

Freedman, D., and Diaconis, P. (1981). On the histogram as a density estimator:L2
theory. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57, 453–476. doi: 10.1007/
BF01025868

Groeneweg, J. A., Bhonsale, A., James, C. A., te Riele, A. S., Dooijes, D., Tichnell,
C., et al. (2015). Clinical presentation, long-term follow-up, and outcomes
of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients

and family members. Circ. Cardiovasc. Genet. 8, 437–446. doi: 10.1161/
CIRCGENETICS.114.001003

Haqqani, H. M., Tschabrunn, C. M., Betensky, B. P., Lavi, N., Tzou, W. S., Zado,
E. S., et al. (2012). Layered activation of epicardial scar in arrhythmogenic right
ventricular dysplasia possible substrate for confined epicardial circuits. Circ.
Arrhythm. Electrophysiol. 5, 796–803. doi: 10.1161/CIRCEP.111.967935

Kirkels, F. P., Lie, Ø. H., Cramer, M. J., Chivulescu, M., Rootwelt-Norberg, C.,
Asselbergs, F. W., et al. (2021). Right ventricular functional abnormalities in
arrhythmogenic cardiomyopathy: association with life-threatening ventricular
arrhythmias. JACC Cardiovasc. Imaging 14, 900–910. doi: 10.1016/j.jcmg.2020.
12.028

Lei, C. L., Ghosh, S., Whittaker, D. G., Aboelkassem, Y., Beattie, A., Cantwell,
C. D., et al. (2020). Considering discrepancy when calibrating a mechanistic
electrophysiology model subject areas. Philos. Trans. A Math. Phys. Eng. Sci.
378:20190349. doi: 10.1098/rsta.2019.0349

Leren, I. S., Saberniak, J., Haland, T. F., Edvardsen, T., and Haugaa, K. H. (2017).
Combination of ECG and echocardiography for identification of arrhythmic
events in early ARVC. JACC Cardiovasc. Imaging 10, 503–513. doi: 10.1016/j.
jcmg.2016.06.011

Li, W., and Lin, G. (2015). An adaptive importance sampling algorithm for
Bayesian inversion with multimodal distributions. J. Comput. Phys. 294, 173–
190. doi: 10.1016/j.jcp.2015.03.047

Lie, Ø. H., Rootwelt-Norberg, C., Dejgaard, L. A., Leren, I. S., Stokke, M. K.,
Edvardsen, T., et al. (2018). Prediction of life-threatening ventricular
arrhythmia in patients with arrhythmogenic cardiomyopathy. JACC
Cardiovasc. Imaging 11, 1377–1386. doi: 10.1016/j.jcmg.2018.05.017

Lumens, J., Delhaas, T., Kirn, B., and Arts, T. (2009). Three-wall segment (TriSeg)
model describing mechanics and hemodynamics of ventricular interaction.
Ann. Biomed. Eng. 37, 2234–2255. doi: 10.1007/s10439-009-9774-2

Lyon, A., Dupuis, L. J., Arts, T., Crijns, H. J. G. M., Prinzen, F. W., Delhaas, T.,
et al. (2020). Differentiating the effects of β-adrenergic stimulation and stretch
on calcium and force dynamics using a novel electromechanical cardiomyocyte
model. Am. J. Physiol. Hear Circ. Physiol. 319, H519–H530. doi: 10.1152/
ajpheart.00275.2020

Malik, N., Win, S., James, C. A., Kutty, S., Mukherjee, M., Gilotra, N. A.,
et al. (2020). Right ventricular strain predicts structural disease progression in
patients with arrhythmogenic right ventricular cardiomyopathy. J. Am. Heart
Assoc. 9:e015016. doi: 10.1161/JAHA.119.015016

Marcus, F. I., McKenna, W. J., Sherrill, D., Basso, C., Bauce, B., Bluemke,
D. A., et al. (2010). Diagnosis of arrhythmogenic right ventricular
cardiomyopathy/dysplasia: proposed modification of the task force criteria.
Eur. Heart J. 31, 806–814. doi: 10.1093/eurheartj/ehq025

Mast, T. P., Taha, K., Cramer, M. J., Lumens, J., van der Heijden, J. F., Bouma, B. J.,
et al. (2019). The prognostic value of right ventricular deformation imaging
in early arrhythmogenic right ventricular cardiomyopathy. JACC Cardiovasc.
Imaging 12, 446–455. doi: 10.1016/j.jcmg.2018.01.012

Mast, T. P., Teske, A. J., Walmsley, J., van der Heijden, J. F., van Es, R.,
Prinzen, F. W., et al. (2016). Right ventricular imaging and computer
simulation for electromechanical substrate characterization in arrhythmogenic
right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 68, 2185–2197. doi:
10.1016/j.jacc.2016.08.061

Meiburg, R., Zelis, J. M., van ’t Veer, J. M., van Velthoven, S. J. A., van de Vosse,
F. N., Tonino, P. A. L., et al. (2021). Model-based aortic power transfer: a
potential measure for quantifying aortic stenosis severity based on measured
data. Med. Eng. Phys. 90, 66–81. doi: 10.1016/j.medengphy.2021.02.009

Mirea, O., Pagourelias, E. D., Duchenne, J., Bogaert, J., Thomas, J. D., Badano, L. P.,
et al. (2018). Variability and reproducibility of segmental longitudinal strain
measurement: a report from the EACVI-ASE strain standardization task force.
JACC Cardiovasc. Imaging 11, 15–24. doi: 10.1016/j.jcmg.2017.01.027

Neal, R. M. (2001). Annealed importance sampling. Stat. Comput. 11, 125–139.
doi: 10.1023/A:1008923215028

Niederer, S. A., Lumens, J., and Trayanova, N. A. (2019). Computational models
in cardiology. Nat. Rev. Cardiol. 16, 100–111. doi: 10.1038/s41569-018-
0104-y

Paun, L. M., Colebank, M., Qureshi, U., Olufsen, M., Hill, N., and Husmeier,
D. (2019). “MCMC with delayed acceptance using a surrogate model with an
application to cardiovascular fluid dynamics,” in Proceedings of the International

Frontiers in Physiology | www.frontiersin.org 14 September 2021 | Volume 12 | Article 738926276

https://doi.org/10.1152/ajpheart.00444.2004
https://doi.org/10.1371/journal.pcbi.1002369
https://doi.org/10.1016/S0140-6736(09)60256-7
https://doi.org/10.1214/13-AAP951
https://doi.org/10.1214/13-AAP951
https://doi.org/10.1109/MSP.2017.2699226
https://doi.org/10.1016/j.media.2021.102143
https://doi.org/10.1016/j.media.2021.102143
https://doi.org/10.1007/BF00940812
https://doi.org/10.1007/BF00940812
https://doi.org/10.1111/j.1467-9469.2011.00756.x
https://doi.org/10.1111/j.1467-9469.2011.00756.x
https://doi.org/10.1016/j.jcp.2014.11.041
https://doi.org/10.1016/j.jcp.2014.11.041
https://doi.org/10.1093/eurheartj/ehaa159
https://doi.org/10.1016/j.pbiomolbio.2018.08.001
https://doi.org/10.1098/rsif.2017.0340
https://doi.org/10.1098/rsif.2017.0340
https://doi.org/10.1111/rssc.12374
https://doi.org/10.1016/j.media.2018.05.007
https://doi.org/10.1109/TMI.2017.2697820
https://doi.org/10.1109/TMI.2017.2697820
https://doi.org/10.1016/j.media.2020.101670
https://doi.org/10.1016/j.ccl.2020.01.001
https://doi.org/10.1007/BF01025868
https://doi.org/10.1007/BF01025868
https://doi.org/10.1161/CIRCGENETICS.114.001003
https://doi.org/10.1161/CIRCGENETICS.114.001003
https://doi.org/10.1161/CIRCEP.111.967935
https://doi.org/10.1016/j.jcmg.2020.12.028
https://doi.org/10.1016/j.jcmg.2020.12.028
https://doi.org/10.1098/rsta.2019.0349
https://doi.org/10.1016/j.jcmg.2016.06.011
https://doi.org/10.1016/j.jcmg.2016.06.011
https://doi.org/10.1016/j.jcp.2015.03.047
https://doi.org/10.1016/j.jcmg.2018.05.017
https://doi.org/10.1007/s10439-009-9774-2
https://doi.org/10.1152/ajpheart.00275.2020
https://doi.org/10.1152/ajpheart.00275.2020
https://doi.org/10.1161/JAHA.119.015016
https://doi.org/10.1093/eurheartj/ehq025
https://doi.org/10.1016/j.jcmg.2018.01.012
https://doi.org/10.1016/j.jacc.2016.08.061
https://doi.org/10.1016/j.jacc.2016.08.061
https://doi.org/10.1016/j.medengphy.2021.02.009
https://doi.org/10.1016/j.jcmg.2017.01.027
https://doi.org/10.1023/A:1008923215028
https://doi.org/10.1038/s41569-018-0104-y
https://doi.org/10.1038/s41569-018-0104-y
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-738926 September 24, 2021 Time: 18:15 # 15

van Osta et al. Uncertainty Quantification of Cardiac Properties

Conference on Statistics: Theory and Applications (ICSTA’19), Lisbon, 1–8. doi:
10.11159/icsta19.28

Pernot, M., Couade, M., Mateo, P., Crozatier, B., Fischmeister, R., and Tanter,
M. (2011). Real-time assessment of myocardial contractility using shear
wave imaging. J. Am. Coll. Cardiol. 58, 65–72. doi: 10.1016/j.jacc.2011.02.
042

Prior, D., and La Gerche, A. (2020). Exercise and arrhythmogenic right ventricular
cardiomyopathy. Heart Lung Circ. 29, 547–555. doi: 10.1016/j.hlc.2019.12.007

Sarazan, R. D., Mittelstadt, S., Guth, B., Koerner, J., Zhang, J., and Pettit, S. (2011).
Cardiovascular function in nonclinical drug safety assessment: current issues
and opportunities. Int. J. Toxicol. 30, 272–286. doi: 10.1177/1091581811398963

Sarvari, S. I., Haugaa, K. H., Anfinsen, O. G., Leren, T. P., Smiseth, O. A.,
Kongsgaard, E., et al. (2011). Right ventricular mechanical dispersion is related
to malignant arrhythmias: a study of patients with arrhythmogenic right
ventricular cardiomyopathy and subclinical right ventricular dysfunction. Eur.
Heart J. 32, 1089–1096. doi: 10.1093/eurheartj/ehr069

Schiavazzi, D. E., Baretta, A., Pennati, G., Hsia, T. Y., and Marsden, A. L. (2017).
Patient-specific parameter estimation in single-ventricle lumped circulation
models under uncertainty. Int. J. Numer. Method Biomed. Eng. 33:10. doi:
10.1002/cnm.2799

Suga, H., and Sagawa, K. (1974). Instantaneous pressure volume relationships and
their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126.
doi: 10.1161/01.RES.35.1.117

Tandri, H., Saranathan, M., Rodriguez, E. R., Martinez, C., Bomma, C.,
Nasir, K., et al. (2005). Noninvasive detection of myocardial fibrosis in
arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement
magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 98–103. doi: 10.1016/j.
jacc.2004.09.053

Thiene, G., Nava, A., Corrado, D., Rossi, L., and Pennelli, N. (1988). Right
ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med.
318, 129–133. doi: 10.1056/NEJM198801213180301

van Loon, T., Knackstedt, C., Cornelussen, R., Reesink, K. D., Brunner La Rocca,
H.-P., Delhaas, T., et al. (2020). Increased myocardial stiffness more than
impaired relaxation function limits cardiac performance during exercise in
heart failure with preserved ejection fraction: a virtual patient study. Eur. Heart
J. Digit. Health 1, 40–50. doi: 10.1093/ehjdh/ztaa009

van Opbergen, C. J. M., Noorman, M., Pfenniger, A., Copier, J. S., Vermij, S. H.,
Li, Z., et al. (2019). Plakophilin-2 haploinsufficiency causes calcium handling
deficits and modulates the cardiac response towards stress. Int. J. Mol. Sci.
20:4076. doi: 10.3390/ijms20174076

van Osta, N., Kirkels, F., Lyon, A., Koopsen, T., van Loon, T., Cramer, M.-J. J.,
et al. (2021). Electromechanical substrate characterization in arrhythmogenic
cardiomyopathy using imaging-based patient-specific computer simulations.
Europace 23, 153–160. doi: 10.1093/europace/euaa407

van Osta, N., Lyon, A., Kirkels, F., Koopsen, T., van Loon, T., Cramer, M. J.,
et al. (2020). Parameter subset reduction for patient-specific modelling of
arrhythmogenic cardiomyopathy-related mutation carriers in the CircAdapt
model: parameter subset reduction. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 378:20190347. doi: 10.1098/rsta.2019.0347

Voigt, J. U., Pedrizzetti, G., Lysyansky, P., Marwick, T. H., Houle, H., Baumann,
R., et al. (2015). Definitions for a common standard for 2D speckle tracking
echocardiography: consensus document of the EACVI/ASE/Industry Task
Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging
16, 1–11. doi: 10.1093/ehjci/jeu184

Walmsley, J., Arts, T., Derval, N., Bordachar, P., Cochet, H., Ploux, S., et al. (2015).
Fast simulation of mechanical heterogeneity in the electrically asynchronous
heart using the MultiPatch module. PLoS Comput. Biol. 11:e1004284. doi: 10.
1371/journal.pcbi.1004284

Zenker, S. (2010). Parallel particle filters for online identification of mechanistic
mathematical models of physiology from monitoring data: performance and
real-time scalability in simulation scenarios. J. Clin. Monit. Comput. 24, 319–
333. doi: 10.1007/s10877-010-9252-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 van Osta, Kirkels, van Loon, Koopsen, Lyon, Meiburg, Huberts,
Cramer, Delhaas, Haugaa, Teske and Lumens. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 15 September 2021 | Volume 12 | Article 738926277

https://doi.org/10.11159/icsta19.28
https://doi.org/10.11159/icsta19.28
https://doi.org/10.1016/j.jacc.2011.02.042
https://doi.org/10.1016/j.jacc.2011.02.042
https://doi.org/10.1016/j.hlc.2019.12.007
https://doi.org/10.1177/1091581811398963
https://doi.org/10.1093/eurheartj/ehr069
https://doi.org/10.1002/cnm.2799
https://doi.org/10.1002/cnm.2799
https://doi.org/10.1161/01.RES.35.1.117
https://doi.org/10.1016/j.jacc.2004.09.053
https://doi.org/10.1016/j.jacc.2004.09.053
https://doi.org/10.1056/NEJM198801213180301
https://doi.org/10.1093/ehjdh/ztaa009
https://doi.org/10.3390/ijms20174076
https://doi.org/10.1093/europace/euaa407
https://doi.org/10.1098/rsta.2019.0347
https://doi.org/10.1093/ehjci/jeu184
https://doi.org/10.1371/journal.pcbi.1004284
https://doi.org/10.1371/journal.pcbi.1004284
https://doi.org/10.1007/s10877-010-9252-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


ORIGINAL RESEARCH
published: 14 October 2021

doi: 10.3389/fphys.2021.732351

Frontiers in Physiology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 732351

Edited by:

Natalia A. Trayanova,

Johns Hopkins University,

United States

Reviewed by:

Tinen Lee Iles,

University of Minnesota Twin Cities,

United States

Olga Solovyova,

Institute of Immunology and

Physiology (RAS), Russia

*Correspondence:

Gonzalo D. Maso Talou

g.masotalou@auckland.ac.nz

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 28 June 2021

Accepted: 17 September 2021

Published: 14 October 2021

Citation:

Maso Talou GD, Babarenda

Gamage TP and Nash MP (2021)

Efficient Ventricular Parameter

Estimation Using AI-Surrogate

Models. Front. Physiol. 12:732351.

doi: 10.3389/fphys.2021.732351

Efficient Ventricular Parameter
Estimation Using AI-Surrogate
Models
Gonzalo D. Maso Talou 1*, Thiranja P. Babarenda Gamage 1 and Martyn P. Nash 1,2

1 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand, 2Department of Engineering Science,

University of Auckland, Auckland, New Zealand

The onset and progression of pathological heart conditions, such as cardiomyopathy or

heart failure, affect its mechanical behaviour due to the remodelling of the myocardial

tissues to preserve its functional response. Identification of the constitutive properties of

heart tissues could provide useful biomarkers to diagnose and assess the progression of

disease. We have previously demonstrated the utility of efficient AI-surrogate models

to simulate passive cardiac mechanics. Here, we propose the use of this surrogate

model for the identification of myocardial mechanical properties and intra-ventricular

pressure by solving an inverse problemwith two novel AI-based approaches. Our analysis

concluded that: (i) both approaches were robust toward Gaussian noise when the

ventricle data for multiple loading conditions were combined; and (ii) estimates of one and

two parameters could be obtained in less than 9 and 18 s, respectively. The proposed

technique yields a viable option for the translation of cardiac mechanics simulations and

biophysical parameter identification methods into the clinic to improve the diagnosis

and treatment of heart pathologies. In addition, the proposed estimation techniques are

general and can be straightforwardly translated to other applications involving different

anatomical structures.

Keywords: optimisation, cardiac mechanics, surrogate model, MLP, parameter estimation

1. INTRODUCTION

Cardiovascular disease is the largest cause of death worldwide. Effective diagnosis and treatment
are hampered by a lack of knowledge of the pathophysiological mechanisms underlying the
development of the disease. Biomechanical factors, such as stiffness and stress, are known
to have important influences on heart function, but are difficult to quantify. Patient-specific
computer models of heart biomechanics allow intrinsic constitutive muscle properties, including
stiffness, contraction, relaxation, stress and work, to be assessed using medical data from cardiac
catheterisation and imaging (Wang et al., 2018). Such cardiac tissue indices provide a new
dimension of diagnosis that can help to elucidate the mechanisms of heart disease, thus enabling
more specific targeting of treatment and ultimately better outcomes for patients.

Simulating biomechanics via computational models of the heart is challenging due to the
stress-strain non-linearities intrinsic of cardiac tissue undergoing large deformation. The finite
element method (FEM) is the most commonly used approach to solve the finite elasticity governing
equations to enable accurate predictions of these large deformations (Nash and Hunter, 2000).
This requires specifying constitutive relations to describe the stress-strain behaviour of the
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myocardium. Calibration of patient-specific parameters of these
constitutive relations typically involves minimising an objective
function that quantifies kinematic discrepancies between the FE
model’s predictions and measurements from medical images.
These kinematic measurements typically involve quantifying
shape change or the displacement of the myocardium over the
cardiac cycle. For example, segmentations of the endocardial and
epicardial contours of the heart from Cine MRI (Chen et al.,
2020) have been used as shape-based kinematic measurements
for FE model calibration (Wang et al., 2018). Kinematic
measurements that involve quantify the displacement of the
heart wall have also been used for FE model calibration
(Hadjicharalambous et al., 2017; Zhang et al., 2021). These
approaches track the displacements of the tissue using techniques
such as optical flow (Queiros et al., 2017) or cardiac magnetic
resonance tagging (Aletras et al., 1999; Zhong et al., 2010;
Ibrahim, 2011; Shi et al., 2012; Amzulescu et al., 2019).

A number of non-linear optimisation methods have been
used to calibrate constitutive parameters of cardiac mechanics
models. This includes the application of gradient-based methods
(Gao et al., 2015; Wang et al., 2018) and gradient-free
methods (Rumindo et al., 2020; Zhang et al., 2021). Each of
these methods requires multiple evaluations of the objective
function for each update of the parameters, and each evaluation
involves a costly FE simulation of the mechanics model. The
evaluation of the gradient is often obtained from finite difference
approximations, which can involve a significant computational
cost when increasing number of parameters need to be identified.
Calibration procedures using gradient-based or gradient free
methods are therefore computationally expensive, often taking
many hours or days to complete [e.g., (Gao et al., 2015) reported
calibration times of 63 h, and (Zhang et al., 2021) reported
calibration times of 15 h]. This presents a significant barrier to
clinical translation of cardiac mechanics models.

Surrogate models have been developed to improve simulation
efficiency, replacing computationally expensive FE simulations
with inexpensive surrogate simulations (Dabiri et al., 2019;
Maso Talou et al., 2020; Cai et al., 2021). These surrogate
models have also been used to accelerate calibration procedures
(Di Achille et al., 2018; Davies et al., 2019; Noe et al.,
2019; Longobardi et al., 2020; Cai et al., 2021). For example,
Cai et al. (2021) presented an approach that used surrogate
models with a trust-region-reflective gradient-based optimiser
for estimating personalised constitutive parameter of the left
ventricle. While these advancements are promising, existing
calibration approaches do not exploit the full potential of neural
networks-based surrogate models, which can directly provide the
analytic gradients of objective functions of interest during the
calibration procedure via automatic differentiation (Raissi et al.,
2019). By using these analytic gradients, we only need to evaluate
the model once for each iteration of gradient-based optimisation
procedures. This can lead to an efficient personalisation of these
cardiac models, and enable their future application to real-time
continuous monitoring of cardiac function.

In this work, we propose a novel approach that uses AI-
surrogate model and automatic differentiation to efficiently
identify constitutive parameters or loading conditions of

a biomechanical model given kinematic measurements
from medical images. This builds upon our recent work in
developing deep learning approaches that substantially reduce
the computational cost of simulating cardiac biomechanics,
by training an AI-surrogate model that accurately reproduces
mechanics predictions with a fraction of the computational
cost of numerical methods that solve the governing partial
differential equations (Maso Talou et al., 2020). We demonstrate
this approach for estimating passive stiffness or pressure of
the left ventricle (LV). This approach involves performing
an optimisation of the AI-surrogate inputs to best match its
kinematic response against a set of given observations from
medical images. We present two different strategies: (i) a
full-field tracking approach, which requires the displacement
field between two medical images; and (ii) a contour matching
approach, which requires only the geometry of the ventricular
surfaces in between two medical images. The latter approach
relaxes the requirement for determining the displacement field
of the tissue, and only requires contours describing the surface
of the ventricle from medical images to determine the best
matching kinematic response of the AI-surrogate.

The manuscript is structured as follows. In section 2, we
introduce the FE mechanical model for the left ventricle of
the heart, and its AI-surrogate. Then, we present the proposed
parameter identification strategies followed by the setup of the
optimisation scheme. In section 3, we study the performance of
both strategies for the identification of constitutive parameters
and haemodynamic loading conditions. Finally, we discuss the
contributions and limitations of this work in section 4 and outline
our final remarks in section 5.

2. METHODS

2.1. Mechanical Model
Kinematics of the LV are simulated using a patient-specific
FE model (Wang et al., 2018). This involves solving the finite
elasticity equilibrium equations during the diastolic phase of the
cardiac cycle under an endocardial pressure boundary condition
to simulate passive filling. Patient-specific geometrical models
of the LV are constructed at the diastasis frame of the cardiac
cycle for a range of individuals, which are assumed to be in
a load-free configuration. Cubic Lagrange basis functions are
used for constructing the FE mesh of the geometry. A typical
mammalian description of the myocyte orientation through the
LV wall (Nielsen et al., 1991) is incorporated into the geometry
through a material fibre field. The LV myocardium is modelled
as an ideally-incompressible transversely isotropic material by
means of a Fung-type exponential constitutive model (Guccione
et al., 1991) with the following strain energy density function

9 =
c1

2
(eQ − 1)

Q = c2E
2
ff + c3(E

2
cc + E2rr + E2cr)+ 2c4(E

2
fc + E2fr)

(1)

where the c1 parameter scales the overall stiffness of the
myocardium, and c2, c3, and c4 control the material non-linearity
and anisotropy in the fibre (f), cross-fibre (c), and radial (r)
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directions, respectively. Incompressibility of the myocardium
was enforced through a mixed formulation that uses linear
Lagrange basis functions for describing the hydrostatic pressure
(Nash and Hunter, 2000). Homogeneous Dirichlet boundary
conditions were applied on nodes of the FE mesh at the
epicardial perimeter of the basal surface of the model. All FE
simulations were performed using the OpenCMISS-Iron open-
source computational modelling software package (Bradley et al.,
2011).

2.2. Surrogate Network Model
From the FE mechanical model defined in section 2.1, we derive
a surrogate model as described in Maso Talou et al. (2020).
The AI-surrogate model predicts the displacement of a material
point x = (xd, yd, zd) for a given intra-ventricular pressure p,
domain description g = (g1, g2) (PCA weights as explained in
Maso Talou et al., 2020) and the constitutive parameters (c1, c2).
Particularly, we fixed parameters c3 = 3.67 and c4 = 25.77 as
their identifiability from macro-scale observations is low.

To train the AI-surrogate, we minimised the squared
displacement error with the FE predictions given by training the
following loss function

l(B) =
∑

ud∈Bd

‖ud − ũd‖2L2 + α
∑

ub∈Bb

‖ub − ũb‖2L2 (2)

where Bb and Bd define sets of points (training batches) on
the basal/endocardial boundary (where Dirichlet or Neumann
boundary conditions were applied) and inside the domain,
respectively, ui and ũi are the displacements predicted with the
neural network and the FE model, respectively, α = 4.5 is the
penalty factor to impose the boundary conditions, and B =
Bb + Bd is a given training batch. For further details about the
training of the AI-surrogate, refer to (Maso Talou et al., 2020).

2.3. Parameter Identification Strategies
In this work, we propose two strategies to identify inputs
of the surrogate model from a given set of observations of
ventricular kinematics from medical images. As presented in our
previous work (Maso Talou et al., 2020), we can encode boundary
conditions, applied tractions, domain geometry and constitutive
parameters as inputs of these networks, thus the proposed
techniques can be used to characterise any of these inputs.

The estimation of parameters is studied using two approaches,
which differ based on the image data available to quantify the
kinematics of the heart. One approach considers a displacement
field description of the cardiac wall throughout the cardiac
cycle, which can be derived from medical images using motion
tracking methods (Wang and Amini, 2011; Shi et al., 2012),
or post-processing functions for MR sequences that provide
effective tracking of material points (e.g., CMR tagging). For
the second approach, the input data describe the kinematics
of the cardiac wall surfaces during the heart cycle. For each
approach, two different time-points, corresponding to the initial
and final positions of the cardiac walls, were combined with the
measured intra-ventricular pressures that obtained from cardiac
catheterisation for the analyses. Quantification of the cardiac

wall surfaces can be obtained through segmentation of clinical
images, such as 3D echocardiography or cardiovascular magnetic
resonance imaging (CMR) (Chen et al., 2020).

2.3.1. Full-Field Tracking Approach
The full-field tracking approach involves finding the parameters
2 (inputs of the surrogate model) that minimise the error
between the surrogate model’s predictions of tissue motion and
displacement data derived from medical images, i.e.,

2 = arg min
2̂

L(2̂, û)

= arg min
2̂

‖u(2̂)− û‖L2 (3)

where u(2̂) is the displacement field predicted by the surrogate
model for parameters 2̂, and û is the displacement field from
medical images.

2.3.2. Contour Matching Approach
Let us define a contour st at the time-point t composed of P points
as st = (x0t , . . . , x

P
t ). The endocardial and epicardial contours

are extracted from medical images at the reference (diastasis)
and pressure loaded (end-diastolic) time-points.We denote these
contours as sendo and sepi for endocardial and epicardial contours,
respectively, and in the following we use subscripts i or f to
indicate the absence or presence, respectively, of pressure load.

The contour matching approach involves finding the
parameters 2 (inputs of the surrogate model) that minimise the
error between the initial contours (s·i) displaced by surrogate
model predictions, and the end-diastolic contours identified
from the medical images, namely

2 = arg min
2̂

L(2̂, sendoi , sendof , s
epi
i , s

epi
f
)

= arg min
2̂

(

d(sendoi + u(2̂), sendof )+ d(s
epi
i + u(2̂), s

epi
f
)
)

(4)

where the surface-field addition yields a predicted surface st+u =
(x0t + u|x0t , . . . , x

p
t + u|

x
p
t
) with u|x being the displacement of the

cardiac wall at the spatial position x, and

d(s1, s2) =
1

|s1|
∑

x∈s1
min
y∈s2

‖x− y‖ (5)

where ‖·‖ is the Euclidean norm and |s| is the cardinality of s.

2.4. Optimisation Scheme
A surrogate model of the ventricle is obtained as described in
Maso Talou et al. (2020) by minimising a displacement error
metric (see Equation 2) between the model predictions and a
finite element model. During the training of the AI-surrogate,
both the training and testing errors decreased monotonically
across epochs, reaching a plateau at 4.43 × 10−4 mm2 and
1.30 × 10−3 mm2, respectively. The resulting surrogate model
presents an absolute displacement error of 0.0499 ± 0.0374 mm
in ranges of intraventricular pressure (p ∈ [0.15, 1.5] kPa) and
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FIGURE 1 | (left) AI-surrogate depicting its inputs and outputs (Maso Talou et al., 2020); (right) Example of the geometry of the ventricle at diastasis for g = 0.

myocardial elasticity (c1 ∈ [2, 5] kPa and c2 ∈ [4, 40]) within the
physiological ranges.

As the parameters to be estimated are inputs of surrogate
model’s network, we freeze the weights of the network layers
and optimise the inputs by solving Equations (3) or (4). By
using Tensorflow v2.1, we implemented the network and the
objective function in a Tensorflow graph. Via this execution
graph and automatic differentiation, we obtain the analytic
derivatives of Equations (3) or (4) with respect to the parameters
to be estimated. Finally, we employ the derivatives in an ADAM
method with exponential decay of the learning rate given by

τi = τ0 0.985
i/10 (6)

where τi is the learning at the ith epoch, and τ0 is the initial
learning rate. We empirically choose τ0 = 1 for both full-
field tracking and contour matching approaches. By using
learning decay, the optimisation proceeds more rapidly in
the neighbourhood of the target value, and the overshooting
oscillations are damped, as the learning rate diminishes, leading
to convergence. The optimisation process stops when estimates
of all of the parameters show a relative change lower than 10−5 in
the last epoch, i.e.,

∥

∥

∥

∥

2n+1 − 2n

2ref

∥

∥

∥

∥

∞
< 10−5 (7)

where 2i is the estimate of the parameters at the ith epoch, 2ref

is a vector with reference values for each parameter, and vector
division is the element-wise division of the vector components.

