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Editorial on the Research Topic

Prediction and explanation in biomedicine using network-based

approaches

The complex network paradigm occupies a twilight epistemological status in between

data analysis and causal, content based, modelling of complex systems. This status is

mirrored by the title of the topic “Prediction and Explanation in Biomedicine using

Network-Based Approaches” putting together “prediction” (data analysis perspective) and

“explanation” (causal modelling perspective). Scientific methodology is aware of the

different, albeit related, status of the two perspectives since long time (Shmueli, 2010) and

the actual emphasis of machine intelligence community on “explainability” revived the

urgency of the issue (Ho et al., 2020).

As aptly stated by Nicosia and others (Nicosia et al., 2014):

“Networks are the fabric of complex systems”.

while, at the same time, being a very flexible data analysis tool inheriting from time-

honoured multidimensional statistics the focus on correlation matrices (Gorban et al.,

2022).

Biological systems are the most evident paradigm of complexity, and this is why it is

muchmore productive to focus on the dynamics of their correlation structure with respect

to an in-depth analysis of isolated features. In this Research Topic, this point is made

evident by papers exploring correlation structures located at different organization layers:

contacts between amino-acid residues of a protein molecule (Uversky and Giuliani), gene

expression correlation (Tran et al.) and protein-protein interaction networks (Cesareni

et al.; Wang et al.). In particular, Uversky and Giuliani review the most recent results in

terms of hierarchical organization of complex biological systems, remarking the benefits of

analyzing such systems in a multi-level fashion, hence going beyond the standard

causative model where events originate at molecular level and then show up at the

‘top’ of the hierarchy (e.g., causing a particular disease). Causality is also the key in

(Cesareni et al.), where the authors review how causality can help in shaping disease

networks, shedding light on using also functional information alongside physical
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proximity (i.e., between interacting proteins) for a thoughtful

modelling. In Tran et al., the authors question the suitability of

MCF-7 cell line for in vitro breast cancer research. They use a

network-based approach to compare two MCF-7 datasets against

a human breast invasive ductal carcinoma dataset taken from The

Cancer Genome Atlas (TGCA), showing how they have only

minimal similarity in biological processes, hence concluding that

using MCF-7 to study breast cancer can hide important gene

targets. Finally, TGCA plays an important role also in (Wang

et al.), where the authors use a network-based approach to find

hub genes related to acute lymphoblastic leukemia.

It is important not to confuse the integration of data analysis

and explanatory perspectives with the too-often repeated

statement of the substantial irrelevance of the hypothesis-driven

approachwhen in presence of massive amount of data (Mazzocchi,

2015); the situation is exactly the opposite: network paradigm asks

for a strict integration between content related andmethodological

knowledge and the consequent need to overcome research

overspecialization. It is not by chance that very interesting new

perspectives in statistical mechanics generate from the analysis of

biological network systems (Liu et al., 2022): along this line, in this

Research Topic, we find papers devoted to theoretical/

computational issues (Kuznetsov et al.; Nazarenko et al.)

motivated by the solution of relevant biomedical problems.

Specifically, Kuznetsov et al. use a variational autoencoder to

generate a synthetic 1-cycle ECG which not only looks quite

natural, but can also be generated starting from just 25 features

automatically learned by the autoencoder. As instead, Nazarenko

et al. show an interesting network-based approach based on

parenclitic and synolytic networks to describe multidimensional

data via a suitable graph that makes the data easier to inspect,

visualize and analyze. Tests on synthetic and benchmark data

corroborate the competitiveness of using parenclitic and synolytic

networks against common machine learning approaches.

In this Research Topic, the application potential to

biomedical practice of network-based approaches is explored

in (Chen et al.; Jung et al.; Luo et al.; Thomas et al.), that give

us the strong impression that network-based approaches are here

to stay. In detail, Thomas et al. review how network biology can

help in understanding inflammatory bowel disease by discussing

different network modelling (notably, protein-protein interaction

networks, metabolic networks, gene regulatory and co-expression

networks), with some examples also on multi-layered networks.

Chen et al. build a predictive model based on network analysis

and circular miRNA to address recurrent implantation failure

(RIF). Luo et al. also aim at characterizing RIF, but the authors

exploit network-based approaches (protein-protein interaction

and circRNA–miRNA–mRNA networks) to highlight four hub

genes that may be involved in the development of RIF. Finally,

Jung et al. briefly review computational models based onmachine

learning, network modelling and genome-scale metabolic models

to characterize drug-resistant cancer cells.

After all, this is not surprising at all, “network biology” is

nothing else than “biology as such” given any biological

system derives its peculiar behaviour from the interaction

of many different element players at different organization

layers with no privileged causal layer of explanation (Noble

et al., 2019). This is a bare truth (too often overlooked) since

the initial definition of “Organism” in classical philosophy

(Gotthelf and Lennox, 1987); what is new is the exciting

possibility to use these concepts in the day-to-day practice

of biomedical sciences by an immediate hands-on approach:

we do hope the present Research Topic to transmit this

excitement to the reader.
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Construction of Circular
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Regulatory Network of Recurrent
Implantation Failure to Explore Its
Potential Pathogenesis
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Background: Many studies on circular RNAs (circRNAs) have recently been published.

However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and

remains to be explored. This study aims to determine the regulatory mechanisms of

circRNAs in RIF.

Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA;

GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from

the Gene Expression Omnibus (GEO) database to identify differentially expressed

circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed

by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network

was constructed by STRING database, and the hub genes were identified by

cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed

to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO)

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis of the hub genes were performed by clusterProfiler package of Rstudio software,

and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to

comprehensively analyze the mechanism of hub genes in RIF.

Results: A total of eight upregulated differentially expressed circRNAs (DECs), five

downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs),

104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs),

and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response

elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained

by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were

obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs.

The circRNA–miRNA–mRNA network and PPI network were constructed through six

circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9,

and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with

nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome
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Luo et al. Recurrent Implantation Failure Pathogenesis

analysis showed that these four hub genes were closely related to the biological functions

and pathways of RIF.

Conclusion: The results of this study provide further understanding of the potential

pathogenesis from the perspective of circRNA-related competitive endogenous RNA

network in RIF.

Keywords: recurrent implantation failure, circRNA, competitive endogenous RNA, GEO, network

INTRODUCTION

Recurrent implantation failure (RIF) refers to infertility in
patients younger than 40 years who undergo at least three in vitro
fertilizations (IVFs) (including fresh embryo transfer and frozen–
thawed embryo transfer) or intracytoplasmic sperm injection
(ICSI) cycles and implantation of four or more high-quality
embryos without embryo implantation or clinical pregnancy
(Bashiri et al., 2018). Studies have shown that RIF accounts
for about 10% of IVF–embryo transplantation (IVF-ET) (Simur
et al., 2009). RIF causes serious mental stress and economic
burden to families and even brings a lot of social problems.
However, up to now, RIF is still an unsolved problem in assisted
reproductive technology. The etiology of RIF has not been
elucidated, and there is a lack of effective therapies and no reliable
molecular markers to predict the occurrence of RIF. Therefore,
elucidating the molecular mechanism of RIF is essential for the
development of effective diagnostic and therapeutic targets.

Circular RNAs (circRNAs) are a type of non-coding RNAs that
exist in almost all cells of an organism. The 3′ and 5′ ends of
circRNA are covalently linked to form a closed circular single-
stranded structure, which enables it to resist the hydrolysis of
exonucleases and thus has relative stability and conservation
(Shao et al., 2017; Shi et al., 2020). In addition, tissue-specific
expression and rich diversity of circRNA have made it to be
considered the best biomarkers (Chen et al., 2019), some of which
have been identified as diagnostic and prognostic biomarkers.
Recently, increasing evidence has shown that circRNAs are
involved in various cellular processes such as gene expression
regulation, cell cycle progression, and chromatin modification
(Beermann et al., 2016; Wang Y. et al., 2018; Zang et al.,
2020). In summary, the study of circRNAs has become a new
hotspot in the field of RNA due to their various functions and
specific properties.

Accumulating evidence suggests that circRNAs exert
biological processes, including the genesis, translation, and
transcriptional regulation of target genes, and extracellular
transport, by acting as microRNA (miRNA) sponges,
transcriptional activators or inhibitors, and RNA-binding

Abbreviations: circRNA, circular RNA; miRNA, microRNA; ceRNA, competing

endogenous RNA; DECs, differentially expressed circRNAs; DEmiRs, differentially

expressed miRNAs; DEGs, differentially expressed genes (mRNAs); IVF-ET, in

vitro fertilization–embryo transplantation; ICSI, intracytoplasmic sperm injection;

FDR, false discovery rate; GEO, Gene Expression Omnibus; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein

interaction; RIF, recurrent implantation failure; RBP, RNA-binding protein;

PDCD4, programmed cell death protein 4; STRING, Search Tool for the Retrieval

of Interacting Gene; MAPK, mitogen-activated protein kinase; cryba2, beta-A2

crystallin; ccdc108, coiled-coil domain-containing protein 108.

protein (RBP) sponges (Zang et al., 2020). Some circRNAs
can even encode polypeptides or proteins to participate in
biological regulation (Li et al., 2017; Yang et al., 2017; Han
et al., 2018; Xia et al., 2018). Recent studies show that circRNAs
exert their functions mainly by adsorbing miRNAs to regulate
miRNA expression, thereby regulating the target genes of
miRNAs, of which circRNAs are called competing endogenous
RNA (ceRNA). In the study of gynecologic tumors, it was
found that the expression of circRNA not only promoted
cancer but also inhibited cancer. In studies of cervical cancer,
hsa_circRNA_101996 was highly expressed in cervical cancer
cells. Hsa_circRNA_101996 regulates the proliferation, cell cycle,
migration, and invasion of cervical cancer cells mainly through
miR-8075 targeting TPX2 (Song et al., 2019), with higher levels
of hsa_circRNA_101996 associated with a poor prognosis.
Wang H. et al. (2018) found that circRNA-000911 expression
was significantly downregulated in breast cancer cells. The
high expression of circRNA-000911 could antagonize miR-449a,
thereby increasing Notch1 expression to inhibit cell proliferation,
migration, and invasion and to promote apoptosis of breast
cancer cells. Lu H. et al. (2020) found that CIRS-126 regulated
the expression of programmed cell death protein 4 (PDCD4) and
inhibited the proliferation of ovarian granulosa cells by acting

as a miR-21 sponge in polycystic ovary syndrome. In summary,
circRNA–miRNA–messenger RNA (mRNA) regulatory network

plays an important role in the occurrence and development of
gynecologic diseases, while circRNA has different targets and
functions in different tissue cells. Liu et al. (2017) performed
microarray sequencing on endometrial biopsies from patients

with RIF and found differentially expressed circRNAs (DECs).
However, the specific targets and mechanisms of circRNA in RIF

have not been reported.
In this study, we explored novel circRNAs and their

mechanisms in the endometrium of patients with RIF through
bioinformatics analysis. First, RIF-related circRNAs miRNA,

and mRNA microarray data were collected from the Gene
Expression Omnibus (GEO) database. DECs, differentially
expressed miRNAs (DEmiRs), and differentially expressed genes
(DEGs) were identified by RStudio software. The circRNA–
miRNA–mRNA network was constructed by Cytoscape 3.8.0
software, and then protein–protein interaction (PPI) network
was constructed by STRING (Search Tool for the Retrieval
of Interacting Genes) (version 11.0) database, and hub genes
were identified by cytoHubba plug-in. The circRNA–miRNA–
hub gene regulatory subnetwork was formed to understand the
regulatory axis of hub genes in RIF. Finally, in order to explore
the potential role of hub genes in the development of RIF, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
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(KEGG), and Reactome Functional Interaction (FI) enrichment
analyses of hub genes were performed. This flowchart is shown
in Figure 1.

MATERIALS AND METHODS

Data Extraction
Microarray data of RIF circRNA, miRNA, and mRNA were
downloaded from GEO database (http://www.ncbi.nlm.nih.
gov/geo/) to identify DECs, DEmiRs, and DEGs. CircRNA
expression data were derived from GSE147442 microarray
(eight endometrial biopsy tissues from RIF patients and
eight endometrial biopsy tissues from healthy controls). And
GPL21825 074301 Arraystar Human CircRNA microarray V2
(Agilent Technologies, Inc., Palo Alto, CA) provided annotation
information to convert probes into recognizable RNAs. Similarly,
GSE71332microarray and the corresponding GPL18402 Agilent-
046064 Unrestricted_Human_miRNA_V19.0_ Microarray
(miRNA ID version) were used to extract miRNAs, endometrial
biopsy tissues from seven RIF patients and five normal pregnant
women. Considering the type of specimen and the availability of
data, GSE103465 and the corresponding GPL16043 GeneChip R©

PrimeViewTM Human Gene Expression Array (with External
spike-in RNAs) were used for the extraction of mRNA using
a total of six samples, including three endometrial biopsies
from RIF patients and three from pregnant women. For three
microarrays, it can be seen that the difference of general data
between the cases and controls is not statistically significant.

Identification of Differentially Expressed
Circular RNAs, Differentially Expressed
MicroRNAs, and Differentially Expressed
Messenger RNAs
Data were extracted and normalized by RStudio software,
and then DECs, DEmiRs, and DEGs in the endometrium of
RIF patients were obtained by limma package based on the
Bioconductor package. The selection criteria for DECs were false
discovery rate (FDR)< 0.05, |log2FC|> 2, for DEmiRs were FDR
< 0.05, |log2FC| > 0.5, and for DEGs were FDR < 0.05. |log2FC|
> 1 was considered to be a statistically significant difference.

Prediction of Circular RNA–MicroRNA Pairs
CircRNAs act as sponges for miRNAs through the miRNA
response elements (MREs). The Circular RNA Interactome
online tool (https://circinteractome.nia.nih.gov/) was applied to
predict target miRNAs of DECs of RIF. Overlapping miRNAs
were obtained by intersecting predicted miRNAs and DEmiRs.

Prediction Target Genes of MicroRNAs
The software TargetScan (http://www.targetscan.org/vert_72/),
miRDB (http://www.mirdb.org/), and miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw/php/search.php) were used to
predict the target genes of miRNA, and the intersection part were
selected as the predicted mRNAs by Venn diagram in RStudio
software. Overlapping mRNAs were obtained by intersecting
predicted miRNAs and DEmiRs.

Construction of Circular
RNA–MicroRNA–Messenger RNA Network
The above differentially expressed circRNA–miRNA pairs and
overlapping mRNAs were used to construct circRNA–miRNA–
mRNA network, which were input into the Cytoscape 3.8.0
software program (https://cytoscape.org/) to visualize their
circRNA-related ceRNA network.

Construction of Protein–Protein Interaction
Network and Identification of Hub Genes
In organisms, although there are multiple genes acting on the
same trait, not all expressed genes play an equally important role,
and a gene contributes greatly to a certain trait as hub gene.
Finding the hub genes acting on RIF would help to understand
the molecular mechanisms of this disease. First, a PPI network
was built based on DEGs in circRNA–miRNA–mRNA network
by STRING (Search Tool for the Retrieval of Interacting Genes)
(v11.0) (https://string-db.org/cgi/input.pl) online software and
was visualized by Cytoscape 3.8.0 software program. Then
the degree, betweenness centrality, and closeness centrality of
mRNAs in the PPI network were used to identify RIF-related hub
genes by “cytoHubba” plug-in (Chin et al., 2014). We set “hubba
nodes” for the top five nodes ranked by degree, closeness, and
betweenness. Overlapping, top-ranking genes among the three
algorithms were selected as hub genes.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analyses
and Reactome Analysis of Hub Genes
GO analysis and KEGG pathway enrichment analyses of hub
genes were performed by clusterProfiler package in RStudio
software. Reactome pathway analysis was conducted with
Reactome FI plug-in to comprehensively analyze the molecular
mechanism of hub genes in RIF.

RESULTS

Identification of Differentially Expressed
Circular RNAs, Differentially Expressed
MicroRNAs, and Differentially Expressed
Messenger RNAs
The GSE147442 microarray was extracted and normalized
by RStudio software, analyzed by the limma package in
RStudio software, and identified 13 DECs, including eight
downregulated DECs and five upregulated DECs (Figures 2A,B,
Supplementary Table 1). A total of 160 DEmiRs were
obtained in the GSE71332 microarray. Of these, 56 were
downregulated and 104 upregulated DEmiRs (Figures 2C,D,
Supplementary Table 2). Similarly, we performed the same
analysis on GSE103465 microarray and found 1,559 DEGs,
including 492 upregulated and 1,067 downregulated DEGs
(Figures 2E,F, Supplementary Table 3).

Prediction of Circular RNA–MicroRNA Pairs
The circRNA–miRNA pairs corresponding to 14 DECs were
predicted by Circular RNA Interactome online software.
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FIGURE 1 | Flowchart. GEO, Gene Expression Omnibus; DECs, differentially expressed circular RNAs; DEmiRs, differentially expressed microRNAs; DEGs, differently

expressed genes; PPI, protein–protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

The predicted miRNAs and 160 DEmiRs obtained from the
microarray were intersected, and finally 11 circRNA–miRNA
pairs were identified, including six circRNAs (hsa_circ_0058161,
hsa_circ_0033392, hsa_circ_0030162, hsa_circ_0004121,
hsa_circ_0034642, and hsa_circ_0034762) and seven miRNAs
(hsa-miR-1290, hsa-miR-1305, hsa-miR-375, hsa-miR-370,
hsa-miR-887, hsa-miR-1225-5p, and hsa-miR-1825).

Prediction Target Genes of MicroRNAs
The target genes of seven miRNAs were predicted by TargetScan,
miRDB, and miRTarBase software; and 562 intersected mRNAs
were selected as predicted target genes by Venn diagram in
RStudio (Figure 3A). The intersection of the predicted 562
miRNA target genes with 1,559 DEGs yielded 56 overlapping
mRNAs (Figure 3B, Supplementary Table 4).

Construction of Circular
RNA–MicroRNA–Messenger RNA Network
A circRNA–miRNA–mRNA network was constructed through
six DECs, seven DEmiRs, and 56 DEGs and visualized by the
Cytoscape 3.8.0 software program (Figure 4).

Identification of Four Hub Genes in
Protein–Protein Interaction Network by
cytoHubba Plug-In
A PPI network based on 56 differentially expressed genes
was constructed in circRNA–miRNA–mRNA network to
understand the interaction of differentially expressed genes
by STRING software, and it was visualized by Cytoscape
3.8.0 software program (Figure 5A), which contained 56
nodes and 117 edges. Then the top five genes obtained by
the degree, betweenness centrality, and closeness centrality
algorithms in cytoHubba plug-in are listed in Table 1; and
overlapping genes were selected as hub genes YWHAZ, JAK2,
MYH9, and RAP2C (Figure 5B). Then a circRNA–miRNA–hub
gene subnetwork with nine regulatory modules, including
hsa_circ_0058161/hsa-miR-1290/YWHAZ regulatory axis,
hsa_circ_0058161/hsa-miR-1290/RAP2C regulatory axis,
hsa_circ_0030162/hsa-miR-375/JAK2 regulatory axis, hsa_circ_
0030162/hsa-miR-375/YWHAZ regulatory axis, hsa_circ_
0033392/hsa-miR-375/JAK2 regulatory axis, hsa_circ_0033392/
hsa-miR-375/YWHAZ regulatory axis, hsa_circ_0033392/hsa-
miR-1305/YWHAZ regulatory axis, hsa_circ_0033392/
hsa-miR-1305/MYH9 regulatory axis, and hsa_circ_0033392/
hsa-miR-1305/RAP2C regulatory axis, was constructed to
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FIGURE 2 | Continued
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FIGURE 2 | Boxplots and volcano plots for each microarray. (A) Boxplot of GSE147442 before and after standardization. (B) Volcano plots of DECs based on

GSE147442. (C) Boxplot of GSE71332 before and after standardization. (D) Volcano plots of DEmiRs based on GSE71332. (E) Boxplot of GSE103465. (F) Volcano

plots of DEGs based on GSE103465. DECs, differentially expressed circular RNAs; DEmiRs, differentially expressed microRNAs; DEGs, differently expressed genes.
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FIGURE 3 | Venn diagram of mRNA. (A) Venn diagram of mRNA predicted by TargetScan, miRDB, and miRTarBase. (B) Venn diagram of DEGs and predicted

mRNAs. mRNA, messenger RNA; DEG, differently expressed genes.

FIGURE 4 | CircRNA–miRNA–mRNA regulatory network, which consists of six DECs, seven DEmiRs, and 56 DEGs. DECs, differentially expressed circular RNAs;

DEmiRs, differentially expressed microRNAs; DEGs, differently expressed genes.

depict the relationship between circRNAs, miRNAs, and hub
genes (Figure 5C).

Gene Ontology Annotation, Kyoto
Encyclopedia of Genes and Genomes
Pathway, and Reactome Pathway Analyses
of Four Hub Genes
Functional annotation of four hub genes was performed by
GO analysis. GO terms for biological process (BP), cellular
component (CC), and molecular function (MF) are shown in
Figure 6. The most important GO terms were as follows: “actin
filament organization” (P < 0.01) in BP, “focal adhesion” (P <

0.005) in CC, and “cadherin binding” (P < 0.024) in MF. KEGG

pathway analysis was also performed to identify the signaling
pathways involved in these four hub genes. Two significantly
enriched pathways were found (P < 0.05) (Table 2), in which
the “tight junction” was reported to be associated with the
progression of RIF (Bellati et al., 2019). In addition, reactome
pathway analysis of four hub genes is shown in Table 3.

DISCUSSION

CircRNA is a stable non-coding RNA that has long been
neglected by transcriptomics due to the lack of a 5′ cap and a 3′

polyadenylated tail. In the past decades, with the development
of high-throughput sequencing and bioinformatics analysis, a
large number of circRNAs have been unveiled in various tissues
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FIGURE 5 | A PPI network and circRNA–miRNA–hub gene regulatory subnetwork. (A) A PPI network of the 56 target genes that exert important roles in RIF. This

network consists of 53 nodes and 117 edges. (B) Four hub genes extracted by cytoHubba plug-in. (C) CircRNA–miRNA–hub gene regulatory subnetwork, consisting

of three circRNAs, three miRNAs, and four mRNAs. PPI, protein–protein interaction; circRNA, circular RNA; miRNA, microRNA; RIF, recurrent implantation failure.

TABLE 1 | The top five genes obtained by the degree, betweenness centrality,

and closeness centrality algorithms in cytoHubba plug-in.

Name Degree Name Betweenness Name Closeness

YWHAZ 19 YWHAZ 800.89 YWHAZ 33.42

JAK2 15 MYH9 464.27 JAK2 30.45

MYH9 11 RAP2C 391.39 MYH9 28.50

RAP2C 10 JAK2 373.42 RAP2C 28.08

DUSP6 9 NUS1 296.07 CFL2 26.92

and cells (Chen and Yang, 2015). Accumulating studies have
revealed the important role of circRNAs in a variety of human
diseases (Hu et al., 2018; Li et al., 2018; Yang et al., 2018). Because
circRNAs exhibit specific expression in tissues or developmental
stages, the function of circRNAs is still not fully understood (Hu
et al., 2018; Li et al., 2018; Yang et al., 2018). Compared with
linear RNAs, the higher stability of circRNAs conferred by their

circular structure makes these circRNAs potentially valuable as
important transcriptional regulators (Meng et al., 2017; Jiang
et al., 2018). CircRNAs are commonly used as diagnostic and
prognostic biomarkers. However, the exact role of circRNAs in
RIF remains largely unknown. To determine whether circRNAs
play a role in RIF, we first performed GEO microarray dataset
selection and identified 13 DECs.

Current evidence suggests that circRNAs contain multiple
MREs that can bind to miRNAs, commonly called “miRNA
sponges,” which relieve the targeted inhibition of downstream
mRNAs by miRNAs (Jin et al., 2019; Lu J. et al., 2020; Qiu
et al., 2020), thereby regulating the expression of protein-coding
genes. In this study, in order to investigate whether the 13
DECs play a role in RIF as ceRNAs, their related MREs were
predicted by Circular RNA Interactome software. The predicted
target miRNAs were interacted with DEmiRs from GEO miRNA
microarrays, and overlapping miRNAs were taken for further
study. Ultimately, 11 circRNA–miRNA pairs were obtained,
including six circRNAs (hsa_circ_0058161, hsa_circ_0033392,
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FIGURE 6 | GO functional annotation of four hub genes. (A) Biological process (BP). (B) Cellular component (CC). (C) Molecular function (MF). GO analysis was

conducted by R package “clusterProfiler” and visualized by R package “ggplot2.” GO, Gene Ontology.

hsa_circ_0030162, hsa_circ_0004121, hsa_circ_0034642, and
hsa_circ_0034762) and seven miRNAs (hsa-miR-1290, hsa-miR-
1305, hsa-miR-375, hsa-miR-370, hsa-miR-887, hsa-miR-1225-
5p, and hsa-miR-1825). After interacting 562 miRNA-related
target genes and 1,559 DEGs, 56 overlapping genes were obtained
to construct a circRNA-related ceRNA regulatory network. To
further identify the key circRNAs involved in the regulatory
network, we constructed a PPI network to screen the hub
genes. Four hub genes (YWHAZ, JAK2, MYH9, and RAP2C)
were identified. Functional annotation and pathway analysis
indicated that the four hub genes were involved in multiple

cellular functions and signaling pathways in RIF, including “actin
filament Organization,” “tight junction,” and “RHO GTPases
activate PKNs.”

To investigate the role of circRNA in RIF, a circRNA–
miRNA–hub gene regulatory network was constructed
based on the circRNA–miRNA–mRNA regulatory network.
Hsa_circ_0058161, hsa_circ_0033392, and hsa_circ_0030162
were identified as the key circRNA in this network. GO
enrichment analysis showed that the genes in this network were
mainly involved in the regulation of actin filament organization,
focal adhesion, and cadherin binding. Embryo implantation
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TABLE 2 | KEGG pathway analysis of four hub genes.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count

hsa04530 Tight junction 2/4 162/8,063 0.002 0.035 0.025 4,627/57,826 2

hsa05161 Hepatitis B 2/4 162/8,063 0.002 0.035 0.025 3,717/7,534 2

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted by R package “clusterProfiler”.

involves the adhesion of trophoblast cells to the epithelial
layer of the endometrium, dependent on cell–cell adhesion
molecule interactions (Heneweer et al., 2002). Relevant studies
found that the expression of adhesion molecules β-catenin,
E-cadherin, and K-cadherin in the endometrium of infertile
patients was significantly lower than that of fertile patients,
while the expression of β-catenin and E-cadherin was higher
at the glandular level than in fertile patients (Koler et al.,
2009). However, K-catenin and E-cadherin were lower in
glandular levels with recurrent pregnancy loss than fertile
patients, suggesting that cadherin is associated with endometrial
receptivity and glands (Koler et al., 2009). It is speculated that
hub genes affect RIF mainly by acting on the endometrium and
related glands at the attachment of embryos through adhesion.
KEGG pathway analysis found that hub genes were involved
in the development of RIF through the tight junction pathway,
which is the part of the interconnection network of adhesion
complexes, which generate crosstalk through direct PPIs and
interactions affecting their assembly and functional signaling.
Karakotchian and Fraser (2007) showed that tight junctions play
an important role in the process of embryo implantation, which
is consistent with the results of this study. Reactome analysis
revealed that MYH9 and YWHAZ could participate in the
occurrence of RIF through RHO GTPases activate PKNs. RHO
GTPases are important signal transduction molecules involved
in a variety of important cell activities, such as actin cytoskeleton
remodeling, cell movement, cell adhesion, gene expression, and
cell cycle regulation (Bora and Shrivastava, 2017). Heneweer
et al. (2002) measured the adhesion of RL95-2 cells of the uterine
epithelium to JAR spheres by centrifugal force-based adhesion
assay, and they found that the adhesion force depends on RHO
GTPases, suggesting that RHO GTPases are most likely to play
an important role in the binding of RL95-2 cells to trophoblast
in the uterine epithelium. It is speculated that RHO GTPases
activate PKNs that mainly affect the adhesion between the
endometrial epithelium and gestational trophoblast in this study.
These results indirectly suggest that circRNAs in this network
may play a key role in the occurrence and development of RIF.
This result deserves further study.

YWHAZ, also known as tyrosine 3
monooxygenase/tryptophan 5-monooxygenase activation
protein zeta (14-3-3ζ), is a hub gene of many signal
transduction pathways and plays a key role in the progression
of multiple diseases (Wang et al., 2017; Yang et al., 2019;
Gan et al., 2020). More and more studies have shown that
YWHAZ is upregulated in breast cancer, ovarian cancer, G2
endometrial adenocarcinoma, prostate cancer, and other types
of genitourinary tumors and that it participates in cell growth,

TABLE 3 | Reactome pathway analysis of four hub genes.

Reactome pathway P-value FDR HitGenes

RHO GTPases activate PKNs 1.02E−04 4.53E−03 MYH9, YWHAZ

Interleukin-3, Interleukin-5 and GM-CSF

signaling

1.13E−04 4.53E−03 JAK2, YWHAZ

Translocation of SLC2A4 (GLUT4) to

the plasma membrane

2.03E−04 5.29E−03 MYH9, YWHAZ

Erythropoietin activates STAT5 3.21E−03 0.0155 JAK2

Erythropoietin activates Phospholipase

C gamma (PLCG)

3.21E−03 0.0155 JAK2

MAPK1 (ERK2) activation 3.66E−03 0.0155 JAK2

RHO GTPase Effectors 3.92E−03 0.0155 MYH9, YWHAZ

MAPK3 (ERK1) activation 4.12E−03 0.0155 JAK2

Regulation of localization of FOXO

transcription factors

4.12E−03 0.0155 YWHAZ

Interleukin-23 signaling 4.12E−03 0.0155 JAK2

Reactome pathway analysis was conducted by Reactome FI plug-in.

FDR, false discovery rate.

cell cycle, apoptosis, migration, and invasion (Jeda et al., 2014;
Wang et al., 2017; Yang et al., 2019; Yu et al., 2020). Some studies
in placenta and endometrial tissues have considered YWHAZ as
a housekeeping gene (Meller et al., 2005; Vestergaard et al., 2011;
Sadek et al., 2012a,b; Jeda et al., 2014; Nelissen et al., 2014; Li
et al., 2016; Wang et al., 2017; Yang et al., 2019; Yu et al., 2020),
and others have found that the expression of YWHAZ is high
in the eutopic endometrium of baboons with endometriosis,
contributing to the pathophysiology of endometriosis (Joshi
et al., 2015). In 12Z cells (immortalized human endometrium),
low expression of YWHAZ was also found in ectopic epithelial
cell lines, resulting in reducing cell proliferation (Joshi et al.,
2015), consistent with the findings of Li et al. (2019), while in
our study, YWHAZ expression was found to be downregulated
in endometrial tissues of RIF patients, possibly associated
with reduced cell proliferation. However, the current research
of YWHAZ in RIF is insufficient, so more studies are need
for confirmation.

JAK2 links to the intracellular domain of many cytokine
receptors for signal transduction. When cytokines bind to
JAK2 receptors, the phosphorylation of JAK2 leads to the
phosphorylation of other intracellular molecules, mainly through
the JAK2–STATA3 pathway, which ultimately leads to gene
transcription (Roskoski, 2016; Choy, 2019). It plays an important
role in cytokine signal transduction and regulation of cell
growth and gene expression. JAK2 inhibitors cooperate with
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SMO inhibitors to inhibit the growth and metastasis of breast
cancer cells (Doheny et al., 2020). Ito et al. (2004) detected the
expression of JAK2 in mouse embryos to understand the role
of JAK2 in the regulation of early preimplantation development
by reverse transcription–polymerase chain reaction analysis
and immunocytochemistry and found that JAK2 was mainly
localized in single-cell embryos. In the unfertilized oocytes and
M-stage single-cell embryos, JAK2 localized on chromosomes.
Xu et al. (2017) showed that JAK2-mediated sodium/hydrogen
exchange activation regulated acute cell volume changes in
the late single-cell stage of mouse preimplantation embryos.
Dysregulation of cell volume in early preimplantation embryos
may lead to embryonic development arrest. In this study, JAK2
expression reduced, presumably reducing sodium/hydrogen
exchange activation leading to dysregulation of cell volume,
which affected embryonic development and embryonic adhesion.

The non-myosin heavy chain nine gene (MYH9) is located
on chromosome 22q12.3 and encodes a cytoskeletal contractile
protein, non-smoothmuscle myosin heavy chain IIA (Pecci et al.,
2018). Kadam et al. (2006) found that MYH9 protein on gametes
interacts with the non-glycosylated N-terminal conserved region
of tubal glycoprotein, and one tubal glycoprotein can bind to two
gametes, which is associated with capacitated sperm, oocytes, and
developing embryos. Lamy et al. (2018) performed proteomic
identification in fallopian tube fluid after ovulation and found
that MHY9 could regulate sperm function. However, there are
few studies on the expression and mechanism of MYH9 in the
endometrium of patients with RIF, and more researches are
needed to verify it.

RAP2C is a member of the Rap family of small GTP-binding
proteins, and a study showed that RAP2C is mainly expressed
in the liver, skeletal muscle, prostate, uterus, rectum, stomach,
and bladder. The protein is located in the cytoplasm and is
involved in regulating cell growth, differentiation, and apoptosis
(Guo et al., 2007). RAP2C has been found to be an important
molecular switch in the mitogen-activated protein kinase
(MAPK) signaling pathway in breast cancer; RAP2C reduces
apoptosis and promotes proliferation and migration through the
MAPK signaling pathway (Zhu et al., 2020). Zhang et al. (2017)
conducted a genome-wide associated study of 43,568 women of
European descent and found that variations in the RAP2C locus
were associated with duration of pregnancy; and the established
roles of these genes in uterine development, maternal nutrition,
and vascular control supported their mechanism involvement.
Although RAP2C expresses in the uterus, the effect of changes
in RAP2C expression on endometrial receptivity and RIF needs
further study.

Nine circRNA–miRNA–hub gene regulatory modules,
including hsa_circ_0058161/hsa-miR-1290/YWHAZ regulatory
axis, hsa_circ_0058161/hsa-miR-1290/RAP2C regulatory
axis, hsa_circ_0030162/hsa-miR-375/JAK2 regulatory
axis, hsa_circ_0030162/hsa-miR-375/YWHAZ regulatory
axis, hsa_circ_0033392/hsa-miR-375/JAK2 regulatory axis,
hsa_circ_0033392/hsa-miR-375/YWHAZ regulatory axis,
hsa_circ_0033392/hsa-miR-1305/YWHAZ regulatory axis,
hsa_circ_0033392/hsa-miR-1305/MYH9 regulatory axis, and
hsa_circ_0033392/hsa-miR-1305/RAP2C regulatory axis, were
obtained from the final circRNA-related subnetwork. Overall,

for four genes, hsa_circ_0033392 and hsa_circ_0030162 had a
competitive regulatory relationship. However, so far, there is
no research about hsa_circ_0058161, hsa_circ_0033392, and
hsa_circ_0030162 on diseases published.

Hsa-miR-1290 overexpression was found in breast cancer
(Hamam et al., 2016), glioblastoma (Khalighfard et al., 2020),
and fatty liver disease (Tan et al., 2014). Consistent with
this study, hsa-miR-1290 is a risk factor for RIF. As the
downstream target genes of hsa-miR-1290 in this study, YWHAZ
and RAP2C are associated with endometrial cell proliferation.
It is speculated that hsa-miR-1290 induces endometrial cell
proliferation inhibition and endometrial receptivity impairment
leading to RIF by decreasing YWHAZ expression. However,
hsa_circ_0058161/hsa-miR-1290/ YWHAZ axis has not been
reported in the occurrence and development of RIF. The
mechanism of RAP2C in RIF is not clear, so the mechanism
of hsa_circ_0058161/hsa-miR-1290/RAP2C axis in RIF cannot
be speculated.

Hsa-miR-375 gene is located in the intergenic region between
beta-A2 crystallin (cryba2) and coiled-coil domain-containing
protein 108 (ccdc108) genes in human chromosome 2q35
region, and the sequence of hsa-miR-375 is highly conserved
(Baroukh and van Obberghen, 2009). Further studies have
shown that hsa-miR-375 is a multifunctional miRNA involved
in islet development, glucose homeostasis, mucosal immunity,
pulmonary surfactant secretion, and tumorigenesis (Shao et al.,
2014; Yan et al., 2014). In this study, we found that hsa-miR-
375 is upregulated in RIF. However, there are few reports on the
function of hsa-miR-375 in RIF or its interaction with upstream
circRNA. Therefore, more research is necessary.

It has been found in cervical cancer that hsa-miR-1305
regulates the Wnt/β-catenin pathway by binding to Wnt2 to
promote cell proliferation, migration, and invasion (Liu et al.,
2020). Testing of peripheral blood samples of monozygotic
discordant twins for epithelial ovarian carcinoma found that
the expression of hsa-miR-1305 was upregulated and that hsa-
miR-1305 regulates cell cycle and cell apoptosis (Tuncer et al.,
2020). The expression of hsa-miR-1305 is rapidly upregulated
after the initiation of pluripotent stem cell differentiation (within
24 h), indicating that it plays a role in early differentiation
(Jin et al., 2016). Furthermore, the downregulation of hsa-
miR-1035 contributes to the consolidation of the pluripotent
phenotype, and its overexpression leads to the initiation of
differentiation, thus suggesting that hsa-miR-1305 acts as a
regulator to maintain a fine balance between pluripotency
and differentiation. Overexpression of hsa-miR-1305 increases
cell apoptosis, while its knockdown reduces the number of
apoptotic cells (Jin et al., 2016). In this study, miR-1305
was found to be upregulated in RIF. However, there is
no report linking miR1305 to RIF or its association with
upstream circRNA.

At present, there are a few studies on the mechanism of
circRNA in RIF. The novelty of this study is that the circRNA–
miRNA–mRNA network was constructed for the first time
through the GEO database. However, given that these results
are only based on bioinformatics models, further in-depth
research is crucial to verify the possible role of these nine axes
in RIF.
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CONCLUSION

DECs, DEmiRs, andDEGs were identified from publicly available
microarray data to construct circRNA-related ceRNA networks.
The circRNA–miRNA–hub gene regulatory subnetwork reveals
that three important circRNAs and four hub genes may be
involved in the development of RIF, provides new insights into
the pathogenesis of RIF, and proposes potential therapeutic
targets worthy of further study.
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We propose a method for generating an electrocardiogram (ECG) signal for one cardiac

cycle using a variational autoencoder. Our goal was to encode the original ECG signal

using as few features as possible. Using this method we extracted a vector of new 25

features, which in many cases can be interpreted. The generated ECG has quite natural

appearance. The low value of the Maximum Mean Discrepancy metric, 3.83 × 10−3,

indicates good quality of ECG generation too. The extracted new features will help to

improve the quality of automatic diagnostics of cardiovascular diseases. Generating new

synthetic ECGs will allow us to solve the issue of the lack of labeled ECG for using them

in supervised learning.

Keywords: feature extraction, variational autoencoder, ECG, electrocardiography, deep learning, explainable AI

1. INTRODUCTION

All the experience gained by themachine learning community shows that the quality of the decision
rule largely depends on what features of samples are used. The better the feature description, the
more accurately the problem can be solved. The features are used to require their interpretability,
since it means the adequacy of the features to the real-world problem.

The traditional way to build a good feature description was to use an expert knowledge.
Specialists in a particular subject area offer various methods for constructing the feature
descriptions, which are then tested in solving practical problems. Another approach
for constructing a good feature description is automatic feature extraction (also called
dimensionality reduction).

