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Editorial on the Research Topic

Lung Imaging in Respiratory Failure

The last two decades have seen increasing interest toward delivering personalized treatments to
patients admitted to the intensive care unit (ICU) with acute respiratory failure (ARF), in particular
acute respiratory distress syndrome (ARDS) (Pelosi et al., 2021). However, identifying simple
clinical characteristics allowing targeted respiratory support and other treatments is challenging.
Lung imaging techniques are capable of describing different phenotypes of lung injury as well as
the effects of ventilatory support on the respiratory system (Ball et al., 2017b), and have shown
promising results as tools to guide mechanical ventilation strategies in ARDS (Constantin et al.,
2019). Moreover, research in the field of imaging applied to respiratory failure has been boosted by
the ongoing COVID-19 pandemics, providing valuable clinical information that helped clinicians
in the timely development of appropriate strategies in such a rapidly evolving scenario (Grasselli
et al., 2020; Ball et al., 2021a). This editorial summarizes the articles enclosed in this Frontiers
Research Topic “Lung Imaging in Respiratory Failure.”

An introductory review highlights how different imaging techniques depict specific
pathophysiological aspects of the lungs and how their quantitative analysis can provide functional
information on the respiratory system (Musch). Despite being widely used, each imaging technique
has specific methodological pitfalls that require elucidation in the future. A systematic review
focusing on lung ultrasound (LUS) explored its diagnostic accuracy in discriminating different
patterns of lung injury (Yuan et al.). Several lung imaging techniques were often used to measure
or estimate lung recruitment, namely the amount of non-aerated lung that can be aerated following
changes in ventilator settings or recruitmentmaneuvers. A systematic review covering studies using
LUS, computed tomography (CT), and electrical impedance tomography (EIT) concluded that the
estimation of lung recruitment based on lung imaging techniques is poorly standardized and that
the ability of imaging techniques to predict lung recruitment in ARDS remains uncertain (Pierrakos
et al.). On the other hand, a simple scoring system of chest X-ray, the Radiographic Assessment of
Lung Edema, showed good diagnostic accuracy for identifying patients with ARDS according to
the Berlin definition (Zimatore et al.).

Several papers in this Research Topic focused on bedside imaging techniques such as EIT
and LUS. In an interesting experimental study, authors propose a sophisticated analysis of
EIT-derived parameters, combined with airway pressure data, to derive information concerning
transpulmonary pressure, exploiting the relationships between respiratory mechanics partitioning
and regional heterogeneity of ventilation in ARDS (Scaramuzzo et al.). Such estimate might
provide important information to improve the understanding of respiratory support in ARDS,
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in a context where the esophageal pressure monitoring is still
underused in the clinical practice (Akoumianaki et al., 2014). In
addition to its role in adult chest imaging, LUS has an established
role in the pediatric setting, also for the particularly favorable
acoustic window that characterizes these patients. In a review
covering 10 years of research in this field, benefits, limitations,
and possible future challenges of pediatric LUS are discussed
(Musolino et al.). In another research article, the efficiency of
deep learning and artificial intelligence to classify lung ultrasound
images in the pediatric setting is explored with good results
(Magrelli et al.).

Another application of artificial intelligence proposed in this
article collection is semi-automated segmentation of lung images
obtained with CT. This high-resolution technique is a recognized
standard for the assessment of lung aeration (Pesenti et al., 2016)
as well as lung recruitment in ARDS (Gattinoni et al., 2006)
and COVID-19 (Ball et al., 2021b), but manual delimitation of
lung is time consuming (Reske et al., 2010; Ball et al., 2017a).
Computer-based approaches using neural networks performed
acceptably in two original research papers when applied to both
human and experimental animal CT scans with different lung
findings, including in repeated scans aimed at measuring lung
recruitability (Herrmann P., et al.; Maiello et al.).

In other research papers included in this Research Topic,
lung imaging techniques and their derived parameters were
used as endpoints to assess the effects of specific changes
in respiratory support strategies. In an experimental study in
pigs receiving one-lung ventilation and thoracic surgery, lateral
compared to supine positioning was associated with higher
relative perfusion, regardless of the presence of intravascular
hypovolemia (Wittenstein et al.). Another research paper
investigated the dependency on positive end-expiratory pressure
(PEEP) of patients receiving non-invasive respiratory support for
COVID-19-related ARF; the authors observed, using EIT, that
lung de-recruitment during a PEEP-decrease trial was associated
with failure of non-invasive respiratory support (Rauseo et al.).
These findings might improve the understanding of the role of

non-invasive respiratory support in COVID-19, while avoidance
of intubation is often feasible but in certain patients associated
with a high risk of developing self-inflicted lung injury (Battaglini
et al., 2021). In another study, the effects of PEEP were studied
in invasively ventilated brain injured critically ill patients using
quantitative CT and assessing the effect on intracranial pressure
(Robba et al.). In an experimental study using dynamic four-
dimensional computed tomography, the authors explored the
role of inhomogeneity in determining the expiratory kinetics of
gases in different lung regions, highlighting how poorly aerated
regions might be particularly susceptible to ventilator-induced
lung injury (Herrmann J., et al.).

Finally, two papers used imaging techniques addressed
specific controversies regarding the concept of mechanical
power. This parameter was proposed as a parameter to guide
mechanical ventilation parameters in patients with ARDS
(Gattinoni et al., 2016; Silva et al., 2019). However, several
aspects concerning its calculation remain controversial. In a
model of ARDS, a correlation between mechanical power
and neutrophilic inflammation was confirmed using positron

emission tomography (Scharffenberg et al.). However, in another
experimental study using CT and EIT, mechanical power
was reduced with the decrease in the respiratory rate alone,
while maintaining constant CO2 levels through the use of
extracorporeal membrane oxygenation at increasing gas flows.
The reduction in respiratory rate worsened lung atelectasis
despite reducing mechanical power (Spinelli et al.).

We are grateful to the authors and reviewers that contributed
to this Research Topic, covering a wide range of interesting
and challenging aspects of innovative applications of lung
imaging techniques of respiratory failure from research to
clinical practice.
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Rationale: Reducing the respiratory rate during extracorporeal membrane oxygenation

(ECMO) decreases the mechanical power, but it might induce alveolar de-recruitment.

Dissecting de-recruitment due to lung edema vs. the fraction due to hypoventilation may

be challenging in injured lungs.

Objectives: We characterized changes in lung physiology (primary endpoint:

development of atelectasis) associated with progressive reduction of the respiratory rate

in healthy animals on ECMO.

Methods: Six female pigs underwent general anesthesia and volume control ventilation

(Baseline: PEEP 5 cmH2O, Vt 10 ml/kg, I:E = 1:2, FiO2 0.5, rate 24 bpm). Veno-venous

ECMO was started and respiratory rate was progressively reduced to 18, 12, and 6

breaths perminute (6-h steps), while all other settings remained unchanged. ECMOblood

flow was kept constant while gas flow was increased to maintain stable PaCO2.

Measurements and Main Results: At Baseline (without ECMO) and toward the end

of each step, data from quantitative CT scan, electrical impedance tomography, and gas

exchange were collected. Increasing ECMO gas flow while lowering the respiratory rate

was associated with an increase in the fraction of non-aerated tissue (i.e., atelectasis)

and with a decrease of tidal ventilation reaching the gravitationally dependent lung regions

(p = 0.009 and p= 0.018). Intrapulmonary shunt increased (p< 0.001) and arterial PaO2

decreased (p < 0.001) at lower rates. The fraction of non-aerated lung was correlated

with longer expiratory time spent at zero flow (r = 0.555, p = 0.011).

Conclusions: Progressive decrease of respiratory rate coupled with increasing CO2

removal in mechanically ventilated healthy pigs is associated with development of lung

atelectasis, higher shunt, and poorer oxygenation.

Keywords: extracorporeal membrane oxygenation, respiratory rate, atelectasis, shunt, expiratory time
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INTRODUCTION

Veno-venous extracorporeal membrane oxygenation (ECMO) is
a rescue strategy for patients with severe acute respiratory distress
syndrome (ARDS) not responsive to conventional positive
pressure ventilation (Combes et al., 2020). In the last few years,
the use of ECMO increased worldwide since the H1N1 epidemic
in 2009 and following publication of large clinical trials and
observational analyses showing positive impact on mortality
(Peek et al., 2009; Combes et al., 2018). ECMO support allows a
reduction in mechanical ventilation load. Indeed, during ECMO,
gas exchange becomes almost independent from the applied
ventilation, and the latter can be reduced drastically, enhancing
lung rest (Pesenti et al., 1982). Even though decreased ventilation
is key to ECMO success and lung protection, physiological
data supporting specific strategies are scant and published
clinical trials implemented “ultra-protective ventilation” with
very different settings (Gattinoni et al., 1986; Terragni et al., 2009;
Bein et al., 2013; Combes et al., 2019).

In the present study, we focused on the physiological effects
of decreasing respiratory rate. In usual clinical management
of severe ARDS patients, respiratory rate is gradually reduced
after start of ECMO but with highly variable targets (Spinelli
et al., 2020); large clinical trials used rates ranging between 24
and 5 breaths per minute (Pesenti et al., 1982; Gattinoni et al.,
1986; Peek et al., 2009; Terragni et al., 2009; Bein et al., 2013;
Combes et al., 2018, 2019), and only two animal studies reported
some physiological benefits of reduced respiratory rate during
extracorporeal support, but rates differed widely, averaging 14 vs.
5 breaths perminute (Grasso et al., 2014; Araos et al., 2019). Thus,
the physiological targets to guide the reduction of respiratory rate
during ECMO are still unclear.

Lowering the respiratory rate leads to a reduction in the
mechanical power applied to the lungs, and any decrease should
be associated with improved lung protection (Marini et al., 2020).
This is true only if all other determinants of ventilator-induced
lung injury (VILI) remain stable (Marini et al., 2020). By contrast,
previous experimental study described development of atelectasis
when expiration becomes longer than 4 s (Neumann et al., 1998),
and this might increase ventilation heterogeneity (Mauri et al.,
2013), lung strain (Bellani et al., 2011), and atelectrauma (Caironi
et al., 2010). Moreover, to maintain stable gas exchange, lower
respiratory support requires higher extracorporeal oxygenation
and CO2 removal, which might be associated with altered
physiology (e.g., increased intrapulmonary shunt; Fanelli et al.,
2016; Spinelli et al., 2020).

The aim of this study was to describe the physiological
effects of the progressive reduction of the respiratory rate
and concomitant increase of extracorporeal CO2 removal
during ECMO in terms of non-aerated lung fraction measured
by CT scan (primary endpoint), ventilation maldistribution,

Abbreviations: VILI, ventilator-induced lung injury; IV, intravenous; RR,

respiratory rate; Crs, respiratory system compliance; Clung, lung compliance;

Ccw, chest wall compliance; RER, respiratory exchange ratio; MAP, mean arterial

pressures; PAPm, mean pulmonary artery pressures; WP, wedge pressure; BE, base

excess; NL, natural lung; EIT, electrical impedance tomography; BF, blood flow; GF,

gas flow; ML, membrane lung.

increased shunt, and hypoxemia due to low values of the
respiratory exchange ratio (RER) of the natural lung. Since
dissecting atelectasis caused by the compressive forces
of lung edema vs. those due to hypoventilation may be
challenging in injured lungs, we took a step backward
and studied progressive reduction of respiratory rate and
increased CO2 removal in a large animal ECMO model with
healthy lungs.

MATERIALS AND METHODS

The study was approved by the Italian Ministry of Health
(protocol n. 749/2019) and conducted according to the European
Directive 2010/63/EU on the protection of animals used for
scientific purposes and Italian legislative decree 26/2014. The
research protocol was approved by the Institutional Animal
Care Committee.

Anesthesia, Animal Preparation, and
Instrumentation
In compliance with local recommendations, pigs arrived at the
experimental facility the day before the start of the study and
fasted for 24 h with free access to water. Six healthy female
pigs (40 ± 4 kg) were sedated by intramuscular injection of
medetomidine 0.025 mg/kg and tiletamine/zolazepam 5 mg/kg.
Then, an auricular vein was cannulated and, after administration
of ceftriaxone 1 g and tramadol 50mg, continuous intravenous
(IV) infusion of Propofol was titrated to maintain the animal
on spontaneous breathing and SpO2 100% while oxygen was
provided via face mask. Surgical tracheostomy was performed
in the supine position under additional local anesthesia
(Lidocaine 2%). After endotracheal tube was inserted through
the tracheostomy and fixed, mechanical ventilation was started
(see Baseline ventilation settings below) and general anesthesia
was maintained by IV Propofol 5–10 mg/kg/h, Medetomidine
2.5–10.0 µg/kg/h, and Pancuronium bromide 0.3–0.5 mg/kg/h.
Depth of anesthesia was adjusted to ensure no sign of distress,
such as unexplained tachycardia, arterial hypertension, and
horripilation. Ringer lactate was administered at 100 ml/h during
surgery and along the whole study, unless otherwise indicated
by hemodynamic requirements (see the hemodynamic protocol
below). Ceftriaxone 1 g IV and tramadol 50mg IV were repeated
after 12 h.

Vascular accesses were obtained by surgical exposure. An
arterial catheter (Seldicath, 5 Fr and 8 cm, Prodimed, France) was
inserted in the left common carotid artery. A three-lumen central
venous catheter (Arrow, 7 Fr, Teleflex, Ireland) and a pulmonary
artery catheter (Swan Ganz, 5 Fr, Edwards, USA) were inserted
and advanced in the left external jugular vein. Positioning of
pulmonary artery catheter was achieved by direct visualization
of pulmonary artery and wedge pressures.

An esophageal balloon catheter (5 Fr, Cooper Surgical, CT,
USA) was inserted and inflated with the recommended volume
of air. Correct positioning and calibration were confirmed by the
standard occlusion test with external compressions.
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Baseline Ventilation Settings and Data
Collection
During the whole experiment, apart from surgical procedures,
animals were kept prone.

From tracheostomy to the end of Baseline data collection,
volume-controlled mechanical ventilation (Evita XL, Drager,
Germany) was set as follows:

• Fraction of inspired oxygen (FiO2)= 0.5
• Tidal volume (Vt)= 10 ml/kg body weight
• Respiratory rate (RR)= 24 breaths per minute
• Positive end-expiratory pressure (PEEP)= 5 cmH2O
• Inspiratory to expiratory time ratio (I:E)= 1:2

A heat and moisture exchange filter was part of the
ventilator circuit.

Data from respiratory mechanics, hemodynamics, arterial,
and mixed venous blood gas analysis, volumetric capnography
(Respironics NM3 monitor, Philips, The Netherlands), and
quantitative CT scan (Lightspeed, General Electric, USA) were
collected at the end of the instrumentation phase (Baseline).

The variables collected were as follows:

• Respiratory mechanics: mean airway pressure (mPaw), tidal
volume (Vt), plateau airway pressure (Pplat), total PEEP
(PEEPtot), and change between inspiratory and expiratory
esophageal pressure (1Pes) by 3-s inspiratory and expiratory
holds. From these, static respiratory system compliance (Crs)
was calculated as Vt/(Pplat – PEEPtot), lung compliance
(Clung) as Vt/((Pplat – PEEPtot) – 1Pes), and chest wall
compliance (Ccw) as Vt/1Pes (Mauri et al., 2016b). We also
calculated mechanical power per minute by standard formula
(Marini et al., 2020). Finally, we recorded tracings of airway
pressure and flow and we measured the time spent by the
respiratory system at zero flow during expiration (TEXP at
zero flow: the time between the zero expiratory flow and the
start of inspiratory flow for the next breath), as the average of
5 breaths.

• Hemodynamics: mean arterial pressures (MAP), mean
pulmonary artery pressures (PAPm), pulmonary capillary
wedge pressure (WP) at end expiration, cardiac output (CO)
via thermodilution technique (Vigilance, Baxter Edwards
Critical Care, Edwards E6 Lifesciences, USA), heart rate (HR),
central venous pressure (CVP) at end expiration, and mixed
venous oxygen saturation (SvO2).

• Blood gas values: arterial pH, PaCO2, PaO2, Base Excess
(BE), and lactates. Oxygen consumption through the natural
lung (VO2NL) and intrapulmonary shunt calculated with
Riley’s method were also calculated from mixed venous and
arterial blood gases by standard formulas (Zanella et al., 2016;
Radermacher et al., 2017).

• Volumetric capnography: CO2 elimination by the natural
lung (VCO2NL); alveolar partial pressure of oxygen (PAO2)
calculated as:

PAO2 = FiO2∗(Patm − PH2O)− PaCO2/RERNL

+ FiO2∗PaCO2∗(1− ERNL)/RERNL

Where RER NL is the respiratory exchange ratio of the natural
lung and was calculated as (Dickstein, 2020):

RERNL = VCO2NL/VO2NL

• CT scan: chest CT scans (Lightspeed R©, General Electric,
USA) were acquired during a respiratory hold performed
at end expiration. Acquired images were processed offline
for quantitative analysis, as previously described (Gattinoni
et al., 2006). Briefly, lung boundaries were manually drawn on
each slice and analyzed using a dedicated software program
(Maluna 3.17, Göttingen, Germany). After processing each
slice of a series, total lung weight expressed in grams of
tissue was calculated by standard formulas and frequency
distribution of lung CT numbers expressed inHounsfield units
(HUs) was computed. From this, lung units were classified
as non-aerated (density > −100 HU), poorly aerated (−100
to −500 HU), and normally aerated (−500 to −900 HU).
The percentages of non-aerated, poorly aerated, and normally
aerated tissue were measured both for the whole lungs and for
non-dependent (from halfway of the lungs up) and dependent
(from halfway down) regions.

• Electrical impedance tomography (EIT): EIT data
(Pulmovista, Drager, Lubeck, Germany) were continuously
recorded for 2–3min, during which end-expiratory and
end-inspiratory holds were performed. From offline analysis,
we measured the tidal ventilation distribution and the
regional respiratory system compliances in two equal-size
regions (non-dependent from halfway up and dependent from
halfway down), as previously described (Mauri et al., 2016a;
Scaramuzzo et al., 2020a).

Extracorporeal Membrane Oxygenation
After Baseline data collection, animals were turned supine
and veno-venous ECMO was started. ECMO circuit consisted
of draining line, pump, return line (heparin-coated 3/8
polyvinylchloride circuit and Bio-pump BPX-80, Medtronic
Italia SpA, Milan, Italy), membrane lung (EOS ECMO PMP
oxygenator, Livanova, London, UK), return line heater, oxygen
supply, and pressure transducer (positioned on the draining
line) and was primed with balanced solution at a controlled
temperature of 38◦C. The left iliac and right external jugular
veins were surgically cannulated (wire-reinforced venous
cardiopulmonary bypass cannula, 18 Fr 36 cm, Sorin Group
Italia srl, Mirandola, Italy) after an IV heparin bolus of 80 UI/kg,
and ECMO was started by a gradual increase of blood flow
(BF) up to 1.5 L/min. Then, heparin infusion was started at 40
UI/kg/h and titrated to obtain an Activated Coagulation Time of
180–210 s, measured every 1–2 h.

Once stable, animals were turned prone again.

Study Protocol
After start of ECMO and return to the prone position, ventilation
continued with the abovementioned settings (FiO2 = 0.5, Vt =
10 ml/kg, PEEP = 5 cmH2O, I:E = 1:2) and RR was promptly
decreased to 18 bpm for 6 h. BF was maintained at 1.5 L/min
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for the whole study and ECMO sweep 100% oxygen gas flow
(GF) was increased to maintain stable PaCO2 at values equal
to Baseline ± 5 mmHg (arterial blood gases were performed
every 30min and GF adjusted by 0.5 L/min steps until stability
for two subsequent measures). Toward the end of the RR 18
time period, data collection was performed again (see ECMO
data collection below). Then, respiratory rate was decreased to
12 bpm for 6 h, leaving all other ventilation settings unchanged
and adjusting ECMO GF as described above. Toward the end
of the 6-h RR 12 period, ECMO data collection was performed
again (see below). Finally, respiratory rate was reduced to 6 for
the last 6 h, ECMO GF was adjusted to obtain stable PaCO2, and
ECMO data collection was repeated toward the end. All animals
completed the protocol.

Toward the end of each 6-h study phase, all the
abovementioned Baseline data collection was repeated. The
following relevant data on ECMO support were collected, too:

• Extracorporeal CO2 elimination (VCO2 ML) was measured
by measuring the fraction of CO2 within the gas exiting the
ECMO membrane lung and multiplying this by the actual
ECMO GF.

• Oxygen consumption through the ECMO membrane lung
(VO2ML) was calculated from pre- and post-lung blood gas
analyses by standard formulas (Zanella et al., 2016).

• The RER of the membrane lung was calculated as:

RERML = VCO2 ML/VO2 ML (1)

Hemodynamic Protocol
Balanced electrolytes solution and norepinephrine were infused
according to a standardized protocol, with a target of MAP above
60 mmHg. Every step of the protocol was applied only if the
preceding one failed. If MAP was <60 mmHg:

• Balanced solution (Ringer) 250 ml bolus was administered,
and infusion restarted at 150 ml/h;

• If MAP remained <60 mmHg, solution bolus was repeated
and infusion was continued at 150 ml/h;

• If not responding to fluids, norepinephrine was started and
titrated to obtain MAP>60 mmHg, with infusion at 150 ml/h.

WhenMAP rose above 70 mmHg, hemodynamic support was
de-escalated according to the same protocol.

Statistical Analysis
Study sample size was similar to previous similar studies (Pesenti
et al., 1982; Neumann et al., 1998; Grasso et al., 2014). We
calculated that six animals would have allowed us to detect an
increase in the fraction of non-aerated tissue measured by CT
scan with power of 0.8, alpha 0.05, and very large effect size (1.5).
Data are shown as mean ± standard deviation. Comparisons
between variables at each study time point were performed
by one-way repeated measures ANOVA. Comparisons of non-
aerated lung fractions at each time point in the non-dependent
and dependent lung regions were performed by two-way
repeated measures ANOVA. Holm–Sidak test was applied for
post-hoc analyses. Correlations between variables were tested by

Pearson’s coefficient. Statistical significance was defined by p <

0.05 (two-tailed). Statistical analysis was performed using Sigma
Plot 11.0 (Systat Software Inc., CA, USA).

RESULTS

Progressive Reduction of Respiratory Rate
and ECMO Support
Respiratory rate decreased from 24 to 6 bpm while CO2 removal
(p < 0.001) gradually increased. Extracorporeal oxygenation
(p < 0.001) increased after ECMO start and then remained
stable (Table 1). ECMO provided around 40% of total VO2, with
minimal differences between study steps, while the ECMOVCO2

increased progressively with the reduction of the respiratory
rate, up to around 60% of total VCO2 at 6 breaths per minute
(Table 1). Arterial partial pressure of CO2 remained stable
throughout all study phases (p= 0.146; Table 1).

Effects of Lower Respiratory Rate and
Higher Extracorporeal CO2 Removal by
ECMO
The percentage of collapsed non-aerated lung tissue in the whole
lungs measured by CT scan (i.e., lung atelectasis) significantly
increased at lower respiratory rate and higher ECMO CO2

extraction (Figure 1A and Table 1). Development of atelectasis
was mirrored by a reduction of the normally aerated lung tissue
(p = 0.011), without change in total lung weight (i.e., no lung
edema) measured by CT scan (p= 0.260; Table 1).

The increase in non-aerated compartment measured by CT
scan was more pronounced in the gravitationally dependent
lung regions (Dep vs. NDep p = 0.022, study steps p = 0.007,
interaction p < 0.001; Figure 1B). EIT data showed that collapse
of the dependent lung caused a reduction of regional tidal
volume at lower respiratory rate (p = 0.018), likely caused
by decreased local respiratory system compliance (p = 0.012;
Table 1). Figure 2 shows CT and EIT images for RR 24 and RR 6
study phase from a representative animal.

Progressive decrease of respiratory rate and increase of
CO2 removal by ECMO were associated with increased
intrapulmonary shunt (p< 0.001; Figure 3A) and with decreased
PaO2 (p < 0.001; Figure 3B). FiO2 remained unchanged
as per study protocol. Moreover, there was a reduction in
arterial blood pH (p = 0.004) with decrease in base excess
(p < 0.001) and bicarbonates (p < 0.001), possibly due
to metabolic compensation for some respiratory alkalosis at
Baseline (Table 2).

As respiratory rate decreased and ECMO CO2 extraction
increased, mechanical power decreased (p < 0.001) in
comparison to the RR 24 Baseline value (Table 2). At lower
respiratory rates, plateau pressure (p < 0.001) and mean airway
pressure (p = 0.021) slightly increased, while respiratory system
compliance decreased (Table 2). Partitioned mechanics showed
that lung compliance remained stable at increasing level of
CO2 removal by ECMO, while chest wall compliance decreased
(Table 2).
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TABLE 1 | Physiological effects of progressive reduction of respiratory rate and increase of extracorporeal CO2 removal during ECMO support—Part 1.

Variables◦ RR 24 Baseline RR 18 + ECMO RR 12 + ECMO RR 6 + ECMO P-value#

ECMO

VCO2 NL, % total 100 ± 0 82 ± 7* 68 ± 13* 39 ± 7* <0.001

VCO2 ML, % total 0 ± 0 18 ± 7* 32 ± 13* 61 ± 7* <0.001

VO2 NL, % total 100 ± 0 60 ± 11* 59 ± 9* 62 ± 7* <0.001

VO2 ML, % total 0 ± 0 40 ± 11* 41 ± 9* 38 ± 7* <0.001

Gas exchange

PaCO2, mmHg 34.6 ± 3.8 30.7 ± 2.7 33.1 ± 4.0 32.4 ± 2.3 0.146

PaO2/FiO2 526 ± 46 501 ± 49 509 ± 35 436 ± 46* <0.001

Computed tomography scan

Non-aerated lung (atelectasis), % 3 ± 2 3 ± 2 6 ± 4 12 ± 9* 0.009

Poorly-aerated lung, % 39 ± 7 39 ± 11 44 ± 11 46 ± 12 0.270

Normally-aerated lung, % 58 ± 8 58 ± 12 50 ± 14 42 ± 11* 0.011

Total lung weight, g 661 ± 119 647 ± 125 632 ± 95 695 ± 106 0.260

Electrical impedance tomography

Vt NDep, % 29 ± 5 29 ± 6 34 ± 10 38 ± 11* 0.018

Vt Dep, % 71 ± 5 71 ± 6 66 ± 10 62 ± 11* 0.018

Crs NDep, ml/cmH2O 12 ± 2 9 ± 2 11 ± 3 12 ± 3 0.127

Crs Dep, ml/cmH2O 30 ± 8 24 ± 3* 23 ± 5* 20 ± 6* 0.012

#One-way RM ANOVA.
*p < 0.05 Post-Hoc Holm–Sidak method vs. RR 24 Baseline value.
◦ECMO, extracorporeal membrane oxygenation; VCO2 NL, VCO2 natural lung; VCO2 ML, VCO2 membrane lung; VO2 NL, VO2 natural lung; VO2 ML, VO2 membrane lung; PaCO2,

arterial partial pressure of carbon dioxide; PaO2, arterial partial pressure of oxygen; FiO2, inspiratory fraction of oxygen; Vt NDep, tidal volume, non-dependent lung region; Vt Dep, tidal

volume, dependent lung region; Crs NDep, respiratory system compliance, non-dependent region; Crs Dep, respiratory system compliance, dependent region. Significant p-values are

presented in bold characters.

FIGURE 1 | Development of atelectasis (non-aerated lung tissue) in healthy pigs undergoing Extracorporeal Membrane Oxygenation (ECMO) with progressive

decrease of respiratory rate. (A) Development of atelectasis as increase of the % of Non-aerated lung tissue. (B) Regional atelectasis as increase of the % of

non-aerated lung tissue in gravitationally dependent and non-dependent regions. *p < 0.05 Post-Hoc Holm–Sidak method vs. Baseline. #p < 0.05 Post-Hoc

Holm–Sidak method DEP vs. NON-DEP within study steps. §p < 0.05 Post-Hoc Holm–Sidak method vs. Baseline within region (DEP).

Finally, despite stable systemic arterial pressure and cardiac
output, mean pulmonary artery pressure increased at lower RR
(p < 0.05; Figure 3C and Table 2).

Determinants of Physiological Impairments
In an effort tomore precisely identify themechanisms underlying
poorer respiratory physiology, we explored correlations between
physiologic changes induced by lower respiratory rate and higher
ECMOCO2 extraction and the abovementioned observed effects.

The percentage of non-aerated lung tissue was correlated with
the expiratory time spent at zero flow (r = 0.555; Figure 4A) and
not with the mean or the plateau airway pressure (r = −0.333
and r = 0.102, respectively). The percentage of non-aerated lung
was correlated also with the RER ML (r = 0.702; Figure 4B),
indicating that development of atelectasis may be more likely
when ECMO is predominantly used to remove CO2.

Intrapulmonary shunt was correlated with the SvO2 and with
the % of VO2 granted by ECMO (r = 0.419 and r = 0.664,
respectively; Figure 5A). Increasing ECMO CO2 extraction
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FIGURE 2 | Representative CT scan (aeration at end expiration, Top) and

Electrical Impedance Tomography (ventilation at end-inspiration, Bottom)

images during RR 24 and RR 6 step from one representative animal. Blue

arrow indicates lung collapse at CT scan; green arrow indicates the

correspondent loss of aeration detected by EIT analysis.

decreased the RER NL (Baseline 0.74± 0.09 vs. RR18 0.87± 0.11
vs. RR12 0.78 ± 0.12 vs. RR6 0.46 ± 0.13, p < 0.001), resulting
in lower alveolar PAO2 (RR24 312 ± 6 mmHg vs. RR18 321 ±

4 mmHg vs. RR12 315 ± 7 mmHg vs. RR6 300 ± 12 mmHg; p
< 0.001). Systemic PaO2 was significantly correlated with PAO2

(r = 0.568; Figure 5B).

DISCUSSION

Study main findings are that progressive decrease of respiratory
rate coupled with increased extracorporeal CO2 removal
by ECMO leads to reduced mechanical power, but it is
also associated with development of atelectasis, higher
intrapulmonary shunt, and lower oxygenation in a large
animal model of ECMO with healthy lungs. Development of
atelectasis may be caused by longer motionless expiratory time
(zero flow during expiration) and predominance of CO2 removal
over oxygen delivery by the ECMO membrane lung. Increased
shunt, evident already during the RR 18 phase, instead, may be
correlated to oxygen transfer by ECMO, leading to higher mixed
venous saturation. Finally, poorer systemic oxygenation may
be caused by lower RER of the natural lung, yielding reduced
alveolar O2 tension.

Seminal ECMO studies proposed reduction to very low
frequency ventilation (3–5 breaths per minute) as optimal
strategy for lung rest (Gattinoni et al., 1986). The twomost recent
randomized clinical trials on ECMO in severe ARDS applied
much higher rates: fixed 10 breaths per minute in the CESAR trial
(Peek et al., 2009) and an average of 23–24 breaths per minute
in the more recent EOLIA study (Combes et al., 2018), leaving
equipoise and clinical uncertainty. A study in pigs with acute
lung injury described that rate of∼14 breaths per minute during
extracorporeal CO2 removal was associated with lower levels of
systemic and pulmonary inflammatory mediators in comparison
to standard mechanical ventilation with ∼30 breaths per minute

(Grasso et al., 2014). However, the two ventilation strategies were
applied only for 3 h. Amore recent experimental study on animal
model of ARDS compared different ventilation strategies for 24 h
during ECMO. The one termed “near-apneic” with a rate of
5 breaths per minute showed decreased histologic lung injury
score in comparison to other strategies with higher RR. However,
the “near-apneic” strategy was also associated with impaired
respiratory mechanics (Araos et al., 2019). Thus, physiological
targets guiding the decrease of respiratory rate after ECMO start
remain an open issue.

The aim of mechanical ventilation during ECMO is to
decrease the risk of VILI (Marini et al., 2020), and reduction
of respiratory rate is usually a key component of this strategy
(Pesenti et al., 1982; Gattinoni et al., 1986; Peek et al., 2009;
Terragni et al., 2009; Bein et al., 2013; Combes et al., 2018,
2019). As expected, in the present study, respiratory rate was
associated with significantly decreased mechanical power, with
larger reduction at lower rates, potentially suggesting linear
correlation between reduced respiratory rate and lung protection
(at constant inspiratory flow). However, progressive decrease
of respiratory rate (especially at values lower than 12 breaths
per minute) was also associated with development of atelectasis.
Atelectasis may trigger two key mechanisms of VILI, potentially
outweighing the beneficial effects of decreasedmechanical power,
namely, reduced baby lung size (i.e., the normally aerated lung
fraction) causing increased lung strain (Bellani et al., 2011) and
larger fraction of lung units opening and closing during the
respiratory cycle (atelectrauma) causing additional local stress
by the sudden diffusion of gas flow between the epithelial cells
(Caironi et al., 2010). A larger fraction of atelectasis occurred
in the dependent lung, suggesting that this region may be
particularly prone to these detrimental mechanisms, as shown by
a previous publication (Scaramuzzo et al., 2020b).

Reduced respiratory rate after ECMO start was also associated
with increased intrapulmonary shunt and lower arterial
oxygenation, confirming previous observations in ARDS
patients (Fanelli et al., 2016; Spinelli et al., 2020). Higher shunt
and poorer oxygenation may not be detrimental per se for the
lungs. However, in clinical practice, they could lead to use of
higher PEEP levels and more aggressive recruitment during
ECMO and, in turn, with increased risk of overdistension and
barotrauma (Mauri et al., 2016a), further increasing the risk of
undermining the benefits of reduced mechanical power.

We described increased pulmonary artery pressure at lower
respiratory rate that may stress the right heart function, which is
a major determinant of ARDS outcome (Mekontso Dessap et al.,
2016).

In summary, our data indicate that progressive decrease
of respiratory rate after ECMO start is associated with lung-
protective effects but may place the basis for mechanisms
potentially promoting VILI.

Deeper understanding of the mechanisms that caused the
abovementioned physiological effects may be key to tailor
personalized ventilation and ECMO settings. A previous study
showed that expiratory time longer than 4 s promotes lung
collapse in a large animal model of ARDS (Neumann et al.,
1998). Our results are in line with those findings: expiratory
time was 6.7 s during the RR 6 phase (the one associated
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FIGURE 3 | Physiological effects of lower respiratory rate and higher extracorporeal CO2 removal by ECMO. Progressive decrease of respiratory rate induced

significant increase of intrapulmonary shunt calculated with Riley’s method (A), poorer systemic oxygenation (B), and higher mean pulmonary artery pressure (C). RR,

respiratory rate; ECMO, extracorporeal membrane oxygenation; PaO2, arterial partial pressure of oxygen. *p < 0.05 Post-Hoc Holm–Sidak method vs. Baseline.

TABLE 2 | Physiological effects of progressive reduction of respiratory rate and increase of extracorporeal CO2 removal during ECMO support—Part 2.