3. RESULTS

In this section, we analyse the ability of both formulations
(see Equations 3 and 4) to identify myocardial constitutive
parameters, and the intra-ventricular pressure. In our
assessment, we disregard the representation error of the
domain associated with the PCA and learning space presented
in Maso Talou et al. (2020), as it can be reduced by including
additional PCAmodes as inputs of our surrogate model. Without
loss of generality, we fixed the geometry to g = 0 (i.e., mean
ventricular shape across our population, see Figure 1). The

analyses reported here will be analogous for different geometrical
variations of the left ventricle as well as for different Dirichlet
boundary conditions. All observations û, sendo

f
and s

epi
f

in this

work have been generated using the same FE model (see section
2.1) to train the surrogate model, thus there is no model error in
this study.

Additionally, we studied the effect of tracking and
segmentation errors (observation errors) on the estimates
of interest. The observation error is modelled as

uǫ =
r

‖r‖
η (8)

where r is a randomly oriented vector with components ri ∈
U(0, 1) and η ∈ N (0, σ ) is the magnitude of uǫ . Note that
the magnitude of our error is normally distributed with zero-
mean, and we choose σ = 1 mm to represent errors of similar
magnitude to the image resolution of MRI images for myocardial

structures. This error is added to û, sendo
f

, and s
epi
f

for the cases

with noise.
Regarding spatial discretisation of the observations (i.e., the

number of samples for û, sendo
f

, and s
epi
f
), we sampled 1, 109

points across the cardiac wall and 7, 579 points over each of
the ventricular surfaces to describe û and s·

f
, respectively. In

turn, for the spatial discretisation of the AI-surrogate inputs,
we sampled 1, 109 points across the cardiac wall for the full-
field tracking approach and 1, 072 points to describe each of the
surfaces s·i. By oversampling s·

f
with respect to s·i, we can compute

the distance between these surfaces by substituting s1 = s·
f
into

Equation (5). This approximation yields a reasonable trade-off
between computation time and discretisation error (note that the
discretisation error decreases as |s1| increases).

3.1. Identification of Constitutive
Parameters
We first studied the precision of simultaneously estimating
the constitutive parameters c1 and c2 for a known intra-
ventricular pressure p. The estimates were generated for both
approaches under three experimental scenarios: (i) a two time-
point experiment without observation error, i.e., only two images
are available during the cardiac cycle; (ii) a two time-point
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FIGURE 2 | Mean displacement of the ventricular wall (denoted µû) for different combinations of the constitutive parameters c1 and c2, and an intra-ventricular

pressure load of p = 0.9 kPa. For details of mean displacements for other loads, refer to the Supplementary Material.

experiment with observation error; and (iii) a multiple time-
point (N = 10) experiment with observation error. The first
two experiments illustrate the degradation of c1 and c2 estimates
for both approaches as measurements become less reliable due
to observation errors. This indicates the robustness of the
approaches with respect to observation error. A comparison
of the last two experiments shows the benefits of including
additional observations (time-points), which diminish the impact
of the stochastic component of the observation error.

3.1.1. Experiment 1
Both approaches showed a similar accuracy in the absence
of observation errors. Since variations in the predicted
displacements are more sensitive with respect to c1 than
c2, we observed better estimates of c1 (see Figure 3). The
distribution of the error in the parametric space (c1, c2) does not
show an association between the displacement magnitudes and
the estimation error (compare Figures 2, 3).

3.1.2. Experiment 2
To analyse the effect of observation errors, we repeated the
previous study 10 times while adding different independent
instances of uǫ (see Equation 8) to the observations û, sendo

f
and

s
epi
f
. To quantify the effect of the noise on the estimates across

these different samples, we computed the mean and standard

deviation of the relative error when estimating the parameters c1
and c2 (see Figure 4).

The contour matching approach provided more accurate
estimates than the full-field tracking approach in the presence
of observation errors (see Figure 4). This is shown by the
lower overall error of the contour matching approach, which is
insensitive to displacements within the muscular heart wall, and
within the surfaces of the ventricles. As only a small tangential
component of displacement is expected in the endocardial and
epicardial surfaces from the loading process in our FE model,
the insensitivity toward such component is beneficial for the
estimation process. Note that this may not be true in practical
scenarios, where the quantification of such components is yet to
be thoroughly explored.

The full-field tracking approach showed larger estimation
errors for c1 in stiffer materials. In such cases, the displacement-
to-uǫ ratio (analogous to the signal-to-noise ratio in signal
processing) was smaller, hindering the estimation due to the
increasing effects of noise in the observations. c2 presented
lower identifiability due to the plateau in the objective function,
L(2), associated with the observation error (see Equation 3 and
Figure 9). The sensitivity of c2 with respect to the displacements
was higher than that of c1 due to the form of the constitutive
equation (Equation 1). The identifiability of c2 is susceptible
to surrogate approximation errors, i.e., discrepancies between
the AI-surrogate and the FE model. An example of this, is the
increase in error of c2 as shown in Figure 4. The AI-surrogate
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FIGURE 3 | Relative error of the two-parameter estimation. Estimates of the constitutive parameters c1 (left) and c2 (right) are presented using the full-field tracking

and contour matching approaches with a load of p = 0.9 kPa in the absence of noise in the observations. For details of estimations for other loads, refer to the

Supplementary Material.

underestimates ∂u/∂c2 in its predictions contributing to the
plateau inL(2) described previously. Note that, as the pressure is
increased the AI-surrogate error has a diminishing effect on the
predicted displacement (see Supplementary Figures 7, 8).

3.1.3. Experiment 3
We analysed the effect of adding multiple time-points for the
estimation of the constitutive parameters when observation
errors were present. We assumed that the observation errors,
uǫ , for all time-points, were independent and identically
distributed (uncorrelated).

We observed that both approaches showed an improvement
in reducing the mean relative error in the estimation of c1 and c2
(see Figure 5), closer to values from error-free estimates reported
in Figure 3. As the observation error is normal, zero-mean
and independent between the time-points, both formulations
efficiently cope with the uncertainty, because the Euclidean norm

involved in both formulations (Equations 3 and 5) optimises
toward the mean of the error distribution.

The contour matching approach is slightly more accurate,
mainly in the estimation of c2 (maximum error of 3%, in
comparison to the full-field tracking approach, with a maximum
error of 5± 4 %).

3.2. Identification of Intra-Ventricular
Pressure
The previous section studied the accuracy of estimating the
constitutive parameters, c1 and c2, given a known intra-
ventricular pressure, p. In this section, we analogously analyse the
accuracy in the estimation of p, assuming that the constitutive
parameters are known. Two experiments were conducted: (i) a
two time-point experiment without observation error where only
two images are available; and (ii) a two time-point experiment
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FIGURE 4 | Mean and standard deviation of the relative error for the two-parameter estimation of c1 (left) and c2 (right) constitutive parameters using the full-field

tracking and contour matching approaches with a load of p = 0.9 kPa and the presence of Gaussian noise (σ = 1mm ≈ 2 pixels) in the observations. For details of

estimations for other loads, refer to the Supplementary Material.

with observation error. Analogous to the previous section, we
studied the degradation in the ability to recover the intra-
ventricular pressure for both approaches as the observations
become less reliable.

3.2.1. Experiment 1
Both approaches estimated intra-ventricular pressure p with a
similar accuracy (relative error ≤ 1%, see Figure 6). The results
did not present evidence of a correlation between the magnitude
of the displacements and the error in the estimation of p.

3.2.2. Experiment 2
Introducing observation errors slightly reduced the accuracy
of the full-field tracking approach (see Figure 7), especially for
stiffer materials. The interpretation of these results is analogous
to the analysis presented for the estimation of c1 in Experiment 2

of section 3.1. As reported in the previous section, with increasing
material stiffness, the displacements of the ventricle for the same
intra-ventricular pressure are smaller and the same intensity of
noise will havemore detrimental effects on the estimation process
(due to less displacement-to-uǫ ratio in the observations).

3.3. Convexity of the Objective Function
Both approaches are based on measuring the displacement
error by means of the Euclidean distance between the ground
truth and the AI-surrogate prediction. As the mechanical model
monotonically increases the ventricular displacements with the
increase of p and the decrease of c1 and c2, the minimisation
problem defined in Equations (3) or (4) with respect to p, c1 or
c2 is convex if the AI-surrogate sufficiently approximates the FE
model response.
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FIGURE 5 | Mean and standard deviation of the relative error for the two-parameter estimation of c1 (left) and c2 (right) constitutive parameters using full-field

tracking and contour matching approaches, a pressure trace with 10 time-points, and independent Gaussian noise (σ = 1mm ≈ 2 pixels) in the observations.

The AI-surrogate used in this manuscript, satisfies such
a condition (see Figures 8, 9). We can observe convexity
in the loss function with respect to p and the constitutive
parameters c1 and c2. Because we use a stochastic gradient
descent optimiser, the identifiability of the parameters is related
to the rate of change of the loss function with respect to

the parameter of interest. We observed a decrease in
∂L

∂c1

and
∂L

∂c2
for stiffer materials. Nonetheless, both approaches

presented good accuracy in recovering physiologically realistic
ranges of parameters (2.0 kPa ≤ c1 ≤ 5.0 kPa and 4.0 ≤
c2 ≤ 40.0, even in the presence of noise (see Figures 8,
9). The identifiability of p does not exhibit degradation in
the physiological range, even in the presence of noise (see
Figure 8).

3.4. Computational Cost
We quantify the performance of the formulations by measuring
the wall-clock time taken to estimate four different set
of parameters: (i) intra-ventricular pressure; (ii) constitutive
parameter c1; (iii) constitutive parameter c2; and (iv) constitutive
parameters c1 and c2. For each test, we executed the
estimation 50 times with different observation errors (using
the same noise distribution presented in section 3). During
these tests, the observation û corresponded to a ground
truth FE model prediction obtained using p = 0.9 kPa,
c1 = 3.5 kPa and c2 = 22.0. We then estimated the
mean and standard deviation of the wall-clock times over the
50 executions (see Table 1). The networks and optimisation
schemes were implemented in TensorFlow 2.1 with GPU-
support, using an NVIDIA Quadro P6000 and CUDA v11.0 for
their executions.
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FIGURE 6 | Relative error in estimating intra-ventricular pressure p using full-field tracking and contour matching approaches with a load of p = 0.9 kPa in the

absence of noise in the observations. For details of the estimation of other loads, refer to the Supplementary Material.

FIGURE 7 | Mean and standard deviation of the relative errors for recovering ground truth intra-ventricular pressure using the full-field tracking and contour matching

approaches and an intra-ventricular pressure of p = 0.9 kPa with Gaussian noise (σ = 1 mm ≈ 2 pixels) in the observations. Refer to the Supplementary Material

for details of the relative errors for other intra-ventricular pressures.

Both approaches were able to estimate the different set
of parameters in less than 18 s. In particular, the full-field
tracking approach executed 6.2, 7.3, 6.4, and 3.6 times faster
for experiments (i)-(iv), respectively, than the contour matching
counterpart. The slower response of the contour matching is
due to the oversampling of the ventricular surface s·

f
that is

necessary for obtaining a good approximation of Equation (5).
Such oversampling increases the number of points in s2 requiring
more model evaluations and thus computational expense.

In terms of computational complexity, the full-field tracking
approach has a cost of O(|û|) where |û| is the number of
points across the ventricular wall, and the contour matching

approach has a cost of O(|s1| |s2|) where |si| is the number of
points at the ventricular surfaces si. This analysis shows a higher
computational complexity for the contour matching approach,
which detrimentally impacts the scaling of the approach with
respect to the discretisation of the ventricle. Specifically, the
computational cost grows linearly and quadratically for the full-
field tracking and contour matching approaches, respectively.

Another contribution to the lower performance of the
contour matching approach is given by the number of
network evaluations. The total number of evaluations of
u(2̂) scales linearly with respect to the discretisation of
the ventricle for both formulations. However, contour
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FIGURE 8 | Loss function for the full-field tracking and contour matching approaches with respect to p in the presence (right) and absence (left) of noise in the

observations. The surface plot in the p-p̂ plane and the opaque manifold represent the loss function value L(p) when p̂ is the ground truth (optimal) value. Level curves

in L-p̂ and L-p planes correspond to parallel cuts of the opaque manifold for fixed values of p and p̂, respectively (blue to red shades indicate values of p and p̂ that

correspond to the ticks on their respective axes). Note that for a given p̂, L(p) is convex with the minimum p = p̂ resulting in precise and well-behaved formulations for

gradient-based optimisers.

matching requires almost twice the number of evaluations
when compared to the full-field tracking approach (1109
evaluations for each contour, vs. 1072 evaluations for tracking).
Thus, less refined representations of the ventricular surfaces
may help reduce the computational expense if needed for
clinical translation.

It is worth noting that we optimised Equations (3)
and (4) using the ADAM algorithm, because of its
direct support toward neural network optimisation.
It is possible that the use of efficient optimisers for
convex problems, such as L-BFGS (Liu and Nocedal,
1989) or even Newton’s method, may further enhance
convergence and reduce the computational effort in the
proposed formulations.

4. DISCUSSION

The two techniques proposed for parameter estimation feature
appealing properties such as low computational cost, simple
implementation, and no need for analytical derivatives of
the objective function. To achieve this, we used automatic
differentiation, already implemented in neural networks
frameworks (such as Tensorflow and PyTorch), for solving
Equations (3) and (4). This allow us to use exact gradient
information from complex AI-surrogate models without any
additional effort. Thus, we were able to assess the sensitivity
of the objective function residuals with respect to its inputs,
allowing for an efficient convex optimisation of the inputs.
Additionally, the same neural network frameworks are endowed
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FIGURE 9 | Loss function for the full-field tracking and contour matching approaches with respect to c1 and c2 in the presence (right) and absence (left) of noise in

the observations. The first and second rows present the loss function values when c1 = 3.5 kPa, c2 = 22.0 and c1 = 2.5 kPa, c2 = 10.0 are the ground truth

(Continued)
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FIGURE 9 | parameters, respectively. Surface plots in c1-c2 plane and the opaque manifolds represent the loss function value L(c1, c2). Level curves in L-c1 and

L-c2 planes correspond to parallel cuts of the opaque manifold for fixed values of c2 and c1, respectively (blue to red shades indicate values of c1 and c2 that

correspond to the ticks on their respective axes). Note that the objective functions are more sensitive to perturbations of c1 and c2 for softer materials (as highlighted

by the blue level curves, which represent lower values of c1 and c2).

TABLE 1 | Wall-clock times for parameter estimation using the proposed

strategies.

Approach Estimated parameters

p (s) c1 (s) c2 (s) c1, c2 (s)

Full-field tracking 1.0± 0.3 1.2± 0.3 1.2± 0.3 5.0± 1.6

Contour matching 6.1± 1.2 8.6± 0.8 7.7± 1.0 17.7± 1.0

The convergence criterion introduced in Equation (7) was used for all cases. The

observation data corresponds to the FE model prediction using parameters p = 0.9 kPa,

c1 = 3.5 kPa and c2 = 22.0.

with GPU-efficient implementations, accelerating the evaluation
of models by orders of magnitude with respect to a cost
equivalent CPU infrastructure.

Regarding the estimation of the intra-ventricular pressure
and constitutive parameters of the left ventricle, we conclude
that both of the proposed approaches can provide accurate
predictions of parameters, even in the presence of measurement
noise. The noise was modelled as a normal zero-mean
distribution with a standard deviation of two pixels. This
noise represented reconstruction errors of the ventricle wall
displacement (full-field tracking approach), or the ventricular
surface geometry (contour matching approach). Note that in our
analysis, the errors present no biases. If a bias were present (e.g.,
consistent segmentation errors due to mis-identification of the
structures, or assimilating experimental data with a model with
a significant modelling error), this may lead to larger estimation
errors than those reported here.

Both approaches demonstrated good identification properties
for the physiological range considered in our experiments.
Particularly, we focused on the analysis of relatively stiffer
materials (c1 > 2.0 kPa) and lower intraventricular pressures
(p = 0.9 kPa) because it present a more challenging scenario
to assess the parameter estimation task. As displacements are
smaller for lower pressures and stiffer materials, the noise and the
displacement field are within the same displacement magnitudes,
and a lower performance for the estimation is expected. However,
the results only showed this degradation under those conditions
for the full-field tracking approach, increasing its error estimate
from 0.6 to 1.8% in c1, from 1.9 to 4.6% in c2 and from 0.3 to
2.7% in p (see Figures 5, 7). The contour matching approach
only presented a slight degradation in parameter estimates
of c2 when c1 reached the upper bound of its physiological
range. Note that, after estimating the constitutive parameters,
the displacement errors between the AI-surrogate predictions
and the target observations were visually negligible when the
corresponding ventricle contours were overlaid. The case with
the largest disagreement across all simulations reported here
is shown in Figure 4 for the full-field approach with target

parameters c1 = 3.5 kPa and c2 = 10.0 (the specific sample
estimated c1 = 3.76 kPa and c2 = 7.05). In this case, the
displacements of the AI-surrogate had an error of 0.06 ± 0.02
mm with respect to the FE ground truth. In particular, when not
using information from multiple frames, the full-field tracking
approach failed to precisely identify c2 with errors reaching
16 ± 9.6%. Nonetheless, in practical applications, clinical MR
datasets often contain enough temporal resolution to perform a
multi-frame kinematic assessment.

For normal human physiological cases (diastasis pressures
of approximately 1.2 kPa), both methods present a slight
improvement in performance due to the larger displacements in
the observations (see Supplementary Figures 3, 7, 11, 15). As the
observed displacements increase, the approximation error of the
AI-surrogate to the FE model has a smaller contribution, leading
to more accurate estimates. Specifically, we can observe this for
the estimates of stiffer materials, where the larger displacements
improved the parameter identification in comparison with the
0.9 kPa pressure case.

Regarding clinical translation, this approach offers rapid
and efficient estimation of the mechanical properties using
commodity computational resources, e.g., a standard computer
with state-of-the-art GPU. The generated training datasets used
in section 3 assume realistic data constraints (i.e., observation
errors and resolution) expected in medical data. In this study,
we assumed segmentation errors of two pixels, and a temporal
resolution of 10 frames during diastole (see section 3), which
are both attainable using a 3T clinical MRI scanner. FE models
(which are used to train our AI-surrogate) have demonstrated
clinical utility (Wang et al., 2018; Hasaballa et al., 2021),
evidencing the suitability of this approach for mechanical
characterisation of the heart. Nonetheless, robust uncertainty
quantification analysis should be performed to analyse all sources
of error in the specific clinical environment. For the assessment
of mechanical properties of the ventricular wall, it is important
to quantify the uncertainty in the pressure measurements,
segmentation error, and geometric representation error. The
characterisation of such uncertainties is out of the scope of the
present work.

In terms of the number of parameters to be estimated, our
study demonstrated reasonable efficiency for the simultaneous
estimation of two parameters. Compared to the single parameter
problem, the computational time for the two parameter problem
was more than two-fold, but still presenting time ranges
compatible with clinical practice. This is due to the coupled effect
of the parameters in the model response which is a problem
shared by all parameter estimation techniques. The extension of
our technique for the simultaneous identification of additional
parameters is possible, as long as the objective function remains
strictly convex with respect to the parameters of interest.
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While the estimation approaches considered in this work
involved solving convex optimisation problems, the use of AI-
surrogates can offer advantages for non-convex problems. In
such cases, non-convex optimisation solvers, such as genetic
algorithms, may benefit from the use of AI-surrogates due to
the computationally inexpensive model evaluations. This feature
enables a more efficient exploration of the parameter space with
reduced computational intensity.

Finally, both of the proposed estimation techniques are
general, and can be translated straightforwardly to other
applications (e.g., to estimate constitutive properties of other
tissues, such as the breast, lung or liver) as long as an AI-surrogate
can be generated from the appropriate models. The full-field
tracking approach is limited to applications where material point
tracking measurements are available (e.g., using CMR tissue
tagging, or image registration techniques). On the other hand, the
contour matching approach can be applied to any applications
where the surfaces of the tissues or organs of interest can be
quantified experimentally.

5. CONCLUSIONS

This study proposed two approaches for parameter estimation
using AI-surrogates, depending on whether (i) tracking
kinematic measurements, or (ii) only surface measurements
are available. We focused our application on the estimation of
left ventricular constitutive properties and its intra-ventricular
pressure during the passive filling phase of the cardiac cycle.

We conclude that: (i) both approaches are robust with respect
to Gaussian noise when the measurement data for multiple
loading conditions were combined; and (ii) estimates of one or
two constitutive parameters could be obtained in less than 9 or
18 s, respectively. We found that the contour matching approach
was more robust toward Gaussian noise, recovering the ground
truth parameters with high accuracy even when only one loaded
configuration was available. Conversely, the full-field tracking

approach was more efficient than its counterpart by a factor of≈
4, while providing the possibility of further improving scalability
as medical imaging resolution improves.
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Electroanatomic mapping is the gold standard for the assessment of ventricular

tachycardia. Acquiring high resolution electroanatomic maps is technically challenging

and may require interpolation methods to obtain dense measurements. These methods,

however, cannot recover activation times in the entire biventricular domain. This work

investigates the use of graph convolutional neural networks to estimate biventricular

activation times from sparse measurements. Our method is trained on more than

15,000 synthetic examples of realistic ventricular depolarization patterns generated by

a computational electrophysiology model. Using geometries sampled from a statistical

shape model of biventricular anatomy, diverse wave dynamics are induced by randomly

sampling scar and border zone distributions, locations of initial activation, and tissue

conduction velocities. Once trained, the method accurately reconstructs biventricular

activation times in left-out synthetic simulations with a mean absolute error of 3.9ms ±
4.2ms at a sampling density of one measurement sample per cm2. The total activation

time is matched with a mean error of 1.4ms ± 1.4ms. A significant decrease in

errors is observed in all heart zones with an increased number of samples. Without

re-training, the network is further evaluated on two datasets: (1) an in-house dataset

comprising four ischemic porcine hearts with dense endocardial activation maps; (2)

the CRT-EPIGGY19 challenge data comprising endo- and epicardial measurements of

5 infarcted and 6 non-infarcted swines. In both setups the neural network recovers

biventricular activation times with a mean absolute error of less than 10ms even when

providing only a subset of endocardial measurements as input. Furthermore, we present

a simple approach to suggest new measurement locations in real-time based on the

estimated uncertainty of the graph network predictions. The model-guided selection

of measurement locations allows to reduce by 40% the number of measurements

required in a random sampling strategy, while achieving the same prediction error. In

all the tested scenarios, the proposed approach estimates biventricular activation times

with comparable or better performance than a personalized computational model and

significant runtime advantages.

Keywords: deep learning, graph convolutional networks, cardiac computational modeling, electroanatomic

mapping, sparse measurements
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1. INTRODUCTION

Ventricular tachycardia (VT) is a serious cardiac condition
that may lead to hemodynamic collapse and sudden cardiac
death (John et al., 2012). It is commonly observed in
patients after myocardial infarction, which exhibit heterogeneous
scar distributions. In particular, channels of surviving slow-
conductive tissue, so-called “border zone” (BZ), promote
electrical wave re-entry (Al-Khatib et al., 2018).

Catheter-based radiofrequency ablation is an established
treatment for VT, which aims at eliminating re-entrant circuits
responsible for sustaining VTs. This procedure is, however, only
successful in about 50% of infarct-related VT cases (John et al.,
2012). The efficacy of this procedure is directly linked to the
precise delineation of the arrhythmogenic substrate and the
identification of re-entry origin (John et al., 2012; Al-Khatib et al.,
2018).

Imaging modalities such as late gadolinium enhanced
magnetic resonance imaging (LGE-MRI) or computed
tomography can provide information about the extent
of the arrhythmogenic substrate. However, assessing the
electrophysiological behavior and origin of wave re-entry may
not be possible solely from images due to the inability to
relate image intensity to precise voltage and activation time
distributions. Electroanatomical mapping (EAM) is therefore
conventionally used to inspect the arrhythmogenic substrate and
to identify the origin of wave re-entry (John et al., 2012). Despite
being the gold standard, it poses practical challenges (Josephson
and Anter, 2015). For instance, persistent episodes of scar-
related VT could lead to hemodynamic collapse, which prohibits
the acquisition of high-resolution maps that are necessary to
determine the origin of wave re-entry and abnormal wave fronts
related to scar and slow-conductive channels (John et al., 2012;
Al-Khatib et al., 2018). In addition, EAM yields measurements
on the tissue surface only, thus preventing the determination
of electrical activity within the myocardium (Ashikaga et al.,
2007).

Methods to obtain high-resolution maps from sparse
measurements commonly rely on interpolation with linear
or radial basis functions. The accuracy and quality of the
interpolation method is hereby dependent on the given
EAM, as has been investigated by Sanromán-Junquera et al.
for approaches like thin plate splines and support vector
machines (Sanromán-Junquera et al., 2015). Since these methods
neglect the underlying surface geometry and uncertainties in
electrode recordings, Coveney et al. proposed a probabilistic
interpolation of atrial EAMs based on Gaussian Markov
random fields (Coveney et al., 2020). Aiming at incorporating
physical priors into the interpolation method, Costabal et
al. investigated the use of physics-informed neural networks,
which significantly outperformed linear and Gaussian process
interpolation (Sahli Costabal et al., 2020). This work was further
extended to account for the tissue anisotropy and to obtain
information of prevalent fiber directions (Grandits et al., 2021).

While these methods may provide accurate high-resolution
maps from sparse measurements, their accuracy on capturing
intramural activation times, specifically for slow conductive

border zone, has not been investigated. Hence, they focus mainly
on atrial EAM reconstruction since the measurements provide
only surface information and modeling the atrium as a triangular
mesh is a viable modeling option due to the low thickness to
diameter ratio (Sahli Costabal et al., 2020).

To obtain coarse estimates of intramural abnormalities in
VT cases, a recent study suggests simultaneous mapping of
both endocardium and epicardium (Tung et al., 2020), which
comes at the price of longer and riskier mapping procedures.
An alternative solution may be realized by computational models
of cardiac electrophysiology. By combining imaging information
and (non-)invasive measurements, such mathematical models of
the electrical wave propagation already proved to be promising
approaches to reduce uncertainties in tissue conductivity
estimates from EAMs (Wallman et al., 2014), to study VT
mechanisms (Martinez-Navarro et al., 2019), and to predict VT
ablation outcome (Cedilnik et al., 2018; Prakosa et al., 2018;
Corral-Acero et al., 2020). Critical for accurate predictions is
the selection of modeling assumptions such as the choice of
the cell model or the fiber model. In addition, the model
requires a robust and accurate personalization scheme to
estimate local tissue properties frommeasurements. For instance,
Pheiffer et al. proposed a personalization scheme of local tissue
conductivities from a left-ventricular endocardial EAM using
backpropagation of errors along the wave propagation paths and
gradient descent to tune the tissue properties (Pheiffer et al.,
2017). Even though standard personalization methods are able
to match the measured data, their accuracy is dependent on a
careful selection of the modeling parameters and the boundary
conditions, e.g., the choice of electrical propagation origin.

This work investigates a deep learning based reconstruction
of left endocardial activation maps from a set of sparse
measurements as well as the extrapolation of approximate
activation times in the biventricular myocardium. To this end,
we propose the use of a graph convolutional neural network on
a tetrahedral discretization of cardiac anatomy derived from MR
images. Graph convolutional layers leverage feature information
of vertices within local neighborhoods defined on a graph.
By stacking these convolutional layers, the network is able
to propagate information over a large receptive field. Since
no ground truth information of intramural activation times is
available, a computational model of cardiac electrophysiology
with varying physical parameters and boundary conditions is
used to provide synthetic ground truth information.

This research directly builds on our previous work (Meister
et al., 2021) with the following new contributions:

• To train the neural network, the previous work uses a synthetic
dataset with simplified and homogeneously distributed scar
and border zone. In particular, per simulation one of the 17
left ventricular AHA regions is set to be either non-conductive
or weakly conductive, which limits the generalization to the
complex distributions observed in vivo. In this work, more
complex scar and border zone geometries as well as variations
in the initial activation locations are used to better reflect
the real world. Increasing the local variations within the
ground truth activation maps helps guide the network to
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make localized predictions, thus improving the quality of
reconstructed activation times in the pre-clinical datasets.

• Evaluation of the proposed method’s ability to reconstruct
high-resolution endocardial activation maps from sparse
measurements on four porcine cases with high-resolution
electroanatomical maps.

• Evaluation of the proposed method’s ability to reconstruct
epicardial activation times on the CRT-EPIGGY19 challenge
data comprising 11 porcine cases (6 non-infarcted, 5 infarcted)
with both endocardial and epicardial measurements.

• Evaluation of the proposed method’s ability to support the
mapping procedure by suggesting new sampling locations.

The manuscript is structured as follows: Section 2 introduces the
details of our proposed pipeline, as well as the Eikonal model of
cardiac electrophysiology which was used to generate the training
and testing data. Since the computational model further acts
as a baseline method when personalized to the sparse data, a
personalization strategy is introduced in the same section. In
section 3, results on both synthetic and real-world datasets are
presented. The accuracy under various subsampling ratios is
quantified and compared against the personalized computational
model. Section 4 discusses the results and section 5 concludes
the manuscript.

2. MATERIALS AND METHODS

2.1. Graph Convolutional Estimation of
Biventricular Local Activation Times
2.1.1. Overview of Graph Convolutional Processing

Pipeline
To estimate the biventricular local activation times, this
work proposes a deep learning based pipeline (see Figure 1),
which uses as input MR images, a routinely acquired 12-lead
electrocardiogram (ECG), and a sparse measurement cloud of
left endocardial activation times. First, the biventricular cardiac
anatomy is segmented from the MR images. In this work, we
use a manual approach to capture the specific features of the
swine cardiac anatomies used for validation. Furthermore, scar
and border zone are manually annotated from the same images.
In a second step, a tetrahedral anatomical model is constructed
by adding a rule-based fiber model and by tagging different tissue
classes (Mansi et al., 2019). In addition, a set of four standard
initial activation points is added: basal and apical on the left and
right septal wall, respectively (see Figure 1).

Next, the sparse measurement point cloud is manually
registered by an electrophysiologist since the recorded catheter
locations and the anatomical model do not share a common
coordinate system. Voltage measurements are used to guide
the alignment process, because low voltage areas correlate with
scar masks derived from MR images (Nakahara et al., 2011).
Outliers in the activation timemeasurements are removed using a
threshold of 1.5 standard deviations away from the mean of local
activation times. Geometric and electrophysiological features
are extracted from the cardiac geometry and the ECG traces
(see section 2.1.3), respectively. A graph convolutional neural
network trained on synthetic data is processing the input features

to estimate the local activation times in the biventricular domain
(see section 2.1.4).