There is a lot of methods for automatic feature extraction, such as principal component analysis,
independent component analysis, principal graphs and manifolds, kernel methods, autoencoders,
embeddings, etc. Among the most powerful and perspective approaches, we mention principal
graphs andmanifolds (Gorban et al., 2008; Albergante et al., 2020) andmethods using deep learning
(LeCun et al., 2015; Goodfellow et al., 2016).

Variational autoencoders (VAE) are neural networks which allow you to encode the source
information and later, on the basis of the encoded information, to obtain a specific object, and
further to generate similar objects but from a random set of coded characteristics (Kingma and
Welling, 2013; Rezende et al., 2014; Doersch, 2016). Here we examine this method for the problem
of automatic electrocardiogram (ECG) generation.

The electrocardiogram is a record of the electrical activity of the heart, obtained with the help of
electrodes placed on the human body. Electrocardiography is one of the most important methods
in cardiology. Schematic representation of the main part of ECG is shown in Figure 1. One cardiac
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cycle (the performance of the heart from the beginning of one
heartbeat to the beginning of the next) contains P, T, U waves
and QRS complex, consisting of Q, R, and S peaks. The size,
shape, location of these parts give great diagnostic information
about the work of the heart and about the presence/absence of
certain diseases.

Recently, machine learning (especially deep learning)
methods have been widely used for automatic ECG analysis;
see the recent review by Hong et al. (2020). The application
tasks include ECG segmentation, disease detection, sleep
staging, biometric human identification, denoising, and the
others (Hong et al., 2020). A variety of classical and new

FIGURE 1 | Schematic representation of main parts of the ECG signal for one

cardiac cycle: P, T, U waves and QRS complex, consisting of Q, R, and

S peaks.

FIGURE 2 | Encoder architecture.

methods are used. Among them there are discriminant analysis,
decision trees, support vector machine, fully-connected and
convolutional neural networks, recurrent neural networks,
generative adversarial networks, autoencoders, etc. (Schläpfer
and Wellens, 2017; Hong et al., 2020).

The most interesting and fruitful directions in applying deep
learning methods to ECG analysis are generating synthetic ECGs
and automatic extracting new interpretable features. Delaney
et al. (2019), Golany and Radinsky (2019), and Zhu et al. (2019)
study the problem of ECG generation. The authors of those
papers used different variants of generative adversarial networks
(GANs) (Goodfellow et al., 2014). The best results concerning
the ECG generation were obtained by Delaney et al. (2019).
The authors report on the MaximumMean Discrepancy (MMD)
metric equals to 1.05× 10−3.

Our approach in generating ECG is based on VAE. We
propose a neural network architectures for an encoder and
a decoder for generating synthetic ECGs and extracting new
features. The generated synthetic ECGs look quite natural. MMD
equals to 3.83× 10−3, which is worse than the value obtained by
Delaney et al. (2019) using GAN, but we note that the comparison
of these two metric values is not absolutely correct, since the
values were obtained on different training sets and for solving
similar, but different problems. Qualitatively, the results obtained
by the VAE differ from the GAN, but our model is lighter and
simpler, and the difference is not colossal. On the other hand, we
use VAE, not a regular autoencoder, because VAE will generate
signals from a random dataset, which will expand the training
sample due to artificially generated ECGs.
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The main advantage of our work is the proposal of the
method for extracting new features. The goal is to encode data
on the signal with the smallest possible number of features. Our
experiments show that these features are quite interpretable. This
fact allows us to hope that using these features will help to
improve the quality of automatic diagnostics of cardiovascular
diseases. Generating new synthetic ECGs will allow us to
fix the issue of the lack of labeled ECG for using them in
supervised learning.

We note that the RR interval is an extremely important
parameter of the ECG. Nevertheless, the aim of the
study was to generate one cardiac cycle. On the other
hand, our approach allows one to generate an ECG and
extract features for one cardiac cycle of any duration.
Our model is not as large as for the whole signal, and
it is convenient to use it in various subtasks related to
ECG diagnostics.

Besides VAE, other autoencoders are also used for ECG
analysis. In particular, Gyawali et al. (2019) uses f-SAE to capture
relevant features from the 12-lead ECG for the downstream task
of VT localization. The subject of the work is very different from
ours. In our work, we want to use specifically VAE, which can be
used for many tasks related to ECG analysis, including for solving
our problem.

2. ALGORITHM

2.1. Pre-processing
Our original ECG is a 10-s 12-lead signal with a frequency of 500
Hz. Using the segmentation algorithms described byMoskalenko
et al. (2019), we determine beginnings and endings of all P and
T waves and all the picks R. Then, we do the step forward
and backward from the R pick at an equal distance. Thus, we
obtain the set of cardiac cycles, each of which of vectors length
is 400 (800 ms).

2.2. Neural Network Architecture: Encoder
A variational autoencoder (Kingma and Welling, 2013; Doersch,
2016) consists of an encoder and a decoder. We propose the
following architecture for them. The encoder consists of a
convolutional and a fully connected blocks. The architecture of
the encoder is presented in Figure 2. The input vector of length
400 is fed to the input of the encoder. The next step is branching
into a fully connected and convolutional chains. This branching
occurs immediately in order to simultaneously highlight small
local features and features based on the entire signal. Otherwise,
using only fully connected blocks, we would get smooth ideal
signals, and using only convolutional ones—signals close to a
simple set of numbers.

FIGURE 3 | Decoder architecture.
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FIGURE 4 | Examples of real cardiac cycles obtained from ECG signals and used in the training of VAE.

The convolutional chain (at the top of the circuit in Figure 2)
consists of four series-connected blocks, each of which consists
of a convolution layer, a batch normalization layer, a ReLU
activation function and a MaxPooling layer. In addition, we have
another convolution layer. At the output of this block we get
25 neurons.

The fully connected chain of the encoder (at the bottom of
the circuit in Figure 2) consists of three fully connected (dense)
layers, interconnected by a batch normalization and ReLU
activation functions. At the output of the last fully connected
layer we have 25 neurons.

The outputs of the convolutional and fully connected chains
are concatenated, which gives us a vector of length 50. Using two
fully connected layers we get two 25-dimensional vectors which
are interpreted as a vector of means and a vector of logarithms of
variances for 25 normal distributions (or for one 25-dimensional
normal distribution with a diagonal covariance matrix). The
output of the encoder is a vector of length 25 in which each
component is sampled from those normal distributions with
specified means and variance.

We will interpret this 25-dimensional vector as a vector of new
features sufficient to describe and restore with small error the

one cardiac cycle. Note that with fewer features, the results were
noticeably worse (the MMDmetric was significantly higher). On
the other hand, this number of features was enough to restore the
signal with sufficient quality.

As the loss function, the Kullback–Leibler distance

DKL(P ‖ Q) =

∫
X
p log

p

q
dµ (1)

is used. Due to this fact those 25 new features are of normal
distribution. In (1) µ is any measure on X for which there exists

a function absolutely continuous with respect to µ: p = dP
dµ

and

q = dQ
dµ

, P is the initial distribution, Q is the new distribution we

have obtained.

2.3. Neural Network Architecture: Decoder
The architecture of the decoder is presented in Figure 3. As an
input, the decoder accepts the 25-dimensional vector of features.
Then, similarly to the encoder, branching into convolutional and
fully connected chains occurs.

The fully connected chain (at the bottom of the circuit in
Figure 3) consists of four blocks, each of which contains a fully
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FIGURE 5 | Examples of generated normal distribution features for obtaining a cardio cycle based on them.

connected (dense) layer, batch normalization layer and the ReLU
activation function.

The convolutional chain (at the top of the circuit in Figure 3)
performs a deconvolution. It consists of four blocks which
include a convolutional layer, a batch normalization layer, and
ReLU activation function, followed by an upsampling layer.

As a result of the convolutional and the fully connected chains,
we get 400 neurons from each. Then, we concatenate two results,
obtaining 800 neurons. Using a dense layer we get 400 neurons
which represent the restored ECG.

As a loss function for the output of the decoder, we use the
mean squared error.

The models for the encoder and the decoder can be
downloaded from https://github.com/VlaKuz/ecg_cycle_VAE.

3. EXPERIMENTAL RESULTS

In our experiment, we use 2, 033 10-s ECG signals of frequency
500 Hz (Kalyakulina et al., 2019, 2020a,b). We process them
according to the principles as described above (see section 2.1)
and train our network on the obtained 252, 636 cardiac cycles.
Examples of those real human cardiac cycles derived from ECG
signals are presented in Figure 4.

To train the model we used 720 epochs of Adaptive Moment
Estimation (Adam) algorithm proposed by Kingma and Ba
(2014) and implemented in TensorFlow Framework (Abadi et al.,
2016). No data augmentation was not performed.

The trained network produce 25 features describing the
cardiac cycle. The examples are shown in Figure 5.

After having trained the network we may test the decoder by
supplying random (generated according to the standard normal
distribution) numbers to its input. The examples of the produced
results are given in Figure 6. These synthetic generated ECG
looks quite natural.

To evaluate our results we calculated the Maximum Mean
Discrepancy (MMD) metric (Delaney et al., 2019) on the set of
3,000 generated ECG. The value of MMD is equal to 3.83× 10−3.
Keep it in mind that the best value of MMD obtained by Delaney
et al. (2019) by GAN is 1.05 × 10−3. The value obtained by
us is slightly less than the value from Delaney et al. (2019).
However, it shouldn’t be argued that this metric is a reference.
There are no illustrations in Delaney et al. (2019) confirming the
correctness of the result. We note that the comparison of these
two metric values is not absolutely correct, since these values
were obtained on different training sets and for solving similar,
but different problems. Unfortunately, the papers (Golany and
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FIGURE 6 | Examples of generated heart cycles based on 25 features.

Radinsky, 2019; Zhu et al., 2019) don’t contain (applicable to our
problem) values of similar metrics.

Interesting results were obtained when generating ECG with
a varying feature. Some generated ECG signals are presented
in Figure 7. Twenty-four features were fixed for each test when
the remaining feature was changing. It was possible to find a
parameter responsible, for example, for the height of the wave
T, the depression of the ST wave, etc. Thus, in some cases, the
extracted features may be interpreted, which also confirms the
high quality of the constructed feature description. So, from the
figures it can be seen that when fixing the 6th sign of changes in
the behavior of the QRS complex.When the 14th feature changes,
the amplitude of the P wave changes, and when the 24th feature
changes, the behavior of the T wave changes. Other signs have a
similar effect. In all cases, it can be seen that with an increase in
the value of the feature, the peak rises up, and with a decrease, it
goes down.

The variational autoencoder models for each lead were also
trained. Examples of the results of trainedmodels in the Figure 8.
The figure shows the leads I, II, III.

4. CONCLUSIONS AND FURTHER
RESEARCH

In this paper, we proposed a neural network (variational
autoencoder) architecture that is used to generate an ECG
corresponding to a single cardiac cycle. Our method generates
synthetic ECGs using rather small number (25) of features,
with completely natural appearance, which can be used to
augment the training sets in supervised learning problems
involving ECG. Our method allowed us to extract new
features that accurately characterize the ECG. Experiments
show that the extracted features are usually amenable to
good interpretation.

Our approach has both advantages and disadvantages.
The advantages include relative simplicity, lightness

and small size of the system, which makes it very
mobile and convenient; the information content of the
extracted features by the encoder; the ability to obtain
signals from a random distribution of a relatively small
number of features; the ability to generate individual
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FIGURE 7 | Examples of ECG generated when a parameter is varying. Each

column correspond to the set of fixed 24 features and varying other feature (6,

14, and 24 feature, respectively).

FIGURE 8 | Examples of ECGs generated by a VAE that has been trained in

only one lead (I, II, III).

signals from a random distribution, as well as generating
pathological signals.

The main of the disadvantages is inability to generate a whole
ECG signal.
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We plan to use our approach to generate the entire
ECG, not just one cardiac cycle and, separately, for normal
and pathological ECGs cases. We will also use the extracted
features to improve the quality of automatic diagnosis of
cardiovascular diseases.
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Failure to adequately characterize cell lines, and understand the differences between
in vitro and in vivo biology, can have serious consequences on the translatability of in vitro
scientific studies to human clinical trials. This project focuses on the Michigan Cancer
Foundation-7 (MCF-7) cells, a human breast adenocarcinoma cell line that is commonly
used for in vitro cancer research, with over 42,000 publications in PubMed. In this study,
we explore the key similarities and differences in gene expression networks of MCF-7 cell
lines compared to human breast cancer tissues. We used two MCF-7 data sets, one data
set collected by ARCHS4 including 1032 samples and one data set from Gene Expression
Omnibus GSE50705with 88 estradiol-treatedMCF-7 samples. The human breast invasive
ductal carcinoma (BRCA) data set came from The Cancer Genome Atlas, including 1212
breast tissue samples. Weighted Gene Correlation Network Analysis (WGCNA) and
functional annotations of the data showed that MCF-7 cells and human breast tissues
have only minimal similarity in biological processes, although some fundamental functions,
such as cell cycle, are conserved. Scaled connectivity—a network topology metric—also
showed drastic differences in the behavior of genes between MCF-7 and BRCA data sets.
Finally, we used canSAR to compute ligand-based druggability scores of genes in the data
sets, and our results suggested that using MCF-7 to study breast cancer may lead to
missing important gene targets. Our comparison of the networks of MCF-7 and human
breast cancer highlights the nuances of using MCF-7 to study human breast cancer and
can contribute to better experimental design and result interpretation of study involving this
cell line.
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INTRODUCTION

Cell lines have been extensively used as models for human biology
and have contributed to many insights: from the development of
vaccines and toxicology screening, to the study of disease
mechanisms and treatments. Despite these achievements, there
have been growing concerns about the quality of cell lines
(Hartung 2007), ranging from cell-line misidentification,
unreproducible studies, to failed clinical trials (Schweppe et al.,
2008; Gillet et al., 2013; Hartung, 2013). In 2012, Amgen
researchers attempted to replicate 53 landmark cancer papers and
found that 47 studies were not reproducible (Begley and Ellis, 2012);
the result is in keeping with a broader estimate that most research
studies are likely to be not reproducible (Ioannidis, 2005). This leads
to wasteful use of financial resources and labor, with an estimation of
28 billion dollars a year spent on irreproducible research (Freedman
et al., 2015). While various reasons contribute to the irreproducibility
of research, including study power, technical and biological
variability, cell line reproducibility has been considered as one of
the major factors contributing to the failure to reproduce preclinical
studies. For instance, cell line misidentification has been a long
standing problem in cell culture, with controversies for HeLa cells
dating back to the 1970s (Nelson-Rees et al., 1974). In addition, the
usefulness of cell lines as models for human biology has been
questioned. Not all cancer cell lines have the same value as
models to study cancer in humans (Gillet et al., 2013).

Michigan Cancer Foundation-7 cells (MCF-7) have been used
widely in labs as a model for human breast cancer for over
40 years. It is estrogen receptor (ER)-postive, progesterone
receptor (PR)-positive, poorly aggresive, and non-invasive,
with low metastatic capacity (Comsa et al., 2015). Since its
creation in 1973, MCF-7 has resulted in the highest number of
scientific papers compared to other breast cancer cell lines
(Sweeney et al., 2012), with over 42,000 publications on
PubMed related to this cell line. MCF-7 has played an
important role in studying estrogen receptor (ER) in tumor
growth, characterization of cancer drug candidates, and
endocrine disruption screening (Comsa et al., 2015). Since
cancer cell lines greatly contribute to our understanding of
cancer molecular mechanisms, investigating their relevance of
cancer cell lines to human cancer is critical. Noticeably, even
MCF-7 cells from a single cell bank batch can exhibit
heterogeneity: previous work in our lab at the Center for
Alternatives to Animal Testing showed that MCF-7 cells
coming from the same ATCC lot still displayed marked
differences in cellular and phenotypic characteristics, such as
proliferation, and expression of estrogen-related genes that
escaped routine cell line authentication techniques (Kleensang
et al., 2016). A more recent study onMCF-7 also shows variations
in expression of reference genes among sub-clones of this cell line
(Jain et al., 2020).

In this study, we used large-scale data analysis to examine the
similarities and differences betweenMCF-7—a cell line belonging
to the luminal A molecular subtype (Dai et al., 2017)—and
invasive breast cancer tissues including four subtypes—luminal
A, luminal B, HER2-enriched, and basal-like (Cancer Genome
Atlas Network, 2012). To our knowledge, this is one of only a few

studies that use network analysis to compare an immortalized
cancer cell line to human cancer tissues. The bioinformatics
pipeline established in this study was made available and can
potentially be applied to similar analysis between cell lines and
their corresponding tissues in humans.

MATERIALS AND METHODS

Data
MCF-7 ARCHS4 data set. Gene expression level RNA-seq data of
the human adenocarcinoma cell line MCF-7 was obtained from
the ARCHS4 database (All RNA-seq and ChIP-seq Sample and
Signature Search). For detailed description of data processing
workflow, readers are invited to read the ARCHS4 article
(Lachmann et al., 2018). Briefly, raw RNA-seq data was
collected from Gene Expression Omnibus (GEO) by the
authors of ARCHS4, aligned to the reference genome, mapped
to the gene level, and uploaded to the ARCHS4 database. The
MCF-7 data set contained 1032 samples from 107 GEO series.
Gene expression data was downloaded as an expression matrix
using the R script provided by ARCHS4 and was log2-
transformed. Since the data set came from multiple
experimental series, data sets were checked for batch effects
using Combat (Johnson et al., 2007) before downstream analysis.

MCF-7 GSE50705 data set. RNA microarray data were
downloaded from Gene Expression Omnibus (GEO) (Shioda
et al., 2013). In the original study, MCF-7 cells were treated
with various concentrations of natural and xenobiotic estrogens.
We extracted samples treated for 48 h with the steroid hormone
17β-estradiol (n � 88), converted probes to gene symbols, and
removed probes that were matched to multiple gene names.

BRCA data set. Pre-processed, RSEM-normalized Level
3 RNA-seq data of breast invasive ductal carcinoma tissues
from The Cancer Genome Atlas was downloaded from
FireBrowse. The data set included 1,212 human tissue samples.

For all three MCF-7 and BRCA data sets, samples were
checked for outliers using hierarchical clustering, as well as
missing values using the goodSamplesGenes function in the
Weighted Correlation Network Analysis (WGCNA) package.
No obvious outliers and missing values were found. Before
constructing the co-expression networks for the MCF-7 and
BRCA data sets, genes were filtered for the top 10,000 mostly
highly variant genes using median absolute deviation (MAD) to
exclude the large fraction of genes that are expressed at low level,
as two genes with low variance would result in high correlation
that would not be biologically meaningful. The resulting gene
expression matrices were then analyzed with the WGCNA
approach, a popular network analysis algorithm. The analysis
workflow for this study can be viewed in Figure 1.

Weighted Gene Co-expression Network
Analysis
WGCNA is a systems biology approach that describes the
correlation among genes (Langfelder and Horvath, 2008). It
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uses network language to describe the pairwise correlation
between genes in a data set, based on the assumption that
genes with similar expression levels tend to belong to similar
pathways. Rather than using a hard threshold for the co-
expression similarity sij, which does not reflect the continuous
property of gene expression levels and may lead to loss of
information, WGCNA uses a soft threshold approach. It raises
the co-expression similarity sij to a power β (β ≥ 1) to obtain the
adjacency matrix aij, allowing the adjacency to having continuous
values between 0 and 1:

aij � sβij

We set β � 5 for ARCHS4, β � 7 for GSE50705, and β � 6 for
BRCA based on the scale-free topology criterion (Supplementary
Figure S1). After network construction, modules in each data set
were detected using hierarchical clustering implemented through
the function blockwiseModules, with the parameter
minModuleSize set to 100, 80, and 100 for ARCHS4,
GSE50705 and BRCA respectively.

Functional Annotation
Modules detected by WGCNA can have true biological
meaning or can be results of noises in the data, such as
sample contamination, technical artifacts, or experimental
design. Therefore, we performed functional enrichment of
biological processes for genes in each module to identify
modules with biological meaning. We used the package
STRINGdb which provides an R interface to the STRING
protein-protein interactions database. The annotation was
adjusted for Homo sapiens background. Enrichment
p-values were calculated based on over-representation
analysis using hypergeometric tests and were adjusted for
multiple hypothesis testing with Benjamini-Hochberg
procedure (Szklarczyk et al., 2019).

Data Visualization
The modules of interest were visualized with the network
visualization software Cytoscape version 3.7.0 (Shannon et al.,
2003). For Figures 2 and 3, networks were plotted with Group
Attributes Layout in Cytoscape to highlight gene module
membership. For Figure 4, the network was plotted with
Prefuse Force Directed Layout. Node color was correlated with
the number of gene PubMed publications, obtained by querying
the Entrez IDs to obtain a raw count of PMIDs on the PubMed
database, as described in our previous publication (Maertens
et al., 2020).

Scaled Connectivity
The scaled connectivity for each gene in the MCF-7 and BRCA
networks were calculated from the adjacency matrices using the
function fundamentalNetworkConcepts from the WGCNA
package. Scaled connectivity is calculated as K � Connectivity/
max(Connectivity). Full tables of scaled connectivity of 10,000
most variant genes in GSE50705 and BRCA are available in
Supplementary Table 1A,B.

Ligand-Based Druggability
The ligand druggability scores for the 10,000 most variant genes
in the MCF-7 and BRCA data sets were queried using the Protein
Annotation Tool from the canSAR knowledgebase. The canSAR
database integrates genomic information, structural biology, and
properties of compounds to estimate likely “druggability” of
chemicals (Tym et al., 2016; Coker et al., 2019). Ligand-based
druggability is calculated by looking at the small molecule
compounds that have been tested against the protein or its
homologues. The ligand-based druggability score for each
protein was calculated based on ligand efficiency, med-chem
friendliness, and molecular weight of these compounds. Top
30 genes with highest positive ligand druggability scores were
selected for each data set for Figure 5. Full tables of ligand

FIGURE 1 | Analysis workflow for the MCF-7 ARCHS4, MCF-7 GSE50705 and BRCA data sets.
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druggability for the 10,000 genes in GSE50705 and BRCA are
available in Supplementary Table S2A,B.

RESULTS
Minimal Overlapping Genes Between
Michigan Cancer Foundation-7 and Human
Breast Tissues
We selected three data sets based on human breast cancer tissues:
1) the TCGA data set of invasive breast cancer biopsies

(henceforth BRCA), which has the advantage of reflecting
human in vivo samples, although biopsies by their nature
include a mix of different tissues 2) the ARCHS4 collection of
MCF-7 samples, which is an attempt to massively mine publicly
available RNA-seq experiments, and consists of 1032 samples
combined from GEO, and 3) a smaller study of MCF-7 cells
exposed to estrogen in a dose response curve. As the data sets
involve a range of different technologies, preprocessing strategies,
and in the case of ARCHS4, potentially many different biological
conditions, we began with the basic initial step of reducing the
gene expression set to the top 10,000 most variant genes, to
eliminate genes that were minimally or inconsistently expressed
and would therefore confound the use of a correlation-based
approach. Surprisingly, even this initial step indicated minimal
conservation of gene expression signatures - only 681 genes were
conserved amongst the three datasets, and of the top 10,0000
genes from the ARCHS4 data set, fully 6,440 were unique to that
data set (Figure 6).

In the case of the genes found in all three data sets, annotation
analysis revealed that they were enriched for genes annotated to
mitotic cell cycle (adjusted-p value � 1.08E-21), regulation of cell
migration (adjusted p � 1.89E-18), and response to endogenous
stimulus (adjusted-p value � 2.33E-18) (Supplementary Table
S3), suggesting that of the highly expressed genes, the common
genes are likely annotated to fundamental cell processes.

In order to understand how and why the data sets diverged
even at this fundamental level, we explored the genes that were
unique to each data set. For the BRCA data set, we suspected that
one cause of the difference was likely the fact that cancer biopsies
always reflect a mixture of cell-types and typically have a
significant component of immune infiltration. Our data
support this to a limited extent: genes unique to BRCA were
enriched for immune-related GO annotations, such as regulation
of immune response (adjusted-p value � 0.002023) and regulation
of innate immune response (adjusted-p value � 0.007635)

FIGURE 2 | Venn diagram of shared and unique genes between MCF-7
ARCHS4, GSE50705, and BRCA data sets.

FIGURE 3 | Histogram of absolute difference in scaled connectivity ranking between GSE50705 and BRCA. The scaled connectivity scores obtained with the
fundamentalNetworkConcepts function from WGCNA was ranked, and the absolute difference between GSE50705 and BRCA were calculated.
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(Supplementary Table S3). In addition, within genesmapped to cell
types via the Human Gene Atlas, there was a modest level of
enrichment for immune-cell related genes (Supplementary Table S3).

More striking, however, was a marked presence of ribosomal
subunit genes unique to the BRCA data set, annotated via STRING
as ribosome biogenesis (adjusted p-value � 1.81E-08)
(Supplementary Table S3), and Bioplanet as Cytoplasmic
ribosomal proteins (adjusted-p value � 1.61E-10). While these
ribosomal subunit genes are ubiquitously expressed in most breast
cancer cell lines as well as most tissues (Ebright et al., 2020), they
were in neither the MCF7-derived GSE50705 data set nor the
ARCHS4 data set, likely owing to some extent to the chip design for
the GSE50705, and the high noise level in ARCSH4. Within the
BRCA data set, several ribosomal proteins showed a high level of
patient-to-patient variation (Supplementary Figure S2A). Of the
topmost variant ribosomal proteins within the BRCAdata set, only
RPS3 was also in the GSE50705 data, and a much narrower
dynamic range (Supplementary Figure S2B). Strong ribosomal
signatures in a subset of circulating tumor cells have been
associated with poor clinical outcomes in breast cancer patients
(Ebright et al., 2020), and it seems likely that MCF-7 cells may not

capture the effects of the variation in ribosomal protein expression
patterns.

The genes unique to the MCF-7 GSE50705 estrogen dose-
response curve were enriched for genes related to non-coding
RNA processing (adjusted-p value � 6.64E-09) and
mitochondrial respiratory chain complex IV biogenesis
(adjusted-p value � 1.77E-07). Meanwhile, the large set of
genes unique to the ARCHS4 dataset are most significantly
enriched for cell-cell signaling (adjusted-p value � 2.23E-59),
synaptic transmission (adjusted-p value � 8.52E-56), and ion
transport (adjusted-p value � 9.11E-41) (Supplementary
Table S3).

As breast cancer cell lines, it is surprising that genes unique to
ARCHS4 MCF-7 cells are enriched for generation of neurons
(adjusted p-value 5.98E-21)— a process unique to neuronal cells.
In addition, there were some genes annotated to the meiotic
chromosome segregation in this data set and even a few Y
chromosome genes (Supplementary Table S3). This can be

FIGURE 4 | Gene network of BRCA data set, plotted with Group
Attributes Layout in Cytoscape. Module membership was determined using
WGCNA. All modules except the grey module containing unassigned genes
were exported to Cytoscape using the exportNetworkToCytoscape
function, with a threshold of 0.05. Node color = module color. Genes
associated with chromosome enrichment with an adjust-p value ≪ 0.05 from
Enrichr are highlighted in dark grey. Purple edges indicate interactions
between genes enriched for chromosomes.

FIGURE 5 | Gene network of MCF-7 GSE50705 estrogen-treated data
set, plotted with Group Attributes Layout in Cytoscape. Module membership
was determined using WGCNA. All modules except the grey module were
exported to Cytoscape using the exportNetworkToCytoscape function,
with a threshold of 0.2. Node color = module color. There was no gene
significantly enriched for chromosomes in Enrichr.
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caused by artifacts of annotations data or possibly contamination
of other cell lines during experimental design of GEO studies or
inclusion of non-MCF7 samples during data mining for
ARCHS4. Overall, we observed a higher degree of similarity
between GSE50705 and BRCA (5252 overlapping genes) than
between ARCHS4 and BRCA (2203 overlapping genes).

Network Signatures Indicate Substantial
Differences Between Data sets
In order to investigate similarities and differences between the
data sets at a more intricate level, we usedWGCNA for the 10,000
most variant genes in each data set to assign the genes to
functional modules and see if, broadly speaking, interactions
amongst genes were conserved. WGCNA uses correlations
amongst gene expressions and groups genes in an
unsupervised way to determine potential interactions. In
keeping with our previous studies (Maertens et al., 2018;
Maertens et al., 2020), the modules produced by WGCNA
were input into STRING for biological annotations to verify
whether WGCNA had produced modules of genes that were
known to interact and were enriched for annotations.

For both the BRCA and the GSE50705 data sets, the modules
were enriched for known protein interactions in STRING as well
as highly significant adjusted p-values for GO Biological
Processes, indicating that for most of the genes, WGCNA
indeed clustered genes with similar biological functions and on
the same pathways. However, the modules of the ARCHS4
dataset were unsatisfactory: most genes could not be classified
into modules and ended up in the grey module for unassigned
genes (Supplementary Figure S3A). These modules were also
small and lacked distinguishing enrichments in STRING
(Supplementary Table S4A). Due to the lack of meaningful
biological signals in ARCHS4, we decided to focus subsequent
analyses on the GSE50705 and BRCA data sets.

Annotations by modules in the GSE50705 and BRCA data sets
indicated that the BRCA data set had a red module
(Supplementary Table S4B) that was enriched for genes
annotated as immune-related or cytokine-response biological
processes. As expected, the immune component was not
present in the GSE50705 data (Supplementary Table S4C).
Our finding is supported by another study showing consistent
upregulation of immune processes in primary tumors, possibly a
result of immune infiltration in tumor tissues that is not present
in cell lines (Yu et al., 2019).

Interestingly, even modules annotated for the same pathways
in the two data sets varied substantially in their gene constituents:
the largest module annotated for cell cycle processes in the BRCA
data set (brown module, 1013 genes) only has 354 genes
overlapping with its counterpart in the MCF-7 GS550705 data
set (turquoize module, 2244 genes).

To determine whether the MCF-7 and BRCA data sets differ
regarding network topology, we calculated the scaled
connectivity, a metric for gene significance in a network,
which asks if the gene is acting as a hub, or highly
connected gene. We observed substantial difference between
the two data sets: the average mean absolute difference
between scaled connectivity was 3,223 and a small cluster of
genes had a difference in scaled connectivity greater than
9,000, in each case ranking significantly higher in the MCF-
7 dataset than the TCGA (Figure 5). The genes with the
highest scaled connectivity in MCF-7 vs. TCGA showed
relatively rare over- or under-expression within the BRCA
data set, in each case with transcriptional perturbations less
than 10 percent (Table 1, Supplementary Figure S4). The
relatively high connectivity in MCF-7 may reflect a
combination of the lineage of MCF-7 (perhaps a cancer
type that over-expressed one or more of these genes), or the
result of cellular instability and the evolution of MCF-7
over time.

FIGURE 6 | Genes with top ligand druggability scores for (A) GSE50705 and (B) BRCA (C) Among the top 30 genes, 17 genes are overlapping.
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Breast Invasive Ductal Carcinoma Data
Modules Contain Substantially More
Cis-Regulated Genes Compared to
GSE50705
In our previous study using WGCNA to analyze genes for
functional assignment (Maertens et al., 2020), we reported that
some modules were significantly enriched for genes on a single
chromosome and that these modules tended to have no
statistically significant enrichments for protein-protein
interactions (PPI) or functional enrichments. Others have
similarly reported significant clustering of genes based on
intra-chromosomal distance and this feature has been
demonstrated to be specific for different phenotypes (Garcia-
Cortes et al., 2020). We found that the BRCA data had several
modules that, although enriched for both PPI interactions and
functional enrichments, had a statistically significant enrichment
for genes on a single chromosome (Figure 2), likely reflecting
increased co-expression from neighboring genes that results from
a disruption in the regulatory elements that control gene
transcription. Interestingly, this is not true of the MCF-7
sample - no module was significantly enriched for any one
chromosome - despite the fact that it originates from a cancer
cell line (Figure 3). However, it should be noted that the
difference may simply be due to the greater dynamic range of
RNA-sequencing compared to microarray.

Potential Drug Targets Missed by Using
Michigan Cancer Foundation-7
AsMCF-7 is often used for drug discovery research, we wanted to
explore whether any potentially druggable candidates would be
missed. To identify potential drug targets, we used the CanSAR
database, which is a protein structure-based model that predicts
ligand-based druggability scores based on the predicted cavities of
over 144,000 proteins (Coker et al., 2019). While there was some
overlap between the top-ranked druggable genes, there were
several genes that would likely have been missed if MCF-7
were exclusively used for protein targets. However, it should
be kept in mind that this approach is merely looking for potential
candidates based on protein accessibility, not cancer biology, and
there was no available information about classes of drugs.

Therefore, our results merely suggest that it might be useful to
look outside the MCF-7 model when screening for cancer drug
targets.

As an example, of the genes that ranked highly for ligand-
based druggability, CCNT1 has the 23rd highest score in the
BRCA data set and was ranked in 277th in scaled connectivity
in this data set yet ranked 5,824th in the GSE50705 data set.
Altered CCNT1 expression (defined as z-score > +/−1.5) is not
significantly associated with any mutations or copy number
variations. Interestingly, altered expression is significantly
associated with race, being more common in African
Americans compared to Whites or Asian Americans
(Supplementary Figure S5) - while the reason for this may
range from SNP polymorphisms to different environmental
exposures amongst populations, it does indicate one intrinsic
short-coming of MCF-7 cells: they were isolated from a White
female (Comsa et al., 2015), and therefore a model of breast
cancer based on this tissue type alone will miss much of the
molecular diversity of breast cancer in a population with
mixed genetic backgrounds, diverse environmental
exposures and clinical histories (Makki, 2015; Koual et al.,
2020).

In the BRCA data set, CCNT1 was located in the yellow
module enriched for several biological processes (intracellular
transport - adjusted p value 4.63E-12, protein modification by
small protein conjugation or removal - adjusted p value 4.63E-12,
and protein transport - adjusted p value 2.11E-09) as well as
Chromosome 4 (adjusted p value 0.0009227) and Chromosome 5
(adjusted p value 7.435E-20) enrichments (Supplementary Table
S5). In order to predict the most likely trans-activated co-
expressed genes, we looked at the top 50 genes correlated with
CCNT1 expression by Spearman rank correlation (coefficient of
correlation > 0.789; q-value < p � 6.27e-235). While these genes
were enriched for known protein-protein interactions via
STRING (p-value 0.000268), many of the genes were
unconnected, and the only significant GO annotations were
each based on a maximum of three genes - likely because
many of these genes have minimal literature (Figure 7), and
31 of the genes were “unclassified” in GO SLIM Biological Process
and therefore invisible in any annotation-based approach.

Using the FANTOM EdgeExressDB (Lizio et al., 2015; Lizio
et al., 2019) to explore potential connections suggested that the

TABLE 1 | Top 10 genes with highest difference in scaled connectivity ranking between GSE50705 and BRCA.

GeneSymbol Scaled connectivity
in MCF7

Rank in
MCF7

Scaled connectivity
in BRCA

Rank in
BRCA

Absolute ranking
difference

SUSD2 0.787126168 68 6.48E-05 9995 9927
CLU 0.878769987 16 0.000544507 9933 9917
BCAR3 0.78900237 67 0.001091298 9861 9794
TMPRSS3 0.767847573 82 0.000989588 9875 9793
OLFM1 0.70620407 181 0.000370951 9960 9779
SLC24A3 0.748824023 108 0.000982308 9877 9769
DEGS1 0.72618254 148 0.00099857 9874 9726
NPY1R 0.752667373 103 0.001839083 9775 9672
PLK2 0.722418194 156 0.001623592 9802 9646
CYP2J2 0.674845098 238 0.000986705 9876 9638
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coordinated co-expression of many of the genes was possible due
to the transcription factor CLOCK, which had a very high
correlation with CCNT1 - indeed, the two genes are
significantly correlated in every cancer within TCGA, both
before and after adjusting for tumor purity. So, while the
mechanism of the correlated co-expression is unknown, it is a
fairly robust finding within cancer tissues. The Spearman
correlation between CCNT1 and CLOCK in the GSE50705
dataset was 0.130 with a p-value of 0.2285, and the top 50
candidates based on Spearman rank were shown in
Supplementary Table S6.

While CCNT1 is not associated with survival in breast cancer
as a whole, low expression is associatedwith longer survival in luminal
A cancer (HR 1.98, p � 0.0155); similarly, low CLOCK expression was
associated with increased survival in all breast cancer subtypes as well
as the luminal A subtype. Like CCNT1, altered CLOCK expression is
more common in African Americans.

The ultimate molecular function of CCNT1 and its
interactions with CLOCK and the other predicted genes
remains elusive, and any potential role in breast cancer is
largely unremarked, as only 3 papers within PubMed mention
CCNT1 and breast cancer, and in fact only 39 papers mention
CCNT1 and cancer. The significance of CLOCK in cancer is
better understood as it is thought to be a molecular link between
disrupted circadian rhythm and cancer (Trujillo and Muotri,
2018), including breast cancer (Cadenas et al., 2014; Xiao et al.,
2014).

DISCUSSION

Cell lines are often used as models for cancer research, but recent
studies have drawn attention to the ways in which cell-lines can
introduce artifacts. MCF-7 is not the only cell line that expresses
heterogeneity. Other commonly used breast cancer cell lines such as
T47D, BT474, and SKBR3 have also been shown to develop
chromosomal alterations through cluster analysis (Rondon-Lagos
et al., 2014). A recent study on the reproducibility of a perturbational
assay in anti-cancer drugs using the human mammary epithelial cell
line MCF10A shows variability of findings among five research
centers, although it should be noted that the observed variability
can be due to multiple biological, experimental and computational
factors (Niepel et al., 2019).

One interesting result of this study is the lack of concordance
between the ARCHS4 and TCGA data sets. Above and beyond
the obvious reasons for differences between in vivo cancer tissue
and a larger collection of in vitro studies with varying
experimental conditions, there are likely differences introduced
from the data analysis pipelines. Nonetheless, it remains
surprising that even at the basic level of sorting by variant
genes, there was very little in common with other MCF7-
based studies. Correlation based approaches are often used on
large data sets to find commonly expressed genes - and this
function is built into ARCHS4 - but in this application, the size of
the data set did not appear to compensate for the increased noise
when it came to teasing out possible interactions.

FIGURE 7 | Subnetwork of CCNT1 in the BRCA data set plotted with Prefuse Force Directed Layout in Cytoscape. From the module yellow in BRCA, the first
neighbors of CCNT1 were selected. The color of the node corresponds to the number of PubMed publications associated with the genes.
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Our examination of the smaller data set based on MCF-7 cells
treated with estradiol and breast cancer tissues shows that
although there are some conserved genes between the two
networks, the majority of genes were non-overlapping. This
issue has been raised in other studies: for instance, the
Wellcome Sanger Institute used the CRISPR-cas9 screens on
324 human cell lines to priority gene targets for 30 cancer
types, and found 628 priority targets (Behan et al., 2019);
however, the vast difference between these cell lines and in
vivo patient data meant that at least some of the targets
predicted by CRISPR-cas9 screens were irrelevant to human
cancer biology (Lyu et al., 2020). In our study, the substantial
differences in co-expression networks between the MCF-7 cell
line and human breast cancer tissues could have many
explanations - cell line evolution of the MCF7 cells after
multiple generations, as well as the increase in cis-regulated
expression in in vivo cancer, and technical differences between
the transcriptomic approaches. Nonetheless, the heterogeneity
among BCRA patients likely contributes to a great deal to the
difference. Our study did, like many studies of in vitro tumors,
underscore that tumors contain multiple cell-types, as evidenced
by the presence of a module of immune-related genes.