Variables◦ RR24 Baseline RR18 + ECMO RR12 + ECMO RR6 + ECMO P-value#

Respiratory mechanics

Pplat, cmH2O 14 ± 1 17 ± 2* 17 ± 1* 17 ± 1* <0.001

mPaw, cmH2O 9 ± 1 10 ± 1 9 ± 2 8 ± 1 0.183

Mechanical power, J/min 9.7 ± 1.0 8.8 ± 1.7 5.4 ± 0.8* 3.4 ± 0.7* <0.001

TEXP at zero flow, s 0.1 ± 0.2 0.4 ± 0.3 1.2 ± 0.5* 4.3 ± 0.8* <0.001

Crs, ml/cmH2O 44 ± 6 34 ± 3* 34 ± 4* 34 ± 3* <0.001

Ccw, ml/cmH2O 90 ± 14 74 ± 14 67 ± 18* 62 ± 9* 0.014

Clung, ml/cmH2O 88 ± 26 68 ± 24 77 ± 27 81 ± 26 0.475

Vt/EELV ratio 0.54 ± 0.06 0.52 ± 0.08 0.63 ± 0.16 0.62 ± 0.15 0.063

Hemodynamics

MAP, mmHg 106 ± 8 116 ± 15 109 ± 9 101 ± 24 0.450

HR, bpm 93 ± 7 104 ± 14 98 ± 21 96 ± 21 0.681

PAPm, mmHg 15 ± 2 18 ± 2 19 ± 3* 20 ± 2* 0.036

PCWP, mmHg 6 ± 2 6 ± 1 6 ± 2 8 ± 2 0.265

CO, L/min 5.2 ± 0.5 4.7 ± 0.4 4.4 ± 0.8 4.6 ± 0.6 0.228

CVP, mmHg 2 ± 2 3 ± 1 3 ± 3 5 ± 2 0.119

SvO2, % 69 ± 4 80 ± 6 77 ± 5 76 ± 7 0.008

Arterial acid–base balance

pH 7.54 ± 0.03 7.55 ± 0.04 7.50 ± 0.04* 7.49 ± 0.02* 0.004

HCO3−, mmol/L 29.6 ± 1.7 26.8 ± 2.1* 26.5 ± 1.4* 24.7 ± 1.8* <0.001

BE, mmol/L 10.5 ± 10.3 8.2 ± 10.9* 7.4 ± 11.1* 5.7 ± 10.2* <0.001

Lac, mmol/L 1.0 ± 0.3 0.7 ± 0.2 0.7 ± 0.4 0.6 ± 0.3 0.066

#One-way RM ANOVA.

*p < 0.05 Post-Hoc Holm–Sidak method vs. RR 24 Baseline value.
◦Pplat, plateau pressure; mPaw, mean airway pressure; TEXP at zero flow, expiratory time at zero flow; Crs, static respiratory system compliance; Ccw, chest wall compliance; Clung,

lung compliance; EELV, end-expiratory lung volume measured by CT scan; MAP, mean arterial pressure; HR, heart rate; PAPm, mean pulmonary arterial pressure; PCWP, pulmonary

capillary wedge pressure; CO, cardiac output; CVP, central venous pressure; SvO2, mixed venous saturation; BE, base excess; Lac, plasma lactates. Significant p-values are presented

in bold characters.

with larger fraction of atelectasis) vs. 3.3 s during RR 12 and
2.2 s for RR 18. We also described a more direct association
between the development of atelectasis and the “no motion”
time at end expiration. This phenomenon is probably due
to lack of fresh gas replacement favoring reabsorption and
it seems reasonable from a physiological point of view as
collapse more likely occurs when the alveolar pressure reaches
its lowest level (Duggan et al., 2005). Larger fraction of
atelectasis was also correlated with predominance of CO2

extraction over O2 delivery by the ECMO membrane lung:

this might be due to collapse of instable lung units with
a low ventilation–perfusion ratio, which may have increased
at lower respiratory rates by reduced alveolar ventilation.
Indeed, these units are more prone to collapse due to the
shift of alveolar nitrogen to relatively denitrogenated venous
blood (Dantzker et al., 1975). Interestingly, shorter expiratory
time spent at zero flow would not influence the latter
mechanism and atelectasis would develop anyway, while a lower
concentration of oxygen in the ECMO sweep gas flow might
be protective.
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FIGURE 4 | Physiological changes induced by decreased respiratory rate and increased extracorporeal CO2 removal associated with the development of atelectasis.

Increased expiratory time spent at zero flow (TEXP at flow zero) (A) and higher Respiratory Exchange Ratio of the membrane lung (RER ML) (B) were correlated with

higher fraction of non-aerated lung tissue (i.e., atelectasis). See text for methodological details. Number of observations were n = 20 in (A) due to unavailability of

calculation of expiratory time at flow zero in one of the animals and n = 15 in (B) due to impossibility of blood withdrawal to calculate RER ML in one of the animals.

FIGURE 5 | Physiological changes induced by decreased respiratory rate and increased extracorporeal CO2 removal associated with increased intrapulmonary shunt

and poorer arterial oxygenation. Higher oxygen transfer by the ECMO membrane lung (VO2 ML) was correlated with larger intrapulmonary shunt fraction (A). Alveolar

O2 pressure (PAO2) was correlated with systemic arterial partial pressure of O2 (PaO2 ) (B). See text for methodological details. Number of observations were n = 20 in

(A) due to impossibility of blood withdrawal to calculate VO2ML in one of the animals and n = 23 in (B) due to blood gas analyzer failure for one arterial sample.

We showed that increased intrapulmonary shunt was
proportional to oxygen delivery by ECMO and to mixed venous
saturation: blunting of hypoxic vasoconstriction by higher
oxygenation of venous blood is known to increase shunt and
could be the underlying mechanism (Spinelli et al., 2020). In
the future, personalized ECMO settings might be aimed at
minimizing these effects.

Finally, arterial and alveolar O2 tensions were correlated in
our study, as expected in healthy lungs (Riley and Cournand,
1949). Decreased arterial and alveolar PO2 at lower respiratory
rates were caused by lower RER of the natural lung due to higher
CO2 extraction by ECMO. Of note and as previously described,
the RER of the natural lung decreased only at very high CO2

extraction rate by ECMO and relatively low FiO2 at the ventilator
and may not be particularly relevant during standard clinical use
(Abrams et al., 2020).

Personalized respiratory rate in ARDS patients on ECMO
may be chosen as the one associated with reduced mechanical

power without increase in atelectasis. For example, continuous
dynamic EIT monitoring could identify the lowest respiratory
rate avoiding decrease of the dependent lung ventilation. On
average, among the respiratory rates explored in this study, 12
breaths per minute was associated with decreased mechanical
power and minimal detrimental effects.

This study has relevant limitations in the design of the
experiment. First, the respiratory rates were not randomized
since, to increase the clinical impact, we decided to assess the
detrimental effects of progressive decrease of respiratory rate and
not to compare selected target respiratory rates, which would
have been anyway debatable. The development of atelectasis
likely occurred by interaction of decreased rate and time under
controlled mechanical ventilation and paralysis. The progressive
decrease in chest wall compliance might be a confounding factor,
possibly due to surgical procedures, and time under paralysis
and anesthesia, while the lack of change in lung compliance with
decreasing RR might be explained by the relatively small amount
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of atelectasis. Second, tidal volume was left unchanged during
the study, while it is usually decreased after ECMO start in the
clinical practice reduction. However, further hypoventilation due
to reduced tidal volumemight have amplified the unphysiological
effects that we measured (e.g., atelectasis). Third, some ECMO
centers increase PEEP in severe ARDS patients after ECMO
start (Schmidt et al., 2019) to limit de-recruitment while we left
unchanged low PEEP level of 5 cmH2O. Higher PEEP might
counteract the decrease in EELV due to atelectasis. Fourth,
the study was performed exclusively on healthy animals, which
limits clinical significance, but our choice is intended to remove
the problem of discriminating between hypoventilation-induced
atelectasis and loss of aeration due to lung injury and edema,
which are predominant mechanisms leading to loss of aeration
in ARDS.

CONCLUSIONS

In the end, our study is an exploratory investigation to test the
physiological effects of reduced respiratory rate per se during
ECMO. Progressive decrease of respiratory rate and increased
CO2 extraction in a large animal model of ECMO with healthy
lungs are associated with not only decreased mechanical power
but also development of atelectasis, higher intrapulmonary
shunt, and lower arterial oxygenation. We observed mild
but potentially detrimental physiological effects that deserve
attention in order to personalize optimal ventilation and ECMO
interaction guaranteeing protective respiratory mechanics and
minimal adverse events.
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Background: Bilateral opacities on chest radiographs are part of the Berlin Definition
for Acute Respiratory Distress Syndrome (ARDS) but have poor interobserver reliability.
The “Radiographic Assessment of Lung Edema” (RALE) score was recently proposed
for evaluation of the extent and density of alveolar opacities on chest radiographs of
ARDS patients. The current study determined the accuracy of the RALE score for the
diagnosis and the prognosis of ARDS.

Methods: Post-hoc analysis of a cohort of invasively ventilated intensive care unit
(ICU) patients expected to need invasive ventilation for >24 h. The Berlin Definition
was used as the gold standard. The RALE score was calculated for the first available
chest radiograph after start of ventilation in the ICU. The primary endpoint was the
diagnostic accuracy for ARDS of the RALE score. Secondary endpoints included the
prognostic value of the RALE score for ICU and hospital mortality, and the association
with ARDS severity, and the PaO2/FiO2. Receiver operating characteristic (ROC) curves
were constructed, and the optimal cutoff was used to determine sensitivity, specificity
and the negative and positive predictive value of the RALE score for ARDS.

Results: The study included 131 patients, of whom 30 had ARDS (11 mild, 15
moderate, and 4 severe ARDS). The first available chest radiograph was obtained
median 0 [0 to 1] days after start of invasive ventilation in ICU. Compared to patients
without ARDS, a higher RALE score was found in patients with ARDS (24 [interquartile
range (IQR) 16–30] vs. 6 [IQR 3–11]; P < 0.001), with RALE scores of 20 [IQR 14–24],
26 [IQR 16–32], and 32 [IQR 19–36] for mild, moderate and severe ARDS, respectively,
(P = 0.166). The area under the ROC for ARDS was excellent (0.91 [0.86–0.96]). The
best cutoff for ARDS diagnosis was 10 with 100% sensitivity, 71% specificity, 51%
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positive predictive value and 100% negative predictive value. The RALE score was not
associated with ICU or hospital mortality, and weakly correlated with the PaO2/FiO2.

Conclusion: In this cohort of invasively ventilated ICU patients, the RALE score had
excellent diagnostic accuracy for ARDS.

Keywords: invasive ventilation, acute respiratory distress syndrome (ARDS), lung imaging, chest X ray, chest
radiogprahs, diagnostic capacity, prognostic capacity, rale score

INTRODUCTION

The chest radiograph is a frequently used imaging tool in
intensive care unit (ICU) patients (Trotman-Dickenson, 2003;
Graat et al., 2006), although its clinical value has been disputed
(Graat et al., 2005). Findings on chest radiographs are an
important part of the Berlin Definition for acute respiratory
distress syndrome (ARDS Definition Task Force et al., 2012),
despite the low interobserver reliability that does not improve
with training (Rubenfeld et al., 1999; Goddard et al., 2018). Also,
the description of chest radiographs findings remains mostly
subjective. Recently, therefore, the “Radiographic Assessment of
Lung Edema” (RALE) score was proposed (Warren et al., 2018),
a numeric scoring system in which the chest is divided into
four quadrants that are each scored on a numerical scale for
extent of consolidation and density of opacification. The RALE
score is calculated by summing the product of the scores for
consolidation and density of opacification of the four quadrants,
and can range from 0 to 48.

While the first description of the RALE score focused
on validating the score against gravimetric quantification and
testing the association between the score and outcome in
patients with ARDS (Warren et al., 2018), it could be that
this score also has discriminating properties to diagnose ARDS
in invasively ventilated ICU patients who may or may not
have ARDS. In addition, with every new scale or score,
it is necessary to externally validate its capacity, feasibility
and reliability (Patrick and Chiang, 2000; Keszei et al., 2010;
Kottner et al., 2011).

The objective of the current study was two–fold. The
first objective was to determine whether the RALE score has
diagnostic properties for ARDS, and prognostic properties in
ICU patients. The second objective was to assess the feasibility
and interobserver reliability of the RALE score. These objectives
were studied using the chest radiographs of patients in a well–
defined cohort of invasively ventilated ICU patients (Vercesi
et al., 2018). The hypotheses tested were that the RALE score
has a good diagnostic accuracy for ARDS, and that the RALE
score has prognostic value in invasively ventilated ICU patients,
independent of the diagnosis of ARDS.

MATERIALS AND METHODS

Study Design and Settings
This study was a post-hoc analysis of a single–center observational
study performed in the ICU of the Amsterdam University
Medical Centers, location Academic Medical Center (AMC)

between November 2016 and June 2017 (Vercesi et al., 2018;
Pisani et al., 2019). The Institutional Review Board of the AMC
approved the original study and waived the need for informed
consent from individual patients because data used in this study
had been collected as part of standard care for patients with acute
respiratory failure (approval W17_353 # 17.411).

Inclusion and Exclusion Criteria
Patients were eligible for participation in the original study
if they: (a) were expected to receive invasive ventilation for
at least 24 h at the moment of screening, (b) received
ventilation with a minimum of 5 cm H2O positive end–
expiratory pressure (PEEP); and (c) had a chest radiograph
or lung CT scan within the first 24 and 48 h of start of
invasive ventilation, respectively. As the original study focused
on the diagnostic value of lung ultrasound plus pulse oximetry
for moderate or severe ARDS, the original study had two
exclusion criteria, namely: (a) no lung ultrasound study made
within 48 h of start of invasive ventilation; and (b) conditions
potentially compromising reliability of pulse oximetry, including
carbon monoxide poisoning. The number of excluded patients
because of these reasons, though, was very low. An additional
exclusion criterion for the current analysis was the absence
of a chest radiograph during the first 2 days of invasive
ventilation in the ICU.

Data Collection
Collection of data involved demographic characteristics
including age, gender, height, weight, and body mass index;
disease severity scores including the acute physiology and
chronic health evaluation IV score and the simplified
acute physiology score II; and ventilation characteristics
including FiO2, minute volume, PEEP, maximum airway
pressure (Pmax), respiratory rate, tidal volume, and blood gas
analysis results.

ARDS Diagnosis
Acute respiratory distress syndrome was diagnosed according to
the Berlin Definition for ARDS (ARDS Definition Task Force
et al., 2012). For this, a panel of independent experienced
clinicians assessed presence or absence of ARDS, strictly using
the 4 components of the Berlin Definition for ARDS, i.e.,
new or worsening respiratory symptoms within 1 week of a
known medical clinical insult; a PaO2/FiO2 < 300 mm Hg
at a minimum of 5 cm H2O PEEP; bilateral opacities on the
chest radiograph or computed tomography (CT) exam, not
explained by effusions, collapse or nodules; and respiratory
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Consolidationa Calculation of the RALE score for radiograph
Consolidation Score Extent of alveolar 

opacities
Score Q1 Q2 Q3 Q4 Total

0 None Consolidation 2 1 3 4
1 < 25 % Density 3 3 3 3
2 25 – 50 % Quadrant Score 2 x 3

= 6
1 x 3 
= 3

3 x 3 
= 9

4 x 3 
= 12

30
3 50 – 75 %
4 > 75 %

Densityb

Density Score Density of alveolar 
opacities

1 Hazy
2 Moderate
3 Dense

Final RALE Scorec

Right Lung Left Quadrant

Upper Quadrant Upper Quadrant
Cons x Den = Q1 Score Cons x Den = Q3 Score

Lower Quadrant Lower Quadrant
Cons x Den = Q2 Score Cons x Den = Q4 Score

Total RALE = Q1 + Q2 + Q3 + Q4
a Consolidation is scored for each quadrant
b Density is scored for each quadrant having a 
consolidation > 0
c If Quadrant consolidation Score is 0 than Quadrant 
score il 0

FIGURE 1 | Consolidation and density scoring in the RALE score.

failure not fully explained by cardiac failure or fluid overload.
Of note, the clinicians applying the criteria in the Berlin
Definition for ARDS could not calculate the RALE score, as
this score was developed and reported in the literature after
their assessments.

RALE Score
Two independent researchers (CZ and VL) scored the first
available chest radiograph after start of mechanical ventilation
in ICU patients. These researchers were unaware of clinical
information or presence or absence of ARDS, as well as the
results of assessments of the above–mentioned physicians who
applied the criteria in the Berlin Definition. In short, as shown in
Figure 1, the lung fields on the chest radiograph were divided into
four quadrants by a vertical line over the spine and a horizontal
line at the level of the first branch of the left main bronchus,
exactly as described in the seminal publication on the RALE score
(Warren et al., 2018). Each quadrant was assigned a number,
and the extent of alveolar opacities (the consolidation score,
from 0 to 4) and density of alveolar opacities (the density score,
from 1 to 3) was determined. If the consolidation score was
0, the density score was 0. The final RALE score was the sum
of the product of the consolidation and density score for each
quadrant. Thus, the final RALE score ranged from minimum
0 to maximum 48.

Endpoints
The primary endpoint was the diagnostic accuracy for ARDS of
the RALE score. Secondary endpoints included the prognostic
value of the RALE score for ICU and hospital mortality,
correlation between the RALE score and ARDS severity,
and the inter-observer reliability for the RALE scoring, the
correlation with the PaO2/FiO2 at the moment the chest
radiograph was obtained.

Statistical Analysis
Demographic data, and clinical and outcome variables were
presented as frequencies with percentages for categorical
variables and as medians with interquartile ranges for
continuous variables.

To determine the reliability of the RALE score, the
interobserver variability (Keszei et al., 2010) between the primary
scorer and a second independent investigator was tested on
the entire cohort of the patients. For this, a two–way mixed
consistency average measures intraclass correlation coefficient
(ICC) was calculated. A Bland–Altman plot and a scatter plot
were used to visualize the agreement between independent
viewers. For the primary analysis only the scores attributed by
the primary scorer were used.

To determine the diagnostic accuracy of the RALE score for
ARDS, the Area Under the Receiver Operating Characteristic
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curve (AUROC) with 95% confidence intervals (CI) was
calculated. Diagnostic accuracy was considered “excellent” if
AUROC was between 0.9 and 1, “very good” between 0.8 and
0.9, “good” between 0.7 and 0.8, “sufficient” between 0.6 and
0.7, and “bad” between 0.5 and 0.6 (Šimundić, 2009). The
best cutoffs, the maximum difference between true positive
and false positive, were obtained with the Youden index
(Youden, 1950) (sensitivity + specificity – 1). Sensitivity,
specificity, positive and negative predictive values were calculated
using this cutoff.

Next, RALE scores were compared between patients without
ARDS, and patients with mild, moderate or severe ARDS, and
local polynomial regression (LOWESS curve fitting) was used
to assess the correlation between RALE score with PaO2/FiO2,
PEEP, FiO2, and PMax.

Finally, to determine the prognostic accuracy for ICU or
hospital mortality, ROCs were constructed and analyzed in the
same way as for determining the diagnostic accuracy for ARDS.

Statistical significance was considered when P < 0.05.
All analyses were performed using IBM SPSS Statistics
24.0 and graphs built using Prism 8 (GraphPad
software, version 8.4.2).

RESULTS

Patients
Patient flow is shown in Figure 2. Of the 152 patients in
the original cohort, 131 patients fulfilled the additional criteria
for participation in the current analysis. Of them, 101 were
diagnosed as not having ARDS, and 30 fulfilled the Berlin
Definition for ARDS (11, 15, and 4 patients with mild, moderate
and severe ARDS, respectively). Demographic and ventilatory
characteristics are presented in Table 1.

The ICC for applying the RALE score was excellent (0.95
[95%– CI 0.92–0.96]). The Bland–Altman plot showed a
strong agreement and the scatter plot suggests high degree
of agreement between the two independent researchers
(Supplementary Figure 1).

FIGURE 2 | Patient flow.

TABLE 1 | Baseline characteristics, outcomes and ventilatory characteristics of
patients at the moment of the chest radiograph.

No ARDS Mild ARDS Moderate
ARDS

Severe
ARDS

Baseline characteristics and outcomes

Age, years 62 [51,72] 65 [52,71] 55 [24,69] 54 [37,59]

Gender, male 59 (58) 5 (45) 11 (73) 3 (75)

BMI, kg/m2 25 [23,28] 26 [24,28] 26 [23,33] 24 [23,29]

SAPS 37 [15,52] 24 [15,53] 20 [3,49] 52 [12,61]

SOFA 10 [7,12] 9 [6,11] 11 [8,13] 13 [11,15]

APACHE II
score

22 [17,27] 20 [15,31] 19 [13,24] 24 [15,27]

ICU mortality 32 (32) 3 (27) 3 (20) 4 (100)

Hospital
mortality

41 (41) 3 (27) 3 (20) 4 (100)

Duration of
ventilation

3 [1,8] 5 [2,17] 12 [7,18] 11 [1,21]

VFD 28, days 19 [0,25] 18 [0,24] 15 [0,20] 0 [0,0]

Ventilation characteristicsx

FiO2, % 40 [30,50] 50 [40,65] 50 [40,60] 100 [93,100]

Minute volume,
L/min

8.7 [6.9,10.8] 10.3[9.3,12.9] 10.8[9.4,12.7] 11.4[4.9,13.5]

PEEP, cm H2O 5 [5,8] 8 [7,10] 12 [8,15] 15 [11,15]

Pmax , cm H2O 22 [16,27] 28 [26,35] 31 [27,36] 35 [31,39]

RR measured,
breath/min

18 [16,24] 26 [22,32] 27 [21,30] 23 [13,30]

VT , ml/kg PWB 8.2 [6.7,9.3] 8.5 [6.1,10.1] 6.9 [4.8,8.8] 5.4 [2.6,9.4]

SpO2, % 98 [96,100] 96 [93,99] 95 [94,98] 89 [78,95]

PaO2, mm Hg 89 [80,102] 80 [69,93] 77 [67,80] 75 [61,92]

PaO2 to FiO2
ratio

253
[173,321]

159
[131,212]

143
[123,177]

78 [62,92]

Values are medians [interquartile range] or numbers (percentage).
Abbreviations: ARDS, acute respiratory distress syndrome; SAPS, simplified acute
physiology score; SOFA, sequential organ failure assessment; APACHE, acute
physiology and chronic health; VFD 28, ventilator-free days at day 28; FiO2, fraction
of inspired oxygen; PEEP, positive end–expiratory pressure; Pmax, maximum
airway pressure; RR, respiratory rate; VT, tidal volume; PBW, predicted body
weight; SpO2, pulse oximetry saturation; PaO2, arterial oxygen pressure; and
PaCO2, arterial carbon dioxide pressure.

The Diagnostic Performance of the RALE
Score
The RALE score was higher in ARDS patients compared to
patients without ARDS (24 [16–30] vs. 6 [3–11]; P < 0.001) and
had an excellent area under the ROC for ARDS (Figure 3). The
best cutoff for ARDS diagnosis was 10 (Youden’s index = 0.710)
with 100% sensitivity, 71% specificity, 51% positive predicted
value and 100% negative predicted value. Although the RALE
scores increased with ARDS severity, differences between the
severity groups were non–significant (20 [14–24], 26 [16–32] and
32 [19–36] in mild, moderate and severe ARDS, respectively;
P = 0.166).

The Prognostic Value of the RALE Score
The prognostic capacity of the RALE score for ICU – and hospital
mortality was poor (Figure 4).
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FIGURE 3 | (A) RALE scores in patients with ARDS and those without ARDS; (B) Receiver Operating Characteristic curves for ARDS. The dot represents the optimal
cutoff.

FIGURE 4 | (A) Receiver operating characteristic curves for ICU mortality;
(B) Receiver operating characteristic curves for hospital mortality.

Correlation With PaO2/FiO2
The correlation between RALE score and PaO2/FiO2 was weak
(R2 linear = 0.21; Supplementary Figure 2). No meaningful
association was detectable between the RALE score and PEEP
levels recorded at the moment of the CXR.

DISCUSSION

The findings of this post-hoc analysis of cohort of well–defined
invasively ventilated critically ill patients expected not to be
extubated within 24 h can best be summarized as follows: (a)
the RALE score is higher in patients with ARDS compared to
patients not fulfilling the Berlin Definition for ARDS, (b) the
diagnostic performance for ARDS of the RALE score is excellent,
with a cutoff of 10 showing excellent sensitivity and moderate
specificity; (c) though has poor prognostic value in a mixed
cohort of patients with may or may not have ARDS; (d) the RALE
score increases from mild to severe ARDS, though this finding
was not statistically significant; and (e) the RALE score correlates
weakly with the PaO2/FiO2.

This study has several strengths. It used the data of a
prospective study in which consecutive patients expected to be
intubated for at least 24 h were included. The original study as
well as the current re–analysis had only few exclusion criteria,
increasing its generalizability. Only eight patients were excluded
because of a missing chest radiograph. The chest radiographs
used for calculating the RALE score were as close as possible
to start of invasive ventilation in the ICU, and always with a
PEEP ≥ 5 cm H2O. ARDS was diagnosed using the present
“gold standard,” i.e., the Berlin Definition for ARDS, applied
by independent physicians with extensive experience in using
it. Finally, as a measure against bias, clinicians involved in
applying the criteria in the Berlin Definition for ARDS were
unaware of the RALE score, and vice versa, the investigators
calculating the RALE score remained blinded for the presence of
absence of ARDS.

One salient finding was the high agreement between the two
researchers with regard to the RALE score in individual cases.
This new numeric score seemed easy to learn and calculate, and
gave a uniform interpretation of chest radiographs, in line with
the seminal report on use of the RALE score (Warren et al.,
2018). It is noticeable that the Berlin Definition investigators
demonstrated low interobserver reliability which did not improve
with training (Goddard et al., 2018). Thus, one could argue to use
this new score as a finding to make diagnosing ARDS easier.

The findings of the current study are at least in part in line
with the finding in the seminal study on this new score, i.e.,
that higher RALE scores are found in patients with more injured
lungs, according to the PaO2/FiO2. One difference between the
two studies was that in the current study the RALE score was
calculated in much “broader” population of invasively ventilated
ICU patients, i.e., not only patients with ARDS, but also patients
at risk of this complication. The RALE score demonstrated an
excellent diagnostic accuracy for ARDS, and may be taken into
consideration in future refinements of the radiological criteria
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of the Berlin Definition of ARDS. The increase in RALE score
from mild, to moderate and severe ARDS was not statistically
significant, in agreement with a recent study focusing on the
evolution of the RALE score in 108 patients with ARDS (Kotok
et al., 2020). However, it must be mentioned that the number of
patients with ARDS, in particular severe ARDS, was low.

Although we could not find an association between baseline
RALE and mortality, a recent study proposes that the change in
RALE score in the first days is associated with survival in ARDS
(Jabaudon et al., 2020). Also in patients with pneumonia from
coronavirus disease, both the visually scored and RALE score and
the ones computed from artificial intelligence algorithms were
associated with poor outcomes (Ebrahimian et al., 2021).

While the RALE score had a weak association with
ARDS categories based on degree of hypoxemia, scores could
independently increase the diagnostic performance and the
outcome prediction. This should be tested in future cohorts
of invasively ventilated ICU patients. This study has other
limitations. The study included a relatively small number of
patients, resulting in a low number of patients with ARDS, and
especially few patients with severe ARDS. In addition, this was a
single center study with all available patients being used without
a formal power calculation performed beforehand. It will be
important to confirm the results of the current study performing
the RALE score in a multicenter setting.

In conclusion, the RALE score provides a reliable
interpretation of signs of lung edema on chest radiographs
in invasively ventilated ICU patients. The RALE score has an
excellent diagnostic accuracy for ARDS in such patients but has
only a weak correlation with PaO2/FiO2 and no associations
with patient outcomes. Additional validation of the cutoff and
performance of the RALE score is needed in larger cohorts.
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Background: Recruitment maneuvers (RMs) have heterogeneous effects on lung

aeration and have adverse side effects. We aimed to identify morphological, anatomical,

and functional imaging characteristics that might be used to predict the RMs on lung

aeration in invasively ventilated patients.

Methods: We performed a systemic review. Studies included invasively ventilated

patients who received an RM and in whom re-aeration was examined with chest

computed tomography (CT), electrical impedance tomography (EIT), and lung ultrasound

(LUS) were included.

Results: Twenty studies were identified. Different types of RMs were applied. The

amount of re-aerated lung tissue after an RM was highly variable between patients in

all studies, irrespective of the used imaging technique and the type of patients (ARDS or

non-ARDS). Imaging findings suggesting a non-focal morphology (i.e., radiologic findings

consistent with attenuations with diffuse or patchy loss of aeration) were associated

with higher likelihood of recruitment and lower chance of overdistention than a focal

morphology (i.e., radiological findings suggestive of lobar or segmental loss of aeration).

This was independent of the used imaging technique but only observed in patients with

ARDS. In patients without ARDS, the results were inconclusive.

Conclusions: ARDS patients with imaging findings suggestive of non-focal morphology

show most re-aeration of previously consolidated lung tissue after RMs. The role of

imaging techniques in predicting the effect of RMs on re-aeration in patients without

ARDS remains uncertain.

Keywords: electrical impedance tomography, computed tomography, lung ultrasound, overdistention, recruitment

maneuvers, ARDS

25

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.666941
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.666941&domain=pdf&date_stamp=2021-06-04
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:charalampos.pierrakos@chu-brugmann.be
mailto:charalampos.pierrakos@chu-brugmann.be
https://doi.org/10.3389/fphys.2021.666941
https://www.frontiersin.org/articles/10.3389/fphys.2021.666941/full


Pierrakos et al. Imaging Techniques Recruitment Maneuver Prediction

INTRODUCTION

A lung recruitment maneuver (RM) is a dynamic and transient
increase in transpulmonary pressure aiming at (re-)opening
collapsed lung parts and increasing end-expiratory lung volume
(Lapinsky and Mehta, 2005). In theory, opening of collapsed
or “non-aerated” lung areas decreases shunt, improving both
oxygenation and removal of CO2 (Hedley-Whyte et al., 1964;
Neumann et al., 1999). Furthermore, atelectatic areas might
cause stress on, or deformation of, aerated regions, resulting in
additional injury of lung parenchyma (Gattinoni et al., 2012).
Accordingly, decreasing atelectatic areas with RM could protect
the lungs, a strategy often referred to as the “open lung concept”
(Hes, 2015).

The value of RMs without the use of any imaging monitoring
is disputed, as, so far, clinical studies have failed to show benefit
with regard to patient-centered outcomes—and even suggest
harm (Cavalcanti et al., 2017). The absence of net benefit might
be explained by the heterogeneity and unpredictable effects of
RMs on lung aeration (Sahetya and Brower, 2017; Mancebo et al.,
2019). The pressure threshold that should be overpassed during
RMs to open atelectatic lung units is multifactorial and cannot be
calculated precisely (Sahetya and Brower, 2017; Gattinoni et al.,
2017). Furthermore, any increase in airways pressure will result
in higher pressures in all lung parts, also those that are “open,”
and these areas might be harmed by overdistention (Gattinoni
et al., 2019). Thus, the benefit of RMs needs to be balanced
between re-aeration and overdistention.

Changes in lung morphology indicative of re-aeration or
overdistention can be estimated using lung imaging (Gattinoni
et al., 2020). Various imaging techniques like chest computed
tomography (CT), electrical impedance tomography (EIT), and
lung ultrasound (LUS) have been suggested to be useful to
evaluate lung morphology and function in an individual patient
(Godet et al., 2015). We performed a systematic review to
describe imaging-based methods to assess re-aeration after RMs
in patients receiving invasive ventilation at the intensive care unit
or the operating room. In this review, we focus on the variability
of imaging-based method definitions and the clinical utility of
baseline imaging characteristics.

METHODS

This protocol was designed in accordance with Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Liberati et al., 2009). The study protocol
has been registered on PROSPERO (CRD42020188056).

Eligibility Criteria
The PICO used to define eligibility criteria are the following:
(1) P (population): invasive mechanical ventilation either in the
intensive care unit (ICU) or the operating room (OR) with or
without ARDS, (2) I (intervention): recruitment maneuver of any
sort, (3) C (comparison): LUS and/or EIT and/or CT was used
to evaluate re-aeration of previously consolidated lung tissue, (4)
O: baseline image characteristics were reported and evaluated for
their predictive value of recruitment.

Only original studies written in English were included,
whereas animal studies, case reports, comments, letters, and
studies that enrolled pediatric patients were not included.

Information Sources and Search
We searched EMBASE using PubMed on December 15,
2020 using the following key words: ((“diagnostic imaging”
[Subheading] OR (“diagnostic” [All Fields] AND “imaging” [All
Fields]) OR “diagnostic imaging” [All Fields] OR “ultrasound”
[All Fields] OR “ultrasonography” [MeSH Terms] OR
“ultrasonography” [All Fields] OR “ultrasound” [All Fields]
OR “ultrasonics” [MeSH Terms] OR “ultrasonics” [All Fields])
OR (“ct” [All Fields]) OR “computed tomography” [All Fields])
OR ((“IEEE Int Conf Electro Inf Technol” [Journal] OR “eit” [All
Fields]) OR “(electrical impedance tomography” [All Fields]))
AND ((“positive-pressure respiration” [MeSH Terms] OR
(“positive-pressure” [All Fields] AND “respiration” [All Fields]) OR
“positive-pressure respiration” [All Fields] OR “peep” [All Fields])
AND Recruitment [All Fields]).

Study Selection
The identified studies were assessed for inclusion criteria based
on title and then on abstract. For all selected papers, the full text
was read and discussed between two authors (CP and LB). Studies
that fulfilled the inclusion criteria were included in this review.

Data Collection
For each included study, we collected data related to patient
characteristics and whether they referred to ARDS patients or
not. The type of recruitment maneuver that was used was
categorized as (a) sustained inflation, (b) sigh, (c) pressure-
control ventilation, and (d) variable ventilation (Rocco et al.,
2010). We recorded the criteria that were used to define a
“responder” to recruitment and the baseline characteristics to
identify factors that differentiate between “responders” and “non-
responders.” For those studies including patients with ARDS,
we documented whether authors classified patients as having
“focal” (i.e., radiological attenuations with lobar or segmental
distributions) or “non-focal” (i.e., radiological attenuation with
diffuse or patchy distribution) abnormal lung morphology.

Bias Assessment
The Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) was used for the assessment of the methodologic
quality of selected studies (Whiting, 2011). The four
recommended domains (i.e., patient selection, index test,
reference standard, and flow/timing) were assessed for low,
high, or unclear risk of bias. As for the reference standard
domain, CT was considered the “gold standard” for assessing
lung re-aeration. Given the insufficient evidence to classify
LUS or EIT as adequate reference tests to assess lung aeration,
we considered the risk of bias to be high. Concerns regarding
applicability for the first three domains were also assessed and
scored as low, high, or unclear.

Synthesis of Results
The following data were combined into a table: patient group
that was studied, number of patients, type of recruitment and
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FIGURE 1 | Flow diagram of the study selection.

maximal airway pressure reached, assessment of re-aeration of
lung tissue, and criteria to define “responder.” The main findings
of the study regarding heterogeneity in re-aerated lung tissue and
differences between “responders” and “non-responders” were
also shown. We further synthesized the current evidence for
heterogeneity and prediction of recruitment response in an
overview table, stratified per imaging method that was used.
Finally, we linked the morphological characteristics derived from
different imaging techniques of responders and non-responders
in an overview figure.

RESULTS

Included Studies
The described search resulted in 326 articles of which 249 were

excluded based on the title and abstract review. Twenty out of the

remaining 77 studies were included in this review based on full

text review (Figure 1) and are summarized in Table 1. Seventeen

studies included deeply sedated patients, while sedation level

was not mentioned in the other three studies. All patients
in the included studies were in supine position during RM.
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TABLE 1 | Studies included in this review.