2.1.2. Definition of Graph Convolution
Graph convolutional neural networks are chosen in this work
since they are able to learn from graph structured data, i.e.,
the tetrahedral computational domain. Their usage naturally
adapts to the problem of learning the electrophysiology since
the wave propagation is heavily influenced by the structure of
the cardiac conduction system. In this work, the biventricular
heart geometry is represented by a mesh with linear tetrahedral
elements (Kayvanpour et al., 2015). More generically, the mesh
is expressed as an undirected graph G = (V , E ,X). The graph is
composed of a set of N vertices V = {v0, . . . , vN}, vertex-wise
D-dimensional feature vectors summarized in a feature matrix
X ∈ RN×D, and a set of edges E ⊆ V × V corresponding to the
edges of the tetrahedral mesh. In this work, only undirected edges
are considered. We define a vertex vi’s neighborhood N (vi) =
{vj | iff eij ∈ E} as all 1-hop connected vertices.

The proposed network uses the so-called GraphSAGE
layers, a generalized formulation of message passing graph
convolutions (Hamilton et al., 2017). Each layer l acts on
the local neighborhoods of all vertices independently, while
sharing learnable feature transformations between them. Given
the representation hli of a vertex vi at layer l, with h0i ∈ X

being the initial vertex feature, GraphSAGE first computes a
neighborhood aggregate.

h
(l+1)
N (vi)

= aggr(hlj, j ∈ N (vi)) (1)

with “aggr” denoting any permutation-invariant aggregation
function such as mean, max, and sum. In this work mean
aggregation is used. Each vertex representation is then updated
according to

h
(l+1)
i = σ (W · (hli ‖ h

(l+1)
N (vi)

)) (2)

where σ is a non-linear activation function, W a learnable
weight matrix, which is shared across all vertices, and ‖ denotes
the concatenation of vi’s features hli and the neighborhood

aggregate h(l+1)
N (vi)

.

2.1.3. Feature Description
The feature matrix X comprises per vertex a total of 24
geometric and electrophysiological features (see Table 1). A
primary geometric feature is a descriptor of the vertex position
within the mesh. If 3D cartesian coordinates are used, the
training dataset will require significant augmentation to cover
the space of all possible affine transformations and make the
network generalize to arbitrarily oriented hearts. Therefore, the
vertex position is described in a local coordinate system that is
consistent between different heart geometries, i.e., a cylindrical
coordinate system defined with respect to the left ventricular
axis (see Figure 2A). In addition to angle, radius, and height
features, [0, 1]-normalized fields describing the relative position
between apex and base, left and right ventricle, and endocardium
and epicardium are added (see Figure 2B). Furthermore, three
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FIGURE 1 | Illustration of the proposed deep learning based pipeline to estimate biventricular local activation times. In a first step the cardiac anatomy including scar

(red area) and border zone distribution (blue area) is segmented from MR images and discretized by a tetrahedral mesh. The sparse measurement cloud of

endocardial activation times (colored spheres) is manually registered and mapped to the mesh. A graph convolutional neural network is using the mesh and

vertex-wise features to estimate the local activation times in the entire biventricular domain.

TABLE 1 | An overview of all 24 geometric and electrophysiological features.

Feature ID Feature name

Geometric features

1 Angle

2 Radius

3 Height

4 Relative position: apex to base

5 Relative position: left to right

6 Relative position: endocardium to epicardium

7 Tissue health: 1 = healthy tissue, 0 = border zone

8 Categorical feature: 1 = Left endocardium, 0 =
otherwise

9 Categorical feature: 1 = Right endocardium, 0 =
otherwise

Electrophysiological features

10 EAM measurement

11 QRS duration

12 Electrical axis

13-24 Vertical positivities: Relative amplitude for each lead

of the 12-lead ECG

categorical features are added, which prescribe a value of 1 to
vertices belonging to a specific tissue class and 0 otherwise. Two
categorical features capture vertices belonging to the left or right
endocardium, respectively (see Figure 2C). The third feature
takes the value 1 if the vertex is part of healthy tissue and 0 if it is
part of border zone. Vertices belonging to scar tissue are removed
as we consider them as not depolarizing.

The main electrophysiological features are the sparse
endocardial measurements. A default value of –1 is prescribed
for all vertices that do not have any measurements available
(see Figure 2D). Additionally, features are extracted from the
12-lead ECG traces. These features are stored per vertex since
the network is making individual predictions for all vertices,
while sharing the network parameters for all predictions. This
work uses the QRS duration, the electrical axis, and 12 features
describing the positiveness of the QRS complex amplitude per
ECG lead in percent (see Figure 2E). All features except the
endocardial measurements are normalized to the [0, 1]-interval

using the bounds of the training data. To consistently normalize
the ground truth and endocardial measurements, we normalize
the sparse measurements using the training data bounds of the
target activation times. At test time, the training bounds are used
to normalize the input features.

2.1.4. Graph Convolutional Network Architecture
The proposed neural network builds upon a well-established
architecture for deep learning based point cloud processing,
called PointNet (Qi et al., 2017). The neural network is processing
all points of the input mesh independently while sharing the
learnable parameters. The PointNet architecture comprises a
local feature extractor, a global feature extractor, and a point-
wise prediction network. The structural transformer layers in the
local feature extractor are replaced by a series of GraphSAGE
layers (see section 2.1.2) to allow the exchange of information
over neighborhoods of increasing size via message passing. Each
vertex of the mesh may require information from different
receptive fields, e.g., a vertex on the endocardium may have a
measurement point in the direct neighborhood while a vertex on
the epicardium requires information from multiple hops away.
To enable the network to learn from different receptive fields,
the output of each layer of the local feature extractor as well as
all input features are concatenated per vertex to form a large
local feature matrix. Each row equals the local feature vector of
a specific vertex in the mesh. A series of fully connected layers
with leaky rectified linear activation function and global max
pooling is applied to extract a global feature vector per mesh.
The global features are appended to the local feature matrix and
further processed by fully connected layers to estimate the local
activation time for each vertex. An illustration of our adapted
architecture can be seen in Figure 3.

2.1.5. Implementation
The proposed architecture is implemented using PyTorch
(version 1.8) and PyTorch Geometric (version 1.6.3) (Fey and
Lenssen, 2019; Paszke et al., 2019). The number of layers as well as
their sizes are chosen empirically using a small subset of training
examples and using the PointNet architecture details as guidance
(Qi et al., 2017). For the local feature extractor we choose 20
GraphSAGE layers, each with 32 units and leaky rectified linear
activation. No improvement in performance has been observed
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FIGURE 2 | Illustration of the incorporated vertex-wise features: (A) Positional encoding of vertex positions in a cylindrical coordinate system. (B) Additional relative

positional encodings. (C) Categorical features denoting vertices belonging to the left or right endocardium (pink, orange), scar (red), or border zone (blue). (D) The

projected electroanatomical measurements. (E) Fourteen features extracted from the 12-lead ECG traces.

FIGURE 3 | Illustration of the proposed graph convolutional network architecture. Input is a tetrahedral mesh representing the biventricular anatomy. Per vertex, 24

geometric and electrophysiological features are extracted. First, a series of 20 GraphSAGE convolutional layers with 32 units and leaky rectified linear activation are

applied to extract local features over an increasing receptive field. The output of each layer as well the input features are concatenated. The concatenated feature

vector is further processed by a global feature extractor, which applies three fully connected layers of increasing size and a final global max pooling. The pooled feature

vector is appended to the concatenated feature vector. Local activation times in the entire biventricular geometry are estimated by processing the combined feature

vectors with three non-linear fully connected layers and a final linear transformation.
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when using more than 20 graph convolutional layers. For the
global feature extractor we select three fully connected layers with
256, 512, and 1,024 units and leaky rectified linear activation.
The final prediction network comprises three fully connected
layers (512, 256, and 128 units, respectively) with leaky rectified
linear activation and a final fully connected layer with one linear
unit. The network is trained in a multi-gpu setup comprising 8
NVIDIA Tesla V100 graphics cards for 2,000 epochs. The Adam
optimizer (Kingma and Ba, 2014) with default parameters and an
initial learning rate of 5×10−4 is chosen to optimize the network
parameters. To stabilize the training, the learning rate is reduced
by 20% every 25 epochs. For the loss function we choose

L = LLAT + LTAT (3)

where LLAT is the weighted mean squared error loss

LLAT =
1

N

∑

i

αi(yi − ŷi)
2 (4)

with N denoting the number of vertices with ground truth local
activation time yi, and ŷi the predicted activation time. αi is a
weighting factor, which we set to two for vertices belonging to
the left endocardium to put more emphasis on making accurate
predictions in this region. A weighting of αi=1 is used for
all other vertices. To guide the network to match the total
activation time (TAT), we apply an additional regularization LTAT
defined by

LTAT = ((max Ŷ −min Ŷ)− (maxY −minY))2 (5)

with Y the set of ground truth activation times and Ŷ the
set of predicted activation times. Since the network parameters
are shared between the predictions for all vertices, one cannot
guarantee that the trained graph convolutional network is
able to match the local activation times in the vertices with
measurements. To emphasize a correct fit in the measurements,
a rescaling is applied to the trained network as a postprocessing
step.We aim tomatch the range of activation timemeasurements
on the left endocardium. Given the set of measurements A

and the predictions Â in these vertices we scale the prediction
according to,

Ŷ
∗ = (Ŷ − (min Â−minA)) ·

(maxA−minA)

(max Â−min Â)
(6)

2.2. Personalized Graph-Based
Computational Model of Cardiac
Electrophysiology
Since ground truth intramural activation times are commonly
not available from in-vivo interventions, this work relies
on a synthetic dataset generated by a fast graph-based
electrophysiological model (Pheiffer et al., 2017). The
physiological priors of the cardiac anatomy are expected to
be known. For instance, an anatomical model with a rule-based
fiber model and a pre-defined set of initial activation locations is
assumed to be available (see section 2.1.1 for comparison). The

local activation time yi for every vertex vi of the tetrahedral mesh
representing the cardiac anatomy is estimated by computing
the shortest path to a set of activation points via the Dijkstra
algorithm. To incorporate tissue anisotropy, generalized edge
weights considering the fiber direction are computed. For an
edge between vertices vi and vj, the generalized edge weight wij is
calculated as

wij = lij/cij (7)

with the edge conduction velocity cij in mm/s that is computed
by a linear interpolation of the conduction velocities at vertex vi
and vj. The effective edge length lij is computed as

lij =
√

(EeTijDEeij) (8)

where Eeij is the edge vector between the two vertices. The

anisotropy tensorD is computed from the fiber direction Efij along
the edge and anisotropy ratio r according to

D = (1− r)EfijEf Tij + rI (9)

where I is the identity matrix. In this work, an anisotropy ratio r
of 0.3 is used and fibers are modeled by a rule-based fiber model
(Kayvanpour et al., 2015; Mansi et al., 2019).

For a specific path connecting an initial activation point vinit
to a vertex vi with measurements, the activation time at vi can be
expressed by

ŷi = tinit +
∑

k

wk (10)

where tinit denotes the time when the depolarization starts at
vinit and the set {w1,...,K} represents the generalized edge weights
along this path. In a second step, intracellular transmembrane
potentials are approximated using a rule-based approach
(Zettinig et al., 2014). For a given time t, the intracellular
potential φi of a vertex vi is computed from its local activation
time ŷi according to

φi(ŷi, t) =

{

−70mV, if ŷi > t.

+30mV, if ŷi ≤ t.
(11)

Following the description in Zettinig et al. (2014) and Mansi
et al. (2019), vertex-wise extracellular transmembrane potentials
are computed, which are then mapped to a triangulation of the
torso with ECG electrode positions annotated (see Figure 4 for
reference). From the mapped body surface potentials a 12-lead
ECG is calculated.

2.2.1. Model Personalization Description
The electrophysiological model is also used as a baseline in this
study. To this end, we require a personalization scheme that finds
the best set of edge weights that explains the data, i.e., the sparse
electroanatomical map as well as the routinely acquired 12-lead
ECG. This work leverages the approach proposed by Pheiffer
et al. (2017). The first step comprises a global optimization of
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FIGURE 4 | Visualization of the swine torso template with ECG lead placement (green markers), which were used for the computation of synthetic ECGs.

homogeneous tissue conduction velocities. The cardiac anatomy
is hereby divided into five tissue classes: the myocardium, the
left endocardial Purkinje system, the right endocardial Purkinje
system, border zone, and scar. The left and right endocardial
Purkinje system comprises all vertices within a 3 mm thick
layer below the respective surface. Vertices representing scar and
border zone are annotated from theMR image segmentations. All
other vertices are considered to belong to the myocardium. Scar
is chosen to be non-conductive (0mm/s). A conduction velocity
for each of the other four tissue classes is optimized to match
the ECG traces, specifically the QRS duration and electrical axis,
by using the BOBYQA algorithm (Powell, 2009). To reduce the
number of parameters to be estimated, we constrain the border
zone conductivity to be 50% of the myocardial conductivity.

A second step refines the edge weights to match the sparse
measurements (Pheiffer et al., 2017). The objective function in
this case is the mean squared error loss over the M vertices
with measurements

LMSE =
1

M

∑

i

(yi − ŷi)
2 (12)

where yi denotes the activation time measurement for vertex
vi. Similarly, ŷi corresponds to the simulated activation time at
vertex vi. The estimated activation time for any vertex in the
tetrahedral mesh is dependent on the edge weights along the
shortest path to the associated activation point and the initial
activation time (see Equation 10). This setting is similar to neural
networks where the output is dependent on the parameters of
the hidden layers and the input to it. Backpropagation and
gradient descent is therefore used to fine-tune the edge weights
of paths connecting the vertices with measurements with their
shortest-path-connected activation points.

The gradient descent update rule of an edge weight writes

wt+1
k

= wt
k − γ g (13)

where t denotes the current iteration number, γ the step size,
and g the gradient. We seek gradients g = ∂L

∂wk
that minimize

Equation 12. The backpropagation algorithm yields gradients
along the entire path by recursively applying the chain rule from
the end to the start of the path. This can be formulated as

∂L

∂wk
=

∂L

∂ ŷi

∂ ŷi

∂wk
(14)

The gradient at the path end can be derived from the
Equation (12) by

∂L

∂ ŷi
= −

2

M
(yi − ŷi) (15)

and the gradient of the activation time with respect to any edge
weight from Equation (10) by

∂ ŷi

∂wk
= 1 (16)

Since there is an optimization path associated with each
measurement point, an edge might be traversed several times.
We accumulate gradients before updating the weights with
Equation (13).

3. RESULTS

3.1. Data Generation
The first cohort comprises 15 swine datasets. Each dataset
consists of MR images, 12-lead ECG traces (CardioLab, GE
Healthcare) and a left endocardial contact map (Ensite Velocity
System, St. Jude Medical). The EAM was recorded with a
standard irrigated radiofrequency ablation catheter (FlexAbility,
Abbott) and captured the intrinsic cardiac activation after left
bundle branch block (LBBB) induction. Due to the limited
amount of data and the absence of ground truth information of
intramural local activation times, the computational model from
section 2.2 was incorporated to build a synthetic training set.

First, 11 of the 15 swine datasets with the fewest EAM
measurements were selected. Segmentations of the cardiac
biventricular anatomy were extracted from theMR images. These
segmentations were then used to construct a statistical shape
model. To this end, the triangular segmentations were rigidly
aligned using point correspondences. The principal component
analysis was applied to extract a mean model and the modes
of variation. In total, 200 geometries were sampled from the
statistical shape model using only the five most informative
eigenvectors explaining more than 80% of the variance. Twenty
models were discarded due to implausible geometries. The
“Computational Geometric Algorithms Library” (CGAL) was
used to create tetrahedral meshes with a mean edge length of
approximately 2.5mm (The CGAL Project, 2021). To simulate
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synthetic ECGs, a generic swine torso with standard ECG
placement (see Figure 4 for reference) was first manually aligned
to match the MR images in one case and then automatically
registered to the other anatomical models using rigid registration.

For each of the 180 synthetic geometries, a total of 100
simulations were computed by varying the initial activation,
the tissue conduction velocities, and the scar and border
zone distribution. The first 50 simulations per geometry were
computed using a set of four activation points located on
the septum: left and right, basal and apical (see Figure 1 for
reference). The other 50 simulations were generated using
three randomly placed activation points on the left ventricular
endocardium. To model the arrhythmogenic substrate, we
randomly select for each simulation the number of scars (up to
three). A random point on the left ventricle is then iteratively
selected. Per point we randomly select two distance thresholds.
The first threshold, ranging between 5 and 12.5 mm, will be
used to denote all vertices within the given radius to be scar. The
second threshold, a 3–10 mmmargin around the scar, will define
the border zone. To model more complex scar distributions with
channels between them, the second or third scar will be placed
within a 25 mm margin around the current scar distribution.
Furthermore, vertices that were already assigned to border zone
or scar will not be overwritten.

The conduction velocities were varied under the assumption
of homogeneous conduction within five tissue classes. Scar was
modeled with 0mm/s. The general myocardium was modeled
with a conduction velocity of cMyo ∈ [250mm/s, 750mm/s]. The
conduction velocity in the border zone was randomly varied to be
cBZ ∈[100mm/s, cMyo]. Furthermore, the left and right Purkinje
systems (cLV & cRV), each modeled by a 3mm thick endocardial
layer, have had conduction velocities that varied between 1,000
and 2,500 mm/s.

From the 18,000 simulations, we discarded all simulations
with a simulated QRS duration greater than 200ms, amounting
to approximately 10% of all simulations, to stay within
physiologically plausible ranges. The remaining simulations were
randomly split by geometry into a training set (90%), a validation
set (5%), and a test set (5%). In addition, the training dataset
was augmented in each epoch by randomly subsampling the
left endocardial ground truth using a random subsampling ratio
between 10 and 100%.

3.2. Reconstruction of Biventricular
Activation Times
After fitting the network to the training set, we first evaluated
whether our proposed method can reconstruct the local
biventricular activation times under unseen conditions. To this
end, the network was applied to the 5% left out simulations from
the synthetic database, which comprises 9 unseen geometries
yielding a total of 870 unseen depolarization patterns. In
particular, we subsampled the endocardial ground truth at
various ratios (1, 2, 5, 10, 15, 20, and 25%) and had the network
reconstruct the local activation times in the entire biventricular
domain.We chose the mean absolute error (L1-error) to quantify
the difference in local activation times for different tissue classes:

the biventricular heart, the left endocardium, the left epicardium,
and the border zone. In addition, we quantified the total
activation time error, approximated by the range of the predicted
or ground truth activation times.

The results as seen in Table 2 suggest that the network is
able to leverage the endocardial information since the errors are
decreasing for all tissue types when increasing the number of
provided samples. Furthermore, the network is able to accurately
reconstruct endocardial activation maps. Even in a setting of
only 0.4 samples per cm2 (equal to a subsampling ratio of 2%
and less than observed during training) the network reconstructs
the complete endocardial ground truth with a mean absolute
error of less than 5ms. The mean absolute error rapidly drops
to approximately 1ms when increasing the number of samples
beyond 2.1 samples/cm2. Similarly, we observe that the network
is able to match the QRS duration effectively. Moreover, a
significant decrease of the mean absolute errors for the border
zone tissue is observed with an increased number of provided
endocardial samples. This suggests that the network is able
to infer to some extent the conductive property of the slow-
conductive tissue, which may help in reducing ambiguities in the
depolarization pattern.

3.3. Reconstruction of High-Resolution
Endocardial Maps From Sparse
Measurements
In a second experiment the same network trained on the
synthetic dataset is applied to the four swine datasets that were
not used to construct the statistical shape model. For each of
the four cases, scar and border zone were segmented from the
MR images. The associated high-resolution electroanatomical
map was manually registered by an electrophysiologist since the
recorded catheter positions and the anatomical model do not
share a common coordinate system. The resulting measurements
were then mapped to all vertices on the endocardial surface
of the tetrahedral meshes using nearest neighbor projection.
The projected measurements were then randomly subsampled
with the following ratios: 0.2, 0.4, 1.0, 2.1, 3.3, 4.3, 5.5, and
6.5 samples/cm2. The same samples were provided as input to
three different methods for reconstructing the full endocardial
measurement map: the graph convolutional neural network, the
computational model, and a naive nearest neighbor projection.
In the latter case, the raw EAM was first filtered to contain only
the data points that would be projected to the subsampled points.
Then, the reduced point cloud was again mapped to all vertices
of the endocardial surface. The three methods were compared
in terms of their mean absolute errors to reconstruct the ground
truth high-resolution activation map.

As can be seen in Figure 5, both the graph convolutional
network and the personalized computational model are
producing significantly lower mean absolute errors for very
low sampling ratios (<2.1 samples/cm2) compared to the
projection method. All three methods improve substantially
with increased sampling ratios. For larger sampling ratios it is
expected that the projection method is outperforming the other
two methods since the nearest neighbor projection may assign
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TABLE 2 | Mean absolute errors (± the standard deviation) in ms between the prediction and the synthetic ground truth activation time for different tissue types as well as

the total activation time (TAT) at different subsampling ratios.

Subsampling ratio 1% 2% 5% 10% 15% 20% 25%

∅ Samples / cm2 0.2 0.4 1.0 2.1 3.3 4.3 5.5

TAT in ms 3.3 ± 3.7 2.1 ± 2.2 1.4 ± 1.4 1.2 ± 1.1 1.1 ± 1.2 1.1 ± 1.2 1.0 ± 1.1

Whole heart in ms 7.6 ± 7.4 5.7 ± 5.9 3.9 ± 4.2 3.3 ± 3.7 3.2 ± 3.7 3.1 ± 3.6 3.1 ± 3.6

LV Endo. in ms 7.3 ± 7.4 4.7 ± 5.4 2.4 ± 2.9 1.5 ± 1.9 1.3 ± 1.7 1.1 ± 1.4 1.0 ± 1.2

LV Epi. in ms 8.8 ± 8.2 6.7 ± 6.5 4.5 ± 4.5 3.9 ± 3.9 3.7 ± 3.8 3.7 ± 3.7 3.6 ± 3.6

Border zone in ms 9.4 ± 8.8 7.4 ± 7.3 5.3 ± 5.6 4.3 ± 4.6 4.0 ± 4.3 3.9 ± 4.2 3.7 ± 4.1

FIGURE 5 | Mean absolute error for different subsampling ratios on our in-house cohort comprising four swine datasets with high-resolution endocardial EAMs.

Comparison of the graph convolutional network (GCN), the personalized computational model (DEP), and a naive nearest neighbor projection (NN). The red bar

denotes the mean, the black bar denotes the 15–95 percentiles.

the same raw measurement point to multiple vertices on the
endocardial surface, thus increasing the chances that a majority
of the raw measurement points are used. When qualitatively
comparing the results (see Figure 6), it can be observed that
the computational model is producing a smooth activation map
adherent to the modeling priors and moderately affected by the
sampling points. The nearest neighbor projection is producing
very patchy patterns at low sampling ratios and quickly recovers
the ground truth with increased number of samples. In contrast,
our proposed method is delivering a good compromise between
fine-grained details and coarse-grained interpolation. It is worth
noting that when providing very few endocardial samples
(0.2 samples/cm2) the network is predicting activation times
similar to the computational modeling result, suggesting that the
proposed method was able to learn a set of modeling priors from
the synthetic training set. However, the method is not forced to
adhere to the modeling priors of the computational model, thus
it is able to deviate from the position of earliest activation. For
instance, in Figure 6 one can see that the earliest activation when
providing 0.2 samples/cm2 is located more anterior compared
to the personalized computational model. An additional early
activation zone can be recovered in the mid of the anterior wall
when providing more samples.

In addition to the comparison to the measured data,
synthetic 12-lead ECGs were computed from the graph

convolutional network predictions by calculating intra- and
extracellular potentials as described in section 2.2. The
resulting traces were compared against the ground truth ECGs.
Overall, the signal positivity was matched in the majority
of the limb leads. We did, however, observe inconsistencies
when comparing relative amplitudes (see Figure 7 for an
example). The highest discrepancies were always found in
the precordial leads. In particular, inconsistent R/S ratios
were observed.

3.4. Reconstruction of Epicardial Activation
Times From Endocardial Measurements
To evaluate the network performance for predictions of
activation times beyond the left endocardium, we applied the
network without retraining to the CRT-EPIGGY19 challenge
data (Camara, 2019). The dataset comprised eleven swine
datasets (four training cases and seven testing cases), for which
both endocardial and epicardial electroanatomical mapping has
been performed with intrinsic activation after LBBB induction
as well as after cardiac resynchronization therapy (CRT).
Furthermore, information of the scar extent based on the 17
segment LV model as well as its transmurality was provided.
Additional details of the data have been described in Soto Iglesias
et al. (2017). For this experiment, we used the endocardial
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FIGURE 6 | Illustration of the prediction results for the graph convolutional neural network (GCN), the personalized computational model (DEP), and the nearest

neighbor projection method (NN) for different sampling ratios. Provided samples are highlighted by pink spheres.

map with intrinsic activation at different subsampling rates.
We considered the full endocardial activation map and the
epicardial one as the ground truth. To be consistent with the
mesh resolution of the training geometries, all tetrahedral meshes
provided by the challenge organizers were resampled for an
average edge length of 2.5mm using the CGAL library (The
CGAL Project, 2021). Since no ECG traces were provided as
part of the challenge, we generated synthetic ECG traces using
the following approach. First, the previously used porcine torso
(see Figure 4) was rigidly aligned to the tetrahedral meshes by
establishing point correspondences. Next, intra- and extracellular
potentials were computed from the ground truth activation times
as described in section 2.2. This corresponds to the estimated
electrical activity during the QRS interval. Synthetic 12-lead
ECG traces were then computed from the potentials using
the boundary element method as described in Zettinig et al.
(2014).

We compare the network to the electrophysiological model
personalized to the same subsampled data as done in the previous
section, ranging from 1 to 100% of the endocardial samples
(equal to 0.2–21.8 samples/cm2). As illustrated in Figure 8A,
both the neural network and the personalized computational
model are able to reconstruct the entire endocardial map

reliably. The neural network is improving more with increased
number of endocardial samples and is able to achieve lower
errors at sampling ratios of 16.3 samples/cm2 and more.
When evaluating the performance on the left epicardium (see
Figure 8B), both methods produced significantly larger errors
with the neural network outperforming the computational
model. We observed no significant improvement with increased
number of endocardial samples. To measure the overall fit of the
prediction to the ground truth measurements (endocardial and
epicardial), we follow the approach by Cedilnik and Sermesant
(2019) and compute the average over case-wise root median
squared errors (RMSE) on the training and test set, respectively.
Errors between 5.6 and 7.8 ms weremeasured for the network for
different sampling ratios, with 6.6–9.3 ms for the personalized
computational model (see Table 3). Cedilnik et al. reported
on the training set a mean RMSE between 9 and 17 ms
depending on the personalization scheme of an Eikonal model
to both endocardial and epicardial measurements (Cedilnik and
Sermesant, 2019). Furthermore, when comparing qualitatively
the epicardial ground truth to the solutions provided by the
two methods (see Figure 9), the two methods provided very
similar wave propagations. They were, however, only coarsely
approximating the measured data.
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FIGURE 7 | Visual comparison of the ground truth 12-lead ECG (black) taken

from one case of the in-house dataset and the synthetic ECG (blue) simulated

from the graph convolutional neural network prediction given the full

electroanatomical map. Please note that lead I is missing because of a

hardware failure.

3.5. Ablation Study on ECG Features
The preceding experiments leverage ECG information in
addition to the measured activation times to estimate
biventricular activation maps. In particular, 14 surrogate
metrics derived from 12-lead ECG traces (see Table 1) are used
as input features to the graph convolutional neural network.
This work relies on surrogate metrics since ECG traces may not
be present as a digital recording, which would allow automatic
feature extraction. Furthermore, ECG traces often exhibit
high frequency noise, which could pollute ECG-based features
provided as input to the network. The metrics proposed in
this work are expected to be less affected by this kind of noise.
Nonetheless, it is important that the model learns the relative
importance of all provided input features, not relying solely
on ECG information. To study the impact of the ECG features
on the prediction accuracy, we performed an ablation study.
To this end, we trained four additional graph convolutional
networks on the same data split as described in section 3.1
and without changes to the hyperparameters (see section 2.1.5).
While all networks used the same endocardial measurements and
geometry features as input, the ECG information was provided
in four different ways: no ECG information, QRS duration
only, QRS duration with electrical axis, and QRS duration with
vertical positivities.

All networks were evaluated on the in-house dataset as
described in section 3.3 and compared against the graph network
using the original input features. The largest errors were observed
when no ECG information was provided, suggesting that ECG
information contributes significantly to the reconstruction of
the activation map (see Figure 10). The results further show
that the QRS duration is the most important ECG feature since
its addition leads to comparable performance to the original
model. Further addition of electrical axis or vertical positivity
leads to improvement in the prediction accuracy only in some
of the experiments. This seems to suggest that those features
have the potential to contribute to more accurate estimation of
the activation times, but their correlation to the ground truth is
comparatively less strong than that of other features.

3.6. Active Suggestion of New Sampling
Locations
The previous experiment demonstrates that ECG information
is important for the estimation of activation times. Compared
to the steep error reduction with an increase in provided
measurements, the small differences between the networks with
different ECG features confirm that the method prioritizes
information from the measurements. We hypothesize that
targeted selection of the measurement locations could boost the
performance compared to randomized sampling. To this end, we
run an experiment in which new sampling locations are suggested
based on the intrinsic uncertainty, measured by the disagreement
between the predictions of an ensemble of neural networks, as
successfully demonstrated by Sahli Costabal et al. (2020). While
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FIGURE 8 | Mean absolute error distributions (mean: red; 15–95 percentile: black) on the left ventricular endocardium (A) and the epicardium (B) of the graph

convolutional predictions on cohort #2 comprising eleven swine datasets with high-resolution endocardial EAMs.

TABLE 3 | Comparison of the proposed neural network (GCN) and personalized

computational model (DEP) on the training and the test cases of the

CRT-EPIGGY19 challenge.