Similarly, our finding of marked correlations amongst genes
based on chromosome distance within the TCGA data set, but not
in the GSE data set, suggests that correlation based approaches
used on cancer-derived tissues requires caution, as cis-activation
(or uncontrolled transcription) will cause markedly strong
associations not driven by a common transcription factor
binding sites or pathways (Garcia-Cortes et al., 2020), and this
complicates any interpretation of the scaled connectivity score or
assuming any correlation reflects a specific interaction. The
observation of cis-activated genes in the TCGA data set and
not in the GSE data set could be due to the difference in dynamic
range between RNA-seq and microarray. However, these
correlations could also be biologically meaningful, potentially
caused by pervasive copy number variations within the 19p13
chromosome region in breast cancer tissues, and the increased
transcription almost certainly has biological consequences.

There are several limitations in our study: althoughWGCNA
is a powerful bioinformatics method, it can result in false
positives and spurious correlations. We addressed this issue
by examining the gene modules resulting from the WGCNA
algorithm for biologically meaningful annotations. Another
limitation is the shortcoming of annotation databases, as
mentioned in our previous publication (Maertens et al.,
2020). Finally, the difference between MCF-7 and BRCA we
observed could also be accounted for by the difference in mRNA
sequencing technologies. The MCF-7 GSE50705 data set was
measured with the microarray platform Affymetrix Human
Genome U133 Plus 2.0 Array, and the BRCA TCGA data set
was measured with the RNA seq technology Illumina HiSeq
2000 RNA Sequencing Version 2. RNA-seq is more sensitive
than microarray to low-abundance transcripts (Wang et al.,

2014), and the concordance between RNA-seq and microarray
technologies can vary from low to high (Zhao et al., 2014; Trost
et al., 2015).

Nevertheless, our study indicates that both models have
limitations: MCF-7 cells lack genetic diversity and are known
to have a significant lack of reproducibility; at the same time in
vivo tumors will have greater cellular heterogeneity and artifacts
intrinsic to cancers, such as greater cis-regulation. This is
perhaps a useful reminder of the truism that all models are
wrong, but some models are useful - and that the models are
more useful when we know in what ways they are likely to
mislead us.
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The development of high-throughput high-content technologies and the increased

ease in their application in clinical settings has raised the expectation of an important

impact of these technologies on diagnosis and personalized therapy. Patient genomic

and expression profiles yield lists of genes that are mutated or whose expression is

modulated in specific disease conditions. The challenge remains of extracting from

these lists functional information that may help to shed light on the mechanisms

that are perturbed in the disease, thus setting a rational framework that may help

clinical decisions. Network approaches are playing an increasing role in the organization

and interpretation of patients’ data. Biological networks are generated by connecting

genes or gene products according to experimental evidence that demonstrates their

interactions. Till recently most approaches have relied on networks based on physical

interactions between proteins. Such networks miss an important piece of information

as they lack details on the functional consequences of the interactions. Over the past

few years, a number of resources have started collecting causal information of the

type protein A activates/inactivates protein B, in a structured format. This information

may be represented as signed directed graphs where physiological and pathological

signaling can be conveniently inspected. In this review we will (i) present and compare

these resources and discuss the different scope in comparison with pathway resources;

(ii) compare resources that explicitly capture causality in terms of data content and

proteome coverage (iii) review how causal-graphs can be used to extract disease-specific

Boolean networks.

Keywords: network medicine, logic modeling, causality resources, prior knowledge network, causal interactions

INTRODUCTION

The term precision or personalized medicine reflects the motivation of using high content
molecular information for disease diagnosis and for the design of effective personalized therapies
(Ginsburg and Phillips, 2018). Advances in experimental methods, such as deep sequencing and
high content proteomics (Nilsson et al., 2010; Goldman and Domschke, 2014), have enabled the
comprehensive assessment of a patient’s molecular profile in a time- and cost-effective manner.
Patients’ genomic and expression profiles are becoming increasingly more important diagnostic
readouts and are likely to become soon compatible with clinical practice in most public hospitals.
Whether patients can benefit from this promising treatment strategy on a large scale still remains
uncertain (Zhang et al., 2020).
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One main limitation of this genomic-approach is the lack
of an effective strategy to extract clinically relevant information
from these dense and noisy datasets. Network representation
of biological complexity and graph theory are playing an
increasingly important role in dealing with the intricacy of
human physiology and pathology. Network-based approaches
are used, in the context of a relatively new discipline dubbed
“network medicine,” to address the interplay of the molecular
mechanisms underlying complex diseases (Barabási et al., 2011).
The main idea behind is that a network, where interactions
between its components are represented in the form of a graph,
provides a powerful mathematical framework for analysis and
visualization of experimental results.

According to this vision, gene products govern cell physiology
by interacting in a large interconnected network whose
equilibrium is responsible for the dynamic homeostasis of
“healthy” cells. The network properties are believed to be
rather robust and resilient to perturbations of many of the
nodes and some of their connecting edges. A few nodes of
the network, however, are quite sensitive and their knock
out or hyperactivation may cause large changes of the
network properties leading to disease (Brinkman et al., 2006).
Alternatively, and more frequently, a combination of alterations
of the activities of nodes that, on their own, have little effect
may synergize to alter the properties of sensitive regions of the
network thereby leading to a pathological condition (Barabási
et al., 2011). It is anticipated that the overlay of a patient genomic
profile onto such a comprehensive cell network, or part of
it, will provide a framework to help in patient diagnosis and
therapy choice.

Cell networks are assembled from experimental evidence
of physical or functional links between biological entities.
This information is often difficult to retrieve and organize as
it is dispersed in millions of scientific reports. In addition,
experimental results are mainly reported in natural language
that is not easily processed by computers. Thus, network
approaches mostly rely on the work of database curators that,
assisted by natural language processing tools, identify relevant
reports in literature repositories and annotate the interaction
evidence in a structured machine-readable format. Over the
past few decades different players have engaged in the task of
capturing evidence of protein interactions. Protein interaction
is a generic term including different types of physical and
functional relationships between proteins as identified by diverse
experimental approaches (Zhou et al., 2016). Databases that
aim at capturing this information have distinct focus and
adopt models that best adapt to their scope. As a consequence,
comparing and merging the data from the diverse databases is
made difficult by the heterogeneity of the interaction types and
the models to represent them.

A recent review by Touré et al. (2020) has discussed the
different types of protein interaction resources focusing on a
comparison of the adopted data structures and the data exchange
and conversion procedures. Here we go over the models that
have been adopted to represent experimental evidence of protein
relationships mediating physiological and pathological processes.
More specifically, we confront physical and causal interactions by

briefly describing their characteristics and the resources that aim
at capturing and organizing the two different interaction types.

We focus on resources that annotate causal interactions
modeled as “activity-flow” (AF) networks (Figure 1) by
considering and comparing their coverage and merits in
different use cases. We will also present tools and strategies that
make use of networks assembled from prior knowledge (PKNs)
to produce executable logic models replicating phenotypes of
clinical relevance. Finally, we discuss whether the evidence on
causal relationships that is presently reported in the scientific
literature is adequate to assemble a cell network of sufficiently
high coverage and accuracy to be of clinical relevance.

RESOURCES CAPTURING SIGNALING
INTERACTIONS

Physical and Causal Interactions
Proteins interact in the cell forming a complex ordered functional
mesh. Some of these interactions are necessary for maintaining
cell organization whereas others support the cell response to
internal and external stimuli, and are often transient (Acuner
Ozbabacan et al., 2011). A variety of approaches suitable for
high throughput analysis have been used to reveal the physical
contacts between proteins without informing on the dynamic of
signal propagation (Xing et al., 2016). More than 400K “physical
interactions” between human proteins have been reported in
the literature by using these methods and for 85% of the
proteins in the human proteome we know at least one physical
partner in public databases (Orchard et al., 2014; Oughtred
et al., 2021). Physical interactions are symmetrical by nature and,
having no directionality, are represented as “undirected” graphs
(Figure 1A). Transient signaling interactions, on the other hand,
are often short lived and as such may not be revealed by the
methods developed for physical interactions. They are often
causal as one of the partners, the regulator, causes a functionally
relevant modification of the target protein. These latter types
of interactions may be modeled in two ways that are often
referred to as “process descriptions” (PD) and “activity-flow”
(AF) (Figure 1) (Le Novère, 2015; Türei et al., 2016; Touré et al.,
2020).

Let us consider, as an example, the experimental observation
that the phosphatase PTPRJ (DEP1) binds to MAPK1 (ERK2)
and inactivates it by removing a phosphate (Sacco et al., 2009).
As shown in Figure 1B, an “undirected PPI” model represents
this statement as a link between PTPRJ and MAPK1 that has
no direction. The “activity-flow” (AF) model, on the other hand,
renders this information as a binary interaction where the two
proteins are connected by an edge that has direction from PTPRJ
to MAPK1 and a sign which is graphically symbolized with a
specific edge-form or color. This representation captures the
evidence that PTPRJ is the regulator and MAPK1 the target and
that this interaction has the consequence of inactivatingMAPK1.
AF models offer the advantage of being represented as a set of
binary interactions in a signed directed graph which is more
informative than an undirected graph. Finally, the PD model
captures additional mechanistic details. In this representation the
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FIGURE 1 | Different representations of protein interactions. (A) Experimental methods can either provide evidence that support a physical contact between two

proteins to form a complex (physical interaction) or a modulation of the activity of a target protein caused by the activity of a parent protein (causal interaction). (B)

Different graphical representation of the same biological statement: PTPRJ dephosphorylates and inhibits MAPK1 (Sacco et al., 2009). Three distinct models to

represent protein relationships supported by different experimental evidence: undirected PPI, activity-flow and process description. (C) The EGFR signaling pathway

represented as an undirected protein-protein interaction network (PPI), as activity-flow network (AF) and a process-description network (PD). *indicates the modified

form of a given protein node.

target entity, MAPK1 in our example, is split into two nodes
representing the phosphorylated and unphosphorylated forms
of the protein. The two forms are connected by a directed edge
symbolizing the transition from one form to the other. The
activity of the regulatory protein PTPRJ is represented as an
edge promoting the removal of the phosphate from MAPK1.
A limitation of this latter model is that the impact of the
phosphorylation on the activation status of MAPK1 cannot be
directly derived; it is only implicit as it can only be inferred from
the reconstruction of the downstream chains of reactions.

The different representations serve different purposes and
answer different questions. For instance, analysis of highly
connected regions of an undirected protein interaction network
may reveal the formation of macromolecular complexes (Wang
et al., 2009; Havugimana et al., 2012). Similarly, the function
of a protein that is trapped in a subnetwork formed by
proteins that are annotated to a specific biological process
may provide hints on its function (Oliver, 2000). On the
other hand, process description and activity-flow networks are
appropriate to sketch the information flow from a receptor
sensing a stimulus to activation of a transcription factor driving
phenotype modulation.

Another major difference between physical and causal
interaction datasets is proteome coverage as the latter have

significantly lower coverage. This is partly due to incomplete
curation of reported experimental evidence and partly to the
lack of appropriate high throughput experimental approaches
to reveal causal interactions on a large scale. In addition,
many resources annotating PPI have, in recent years, joined
their efforts forming a consortium (Orchard et al., 2014;
Porras et al., 2020) for distributing curation investment and
using common standards and curation rules, whereas causal
resources have not reached such an agreement yet. For
these reasons, many of the network approaches presently rely
on networks based on physical protein interactions (PPI)
(Zhang and Itan, 2019).

Approaches based on networks assembled by using
information on causal relationships, however, are gaining
momentum as they provide information that can be relatively
easily converted into Boolean or ordinary differential equation
models thus enabling users to compute the behavior of a system
in different conditions (Le Novère, 2015).

Although there is no strict separation between the
experimental evidence that can be captured by the different
models, it is crucial to understand the data structure adopted by
each resource as analyses built on information extracted from
distinct databases may lead to different biological conclusions
(Mubeen et al., 2019).
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FIGURE 2 | Classification of causality resources. Resources can be grouped according to the model adopted to represent causality in AF or PD (see Figure 1) and

according to the organization of the information in “interaction databases” or “pathway databases.” In interaction databases relationships are annotated separately

and not necessarily in the context of higher-level organizational structures, such as pathways. In “pathway databases” interactions are exclusively shown in the

context of the pathway they participate in.

Pathway Databases and Interaction
Databases
Cell physiology is governed by a large connected network
of physical and causal interactions. Nevertheless, biologists
sometimes prefer to consider the cell model as an ensemble of
unconnected pathways that, in a first approximation, function
in isolation and do not crosstalk. However, this approximation
neglects the effects of the cell network as a whole that may
significantly affect the behavior of the pathway subnetworks.
Although networks are useful abstractions, their functional
integration into a cell model remains an important challenge.
Capturing the experimental information for the assembly of
protein interaction networks from primary literature data is an
intimidating task. To assist scientists, over the past 20 years, a
number of resources have set out to annotate an excerpt of the
experimental facts related to protein interactions in structured
formats in public repositories. However, different databases have
been developed to serve different purposes, they adopt different
curation policies and describe the same biological fact at different
levels of abstraction and granularity.

We here focus on resources that capture causality, hereafter
referred to as “causality resources” (Figure 2). Considering the
chosen representation model, databases can be grouped into two
broad classes (Figure 2, Supplementary Table 1): “interaction
databases,” where relationships are integrated in a global network
and “pathway databases,” where interactions are curated and
displayed in the context of the pathway they participate in.

The three most popular pathway resources are KEGG,
Reactome and WikiPathways (Kanehisa and Goto, 2000;
Slenter et al., 2018; Jassal et al., 2020). Among the pathway
databases those adopting AF as interaction model are KEGG,
SPIKE (Paz et al., 2011) and CBN (Boué et al., 2015)
(Supplementary Table 1). The signaling information annotated
in these databases is reviewed by domain experts and covers
more than 50% of the human proteome. Aside from their
descriptive value in the representation of cell physiology, they
have proven useful in the analysis and interpretation of -omics
data when coupled with algorithmic approaches such as gene
set enrichment analysis GSEA and signaling pathway impact
analysis (SPIA) (Subramanian et al., 2005; Tarca et al., 2009;
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Sprent, 2011). However, they do not provide an integrated picture
of cell functioning as interactions are accessible only in the
context of pathways and miss to offer a holistic view. Another
class of resources, including Cell Collective (Helikar et al., 2012),
Biomodels (Malik-Sheriff et al., 2020), the GINsim repository
(Naldi et al., 2009) and the PyBoolNet repository (Klarner et al.,
2017) collect assembled logical models. Briefly, these resources
store models curated and tested by different groups for specific
projects. Users can download the models and adapt them to
different purposes. However, the models do not necessarily
follow a common annotation standard. As a consequence, the
integration into larger models is often not straightforward.

A third class of resources, such as SIGNOR (Licata et al.,
2020), SignaLink (Csabai et al., 2018), OmniPath (Türei et al.,
2016; Ceccarelli et al., 2020) or PhosphoSitePlus (Hornbeck et al.,
2019) annotate interactions without necessarily listing them as
members of a pathway. We will refer to these with the generic
term “causal interaction databases” (Figure 2). This organization
of the interaction data, which is not pathway centric, allows users
to assemble an integrated cell network where all pathways are
connected, thereby allowing to monitor pathway crosstalk.

ACTIVITY-FLOW RESOURCES
COMPARISON

With our contribution we intend to show how AF interactions
from the different resources can be used to build logic networks
to support modeling studies. To this end, we compare four major
AF resources, KEGG, PhosphoSitePlus, SignaLink and SIGNOR.

These resources were selected as they are open-source,
established, and popular as evinced from citation counts.
In addition, they exclusively adopt “activity-flow” as a
representation model (Supplementary Table 1). These databases
are, however, highly heterogeneous in scope, and do not follow
a common standard for the annotation and the export of the
data (Dräger and Palsson, 2014). To address this issue the
proteomic standard initiative for molecular interaction (PSI-MI)
(Orchard, 2014) and the Gene Regulation Ensemble Effort for
the Knowledge Commons (GREEKC) (https://www.greekc.org/)
communities have recently developed CausalTAB, a common
standard for exchange of causal information (Perfetto et al.,
2019). However, of the four databases considered here, only
SIGNOR presently offers to download its curated dataset in this
format. As a consequence, the organization of the datasets for the
comparison reported here turned out to be a substantial effort
(Supplementary File 1 in Supplementary Material). To facilitate
the task of integrating the information that can be downloaded
from the different resources, OmniPath has embarked on a
project aimed at merging the causal information from a large
number of primary resources. This resource was also included in
our analysis.

We designed this comparison to help non-computational
scientists to incorporate computational modeling into their
experimental practice. We point out that the comparison is
limited to the portion of AF interactions that satisfy specific
criteria and that some datasets (e.g., KEGG) might represent a

subset of the total number of interactions that are annotated in
the database.

The four primary resources considered here have a different
focus and include different entity types as nodes in the network.
For instance, KEGG and SIGNOR also annotate complexes.
In addition, SIGNOR considers a wider range of entities
including “phenotypes,” “stimuli” and “chemicals.” SignaLink
and SIGNOR also curate indirect interactions. To harmonize
the data in order to attain a fair comparison, we filtered the
datasets to retain only direct causal interactions between human
protein pairs (Supplementary File 1 in Supplementary Material).
In addition, we only considered those relationships that are
annotated with a literature reference. In this first comparison
two entries are considered coincident if they involve the same
protein pair with matching directionality, irrespective of the
effect (activation/inhibition) of the interaction.

In Figure 3A we show in an UpSet plot (Lex et al., 2014) the
number of causal relationships that are annotated only in each
of the databases or are common to all dataset combinations.
We first notice that the four primary databases are largely
complementary as more than 70% of the information is captured
by only one database while fewer than 4% of the interactions
(510) are annotated in three or four resources. SIGNOR with its
9,845 entries is the primary database with the highest number
of entries. Still 5,003 entries of the remaining three primary
resources are not in SIGNOR (Figure 3A). This complementarity
of the datasets has motivated the OmniPath team to integrate all
the causal information in a single dataset.

In Figure 3B we have reported the results of the comparison
as Venn diagrams. Each resource is represented as a circle of
different color whose size is proportional to data content. The
circles overlap for an area that is proportional to the number
of interactions that are present in both databases. The largest
overlap between primary databases is observed in the comparison
between SIGNOR and PhosphoSitePlus as both resources have
put investment in the coverage of phosphorylation reactions.
As PhosphoSitePlus does not curate other types of causal
relationships its overlap with the other resources is negligible.

OmniPath, which integrates information from more than
100 different primary databases, is by far the most inclusive
resource. However, although OmniPath claims full integration
of interaction data, only 39% of the KEGG dataset is
included in OmniPath (Figure 3B). This is because the standard
OmniPath dataset only takes into consideration referenced
protein relationships, whereas a large fraction of KEGG
interactions is not linked to the manuscripts providing the
supporting experimental evidence. Other inconsistencies are the
consequence of an infrequent synchronization of the OmniPath
dataset with the release of the primary resources. Of note
over 20% of the interactions in SIGNOR are not present in
OmniPath (Figure 3B).

By adding to the OmniPath dataset the missing data from
the four primary resources it is possible to assemble a network
of causal interactions linking nearly 5,800 proteins (28% of the
proteome) connected by 27,040 edges (Supplementary Table 2).
Eighty four percent of these are only curated in one or two
resources, while the remaining 16% in three or more.
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FIGURE 3 | Comparison of AF Databases. (A) UpSet Plot showing the overlaps between four primary AF resources: SIGNOR (in yellow), KEGG (in red),

PhosphoSitePlus (in purple) and SignaLink (in green). The vertical bars show the number of intersecting protein pairs (regulator-target) between resources, identified as

connected colored circles below the histogram. The length of the horizontal bars is proportional to the dataset size of each resource. As an example,

PhosphoSitePlus, SIGNOR and KEGG share 210 interactions. (B) Proportional Venn diagrams showing the overlap between the datasets of the four primary AF

resources and OmniPath: SIGNOR (in yellow), KEGG (in red), PhosphoSitePlus (in purple), SignaLink (in green) and OmniPath (dark purple). Individual set sizes are in

parenthesis. (C) Matrix of bar plots showing the number of interactions between pairs of proteins whose effect, up- down-regulation is annotated in an opposite way

in each pair of primary resources. Agreement and disagreement are shown in red and blue, respectively.

Consistency of Data Curation in the
Different Resources
The conclusion of the analysis in the previous section is that,
in order to increase coverage, users should consider collating

datasets from different resources. However, in large curation
efforts, in some instances, the same experimental evidence

can lead different curators to different interpretations. In

addition, experimental reports addressing the same biological
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question reach sometimes contrasting conclusions. Thus, it is not
surprising to observe that a causal relation between protein A
and protein B is annotated as activating by one database and
inactivating by another. However, this represents a problem in
the assembly of AF networks from an integrated dataset. To
investigate how serious this issue was, we next assessed the
fraction of causal relationships that are inconsistently annotated.

Ninety five percent of the edges that are curated by more
than one database are consistently associated with either up-
or down- regulation (Supplementary Table 2). About 3,200
interactions are annotated with the same consensus effect in at
least three resources, thereby accounting for a high-confidence
subset of causal interactions. Conversely, 5% of the pairs are
associated with both up- and down- regulation in different
databases. Besides trivial curation errors, some discrepancies
might reflect differences in the annotation policies of the different
primary resources. Alternatively, it could be the consequence of
conflicting literature reports or complex effects of an interaction
leading to clashing consequences on the target protein function.
For instance, GSK3-mediated MAF phosphorylation leads both
to transcriptional activation and to degradation of the target
(Rocques et al., 2007).

To quantify this lack of consistency, we compared the
datasets from the four primary repositories. For this analysis,
we first filtered out from each dataset those pairs that
in each database are annotated with both a positive and
a negative effect as in the GSK3-MAF example mentioned
earlier (internal “inconsistencies”). As shown in Figure 3C, the
percentage of incongruent pairs between DBs is relatively small,
SignaLink and SIGNOR are the two repositories showing the
highest number (and percentage) of contradicting interaction
annotation. This subset of conflicting pairs has already been
discussed (Perfetto et al., 2016) and can be explained by
the differences in annotation granularity adopted by the two
resources. For instance, SIGNOR annotates the mechanisms
(such as ubiquitination, phosphorylation, etc.) involved in the
interaction and, when provided, also the modified residues, while
SignaLink only provides information about the causal effect.

DISEASE NETWORKS

Assembly of Large Disease Networks
We next asked whether the combined causal information
captured by the different primary resources is sufficiently
complete to be used to assemble informative disease networks
linking most of the genes that are found mutated in patients. We
used the expert curated information of the Cancer Gene Census
(Sondka et al., 2018) that annotates 389 cancer types with lists of
genes observed to be significantly mutated in cancers. Similarly,
we used the information collected by the DisGeNET resource
(Piñero et al., 2020) to download lists of gene-disease associations
(GDAs) for 4,713 polygenic diseases (DisGeNET score > 0.5).
These lists have different sizes ranging from one up to 83 genes in
the case of “Malignant neoplasm of breast.” We filtered the lists
by selecting diseases with at least two genes annotated, 163 and
823 diseases in Cancer Gene Census and DisGeNET, respectively
(Figure 4). These disease-gene lists were used to query the AF

resources for interactions linking the disease genes. We also
included in the network the proteins that by forming a bridge
between the query proteins, allow to connect them. The rationale
for inclusion of “bridge proteins” is further discussed in the
next paragraph.

The results of the approach are shown in Figure 4 as violin
plots illustrating the distribution in the number of edges in the
networks assembled by this automatic procedure. As proteome
coverage is far from being complete, not all disease gene lists
could be connected to form a network in the different resources.
Above each violin we have indicated the number of diseases for
which it was possible to assemble a network by interrogating
each of the resources together with the average network size
(average number of edges). As a larger coverage corresponds to
a higher number of connections, retrieving interactions from
SIGNOR allowed the assembly of a higher number of disease
networks (446 and 107 from the DisGeNET and Cancer Gene
Census lists, respectively) in comparison with the other primary
resources. Similarly, SIGNOR-derived networks tend to be larger,
in terms of number of connections. OmniPath that integrates
all the primary databases allows an even higher coverage (both
in terms of number of diseases and in average network size).
However, as already noted, by integrating the data of the four
primary resources and OmniPath an even higher number of
disease genes could be assembled into connected networks.

It is finally to note that among the resources compared here,
only SIGNOR and OmniPath have implemented a web tool
to extract connections between a list of input proteins and to
return the results either in graph or table format. To apply a
similar procedure to the dataset offered by the other databases
dataset-manipulation and/or parsing is necessary.

The Gray Platelet Syndrome
As an example of the results that one obtains by the procedure
detailed in the previous section we will describe in more
detail the networks retrieved in the case of the Gray Platelet
syndrome (GPS). GPS is a rare recessive autoimmune disorder
characterized by a variety of symptoms including the absence
of platelet alpha-granules, bleeding disorders and bone marrow
fibrosis (Gunay-Aygun et al., 2010). NBEAL2 is the most
frequently mutated gene in patients affected by this condition.
However, due to the rarity of GPS, the molecular mechanisms
underlying the disease are still poorly understood (Gunay-Aygun
et al., 2011). We first assembled a list of 36 GPS associated genes
and used this list to interrogate the different primary datasets
and OmniPath (Figure 5A). As shown in Figure 5, in network
assembly we also included “bridge proteins,” nodes that link two
“disease proteins.” One advantage of using “bridge proteins” is
that they allow for the expansion of the search space and for the
retrieval of a graph connecting most of the disease proteins. By
applying the aforementioned method, we succeeded in retrieving
networks with a relevant (>2) number of interactions only by
interrogating SIGNOR and OmniPath (Figures 5B,C).

By combining all the interactions, we obtain the most detailed
graph incorporating 41 nodes and 91 edges and connecting 19
of the 36 input proteins (Figure 5D). As phenotypes are entities
in the SIGNOR dataset, the integrated network also includes
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FIGURE 4 | Violin plots illustrating the size distribution of the disease-networks that can be assembled by linking disease genes via causal interactions annotated in

AF Databases. Disease-networks were assembled by using gene-disease associations (GDAs) downloaded from the Cancer Gene Census (left panel) (Sondka et al.,

2018) and from DisGeNET selecting GDAs with score > 0.5 (right panel) (Piñero et al., 2020). The disease-networks also include proteins that directly connect disease

gene products (bridge proteins) (Lo Surdo et al., 2018). Only diseases with at least two GDAs were considered in this analysis. Each dot represents a disease network

and its size (y-axis) is defined as the number of edges that can be extracted from the five AF resources: SIGNOR (in yellow), KEGG (in red), PhosphoSitePlus (in

purple), SignaLink (in green) and OmniPath (dark purple); and from a network derived by taking into considerations all the relationships annotated in at least one

resource, combined (black). On top of each violin the total number of disease-networks that can be assembled by using the annotated causal relationships from each

corresponding resource is displayed. In brackets we show the average size of the network, also indicated by a horizontal black bar.

the “Platelet alpha granule formation” phenotype. Including
phenotype entities improves the readability of the graph and
strengthens the biological significance of the derived network.

GPS is a rare and poorly characterized disease. The advantage
of this approach is that it compensates the lack of information
annotated in the literature about pathways and perturbed
molecular events.

To compare the results obtained in the case of GPS to that
of a highly characterized disease, we applied a similar strategy
to “Malignant neoplasm of breast.” This tumor type has the
highest number of GDAs (83) in the DisGeNET resource. Not
surprisingly, the retrieved networks are larger than the ones
obtained for GPS, including 2,562, 533, 115, and 563 edges for
SIGNOR, KEGG, SignaLink and PhosphoSitePlus respectively;
8,430 for OmniPath; and 11,513 for the five resources combined
together. Such networks are extremely complex and difficult
to interpret and might require stricter search parameters or
filtering options that provide contextualization of the network
(see next paragraphs).

These observations support the notion that there is no unique
strategy to extract a diseases-PKN from AF repositories and
the choice of a search method should be guided by quality and
amount of information available for that specific pathology.

LOGIC MODELS FROM PRIOR
KNOWLEDGE NETWORKS

AF networks provide mechanistic details on the information
flow in a biological system in physiological and pathological
conditions thereby allowing one to explore the functional
consequences of modulating the activity of any specific node.
However, they are of little practical value if one wants
to identify the equilibrium states of a system in varying
contextual conditions. Different approaches have been developed
to obtain predictive models, including differential equation-
based models, rule-based, Bayesian network inference and logic-
based models. Despite their simplicity, logic-based models
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FIGURE 5 | A prior knowledge network (PKN) associated with the “Gray Platelet syndrome.” (A) Strategy to derive the networks from the causal data in each

resource. Thirty six gene-disease associations for the Gray Platelet syndrome were downloaded from MalaCards (Rappaport et al., 2017). Disease genes are used as

(Continued)

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 69446847

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cesareni et al. Disease Networks From Causal Information

FIGURE 5 | seeds (orange nodes) to assemble the networks by searching causal resources for connecting relationships. To implement this strategy, we searched

data from primary resources, from OmniPath; and from a virtual resource integrating all the datasets. Up - or down-regulations are illustrated in the graphs as green

arrows and red t-shaped edges, respectively. We also included bridge proteins (gray nodes). Bridge proteins are proteins that connect at least two seed proteins (Lo

Surdo et al., 2018). We were not able to obtain a significant network (>2 interactions) from KEGG, PhosphoSitePlus and SignaLink. (B) Network extracted from

OmniPath: 18 nodes and 27 edges. (C) Network extracted from SIGNOR: 29 nodes and 53 edges. The purple node corresponds to the phenotype “platelet alpha

granule formation,” annotated in SIGNOR (Licata et al., 2020). (D) Network that can be derived by combining the datasets annotated by the five combined resources:

41 nodes and 96 edges.

(Boolean) have gained attention as, differently from modeling
approaches based on ordinary differential equations, they can
be applied to relatively large biological networks (Morris et al.,
2010; Wang et al., 2012). Boolean models provide a simple
yet powerful qualitative approach to describe how a system
responds to contextual changes. The problem of assembling and
contextualizing predictive Boolean models from prior knowledge
and/or experimental data has been discussed and is further
reviewed in section Conclusions and Perspectives (Vinayagam
et al., 2011; Wang et al., 2012; Lages et al., 2018; Aghamiri et al.,
2020; Dugourd et al., 2021).

The information embodied in activity-flow networks can be
relatively easily converted into Boolean rules, where biological
entities are modeled as Boolean variables whose activities are
characterized by a simple On/Off behavior and where multiple
incoming regulatory signals are integrated by logic gates. This
qualitative approach approximates the response of a system and
permits to address simple–albeit relevant- questions related to the
phenotype that are favored in specific initial conditions or to the
impact of a loss or gain of function mutations on any clinically
pertinent phenotype.

Selvaggio and colleagues defined a logic model of
the epithelial-to-mesenchymal transition that enabled
the identification of new potential paths connecting
microenvironmental signals to cancer cell plasticity (Selvaggio
et al., 2020). Logic-based models have also been used to
understand the molecular mechanisms underlying complex
diseases. As an example, the group of Saez-Rodriguez has
recently developed an approach combining ex-vivo high-
throughput screenings of colon cancer biopsies with logic-based
models. Their approach enabled them to generate patient-specific
predictive models of apoptosis that can be used to rationally
design personalized therapies (Eduati et al., 2020). Logic-based
models have also been applied to explore whether and how
the genomic context affects the behavior of a patient specific
system. Béal et al. integrated mutation data, copy number
alterations, and expression data into a breast-cancer logical
model for clinical stratification of patients (Béal et al., 2018).
Palma et al. built a Boolean model of acute myeloid leukemia
whose predictions, once combined with patients’ genomic
profiles, correlate with clinical parameters, including patient
life expectancy (Palma et al., 2021). Complex physiological
processes such as hematopoiesis or macrophage differentiation
can also be described by logic-based models of the different cell
populations along the differentiation process (Collombet et al.,
2017; Palma et al., 2018). Interestingly, logic-based models have
also been used to discover novel anti-cancer drug combinations
that efficiently kill cancer cell lines (Flobak et al., 2015).

CONCLUSIONS AND PERSPECTIVES

Resources that organize in a structured computer-readable
format causal information between gene/proteins assist in
the assembly of networks linking disease genes by logical
connections. These in turn can be converted into logic models
to predict phenotype modulation in different genomic contexts
and under drug treatment.

Here we have focused on network strategies that make use
of prior knowledge derived from low throughput experiments
as annotated in public databases. These methods are somewhat
biased as they depend on curators’ decisions. It should
be mentioned that alternative approaches based on reverse
engineering allow researchers to draw networks in an unbiased
manner by using genome wide gene expression data to
infer relationships between genes (Pe’er and Hacohen, 2011).
By these strategies, if two genes are co-expressed they are
inferred to be functionally correlated and are linked in a gene
regulatory network. Reverse engineering approaches, however,
relying mostly on genome-wide expression studies, provide
information on gene regulatory networks but say little about
signaling networks where protein modification and modulation
of stability play an important role that cannot be inferred
from transcriptomics.

Although strategies based on prior knowledge have already
shown some success, as reviewed here, we would like to conclude
this contribution by discussing the current limits of these
approaches and by identifying the areas where investment should
be directed in the near future.

Incomplete Coverage
At the time of our survey only ∼28% of the proteome is
integrated into a global cell network by the information captured
in AF repositories. This represents a severe limitation as for
many disease-genes we do not have any clue about the functional
consequences of modulating their activities. This can, to some
extent, be addressed by increasing the curation effort and perhaps
by establishing a collaborative consortium of resources similar
to the IMEx consortium in the PPI domain (Porras et al., 2020).
However, we also have to accept that for many proteins we have
hardly any experimental evidence about their functions, let alone
their causal connections with the activity of other proteins in the
cell network.

Editing Automatically Generated Models
The networks that are derived by the strategy that we have
delineated here are highly connected and complex and as such
sometimes difficult to understand and model. Some interactions
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that are not supported by thorough evidence and repeatability
or are implausible can be removed after a detailed review
of the model connections by a domain expert. However, the
development of automatic pruning methods is also desirable.
For instance, not all the causal edges are equally supported
by experimental evidence. The SIGNOR resource assigns to
each causal relationship a score that reflects its experimental
support. This can be used to filter the models and delete the
connections with little experimental support. However, causal
relationships are likely to depend on biological context. Thus,
the scoring system should be made context/tissue specific. The
increasing availability of tissue specific proteomic and (single
cell) transcriptomic data (Fagerberg et al., 2014; Uhlén et al.,
2015; Fernandez et al., 2019) should make this possible in a
reasonably near future. Computational optimization methods
such as CellNetOpt (Terfve et al., 2012), PRUNET (Rodriguez
et al., 2015) or MetaReg (Ulitsky et al., 2008) can be used
to identify the causal connections that are important to adapt
models to context by monitoring their ability to reproduce the
response of different cell systems to perturbations.

Logic Gates
As briefly discussed in this review, an AF network can be easily
converted into simple Booleanmodels. This conversion process is
set back by the observation that proteins in an AF network often
receive multiple inputs from upstream proteins and these inputs
govern the activity of a node as a function of the activity of the
upstream nodes at each cycle of a simulation. To establish the
logic functions determining node activity one needs information
on how to combine these inputs. For instance, if both the kinase
and the phosphatase modulating the phosphorylation state of a
substrate site are active, will the substrate be phosphorylated or
not? This information cannot be extracted easily from the limited
available experimental evidence and approximate approaches
are often used. For instance, an inhibitor win approach was
often used with some success (Dorier et al., 2016; Palma et al.,
2021). Alternatively, once a PKN model has been assembled

the connections and the logic gates can be optimized from the
ability of different models to reproduce results of perturbation
experiments (Terfve et al., 2012). Developments of reasonably
high-throughput experimental methods to address this limitation
are highly needed.

These considerations underscore the present limits of the
approach that we have discussed. Nevertheless, some initial
successes in modeling clinically relevant phenotypes, as we have
detailed in this review, and the delineation of a strategy to address
the current limits provide confidence that cell/disease specific
logic models should soon contribute to diagnosis and therapeutic
decisions in clinical practice.
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The multi-level organization of nature is self-evident: proteins do interact among them
to give rise to an organized metabolism, while in the same time each protein (a single
node of such interaction network) is itself a network of interacting amino-acid residues
allowing coordinated motion of the macromolecule and systemic effect as allosteric
behavior. Similar pictures can be drawn for structure and function of cells, organs,
tissues, and ecological systems. The majority of biologists are used to think that
causally relevant events originate from the lower level (the molecular one) in the form of
perturbations, that “climb up” the hierarchy reaching the ultimate layer of macroscopic
behavior (e.g., causing a specific disease). Such causative model, stemming from the
usual genotype-phenotype distinction, is not the only one. As a matter of fact, one can
observe top-down, bottom-up, as well as middle-out perturbation/control trajectories.
The recent complex network studies allow to go further the pure qualitative observation
of the existence of both non-linear and non-bottom-up processes and to uncover the
deep nature of multi-level organization. Here, taking as paradigm protein structural and
interaction networks, we review some of the most relevant results dealing with between
networks communication shedding light on the basic principles of complex system
control and dynamics and offering a more realistic frame of causation in biology.

Keywords: network, interaction network, protein-protein interactions, protein structure, protein function,
intrinsically disordered proteins

INTRODUCTION

The network formalism is probably the most natural way to represent biological systems. Even
if in the last decades the analysis of complex networks became a very widespread paradigm to face
problems going from macromolecular structures (Di Paola et al., 2013) to genetic regulation circuits
(Lopez-Kleine et al., 2013), neuroscience (Petersen and Sporns, 2015), and ecological systems
(Bascompte, 2010), this is not a new idea. In 1948 Warren Weaver (1948), one of the fathers
of mathematical information theory, sketched a very intriguing synthetic tripartite description
of science into problems of “organized simplicity,” “disorganized complexity,” and “organized
complexity” with biology located in the last class.

The first class (simplicity) refers to the case of very few elements interacting among them with
largely invariant relations. Class 1 problems allow for an extreme abstraction (e.g., a planet can
be thought as a dimensionless ‘material point”). The possibility to take into consideration only very
few basic (and object independent) features, such as mass and distance, is at the basis of the extreme
precision and generality of classical mechanics.
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Problems of Disorganized Complexity (class 2) allow for an
analogous generalization power by means of a very different
style of reasoning. Here, the predictive power stems from the
abandoning of the goal to reach the elemental scale shifting
to a population level statistical knowledge corresponding to
gross averages (like pressure, volume, and temperature are) on
a transfinite number of atomic elements. Thermodynamics is the
brightest example of this style of reasoning. Both the approaches
must fulfill very stringent constraints. Class 1 approach asks
for few involved elements interacting in a stable way, class 2
style needs a very large number of identical particles with only
negligible (or very stable and invariant) interactions among them.
Biological systems, only in a very few cases do satisfy these
constraints, so we step into Weaver’s third class (Organized
Complexity). Organized Complexity arises whenever many (even
if not so many as in class 2) non-identical elements interact
with each other by means of links endowed with time-varying
correlation strength. The interaction of “non-identical elements”
with “varying correlation strengths” corresponds to a network of
links (correlations) with variable strength, connecting different
nodes that in turn are “non-identical” being themselves networks
with variable wiring structure.