References Patients N RM Pmax Imaging

modality

Recruitment definition

method

Outcome

He et al., 2020 ICU (deeply sedated) 30 PC NG EIT Ratio overdistended to

recruited pixels

RM resulted in a high variability of the changes

in the ration of overdistended to recruited pixels

measured with EIT. No differences in the EELI

and GI between responders and not

responders to RM

Généreux et al., 2020 OR (deeply sedated) 45 SI 30 cm H2O LUS 12 areas derived LUS score RM did not result in a significant improvement

in LUS score

Karsten et al., 2019 ICU (NM) 15 Sigh 40 cm H2O EIT Local compliance (ODCL

index)

RM resulted in the complete disappearance of

collapsed units (ODCLindex) in all studied

patients, but there was a high variation of the

overdistention extension (19 ± 17%). After RM,

the proportion of collapsed units was highly

variable (0–50%), independent of the selected

PEEP (5–13 cm H2O)

Zhao et al., 2019 ARDS (deeply sedated) 3 Sigh 35 cm H2O EIT Increase in ventilation in

dependent areas

Those with ventilation distribution

predominantly in the most dependent regions

are likely non-responders to RM

Camporota et al., 2019 ARDS (sedation level

not mentioned)

47 SI 45 cm H2O CT Proportion of re-aerated

lung tissue compared with

the total lung weight

RM resulted in a variable change in aerated

lung tissue with a mean of 24.3% (−2–76). All

patients were on ECMO and had a very high

percentage of non-aerated lung tissue.

Non-recruitable tissue varied between 50 and

80% of total lung weight

Eichler et al., 2018 OR (deeply sedated) 37 Sigh 40 cm H2O EIT EELI slope A downward course of EELI may indicate the

need for RM (EELI30sec/EELI0sec <1). This

pattern of EELI inversed after RM and PEEP

increase

Tang et al., 2017 ARDS (deeply sedated) 40 PC 35 cm H2O LUS Regasification score RM resulted in significant changes in aeration in

the anterior and lateral areas, but not in the

posterior areas

Longo et al., 2017 OR (deeply sedated) 40 Sigh 35 cm H2O LUS Resolution of atelectasis RM resolved atelectasis in all but 2/20 (10%) of

the patients. The RM effect was assessed with

TOE

Eronia et al., 2017 ICU (deeply sedated) 16 SI 40 cm H2O EIT EELI slope A downward course of end-expiratory lung

impedance may indicate the need for RM

(10min delta EELI >10%). This pattern of EELI

inversed after RM and PEEP increase

Chiumello et al., 2016 ARDS (sedation level

not mentioned)

22 Sigh NG CT Proportion of re-aerated

lung tissue compared with

the total lung weight

Responders to RM (increase in tissue >-100

HU) had higher amount of non-inflated tissue at

PEEP 5 cmH2O (r2 = 0.44). This relation

disappears when responders are defined by

increase in tissue >-500 HU (r2 = 0.002)

*Caironi et al., 2015 ARDS (deeply sedated) 14 PC 45 cm H2O CT Proportion of re-aerated

lung tissue compared with

the total lung weight

Responders to RM had higher total lung

weights. RM results in a highly variable

recruitment of non-aerated lung tissue. This is

independent of the severity of disease and

baseline PEEP

de Matos et al., 2012 ARDS (deeply sedated) 51 PC 60 cm H2O CT Sectional lung weight

re-aerated

RM resulted in variable aeration of previously

non-aerated lung tissue: 45% (25–53).

Responders to RM did not have a higher initial

amount of non-aerated tissue (PEEP 10

cmH2O; r
2 = 0.03)

Rode et al., 2012 ARDS (deeply sedated) 17 Sigh 30 cm H2O LUS Crater-like consolidations’

borders leveling and

abutting pleural line

RM resolved most (92%) of crater–like

subpleural consolidations visible during ZEEP

Bouhemad et al., 2011 ARDS (deeply sedated) 40 SI 40 cm H2O LUS Increase lung re-aeration

score

RM was unlikely to affect consolidations in

posterior and caudal regions. RM responders

were more likely to have non-focal rather than

focal lung morphology

(Continued)
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TABLE 1 | Continued

References Patients N RM Pmax Imaging

modality

Recruitment definition

method

Outcome

Constantin et al., 2010 ARDS (deeply sedated) 19 SI 40 cm H2O CT Proportion of re-aerated

lung volume compared with

the total lung volume

RM responders were more likely to have

non-focal than focal lung morphology at ZEEP.

Hyperinflation during RM is predicted by the

lung volume between −800 and −900 HU in

ZEEP (r2 = 0.77)

*Caironi et al., 2010 ARDS (deeply sedated) 68 PC 45 cm H2O CT Proportion of re-aerated

lung tissue compared with

the total lung weight

RM responders had more opening and closing

lung tissue at PEEP 5 cm H2O. RM responders

had a homogeneous cephalo-caudal

distribution of non-aerated areas, while

non-responders had a linear cephalo-caudal

increase in non-aerated areas

Gattinoni et al., 2006 ARDS (sedation level

not mentioned)

68 PC 45 cm H2O CT Proportion of re-aerated

lung tissue compared with

the total lung weight

RM had a variable effect on opening of lung

tissue (median 9% range −10–60%). RM

response was predicted by recruitment of lung

tissue after increase in PEEP from 5 to 15 cm

H2O (r2 = 0.72). RM response was predicted

by the amount of non-aerated tissue at PEEP

5 cm H2O

Borges et al., 2006 ARDS (deeply sedated) 26 PC 60 cm H2O CT Proportion of re-aerated

lung tissue compared with

the total lung weight and

proportion of re-aerated

lung volume compared with

the total lung volume

RM shows different responses with variation in

lung opening pressures. RM at 40 cmH2O

resulted in response in <50%, while this

increased to 93% at 60 cm H2O

*Nieszkowska et al.,

2004

ARDS (sedation level

not mentioned)

32 Sigh NG CT Volume increase in

non-aerated or poorly

aerated areas

RM responders more frequently had non-focal

morphology rather than focal (lobar)

morphology (recruited volume: 572 ± 25 vs.

249 ± 159ml). RM did not result in overinflation

in patients with a diffuse morphology

Vieira et al., 1999 ARDS (sedation level

not mentioned)

14 Sigh 45 cm H2O CT Total lung volume increases RM responders more frequently had a

non-focal morphology. RM responders more

frequently had a biphasic lung density

histogram with a peak at −700 to −900 HU

>50ml at ZEEP is related to a higher amount

of overinflation with RM

OR, operating room; N, number of enrolled patients; Pmax, maximum pressure used for recruitment maneuver; RM, lung recruitment maneuver; SI, sustained inflation; PC, pressure

control; LUS, lung ultrasound; EIT, electrical impedance tomography; CT, computed tomography; ODCL, overdistention collapse index; PEEP, positive end-expiratory pressure; ZEEP,

zero end-expiratory pressure; EELI, end expiratory lung impedance; LIL, left inferior lobe; TOE, transesophageal echocardiography; HU, Hounsfield units; COPD, chronic obstructive

pulmonary disease.

*Retrospective study.

The majority of the included studies enrolled ARDS patients
exclusively (14 studies, 70%). Three studies (15%) included
a mixed population of intensive care unit patients, and in
three studies (15%), patients undergoing elective operation were
included. Three studies had the primary goal of quantification of
potential for lung recruitment (Gattinoni et al., 2006; Camporota
et al., 2019) or recruitment prediction (Constantin et al., 2010).
Regarding lung imaging techniques, most of the studies (10
studies, 50%) assessed chest CT scan, followed by LUS (five
studies, 25%) and EIT (five studies, 25%). Notably, chest CT was
only used in studies that included patients with ARDS.

Quality characteristics of the included studies, in relation
to the aim of this systematic review, are presented in
Supplementary Table 1. In two studies, there was a high concern
regarding applicability of population selection. These two
studies included a highly selective population, i.e., patients after

cardiac surgery (Longo et al., 2017) or patients who underwent
tracheostomy (Eichler et al., 2018).

Recruitment Methodology and
Identification of “Responders”
In eight studies (42%), a sigh, in six studies (31%), a pressure-
control method, and in five studies (26%), a sustained inflation
were used for the RM (Table 1). Applied maximum airway
pressure varied widely, between 30 and 60 cmH2O. Classification
of responders depended on the imaging technique used (Table 2).
None of the studies defined the criteria to identify “responders”
beforehand. Patients were classified post-hoc as “responders”
and “non-responders” based on the median value of the study
population in studies that quantified re-aeration by CT imaging.
Recruitment “responders” generally had an increase in aeration
of non-aerated lung tissue of more than 20% (Figure 2).

Frontiers in Physiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 66694129

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pierrakos et al. Imaging Techniques Recruitment Maneuver Prediction

TABLE 2 | Findings related to the assessment of recruitment after recruitment maneuver application.

Imaging

modality

Definition of “recruitment” Base-line PEEP Maximum applied

pressure (mean and

range)

LUS Decrease four points in LUS score (Généreux et al.,

2020)

ZEEP (Bouhemad et al., 2011; Rode et al.,

2012; Tang et al., 2017; Généreux et al.,

2020),

6 cm H2O (Longo et al., 2017)

34 cm H2O [30–40]

Maximum increase in regasification score (Tang

et al., 2017)

Disappearance of atelectasis or B-lines (Bouhemad

et al., 2011; Rode et al., 2012; Longo et al., 2017)

EIT Any decrease in ODCLindex (Karsten et al., 2019) ZEEP (Karsten et al., 2019; He et al.,

2020),

5–8 cm H2O (Zhao et al., 2019),

PEEP/FiO2 table PEEP(Eronia et al., 2017),

8 cm H2O (Eichler et al., 2018)

39 cm H2O [35–40]

Reverse in EELI ratio from <1 to >1 (Eronia et al.,

2017; Longo et al., 2017; Zhao et al., 2019)

Changes in the pixel ratio of overdistention to

recruitment >15% (He et al., 2020)

CT Decrease in non-aerated weight of lung (>-100 HU)

(Borges et al., 2006; Gattinoni et al., 2006; Caironi

et al., 2010, 2015; de Matos et al., 2012; Chiumello

et al., 2016; Camporota et al., 2019)

ZEEP (Vieira et al., 1999; Nieszkowska

et al., 2004; Constantin et al., 2010),

5 cm H2O (Gattinoni et al., 2006;

Constantin et al., 2010; Caironi et al.,

2015; Chiumello et al., 2016; Camporota

et al., 2019),

10 cm H2O (de Matos et al., 2012),

5–10 cm H2O (Borges et al., 2006)

48 cm H2O [40–60]

Decrease in non-aerated and poorly aerated weight

of lung (>-500 HU; Chiumello et al., 2016)

Increase in the volume of gas penetrating in

non-aerated areas (>-500 HU; Borges et al., 2006)

Increase in the volume of gas penetrating in

non-aerated and poorly aerated areas (>-500 HU;

Vieira et al., 1999; Nieszkowska et al., 2004;

Constantin et al., 2010)

PEEP, positive end-expiratory pressure; ZEEP, zero end-expiratory pressure; LUS, lung ultrasound; EIT, electrical impedance tomography; CT, computed tomography; EELI, end expiratory

lung impedance; HU, Hounsfield units; ODCL, overdistention collapse index.

Heterogeneity in Re-aeration and
Prediction of Positive Response to RM
Re-aeration after RM varied widely between studies, independent
of the used image technique (Table 3). Unsurprisingly, most CT
imaging studies showed that around 50% of patients are “non-
responders” to recruitment because the median value was used
as the cutoff value (Borges et al., 2006; Gattinoni et al., 2006;
Caironi et al., 2015; Vieira et al., 1999; Camporota et al., 2019).
Studies that used other imaging techniques did not mention
the proportion of “non-responders,” though recruitment was
described as “highly variable” (Karsten et al., 2019; Généreux
et al., 2020).

Imaging findings related to the amount of re-aerated lung
tissue in patients with ARDS were the extent of lost aeration
before RM, the distribution of non-aerated areas (craniocaudal
and anteroposterior distribution), the morphology of non-
aerated areas (e.g., crater-like consolidation), and functional lung
characteristics related to tidal recruitment (tidal opening/closing
tissue; Table 3). Findings that are more likely to resemble a
diffuse or patchy loss of aeration (i.e., non-focal morphology)
were suggestive of an increased likelihood of positive response
to RMs (Figure 3). This was independent on the image
technique employed.

Only one study addressed the prediction of response to RM
in patients in the operating room. A decreasing pattern of end-
expiratory lung impedance (EELI) evaluated with EIT was found

to be related to the amount of re-aerated lung tissue (Eichler et al.,
2018; Table 3).

Overdistention
Overdistention was assessed in studies that used CT or EIT
only, as LUS cannot be used for this purpose. Studies employing
CT imaging showed the average percentage of overdistended
lung volume to vary between 0 and 20% (Figure 2). EIT studies
revealed the average overdistention secondary to RMs across
patients to range between 5 and 30% (Karsten et al., 2019).
Nevertheless, local overdistention in non-dependent areas may
exceed 60% of that area (Eronia et al., 2017). “Non-responders”
identified by CT had a higher increase in hyperinflated lung tissue
compared with “responders” (Figure 2).

DISCUSSION

The results of this systematic review can be summarized as
follows: (a) data that quantify the potential for lung recruitment
based on imaging are limited, (b) the definition of positive
response to RMs was highly variable, and (c) patients with
imaging characteristics suggestive for a non-focal morphology of
ARDS seemed to show more re-aeration at RMs with moderate
inspiratory pressures.

The included studies used a wide range of maximum airway
pressures to recruit lung tissue. Most collapsed areas can be
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FIGURE 2 | The proportions of lung recruitment and lung overdistention in patients who were characterized responders or not responders to lung recruitment

maneuvers (RM) based on computed tomography findings.
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TABLE 3 | Observed recruitment maneuver re-aeration effect and findings related to potential for lung re-aeration after recruitment maneuver according to the imaging

module and the presence or not ARDS.

ARDS Non-ARDS

Observed lung re-aeration with imaging analysis

LUS 8% of evaluated consolidations did not respond to RM (Rode et al., 2012) No change of LUS score after RM (Généreux et al., 2020)

27% of patients had a re-aeration score ≥8 and an increase in lung volume

more than 600ml after RM (Bouhemad et al., 2011)

10% of patients do not respond to RM (Longo et al., 2017)

EIT Extremely high variability in changes of the ratio between overdistention and

collapsed ration (He et al., 2020)

Variable* compromise between the extension of lung collapse and

overdistention after RM (Karsten et al., 2019)

CT High variability* of potential recruitment tissue (Caironi et al., 2015)

Potential recruitable tissue: 45% (range 5–75%; de Matos et al., 2012)

Potential recruitable tissue: 9% (range −10–60%; Gattinoni et al., 2006)

Potential recruitable tissue: 24.3% (range −2–76; Camporota et al., 2019)

High variability of opening lung pressures (Caironi et al., 2015)

Findings that predicted more lung re-aeration

LUS Anterior located consolidations (Bouhemad et al., 2011; Tang et al., 2017)

Crater-like sub-pleural consolidations (Rode et al., 2012)

EIT Predominant ventilation in non-dependent areas (Zhao et al., 2019) Decreasing pattern of EELI (delta EELI >10% or EELI index <1; Eronia

et al., 2017; Eichler et al., 2018)

CT Not aerated tissue (>-100 HU) >25–30% of total lung tissue (Gattinoni

et al., 2006; Chiumello et al., 2016)

Non-focal lung morphology (Nieszkowska et al., 2004; Constantin et al.,

2010)

Homogeneous cephalo-caudal distribution of 40–50% non-aeration area

(Caironi et al., 2010)

Opening and closing lung tissue (141 ± 81 g; Caironi et al., 2010)

FIGURE 3 | Imaging abnormalities that predicted response to recruitment maneuvers (RM) stratified per morphology. LUS, lung ultrasound; EIT, electrical impedance

tomography; CT, computed tomography; HU, Houndsfield units; green, imaging abnormality in line with responder to RM; red, imaging abnormality in line with

non-responder to RM; orange, imaging abnormality in line with responder with high uncertainty. Text boxes on the left: consistent with non-focal morphology. Text

boxes on the right: consistent with focal morphology.

opened, but frequently only at very high airway pressures
(Cressoni et al., 2017). Borges et al. found opening pressures of 60
cmH2O in patients with ARDS to be common, with coexistence
of areas opening at lower and higher pressures in the majority
of patients (Borges et al., 2006). In clinical practice, maximum
airway pressure is often selected based on the hemodynamic
fragility of the patient rather than the expected pressure needed
for lung recruitment (Santos et al., 2015). This might explain
why CT compared with LUS and EIT studies revealed higher

recruitment pressures as transfer for CT imaging requires more
hemodynamically stable patients (Constantin et al., 2019). Recent
RCTs suggest airway pressures above 50 cm H2O to be associated
with serious adverse events, even when the patient is exposed to
it for a short period of time (Cavalcanti et al., 2017; Hodgson
et al., 2019). As the different components that attribute to the
compliance of the respiratory system (compliance of the lung and
chest wall as well as intra-abdominal pressure) cannot be easily
separated in clinical practice (Umbrello and Chiumello, 2018),
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assessing the RMs’ effect with imaging techniques is important in
clinical practice. Rather than defining the pressure at which the
lung can be opened, it is more important to determine whether
recruitment can be achieved with moderate airway pressures. In
other words, when comparing patients with a similar expected
risk of side effects due to a transient increase in inspiratory
pressures, a patient who responds to the RM with reaeration of
previously collapsed lung tissue may still benefit, but a patient
without this response may not.

This review also revealed several challenges associated with
the quantification of lung re-aeration with image technics: there
is poor agreement between imaging techniques, and there is no
universal definition of recruitment response. Chiumello et al.
found poor agreement between CT and LUS with respect to
assessment of re-aeration, which is not unexpected since LUS
is a semiquantitative method assessing only the subpleural
areas (Chiumello et al., 2018). Furthermore, the role of LUS
in assessing overdistention is currently unknown (Bouhemad
et al., 2015). Pleural line displacement identified with LUS,
as well the number of A-lines are relevant indexes that are
currently being studied (Martins and Nogué, 2020; Tonelotto
et al., 2020). EIT quantifies collapsed lung units based on
local changes in compliance (Costa et al., 2009). However,
compliance might be more related to the improvement or
deterioration of already ventilated lung units than the real
recruitment of atelectatic lung units (Chiumello et al., 2016).
Even though CT is considered the gold standard in detecting
lung recruitment, defining the degree of re-aeration remains
challenging. Potentially recruitable lung tissue, determined by
CT, is mainly expressed as percentage of total lung volume since
absolute values depend on lung dimensions. However, expressing
recruitment as percentage implies mathematical coupling with
the total atelectatic volume, which is at least debatable (de
Matos et al., 2012). Gattinoni et al. introduced the terms
“high” and “low” recruitment responders based on the median
percentage of potentially recruitable lung tissue determined by
CT (Gattinoni et al., 2006). Worth mentioning, different median
percentages of potentially recruitable tissue were reported
in later studies (Camporota et al., 2019; de Matos et al.,
2012), probably due to heterogeneity in inclusion characteristics
and application of various maximum airway pressures. Given
that recruitment is a continuous spectrum that depends on
applied airway pressure and several imaging characteristics,
speaking about “responders” from “non-responders” is a
false dichotomization.

We set out to determine the role of imaging techniques in
predicting the lung response to RM. The main strength of this
review is the systematic and integrative approach. We excluded
studies that based assessment of recruitment on mechanical or
oxygenation variables as those can be influenced by factors other
than recruitment of lung tissue, which is also known as the
recruitment paradox (Amato and De Santis Santiago, 2016). We
also acknowledge several limitations. First, we had to perform
secondary analyses of many included studies as they were not
intended to quantify potential for lung re-aeration, limiting
statistical comparisons between groups. Second, we did not
directly compare imaging techniques. Each method has intrinsic

limitations, such as visualization of the subpleural region only
for LUS and the need for patient transport for CT, which
justify preferential use of one technique over another in specific
situations. Of note, the definition and method of recruitment
varied between studies even when the same image technique
was used, which made direct comparisons impossible. Third,
given the undefined role of LUS and EIT in the assessment of
recruitment, a significant number of trials had an unclear risk
of bias.

All features predictive of increased lung re-aeration after RM
are consistent with a non-focal morphology of ARDS. Patients
with focal ARDS lack, by definition, ventral consolidations
not limited to the subpleural space and show a heterogeneous
distribution of consolidation with less opening and closing,
which renders them very unlikely to be recruitable. In line
with this notion, patients with non-focal morphology were
typically recruitable, while patients with focal morphology were
not (Puybasset et al., 2000; Constantin et al., 2010). Notably,
atelectasis is usually located in the dorsal lung areas in patients
without lung injury requiring invasive mechanical ventilation
(Longo et al., 2017; Pereira et al., 2018) implying a “focal”
morphology. This may explain the lack of RM efficiency to
increase lung aeration in invasively ventilated patients in the
operating room (Généreux et al., 2020). Although the results
of this review are not conclusive for patients without ARDS, it
stresses the need for further research into lung morphology and
its relation to lung re-aeration with robust imaging technics in
these patients.

By integrating data from multiple studies to morphological
classifications, we present a framework used to better design
and interpret future studies. We have to acknowledge that
this classification is imperfect, as one EIT study that only
included three patients suggested that predominant ventilation
in the non-dependent areas predicted recruitment, while this
is not a feature that is consistent with non-focal morphology
of ARDS. The relation between re-aeration and improvement
in ventilation perfusion mismatch and heart function was not
evaluated in this review (Karbing et al., 2020). Furthermore,
in this review, we investigated the imaging techniques’ role
in predicting RM effects in deeply sedated patients without
considering the optimal level of PEEP that would be required
after recruitment to keep the lung open. Rather than a final
classification, we suggest that the morphological classification
is a good starting point to further improve from, with the
addition of other predictors. Furthermore, more attention
should be drawn to the quantification of overdistention
rather than measurement of re-aeration alone. Balancing the
assessment of negative and positive effects may improve our
understanding as to what patients may or may not benefit
from RMs.

CONCLUSIONS

We conclude that defining positive response to RMs using
imaging techniques is challenging and not yet well-elucidated.
Variations in RM method, population selection, as well as
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different imaging techniques should be taken into consideration
in future studies. Given the adverse events associated with
high maximum airway pressures, only the lungs of specific
patients can be re-aerated with moderate maximum airway
pressures. Lung ultrasound and CT characteristics consistent
with non-focal morphology of ARDS are predictive of more
re-aeration in response to recruitment maneuver. The
morphological characteristics related to successful response
to RMs in patients without ARDS have not been studied
to date.
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Transpulmonary driving pressure (DPL) corresponds to the cyclical stress imposed on the

lung parenchyma during tidal breathing and, therefore, can be used to assess the risk

of ventilator-induced lung injury (VILI). Its measurement at the bedside requires the use

of esophageal pressure (Peso), which is sometimes technically challenging. Recently, it

has been demonstrated how in an animal model of ARDS, the transpulmonary pressure

(PL) measured with Peso calculated with the absolute values method (PL = Paw—Peso)

is equivalent to the transpulmonary pressure directly measured using pleural sensors

in the central-dependent part of the lung. We hypothesized that, since the PL derived

from Peso reflects the regional behavior of the lung, it could exist a relationship between

regional parameters measured by electrical impedance tomography (EIT) and driving

PL (DPL). Moreover, we explored if, by integrating airways pressure data and EIT data,

it could be possible to estimate non-invasively DPL and consequently lung elastance

(EL) and elastance-derived inspiratory PL (PI). We analyzed 59 measurements from

20 patients with ARDS. There was a significant intra-patient correlation between EIT

derived regional compliance in regions of interest (ROI1) (r = 0.5, p = 0.001), ROI2

(r = −0.68, p < 0.001), and ROI3 (r = −0.4, p = 0.002), and DPL. A multiple linear

regression successfully predicted DPL based on respiratory system elastance (Ers), ideal

body weight (IBW), roi1%, roi2%, and roi3% (R2 = 0.84, p < 0.001). The corresponding

Bland-Altmann analysis showed a bias of −1.4e-007 cmH2O and limits of agreement

(LoA) of −2.4–2.4 cmH2O. EL and PI calculated using EIT showed good agreement (R2

= 0.89, p< 0.001 and R2 = 0.75, p< 0.001) with the esophageal derived correspondent

variables. In conclusion, DPL has a good correlation with EIT-derived parameters in

the central lung. DPL, PI, and EL can be estimated with good accuracy non-invasively

combining information coming from EIT and airway pressure.

Keywords: driving pressure, transpulmonary pressure, acute respiratory distress syndrome, precision medicine,

electric impedance tomography
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INTRODUCTION

Monitoring transpulmonary pressure can be important in
patients affected by acute respiratory distress syndrome (ARDS)
(ARDS Definition Task Force et al., 2012; Chiumello et al., 2014).
Pressure measured at airway opening, indeed, does not yield
information about the different components of the respiratory
system, i.e., the chest wall and the lung. Chest wall and
lung elastance (EL) can differ unpredictably such that, patients
having the same airway pressures can have significantly different
transpulmonary pressures (Gattinoni et al., 2004; Chiumello
et al., 2008). The current approach to evaluate transpulmonary
pressure (PL) is based on the use of esophageal pressure (Peso)
and assumes that it could be a good surrogate for pleural pressure
(Grieco et al., 2017). The transpulmonary driving pressure
(DPL), i.e., the variation of transpulmonary pressure between
end-expiration and end-inspiration, corresponds to the cyclical
stress imposed on the lung parenchyma. Unlike driving pressure
calculated from airway opening pressure (DP), DPL is the
pressure imposed on the lung during the tidal breathing, since it
does not consider the amount of pressure needed to overcome the
chest-wall compartment (Loring andMalhotra, 2015). Evaluating
DPL can be important to limit the stress on the lung parenchyma
and, therefore, may be useful to monitor the risk for ventilator-
induced lung injury (VILI). Recently, it has been demonstrated
in an animal model of ARDS how transpulmonary pressure
calculated with the classical absolute subtractive method (i.e.,
PL = Paw—Peso) corresponds to the transpulmonary pressure
in the central to dependent lung (Yoshida et al., 2018). When
we consider transpulmonary pressure, we should consider that
its value is not unique along with the whole lung but changes
regionally according to regional differences in pleural pressures
which reflects the forces acting in favor of lung collapse or
opening (regional heterogeneity of core disease, gravitational
distribution of edema, andmediastinumweight) (Silva andGama
de Abreu, 2018). Electrical impedance tomography (EIT) is a
non-invasive monitoring technique that can help to monitor
regional lung ventilation distribution at the bedside (Frerichs
et al., 2017; Yoshida et al., 2019; Scaramuzzo et al., 2020c).
Since the PL derived from Peso reflects the behavior of the
central to dependent part of the lung, we aimed to evaluate the
relationship between regional mechanics variables, derived by
EIT, and transpulmonary pressure in patients affected by ARDS.
Moreover, we tested if, by integrating the information from EIT
and airway opening pressure, we could predict non-invasively
DPL. Finally, we wanted to verify if EL and the elastance-based
inspiratory PL derived by EIT, agree with the one classically
calculated using esophageal manometry.

METHODS

This is a secondary analysis of data collected from a database
of patients affected by ARDS enrolled in a previous study
(Scaramuzzo et al., 2020b) in two university hospital intensive
care units (Arcispedale Sant’Anna Hospital, Ferrara, Italy and
at Cà Granda IRCCS, Milano). The study was approved by
the ethics committee of the Sant’ Anna Hospital, Ferrara, Italy
(Protocol n. 171098) and Milan (protocol no. 625_2018). The

selection criteria for the current data analysis were: ARDS
according to the Berlin criteria (ARDS Definition Task Force
et al., 2012), EIT images for at least 2min containing an end-
inspiratory and end-expiratory pauses, simultaneous recording
of airway opening pressure, and airway flow and Peso. Enrolled
patients were all mechanically ventilated in volume-controlled
ventilation (VCV) with a tidal volume (TV) = 6 ml/kg/IBW.
An occlusion test was performed for each patient (Baydur
et al., 1982) to assess the correct positioning of the esophageal
balloon. All patients were sedated and paralyzed, as per clinical
decision and no recruitment maneuver was performed before the
measurements. We collected three measures from each patient
at three different levels of PEEP, based on clinical practice,
transpulmonary pressure, and EIT. The method for PEEP setting
guided by EIT and PL was described previously by Scaramuzzo
et al. (2020b).

Respiratory Mechanics
The following mechanical measurements were collected from
the airway opening pressure end-inspiratory and end-expiratory
pauses: TV, total positive end-expiratory pressure (PEEP), peak
pressure (peak), and plateau pressure (Pplat). The DP of the
respiratory system was calculated as Pplat-PEEP. The elastance
of the respiratory system (Ers) was calculated as Ers = DP/TV
and was expressed in cmH2O/L. Transpulmonary pressure (PL)
was calculated as the difference between airway pressure and
Peso (PL = Pao–Peso) and DPL as the difference between end-
inspiratory and end-expiratory PL. EL was calculated as EL =

DPL/TV while chest-wall elastance (Ecw) as Ecw = Ers–EL.
The elastance-derived inspiratory PL (PI) was calculated as PI
= Pplat–[Pplat∗(Ecw/Ers)].

EIT Analysis
An average of 10 respiratory acts was used to analyze EIT and the
regional analysis was conducted by dividing the EIT image into
four craniocaudal regions of interest (ROIN; ROI1: most ventral;
ROI4: most dorsal). The percentage of tidal ventilation (ROI%N)
in four ROIs was calculated as the fraction of tidal delivered to
the ROI in the analyzed acts and was expressed in percentage
(Frerichs et al., 2017). The weighted regional compliance in the
four ROIs was calculated as follows:

RCROI =

TV×ROI%
DP

IBW

and expressed as ml/cmH2O/kg of ideal body weight (IBW).

Statistical Analysis
Data are expressed as median [IQR]. Repeated measures
correlation (rmcorr) [Bakdash and Marusich (2020)]. R package
version 0.4.1. https://CRAN.R-project.org/package=rmcorr) was
used to test correlation among variables with repeated measures.
To predict measured DPL, a linear regression analysis [panel
linearmodel, plm (Croissant andMillo, 2008)] accounting for the
longitudinal characteristic of the data (cross-sectional time-series
data) was used. Time of sampling and patient ID were considered
as fixed factors. The pooled OLS estimation method was used,
and the following variables were entered as predictors, based on
their clinical meaningfulness and the results of rmcorr: IBW, Ers
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TABLE 1 | Main characteristics of the patients and the pooled measurements.

Gender M = 13; F = 7

Age (years) 63 [53–72]

BMI (Kg/m2)* 28 [24–33]

SAPS II 53 [45–66]

Days from ICU admission 4 [2–5]

PaO2/FiO2* 149 [96–211]

PaCO2 (mmHg)* 57 [47–68]

FiO2 (%)* 50 [43–60]

Respiratory rate (bpm) 19 [15–24]

Tidal volume (ml/kg IBW) 6.3 [6.1–7.0]

Mild/Moderate/Severe ARDS 6/9/5

Tidal volume (ml) 375 [346–440]

Respiratory rate (acts/min) 19[16–24]

Peak pressure (cmH2O) 31[28–39]

Plateau pressure (cmH2O) 23[19–28]

PEEP (cmH2O) 13 [9.2–15]

Driving pressure (cmH2O) 10 [8.7–13]

End inspiratory PL (cmH2O) 8.7 [5.6–13]

End-expiratory PL (cmH2O) 1.3 [-0.27–3.3]

Transpulmonary driving pressure (cmH2O) 7 [5.8–9.1]

RS Elastance (cmH2O/L) 27 [21–33]

Lung elastance (cmH2O/L) 18 [14–23]

ROI1 tidal distribution (%) 19 [15–22]

ROI2 tidal distribution (%) 37 [33–42]

ROI3 tidal distribution (%) 31 [27–35]

ROI4 tidal distribution (%) 13 [8.3–17]

Regional compliance ROI1 (ml/cmH2O/kg) 0.12 [0.096–0.15]

Regional compliance ROI2 (ml/cmH2O/kg) 0.25 [0.18–0.3]

Regional compliance ROI2 (ml/cmH2O/kg) 0.19 [0.15–0.25]

Regional compliance ROI2 (ml/cmH2O/kg) 0.072 [0.043–0.12]

BMI, body mass index; SAPSII, simplified acute physiology score II; ICU, intensive care

unit; PaO2/FiO2, partial pressure of arterial oxygen on the inspired fraction of oxygen ratio;

PEEP, positive end-expiratory pressure; MAP, mean arterial blood pressure; IBW, ideal

body weight; PL, transpulmonary pressure; RS, respiratory system. *, at ICU admission.

(derived by TV and DP), roi1%, roi2, and roi3%. The resulting
EIT-derived driving transpulmonary pressure (named DPL,EIT)
was used to calculate EL as ELEIT = TV/DPL,EIT. The EIT
PI was calculated as PIEIT = Pplat—[Pplat((Ers–ELEIT) /Ers)].
Bias and limits of agreement (LOA) with mean bias ± 2 sds
were calculated as per the Bland-Altman approach (Bland and
Altman, 1986) between EIT- and Peso-derived DPL, EL, and PI.
To evaluate if the PEEP titration technique or the number of
quadrants infiltrated at the chest x-ray could affect the agreement
between the two techniques, we performed an additional linear
regression between EIT and Peso-derived DPL (as shown in
Supplementary Material). The statistical analysis was conducted
using GraphPad Prism 8.4.3 for Windows (GraphPad Software,
San Diego, California USA, www.graphpad.com) and R 4.0.4
(R Foundation for Statistical Computing, Vienna, Austria) [R
Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,

TABLE 2 | Repeated measures correlation (rmcorr) analysis between electrical

impedance tomography (EIT)- derived and esophageal-derived parameters.

Intra-patient

correlation

coefficient

p-value

Relative ventilation, ROI1 (%) −0.35 0.03

Relative ventilation, ROI2 (%) −0.45 0.003

Relative ventilation, ROI3 (%) 0.40 0.01

Relative ventilation, ROI4 (%) 0.40 0.01

Regional compliance/IBW (ml/cmH2O/kg)—ROI1 −0.50 0.001

Regional compliance/IBW (ml/cmH2O/kg)—ROI2 −0.68 <0.001

Regional compliance/IBW (ml/cmH2O/kg)—ROI3 −0.47 0.002

Regional compliance/IBW (ml/cmH2O/kg)—ROI4 −0.12 0.47

Correlation coefficients for rmcorr analysis between EIT and esophageal-derived

measures.

Austria. URL https://www.R-project.org/.]. P-values < 0.05 were
considered statistically significant.

RESULTS

Population Characteristics
Of the 60 measurements considered for the analysis, 59 were
analyzed (one excluded after quality check). The measures
were derived from 20 patients, 13 males and 7 females,
aged 63 [53–72] years with a median body mass index
(BMI) of 28 [24–33] kg/m2, and a PaO2/FiO2 of 149 [96–
211], and average PEEP 13[9.2–15] cmH2O. Each patient had
three measures in which PEEP was set according to three
different methods (clinical practice, transpulmonary pressure,
and EIT). The characteristics of the population are resumed
in Table 1. Additional information on lung mechanics and
the effect of PEEP titration on lung recruitment/derecruitment
has been already published previously by Scaramuzzo et al.
(2020b).

Correlation
The repeated measures correlation analysis showed a significant
intra-patient correlation between DPL and regional tidal
distribution, which was negative in ROI1 (r = −0.35, p
= 0.03) and ROI2(r = −0.45, p = 0.003) and positive
in ROI3 (r = 0.4, p = 0.01) and ROI4 (r = 0.4, p =

0.01, Table 2). A stronger correlation was found with regional
compliance in ROI1 (r = −0.5, p = 0.001), ROI2 (r =

−0.68, p < 0.001), and ROI3 (r = −0.47, p = 0.002),
while there was no significant correlation between DPL and
regional compliance in ROI4 (r = −0.12, p = 0.47, Table 2;
Figure 1).

EIT Derived Parameters Calculation
Five regressors were used to perform the linear regression
with DPL as the dependent variable: Ers, IBW, roi%1, roi%2,
and roi%3. A significant regression was found, with an R2 of
0.84 (p < 0.001) and predicted DPL (DPL,EIT) was equal to
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FIGURE 1 | Correlation between electrical impedance tomography (EIT)-derived regional compliance in the four craniocaudal regions of interest (ROI1, ventral lung;

ROI4, dorsal lung) and esophageal-derived transpulmonary driving pressure (DPL). Repeated measures correlation (rmcorr).