Data split Training (4 pigs) Testing (7 pigs)

∅ Samples / cm2 6.5 16.3 21.8 6.5 16.3 21.8

GCN (Mean RMSE in ms) 6.7 6.2 5.6 7.8 7.3 6.7

DEP (Mean RMSE in ms) 6.8 6.6 6.6 9.3 8.7 8.7

The mean over per-case root median squared errors (RMSE) is presented for different

sampling ratios. RMSE is computed over the vertices with endocardial or epicardial

measurements.

Costabal et al. trained multiple networks with different initial
conditions and had to repeatedly fine-tune the models with
each new sample collection, this work relies on an ensemble of
pre-trained networks comprising the four graph convolutional
networks from the previous section. Since these models are able
to incorporate the given measurements without a re-training
step, new samples can be suggested in real-time.

To sequentially propose new sampling locations, the following
approach was performed. Starting off with a set of randomly
sampled positions, the feature matrices for each network were
assembled. Next, each network estimated local activation times.
The mean activation map of the four networks as well as vertex-
wise standard deviations were computed. Since the standard
deviation represents the disagreement between the predictions,
the proposal of a new sampling location was chosen to be the
vertex location with highest standard deviation. A constraint was
added such that each vertex can only be selected once.

To demonstrate that such relatively simple uncertainty
estimation is of value, the following scenario was considered.
First, the endocardia of the test datasets from the second
experiment (see section 3.3) were split into septal regions and
free wall regions by applying a vertex-wise threshold of ±90
degree to the angular feature of the local coordinate system. Next,
10% of the free wall vertices were randomly chosen as an initial
mapping. The active sampling strategy was then applied only
to the septal region. This setup was chosen to study whether
new sampling locations will correlate with the presence of scar
and border zone, which is located on the septum in all cases of
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the in-house dataset. For each new sample, the mean activation
map was computed from the model ensemble, and the mean
absolute error with respect to the ground truth was evaluated.

FIGURE 9 | Illustration of the prediction results for the pig “Neus” from the

CRT-EPIGGY19 challenge when providing 100% of the endocardial

measurements to the graph convolutional neural network (GCN) and the

personalized computational model (DEP). The neural network is able to retain

the information on the endocardium and provide a coarse approximation of the

left epicardial activation time. The computational model fails to accurately

match the endocardial information and over-estimates the late activation on

the left epicardium.

For comparison, a random sampling strategy was applied to three
alternative approaches: the graph convolutional network with all
features, the personalized computational model, and the nearest
neighbor projection.

The results as presented in Table 4 show that the active
sampling strategy is producing the lowest error for all
subsampling ratios. In particular for very low sampling
densities, high differences between the active ensemble and the
personalized model as well as the nearest neighbor projection
were found. For instance, at 1% the GCN with active sampling
agreed with the ground truth with a mean absolute error of
8.5ms ± 7.9ms. The personalized computational model and the
nearest neighbor projection recovered the ground truth with 9.5
± 8.9ms and 14.9 ± 11.4ms, respectively. Using the random
sampling strategy, all methods achieved the lowest errors at a
sampling density of 10%. In contrast, the ensemble-based active
sampling strategy can achieve the same error with significantly
less measurements. For the GCN a reduction by 40% of septal
samples was observed, while the reduction for the nearest
neighbor method measured 20%. At 10% of septal samples,
the estimated activation maps of the active sampling strategy
shows a qualitatively better agreement with the ground truth
compared to the random sampling result (see Figure 11). For
instance, the mid-septal location of earliest activation area found
in the ground truth is fully recovered by the active sampling,
while the random sampling leads to multiple areas of earliest
activation. Moreover, deceleration zones within fast conductive
early activated areas, potentially associated with presence of
border zone, are fully recovered with the proposed sampling
strategy. A visual comparison of the sampling locations and of the
segmented border zone indeed shows higher sampling densities
in this area. The results are therefore particularly encouraging
since the proposed sampling strategy samples in areas that are
known for their uncertain tissue characteristics.

FIGURE 10 | Illustration of the results of the ablation study applied to the in-house dataset. Mean absolute endocardial reconstruction errors are compared for

different graph convolutional networks trained on subsets of all features (ALL): no ECG features (NoECG), only QRS duration (QRS), QRS duration with vertical

positivities (QRS + Vert), and QRS duration with electrical axis (QRS + EA). The results suggest that ECG information, particularly the QRS duration, is necessary for

the accurate estimation of activation maps. The small differences between the networks with ECG features suggest that the networks do not rely solely on ECG

features to estimate the endocardial activation maps.

Frontiers in Physiology | www.frontiersin.org 13 October 2021 | Volume 12 | Article 694869304

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Meister et al. GCN Extrapolation of Ventricular Activation

TABLE 4 | Mean absolute errors (± the standard deviation) in ms between predicted and ground truth activation times at different subsampling ratios of the septal ground

truth.

Subsampling ratio (%) GCN-active GCN-random DEP-random NN-random

1 8.5 ± 7.9 8.7 ± 8.1 9.5 ± 8.9 14.9 ± 11.4

2 8.3 ± 8.0 8.4 ± 8.2 9.1 ± 8.6 13.7 ± 11.5

3 8.0 ± 7.9 8.3 ± 8.3 9.3 ± 8.4 9.7 ± 10.1

4 7.8 ± 7.9 8.0 ± 8.0 9.0 ± 8.3 9.3 ± 9.5

5 7.5 ± 7.7 7.9 ± 8.0 8.7 ± 8.1 9.3 ± 9.6

6 7.4 ± 7.6 7.7 ± 7.7 8.6 ± 8.1 8.7 ± 9.3

7 7.2 ± 7.5 7.6 ± 7.7 8.5 ± 8.1 8.1 ± 9.4

8 7.1 ± 7.4 7.7 ± 7.7 8.4 ± 8.0 7.4 ± 9.4

9 7.0 ± 7.4 7.5 ± 7.6 8.3 ± 7.9 7.2 ± 9.4

10 7.0 ± 7.4 7.4 ± 7.5 8.2 ± 7.8 7.1 ± 9.4

Active sampling based on an ensemble of four GCNs (GCN-active) is compared against three methods with random sampling: the graph convolutional network (GCN-random), the

personalized computational model (DEP-random), and the nearest neighbor projection (NN-random).

FIGURE 11 | Illustration of the prediction results for the graph convolutional

neural network using the proposed active sampling strategy and the random

sampling strategy after selecting 10% of septal vertices. Provided samples are

highlighted by black dots. The segmented border zone mask is overlayed in

pink and located antero-septal in this swine model of myocardial infarction.

Compared to the random sampling strategy, the active sampling approach

better captures important details of the ground truth, such as the location of

earliest activation and deceleration zones associated with the slow conductive

border zone.

4. DISCUSSION

This study investigates the data-driven interpolation and
extrapolation of sparsely measured left endocardial activation
times. A system, capable of estimating the electrical activity
from sparse measurements, ECG information, and imaging data,
could impact computational cardiology in numerous ways. For
instance, the procedural time of the mapping procedure could
be significantly reduced since less samples would need to be
acquired. Other applications include the suggestion of valuable
sampling locations. Paving the way toward this goal, this work
relies on a graph convolutional neural network that enables

learning to encode topological structure and local features as
well as the propagation of information on graph-structured
data. Its usage naturally adapts to cardiac electrophysiology,
where the electrical wave propagation is directly linked to the
structure of the cardiac conduction system, for which graph-
based representations are suitable. A synthetic dataset to train
the network has been generated by a computational model
to overcome the absence of ground truth activation times in
the entire biventricular geometry. A statistical shape model as
well as randomized scar and border zone distributions, varying
conduction velocities, and different initial activation locations
have been used to induce variability in the simulations.

Without re-training, the proposed approach was evaluated
on unseen synthetic simulations and two real world datasets.
In all setups, the graph convolutional neural network was able
to accurately reconstruct the endocardial activation maps even
when sparse data points were provided. Moreover, decreasing
errors were observed with an increase in the number of
provided measurement samples, suggesting that the network
can incorporate the measured information. Compared to the
qualitative results from our previous work (Meister et al.,
2021), we observed significantly better agreement with the
ground truth activation maps, which we attributed to a better
training dataset. In particular, the interpolation of the data
appeared to be physically plausible, while the previous work
incorporated the measured data as local discontinuities in the
predicted activation map. The resulting activation maps were
patchy and high accuracy was only achieved in vertices with
provided measurements.

Since measuring intramural activation times is commonly
infeasible in patients, the method was evaluated only on the left
out synthetic data. Here, a good agreement between the ground
truth and the prediction was observed. The errors decreased the
more endocardial samples were provided to the network. Since
the border zone conduction velocity was independently varied
and was always connected to the endocardial surface in this
cohort, the result suggests that the network was able to account
for the presence of intramural border zone based on the provided
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measured activation times. For the epicardial activation times,
the method was evaluated on the CRT-EPIGGY19 challenge.
While observed errors were in general significantly higher
compared to the other benchmarks, macroscopic features of the
epicardial activation map could be reproduced by the network.
For instance, the area of latest activation in both measured and
estimated activation map was basal with a small shift toward
the anterior side (see Figure 9 for comparison). It is important
to notice that the measurement of epicardial activation times
could be affected by significant sources of noise such as far
field effects, motion, and thin epicardial layers of fat, or due
to errors in the alignment (van Huls van Taxis et al., 2013;
Josephson and Anter, 2015). This could explain at least in
part the higher estimation errors on the epicardium. Similar
differences were observed by the challenge participants Cedilnik
et al., who personalized an Eikonal model to both endocardial
and epicardial measurements (Cedilnik and Sermesant, 2019).
The authors reported a mean RMSE between 9 and 17 ms
depending on the used personalization strategy. In comparison,
our graph network achieved a mean RMSE between 5.6 and 7.8
ms depending on the subsampling ratio. The results suggest that
the proposed method provides more accurate results compared
to Cedilnik et al. even at low subsampling ratios. This holds
true despite one intrinsic limitation of our approach, since our
model assumed that early activation starts either septal or in
the left ventricular endocardium. The challenge data had cases
with early activation in the right ventricle. For those cases, the
RMSE reported above will be inflated by higher errors in the
estimation of the activation times in the right ventricle. We
hypothesize that training the network on additional synthetic
examples with early right ventricular activation would further
improve the results.

We further performed an ablation study to investigate
the impact of the ECG features on the prediction accuracy.
The results highlight that the inclusion of ECG information,
particularly the QRS duration, is important to reconstruct the
activation times. Additional features, such as the electrical
axis and vertical positivities, only improved the results in
some experiments. We hypothesize that these features have the
potential to improve predictive accuracy, but the trained model
did not rely on them as much as on the other input features.
This could be due to the fact that the relationship between
these specific metrics (electrical axis and vertical positivity) and
the pattern of activation times are intrinsically complex, with
potentially different activation maps being associated to ECG
signals with analogous surrogate metrics. Usage of more complex
features derived from the ECG signals could help the model
discriminate better their predictive role. In our animal datasets
we observed that the ECG signals were affected by noise in
some of the leads, which could make the extraction of the ECG
features more challenging. Even though the surrogate metrics
are by design less impacted by noise in the measurements, the
networks were trained on simulated and thus noise-free data.
Investigating data augmentation strategies that add realistic noise
to the training data is an interesting area of future research,
which may improve the generalization between synthetic and
measured data.

In addition, the method was compared against two other
methods. When comparing the graph network against a
nearest neighbor projection on the task of reconstructing high
resolution endocardial activationmaps, the data-driven approach
outperformed the projection method for low sampling densities.
The projection method generated coarse and patchy activation
maps, which suggests this method to be sensitive to measurement
noise. In contrast, the graph network produced a smooth and
physically plausible interpolation of the provided measurements.
The qualitative results are comparable to those obtained by the
computational model of cardiac electrophysiology, which was
personalized to the same provided measurements and which
was used as the other comparator. The computational model
was, however, not able to capture the intricate details of the
high-resolution activation maps due to the strong regularizing
effect of the modeling priors. When comparing both methods
on the challenge data, the network produced similar or better
results than the computational model when attempting to
reconstruct the complete endocardial activation map from
a sparsefied version. When targeting the estimation of left
epicardial activation maps from the endocardial measurements,
the network significantly outperformed the computational
model. Visually, both methods provided similar epicardial wave
front estimations on the challenge data, but the network proved
better at capturing the total activation time (see Figure 9).

At last, the feasibility of supporting the mapping procedure
by actively suggesting new sampling locations was investigated.
Using an ensemble of graph neural networks, the disagreement
between predictions was used to determine locations of high
uncertainty, which were then used as new sampling locations.
The in-silico study on the in-house dataset suggests that this
rather simple approach was able to suggest meaningful new
sampling locations that lead to lower errors compared to random
sampling of the same number of points. To match the same
accuracy as when providing 10% randomly selected septal
measurements as input to the graph network, a reduction of up
to 40% sampling points was achieved with the active sampling
strategy, which could result in a significant reduction of the
mapping procedure duration. Compared to a similar synthetic
experiment, which used physics-informed neural networks and
relied on fine-tuning of a network ensemble for each new
sample (Sahli Costabal et al., 2020), our method showed a
significant runtime advantage since it was able to directly
integrate newlymeasured data points. Up to 2 samples per second
could be processed with this approach. In contrast, Costabal
et al. reported that fine-tuning alone took approximately 1
min per sample (Sahli Costabal et al., 2020). Furthermore,
not only the endocardial activation times were estimated,
but local activation times in the entire biventricular domain.
Additional speed gains are expected with further algorithmic and
architectural optimizations.

While the present study demonstrated a new way for joint
interpolation and extrapolation of measured activation times, the
proposed method presents several limitations. First, a noticeable
difference between the observed errors on the synthetic and
measured data was found. The higher errors may be explained
by the high amplitude noise in the measured data, which is
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particularly present in the in-house dataset (see Figure 6 for
an example). Since the noise manifests as seemingly unphysical
local discontinuities, the proposed approach could be regarded
as a physics-inspired denoising procedure. This however would
have to be demonstrated by comparing the model results against
a larger set of measured maps with varying signal-to-noise
ratio. Furthermore, we hypothesize that the proposed method
is highly dependent on the underlying computational model
used to generate the training dataset. This is supported by the
qualitatively similar activation maps that were produced by the
graph network and the computational model, particularly for
very low sampling densities. The training data used in this
work comprised simulations with limited variability in modeling
assumptions. For instance, the use of 180 geometries sampled
from a statistical shape model computed from only 11 swine
datasets could be too limiting to cover the wide range of
anatomical variability. In the experiments conducted in this study
we did not observe a significant variation of the error metrics
across different anatomical models in the testing set. Nonetheless,
the relatively small sample size in our experiments does not
allow to generalize this finding and a richer statistical shape
model could make the trained network more robust to geometry
variations. Furthermore, scar and border zone were modeled by
a relatively simple heuristic that results in primarily transmural
distributions. This modeling assumption is particularly suitable
for severely scarred cases, such as the swine hearts considered in
this work. Applying our approach to more general cases, such
as intricate intramural channels within core scar, may require
further enrichment of the training dataset.

The graph representations adopted in this work were based on
tetrahedral approximations of the biventricular heart geometry,
with a relatively coarse mesh resolution (2.5mm). This implies
that the spatial distribution of activation times in the tissue
(both in the training and in the testing sets) is approximated
and does not include fine spatial details at lower scales. This
could potentially affect the capability of the model to accurately
represent transmural gradients in activation times. This, however,
is expected to be acceptable in the modeling of swine hearts,
in which transmural gradients of activation time are relatively
small due to the transmural Purkinje tree (Garcia-Bustos et al.,
2017). Considering graphs with relatively large edge length has
the advantage that the graph convolutional network architecture
can be more compact, requiring less convolutional layers to
represent the same receptive field. The increased number of
convolutional layers required by graphs with shorter edge lengths
was reported to potentially degenerate the network performance
due to over-squashing and over-smoothing (Alon and Yahav,
2020). Making graph convolutional neural network invariant to
the underlying mesh resolution is still an understudied problem
and an interesting direction for future research.

Our model was based on the assumption that the heart
tissue can be represented as the union of five regions, each
characterized by homogeneous and constant conduction velocity.
In particular, the transmural Purkinje network found in swines
was simply approximated by a 3mm layer for the left and right
endocardium, respectively. In addition, we also assumed that sites
of initiation of the ventricular depolarization are known and the

same for all hearts. The results under thesemodeling assumptions
showed good agreement between estimated and ground truth
activation maps. It is, however, possible that less restrictive or
more complex modeling assumptions would increase the fidelity
of the underlying electrophysiology model. Similarly, this work
employed an Eikonal solver of cardiac electrophysiology. While
the solver proved suitable to represent non-arrhythmic cardiac
activation, it may fail to capture wave re-entrants. Further, our
graph convolutional approach appeared to be influenced by the
fidelity of the underlying training data, which is limited by
the previously mentioned modeling assumptions. An interesting
future research direction hence comprises the application of
more complex cardiac electrophysiology solvers together with
higher fidelity modeling assumptions for the training data
generation, which may in turn improve the accuracy of the
network estimations even in non-sinus rhythm.

The proposed method further integrated information from
14 ECG features comprising the QRS duration, electrical axis,
and the relative amplitude of each lead. The results of our
ablation study suggest that the ECG features, particularly the QRS
duration, are important to estimate activation maps. It is possible
that such surrogate metrics hide details of the ECG signals that
could improve the predictive performance. Also in this case,
access to large quantities of preferably noise-free datasets with
digitalized ECG recordings is required to investigate the role of
full trace information. Similarly, it would be necessary to acquire
precise information about the lead placement and the exact
heart-torso orientation to investigate the observed discrepancies
between the ground truth and synthetically generated ECG traces
as seen in Figure 7.

Another interesting direction to potentially further
improve the proposed method is the investigation of more
elaborate network architectures. For instance, alternative
graph convolutional filter were explored in the literature,
which have the advantage of learning more expressive
feature representations and may allow the incorporation
of edge information (Wu et al., 2020). In the context of
the proposed method, they could be easily integrated as
a replacement for the SAGE layers of the local feature
extractor and may help improve the agreement between
model predictions and ground truth activation time, particularly
in graph nodes in which the measurement is provided as
input feature.

In addition, we strongly believe that acquiring large
amounts of high quality datasets will be critical to further
improve the proposed approach. It would help clarifying
what is the role of each source of noise or uncertainty,
both from the data and the modeling assumptions. For
instance, we hypothesize that more elaborate scar and border
zone models, potentially built from a large set of image
data, as well as inhomogeneous tissue conduction velocities
could lead to higher fidelity in the training dataset. To this
end, measurements with high signal to noise ratio would
help elucidate which modeling assumptions are of particular
relevance. Furthermore, we hypothesize that such information
could strengthen the physics-inspired denoising capabilities of
the proposed method.
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The same improvements of the modeling assumptions
and ECG features as described above may also increase
the performance of the personalized computational model.
While the computational model was able to estimate the
main mode of electrical wave propagation, it did exhibit a
stronger regularizing effect compared to the other two methods.
Possible areas of improvement may comprise the personalization
of initiation sites and constraining the fine-tuning process
with ECG information. Alternatively, personalization strategies
that include full ECG traces instead of surrogate metrics,
such as presented in Gillette et al. (2021) and Pezzuto
et al. (2020), could be employed. Another interesting area of
future research may include the incorporation of uncertainties
related to the ECG generation such as the uncertainty in
lead placement.

5. CONCLUSION

This work proposes a deep learning based approach to
estimate biventricular local activation times given a spatial
discretization of cardiac anatomy, i.e., a tetrahedral mesh,
a routinely acquired 12-lead ECG, and sparse endocardial
activation time measurements. In particular, the use of graph
convolutional layers is explored, which allows the propagation of
information through the mesh structure. In total, 24 geometric
and electrophysiological features are used for the prediction
task. Due to data scarcity and no ground truth information
for the intramural activation times, a synthetic training dataset
is generated using a fast graph-based computational model of
cardiac electrophysiology with depolarization variations induced
by randomized conductivities, randomized scar and border zone
distributions, variable initial activations and variable geometries
from a statistical shape model. The proposed method has
been validated using 870 left out simulations and two clinical
cohorts with a total of 15 swine datasets. Good agreement
between the endocardial ground truth activation times and the
predictions have been observed in all setups. Compared to a
personalized computational model the proposed approach is
producing similar or better results, while not requiring a time-
consuming iterative personalization process. Further research
is required to assess and improve the moderate agreement
between epicardial prediction and the ground truth of the
clinical cohort.
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Probabilistic estimation of cardiac electrophysiological model parameters serves an

important step toward model personalization and uncertain quantification. The expensive

computation associated with these model simulations, however, makes direct Markov

Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of

model parameters computationally intensive. Approximated posterior pdfs resulting from

replacing the simulation model with a computationally efficient surrogate, on the other

hand, have seen limited accuracy. In this study, we present a Bayesian active learning

method to directly approximate the posterior pdf function of cardiacmodel parameters, in

which we intelligently select training points to query the simulation model in order to learn

the posterior pdf using a small number of samples. We integrate a generative model into

Bayesian active learning to allow approximating posterior pdf of high-dimensional model

parameters at the resolution of the cardiac mesh. We further introduce new acquisition

functions to focus the selection of training points on better approximating the shape

rather than the modes of the posterior pdf of interest. We evaluated the presented

method in estimating tissue excitability in a 3D cardiac electrophysiological model in a

range of synthetic and real-data experiments. We demonstrated its improved accuracy

in approximating the posterior pdf compared to Bayesian active learning using regular

acquisition functions, and substantially reduced computational cost in comparison to

existing standard or accelerated MCMC sampling.

Keywords: probabilistic parameter estimation, high-dimensional Bayesian optimization, Gaussian process,

variational autoencoder, cardiac electrophysiological model

1. INTRODUCTION

With advanced technologies in medical imaging and image analysis, computational models can
now closely replicate the physiology of a human heart (Taylor and Figueroa, 2009; Morris et al.,
2016). As these models are virtual in nature, they have the potential to enable prediction, diagnosis,
and treatment planning of certain conditions of a patient heart with little to no harm to the patient
(Sermesant et al., 2012; Arevalo et al., 2016; Zahid et al., 2016; Prakosa et al., 2018; Cronin et al.,
2019). However, while the geometry of a specific patient heart can be depicted with increasing
accuracy, patient-specific physiology remains a challenge. A main difficulty arises from the need
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to customize patient-specific material properties (Taylor and
Figueroa, 2009; Neal and Kerckhoffs, 2010), which are typically
spatially varying throughout the 3D organ and may change
over time for the same individual. At the same time, they
often cannot be directly measured in high resolution, but have
to be estimated from relatively limited measurements. This
results in a challenging inverse problem for estimating high-
dimensional (HD) unknown parameters of a complex, nonlinear,
and computationally expensive forward model that relates the
unknown parameters to measurements.

There are two general approaches to this inverse problem:
deterministic optimization and probabilistic inference. In
deterministic optimization, we seek a single optimal value of
the unknown model parameter that will minimize the mismatch
between the model output and the measurement data (Sermesant
et al., 2012; Wong et al., 2012, 2015; Yang and Veneziani,
2015; Balaban et al., 2018; Mineroff et al., 2019; Barone et al.,
2020a,b). These estimates, however, do not take into account
the uncertainty in the measurement data, nor can they offer
insights into the presence of non-unique solutions that can
match the same data. These can be overcome by probabilistic
inference of the posterior pdf of the model parameters given
available measurements.

Existing approaches to the probabilistic estimation of model
parameters are generally based on Markov Chain Monte Carlo
(MCMC) sampling. The computation expense of the forward
simulations of these models, however, makes MCMC infeasible
due to the reliance on a large number of sampling, each requiring
a simulation run. Approaches to accelerating such sampling
can be loosely divided into two categories. On one hand, a
variety of hybrid sampling methods have been developed, which
accelerates random sampling using information about the target
pdf such as its gradient (Roberts et al., 1996; Neal, 2010)
and Hessian matrix (Martin et al., 2012). These information,
however, are often difficult to extract from the posterior pdf
involving a complex simulation model. On the other hand, it is
possible to construct a computationally efficient approximation,
i.e., surrogate model, of the expensive simulation process, such
that the related pdfs become substantially faster to sample.
These surrogate models may be physics-based reduced-order
modeling Lassila et al. (2013), or data-driven approximations
such as Gaussian process (GP) (Kennedy and O’Hagan, 2000;
Rasmussen, 2003) and polynomial chaos (Spanos and Ghanem,
1989; Xiu and Karniadakis, 2003; Marzouk and Najm, 2009).
Directly sampling the surrogate-based posterior pdf, however,
may lead to limited accuracy due to the difficulty to build
a globally accurate approximation of a complex nonlinear
simulation model. In our previous work, we attempted to
mitigate this issue by using this surrogate-based pdf to accelerate,
rather than replacing, the sampling of the actual pdf (Dhamala
et al., 2018a). Specifically, this was achieved by a two-stage
MCMC strategy where the surrogate-based pdf works as a
proposal distribution to increase the acceptance rate of sampling
(Dhamala et al., 2018a). While this ensures the accuracy of
posterior sampling, the reduction in the computation becomes
limited due to the fundamental reliance on sampling the original
pdf involving expensive simulation processes.

In this study, we develop a Bayesian active learning approach
to provide an accurate surrogate model of the posterior pdf
of simulation model parameters such that there is no need of
further MCMC sampling of the original computational-intensive
pdf. This is achieved with two key innovations. First, unlike
most existing approaches that rely on learning a surrogate of the
simulation model over the prior distribution of the parameter
space (Dhamala et al., 2018a), we propose to directly learn a
surrogate of the posterior pdf. We formulate this posterior pdf
estimation as an active learning problem where we intelligently
select a minimal number of training points focused on the
posterior support of the parameter space. Second, we present
new acquisition functions during the active learning to utilize the
shape of the posterior pdf to improve the selection of training
points. To enable this active posterior estimation over a high-
dimensional parameter space, we further combine it with our
previously developed approach that uses generative modeling of
the high-dimensional parameter space (Dhamala et al., 2018b) to
embed active learning of a high-dimensional posterior pdf into a
low-dimensional (LD) space.

While our method is generally applicable to posterior
estimation of HD parameters in complex models, in this study
it was applied to estimate tissue excitability as parameters of the
cardiac electrophysiological model. Experiments were performed
on three different groups of data: simulation data with a synthetic
setting of abnormal tissues, simulation data generated from a
high-fidelity biophysics model blinded to the model used in
the posterior estimation, and real data obtained from patients
with infarcts derived from in vivo voltage mapping data. In the
synthetic group, we compared the results with direct MCMC
sampling of the original posterior pdf, two-stage MCMCmethod
(Dhamala et al., 2017a), and direct MCMC sampling of the
surrogate pdf learned using regular Bayesian active learning.
The results showed that the presented method was able to use
0.6% computation of the direct or two-stage MCMC methods
to deliver an accurate estimation of the posterior pdf, with
significantly improved accuracy compared to using regular
Bayesian active learning. In the other two sets of experiments,
we evaluated and interpreted the mean, mode, and uncertainty of
the estimated tissue excitability using in vivomagnetic resonance
(MR) scar imaging or voltage mapping data.

The key contributions of this study can be summarized as:

1. We present a Bayesian active learning approach for fast
approximation of the posterior pdf of the parameters of
expensive simulation models, with acquisition functions
designed to improve the accuracy of the approximation in
order to remove the need of subsequentMCMC of the original
computationally expensive pdf.

2. We leverage our previously developed approach (Dhamala
et al., 2018b) to embed the active learning over HD space
into a LD manifold, enabling active posterior inference over
HD model parameters representing spatially varying tissue
excitability.

3. We thoroughly evaluated the performance of the presented
method in comparison with existing works in probabilistic
parameter estimation in cardiac electrophysiological models,
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both in synthetic data involving MCMC sampling as reference
data, and in real data involving MRI scar imaging and in vivo
voltage mapping as reference data.

The rest of the study is organized as follows. In section
2, we review related works in detail and in section 3, we
present background of this study. In section 4, we present
our methodological developments. We present experiments
and results for both synthetic and real data from the cardiac
electrophysiology system in section 5. Finally, we give some
concluding remarks with limitations and future scope.

2. LITERATURE REVIEW

2.1. Probabilistic Parameter Estimation in
Complex Models
For complexmodels where the posterior pdf of model parameters
is analytically intractable, the area of estimating parameters
largely depends onMCMC sampling. Metropolis-Hastings (MH)
sampling, Gibbs sampling, and many more classical MCMC
methods are developed in Metropolis and Ulam (1949), Hastings
(1970), Geman and Geman (1984), Gelfand and Smith (1990),
and Gelfand et al. (1992) and applied in different areas to estimate
parameter uncertainty (Andrieu et al., 2003). The reason for the
extensive use of MCMC is that it can deal with HD parameters,
non-linear relation between parameters and observations, and
noisy data. However, these properties also make it very slow
as, by design, the sampling takes a large number of simulations
to converge. With rapid developments of parallel computing,
parallel MCMC to accelerate the computation is proposed in
Brockwell (2006) and Byrd (2010), Wang (2014) but these can
improve neither the convergence rate nor reduce the number of
simulations needed. In exploring uncertainty on HD parameters,
reversible jump MCMC is used in Brooks (1998). Combination
of differential evolutions to have subspace exploration is used
in Laloy and Vrugt (2012), while non-differential sparse priors
are developed in Cai et al. (2018). Gradient and Hessian
information of the pdfs are used to accelerate sampling even
with poor initial models in Zhao and Sen (2019), although these
information are nontrivial to extract when the pdf contains
complex simulation models.

Alternatively, surrogate models have been widely employed
to generate a computational-efficient approximation of the
posterior pdf that can be faster to sample. Polynomial chaos
(Spanos and Ghanem, 1989; Xiu and Karniadakis, 2003; Knio
and Le Maitre, 2006) and GP (Kennedy and O’Hagan, 2000;
Rasmussen, 2003) are pioneers in surrogate modeling. In Adams
et al. (2008), Konukoglu et al. (2011), and Gramacy and Lee
(2008), Schiavazzi et al. (2016), to build posterior pdf, GP
surrogate is built of the pdf at first, and then, MCMC sampling
is performed from that to avoid expensive simulations. It is,
however, difficult to obtain an approximation of a complex
simulation model over the prior parameter space. As a result,
when direct sampling of the surrogate pdf is substantially more
efficient than sampling the original pdf, the accuracy is often
largely compromised (Dhamala et al., 2018a). Recently, hybrid
approaches are emerging that use the surrogate pdf to accelerate

rather than replace sampling. In Dhamala et al. (2018a), a two-
stagemodel is introduced where a GP surrogate of exact posterior
pdf is built in the first stage and is used to improve the acceptance
rate of candidate samples inMCMC sampling in the second stage.
In Dunbar et al. (2020), a three-stage model is presented for
uncertain quantification of a complex climate model parameters
where model calibration using Kalman inversion is performed in
the first stage, building GP surrogate to emulate parameter-to-
data map is performed in the second stage, and MCMC sampling
of the posterior pdf of the climate model parameters is performed
in the final stage. While these hybrid approaches improve the
accuracy of sampling, the reliance on sampling the original pdf
limits the extent to which the computation can be reduced.