Weaver (1948) commented that while science was at home
(relying on the usual repertoire of laws and boundary conditions
deciding for their application) in both Class 1 and Class
2 phenomena, the overwhelming importance of contextual
information with respect to lawful invariant behavior, of Class
3 systems, makes the situation much more uncomfortable. After
more than 70 years from Weaver’s article, we made some steps
ahead in Organized Complexity studies and the present work
deals with some of these advancements. The article is organized
as follows: in the first part (biodynamic interfaces), we will
discuss the basic principles of the interaction between complex
systems, with an emphasis on the need of an intermediate
layer shared by the two interacting systems with a partially
independent nature with respect to the two interactors. In the
second part (the middle way), we will introduce the concept
of mesoscopic or “middle-out” organization demonstrating why
the “network representation” allows for a natural, hypothesis-
free formalization of the meso-scale. The third part will be
devoted to the transit of information across a network system
and the consequent discrimination from noise of the relevant
(signal) perturbations able to “climb-up” or “stepping-down” the
multilevel organization. In the fourth part, we will put at work the
above considerations analyzing protein-protein interaction (PPI)
networks in consideration of the wiring structure of participating
proteins. The essay will end with some general conclusions and
future possible research trends.

BIODYNAMIC INTERFACES

There is no interaction without information exchange, and there
is no information exchange without an efficient communication
channel. This channel is exactly what we call “interface.” If Mary
calls Peter by means of her smartphone, the establishing of a
contact strictly depends on the existence of an electromagnetic

field endowed with a band of frequencies devoted to cell phone
communication. Peter smartphone corresponds to a very specific
frequency modulation of the field that is elicited by the digits
Mary composes on her phone and sends on the specific band
of frequencies. Consequently, Peter’s smartphone rings and the
communication begins. We do not enter into the actual content
of communication (that only pertains to Mary and Peter), instead
we focus on two crucial points of the process:

1. The existence of a medium (the field) that cannot be
considered as a discrete entity with a specific location in
both space and time but as a “global feature” covering the
space and assuming different values in different locations.
The interactors (here the Mary and Peter phones) are
causally connected in both directions only because they
share the same field. From basic physics we know that
a point charge embedded into an electromagnetic field
both senses (i.e., is influenced by the field) and modifies
(i.e., influences) the field. This is exactly what happens
in human-environment interaction, in which environment
influences physiology (e.g., toxic effects and sensory
information. . .) and is in turn influenced by humans.
Both human beings and environment are complex systems
and for their interaction they need a shared interface
(Arora et al., 2020).

2. The interface (field) oscillates with a specific frequency,
this implies it has both a “spatial” and a “temporal”
structure, it is a dynamic interface. The frequency of
oscillation is not independent from the spatial features
of the interface, more in general, any network system
(even a field can be imagined as a grid with some focal
points, the “cells” in the case of mobile phones) has
characteristic oscillation modes originating from its wiring
structure. We will go back on this point when dealing
with protein structures “resonating” with specific modes
that are the carriers of across levels information. The
specificity of the interaction (Mary’s phone call elicits a
response only in the Peter apparatus) depends on the
resonance phenomenon: an oscillator with a characteristic
ω frequency only “recognizes” (e.g., by amplifying its
potency) an incoming stimulus with the same (or very
similar) frequency.

Both these issues are at work in multi-level organization and,
more in general, in biological regulation by networks of networks.

THE MIDDLE WAY

The majority of biological explanations and models are made
of statements like this: “gene A provokes the phenotype E by
the activation of pathway A-B-C-D-E,” with B, C, and D being
relevant biological players, such as proteins or metabolites, whose
concentration (expression) is increased (decreased) or structure
is changed (e.g., via posttranslational modifications) by the action
of the preceding player. This kind of “pathway” (IF:THEN
for informatics) models take for granted the existence of a
single “explanatory layer” located at the most microscopic level
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(gene) that, thanks to a sort of domino effect, ends up into a
phenotypic consequence.

This view is in sharp contrast with what we know about
complex structured systems, where a multi-layer causality is
at work. One of the most clear falsifications of the obliged
“bottom-up” character of biological causation, comes from a 1945
article (Fankhauser, 1945) by the German (but United States
based) embryologist Gerhard Fankhauser. He considered cell
size in polyploid triton larvae that have a doubled chromosome
number with respect to their diploid counterpart. The polyploid
individuals have a doubled cell size with respect to the diploid
ones, notwithstanding that, they have exactly the same dimension
of organs and ducts (Fankhauser, 1945). This comes from the
fact that the polyploid organism uses half the number of cells,
though each cell was itself double in size, to build up its organs.
This is crucial for life—the optimization of the caliber of a
biological structure (the duct) is finely tuned to fit with the
flow of biological fluids (a top-down constraint) and cannot
be established by either its constituent cells or the genome.
While this is an intuitive tenet (after all, we do not decide
the size of our house based solely on the size of the bricks!),
it was considered as a largely unexpected finding by Albert
Einstein (a colleague of Fankhauser at Princeton) that admitted
he was expecting the double size cells should give rise to double
size ducts and that the Fankhauser observation pointed to still
largely unknown principles (Fankhauser, 1972). The brilliant
Fankhauser experiment was largely overlooked and obscured by
the successes of molecular biology in the years to come, but it is
a clear example of a top-down causative model, in which a “high-
level” constraint “slaved” the microscopic cellular/genomic level.

It is important to stress that the “bottom-up only” obsession is
not shared by all the biological fields of investigation. Ecologists
recognized since many years that the most microscopic level
of organization is not necessarily the place where “the most
relevant facts do happen.” On the contrary, the most fruitful scale
of investigation is where “non-trivial determinism is maximal”
(Pascual and Levin, 1999). That is to say, the scale more rich in
meaningful correlations between features pertinent to micro and
macro- scale or, to use an ecological term: the mesoscopic realm
(Cheng et al., 2014).

Non-trivial determinism can be defined in terms of prediction
error as (Pascual and Levin, 1999):

Prediction r2
= 1− E2/S2

In the above formula, E is the mean prediction error and S
the standard deviation. In the case of a simple linear regression,
in which a dependent variable Y must be predicted by an
independent variable X, the non-trivial determinism is nothing
else than the usual squared Pearson correlation between the two
X and Y variables. The formula can be extended to any other
situation, in which we wish to predict a system feature Y, both
X and Y do not need to represent single variables but any suitable
set of information at any definition scale.

The “non-trivial” attribute of determinism stands for the need
of “explaining the variance” of the system at hand (the statistic r2

corresponds to the proportion of variance explained by a model)

and not its “average” (or most stable/frequent) pattern: the aim is
to account for the actual behavior of the system in both space and
time and not to describe a “frozen” ideal configuration.

The individuation (i.e., description of the manner in which
a thing is identified as distinguished from other things) of
“mesoscopic principles” largely independent from the material
constitution of the studied system and only dependent on their
relational structure was the theme of an important work written
by 1998 Nobel prize in Physics Robert B. Laughlin and colleagues
appeared in year 2000 entitled “The Middle Way” that aptly
recognized in the discovery of universal mesoscopic principles
the next frontier of science (Laughlin et al., 2000). As pointed
out by Nicosia et al. (2014): “Networks are the fabric of complex
systems.” This is why different investigation fields from protein
science (Di Paola et al., 2013) to neuroscience (Sporns, 2018)
make use of network formalization. The basic idea here is
that shared organization rules (i.e., similar wiring patterns) give
rise to similar phenomenology, independently of the nature of
the constituting elements. In other words, complex network
invariants promise to be the place, where to look for universal
mesoscopic principles, the viewpoint that maximizes “non-trivial
determinism” (Pascual and Levin, 1999).

The Dutch electrical engineer Bernard Tellegen (Mikulecky,
2001) developed a sort of conservation principle of both potential
and flux across a network analogous to Kirchoff’s laws. The flux
does not need to be an electrical current, and the same holds
for the potential, a system represented by a set of nodes linked
by edges with a given topology has similar emerging properties
independently of the physical nature of nodes and edges. As aptly
stressed in Mikulecky (2001), the theorem opens the way to a
sort of “network thermodynamics,” whose principles are strictly
dependent on the wiring architecture, while largely independent
of the constitutive laws governing the single elements.

Complex network invariants (Strogatz, 2001) catch the
essence of multi-level organization for the simple fact that their
estimation merges different level of definition of the system
at hand. Mathematically speaking, a network corresponds to a
graph, whose entire information is caught by its adjacency matrix
(see Figure 1): a binary matrix having as rows and columns the
nodes and at each i, j position a unit value if the i and j nodes
have a direct link between them and 0 otherwise.

Graph invariants are relative to local (single nodes), global
(entire network), and mesoscopic (clusters of nodes and optimal
paths) levels. The “degree” (how many links are attached to a
given node) is a local descriptor, the “average shortest path”
(characteristic length) is the average length of minimal paths
connecting all the node pairs, and can be considered as a
mesoscopic feature, while the general connectivity of the network
(density of links) is a global property (Csermely et al., 2013;
Giuliani et al., 2014). All these descriptors (and many others) are
strictly intermingled across different organization layers. In fact,
characteristic length inherits from the “bottom” the information
of the single node degree (higher degree nodes have a higher
probability to enter into shortest paths), while betweenness (the
number of shortest paths passing by a node, thus a strictly
speaking a microscopic feature of the network) inherits from
the “top” the existence of clusters (modules) of nodes so that a
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FIGURE 1 | Mathematically, every network (right) can be expressed in the form of an adjacency matrix (left). In this case, a network with undirected, unweighted
edges is shown, which is represented by a symmetric adjacency matrix containing only the values 0 and 1 to indicate the absence and presence of connections,
respectively.

node in between two different clusters A and B is traversed by all
the shortest paths linking the A,B node pairs so scoring a high
betweenness (Figure 2).

In other terms, describing a system by network formalism
implies a multi-level structural representation without the
need of “imposing” a particular bottom-up or top-down
causative pattern.

INFORMATION FLUXES ACROSS
NETWORKS

Biological systems are complex systems that both adapt to
their environment and interact with other systems. Provided
we are able to find a meaningful formalization in terms of
interacting parts, each complex system can be intended as a
network. Therefore, it is crucial to understand the peculiarities
of information transfer across networks, in order to understand
the basic principles of biological organization.

Probably the most straightforward paradigm of information
transfer through a network in proteins is the allosteric effect.
Allostery is a neologism coming from Greek language, which
has to do with the ability of proteins to transmit a signal from
one site of molecule to another in response to environmental
stimuli. This ability is related to the transmission of information
across the protein molecule from a sensor (allosteric) site to
the effector (binding or active) site (Hilser et al., 2012). The
molecule, hence, perceives ligand binding (or any other micro-
environmental perturbation) at distance from the active site, and
adapts its configuration accordingly. For example, hemoglobin
molecule senses at the allosteric site the partial pressure of oxygen
(p[O2]): when p[O2] is high, the affinity of hemoglobin for
oxygen increases and the protein binds oxygen molecules at
active site. On the contrary, when p[O2] is low, affinity decreases
and bound oxygen is released to the cells. This process is crucial
for life: in lungs, there is a very high oxygen pressure and

the red blood cells containing hemoglobin must catch oxygen
molecules that in turn must be released in peripheral tissues
(low p[O2]) so to make oxidative metabolism possible. How the
protein molecule can discriminate such a relevant signal from the
continuous motions coming from thermal noise and transmit the
information at distance so to reach the active site?

To answer this question is useful to consider a protein
molecule as a network (Figure 3). In the left panel, the
3D structure of a small protein (recoverin) follows the usual
“ribbon” style: the polypeptide chain is represented in terms of
contiguous segments of “secondary structure” namely α-helices,
irregular structure, and β-sheets (Di Paola et al., 2013). In this
particular representation, the parallel segments give an idea of
the flexibility of the different tracts of the molecule related
to the thermal motion. The right panel represents the same
protein in terms of the adjacency matrix of the corresponding
network (PCN = Protein Contact Network) whose nodes are
the constituent amino acids, while the darkened pixels mark
the unit values of adjacency matrix (Figure 1) pointing to an
effective pairwise contact between amino acid residues. The
amino acid residues are ordered along the protein sequence and
the “trivial” contacts between amino acids adjacent along the
chain are eliminated. This implies the scored contacts (links
of the PCN) correspond to non-covalent intermolecular bonds
putting different parts of the molecule into close contact by the
action of folding process. This intra-protein interactability is
illustrated by Figure 4, where a protein molecule is represented as
a bracelet having amino acid residues as pearls and active contacts
as dashed red lines.

In PCNs, the shortest paths passing by the network edges
mediate concerted motions and energy transmission upon
stimulation of allosteric site (Di Paola and Giuliani, 2015;
Gadiyaram et al., 2021). The topological metrics of shortest
paths (minimum number of links separating two residues) is
thus the actual metrics for signaling (Gadiyaram et al., 2021).
The discrimination between relevant signals to be transmitted
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FIGURE 2 | Major features (graph invariants) used to describe networks. It is worth noting the mutual dependence of network descriptors across different scales
going from single nodes to the entire network.

FIGURE 3 | NMR solution structure of myristoylated recoverin in the calcium-free state (PDB ID: 1IKU, left) and correspondent adjacency matrix.

at distance without loss of information and non-informative
perturbations to be dissipated without relevant changes in the 3D
structure, relies upon two very important mesoscopic network
descriptors: “Guimera and Amaral’ z and P indexes (Guimera
and Nunes Amaral, 2005). The index z quantifies the number
of contacts a given node (amino acid residue in this case) has
with other nodes of its own cluster (local contacts), while P scales
with the number of edges linking the node to amino acid residues
pertaining to different clusters.

A perturbation affecting specifically a “high-P” node travels a
long distance across the network passing by subsequent “high-
P” nodes and arriving at the destination, thereby supporting
allosteric effects. On the contrary, generic (noisy) thermal
motion rapidly dissipates distributing across non-directional
cycles through intra-module motions.

High-P nodes create a “fast lane” for relevant information
neatly separated by noise. This is exactly the role of biodynamic
interfaces: some proteins (multimeric proteins) are made by

distinct chains held together by intermolecular contacts. This
is the case of hemoglobin that is made by four distinct
polypeptide chains: the allosteric effect ends up into a different
re-arrangement of the relative positions of the four chains that
go back and forth between two different patterns (R and T for
Relaxed and Tense) with high and low affinity for oxygen. The
interface between these four chains is made of high-P amino
acid residues that allow concerted motions among the chains.
Figure 5 gives a pictorial description of the situation by showing
the adjacency matrix of hemoglobin (Figure 5).

Here, the adjacency matrix of hemoglobin is described by a
color code. As usual in such presentation, the axes of the figure
report the order of the residues along the chains (each chain
contains 150 residues). The dark blue corresponds to the lack of
contacts, and the different colors correspond to the four chains.
It is evident, the presence of “displaced contacts” in the form
of residues that, while pertaining to a given chain (module of
the network) have the majority of their contacts with amino
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FIGURE 4 | Representation of the intra-protein interactability for a model
protein. Here a protein molecule is shown as a bracelet having amino acid
residues as pearls and active contacts as dashed red lines. Modified from Di
Paola and Giuliani (2015).

acids pertaining to different chains. These “displaced contacts”
are the long “whiskers” contacting zones different from their own
cluster [e.g., the pale blue line pertaining to the first chain (1-
150)] that is in contact with the orange (second chain) module).
These whiskers correspond to the high-P nodes that generate
“something in between” the interacting systems with a “shared
ontology” across the interacting systems (polypeptide chains).
Very similar models allow for the synchronization of interacting
networks thereby passing from single stimulus effects to sustained
periodic oscillations.

NETWORK OF NETWORKS: FROM
SINGLE PROTEINS TO
PROTEIN-PROTEIN INTERACTIONS

Any protein can be considered as a specific network of residue-
residue interactions. Importantly, such network consideration
works for both monomeric proteins (e.g., aforementioned
recoverin and hemoglobin monomer) and oligomeric proteins
[e.g., hemoglobin heterotetramer (αβ)2]. These and many other
similar examples can be used as illustrations of information

flow within ordered proteins and ordered protein complexes. In
fact, in such cases, protein (protein complex) is characterized
by a unique, relatively stable crystal-like 3D structure whose
Ramachandran angles vary only slightly around their equilibrium
positions with occasional cooperative conformational switches
and with almost constant and very specific residue-residue
interactions that are relatively fixed in time and space. The
stability of such a uniquely folded structure of an ordered protein
is defined by the tight packing of its interior achieved by multiple
specific residue-residue interactions (Pace et al., 2014). There
is very little free space in the protein interior (Richards, 1963;
Klapper, 1971; Lee and Richards, 1971), which is closer to a solid
than to a liquid (Klapper, 1971), since it is twice as tightly packed
as water and possesses a packing density, which exceeds that of
closely packed spheres (Pace et al., 2014). This tight packing is
achieved during protein folding by burying about 85% of the
non-polar side groups, 65% of the polar side chains, and 70%
of the peptide groups (Lesser and Rose, 1990), and due to the
formation of 1.1 hydrogen bonds per residue (Stickle et al., 1992).
This stable structural organization, supported by the numerous
crystal structures of proteins solved by X-ray diffraction, resulted
in a very common use of terms “unique 3D structure” and
“rigid 3D structure” for the description of the structural
properties of ordered proteins. Furthermore, the relative rigidity
of structures of globular proteins was further supported by their
high conformational stability and cooperative folding-unfolding
behavior, where, for example, denaturant-induced unfolding was
described as a reversible and highly cooperative “all-or-none”-
type transition between native and denatured states (Tanford,
1968), and where the temperature-induced melting was shown to
be accompanied by the cooperative heat absorption related to the
sharp change in the state of a protein on heating (Privalov, 1979,
1982).

However, it is recognized now that considering a protein
molecule as a static entity with “rigid 3D structure” and a
unchanging PCN is an oversimplification, as proteins are rather
dynamic biological systems that have some degree of flexibility,
as a matter of fact we observe changes in PCN of apo- and holo-
forms and in response to allosteric effectors (Di Paola et al.,
2013; Di Paola and Giuliani, 2015). In fact, the importance
of conformational flexibility and the need of dynamics for the
successful functionality of globular proteins (even enzymes)
was emphasized in many studies over the past 65 years or so
(e.g., Koshland, 1958; Villa et al., 2000; Agarwal et al., 2002,
2004; Eisenmesser et al., 2002, 2005; Rajagopalan and Benkovic,
2002; Sutcliffe and Scrutton, 2002; Tousignant and Pelletier,
2004; Agarwal, 2005; Yang and Bahar, 2005; Olsson et al., 2006;
Frauenfelder et al., 2009). The internal dynamics of enzymes
(i.e., movement of their parts including individual amino acid
residues, a group of amino acids, or even an entire domain that
occurs in a wide range of time-scales, from femto-seconds to
seconds) has been suggested to be linked to their mechanism
of catalysis (Eisenmesser et al., 2002, 2005; Agarwal, 2005).
Furthermore, the existence of conformational sub-states (which
were detected based on the atomic displacements involved in
the inter-conversion of different local configurations of the
same overall protein structure) in globular proteins potentially
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FIGURE 5 | Spectral clustering of hemoglobin. The adjacency matrix is shown as a clustering color map that reports the cluster partition along the sequence. The
spectral clustering technique decomposes the space through the adjacency matrix eigenvalues, so that the partition relies on the topological role of residues in the
interaction network, rather than on their spatial positioning [modified from Di Paola and Giuliani (2015)].

related to their functional conformational changes and allosteric
behavior has been established (Austin et al., 1975; Artymiuk et al.,
1979; Frauenfelder et al., 1979; Beece et al., 1980; Frauenfelder
and Petsko, 1980; Parak et al., 1981; Hartmann et al., 1982). It
was also pointed out that although the entire protein molecule
is rather flexible, the flexibility is not homogeneously distributed
within a molecule, and some structural parts of ordered proteins
are more rigid than others (Ma et al., 1999). Such more rigid
parts or structural units (which could be structural domains,
sub-domains or any other sub-structure) are typically more
compactly packed, have a stronger hydrophobic effect and have
a larger stabilizing electrostatic contribution (Ma et al., 1999).

A protein with a set of stable structural units can form
a range of conformational isomers, structural peculiarities of
which (and corresponding PCNs) would depend on the extent
of the overall structural flexibility and the locations of the more
flexible joints, whereas, in a protein with unstable structural
units, the thermal motions of the backbone could generate an
entirely flexible molecule (Ma et al., 1999). Notable, in PCN
formalism, the residues devoted to structural stability (high z,
low P) are the less flexible, while the opposite holds for high
P residues. Obviously, the presence of such structural flexibility
changes the PCN perception and transforms its representation
from a static mesh into a network with spatio-temporal dynamics,
where residue-residue contacts are not fixed in time and space,
but change over time. This, in turn, complicates information
transmission, which cannot be considered as a passage through

a rigid bridge or tunnel anymore, but represents an attempt to
cross the river by a suspension bridge in a very windy day.

Furthermore, complications and complexity are not stopped
there, as in their functional states, many proteins can be
disordered to different degree. In fact, recent years provided
solid evidence of the existence of the entirely different class of
biologically active proteins, which do not have unique structures
as a whole or in some parts. These are intrinsically disordered
proteins (IDPs) and hybrid proteins containing ordered and
intrinsically disordered protein regions (IDPRs), the existence of
which has changed protein science. Such proteins are commonly
found in proteomes of all the oganisms in all kingdoms of life and
all viral proteomes analyzed so far (Dunker et al., 2000; Ward
et al., 2004; Tompa et al., 2006; Krasowski et al., 2008; Shimizu
and Toh, 2009; Tokuriki et al., 2009; Pentony and Jones, 2010;
Tompa and Kalmar, 2010; Uversky, 2010; Xue et al., 2010, 2012,
2014; Schad et al., 2011; Hegyi and Tompa, 2012; Korneta and
Bujnicki, 2012; Midic and Obradovic, 2012; Pancsa and Tompa,
2012; Di Domenico et al., 2013; Kahali and Ghosh, 2013; Peng
et al., 2015; Kumar et al., 2021). They have crucial roles in various
biological processes and their penetrance increases with the
increase in the organism complexity (Dunker et al., 2000; Ward
et al., 2004; Oldfield et al., 2005; Uversky, 2010; Xue et al., 2012).
As a result, the putative fraction of sequences with predicted long
IDPRs (30 residues or longer) increases in the order: Bacteria
∼ Archaea << Eukaryota (Dunker et al., 2000; Ward et al.,
2004; Xue et al., 2010; Na et al., 2013; Peng et al., 2015), and
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FIGURE 6 | Structural spectroscopy of proteins representing structural heterogeneity of IDPs/IDPRs. Top half: Bi-colored view of functional proteins which are
considered to be either ordered (folded, blue) or completely structure-less (disordered, red). Ordered proteins are taken as rigid rocks, whereas IDPs are considered
as completely structure-less entities, kind of cooked noodles. Bottom half: A continuous emission spectrum representing the fact that functional proteins can extend
from fully ordered to completely structure-less proteins, with everything in between. Intrinsic disorder can have multiple faces, can affect different levels of protein
structural organization, and whole proteins, or various protein regions can be disordered to a different degree. Some illustrative examples includes ordered proteins
that are completely devoid of disordered regions (rock-like type), ordered proteins with limited number of disordered regions (grass-on-the rock type), ordered
proteins with significant amount of disordered regions (llama/camel hair type), molten globule-like collapsed IDPs (greasy ball type), pre-molten globule-like extended
IDPs (spaghetti-and-sausage type), and unstructured extended IDPs (hairball type). Adapted from Uversky (2013a).

this increase in the penetrance of protein disorder is linked to
the increased roles of structure-less proteins and protein regions
in cellular signaling, regulation, and recognition (Wright and
Dyson, 1999; Dunker and Obradovic, 2001; Dunker et al., 2001,
2002a,b; Dyson and Wright, 2002, 2005; Tompa, 2002).

One of the characteristic features of IDPs/IDPRs is their
exceptionally complex and heterogeneous spatio-temporal
structural organization, where different parts of a molecule
are dynamically ordered (or disordered) to a different degree
(Figure 6). In fact, within the highly dynamic conformational
ensembles of IDPs/IDPRs one can find foldons (independent
foldable units of a protein), inducible foldons (disordered
regions that can fold at least in part due to the interaction with
binding partners), inducible morphing foldons (disordered
regions that can differently fold at interaction with different
binding partners), non-foldons (non-foldable protein regions),
semi-foldons (regions that are always in a semi-folded form),

and unfoldons (ordered regions that have to undergo an order-
to-disorder transition to become functional) (Uversky, 2013a,b,c,
2015, 2016a,b, 2019a,b; Jakob et al., 2014; Deforte and Uversky,
2016), whose distribution is constantly changing over time
(Uversky, 2013c, 2016c).

This behavior of an IDP/IDPR as a highly frustrated
system without single folded state, is reflected in its free
energy landscape, which is relatively flat, lacks a deep energy
minimum seen in the landscape of an ordered protein, and
represents instead a “hilly plateau,” with multiple local minima
corresponding to a multitude of conformations and multiple hills
that correspond to the forbidden conformations (Uversky et al.,
2008; Turoverov et al., 2010; Fisher and Stultz, 2011). Such energy
landscape is extremely sensitive to different environmental
changes that can modify landscape in a number of very different
ways, making some energy minima deeper and some energy
barriers higher. This explains the conformational plasticity of an
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IDP/IDPR, its extreme sensitivity to changes in the environment,
its ability to specifically interact with many partners of different
nature, and to fold differently as a result of these interactions
(Uversky, 2013c).

Obviously, intrinsic disorder plays a crucial role in the
organization of the intra-protein networks. In fact, the
aforementioned exceptionally complex and heterogeneous
spatio-temporal structural organization of a protein molecule
with all its foldons, inducible foldons, inducible morphing
foldons, non-foldons, semi-foldons, and unfoldons can be
presented in the form of an intra-protein network, where
residues are involved in transient or more stable conformational
interactions. This network is highly dynamic and extremely
sensitive to the environment and interaction with partners.
Therefore, the aforementioned sensitivity of IDPs to the subtle
changes in their environment and capability to fold, often
differently, at interaction with binding partners or differently
respond to different post-translational modifications (PTMs) or
other stimuli, can be considered as a kind of condition-driven
rewiring of their intra-molecular networks, where new paths
(new connections) can emerge in a condition-specific manner.
It is worth noting the strong resemblance of IDPs with the
features of biodynamic interfaces we sketched above: this is
fully consistent with their role of taking care of physiologically
relevant interactions.

Therefore, this complex structural organization of
IDPs/IDPRs defines their exceptional multi-functionality
and serves as a foundation for “protein structure-function
continuum” model, where protein exists as a dynamic
conformational ensemble comprised of interchanging
foldons, inducible foldons, inducible morphing foldons, non-
foldons, semi-foldons, and unfoldons and containing multiple
proteoforms (conformational/basic, inducible/modified, and
functioning) characterized by a broad spectrum of structural
features and possessing various functional potentials (Uversky,
2016a, 2019a,b) (see Figure 7).

From the viewpoint of information flow, multi-functionality
of such highly dynamic conformational ensembles can be
understood if they are depicted as inter-converting ensembles
of multi-component systems (networks), whose configurations
show extreme sensitivity to the environment. Constituents
of these networks are the aforementioned foldons, inducible
foldons, inducible morphing foldons, non-foldons, semi-foldons,
and unfoldons, which exist transiently (“now you see me, now
you don’t”) and define dynamic nature of the network by forming
transient contacts with other constituents in the environment-
dependent manner. All this places IDPs/IDPRs in the category
of the “edge of chaos” systems that operate in the region
of maximal complexity (i.e., in a region between order and
complete randomness or chaos), where even small changes in
the environment might generate large and diversified changes in
protein structure and function (Uversky, 2013c, 2019a), defining
the ability of a system to differently channel information and to
behave as moving staircases in the Hogwarts Castle.

Therefore, a protein molecule represents a complex system
that exists as a dynamic, multilevel network of networks. In
fact, one can represent a protein molecule as nesting doll

FIGURE 7 | Schematic representation of the mosaic nature of the protein
structure–function space. It should be noted that “Dormant disorder” is
different from the other “outer-ring” functional grouping because the
corresponding segment does not describe a particular functional group but
rather represents the means by which the functionality is achieved. Adopted
from Uversky (2015).

(Matryoshka) of the networks of increasing size. Here, at
the lowest level, different segments of polypeptide chain form
secondary structure elements that represent local networks of
hydrogen bonds and residue-residue interactions. The next
level of the network is formed by interactions between the
elements of secondary structure, which are local networks
themselves. This generates foldons, inducible foldons, inducible
morphing foldons, non-foldons, semi-foldons, and unfoldons.
Next, interactions between these second-tier networks generate
higher level networks, proteins domains. Finally, a functional
monomeric protein represents seemingly highest level network
that includes inter-domain interactions and interactions between
domains and second-tier networks. However, formation of an
oligomeric protein (and engagement in the temporary protein-
protein interactions) would require a new level of inter-subunit
interactions, where the inter-protein interaction network might
include interactions between the networks of various lower levels.

Despite being a complex system with a complex fate, a single
protein is not life per se, while protein-protein interactions
(PPIs) and their networks are the core of biological regulation.
Biological PPI networks belong to the category of the “scale-
free” or “small-world” networks, which are neither completely
regular (i.e., networks, where each node has exactly the same
number of links) or completely random (Erdös and Rényi,
1960). An example of the random networks is given by the
highway system, in which despite the random placement of
links most nodes have approximately same number of links
(Erdös and Rényi, 1960; Barabasi and Bonabeau, 2003). Because
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the nodes follow a Poisson distribution with a bell shape, such
a system almost do not have nodes that have significantly
more or fewer links than the average (Barabasi and Bonabeau,
2003). Topology of the PPI networks (as well the airline routes,
the author-collaboration network, the metabolic network, gene
network, the protein domain network, social networks, and the
World Wide Web) is different, as they have hubs, with many
connections, and ends, that aren’t connected to anything but
a hub (Watts and Strogatz, 1998; Goh et al., 2002). Scale-
free networks combine the local clustering of connections
characteristic of regular networks with occasional long-range
connections between clusters, as can be expected to occur in the
random networks. As a result, as a whole, such network has a
power-law distribution of the number of links connecting to a
node, with some popular nodes possessing a very large number
of connections to other nodes, and with the most nodes having
just a few (Barabasi and Bonabeau, 2003). Such popular nodes,
known as hubs, might have hundreds, thousands or even millions
of links depending on the type of network being described. It
has been emphasized that from this perspective, the network
appears to have no scale (Barabasi and Bonabeau, 2003), and
in such scale-free networks, the distance between nodes also
follows a power-law distribution (Barabasi and Albert, 1999).
This defines the “small world” nature of these networks, as the
average distance between two vertices in scale-free network is
very small relative to a highly ordered network (e.g., regular
lattice), but clustering coefficient is large. As a result, although
most nodes are not neighbors of one another, they can be reached
from every other node by a small number of steps, since the
neighbors of any given node are likely to be neighbors of each
other (Watts and Strogatz, 1998) (e.g., in a social network,
the small world phenomenon is reflected by a short chain of
acquaintances needed to link strangers).

Due to their scale-free nature, PPI networks contains several
hubs, which are multitasking proteins that have multiple links.
Binding promiscuity of hubs is mostly determined by the intrinsic
disorder phenomenon (Dunker et al., 2005; Dosztanyi et al., 2006;
Haynes et al., 2006; Oldfield et al., 2008; Hu et al., 2017). In
fact, some protein hubs are disordered as a whole, others are
hybrid proteins containing both ordered and disordered regions,
and very few hubs can be highly structured proteins. Many (but
not all) interactions of hybrid hubs are mapped to their IDPRs
(Dunker et al., 2005; Uversky and Dunker, 2010), whereas the
binding regions of the partners of ordered hubs are intrinsically
disordered (Bustos and Iglesias, 2006; Radivojac et al., 2006).
These observations clearly indicate that hub proteins commonly
use disordered regions (either their own or of their binding
partners) to bind to multiple partners (Uversky et al., 2005;
Dosztanyi et al., 2006; Ekman et al., 2006; Haynes et al., 2006;
Patil and Nakamura, 2006; Singh et al., 2006). The presence of
inducible foldons within the conformational ensembles of hubs
allow them to (at least partially) fold at interaction with binding
partners, whereas the presence of inducible morphing foldons
defines the capability of hubs to fold differently at interaction
with different partners. All this creates the means for binding
promiscuity of hub proteins that relies on intrinsic disorder and
related binding-induced disorder-to-order transitions enabling

one protein to interact with multiple partners (one-to-many
signaling) or to enable multiple partners to bind to one protein
(many-to-one signaling) (Dunker et al., 1998).

With respect to the temporal structure of the PPI networks and
the roles of intrinsic disorder in maintaining network topology,
some proteins have multiple simultaneous interactions (“party
hubs”), while others have multiple sequential interactions (“date
hubs”) (Han et al., 2004). From a functional perspective, date
hubs may connect biological modules to each other (Hartwell
et al., 1999), whereas party hubs may form scaffolds that enable
the assembly of functional modules (Han et al., 2004). As far
as information flow is concerned, PPI network represents a
clear example of the “network of the networks of the networks”
concept, as it is formed by the interacting Matryoshkas, each
being a network of networks itself. Due to the presence of high-
P and low-P nodes and high sensitivity to environment, the
topology of a protein PCN (at least PCNs of IDPs/IDPRs) is likely
to be described as dynamic inter-converting scale-free networks
with the characteristics of the edge of chaos systems, where
information can be channeled to different nodes depending
on the peculiarities of the protein environment or due to the
introduction of post-translational modifications (PTMs). This,
in turn, makes PPI network a higher level dynamic non-linear
system of the inter-converting scale-free networks possessing
the edge of chaos features. This also defines the ability of PPI
networks to show the peculiar chaos signature named “butterfly
effect,” where a small change in the state of one component
of one Matryoshka (e.g., conformational changes induced by
binding of a ligand or PTM of a region in one of proteins) can
result in large differences in later states (i.e., leading to initiation
of different cellular responses). This feature can be considered
as the structural counterpart of a “bottom-up” causative chain
where a seemingly minor perturbation (e.g., point mutation,
ligand binding at a specific receptor, or PTM) gives rise to
macroscopic effects. Here it is in action a “permissive” and not
an “instructive” (as often implicitly assumed) causative model:
the incoming stimulus does not embed the “instructions” for the
subsequent process, it only impinges over a “permissive” context
(the particular network structure) allowing for the subsequent
signal amplification.

CONCLUSION

Protein molecules are the most elementary complex systems,
lying in the borderline between simple and complex systems
physics (Frauenfelder and Wolynes, 1994), they present the
basic features of “Weaver organized complexity” (Weaver,
1948): multiple stable states, wiring structure changing in time,
adaptation to changing environmental conditions. All these
features are acquired by means of biodynamic interfaces (Arora
et al., 2020) that, in the case of protein molecules, can be traced
down to “high-P” residues (and consequently by IDP/IDPR
elements). Such features are amplified at the next organization
level (PPI), where the same basic principles hold but at an higher
level of complexity and, consequently allowing for a much wider
repertoire of possible configurations. A coarse grain estimation
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of the possible “allowed interfaces” between the 25,000 yeast
proteins (a very low number with respect to the more than
100,000 protein species of human cells) gives the astronomical
number of 107200 (Tompa and Rose, 2011). Notwithstanding that,
we observe a relatively low number of “allowed configurations”
out of the transfinite number of possible ones: e.g., the actual
estimates of “different cell kinds” each with a specific asset of
protein-protein interaction pattern tells us of only 411 different
human cell types (Vickaryous and Hall, 2006). This dramatic
collapse of the number of discrete phenotypes starting from a
huge variety of “solutions” at the “bottom of the scale” asks for
very strict thermodynamic-like constraints granting for multiple
“phenotypically equivalent” solutions at the molecular scale.

The “two-way” interactions between PCN and PPI uncovers
some empirical organization principles of the multi-layer
networks-of-networks organization of life, here we suggest two
of these seminal principles:

1. The “between domains” communication is mainly the duty
of “flexible elements.” This creates a partition between
structure preserving “conservative” nodes and “creative
flexible elements” at each organization layer (Csermely,
2008). This separation is at the basis of biological evolution:
it is not by chance that the “structure preserving” amino
acid residues are the most conserved, while allosteric
signaling are much more prone to mutations along
evolutionary scale. Leander et al. (2020) by use of
deep mutational scanning, elucidated the molecular basis
and underlying functional landscape of allostery. The
authors showed that allosteric signaling exhibits a high
degree of functional plasticity and redundancy through
myriad of mutational pathways. Residues critical for
allosteric signaling are poorly conserved, while those
required for structural integrity are highly conserved. This
result seems at first sight paradoxical: evolution seems
to preserve fold over function. But this conundrum is
only apparent, if we think that allostery (and, more in
general, communication among different layers/domain)
has a distributed nature. The presence of multiple
equivalent solutions to the thermodynamic conditions of
cooperativity (i.e., the collapse to very few phenotypic
forms at higher levels) guarantees a much higher resilience
(multiple equivalent solutions) with respect to a fine-
tuned much more deterministic solution. In the same
way, the multiplicity of “quasi-equivalent” communication
channels allows for a much more rapid adaptation to a
continuously changing environment.

2. Any system made by interacting parts and constrained in
a finite size environment oscillates. The frequency of such

oscillations roughly (inversely) scales with the size of the
system at hand. The entrainment of two oscillators with
similar frequencies is the basis of resonance phenomenon
provoking a huge amplification of the combined output
signal. Resonance phenomena are present at every level of
biological organization (Lerner et al., 2018; van der Groen
et al., 2018) and are at the basis of the new (and very
promising) research avenue of “allosteric drugs” that are
able to “generalize” an incoming pharmacological stimulus
thanks to resonance phenomena similar to what happens
in musical instruments (Zhang et al., 2018; Ni et al.,
2019). In a recent work, we found that an ensemble of
interacting proteins made of many IDP/IDPR elements was
able to greatly enhance the global phenotypic plasticity
of yeast cells (Camponeschi et al., 2021). This is an
example of a microscopic level stimulus made evident
at the macroscopic phenotypic scale thanks to resonance
phenomena with external oscillatory stimuli.

All in all, we can affirm the exploration of networks-of-
networks can promote a new integrative view of biology at
both theoretical and applicative levels. In our opinion, the
“bottom-line” of such hierarchy constituted by the analysis of
protein and protein complexes, is a perfect playground for
generating organization principles universally valid for different
organization scales. The “Middle Way” (Laughlin et al., 2000)
attitude shifts the “shared foundation of different sciences”
from the recognition that “all the entities are made of the
same fundamental particles” (orienting the various “theories of
everything” flourished in the last century) to the statement
“all the entities can be considered as networks of interacting
parts” (Giuliani, 2021). This shift implies the “Universality” of
mesoscopic organization principles and the consequent presence
of the same wiring rules and emerging properties at different
organization layers. This is why, protein science, with its unique
mixture of plenty of good quality data and the natural link to
a baseline of established chemico-physical properties coming
from the adjacent “organized simplicity realm” (Frauenfelder and
Wolynes, 1994), is a privileged vantage point for initiating a new
avenue of biological research.
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Objective: Acute lymphoblastic leukemia (ALL) is a malignant disease most commonly
diagnosed in adolescents and young adults. This study aimed to explore potential
signatures and their functions for ALL.

Methods: Differentially expressed mRNAs (DEmRNAs) and differentially expressed long
non-coding RNAs (DElncRNAs) were identified for ALL from The Cancer Genome
Atlas (TCGA) and normal control from Genotype-Tissue Expression (GTEx). DElncRNA–
microRNA (miRNA) and miRNA–DEmRNA pairs were predicted using online databases.
Then, a competing endogenous RNA (ceRNA) network was constructed. Functional
enrichment analysis of DEmRNAs in the ceRNA network was performed. Protein–protein
interaction (PPI) network was then constructed. Hub genes were identified. DElncRNAs
in the ceRNA network were validated using Real-time qPCR.