DPL,EIT = k + α · IBW + β · Ers + γ · roi1% + δ · roi2%
+ e· roi3% being k = 16.64; α = 0.074683; β = 0.230941;
γ = −0.21449; δ = −0.15974; e = −0.32996 (Figure 2A;
Supplementary Table S1). The corresponding Bland-Altmann
between the EIT and Peso-derived measures showed a bias
of −1.4e-007 and an LoA of −2.4–2.4 cmH2O (Figure 2B).
The linear regression between ELEIT, and EL resulted in an
R2 = 0.89 (p < 0.0001), while the corresponding Bland-
Altmann analysis showed a bias of −0.11 ± and an LoA of
−6.8–6.5 cmH2O/L (Figures 2C,D). The EIT-derived inspiratory
PL predicted well the corresponding Peso derived value (R2

= 0.75, p < 0.0001) and with a good agreement [bias of
−0.007 ± and an LoA of −5.6–5.6 cmH2O/L (Figures 2E,F)].
The PEEP titration technique did not provide different results
in terms of the agreement between the two techniques
(Supplementary Figure S2), but in patients with a higher
number of quadrants infiltrated at the chest x-ray, the agreement
was higher (Supplementary Figure S3).

DISCUSSION

In this study, we investigated the relationship between the EIT-
derived parameters and DPL in patients affected by ARDS.
We found that regional ventilation distribution correlates well
with DPL, especially in the central part of the lung. The
highest correlation was found with regional compliance in the
ventral-central part of the lung. Moreover, by using EIT and
airway opening pressure derived data, we were able to predict
DPL, EL and lung inspiratory transpulmonary pressure with
good accuracy.

Lung monitoring has been increasingly used in the last
few years to personalize mechanical ventilation (Pereira et al.,
2018; Beitler et al., 2019; Scaramuzzo et al., 2020b) in different
settings, especially in ARDS. ARDS requires, indeed, more
precise fine-tuned ventilation, since the wide and unpredictable
characteristics of the disease, especially the amount of alveolar
and interstitial edema, make it difficult to develop a standard
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FIGURE 2 | Electrical impedance tomography derived and measured DPL, lung elastance (EL), and elastance-derived inspiratory lung pressure. Linear regression

between EIT-derived and measured DPL (A), EL (C), and lung inspiratory pressure (E), and relative Bland-Altmann plots (B,D,F). EIT, electrical impedance

tomography; Peso, esophageal pressure.

that fits all the patients and conditions. Personalizing mechanical
ventilation in patients affected by ARDS aims to keep under
control different variables, each one affecting the different
components of VILI pathophysiology (Nieman et al., 2017;
Tonetti et al., 2017; Pinto et al., 2020). DPL is the pressure to
which the lung parenchyma is cyclically exposed during tidal
breathing and represents the stress applied to the lung, not
considering the pressure needed to overcome the chest-wall
resistance. Since pleural pressure is not easily accessible to the
bedside, Peso has been classically used to indirectly calculate

transpulmonary pressure (Talmor et al., 2008; Beitler et al.,
2019; Scaramuzzo et al., 2020a). However, Peso monitoring is
invasive, can be technically challenging or not feasible in some
patients, and requires precise calibration and interpretation. By
exploring the intra-patient correlation of EIT-derived parameters
and DPL, we found that a change in DPL correlates negatively
with a change of ventilation distribution in ROI1 and ROI2 while
positively with a change in ROI3 and ROI4. This means that,
when changing PEEP in patients with ARDS, an increase in
relative ventilation in the dependent lung is related to a rise in
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DPL. This can be explained by the increased lung deformation
which is related to a dorsal shift of ventilation but raises
some questions on PEEP titration aiming to maximize dorsal
ventilation (Pelosi et al., 2018). The association was even stronger
when analyzing regional compliance, especially in the ROI2,
which corresponds to the central-ventral ROI. Surprisingly, no
significant correlation was found between change DPL and
regional compliance in ROI4, meaning that the esophageal-
derived DPL is less informative than thought on the regional
characteristics of the dorsal part of the lung, despite the dorsal
lung has been classically associated with the concept of PEEP
titration guided by transpulmonary pressure. The central lung
region corresponds to the position where the esophagus and,
therefore, the esophageal catheter are supposed to be and explains
why the stronger correlations have been found in the central
lung ROIs.

We found that by integrating EIT and airway opening pressure
information, DPL can be predictable with good reliability and
low bias. Specifically, esophageal derived DPL was derived from
IBW, Ers, and the relative ventilation in ROI1, ROI2, and ROI3.
This is not the first attempt to evaluate non-invasively DPL
and EL. Lundin et al. (2015) recently introduced a method
to estimate transpulmonary pressure from changes in end-
expiratory lung volume (1EELV) following a PEEP step. Despite
this approach is intriguing, it does need to perform a PEEP
titration including the need to reach low or even zero PEEP.
This is not problematic in patients undergoing general anesthesia
which is the context of method validation but is less feasible
in patients with ARDS, where the removal of PEEP can cause
clinically important effects. Recently, Yoshida et al. (2018)
demonstrated how transpulmonary pressure calculated using the
subtractive method from Peso reflects the local behavior of the
central to dependent lung. We hereby confirm this finding. Is has
to be tested if this approach could be used to evaluate directly
measured non-dependent lung DP, being at the moment still
not possible to estimate local end-expiratory transpulmonary
pressure and, therefore, the corresponding DPL of this area.

We evaluated if also the inspiratory transpulmonary pressure,
calculated using the elastance-derived method (Grasso et al.,
2012) could be predicted by EIT. This parameter, indeed, has
been demonstrated to be highly indicative of the transpulmonary
pressure directly measured in the non-dependent lung (Yoshida
et al., 2018). We found that EIT could predict its value with high
accuracy, just by deriving lung and chest wall elastances by PL,EIT.
This simple calculation, if implemented on available bedside EIT
machines, would allow having continuously and non-invasively a
good predictor of non-dependent transpulmonary pressure and,
therefore, of the risk of barotrauma in this part of the lung.

We demonstrated that by using EIT data, it is possible to
quantify DPL and EL, as commonly calculated by the esophageal
balloon. The immediate advantage of this is the possibility
of measuring DPL continuously and in patients in which the
esophageal catheter positioning is technically challenging or the
signal is not reliable. Moreover, we confirmed that PL reflects
the behavior of the central regions of the lung. Future studies
need to evaluate if EIT can be used to calculate transpulmonary
pressure in the other lung regions, allowing therefore to have

at the bedside, regional transpulmonary pressure data. This
information is currently not derivable by any non-invasive
monitoring tool and could be precious in assessing regional early
indicators of VILI.

This study has some limitations. First, it is derived from
a limited number of observations and a small number of
patients enrolled in two centers. Second, we used only one EIT
machine to retrieve the percentage of relative ventilation in the
ROI which is implemented with lung contouring based on the
anthropometric characteristics of the patient. If this approach
and the parameters derived in the regression equation can be
applied also to the other EIT devices has to be confirmed
(Lionheart, 2004). Third, in the protocol, we explored the
correlation between DPL measured using the esophageal balloon
and EIT, by using a database of repeated measures at different
levels of PEEP. Since regional DP can be modified by TV,
future studies need to evaluate the impact of this parameter on
regional transpulmonary pressure and the agreement between
the two techniques. Finally, the population was characterized by
patients affected mainly by ARDS associated with pneumonia or
sepsis. None of the patients had a highly asymmetrical ARDS.
The replicability of the findings must be, therefore, explored
in this specific form of ARDS, due to the highly variable local
forces, especially for their influence on the esophageal balloon
signal (as shown in Supplementary Figure S3). No patient with
COVID-19 was enrolled in this study and, therefore, also the
applicability of this technique to patients with COVID-19 has
to be tested. In conclusion, DPL correlated with EIT-derived
regional parameters, especially in the central lung. DPL, EL,
and inspiratory transpulmonary lung pressures can be non-
invasively estimated by integrating EIT-derived and airway
opening pressure-derived data.
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Rationale: Intratidal changes in regional lung aeration, as assessed with dynamic four-
dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment 
and derecruitment, thus portending atelectrauma during mechanical ventilation. In this 
study, we characterized the time constants associated with deaeration during the expiratory 
phase of pressure-controlled ventilation in pigs before and after acute lung injury using 
respiratory-gated 4DCT and image registration.

Methods: Eleven pigs were mechanically ventilated in pressure-controlled mode under 
baseline conditions and following an oleic acid model of acute lung injury. Dynamic 4DCT 
scans were acquired without interrupting ventilation. Automated segmentation of lung 
parenchyma was obtained by a convolutional neural network. Respiratory structures were 
aligned using 4D image registration. Exponential regression was performed on the time-
varying CT density in each aligned voxel during exhalation, resulting in regional estimates 
of intratidal aeration change and deaeration time constants. Regressions were also 
performed for regional and total exhaled gas volume changes.

Results: Normally and poorly aerated lung regions demonstrated the largest median 
intratidal aeration changes during exhalation, compared to minimal changes within hyper- 
and non-aerated regions. Following lung injury, median time constants throughout normally 
aerated regions within each subject were greater than respective values for poorly aerated 
regions. However, parametric response mapping revealed an association between larger 
intratidal aeration changes and slower time constants. Lower aeration and faster time 
constants were observed for the dependent lung regions in the supine position. Regional 

44

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.707119&domain=pdf&date_stamp=2021--28
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.707119
https://creativecommons.org/licenses/by/4.0/
mailto:jakeherr@bu.edu
https://doi.org/10.3389/fphys.2021.707119
https://www.frontiersin.org/articles/10.3389/fphys.2021.707119/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.707119/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.707119/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.707119/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.707119/full


Herrmann et al. Injured Lung Expiratory Time Constants

Frontiers in Physiology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 707119

gas volume changes exhibited faster time constants compared to regional density time 
constants, as well as better correspondence to total exhaled volume time constants.

Conclusion: Mechanical time constants based on exhaled gas volume underestimate 
regional aeration time constants. After lung injury, poorly aerated regions experience larger 
intratidal changes in aeration over shorter time scales compared to normally aerated 
regions. However, the largest intratidal aeration changes occur over the longest time 
scales within poorly aerated regions. These dynamic 4DCT imaging data provide supporting 
evidence for the susceptibility of poorly aerated regions to ventilator-induced lung injury, 
and for the functional benefits of short exhalation times during mechanical ventilation of 
injured lungs.

Keywords: mechanical ventilation, ventilator-induced lung injury, respiratory mechanics, computed tomography, 
image registration

INTRODUCTION

Repetitive recruitment and derecruitment of lung tissue during 
mechanical ventilation is associated with atelectrauma, a harmful 
process contributing to ventilator-induced lung injury and 
associated with progressively deteriorating overall condition 
(Slutsky and Ranieri, 2013; Gaver et  al., 2020). Intratidal 
derecruitment occurs predominantly during exhalation, when 
the reduction of gas volume and distending pressure allows 
the collapse of atelectatic regions. Alveolar permeability, 
pulmonary edema, and surfactant dysfunction contribute to 
increased susceptibility to derecruitment in injured lungs (Gatto 
et al., 2004), such that atelectrauma is likely to occur in regions 
that are poorly aerated (Broche et  al., 2017, 2019; Fardin et  al., 
2021). Regional distributions of intratidal recruitment and 
derecruitment have been inferred by comparing static or quasi-
static computed tomography (CT) images acquired at 
end-expiration vs. end-inspiration (Crotti et al., 2001; Carvalho 
et  al., 2008; Cereda et  al., 2017). Clinical CT imaging cannot 
resolve structural details of individual alveoli and alveolar ducts, 
making it impossible to conclude whether an increase in CT 
density corresponds to partial derecruitment, uniform deflation 
without any derecruitment, or any combination thereof (Cereda 
et al., 2019). Nonetheless, progression of lung injury is associated 
with poor or unstable aeration in CT (Cereda et  al., 2017; 
Xin et  al., 2018). However, recruitment and derecruitment are 
not instantaneous responses to changes in transpulmonary 
pressure, but rather occur gradually over time, with heterogeneous 
rates of re-inflation and collapse (Bates and Irvin, 2002). Thus, 
to determine which regions of the lung may be  at risk for 
atelectrauma, one must not only quantify how much aeration 
changes within a given region during exhalation, but also how 
quickly such deaeration occurs.

Several lung-protective modalities are predicated on the 
maintenance of lung recruitment by shortening the time allowed 
for exhalation (Jain et al., 2016), with support from experimental 
evidence provided by in vivo microscopy at the alveolar level 
near the pleural surface (Gatto et al., 2004; Carney et al., 2005), 
dynamic CT (Neumann et al., 1998a,b; Markstaller et al., 2001), 
and synchrotron radiation phase-contrast imaging with sub-acinar 

spatial resolution (Fardin et al., 2021). Previous studies involving 
dynamic CT imaging have assumed exponential decay of regional 
aeration (i.e., changes in fraction of gas per unit volume of 
lung tissue, assessed by changes in regional CT density) in 
response to instantaneous changes in applied airway pressure 
(Figure  1). These studies demonstrated regional discrepancies 
in exhalation deaeration rates, but were limited in the ability 
to spatially localize these measurements.

The goal of this study was to quantify regional rates of 
lung deaeration during passive exhalation, using four-dimensional 
computed tomography (4DCT) dynamic imaging (Herrmann 
et  al., 2017) and 4D image registration (Zhao et  al., 2016; 
Herrmann et  al., 2020a) to track localized aeration changes 
with high spatial resolution. In addition to assessment of aeration 
based on CT density, it is also possible to account for specific 
gas volume changes using an intensity-corrected Jacobian 
determinant, which is more strongly correlated to specific 
ventilation (Ding et  al., 2012). In this study, we  quantified 
regional CT density and gas volume time constants before and 
after acute lung injury in anesthetized porcine subjects. We also 
investigated potential factors that influence the distribution of 
these regional time constants, including location on the 
gravitational axis as well as regional aeration at end-inspiration, 
end-expiration, and predicted equilibrium. Our study therefore 
provides new insights into how the rate of tidal aeration changes 
occur within normally and poorly aerated regions during passive 
exhalation. Portions of these data were presented in abstract 
form at meetings of the American Society of Anesthesiologists 
(Kaczka et  al., 2020) and the American Thoracic Society 
(Herrmann et  al., 2020b).

MATERIALS AND METHODS

All experimental procedures were approved by the University 
of Iowa Institute for Animal Care and Use Committee (Protocol 
Number 5061428). Two other studies of respiratory mechanics, 
involving regional dynamic deformation (Herrmann et al., 2020a) 
and gas transport (Herrmann et  al., 2021), were previously 
published using data collected from the subjects used in 
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this study. Eleven pigs were used in this study, weighing between 
9 and 13  kg.

Ventilation and CT imaging were performed before and 
after an acute lung injury induced by infusion of 0.08 cm3 kg−1 
oleic acid into the internal jugular vein over 15  min. 
Maturation of lung injury was confirmed by a ratio of 
arterial oxygen tension to inspired oxygen fraction less than 
300 mm Hg with at least 5 cm H2O of positive end-expiratory 
pressure (PEEP). Each subject was then mechanically ventilated 
in a pressure-controlled modality for 30  min, using a 
FabianHFO hybrid oscillator/ventilator (ACUTRONIC Medical 
Systems AG, Switzerland). During baseline conditions, FiO2 
was set to 40%, but was increased to maintain SpO2  ≥  90% 
following lung injury. Respiratory rate varied between 20 
and 32  min−1, with inspiratory-to-expiratory (I:E) ratio of 
1:2. Sampling frequency for the ventilator waveforms was 
200  Hz. Ventilator driving pressure was adjusted to obtain 
arterial CO2 tension (PaCO2) in the target range of 30–60 mm 
Hg, while maintaining mean airway pressure ( Paw ) at 12 cm 
H2O. Each 30-min ventilation interval was followed by an 
arterial blood gas analysis and 4DCT scan sequence, without 
interrupting mechanical ventilation (Herrmann et  al., 2017). 
Before each ventilation interval, a 30-second recruitment 
maneuver to 35  cm H2O of airway pressure was used to 
restore a control mechanical and physiological state. After 
completion of the experimental protocol, subjects were 
euthanized with an intravenous solution of pentobarbital 
sodium and phenytoin sodium (1  ml  +  0.2  ml  kg−1).

Computed tomography scans were acquired using a Siemens 
SOMATOM Force (Siemens Healthineers, Germany) in an axial 
scanning mode, with 5.76  cm of axial coverage and 0.6  mm 
slice thickness. Subjects were continuously scanned for 30  s 

at 80  kVp tube voltage and 150  mA tube current, with 250  ms 
scanner rotation period, yielding an extensive series of x-ray 
projection data. Projection data were then retrospectively binned 
according to both the scanner rotation angle and acquisition 
timing relative to the periodic ventilation cycle (Herrmann 
et  al., 2017), resulting in a sequence of distinct sinograms 
each corresponding to a specific ventilation phase. Each sinogram 
sequence was then reconstructed with isotropic 0.6 mm spatial 
resolution to obtain a 4DCT image sequence, yielding between 
13 and 21 volumetric images in each sequence (depending 
on sampling constraints imposed by the choice of respiratory 
rate). The temporal sampling frequency for 21-phase image 
sequences was 7  Hz during ventilation at 20  min−1, which is 
faster than the 4  Hz rotation frequency of the scanner. Each 
sequence was periodic in the temporal (i.e., phase) dimension, 
such that the choice of the “initial” image in the sequence 
was arbitrary. Voxels corresponding to spatial positions within 
the lungs were identified by a fully automated segmentation 
algorithm using a deep convolutional neural network (Gerard 
et  al., 2018, 2020), generating a distinct lung mask for each 
image phase.

The periodic motion of respiratory structures was estimated 
using a deformable image registration technique, using four-
dimensional cubic B-splines ensuring smoothness across both 
spatial and temporal dimensions (Metz et  al., 2011). 
Fluctuations in CT voxel density due to variations in fractional 
gas content were compensated using a sum of squared tissue 
volume differences (SSTVD) similarity cost function 
(Gorbunova et  al., 2008; Yin et  al., 2009; Zhao et  al., 2016), 
implemented in the Elastix library (Klein et  al., 2010). After 
registration, the estimated transformations were used to 
deform images to align structures with a single, arbitrarily 

FIGURE 1 | Schematic of a step change in airway pressure producing a decaying exponential response in voxel computed tomography (CT) density. At end-
inspiration, airway pressure changes from inspiratory pressure (Pinsp) to positive end-expiratory pressure (PEEP) with an inspiratory:expiratory ratio of 1:2. Voxel CT 
density changes from an end-inspiratory level (DEI) to an end-expiratory level (DEE). Tick marks along the horizontal axis indicate the corresponding breath phases of 
retrospectively gated four-dimensional computed tomographic images. The duration of inspiration (T) is half that of exhalation (2 T).
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selected reference phase. The phase most closely aligned 
with the end of inspiration was manually identified by the 
lowest level of aeration according to time-varying histograms 
of CT intensity. End-expiratory phase was then determined 
according to the 1:2  I:E ratio for all subjects. The elapsed 
time since end-inspiration was determined for each expiratory 
phase according to the fixed time interval associated with 
each phase interval.

Before exponential regression, images were downsampled 
to 1.2  mm isotropic resolution, to reduce the influence of 
noise on parameter estimation. The time-varying intensity within 
each voxel during exhalation only was fit to an exponential model:

 I D D Dn
tn D = + −( ) −( )∞
−

0 0 1• /e t  (1)

where In  is the spatially varying estimate of actual CT 
intensity, In, at each ventilation phase n corresponding to 
elapsed expiratory time tn, and D0, D∞, and τD are the 
spatially varying estimates of initial density, equilibrium 
density, and density time constant, respectively. Equilibrium 
density D∞ is defined as the predicted value of CT intensity 
after a prolonged exhalation of infinite duration, i.e., as 
tn→∞ . Note that initial density and end-inspiratory density 
are the same, whereas the equilibrium density and 
end-expiratory density are not necessarily the same, especially 
if the duration of exhalation is longer than five times the 
time constant. Figure 1 illustrates the concept of exponential 
decay in voxel aeration following a step change in airway 
pressure. Parameters were estimated by minimizing the sum 
of squared residuals between model-predicted intensity In  
and actual image itensity In for each ventilation phase n.

Regional time constants were estimated for changes in gas 
volume, by computing regressions for the specific air volume 
change by corrected Jacobian (SACJ; Ding et  al., 2012) instead 
of density. The Jacobian determinant n®0  describes the 
ratiometric total volume change of a voxel between ventilation 
phase n and the end-inspiratory reference phase 0:

 n
nV

V→ =0
0

 (2)

Specific air volume change by corrected Jacobian adjusts 
the Jacobian determinant to account for changes in voxel 
intensity as well, assuming that gas and tissue exhibit CT 
intensities of −1,000 and 0 HU, respectively (Ding et al., 2012):

 SACJn n
nI

I
= −→ 0

0
1  (3)

Note that SACJ as defined is  zero at end-inspiration, and 
negative at end-expiration if there is a loss of gas volume in 
the corresponding region.

The coefficient of determination and F statistic for each 
regression were computed to determine whether the exponential 
regression significantly contributed to prediction of variability. 
Voxels for which the F test yielded p  >  0.05 were excluded 
from further analysis. Regional time constants were grouped 
and analyzed in several different ways. Time constants were 
grouped by aeration level using standard thresholds for CT 
intensity: hyper-aerated below −900  HU, normally aerated 

between −900 and −500  HU, poorly aerated between −500 
and −100 HU, and non-aerated above −100 HU. Time constants 
were grouped by relative height in the gravitational field given 
by the position along the dorsal-ventral axis for subjects in 
the supine position. Time constants were grouped according 
to location on a parametric response map (PRM) corresponding 
to the initial and equilibrium densities of each voxel. Finally, 
time constants were grouped according to the nonequilibrated 
difference between end-expiratory density and predicted 
equilibrium density. For reference, an overall time constant 
for lung exhalation was obtained by applying Equation (1) to 
the exhaled gas volume measured at the proximal end of the 
endotracheal tube by the mechanical ventilator. Dynamic elastance 
was estimated by the quotient of driving pressure and tidal 
volume, assuming that inspiratory flow was nearly zero at 
end-inspiration.

RESULTS

Table  1 shows summarized ventilation parameters across all 
11 subjects. The oleic acid injury model produced significantly 
lower ratios of alveolar oxygen tension to inspired oxygen 
fraction, meeting the criteria for severe (three subjects), moderate 
(seven subjects), and mild (one subject) acute respiratory distress 
syndome (ARDS). Injury was also associated with significantly 
higher dynamic elastance, respiratory rate, and inspiratory 
pressures. There was no significant difference in PEEP or 
tidal volume.

Figure 2 shows regional aeration at end-inspiration, intratidal 
aeration change, and the time constant of expiratory deaeration 
in a representative subject before and after lung injury. Voxels 
were excluded if exponential regression did not significantly 
contribute to prediction of variability compared to the mean 
at the 0.05 significance level. The majority of excluded voxels 
were either hyper-aerated or non-aerated with little or no 
intratidal change in aeration, and thus relatively constant aeration 
throughout exhalation. Upon close visual inspection, such voxels 
often constituted airways, pulmonary vasculature, and areas 
of nonrecruiting atelectasis.

Figure  3A shows the average volume fractions of hyper-, 
normally, poorly, and non-aerated lung. Figures  3B,C show 
the intratidal change in density (i.e., the difference between 
end-expiratory and end-inspiratory densities), as well as the 

TABLE 1 | Summarized parameters for ventilation and respiratory system 
mechanics, before and after lung injury (mean ± SD).

Baseline Injured

Positive end-expiratory pressure (cmH2O) 8.1 ± 1.5 7.7 ± 0.9
Inspiratory pressure (cmH2O) 20.8 ± 1.6 25.4 ± 3.3*

Tidal volume (ml kg−1) 9.1 ± 1.7 7.5 ± 2.4
PaO2:FiO2 ratio (mmHg) 481 ± 85 136 ± 56*

Dynamic elastance (cmH2O L−1) 143 ± 32 248 ± 59*

Asterisks indicate a statistically significant difference between baseline and injured 
conditions according to a paired samples t-test ( *p < 0.001). PaO2:FiO2 ratio, quotient of 
arterial oxygen partial pressure and inspired oxygen fraction.
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remaining nonequilibrated density change (i.e., the difference 
between predicted equilibrium density and end-expiratory 
density). The vast majority of intratidal variation in density 
occurred in regions that were normally or poorly aerated. 
Intratidal density change per voxel was largest in poorly aerated 
regions after lung injury. Overall, voxel densities equilibrated 
to within 20% of the expected change.

Figure 4 shows the regional density and SACJ time constants 
grouped according to aeration level, as well as the mechanical 
time constants for the entire respiratory system based on exhaled 
volume. Regional density time constants were typically larger 
(i.e., slower) than the overall time constants, but of the same 
order of magnitude. By contrast, the regional SACJ time constants 
were closer in magnitude to the overall time constant of the 
respiratory system. Regions with normal and poor aeration 
tended to exhibit slower regional time constants compared to 
hyper- and non-aerated regions. Although the overall time 

constants were reduced after lung injury, the regional density 
time constants were longer compared to baseline conditions.

Figure 5 shows a strong correlation between regional density 
and SACJ time constants, with SACJ time constants consistently 
faster than density time constants in the same region. This 
trend was observed before and after lung injury.

Figure  6 highlights the contributions of gravitational stress 
and lung weight on regional aeration dynamics. Dorsal proximity 
in the supine position was associated with reduced aeration 
at end-expiration and end-inspiration, with a larger intratidal 
change in aeration, and with a faster density time constant. 
Lung injury resulted in a reduction of aeration at all height 
levels, especially in the dorsal lung. Lung injury was also 
associated with larger intratidal changes in aeration, particularly 
in the middle regions between ventral and dorsal portions. 
These middle regions generally exhibited poor aeration at 
end-expiration. Compared to baseline conditions, the density 

A

B

C

D

FIGURE 2 | Example axial and sagittal views from images of a single representative subject before and after lung injury. From top to bottom, rows show (A) the 
end-expiratory CT image with lung segmentation (blue line); (B) end-expiratory aeration level; (C) the intratidal density change given by the difference between end-
inspiratory and end-expiratory densities; and (D) the regional density time constant (excluding voxels for which exponential regression did not significantly contribute 
to prediction of variability at the 0.05 significance level).
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time constants were not different after lung injury for any 
height level.

Figure 7A shows the average PRMs between end-expiratory 
and end-inspiratory density. The PRM in lung imaging 
typically depicts a two-dimensional histogram of lung voxels 
exhibiting each combination of end-expiratory and 
end-inspiratory density. In this figure, the predicted 
equilibrium density is used in lieu of the dynamic 
end-expiratory density, since PRMs are usually obtained 
quasi-statically via imaging during end-expiratory breathholds. 
Horizontal distance to the line of identity indicates the 
predicted density change between end-inspiration and 
equilibrium (i.e., after infinite exhalation duration). It is 
worth noting that a nonzero fraction of voxels was mapped 

above the line of identity, wherein density paradoxically 
decreases during exhalation. Figure  7B also shows how the 
distribution of density time constants depends on location 
within the PRM. In Figure  7B, the visualization represents 
not probability density but rather the median density time 
constant across subjects of voxels with end-expiratory and 
end-inspiratory aeration corresponding to that same location 
on the PRM. Data in this figure are aggregated from all 
subjects, such that any locations on the PRM without 
representation from at least half of all subjects were left 
blank. Regardless of lung condition, time constants were 
slower in regions that were normally aerated at both 
end-inspiration and end-expiration, compared to regions 
that were poorly aerated or non-aerated. However, there 

A B C

FIGURE 3 | Aeration levels at end-expiration, end-inspiration, and predicted equilibrium. (A) The fraction of imaged lung volume at each end-expiratory aeration 
level. (B) The intratidal density change or the difference between end-expiratory density and end-inspiratory density, among voxels at each aeration level. (C) The 
nonequilibrated remaining density change or the difference between predicted equilibrium density and end-expiratory density, among voxels at each aeration level.

A B C

FIGURE 4 | Expiratory time constants estimated for (A) the entire lung based on exponential regression of exhaled volume measured at the proximal end of the 
endotracheal tube; (B) lung regions based on exponential regression of density changes among voxels at each aeration level; and (C) lung regions based on 
exponential regression of specific air volume change by corrected Jacobian (SACJ) among voxels at each aeration level.
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was also an effect of intratidal aeration change. Regions 
that were poorly aerated tended to have faster time constants 
when the predicted equilibrium change was small, and slower 
time constants when the predicted change was large. Figure 7C 
shows the nonequilibrated density change remaining at 
end-expiration (i.e., the difference between predicted 
equilibrium density and end-expiratory density). Similar to 
the observed distribution in Figure  7B, regions with larger 
predicted density changes also exhibited larger degrees of 
nonequilibration, as well as slower time constants.

Figure  8A expresses the average probability density 
distribution in terms of the nonequilibrated density change, 
rather than the end-inspiratory density usually shown in PRMs 
as in Figure  7. This depiction emphasizes that injured regions 
with the largest degree of nonequilibrated density change also 

exhibited poor aeration at predicted equilibrium (i.e., between 
−500 and −100  HU). Figure  8B shows the corresponding 
median density time constants, again linking large nonequilibrated 
density change to slower time constants, especially in regions 
with normal aeration at predicted equilibrium (i.e., between 
−900 and −500  HU).

Figure  9 shows the nonequilibrated density change as a 
normalized quantity, to represent the fractional convergence 
at end-expiration. The density time constant in this figure 
is also normalized by the duration of exhalation, which 
allows the resulting probability density distribution to 
be contextualized to the theoretical prediction for convergence 
of a single time constant exponential decay. The theoretical 
prediction provides a reliable lower bound for the 
nonequilibrated aeration changes. Regions with density time 

A B C

FIGURE 5 | Correlation between regional time constants estimated for density changes and specific air volume change by corrected Jacobian (SACJ). Average 
probability density distributions are shown for (A) baseline and (B) injured conditions, including voxels for which both exponential regressions significantly predicted 
variability in the respective signals at the 0.05 significance level. Dashed line indicates identity. (C) The fraction of subjects exhibiting significant correlations between 
density and SACJ time constants before and/or after lung injury.

A B C D

FIGURE 6 | Influence of height and lung condition on regional intratidal density variation. Panels show median and interquartile range at each relative height level 
along the dorsal-ventral axis for (A) end-inspiratory density, (B) end-expiratory density, (C) the difference between end-expiratory and end-inspiratory densities, and 
(D) the density time constant.
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constant less than one fifth of the total exhalation duration 
tended to exhibit nearly complete equilibration.

Figures  10, 11 show the distributions of regional density 
change and gas volume change from end-inspiration as 
expiratory time increases. Regions with poor aeration exhibit 
the largest changes in density, and also the largest changes 
in gas volume. Changes in gas volume were magnified by 
low initial gas volume in regions that were poorly or 
non-aerated at end-inspiration. Regional gas volume reduced 
up to 33% under baseline conditions over longer exhalations, 
and up to 80% after lung injury. Restricting gas volume 

changes to less than 40% after injury would have required 
exhalation times less than 0.2 s according to the exponential  
regression.

DISCUSSION

This study presents a retrospective analysis of regional expiratory 
deaeration dynamics in mechanically ventilated pigs before and 
after lung injury. Previous studies of regional exhalation time 
constants using CT imaging have been limited to two-dimensional 

A

B

C

FIGURE 7 | Distributions of dynamic aeration characteristics before and after lung injury with respect to location on the parametric response map (PRM), 
aggregated across all subjects. (A) Aggregate PRM showing the average probability density distribution of lung voxels with a given initial (or end-inspiratory) 
density and equilibrium density. Note that equilibrium density is not necessarily equal to end-expiratory density. The dashed line is the line of identity, 
indicating no change between end-inspiration and equilibrium. (B) Median density time constants, shown wherever at least half of the subjects exhibited at 
least five voxels each at the corresponding location of the PRM. (C) The median difference between equilibrium density and end-expiratory density, using the 
same inclusion criteria as (B).
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analyses and slower imaging speeds, permitting only coarse 
resolution of large spatial regions over relatively long expiratory 
durations (Neumann et  al., 1998a,b; Markstaller et  al., 2001). 
These studies were limited by a lack of anatomic specificity 
(i.e., lung tissue was moving through the image plane during 
acquisition), such that a given region of analysis in the image 
may have yielded different structures at each point in time. 
Additionally, slower sampling rates limited the faster time 
constants that could have been reliably estimated. In this study, 
we reconstructed volumetric sections of lung tissue with 5.6 cm 
axial coverage and temporal sampling rates of up to 21 images 
per breath. Together with 4DCT image registration, this study 
enabled a higher resolution analysis of local aeration changes 
over shorter time scales. Our use of image registration also 
enabled calculation of specific air volume changes by the 
so-called “corrected” Jacobian determinant (SACJ). The primary 

findings of this study include (1) a tendency for poorly aerated 
regions to exhibit large intratidal density changes and slow 
time constants; (2) a potential for preventing derecruitment 
of poorly aerated regions with shorter exhalation times; (3) a 
large discrepancy between the overall mechanical time constant 
of the respiratory system and regional deaeration time constants; 
(4) a potential for regions with slow time constants to remain 
nonequilibrated at end-expiration, especially in the injured lung; 
and (5) the gravitational dependence of regional time constants 
that is independent of lung injury.

It may be  inferred from Figure  10 that shortening the 
allowable expiratory time during mechanical ventilation offers 
protection against derecruitment to regions of “unstable inflation,” 
or poor aeration. If instead an extended exhalation time is 
allowed, these poorly aerated regions at end-inspiration 
experience the greatest change in density, suggesting increased 

A

B

FIGURE 8 | Characteristics of nonequilibrating density at end-expiration according to the difference between predicted equilibrium density and end-expiratory 
density, aggregated across all subjects. (A) Average probability density distribution, with increasing vertical distance from the dashed line indicating an increasing 
lack of convergence to the equilibrium density by end-expiration. (B) Median expiratory time constants, shown wherever at least half of the subjects exhibited at 
least five voxels each at the corresponding locations of (A).
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proclivity for collapse during exhalation. It should be  noted 
that the same change in density has a larger effect on poorly 
aerated compared to normally aerated regions. The relative 
change in gas volume is amplified by the lower initial gas 
volume in poorly aerated regions. For example, normally aerated 
regions at end-expiration are less susceptible to derecruitment, 

whereas poorly aerated regions may not tolerate similar degrees 
of deaeration. Figure  11 highlights this discrepancy, with up 
to 80% loss of gas volume in poorly aerated regions of the 
injured lung during prolonged exhalation, compared to just 
33% at baseline. For our lung injury model, ensuring a comparable 
upper limit of relative gas volume change requires a reduction 

FIGURE 9 | Relative nonequilibrated density change remaining at end-expiration, according to the difference between predicted equilibrium density and end-
expiratory density normalized by the total expected density change from end-inspiration to equilibrium, shown with respect to the estimated density time constant 
normalized by the total duration allowed for exhalation. A voxel with an estimated density time constant less than one fifth of the exhalation duration is expected to 
converge to within 0.7%. The black line shows theoretical expected convergence for exponential decay.

A

B

FIGURE 10 | Average distributions of density change at different time points during exhalation (A) before and (B) after lung injury. Density change was estimated 
from exponential regression.
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of the exhalation duration to 0.2  s or shorter. There are also 
wide ranges of time constants in poorly aerated regions 
(Figure  8), with an association between slower time constants 
and larger changes in CT density (Figure  7). Thus, limiting 
exhalation time prevents the largest changes in density from 
occurring, perhaps providing more stability to poorly 
aerated regions.