2.2. Parameter Estimation Using Active
Learning
Popular active learning algorithms such as efficient global
optimization (Jones et al., 1998), famously known as Bayesian
optimization, have been merged with surrogate modeling to
estimate complex model parameters. In Bayesian optimization,
a GP surrogate is built to approximate the objective function
of the optimization, using a small number of sampling to
query the expensive objective function where the samples are
selected based on an acquisition function. In many areas such
as nuclear physics (Ekström et al., 2019), material science (Ueno
et al., 2016), and many more (Khosravi et al., 2019; Vargas-
Hernández et al., 2019; Duris et al., 2020), Bayesian optimization
is applied to estimate complex model parameters. However,
all these techniques are focused on deterministic optimization
to find a single optimal parameter value that best fits the
simulation output to measurement data without considering the
associated uncertainty.

2.3. Parameter Estimation in Personalized
Models
In the specific area of estimating parameters of patient-specific
models, existing studies can be classified into deterministic or
probabilistic approaches. There are many optimization methods
developed in the past few decades. Derivative free methods,
such as the Subplex method (Wong et al., 2015), Bound
Optimization BY Quadratic Approximation (BOBYQA) (Wong
et al., 2012), New Unconstrained Optimization Algorithm
(NEWUOA) (Sermesant et al., 2012), and hybrid particle swarm
method (Mineroff et al., 2019), have been used in estimating
cardiac model parameters. Derivative-based variational data
assimilation approaches have also been applied to estimate
cardiac conductivities in ventricular tissue (Yang and Veneziani,
2015; Barone et al., 2020b) and heterogeneous elastic material
properties in personalized cardiac mechanic model (Balaban
et al., 2018). Due to the computational expense associated with
the model simulation during optimization, model reduction
techniques such as Proper Generalized Decomposition (PGD)
have been used to accelerate the estimation of cardiac
conductivities in personalized cardiac electrical dynamics
(Barone et al., 2020a). These methods overall are focused on
finding a single value of cardiac model parameters that best fit the
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available data, lacking any uncertainty measure associated with
the parameters.

On the other hand, limited progress has been made in
the probabilistic estimation of personalized model parameters
where the uncertainty measure can be derived from their
posterior pdf. To reduce the extensive computation associated
with standard MCMC sampling, various approaches of reduced
modeling have been used to reduce the cost of forward simulation
and thereby accelerate the inverse estimation (Lassila et al.,
2013). Recent research reports building surrogate models using
methods like kriging (Schiavazzi et al., 2016) and polynomial
chaos (Konukoglu et al., 2011) to estimate cardiac model
parameters. In Paun et al. (2019), GP emulation is used to
speed up the MCMC process in the area of cardiovascular fluid
dynamics. Probabilistic surrogate modeling through GP using
Bayesian history matching is applied in Longobardi et al. (2020)
for inference of cardiac contraction mechanics. In Neumann
et al. (2014), polynomial chaos method is used to build the
surrogate model for fast sampling to estimate parameters of an
electromechanical model of the heart. However, with the limited
accuracy in the approximated posterior pdf, directly sampling
the surrogate results in improved efficacy but reduced accuracy.
In Dhamala et al. (2018a), GP surrogate model of the posterior
pdf of cardiac model parameters is built to accelerate MCMC
sampling of the original posterior pdf. While this strategy avoids
the loss of accuracy from sampling the surrogate pdf, it achieves a
limited gain of efficiency due to the reliance on MCMC sampling
of the original pdf.

2.4. Estimating High-Dimensional
Parameters
High dimensionality is a bottleneck in estimating parameters,
especially in cardiac physiology. Researchers mostly try to explain
useful functions through dimension reduction in the original HD
parameters. For example, in Malatos et al. (2016), it is shown
that a lower-dimensional model can be useful in explaining
blood flow. In Caruel et al. (2014), to explain cardiac function,
LD muscle samples or myocytes as model parameters are
estimated from HD ones. Estimating local myocardial infarct
uncertainties through reducing the dimension of deformation
patterns is introduced in Duchateau et al. (2016). In Giffard-
Roisin et al. (2018), offline learning from electrocardiographic
imaging (ECGI) is achieved through dimension reduction in the
myocardial shape. As most of the parameters stay on manifold
rather than Euclidean space, in Nakarmi et al. (2017), a kernel-
based framework using LD manifold models to reconstruct
cardiac dynamic MR images is proposed. In Lê et al. (2016),
to reduce dimension, homogeneous tissue excitability (in the
form of a model parameter) is represented by a single global
model parameter. In Wong et al. (2015), and the cardiac mesh is
pre-divided into 3–26 segments, each represented by a uniform
parameter value. As the number of segments increases, the
estimation becomes more challenging and increasingly reliant on
initialization. Alternatively, a multi-scale hierarchy of the cardiac
mesh is defined for a coarse-to-fine optimization, which allowed
spatially adaptive resolution that was higher in certain regions

than the other (Chinchapatnam et al., 2008; Dhamala et al., 2016).
However, the representation ability of the final partition is limited
by the inflexibility of the multi-scale hierarchy: Homogeneous
regions distributed across different scales can-not be grouped
into the same partition, while the resolution of heterogeneous
regions can be limited by the level of scale the optimization can
reach (Dhamala et al., 2017a). In addition, because these methods
involve a cascade of optimization along the hierarchy of the
cardiac mesh, they are computationally expensive.

In our recent work, we present an approach that replaces the
explicit anatomy-based reduction in the parameter space with
an implicit LD (LD) manifold that represents the generative
code for HD spatially varying tissue excitability (Dhamala et al.,
2018b). This is achieved by embedding within the optimization
a generative model, in the form of a variational autoencoder
(VAE) trained from a large set of spatially varying tissue
excitability. In our previous work, we demonstrated the efficacy
of this approach for deterministic optimization of spatially
varying tissue excitability in cardiac electrophysiological models
(Dhamala et al., 2018b). In this study, we leverage this strategy to
enable probabilistic estimation of HD model parameters.

3. BACKGROUND

3.1. Bi-Ventricular Electrophysiology Model
There are many computational models with varying levels
of biophysical details (Aliev and Panfilov, 1996; Mitchell
and Schaeffer, 2003; Clayton et al., 2011). Among these,
phenomenological models like the Aliev Panfilov (AP) model
(Aliev and Panfilov, 1996) is capable of reproducing the key
macroscopic process of cardiac excitation with a small number of
model parameters. To test the feasibility of the presentedmethod,
we utilize the two-variable AP model given below:

∂u

∂t
= ∇(D∇u)− cu(u− θ)(u− 1)− uv,

∂v

∂t
= ε(u, v)(−v− cu(u− θ − 1)).

(1)

Here, u ∈ [0, 1] is the transmembrane potential and v is the
recovery current. The parameter ε = e0+(µ1v)/(u+µ2) controls
the coupling between u and v, and c controls the re-polarization.
D is diffusion tensor, which controls the spatial propagation of
u. θ is tissue excitability parameter that controls the temporal
dynamics of u and v. Based on previous sensitivity analysis
(Dhamala et al., 2017a), in this study, we focus on estimating
parameter θ of the AP model (Equation 1), while fixing the
values for the rest of the model parameters based on the literature
(Aliev and Panfilov, 1996): c = 8, e0 = 0.002, µ1 = 0.2,
and µ2 = 0.3. We solve the AP model (Equation 1) on the
discrete 3D myocardium using the meshfree method described
in Wang et al. (2009). Then, we obtain a 3D electrophysiological
model of the heart that describes the spatio-temporal propagation
of 3D transmembrane potential u(t,θθθ). Note that, compared
to existing works where the model parameter to be estimated
is often assumed to be global or LD based on a pre-defined
anatomical division of the heart, we consider the estimation of
a HD parameter θθθ at the resolution of the cardiac mesh.
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In this study, we demonstrate the presented framework using
body surface electrocardiogram (ECG) that are generated by
spatio-temporal cardiac action potential following the quasi-
static approximation of the electromagnetic theory (Plonsey,
2001). In Wang et al. (2009), this relationship is modeled by
solving a Poisson’s equation within the heart and Laplace’s
equation external to the heart on a discrete mesh of the heart and
the torso, which gives a linear model:

Yb(t) = Hbu(t,θθθ) (2)

where Yb(t) represents ECG data, u(t,θθθ) represents
transmembrane potential, Hb is the transfer matrix unique
to patient-specific heart and torso geometry, and θ is the vector
of tissue excitability to be estimated.

4. METHODOLOGY

The electrophysiological system as defined in section 3 defines a
stochastic relationship between measurement data Y and model
parameter θ as:

Y = M(θ)+ ε (3)

where M is a composite of the whole-heart electrophysiological
model and measurement model reviewed in section 3. ε is the
noise term that accounts for measurement errors and modeling
errors other than that arising from the value of the parameter
θ . Assuming uncorrelated Gaussian noise ε ∼ N(0, σ 2

e I), the
likelihood can be written as:

π(Y|θ) ∝ exp(−
1

2σ 2
e

||Y−M(θ)||2) (4)

The unnormalized posterior density of the model parameter θ

has the following form, using Bayes rule:

π(θ |Y) ∝ π(Y|θ)π(θ) (5)

where π(θ) provides us prior knowledge about the parameters.
In this study, a uniform distribution bounded within [0, 0.5]
is used where the bound is informed by the physiological
values of parameter θ . In this general setup, our goal is to
estimate the pdf function in Equation (5), which has an expensive
likelihood function and a HD parameter θ . Naive MCMC
sampling of Equation (5) would render intensive, if not infeasible,
computation. Here, we cast the problem of estimating the
function of π(θ |Y) into a Bayesian active learning problem: We
aim to learn a GP approximation of the function π(θ |Y) from
training samples of {θ (i),π(θ (i)|Y)}li=1; because the evaluation

of π(θ (i)|Y) involves expensive computation, i.e., an expensive
labeling process, we intelligently select a small number of training
points θ (i) on which to query the label of π(θ (i)|Y). To achieve
this, we bring two innovations to existing Bayesian active
learning methods. First, leveraging our previous work (Dhamala
et al., 2017a), we integrate generative modeling of HD θ into
Bayesian active learning to embed the process of active search of
training samples into a LD manifold. Second, we introduce new
acquisition functions for selecting training points θ (i), such that
it focus on the shape of the posterior pdf of interest.

4.1. Enabling High-Dimensional Bayesian
Active Learning via Generative Modeling
To obtain a generative model of θ = g(z), we use VAE that
consists of two modules: a probabilistic deep encoder network
with network parameters ααα that approximates the intractable
true posterior density p(z|θθθ) as qααα(z|θθθ) and a probabilistic deep
decoder network with network parameters βββ that reconstructs
θθθ given z with the likelihood pβββ (θθθ |z). Given a training data set
2 = {θθθ (i)}Ni=1 that consists of N different spatial distributions
of the tissue excitability θθθ , VAE training involves optimizing
the variational lower bound on the marginal likelihood of each
training data θθθ (i) with respect to network parameters ααα and βββ :

L(ααα;βββ) = −DKL(qααα(z|θθθ (i))||p(z))+ Eqα(z|θθθ (i))[logpβββ (θθθ
(i)|z)].

(6)
We assume the prior p(z) ∼ N (0, 1) to be a standard Gaussian
density. The optimization of Equation (6) with respect to α

and β is achieved with stochastic gradient descent with re-
parameterization trick (Kingma and Welling, 2013). After the
VAE is trained, the decoder as a generative model can be
incorporated into Equation (5) to obtain:

π(z|Y) ∝ [exp(−
1

2σ 2
e

||Y−M
(

E[pβββ (θθθ |z)]
)

||2)][exp(−
1

2
||z||2)]

(7)
where θ is now approximated by the expectation of the generative
model pβββ (θθθ |z), and the prior of z is assumed to be Gaussian:
π(z) ∼ N (0, 1). In another word, the use of pβββ (θθθ |z) allows us to
now perform Bayesian active learning over the LD latent space z.

4.2. Bayesian Active Learning With
Posterior-Focused Acquisition Functions
We aim to learn a GP approximation of the log posterior because,
compared to the posterior pdf in Equation (7), and it has longer
scales and lower dynamic range. In other words, we build a GP
to approximate:

GP(z) ∼ −
1

2
(
||Y−M

(

E[pβββ (θθθ |z)]
)

||2

σ 2
e

+ ||z||2) (8)

Bayesian active learning with GP consists of an iterative process.
In each iteration, we 1) first select new training samples via the
optimization of an acquisition function and 2) then obtain the
posterior distribution of the GP from the prior distribution using
newly obtained training samples. For the prior of the GP at the
first iteration, we adopt the commonly used zero-mean function
due to lack of prior knowledge and the anisotropic “Matérn 5/2"
covariance function (Rasmussen, 2003):

k(zi, zj) = α2exp
(

−
√
5d(zi, zj)

)(

1+
√
5d(zi, zj)+ 5/3d2(zi, zj)

)

(9)
where d2(zi, zj) = (zi − zj)⊺3(zi − zj), 3 is a diagonal matrix
in which each diagonal element represents the inverse of the
squared characteristics length scale along each dimensions of z,
and α2 is the function amplitude.
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4.2.1. Acquisition Function Design
A crucial part of Bayesian active learning is to guide the algorithm
about where to sample next, achieved by designing an acquisition
function that balances between exploiting what is already learned
about the target function of interest and exploring the unknown
region of the input space. Existing GP-based Bayesian active
learning is typically used for finding the optimum of a target
function, using the mean and variance function of the GP
approximations of the target function to exploit high-mean
regions while exploring high-variance regions. In learning to
approximate the posterior pdf function as defined in Equation
(7), our goal differs from standard approaches in two ways.
First, while we choose to build the GP approximation of the log
posterior, we are interested in the accuracy of the posterior pdf
function itself as our target function. Second, we are interested in
the shape of the posterior pdf, rather than any single optimum
value. These motivate the design of new acquisition functions
as follows.

First, based on Equations (7) and (8), our posterior pdf
of interest is an exponential factor away from the function
being approximated by the GP. Since GP(z) at every z

follows a Gaussian distribution, exp(GP(z)) follows log-normal
distribution at every z. In other words, the function of exp(GP(z))
follows a log-normal process. To focus on the accuracy of
approximating the posterior pdf function, rather than using the
mean and variance of the GP to guide acquisition as in regular
Bayesian active learning, we will use the mean and variance of
the log-normal process exp(GP(z)) to guide acquisition.

Second, to focus more on learning the shape rather than
optimum (i.e., mode) of the posterior pdf, we emphasize more
on reducing the uncertainty of the learned exp(GP(z)) (i.e.,
exploration) than exploiting around its mode. Two natural
candidates for measuring the uncertainty in the approximated
exp(GP(z)) include the following: 1) variance of exp(GP(z)), and
2) entropy of exp(GP(z)) at any given z:

Entropy(z) = µ(z)+
1

2
+ ln(

√
2πσ (z)) (10)

Variance(z) = [exp σ 2(z)− 1][exp 2µ(z)+ σ 2(z)] (11)

At the i-th iteration of active learning, we select a single point of
z(i) that maximizes (Equations 10 or 11) to update the GP.

4.2.2. Updating GP With New Training Samples
Once a new sample point z(i) is selected, the value of the log
posterior in Equation (8) is evaluated at z(i) as LLL(i), which
includes the execution of the trained VAE decoder, the bi-
ventricular electrophysiological model, and the measurement
model as described in section 3. The new input-output pair is
used to update the posterior belief of the GP. Following (Williams
and Rasmussen, 2006), the predictive mean and variance of the
updated GP can be evaluated at any z:

µ(z∗) = kTK−1
LLL
(1 : i), σ 2(z∗) = k(z∗, z∗)− kTK−1k (12)

where k is the kernel function. We update the kernel
hyperparameters, including the length-scale and noise variance

mentioned in Equation (9), every time we add a new training
point by maximizing the log of the marginal likelihood.

Overall, the active learning process involves two steps: 1)
adding new training points by maximizing the acquisition
function, and 2) updating the GP posterior mean and variance
function. This iterative process continues until the Kullback–
Leibler (KL) divergence between the most updated predictive
mean pdf function and the average of the last five predictive
mean pdf functions of exp(GP(z)) does not exceed a predefined
threshold. The length-scale and noise variance of kernel
function are optimized every time by maximizing log of the
marginal likelihood.

5. EXPERIMENTS AND RESULTS

5.1. Generative Modeling of
Spatially-Varying Tissue Excitability
Tissue excitability of whole heart from real data is not readily
available. Cardiac images such as contrast-enhanced MRI may
provide a surrogate for delineating different levels of myocardial
injury, yet they are expensive to obtain at a large quantity. In this

study, we utilized synthetic data sets 222 =
{

θθθ (i)
}N

i=1 to train the
VAE. Specifically, we generated a large data set of heterogeneous
myocardial injury by random region growing. Starting with one
injured node, one out of the five nearest neighbors of the present
set of injured nodes was randomly added as an injured node.
This was repeated until an injury of desired size was attained. We
considered binary tissue types in the training data, in which the
value of tissue excitability θ was set to be 0.5 or 0.15 for injured
or healthy nodes, respectively, along with a random noise drawn
from a uniform distribution [0, 0.001].

The VAE architecture used in the following experiments is
shown in Figure 1. Each of the encoder and decoder network
consisted of three fully connected layers with softplus activation,
two layers of 512 hidden units, and a pair of two-dimensional
units for the mean and log-variance of the latent code z. We
trained the VAE with the Adam optimizer with an initial learning
rate of 0.001 (Kingma and Welling, 2013).

Figures 2A,B shows the scattered plots of the two-
dimensional latent codes z encoded by the VAE on the training
data, color-coded by the size and location of the abnormal tissue.
It appears that the latent code accounted for the size of the
abnormal tissue along the radial direction (A), while clustering
by the location of the abnormal tissue as well (B). This shows the
ability of the generative model in capturing meaningful semantic
information in the HD data in an unsupervised manner.

5.2. Synthetic Data Experiments
Synthetic experiments were carried out on three CT derived
human heart-torso models. For ground truth of the tissue
excitability, we divided the left ventricle (LV) into 17 segments
based on the standard recommended by the American Heart
Association (AHA). The region of abnormal tissue was then set as
various combinations of these 17 LV segments. The value of θ in
the abnormal region was set to 0.40, 0.45, or 0.50 to have different
severity levels, and its value in the healthy region was set to 0.15.
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FIGURE 1 | Workflow of the presented method. (A) A generative model of HD spatially varying tissue excitability of the 3D heart is trained offline. (B) The resulting

generative model is embedded into Bayesian active learning to approximate the posterior pdf of model parameters using a small number of intelligently selected

training points guided by the acquisition function.

FIGURE 2 | Distribution of LD latent codes of the training data, color coded by (A) size of the abnormal tissue (the colors represent the percentage size of abnormal

tissue). (B) Location of the abnormal tissue (the colors represent the 17 American Heart Association (AHA) segments of left ventricle).

A randomnoise drawn from a uniform distribution [0, 0.001] was
added. Note that the tissue excitability in this test set is different
from those in the training set, as described in section 5.1, in two
aspects: 1) parameter values within the abnormal region and 2)
shape and size of the abnormal region.

For each tissue excitability to be tested, body-surface
measurements were simulated using the models described in

section 3. A 20dB noise was then added to the measurement data
for posterior estimation of parameter θ . To test the ability of the
trained VAE model to be applied to hearts different from that
used in training, for experiments on heart ♯1 and ♯2, the VAE
was trained on heart ♯3; for experiments on heart ♯3, the VAEwas
trained on heart ♯1. The convergence criteria for each estimation
followed that as defined in section 4.2.2.
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TABLE 1 | Absolute errors in the estimated mean, mode, and standard deviation of the estimated posterior pdf and its KL divergence against directly sampling the exact

posterior pdf: the presented method vs. sampling the surrogate from regular Bayesian active learning (regular BAL) vs. two-stage MCMC.

Method Mean Mode Standard deviation KL divergence

Two-stage MCMC 0.04 ± 0.003 0.02 ± 0.001 0.08 ± 0.002 0.3 ± 0.1

Regular BAL 0.4 ± 0.1 0.03 ± 0.004 1.1 ± 0.2 0.9 ± 0.25

Presented method 0.1 ± 0.02 0.02 ± 0.002 0.12 ± 0.03 0.6 ± 0.2

FIGURE 3 | (A) Comparison of estimated posterior pdf from different methods. (B) Comparison of computation cost from different methods.

5.2.1. Accuracy and Efficiency in Estimating Posterior

pdf Function
We first evaluated the accuracy and efficiency of the presented
method against 1) directly sampling GP approximation of the
posterior pdf based on regular Bayesian active learning and 2)
surrogate-accelerated two-stage MCMC sampling as presented
in our previous work (Dhamala et al., 2017b), all against the
baseline of directly sampling the exact posterior pdf using
the standard MCMC. We considered 15 synthetic cases in
total. All MCMC sampling were run on two parallel MCMC
chains of length 10,000 with a common Gaussian proposal
distribution with two different initial points. The variance
of the Gaussian proposal distribution was tuned by rapidly
sampling the GP surrogate pdf until obtaining an acceptance
rate of 0.22, which is documented to enable good mixing
and faster convergence in higher dimensional problems (Gilks
et al., 1995; Andrieu et al., 2003). After discarding 20% initial
burn-in samples and selecting alternate samples to avoid auto-
correlation in each chain, the samples from two chains were
combined. The convergence of all the MCMC chains was tested
using trace plots, Geweke statistics, and Gelman-Rubin statistics
(Gilks et al., 1995; Andrieu et al., 2003).

The accuracy of estimated pdf in z space was evaluated
through comparing the mean, mode, and standard deviation
from the kernel density estimation of samples selected from our
method and with other existing methods. Let sM be the estimated
mean, mode, or standard deviation of the posterior pdf of z using

direct MCMC sampling and so be the corresponding statistics
estimated from the three methods presented in Table 1. We used
the mean and standard deviation of |sM − so| calculated from
15 synthetic cases to evaluate the accuracy of all the comparison
methods in estimating themean,mode, and standard deviation of
the posterior pdf in comparison to the direct MCMC sampling.
The last column of Table 1 also shows the KL divergence between
the estimated pdf from different methods with that from exact
MCMC, obtained by sampling as described in Hershey and Olsen
(2007). As shown, the accuracy of the estimated posterior pdf was
significantly higher than that obtained by regular Bayesian active
learning (paired t-test on estimated parameters from 15 cases, p
< 0.001). While its accuracy was still lower than the surrogate-
accelerated two-stage MCMC, it used only 0.6% computation
(in terms of the number of model simulations needed) of the
two-stage MCMC method. As detailed in Figure 3B, while the
two-stage MCMC achieved ∼ 40% reduction in the number of
model simulations needed compared to the direct sampling of the
exact posterior pdf, the presented method reached a ∼ 99.65%
reduction in computation. Figure 3A gives examples of the
posterior pdfs estimated from different methods in comparison
to that obtained from direct sampling.

As shown, the presented method (green curve) closely
reproduced the true posterior pdf (red curve) obtained from
direct MCMC, while the function learned by the standard
Bayesian active learning (black curve) fell short in as closely
reproducing the posterior pdf.
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FIGURE 4 | Comparison of (A) DC, (B) RMSE, and (C) CC between estimated mean (blue) or mode (red) tissue excitability in comparison to the ground truth.

FIGURE 5 | (A) The ground truth of tissue excitability. (B) Mean, mode, and standard deviation of tissue excitability estimated from presented method.

5.2.2. Accuracy and Uncertainty in the Estimated

Tissue Excitability
From the estimated posterior pdf of π(z|Y) over the latent LD
manifold, we obtained the posterior pdf of π(θ |Y) over the spatial
space of the heart. We estimated the mean, mode, and standard
deviation in HD space through inserting MCMC samples of z
taken from posterior π(z|Y) to the expectation network of the
trained VAE decoder.

For accuracy of the estimated tissue excitability, we considered
the mean and mode from the estimated posterior pdf of π(θ |Y)
and evaluated against the ground truth tissue excitability using
three metrics: dice coefficient (DC), root mean square error
(RMSE), and correlation coefficient (CC). As shown in Figure 4,
for DC, the mean and mode from the presented method were
more accurate than those obtained by regular Bayesian active
learning (paired t-test, p < 0.001 for mean and p < 0.05 for
mode) but less accurate than those obtained from the two-stage
MCMC (paired t-test, p < 0.10 for mean and p < 0.001 for
mode). For RMSE, similarly, mean and mode both were more
accurate from regular active learning method (paired t-test, p <

0.005 for mean and p < 0.05 for mode). In comparison with

the two-stage MCMC, there was no difference for mean and
mode with the presented method (paired t-test, insignificant at
20% level of significance). For CC, our presented method showed
similar accuracy with the two-stage MCMC and regular active
learning method for mean estimation. But for CC from mode
estimation, our method showed higher accuracy than the regular
method (paired t-test, p < 0.01) but less accuracy than the
two-stage MCMC (paired t-test, p < 0.05).

Figure 5A provides a visual example of the estimated spatially
varying tissue property on the heart, corresponding to the LD
posterior pdf shown in the left column of Figure 3A. First,
as shown in Figure 5B, the estimated mean provided by the
presented method corrected a false positive in the solution from
regular Bayesian active learning (row one). The high uncertainty
in this region from the regular Bayesian active learning was also
corrected by the presented method (row three). Second, as noted
in the left column of Figure 3A, the underlying LD posterior pdf
is uni-modal, where both the presented method and two-stage
MCMC correctly recovered the mode in comparison to regular
Bayesian active learning. Similarly, the resulting mode in the HD
space of the tissue property was correctly located in position
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FIGURE 6 | Illustrations of training points (blue dots) selected using variance based on the log-normal process (left), entropy based on the log-normal process

(middle), and upper confidence bound (UCB) based on the Gaussian process (right).

in the presented method whereas the mode of regular Bayesian
active learning shifted in accordance with low dimensional shift.
This shows a correct one-to-onemapping of LD toHD generative
process. Finally, as noted earlier, while the two-stage MCMC,
in general, delivered higher accuracy, this performance gain was
achieved with over 167-fold increase in computation.

5.2.3. Exploration vs. Exploitation Using Log-Normal

Process Based Acquisition Functions
To understand the advantage of the presented log-normal
process-based acquisition functions, we examined where the
active selection of training samples took place in the presented
method vs. regular Bayesian active learning. Figure 6 left
and middle shows the acquisition of training samples using
the variance and entropy of the log-normal process, using,
respectively, 100 and 108 sampling points to meet the
convergence criteria. The contour plot inside these figures
showed the shape of the true bivariate posterior pdf. In
comparison, Figure 6 right panel shows training samples selected
based on the GP using upper confidence bound (UCB). To
converge, it took 129 acquisition steps, which were higher than
those used in the presented method. Comparing left and middle
panel, it showed that the regular acquisition, while exploited
the mode of the posterior mode, explored without focusing on
the posterior support. In comparison, the presented acquisition
functions effectively both exploited and explored within the
posterior support.

5.3. Experiments on Post-infarction Hearts
With Blinded Simulation Data
5.3.1. Experimental Data and Data Processing
In this section, we increased the difficulty of active posterior
estimation by: 1) considering hearts with realistic tissue
excitability extracted from contrast-enhanced MRI (CE-MRI)
and 2) simulation data of 3D cardiac electrical activity generated
by a high-fidelity biophysics model blinded to the AP model
used in the active posterior estimation. In comparison to
synthetic data considered in section 5.2, these image-derived
tissue excitability had the following characteristics that increased
its heterogeneity: the presence of 1) both dense infarct core and
gray zone, 2) a single or multiple infarcts with complex spatial

distribution and irregular boundaries, and 3) both transmural
and non-transmural infarcts.

We considered six post-infarction human hearts. The patient-
specific ventricular models along with the detailed 3D infarct
architectures were delineated from MRI images as detailed in
Arevalo et al. (2016). The training of VAE was performed on
one of the hearts described in section 5.1, using synthetically
generated tissue excitability values as described in that section.

Figure 7 summarizes the results of estimated tissue excitability
on the six post-infarction hearts. Overall, estimated tissue
property, especially the estimated mode, was close to the ground
truth. One more source of increased difficulty in this set of
experiments, in comparison to those in synthetic data, was the
presence of non-transmural scar tissue that did not exist in
the training data of the VAE. This difficultly in estimating has
been previously reported in literature (Dhamala et al., 2017a).
As shown in Figure 7 cases 1–3 and 5 (second and third rows),
the estimated mean or mode either missed the region of non-
transmural abnormal tissue property or incorrectly estimated
it to be transmural (case 3-mode). The associated uncertainty
was not captured in the estimated standard deviation (Figure 7
fourth row) either. Another source of difficulty is the presence of
diffused heterogeneous abnormal tissue that was not considered
in the VAE training data. For instance, in case 4 and case 6,
there was a large patchy gray zone mixed within the dense scars.
These regions were reflected in the region of estimated abnormal
tissue excitability; however, the estimated parameter values were
not able to distinguish between the gray zone and dense infarct.
In addition to identifiability issues associated with the presented
method and the available data, this performance may also arise
from the fact that the AP model considered has limited ability in
differentiating electrical behavior from gray zone and infarct core
(Ramírez et al., 2020).

5.4. Experiments on in vivo ECG and
Voltage Mapping Data
Finally, we performed active posterior estimation for tissue
excitability in real data experiments of three patients who went
catheter ablation of ventricular tachycardia due to myocardial
infarction (Sapp et al., 2012). The patient-specific geometrical
models of the heart and torso were constructed from axial CT
images detailed in Wang et al. (2016). In vivo measurements of
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FIGURE 7 | Results of estimated tissue excitability from the presented method in 3D infarcts delineated from in vivo MRI images. Regions with low excitability (high θθθ

values) correspond to infarct regions (0.5 = infarct core, 0.3–0.5 = gray zone). The red circles highlight non-transmural scars or gray zone.