Results: A total of 2,903 up- and 3,228 downregulated mRNAs and 469 up- and 286
downregulated lncRNAs were identified for ALL. A ceRNA network was constructed for
ALL, consisting of 845 lncRNA-miRNA and 395 miRNA–mRNA pairs. These DEmRNAs
in the ceRNA network were mainly enriched in ALL-related biological processes and
pathways. Ten hub genes were identified, including SMAD3, SMAD7, SMAD5, ZFYVE9,
FKBP1A, FZD6, FZD7, LRP6, WNT1, and SFRP1. According to Real-time qPCR,
eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-AS2, CRNDE, MALAT1,
CACNA1C-IT3, PWRN1, and WT1-AS were significantly upregulated in ALL bone
marrow samples compared to normal samples.

Conclusion: Our results showed the lncRNA expression profiles and constructed
ceRNA network in ALL. Furthermore, eight lncRNAs including ATP11A-AS1, ITPK1-
AS1, ANO1-AS2, CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS were
identified. These results could provide a novel insight into the study of ALL.

Keywords: acute lymphoblastic leukemia, long non-coding RNAs, functional enrichment analysis, competing
endogenous RNAs, hub genes interaction
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a malignant disease
most commonly diagnosed in adolescents and young adults,
especially in patients younger than 15 years. Despite significant
improvements in the management of ALL, the long-term
survival rate of ALL patients, especially adult patients, remains
low (Jabbour et al., 2018; Richard-Carpentier et al., 2019).
Therefore, it is of importance to understand the pathogenesis of
ALL and identify novel diagnostic biomarkers and therapeutic
targets for ALL.

LncRNA is a type of RNA longer than 200 nucleotides.
Dysregulated lncRNA as tumor suppressor genes or oncogenes
plays a key role in a variety of biological processes, such as
cell proliferation, apoptosis, migration, and invasion. Increasing
studies are focusing on the role and mechanism of lncRNA
in the occurrence and development of ALL (Trimarchi et al.,
2014; Arthur et al., 2017). For instance, lncRNA CASC15 could
regulate SOX4 expression in RUNX1-translocated leukemia
(Fernando et al., 2017). LncRNA HOTAIR is closely associated
with acute leukemia patients’ poor prognosis (Zhang et al.,
2016). LncRNA HOXA-AS2 induces glucocorticoid resistance
by promoting ALL cell proliferation and inhibiting apoptosis
(Zhao et al., 2019). Despite the fact that many studies have
shown the diagnostic and prognostic values of lncRNAs in
ALL, it is still required to further understand their regulatory
mechanism. It has been widely accepted that lncRNAs indirectly
regulate gene expression through targeted miRNAs (about
20 nucleotides) at the transcriptional or post-transcriptional
level. Many miRNAs have been found to play a functional
regulatory role in the development of ALL, such as miRNA-
126 (Nucera et al., 2016), miRNA-155 (El-Khazragy et al.,
2019), and miR-141-3p (Zhou et al., 2019). Yet, the regulatory
interactions between lncRNAs and miRNAs in ALL require
to be clarified.

The development of transcriptome analysis and RNA
sequencing technology is increasing the possibility of identifying
lncRNAs that may be involved in the pathogenesis of ALL.
Moreover, further studies on the function of abnormally
expressed lncRNAs may help understand the pathogenesis of
ALL and provide important insights for the treatment of ALL.
In this study, we comprehensively analyzed DElncRNAs and
DEmRNAs in bone marrow samples of ALL. A ceRNA network
was constructed for ALL on the basis of DElncRNA–miRNA and
miRNA–DEmRNA pairs. DEmRNAs in the ceRNA network were
significantly associated with ALL-related biological processes
and pathways. Among DElncRNAs in the ceRNA network,
eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-AS2,
CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS were
validated by Real-time qPCR, which could become potential
diagnostic and therapeutic targets of ALL.

Abbreviations: ALL, acute lymphoblastic leukemia; DEmRNAs, differentially
expressed mRNAs; DElncRNAs, differentially expressed long non-coding RNAs;
TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; ceRNA,
competing endogenous RNA; PPI, protein–protein interaction; FC, fold change;
GO, Gene Ontology; BP, biological process; CC, cellular component; MF,
molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

MATERIALS AND METHODS

ALL Data Acquisition and Differential
Expression Analysis
LncRNA and mRNA RNA-seq data of 494 bone marrows
with ALL (hematopoietic and reticuloendothelial systems) were
retrieved from TCGA repository1, which were derived from the
IlluminaHiSeq RNA-Seq platform. All the data from three phases
together, including 12 cases of phase 1, 468 cases of phase 2, and
14 cases of phase 3 were enrolled in the study. There were 321
(64.98%) males, 172 (34.82%) females, and 1 unknown (0.02%).
The age distribution of the ALL group is as follows: 403 cases
of 0–14 years old and 91 cases of ≥ 14 years old. All data of
normal tissue samples were obtained from 407 whole blood in
the Genotype-Tissue Expression (GTEx) database2. There were
265 (65.11%) males and 142 (34.89%) females in the control
group. The age distribution of the control group is as follows:
34 cases of 20–29 years old, 34 cases of 30–39 years old, 72
cases of 40–49 years old, 130 cases of 50–59 years old, 132 cases
of 60–69 years old, and 5 cases of 70–79 years old. Complete
description of the multiple ethnicity groups, the biospecimen
procurement methods, and sample fixation was provided in
the GTEx official annotation. Differential expression analyses
between ALL samples and normal samples were carried out using
the EdgeR package in R (Robinson et al., 2010). The obtained
p-values were corrected by false discovery rate (FDR). mRNAs
and lncRNAs with adjusted p < 0.05 and | log 2fold change
(FC)| ≥ 2 were considered as DEmRNAs and DElncRNAs.
Volcano plots and heatmaps were generated using the ggplot2
and packages in R, respectively.

ceRNA Network Construction
After identification of DElncRNAs and DEmRNAs, lncRNA–
miRNA pairs were predicted by miRcode3 that provides > 10,000
lncRNAs (Jeggari et al., 2012). Then, miRNAs that targeted
DEmRNAs were predicted using TargetScan4 (Agarwal et al.,
2015), miRDB5 (Wang, 2008), and miRTarBase database6,
which provides an experimentally validated microRNA–target
interactions database (Huang et al., 2020). After integration of
DElncRNA–miRNA and miRNA–DEmRNA, a ceRNA network
was constructed and visualized using the Cytoscape software
(version 3.5.1) (Shannon et al., 2003).

Functional Enrichment Analyses of
DEmRNAs in the ceRNA Network
Gene Ontology (GO) analysis of DEmRNAs in the ceRNA
network was carried out using Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (Dennis
et al., 2003), including biological process (BP), cellular

1https://portal.gdc.cancer.gov/
2https://gtexportal.org/home/datasets
3http://www.mircode.org/
4http://www.targetscan.org/
5http://www.mirdb.org/
6http://mirtarbase.mbc.nctu.edu.tw/
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TABLE 1 | Primer sequence information for Real-time qPCR.

Gene symbol Primer sequence (5′–3′)

Human GAPDH 5′-CGGAGTCAACGGATTTGGTCGTAT-3′ (forward)
5′-AGCCTTCTCCATGGTGGTGAAGAC-3′ (reverse)

Human ANO1-AS2 5′-CCGGAACAAGAACCTCGCTC-3′ (forward)
5′-GGTCCTCGCCTACCATCCAA-3′ (reverse)

Human PWRN1 5′-ACATTCGAAACCCAGGTGCC-3′ (forward)
5′-GGAAGTGGATGCTGACGCTC-3′ (reverse)

Human MALAT1 5′-GGTTCAGAAGGTCTGAAGCTC-3′ (forward)
5′-CCCAGAAGTGTTTACACTGCT-3′ (reverse)

Human CACNA1C-IT3 5′-GCCAGGACCAAGACACCAAGAC-3′ (forward)
5′-TTGGGCAGGGCTCGGTTCC-3′ (reverse)

Human ITPK1-AS1 5′-AATCCTGTGCGCTGTCATCC-3′ (forward)
5′-GATTGCTCTTGGCTGTGCCT-3′ (reverse)

Human ATP11A-AS2 5′-ACAGTCCCTTCCCTTACGCT-3′ (forward)
5′-TGAACGCTGCACTTGTGGAC-3′ (reverse)

Human CRNDE 5′-GAGGACGTGCTGGGGCT-3′ (forward)

5′-CTGAGTCCATGTCCCGAATC-3′(reverse)

Human WT1-AS 5′-GCCTCTCTGTCCTCTTCTTTGT-3′ (forward)

5′-GCTGTGAGTCCTGGTGCTTAG-3′ (reverse)

component (CC), and molecular function (MF). Moreover,
Kyoto Encyclopedia of Genes and Genomes (KEGG) was
analyzed using the clusterProfiler in R (Yu et al., 2012).
Furthermore, the KEGG results were visualized using the
Cytoscape plug-in ClueGO. p < 0.05 was set as the cutoff value.

PPI Network
The interactions between proteins were predicted using the
Search Tool for the Retrieval of Interacting Genes (STRING)
database7 (minimum required interaction score > 0.4)
(Szklarczyk et al., 2019). Furthermore, PPI networks were

7http://string-db.org/

embodied using the Cytoscape v3.5.0 software. In addition, we
used Molecular Complex Detection (MCODE) plugin to identify
the hub genes in the PPI network. The criteria were set as follows:
MCODE scores > 3 and number of nodes > 4. The top 10 hub
genes were identified using the ranking method of degree.

Real-Time qPCR
Bone marrow samples were isolated from 25 ALL patients and
15 healthy participants and red blood cells were removed. Total
RNA was extracted from bone marrow samples and then was
stored at −80°C. Extracted samples were lysed using 1 ml of
Trizol and placed for 5 min on ice. RNA concentration and purity
were determined using a NanoDrop UV spectrophotometer.
Then, RNA was reverse transcribed into cDNA. Primer sequences
of ATP11A-AS1, ITPK1-AS1, ANO1-AS2, CRNDE, MALAT1,
CACNA1C-IT3, PWRN1, and WT1-AS were designed and
synthesized by Shanghai Shengong Biological Engineering Co.,
Ltd. (Shanghai, China). The primer sequences are listed in
Table 1. PCR amplification had the following conditions: 95°C for
3 min; 40 PCR cycle reactions (95°C for 20 s; 60°C for 30 s).
GAPDH was used as a control. Relative expression levels of
lncRNAs were calculated using 2−11CT method. Differences
between the two groups were analyzed using Student’s t-test.
p-value < 0.05 was considered statistically significant.

RESULTS

Identification of DElncRNAs and
DEmRNAs for ALL
The workflow of this study is shown in Figure 1. According
to adjusted p-value < 0.05 and | log2 fold change (FC)| ≥ 2,
2903 up− and 3228 downregulated mRNAs were identified
for ALL, as shown in the volcano plot (Figure 2A and

FIGURE 1 | The workflow of this study.
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FIGURE 2 | Identification of DEmRNAs and DElncRNAs for ALL. Volcano plot showing DEmRNAs (A) and DElncRNAs (B) for ALL. As shown in heatmaps, the
differences in expression patterns of DEmRNAs (C) and DElncRNAs (D) between ALL bone marrow samples and normal samples. Red represents upregulation and
green represents downregulation. DEmRNAs: differentially expressed mRNAs; DElncRNAs: Differentially expressed lncRNAs; ALL, Acute lymphoblastic leukemia.

Supplementary Material 1). Furthermore, there were 469 up−
and 286 downregulated lncRNAs for ALL (Figure 2B and
Supplementary Material 2). Heatmaps depicted the differences
in expression patterns of all DEmRNAs (Figure 2C) and
DElncRNAs (Figure 2D) between ALL bone marrow samples
and normal samples.

Construction of ceRNA Network for ALL
The miRNAs that targeted DEmRNAs were predicted using
TargetScan, miRDB, and miRTarBase databases. After
integration of prediction results from the three databases,
297 DEmRNAs were intersected and identified for the
construction of ceRNA network (Figure 3). Furthermore,
DElncRNA–miRNA relationships were predicted using
miRcode database. By comprehensively analyzing DElncRNA–
miRNA and miRNA–DEmRNA pairs, a ceRNA network
was constructed for ALL (Figure 4). There were 845
lncRNA–miRNA pairs (Supplementary Material 3) and

395 miRNA–mRNA pairs (Supplementary Material 4) in
the ceRNA network.

Functional Enrichment Analysis of
DEmRNAs in the ceRNA Network
As depicted in heatmaps, there were obvious differences in the
expression patterns of all DEmRNAs in the ceRNA network
between ALL bone marrow samples and normal samples
(Figure 5A). Bubble diagrams showed the top 40 GO enrichment
analysis results enriched by DEmRNAs in the ceRNA network
(Figure 5B). We found that these mRNAs were mainly enriched
in ALL-related biological processes such as transcription,
programmed cell death, apoptosis, cell cycle, proliferation, and
so on. Figure 6 depicted the relationships between DEmRNAs
and enriched biological processes including morphogenesis
of an epithelium, kidney epithelium development, ureteric
bud development, mesonephric epithelium development, and
mesonephric tubule development. As for KEGG pathway
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FIGURE 3 | Venn diagram showing 297 differentially expressed mRNAs targeted by miRNAs via intersection of prediction results of TargetScan, miRDB, and
miRTarBase database.

FIGURE 4 | A ceRNA network construction for acute lymphoblastic leukemia. Blue rhombus represents lncRNAs; green circle represents miRNAs and red triangle
represents mRNAs.
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FIGURE 5 | GO enrichment analysis of DEmRNAs in the ceRNA network. (A) Heatmaps showing differences in the expression patterns of all DEmRNAs in the
ceRNA network between ALL bone marrow samples and normal samples. Red stands for upregulation and green stands for downregulation. (B) The top 40 GO
enrichment analysis results including biological process, cellular component, and molecular function. DEmRNAs: Differentially expressed mRNAs.

FIGURE 6 | The top five biological processes enriched by DEmRNAs in the ceRNA network. DEmRNAs: Differentially expressed mRNAs.
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enrichment analysis results, these DEmRNAs were mainly
enriched in pathways in cancer, cell cycle, small cell lung
cancer, p53 signaling pathway, Wnt signaling pathway,
pentose phosphate pathway, and non-small cell lung cancer
(Figures 7A,B).

Identification of Hub Genes in the PPI
Network
The DEmRNAs in the ceRNA network were imported into
STRING database. Then, a PPI network was constructed for
ALL (Figure 8A). Two PPI subnetworks were then constructed

(Figures 8B,C). Ten hub genes were identified for ALL, including
SMAD3, SMAD7, SMAD5, ZFYVE9, FKBP1A, FZD6, FZD7,
LRP6, WNT1, and SFRP1.

Correlation Between Hub Genes and
DElncRNAs
Correlation analysis between hub genes and DElncRNAs was
performed by corrplot package. The significant correlations
between DElncRNAs and hub genes are shown in Figure 9
and Supplementary Material 5. There was strong correlation
between WT1-AS and FZD7 (r = 0.751907203; p < 0.0001).

FIGURE 7 | KEGG pathway enrichment analysis of DEmRNAs in the ceRNA network. (A) Seven enriched KEGG pathways. (B) Visualization of KEGG enrichment
analysis results. DEmRNAs: Differentially expressed mRNAs.
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FIGURE 8 | Identification of hub genes in the PPI network. (A) Construction of PPI network based on the DEmRNAs in the ceRNA network. (B,C) Two PPI
subnetworks for ALL. Red represents upregulation and green represents downregulation. DEmRNAs: Differentially expressed mRNAs.

Furthermore, PWRN1 and SMAD3 were significantly correlated
(r = 0.521493415 and p = 4.32E−08).

Validation of Eight lncRNAs in Bone
Marrow of ALL
Among all DElncRNAs in the ceRNA network, the most
significant difference between 10 lncRNAs (AC009093.1,
C17orf77, ATP11A-AS1, ITPK1-AS1, ANO1-AS2, ITCH-IT1,
CRNDE, MALAT1, CACNA1C-IT3, and PWRN1) in the ceRNA
network and WT1-AS (which was closely related to hub gene
FZD7) was selected for verification. However, as the primers of
AC009093.1, C17orf77, and ITCH-IT1 for RQ-PCR were not
ideal, the remaining eight lncRNAs were validated. As Figure 10
shows, these eight lncRNAs were significantly upregulated in
ALL bone marrow samples (n = 25) compared to normal samples
(n = 15) by Real-time qPCR.

DISCUSSION

In this study, we constructed a ceRNA network for ALL
based on DElncRNA–miRNA and miRNA–DEmRNA
relationships. Among all DElncRNAs in the ceRNA network,
eight lncRNAs were validated in ALL bone marrow samples
using Real-time qPCR. These lncRNAs might become potential
biomarkers for ALL.

To explore potential functions of DEmRNAs in the ceRNA
network, we performed functional enrichment analysis. We
found that these mRNAs were mainly enriched in ALL-related

biological processes such as transcription (Gocho and Yang,
2019), programmed cell death (Hass et al., 2016), apoptosis, cell
cycle (Jing et al., 2018), and proliferation (Sun et al., 2019).
The DEmRNAs in these biological processes could modulate
the development of ALL. Furthermore, these DEmRNAs were
significantly associated with pathways in cancer, cell cycle,
p53 signaling pathway, Wnt signaling pathway, and pentose
phosphate pathway. It has been widely accepted that the p53
signaling pathway is a promising drug target in ALL (Trino
et al., 2016). In particular, alterations of the tumor suppressor
gene TP53 were frequently found in pediatric ALL (Demir et al.,
2020). As for the Wnt signaling pathway, it was significantly
correlated with the pathogenesis of ALL (Montano et al., 2018).
Recent findings reported that inhibiting Wnt/β catenin could
reverse multidrug resistance in children ALL (Fu et al., 2019).
Moreover, the pathway is regulated by many factors. For example,
miR-181a-5p could promote ALL cell proliferation via targeting
the Wnt pathway (Lyu et al., 2017). Our results indicated that
the DEmRNAs in the ceRNA network could be involved in the
pathogenesis of ALL.

We constructed a PPI network for B-ALL on the basis of
DEmRNAs in the ceRNA network. Ten hub genes were identified
for ALL, including SMAD3, SMAD7, SMAD5, ZFYVE9,
FKBP1A, FZD6, FZD7, LRP6, WNT1, and SFRP1. Among them,
the loss of the Smad3 protein has been identified as a key
feature of acute T-cell lymphoblastic leukemia (Wolfraim et al.,
2004). Smad7 is a promising therapeutic target for B-cell ALL
(Guo et al., 2018). Furthermore, microRNA-181a might regulate
its expression for pediatric ALL (Nabhan et al., 2017). Wnt
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FIGURE 9 | Heatmaps showing the correlation between hub genes and DElncRNAs. DEmRNAs: Differentially expressed mRNAs. The right bar indicates the color
legend of Pearson correlation values.

FIGURE 10 | Validation of eight lncRNAs in ALL bone marrow samples using Real-time qPCR. (A) ATP11A-AS1; (B) ITPK1-AS1; (C) ANO1-AS2; (D) CRNDE;
(E) MALAT1; (F) CACNA1C-IT3; (G) PWRN1; and (H) WT1-AS. Control: n = 15; ALL: n = 25.
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signaling pathway can enhance hematopoietic cell proliferation
(Doubravska et al., 2008). It could mediate growth and prognosis
of B-cell progenitor ALL, which could be a potential treatment
strategy in ALL (Khan et al., 2007; Mochmann et al., 2011). In the
pathway, FZD6, FZD7, LRP6, and WNT1 were marker proteins.
LRP6 has been reported to be a candidate tumor suppressor
gene in pre-B ALL (Montpetit et al., 2004). Furthermore,
low expression of SFRP1 was significantly associated with
clinical outcomes of patients with Philadelphia-positive ALL
(Martin et al., 2008).

Consistently with differential expression analysis results,
eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-
AS2, CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS
were significantly upregulated in ALL bone marrow, indicating
that these abnormally expressed lncRNAs could be involved
in the development of ALL. Among them, CRNDE was
upregulated in the bone marrow of B-cell precursor acute
lymphoblastic leukemia (BCP-ALL) patients and BCP-ALL cell
lines (NALM-6 and RS4;11). Functionally, CRNDE upregulated
CREB expression by suppressing miR-345-5p, thus promoting
cell proliferation and reducing cell apoptosis in BCP-ALL
(Wang W. et al., 2020). A large amount of research has
reported that aberrantly expressed MALAT1 was involved in
a variety of cancers, such as breast cancer metastasis (Kim
et al., 2018), colon cancer (Wu et al., 2018), and non-small
cell lung cancer (Li et al., 2018). Abnormally expressed is in
significant association with poor prognosis in childhood ALL
(Pouyanrad et al., 2019). Furthermore, miR-125b in combination
with miR-99a and/or miR-100 could inhibit the expression of
MALAT1 in vincristine-resistant children ALL cells (Moqadam
et al., 2013). PWRN1 was significantly underexpressed in gastric
cancer tissues and cells (Chen et al., 2018). Overexpressed
PWRN1 could inhibit the proliferation and metastasis of
gastric cancer cells and tumor growth. Furthermore, PWRN1
may regulate miR-425-5p expression by acting as its sponge
in gastric cancer cells. ITPK1-AS1 expression could predict
gastric cancer patients’ survival (Hu et al., 2019). WT1-AS
has been characterized as a tumor-suppressive lncRNA in
several cancers including cervical squamous cell carcinoma
(Zhang et al., 2019), gastric cancer (Du et al., 2016), papillary
thyroid carcinoma (Le et al., 2020), non-small cell lung
cancer cell (Jiang et al., 2020), and hepatocellular carcinoma
(Lv et al., 2015). Besides, WT1-AS can regulate WT1 on
oxidative stress injury and apoptosis of neurons in Alzheimer’s
disease via inhibition of the miR-375/SIX4 axis (Wang Q.
et al., 2020). However, other lncRNAs have not been reported
yet. According to our results, these lncRNAs deserve more
research on ALL.

However, there are several limitations in this study. First, since
there was no normal control of ALL in TCGA database, data of
407 whole blood in the GTEx database were obtained as control.
Given that ALL primarily affects younger individuals, the age
distribution of the control group is not ideally matched with
the ALL from TCGA database, which may cause confounding.
Second, the sample size of this study is small, and larger
clinical samples should be used to verify these lncRNAs. In
addition, this study lacks functional experiments. In future

research, we will further the function and clinical value of
these lncRNAs in ALL.

CONCLUSION

In our study, a ceRNA network was constructed for ALL. Among
all DElncRNAs in the ceRNA network, eight lncRNAs were
validated in ALL bone marrow samples using Real-time qPCR,
which might provide a novel insight into the further study of ALL.
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Peigen Chen, Tingting Li, Yingchun Guo, Lei Jia, Yanfang Wang and Cong Fang*

Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Background: Recurrent implantation failure (RIF) is an obstacle in the process of
assisted reproductive technology (ART). At present, there is limited research on its
pathogenesis, diagnosis, and treatment methods.

Methods and Results: In this study, a series of analytical tools were used to analyze
differences in miRNAs, mRNAs, and lncRNAs in the endometrium of patients in a RIF
group and a control group. Then the competing endogenous RNA (ceRNA) network
was built to describe the relationship between gene regulation in the endometrium
of the RIF group. Based on the results of the logistic regression of co-expression
miRNAs between serum and endometrial samples, we built a predictive model based
on circulating miRNAs.

Conclusion: The stability and non-invasiveness of the circular miRNA prediction model
provided a new method for diagnosis in RIF patients.

Keywords: recurrent implantation failure, competing endogenous RNAs, assisted reproductive technology, GEO,
non-invasive prediction model

INTRODUCTION

Recurrent implantation failure (RIF) is a thorny issue that couples undergoing in vitro fertilization
(IVF)/intracytoplasmic sperm injection (ICSI) may face. The generally accepted definition is that
women under the age of 40 years have transferred at least four high-quality embryos in at least
three fresh or frozen cycles or have transferred a total of 10 high-quality embryos but have not yet
achieved clinical pregnancy (Thornhill et al., 2005; Simon and Laufer, 2012; Coughlan et al., 2014).
Along with improving in vitro fertilization embryo transfer (IVF-ET) technology and increasing
clinical pregnancy rate, RIF is still a tough problem in the process of IVF-ET. The normal embryo
implantation generally only occurs during the window of implantation (WOI) (Cha et al., 2012),
which refers to days 20–24 of the normal menstrual cycle. Abnormalities of the endometrium at
this stage are important factors that lead to RIF.

MicroRNAs (miRNA) are a class of non-coding RNA molecules with a length of about 22
nucleotides that are widely found in eukaryotic cells. There have been some studies confirming
the role of miRNA in endometrial regulation (Creighton et al., 2010; Kuokkanen et al., 2010;
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Revel et al., 2011; Altmae et al., 2013). For example, miR-30b,
miR-30d, and miR-494 had been reported to play an important
role in the regulation of endometrial function (Altmae et al.,
2013). Recent research reported miRNAs associated with RIF,
such as miR-34c-5p (Tan et al., 2020) and miR-148A-3P
(Zhang et al., 2020).

Moreover, in recent years circulating miRNA has been
increasingly used as a non-invasive tool for disease diagnosis
and prediction due to its high stability, sensitivity, and specificity
(Martinez and Peplow, 2020). In the present study, we aim to
use a larger sample size of data in our analysis to explore the
regulatory molecular mechanism in the endometrium of RIF
patients at the WOI stage. At the same time, we aim to look
for peripheral blood miRNAs closely related to RIF and provide
a new way for non-invasive early diagnosis of RIF, thereby
improving the clinical outcome of patients.

MATERIALS AND METHODS

We used R software (version 3.6.3) (Team, 2018), GraphPad
Prism (version 8), and Bioconductor (Gentleman et al., 2004) for
all statistical analyses in our study.

Data Acquisition and Preprocessing
Paired serum and endometrial miRNA expression profile
data (GSE108966) were obtained from the Gene Expression
Omnibus (GEO) database1. The paired raw count of endometrial
expression profile and corresponding clinical data of a RIF
group and a control group were extracted from GSE71331 and
GSE71332 and then processed by “Limma” R package (Ritchie
et al., 2015) (Agilent-052909 CBC lncRNA mRNA V3, Agilent-
046064 Unrestricted Human miRNA V19.0).

Selection of Differentially Expressed
Genes
The scanning of differentially expressed (DE) miRNA in the
endometrium and the serum was performed by using the “limma”

Abbreviations: RIF, recurrent implantation failure; ART, assisted reproductive
technology; ceRNA, competing endogenous RNA; WOI, window of implantation;
WGCNA, weighted correlation network analysis.
1http://www.ncbi.nlm.nih.gov/geo

R package (Ritchie et al., 2015) with the following criteria:
p-value < 0.05 and | log 2-fold change| > 1.

Similar to the above process, the differentially expressed genes
(DEGs) of GSE71331 and GSE71332 were selected.

Selection and Validation of
Co-expression miRNAs Between Serum
and Endometrial Samples
The intersection of endometrium DE miRNAs and serum DE
miRNAs was taken as intersection miRNAs. To ensure that
their expressions were relevant, Pearson correlation analysis is
performed by using GraphPad Prism (version 8). Genes with the
Pearson correlation coefficient | r| ≥ 0.5 were considered to be
co-expressed miRNAs between the serum and the endometrium.

Weighted Correlation Network Analysis
of miRNA of Endometrial Samples
With the “WGCNA” R package (Langfelder and Horvath,
2008), weighted correlation network analysis (WGCNA) was
performed on DE miRNAs which were selected based on
GSE71332 dataset. The minimum gene dendrogram size of
average linkage hierarchical clustering was set as 40. Then the
dissimilarity and constructed module dendrograms of these
modules were calculated.

To estimate the significance of each module and also measure
the relationships between genes and sample traits, the gene
significance (GS) of each module was then calculated. The GS
and module membership (MM, the correlation between the genes
in the module and their expression profiles) of every key gene
were calculated with the following thresholds: correlation gene
GS > 0.5 and correlation gene MM > 0.8.

Prediction of Target lncRNAs/mRNAs of
RIF-Related DE miRNAs
The intersection of the DEGs and the genes of the key modules
related to RIF in WGCNA was taken as RIF-related DE
miRNAs. Then miRDB2 (Chen and Wang, 2020), miRTarBase3

(Hsu et al., 2011), and TargetScan4 (Agarwal et al., 2015)

2http://mirdb.org/miRDB/
3http://mirtarbase.mbc.nctu.edu.tw/
4http://targetscan.org/

TABLE 1 | Clinical characteristics of GSE71331.

RIF CON p-value

Mean SD n Mean SD n

Age (years) 31.5714 4.8599 7 31 3.5355 5 0.7349

Number of failed cycles 5.1429 3.1320 7 0 0 5 0.0032

Number of transferred embryos 12.4286 6.1062 7 2 0 5 <0.000001

Number of high-quality transferred embryos 7.5714 1.5119 7 1.6 0.5477 5 0.0007

Endometrial thickness on the day of LH surge 0.9429 0.1512 7 1.08 0.1095 5 0.9352

The day of sample (post the day of LH surge) 6.5714 0.7868 7 7.2 0.4472 5 0.7096

RIF, recurrent implantation failure; SD, standard deviation; LH, luteinizing hormone; CON, comment group
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were used to predict miRNA-targeting mRNAs. NPInter5 (Teng
et al., 2020) and DIANA-LncBase (Paraskevopoulou et al.,
2016) were used to predict miRNA-targeting lncRNAs. The
intersection of differential mRNAs/lncRNAs in GSE71331 and
the miRNA-targeting mRNAs/lncRNAs were taken as targeting-
DE mRNAs/lncRNAs.

Construction of lncRNA-miRNA-mRNA
Regulatory Network
LncRNA-miRNA interactomes were then built based on
targeting-DE lncRNAs and RIF-related DE miRNAs. Similarly,

5http://bigdata.ibp.ac.cn/npinter4/

mRNA-miRNA interactomes were built. Subsequently, lncRNA–
miRNA–mRNA regulatory networks were constructed by using
cytoscape, version 3.86. Key modules were selected by MCODE
using default parameters (Bader and Hogue, 2003).

Functional Enrichment Analysis of
Targeted DE mRNAs
Metascape (Zhou et al., 2019)7 contained many updated
functional annotations, such as Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway, canonical pathway, Reactome

6https://cytoscape.org/
7http://metascape.org

FIGURE 1 | Selection of co-expression miRNAs between serum and endometrial samples. (A) The volcano plot of differentially expressed genes in the endometrial
sample of GSE108966. (B) The volcano plot of differentially expressed genes in the serum sample of GSE108966. (C) The heatmap of the co-expression miRNAs
between serum and endometrial samples. The numbers inside the boxes stand for correlation coefficient.
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pathway, Gene Ontology (GO) biological process, and CORUM
(the comprehensive resource of mammalian protein complexes).
To understand the biological function of targeted DE mRNAs of
GSE71332, Metascape was then used with a p-value of < 0.01 as
the cutoff value. Then the terms with a p-value of < 0.01 and
a number of genes greater than or equal to 3 were selected as
significant terms.

Transcriptional Regulatory Relationship
Analysis of Targeted DE mRNAs
TRRUST (transcriptional regulatory relationships unraveled
by sentence-based text-mining)8 is a TF-target regulatory
interactions database based on the manual curation of Medline
abstracts (Han et al., 2015). We then used TRRUST to screen
transcription factors related to targeted DE mRNAs and targeted
mRNAs and study their transcription regulation relationships.

Causal Relationship Analysis
DisNor (Lo Surdo et al., 2018)9 is a web-based tool that
can generate and explore protein interaction networks based
on disease genes using Mentha protein interaction data
and causal interaction information annotated by SIGNOR.

8http://www.grnpedia.org/trrust
9https://disnor.uniroma2.it/

DisNor was used to explore the causal relationships among
targeted DE mRNAs.

Construction and Validation of
Nomogram Based on Circulating
miRNAs
Logistic regression analysis was then performed with three
selected factors by using “survival” R package (Therneau, 2015)
to select the best fit model. Then a nomogram was built to
predict the risk of RIF patients by using “rms” R package. At
the same time, the consistency index (C-index) was calculated to
evaluate the model’s ability to distinguish. The consistency of the
predicted probability and the actual probability of the model was
evaluated by the calibration curves. The predictive performance
of the model was evaluated by drawing the receiver operating
characteristic (ROC) curve and calculating the area under the
curve (AUC) values.

RESULTS

Clinical Characteristics of Samples Used
in the Study
All data came from samples taken during the window of
implantation. The clinical characteristics of the RIF group and

FIGURE 2 | Weighted gene correlation network analysis. (A) The relationships between the corresponding modules and clinical phenotypes. (B) The modules
selected with a minimum module size of 50 for further analysis. (C) The module membership in the turquoise module.
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the control group in GSE71331 and GSE71332 are listed in
Table 1. In total, the mRNA and lncRNA expression profiles of
seven RIF samples and five control samples were extracted from
GSE71331, and the corresponding miRNA expression profiles
were extracted from GSE71332.

Selection of Co-expression miRNAs
Between Serum and Endometrial
Samples and Functional Enrichment
Analysis
For GSE108966, 63 downregulation miRNAs and 45 upregulation
miRNAs were selected from endometrial samples by Deseq2 with
the following criteria: p-value < 0.05 and | log 2-fold change|
> 1 (Figure 1A). Similarly, 28 downregulation miRNAs and
22 upregulation miRNAs were selected from serum samples
(Figure 1B and Supplementary Table 1).

Hsa-miR-378e and hsa-miR-96-5p were selected as
co-expression miRNAs between serum and endometrial
samples (Figure 1C).

Selection of Differentially Expressed
Genes
By using “limma” package with p-value < 0.05 and | log 2-fold
change| > 1, we found that Hsa-miR-378e and hsa-miR-96-5p
are also highly expressed in RIF in the profiles of GSE71331 and
GSE71332 (Supplementary Table 2).

Selection of RIF-Related miRNAs by
WGCNA
A gene co-expression network was then constructed based on the
samples of GSE71332 by WGCNA to select the most significant
gene modules and genes. This procedure can also help to

FIGURE 3 | Construction of lncRNA–miRNA–mRNA regulatory network. (A) The lncRNA–miRNA–mRNA regulatory network. (B) The key module network selected
from lncRNA–miRNA–mRNA regulatory network. (C) The connection between lncRNAs, miRNAs, and mRNAs.
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elucidate the relationship between genes and clinical features.
With a soft threshold of β = 7, 16 modules were selected with a
minimum module size of 50 for further analysis (Figure 2B).

The overall expression gene level was taken as the MS
(module significance) to estimate the relationship between the
corresponding modules and clinical phenotypes (Figure 2A).
Based on the results, we found that the turquoise module showed
the most significant positive correlation with the RIF (cor = 0.97,
p < 0.0001) (Figure 2C). Therefore, the turquoise module was
chosen as the RIF-related module.

Finally, 97 intersection miRNAs between DEG and
WGCNA were selected as RIF-related DE miRNAs
(Supplementary Table 3).

Construction of lncRNA–miRNA–mRNA
Regulatory Network
Based on the interaction of the prediction of three databases
(miRDB, miTarBase, and TargetScan) and DE mRNAs, 45
mRNAs were selected for network construction. Similarly,

FIGURE 4 | Functional enrichment analysis of targeted DE mRNAs of GSE71331/71332. (A) The network of functional terms. (B) The key module network selected
by MCODE (inside the red circle) and first neighbor node of the key module network (outside the red circle). (C) The enriched GO terms of targeted DE mRNAs.
(D) The enriched pathway of targeted DE mRNAs. (E) The transcription factors related to targeted DE mRNAs.
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seven lncRNAs were selected. Finally, a lncRNA–miRNA–mRNA
regulatory network was constructed based on 80 miRNAs, 45
mRNAs, and 7 lncRNAs by using cytoscape (Figures 3A,C). By
using the MCODE app of cytoscape, a key module network was
selected (Figure 3B).

Functional Enrichment Analysis and
Causal Relationship Analysis
By using Metascape, we found that the targeted DE
mRNAs were enriched mainly in terms of cell adhesion
mediated by integrin (GO: 0033627), female pregnancy
(GO: 0007565), fatty acid metabolic process (GO: 0006631),
and reproductive structure development (GO: 0048608)
(Figure 4C). The pathways-targeted DE mRNAs were
enriched in terms of focal adhesion, signaling by nuclear
receptors, MAPK pathway, and PIP3-activated AKT
pathway (Figure 4D).

Key modules were selected in the functional network
(Figure 4A) by using the MCODE cytoscape app. We found that
one of the key modules was closely related with reproduction
function (Figure 4B red circle), and their first neighbor nodes are
also shown in Figure 4B (outside the red circle).

According to TRRUST database, DYRK1A targeted ACADSB,
ANK3, ASPH, HOXA13, ITGA3, and NPR3. SOX10 targeted
ACADSB, ANK3, LAMB3, and SOX5 (Figure 4E).

By using the DisNor tool, we screened the first neighboring
genes of the targeted DE mRNAs and built a causal relationship
network (Figure 5). We found that these genes were closely
related to the MAPK signal pathway as we could see in the results
of functional enrichment analysis.

Construction and Validation of
Nomogram Based on Circulating
miRNAs
Based on the results of logistic regression analysis, the best fit
models included age, the expression of hsa-miR-96-5p, and the
expression of hsa-miR-378e. A nomogram with C-index = 0.865
was established to act as a prediction tool of RIF (Figure 6A),
which means that our model has a good ability to distinguish
the clinical outcome. The calibration curves in Figure 6B show
a good consistency of the predicted probability and the actual
probability of the model with mean absolute error of 0.028,
mean squared error of 0.00096, and 0.9 quantile of absolute
error of 0.044. Figure 6C shows the ROC curve of the model,
and the AUC value was 0.865, which means a promising
predictive performance.

DISCUSSION

RIF is an obstacle in the process of assisted reproductive
technology (ART). Epigenetic regulation of gene expression
played an important role in the development of RIF, and one of
the most important parts was miRNA. Several factors, including
different miRNAs, were selected as key molecules of regulation
of endometrial acceptance and implantation (Kang et al., 2015).
However, there was still a lack of research on the molecules
that affect endometrial tolerance before implantation and the
mechanisms of early dialog between the embryo and the uterus
(Kang et al., 2015). Due to the limitations of the sample and
detection technology, researchers could only study the known

FIGURE 5 | Causal interaction analysis of targeted DE mRNAs of GSE71331/71332 (inside the red circle) and their first neighbor genes (outside the red circle) by
using DisNor. The numbers on the line stand for correlation coefficient.
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potentially meaningful miRNAs and could not explore them in
depth.

In this study, by using WGCNA, we built a lncRNA–
miRNA–mRNA regulatory network to analyze the expression and
regulation characteristics of miRNAs in the endometrium and the
serum. By using the MCODE app in cytoscape, two key modules
were selected. We noticed that both hsa-miR-23a and hsa-miR-
23b interacted with ACADSB, DUSP5, and NPR3. Fan et al.
(2020) reported that the upregulator expression of hsa-miR-23a
could suppress hdac2, activate NF-κB, and influence the ability of
adhesion, invasion, and proliferation of trophoblasts. Our study
showed that hsa-miR-23a played an important role in embryo
implantation. At the same time, several studies suggested that
hsa-miR-23a and hsa-miR-23b were closely related to the MAPK
pathway (Guo et al., 2018; Ma et al., 2019). As many studies
reported, the MAPK pathway played an important role in embryo
implantation, and it was closely related to the ability of adhesion,
invasion, and proliferation of trophoblasts and the procession

of endometrium angiogenesis (Baryla et al., 2019; Zhang et al.,
2019; Goryszewska et al., 2020). The causal relationship network
in Figure 5 shows that DUSP5 downregulates MAPK1 (R = 0.42).
According to these results, we could make a hypothesis that
lncRNA PART1 may act as a sponge of hsa-miR-23a/b to
downregulate DUSP5 to promote RIF.