The mechanical time constant for the entire respiratory 
system, as estimated by exponential regression of exhaled 
gas volume, was 10–50% faster compared to the regional 
density time constants, as estimated by exponential regression 
of CT density (Figure  4). Neumann et  al. (1998a) also 
reported lower mechanical time constants (estimated by the 
product of respiratory system resistance and compliance) 
compared to CT density changes. The product of average 
resistance and compliance in their study was approximately 
0.4  s both before and after oleic acid injury, compared to 
time constants ranging 0.7–1.4 s based on CT density changes 
(Neumann et  al., 1998a). Furthermore, these authors found 
no correlation between CT density time constants and 
mechanical time constants, reasoning that extraneous 
mechanisms of density change (e.g., blood volume fluctuations; 
Porra et al., 2017) confound a meaningful relationship between 
overall mechanical time constants and regional CT density 
time constants (Neumann et  al., 1998a).

The specific air volume change by corrected Jacobian 
(SACJ) utilizes an intensity-corrected Jacobian determinant 
to account for changes in gas volume only, yielding strong 
correlations to specific ventilation, at least as estimated by 
xenon-CT imaging (Ding et  al., 2012). We  computed 
exponential regression of regional SACJ variation over time, 

in an attempt to determine whether the regional SACJ time 
constants provided a better correspondence to the overall 
mechanical time constant of the entire respiratory system. 
Indeed, the discrepancy between overall and regional time 
constants was reduced using SACJ instead of CT density 
(Figure  3). This finding demonstrates that the rate of gas 
volume change is consistently faster than the rate of aeration 
change (Figure 5), both globally and regionally. This suggests 
that increases in regional tissue volume, due to blood influx 
and/or fluid accumulation, occur on a slower time scale 
compared to corresponding reductions in gas volume. It is 
worth noting that gas exchange relies on gas volume change 
specifically (i.e., the turnover of alveolar gas), as opposed 
to the CT density change (which reflects the relative amounts 
of tissue vs. gas in a voxel). Therefore, the observation that 
gas volume changes occur faster than density changes provides 
some justification for the efficacy of lung-protective strategies 
with short exhalation: enough time for alveolar gas turnover 
but not enough time for alveolar collapse (Bates et al., 2020). 
Although relative gas volume changes estimated by SACJ 
may be  more appropriate for representation of the regional 
mechanical response, the primary objective of our study 
was to evaluate the dynamics of regional CT density instead 
of gas volume, since regional density is associated with 
atelectasis (Gatto et  al., 2004; Broche et  al., 2017; Fardin 
et  al., 2021) and atelectrauma (Cereda et  al., 2017). It is 
therefore important to consider that the mechanical time 
constant of the respiratory system, which can be  easily 
estimated at the bedside during mechanical ventilation, may 
substantially underestimate regional exhalation time constants. 
Electrical impedance tomography may offer a low-resolution 

A

B

FIGURE 11 | Average distributions of relative gas volume change at different time points during exhalation (A) before and (B) after lung injury.
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bedside alternative for measurement of aeration dynamics 
(Karagiannidis et  al., 2018; Victor et  al., 2019).

Cereda et  al. (2017) identified locations on the PRM 
associated with the highest risk of injury progression and 
complete loss of aeration over the course of multiple hours. 
These high risk locations were characterized by voxels with 
“unstable inflation,” including those normally or poorly 
aerated at end-inspiration, but poorly or non-aerated at 
end-expiration. Several ventilatory strategies may reduce the 
fraction of lung operating in the high risk category, such 
as prone positioning (Xin et  al., 2018) and use of PEEP. 
However, within the high risk PRM locations, there is still 
great variability of the dynamic characteristics of aeration 
change from end-inspiration to end-expiration. The 4DCT 
dynamic approach used in our study may supplement risk 
categorization based solely on end-inspiratory and 
end-expiratory densities, by contributing new information 
about precisely how density changes in each voxel between 
two endpoints. Importantly, our approach highlights the 
benefit of using short expiratory times as an alternative 
lung-protective strategy, to prevent derecruitment of high-
risk lung regions. Such strategies include inverse ratio 
ventilation, airway pressure release ventilation, or time-
controlled adaptive ventilation (Nieman et  al., 2020).

Quasi-static imaging during end-expiratory breathholds 
likely overestimates the extent of aeration loss. The lung 
exhibits a wide distribution of region time constants, with 
some regions equilibrating over 10-fold longer time scales 
than others (Figure  4). Mechanical nonequilibration may 
contribute substantially to the measurement of regional 
aeration. Thus dynamic CT imaging, without interruption 
of mechanical ventilation, may yield more clinically relevant 
information. Even if gas flow is completely occluded, 
intrapulmonary gas redistribution and pendelluft may still 
affect the measurement of regional aeration, as well as time-
dependent changes in regional recruitment (Bates and Irvin, 
2002). Decreasing CT density during exhalation, evidenced 
in Figure  7, is a counterintuitive phenomenon that may 
indicate out-of-phase gas redistribution (Kaczka et  al., 2011; 
Perchiazzi et  al., 2014).

Limitations
Our particular CT reconstruction technique relies on an 
assumption of temporal periodicity in the motion of thoracic 
structures (Herrmann et  al., 2017). Asynchronous motion 
(e.g., due to cardiac contractions) may produce motion artifact 
and blurring. Furthermore, lung recruitment and derecruitment 
at the microscale exhibit irregularity over time (Broche et  al., 
2017), such that breath-to-breath variability of regional density 
may not be  periodic. In our study, such irregular density 
variations are averaged over 30  s of CT scanning. The limited 
axial field-of-view provided by this imaging technique 
encompasses only a portion of the total lung volume. Apical 
and basal lung regions may exhibit different aeration responses. 
In addition, mean airway pressure was explicitly controlled 
in this study rather than PEEP, although all PEEP settings 

were between 5 and 10  cm H2O (Table  1). Neumann et  al. 
(1998a) report faster time constants in an oleic acid model 
of lung injury when subjects were allowed to exhale to 
atmospheric pressure compared to 5  cm H2O PEEP yet no 
consistent difference in response to different PEEP levels 
greater than 10 cm H2O (Neumann et al., 1998b), highlighting 
the nonlinearity of respiratory system mechanics during 
passive exhalation.

We also did not determine the inspiratory time constants 
in our study. Given the 1:2  I:E ratio used in our study, only 
seven sequential images during inspiration could 
be  reconstructed – potentially too few time points to ensure 
reliable regression especially in regions with longer time constants. 
Neumann et  al. (1998a) also report faster time constants in 
pigs with an oleic acid model of lung injury during exhalation 
compared to inspiration, reasoning that the injured lung may 
tend to derecruit faster than it recruits.

Finally, our model for ARDS relied on oleic acid infusion 
into the central venous circulation, which mimics certain 
features of the fat emboli syndrome (Ballard-Croft et  al., 
2012). While the exact mechanism of injury from oleic acid 
remains elusive, it is associated with increased vascular 
permeability, as well as patchy, heterogenous edema in the 
airspaces and interstitium (Wang et al., 2008). Neumann et al. 
(1998a) noted differences in regional time constants among 
the oleic acid, saline lavage, and endotoxin models of lung 
injury. Unfortunately, CT imaging alone cannot distinguish 
between intraalveolar vs. interstitial edema in the poorly 
aerated regions we identified, at least for the spatial resolution 
of our scanner. Accordingly, one should exercise caution in 
generalizing our results in a small animal model of porcine 
oleic acid injury to mechanically ventilated humans with the 
acute respiratory distress syndrome. The underlying etiology 
of respiratory failure may yield differences in regional lung 
recruitability and dynamic behavior, as well as differences in 
noninjurious ventilatory approaches.

Conclusion
Mechanical time constants for the entire respiratory system 
based on exhaled gas volume may underestimate the regional 
time constants of deaeration based on 4DCT imaging. After 
lung injury, poorly aerated regions tend to experience larger 
intratidal changes in aeration over shorter time scales compared 
to normally aerated regions. However, within these poorly 
aerated regions, the largest intratidal aeration changes occur 
over the longest time scales. These dynamic imaging results 
provide supporting evidence for the susceptibility of poorly 
aerated regions to ventilator-induced lung injury, and for the 
protective benefits of short exhalation times during mechanical 
ventilation of acutely injured lungs.
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Background: Acute respiratory failure (ARF) is a commonly distressing condition in

critically ill patients. Its early recognition and treatment may improve clinical outcomes.

Mounting evidence suggests that lung ultrasound (LUS) could be an alternative to chest

X-ray (CXR) or computed tomography (CT) for the diagnosis of ARF in critically ill patients.

This meta-analysis aimed to determine whether LUS can be an alternative tool used to

investigate the cause of ARF or thoracic pathologies associated with the diagnosis of

ARF in critically ill patients.

Method: A systematic literature search of the PubMed, Web of Science, Embase,

and Cochrane Library databases was conducted from inception to March 2020. Two

researchers independently screened studies investigating the accuracy of LUS with CXR

or CT for adult critically ill patients with ARF. Data with baseline, true positives, false

positives, false negatives, and true negatives were extracted. The study quality was

assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The

pooled sensitivity and specificity were obtained using a bivariate model.

Results: Eleven studies, including 1,232 patients, were included in the meta-analysis.

Most studies were of low quality. LUS had a pooled sensitivity of 92% (95% confidence

interval [CI]: 85–96) and a pooled specificity of 98% (95% CI: 94–99). The area under

the summary receiver operating characteristic curve was 98% (95% CI: 97–99). The

sensitivity and specificity of LUS to identify different pathological types of ARF were

investigated. For consolidation (1,040 patients), LUS had a sensitivity of 89% and a

specificity of 97%. For pleural effusion (279 patients), LUS had a pooled sensitivity of

95% and a specificity of 99%. For acute interstitial syndrome (174 patients), LUS had a

pooled sensitivity of 95% and a specificity of 91%.

Conclusions: LUS is an adjuvant tool that has a moderate sensitivity and high specificity

for the diagnosis of ARF in critically ill patients.

Systematic ReviewRegistration: The study protocol was registered with PROSPERO

(CRD42020211493).

Keywords: lung ultrasound, diagnostic accuracy, consolidation, acute interstitial syndrome, acute respiratory

failure
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INTRODUCTION

Acute respiratory failure (ARF) is a commonly distressing
condition in critically ill patients with increased incidence (1).
The common causes of ARF include pneumonia, sepsis, heart
failure, and chronic obstructive pulmonary disease (COPD) (1,
2). In most cases, patients with ARF present in conditions not
suitable for the establishment of accurate diagnosis at the early
stage of illness, whichmay compromise the outcomes (3, 4). Early
recognition and treatment of ARF may play an important role in
improving clinical outcomes.

The diagnosis of the underlying causes of ARF is dependent
on chest imaging, with unreliable results. Chest X-ray (CXR) is
recommended as the first-line imaging modality for the diagnosis
of ARF in intensive care units (ICUs), but the limited supine
films result in diminished diagnostic accuracy for consolidation
(5). The “gold standard” modality, chest computed tomography
(CT), has considerable limitation, although it currently offers a
higher accurate diagnosis for lung lesions (6). This is related to
the difficulties and risks of transportation, radiation exposure,
and costs (7).

Lung ultrasound (LUS) is possibly a reliable diagnostic
approach that can be used in critically ill patients (8).
Studies have shown that the diagnostic accuracy of LUS for
pneumonia was well-established (9–11). Available data have
also suggested that LUS had a high diagnostic performance
for commonly encountered conditions, such as pulmonary
embolism and pneumothorax (12, 13). Furthermore, LUS is
portable, inexpensive, radiation-free, non-invasive, and real-time
at the bedside. Thus, LUS may be a potential alternative to chest
radiography or CT for the diagnosis of ARF.

This systematic literature review and meta-analysis aimed
to assess the diagnostic performance (including sensitivity and
specificity) of LUS for the different pathological types of critically
ill patients with ARF.

METHODS

We conducted this systematic review and meta-analysis to
assess the diagnostic efficacy of LUS in ARF in accordance
with the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guidelines for Diagnostic Test
Accuracy (14). The meta-analysis was prospectively registered
at https://www.crd.york.ac.uk/prospero/ with the registration
number CRD42020211493.

Search Strategy and Study Selection
Two researchers (XY and LH) independently conducted an
electronic database search, including PubMed, Embase, the
Cochrane Library, and Web of Science databases, to identify
potentially eligible studies published from inception to March
2020. The search strategy included controlled vocabulary
(i.e., Medical Subject Headings) and free-text words for two
basic concepts: (1) ultrasonography and (2) ARF, respiratory
insufficiency, and ventilatory depression. The search strategy
details are presented in Supplementary Table 1. Two researchers
(XY and ZW) selected and evaluated the titles and abstracts

of the retrieved literature. All disagreements between the
two researchers were resolved by the intervention of a third
expert (WC).

This systematic review andmeta-analysis included all English-
language articles describing retrospective and prospective
observational studies. Studies were included if they (i) enrolled
adult patients with clinically suspected or confirmed ARF caused
by any etiology, (ii) compared the diagnostic accuracy of LUS
for ARF with radiography or CT, and (iii) included more than
20 consecutive patients. The following studies were excluded:
case reports, studies with abstracts without full text available,
animal studies, and pediatric studies. The outcomes were all data
concerning diagnostic accuracy including sensitivity, specificity,
pooled positive likelihood ratio (PLR), pooled negative likelihood
ratio (NLR), and diagnostic odds ratio (DOR) with 95%
confidence intervals (CIs). PLR and NLR indicate the reliability
of the results. The higher the PLR value, the greater the
probability of the diagnosis of ARF with LUS. Meanwhile, NLR
has a contrasting concept. A higher DOR indicates a higher
diagnostic accuracy.

Data Extraction
Two researchers (XL and YC) independently extracted the data
including the number of true positives, false positives, false
negatives, and true negatives with prepared data extraction
forms. When the information we needed was not explicitly
obtained in the selected studies, a 2× 2 table was built to calculate
the required data. Additionally, other data, including the year of
the studies, settings, origins of patients, sample sizes, causes of
ARF, ultrasound equipment, lung areas examined, and expertise
of operators, were obtained.

Quality Assessment
The Quality Assessment of Diagnostic Accuracy Studies-2 tool
(QUADAS-2) was performed to assess themethodological quality
of the selected studies (15). Studies with potential risk of bias
for any domains were identified to have high risk of bias overall.
Overall quality was independently determined by two researchers
(XY and YC) with discrepancies solved by consensus.

Data Analysis and Synthesis
The statistical analysis was performed in the raw data according
to the European Association for Technology Assessment
recommendations (16). The quality of the included studies was
assessed using QUADAS-2 with ReviewManager 5.3. The pooled
sensitivity and specificity were obtained using a bivariate model
with Stata 15.0. TheMidasmodule included in the Stata statistical
package was used to construct forest plots. Heterogeneity was
estimated using the Q-test and the I2 statistic, and significant
heterogeneity was considered when the P-value was <0.05 or
I2 was >50%. The summary receiver operating characteristic
(SROC) curves were plotted to estimate the true positivity and
specificity. Meanwhile, Fagan’s nomogram and likelihood ratio
plot were performed to assess the clinical applicability of LUS in
diagnosing ARF. The causes of heterogeneity in the studies were
identified using subgroup analysis and meta-regression analysis.
A sensitivity analysis was performed to assess the stability of the
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FIGURE 1 | Flowchart of the selection process for the included studies.

results. Publication bias was estimated with Deeks’ funnel plot
asymmetry test, and significant publication bias was considered
when the P-value was <0.10.

RESULTS

Literature Search
Of the 2,102 studies obtained through the databases and
references, 2,046 were excluded by screening the titles and
abstracts. A total of 56 potentially eligible studies remained, of
which 11 studies (1,232 patients) were finally included in the
quantitative analyses (17–27). The details of the study selection
and reasons for excluding studies are presented in Figure 1.

Study Characteristics and Quality
Assessment
All characteristics of the included studies are summarized in
Table 1. All the included studies were conducted between 2004
and 2019. Ten studies, comprising 776 patients, had a prospective

design (17–25, 27). Of the 11 included studies, five evaluated
the diagnostic accuracy of LUS compared with CT (18, 21, 23,
24, 27). It is unclear whether the ultrasound operators were
blinded to the results of chest radiography or CT in two studies
(19, 21). Details of the performance of LUS are summarized in
Supplementary Table 2.

The quality assessment is presented in Figure 2. Most studies
were of low quality according to the QUADAS-2 criteria.
Concerning patient selection, some studies were at high risk of
bias and compromised the applicability (18, 20, 24). One study
was at high risk of bias but did not compromise the applicability
in an index test (19). Considering the flow and timing, one
study was at high risk of bias but did not compromise the
applicability (19).

Diagnostic Accuracy of LUS in Critically Ill
Patients With ARF
The overall pooled sensitivity and specificity of LUS were
92% (95% CI: 85–96) and 98% (95% CI: 94–99), respectively
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TABLE 1 | Characteristics of the included studies and patients.

Study Year Setting Country Design Number of patients and lung

regions in the LUS protocol

Cause of ARF Reference

standard

Blind in reference

standard

Lichtenstein et al. (17) 2004 Surgical ICU France Prospective ARDS (n = 32) and healthy controls (n

= 10), total lung regions (n = 384)

ARDS (27 insulted to the lung, 5 insulted to

secondary reason)

CXR Yes

Lichtenstein et al. (18) 2004 Medical ICU France Prospective ARF (n = 60), total lung regions (n =

118)

– CT Yes

Copetti et al. (19) 2008 ICU Italy Prospective ARDS (n = 18) and APE (n = 40),

total hemi-thoraces (n = 10)

ARDS (4 insulted to the lung, 11 insulted to

secondary reason)

CXR Unclear

Lichtenstein et al. (20) 2008 ICU France Prospective ARF (n = 260), lung regions were

unknown

COPD, cardiogenic pulmonary edema,

pneumonia, acute asthma, pulmonary

embolism, pneumothorax

CT/CXR Yes

Rocco et al. (21) 2008 Mixed ICU Italy Prospective Trauma, requiring mechanical

ventilation (n = 22): total lung regions

(n = 180)

Thoracic trauma CT Unclear

Xirouchaki et al. (22) 2011 Mixed ICU Greece Prospective Mechanical ventilation (n = 42): total

of hemi-thoraces (n = 84)

– CXR Yes

Refaat and

Abdurrahman (23)

2013 Chest ICU Egypt Prospective ARF (n = 90), lung regions were

unknown

– CT Yes

Daabis et al. (24) 2014 ICU Egypt Prospective ARF (n = 93), lung regions were

unknown

– CT Yes

Bass et al. (25) 2015 Mixed ICU USA Prospective Mechanical ventilation (n = 77), lung

regions were unknown

– CXR Yes

See et al. (26) 2018 ICU Singapore Retrospective ARDS (n = 216) and non-ARDS (n =

240), total hemi-thoraces (n = 12)

ARDS (100 insulted to lung, 356 insulted to the

secondary reason)

CXR Yes

Chiumello et al. (27) 2019 ICU Italy Prospective ARDS (n = 32); total hemi-thoraces (n

= 12)

ARDS (25 insulted to the lung, 7 insulted to

secondary reason)

CT Yes

LUS, lung ultrasound; ARF, acute respiratory failure; ARDS, acute respiratory distress; CXR, chest X-ray; CT, computed tomography.
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FIGURE 2 | Risk of bias and applicability concerns assessment according to the QUADAS-2. QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies

Score-2.

(Figure 3). In addition, the overall area under the SROC curve
(AUC) of LUS was 98% (95% CI: 97–99), indicating that LUS
had a high diagnostic value for ARF (Figure 4). The sensitivity,
specificity, PLR, NLR, and DOR of different types of pathology
were investigated, and the main results are presented in Table 2.
For consolidation, eight studies, comprising 1,040 patients, were
included (17–20, 22, 23, 26, 27). The pooled sensitivity and

specificity of LUS were 89 and 97%, respectively. The PLR, NLR,
and DOR were 31.9, 0.11, and 284, respectively. Six studies,
comprising 279 patients, reported the raw data for pleural
effusion (17, 19, 21–23, 27). LUS had a pooled sensitivity of
95% and a specificity of 99%. The PLR, NLR, and DOR were
88.1, 0.05, and 1,750, respectively. Four studies, comprising 174
patients, reported the accuracy of LUS to identify acute interstitial
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FIGURE 3 | Forest plot of the sensitivity and specificity in the overall studies. Several studies used repeated measurements per patient (e.g., measurements on

different types of pathology episodes and different lung fields). *Daabis et al. (24) included all profiles including A, AB, B, B+PLAPS, and lung point. CI, confidence

interval; LUS, lung ultrasound; CS, consolidation; PE, pleural effusion; LC, lung contusion; AIS, acute interstitial syndrome; B, B lines; PLAPS, post-erolateral alveolar

and/or pleural syndrome; UIS, ultrasound interstitial syndrome.

syndrome (AIS) (17, 19, 22, 27). The sensitivity and the specificity
were 95 and 91%, respectively. Furthermore, the PLR, NLR,
and DOR were 10.8, 0.06, and 196, respectively. Pneumothorax
was investigated in two studies (20, 23). The pooled sensitivity
and specificity for pneumothorax of LUS were 90 and 100%,
respectively. Lung contusion was examined in one study (21),
which reported an LUS sensitivity and specificity of both 89%.
The SROC curves for different types of pathology are presented
in Supplementary Figure 1.

Causes of Heterogeneity
The significant heterogeneity in the meta-analysis was performed
according to the dispersion of studies in the ROC plane. An
influence analysis was performed to examine the potential
sources of heterogeneity in Supplementary Figure 2. The results
suggested that there was no outlier for consolidation, PE, and
AIS. To further explore the heterogeneity of the included studies,
the secondary analysis according to different reference standards
(CT or CXR) was performed (Table 3). With CT as the reference

standard, the sensitivity and specificity of LUS for the diagnosis
of consolidation were 86 and 95%. With CXR as the reference
standard, LUS had sensitivities of 73 and 97% and specificities of
99 and 90% to identify consolidation and AIS, respectively.

Assessment of Clinical Applicability
Fagan’s nomogram on the pre-test and post-test probability of
LUS for diagnosing ARF in critically ill patients is shown in
Supplementary Figure 3. Fagan’s nomogram showed that the
pooled PLR and NLR were 51 and 0.08, respectively.

Publication Bias
Deeks’ funnel plot asymmetry test was performed to examine
publication bias (Figure 5), which showed that there was no
significant publication bias in this study (P = 0.39).
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FIGURE 4 | Summary of the receiver operating characteristic curve (SROC) of

lung ultrasound in critically ill patients with acute respiratory failure. AUC, area

under curve.

TABLE 2 | Diagnostic performance of lung ultrasound in critically ill patients with

acute respiratory failure.

Consolidation AIS PE Pneumothorax

No. of studies

(patients)

8 (1,040) 4 (174) 6 (279) 3 (332)

SEN (95% CI)

(%)

89 (66–97) 95 (88–98) 95 (82–99) 90 (70–99)

SPE (95% CI)

(%)

97 (88–99) 91 (88–94) 99 (47–100) 100 (0.99–100)

PLR (95% CI) 31.9

(7.4–137.2)

10.8

(8.1–14.6)

88.1 (0.8–

9193.2)

244.2

(34.3–1737.9)

NLR (95% CI) 0.11

(0.03–0.41)

0.06

(0.02–0.13)

0.05

(0.01–0.21)

0.13 (0.05–0.38)

DOR (95% CI) 284

(41–1,970)

196

(85–453)

1750 (4–

6,93,798)

1849

(184–18,622)

PE, pleural effusion; AIS, acute interstitial syndrome; DOR, diagnostic odds ratio; PLR,

positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence interval.

DISCUSSION

In this systematic review and meta-analysis, 11 studies were
included, and the diagnostic value of LUS was investigated. The
results indicated that LUS had an overall moderate sensitivity
of 92% (95% CI: 85–96) and high specificity of 98% (95%
CI: 94–99) for diagnosing of ARF in critically ill patients. The
secondary analysis was performed to determine the significant
heterogeneity, and the result showed that LUS had a low
sensitivity but high specificity in diagnosing consolidation
regardless of whether CXR or CT was used as the reference

standard. LUS had a high sensitivity but low specificity to identify
AIS in ARF with CXR as the reference standard.

LUS, as a convenient approach, has routinely been used in
critically ill patients and has been identified to be effective
in evaluating ICU conditions such as pneumonia (9) and
pneumothorax (13). Despite the pervasive use of LUS in critically
ill patients, few studies have focused on the diagnostic value
of LUS in ARF. This meta-analysis demonstrates that LUS had
a moderate sensitivity and high specificity to identify ARF
when compared with CXR or CT. The results are relatively
different from those of a recent meta-analysis in which the pooled
sensitivity and specificity for the diagnostic accuracy of LUS in
critically ill patients with respiratory symptoms were 95 and
94%, respectively (28). In this study, the authors only focused
on the diagnostic accuracy of LUS with CT as the reference
standard. Staub et al. have also explored the diagnostic value of
LUS in adults with respiratory symptoms (29). However, they
mainly focused on patients with pneumonia, acute heart failure,
and exacerbations of COPD in the emergency department. They
reported that LUS had sensitivity of ∼85–95% and specificity of
75–90%. This result is possibly attributed to the heterogeneity of
the population included in these studies.

Common pathological types, including consolidation, AIS,
and PE in ARF, were the main concern in the present study.
LUS in ARF with PE had higher sensitivity and specificity than
consolidation and AIS. LUS was low sensitive but highly specific
for the diagnosis of consolidation in critically ill patients with
ARF. However, although AIS is central to the BLUE protocol
(30), LUS had a high sensitivity but low specificity to identify
AIS in this study. This may be explained by the fact that
LUS can detect the interstitial edema surrounding an isolated
consolidation, even if deep consolidations are not detected (31).
These results are consistent with the results of a recent study.
Chinardet et al. (32) have demonstrated that LUS was useful in
evaluating consolidation after PE drainage in acute respiratory
distress syndrome (ARDS). However, there were only 10 patients
in this study.

Due to the rapid development of ARF, early changes in
lung morphology can occur, which can be assessed by LUS.
This review identified that LUS might be a valuable resource
as an adjunct or replacement for CXR and CT in critically ill
patients with ARF in clinical practice. Compared with CXR
and CT, LUS has some advantages in addition to its diagnostic
accuracy. LUS is convenient and can be performed right at
the bedside (33, 34). Furthermore, LUS is inexpensive and can
be used worldwide, especially in areas where medical sources
are limited. Considering these advantages, LUS is considered a
routine imaging modality for critically ill patients, especially for
patients with unstable conditions. LUS is simply performed, but
it must be methodologically learned. The main disadvantage of
LUS that restricts its use is it is highly operator dependent (9). The
heterogeneity of the observation-dependent nature of LUS may
affect the reliability of the study results. Furthermore, similar with
CXR and CT, the images obtained in LUS are only considered
useful when these are combined with clinical information. Hence,
combined with clinical information, well-trained operators select
LUS as their preferred choice of modality.
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TABLE 3 | Summary of the performance of different reference standards for the diagnosis of ARF in critically ill patients.

No. of studies (patients) SEN (%) SPE (%) PLR NLR DOR

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

REFERENCE STANDARD: CT

Consolidation 3 (182) 86 (82–90) 95 (92–97) 15.5 (8.9–26.9) 0.13 (0.07–0.24) 192 (37–980)

REFERENCE STANDARD: CXR

Consolidation 4 (598) 73 (68–78) 99 (97–100) 32.4 (3.0–353.1) 0.12 (0.01–2.29) 330 (23–4725)

AIS 3 (142) 97 (94–99) 90 (86–94) 11.6 (4.8–27.7) 0.04 (0.02–0.07) 342 (138–848)

PE, pleural effusion; AIS, acute interstitial syndrome; DOR, diagnostic odds ratio; PLR, positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence interval; CT, computed

tomography; CXR, chest X-ray.

FIGURE 5 | Graph of Deeks’ funnel plot asymmetry.

Our results revealed substantial heterogeneity in the included
studies, and the reasons for heterogeneity were investigated
by subgroup analysis. First, the study comprised several
different pathologies, including consolidation, AIS, PE, LC, and
pneumothorax. This may affect the diagnostic accuracy because
different pathologies have different values in diagnosing ARF.
To reduce heterogeneity, we further investigated the sensitivity
and specificity of the main pathologies, including consolidation,
AIS, PE, and pneumothorax. The heterogeneity was subject to
these aspects in pioneering meta-analysis on the diagnosis of LUS
(10, 11). Second, several included studies were of low quality.
The different study qualities can lead to heterogeneity. A previous
study by Llamas-Álvarez et al. (9) has attributed the heterogeneity
to the study quality, and the diagnostic accuracy of LUS improved
by stratifying the study quality.

This meta-analysis has several limitations. First, this meta-
analysis included a limited number of studies, with only two
studies involving 100 participants or more (20, 26). This may lead

to the non-repeatability of the results, and the results need to
be interpreted carefully. Second, only four different pathologies
were investigated for heterogeneity in our study. Although we
performed subgroup analysis, the heterogeneity could not be fully
explained because there were more manifestations of these four
pathologies in LUS. Third, the study quality was limited by the
included literature due to the secondary analysis.

CONCLUSIONS

This systematic review and meta-analysis demonstrated that LUS
had moderate sensitivity and high specificity for diagnosing ARF
in critically ill patients when compared with CXR or CT. LUS
seems to be a well-validated modality to investigate the cause
of ARF or thoracic pathology associated with the diagnosis.
However, large-scale studies are needed to confirm the role of
LUS in critically ill patients with ARF.
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Bronchiolitis is the most common cause of hospitalization of children in the first year of

life and pneumonia is the leading cause of infant mortality worldwide. Lung ultrasound

technology (LUS) is a novel imaging diagnostic tool for the early detection of respiratory

distress and offers several advantages due to its low-cost, relative safety, portability,

and easy repeatability. More precise and efficient diagnostic and therapeutic strategies

are needed. Deep-learning-based computer-aided diagnosis (CADx) systems, using

chest X-ray images, have recently demonstrated their potential as a screening tool for

pulmonary disease (such as COVID-19 pneumonia). We present the first computer-aided

diagnostic scheme for LUS images of pulmonary diseases in children. In this study,

we trained from scratch four state-of-the-art deep-learning models (VGG19, Xception,

Inception-v3 and Inception-ResNet-v2) for detecting children with bronchiolitis and

pneumonia. In our experiments we used a data set consisting of 5,907 images from

33 healthy infants, 3,286 images from 22 infants with bronchiolitis, and 4,769 images

from 7 children suffering from bacterial pneumonia. Using four-fold cross-validation,

we implemented one binary classification (healthy vs. bronchiolitis) and one three-class

classification (healthy vs. bronchiolitis vs. bacterial pneumonia) out of three classes.

Affine transformations were applied for data augmentation. Hyperparameters were

optimized for the learning rate, dropout regularization, batch size, and epoch iteration.

The Inception-ResNet-v2 model provides the highest classification performance, when

compared with the other models used on test sets: for healthy vs. bronchiolitis, it

provides 97.75% accuracy, 97.75% sensitivity, and 97% specificity whereas for healthy

vs. bronchiolitis vs. bacterial pneumonia, the Inception-v3 model provides the best

results with 91.5% accuracy, 91.5% sensitivity, and 95.86% specificity. We performed

a gradient-weighted class activation mapping (Grad-CAM) visualization and the results

were qualitatively evaluated by a pediatrician expert in LUS imaging: heatmaps highlight

areas containing diagnostic-relevant LUS imaging-artifacts, e.g., A-, B-, pleural-lines,

and consolidations. These complex patterns are automatically learnt from the data, thus

68

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.693448
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.693448&domain=pdf&date_stamp=2021-08-27
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:silvia.magrelli@gmail.com
mailto:piero.valentini@policlinicogemelli.it
https://doi.org/10.3389/fphys.2021.693448
https://www.frontiersin.org/articles/10.3389/fphys.2021.693448/full


Magrelli et al. Lung Ultrasonography and Deep Learning

avoiding hand-crafted features usage. By using LUS imaging, the proposed framework

might aid in the development of an accessible and rapid decision support-method for

diagnosing pulmonary diseases in children using LUS imaging.

Keywords: deep-learning CNN, bronchiolitis, pneumonia, children, lung ultrasonography

1. INTRODUCTION

Bronchiolitis is a viral acute lower respiratory-tract infection
and the most common reason for hospitalization and intensive-
care-unit admission of children worldwide (Choi and Lee, 2012;
Øymar et al., 2014).

The diagnosis of infants with bronchiolitis is difficult: there
exists no unambiguous definition of the disease; the diagnosis
is based on clinical evaluation and anamnesis (Ralston et al.,
2014) hence determined by different conditions such as age
and variability in the disease state. Furthermore, many of these
parameters are based on subjective clinical findings and can
be diversely interpreted by different physicians, according to
their clinical experience. Finally, bronchiolitis can require serial
observations over time, which in turn presents several challenges
when performed in emergency departments.

Community acquired pneumonia (CAP) is also pervasive and
a frequent cause of pediatric morbidity and mortality (Liu et al.,
2015). A diagnosis of CAP, similarly to that of bronchiolitis, relies
mainly on medical history and clinical examination. However,
these methods suffer from poor sensitivity and specificity hence,
to confirm CAP, physicians need to prescribe medical imaging
techniques such as chest X-ray (Bradley et al., 2011;WorldHealth
Organization, 2014; Shah et al., 2017).

There is growing research interest (Ralston et al., 2014; Collins
and Varmus, 2015) in discovering objective parameters that are
easy to measure and that could help the physician to perform
a more accurate evaluation of children possibly infected with a
respiratory disease, thus to make prompt clinical decisions.

Ultrasound technology (US) is one of the most often used
imaging diagnostic tools for physicians and radiologists, due
to its relative safety, portability, repeatability, cost effectiveness,
and operator comfort. Examinations can be carried out, after
appropriate training, even by non-specialist radiologists [point-
of-care ultrasound, POCUS (Kessler et al., 2017)]. Therefore, US
imaging presents several major advantages over other medical
imaging modalities such as magnetic resonance imaging (MRI),
computed tomography (CT), and X-ray.

In the last few decades, lung ultrasound (LUS) imaging
supported clinical examinations for neonatal and pediatric
respiratory diseases, as a valid tool for evaluating the lung
parenchyma (Dunn and Fry, 1961; Bauld and Schwan,
1974; Volpicelli et al., 2012; Rosenfield et al., 2015). This
avoids unnecessary exposure of children to ionizing radiation
(Buonsenso et al., 2019a). Several studies have demonstrated
the usefulness of LUS imaging in the diagnosis and follow-up of
community-acquired pneumonia (Berce et al., 2019; Musolino
et al., 2019; Najgrodzka et al., 2019; Buonsenso et al., 2021) and,
in particular, of bronchiolitis (Basile et al., 2015; Di Mauro et al.,
2019; Supino et al., 2019; Buonsenso et al., 2021).

In an attempt to objectively quantify respiratory distress,
many scoring systems were developed on the bases of the visual
features generated by the interaction between the ultrasound
beam and the lung (Supino et al., 2019; Buonsenso et al.,
2020e). The appearance of these features varies according to
the specific composition of the lung periphery. In general, the
main lung ultrasound features of lung inflammatory diseases
include irregular pleural line; short and long vertical artifacts;
white-lung; consolidations and effusions. However, despite
documented medical evidence (Lichtenstein et al., 1997, 2009;
Reißig and Kroegel, 2003; Jambrik et al., 2004; Soldati et al.,
2006; Volpicelli et al., 2006; Copetti et al., 2008; Gargani et al.,
2008) and extensive acoustic studies (Dunn and Fry, 1961; Bauld
and Schwan, 1974; Dunn, 1974, 1986; Pedersen and Ozcan,
1986; Mikhak and Pedersen, 2002; Volpicelli et al., 2012), the
interpretation of the lung ultrasound features is subjectively
made by the clinician/sonographer. US imaging also presents
unique challenges, such as low imaging-quality caused by noise
and artifacts, and high inter- and intra-observer variability
across different institutes and manufacturers of US systems.
To address these challenges, it is essential to develop advanced
automatic US image-analysis methods in order to make US
diagnosis, assessment, and image-guided interventions/therapy
more objective, accurate, and intelligent.