FIGURE 8 | Results of estimated tissue excitability from the presented method in real clinical data. (A) Voltage data from catheter map. (B) Mean, mode, and standard

deviation estimated from multiple observations from different pacing sites. (C) Mean, mode, and standard deviation estimated from a single observation from one

pacing site.

120-lead ECG were collected during pacing from known sites
of each heart. The surrogate used for evaluating the estimated
tissue excitability was in vivo bipolar voltage data collected
by catheter mapping. As illustrated in Figure 8, based on the
voltage data, the myocardium tissue can be divided into three
groups: infarct core (red: bipolar voltage < 0.5 mv), infarct
border (green: bipolar voltage 0.5–1.5 mv), and healthy (blue:
bipolar voltage > 1.5 mv). Among the three patients, we

consider 120-lead ECG data collected from a total of six different
pacing sites.

1) Case 1: In this case, we were able to estimate the posterior
pdf of tissue excitability by combining ECG data from two
different pacing locations. As shown in Figure 8A (first row),
this subject had a small infarct in the lateral-basal area of
LV. The presented method was able to capture the location
of this infarct core, although much more smoothed out in
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comparison to the voltage data as illustrated in Figure 8B, first
row). The estimated pdf also exhibited uncertainty higher than
the rest of the myocardium in this location. These results were
obtained by 129 active acquisitions of simulations with the
presented method.

Interestingly, when estimating the posterior pdf using only
data from one pacing location, the mode of the estimated pdf
was incorrectly shifted from the actual location of the infarct
tissue—and the uncertainty at that location correspondingly
became higher compared to that associated with estimation using
multiple ECG data (Figure 8C, first row).

2) Case 2: In this case, we were able to estimate the posterior
pdf of tissue excitability by combining ECG data from three
different pacing locations. As illustrated in Figure 8A (second
row), this subject had a highly heterogeneous infarct in the
lateral region of the LV. The presented method, using 153
active acquisitions of simulations, was able to recover the
correct location of the infarct, with an attempt to recover the
heterogeneity in the tissue excitability (Figure 8B, second row).
The mode solution was also shifted from the target region. The
heterogeneity, however, was not captured in fine detail, likely
due to the lack of such heterogeneous data in the VAE training.
The associated uncertainty of the solution was accordingly high.
When reducing the measurement data to only ECG data from
one pacing site, the estimated solution is almost similar when we
used three pacing sites.

3) Case 3: In this case, we only had access to one-paced ECG
data for estimating the posterior pdf of tissue excitability. As
illustrated in Figure 8A (third row), this case had a relatively
dense scar in inferolateral LV with only one set of measurement
data. The presented method was able to locate the infarct using
147 active acquisitions of simulations, with an uncertainty lower
than that of the previous two cases (Figure 8C, third row).

6. LIMITATIONS AND FUTURE WORKS

In this study, we demonstrated the feasibility of Bayesian
active learning for fast approximation of posterior pdf involving
heavy simulations. Our key innovation was to modify the
acquisition functions in regular Bayesian active learning, such
as to focus more on approximating the shape of the posterior
pdf of interest rather than finding the mode of the pdf when
using regular acquisition functions. Following this idea, in this
study, we demonstrated the feasibility of guiding acquisition
with the variance or entropy of the log-normal process being
learned. Future work will continue to explore this idea in other
acquisition functions, with a goal to modulate the trade-off
between exploitation and exploration over the space of z based
on the prior knowledge of its distribution. One possible example
is to consider the improvements in the KL divergence between
the actual and approximated posterior pdf.

While the parameter θθθ was represented in Euclidean space
in this study, organ tissue excitability is actually defined over
a physical domain in the form of a 3D geometrical mesh. By
representing this non-Euclidean data in a Euclidean space, we
have ignored the 3D spatial structure of the physical mesh.

A future step would be to construct the generative model in
non-Euclidean space by considering the geometrical mesh as
a graph (Dhamala et al., 2019). We fixed other parameters
values in the electrophysiological model in Equation (1) to
estimate θθθ , while a better strategy could be varying all the
parameters through respective distributions (Niederer et al.,
2020). As a feasibility study, we considered a scalar parameter
per cardiac mesh node; this simplifies the problem, although
the parameter space was still HD since the parameter values
change across space. Future studies should consider diffusion
tensor D, which requires considering fiber directions that are
largely approximated and associated with errors. The lack of
real data of organ tissue excitability is the main challenge for
training the generative model. A natural next step is to investigate
the possibility of using accessible tissue excitability data derived
from in vivo and ex vivo optical mapping (Gizzi et al., 2013;
Kappadan et al., 2020; Uzelac et al., 2021). In this study, the
VAE was trained by synthetic data only, that is simplified in
shape, transmurality, and heterogeneity. It thus may have a
limited ability to generalize to realistic conditions where tissue
abnormality is more complex in these aspects. An important
direction of future work is to investigate means to improve the
training data for the generative model.

While the VAE provides a probabilistic generative model
pβ (θθθ |z), we only adopted the expectation network of this
probabilistic model, E[pβ (θθθ |z)], as the generative model to
achieve the HD-to-LD embedding of the optimization objective.
An immediate next step is to investigate the incorporation of the
uncertainty in the generative model into both the active learning
of π(z|Y) and the estimated pdf π(θ |Y).

Finally, this study focuses on the specific component of
tissue excitability estimation within the much bigger pipeline of
personalized cardiacmodeling.We thus focused on validating the
estimated tissue excitability using synthetic and in vivo imaging
andmapping data. A next step will be to evaluate the personalized
model in predictive tasks, such as predicting the risk (Arevalo
et al., 2016) or the optimal treatment target (Trayanova et al.,
2018) for lethal ventricular arrhythmia, and investigate how the
uncertainty propagates to simulation outputs and may impact
clinical decisions.

7. CONCLUSIONS

In this study, we present a novel framework for fast
approximation of the posterior pdf of HD simulation parameters
through intelligently selecting training points. This is achieved
by casting posterior inference into the setting of Bayesian
active learning, integrated with 1) generative modeling to
allow active search over HD parameter space and 2) novel
acquisition functions to focus on the shape rather than modes
of the posterior pdf. Future work will investigate the design
of additional acquisition functions, the incorporation of the
uncertainty in the generative model, and the extension of the
presented methodology to probabilistic estimation in other
complex simulation models.
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Background:Remodeling due tomyocardial infarction (MI) significantly increases patient

arrhythmic risk. Simulations using patient-specific models have shown promise in

predicting personalized risk for arrhythmia. However, these are computationally- and

time- intensive, hindering translation to clinical practice. Classical machine learning

(ML) algorithms (such as K-nearest neighbors, Gaussian support vector machines, and

decision trees) as well as neural network techniques, shown to increase prediction

accuracy, can be used to predict occurrence of arrhythmia as predicted by simulations

based solely on infarct and ventricular geometry. We present an initial combined

image-based patient-specific in silico and machine learning methodology to assess risk

for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate

that simulation-supported data augmentation improves prediction models, combining

patient data, computational simulation, and advanced statistical modeling, improving

overall accuracy for arrhythmia risk assessment.

Methods: MRI-based computational models were constructed from 30 patients 5

days post-MI (the “baseline” population). In order to assess the utility biophysical

model-supported data augmentation for improving arrhythmia prediction, we augmented

the virtual baseline patient population. Each patient ventricular and ischemic geometry

in the baseline population was used to create a subfamily of geometric models,

resulting in an expanded set of patient models (the “augmented” population). Arrhythmia

induction was attempted via programmed stimulation at 17 sites for each virtual

patient corresponding to AHA LV segments and simulation outcome, “arrhythmia,”

or “no-arrhythmia,” were used as ground truth for subsequent statistical prediction

(machine learning, ML) models. For each patient geometric model, we measured and

used choice data features: the myocardial volume and ischemic volume, as well as

the segment-specific myocardial volume and ischemia percentage, as input to ML

algorithms. For classical ML techniques (ML), we trained k-nearest neighbors, support

vector machine, logistic regression, xgboost, and decision tree models to predict the
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simulation outcome from these geometric features alone. To explore neural network ML

techniques, we trained both a three - and a four-hidden layer multilayer perceptron

feed forward neural networks (NN), again predicting simulation outcomes from these

geometric features alone. ML and NN models were trained on 70% of randomly

selected segments and the remaining 30% was used for validation for both baseline

and augmented populations.

Results: Stimulation in the baseline population (30 patient models) resulted in reentry

in 21.8% of sites tested; in the augmented population (129 total patient models) reentry

occurred in 13.0% of sites tested. ML and NN models ranged in mean accuracy from

0.83 to 0.86 for the baseline population, improving to 0.88 to 0.89 in all cases.

Conclusion: Machine learning techniques, combined with patient-specific,

image-based computational simulations, can provide key clinical insights with high

accuracy rapidly and efficiently. In the case of sparse or missing patient data,

simulation-supported data augmentation can be employed to further improve predictive

results for patient benefit. This work paves the way for using data-driven simulations for

prediction of dangerous arrhythmia in MI patients.

Keywords: patient-specific modeling, computational cardiology, machine learning in cardiology, modeling and

simulation, biophysical modeling, data augmentation, electrophysiological modeling

1. INTRODUCTION

Ventricular arrhythmia, resulting from abnormal impulse
propagation in the heart, is a leading cause of death in the
industrialized world (Zipes and Wellens, 1998). Ventricular
tachycardia (VT), a life-threatening regular and repetitive fast
heart rhythm, frequently occurs in the setting of myocardial
infarction (MI), as does the even more dangerous and
disorganized ventricular fibrillation (VF), occurring when
blockage in the coronary arteries impedes perfusion to the heart
muscle, causing both acute and chronic damage. Implantation of
a cardioverter-defibrillator (ICD) is the most effective measure
for preventing lethal arrhythmias post-MI; however, ICD therapy
is costly and can be associated with procedural complications,
infections, device malfunctions and diminished quality of life
(Zipes et al., 2016). In addition to the risks associated with
ICD implantation itself, current guidelines for which patients
may benefit from this intervention critically need improvement.
Currently clinical criteria for identifying ICD candidates for
the primary prevention of sudden cardiac death (SCD) rely
almost exclusively on a nonspecific reduction in global left
ventricular function (ejection fraction < 35%). Only 5% of
patients who meet this criterion and thus undergo device
implantation receive life-saving appropriate defibrillation shocks
(Smer et al., 2017). Patient-specific models can be successfully
employed to improve arrhythmia risk assessment for post-MI
patients. Specifically, previous work in computational cardiology
has helped both in outlining the role of MI mechanistically
driving arrhythmia risk, and in assessing individualized patient
risk for dangerous arrhythmia (Arevalo et al., 2013, 2016).
Specifically, clinical magnetic resonance imaging (MRI) with late
gadolinium enhancement (LGE) can be used to construct a 3D

computer model of an individual patient’s heart, incorporating
the patient’s ventricular geometry, structural remodeling, as
well as electrical properties (subcellular to organ). This patient
heart, used in a series of virtual electrophysiology lab induction
protocols, can be used to assess individual risk for dangerous
arrhythmia post-MI and links abnormal myocardial structure
to arrhythmogenicity. The above approach, and analogous
methodologies for other disease states, have been making inroads
with great success so far, but simulations in computational
cardiology are resource- and time-intensive. Despite notable
successes, in many cases their costliness hinders their translation
to clinical practice for improved patient risk assessment and
treatment planning.

Artificial intelligence (AI, encompassing both traditional,
feature-based machine learning, as well as “deep” neural
networks), has emerged as remarkably successful in tackling a
wide variety of challenges in healthcare over the last decade,
including in cardiology (Topol, 2019; Lopez-Jimenez et al., 2020;
Erickson, 2021). In contrast to biophysical models, which can
offer detailed personalized insight as outlined above but can
be cumbersome with respect to computational resources, once
trained, AI models can be remarkably efficient and quick to run,
as well as accurate. Thus, AI is attractive for clinical timescales
wherein decisions need to be made quickly on readily available
computer systems. AI algorithms can learn outcomes (e.g.,
classify disease or assess risk) as based on key patient biomarkers
(i.e., hand-engineered features), in the case of traditionalmachine
learning, or even in the case wherein distinguishing biomarkers
are unknown (in the case of deep learning/neural networks,
which often provide superior accuracy and recall).

Indeed, machine learning has been used extensively in
cardiovascular medicine, not least in the automatic interpretation
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and classification of ECG signals (Kusunose et al., 2020; Chang
et al., 2021; Hicks et al., 2021; Thambawita et al., 2021; Van
De Leur et al., 2021; Zhou et al., 2021). Many studies have
also successfully employed ML in arrhythmia risk stratification,
including advanced ML-enabled image analysis (Feeny et al.,
2020; Krittanawong et al., 2020; Trayanova, 2021). Recently,
ML models have been combined with biophysical modeling
to assess risk for dangerous arrhythmia as well as to uncover
mechanisms of rhythm disturbances and to manage treatment
for affected patients (Prakosa et al., 2013; Bernard et al.,
2018; Lozoya et al., 2019; Shade et al., 2020; Banus et al.,
2021; Monaci et al., 2021; Sermesant et al., 2021; Trayanova,
2021). Biophysical cardiac computational modeling and ML
have also increasingly been combined to focus on drug-induced
proarrhythmic risk assessment, as in e.g., Yang et al. (2020)
and Sahli-Costabal et al. (2020). Thus, biophysically-detailed,
patient-specific models, which may offer mechanistic insight, can
be combined with AI models, which offer superior speed and
accuracy for predictive tasks. However, AI models often require
sufficient data for optimal performance. Usage of clinical data
already implies particular challenges, including practicalities of
access for engineering development and necessary requirements
for data protection, e.g., anonymization. However, data from
clinical studies, while sufficient for traditional statistical analysis,
may also simply not represent the quantity of data necessary to
achieve a superior result with some AI approaches, e.g., neural
networks. Furthermore, data features which are hand-selected or
engineered as based on traditional clinical biomarkers may not
provide optimal predictive performance.

Generally, data augmentation is a technique used to create
novel examples of data by slightly altering existing data and/or
creating de novo synthetic data from existing data for training
of machine learning models. This additional data acts as a
regularizer, and helps to reduce overfitting when training models,
particularly neural networks. Data augmentation has been used
in diverse biomedical contexts to improve model performance,
see e.g., ECG classification models including GAN-enabled
augmentation of ECG datasets (Golany et al., 2020; Shaker
et al., 2020; Thambawita et al., 2021). Biophysical simulation-
based data creation (augmentation) goes a step further, to use
detailed mechanistic models, often incorporating patient-specific
aspects, to increase and enrich the amount of data available
to train AI models. These broadly range from e.g., biophysics-
based domain adaptation methods to improve AI-enabled image
processing in the brain (Gholami et al., 2018) to studies applicable
to arrhythmia assessment and treatment planning in patients
(Lozoya et al., 2019; Shade et al., 2020).

Computational cardiac simulations can create expanded
patient data — as based on first-principles biophysics
— for a single patient, or a population of patients: i.e.,
voltage-mapping to assess inducibility of VT post-MI, when
only image-based geometries (LGE-MRI) are available. The
expanded, augmented population from biophysically-detailed
computational cardiology simulations can then be used to
train AI models for a downstream task (in this case, assessing
patient risk for dangerous arrhythmia post-MI by a series of
classification models).

In this study, we present an initial combined image-based
patient-specific in silico and machine learning methodology to
assess risk for dangerous arrhythmia in post-infarct patients.
Furthermore, we aim to demonstrate that simulation-supported
data augmentation improves prediction models, combining
patient data, computational simulation, and advanced statistical
modeling, improving overall accuracy for arrhythmia risk
assessment. We present a semi-automated image-based patient-
specific modeling and simulation pipeline and well as data-
augmentation and machine learning techniques, and show that
a combined approach can provide key clinical insights with
high accuracy rapidly and efficiently. In the case of sparse or
missing patient data, simulation-supported data augmentation
can be employed to further improve predictive results for
patient benefit. This work paves the way for using data-
driven simulations for prediction of dangerous arrhythmia in
MI patients.

2. METHODS AND MATERIALS

2.1. Image-Based Modeling Pipeline
Several prior studies have developed pipelines generating
personalized heart models, (e.g., Vadakkumpadan et al.,
2010); however, these processes have generally been time-
consuming and manual. We developed and implemented
a semi-automatic pipeline for generating patient-specific
ventricular models (Figure 1). All steps are fully automated,
with the exception of MRI segmentation, which required
manual intervention. The entire pipeline is open-source and
available to the public. This semi-automated pipeline involves
segmentation from MRI medical images of the heart, finite
element model generation, virtual myocardial fiber generation,
and node reordering as preparation for continuum model
electrophysiological simulations.

2.1.1. Baseline Clinical Information for Initial Patient

Groups
In collaboration with Rigshospitalet in Copenhagen, DK, we
received access to MRI of 48 patients suffering from first-time
MI (Jabbari et al., 2015; Ravn Jacobsen et al., 2020). After
immediate primary percutaneous coronary intervention (PPCI),
all patients underwent MRI scans 5 days post procedure. The
data set available for this study was reduced to 30 patients after
data assessment for quality and suitability for the image-based
modeling pipeline described below.

2.1.2. MRI Segmentation
Segmentation was attained using Segment v2.1 R5752, a freely
available software for medical image analysis (https://medviso.
com/segment/). Described in Engblom et al. (2016) is the
algorithm for infarct quantification from which we attained
all ischemic measurements. A complete segmentation had all
relevant slices for a given patient scan segmented into the
endo- and epicardia for both the LV and RV, as well as
potential ischemic tissue (Figure 1A). After segmentation of
all slices, the extracted ventricular heart geometry for a given
patient scan could be visualized as a 3D model as viewed
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FIGURE 1 | (A) Patient MRI and segmentation of endocardial, epicardial, and ischemic surfaces. (B) Rule-based fiber orientation. (C) The generated 30 baseline

geometries with ventricles rendered semi-transparently.

in Figure 1C. All segmentation results were saved as binary
MATLAB files (.mat extension).

2.1.3. Slice Alignment and Surface Generation
Surface generation of segmented regions for creation of finite
element models relies upon inter-slice registration for correct
alignment, to remove patient motion artifacts. Marciniak et al.
have previously described these methods in detail (Marciniak,
2017; Marciniak et al., 2017). The post-adjusted data was then
extracted and converted into four separate surfaces (LV and
RV endocardia, LV and biventricular epicardia). Surfaces were
created using the Visualization Toolkit (VTK) (Schroeder et al.,
2006). Ischemic points were converted into a surface using VTK
and Insight Segmentation and Registration Toolkit (ITK) (Yoo
et al., 2002). Surfaces were visualized in Paraview (Ayachit, 2015).
All surfaces were stored as .vtk files.

2.1.4. Finite Element Model Generation
The creation of 3D models based on generated surfaces was
attained using gmsh (Geuzaine and Remacle, 2009). Mesh
generation included three surfaces: the LV and RV endocardium
and the biventricular epicardia as well as tetrahedral mesh
of the ventricular myocardium and ischemic tissue. Following
successful mesh generation, gmsh model output files were
converted for use by the simulation software openCARP
(Plank et al., 2021). The heterogeneous ischemic regions were
incorporated into the ventricular mesh, first by generating
volume and surface finite element meshes from the ischemic

surface previously generated. Next, the ischemic volume was
divided into numbered, layered regions representing a gradient of
ischemic injury, with severity increasing toward the center of the
damaged region. Regions were assigned based on distance from
the outer surface of ischemic tissue using a scikit-learn Nearest
Neighbors algorithm in Python (Pedregosa et al., 2011). For
the baseline population, the number of regions for each model
was between 10 and 27, depending on ischemia size. Finally,
each point of ischemic volume and its corresponding region was
mapped to the parent heart model.We additionally incorporated,
tested, and implemented a node reordering optimization scheme
for each resultant model to minimize eventual simulation times.
Computation of rule-based myocardial fiber orientation was
completed using the algorithm described in Bayer et al. (2012).
Fibers are visualized in Figure 1B.

2.1.5. Automation
The majority of the described pipeline is automated, excepting
manual MRI segmentation, which takes about 15 min when
completed by trained personnel. Once complete, the segmented
binary .mat file can be input directly into the pipeline, resulting in
the output of a personalized finite element heart model, including
injured tissue, ready for use in simulations and further analysis.
The pipeline is available to the public via GitHub at https://
github.com/vildenst/3D-heart-models; the repository includes
detailed installation and running instructions and offers access
to all necessary software.
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2.1.6. Resultant Baseline Patient Models
Each of the 30 patient models in the baseline patient population
is represented in Figure 1C; with healthy myocardium in red and
the ischemic region in blue.

2.1.7. Creating an Augmented Population of Patient

Hearts
The MRI-based modeling pipeline described in previous sections
was used to create several additional patient-geometry-based
models. Ischemic volume could be effectively decreased from the
baseline model, which incorporated the image-based ischemic
tissue divided into several layered regions. In each patient heart,
ischemic sizes were reduced by 1, 2, 5 and 10 layered regions
to create four novel patient hearts with smaller ischemic sizes.
Ischemic volume was reduced by defining the outer layers
as electrophysiologically normal tissue, while a gradient from
normal to fully ischemic tissue was used for the remaining inner
layers. This process resulted in 99 additional, novel ischemic
ventricular geometries derived from the original 30 patient hearts
(the baseline population), resulting in a total of 129 ventricular
models (the augmented population).

2.2. Electrophysiological Simulations and
Determination of Arrhythmic Vulnerability
2.2.1. Parameters Defining Conductivity and

Electrophysiology
The ten Tusscher model represented healthy ventricular cell
membrane electrophysiology (ten Tusscher and Panfilov, 2006),
while damaged tissue in the ischemic region was modeled
by alteration of ionic conductances as well reduced tissue
conductivity in both the transverse and longitudinal directions
as given below. Furthermore, we modeled ischemic regions as
graded, with damage of increasing severity toward the center
(Tomaselli and Zipes, 2004).

Presented in Supplementary Tables 1, 2 are the parameter
values used for healthy tissue and ischemic regions, respectively
(ten Tusscher and Panfilov, 2006; Kazbanov et al., 2014).
All values are based on those used in a previous 3D
model of human ventricular fibrillation (Kazbanov et al.,
2014). Supplementary Table 1 gives parameter settings of
the ten Tusscher model corresponding to a steep APD
restitution slope of 1.8, increasing vulnerability to reentry.
Supplementary Table 2 shows the example values for a five-layer
ischemic region. The ischemic tissue was subdivided into 50%
outer and 50% inner layer. This distribution was chosen as a large
ischemic border zone has been shown to be pro-arrhythmogenic
(Heidary et al., 2010). The innermost 50% of the ischemic tissue
were modeled with 30% reduction in the INa and ICaL currents;
while the outermost 50% were modeled with a 20% reduction
in both currents compared to the healthy values. Extracellular
potassium concentration was increased linearly from 7.5 to 10
mM from the outermost to the innermost ischemic regions. To
further increase the arrhythmogenecity of the ischemic tissue,
fATP was set to 0.0049 similar to what has been done previously
(Ferrero et al., 2003). The resulting action potential traces are
shown in Supplementary Figure 1.

Supplementary Table 3 references the tissue conductivities
used for both healthy and ischemic tissue (Kléber et al., 1986;
Poelzing et al., 2004; Akar et al., 2007; Hooks et al., 2007; Weiss
et al., 2007; Clayton and Panfilov, 2008; Arevalo et al., 2016).
Healthy conductivities have the same values as used previously
(Arevalo et al., 2016) and ischemic conductivities have been
reduced by 40% to model conduction slowing due to ischemia
(Kléber et al., 1986; Akar et al., 2007; Jie and Trayanova, 2010).

2.2.2. Pacing Site Selection and Vulnerability

Simulation Protocol
A simulated pacing protocol similar to standard clinical
procedures triggering potential arrhythmic behavior was
employed, as described previously (Cheng et al., 2013; Arevalo
et al., 2016). Seventeen evenly distributed pacing sites in the
LV, as based on the standard defined by the American Heart
Association (AHA), were automatically selected as based on
model orientation. As for other methods, this is available in the
GitHub repository. Briefly, to each of these 17 LV pacing sites
for each model, five pacing stimuli (S1) were delivered with
a cycle length of 350 ms, followed by an S2 stimulus 200 ms
following. If no arrhythmic behavior were detected, the S1-S2
period would be shortened by 10 ms intervals until there were
reentrant circuits identified or until S2 failed to propagate. If
the latter were the case, an S3 stimulus would be delivered 250
ms after the last successful S2, following the same procedure.
Finally, an additional S4 stimulus would be delivered after 250
ms if no reentry were detected, following the same protocol
as the S2 and S3 stimuli. Figure 2A illustrates the protocol
described. Simulations were run for 2,000 ms following each
delivered stimulus to detect potential arrhythmic activity, with
outcomes defined as no reentry (NR), unsustained reentry
(UR) or sustained reentry (R) (Figure 2B). The software used
for simulations in this study is the open Cardiac Arrhythmia
Research Package (openCARP) (Plank et al., 2021). All
simulations were ran using 24 cores and 4G memory per CPU.

2.3. Arrhythmia Risk Classification Models
We assessed the ability of machine learning classification
algorithms to correctly classify virtual patient arrhythmia risk
(R and UR correspond to arrhythmia while NR corresponds to
no arrhythmia) as based on simple virtual patient model-derived
features. In each patient model (baseline plus augmented), global
ischemia volume and global ventricular volume was measured,
and for each of the 17 AHA LV segments the ischemic percentage
and tissue volume was measured (4 features, Figures 3A,B).

2.3.1. Machine Learning Algorithms
We investigated the performance of seven machine learning
classification algorithms (ML models): K-nearest neighbors
(knn), Gaussian support vector machine (SVM), logistic
regression, decision tree (tree), xgboost, and 3- and 4-hidden
layer multilayer perceptrons (feed-forward neural networks, 3-hl
NN and 4-hl NN, respectively).

For all ML models, a chosen data set was shuffled randomly
and split into train and test sets. The train and test sets were
further individually standardized prior to model training and

Frontiers in Physiology | www.frontiersin.org 5 November 2021 | Volume 12 | Article 745349329

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Maleckar et al. In-silico and ML Models for Arrhythmia Risk

FIGURE 2 | (A) Pacing induced arrhythmia protocol. The figure shows pacing sites on the myocardium (left), a schematic of corresponding AHA segments (top right)

and pacing intervals (bottom right). Each stimulus had a duration of 10 ms, current amplitude of 100 uA/cm2 and electrode volume of 1 mm3. (B) Activation maps

during a pacing train that resulted in induction of a sustained reentrant circuit. The stimulus was delivered near the ischemic border. Black region denote myocardium

located deep within the ischemic tissue that did not excite due to the severity of the remodeling.

FIGURE 3 | (A) Left to right: 3D representation of an exemplar patient model of the same 17-segment mapping, a medial slice of the same patient heart model

showing accompanying percentages of segment-specific ischemic burden. (B) Left to right: the same heart with semi-transparent LV, showing the global ischemic

burden in the baseline model, and this global burden reduced to 10 and then 4% to create two additional patient models for the augmented population. Both

segment-specific and global myocardial volume and ischemic burdens were used as features for machine learning models in this study.

post-run model performance evaluation via the test set: the
population mean was first subtracted then divided by standard
deviation. Each model was trained on 70% of randomly selected
segments and the remaining 30% of data (test set) was used for
validation. This procedure was repeated for 100 runs of each ML
model on each data set (both baseline and baseline + augmented).

2.3.2. Model Implementation
k-nearest neighbors was implemented using sklearn’s
KNeighborsClassifier (k was set to 5). Support vector machine
(SVM) was implemented using sklearn’s SVC (C was set
to 2). Logistic regression was implemented using sklearn’s

LogisticRegression. Tree was implemented using sklearn’s
DecisionTreeClassifier (max depth was set to 3). Xgboost was
implemented using xgboost’s XGBClassifier. 3-hl NN and 4-hl
NN were implemented using Keras sequential (an API built
on tensorflow). 3-hl NN used 32, 17 and 8 nodes, respectively,
in each layer. Activation functions were the rectifier linear
unit (ReLU) on hidden layers and the normalized exponential
function (softmax) on output. Batch normalization was applied
between each layer. The learning rate schedule was exponential
decay with an initial learning rate of 0.01, with decay steps set
to 100,000 and the decay rate to 0.9. We employed the gradient-
based optimization methods RMSProp with zero momentum
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TABLE 1 | Summary of arrhythmia simulation results.

Baseline models Augmented models

no. of layers removed 0 1 2 5 10

Total no. of patients 30 25 25 25 24

Mean global ischemia % 10.80 10.34 9.15 6.10 2.60

SD global ischemia % 10.54 8.65 7.86 5.62 2.77

no. of patients with reentry 17 15 10 8 3

% of patients with reentry 56.67 60.00 40.00 32.00 12.50

% of segments with reentry 21.76 18.82 13.41 7.53 1.18

Mean no. of reentries per model 3.70 3.20 2.28 1.28 0.21

SD no. of reentries per model 4.86 4.51 3.93 2.54 0.59

Columns represent the baseline and augmented populations, where ischemic volumes are reduced by 1, 2, 5, and 10 layers (from left to right). Patients without ischemia were not

further modified.

during training, as well as categorical crossentropy as the loss
function. Twenty-five epochs, batch size = 20. 4-hl NN employed
the same implementation as 3-hl NN, but with an additional
layer of 8 nodes at its end.

Other than specified, default parameter values from sklearn,
xgboost, and Keras sequential were used.

2.3.3. Model Performance Assessment
Accuracy, equal to the number of correct predictions divided by
the number of all predictions for the test data, was computed
for all ML models for both baseline and augmented data sets.
Precision was also calculated at a threshold of 0.5 for all ML
models for both baseline and augmented data sets, to determine
the proportion of positive arrhythmia identifications that were
actually correct, defined as precision =

TP
TP+FP . Model sensitivity

(also known as recall), defined as sensitivity =
TP

TP+FN was
additionally calculated at a threshold of 0.5 for ML model results
on both baseline and augmented patient population results,
where TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives. Average
precision, a weighted mean of model precision for multiple
thresholds, was also calculated for all ML models for both
baseline and augmented data sets.