In this study, the results of functional enrichment analysis
of miRNAs target genes also support our conclusions. The
targeted mRNAs of hsa-miR-96-5p were mainly enriched
in terms of cellular response to organonitrogen compound,
negative regulation of cell differentiation, regulation of protein
serine/threonine kinase activity, apoptosis pathway, and the
MAPK signaling pathway.

Currently, almost all tests for endometrial function in
RIF patients are based on endometrial biopsies. Such an
inspection operation had a potential impact on the uterine cavity
environment. In this study, we developed a non-invasive RIF
diagnostic scoring model to assist in the diagnosis and treatment

FIGURE 6 | The prediction model based on circulating miRNAs. (A) The nomogram of the prediction models based on circulating miRNAs. (B) The calibration
curves of the prediction model. (C) The receiver operating characteristic (ROC) curve of the prediction model.
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of RIF patients, and it showed better predictability and accuracy.
As far as we know, this was the first RIF predictive scoring
model based on circulating miRNA. Clinical trials of models will
also be conducted soon. For this study, there were still some
shortcomings, such as a lack of adequate laboratory tests to verify
the mechanism. We are already starting relevant clinical studies.

CONCLUSION

In this study, we built a circulating miRNA-based prediction
and provided a new non-invasive inspection method. We also
found that these two miRNAs played an important role in
the progress of RIF and found that lncRNA PART1 may act
as a sponge of hsa-miR-23a/b to downregulate DUSP5 to
promote RIF.
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Chemotherapy is a mainstream cancer treatment, but has a constant challenge of drug
resistance, which consequently leads to poor prognosis in cancer treatment. For better
understanding and effective treatment of drug-resistant cancer cells, omics approaches
have been widely conducted in various forms. A notable use of omics data beyond routine
data mining is to use them for computational modeling that allows generating useful
predictions, such as drug responses and prognostic biomarkers. In particular, an
increasing volume of omics data has facilitated the development of machine learning
models. In this mini review, we highlight recent studies on the use of multi-omics data for
studying drug-resistant cancer cells. We put a particular focus on studies that use
computational models to characterize drug-resistant cancer cells, and to predict
biomarkers and/or drug responses. Computational models covered in this mini review
include network-based models, machine learning models and genome-scale metabolic
models. We also provide perspectives on future research opportunities for combating
drug-resistant cancer cells.

Keywords: cancer, drug resistance, omics, computational modeling, network-based model, machine learning,
genome-scale metabolic model

INTRODUCTION

Drug resistance has been a major obstacle for a successful treatment of cancers, as manifested by
over 90% mortality of cancer patients that appeared to be associated with drug resistance
(Bukowski et al., 2020). Drug resistance is a phenotypic state that arises as a result of a complex
interplay between genetic and non-genetic mechanisms (Marine et al., 2020). Such genetic and
non-genetic reprogramming consequently leads to drug resistance through various
mechanisms (Gatti and Zunino, 2005; Housman et al., 2014; Zheng, 2017; Lim and Ma,
2019; Vasan et al., 2019; Bukowski et al., 2020), including: drug inactivation, for example by an
excessive level of glutathione that detoxifies xenobiotics (Jiang et al., 2017; De Luca et al., 2019);
alteration of a drug target by mutations or changes in an expression level (Likhite et al., 2006;
Costa et al., 2008); drug efflux by transporters (Giddings et al., 2021); enhanced DNA damage
repair system (Harte et al., 2014); development of resistance via dysregulated autophagy
(Martin et al., 2017; Cai et al., 2019); epithelial-mesenchymal transition (EMT) (Fischer
et al., 2015; Zheng et al., 2015); or heterogeneity of a cancer cell population having cancer
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stem cells (Seth et al., 2019; Zhao et al., 2021). A state of drug
resistance is indeed a highly complex phenotype that requires
multidimensional approaches.

Omics technologies have now become indispensable for
characterizing mechanisms of cancer progression, and for
identifying effective biomarkers and treatment targets for
cancers. For this reason, large-scale projects have been
launched to generate omics data of various cancer cells. A
recent representative example is the Pan-Cancer Analysis of
Whole Genomes (PCAWG) Consortium of the International
Cancer Genome Consortium (ICGC) and The Cancer Genome
Atlas (TCGA), which has allowed advanced studies on gene
mutations and gene expression profiles across cancers
(Consortium, 2020). The resulting various datasets from such
large-scale efforts have been found to be useful for studying drug-
resistant cancer cells. Relevant representative datasets include the
NCI-60 Human Tumor Cell Lines Screen (Shoemaker, 2006), the
Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al.,
2013), TCGA (Cancer Genome Atlas Research et al., 2013), the
Cancer Therapeutic Response Portal (CTRP) (Seashore-Ludlow
et al., 2015), L1000 profiles from The Library of Integrated
Network-Based Cellular Signatures (LINCS) Program
(Subramanian et al., 2017), the Cancer Cell Line Encyclopedia
(CCLE) (Ghandi et al., 2019), and the Catalogue Of Somatic
Mutations In Cancer (COSMIC) (Tate et al., 2019). All these
datasets have served as a source of novel insights that help
characterize and overcome drug-resistant cancer cells. In

particular, it is expected that an increasing volume of such
large-scale datasets will facilitate development of various
computational models that will better systematize our
approaches to studying drug-resistant cancer cells.

We here review recent studies that utilized multi-omics and
computational modeling approaches to better understand
mechanisms associated with the progression of drug resistance,
and to identify biomarkers and/or drug responses (Figure 1 and
Table 1). Especially, we put more focus on computational
modeling that makes predictions for various scenarios for the
treatment of drug-resistant cancer cells. We also provide an
outlook for further advances on the use of computational
models for studying drug-resistant cancer cells.

MULTI-OMICS ANALYSES

Multiple omics data are often generated to examine various
biological aspects of drug-resistant cancer cells (Figure 1).
Target genotypes and phenotypes examined using omics data
(Table 1) include: cancer-associated mutations (Niehr et al.,
2018; Marczyk et al., 2020; Sinkala et al., 2021); changes in the
expression level of specific genes (Niehr et al., 2018; Nava et al.,
2019; Kagohara et al., 2020;Marczyk et al., 2020; Poojan et al., 2020;
Sinkala et al., 2021); changes in chromosome structure (Kagohara
et al., 2020; Marczyk et al., 2020; Aissa et al., 2021); epigenetic
alterations (e.g., methylation or acetylation states of histone

FIGURE 1 | Scheme of omics data generation and computational modeling to better understand and treat drug-resistant cancer cells.
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TABLE 1 | Recent studies on the use of omics data and computational models to better understand and treat drug-resistant cancer cells.

Approaches Cancer types Resistance type Objectives Drugs References

Multi-omics analyses

• ChiP-seq • Lung cancer • Both acquired
and intrinsic
resistance

• Identification of
biomarkers

• Erlotinib, osimertinib, crizotinib,
vemurafenib, celastrol, and GSK-
1059615

Aissa et al. (2021)
• Single-cell RNA-seq
• RNA-seq
• Proteome (LC-MS/MS)

• ATAC-seq • Breast cancer • Intrinsic
resistance

• Biological
characterization

• Doxorubicin Kumar et al. (2021)
• RNA-seq

• Identification of
therapeutic
targets

• Genome sequencing • 101 Types of
cancers from
40,848 patients
from cBioPortal

• Not specified • Biological
characterization

• MAPK pathway inhibitors (e.g.,
selumetinib)

Sinkala et al. (2021)
• Methylome (reduced representation

bisulfite sequencing)
• mRNA microarray and RNA-seq

• RNA-seq • Melanoma • Intrinsic
resistance

• Biological
characterization

• Vemurafenib Torre et al. (2021)
• Pooled CRISPR screen (MiSeq)

• Genome sequencing • Breast cancer • Acquired
resistance

• Biological
characterization

• Tamoxifen and fulvestrant Achinger-Kawecka
et al. (2020)• Methylome (bisulfite sequencing)

• Hi-C
• ChiP-seq
• RNA-seq

• Methylome (EPIC array) • Breast cancer • Acquired
resistance

• Biological
characterization

• Paclitaxel Deblois et al.
(2020)• ChiP-seq

• RNA-seq
• Metabolome (LC-HRMS)

• ATAC-seq • Head and neck
squamous
carcinoma

• Acquired
resistance

• Biological
characterization

• Cetuximab Kagohara et al.
(2020)• Single-cell RNA-seq

• RNA-seq

• Translatome (microarray) • Leukemia • Not specified • Biological
characterization

• Cytosine arabinoside Lee et al. (2020)
• mRNA microarray

• Identification of
therapeutic
targets

• Proteome (LC-MS/MS)

• Genome sequencing • Breast cancer • Acquired
resistance

• Biological
characterization

• Navitoclax Marczyk et al.
(2020)• Methylome (bisulfite sequencing)

• Identification of
biomarkers

• ATAC-seq
• Single-cell RNA-seq
• RNA-seq

• ChiP-seq • Breast cancer • Acquired
resistance

• Biological
characterization

• Doxorubicin and 5-fluorouracil
(5-FU)

Mukherjee et al.
(2020)• RNA-seq

• Single-cell RNA-seq • Lung cancer • Acquired
resistance

• Biological
characterization

• Cisplatin and paclitaxel Poojan et al. (2020)
• RNA-seq • Gastric cancer

• ATAC-seq • Leukemia • Acquired
resistance

• Biological
characterization

• Bromodomain and Extra-Terminal
motif (BET) inhibitor

Bell et al. (2019)
• ChiP-seq
• Single cell RNA-seq • Identification of

therapeutic
targets

• RNA-seq
• Click-seq

• RNA-seq • Lymphoma • Not specified • Identification of
biomarkers

• Anthracycline-based regimen R-
CHOP (i.e., rituximab,
cyclophosphamide, doxorubicin,
vincristine and prednisone)

Fornecker et al.
(2019)• Proteome (nanoLC-MS/MS)

• Identification of
therapeutic
targets

(Continued on following page)
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TABLE 1 | (Continued) Recent studies on the use of omics data and computational models to better understand and treat drug-resistant cancer cells.

Approaches Cancer types Resistance type Objectives Drugs References

• Proteome, phosphoproteome,
kinome (LC-MS/MS)

• Breast cancer • Acquired
resistance

• Biological
characterization

• 2,5-diaziridinyl-3-hydroxyl-6-
methyl-1,4-benzoquinone (RH1)

Kuciauskas et al.
(2019)

• ChiP-seq • Breast cancer • Intrinsic
resistance

• Biological
characterization

• Trastuzumab Nava et al. (2019)
• RNA-seq

• Identification of
biomarkers

• Exome sequencing • Breast cancer • Both acquired
and intrinsic
resistance

• Biological
characterization

• Epirubicin, docetaxel, and
bevacizumab

Kim et al. (2018)
• Single-cell DNA-seq
• Single-cell RNA-seq

• Genome sequencing
• mRNA microarray
• Phosphoproteome (LC-MS/MS)

• Head and neck
squamous
carcinoma

• Intrinsic
resistance

• Identification of
therapeutic
targets

• Biological
characterization

• Cisplatin Niehr et al. (2018)

Network-based modeling

• GCNA using mRNA microarray data • Breast cancer • Not specified • Identification of
biomarkers

• Trastuzumab and docetaxel Li et al. (2021a)
• Cox regression model

• Weighted GCNA using RNA-seq
data

• Breast cancer • Not specified • Identification of
biomarkers

• Doxorubicin Li et al. (2021b)

• Cox regression model

• Gene co-expression network
analysis (GCNA) using RNA-seq
data

• Breast cancer • Not specified • Identification of
biomarkers

• Doxorubicin, cytoxan, and
tamoxifen

Cui et al. (2020)

• Methylome (BeadChip array)
• Genome sequencing

• Biological
characterization

• Weighted GCNA using mRNA
microarray data

• Gastric cancer • Acquired
resistance

• Identification of
biomarkers

• 5-FU and cisplatin Qi and Zhang,
(2020)

• ceRNA network for correlation
between lncRNA and mRNA levels
using RNA-seq data

• 19 Types (e.g., Lung
cancer, breast
cancer, and
melanoma)

• Not specified • Identification of
biomarkers

• 138 Drugs (e.g., vorinostat and
bosutinib)

Liu et al. (2019a)

• Biological
characterization

• GCNA using RNA-seq data • Glioma • Acquired
resistance

• Identification of
biomarkers

• Dibutyryl cyclic adenosine
monophosphate

Zhang et al. (2019)
• Cox regression model

• Weighted GCNA using RNA-seq
data

• Breast cancer • Acquired
resistance

• Identification of
biomarkers

• Docetaxel Huang et al. (2018)

Machine learning

• Deep neural network (DNN) with
neighborhood component analysis
using CNV, somatic mutation,
methylome, mRNA microarray,
RNA-seq, and proteome data

• Breast cancer • Not specified • Prediction of a
drug response

• 100 Drugs (e.g., tamoxifen) Malik et al. (2021)

• Logistic regression using CNV,
somatic mutation, mRNA
microarray, drug targets, and drug
descriptor data

• 955 Cell lines from
GDSC (lung cancer,
urogenital, and
leukemia)

• Not specified • Prediction of a
drug response

• 219 Drugs (e.g., AT-7519) for
GDSC cell lines

Yu et al. (2021)

• 491 Cell lines from
CCLE

• 24 Drugs (e.g., AZD6244) for
CCLE cell lines

(Continued on following page)

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7429024

Jung et al. Modeling Drug-Resistant Cancer Cells

91

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


proteins) (Nava et al., 2019; Kagohara et al., 2020; Marczyk et al.,
2020; Poojan et al., 2020; Sinkala et al., 2021); and the presence
of heterogeneity of a cell population (Niehr et al., 2018), often
increasingly examined at a single-cell resolution (Kagohara
et al., 2020; Aissa et al., 2021). In a recent study for cell line
heterogeneity, for example, application of single-cell DNA and
RNA sequencing (RNA-seq) to 20 triple-negative breast cancer
(TNBC) patients revealed that rare pre-existing clones having
genotypes associated with chemoresistance were adaptively
selected in response to neoadjuvant chemotherapy, which
subsequently led to acquired transcriptional reprogramming
(Kim et al., 2018). For epigenetic alteration, chromosome
conformation capture (Hi-C) along with additional omics
analyses were conducted for estrogen receptor positive (ER+)
breast cancer, which showed that resistance development to
endocrine therapy was accompanied with notable 3-
dimensional (3D) epigenome alterations (Achinger-Kawecka
et al., 2020). Application of multi-omics analyses has also
been extended to examine biological processes in quiescent

cancer cells that show drug resistance (Lee et al., 2020;
Kumar et al., 2021).

Understanding the biology of drug resistance often helps devise
effective treatment strategies for drug-resistant cancer cells.
Relevant examples (Table 1) include targeting: cancer stem cell
phenotypes, in particular stem cell factor receptor c-KIT, for TNBC
cells resistant to an anticancer agent RH1 that is currently under
clinical trials (Kuciauskas et al., 2019); a range of biological
pathways (e.g., metabolism), microenvironment as well as
proliferation, migration and invasion of cells, which are all
associated with drug resistance for diffuse large B-cell
lymphoma patients (Fornecker et al., 2019); zinc finger MYND
domain-containing protein 8 (ZMYND8), a putative chromatin
reader that appeared to suppress tumorigenic potential and drug
resistance induced by doxorubicin (Mukherjee et al., 2020); and
EZH2 responsible for histone methylation in taxane-resistant
TNBC (Deblois et al., 2020).

As representative examples of overcoming drug resistance on
the basis of omics analyses, recent studies additionally conducted

TABLE 1 | (Continued) Recent studies on the use of omics data and computational models to better understand and treat drug-resistant cancer cells.

Approaches Cancer types Resistance type Objectives Drugs References

• DNN with multiple elastic nets using
mRNA microarray and drug
descriptor data

• 983 Cell lines from
GDSC

• Not specified • Identification of
biomarkers

• 222 Drugs (e.g., 5-FU) for GDSC
cell lines

Choi et al. (2020)

• 491 Cell lines from
CCLE

• Prediction of a
drug response

• 12 Drugs for CCLE cell lines

• Weighted GCNA, elastic net, and
random forest using proteome and
phosphoproteome data

• NCI60 cell line panel • Not specified • Identification of
biomarkers

• Various drugs (e.g., cytarabine,
5-FU)

Frejno et al. (2020)

• Cox regression model

• Prediction of a drug
response • CRC65 cell line

panel

• Ridge regression and support
vector regression using mRNA
microarray and RNA-seq data

• Colorectal cancer • Not specified • Identification of
biomarkers

• 5-FU for colorectal cancer Kong et al. (2020)
• Cisplatin for bladder cancer• Bladder cancer

• Prediction of a
drug response

• Ensemble transfer learning
(LighGBM, or DNNs with two
different architectures) using RNA-
seq data and drug descriptor data

• Hundreds of cancer
cell lines from CCLE,
CTRP, gCSI and
GDSC

• Not specified • Prediction of a
drug response

• Hundreds of drugs from CCLE,
CTRP, gCSI and GDSC

Zhu et al. (2020)

• Artificial neural network using single-
cell metabolome data

• Leukemia • Intrinsic
resistance

• Prediction of a
drug response

• Cell adhesion as a indication of
drug resistance without addition
of a drug

Liu et al. (2019b)

• DNN using mRNA microarray and
RNA-seq data

• 1,001 Cell lines from
55 tissues (e.g.,
leukemia) in GDSC

• Not specified • Prediction of a
drug response

• Bortezomib, PARP inhibitor,
cisplatin, and paclitaxel

Sakellaropoulos et
al. (2019)

• Random forest using RNA-seq,
CNV, and methylome data

• Bladder cancer • Not specified • Identification of
biomarkers

• Cisplatin and gemcitabine (for
bladder cancer)

Xu et al. (2019)

• Prediction of a
drug response

• Glioma
• Temozolomide (for glioma)• Cox regression model • Pancreatic cancer
• Gemcitabine (for pancreatic

cancer)
• Gastric cancer

• 5-FU (for gastric cancer)

• Elastic net using proteome and
kinome data

• Colorectal cancer • Not specified • Identification of
biomarkers

• 577 Drugs (e.g., cetuximab and
afatinib)

Frejno et al. (2017)

• Cox regression model • Prediction of a
drug response
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CRISPR-Cas9-based genetic screens to examine cellular plasticity,
which was suggested as a therapeutic target for drug-resistant
cancer cells (Bell et al., 2019; Torre et al., 2021). Cellular
plasticity describes non-genetic transformation of a cellular state
into a drug-resistant state by reprogramming gene expression
profiles. In a study by Torre et al., CRISPR-Cas9 genetic screens
were implemented for melanoma cells to identify genes that affect
cell fate decisions by altering cellular plasticity (Torre et al., 2021).
In particular, modulating the cellular plasticity was demonstrated
for vemurafenib inhibiting B-Raf, encoded by a proto-oncogene, in
melanoma. Interestingly, inhibiting DOT1L, associated with the
onset of melanoma, before the B-Raf inhibition showed more
drug resistance than simultaneous inhibition of DOT1 and B-Raf
using pinometostat and vemurafenib, respectively. Subsequent
transcriptome analysis of knockout cell lines generated clues for
non-genetic mechanisms of drug resistance. Another study by Bell
et al. focused on acute myeloid leukemia patients that showed non-
genetic drug resistance (Bell et al., 2019). Single-cell RNA-seq,
followed by CRISPR-Cas9 screening, led to the identification of
genes responsible for transcriptional plasticity that triggered
epigenetic resistance. Among the genes identified was Lsd1, the
inhibition of which was shown to overcome non-genetic drug
resistance. As demonstrated by these two recent studies,
implementation of genome engineering in addition to omics
analyses provides compelling evidence for targets that can help
overcome drug resistance.

COMPUTATIONAL MODELING
APPROACHES
While various bioinformatic analyses are available for analyzing
omics data, such as enrichment analyses, gene co-expression
networks (GCNs) (Cui et al., 2020; Qi and Zhang, 2020) and
their variants (e.g., a network of long non-coding RNAs and
mRNAs) (Huang et al., 2018; Liu H. et al., 2019) as well as
dimensionality reduction (e.g., t-SNE and UMAP), omics data
have also been subjected to computational modeling to make
predictions for discovering novel mechanisms and devising
treatment strategies for drug-resistant cancers (Figure 1). Use
of survival analysis in combination with GCNs, and development
of a gene regulatory network (GRN) model using a set of ordinary
differential equations (ODEs), machine learning models, and
genome-scale metabolic models (GEMs) are representative
computational modeling approaches that have recently been
considered for studying drug-resistant cancer cells (Table 1).

Network-Based Modeling
GCN has been a popular analysis for understanding gene
expression patterns from transcriptome data. GCN is an
undirected graph that can be constructed from transcriptome
data (e.g., RNA-seq), and connects pairs of genes (nodes in a
GCN) with an edge if each pair of genes shows significant co-
expression patterns across the transcriptome data. GCN analysis,
such as identifying hub genes and/or modules, allows prioritizing
candidate genes that may be highly associated with drug resistance
of cancer cells. Weighted GCN additionally considers the level of
significance in the co-expression relationship between genes in a

pair. Often, outcomes from (weighted) GCN analysis are further
subjected to other computational analyses, for example survival
analysis, to validate the biological and/or clinical significance of the
candidate genes. As a recent example, Li et al. focused on PPP2R2B,
encoding serine/threonine-protein phosphatase 2A 55 kDa
regulatory subunit B beta isoform, as a potential prognostic
biomarker for TNBC on the basis of a series of bioinformatic
analyses involving a GCN (Li Z. et al., 2021). Kaplan-Meier survival
analysis for this gene revealed that patients with a low expression
level of PPP2R2B showed shorter survival time than those with a
high expression level of PPP2R2B. Interestingly, PPP2R2B
upregulation could attenuate the resistance of TNBC cells to
doxorubicin. Likewise, Cox proportional hazards regression
model (Cox regression model) was used for genes selected from
GCNs to predict prognostic biomarkers for breast cancer, and to
suggest genes (e.g., CCNE2 and KIF14) that may help overcome
drug resistance (Li Y.-K. et al., 2021).

While GCNs can provide clinically important information
when combined with additional predictive models, such as
survival analysis above, they have limitations in generating
clues on a molecular mechanism associated with development
of drug resistance, in particular dynamic interactions between
genes. To address this problem, Zhang et al. developed a time-
course RNA-seq data-driven computational framework
(DryNetMC) to construct GRNs that help elucidate
dynamic interactions between genes, and identify key genes
associated with mechanisms of drug resistance (Zhang et al.,
2019). DryNetMC involves a set of ODEs, a regularized
regression method as well as a series of network analyses.
Using DryNetMC, GRNs were constructed for dbcAMP-
sensitive and dbcAMP-resistant glioma cells based on their
time-course RNA-seq data. These differential GRNs were
subsequently subjected to a systematic characterization to
identify their unique network properties (e.g., node
importance) that helped identify key genes (e.g., KIF2C,
CCNA2, NDC80, KIF11, and KIF23) that are predictive of a
cancer cell’s drug response. Because network-based models,
either by using a GCN or other methods (e.g., ODEs), can
visualize a biological context (e.g., association between genes),
they will continue to be actively used in the analysis of omics
data, and likely along with additional predictive models.

Machine Learning
Increasing availability of omics data for drug-resistant cancer cells
has also provided unprecedented opportunities for building
machine learning models. In general, machine learning models
perform classification or regression, depending on a given problem.
Recently, prediction of anticancer drug response was attempted by
using various types of machine learning methods, such as logistic
regression (Frejno et al., 2017; Yu et al., 2021), random forest (Xu
et al., 2019) and deep neural network (DNN; e.g., multilayer
perceptron) (Malik et al., 2021) on the basis of a range of omics
and drug response data (Table 1).When developing thesemachine
learning models, transcriptome (RNA-seq or mRNA microarray)
was themost frequently adopted dataset, but other types of datasets
were also considered, including genome (e.g., gene mutations) (Yu
et al., 2021), proteome (Frejno et al., 2020), epigenome (Xu et al.,
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2019), mass spectrometry data (Liu R. et al., 2019) and molecular
features of a target drug (Zhu et al., 2020).

In a recent study by Kong et al., a machine learning model was
developed that can predict a patient’s drug response on the basis of
the analysis of protein-protein interaction (PPI) network and
pharmacogenomic data from 3D organoid culture models (Kong
et al., 2020). Specifically, potential biomarkers were first inferred
from the PPI network analysis, and their corresponding expression
profiles along with drug response data (IC50) were used to train a
machine learning model (e.g., ridge regression). The resulting drug
responses were validated using survival analysis by focusing on
colorectal and bladder cancer patients treated with 5-fluorouracil
and cisplatin, respectively. The predicted drug responses also
appeared to be consistent with transcriptome profiles from
drug-sensitive and drug-resistant isogenic cancer cell lines as
well as data on somatic mutations associated with already
known biomarkers. In this study, consideration of the network
analysis not only helped improve the performance of the developed
machine learning model, but also facilitated the interpretation of
model prediction outcomes. Likewise, in another study, elastic net
and random forest regression were used to predict drug responses
from abundance data of proteins and their phosphorylation sites in
cancer cell lines (Frejno et al., 2020).

Among machine learning methods, DNNs are increasingly
used for various predictions, and they have also been used to
predict drug responses. Sakellaropoulos et al. developed a DNN
model by using GDSC datasets (i.e., transcriptomic data for 1,001
cancer cell lines and IC50 values of 251 drugs) to predict drug
responses (Sakellaropoulos et al., 2019). Across several datasets
tested, the DNN model showed consistently better performance
than elastic net and random forest models. The DNN model was
validated by conducting survival analyses for the model-predicted
IC50 values, which split patients based on their drug responsiveness.
Importantly, pathway enrichment analysis using information from
the DNN model (i.e., weights that connect the input layer and the
first hidden layer) appeared to associate specific biological pathways
with mechanisms of action for drugs. In a more recent study,
predicting drug response was also attempted by using a DNN
model combined with multiple elastic nets (Choi et al., 2020),
referred to as Reference Drug-based Neural Network (RefDNN).
RefDNN was developed more in the context of drug resistance,
which predicts whether a given cell line is resistant to a target drug by
processing gene expression profiles and molecular structure of a
drug. RefDNN was also shown to help identify biomarker genes
associated with drug resistance, and explore a novel anticancer drug
via drug repositioning.

Despite its demonstrated performance,machine learning is often
challenged with the limited availability of training datasets for many
technical fields. This challenge can be addressed to a certain extent
by employing transfer learning as recently demonstrated (Zhu et al.,
2020). Zhu et al. demonstrated that ensemble transfer learning can
improve the prediction of drug responses in the context of drug
repositioning (i.e., use of a drug for another cancer that is already
known), precision oncology (i.e., use of a drug for a new cancer that
has never been treated before) and new drug development (i.e., use
of a new drug for already known cancer). In this particular study,
LightGBM (Light Gradient Boosting Machine) and two different

DNNmodels were considered for ensemble transfer learning; larger
datasets from the CTRP and GDSC were used as source data for
initial training of models, and smaller datasets from CCLE and the
Genentech Cell Line Screening Initiative (gCSI) served as target data
for further refinement and testing of the models. It was shown that
ensemble transfer learning-based models almost always
outperformed models that were not developed using transfer
learning. This study suggests the use of transfer learning for
other drug-resistant cancer cells where a training dataset is
sufficiently not available.

Genome-Scale Metabolic Modeling
GEM is a computational model that describes gene-protein-
reaction (GPR) associations, and can be simulated to predict
genome-scale metabolic flux distributions (Gu et al., 2019). GEMs
are now available for an increasing number of organisms that are
important in biotechnology and biomedicine. Several versions of
human GEMs (Ryu et al., 2017; Brunk et al., 2018; Robinson et al.,
2020) are currently available, which have been used to examine a
target cell’s metabolism, and to predict biomarkers and drug
targets for various diseases (Cook and Nielsen, 2017; Gu et al.,
2019). For a medical application, a generic human GEM, covering
all the known GPR associations in human metabolism, is initially
integrated with omics data, often transcriptome (e.g., RNA-seq),
to build a context-specific GEM, a GEM that is specific to a target
cell or tissue (Ryu et al., 2015; Opdam et al., 2017). The resulting
context-specific GEM is then simulated for various metabolic
studies.

Human GEMs have recently been used to study radiation-
resistant tumors (Lewis et al., 2021; Lewis and Kemp, 2021), but
not drug-resistant cancer cells, to the best of our knowledge. Lewis
et al. newly constructed GEMs for radiation-sensitive and radiation-
resistant tumors throughmulti-omics integration (i.e., transcriptome
data, mutational data, kinetic data and thermodynamic data) (Lewis
et al., 2021). These context-specific GEMs were used to identify
changes in redox cofactor production that give resistance to radiation
therapy. In the other study, ensemble machine learning classifiers
were developed to predict whether an individual is responsive or
resistant to a radiation therapy by considering data of metabolite
production rates predicted from context-specific GEMs as well as
mutation data, transcriptome data and clinical data from TCGA
(Lewis and Kemp, 2021). These two studies obviously suggest that
GEM-based approaches can also be considered to identify metabolic
signatures of drug-resistant cancer cells, and to predict effective drug
targets for these cancer cells.

OUTLOOK

Understanding genotype-phenotype associations in drug-resistant
cancer cells is a highly complex problem, and therefore use of
multi-omics data has been considered to capture various aspects of
these troubling cancer cells. In particular, multi-omics analyses along
with additional tools, such as genome engineering (e.g., CRISPR-
Cas9), will continue to play an important role in thorough
characterization of drug-resistant cancer cells. Also, an increasing
volume of omics data will facilitate development of various types of
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computational models. As a consequence, prediction outcomes from
computational models will allow more systematically designing
experiments for drug-resistant cancer cells.

Despite the promises of omics data and computational models,
technical challenges exist. First, current coverage of multi-omics
data is not sufficient for thoroughly studying a range of drug-
resistant cancer cells. In particular, generation of a consistent set of
multi-omics data from each single cell is necessary for in-depth
study of a target cancer cell and comparison of different types of
cancer cells. Also, it will be interesting to examine the effects of
using datasets obtained from patients having a specific disease
instead of publicly available datasets (e.g., GDSC and CTRP).
While currently available machine learning models have been
rigorously validated by using public datasets, they might reveal
previously unnoticed limitations in a clinical setting because the
public datasets are often generated in a highly controlled condition.
In particular, additional consideration of non-genetic factors (e.g.,
age, gender, and lifestyle) may help reveal new insights on drug-
resistant cancer cells. Use of patient-specific datasets will allow
more widespread use of the state-of-the-art computational models
in a clinical setting.

For network-based modeling, including both GCN and GRN, a
breakthrough is needed that allows efficiently developing a cell-
specific large-scale GRN that can be simulated under various
conditions (e.g., gene perturbation). For machine learning,
despite its high predictive performance, there is always a
challenge of avoiding overfitting and achieving explainability.
Explainability in terms of biological processes is particularly
important in the field of biomedicine in order to explain
prediction outcomes and make medical decisions. In case of
human GEMs, because patient-specific omics data (e.g., RNA-
seq) are available to a certain extent, human GEMs should be more

actively considered to systematically examine metabolism of drug-
resistant cancer cells. Availability of multi-omics data will be
particularly useful for interpreting human GEMs and their
prediction outcomes; because human GEMs only cover a
metabolic network, use of multi-omics data can help explain a
complex interplay between metabolic and regulatory networks.
Prediction outcomes from the simulation of human GEMs will in
turn help explain the insights reaped from omics analyses.

Taken together, advances in omics technologies and
computational modeling will bring about positive impacts
in understanding and treating drug-resistant cancer cells.
Feedback from clinicians and biomedical researchers will
be additionally useful for the successful development and
clinical application of computational models.
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Parenclitic networks provide a powerful and relatively new way to coerce multidimensional
data into a graph form, enabling the application of graph theory to evaluate features.
Different algorithms have been published for constructing parenclitic networks, leading to
the question—which algorithm should be chosen? Initially, it was suggested to calculate
the weight of an edge between two nodes of the network as a deviation from a linear
regression, calculated for a dependence of one of these features on the other. This method
works well, but not when features do not have a linear relationship. To overcome this, it was
suggested to calculate edgeweights as the distance from the area of most probable values
by using a kernel density estimation. In these two approaches only one class (typically
controls or healthy population) is used to construct a model. To take account of a second
class, we have introduced synolytic networks, using a boundary between two classes on
the feature-feature plane to estimate the weight of the edge between these features.
Common to all these approaches is that topological indices can be used to evaluate the
structure represented by the graphs. To compare these network approaches alongside
more traditional machine-learning algorithms, we performed a substantial analysis using
both synthetic data with a priori known structure and publicly available datasets used for
the benchmarking of ML-algorithms. Such a comparison has shown that the main
advantage of parenclitic and synolytic networks is their resistance to over-fitting
(occurring when the number of features is greater than the number of subjects)
compared to other ML approaches. Secondly, the capability to visualise data in a
structured form, even when this structure is not a priori available allows for visual
inspection and the application of well-established graph theory to their interpretation/
application, eliminating the “black-box” nature of other ML approaches.
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1 INTRODUCTION

In the era of increasing large and complex (multi-modal) datasets
(biological, climatic, medical, etc.), network approaches are
becoming very popular. Indeed, representation of complex
data in the form of a network, i.e. a graph with nodes and
edges, is a powerful tool to visualise data structure, clusters
and communities, and all other interdependencies. Graph
theory, well established by mathematicians, provides many
topological indices to describe possible features of a network.
This is especially valuable for complex biological systems, when
often some non-specific change can be compensated by changes
in other regions of a connected network. By evaluating
topological features, the transition between two states such as
health or disease be detected. A clear difficulty in this analysis is
how to represent the data in the form of a network if links
between nodes-features are unknown? Several approaches have
been recently suggested and applied to different cases of data
analysis.

One approach is correlation graphs, where edge weights are
proportional either to the correlation coefficient between the
corresponding vectors of features [for a discussion, see Gorban
et al. (2021)] or to the correlation between nodes, if each node has
some internal structure, e.g. in the case of intra-gene methylation
profiles (e.g., see Bartlett and Zaikin, 2016; Bartlett et al., 2014).
Recently, a new network approach has gained popularity, first
described by Zanin and Boccaletti (2011) and called a parenclitic
network representation, from the Greek term for “deviation”. The
main idea of this approach is to establish links between
parameters (nodes) without any a-priori knowledge of their
interactions (Zanin and Boccaletti, 2011) by using residual
distances from linear regression models constructed between
every pair of parameters as edge-weights. Networks
constructed from this linear regression parenclitic approach
(LRPA) have been successfully applied to different biological
problems. For example, the detection of disease-related genes and
metabolites (Zanin and Boccaletti (2011); Zanin et al., 2012;
Zanin et al., 2013a; Zanin et al., 2013b; Zanin et al., 2016),
brain research (Papo et al., 2014), and to identify signatures of
cancer development from human DNA methylation data
(Karsakov et al., 2017).

However, for many biological data structures, there is no linear
dependence between features, and thus defining a graph in such
as way makes interpretation impossible. To overcome this,
alternative approaches have been developed. First, it was
suggested to use 2-dimensional kernel density estimation
(2DKDE) to model the control distribution (KDE Parenclitic
approach, KDEPA). This methodology was successfully applied
to the problem of diagnosing patients with Ovarian Cancer.
(Whitwell et al. 2018).

The advantage of KDEPA over LRPA is that pairs of features
do not necessarily have to be correlated, or even grouped into a
single cloud. At the same time, KDEPA also has some drawbacks:
it is difficult to correctly extend the density distribution beyond
what is defined by the underlying data (unlike linear regression
which can be extrapolated simply) and, similarly to LRPA, the
selection of a threshold (common for all edges) or thresholds

(different for each edge) when converting to a binary network for
class separation.

As a further development, in Krivonosov et al. (2020) we have
introduced a variation of parenclitic networks, that can be called
synolytic from the Greek word for “ensemble”. In some sense,
synolytic networks is a graph representation of the simultaneous
action of multiple classifier ensembles. We demonstrated
previously that any machine learning methods [e.g. support
vector machine (SVM)] can be used as the core of the
parenclitic approach (a function that describes the separation
of controls and cases groups in the plane of two features). We
proposed a software implementation with a choice of any kernel
and demonstrated its ability to detect the DNA methylation
signature of Down Syndrome disease. Moreover, we showed
that the characteristics of the constructed networks help to
interpret the obtained signatures in relation to aging in
individuals from non-Downs Syndrome and Down Syndrome
populations. A further development came from not binary
networks, but weighted networks, and this method was
successfully applied to prediction of survival for severely ill
Covid-19 patients (Demichev et al., 2021), and for prediction
of prostate cancer progression in patients on active surveillance
(Sushentsev et al., 2021). We used SVM as the core, and the
probability of belonging to a group of cases as the weights of
the edges.

The weighted synolytic network approach (wSA)
automatically solves the inherent drawback of KDEPA by
normalizing the distance measure in terms of probabilities.
Herein, we show that the synolytic approach is comparable,
and sometimes better than other machine learning (ML)
models. One advantage is in the visualization of results, which
allows one to visually identify key features (see examples on
Figure 2A, producing greater transparency to “black-box” ML
algorithms. They offer the opportunity for applying more
sophisticated network analysis concepts to study the resulting
networks and allow the analysis of networks over time, leading to
future ideas of parenclitic-longitudinal data analysis.

In this paper, we compare weighted (w) parenclitic (wLRPA,
wKDEPA) and synolytic (wSA) parenclitic models with each
other and with other MLmethods for solving binary classification
problems.

To compare the approaches, we used

1.1 Synthetic Data
Models of N-dimensional spheres of radius 1, where points of the
inner sphere of radius 0.5 are denoted by Controls (that is, with
class 0), and points with a radius from 0.5 to 1 are denoted by
Cases (that is, with 1 class). This model structure was chosen to
generate synthetic data to fairly compare different machine
learning algorithms within a defined and understandable
dataset. To this end, the data is easily visualized in dimensions
2 (a regular circle on a plane) and 3 (a sphere in three-
dimensional space), and further they can be easily expanded
to any data dimensions in accordance with an understandable
principle. In such a model, the radius is a characteristic, implicitly
sewn into the full vector of each sample, and which is a measure of
the distance of a point from the centre of the sphere, and it is a
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priori known how far each point is from the spatial
multidimensional boundary of the class division.

In addition to “ideal spheres”, we also consider “noisy
spheres”—spheres with the addition of 50 random variables and
“broken spheres”—N-dimensional spheres from which N/2
parameters were replaced with random variables (to study how
the models work on data that do not contain the full set of
parameters responsible for the difference between the two classes).
For each approach separately, we discuss how to choose the best
characteristics (providing better quality separation of classes) and
then check how these conclusions are reproduced on real data sets.

Studying the characteristics of networks on these data, we
initially evaluate how the characteristics of these networks
correlate with their radii (that is, how well the network
approach reads this implicit characteristic). The higher the
correlation, the greater the class separation will be.
Confirmation that the characteristics of networks are
correlated with radii is an important validation of the
correctness of the transformation of raw data to the networks.