In the past 7 years, deep learning (LeCun et al., 2015), a
subfield of machine learning (ML), also due to improvements
in device capabilities (computing power, memory capacity,
power consumption, image sensor resolution, and optics) has
seen a dramatic resurgence, with striking improvements in the
performance and cost-effectiveness of vision-based applications
(Voulodimos et al., 2018). It solves problems that are beyond
human capability or that were previously considered intractable,
and it demonstrates huge potential for various automatic tasks
in medical-image analysis (Greenspan et al., 2016; Litjens
et al., 2017; Shen et al., 2017; Ker et al., 2018). Therefore, it
receives increasing attention by the medical-imaging scientific
community (Esteva et al., 2019).

Recent works uncovered the deep-learning potential
to perform automatic US image-analysis tasks, including
detection, classification, segmentation, biometric measurements,
registration, and quality assessment, as well as emerging
tasks such as image-guided interventions and therapy (Anas
et al., 2015). It was also successfully applied, in medical US
imaging analysis to different anatomical structures: breast (Bian
et al., 2017; Hiramatsu et al., 2017), thyroid (Ma et al., 2017),
heart/cardiac (Ghesu et al., 2016; Pereira et al., 2017), brain
(Milletari et al., 2015; Sombune et al., 2017), fetus (Yaqub et al.,
2017), and many other organs and body parts (see Liu et al.,
2019 for a review). However, only a limited amount of studies
investigated the performances of deep neural networks on lung
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ultrasound images, and these studies mainly focus on detecting
and extracting domain specific, hand-crafted features such as
A-lines, B-lines (also known as vertical artifacts), pleural lines
(Carrer et al., 2020), pleural effusions, and consolidations, with
B-line detection being the most common task (Kulhare et al.,
2018; Wang et al., 2019; van Sloun and Demi, 2020).

The recent outbreak of the novel 2019 coronavirus (COVID-
19) has required the development of fast diagnostic techniques,
among which the chest X-ray is key. Given the paucity of
radiologists and expertise in the field, in order to provide
physicians with valid assistance for accurate diagnosis, there is
an increased interest in quickly developing AI systems. Recently,
there have been many publications that focused on using deep
neural networks over raw chest X-ray images rather than learning
hand-engineered features by using deep neural networks.

For instance, Wang et al. (2020) designed COVID-Net,
an open-source deep convolutional neural network that was
specifically tailored for the task of detecting COVID-19 cases
from chest X-ray images. The authors also introduced COVIDx,
an open-access benchmark data set that comprises 13,975
chest X-ray images across 13,870 patient cases. The COVID-
Net achieves 93.3% test accuracy in classifying images from
individuals who belong to three different classes: healthy, non-
COVID pneumonia, and COVID-19.

Another example is the study from Apostolopoulos and
Mpesiana (Apostolopoulos and Mpesiana, 2020) who applied
transfer learning on state-of-the-art CNN architectures for
classification tasks that involve COVID-19 as one of the target
classes. Specifically, they used a database of chest X-ray scans that
contain 224 images of patients with COVID-19, 700 images of
people infected with non-COVID pneumonia, and 504 images
of healthy individuals. The best performance model (VGG19)
achieved an accuracy of 98.75% in classifying the followingmulti-
class problem: normal vs. COVID-19 pneumonia vs. bacterial
pneumonia. Whereas, an accuracy of 93.48% was reached for the
multi-class problem: normal vs. COVID-19 pneumonia vs. viral
and bacterial pneumonia.

All the above mentioned studies used deep learning and raw
chest X-ray images for either binary (normal vs. COVID-19)
or 3-class (normal vs. pneumonia vs. COVID-19) classification
problems. These studies provided evidence that deep neural
networks can achieve impressively high performance when
applied to lung medical imaging without the need for explicitly
designed and extracted problem-oriented features to be fed into
the neural network. Therefore, these works confirm the idea
that deep-learning techniques have the potential to change the
design paradigm of the computer-aided diagnostics (CADx)
systems (Bian et al., 2017) and provide physicians with refined
interpretations of medical imaging (McBee et al., 2018).

Less attention has been given to the use of deep learning for
the automation of lung disease classification from raw ultrasound
images. Nonetheless, LUS has been shown to play an invaluable
role in the diagnosis, management, and prognosis of COVID-19
in all age groups (Bonadia et al., 2020; Buonsenso et al., 2020a;
Smith et al., 2020; Volpicelli et al., 2020, 2021) including children
(Musolino et al., 2021) and pregnant women (Buonsenso et al.,
2020b; Inchingolo et al., 2020). Remarkably, LUS has a diagnostic

accuracy similar to that of chest X-ray in COVID-19 patients
(Lieveld et al., 2020; Pare et al., 2020; Tung-Chen et al., 2020).

Only recently, Born et al. (2021) presented a VGG16-based
CNN, POCOVID-Net, pre-trained on ImageNet (Deng et al.,
2009), and then fine-tuned it by using their data set, the largest
publicly available LUS data set for COVID-19: 1,204 COVID-
19, 704 bacterial pneumonia, and 1,326 healthy images. Their
convolutional neural network was able to differentiate among
patients who were diagnosed with COVID-19, those who were
affected by bacterial pneumonia, and healthy individuals, thus
achieving an overall accuracy of 89%.

Inspired by the above research results on COVID-19,
obtained by applying deep-learning techniques to raw medical
imaging, we analyse the performance of different state-of-the-
art convolutional neural networks for the diagnosis of childhood
pulmonary disease. In this first study we included a large
set of LUS images from children with lower-respiratory-tract
infections; this represents a real practice scenario in the pediatrics
department, for children affected by themost important pediatric
respiratory conditions (pneumonia and bronchiolitis), as well as
healthy subjects.

In order to achieve automatic feature extraction, we applied
deep-learning techniques directly to raw LUS images. For this
purpose, we trained from scratch the following state-of-the-
art deep-learning models: VGG19, Xception, Inception-v3, and
Inception-ResNet-v2. In this work, we assess the performance
of one binary classification problem and one three-class
classification problem, including LUS images of healthy infants,
those with bronchiolitis, and those with bacterial pneumonia.

2. METHODS

2.1. Participants
For the purpose of this study, we considered three group of
patients enrolled in clinical studies at the Agostino Gemelli
University Hospital between the end of 2018 and the beginning
of 2019:

• Healthy: 33 healthy infants (18 males, 15 females; mean age:
2.83± 2.89 months)

• Bronchiolitis: 22 infants with bronchiolitis (13 males, 9
females; mean age: 2.78± 2.96 months)

• Bacterial pneumonia: 7 children with bacterial pneumonia (4
males, 3 females; mean age: 7 years± 6.85 years).

Healthy infants were defined as children completely healthy
without comorbidities.

Infants with bronchiolitis were diagnosed through an
integrated approach based on clinical (Seattle Children’s
Hospital, 2011) and ultrasound assessment (Buonsenso
et al., 2019b; Supino et al., 2019). Radiological evaluation
and laboratory tests (e.g., oxygen saturation) were also
performed, when necessary, as recommended by clinical practice
guidelines (Subcommittee on Diagnosis and Management of
Bronchiolitis, 2006; Ralston et al., 2014). All patients suspected
to have bronchiolitis underwent a routine clinical assessment
based on Seattle Children’s Hospital clinical scores (Seattle
Children’s Hospital, 2011). This is a clinical score created by
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Seattle Children’s Hospital in 2011, to evaluate children with
bronchiolitis and to distinguish those in need of hospitalization
from those who could be discharged. The score is based on the
consideration of

• respiratory rate
• retractions: subcostal, intercostal, or supraclavicular

retractions; nasal flaring; or bobbing of the head
• signs of dyspnea: reduction/suspension of feeding,

reduction/suspension of vocalization, agitation, drowsiness,
or confusion

• auscultation: inspiratory wheeze, expiratory wheeze, or
reduction of air penetration.

The clinical diagnosis of CAP was made in accordance with
the British Thoracic Society guidelines (Harris et al., 2011). At
the first evaluation, all children with suspected CAP underwent:
medical history, clinical evaluation, and blood tests, including
complete blood count (CBC) with white blood cell (WBC),
and C-reactive protein (CRP). Definitive diagnoses of bacterial
pneumonia were confirmed by both chest X-ray and lung
ultrasound.

Only the children that underwent complete LUS scanning
as described below, have been included in the analyses. Images
from each patient were collected during multiple sessions,
therefore they display a disease with different severity in the
same patient. Images and videos have been collected during the
study protocol “Utility of lung ultrasound in children with lower
respiratory tract infections”, approved by the Ethic Committee
of the Fondazione Policlinico Universitario A. Gemelli IRCCS,
Rome, Italy (prot 36173/19, ID 2729). Written informed consent
was obtained before data collection by the caregiver of the
study participants. All the private information of patients
was anonymized.

2.2. Lung Scanning Procedure
LUS imaging was performed with the ultrasound machine
ESAOTE MyLabTM 40 using a linear probe (12–6 MHz). Images
and clips were stored and archived. In order to guarantee
agreement in the methodology and acquisition, all LUS scanning
were performed by two physicians, Danilo Buonsenso and
Cristina De Rose, with more than 5 years of experience in
LUS clinical practice and teaching and already several papers
published together (Buonsenso et al., 2020c,d; Pata et al., 2020;
Rose et al., 2020). The scans were made by investigating the
anterior, lateral, and posterior regions of the thorax, according
to a protocol used by the Italian Academy of Thoracic Ultrasound
(ADET) and recently published in a COVID-19 protocol (Taccari
and Buonsenso, 2020).

The following lung ultrasound features were evaluated to
better define the prognosis of the infants with bronchiolitis and,
in particular, to identify those children who are in need of
supplementary oxygen (Basile et al., 2015; Taveira et al., 2018;
Buonsenso et al., 2019b; Supino et al., 2019):

• presence of an irregular pleural line;
• absence of pleural effusion;
• presence of short vertical artifacts;

• presence of long vertical artifacts: multiple, non-confluent,
and/or confluent, unevenly distributed, possibly involving
several lung areas, possibly bilaterally distributed, and with
“spared areas” in the single area involved;

• presence of area(s) of white-lung;
• presence of single or multiple subpleural consolidations

(even > 1 cm in size), associated with multiple long non-
confluent or confluent vertical perilesional artifacts.

Lung ultrasound features considered for the aetiological
diagnosis of bacterial pneumonia were as follows (Berce et al.,
2019; Buonsenso et al., 2021):

• irregular pleural line;
• subpleural pulmonary parenchymal lesion (consolidation and

atelectasis; > 2 cm, and in particular > 4 cm);
• presence of bronchograms, its characteristics (air or fluid),

morphology (arboriform or dot-like/linear), position (deep
if > 2 cm far from the pleura or superficial if close to
the pleura), dynamicity during breath (fix, poorly dynamic,
or clearly dynamic);

• presence and type of pleural effusion: simple (anechogenic
and dependent on gravity) or complex (presence of septa,
hyperechogenic spot, following the lung through the apex and
not dependent on gravity, requiring drainage).

We also report the lung ultrasound features that were evaluated
for healthy infants, especially in the first 3 months of life
(Buonsenso et al., 2020d):

• absence of irregularities of the pleural line;
• absence of pleural effusion;
• absence of subpleural consolidations;
• presence of short vertical artifacts;
• presence of long vertical artifacts single and/or multiple, non-

confluent and/or confluent, with possible uneven distribution
and/or involving multiple lung areas with a prevalence of the
right and/or left hemithorax, depending on the gestational age
and the current age of the patient.

2.3. Data Acquisition
The set of available lung ultrasound images were ordered by
the patients and manually categorized by medical operators
into three different diagnoses: healthy infants, infants with
bronchiolitis, and children with bacterial pneumonia. The
resulting data set of all available images is organized as follows:

1. Healthy: 5,907 images: 5,193 bmp images validated by human
raters and 714 bmp images automatically extracted from
videos and validated by human raters.

2. Bronchiolitis: 3,286 images: 2,516 bmp images validated by
human raters and 770 automatically extracted from videos and
validated by human raters.

3. Bacterial pneumonia: 4,769 images: 206 bmp images validated
by human raters and 4,563 automatically extracted from
videos and validated by human raters.

Every patient contributes to multiple ultrasound images (mean
= 226.1 ± 287.4), with a minimum of 43 images, collectively
taken from different sessions. To estimate the accuracy of the
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classifiers, we used four-fold cross-validation stratified by the
number of samples per class. In order to avoid the unbalanced
data problem, we sampled images from the original data set of
available images as follows. Data were split on a patient level,
hence we organized the folds in such a way that all the images
belonging to a particular subject were assigned to only one-fold
and, consequently to only one of the following subsets: training
set, validation set, test set (i.e., there was no overlap patient-
wise among the training, validation, and test data sets). Where
possible, the subset of patients was matched by age and gender,
and it was distributed randomly between the folds as per the
above mentioned constraints. Each of the four final data sets used
for four-fold cross-validation is organized as follows:

1. Healthy: 2,000 images: 1,000 bmp images for the training set,
500 images for the validation set and 500 images for the test
set.

2. Bronchiolitis: 2,000 images: 1,000 bmp images for the training
set, 500 images for the validation set and 500 images for the
test set.

3. Bacterial pneumonia: 2,000 images: 1,000 bmp images for the
training set, 500 images for the validation set and 500 images
for the test set.

2.4. Convolutional Neural Networks
Deep learning constitutes the state-of-the-art set of applied
machine-learning techniques and frameworks currently
used both in the research and industry fields to perform
automated tasks such as signal classification, regression, image
segmentation. Such frameworks are also currently used in the
medical domain to draw meaningful results from medical data:
for instance, the automated classification or segmentation of
magnetic resonance imaging (MRI), computed tomography
(CT), and X-ray images.

One fundamental class of deep neural networks, applied
mostly in analyzing visual imagery, is represented by
convolutional neural networks (CNNs). In fact, CNNs are
able to process data expressed as tensors, called feature maps, i.e.,
three-dimensional arrays. For instance, an RGB image is a 3D
tensor with two spatial axes (height and width), as well as three
depth axes (also called the channels axis). Each depth channel
accounts for a single color component: red, green, or blue.

The typical CNN architecture is structured as a series of stages.
The fundamental data structure being the layer: a data processing
module that takes one or more tensors as input and returns
one or more tensors as outputs. Most of deep learning consists
of chaining together simple layers that will implement a form
of progressive information distillation over the input data: a
succession of increasingly refined data filters are applied by going
deeper in the CNNs. These layers can either be stateless or have a
state; the weights are the state of the layers. Weights are tensors
learned with stochastic gradient descent and, collectively, they
constitute the knowledge of a neural network. CNNs are usually
constructed making use of different types of layers: convolutional
layers, pooling layers, fully connected layers, and others.

The feature extraction process takes place in both
convolutional and pooling layers, whereas the classification

process occurs in the fully connected layer. It is important to
note that the topology of a neural network defines a hypothesis
space for the target distribution, i.e., the distribution over which
the final system performance must be trained. In fact, machine
learning (hence deep learning) accomplishes the task of looking
for useful representations of some desired distribution of data,
within a predefined space of possibilities, by using a feedback
signal as search guidance, i.e., backpropagating gradients through
the CNNs. Every time a network topology is chosen, the space
of possible hypotheses is constrained in some way: specifically
a series of tensor operations are chosen to be used for mapping
input data to output data. Training a neural network means
finding a good set of values for the weight tensors involved in the
tensor operations that map inputs into outputs thus enabling a
single model (or hypothesis) for the target data distribution to
be selected.

2.4.1. Convolutional Layer
The convolutional layer is the base layer of a CNN. In a
convolutional layer, during the inference process, patches from
the layer input feature map are extracted and transformed
into output feature map (response map) by applying the same
convolution operation to each patch.

The output feature map is a 3D tensor with the width,
height, and an arbitrary number of depth channels. Every channel
in the depth axis stands for a filter and the response map
is a 2D tensor that indicates the response of the filter over
the input. Filters encode specific aspects of the input data,
i.e., features. As the activation map is obtained by performing
convolution between the filter and the input, the filter parameters
are spatially invariant. Therefore, CNNs are particularly efficient
when processing images: as the visual world translation is
invariant, only a limited amount of training data is needed to
learn representations with great generalization ability. CNNs can
also learn spatial hierarchies of patterns: the first convolutional
layer will learn small local patterns such as edges; a second
convolutional layer will learn larger patterns with features of the
first layers as building blocks, and so on.

2.4.2. Pooling Layer
Usually, a pooling layer follows a convolutional layer. The
pooling layer is applied to reduce the spatial dependency of the
computed features maps, hence to increase robustness to changes
in the position of the feature in the image and to better exploit the
resulting feature hierarchy. This is achieved by downsampling the
feature maps in order to keep them reasonable in number.

The downsampling can be performed through the use
of different techniques such as max-pooling and average
pooling. Themax-pooling operation, similarly to the convolution
operation, extracts local patches from the input feature maps and
outputs the maximum value of each channel in the original visual
patch. The average pooling, instead, outputs the average value of
each channel over the patch.Max-pooling tends to perform better
than average pooling, as the maximal presence of specific features
are more informative than their average presence.
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2.4.3. Fully Connected Layer
Fully connected layers are final layers in a CNN where each
neuron is completely connected to other neurons. These layers
are responsible for the final classification results. In a fully
connected layer, the rectified linear unit (ReLU) activation
function is commonly used:

ReLU(x) =

{

0, x < 0

x, x ≥ 0
(1)

Softmax activation function is usually utilized to predict output
images in the very last fully connected layer:

Softmax(xi) =
exi

∑m
y=1 e

xy
(2)

where xi and m represent input data and the number of classes,
respectively.

2.4.4. Hyper-Parameter Optimization
Deep-neural-network performance depends on a wide range
of hyper-parameter choices, subject to fine tuning during
the training process and include, among others, the CNN
architecture, an optimization process, and regularization (Hutter
et al., 2019).

A CNN optimization configuration involves selecting the
optimizer to be used to update the network weights through
stochastic gradient descent. The learning rate of the optimizer
defines the magnitude of the modifications to the model weights
in response to the estimated error. By applying a learning rate that
changes during training (i.e., adaptive learning rate), increased
performance and a faster convergence can often be achieved. For
instance, a learning-rate decay formula might be used to reduce
the learning rate at each iteration i (e.g., end of each mini-batch)
as follows:

learning_ratei = learning_ratei−1 ∗ (
1

1+ decay ∗ (i− 1)
) (3)

Regularization is a design principle for augmenting a primary
optimization objective (e.g., how well a learned model fits its
training data) by taking into account a secondary objective:
a penalization term with respect to those representations that
are less desirable due to less compact. In weight regularization,
for example, a cost is associated with the loss function of
the network in order to constrain the CNN weight values to
be small and the distribution of weight values to be regular.
The cost might be proportional to either the absolute value
of the weight coefficients (L1-regularization) or to the squared
value of the weight coefficients (L2-regularization). The dropout
regularization technique consists of introducing noise in the
output values of a layer by randomly setting a fraction of them to
zero, i.e., dropping them out, during the training phase. The idea
behind this is to prevent the CNN from retaining the patterns
that are less significant.

2.5. Experimented CNN Architectures
CNN architectures are crafted by stacking different types of
layers and can result in networks that have very deep structures.
We here present an overview of some of the most relevant, in
literature, existing CNN architectures that have been trained and
tested in this experimental investigation.

2.5.1. VGG19
The VGG19 CNN architecture (Simonyan and Zisserman, 2015)
was introduced in 2014, as an improvement of the well-known
VGG16. The main contribution resulted in an increased depth
of the network and by the replacement of the 11 × 11 and 5 ×

5 with small 3 × 3 convolutional filters. The network consists
of 19 layers (16 convolutional layers, 3 fully connected layers, 5
max-pooling layers and 1 Softmax layer). The default input image
size of VGG19 is 224 × 224 pixels. VGG19 showed a significant
improvement on classification tasks with respect to the ImageNet
Challenge 2014 and compared to other popular networks such as
AlexNet and GoogleNet.

2.5.2. Inception-v3
Inception CNN was introduced by Szegedy et al. (2016) at
Google in 2013–2014. This is a popular CNN architecture,
aimed at reaching performance efficiency by utilizing suitably
factorized convolutions and aggressive regularization (see
section 2.4.4). Factorized convolutions are effectively applied
in CNN convolutional layers to simultaneously perform spatial
convolution in each channel and linear projection across
channels. These and other techniques can effectively preserve the
spatial information and maintain the accuracy with significantly
less computation (Wang et al., 2017). The default input image
size of Inception-v3 is 299 × 299 pixels. The network input is
processed by several parallel convolutional branches that work
independently and whose outputs are then merged back into a
single tensor. The most basic form of an Inception module has
three to four branches that start with a 1 × 1 convolution, are
followed by a 3× 3 convolution, and end with the concatenation
of the resulting features. This structure enables the network to
learn, separately rather than jointly, spatial features and channel-
wise features. The rationale behind this approach is the fact that
each channel might be highly autocorrelated across space, but
might not be highly correlated with other channels.

2.5.3. Xception
Xception (Chollet, 2017) is a CNN architecture roughly inspired
by Inception. Xception stands for extreme Inception. In fact,
it adopts an extreme form of an Inception module: the
process of learning channel-wise features is fully separated
from that of learning spatial features. Moreover, the Xception
network substitutes Inception modules with depth wise separable
convolutions. They are depth wise convolutions (a spatial
convolution where every input channel is handled separately)
followed by a point-wise convolution (a 1 × 1 convolution).
Xception and Inception-v3 have approximately the same number
of parameters and the same default image size. However,
Xception makes a more efficient use of model parameters
with respect to Inception; therefore, it shows better runtime
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performance and higher accuracy large-scale data sets such as
on ImageNet.

2.5.4. Inception-ResNet-v2
Inception-ResNet-v2 (Szegedy et al., 2017) is a CNN architecture
that belongs to the Inception CNN family and incorporates
residual connection as a replacement of the filter concatenation
stage of the Inception architecture. A residual connection resides
in reintroducing previous representations by skipping one or
more layers (through the so-called “shortcut connections”) and
by summing by a past output tensor to a later output tensor.
This helps to prevent information loss along the data-processing
flow. The authors reported, on the one hand, a significant
improvement of the recognition performance but, on the other, a
substantial increase of the training speed compared to standard
for the Inception architectures. The default input size for this
model is 299× 299 pixels.

2.6. Data Pre-processing
All ultrasound images were read into an RGB format to
ensure that the model input shape is compatible with the used
CNN models. Images containing artifacts, such as calipers,
text, lines, and tick marks, were not considered in the current
analysis. In fact, such patterns are detrimental for accurate image
classification. Therefore, we used a simple template-matching
module to detect and discard, prior to feeding the data set
into the learning architecture, the ultrasound images that have
these structures. The remaining images were cropped to remove
uninformative data, such as dark borders and text, thus resulting
in images with a resolution that span between 546× 410 and 175
× 409 pixels. All images were then resized to the default input size
of the used neural network (224 × 224 pixels for VGG19; 299 ×
299 pixels for Inception-v3, Xception, and Inception-ResNet-v2)
and were normalized to ensure every pixel value is between −1
and 1.

2.7. Data Augmentation
In order to avoid overfitting, we applied the technique of
data augmentation (Perez and Wang, 2017) on the three-class
classification problem. Data augmentation consists of artificially
increasing the number of existing samples, by applying a
number of random transformations: this yields close-to-real
biomedical images that are likely to well represent the target data
distribution.

The performance of different affine transformations
were evaluated: flips (horizontal, vertical), angle rotations,
translational pixel shifts, regional zoom, random Gaussian noise,
and blurring by various amounts.

We found that the best performances are achieved by
using a horizontal flip and width shift range of 10%. In fact,
these transformations provide realistic lung ultrasound images.
Horizontal flip produces horizontally-mirrored images of the
lung, which might represent the occurrence of the clinical
condition displayed in the original image but in the opposite
lung. Similarly, a width shift range of 10% can represent a lung
from a slightly older patient. The images were expanded from
3,000 lung ultrasound images to 100,000 artificial images. It

should be noted that augmentation was only done for the training
data set; the validation and the testing data sets were not touched.

2.8. Experimental Setup
Keras (Chollet, 2015), a compact, high-level and easy-to-learn
Python library for deep learning, coupled with TensorFlow
backend (Abadi et al., 2016) in Python 3.7 was used to train the
deep-learning models from scratch.

Several python libraries [Qt (Nokia Corp., 2012), OpenCV
(Bradski, 2000), Sklearn (Buitinck et al., 2013)] were used for the
statistical analysis and the software implementation, including
the development of a software system that uses the learned model
for classifying images of healthy children and those with either
bronchiolitis or pneumonia.

All experiments were performed on a workstation Intelr

Xenonr CPU E5-2680 @ 2.70 GHz (2 processors) withWindows
10 operating system using GeForce RTXTM 2080 Ti GPU
graphics card.

2.9. Model Selection
In this section, we provide a brief description of the CNNs
employed for LUS images classification. All CNN models
(VGG19, Xception, Inception-v3 and Inception-ResNet-v2) were
trained from scratch with random initialization weights. The
default densely connected classifier (from ImageNet) on top of
the network, for all Keras models, were replaced with new fully-
connected layers having the correct number of output classes.

The trained neural networks share some common hyper-
parameters. More specifically, all CNNs were compiled using the
optimization method called RMSProp, a momentum (Sutskever
et al., 2013) with a decay of 0.9; and all the convolutional layers
were activated by the rectified linear unit (ReLU). In all our
experiments, we trained all the CNNs with batch sizes of 20 for
50 epochs, except for Inception-ResNet-v2 that was trained with
a batch size of 10.

As for the three-class classification problems, we performed a
hyper-parameter optimization (see section 2.4.4) with respect the
following parameters:

• the learning rate was experimentally iterated between the value
1e-3 and value 1e-7: 1e-6 was selected;

• the dropout regularization was set to 0.5 in all experiments;
• l2-regularization: the following values have been iteratively

evaluated 5e-4, 4e-5, 1e-5, 0: 0 was selected;
• exponential learning rate decay was set to either 0.94 or 0: 0

was selected.

2.10. Performance Metrics
Five criteria were used for evaluating the performances of deep-
learning models.

Accuracy = (TN + TP)/(TN + TP + FN + FP) (4)

Accuracy is the ratio of the number of true samples to the total
number of samples.

Sensitivity = TP/(TP + FN) (5)
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Sensitivity, also known as true positive rate (TPR) or recall, is
the probability that a patient with a certain condition is correctly
diagnosed.

Specificity = TN/(TN + FP) (6)

Specificity is the probability that people without a certain
diagnosis are not erroneously diagnosed as suffering from that
disease. It can however analogously be called true-negative rate.
Precision, also known as true positive accuracy (TPA), is defined
in (7):

Precision = TP/(TP + FP) (7)

Precision denotes the proportion of positive predicted values
(PPV) that are correctly real positives.

F1− Score = 2 ∗ ((Precision ∗ Recall)/(Precision+ Recall)) (8)

The F1-Score is a measure of the accuracy of a model on a data
set. This is defined as the harmonic mean of precision and recall.
TP, FP, TN, and FN given in Equations (4–8) represent the
number of true-positives, false-positives, true-negatives, and
false-negatives, respectively.

The terms positive and negative are used to refer to
the presence or absence of a condition of interest: bacterial
pneumonia, bronchiolitis, or being healthy. True-positives (TP)
are the number of examples correctly labeled as positives.
False-positives (FP) refer to the number of samples incorrectly
labeled as positive. False-positives (FP) refer to negative examples
incorrectly labeled as positive. True-negatives (TN) correspond
to negatives correctly labeled as negative. Finally, false-negatives
(FN) refer to positive examples incorrectly labeled as negative.

3. RESULTS

3.1. Experimental Results
In this paper, we performed one binary classification (healthy
vs. bronchiolitis) and one three-class classification (healthy vs.
bronchiolitis vs. bacterial pneumonia) out of three classes. The
four-fold cross-validation method was used with four state-of-
the-art deep learning models (Inception-v3, Inception-ResNet-
v2, Xception, VGG19) trained from scratch. Fifty percent of the
data is reserved for the training set, 25% of the data is allocated
to the validation set, and the remaining 25% is reserved for the
testing test. The experiments were repeated four times, until each
25%-part of the original data set was tested.

The results of all the experiments are listed in Table 1: it
shows a detailed comparison of all trained models in terms of
precision, sensitivity, F1-scores, specificity, and accuracy for each
fold; the average classification performances of the model were
also calculated.

For experiments classifying healthy vs bronchiolitis we found
that the Inception-ResNet-v2 model provided the best results
with a sensitivity of 97.75%, an accuracy of 97.75%, and a
precision of 98.25%. Inception-v3 and Xception had similar
performances. VGG19 was the worst and achieved accuracy of
only 92.25%, a sensitivity of 91%, and a precision of 91.75%.

TABLE 1 | Classification metrics.

Healthy vs. Bronchiolitis

Precision Sensitivity F1-score Specificity Accuracy

Inception-v3

Fold 1 92 91 91 100 91

Fold 2 95 95 95 95.4 95

Fold 3 99 99 99 97.2 99

Fold 4 91 89 89 79.2 89

Average 94.25 93.5 92.95 92.95 93.5

Inception-ResNet-v2

Fold 1 99 99 99 99.2 99

Fold 2 98 97 97 97.2 97

Fold 3 99 99 99 99 99

Fold 4 97 96 96 92.6 96

Average 98.25 97.75 97.75 97 97.75

Xception

Fold 1 92 91 91 100 91

Fold 2 97 97 97 100 97

Fold 3 99 99 99 100 99

Fold 4 95 94 94 94 94

Average 95.75 95.25 95.25 98.5 95.25

VGG19

Fold 1 90 89 88 89 94

Fold 2 92 92 92 95.2 92

Fold 3 96 96 96 95 96

Fold 4 89 87 87 74.8 87

Average 91.75 91 90.75 88.5 92.25

Healthy vs. Bronchiolitis vs. Bacterial Pneumonia

Precision Sensitivity F1-score Specificity Accuracy

Inception-v3

Fold 1 92 92 92 88.68 92

Fold 2 92 91 91 99.75 91

Fold 3 94 92 92 99.79 92

Fold 4 92 91 91 95.26 91

Average 92.5 91.5 91.5 95.86 91.5

Inception-ResNet-v2

Fold 1 96 96 96 98.01 96

Fold 2 90 87 87 99.69 87

Fold 3 88 82 81 100 82

Fold 4 88 82 81 100 82

Average 90.5 86.75 86.25 99.42 86.75

Xception

Fold 1 96 96 96 93.97 96

Fold 2 89 83 82 100 83

Fold 3 82 68 61 100 68

Fold 4 95 95 95 95.45 95

Average 90.5 85.5 83.5 97.35 85.5

VGG19

Fold 1 91 90 90 81.11 90

Fold 2 90 89 89 94.01 89

Fold 3 96 96 96 93.49 96

Fold 4 89 87 87 87.79 87

Average 91.5 90.5 90.5 89.1 90.5
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FIGURE 1 | Confusion matrices: healthy vs. bronchiolitis, respectively for (A) fold 1, (B) fold 2, (C) fold 3, and (D) fold 4.

FIGURE 2 | Confusion matrices: healthy vs. bacterial pneumonia vs. bronchiolitis, respectively for (A) fold 1, (B) fold 2, (C) fold 3, and (D) fold 4.

For experiments classifying healthy vs bronchiolitis vs
bacterial pneumonia, we found that the Inception-v3 model
provided the best results with a sensitivity of 91.5%, a precision
of 92.5%, and an accuracy of 91.5%.

The confusion matrices in Figures 1, 2 report the number of
TP, TN, FP, and FN results of our experiments for each fold.
We can observe that, for the comparison between healthy and
bronchiolitis, the number of false-negative predictions (FN) and
the number of false-positive predictions (FP) are very low.

In the medical context, and in particular for the diagnosis of
bronchiolitis, the minimization of false-negative predictions is
crucial because not identifying the disease could lead to treatment
delay, hence to the aggravation of symptoms, and poor medical
outcomes.

We see that for the comparison healthy vs bronchiolitis vs.
bacterial pneumonia, false-positive predictions (FP) are higher
for the groups of healthy infants and those with bronchiolitis.
This is probably due to the fact that infants show artifactual
patterns that are similar to those patterns usually observed in
pulmonary diseases.

We can notice from the matrices that there are cases in
which LUS images correctly classified in the binary classification
problem were then attributed to the incorrect class in the three-
class classification problem by the best performance model,
Inception-v3.

3.2. Statistical Results
In order to analyse statistically significant differences among ages
of the different diagnostic groups, we performed Kruskal-Wallis
H-tests. According to the result of the Kruskal-Wallis H-test, age
does not statistically differ between the group of infants with
bronchiolitis and the healthy infants (chi-squared = 0.28869, df =

1, p-value = 0.5911 > 0.05). Instead, the age of the children with
bacterial pneumonia differs significantly from the age of children
in the other two groups: healthy and bronchiolitis (chi-squared =
20.559, df = 2, p-value = 3.433e-05 < 0.05).

3.3. EXplainable Artificial Intelligence
Results
EXplainable Artificial Intelligence (XAI) is a newly emerging
discipline of AI (Doran et al., 2017) that seeks to develop a series
of ML techniques that enable non-expert audiences to better
understand and manage results obtained by artificial intelligence
(Holzinger et al., 2017). In fact, deep-learning models are usually
perceived as “black boxes,” they receive an input and learn
representations that are in general difficult to extract and to
present in a human-intelligible form. Although this concept is
partially valid for certain types of deep-learning models, this is
definitely not true for CNNs. Indeed, CNNs learn representations
of visual concepts hence are highly responsive to visualization.
We present a visualization study performed by using the best
performance model (Inception-v3) that classifies images as
belonging to three different diagnostic groups (i.e., bronchiolitis,
pneumonia, and healthy). We applied three state-of-the-art
eXplainable Artificial Intelligence approaches that are specifically
tailored for convolutional neural networks: visualization of CNN
filters, visualization of activation maps, and visualization of
gradient-weighted class activation mapping (Grad-CAM).

3.3.1. Visualizing CNN Filters
We can describe a deep network as a multistage information-
distillation operation (see section 2.4): the information goes
through successive layers, it becomes increasingly purified over
successive filtering operations and is finally more informative
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FIGURE 3 | Visualization of (A) the first 24 filters from the first convolutional layer, (B) the first 24 filters from the third convolutional layer, and (C) the first 24 filters from

the fifth convolutional layer of the best performance model (Inception-v3) on the three-class classification problem. Filters act as collections of edge detectors, detect

background, contours, and texture-like patterns.
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for the task at hand. In fact, deep convolutional models learn a
collection of filters that are increasingly refined and complex, the
deeper the layers become. Specifically, each layer in a CNN learns
a collection of filters such that their inputs can be expressed as a
combination of the filters.

Visualizing CNN filters enables us to understand precisely
which visual patterns or concepts each filter in a CNN is receptive
to, therefore it permits us to observe how CNN layers see the
world.

The filters from the first convolutional layers learned by
the best performance model (Inception-v3) for the three-class
classification problem are displayed in Figure 3. These filters
encode colors, simple directional edges and, in some cases,
colored edges that can be found in ultrasound images of lungs;
the texture-like patterns of the filters become more complex, the
deeper the layer becomes.