Receiver operating characteristic (ROC) curves were
calculated for all models for both baseline and augmented
population results (Melo, 2013b). The Area Under the ROC
curve (AUC) was also calculated for all ML model results
(Melo, 2013a).

P-values were calculated using a t-test to test whether
per-model prediction accuracy improved when including the
augmented patient population’s simulated arrhythmia outcomes,
as well as an F-test to test whether the per-model variance was
smaller when including augmented population results.

3. RESULTS

3.1. Arrhythmic Vulnerability in Baseline
and Augmented Populations
In the baseline patient model population, 17 segments in 30
patients were evaluated for global arrhythmic vulnerability. Of

these 510 segments, arrhythmia appeared in 111 segments during
the protocol (no arrhythmia in 399; a ratio of 0.218). In the
augmented patient model population, 17 segments in 129 total
patient models were evaluated. Of these 2,193 segments, global
arrhythmia appeared in 285 segments (no arrhythmia in 1,908;
ratio 0.130) during our protocol. A summary of the results are
given in Table 1.

The full set of results of the virtual vulnerability protocol
for all patient models as specified in Materials and Methods
can be found in Supplementary Table 4. Supplementary Table 5

summarizes the differences between the arrhythmic and non-
arrhythmic groups. In general, hearts with larger global
ischemic volumes were more inducible after the pacing protocol.
Additonally, pacing from segments with larger percentage of
ischemic tissue were also more likely to induce arrhythmia
(Oliveira et al., 2018; Martinez-Navarro et al., 2019, 2021). This
result suggests a mechanistic link between location of pacing
site and arrhythmia inducibility in post-MI patients. These
results are consistent with other studies that have shown that
ectopic beats originating from the borders of ischemic tissue
are more likely to result in wavebreak and reentry formation.
Additionally, a positive correlation between ischemic volume
and vulnerability to arrhythmia has been widely reported in the
literature (Rubenstein et al., 2008; Klem et al., 2012).

3.2. Performance of Arrhythmic Risk
Assessment Models
Segment-specific myocardial volume and segment-specific
ischemic percentage as well as total myocardial volume and
total estimated ischemic volume were calculated for each
patient model in the baseline and augmented populations as
detailed in Methods and Materials. Statistics on these features
as well as associated arrhythmia outcomes can be found in
Supplementary Table 5 (model input statistics).

Accuracy of all ML models trained and tested on data
from both the baseline and augmented populations is shown
in Table 2. For each of the seven ML models tested, mean
predictive accuracy improved and accuracy standard deviation
decreased when employing data from the augmented patient
population. For all models trained and tested on data from
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TABLE 2 | Results.

Model Mean Standard deviation Max Min

k-nearest neighbors, baseline 0.84386 0.02710 0.90196 0.77778

k-nearest neighbors, augmented 0.89468 0.00986 0.92553 0.87082

Support vector machine, baseline 0.86059 0.02358 0.92157 0.78431

Support vector machine, augmented 0.89453 0.01035 0.92097 0.87082

Logistic regression, baseline 0.86052 0.02342 0.92157 0.79085

Logistic regression, augmented 0.89749 0.01006 0.92097 0.87538

Decision tree, baseline 0.84261 0.02319 0.88889 0.78431

Decision tree, augmented 0.88868 0.01121 0.91489 0.86626

Xgboost, baseline 0.83118 0.02629 0.90196 0.73203

Xgboost, augmented 0.88722 0.00973 0.90881 0.86018

3 hidden layer neural network, baseline 0.84366 0.02785 0.92157 0.76471

3 hidden layer neural network, augmented 0.89353 0.01175 0.92401 0.86778

4 hidden layer neural network, baseline 0.84523 0.03018 0.90196 0.73856

4 hidden layer neural network, augmented 0.89470 0.01197 0.92249 0.86930

ML model accuracy for baseline and augmented populations.

TABLE 3 | Results.

Model Mean Standard deviation Max Min

k-nearest neighbors, baseline 0.86121 0.03168 0.93125 0.78341

k-nearest neighbors, augmented 0.86063 0.02158 0.91206 0.80355

Support vector machine, baseline 0.89963 0.02689 0.95743 0.82969

Support vector machine, augmented 0.88938 0.01627 0.92553 0.83582

Logistic regression, baseline 0.90478 0.02278 0.95267 0.84192

Logistic regression, augmented 0.9187 0.01033 0.94464 0.88435

Decision tree, baseline 0.89213 0.02918 0.94562 0.79392

Decision tree, augmented 0.89281 0.01768 0.9265 0.83708

Xgboost, baseline 0.87596 0.02704 0.9257 0.77737

Xgboost, augmented 0.90071 0.01106 0.91898 0.86177

3 hidden layer neural network, baseline 0.89673 0.02518 0.95611 0.79616

3 hidden layer neural network, augmented 0.91565 0.01147 0.94856 0.88724

4 hidden layer neural network, baseline 0.90069 0.02378 0.95003 0.82399

4 hidden layer neural network, augmented 0.91448 0.01316 0.94674 0.87139

ML model average precision for baseline and augmented populations.

the baseline patient population alone, SVM and logistic
regression performed best in terms of mean accuracy ( 0.86;
results among models ranged from 0.83 to 0.86). When
using results from the augmented patient population, all
ML models improved in accuracy (to 0.88 to 0.89; accuracy
and variance of accuracy among all model trials between
the baseline and augmented populations was statistically
significant; p-values shown in Supplementary Table 8.
Notably, 3- and 4-hl NN matched the performance of logistic
regression, all performing best when considering the augmented
population results.

Average precision (AP) of all ML models trained and tested
on data from both the baseline and augmented populations is
shown in Table 3. AP stayed the same, or modestly increased,
for all ML models tested, with the exception of SVM, which

decreased slightly. Sensitivity and precision of all ML models
trained and tested on data from both the baseline and augmented
populations at a threshold of 0.5 is additionally shown in
Supplementary Tables 6, 7, respectively.

Figures 4, 5 present the ROC curves for the highest-
performing models tested in both the baseline and augmented
populations, knn, decision tree, and logistic regression are shown
in Figure 4, while neural network ROC curves are presented in
Figure 5. Supplementary Figure 2 shows results for SVM and
xgboost. Corresponding AUC for all ML models trained and
tested on data from both the baseline and augmented populations
is shown in Table 4. While differences among models are
relatively modest, logistic regression, 3-hl NN, and 4-hl NN
performed similarly best in class, with confidence intervals as
shown in Figures 4B, 5A,B.
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FIGURE 4 | Machine learning model performance: ROC curves with 95% confidence interval for (A) k-nearest neighbors, (B) decision tree, and (C) logistic regression,

comparing models trained on augmented and baseline population. True positive rate = TP/(TP+ FN), false positive rate = FP/(FP+ TN).

FIGURE 5 | Artificial neural network performance: ROC curves with 95% confidence interval for (A) 3 and (B) 4 hidden layer feedforward neural network, comparing

models trained on augmented and baseline population. True positive rate = TP/(TP+ FN), false positive rate = FP/(FP+ TN).

4. DISCUSSION

4.1. Summary of Study and Findings
Here, we have presented a combined in silico and machine
learning methodology to assess risk for dangerous arrhythmia in

post-infarct patients. We have aimed to briefly demonstrate that
simulation-supported data augmentation can improve prediction
models and overall accuracy for arrhythmia risk assessment.
Briefly, we used a semi-automated image-based patient-specific
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TABLE 4 | Results.

Model Mean Standard deviation Max Min

k-nearest neighbors, baseline 0.86121 0.03168 0.93125 0.78341

k-nearest neighbors, augmented 0.86063 0.02158 0.91206 0.80355

Support vector machine, baseline 0.89963 0.02689 0.95743 0.82969

Support vector machine, augmented 0.88938 0.01627 0.92553 0.83582

Logistic regression, baseline 0.90478 0.02278 0.95267 0.84192

Logistic regression, augmented 0.9187 0.01033 0.94464 0.88435

Decision tree, baseline 0.85995 0.03819 0.92412 0.74988

Decision tree, augmented 0.89281 0.01768 0.9265 0.83708

Xgboost, baseline 0.87596 0.02704 0.9257 0.77737

Xgboost, augmented 0.90071 0.01106 0.91898 0.86177

3 hidden layer neural network, baseline 0.89673 0.02518 0.95611 0.79616

3 hidden layer neural network, augmented 0.91565 0.01147 0.94856 0.88724

4 hidden layer neural network, baseline 0.90069 0.02378 0.95003 0.82399

4 hidden layer neural network, augmented 0.91448 0.01316 0.94674 0.87139

ML model AUC for baseline and augmented populations.

modeling and simulation pipeline to create both baseline and
augmented patient populations, and assessed vulnerability to
reentry in both populations via a virtual programmed stimulation
protocol. We then calculated specific geometric features in all
patient models, and trained seven machine learning algorithms
(3 classification, 1 clustering, and 2 neural networks) to predict
arrhythmia outcome directly from these geometric patient model
features alone.

We found that this combined approach can provide insight
with high accuracy, rapidly and efficiently, with accuracy ranging
from 83 to 86% for all ML models for the baseline population.
Furthermore, all ML models improved in accuracy to 88–89%
(accuracy and accuracy variance was statistically significant; p-
values shown in Supplementary Table 8) when using results
from the augmented patient population, demonstrating that,
particularly in the case of small cohorts and/or sparse patient
data, simulation-supported data augmentation can be employed
to further improve results of predictive machine learning models.

4.2. Comment on Model Explainability and
Critical Features
Previous research has identified LGE volume (Klem et al.,
2012) and LV mass (Haider et al., 1998) as predictors for
sudden cardiac death. Because we implemented a decision
tree as one of the ML models evaluated and this performed
reasonably similar to other models, we were conveniently
able to directly probe the decision-making in this algorithm
to assess which feature(s) this model deemed as most-
important for its decision making. Again, the hand-picked
geometric features were: segment-specific myocardial volume
and ischemic percentage, as well as total myocardial volume
and total estimated ischemic volume, calculated for each patient
model and segment in both the baseline and augmented
populations. In both populations, the most important of the
four input features tested was estimated total ischemic volume
(Supplementary Figures 3, 4, respectively). However, in the

augmented population, the other three features (total myocardial
volume, segment-specific ischemic percentage, and segment-
specific myocardial volume) were more important for decision
making than in the baseline population. The decision trees
for the baseline and augmented populations can be seen in
Supplementary Figures 5, 6, respectively.

4.3. Biophysical Model-Based Data
Creation and Augmentation: A Growing
Body of Work
ML models have been utilized successfully and extensively in
arrhythmia risk assessment (Feeny et al., 2020; Krittanawong
et al., 2020) and in cardiovascular imaging, to diverse ends
(Prakosa et al., 2013; Bernard et al., 2018; Sermesant et al.,
2021). More recently, compound, explainable ML models
have demonstrated improved risk prediction for ventricular
arrhythmias as compared to traditional biomarkers (i.e., left
ventricular ejection fraction, LVEF), as validated retrospectively
in large clinical cohorts, (e.g., Ly et al., 2021). However, others in
recent years have also pioneered the combination of biophysical
modeling and ML approaches in arrhythmia risk assessment
(Lamata, 2018). In cardiac electrophysiology and arrhythmias,
applications include but are not limited to techniques for
electrical mapping of the myocardium, research to uncover
the basic mechanisms of arrhythmia, and arrhythmia treatment
planning and management, as recently reviewed in Trayanova
et al. (2021). A key utilization of biophysical model-enabled
data creation in this space has been for feature augmentation
to improve performance of learning schemes (Lozoya et al.,
2019; Shade et al., 2020). Notably, Shade et al. (2020) used
ML and personalized computational modeling in concert to
accurately predict whether a patient was likely to experience
AF recurrence following pulmonary vein isolation (PVI), using
only pre-PVI LGE-MRI scans as input. This work shares some
notable methodological similarities with the present study: only
patient LGE-MRI were used as input for electrophysiological
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computational models, and the (baseline) patient cohort size
was similar (32 vs. 0.30 in the present study). Also similarly,
Shade et al. found reasonable predictive performance with
traditional ML approaches and a simulation-augmented feature
set. The divergence in the current study is that the input
data was augmented via patient model population expansion,
rather than introduction of additional features, e.g., from our
electrophysiological simulations. Corrado et al. (2021) also
recently demonstrated the use of a virtual patient cohort to assess
risk for sustained atrial arrhythmia; an ML model (SVM) trained
on local conduction velocity and action potential duration was
able to accurately predict whether an arrhythmia would tether to
that tissue region. In the present study, simulations also provided
the ground-truth regarding patient vulnerability to arrhythmia,
as required for this proof-of-concept in post-MI patients. In
future work, we will indeed employ electrophysiological features
from simulations themselves to assess how their incorporation
improves and/or alters model performance.

4.4. Limitations and Future Work
Despite the successful proof-of-concept executed in this study,
there are acknowledged limitations to this work. In order
to expand the number of patient hearts in the augmented
population, the ischemic tissue in each patient heart was reduced
several times, as described in Methods and Materials. A naive
approach was thus adopted as a first step and ischemic volume
was not altered symmetrically, given practical limitations in
terms of computational time and tractability for patient-specific
biophysical simulations.

The patient population can be further augmented in several
ways to explore the empirical role of class balance in classifier
performance, as well as to create data of sufficient volume
to explore the improved performance of vanilla NN and
deep learning approaches e.g., convolutional neural networks.
Approaches to be used for augmenting patient populations
(the space of the patient-specific, image-derived geometries
and concomitant features) include shape modeling approaches
(Balaban et al., 2021) as well as generative adversarial networks
(Gholami et al., 2018; Shaker et al., 2020). Next steps for this
and related work research may include combining multi-organ
systems for joint study (e.g., Banus et al., 2021), to both better
constrain the parameter space of a personalized model and to
subsequently capture plausible physiologically mechanisms.

Furthermore, we have employed LGE-MRI from patients 5
days post-MI and have considered the damaged tissue region
as ischemic in the present study, rather than as an evolving
necrotic/fibrotic scar region. It is known, however, that the
initial region of ischemic injury evolves rapidly, spatially and
functionally, and may change significantly by the time of imaging
5 days later (Anversa and Sonnenblick, 1990; Holmes et al., 1994;
Ertl and Frantz, 2005; Geerse et al., 2009; Wan Ab Naim et al.,
2020), introducing uncertainty into our assumptions regarding
the modeling of damaged tissue.

Finally, to demonstrate potential clinical utility of the method,
validation of trained ML models with e.g., paired clinical

follow-up data for arrhythmia incidence for the non-augmented
population would be critical. Simulation results as presented here
and real clinical scenarios may be quite different; for instance,
the overall clinical arrhythmia rate may differ between specific
patient groups and from in silico incidence, and should be
taken into consideration. Presently, while comparison between
simulation results here and clinical data has not been possible
due to lack of appropriate data, appropriate follow-up data
and model validation is ultimately crucial for the method’s
translational utility.
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Computational models of atrial fibrillation have successfully been used to predict optimal

ablation sites. A critical step to assess the effect of an ablation pattern is to pace the

model from different, potentially random, locations to determine whether arrhythmias

can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian

process classification on Riemannian manifolds to efficiently determine the regions in

the atria where arrhythmias are inducible. We build a probabilistic classifier that operates

directly on the atrial surface. We take advantage of lower resolution models to explore

the atrial surface and combine seamlessly with high-resolution models to identify regions

of inducibility. We test our methodology in 9 different cases, with different levels of

fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution

simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier

that combines low and high resolution models, shows a balanced accuracy that is,

on average, 5.7% higher than a nearest neighbor classifier. We hope that this new

technique will allow faster and more precise clinical applications of computational models

for atrial fibrillation. All data and code accompanying this manuscript will be made publicly

available at: https://github.com/fsahli/AtrialMFclass.

Keywords: machine learning, cardiac electrophysiology, atrial fibrillation, Gaussian processes, Riemannian

manifolds, active learning

1. INTRODUCTION

Atrial Fibrillation (AF) is the most common cardiac arrhythmia and a significant contributor to
morbidity and mortality (Virani et al., 2021). AF is characterized by a chaotic electrical activity
of the atria and perpetuated by multiple re-entrant wavelets propagating in the atrial tissue. It
has been shown in several studies that in patients in the early stages of AF (paroxysmal AF), the
chaotic activity is originated mainly from the pulmonary veins (PVs) (Haissaguerre et al., 1998;
Chen et al., 1999). Thus, PV isolation (PVI) is the cornerstone of AF treatment at this point (Kawai
et al., 2019). Here, ablation lines around the PVs are created to electrically isolate them. However,
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in patients with a persistent form of AF, PVI efficacy remains sub-
optimal (Verma et al., 2015; Kawai et al., 2019). The detriment
in the effect of this treatment in persistent AF patients is caused
mainly by the shift of electrical abnormalities in the PVs to other
locations and higher degrees of structural remodelling (Boyle
et al., 2019; Kawai et al., 2019). Targeting arrhythmic substrates in
persistent AF patients, in addition to PVI, could not demonstrate
any benefit, as these treatment approaches do not incorporate
strategies to find optimal ablation targets according to the AF
mechanism (Verma et al., 2015). Furthermore, the high inter-
individual variability in fibrosis distributions (McDowell et al.,
2015; Boyle et al., 2019) and sources maintaining AF indicates an
urgent need for patient-specific approaches.

Simulations, conducted in computational atrial models, have
recently been used to develop mechanistic insights into the
perpetuation and ablation of persistent AF patients with atrial
fibrosis (McDowell et al., 2015; Boyle et al., 2019; Loewe et al.,
2019; Roney et al., 2019). A common approach to investigate AF
is to stimulate a high fidelity model from different pacing sites
and observe whether this arrhythmia was induced or not (Boyle
et al., 2019). With these simulations, it is possible to create an
inducibility map that shows the regions of the atria where AF will
manifest if stimulated (Potse et al., 2018). Moreover, this map can
be reduced into one metric, the inducibility, which corresponds
to the fraction of the tissue where AF can be induced. This
quantity is useful to compare different ablation treatments, as the
most efficient intervention will be the one that reaches the lowest
inducibility with the lowest amount of ablation (Gharaviri et al.,
2021a,b).

Inducibility maps are computationally expensive to compute
with high fidelity models. The complete exploration of all the
potential sites that could trigger an arrhythmia is currently
unfeasible (Loewe et al., 2019). For this reason, a number of
alternatives have been proposed. A viable option is to design
a pacing protocol that maximizes the chance of inducing
AF (Azzolin et al., 2021). Alternatively, the computational cost
per simulation could be reduced by a faster implementation of
the AF model, e.g., based on GPGPU (Kaboudian et al., 2019).
Additionally, low fidelity models provide an approximation
that could be based on simplified physics, e.g., eikonal
models (Fu et al., 2013; Quaglino et al., 2018), reduced-order
modeling (Fresca et al., 2020; Pagani and Manzoni, 2021) or
simply on a coarser discretization (Quaglino et al., 2019; Dhamala
et al., 2020).

Low fidelity models alone are faster, but potentially imprecise
in reproducing the high fidelity inducibility map. However, a
certain degree of statistical correlation between high- and low
fidelity maps is to be expected. Multi-fidelity approaches can
exploit this inter-model correlation to improve the accuracy of
the estimators for a fixed total cost or, equivalently, to reduce
the total cost of estimation for a targeted accuracy (Perdikaris
et al., 2016; Quaglino et al., 2018, 2019; Sahli Costabal et al.,
2019). This is achieved by offsetting most of the computational
burden to the low fidelity model. Moreover, the overall
computational cost could also be further reduced by carefully
selecting the training points. To this end, Bayesian decision
making strategies, commonly referred to as active learning

(Cohn et al., 1996), can provide a principled way for judiciously
selecting new observations towards improving classification
accuracy. The process consists in adding points iteratively in
the locations where the uncertainty is greater (Kapoor et al.,
2007; Gramacy and Polson, 2017; Sahli Costabal et al., 2020;
Zaman et al., 2021).

The problem of creating an inducibility map can be seen as
a classification problem, from a machine learning perspective.
The labels, in this case, are the occurrence or absence of AF
when we pace the model from a specific site, which corresponds
to the input. Although this may seem a trivial task, for which
many tools are available, it is not straightforward when the
classification domain is a Riemannian manifold, such as the atrial
surface. In this case, points that may be close in the Euclidean
space might be apart in the manifold due to its topology. There
has been recent attention in the machine learning community
on formulating effective Gaussian process (GP) models for
supervised learning on Riemannian manifolds (Coveney et al.,
2019; Borovitskiy et al., 2020). GPs tend to perform well
when the amount of data available is limited, and, due to
their Bayesian nature, they provide built-in uncertainty in the
predictions. However, current approaches, also adopted in the
cardiac modeling community, have focused on the regression
case (Coveney et al., 2019; Coveney S. et al., 2020). Performing
classification with Gaussian processes is a challenging task,
as there is no closed expression of likelihood and requires
different types of approximations to perform statistical inference
(Rasmussen and Williams, 2006).

In this work, we develop GP classifiers that can operate
on manifolds, such as the atrial surface (see Figure 1). We
extend this tool to seamlessly combine different levels of
data fidelity by creating a multi-fidelity GP classifier. In the
specific context of AF, we aim to develop a method that
allows us to comprehensively determine atrial regions, for a
specific structural remodeling pattern, that, if stimulated could
successfully initiate AF, creating an inducibility map in-silico.
In particular, our low fidelity model is based on a coarser
spatial discretization of the atrial geometry and on a larger
time step in the solution of the electrophysiology equations.
The inducibility map is reconstructed using a multi-fidelity
GP classifier, resulting in a function on the atrial surface
taking boolean values, depending on whether AF is or is
not inducible when pacing from a given location. We will
demonstrate that this approach is more efficient and accurate
than other classifiers, and even single-fidelity methods, for
cases with and without ablation treatments and for different
fibrosis patterns.

The manuscript is organized as follows. In Section 2 we
present the AF model and the classification method, obtained
by extending the classic GP classification on manifolds. We also
present the multi-fidelity approach, as well as the active learning
scheme employed to sequentially acquire new information.
Section 3 is devoted to the numerical experiments. Specifically,
we propose a numerical assessment of the classifiers, including
nine case studies involving the characterization of inducibility
regions of atrial models. The discussion in Section 4 concludes
the manuscript.

Frontiers in Physiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 757159340

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gander et al. GP Learning of AF Inducibility

FIGURE 1 | Overview of the methodology. We predict the regions where AF can be induced using a multi-fidelity Gaussian process classifier. We use the Laplacian

eigenfunctions of the atrial geometry to efficiently construct a Gaussian process covariance function that operates directly on the manifold surface. We pace different

sites in computational models of AF with low and high resolution to create a dataset to train our classifier. In the end, we obtain an inducibility map that can be used to

assess treatments.

2. METHODS

2.1. Atrial Modeling
In this work, we use previously developed highly detailed human
atrial model of atrial fibrillation (AF) (Potse et al., 2018; Gharaviri
et al., 2020). We briefly summarize here the relevant aspects of
the model. The anatomy, including heart and torso, is based
on MRI data. Several key features (bundles, fibers) are based
on histological studies and added manually. The atrial wall is
3-dimensional with variable thickness.

In the numerical experiments for this study, we consider
different combinations of fibrosis patterns and ablation lines, for
a total of 9 scenarios. Firstly, we consider three fibrosis patterns
(Figure 2), one case with moderate fibrosis, corresponding to
50% of fibrotic tissue, and two cases with severe fibrosis,
corresponding to 70% of fibrotic tissue. We consider endomysial
fibrosis, which is modeled by formally imposing zero cross-
fiber intracellular conductivity in fibrotic regions. Secondly, we
implement two standard-of-care ablation strategies, pulmonary

veins isolation (PVI) and PVI with roof lines (PVI+BOX), see
Figure 2D. Ablation lines are non-conductive tissue.

The electrical activity is modeled with the monodomain
system (Colli Franzone et al., 2014), which reads as follows































χ

(

Cm∂tVm + Iion(Vm,w)

+Istim(x, t)
)

= ∇ · (Gm∇Vm), (x, t) ∈ �× (0,T],

∂tw = g(Vm,w), (x, t) ∈ �× (0,T],
Gm∇Vm · n = 0, (x, t) ∈ ∂�× (0,T],
Vm(x, 0) = V0, w(x, 0) = w0, x ∈ �,

(1)

where Vm(x, t) is the transmembrane potential, w(x, t) is a
vector of ion gating and concentration variables, � is a domain
describing the active myocardium, Cm = 1 µF cm−2 is the
membrane capacitance, χ = 800 cm−1 is the membrane surface-
to-volume ratio, Istim is the current stimulus, Gm(x) is the
monodomain conductivity tensor, and Iion and g describe the
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FIGURE 2 | AF models. Fibrosis distribution in 3 different scenarios: moderate fibrosis [(A), 50% fibrotic tissue], and severe fibrosis (70%) in two different patterns (B),

(C). (D) shows PVI and BOX ablation lines.

ionic model. In particular, we consider the Courtermanche-
Ramirez-Nattel model (Courtemanche et al., 1998) adapted to an
AF phenotype, with minor adaptations to guarantee numerical
stability when evaluating the gating parameters for certain values
of Vm (Potse, 2019). The initial condition (V0,w0) corresponds
to the resting state.

The conductivity tensor Gm is defined as Gi(Gi + Ge)−1Ge,
where Gi and Ge are, respectively, the intra- and extra-
cellular conductivity tensors, both assumed transversely isotropic
with respect to the local fiber direction. The intracellular
longitudinal and cross conductivity are, respectively, set 3 and
0.3mS cm−1, while the extracellular conductivities are 3 and
1.2mS cm−1, respectively. The resulting conduction velocity in
the fiber direction is 55.6 cm s−1. In the Bachmann’s bundle,
faster conduction is obtained with a longitudinal intracellular
conductivity of 9mS cm−1. Finally, the region between the
superior and inferior vena cava is assumed isotropic, with all
conductivities set to 1.5mS cm−1.

The numerical solution of Equation (1) is based on a second-
order finite difference scheme for the spatial discretization, and
a fully explicit first-order Euler scheme for time stepping (Potse
et al., 2006). The Rush-Larsen scheme is adopted to update the
gating variables. The computational domain is discretized using
a uniform mesh with hexahedral elements of side h.

For the high fidelity simulations, we consider a fine mesh
with h = 0.2mm and a time step of 1t = 0.01ms. For the
low fidelity simulations, we double the discretization parameters,
with h = 0.4mm and1t = 0.02ms. The coarsening of the grid is
performed by employing a majority rule to determine the tissue
type and fiber orientation of the coarse hexahedral elements from
the eight sub-elements of the fine mesh. Moreover, the coarse
model assumes a reduced surface-to-volume ratio χ = 450 cm−1

to balance out the expected reduction in conduction velocity due
to a coarser space discretization (Pezzuto et al., 2016).

All simulations are performed with the Propag-5
software (Potse et al., 2006; Krause et al., 2012) on the Swiss
National Supercomputing Centre (CSCS). For one simulation
with T = 4 s, the compute time of the high fidelity model is
1 h40min with 8 nodes, whereas the compute time of the low
fidelity model is 14min with 4 nodes. This means that the low
fidelity model is approximately 16 times faster than the high
fidelity model.

2.2. Pacing Protocol for Atrial Fibrillation
The stimulation protocol, encoded in the function Istim(x, t), is
defined by a point xstim ∈ � and a vector of distinct times

τ stim =
{

τj
}Nstim

j=1 through the expression

Istim(x, t; xstim, τ stim) =
{

Imax, (x, t) ∈ Br(xstim)×
⋃Nstim

j=1 [τj, τj +1τ ],
0, otherwise,

(2)

where Br(xstim) = {x ∈ � : xstim ≤ x ≤ xstim + r} is a
r-neighborhood (the ≤ is meant component-wise) of the
stimulation site, and 1τ > 0 is the stimulus duration. In this
study, the vector τ stim is fixed as in Figure 3 (middle panel),
which consists in a series of Nstim = 14 stimuli with decreasing
temporal distance, whereas xstim varies for each simulation. Each
stimulus lasts1τ = 4ms, and has a strength Imax = 800 µA cm−2

with a fixed radius r = 0.8 cm, which is enough to maximize the
chance that the tissue correctly captures it (Potse et al., 2018). The
induction of AF is not successful when (Vm,w) asymptotically
approaches the resting state after the delivery of the last stimulus.
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Otherwise, if a self-sustained activity is still present at the end
of the simulation, the induction of AF is successful. The idea
is summarized in Figure 3. For sake of simplicity, in this work
there is no distinction between a true AF episode and an atrial
flutter, which could be understood as a periodic solution of the
monodomain system.

The objective of this work is to learn the set A ⊂ �, such that
if xstim ∈ A a sustained episode of AF is observed. In particular,
we are interested in approximating the indicator function of A,
denoted by F :� → {0, 1} such that F−1(1) = A. The overall
inducibility, which reflects the fraction of the tissue where AF can
be initiated, follows immediately from the definition ofA as

I =
|A|
|�|

=
1

|�|

∫

�

F(x) dx.

Interestingly, the formula generalizes to the case of non-
uniformly distributed ectopic foci. Let ρ(x) be the probability
density function of the distribution of foci, then the inducibility
can be obtained as

Iρ =
∫

�

F(x)ρ(x) dx.

In this way, for instance, it is possible to account for a higher
density of ectopic activity around the pulmonary veins and
fibrotic regions. In this work, we will only consider a uniform
distribution of foci, equivalent to select ρ(x) = |�|−1.

2.3. Classification With Gaussian
Processes
Next, we present the proposed methodology for learning the
inducibility function F from a limited set of simulations. We
start by assuming that we have a data-set of N input/output pairs

D =
{

(xi, yi)
}N

i=1, where xi ∈ � and yi ∈ {0, 1}. Since the
atrial wall is thin, we constrain the points to belong to a mid-
wall smooth atrial surface S ⊂ �. We remark however that
there is no loss of generality in the following presentation, as the
methodology applies to the volumetric domain � in the same
manner. Moreover, since yi takes only binary values, we also
restrict the scope of this work to binary classification. We also
note that it is straightforward to extend this framework to the
multi-class classification setting.