We compare parenclitic approaches with other ML models by
comparing the results of applying ML models to matrices of raw
(initial) data and matrices of strengths (degrees) of vertices
derived from the graph-structured determined by the
parenclitic model. This showed that models using parenclitic
vertex strengths are superior to models on raw data in situations
where the sample size is significantly lower than the dimension of
the data.

1.2 Real Data
Realizing that the model of synthetic data we have chosen has a
very simple structure and the results on it may not be reproduced
on real data, we collected a collection of 16 datasets of different
dimensions of features (which were randomly selected from the
repository of existing datasets), in which the size of the minimum
class was >40 samples. We found that wLRPA and wKDEPA
approaches did not perform as well in real datasets with a large
dimension (in comparison to sample size), whereas the wSA
synolytic approach did.

The results obtained in this work create a reliable basis for the
application of synolytic approaches to real data. We especially
emphasize here the use of such approaches to clinical omics data,
where, as a rule, the sample size is typically small in relation to the
number of features, which nevertheless can contain a rich source
of diagnostic information. We show the advantage of using
synolytic approaches to solve classification problems, but we
note that the advantage also lies in the fact that this approach
allows the visualisation of each patient in the form of a network
and opens up additional possibilities for the study of such states
using graph theory and network analysis.

2 MATERIALS AND METHODS

2.1 Generation of Different Types of
Synthetic Data
Synethetic data was generated using a sphere-model, For all
modelling, we considered all possible combinations of Sphere

Dimensions: (2, 3, 10, 30, 60, 90, 120, 150); number of Case
TRAIN samples: (15, 65, 115, 165, 215, 265) and number of
Controls TRAIN samples: (15, 65, 115, 165, 215, 265). Numbers of
Case TEST samples and Controls TEST samples were calculated as
25% of corresponding TRAIN numbers.

2.1.1 Ideal Spheres Model
Commonmodel: area bounded by a N-dimension sphere of radius 1
(i.e. each i sample is represented by vector X1

i , X
2
i , . . . , X

N
i , where

R �
�������������������
X1

i
2 +X2

i
2 +/ +XN

i
2

√
≤ 1). We define Controls as points

with radius 0.01≤ R≤ 0.5 andCases as points with radius 0.5≤ R≤ 1.

2.1.2 Noisy Spheres Model
Each N-dimension “Ideal Sphere” was expanded to 50 ”noise”
variables (i.e. each sample is represented by vector
X1

i , X
2
i , . . . , X

N
i , V

1
i , V

2
i , . . . , V

50
i , where Vj - vector of random

values from uniform distribution in (−1, 1))

2.1.3 Broken Spheres Model
Each N-dimension “Ideal Sphere”was “broken”: we only kept half
of the variables from there and the other half was changed to
random values (i.e. each sample is represented by vector

X1
i , X

2
i , . . . , X

N
2
i , V

1
i , V

2
i , . . . , V

N
2
i , where Vj—vector of random

values from uniform distribution in (−1, 1))
All generated data are publicly available and described in the

Supplementary Materials.

2.2 Real Data List
Real datasets were obtained from https://archive.ics.uci.edu and
are presented in Table1.

The same pre-processing was performed for all datasets:

• All missing values were replaced with the mean of the
feature column;

• The features, with standard deviation equal to 0 have been
removed;

• If the data was a non-binary classification problem, then the
response vector was transformed into a binary one (by
highlighting one of the classes): Cortex: “Ts65Dnc”—cases,
other controls; Ionosphere: “g”—controls, other cases; QSAR:
“RB”—cases, other controls; SONAR: ‘R’ - cases, other
controls; URBAN: “building”—cases, other controls; Vertebral-
2c: “AB”—cases, other controls);

• If the data contained a preliminary division into TRAIN and
TEST subsets (SPECT, SPECTF and URBAN), then they
were collected into a single dataset and TRAIN/TEST labels
were disregarded

• For each dataset, we repeatedly (20 times) produced random
subsets of 80 samples with equal numbers of Cases and
Controls, and then Test and Train labels were assigned
equally in each class (that is, each subset consisted of 20
TRAIN Case samples, 20 TRAIN Controls samples, 20
TEST Case samples and 20 TEST Controls samples).
Thus, a total of 320 (16 original datasets * 20 subsets)
datasets of different feature dimensions, but the same
sample size, were obtained.
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All collection of real data and selected subsets of them are
publicly available and described in the SupplementaryMaterials.

2.3 Parenclitic Approaches
In this analysis we have used three different Parenclitic networks
architecture:

2.3.1 wLRPA
This is a network where only the control group was considered as
the basis for determining the normal state on the plane of two
features: based on the control group, linear regression were built
for every pair of features. The deviation of the control points from
it was calculated and the distribution of such deviations was
constructed (Figure 1B). In previous studies, for each new
sample, the edge weight was first determined as the absolute
value of z-score, and then binarized (if |Z−score| < 3, then the
edge is present in the sample network, otherwise there is no edge).
In this work, we will consider weighted networks (that is, the
specified binarization will not be carried out, an edge for any
sample will always exist and the edge weight will always be equal
to |Z−score|).

2.3.2 wKDEPA
This is a network in which again only the control group was
considered as the basis for determining the normal state on the
plane of two features. For the control group, the 2-dimension
kernel density estimation was built for each pair of features
(Figure 1C), then a function was calculated that converts the
density values into an analogue distance, so that the points
located in the area of the highest density have the minimum
weight. The distance outside the grid was continued (for more
details, see Whitwell et al., 2018). For non-weighted networks,
for each new sample, the edge weight was first determined as
the normalised volume of the density distribution above the
point, and then converted to binary form (if the volume is
greater than a threshold (which was iteratively selected, so that
the characteristics of the resulting networks optimally separate
the Case and Control groups), then the edge is present in the
sample network, otherwise there is no edge). In this work, we
will consider weighted networks (that is, the specified
binarization will not be carried out, an edge for any sample
will always exist and the edge weight will always be equal to a
function of density).

TABLE 1 | Real datasets description.

N Dataset Number of Area

Features Samples Cases Controls

1 Banknote Authentication (2013) 4 1,372 610 762 Computer
2 Blood Transfusion Service Center (2008) 4 748 178 570 Business
3 Vertebral Column (2011) 6 310 210 100 Medicine
4 Breast Cancer Wisconsin (Diagnostic) (1995) 10 699 241 458 Medicine
5 Indian Liver Patient Dataset (ILPD) (2012) 10 583 167 416 Medicine
6 Planning Relax (2012) 12 182 52 130 Computer
7 Climate Model Simulation Crashes (2013) 18 540 494 46 Physical
8 Diabetic Retinopathy Debrecen (2014) 19 1,151 611 540 Medicine
9 SPECTF Heart (2001) 22 267 212 55 Medicine
10 Ionosphere (1989) 33 351 126 225 Physical
11 QSAR Biodegradation (2013) 41 1,055 356 699 Chemical
12 SPECTF Heart (2001) 44 267 212 55 Medicine
13 Connectionist Bench (Sonar, Mines vs. Rocks) (1988) 60 208 97 111 Physical
14 Mice Protein Expression (2015) 77 1,080 510 570 Medicine
15 Urban Land Cover (2014) 147 675 122 553 Physical
16 Arrhythmia Data Set (1998) 260 452 245 207 Medicine

FIGURE 1 | Illustration of the construction of parenclitic models on a pair of features (X1, X2) from the Ideal ball modelwith 165/265 Case/Control TRAIN points and
50/80 Case/Control TEST points. Case/controls are red/green points respectively.
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2.3.3 wSA
This is a network in which both groups participate in definition of
normal and abnormal states. On the plane of any two features, a
radial SVM is used to define the best boundary separating the
classes (Figure 1D). Automatically, each point in such a model
gets a value for the probability of belonging to each class. For each
new sample, the edge weight is determined as the probability of
belonging to a group of cases.

2.3.4 Networks Characteristics
All characteristics were calculated with using igraph package (R).

The values for some characteristics were equal to NA, + Inf, −
Inf, in these instances, the values were replaced by 0. Such
substitutions could theoretically lead to the loss of differences
between classes for some characteristics, although they did not
affect the analysis associated with the Strengths of the vertices
(these values are always are finite, since the Strength of the
vertex is equal to the sum of the weights of the edges included
in it).

For each dataset (model spheres and sets of real data), we built
model-networks (i.e. built LM, KDE or SVMmodels in a plane of
every pair of features) on the TRAIN folds. Networks were then
constructed for each individual (TRAIN and TEST) sample in the
dataset and for each of them we calculated:

• Descriptive statistics (zeros, min, max, mean, standard
deviation (sd), coefficient of variation (coefvar) � sd/
mean) of the main network characteristics closeness,
betweenness, edge betweenness, page rank, eigen
centrality, authority score, strength, edge weights;

• The full vector of strengths (degrees) of the vertices.

We use descriptive statistics of the main network
characteristics to demonstrate their correlation with radii on
synthetic data (and, as a consequence, the quality of class
division into them). We use matrices of full vectors of
strengths of vertices for samples in each dataset to compare
the results of ML models on them and on the initial raw data.

2.4 ML Models for Comparison with
Parenclitic Models
Parenclitic approaches were compared with 3 ML models
(xgbTree, nnet, glmnet) from the Caret package in R). We
chose these since the principles of their training are based on
different static principles and they all produce a selection of
features. We trained models using the train function within the
Caret package, using scaling and centering for data pre-
processing, with the selection of hyperparameters set at default
and using 5-fold cross-validation.

All networks and their characacteristics from real data and
selected subsets of them are publicly available and described in
the Supplementary Materials.

2.5 Performance Estimation
The performance ofMLmodels was assessed using area under the
receiver operator characteristic curve (AUC).

For each dataset (synthetic or real, matrices of raw data or
matrices of vertex degrees), we built 3 ML models on TRAIN
folds and applied these models to TEST folds. For each result on
TEST folds we calculated AUC with “direction” (i.e. controls <
cases or controls > cases) received on AUC for TRAIN folds.
Taking into account the direction along the TRAIN folds results
in TEST-fold AUC values <0.5 in some instances.

To calculate the performance of class separation on each
characteristic on synthetic data (Figure 3A), we use a simple
glm model on each characteristic separately (obtaining AUC for
TEST as described above).

All results (on synthetic or real, on matrices of raw data or
matrices of vertex degrees, on separate characteristics) are
publicly available and described in the Supplementary Materials.

To highlight the significance of the difference in the results
obtained by ML models on raw data and on the degrees of
vertices, a two-sided paired Wilcoxon signed-rank test was
applyed to AUC values to calculate a p-value.

3 RESULTS

3.1 Comparison of Approaches on Model
Datasets
3.1.1 Parenclitic
Since the data models were generated in such a way that the
characteristic that distinguishes the classes (the radius of the
spherical model) is always known, we first investigated how
topological characteristics of the networks correlate with these
values.

For each point in the sphere-models, the distance from the
point to the centre of the N-dimensional data (radius) is
calculated (“ideal sphere”) (see Section 2.1 for further details).
To mimic non-perfect data, “noisy spheres” are also generated, in
which 50 random features are added to each sample and “broken
spheres” in which N/2 parameters are replaced with random
variables. The radius for each point in “noisy spheres” and
“broken spheres” are not recalculated, and thus the radius
value (calculated for each point in the “ideal spheres” data)
becomes a less accurate representation of the points position
in the data structure.

Data sets were generated varying the number of dimensions,
cases and controls, such as for each sphere-model, 288 different
datasets are generated (see Section 2.1). In each dataset and for
each network-characteristic, we calculated the absolute value of
Pearson’s correlation coefficient between it and the radius of the
samples (Figure 3A). We specify here following conclusions:

• For wLRPA, the topological characteristic that has the
greatest degree of correlation is the maximum weights of
the edges. This is despite the fact that in each plane, the
control distribution is poorly described by linear regression
(Figure 1B). When considering the maximum all of edge
weights, there is typically always a pair of features for a
“case” that is a long way from the regression fit, whereas
“controls” are always close to the line. Therefore,
considering the most extreme point for every case/
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control, rather than an average is a good correlator in these
synthetic data sets.

• For wKDEPA, a fairly large number of characteristics show
a good correlation, in particular, the mean of the edge-
weights and the mean of the strengths of the vertices. An
interesting finding is that the correlation for the models of
“noisy spheres” is very inferior to the other two models
(comparing the highest correlation between each
topological feature), which most likely indicates
overfitting of the wKDEPA on noise variables.

• wSA networks demonstrate the best results out of all
three networks. Characteristics such as mean of edge
weights, mean of vertex strengths, and mean of
closeness show very high correlation across all datasets

and any model of Spheres (see examples of such networks
on Figure 2A) and their strengths distribution on Figures
2B,C). From our point of view, this indicates that
the construction of wSA is more advantageous and the
established rule for the weight of edges (through the
probability of belonging to a class of cases) is
reasonable as a measure of the distance from the center
of normality. It is interesting that for some topological
characteristics, such as PageRank, the correlation for the
ideal sphere is worse. The reason for this may be that the
high-quality prediction generated by the SVMs for each
feature minimise the variation in edge weights, and this
reduces the capacity of some topologies to change (such as
PageRank).

FIGURE 2 | Demonstration of the advantages of the wSA approach: visualization of parameters in the form of networks. Examples wSA networks for samples with
R � (0.01, 0.25, 0.75, 0.99) from a broken sphere modelwith 30-dimensions. There were 115/165 Case/Control TRAIN points and 34/50 Case/Control TEST points. (A)
Examples of networks for two Controls (samples with R � 0.01 and R � 0.25) and two Cases (samples with R � 0.75 and R � 0.99). The sizes of the vertices are equal to
their strengths; the colours of the vertices indicate the type of feature in the original data (white is the colour of the parameter of the original sphere, grey is the noise
variable); the thickness of the edges corresponds to the edge weights [that is, the probability of a sample belonging to a class of cases on the plane of two features
(vertices)]; the colours of the edges additionally emphasize their weightw (grey: if 0 <w ≤ 0.25, yellow: if 0.25 <w ≤ 0.5, orange: if 0.5 <w ≤ 0.75 and red: if 0.75 <w ≤ 1.
As can be seen from these examples, the networks of Controls and Cases visually represent different topological objects (the strength of the vertices of the Cases is
noticeably greater than the strength of the vertices of the Controls). Moreover, in such networks, the vertices “defining” the difference between the two classes are
immediately distinguished (that is, the vertices of the sphere parameters (labeled X) are predominantly larger than the vertices of noise variables (labeled N) for Cases and
less for Controls). (B) Distributions of nodes strengths of samples networks, demonstrating the similarity of distributions inside the Control group and inside the Case
group and the difference in distributions between groups. (C) Boxplots of the nodes strengths in the groups of sphere variables and noise variables, demonstrating that
the strengths of the most significant vertices differ significantly from the noise ones within the network of each sample (that is, the greater the weight of the vertex in the
Cases and the smaller it in the Controls, the greater the role of this parameter for the whole system). Panels (D) and (E) show the distribution of the features in the dataset.
As can be seen, the distributions of Cases and Controls on the original data do not show clear difference, and the boxplots demonstrate that the noise and sphere
variables, on average, do not differ for each sample. Thus, we demonstrate that the transition from original data to networks simultaneously solves two problems: it
defines the space in which the Cases and Controls are topologically distinguishable and highlights the group of parameters that are most important and significant for the
entire system.
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As expected, for those characteristics with a high correlation
with the radii, a high quality of class separation was obtained. For
each dataset, for each topological characteristic, we trained a glm
model on the TRAIN folds and applied it to the TEST folds. With
the obtained probability, we calculated the AUCs (area under the
receiver operator characteristic curve) and combined them into
boxplots for each sphere model (Figure 3B). In addition, we
added the results of constructing ML models on the strengths of
vertices (since each sample within the network can be represented
not by the vector of original features, but by the vector of their
strengths in the networks (see examples of wSA networks in
Figure 2A and their strengths distribution in Figures 2B,C)
which demonstrate an advantage over the distributions of raw
features) and found that the results of xgbTree for wLRPA and
wSA networks are comparable, with the best results on individual
characteristics. For wKDEPA, they greatly exceed the results of
individual characteristics (and become comparable with the
results of wLRPA and wSA). Despite the fact that wKDEPA
and wLRPA approaches work a little worse than the wSA, the
transformation of the original features to the vertex strengths is

an equal substitution, regardless of the choice of the parenclitic
approach.

3.1.2 Comparison with Other ML Models on Synthetic
Data
We compared the quality of parenclitic approaches (for
simplicity, we compared only the results of xgbTree on the
vertex strengths, since, as can be see from Figure 3B, the nnet
and glmnet models worked worse) with 3 ML models on the
syntethic datasets (Figure 4). The ML model that produced the
most accurate classification of this data was xgbTree (Figure 4A).
The results of all the parenclitic approaches produced
exceptionally good classification, however, wKDEPA and wSA
had extremely positively skewed distributions, meaning that these
more frequently gave better classification than other approaches.
When considering the impact of sample size, it can be seen that
parenclitic models outperform glmnet, nnet and xgbTree when
the sample size is small relatively to the spheres dimension
(Figure 4B), which most likely indicates that parenclitic
approaches are less prone to overfitting. This property itself

FIGURE 3 |Correlation of network characteristics with sample radii and performance (AUC) of class separation for each network characteristic (A) Absolute values
of Pearson’s correlation coefficient of 48 descriptive statistics of network characteristics with synthetic-samples’ radii (only TEST subsets were considered). (B) AUCs
from glm models calculted from network characteristics for TEST folds, and on ML models using strength characteristics (to the right of the verticle line). Models were
calcualted for “ideal spheres” (red), “noisy spheres” (green) and “broken spheres” (blue).
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(apart from other advantages of parenclitic approaches) can be
valuable in biological and medical problems utilising omics data,
where there can be a huge number of features with comparatively
few patients. This is exemplified in Demichev et al. (2021), where
the use of wSA was more effective than other ML methods, most
likely because the sample size was small relative to the large
number of features. It was also seen that for wLRPA, the quality of
discrimination (compared to other ML techniques) decreased
once the number of samples highly exceeded the number of
features, whereas there was no such effect for wKDEPA and wSA.

3.2 Comparison of Approaches with Real
Data
3.2.1 Parenclitic
We generated models for 16 real data sets and calculated the
median AUCs for each of the networks characteristics
(Figure 5A). For real data, wSA networks performed much
better than wLRPA and wKDEPA. Moreover, it is interesting
that for wSA networks, the performance of each topological
characteristics’ AUC mirrored the AUCs from the synthetic
data with closeness mean, strengths mean and weights mean

performing strongly in all instances. This most likely indicates
that the characteristics of the wSA networks have some
conservatism (in terms of the quality of separation), regardless
of the data type. We would also like to note the repetition of the
effect found on the spheres models. For all three parenclitic
approaches, the models built with the vertex strengths give the
best performance. Most likely, the fact that the medians of AUC
for wKDEPA and wLRPA are low for real data, but the quality of
models based on the node strengths is high (although lower than
for wSA), indicating that, despite the described shortcomings,
such networks are correctly distinguishing classes, but the
effects on characteristics are not conservative (that is, the
quality of the separation for each characteristic depends on
the data type).

3.2.2 Comparison with Others ML Models
Comparison of ML models built on the strengths of vertices and
on raw data was carried out for each network approach
separately.

Inside each real dataset, for each of the 20 subsets we
calculated the quality of each model (AUC on TEST fold) on
the raw data and its quality on the vertex strengths. For each main

FIGURE 4 | Comparison of the results of parenclitic approaches (the xgbTree model trained on the strengths of vertices) with ML methods (glmnet, nnet, xgbTree)
on synthetic data (A) Parenclitic analysis demonstrated greater performance (for all three network approaches) than glmnet and nnet on the original data. wSA and
wKDEPA approaches demonstrate a slight improvement over xgbTree on the original data. (B) The difference of AUC-xgbTree-on-vertex-strengths and AUC-(xgbTree/
nnet/glmnet)-on-raw data versus [ln(TRAIN Sample Size

Dimension )], where [ ] denotes the standard rounding function. Parenclitic approaches on average demonstrate
superiority to other ML methods in situations where sample size is small raltive to the number of features.
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dataset, we get two vectors of length 20 with AUC on TEST for
vertices and AUC on TEST for raw data.

First, we calculated the difference between these two vectors
for each main dataset and presented them as boxplots in
Figure 5B. We also computed a two-sided paired Wilcoxon
signed-rank test for each pair of such vectors. If p-value ≥
0.05 (i.e. insignificant), we use gray color for the
corresponding box; if p-value < 0.05 (i.e. significant), we
additionally check which median results (on raw or on
strengths data) more, and use red color if more is raw results,
and use green color if more is strengths results.

Datasets are sorted in descending order of number its of features.
As it was established on synthetic data (Figure 4B) that parenclitic
approaches have the greatest advantage on data where the logarithm
of the ratio of the sample size in the TRAIN fold to the feature
size is no more than 0 (rounded to the nearest real number).
Considering that all subsets have sample size of TRAIN folds is 40
samples, among them, datasets with a dimension greater than 33
have this property (indicated by vertical line in Figure 5B).

As shown in Figure 5B, the wLRPA gave only one
advantageous result (green box) for the glmnet and nnet
models on datasets with a ≥33 dimensions; moreover, in 4 out

FIGURE 5 | Applying parenclitic approaches to real data (A)Medians of AUCs obtained by parenclitic approaches on synthetic data and on real data. On (B) and
(C) we order the datasets by the feature dimension (we display the dimensions on the x-axis along with the names of the datasets), we draw a dashed line detaching the
datasets to the left that satisfy our expectations to get an advantage of parenclic approaches to them (that is, for which the [ln( 40

Dimension)]≤0, is correct, as 40 is the TRAIN
fold size for all subsets). (B) The difference between the performances of MLmodels built on vertex strengths and MLmodels built on raw data. The effect found on
the synthetic data was not confirmed for the wLRPA and wKDEPA approaches, but it was mainly obtained for the wSA: for 6/7 datasets the performances are either
comparable or give a gain in the wSA. (C) The difference between MAX AUC among 3 models on raw data and among 3 models on strengths data. For wSA approach,
on 5/7 datasets to the left of the dotted line, the best ML model on vertex strengths shows a significant advantage than the best ML model on raw data; on 1/7 datasets
the results were comparable, and on 1/7 datasets the result was worse.
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of 7 of these cases this approach turned out to be worse than the
model based on non-parenclitic data. A similar situation was seen
for the wKDEPA approach (where not a single winning situation
was found on any dataset). On the other hand, for the wSA
approach, the advantage of using the wSA approach is clearly seen
in sample sets with a large proportion of dimensions compared
with other observations (the only exception is the Cortex dataset,
in all other cases the wSA works better or comparable than the
models on non-parenclitic data).

Additionally, for each individual subset, we calculated the best
result (maximumAUC) for 3 models on non-parenclitic data and
for 3 models on strengths data and examined the difference in
such values (Figure 5C). For the wSA approach, on 5 out of 7
datasets with dimensions ≥33, the best ML model on vertex
strengths (that is, using the parenclitic approach) shows a
significant advantage than the best ML model on the raw data;
on 1 out of 7 datasets (QSAR) the results were comparable, and
on 1 out of 7 datasets (Cortex) the result was worse.

4 DISCUSSION

The results presented in this work show that the quality of the
wSA is comparable to or better than other ML models, if we
consider them as classifiers, and better than other parenclitic
approaches. At the same time, this approach has several
advantages. The transformation of the initial data features into
individual networks for each sample facilitates the visualization of
the relationship between features, identifying the most significant
relationships and the most significant features (e.g. Figure 2A).
This approach allows one to build generalizing networks and get
an idea of the whole system of interdependencies between
features. New rules can be developed to simplify networks (for
example, by removing all edges that are not informative in terms
of class separation), or highlight hubs, triangles, and use other
advanced network analysis procedures. Moreover, as we were able
to show with synthetic data and then confirm on real data, the
quality of the wSA as a classifier is higher for those datasets where
the sample size is small in comparison with the features size.
Using this advantage we have recently applied this approach to
the analysis of proteomics data from a large cohort of CoVID-19
patients, in which this is the case (Demichev et al., 2021)
(manuscript submitted). In this analysis, we showed that wSA
was able to produce accurate classifications, where other ML
algorithms were not on the same data.

The disadvantages of parenclitic approaches include high
computation times (since the construction of models occurs at
each pair of features), and certain data structures for which this
method will not work. For example, a simple “chess” three-
dimensional cube (please rotate the example here)—where the
points of cases and controls are grouped similarly to black and
white squares on a chessboard. At the same time, despite the fact that
the spatial separation of classes obviously exists, in all of the three
projections (any two of the three parameters), parenclitic approaches
will be not able to detect a qualitative separation (since the points of
cases and controls will be mixed on the two-dimensional plane).
Despite the fact that wLMPA and wKDEPA approaches did not

work much better for classification problems, they are particularly
useful in situations where the case group is not known, as they only
use the control group for building models, and therefore highlight
groups that deviate greatly from controls. This in contrast to wSA
models which require pre-defined case/control groups to construct
parenclitic networks.

The development of such approaches for application on
longitudinal data is of particular interest. As we have demonstrated
with the spheremodels, some of the characteristics of the parenclitic
networks are highly correlated with radii (which in thesemodels is a
measure of the deviation from normality). This may mean that the
characteristics of parenclitic networks can themselves be the
indicators of the development of the disease and can be traced
over time to diagnose the onset of the disease. It has been established
that the use of longitudinal models (i.e. models that use all historical
data for a subject to predict a future or current state) reduces the
time to diagnosis for ovarian cancer (Blyuss et al., 2018; Whitwell
et al., 2020). Topologies of parenclitic networks (and combinations
of topologies) can naturally be incorporated into longitudinal
algorithms. Given the power of these approaches individually,
the development of their combined use is now a research priority.

To summarise our approach as an instruction for multi-
disciplinary researchers:

• For specialists in the field of medicine and biology, using the
wSA approach
p As a classifier, in situations where the number of samples is
small in comparison with the dimension of analytes [when
there are few patients, but there are many measurements of
their states, see, for example, (Demichev et al., 2021)
(manuscript submitted)];

p As a high-quality and simple data visualization, when a visual
representation of the state of the system features of an
individual in the aggregate is required (we assume that
such a representation in the form of networks can give a
new understanding of the relationship of features, both among
the entire set of subjects, and with an indication of some of
their individual properties subjects, as shown in Figure 2A);

p In situations where it is required to determine the intermediate
state of the points during the transition, for example, from a
healthy to severely ill state. As we have shown (through the
radii on the artificial data, see Figure 3A), parenclitic
approaches reflect the spatial state on a one-dimensional scale;

pWhen it is required to interpret the transition between two states
with respect to some kind of continuous effect (for example, in
the work Krivonosov et al. (2020) we showed how the third
groups of samples according to the characteristics of networks
demonstrate age tendencies between the features selected in
binary networks between case and control groups);

• For specialists in the field of machine learning and network
approaches, we recommend using the wSA approach, as an
interesting method to get new representations of the data. In
particular,
p One can play with a choice of a model to split classes for each
pair of features (currently we used everywhere a radial SVM, but
we assume that each edge may have its own model, the main
thing is that the edge weight is set as the probability of belonging
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to the same class); or with different classes of models, used on
the vertices strengths (or other vectors of characteristics) of the
networks.

p It is possible to have artificial data for which the synolytic
approach in this form is not applicable (for example, a “chess”
three-dimensional cube described above). We believe that the
Cortex data, on which the wSA approach has not received an
advantage, were of similar type. However, it would be
interesting to extend this approach to consider not only
pairs, but also triplets and quadruples of features with the
correct collection of the results into an edge between two
features (to continue to obtain a structure on the graph).

Finally, our approach, if combined with artificial neural
networks, may contribute to the development of explainable
artificial intelligence, because network visualisation assists the
understanding in each step of data processing.
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Inflammatory bowel disease (IBD) is a chronic immune-mediated condition arising due to
complex interactions between multiple genetic and environmental factors. Despite recent
advances, the pathogenesis of the condition is not fully understood and patients still
experience suboptimal clinical outcomes. Over the past few years, investigators are
increasingly capturing multi-omics data from patient cohorts to better characterise the
disease. However, reaching clinically translatable endpoints from these complex multi-
omics datasets is an arduous task. Network biology, a branch of systems biology that
utilises mathematical graph theory to represent, integrate and analyse biological data
through networks, will be key to addressing this challenge. In this narrative review, we
provide an overview of various types of network biology approaches that have been utilised
in IBD including protein-protein interaction networks, metabolic networks, gene regulatory
networks and gene co-expression networks. We also include examples of multi-layered
networks that have combined various network types to gain deeper insights into IBD
pathogenesis. Finally, we discuss the need to incorporate other data sources including
metabolomic, histopathological, and high-quality clinical meta-data. Together with more
robust network data integration and analysis frameworks, such efforts have the potential to
realise the key goal of precision medicine in IBD.

Keywords: inflammatory bowel disease, network biology, protein-protein interaction network, gene coexpression
network, multilayered network, precision medicine, gene regulatory network, metabolic network

INTRODUCTION

Inflammatory bowel disease (IBD), comprising Ulcerative Colitis (UC) and Crohn’s disease (CD), is
a chronic, immune-mediated inflammatory disorder which primarily involves the gastrointestinal
tract (Lennard-Jones, 1989; Baumgart and Carding, 2007). It causes significant morbidity and affects
almost seven million people worldwide. The prevalence is forecasted to rise steeply in the decades
ahead, particularly in newly industrialised countries (GBD 2017 Inflammatory Bowel Disease
Collaborators, 2020). IBD arises due to a dysregulated immune response secondary to complex
interactions between multiple genetic risk factors, a “dysbiotic” gut microbiota, and environmental
factors (Xavier and Podolsky, 2007; Cader and Kaser, 2013). However, the precise mechanistic
pathways interlinking these various facets of IBD pathogenesis are still largely unknown (Cader and
Kaser, 2013). In addition, despite recent advances in medical management including the use of
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biologic and small molecule therapies, a significant proportion of
patients who wish to avoid surgery fail to achieve sustained
clinical remission (Cosnes et al., 2011). This highlights the
need for novel, effective therapeutic strategies in IBD.

Unlike rare, and well-defined monogenic disorders (e.g., cystic
fibrosis) which occur due to mutations within a single gene,
complex diseases such as IBD arise due to interactions between
numerous genetic variants and environmental factors. These
interactions occur across several layers that transcend the
ecologic, genetic, epigenetic, protein and cellular levels, and
work collectively to manifest the disease phenotype.
Consequently, IBD demonstrates significant heterogeneity
across the population i.e., patients may have varying
environmental exposures and express different genetic variants
which result in the activation of varying pathogenic pathways.
Hence, a one-size-fits-all approach to therapy, as is currently
practised, may explain the suboptimal clinical outcomes seen
in IBD.

As a result, precision medicine has been identified as a key
strategy for improving clinical outcomes in IBD (Denson et al.,
2019; Verstockt et al., 2021). Precision medicine aims to harness
the biological characteristics of individual patients to tailor the
right therapy to the right patient at the right time (Whitcomb,
2019). This would require an understanding of the function of
individual biological components and also the holistic effects of
their multifactorial interactions to stratify patients (Green et al.,
2017; Sudhakar et al., 2021). Whilst still in its infancy, an early
example of this approach in IBD is the PROFILE study. In this
trial, researchers are utilising a transcriptomic signature of
peripheral blood CD8+ T lymphocytes as a biomarker to
separate CD patients into two subgroups according to
predicted disease course to guide therapeutic strategy i.e. “step
up” vs “top down” therapy (Noor et al., 2020). This
transcriptomic signature was found to be effective for
prognostication through an earlier non-interventional study
(Biasci et al., 2019). It is anticipated that multi-omics
approaches may be even more robust for directing precision
therapies in IBD and other complex disorders (Olivera et al.,
2019; Borg-Bartolo et al., 2020). In this effort, over the past
decade, researchers across the world have begun profiling the
transcriptomics, epigenetics, metabolomics, and proteomics data
of large patient cohorts. For IBD, a number of biorepositories
have become established such as the IBD BioResource in the
United Kingdom (Parkes and IBD BioResource Investigators,
2019), the 1000IBD project in the Netherlands (Spekhorst et al.,
2017), and the IBDMultiomics Data project in the USA (Imhann
et al., 2019). However, this exponential increase in the availability
of molecular data harnessed through “omics” technologies has
created one of the biggest challenges we face in biology in the 21st
century i.e., what is the best way to make meaningful sense of this
data to ultimately improve clinical outcomes in individual
patients?

Systems biology and artificial intelligence are two
complementary fields that are driving novel computational
biology approaches to address this challenge. Systems biology
is an interdisciplinary field that allows the systematic study of
complex interactions in biological systems using a holistic

approach (Ahn et al., 2006; Breitling, 2010). Artificial
intelligence, on the other hand, is a domain within computer
science which leverages computer systems to perform tasks that
normally require human intelligence including problem-solving
and decision-making (Meskó and Görög, 2020). Machine
learning and deep learning, which are subdomains of artificial
intelligence, offer a number of potential solutions to tackle this
problem. We have previously reviewed these approaches in depth
in the context of IBD (Seyed Tabib et al., 2020). In this narrative
review, however, we will focus on the utility of network biology, a
subfield of systems biology, to facilitate precision medicine
in IBD.

Network biology is one of the fundamental tenets of systems
biology, which involves using mathematical graph theory to
represent, integrate, and analyse biological processes and data
through networks (Pavlopoulos et al., 2011). Depending on the
type of data, various biological networks can be produced, such as
protein-protein interaction networks, gene regulatory networks,
and metabolic networks (Vidal et al., 2011). Using network-based
methods as an integration and modelling tool, important
molecular interactions can be unravelled. When applied to
individual patients, personalised network analysis can lead to
the identification of new disease subtypes and therapeutic targets,
which facilitates novel drug discovery, biomarker discovery, and
drug repurposing as has been seen in cancer (Módos et al., 2017).
Hence, network biology can be a valuable tool for analysing
multi-omics patient data to achieve the key goal of precision
medicine in IBD and other complex disorders (Korcsmaros et al.,
2017).

Although in its nascent stages, in this narrative review we will
highlight a variety of innovative network biology approaches that
are bringing the promise of precision medicine closer to a
translational reality in IBD (Table 1). First, however, we will
briefly discuss some of the fundamental concepts underpinning
network biology.

KEY PRINCIPLES OF NETWORK BIOLOGY

A biological network is the representation of a biological system
using graphs. It contains biological entities (e.g., cells, proteins or
genes) and their interactions with each other (e.g., protein-
protein interactions). In network biology, these are called
nodes and edges, respectively (Koutrouli et al., 2020). The
topology of a network (i.e., the way in which nodes and edges
are arranged within a network) can be evaluated to better
understand a biological system (Figure 1). In biological
networks, the topology is usually scale-free i.e., the degree
distribution of nodes follows a power law, unlike random
networks (Barabási and Oltvai, 2004). This means that some
nodes in a biological network may have many interactions called
“hubs,”whilst other nodes may have fewer connections (Charitou
et al., 2016). Furthermore, specific regions of a scale-free network
can be more highly interconnected than other parts of the
network. These highly connected regions of a network are
called modules. Modules often correspond to specific
biological functions within the overall system. Specific nodes
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that connect distinct modules can also be identified. These are
termed “bottleneck nodes” as information needs to traverse
through them for one module (or biological subtask) to
communicate with another (Csermely et al., 2013).

To further analyse the topology of networks many tools have
been developed. One method is to identify network motifs.
Network motifs are recurring, significant patterns of
interconnections within a network (Milo et al., 2002). Network
motifs can provide insights into the type of signalling interactions
that occur within different biological networks. For instance,
feedforward loops are more common in transcriptional
regulatory networks (Hong et al., 2018). Another technique to
find the building blocks of a network is to identify graphlets.
Graphlets are small, unique (non-isomorphic) subnetworks of a
network (Przulj et al., 2004). Using graphlets, the local structure
of a network can be better described (Przulj, 2007). Przulj and her
colleagues have used graphlets to describe various networks

including protein-protein interactions (Przulj et al., 2006) and
the world trade network (Sarajlić et al., 2016).

Although it may not be possible to encapsulate all dimensions
and features of a complex disease using networks, network
analysis can be a valuable approach for better understanding
the disease. For instance, disturbance of hubs and bottlenecks in a
biological network are likely to have significant consequences on
the overall functioning of system. A prime example is the
mechanisms driving drug resistance in HER2-amplified breast
cancer, in which hub proteins within compensatory circuits and
feedback loops were identified (Lee et al., 2012). This led to novel
therapeutic strategies for overcoming drug resistance and
improving outcomes in these patients (Kirouac et al., 2013).
With the successful implementation of network biology in
breast cancer and other cancers over the past decade (Yan
et al., 2016), researchers are increasingly looking to gain
similar translatable insights in complex diseases such as IBD.

USE OF NETWORK BIOLOGY
APPROACHES IN IBD

Protein-Protein Interaction Networks
Protein-protein interaction (PPI) networks refer to networks
consisting of proteins as nodes and the physical interactions
between them as edges (Vidal et al., 2011) (Table 1). PPI data can
be captured using several different methodologies including
experimental approaches such as yeast two-hybrid assays and
affinity purification coupled mass spectrometry, as well as
computational predictive methods such as text-mining and
machine learning approaches (Snider et al., 2015). Several
resources containing PPI data are available for use including
STRING (Szklarczyk et al., 2019), BioGRID (Chatr-Aryamontri
et al., 2015), Bioplex (Huttlin et al., 2021), HAPPI-2 (Chen et al.,
2009), HuRI (Luck et al., 2020), and IntAct (Hermjakob et al.,
2004) (Table 2). PPI networks that are directed can facilitate
better modelling of intra- and inter-cellular signalling. To gain

TABLE 1 | Characteristics of various network types discussed in this review and their main advantages and disadvantages.

Network type Node Edge Required information
to build

the network

Pros Cons

Protein-protein
interaction
networks

Proteins Physical
interactions

Measurement of the actual protein
interactions e.g. using yeast two-
hybrid, affinity purification mass
spectrometry or small-scale binding
experiments

Many different resources,
based on physical interactions
ensuring larger coverage

Highly incomplete, biases in
network generating methods

Metabolic
networks

Metabolites Enzymes,
reactions

Measured reactions of the enzymes Most complete network type,
good for systematic modelling

Need to decide what
parameter to optimise

Gene regulatory
networks

Transcription factors,
promoters, enhancers,
and target genes

Regulatory
interaction

Measurement or modelling of the
regulatory interactions e.g. using
ChIP-seq, yeast one-hybrid, or
through inference from
transcriptomics

Various network building
approaches to build large
coverage and make it research
question specific

Highly variable and state-
specific, cannot infer feedback
loops from transcriptomics
only

Gene co-
expression
networks

Genes Similarity between
the expression of
two genes

Gene expression measurement Needs only transcriptomic data Correlation does not always
equal causation

FIGURE 1 | Basic network biological nomenclature and concepts. Hubs
are nodes with a high number of interactions (edges). Modules are regions of
the network where the nodes interact with members of the region more than
with non-members. Bottlenecks are nodes which are connecting two.
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information regarding the direction of PPIs, additional
experimental data is often required. Several databases have
performed a comprehensive manual curation of such
experimental data from the literature to provide information
on directed PPIs. These include SignaLink (Fazekas et al., 2013),
Reactome (Jassal et al., 2020), and the community-driven
WikiPathways (Kutmon et al., 2016) (Table 2). It is important
to note that all network resources have drawbacks depending on
the methods that were used to compile the data. Manually curated
and text mining-based networks overrepresent certain genes
which are hot topics of research - for instance, p53 is often a
culprit. On the other hand, unbiased approaches like yeast two-
hybrid or affinity purification overrepresent proteins that bind
easily to other proteins like heat shock proteins. This can
inadvertently implicate heat shock proteins as being associated
with all diseases (Csermely et al., 2013). Hence, researchers need
to be aware of the scope and bias of the network resources they
use for their analysis.