As a CNN is a hierarchical-modular network of convolutional
filters that are probabilistically combined together, the way

it works differs from the nature of human vision, which
is not purely convolutional and it is organized in more
sophisticated functionalities that involve motor control (Bressler,
1995). Nonetheless, colors, simple directional edges, and
texture-like patterns extracted by a deep-learning model can
provide useful insights that could help physicians diagnose
lung diseases.

3.3.2. Visualizing Intermediate Activations
Visualizing intermediate activations (i.e., intermediate output of
the activation function) consists of displaying, given a certain
input, the feature maps that are output by various convolutions
and by pooling layers in a network. Intermediate CNN outputs
enable us to visualize the result of applying individual CNN
filters to an input image, thus enabling us to visualize how an
input is decomposed into the different filters learned by the
network. In fact, feature maps are presence maps of learned
visual concepts over a picture. Given as input an ultrasound

FIGURE 4 | Visualization of the activation maps from (A) the first, (B) the third, and (C) the fourth convolutional layer of the best performance model (Inception-v3) on

the three-class classification problem, when fed with an image of a lung with bronchiolitis. Filters act as collections of edge detectors, detect background, contours,

and texture-like patterns. When going deeper in the layers, the filters enhance differently vertical artifacts and small consolidation-like patterns that are typical of

bronchiolitis.
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image of a lung with bronchiolitis, in order to gain further
insight into its performance and learned behavior, we show
some visualizations of the activations from intermediate layers

of the best performance model (Inception-v3) for the three-class
classification problem. We observe in Figure 4, that different
filters in the first convolutional layers activate distinct parts of

FIGURE 5 | Example of lung ultrasound images correctly predicted by the best performance model (Inception-v3) as bacterial pneumonia. Left: original LUS image;

middle: Grad-CAM visualization; right: the class activation mapping transparently overlaid on the original LUS image. Note that red and orange regions correspond to

high scores for the predicted class and correctly highlight diagnostic-relevant features: (A) severe consolidations with fluid bronchogram and dynamic air

bronchogram, (B) severe consolidations with fluid bronchogram and dynamic air bronchogram, complicated pleural effusions, (C) fibrinous pleural effusions with

pulmonary atelectasis.
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the ultrasound image. Some filters act as collections of edge
detectors; some other filters detect the background, and others
detect the contours and texture-like patterns. It is evident how
the activations have almost entirely preserved and split the
information present in the original image. When going deeper
in the layers, filters enhance in different ways the B-lines and
small consolidation-like patterns that are typical of bronchiolitis.
At the same time, the images become a little blurry, due to the
max-pooling operations. As more and more pooling layers are
introduced, the extracted features become increasingly abstract
the deeper the layers become: this is an important and universal
characteristic of the representations learned by deep neural
networks. As explained in section 2.4, the deep neural network
acts as an information distillation pipeline, where activations
of the higher layers carry less information about the specific
input being seen, and more information about the target (i.e., the
class being learned: bronchiolitis, pneumonia, or healthy lung),
thus helping the complete network to finally classify the image
properly but without providing us with much visual information.
The sparsity of the activations increases together with the depth
of the network: in the last layers, many feature maps are blank,
meaning that the pattern encoded by the filters is not present
in the input image. The representation learned by the filter at
this stage is much more abstract and not directly present in the
original image. This resembles human perception: after observing
a scene for a few seconds, humans remember which particular
categories of objects were present in their field of view but
cannot recall the exact appearance of those objects. Although
these visual concepts might be different from how a human
interprets images, they might be useful in helping physicians
make diagnoses.

3.3.3. Visualizing Class-Activation Mapping
This visualization technique can be used to shed light on
the reason a CNN model decides that an ultrasound image
belongs to a certain class of diagnosis. Class-activation mapping
highlights the parts of an image that are identified by means
of the learned model, thus, they show where in the picture
the features that characterize a diagnosis are located. In
our examples, the red/orange areas are considered by the
model to output the class prediction: the brighter the red
color is, the higher the probability of the predicted class of
diagnosis is.

In particular, we used the specific implementation that
is described in “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization” (Selvaraju et al.,
2017). We produced Grad-CAM visualizations for all LUS
images belonging to the testing set and a set of corresponding
images, each showing (1) the ultrasound images used as
input to the optimal model, for the three-class classification
problem, (2) the GRAD-Cam visualization, and (3) the
overlapping of the lung ultrasound image and the class
activation mapping. Examples of resulting images are shown in
Figures 5–7.

The resulting images, together with the origin class and the
predicted class by the optimal model, were qualitatively evaluated

by a pediatrician expert in lung ultrasound. His comments are
reported in section 4.

4. DISCUSSION

4.1. Summary of Findings
To the best of our knowledge, this is the first study using deep-
learning techniques and raw lung ultrasound images (LUS) for
the purpose of diagnosing bronchiolitis and bacterial pneumonia
in children. We trained from scratch state-of-the-art deep
neural networks on a large data set - a training-set size of
2,000 LUS images for the binary classification problem. An
initial training-set size of 3,000 LUS images was expanded
with data augmentation to contain 100,000 artificially-created
images for the three-class classification problem. We carried out
comparisons with results from four different CNN networks
trained using four-fold cross-validation: VGG19, Xception,
Inception-v3, and Inception-ResNet-v2. The optimization of the
supervised classifier was performed jointly with the optimization
of the neural network.

We provide strong evidence that the automatic detection from
lung ultrasound imaging, of pulmonary diseases in children,
is a promising future research direction to be investigated. In
particular, as shown in Table 1, we obtained high performance
for the three-class classification problem involving healthy
infants and those with cases of bronchiolitis and bacterial
pneumonia: an average accuracy, sensitivity, and F1-score of
91.5%, and with precision and specificity, respectively, of 92.5
and 95.86%.

4.2. Clinical Significance
It is important to note that no hand-crafted features were
considered in our algorithm pipeline. Nonetheless, biologically
relevant features were automatically selected and extracted
from the LUS images by the optimal deep-learning model.
The Grad-CAM (see section 3.3.3), enables us to understand
which areas in an image are mostly considered by the model
to make its decision about the diagnosis. Dr. Buonsenso, a
pediatrician expert in lung ultrasound, with more than 5 years
of experience in LUS diagnosis and teaching, analyzed both
the results of the classification by the optimal deep-learning
model and the Grad-CAM visualizations. The purpose was
to evaluate whether diagnostically relevant visual features in
pulmonary diseases were highlighted by the Grad-CAM hence
taken into consideration by the optimal deep-learning model for
predicting the diagnosis. The model correctly identified almost
all the images belonging to the group of children with bacterial
pneumonia. The majority of the Grad-CAM also localized
the domain-specific features that are taken into account by
physicians when formulating a diagnosis of bacterial pneumonia:
for example, larger consolidations with air and/or liquid
bronchograms and pleural effusions, either simple (anaecogenic
fluid) or complex (with fibrinae and septae, see Figure 5).
Similarly, the model achieved high accuracy in classifying images
belonging to infants with bronchiolitis. Consistently, the Grad-
CAM detected diagnostically-relevant features (see Figure 6). In
particular, in the case of bronchiolitis, the Grad-CAM often and
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FIGURE 6 | Example of lung ultrasound images correctly predicted by the best performance model (Inception-v3) as bronchiolitis. Left: original LUS image; middle:

class activation mapping produced by the Grad-CAM visualization; right: the class activation mapping overlaid transparently on the original LUS image. Note that red

and orange regions correspond to high scores for the predicted class and correctly highlight diagnostic-relevant features: (A) irregular short vertical artifacts; (B)

irregular pleural line, subpleural consolidation > 2 cm, confluent short and long vertical artifacts; (C) irregular subpleural line, microconsolidations, short vertical

artifacts; and (D) white-lung.

suitably pointed out areas of short and long artifacts (either
isolated or confluent), pleural line irregularities (with or without
pleural effusions), large consolidations with air bronchograms,
and small subpleural consolidations. The model showed the
best performance when distinguishing larger consolidations and

vertical artifacts, especially when they were long and confluent.
Finally, the model showed great performance also in recognizing
LUS images of healthy infants, even in presence of long vertical
artifacts that might be characteristic of different conditions, see
Figure 7.
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FIGURE 7 | Examples of lung ultrasound images (A–D) from healthy infants correctly predicted by the best performance model (Inception-v3). Left: original LUS

image; middle: class activation mapping produced by the Grad-CAM visualization; right: the class activation mapping overlaid transparently on the original LUS

image. Note that red and orange regions correspond to high scores for the predicted class and correctly highlight diagnostic-relevant features: regular pleural lines;

presence of short vertical artifacts; presence of long vertical artifacts single and/or multiple, non-confluent and/or confluent, with possible uneven distribution and/or

involving multiple lung areas with a prevalence of the right and/or left hemithorax, depending on the gestational age and the current age of the patient.

4.3. Comparison With Other Studies
Few studies, for the purpose of assisting medical doctors
make their diagnoses, have been dedicated to the investigation
of lung diseases by applying deep-learning techniques to

raw LUS images. For instance, Born et al. (2021) crafted
a VGG16-based convolutional neural network pre-trained on
ImageNet and successfully performed three-class classification
problems involving cases of COVID-19 patients with bacterial
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pneumonia and healthy individuals. Following a different
approach, we did not modify the structure of the original
CNNs, except for the classifier. We also used random weights
instead of those trained on ImageNet: lung ultrasound images
are fundamentally different from those contained in the
ImageNet data set, likely characterized by features that diverge
from those identified with the use of the ImageNet data
set.

Similar deep-learning approaches were extensively validated
on CT scans and chest X-ray for COVID-19 diagnoses and were
previously applied to pediatric pulmonary diseases by using chest
X-ray images.

Ozturk et al. (2020) presented a deep neural network based
on a DarkNet model for the automatic COVID-19 detection
using chest X-ray images. They implemented 17 convolutional
layers with LeakyReLU as activation function and introduced
different filtering on each layer. The model achieved an
accuracy of 98.08% for binary classes (normal vs. COVID-19)
and 87.02% for multi-class cases (COVID-19 vs. no-findings
vs. pneumonia). In work more comparable to our study,
Narin et al. (2021) conducted experiments with three binary
classification problems by using transfer learning on five pre-
trained convolutional neural-network-based models (ResNet-50,
ResNet-101, ResNet-152, Inception-v3, and Inception-ResNet-
v2), and they tested their performance with five-fold cross-
validation. They found that the pre-trained ResNet-50 model
provides the highest classification performance (96.1% accuracy
for normal vs. COVID-19, 99.5% accuracy for COVID-19
vs. viral pneumonia, and 99.7% accuracy for COVID-19 vs.
bacterial pneumonia).

In the field of pediatric pulmonary imaging, an interesting
study by Liang and Zheng (2020) proposed a deep-learning
network that combines residual structures and dilated
convolution with the purpose of diagnosing pneumonia by
using raw chest X-ray images from children from 1 to 5 years
of age. Their data set involved a total of 6,090 chest X-ray
images, 4,117 images from children with pneumonia, and 1,973
images from healthy infants. Their method obtained an accuracy
of 90%, a recall rate of 96.7%, and the F1-score of 92.7% on
pneumonia classification tasks. A similar approach, developed
by Saraiva. et al. (2019), obtained an average accuracy of over
95% on a binary classification problem for detecting pneumonia
cases from chest X-ray images. Our results are competitive
when compared to those obtained by using both X-ray and LUS
imaging modalities, both in pediatric studies regarding cases of
pneumonia (Liang and Zheng, 2020) and in recent investigations
involving patients with different kinds of pneumonia (i.e.,
COVID-19 and bacterial pneumonia). In fact, our Inception-
ResNet-v2 model achieves 97.75% accuracy, 97.75% sensitivity,
and 97% specificity for healthy vs. bronchiolitis, whereas
the Inception-v3 model provides the best results with 91.5%
accuracy, 91.5% sensitivity, and 95.86% specificity for healthy vs.
bronchiolitis vs. bacterial pneumonia.

Interestingly, a study from Correa et al. (2018) examined
brightness profiles of pleural lines in children younger than 5
years of age; they were associated with three possible diagnoses:
pneumonia, healthy, and bone. The authors used a feed-forward

neural network composed of three layers and sigmoid as an
activation function. Their approach achieves a sensitivity of
90.9% and a specificity of 100% in detecting vectors associated
with pneumonia consolidation. The results of their study support
our findings that filters of the first convolutional layers learned
by the optimal model respond mainly to color features (see
section 3.3.1), with brightness being expressible as a linear
combination of RGB color components. Furthermore, when
inspecting the convolutional filters (Figure 3), and activation
maps (Figure 4) of the first convolutional layers, we can see
that they also responded to edges and texture-like patterns (see
sections 3.3.1 and 3.3.2). This observation, when considered
together with the fact that the Grad-CAM highlights areas of
medical interest, suggests that, when taking its decision over the
classification outcome, the network looks predominantly at those
specific patterns.

A fair amount of research is devoted to the use of deep-
learning approaches for analysing LUS images by focusing on
training deep neural networks on isolated, hand-crafted features
that are considered diagnostically valid, i.e., A-lines, vertical
artifacts, pleural lines (Carrer et al., 2020), pleural effusions, and
also consolidations, with vertical artifact (i.e., B-lines) detection
the most common task (Kulhare et al., 2018; Wang et al., 2019;
van Sloun and Demi, 2020). See McDermott et al. (2021), for
a review. Conversely, we opted for applying deep neural
networks to raw images, because this usually permits avoiding
the introduction of typical errors caused by inaccurate results
of image pre-processing steps (e.g., image segmentation and
decomposition) and cognitive biases or confidence in spatial
relationships between pixels and could lead to the discovery of
unexpected associations that would remain otherwise undetected
(Poplin et al., 2018). Furthermore, feeding the deep neural
network with raw images enables us to take better advantage
of deep-learning potential: (1) the automatic detection of the
appropriate predictive visual features from the training data
enables the feature extraction without requiring features to
be hand-engineered; (2) feature interaction and hierarchy can
be exploited jointly within the intrinsic deep architecture of
a neural network; (3) the three steps of feature selection,
feature extraction and supervised classification, can be realized
within the optimization of the same deep architecture, and the
performance can be tuned more easily in a systematic fashion.
As a result, the models achieved very high performances in
both classification tasks. We can also observe that the optimal
model appears to be able to distinguish the specific appearance
of visual features (such as B-lines, consolidations etc.) in different
diagnoses, rather than merely being able to look for the presence
or absence of them. In fact, growing evidence indicates that
artifacts can have a different semeiotic, according to each disease
(Soldati et al., 2016, 2019).

4.4. Limitations
Although our data set contains a large number of images, it
suffers from a limitation due to the relatively small number of
individuals, particularly children with pneumonia. It is important
to observe that only two out of three groups of children were
matched by age: healthy infants (age: 2.83 ± 2.89 months) and
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FIGURE 8 | Example of lung ultrasound image of a healthy lung incorrectly classified as bronchiolitis by the best performance model (Inception-v3). (Left) Original

LUS image; (Middle) Class activation mapping produced by the Grad-CAM visualization; (Right) The class activation mapping overlaid transparently on the original

LUS image. Note that red and orange regions correspond to high scores for the predicted class and highlight multiple, confluent long vertical artifacts. These visual

features are typical of bronchiolitis but can also be observed in very young healthy infants (∼ 6 months of life). Therefore, the optimal model “mistake” results in the

recognition of multiple long vertical artifacts.

infants with bronchiolitis (age: 2.50 ± 2.67 months). The age
of children suffering from bacterial pneumonia (age: 6.17 ±

6.77 years) is statistically different from that of the subjects in
the other two groups. The patient populations of our study
reflect real-life clinical situations, i.e., bronchiolitis tends to
affect younger infants with respect to bacterial pneumonia.
Although the obtained results are promising, they might not
be generalizable to patients of all ages. The main features
of lung pathology (e.g., consolidations, pleural effusions, and
bronchograms) were demonstrated to be the same across all
age groups, from newborns to adults, the only exception being
vertical artifacts. Although vertical artifacts are traditionally
considered as a sign of interstitial disease, rather than one of a
healthy lung, they can be morphologically different in a healthy
lung, in a pathological lung and in the case of diverse diseases
(Soldati et al., 2016, 2019). For instance, we recently showed
that the healthy younger infants (∼6 months of life) can have
a lung ultrasound pattern characterized by multiple vertical
lung artifacts (Buonsenso et al., 2020d). This is probably due
to the immature development of the lung in the first months
of life. In line with these results, our models, misinterpreted
some cases of healthy infants, whose images were characterized
by the presence of multiple, often confluent, vertical artifacts
(see Figure 8, for an example), such as with bronchiolitis. In a
real-life scenario the “age-effect” should have no impact on the
interpretation of LUS features. However, from a methodological
point of view, further studies should address this issue and,
in order to achieve better classification performance, should
therefore focus on training deep neural networks, by using
more diverse examples of LUS images that contain vertical
artifacts from both healthy infants and patients with interstitial
disease. In fact, the correct diagnosis of bronchiolitis and,
in particular, the possibility of making a distinction between
acute bronchiolitis and pneumonia are crucial in young infants
because this age group bears the highest global mortality rate
for both bronchiolitis and pneumonia. As these two conditions
require different management (antibiotics are needed only in case
of pneumonia), the differentiation of these two conditions by

point-of-care lung ultrasound, particularly in poor settings, could
be particularly relevant from a global health perspective.

Another limitation of our study is certainly related to data
acquisition.We did not set up a standard procedure for obtaining
images from the ultrasound probe, i.e., zoom, gain, mechanical
index, and focus positioning were perhaps not always the same
in every patient. When those images were either oversaturated
or extremely dark, the model made a few objective mistakes
by misinterpreting some images of healthy lungs as images
that displayed lungs with bacterial pneumonia (Figure 9): input
perturbations might have been confused with consolidations by
the model. The ability to set the proper settings depends on the
experience of the sonographer, and different settings can lead to
different lung ultrasound patterns, even when scanning the very
same areas. Establishing standard settings is probably one of the
main challenges of using lung ultrasound imaging. Only recently,
and much later with respect to the time of our data acquisition,
researchers of the Italian Academy of Thoracic Ultrasound
proposed a standardization with respect to the use of LUS in
the management of COVID-19 patients by specifying imaging
and device settings, among the other procedures, with the aim
of reaching a more globally unified approach for comparisons
between different human- and computer-aided studies; hence
a better understanding of the role of LUS in the diagnosis of
COVID-19 (Soldati et al., 2020).

4.5. Applications and Future Directions
At present, we have implemented a simple decision support
tool (computer aided diagnosis system or CADx) that can assist
medical doctors in formulating their diagnoses: given as input a
sequence of LUS images, our system is able to suggest a diagnosis
on the basis of the majority of the CNN classification votes
obtained over all images belonging to a patient. The diagnosis
spans over the three above-mentioned diagnostic groups: healthy
subjects and patients with bacterial pneumonia or bronchiolitis.
The final decision of the diagnosis is eventually taken by the
medical personnel, with the help of the Grad-CAM that is
displayed for each LUS image belonging to a specific patient.
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FIGURE 9 | Example of lung ultrasound image of a healthy lung incorrectly classified as bacterial pneumonia by the best performance model (Inception-v3). (Left)

Original LUS image; (Middle) Class activation mapping produced by the Grad-CAM visualization; (Right) The class activation mapping overlaid transparently on the

original LUS image. Note that red and orange regions corresponds to high scores for the predicted class and highlight what might be confused with consolidations,

being the image really dark. This mistake helps us to better understand how the training set should be balanced with a more comprehensive inclusion of the different

visual features.

The explainable method gives quantitative feedback (in terms
of probability) on the rationale behind the decision taken by
the model hence might also be useful for instructional purposes
(Muse and Topol, 2020).

When validated adequately, the method we propose could
help to simplify and accelerate the diagnosis of pulmonary
diseases, and if extended, in the future, might enable the
differentiation among different types of bacterial and viral
pneumonia (including COVID-19). Considering the fact that
deep learning usually performs better when the available data
points represent well the distribution at end, our future works
will be to collect ultrasound image sets that are greater and
better balanced, with respect to age groups, ethnicity and device
settings, despite the fact that methodical data collection is time-
consuming and challenging due to the paucity of data. Particular
attention could be given to the anomaly detection problem
(Chandola et al., 2009). In most classification tasks the presence
of one or more negative (alien or abnormal) classes constitutes a
challenge, especially considering the lack of data of these classes
and the openness of the problem. A typical solution to overcome
this problem is to use supervised anomaly detection thus build a
predictive model for normal vs. anomaly classes that might then

contain data belonging to other illnesses not contemplated by
the actual classification. Different techniques have been used to

address the anomaly detection problem and could be adopted
in future works: generative adversarial networks for anomaly

detection (Schlegl et al., 2019) and the methods based on one

class classification (Ruff et al., 2018). Many other approaches
could be investigated to refine our results: careful choices for the

topology of a neural network, extensive use of transfer learning

in compatible domains, exploring other deep-learning methods,
for example, with the objective of emphasizing robustness and
explainability (Roberts and Tsiligkaridis, 2020). Additionally,
our approach might be combined with the classification of
disease severity (Supino et al., 2019) or with LUS image quality
assessment module (Baum et al., 2021).

5. CONCLUSIONS

In conclusion, our study represents a first step for the
development of a CADx system that is able to assess and
classify pediatric LUS images as belonging to different pulmonary
diseases. When extensively validated, such a system could reduce
the daily burden of clinicians, could assist them in making
more accurate diagnoses, and could enable better comparisons
of images obtained during follow-up. Moreover, CADx systems
could provide a second opinion to expert radiologists and
remote training assistance, which could be particularly useful
in remote geographic areas with a limited availability of
diagnostic tools.
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A Pilot Study on Electrical
Impedance Tomography During
CPAP Trial in Patients With Severe
Acute Respiratory Syndrome
Coronavirus 2 Pneumonia: The Bright
Side of Non-invasive Ventilation
Michela Rauseo* , Lucia Mirabella, Donato Laforgia, Angela Lamanna, Paolo Vetuschi,
Elisa Soriano, Daniele Ugliola, Elena Casiello, Livio Tullo and Gilda Cinnella

Department of Anesthesia and Intensive Care, University of Foggia, Foggia, Italy

Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pneumonia phenotypes were described that match with different lung compliance and
level of oxygenation, thus requiring a personalized ventilator setting. The burden of so
many patients and the lack of intensive care unit (ICU) beds often force physicians to
choose non-invasive ventilation (NIV) as the first approach, even if no consent has still
been reached to discriminate whether it is safer to choose straightforward intubation,
paralysis, and protective ventilation. Under such conditions, electrical impedance
tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion
defects, could be useful to assess the response of patients to NIV and choose rapidly
the right ventilatory strategy.

Objective: The rationale behind this study is that derecruitment is a more efficient
measure of positive end expiratory pressure (PEEP)-dependency of patients than
recruitment. We hypothesized that patients who derecruit significantly when PEEP is
reduced are the ones that do not need early intubation while small end-expiratory
lung volume (1EELV) variations after a single step of PEEP de-escalation could be
predictive of NIV failure.

Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-
CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former
intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP)
12 was applied in every patient for at least 15 min, followed by the second period of
CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation
of patients was assessed by EIT, and end-expiratory lung impedance (1EELI) (%) was
calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve,
respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were
analyzed offline using the dedicated software. The decision to intubate or continue NIV
was in charge of treating physicians, independently from study results. Outcomes of
patients in terms of intubation rate and ICU mortality were recorded.
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Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients
(60%) were successfully treated by NIV until ICU discharge (Group S), and four patients
failed NIV and were intubated and switched to MV (Group F). All these patients died
in ICU. During the supine CPAP decremental trial, all patients experienced an increase
in RR and Ve. 1EELI was < 40% in Group F and > 50% in Group S. In the prone
trial, 1EELI was > 50% in all patients, while RR decreased in Group S and remained
unchanged in Group F.

Conclusion: 1EELI < 40% after a single PEEP de-escalation step in supine position
seems to be a good predictor of poor recruitment and CPAP failure.

Keywords: SARS-CoV-2, electrical impedance tomography, awake prone positioning, CPAP, non-invasive
ventilation

INTRODUCTION

At present time, more than 1 year since the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic
broke out, its physiopathology and clinical course are much better
understood. However, to speak with Sir W. Churchill, “the best
is not good enough,” since many key points of this threatening
disease are still far from being fully elucidated, notably as
regards therapeutic options, while the number of cases that
require respiratory support is far from being subsided. Hence,
clinicians all over the world still have to face the impossibility
to guarantee tracheal intubation for everyone (Grasselli et al.,
2020), and non-invasive respiratory support becomes sometimes
an obliged choice. Presently, an increasing amount of studies
are reporting successful treatment of SARS-CoV-2 pneumonia in
non-intubated patients, ventilated with moderate to high level
of positive airways pressure (PEEP/CPAP) (8–12 cmH2O) and
cycles of awake proning (Bamford et al., 2020; Whang et al.,
2021). Accurate selection of patients, appropriate PEEP/CPAP
setting, and correct timing for switching to invasive mechanical
ventilation in non-responders to the non-invasive approach are
thus of paramount importance and still remain among the most
debated topics in the intensive care unit (ICU) environment and
more (Lee et al., 2021; Tseng et al., 2021).

Hypoxemia severity and oxygenation response to PEEP/CPAP
application are weak indexes of lung recruitability (Dantzker,
1982; Chen et al., 2020), and this is even more evident in
SARS-CoV-2 pneumonia, since patients with a same degree
of severity of arterial desaturation may present with different
clinical phenotypes, ranging from normal respiratory rate (RR)
to marked dyspnea and near normal to decreased respiratory
system compliance (Crs), where compliance is a measure of
the lung expandability. It refers to the ability of the lung
to stretch and expand (Gattinoni et al., 2020a,b,c). In fact,

Abbreviations: 1EELI, Variation of End Expiratory Lung Impedence; 1EELV,
variation of End expiratory Lung Volume; GI, Global Impedence; ROI, Region
of Interest; NIV, Non Invasive ventilation; MV, Mechanical Ventilation; RR,
Respiratory Rate; Ve, Minute ventilation; Vt, Tidal Volume; PSILI, Patient Self
Inflicted Lung Injury; R/I, Recruitment to Inflaction Ratio; AOP, Airway Opening
Pressure; DP, Driving Pressure; BP, Blood Pressure; HR, Heart rate; ABG, Aterial
Blood Gas Analysis ; Crs, Respiratory system compliance; Cs, Static Compliance ;
V/Q, Ventilation/Perfusion ratio.

the most challenging patients are the ones that under non-
invasive ventilation keep normal PaCO2, RR, and adequate
minute ventilation (12–14 l/min) (He et al., 2019), with preserved
lung mechanics, in whom PaO2/FiO2 do not respond to the
application of increasing PEEP levels. These patients are at high
risk for developing self-inflicted lung injury (PSILI) (Brochard
et al., 2017; Grieco et al., 2019; Yoshida et al., 2020) and
require intubation as early as possible. Assessing if a patient
is recruiter or not can thus guide the decision to keep non-
invasive ventilation or intubate. A recruiter can be defined as a
patient who responds to PEEP in terms of better oxygenation,
hemodynamic stability, improvement of respiratory compliance,
and lung mechanics. However, lung recruitability is uneasy to
measure at the bedside and even more difficult in non-intubated
patients. Recently, Chen et al. (2020) proposed a single-breath
bedside method to measure lung recruitment by using the so-
called compliance of the recruited lung: the ratio between the
loss in end-expiratory lung volume (1EELV) after a reduction
of PEEP, and driving pressure (DP) itself. However, this R/I
index can be used only in sedated and mechanically ventilated
patients. We hypothesized that the same physiological principle
could be applied to patients under non-invasive ventilation with
PEEP/CPAP, to screen the ones that are PEEP-dependent: after a
drop in PEEP/CPAP, a reduction in EELV, and thus an increase
in 1EELV, should indicate that lung maintains a good elasticity
and is able to deform. These lungs are affected by the pressure
change and respond to the PEEP, so the clinician should insist
with CPAP maximized at 12 cmH2O (He et al., 2019). In contrast,
a stable EELV, and thus a small 1EELV, with no changes in
other parameters such as RR or Ve, would indicate that patients
have an airway opening pressure (AOP) > 12 cmH2O (Chen
et al., 2018) and thus PEEP must be increased over 12 cmH2O
to reach alveoli, or that lungs are already stiff and fibrotic. These
patients should be better rapidly switched to invasive mechanical
ventilation. Thus, a delay in understanding this process, in a
patient with spontaneous breathing, may worsen PSILI or may
delay intubation and reduce the chances for survival. Under this
hypothesis, 1EELV could be a predictor of CPAP failure and the
need for switching to invasive mechanical ventilation.

Electrical impedance tomography (EIT) is a non-invasive
and easy to use bedside tool that dynamically shows regional
tidal volume (Vt) distribution. EIT has been demonstrated a
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valid instrument to assess regional ventilation and PEEP-induced
recruitment in many experimental and clinical studies (Cinnella
et al., 2015; Sosio et al., 2019). However, to our knowledge, no
data are available on the use of EIT to monitor lung recruitability
under non-invasive ventilation in patients with COVID-19.

Thus, we launched the present observational pilot study in
patients admitted in ICU with SARS-CoV-2 pneumonia treated
by non-invasive ventilation with PEEP/CPAP and cycles of the
prone position. This study was aimed at (a) estimating PEEP-
dependency at the bedside by using EIT to measure 1EELV
by end-expiratory lung impedance variations (1EELI) after a
drop in PEEP; (b) evaluating the relationship between PEEP-
dependency and outcome of patients, in terms of intubation
and survival rate; (c) assessing if EIT may be useful to identify
responders to the prone position, by continuously monitoring the
ventilation redistribution following changes of the position.

MATERIALS AND METHODS

Patients
After Ethics Committee approval and written informed consent,
all consecutive patients with COVID-19 admitted to our
academic hospital ICU from March 2021 to April 2021 were
enrolled. Inclusion criteria were as follows: admission from the
emergency room within 24 h from symptoms onset, non-invasive
mechanical ventilation for clinical decision, age ≥ 18 years,
and confirmed SARS-CoV-2 infection from a respiratory tract
sample by PCR-based tests. Exclusion criteria were as follows:
prior admission to the ward, prior intubation, hemodynamic
instability, defined as systolic blood pressure (BP) < 90 mmHg or
mean BP < 60 mmHg, contraindication to EIT use (presence of
pacemaker), impossibility to correctly place EIT belt, and refusal
to participate in this study.

Patients underwent standard monitoring: ECG, heart rate
(HR), RR, FiO2, SaO2, and urinary output. The radial artery was
cannulated, and the catheter connected to the pressure transducer
of the MostCare monitor (MostCareup, Vigon, Italy) and/or
the IntelliVue Philips X3 monitor (Philips Medizin Systeme
Böblingen GmbH, Böblingen Germany).

Intravascular pressure measurements were adjusted to zero
at atmospheric pressure and leveled to the mid-axillary line.
Analysis of arterial blood gases was performed (GEM Premier
4000, Werfen, United Kingdom).

All patients were ventilated using a Respironics V60 Ventilator
(Philips N.V., Netherlands) in CPAP mode and connected
to a full-face mask (Respironics FitLife, Philips) as the
interface. Vt, RR, and minute ventilation (Ve) were measured
from the ventilator.

Electrical impedance tomography is a non-invasive imaging
technique that gives you a special view of inside the lungs. In a
cross-sectional projection, the distribution of the tidal volume
in the thorax is shown. The derived image shows ventilated
and non-ventilated areas of the lungs and their changes as a
function of time.

The EIT (PulmoVista 500, Draeger Medical GmbH, Germany)
was applied as follows: a rubber belt containing 16 electrodes was
placed around the chest between the fourth and fifth intercostal

space and connected to the EIT monitor (Draeger/GoeMFII
EIT Evaluation Kit 2, Draeger Medical GmbH). The correct
position and signal quality were assessed on the monitor screen
as described (Cinnella et al., 2015). At every study step, the
EIT images were divided into four quadrants, to obtain two
ventral and two dorsal regions of interest (ROIs), as already
described (Cinnella et al., 2015; Sosio et al., 2019). Real-time
impedance curves represent ventilation over time. Changes in
the overall cross-section are reflected by the global impedance
curve. This curve strongly correlates with the volume curve
of the ventilator and with the applied/inhaled total volume.
The regional impedance changes (i.e., tidal variations) serve to
compare different lung regions. The numerical values indicate the
volume distribution, which together adds up to 100% of the global
value unless the overall window size (ROI setting) is changed.

Data Analysis
The operator was always the same. We recorded EELI according
to a validated method (Sosio et al., 2019). Later, the patient was
connected to a V60 Philips Respirator, and the recordings were
taken in the four study steps (Figure 1).

The Dräger (SW EITdiag V1.6 (Draeger Lübeck, Germany), is
a dedicated software tool for advanced PC-based analysis of EIT
data files that have been previously recorded with PulmoVista 500
or other devices applying the technique of electrical impedance
tomography. EITdiag reconstructs EIT images and uses various
previously published approaches for data interpretation with
respect to regional and temporal inhomogeneity of the lung
function (Lowhagen et al., 2010).

An offline analysis was performed with the EITdiag software
on impedance data to calculate global lung impedance and
1EELI. The end-inspiratory trend view is used to compare two
different tidal images and their regional tidal volume distribution.
It helps to identify inhomogeneities, recruitment, derecruitment,
overdistension, and the redistribution of Vt when changing the
PEEP setting on the ventilator.

Recorded data included demographics [age, gender, and body
mass index (BMI)], comorbidities, previous pharmacological
treatments, disease chronology [time from onset of symptoms
and from hospital admission to initiation of respiratory support,
and ICU length of stay (LOS)], symptoms at ICU admission,
vital signs [temperature, mean arterial pressure (MAP), and
heart rate], laboratory parameters (blood test, coagulation,
and biochemical), non-respiratory sequential organ failure
assessment (non-respiratory SOFA) and APACHE II scores, and
outcome in ICU and hospital.

Interventions
A physician not involved in this study was responsible for the
care of patients. All patients were awake and mildly sedated with
dexmedetomidine 0.3–1.2 mcg/kg/h. A standardized protocol for
hemodynamic management was applied to ensure fluid volume
optimization, as already described (Cinnella et al., 2015).

This study was performed in four steps as follows
(Figures 1, 2): (a) in the supine position, CPAP was set
at 12 cmH2O, and the first series of the measurement was
performed (T1s); (b) CPAP was then decreased to 6 cmH20,
and the series of the second measurement was recorded (T2s);
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FIGURE 1 | Study steps protocol.

FIGURE 2 | EIT ventilation dynamic distribution image from one CPAP decremental trial. The screenshot shows the distribution of the tidal volume in a cross
sectional full screen view of the patient thorax in the caudal-cranial direction.

(c) patients were then turned to the prone position, CPAP was
again set to 12 cmH2O, and the third series of measurements was
performed (T1p); (d) CPAP was decreased to 6 cmH2O (T2s),
and the last measurement was performed. Every step lasted
15 min. The whole procedure lasted 1 h plus the time necessary
for turning patients to the prone position. After the final steps,
the physician in charge decided whether the patients can be kept
in the prone position or not and set CPAP according to her/his
clinical judgment. The decision to switch to intubation and
invasive mechanical ventilation was taken by treating physicians
independently from study results.

During every step, Vt, RR, and minute ventilation (Ve)
were recorded together with data from the EIT as already
described (Cinnella et al., 2015). BP, HR, SaO2, and a baseline
ABG were collected, together with blood screen of the day, as
per ward policy.