The classical formulation of Gaussian process classification
defines an inter mediate variable which is computed from a latent
function f (x) (Rasmussen and Williams, 2006). Throughout
this article, we will assume standardized data-sets and work
with zero-mean Gaussian process priors of the form f ∼
GP (0, k(x, x′; θ)). Here, k(·, ·; θ) is a covariance kernel function,
which depends on a set of parameters θ . We adopt a fully
Bayesian treatment and prescribe prior distributions over these
parameters, which we will specify later (Neal, 1999). To obtain
class probability predictions we pass the Gaussian process output
f through a non-linear warping function σ :R → [0, 1], such
that the output is constrained to [0, 1], rendering meaningful
class probabilities. We define the conditional class probability as
π(x) = P[y = 1|x] = σ (f (x)). A common choice for σ (f ) is

the logistic sigmoid function σ (f ) = (1+ exp (−f ))−1, which we
will use throughout this work. We assume that the class labels are
distributed according to a Bernoulli likelihood with probability
σ (y) (Nickisch and Rasmussen, 2008).

2.4. Gaussian Process Priors on Manifolds
A crucial step in building a Gaussian process classifier is
the choice of the kernel function. A popular choice is the
Matérn kernel, which explicitly allows one to encode smoothness
assumptions for the latent functions f (x) (Rasmussen and
Williams, 2006). In a Euclidean space setting, the kernel function
has the form (Rasmussen and Williams, 2006):

k(x, x′, θ) = η2
21−ν

Ŵ(ν)

(√
2ν

‖x− x′‖
ℓ

)ν

Kν

(√
2ν

‖x− x′‖
ℓ

)

,

(3)
where Ŵ is the gamma function, and Kν is the modified Bessel
function of the second kind. The parameter η controls the overall
variance of the Gaussian process, the parameter ℓ controls the
spatial correlation length-scale, and ν controls the regularity of
the latent functions f (x) (Rasmussen and Williams, 2006). When
ν → ∞, we recover the popular squared exponential kernel, also
known as radial basis function, that yields a prior over smooth
functions with infinitely many continuous derivatives.

The form presented in Equation (3) is not suitable to be
used on manifolds, as the atrial surface. A naive approach is to
replace the Euclidean distance between points with the geodesic
distance on themanifold surface. Even though this approachmay
work for some cases, there is no guarantee that the resulting
covariance matrix between input points will be positive semi-
definite (Pezzuto et al., 2019; Borovitskiy et al., 2020), a key
requirement for a kernel function. As a matter of fact, the choice
of the kernel is problematic in this case. For instance, the Matérn
family does not yield positive definite kernels even on the sphere,
except for a few exceptional choices of the parameters (Gneiting,
2013). Here, we follow an alternative approach, implicitly based
on the solution of the following stochastic partial differential
equation (SPDE) (Whittle, 1963; Lindgren et al., 2011):

{

(κ2I−1)ν/2+d/4u = W, x ∈ �,
n · ∇(κ2I−1)ju = 0, x ∈ ∂�, j = 0, . . . , ⌊ ν−1

2 + d
4 ⌋,
(4)

where−1 is the Laplace-Beltrami operator on the d-dimensional
manifold, andW is the spatial Gaussian white noise on �. When
� = R

d, the solution of the fractional SPDE is a Matérn

random field with κ =
√
2ν
ℓ

(Lindgren et al., 2011). However,
compared to Equation (3), the SPDE in Equation (4) trivially
generalizes to manifolds with no loss of positive definiteness of
the correlation kernel, thanks to the properties of the pseudo-
differential operator (Borovitskiy et al., 2020). The correlation
function can be explicitly written as follows. Let {(λi,ψi)}∞i=0
be the eigenvalue/eigenfunction pairs of the Laplace-Beltrami
operator with pure Neumann boundary conditions, that is

{

−1ψi = λiψi x ∈ �,
−n · ∇ψi = 0, x ∈ ∂�,

(5)
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FIGURE 3 | Inducibility of AF in the computer model. Two simulations with different pacing sites (grey stars) and inducibility outputs. The middle plot illustrates the

pacing protocol. Top: transmembrane potential resulting from a successful induction of AF and corresponding lead II ECG recording. The stimulation results in a

self-sustained activity. Bottom: transmembrane potential resulting from an unsuccessful induction of AF and corresponding lead II ECG recording. The stimulation

results in a vanishing wave.

for all i ∈ N. Then, we can represent Matérn-like kernels on
manifolds as (Coveney et al., 2019; Borovitskiy et al., 2020).

k(x, x′; θ) =
η2

C

∞
∑

i=0

(

1

ℓ2
+ λi

)−ν− d
2

ψi(x)ψi(x
′) (6)

where C is a normalizing constant. This eigen-decomposition
also enables a direct solution of the SPDE, providing the
following representation of the Gaussian process prior:

f (x) ≈
η2

C

∞
∑

i=0

wi

(

1

ℓ2
+ λi

)− ν
2−

d
4

ψi(x), wi ∼ N(0, 1) (7)

In practice, the eigen-decomposition is truncated to a number
Neig of pairs.

In this work, we discretize the manifold S ⊂ R
3 using a

triangulated mesh and solve Equation (5) using finite element
shape functions. As such, we can obtain the stiffness matrix A

and mass matrixM:

Aij =
nel
A
e=1

∫

B
∇Nj · ∇Ni dx, Mij =

nel
A
e=1

∫

B
NjNi dx, (8)

where A represents the assembly of the local element matrices,
and N are the finite element shape functions. Then, we solve the
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eigenvalue problem:

Av = λMv (9)

In practice, to compute the kernel in Equation (6) we use a
portion of all the resulting eigenpairs, starting from the smallest
eigenvalues. We also use the corresponding eigenvectors as the
eigenfunctions with f (xi) = vi, where i is the node index at
location xi. Given that the eigenvalue problem is solved only once
as a pre-processing step, this methodology provides an efficient
way to compute the kernel and the prior in a manifold.

2.5. Bayesian Inference
We finalize our Bayesian model description by prescribing the
prior distributions for the kernel parameters. We assume the
following distributions for the parameters θ = {η, ℓ},

η ∼ HalfNormal(σ = 10000) (10)

ℓ ∼ Gamma(α = 1,β = 1). (11)

The posterior distribution over the model parameters θ =
{η, ℓ} cannot be described analytically, and thus we must resort
to approximate inference techniques to calibrate this Bayesian
model on the available data. To this end, we use the NO-U-
Turn sampler (NUTS) (Hoffman and Gelman, 2014), which is a
type of Hamiltonian Monte Carlo algorithm, as implemented in
NumPyro (Phan et al., 2019).We use one chain, and set the target
accept probability to 0.9. The first 500 samples are used to adjust
the step size of the sampler, and are later discarded. We use the
subsequent 500 samples to statistically estimate the parameters θ .

Once we have completed the inference, we can make
predictions y∗ at new locations x∗ in three steps. First, we
compute the predictive posterior distribution of the latent
function f ∗(x∗) ∼ N(µ(x∗),6(x∗)), which by construction
follows a multi-variate normal distribution, with a mean µ and
covariance 6 obtained by conditioning on the available training
data (Rasmussen and Williams, 2006):

µ(x∗) = k(x∗,X)K−1f (12)

6(x∗) = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗) , (13)

where the covariance matrix K ∈ R
N×N results from evaluating

the kernel function k(·, ·; θ) at the locations of the input training
data X and f = f (X), respectively. We then proceed by sampling
µ,6 usingmodel parameters drawn from the estimated posterior
distributions of θ and f . This will result in a number of random
variables f ∗ that are independent and normally distributed,
which we can be used to compute statistical averages as

f̂ ∗ ∼ N(µ̂, 6̂), µ̂ =
1

Ns

Ns
∑

i=1

µi, 6̂ =
1

Ns

Ns
∑

i=1

6i, (14)

where Ns is the number of samples considered for θ and f . We

finally pass f̂ ∗ through the logistic sigmoid function σ to obtain a
distribution of class probabilities y∗.

2.6. Multi-Fidelity Classification With
Gaussian Processes
In this work, we will assume that we have 2 information sources
of different fidelity. We will call the high fidelity, computationally
expensive, and hard to acquire information source with the
subscript H and the inexpensive, faster to compute, low
fidelity source with the subscript L. Now, our data set comes

from these two sources D =
{

(xLi, yLi)
NL
i=1, (xHi, yHi)

NH
i=1

}

=
{

X, y
}

. We will postulate two latent functions fH and fL,
respectively, that are related through an auto-regressive prior
(Kennedy and O’Hagan, 2000).

fH(x) = ρfL(x)+ δ(x) (15)

Under this model structure, the high fidelity function is expressed
as a combination of the low fidelity function scaled by ρ,
corrected with another latent function δ(x) that explains the
difference between the different levels of fidelity. Following
(Kennedy and O’Hagan, 2000), we assume Gaussian process
priors on these latent functions.

fL ∼ GP (0, k(x, x′; θL)) (16)

δ ∼ GP (0, k(x, x′; θH)). (17)

The vectors θL and θH contain the kernel hyper-parameters
of this multi-fidelity Gaussian processes model. The
choice of the auto-regressive model leads to a joint prior
distribution over the latent functions that can be expressed as
(Kennedy and O’Hagan, 2000).

f =
[

f L
fH

]

∼ N

([

0

0

]

,

[

KLL KLH

KLH KHH

])

, (18)

with

KLL = kL (XL,X′
L; θL)

KLH = ρ kL (XL,X′
H; θL)

KHH = ρ2 kL (XH ,X′
H; θL) + kH(XH ,X′

H; θH) .
(19)

The global covariance matrix K of this multi-fidelity Gaussian
process model has a block structure corresponding to the
different levels of fidelity, where KHH and KLL model the spatial
correlation of the data observed in each fidelity level, and KLH

models the cross-correlation between the two levels of fidelity.
We also have kernel parameters for the different levels of fidelity.
We again use theMatérn as described in Section 2.4, which results
in parameters θH = (ηH , ℓH), and θL = (ηL, ℓL). For these
parameters and the scaling factor ρ, we consider the following
prior distributions

ηH , ηL ∼ HalfNormal(σ = 10000) (20)

ℓH , ℓL ∼ Gamma(α = 2,β = 2) (21)

ρ ∼ Normal(µ = 0, σ = 10). (22)

We can perform inference and prediction for this model in
the same way as for the single fidelity classifier, as detailed in
Section 2.5. In particular, we can use Equations (12) and (13) with
the entire covariance matrix K to obtain the conditional mean
and covariance of f ∗.
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2.7. Active Learning
Here, we take advantage of the uncertainty predictions that
are inherent to Gaussian processes and are absent in other
types of classifiers, such as nearest neighbor. Specifically, at each
active learning iteration, we train the classifier, and select the
next point that should be included in our training data-set by
solving the following optimization problem (Kapoor et al., 2007;
Sahli Costabal et al., 2019):

xnew = argmin
x∈Xcand

|µ̂(x)|
√

6̂(x)
, (23)

where Xcand represents a set of candidate locations that
can be acquired. In our case, we use all the nodes in the
mesh as candidates, except the ones at the boundaries which
have artificially high variance. This active learning criterion
presents a good balance between exploitation (sampling near the
classification decision boundary) and exploration (discovering
new inducible regions). It can be seen as promoting the selection
of points that tend to be located near the decision boundary
(σ (µ = 0) = 0.5), or points in regions with high uncertainty (as
reflected by the posterior variance6). We keep adding points via
this sequential active learning procedure until we have reached
the desired number of samples.

3. NUMERICAL EXPERIMENTS

3.1. Numerical Assessment
We first create a synthetic example to test the performance of
the proposed classifier. We study the length scale of different
randomfields that could represent the potential inducibilitymaps
that we want to approximate in this study. In particular, we
use a mesh based on the anatomy of the mid-layer described
in Section 2.1. Here, we represent the left and right atria with
3,298 nodes and 6,335 triangles. First, we normalize the geometry
by the largest standard deviation of one of its coordinates. In
this way, we can use the same prior distributions regardless the
particular geometry. Then, we generate Gaussian random fields
on the atrial manifold with zero mean and the Matérn covariance
kernel, as detailed in Equation (6). We use 1,000 eigenpairs to
construct a computable kernel function approximation with ν =
3/2 and η = 1. We consider different length scales to simulate
inducibility regions and assess the performance of the classifier:
ℓ = {0.2, 0.4, 0.6, 0.8, 1.0}. Finally, we pass the resulting random
field through the sigmoid function σ to obtain values between
zero and one, which we round to the nearest integer to create
discrete labels.

Examples of the resulting random fields can be seen in
Figure 4, left column. We compare three different classifiers.
First, as a baseline benchmark, we create a nearest neighbor
classifier. Here, the prediction of an unknown point is based on
the label of the closest data point. Since we are working with a
manifold, we use the geodesic distance to find the closest point,
which we compute using the heat method (Crane et al., 2013).
As a data-set, we use a fixed design spread through the manifold
surface. To select the locations, we first randomly pick a node in
the mesh, and then we add the node that is further away from the

initial node using the geodesic distance. Then, we iterate, finding
the point that is further away from all the nodes already included
in the data-set, until we reached the desired data-set size. The
second classifier that we consider is a Gaussian process classifier,
as described in the previous sections, that is trained on the same
fixed experimental design. The final classifier is also a Gaussian
process classifier, which we train with the first 20 samples of
the fixed experimental design, and then we apply the proposed
active learning procedure. For all the Gaussian process classifiers
in these experiments, we set the number of eigenfunctions used
to Neig = 1, 000.

In these examples, we test the performance of the three
different classifiers, using between 20 and 100 samples, and 10
different random fields for each of the 5 length scales selected. To
take into account potential imbalances of classes in the examples
generated, we use the balanced accuracy score. This metric is
defined as the arithmetic mean of the sensitivity and specificity as

balanced accuracy =
1

2

(

# of predicted positives

# of real positives
+

# of predicted negatives

# of real negatives

)

. (24)

In contrast to conventional accuracy, this metric will reflect if a
classifier is predominately predicting one class due to the higher
proportion of samples present in the data-set.

The results of this assessment are summarized in Figures 4, 5.
We first observe in Figure 4, left column, that the complexity of
the classification regions increases as the correlation length scale
is reduced. In the same figure, we show the different classifiers
trained with 100 samples. It is visually possible to note that the
accuracy of the classifiers degrades as the length scale of the
ground-truth classification surface is decreased. For the length
scale ℓ = 0.2, some regions are not captured by the classifiers.
We also note that the Gaussian process classification boundaries
tend to be smoother than the nearest neighbor classifier. These
differences are quantified in Figure 5. We first compare the
improvements in accuracy between the nearest neighbor classifier
and the Gaussian process classifier with a fixed design in the
top row. These two methods are trained with identical data,
and we observe that for most cases and number of samples,
the Gaussian process classifier is more accurate than the nearest
neighbor classifier. The accuracy improvements at 100 samples
range on average from 0.8% at ℓ = 0.2 to 2.4% at ℓ =
0.8. Then, we compare the nearest neighbor classifier with the
Gaussian process classier trained with active learning. These
two classifiers only share the first 20 points of data. Then the
active learning classifier judiciously selects the remaining samples
attempting to maximize accuracy. We observe that the accuracy
improvements are more pronounced with the active learning
for ℓ = 0.4 − 1.0. The average improvements at 100 samples
range from 3.0% at ℓ = 0.4 to 6.2% at ℓ = 0.8. For ℓ = 0.2,
we see an average decrease in accuracy of 1.0% at 100 samples.
In the last row of Figure 5, we see the average accuracies for
the three classifiers at 100 samples, reflecting the improvements
in accuracy obtained by the Gaussian process classifiers already
described. We see that all classifiers tend to decrease their
accuracy as the length scale decreases, which coincides with the
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FIGURE 4 | Numerical assessment of the Gaussian process classifier. We create different random examples with different correlations lengths (first column) and train

a nearest neighbor classifier (second column), a Gaussian process classifier trained with the same data-set as the nearest neighbor classifier (third column), and

Gaussian process classifier that adaptively selects the training points through active learning (fourth column). The black bars represent the size of the length scale

relative to the atrial geometry.

increased complexity of classification boundaries for lower length
scales seen in Figure 4. This detriment in performance becomes
more pronounced between ℓ = 0.4 and ℓ = 0.2. This change
corresponds with the average geodesic distance between points
in the fixed design data-set, which is equal to 0.39. This metric
is shown as a dashed vertical line bottom row plot of Figure 5.
Classification regions with a characteristic size smaller than this
value could be ignored by the classifiers, which is what we
observe in the top row of Figure 5. In these cases, the uncertainty
estimates used for active learning might be inadequate, leading
to a worse performance compared to the longer length scale
cases. Overall, we see that Gaussian process classifiers and active
learning provide advantages in accuracy when compared to the
baseline nearest neighbor classifier.

3.2. Characterization of Inducibility
Regions
We examine the inducibility of the 9 models described in
Section 2.1, specifically 3 different fibrotic patterns and 3 ablation
strategies: no ablation, PVI, and PVI+BOX. For each model,

we create a training set and test set, both containing 100
samples, using a fixed design, as described in Section 3.1 and
shown in Figure 6. We run the model using each of these
points as a pacing site and check whether AF was induced
or not. For the training set, we also run the low fidelity
model, obtaining 100 samples. In total we run 1800 high
fidelity simulations and 900 low fidelity simulations. We test
three different classifiers for both cases: a nearest neighbor
classifier described in Section 3.1, a single-fidelity Gaussian
process classifier described in Section 2.3, and a multi-fidelity
Gaussian process classifier described in Section 2.6 with 100 low
fidelity samples. We train the classifiers with different amounts
of data from the training set, ranging from 20 to 100 points. For
each level of data, we evaluate the performance of the classifier
computing the balanced accuracy in the 100 samples of the
test set.

The results of this numerical experiment are summarized
in Figures 6–8 and Table 1. First, we note that training and
predicting with the Gaussian process classifiers only takes a
negligible fraction of the cost of high fidelity model, less than 5
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FIGURE 5 | Accuracy of the numerical assessment. We quantify the improvements in accuracy when using a Gaussian process classifier versus the nearest neighbor

classifier (top row) and when using a Gaussian process classifier with active learning, versus the baseline nearest neighbor classifier (middle row) for different length

scales. The gray lines show the balanced accuracy improvements of the 10 examples for each length scale and the black line shows the mean improvement. The

bottom row shows how the average balanced accuracy changes with length scale when the classifiers are trained with 100 samples. The dashed vertical line

represents the average geodesic distance between training points of the fixed design.

min on a laptop. In Figure 6, we show the resulting classifiers
trained with the same 50 and 100 high fidelity samples and also
the low fidelity classifier trained with 100 samples. We see that
the multi-fidelity classifier at 50 and 100 samples shares some
features with the low fidelity classifier that are not present in
the other two classifiers. Nonetheless, the multi-fidelity classifier
is learning from the high fidelity data, as its balanced accuracy
increases as the number of samples increases, as seen in Figure 8.
We observe that the differences in accuracy tend to collapse
as more data is available, showing small differences when 100
samples are provided to the classifiers. Themulti-fidelity classifier

has the biggest advantage in the small data regime, when it is
trained with between 20 and 70 high fidelity samples. Perhaps
surprisingly, we see that the low fidelity classifier is always
more accurate than the single-fidelity classifiers trained with
20 samples. The cost of training the low fidelity classifier is
approximately equivalent to the cost of acquiring 6.25 high
fidelity samples, which makes it a cost-effective alternative to
estimate the inducibility with limited budget. Along the same
line, we compare the accuracies of the different classifiers
for the different cases when the training with the equivalent
cost of 40 high fidelity simulations in Figure 7B. This is the
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FIGURE 6 | Inducibility maps for the three cases. The performance of the classifiers is analyzed for three cases: a case with no ablation (A), a case with PVI ablation

(B) and a case with PVI+BOX ablation (C). In each panel, the leftmost column shows the training set (top) and the single-fidelity Gaussian process classifier trained

with 100 low fidelity samples (bottom). In the remainder panels, we show the nearest neighbor, single-fidelity Gaussian process classifier, and multi-fidelity Gaussian

process classifier trained with 50 and 100 high fidelity samples. The ground truth points are also shown in these panels.

number of simulations that has been used in clinical studies
to optimize the ablation treatment (Boyle et al., 2019). We
observe that by using the multi-fidelity classifier we gain, on

average, 5.4% points of accuracy comparing to the single-
fidelity classifier and 5.7% comparing to the nearest neighbor
classifier. Only in one case there was a decrease in accuracy

Frontiers in Physiology | www.frontiersin.org 11 March 2022 | Volume 13 | Article 757159349

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gander et al. GP Learning of AF Inducibility

FIGURE 7 | Performance of the classifiers. In (A), the agreement between the low fidelity and the high fidelity model is reported as a confusion matrix, as resulting

from 1,800 simulations (900 per fidelity). Moreover, each point is colored according to the case of fibrosis. In (B), we compare the balanced accuracy for the nearest

neighbor, single-fidelity, and multi-fidelity classifier, for all nine model scenarios and with a fixed budget of 40 high fidelity simulations.

when using the multi-fidelity classifier, but of only 0.45% points
of accuracy.

We analyze the agreement between the low and high fidelity
models by looking at training sets for all cases in Figure 7A.
Overall, we find the low and high fidelity agree in 81.7% of
the simulation. However, we see that the low fidelity model is
biased towards predicting no AF when the high fidelity model
is predicting AF. This is confirmed in every case, as can be seen
in Table 1, where low fidelity inducibility is always lower than
the high fidelity inducibility. A possible explanation is that the
low fidelity model, being based on a coarser discretization of the
atrial model, has fewer fine-grained features (fibrosis, anatomy,
wall thickness) that might favor AF. It is also worth noting that
we adapted the conduction velocity in the low fidelity model by
increasing it to the level of the high fidelity one, a change that
is potentially antiarrhythmic but that increased the correlation
between the models and hence the overall performance of the
multi-fidelity classifier. We also found that in the case of 50%
fibrosis, the low fidelity model tends to predict proportionally
more occurrence of AF when the high fidelity model is not
predicting AF.

Finally, we see in Table 1 that the ablation strategies applied
are decreasing the inducibility in all cases, both for the train, test
and low fidelity sets. We see that pulmonary vein isolation has
more impact on the inducibility than the subsequent box ablation
for all cases, both in the train and the test set.

4. DISCUSSION

In this study, we propose a novel methodology to estimate the AF
inducibility regions of a computational model of the human atria.

This is achieved by training a Gaussian process classifier that
indicates whether a given point on the atria is associated with a
sustained AF event, when incrementally pacing from its location.
Our classifier is directly trained on the atrial surface, hence
it embodies the geometrical and topological properties of the
atria, which are known to be key determinants in AF. Gaussian
process regression on Riemannian manifolds is not a novel
concept, as well as its link to certain types of SPDEs (Lindgren
et al., 2011). To the best of our knowledge, however, this is the
first study proposing a multi-fidelity Gaussian process classifier
on manifolds, which extends our previous work on Euclidean
spaces (Sahli Costabal et al., 2019). The proposed method is
non-intrusive, in the sense that the atrial model is a black-box,
with comparable training cost to a nearest neighbor classifier.
Moreover, when a low fidelity model is available—in our case,
obtained by coarsening the computational mesh—, the accuracy
of the classifier can be sensibly improved with a multi-fidelity
approach. Finally, given its structure, the methodology can be
easily extended to multi-class classifier, e.g., with the capability
to distinguish AF episodes from atrial flutter.

From a methodological perspective, our results show that
the accuracy of the classifier depends on the length scale of
the inducibility region. Intuitively, the shorter the length scale
is, the more training data is needed. When the length scale is
much smaller than the size of the atria, it is more likely to
observe an inducibility region composed of disconnected and
relatively small components. Moreover, the boundary of the
inducibility region becomes less smooth. Interestingly, the length
scale has, however, a limited effect on the estimate of the overall
inducibility. This is due to fact that the volume of the inducibility
region is only marginally affected by the smoothness of its
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FIGURE 8 | Accuracies for 9 different cases. We show how the balanced accuracy evolves as more samples (from 20 to 100) are available for the multi-fidelity,

single-fidelity, and nearest neighbor classifiers. The samples are represented as the cost of running a high fidelity model and the multi-fidelity curve is shifted to the

right to account for the cost of 100 low fidelity simulations. The dashed horizontal line represents the accuracy of a Gaussian process classifier trained with 100 low

fidelity simulations predicting the high fidelity test set.

boundary and the presence of multiple disconnected regions. We
attempt to estimate the length scale of the inducibility map by
training a single-fidelity classifier with both the high fidelity test
and train sets. The average length scale of the resulting classifier
of the baseline AF model is ℓ = 0.28. This is smaller than
the average distance between points in the training set, which
corresponds to 0.39, and may explain the balanced accuracies

that we obtained were only around 90%. We also observed in
the numerical assessment that the efficiency of active learning
deteriorates at smaller length scales, for ℓ between 0.2 to 0.4, and
we decided not to use it for predicting inducibility maps in the
experiments in Section 3.2, also to limit the computational cost.

From a computational viewpoint, the proposed multi-fidelity
classifier reports the maximum improvements in accuracy in a
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TABLE 1 | Inducibility results from the 1,800 high fidelity simulations and 900 low fidelity simulations.

Inducibility [%]

Fibrosis Ablation Test Train Low fidelity Low and high fidelity agreement [%]

Moderate - 60 58 55 77

Moderate PVI 52 43 41 76

Moderate PVI+BOX 47 40 38 78

Severe - case 1 - 62 62 52 82

Severe - case 1 PVI 51 50 42 86

Severe - case 1 PVI+BOX 48 47 36 85

Severe - case 2 - 73 65 57 84

Severe - case 2 PVI 60 54 44 84

Severe - case 2 PVI+BOX 54 48 38 84

We show the fraction of simulation where AF was inducible for 3 different fibrotic patterns and for a baseline case and 2 ablation strategies. We also report the fraction of simulations

where the low and high fidelity models predicted the same outcome.

typical data set of 40 pacing sites. In general, the multi-fidelity
classifier was more accurate for a small number of samples (less
than 50), while for a larger sample size the difference between
single- and multi-fidelity classifiers is less pronounced. When
comparing the model without ablation lines and with ablation,
both high- and low fidelity models agree on the observed reduced
inducibility due to ablation. In the case of ablation, therefore,
it is convenient to adopt a multi-fidelity approach or even just
the low fidelity classifier, to save computational time. In fact,
the biggest advantage of the low fidelity classifier relies on its
very limited computational cost, which is only a small fraction
of the high fidelity counterpart. This highlights the importance
of taking advantage of these inexpensive approximations of the
high fidelity model whenever possible. We remark that our low
fidelity model does not require a training phase itself, thus there
is no additional offline cost.

Finally, from a modeling perspective, our results on the
inducibility of AF are in agreement with those reported in the
literature. Firstly, points in the proximity of fibrotic regions
are more likely to induce AF (Kawai et al., 2019). Visually,
there is a spatial correlation between the inducibility region
(see Figure 6) and the fibrosis distribution (Figure 2). The
local inducibility property may therefore reflect the local tissue
properties (Boyle et al., 2021). Nonetheless, inducibility may also
depend on other factors, such as an abrupt change in the fiber
direction, heterogeneity in the ionic parameters, and the presence
of anatomical defects or a scar. Hence, pacing sites leading
to AF may not necessarily be correlated with the local tissue
properties. Secondly, our results show that, with a fixed design,
40 pacing points are sufficient to achieve a good estimate of the
inducibility (Boyle et al., 2021), while 20 are probably too few.
The multi-fidelity classifier, however, can achieve high accuracy
with only 20 samples. Thirdly, the ablation treatment reduced
the overall inducibility, essentially because a large inducible
region surrounding the pulmonary veins has been isolated from
the rest of the tissue, impeding the emergence of AF. Due to
the presence of severe fibrosis in the tissue, however, it is still
possible to induce AF from several other portions of the atria,

mostly unaffected by ablation. Finally, as described above, the
inducibility region in both cases shows a small length scale, which
can explain why pacing from different but sufficiently close points
may lead to discordant results in AF inducibility. In other words,
the uncertainty in the outcome is potentially large for some
pacing sites.

Our work also presents some limitations. We limited our
analysis to a single anatomy, but we tested different fibrosis
patterns, in terms of distribution and severity, and two standard-
of-care ablation strategies. Therefore, the framework can be
applied with no changes to other anatomies and therapies, such
as antiarrhythmic drug therapy (Sahli Costabal et al., 2018;
Gharaviri et al., 2021a). It is worth to mention that for this
study we ran 1 800 high fidelity simulations and 900 low fidelity
ones, for a total cost of roughly 25 000 node-hours on the CSCS
supercomputer. We also tested a single pacing protocol with a
fixed design. The stimulation protocol is typically tailored to
the ionic model and can be tested in a single-cell preparation,
but sometimes this is not optimal, especially in the presence
of heterogeneity and fibrosis. Optimized protocols (Azzolin
et al., 2021) can be easily combined with our approach, since
the algorithm does not depend on it. The duration of each
simulation, 4 s, is sufficiently long to detect AF events, but it
might preclude the discovery of self-terminating episodes of
AF, or the translation of an AF event to atrial flutter. These
cases are typically very limited in number. The presence of self-
terminating AF also depends on the ionic model used, which
may not be suitable for long simulations (more than 1min).
Finally, we observed that using active learning can be effective
in judiciously selecting new observation sites, albeit with a
deteriorating efficiency at smaller length scales. Nonetheless,
this limitation motivates future work on exploring new kernel
functions and active learning criteria that might be better suited
for this task.

From a clinical perspective, there is an increasing application
of patient-specific electrophysiology models. Thus, there is
a compelling need for reducing the overall time needed to
deliver the optimal virtual treatment within the constraints
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dictated by clinical practice (Azzolin et al., 2021; Boyle et al.,
2021; Pagani and Manzoni, 2021). This study shows that the
proposed Gaussian process classifier can, in fact, reduce the
computational cost while maintaining a comparable or even
better accuracy to a single-fidelity approach. Moreover, it
does not require intrusive changes to existing implementations
and it has a very limited computational overhead, rendering
its translation to existing patient-specific solutions feasible
and appealing.

Inducibility maps can also offer a novel, yet unexplored, view
into AF, possibly unveiling regions susceptible to trigger AF.
They could be used to design and test ablation scenarios, e.g., by
isolating vulnerable regions. These maps could also be used to
validate an AF model, by checking whether the patient-specific
model and the real atria agree on the inducibility observed during
a procedure.

In summary, our multi-fidelity classifier provides an efficient
methodology to evaluate the effect of ablation therapy in patient-
specific models of AF. We envision that this tool will accelerate
the personalization of accurate treatments in the clinical setting.
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