By overlaying additional expression data from RNA
sequencing or microarrays, PPI networks can be
contextualised to specific pathological states or conditions
(Figure 2). As a result, proteins are often represented by their
transcripts in PPI networks. In this way, PPI networks can be used

to detect novel disease-related genes, modules and signalling
pathways. However, the application of transcriptomics data to
build protein interactions is based on the assumption that a gene
transcript accurately represents the amount of protein within the
cell. This assumption is only partially true (Kosti et al., 2016).

Network propagation can also be utilised to reveal further
disease-associated genes (reviewed by Cowen et al. (2017)). In
short, with this approach, a set of known disease-related genes are
first mapped to a PPI network and algorithms are used to detect
additional proteins (or genes) that are likely to be disease-
associated. Such algorithms identify additional proteins (or
genes) by finding the interactor partners of the known disease-
related genes using a heat propagation algorithm or a random
walk approach. These methods assume that proteins (or genes)
near a disease-related gene are likely to be associated with the
disease as well. This is called guilt by association. Huang et al
evaluated various resources that generate PPI networks to see
which is the most useful for detecting disease-related genes using
network propagation (Huang et al., 2018). They found that the
optimal solution came from building a composite network (the
parsimonious composite network or PCNet) in which
interactions were supported by a minimum of two network
resources.

TABLE 2 | Network resources relevant to IBD research.

Name Description Website Latest version
(year)

STRING Szklarczyk et al. (2019) Large PPI database with various sources and confidence scores. It
contains text mining data and also other databases. It has both directed
and undirected interactions

https://string-db.org/ 11.5 (2021)

BioGRID Stark et al. (2006) Genetic and protein interactions from both high and low throughput
experiments

https://thebiogrid.org/ 4.4.201 (2021)

BioPlex Huttlin et al. (2021) Large affinity-purification mass spectrometry based database. It contains
undirected PPI data

https://bioplex.hms.harvard.edu/ 3.0 (2021)

HAPPI-2 Chen et al. (2017) Large database collection of PPI data with confidence scores http://discovery.informatics.uab.edu/
HAPPI/

HAPPI 2.0 (2017)

IntAct Kerrien et al. (2012) Large PPI database collection. Mostly undirected interactions https://www.ebi.ac.uk/intact/ 4.2.18 (2021)
Reactome Jassal et al. (2020) Large reaction-centric PPI database, concentrating on signalling with well-

developed toolsets. It has directed interactions
https://reactome.org/ 77 (2021)

WikiPathways Martens et al.
(2021)

Community curated database of signalling pathways. It has varying
coverage

https://www.wikipathways.org/ September 2021
(2021)

SignaLink Fazekas et al. (2013) Multi-layered database of signalling pathways with a manually curated
core extended by regulatory data, external datasets and predictions

http://signalink.org/ 3.0 (2021)

Signor Licata et al. (2020) Manually curated signalling network https://signor.uniroma2.it/ 2.0 (2020)
CellPhoneDB Efremova et al.
(2020)

Network database containing directed intercellular ligand-receptor
interactions (i.e. a type of PPI network database)

https://www.cellphonedb.org/ 2.1.7 (2021)

Ramilowski et al. Ramilowski
et al. (2015)

Directed intercellular ligand-receptor interaction (PPI) network database
developed by the FANTOM5 team

https://fantom.gsc.riken.jp/5/suppl/
Ramilowski_et_al_2015/

(2015)

DoRothEA Garcia-Alonso et al.
(2018)

Transcription factor (TF)-target gene (i.e. GRN) database with varying
confidence levels and an easy-to-use application programming
interface (API)

https://saezlab.github.io/dorothea 1.5.0 (2021)

TRRUST Han et al. (2015) Manually curated transcription factor (TF)-target gene (i.e. GRN) database https://www.grnpedia.org/trrust 2 (2017)
HuRI Luck et al. (2020) References interactome of human binary protein-protein interactions

captured using high throughput yeast two-hybrid assays
http://www.interactome-atlas.org/ April 2020 (2020)

ConsensusPathDB Kamburov
et al. (2011)

A meta-database of binary and complex protein-protein, genetic,
metabolic, signaling, gene regulatory and drug-target interactions, as well
as biochemical pathways, originating from over 30 publicly available
resources

http://cpdb.molgen.mpg.de/ Release 35 (2021)

OmniPath Türei et al. (2021) One-stop solution of intracellular and intercellular interactions. It contains
almost all the above mentioned databases and has a programmatically
accessible application programming interface (API) both in R and Python

https://omnipathdb.org/ 2.0 (2021)
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PPI network-based approaches have been frequently used in
IBD research over the past decade such as the study by Eguchi
et al. (2018). In this study, the authors determined differentially
expressed genes (DEGs) from transcriptomic data of IBD patients
and extracted a set of known IBD genes from the DisGeNet
database (Piñero et al., 2017) to construct an IBD-relevant PPI
network (Figure 2B). The authors were able to identify modules
within this network by using the DPClusO algorithm (Altaf-
Ul-Amin et al., 2012). These IBD gene-enriched modules were
used to predict novel IBD-relevant genes and pathways.

In recent years, PPI networks have also been used to generate
intercellular communication networks with single-cell RNA
sequencing (scRNAseq) data (Figure 2C). The method for
overlaying PPI networks with scRNAseq data is dependent on
the research question being asked i.e., whether the researcher is
interested in studying the overall possible ligand-receptor
interactions or the condition-specific changes in the strength
of interactions between particular cell populations (see review by
Armingol et al. (2021)). In either case, databases containing

ligand-receptor interactions are required such as CellPhoneDB
(Efremova et al., 2020), the FANTOM5 consortium database
(Ramilowski et al., 2015) or a one-stop solution OmniPath, which
we co-developed recently (Türei et al., 2021) (Table 2). OmniPath
contains both ligand-receptor interactions as well as downstream
intracellular signalling connections (Türei et al., 2021).

An example of such an approach using scRNAseq data in IBD
is the study by Smillie et al. (2019). They obtained scRNAseq data
from healthy, non-inflamed UC, and inflamed UC colonic
biopsies to create PPI networks of intercellular communication
(Smillie et al., 2019). The authors first identified ligand-receptor
interactions within specific cell types in their scRNAseq datasets
by using the FANTOM5 consortium database (Ramilowski et al.,
2015). They included only ligand and receptor genes that were
significantly differentially expressed between the three conditions
and that were also highly-expressed cell subset markers. Using the
connections between these filtered ligands and receptors they
then constructed cell-cell interaction networks. Statistical analysis
of this network revealed significant cell-cell interactions in the

FIGURE 2 | Various methods for generating PPI networks in IBD. (A) Known IBD-associated genes can be mapped to a PPI network and the nearby genes in the
network can be associated with IBD as well (guilt by association) (B)Mapping a transcriptome to the PPI network can elucidate disease-specific modules in the network
(C) Single-cell RNA-seq data combinedwith intercellular (ligand-receptor) communication networks can show how various cells are interacting with each other in disease
or healthy states. For b) the data from (Olsen et al., 2009) was used. For c) the uniform manifold approximation and projection (UMAP) plot (a nonlinear
dimensionality reduction technique for visualising high-dimensional data) was generated using data from Lukassen et al., 2020 (Lukassen et al., 2020).
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various states. In this way, the authors were able to reveal the
rewiring of intercellular connections between healthy and UC
states. In the healthy colonic mucosa, intercellular interactions

were largely found to be occurring between cell types typically
associated with colonic homeostasis such as T regulatory (Treg)
cells, dendritic cell type 1 (DC1) cells, as well as CD8+

FIGURE 3 | Flux balance analysis - the basics of metabolic networkmodelling. For metabolic networks the initial step involves collecting themetabolic reactions that
form the network. These reactions are represented by a stoichiometric matrix where each reaction is represented by the nodes and metabolites by the edges. The aim of
flux balance analysis is to find the optimal vector (flux) that yields the maximum output for a givenmetabolite or metabolites (Z) through these reactions. For illustration, the
glucose metabolism was used from Köenig et al., 2012 (König et al., 2012).
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intraepithelial lymphocytes (IELs) and CD8+ IL17+ T cells.
However, in both uninflamed and inflamed states of the UC
colonic mucosa, intercellular interactions were shown to be
enriched between M-like cells and inflammatory fibroblasts.

To further discern changes in intercellular communication as
well as subsequent downstream intracellular signalling in UC
patients, we interrogated the scRNAseq data from Smillie et al
using OmniPath (Türei et al., 2021). This enabled us to build an
integrated network containing both intercellular PPIs and
downstream intracellular PPIs in UC patients and healthy
controls. This analysis revealed significant rewiring of
intercellular communication between myofibroblasts and T
regulatory cells (Tregs) in UC patients in comparison to
healthy individuals. These changes in intercellular interactions
led to major downstream signalling differences in Tregs in UC
patients, in particular the TLR4 and TLR3 pathways. These
pathways regulate inflammatory cytokine expression and can
decrease the abundance of Treg cells (Türei et al., 2021).
These findings support the hypothesis that disruption of
myofibroblast-mediated regulation of Tregs may play a key
role in UC pathogenesis (Pinchuk et al., 2011).

Metabolic Networks
In metabolic networks, nodes represent metabolites whilst edges
refer to enzymes that catalyse metabolic reactions between the
substrate and product metabolites (Vidal et al., 2011). The most
common way of analysing a metabolic network is using flux-
balance analysis, which involves calculating the flow of metabolites
through the network in steady state (Orth et al., 2010; Anand et al.,
2020). (Figure 3). The aim of the analysis is to find the best
potential flux through the various reactions tomaximise the output
of a given reaction. These reactions are usually represented by cell
mass or energy (ATP production). This results in an optimizable
linear equation system giving back metabolic fluxes. The
constraints of the model can be modified by gene expression or
other experimental results. In recent years the metabolic networks
of entire organisms have become available. To model the human
host, the Recon2 resource provides a comprehensive global
reconstruction of human metabolism (Thiele et al., 2013). For
the gutmicrobiome, the semi-automatedAGORA approachmakes
it possible to reconstruct the metabolism of gut microbial
communities from metagenomic data (Magnúsdóttir et al.,
2017). These genome-scale metabolic networks make it possible
to evaluate the metabolism of the human host and gut bacterial
species in the context of IBD, and discover important host-
microbiome interactions (Jansma and El Aidy, 2021).

Out of all the network types reviewed here, metabolic
networks have the highest completeness in terms of
interactions. This makes them ideal for modelling. However,
metabolomic studies are far less numerous in comparison to
transcriptomics studies as RNA sequencing technologies are now
far more high-throughput. In addition, a disadvantage of the
standard flux balance analysis is that it needs to be optimised
towards a selected metabolic reaction. When investigating IBD,
the usual optimisation functions like cell growth are not relevant,
so other appropriate targets need to be selected e.g., bile acid
production. An alternative solution to avoid this problem is by

using the metabolic network as a template and analysing it
topologically (Knecht et al., 2016).

In a recent study, Heinken et al used the COBRA (Heirendt
et al., 2019) genome-scale metabolic modelling software to
evaluate the metabolic potential of the gut microbiome in IBD
patients (Heinken et al., 2021). They found that IBD patients with
dysbiosis had reduced metabolic diversity with diminished
sulphur production, owing to the reduced diversity in
microbial strains. In a separate study, Heinken et al also
utilised flux balance analysis and genome-scale metabolic
modelling to evaluate the differences in bile acid metabolism
between IBD patients and healthy controls (Heinken et al., 2019).
Here the optimisation function of the flux balance analysis was
bile acid biotransformation. They found that one microbial
species alone could not generate the whole spectrum of
secondary bile acids present in the gut, but microbial pairs
could generate most of these bile acids in silico. The network
modelling also revealed that the dysbiotic microbiome of
paediatric IBD patients was depleted of secondary bile acids
compared to healthy children, as observed in previous studies
(Duboc et al., 2013). The analysis also identified strain-specific
bottlenecks that limited primary bile acid (PBA)
biotransformation to secondary bile acids (SBA). Disruption of
these strains may have important consequences on the
inflammatory milieu in IBD, as PBAs and SBAs have been
found to exert immune modulatory effects on the gut mucosa
through their actions on T regulatory cells and Th17 cells (Hang
et al., 2019; Sinha et al., 2020; Song et al., 2020).

An alternative approach of utilising metabolic networks to
explore host metabolism in IBD was demonstrated by Knecht
et al. They constructed metabolic networks by selecting enzymes
which were differentially expressed between healthy controls and
paediatric IBD patients from gene expression data (Knecht et al.,
2016). They found that metabolic network coherence was high
and varied significantly between individuals in the IBD patient
cohort in comparison to healthy controls. This could have
important implications for drug response in IBD patients, as
metabolic networks can play a significant role in determining
drug metabolism and response to treatment. Further work is
needed to identify whether metabolic networks could act as a
novel biomarker for determining drug response in IBD.

Gene Regulatory Networks and Gene
Co-expression Networks
A gene regulatory network (GRN) depicts the molecules that
govern expression levels of genes as messenger RNA (mRNA)
and proteins (Vidal et al., 2011) (Table 1). Nodes can represent
transcription factor proteins, genes, cis- and trans- DNA
regulatory elements, or microRNA (miRNA). Edges represent
physical interactions between these molecular entities and are
directed i.e. information is provided regarding whether a
molecule inhibits or activates another molecule (Schlitt and
Brazma, 2007). GRNs can be mapped using yeast one-hybrid
(Y1H), chromatin immunoprecipitation (ChIP) approaches,
ChIP-sequencing, and DNA affinity purification (Yeh et al.,
2019).
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GRNs can be modelled with so-called Bayesian-based network
inference approaches to predict the hierarchy and the
directionality of the interactions in the network. Bayesian
networks are founded on the Bayes theorem, which states that
the probability of event A given the occurrence of another event B
i.e., P (A|B), is equal to the product of the probability of event B
given the occurrence of event A i.e., P(B|A) and the probability of
event A i.e., P(A), divided by the probability of event B i.e., P(B)
(Bayes, 1763) (Figure 4). We can predict the likelihood of event A
given the occurrence of event B i.e., P (A|B), if we know how often
events A and B occur and how often event B occurs given the
prior occurrence of event A. The Bayes theorem can be expanded
to be used with transcriptomics data, because the expression of
certain genes is dependent on other genes (Friedman et al., 2000).
Hence, by applying the Bayes theorem to transcriptomic data it is
possible to develop a network to predict which genes are
influencing the expression of other genes. As an output, a
Bayesian network approach produces a hierarchical graph
which reveals the most plausible causal interactions occurring
between genes. However, there are two limitations with this
approach. Firstly, the Bayesian graph has to be acyclic i.e., it

must lack biological feedback loops. Secondly, finding the optimal
Bayesian network is a computationally hard optimisation
problem as a Bayesian approach results in many equally or
similarly good solutions. To tackle the first issue, the research
question must be properly defined i.e., research questions
involving feedback loops in the biological process cannot be
studied using Bayesian network approaches. The second
problem can be addressed by reducing the optimisation
problem to a limited search space by using predefined
biologically meaningful interactions (e.g., interactions from
experimentally validated sources).

In gene co-expression networks (GCNs), nodes represent
genes and edges connect pairs of genes that are considered co-
expressed based on a certain measure (Vidal et al., 2011).
Unlike GRNs, edges are undirected and simply indicate a
correlation in the expression of two genes, from which
causality is inferred. GCNs have become a particularly
popular method in recent years as they can be constructed
directly from data obtained through high-throughput gene
expression experiments such as microarrays or RNA-
sequencing (van Dam et al., 2018). The gene co-expression
can be measured using a variety of techniques (we encourage
the reader to read the comprehensive review by Sonawane et al
for a summary of these algorithms (Sonawane et al., 2019)). Of
these, the most commonly used algorithm is the Weighted
Gene Co-expression Analysis (WGCNA) (Langfelder and
Horvath, 2008) (Figure 5). In essence, the WGCNA
algorithm calculates the correlation between the genes. This
correlation is raised on a user-defined power to filter out weak
interactions resulting in a scale-free network. The adjacency
matrix of this network is used for clustering to find modules
which represent co-regulated biological functions. GCNs and
GRNs are often used together as they complement each other.
The biggest advantage of these networks is that only gene
expression data is required and this can be specific for the
disease in question. Furthermore, the models can be refined by
adding biological constraints such as known regulatory
interactions like transcription factor-target gene
interactions. However, their largest drawback is the a priori
assumption that genes which are regulated and expressed
together have similar functions. This notion is not always
true (Sevilla et al., 2005). GRNs are also based on the
assumption that correlation implies causation.

An example of using GCNs and GRNs in IBD is the landmark
study by Jostins et al. In this paper, the authors performed ameta-
analysis of 15 genome-wide association studies (GWAS) of CD
and/or UC, to identify 73 novel and a total of 163 IBD-associated
genomic loci (Jostins et al., 2012). The authors undertook
network biology analysis of this data to understand how IBD-
associated loci may influence pathogenesis. They performed
WGCNA of gene expression data obtained from a variety of
tissues including stomach, liver, adipose tissue, and blood, and
identified 211 co-expression modules. These were then screened
against the IBD-associated genomic loci. They identified that
IBD-associated loci were particularly enriched in a module
consisting of 523 genes from omental adipose tissue obtained
from morbidly obese patients (i.e. the “IBD-enriched module”).

FIGURE 4 | Bayesian network construction for gene regulatory
networks. From the high dimension of gene expression data, the correlations
between genes can be calculated. These correlations can be modelled as
conditional probabilities and, using the Bayes theorem, a casual gene
regulatory network can be constructed.
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Jostins et al also used a Bayesian network inference method to
create a GRN for IBD. To do this, they combined both genotype
and gene expression data to infer a direction in terms of causality
for the effect of single nucleotide polymorphisms (SNPs) on the
identified gene expression. The overlap between this network and
the genes in the IBD-enriched module revealed a sub-network of
genes that were highly expressed in bone marrow-derived
macrophages. Thus, by using gene regulatory and gene co-
expression networks, the authors were able to annotate IBD-
associated GWAS loci to a particular immune cell network and
infer causality.

Peters et al employed network biology approaches in three
independent cohorts of IBD patients, representing distinct stages
of the disease (treatment naïve paediatric patients, patients

refractory to biologic therapy, and patients with advanced
disease undergoing bowel resection), to identify key driver
genes that regulated IBD networks (Peters et al., 2017). The
authors integrated data about known IBD-associated SNPs,
and expression quantitative trait loci (eQTL) and cis-
regulatory element (CRE) data from the aforementioned IBD
cohorts, to identify candidate causal IBD genes in specific
immune cell types. These candidate genes from all immune
cell types were then intersected with modules found within
GCNs obtained from the three IBD patient cohorts. The
authors then identified modules in these networks that were
significantly enriched for genes within the macrophage-enriched
immune network from Jostins et al. (2012). This enabled them to
generate “super-immune” modules by taking the union of these

FIGURE 5 | Gene co-expression network analysis. Calculating a similarity between the genes from expression data can be used as an adjacency matrix in a co-
expression network. The similarity function depends on the used method but after that the most similar parts of the network can be denoted as modules.
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modules from each cohort. By evaluating common genes of these
super-modules, the authors identified a core set of IBD
susceptibility genes that were conserved across all three
cohorts that were also enriched for the macrophage-enriched
immune network and macrophage expression. This was termed
the core immune activation module (IAM). By overlaying the
core IAM onto Bayesian networks constructed from gene
expression data from each cohort, the authors were able to
identify an IBD-specific conserved immune component (CIC)
in each network. Ultimately, using this approach, the authors
identified 133 key driver genes which could regulate the IBD CIC
networks, five of which had not been previously associated with
IBD including DOCK2, DOK3, AIF1, GPSM3, NCKAP1L. The
expression of these genes were shown to correlate with disease
duration and also were upregulated in inflamed IBD patient
intestinal biopsies.

Verstockt et al demonstrated the utility of GCNs to evaluate
gene dysregulation at various stages of CD (Verstockt et al., 2019).
In this study, transcriptomic and miRNA data were obtained
from ileal mucosal biopsies of CD patients at three different stages
of their disease i.e., newly diagnosed, recurrent disease following
ileal resection, and late-stage disease. The authors conducted a
WGCNA on this data which revealed modules that correlated
with the three disease stages. The modules positively correlating
with the different stages of CD were enriched in genes relating to
granulocyte adhesion, diapedesis, and fibrosis. Conversely, genes
associated with cholesterol biosynthesis were enriched in the
module that negatively correlated with these stages of CD.
They also constructed a miRNA-target gene GRN using the
Ingenuity Pathway Analysis (IPA) microRNA Target Filter
tool. This revealed that dysregulated miRNAs were more
abundant in newly diagnosed and late-stage CD in
comparison to post-operative recurrent CD. This suggests that
surgical resection of the ileum followed by ileo-colonic
anastomosis may reset the gene dysregulation occurring in CD.

A recent study by Aschenbrenner et al showed how GCNs
could also be used to study cytokine signalling in CD
(Aschenbrenner et al., 2021). They utilised transcriptomic data
of ileal biopsies from a cohort of treatment naïve paediatric CD
patients and non-inflamed controls to investigate the regulation
of IL23. IL23 is a pro-inflammatory cytokine that has been
implicated in IBD pathogenesis. Genetic studies have
previously identified IBD-associated SNPs affecting the IL23R
gene (Duerr et al., 2006). Furthermore, increased production of
IL23 by macrophages and dendritic cells have been detected in
mouse models of colitis and IBD patients (Maloy and Kullberg,
2008). Aschenbrenner et al conducted a WGCNA to see which
modules of the transcriptome from inflamed and non-inflamed
tissues correlate with IL23 expression. This analysis identified 22
gene co-expression modules. Analysis of these modules revealed
that IL23A expression strongly correlated with the modules
enriched in functions for “immune cell differentiation” and
“lymphocyte differentiation.” These modules were found not
to be significantly enriched in CD patients. However, an
“inflammatory cytokine” module containing myeloid and
stromal marker genes, proinflammatory cytokines (including
OSM, IL1B, and IL6) and fibroblast activation protein, was

identified that significantly correlated with IL23A expression
and were also enriched in CD patients. This work supports
the hypothesis that a subgroup of IBD patients may possess a
pathogenic myeloid-stromal cell circuit involving OSM as
identified in recent landmark studies (West et al., 2017; Smillie
et al., 2019).

Multi-Layered Network Approaches
Over the past decade, there has been an increased appetite for the
capture of different types of omics data from a single sample as it
is believed this could provide greater insights into disease biology.
This multi-omics revolution necessitates the combination of
various network modelling approaches. Multi-layered networks
can be used to integrate the many facets of multi-omics data
including the different time scales of biological processes
(Hammoud and Kramer, 2020). In recent years, various
databases have been developed such as OmniPath (Türei et al.,
2021), SignaLink2 (Fazekas et al., 2013), TranscriptomeBrowser
(Lepoivre et al., 2012) or ConsensusPathDB (Kamburov et al.,
2011), that can be used to generate multi-layered networks to
integrate multi-omics data (Santra et al., 2014).

Combining different types of networks together has unravelled
important insights into IBD pathogenesis. However, such multi-
layered network approaches have largely been performed on a
single type of omics data so far i.e., most commonly, gene
expression data. This was seen in the earlier landmark study
by Jostins et al where GCNs and GRNs were used together as
mentioned earlier (Jostins et al., 2012). More recently, Martin et al
generated intercellular ligand-receptor networks (a type of PPI
network) and GCNs from scRNAseq data obtained from ileal
biopsies of patients with ileal CD (Martin et al., 2019). By
applying gene co-expression analysis to the scRNAseq data,
they first identified a group of cell types which strongly
correlated with ileal inflammation in a subset of ileal CD
patients and also lack of response to anti-TNF therapy. They
termed this group the GIMATS (IgG plasma cells, inflammatory
mononuclear phagocytes, activated T cells and stromal cells)
module. Next they evaluated intercellular interactions
communicating with the GIMATS module by using the
scRNAseq data to identify experimentally validated cytokine-
cytokine receptor pairs (Ramilowski et al., 2015). This revealed a
distinct intercellular network driving the GIMATS module
including T cells, mononuclear phagocytes, fibroblasts and
endothelial cells.

Cell signalling networks are another important type of multi-
layered network consisting of two components: an upstream
component which is a directed PPI network containing
various intracellular signaling pathways, and a downstream
component which is a GRN of transcription factor-target
interactions (Csermely et al., 2013). The OmniPath database is
particularly useful for generating cell signalling networks as it
allows the user to not only access the intracellular PPI network of
a cell but also GRNs and even the extracellular ligand-receptor
networks from a myriad of databases (Türei et al., 2021).
Although examples of cell signalling networks have been
limited in IBD thus far, recently we established a novel
bioinformatic pipeline termed “iSNP”, to create a UC-specific
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cell signalling network from patient-derived SNP data (Brooks
et al., 2019). In this approach we focused on SNPs located within
non-coding regions of the genome, which represent the vast
majority of SNPs associated with UC. These non-coding SNPs
were annotated to transcription factor binding sites (TFBS) and
miRNA-target sites (miRNA-TS) using available databases
reporting transcription factor binding profiles and miRNA
sequences. Protein-coding genes located within the vicinity of
SNP-affected TFBS and those targeted by the SNP-affected
miRNA-TS were identified using regulatory interaction data
sources. In this way SNP-affected proteins were revealed.
Using OmniPath, the first neighbours of these SNP-affected
proteins were also pinpointed. Utilising genotyped patient data
from an IBD patient cohort in East Anglia in the
United Kingdom, we created individual patient-specific cell
signalling networks. By applying unsupervised clustering
algorithms to these patient-specific cell signalling networks, we
revealed that patients clustered into four main groups and
identified distinct pathogenic pathways involved in each
cluster. Thus, using a novel network biology workflow
involving cell signalling networks, we were able to identify
distinct regulatory effects of disease-associated non-coding
SNPs in subgroups of UC patients.

FUTURE CHALLENGES AND POTENTIAL
MITIGATING STRATEGIES TO DEVELOP
NETWORK BIOLOGY APPROACHES FOR
PRECISION MEDICINE

Despite the recent strides made in unravelling IBD pathogenesis
using the aforementioned network biology approaches, there are
several challenges that need to be overcome to achieve the goal of
precision medicine in IBD (Fiocchi and Iliopoulos, 2021).

First and foremost, research efforts must focus on acquiring
patient-specific data from a variety of relevant data sources that
could provide a more holistic picture of the disease biology of
individual patients. In the past, network biology models used only
one or two dimensions of data such as PPI networks, sets of
DEGs, or transcriptomic information to reconstruct biological
networks (Seyed Tabib et al., 2020). However, recent
breakthroughs made in cancer demonstrate that multi-layered
networks which incorporate various omics data are likely to yield
more powerful and translatable insights for complex diseases (Du
and Elemento, 2015). There is a paucity of such approaches in
IBD to date, although the aforementioned studies by Jostins et al.
(2012), Martin et al. (2019) and Brooks et al. (2019) demonstrate
the potential of such methods. In addition, despite the
exponential increase in transcriptomics and
metatranscriptomics studies in IBD in the past decade, such
datasets are often limited by low patient numbers. Recently, a
novel meta-analysis framework for transcriptome and
metatranscriptome data in IBD has been introduced, called the
IBD Transcriptome and Metatranscriptome Meta-Analysis
(TaMMA) platform (Massimino et al., 2021). The TaMMA
platform collates and integrates transcriptomics (and

metatranscriptomics) data from multiple IBD patient cohorts
using a standardised pipeline that corrects batch effects and
performs differential analysis of the data. This significantly
increases the sample size and statistical power for downstream
analysis (Modos et al., 2021). This platform, which is available as a
user-friendly, open-source web application, can maximise the
utility of existing transcriptomics and metatranscriptomics
datasets generated from various research centers across the
world. Such meta-analysis frameworks could be a powerful
way for analysing other omic layers too in the future.

In IBD, it is particularly important to consider the effects of the
gut luminal microenvironment which contains bacterial cells up to
1013 in number and their repertoire of metabolite products on the
host. However, this is an extremely complex ecosystem to model.
Adding to this complexity is the dynamic nature of the gut
microbiota, which can be affected by the age of the individual
and environmental exposures such as diet and drugs. The
development of novel genome-scale metabolic models as
mentioned earlier as well as strain-specific metabolomics have
potential to enhance our understanding of the IBD metabolome
and the intestinal microflora (Han et al., 2021; Heinken et al.,
2021). In addition to the metabolome, another data source for
integration in IBD that should be strongly considered is
histopathological data. The importance of integrating
histopathological data for precision medicine has been clearly
demonstrated in colorectal cancer (CRC) (Thomas et al., 2019).
Over the past couple of decades it has been revealed that the type,
density, and location of immune cells (i.e., the “immune
contexture”) within CRC tissues are a better prognostic tool
than the traditional Dukes staging for predicting CRC survival
and recurrence (Galon et al., 2006; Fridman et al., 2012).
Subsequently, transcriptomic data from CRC tissues were
integrated with this histological classification, to shed light on
the remarkable immunogenomic heterogeneity of CRC (Becht
et al., 2016). Similar efforts to amalgamate histopathological and
genomic data have thus far been scarce in IBD, but appear to be on
the horizon: Friedrich et al have recently revealed distinct
pathotypes in IBD that are associated with non-response to
several therapies using such an approach (Friedrich et al., 2021).
Furthermore, to fully realise the potential of molecular,
metabolomic, and histopathological data, it is integral that they
arematched with pertinent clinical metadata i.e., information of the
patients’ treatment(s), age, comorbidities etc (Ahmed, 2020). This
has been lacking in many previous studies (Olivera et al., 2019).
However, acquiring good quality clinical metadata is challenging
due to the use of paper medical records by many hospitals. Also
despite the increasing use of electronic medical records (EMRs),
hospitals seldom use the same EMR software resulting in
interoperability issues and fragmentation of data (Warren et al.,
2019). Nevertheless, artificial intelligence, including natural
language processing (NLP), may help transform the extraction
of clinical metadata from EMRs in the coming decades. Such big
data methods can help to better understand and personalise
network biology models and can also be used for validation of
findings (Olivera et al., 2019; Seyed Tabib et al., 2020) (Figure 6).

Another strategy that may yield important insights into IBD
disease pathogenesis is to evaluate omics data in IBD in the
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context of other comorbid disorders. Patients with IBD are more
likely to develop other disorders with a significant immune
component such as rheumatoid arthritis (RA), psoriasis,
asthma and colorectal cancer (García et al., 2020). These
disorders share underlying genetic risk factors and
environmental exposures which can result in similarities in the
immune pathways and cytokines driving inflammatory responses
in these conditions (Moni and Liò, 2015). This is reflected in the
fact that biologic agents targeting TNFα are effective in IBD as
well as inflammatory arthritides such as RA, axial
spondyloarthritis and psoriatic arthritis (Schett et al., 2021).
However, thus far, there has been limited work which has
evaluated multi-omics data between comorbid disease
networks involving IBD. Nevertheless, bioinformatics tools
have recently been generated that could be readily utilised to
generate comorbidity networks from published multi-omics
datasets for estimating disease comorbidity risks and patient
stratification (Moni and Liò, 2015; Xiao et al., 2018).

One of the major challenges that will need to be addressed in
all such approaches is how to integrate the vast amounts of multi-
omics data generated from disparate sources to reveal clinically

meaningful insights in IBD. Integrating genomics,
transcriptomics (ideally single-cell transcriptomics),
epigenomics, metabolomics, and metagenomic datasets of
patients together with robust clinical meta-data and
histopathological data over time will be critical for realising
the goal of precision medicine in IBD (Figure 6). However,
there is often a low degree of agreement between networks
generated from different omics datasets, making it difficult to
identify salient features that are shared between them. Therefore,
more advanced data integration and analysis methods for multi-
omics data are necessary.

Recently, a number of novel multi-omic data integration tools
have been developed but their use has not yet penetrated the field
of IBD. These include early data integration (i.e., combining all
datasets into a single dataset first before developing the model)
and late data integration (i.e., generating individual models from
each dataset first and then finally integrating the models together)
methods. Early examples of the former approach which create an
aggregative layer within a multiplex network include iCluster
(Shen et al., 2009), a joint latent variable model, and a similarity
network fusion method by Wang et al. (2014). A weighted

FIGURE 6 | Future perspectives of using network biology and network based modeling in IBD research. From the large amount of omics datasets (genomics,
transcriptomics, metabolomics, metagenomics), various interaction networks can be used to develop sophisticated network models, ideally in a multi-layered fashion.
Adding granularity with patient metadata from large databases can help to validate these models and will result in better understanding of IBD pathogenesis, novel/
personalised therapeutic strategies, and clinical decision-driving signatures.
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network fusion method has also been developed which
incorporates the relative weight or importance of each layer
when integrating omics layers (Angione et al., 2016). At
present, one of the most common methods of omics
integration is an early integration method called non-negative
matrix factorisation as implemented in the MOFA package
(Argelaguet et al., 2018). In short, in this method a large
matrix is first constructed where the columns are the patient
samples and the rows are the measurements from the various
types of omics data. This large matrix is then deconvoluted into
two matrices. The first matrix contains the various omics
measurements as rows and factors as columns, with cells
referring to the contribution of each omics measurement to a
factor. Here, factors represent biological information such as
signalling pathways or metabolomic circuits. The second
matrix is composed of samples as columns and factors as
rows, with cells referring to each factor’s value for a sample.
Each factor can be traced back to the input measurements
whether they are genomics, transcriptomics or metagenomic
inputs. This can be used to uncover hidden interactions
between various modalities of measurements. Clustering the
samples based on the factors helps to reduce the noise that
naturally arises when combining disparate data types. This
approach was shown to identify major causes of disease
heterogeneity in chronic lymphocytic leukaemia (Argelaguet
et al., 2018). Late data integration methods have also revealed
important insights into disease pathogenesis. An example is the
COSMOS tool, in which multiple networks generated from
different omics data are integrated using causal reasoning
(Dugourd et al., 2021). In this paper, the investigators
demonstrated the capability of COSMOS to integrate PPI,
GRN and two different metabolic networks from
transcriptomics, phosphoproteomics, and metabolomics data
in clear cell renal cell carcinoma. Similar non-matrix-based
omics methods were used in bacteria such as the MORA
approach, which integrates various layers of omics data
(transcriptomic, proteomics, metabolomics, genomics) to
identify the affected pathways (Bardozzo et al., 2018). This
method used mutual synchronisation of binarised omics
measurements rather than a matrix deconvolution approach to
identify affected pathways.

Recently, Malod-Dognin et al described the application of a
novel multi-omics data integration and analysis framework in
four different cancer types based on amachine learning technique
called non-negative matrix tri-factorisation (NMTF) (Malod-
Dognin et al., 2019). For each cancer type, using this approach
they were able to integrate three different types of omics tissue-
specific molecular interaction networks (i.e., PPI, GCN and gene
interaction network) into a single, unified representation of a
tissue-specific cell, which they termed “iCell.” The NMTF
algorithm is an intermediate data integration method i.e., it
integrates the information from the various models (networks)
and source data (gene expression) giving back valuable
information such as clustering of genes or local rewiring of
various genes in many networks. It uses an already filtered
network for this purpose. The method deconvolutes the
adjacency matrices of networks into three smaller matrices per

network. Two of the matrices are the same in the various
networks and they are transpose of each other that capture
sample-specific features, whilst the third matrix displays
network-specific features. This was shown to overcome the
problems associated with early data integration and late data
integration approaches that have been used previously, leading to
more accurate predictions. To further analyse these integrated
networks, they then utilised graphlets as a more sensitive method
for evaluating network topology (Przulj, 2007; Yaveroğlu et al.,
2014). The distribution of graphlets can act as a fingerprint for a
network, allowing comparisons to be made between networks
(Sarajlić et al., 2016). Overall, this innovative integrative and
analytical approach was shown to better detect the functional
organisation of cancer cells than from a single omics layer and it
identified 63 new cancer-related genes.

CONCLUSION

Network biology approaches have provided unique insights into
the pathogenesis of IBD which could not have been ascertained
through simple evaluation of molecular data. With the recent
establishment of several large biorepositories for IBD and the
advent of next-generation sequencing, we will soon be able to
access high-quality omics patient data with sufficient power to
tackle some of the key unanswered questions in the field. It is
important that this data is complemented with other relevant
data sources, especially reliable clinical metadata. Network
biology will be critical for integrating the resulting
multifaceted datasets to generate clinically translatable end-
points. In recent years, multi-omics integrative methods have
been developed and then applied successfully in the field of
cancer, but have been limited in IBD and other complex
diseases. Further research is required to develop more robust
integrative and analytical network biology approaches for
various types of omics data. Such efforts will allow us to fully
harness the potential of multi-omic patient datasets to provide
deeper insights into the pathogenesis of IBD and achieve the
goal of precision medicine in this complex disease.

NETWORK BIOLOGY GLOSSARY

Node/vertex: A point in a network. In biological networks it is
usually a gene or protein.

Link/edge: The interaction between nodes. In network
biology, it can be a physical interaction such as an enzymatic
reaction or similarity e.g. correlation between the expression of
two genes.

Directed network: The network’s edges are directed meaning
from node “v” to node “u” is not the same as from node “u” to
node “v”.

Weighted network: The edges of the network have weight. In
network biology, weights often represent the number of
interactions between cells or the strength of the interaction
between proteins which can depend on the concentration or
measured amount of the proteins (in case of proteomic analysis)
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or the amount of the genes encoding the protein (in case of
transcriptomics analysis).

Signed interaction: It is a type of weight of the network, which
informs whether the interaction is positive or negative. A negative
sign means the interaction is inhibitory, whereas a positive sign
means it is excitatory.

Degree: The number of neighbouring nodes that a particular
node connects to in a network.

Hub: A node with high degree.
Path: The set of edges connecting any two nodes.
Shortest path: The path between two nodes which involves

the least number of edges.
Betweenness centrality: The number of shortest paths which

go through a given node or edge. It is often normalised by the
number of all possible shortest paths between all nodes.

Bottleneck: A node with high betweenness centrality but low
degree. These are critical nodes in the network because a high
amount of information goes through them.

Module/community: A set of nodes in a network which are
interacting with each other more strongly than with other nodes
outside the module.

Scale free network: A network which has a degree (k)
distribution of P(k) � k−γ. In practice it means that the
network has a low number of high degree nodes whilst most
of the nodes have a really low degree. Most biological networks
closely resemble a scale free distribution.

Adjacency matrix: A matrix which models the network where
columns and rows represent nodes and each value is an edge. If the
network is undirected, then the adjacency matrix is symmetric,
whereas in directed networks the adjacency matrix is asymmetric. If
the network is not weighted then the values in the adjacency matrix
are 1. However, in a weighted network the values are the weights.

Gene interaction network: A network where the edges
represent whether the mutations of the genes together
influence a phenotype e.g. synthetic lethality.

Matrix deconvolution: Representing the matrix with multiple
smaller order matrices.

Causal reasoning: Finding the best possible path in a network
where the signs match with the output of the network.

Graphlet: A local unique (non-isomorphic) structure of a
network.

Network motif: An overrepresented local structure of a
network (for instance a common graphlet).
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