Statistical Analysis
Data are expressed as percentage, mean ± SD, since they are
normally distributed (Shapiro–Wilk test, p > 0.05). We used
the one-way ANOVA to assess differences between CPAP12 and

CPAP6 and differences between supine and prone positions.
A p value < 0.05 was considered significant. Statistical analysis
was performed using Statistica 10.0 (TIBCO software Inc., Palo
Alto, CA, United States; Statsoft Italia srl 2011; available at:
www.statsoft.com).

RESULTS

In this study, 10 men patients were included, with a mean
age of 67 (range 51–81) years, a weight of 85 ± 20 kg, and a
BMI of 20 ± 15.

The mean time lapse from the appearance of symptoms to ICU
admission was within a range of 7–10 days.

Six patients were successfully discharged from the ICU to
ward after 12 ± 2 days, without being intubated (Table 1).
The remaining four patients failed the non-invasive ventilation
(NIV) trial, were intubated, and mechanically ventilated within
48 h post trial. All these patients died in ICU (mean ICU stay
14 ± 3.5 days, range 14–20 days.
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TABLE 1 | Demographics data and outcome.

Patient Sex Age
(y-o)

BMI
(Kg/m2)

Comorbidities Outcome

1 M 80 33 HTN ICU discharge

Day 12th

2 M 57 28 None ICU discharge

Day 7th

3 M 79 32 HTN Dead

Day 10th post ETT

4 M 77 30 HTN ICU discharge

Day 12th

5 M 80 26 HTN, CKI Dead

Day 4th post ETT

6 M 68 33 HTN Dead

Day 21st

(24 h post ETT)

7 M 60 29 HTN, DM II Dead

Day 32nd

8 M 51 28 None ICU discharge

Day 6th

9 M 55 29 None ICU discharge

Day 9th

10 M 60 26 HTN ICU discharge

Day 5th

BMI, body mass index; ETT, endotracheal tube; HTN, hypertension; CKI, chronic
kidney injury; DM II, Diabetes Mellitus Type II.

In the whole group, baseline PaO2/FiO2 was 180 ± 20
and remained unchanged during the study (NS). RR and Ve
increased when going from CPAP 12 to CPAP 6, both in
supine (RR 18 ± 2 in T1s to 28 ± 2 bpm in T2s; Ve
8.3 ± 1.2 to 12.5 ± 3.2 L × min−1) and prone positions
(RR 17 ± 2 in T1p to 26 ± 3 bpm in T2p; Ve 8.5 ± 0.6 to
11.6 ± 2.7 L × min−1; p < 0.05), while Vt remained stable in
every patient (Table 2).

A posteriori analysis of survivors vs. non-survivors showed
that 1EELI (Table 2) was > 50% in all survivors and remained
stable in both supine and prone positions (58 ± 6% and 62 ± 8%,
respectively, p = 0.05). In non-survivors, 1EELI was 28 ± 4%,
with small or no changes in the supine trial, and increased up
to 63 ± 9% (<0.01) during the prone trial. Ve increased on the
last phase of the trial (Figure 3). In Figures 4, 5, EITdiag MatLab
analysis from two representative patients (one survivor and one
non-survivor) is shown.

The four patients intubated were ventilated with 6 ml/kg/PBW
and PEEP of 12 ± 2 cmH2O. Measurement of respiratory
mechanics showed a plateau pressure (Pplat) < 30 cmH2O in all
patients, with mean static compliance (Cs) of 40 ± 4 ml/cmH2O;
patients #3 and 7 had an AOP of 13 ± 2 cmH2O, and patients # 5
and 6 were not recruiters (R/I < 0.5).

DISCUSSION

The main findings of the present pilot study are that patients
with SARS-CoV-2 pneumonia under non-invasive ventilation
may have two distinct behaviors to a CPAP decremental trial:
(a) 1EELI > 50% either in the supine or prone position,
indicating lung recruitability, associated with NIV success; (b)
1EELI < 40% in the supine position, indicating non-recruiter
lungs (phenotype L) or AOP > 12 cmH2O, associated with NIV
failure; (c) in patients who failed NIV, an increased 1EELI%
exclusively during proning may be due to a better V/Q matching.

The novelty of our study is that we performed a decremental
CPAP trial in awake SARS-CoV-2 patients and used EIT, a non-
invasive, bedside tool that does not require specific competencies
in respiratory mechanic assessment, to assess the changes in lung
volume. Thus, we applied in our patients the same physiological
principle used in intubated and mechanically ventilated patients
to discriminate between recruiters and non-recruiters (Perier
et al., 2020; van der Zee et al., 2020; Kotani and Shono, 2021;
Shono et al., 2021).

Before discussing our results, a short excursus on NIV state-of-
the-art in SARS-CoV-2 pneumonia is required. In fact, the time
course of findings from trials focused on non-invasive respiratory
support reflects the difficulties that everybody, everywhere, had
to face in front of a new syndrome of such a sprawling aspect
as SARS-CoV-2. Retrospectively, one can bitterly meditate on
the ATS/ERS guidelines (Rochwerg et al., 2017), on the use of
NIV in de novo acute respiratory failure and critical viral illness
pandemic statement: “we are unable to offer a recommendation,”
just before the SARS-CoV-2 pandemic explosion. Later, the
panel added: “. . .we consider prior recommendations against the
use of NIV for pandemic as unsupportable.” Nonetheless, the
worldwide fight against SARS-CoV-2 started from ATS/ERS first
statement, so that the earliest international guidelines on COVID

TABLE 2 | Respiratory parameters during CPAP trials, in both positions.

Supine Prone P value

CPAP 12 cmH2O CPAP 6 cmH2O CPAP 12 cmH2O CPAP 6 cmH2O

Vt (ml) 450 ± 100 430 ± 150 500 ± 80 460 ± 90 P = 0.2

RR (breaths per
minute)

18 ± 2 28 ± 2* 17 ± 2 26 ± 3* P < 0.05

Ve (l/min) 8.3 ± 1.2 12.5 ± 3.2* 8.5 ± 0.6 11.6 ± 2.7* P < 0.05

PaO2/FiO2 180 ± 20 170 ± 20 220 ± 10 190 ± 10 NS

1EELI
Global (%)
NIV failure

28 ± 4 63 ± 9 # P < 0.01

1EELI
Global (%)
NIV success

58 ± 6 62 ± 8 # P = 0.05

*CPAP12 vs. CPAP6; # Supine vs. Prone position. NS, not significant.
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FIGURE 3 | Analysis from one CPAP decremental trial and change in ventilation distribution in a patient who failed NIV and died (the huge variability of the signal in
the final step of the trial highlights the fatigue).

FIGURE 4 | EITdiag MatLAb Analysis of the decremental CPAP trial in a patient who survived, (A) supine, (B) prone. Note the 1EELI% > 50 in both body positions.

19 (Whang et al., 2021) did not recommend NIV in such patients.
However, it became soon evident that the situation had gone out
of control and 1,000 patients had to be treated non-invasively
because the alternate choice was not respiratory support at
all. Paradigmatic of this struggle is the amendments made
by National COVID-19 Clinical Evidence Taskforce (NCCET)

(Whang et al., 2021) that deleted the following statement from
its revised guidelines “in patients with hypoxemia associated with
COVID-19, do not routinely use NIV” (Whang et al., 2021). Since
then, a number of studies dealt with the COVID-19 outcome
prediction (Tseng et al., 2021), early vs. late intubation (Lee
et al., 2021), and criteria for NIV and prediction of NIV failure
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FIGURE 5 | EITdiag MatLAb Analysis of the decremental CPAP trial in a patient who died, (A) supine, (B) prone. Note the 1EELI% < 40 in supine postion and > 50
in prone postion.

(Bellani et al., 2017; He et al., 2019), so that at present, the debate
is still going and no definite recommendations are available, while
patients are still largely ventilated with NIV, mainly in non-ICU
departments and often by non-ICU trained physicians. An effort
to provide clear and simple means to early discriminate patients
that require intubation is thus needed, perhaps more due to
ethical reasons than purely speculative ones.

Severe acute respiratory syndrome coronavirus 2 pneumonia
may present with two phenotypes which identification is pivotal
to apply the right mechanical ventilation strategy (Gattinoni
et al., 2020a): type L, characterized by low elastance, low V/Q
ratio, lung weight, and recruitability, and type H, defined by
high elastance, right to left shunt, lung weight, and recruitability.
Recruitability is defined as the possibility to open up collapsed
areas of the lung by positive pressure. The “classical” lung-
protective strategy (Gattinoni et al., 2006, 2020a,b,c), based on
limiting Vt and plateau pressure is not required for type L
but should be actively implemented in type H. However, it
is not easy to distinguish between the two types because the
lung weight cannot be measured clinically, and the method to
evaluate recruitability is unclear, while a method to measure V/Q
matching at the bedside has not been established. Under such
conditions, EIT was proposed not only to evaluate recruitability
but also to assess regional ventilation homogeneity, thus allowing
to determine the optimum PEEP at the time of measurement.
As a result, this approach could be of help to set ventilation
to attenuate regional dynamic strain and inhomogeneity of
transpulmonary pressure. Morais et al. (2021) presented three
cases of mechanically ventilated patients with COVID-19 with
acute hypoxemic respiratory failure (AHRF) and ARDS that
had similar levels of oxygenation but variable respiratory system
compliance. In this case series, different characteristics of the
regional ventilation profile were evidenced by EIT that was
thus helpful in understanding the etiology of hypoxemia at
the bedside. Tomasino et al. (2020) used EIT to identify the
characteristics of COVID-19 pneumonia and to decide whether
to use high PEEP or prone positioning.

In this study, PEEP de-escalation affected most of the
respiratory parameters in all patients, disclosing two behaviors
that matched with a clinically significant difference in the
outcome of patients. Interestingly, the two behaviors were evident
in the supine position and not in the prone position: the four
patients that failed NIV had only slight variations in terms of
1EELI when kept in the supine position, probably because in
this position, lung stiffness, alveolar collapse, and V/Q mismatch
play a major role than in prone position (Cornejo et al., 2013;
Yoshida et al., 2013; Scaravilli et al., 2015; Aguirre-Bermeo et al.,
2018; Telias et al., 2020). In fact, this hypothesis was confirmed
by respiratory mechanic data obtained after intubation in these
patients showing that two of them were not recruiters (R/I < 0.5),
and the remaining two had an AOP > 12 cmH2O, signs of their
need for mechanical ventilation and higher PEEP levels. These
four patients had already signs of fatigue on their admission
to the ICU, and it could be argued that NIV would probably
have not been indicated for them from the beginning. However,
since their PaO2/FiO2 was acceptable when compared with other
patients, they underwent an NIV trial. In contrast, the six patients
in whom NIV was successful (all discharged from ICU) had a
significant increase in 1EELI when PEEP was reduced, both
in supine and prone positions, and in our opinion, this can
be explained still by soft lungs and high recruitability, since
the end-expiratory trend view or 1EELI-trend view is used to
monitor regional changes of 1EELI. 1EELI is strongly correlated
with the changes in 1EELV. The 1EELI trend is useful to
assess the changes in lung volume, for example, after changing
the PEEP and after recruitment maneuvers for the reopening
of dorsal atelectases and for the detection of derecruitment of
individual lung areas.

Paradoxically, it could be argued that the prone position
could mask NIV failure precisely because of its favorable effects.
In fact, the physiological rationale behind prone positioning in
typical ARDS is to reduce ventilation/perfusion mismatching,
hypoxemia, and shunting (Cornejo et al., 2013; Scaravilli et al.,
2015; Aguirre-Bermeo et al., 2018). When a patient is in the prone
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position, the pleural pressure gradient between dependent and
non-dependent lung regions decreases as a result of gravitational
effects and matching of conformational shape of the lung
to the chest cavity. This generates more homogenous lung
aeration and strain distribution, thus enhancing recruitment
of dorsal lung units (Telias et al., 2020), while the regional
distribution of pulmonary blood flow is not altered, with
perfusion predominating toward the dorsal lung due to non-
gravitational factors. In patients with spontaneous breathing,
respiratory physiology under prone position is the same plus
the effect of diaphragm contraction, since its muscular mass is
mainly posterior, when in the prone position, it exerts on lungs
a more uniform distribution of stress (Yoshida et al., 2013).
Lung regional hyperinflation may thus be reduced (Telias et al.,
2020). Therefore, the prone position allows an improvement
in ventilatory homogeneity with a relatively constant perfusion
pattern, and a subsequent reduction in shunting is observed
together with an increase in EELV. In fact, none of our patients
had a severe respiratory failure (they would not have been in
NIV), so that all responded to proning with the expected EELV
increase, but the physiological and clinical meaning of these data
is different in the two groups. The benefit of prone position in
terms of V/Q matching did probably overcome the role played by
OAP or lung stiffness in those patients who were not recruitable,
and this could explain why all did have a 1EELI > 50% when
switched from 12 to 6 cmH2O in pronation.

In contrast, in the supine position, the damages of lung
inflammation and edema are more evident. Due to the increased
weight of the lung, alveolar collapse may predominantly occur in
the dependent lung regions, and the resulting arterial hypoxemia
is worsened by diaphragmatic contractions that cause gas
displacement from non-dependent to dependent lung areas,
the so-called pendelluft phenomenon (Yoshida et al., 2013).
Moreover, strong inspiratory effort causes large negative pressure
in the thorax and increased transpulmonary pressure that can
cause or aggravate lung injury, generating the so-called PSILI,
whose pathological changes are irreversible and worsen the
prognosis (Brochard et al., 2017; Grieco et al., 2019; Yoshida et al.,
2020). Under such conditions, a lung that is PEEP-dependent, i.e.,
recruitable, will lose volume when PEEP is decreased while a lung
stiff or with AOP will remain quite unaffected.

CONCLUSION

Although our results need to be confirmed by larger data set
and further RCTs should be conducted to evaluate whether the
use of the EIT could, in fact, help to detect different phenotypes
and clustering patients able to tolerate NIV, our data seem to
suggest that a PEEP de-escalation trial in the supine position
can be useful to discriminate lung recruitability in patients with
SARS-CoV-2 under NIV.
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Background: The incidence of hypoxemia during one-lung ventilation (OLV) is as high

as 10%. It is also partially determined by the distribution of perfusion. During thoracic

surgery, different body positions are used, such as the supine, semilateral, lateral, and

prone positions, with such positions potentially influencing the distribution of perfusion.

Furthermore, hypovolemia can impair hypoxic vasoconstriction. However, the effects of

body position and hypovolemia on the distribution of perfusion remain poorly defined. We

hypothesized that, during OLV, the relative perfusion of the ventilated lung is higher in the

lateral decubitus position and that hypovolemia impairs the redistribution of pulmonary

blood flow.

Methods: Sixteen juvenile pigs were anesthetized, mechanically ventilated, submitted

to a right-sided thoracotomy, and randomly assigned to one of two groups: (1)

intravascular normovolemia or (2) intravascular hypovolemia, as achieved by drawing

∼25% of the estimated blood volume (n = 8/group). Furthermore, to mimic thoracic

surgery inflammatory conditions, Escherichia coli lipopolysaccharide was continuously

infused at 0.5 µg kg−1 h−1. Under left-sided OLV conditions, the animals were further

randomized to one of the four sequences of supine, left semilateral, left lateral, and

prone positioning. Measurements of pulmonary perfusion distribution with fluorescence-

marked microspheres, ventilation distribution by electrical impedance tomography,

and gas exchange were then performed during two-lung ventilation in a supine

position and after 30min in each position and intravascular volume status during OLV.
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Results: During one-lung ventilation, the relative perfusion of the ventilated lung was

higher in the lateral than the supine position. The relative perfusion of the non-ventilated

lung was lower in the lateral than the supine and prone positions and in semilateral

compared with the prone position. During OLV, the highest arterial partial pressure of

oxygen/inspiratory fraction of oxygen (PaO2/FIO2) was achieved in the lateral position

as compared with all the other positions. The distribution of perfusion, ventilation, and

oxygenation did not differ significantly between normovolemia and hypovolemia.

Conclusions: During one-lung ventilation in endotoxemic pigs, the relative perfusion of

the ventilated lung and oxygenation were higher in the lateral than in the supine position

and not impaired by hypovolemia.

Keywords: one-lung ventilation, OLV, pulmonary perfusion, thoracic anesthesia, hypovolemia, body position, HPV,

gravity

INTRODUCTION

During one-lung ventilation (OLV), the incidence of relevant
hypoxemia can be as high as 10% and can be associated with
postoperative complications (Kazan et al., 2009). The incidence
of hypoxemia is mainly determined by the pulmonary blood
flow to the ventilated and non-ventilated lung, with the latter
representing the intrapulmonary right-to-left shunt. During
OLV, hypoxic pulmonary vasoconstriction (HPV) redirects
pulmonary blood flow toward the ventilated lung. In turn,
regional pulmonary blood flow is influenced by gravity (Szegedi
et al., 2010), local mechanical forces (Alfery et al., 1981), and
intravascular volume status (Deem et al., 1995), as summarized
in the west-zone model (West et al., 1964). Furthermore, the
atelectasis and hypo-ventilated zones and the hyper-inflated
areas of the ventilated lung contribute to perfusion-ventilation
mismatch and have an additive effect on shunting in the
non-ventilated lung (Hedenstierna et al., 1986). Body position
may further influence the distribution of pulmonary perfusion
because of different gravitational and ventilation distributions
in corresponding positions. Finally, the geometry of the
vascular tree that branches asymmetrically plays an important
role in the spatial distribution of pulmonary blood flow
(Glenny and Robertson, 2011).

One-lung ventilation is required for different thoracic
procedures to allow access to the surgical field. Depending
on the surgical access, a patient can be placed in a supine,
semilateral, lateral, or prone position. While the lateral
decubitus position is most frequently used, the prone

Abbreviations: CV, Coefficient of variation; EIT, Electrical impedance

tomography; ERS, Elastance of the respiratory system; EVLWI, Extravascular

lung water index; FIO2, Inspired fraction of oxygen; GEDVI, Global end-diastolic

volume index; HPV, Hypoxic pulmonary vasoconstriction; I:E, Inspiratory

to expiratory time ratio; ITBVI, Intrathoracic blood volume index; LPS,

Lipopolysaccharide; OLV, One-lung ventilation; PEEP, Positive end-expiratory

pressure; PICCO, Pulse Contour Cardiac Output; Pmean, Mean airway pressure;

Ppeak, Peak airway pressure; PVRI, Pulmonary vascular resistance index; Qrel,I,

Relative pulmonary blood flow; RR, Respiratory rate; RRS, Resistance of the

respiratory system; SVRI, Systemic vascular resistance index; TLV, Two-lung

ventilation; VT, Tidal volume.

position is needed for certain esophageal and spinal
surgery approaches. In addition, the supine position is
required during mediastinal and cardiac surgery, and the
semilateral position is used during open thoracic aortic
repair (Crawford position). Currently, it is not known how
these positions compare with respect to the distribution of
regional pulmonary perfusion and gas exchange. Furthermore,
during thoracic surgery, the incidence of major bleeding
leading to acute intravascular hypovolemia can reach
up to 5% (Schirren et al., 2015). It has been proposed
that acute intravascular hypovolemia may alter hypoxic
pulmonary vasoconstriction (Deem et al., 1995) and thereby
gas exchange. However, the effect of hypovolemia on
the distribution of pulmonary blood flow during OLV is
not well-determined.

In this study, we aimed to determine the distribution of
pulmonary blood flow during commonly used body positions
for thoracic surgery during normo- and hypovolemia in
pigs undergoing one-lung ventilation. We hypothesized that
the pulmonary blood flow of the ventilated lung would be
highest in the lateral decubitus position. We also hypothesized
that intravascular hypovolemia impairs the redistribution
of pulmonary blood flow because of an altered hypoxic
pulmonary vasoconstriction.

METHODS

The Institutional Animal Care and Welfare Committee and the
Government of the State of Saxony, Germany, approved the study
(DD24.1-5131/449/71, TVV 69/2018). All the animals in this
study received humane care in compliance with the Principles
of Laboratory Animal Care formulated by the National Society
for Medical Research and the US National Academy of Sciences
Guide for the Care and Use of Laboratory Animals. This study
also complied with the relevant aspects of the Animal Research:
Reporting of In Vivo Experiments (ARRIVE) guidelines (Percie
du Sert et al., 2020). The animals were kept at a controlled
temperature and a light-dark cycle with free access to water
and food.
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FIGURE 1 | The time course of the interventions and measurements. LPS, lipopolysaccharide; VT, tidal volume; PEEP, positive end-expiratory pressure; FIO2, fraction

of inspired oxygen; RR, respiratory rate; microspheres, measurement of regional pulmonary perfusion; EIT, electrical impedance tomography.

Experimental Protocol
The time course of the experiments is presented in Figure 1.
Sixteen female pigs (German landrace, weighing 35–49 kg,
Danish Specific Pathogen Free Certification, www.spf.dk) were
intramuscularly sedated with midazolam (1mg kg−1) and
ketamine (10mg kg−1). Intravenous anesthesia was induced and
maintained with midazolam (bolus of 0.5–1mg kg−1, followed
by 1mg kg−1 h−1) and ketamine (bolus of 3–4mg kg−1,
followed by 15mg kg−1 h−1). Muscle paralysis was achieved with
atracurium (bolus 3–4mg kg−1, followed by 3mg kg−1 h−1). The
intravascular volume was maintained with a crystalloid solution
(E153; Serumwerk Bernburg AG, Bernburg, Germany) at a rate
of 5ml kg h−1. The mean arterial pressure was kept >60 mmHg
by norepinephrine and colloid infusion, as appropriate. Colloids
were used in the case of increasing hemoglobin. Furthermore, the
animals were ventilated in a volume-controlled mode: a fraction
of inspired oxygen (FIO2) of 1, a tidal volume (VT) of 6ml
kg−1, a positive end-expiratory pressure (PEEP) of 5 cm H2O, an
inspiratory: expiratory (I:E) ratio of 1:1, a constant gas flow of 25
L/min, and a respiratory rate (RR) adjusted to arterial pH >7.3.

All skin incisions were preceded by the infiltration of 2–5ml
lidocaine 2%. After the surgical preparation of the right internal
carotid artery, a pulse contour cardiac output (PiCCO) catheter
(20 cm; Pulsion Medical Systems SE, Feldkirchen, Germany)
was inserted to continuously monitor the arterial pressure. A
7.5 Fr. pulmonary artery catheter (Opticath; Abbott, Abbott
Park, IL, United States) was used to measure cardiac output
(CO), and pulmonary artery pressure was advanced through an
8.5 Fr. sheath placed in the right external jugular vein until
typical pulmonary arterial pressure waveforms were observed.
Urine was collected with a bladder catheter inserted through
a median mini-laparotomy. For lung separation, a left-sided

double-lumen tube (39 Fr., Silbroncho Fuji, Tokyo, Japan) was
placed through a tracheotomy, where the bronchial tip was
inserted into the left main bronchus, under fiberoptic control
conditions (AmbuaScope 3 and AmbuaView, Ambu GmbH,
Bad Nauheim, Germany). In another investigation, the results
of which are being published elsewhere, a left-sided video-
assisted thoracoscopy was performed, where three pressure
sensors were attached to the parietal pleura in the left hemi-
thorax, as described previously (Kiss et al., 2019). Thereafter,
the baseline measurements of gas exchange, respiratory signals,
hemodynamics, and the distribution of ventilation by electrical
impedance tomography (EIT) were performed (baseline).

The animals were randomly assigned to normovolemia or
hypovolemia. For the induction of moderate hypovolemia, 25%
of the calculated blood volume, estimated as 70ml kg−1 (Hannon
et al., 1990), was drawn from the central venous catheter. To
mimic the inflammatory response to surgical trauma due to
major thoracic surgery (Takenaka et al., 2006; Sánchez-Pedrosa
et al., 2018), 0.5 µg/kg/h of lipopolysaccharides (LPS) from E.
coli O111:B4 (Sigma-Aldrich, St. Louis, MO, United States) was
continuously infused through the central venous line. In previous
studies, a low-dose LPS infusion was shown to reduce hypoxic
pulmonary vasoconstriction (Reeves and Grover, 1974; Theissen
et al., 1991). An hour after the start of LPS infusion, the two-
lung ventilation supine (TLVsupine) measurements of regional
pulmonary perfusion (microspheres), gas exchange, respiratory
signals, hemodynamics, and the distribution of ventilation were
performed. Thereafter, the animals were randomly submitted
to one of four sequences during OLV according to a Latin
square design, namely, (1) a-b-c-d, (2) b-d-a-c, (3) d-c-b-a,
and (4) c-a-d-b (30min per body position, crossover), with
a = supine, b = left semilateral, c = left lateral, and d =

Frontiers in Physiology | www.frontiersin.org 3 September 2021 | Volume 12 | Article 717269101

http://www.spf.dk
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wittenstein et al. Perfusion During One-Lung Ventilation

prone position. To mimic a thoracic surgery, a right-sided
thoracotomy was performed between the medial-clavicular and
anterior axillary lines in the 4th−5th intercostal space by placing
a rib spreader. For OLV, a volume-controlled mode was used:
VT of 5ml kg−1, FIO2 of 1, PEEP of 5 cmH2O, I:E of 1:1,
and RR of 30–35 min−1 titrated to achieve an arterial pH
of >7.25 and a flow of 25 L min−1. Thirty minutes after
placing the animals in the respective body positions (OLVsupine,
OLVsemilateral, OLVlateral, OLVprone), the measurements
of regional pulmonary perfusion, gas exchange, respiratory
signals, hemodynamics, and the distribution of ventilation were
performed. To reset lung history between interventions, the
animals were placed in the supine position and disconnected
from the ventilator. An alveolar recruitment maneuver was
then performed, with two-lung ventilation resuming thereafter
until the normalization of gas exchange, before the start of
each position.

Measurements
Measurement of Regional Pulmonary Blood Flow
The distribution of regional pulmonary blood flow was marked
with IV-administered fluorescence and color-labeled 15-µm
diameter microspheres (Thermo Fisher Scientific, Waltham,
MA, United States). The colors used were blue, blue-green,
yellow-green, orange, and red. To avoid bias, the colors were
randomly assigned at any given time point. Immediately before
injection, the microspheres were vortexed, sonicated for 90 s,
and drawn into 2-ml syringes. All the injections were performed
for over 60 s to average the blood flow over several cardiac and
respiratory cycles. During the injection,∼1.5× 106 microspheres
were administered.

Postmortem lungs were extracted en bloc and flushed with
50ml kg−1 of a hydroxyethyl starch 130/0.4 solution (Voluven,
Fresenius Kabi, Bad Homburg, Germany) and air-dried by
continuous tracheal airflow for 7 days with a continuous
pressure of 25 cm H2O. The lungs were then coated with a
one-component polyurethane foam (BTI Befestigungstechnik,
Ingelfingen, Germany), suspended vertically in a square box,
and embedded in a rapidly setting urethane foam (polyol and
isocyanate; Elastogran, Lemförde, Germany).

The foam block was then cut into cubes of ∼1.2 cm3. Each
cube was weighed and assigned a three-dimensional coordinate.
The samples were then soaked for 7 days in 3ml of 2-
ethoxyethyl acetate (Aldrich Chemical Co. LLC, Milwaukee, WI,
United States) to retrieve the fluorescent dye. The fluorescence
was read in a luminescence spectrophotometer (LS-50B; Perkin-
Elmer, Beaconsfield, United Kingdom), with the measured
intensity of fluorescence in each probe then being normalized
according to its weight (xi). The relative pulmonary blood flow
Qrel,i of a probe i was also determined according to:

Qrel,i =
xi

1
n

∑

xi

with the denominator holding the mean relative blood flow of
one lung per time point. Themean normalized relative blood flow
was, therefore, 1.

The distributions of pulmonary blood flow along the
craniocaudal, ventrodorsal, and left-right axes under each of
the experimental conditions were assessed by linear regression.
Additionally, a three-dimensional reconstruction of the lung was
performed, considering the spatial coordinates of each lung piece
and the pulmonary blood flow at each of the x (left-right),
y (dorsal-ventral), and z (caudal-cranial) coordinates. Color
mapping was performed to identify the regional distribution of
pulmonary blood flow based on Qrel,i. The color map was then
normalized by the maximumQrel under each of the experimental
conditions, resulting in a color scale ranging fromwhite (0, lowest
perfusion) to red (1, highest perfusion). The relative centers of
perfusion along the left-right axes, the dorsal-ventral, and the
caudal-cranial axis were calculated by.

CoPx =
1

∑

Qrel,i

(

x, y, z
)

1
∑

x=0

x ·
∑

y,z

Qrel.i

(

x, y, z
)

with the three body directions represented by x, y, and z. The
coefficient of variation (ratio of the SD to the mean in percent)
of mean pulmonary perfusion was calculated to determine the
spatial heterogeneity of pulmonary perfusion distribution.

Electrical Impedance Tomography
Electrical impedance tomographymeasurements were conducted
with an operating frequency of 130 kHz and 50 frames s−1. Raw
measured EIT data were then filtered at 50Hz and reconstructed
using PulmoVista R© 500 (Drägerwerk AG & Co. KGaA, Lubeck,
Germany), a commercially available software. Each EIT image
of the resulting reconstructed temporal image series consisted
of 32 × 32 pi. The reconstruction of these images was carried
out as described in detail by the group of authors of this study
(Bluth et al., 2019). The global region of interest was a half-sphere
covering the left hemisphere of the EIT, thus, only containing
the ventilated lung, as described previously (Wittenstein et al.,
2020). The center of ventilation was defined as the median of
tidal impedance changes (surrogate for ventilation) along the
dorsoventral axis and left-right axis of the left lung and expressed
as a percentage, with 0% representing most dorsal and most left
and 100% most ventral and most central lung zones.

Gas Exchange and Hemodynamics
Arterial and mixed venous blood samples were analyzed using
a blood gas analyzer (ABL 80 Flex Basic, Radiometer Medical,
Copenhagen, Denmark). The mean arterial and pulmonary
artery pressures were measured continuously, and cardiac
output was determined with a pulmonary artery catheter
using a conventional thermodilution method. Extravascular
lung water (EVLW, a surrogate for lung injury), intrathoracic
blood volume (ITBV), and global end-diastolic blood volume
(GEDV, a surrogate for cardiac preload), systemic vascular
resistance (SVR, a surrogate for cardiac afterload), and stroke
volume (SV) were determined using the PiCCO catheter. The
values were then normalized to body surface area [pulmonary
vascular resistance index (PVRI), systemic vascular resistance
index (SVRI), global end-diastolic volume index (GEDVI), and
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intrathoracic blood volume index (ITBVI), respectively] and
body weight [extravascular lung water index (EVLWI]), as
reported previously (Kelley et al., 1973). Furthermore, PiCCO
was not used to guide fluid treatment, since the normal values
of pigs lie outside the reference ranges for humans (Längin et al.,
2020).

Respiratory Signals
Airway flow was measured with the internal sensors of the
ventilator. On the other hand, airway pressure was measured at
the y-piece with a custom-made measurement system composed
of a pressure transducer (163PC01D48-PCB; FirstSensors AG,
Berlin, Germany) and corresponding hardware and software for
amplification and recording (custom-built software written in
LabVIEW, National Instruments, Austin, TX, United States).
Furthermore, respiratory system elastance (ERS) and resistance
(RRS) were determined by the multiple linear regression of the
linear equation of motion composed of the RRS and ERS two-
compartmental model of the respiratory system.

Statistical Analyses
Sample size calculation was based on the perfusion
measurements of relative perfusion distribution by positron-
emission tomography using 68Ga-labeled microspheres from a
previous study of the group of authors on pigs under two-lung
ventilation conditions and different levels of PEEP (Bluth et al.,
2019). In this study, we expected that the relative perfusion of the
ventilated lung during OLV would be higher than during TLV.
Assuming an effect size of 2, we estimated that eight animals
per group would yield a power of 80% to detect the difference
in the distributions of pulmonary perfusion between TLV and
OLV in the supine, semilateral, lateral, and prone positions, with
α = 0.01 corrected for multiple comparisons. The data were
presented as mean and SD if not stated otherwise. The statistical
analysis was conducted with SPSS (Version 27, IBM Corp.,
Armonk, NY, United States). Significance was accepted at P <

0.05. The differences between the two groups, respective body
positions, and the sequences of interventions were compared
using a linear mixed-effects model with repeated measures,
using composite ventilation-position (levels: TLVsupine,
OLVsupine, OLVsemilateral, OLVlateral, and OLVprone) as the
within-subject factor and with group and sequence as between
subject-factors. The significance of the within-subject factors
was corrected for sphericity according to Greenhouse–Geisser.
Pairwise post-hoc multiple comparisons were also performed
according to least significant difference (LSD) when appropriate.

RESULTS

Characteristics of Animal and

Experimental Protocol
Body weight, total time of anesthesia, total time on mechanical
ventilation, the cumulative doses of crystalloids and colloids,
and total urine output did not differ significantly between
normovolemia and hypovolemia, while the cumulative
norepinephrine dose was higher in hypovolemia than in
normovolemia (Table 1). Hemoglobin was not different between

TABLE 1 | Characteristics of the animal and experimental protocol.

Variable Normovolemia Hypovolemia P =

Body weight [kg] 43.5 ± 1.4 43.1 ± 4.6 0.803

Total anesthesia time [min] 713 ± 52 738 ± 81 0.493

LPS total dose [µg] 178.6 ± 13.6 187.2 ± 25.8 0.422

Aspirated blood volume [ml] 0 ± 0 755 ± 80 ≤0.001

Crystalloid infusion [ml kg−1] 47 ± 6 46 ± 10 0.847

Colloids [mlkg−1 ] 7 ± 6 8 ± 8 0.843

Norepinephrine [µg kg−1] 3 ± 5 52 ± 53 0.036

Cumulative urine output [mL] 945 ± 489 809 ± 303 0.514

Mean ± SD; significance was accepted at P < 0.05. Differences between the two groups

were compared by Student’s t-test.

the groups (P = 0.593). In the hypovolemia group, 755 ± 80ml
of blood was drawn (Table 1), resulting in a significant decrease
in ITBVI (baseline: 765 ± 79ml m−2 vs. TLVsupine: 619 ±

122ml m−2; P = 0.006) and GEDVI (baseline: 612 ± 63ml
m−2 vs. TLVsupine: 496 ± 98ml m−2; P = 0.006) at TLVsupine
vs. baseline. In all the animals, the LPS infusion resulted in a
significant increase in PVRI at TLVsupine vs. baseline (baseline:
150 ± 53 dyn s cm−5 m−2; TLVsupine: 365 ± 243 dyn s cm−5

m−2; P = 0.006) and SVRI (baseline: 1,153 ± 237 dyn s cm−5

m−2; TLVsupine: 1,602± 579 dyn s cm−5 m−2; P = 0.014).

Regional Pulmonary Blood Flow (Primary

Endpoint)
Compared with TLVsupine, the OLV resulted in the shift of
perfusion toward the ventilated left lung, irrespective of position
(Figures 2, 3, Table 2). During OLV, the relative perfusion of the
ventilated lung was higher in the lateral as compared with the
supine position, while the relative perfusion of the non-ventilated
lung was lower in the lateral position as compared with the
supine and prone positions, and in the semilateral compared with
the prone position. The relative perfusions of the ventilated and
non-ventilated lungs were not different between normovolemia
and hypovolemia.

In the ventilated left lung, the center of relative perfusion
along the left-right axis shifted toward the hilum during
OLVsemilateral, OLVlateral, and OLVprone as compared with
OLVsupine. Along the dorsal-ventral axis, the perfusion shifted
toward the dorsal during OLVsemilateral, OLVlateral, and
OLVprone as compared with OLVsupine. Along the caudal-
cranial axis, the perfusion shifted toward the cranial in the
semilateral position as compared with TLVsupine. The center of
perfusion did not differ between normovolemia and hypovolemia
(Table 2).

The spatial heterogeneity of relative perfusion in the ventilated
left lung was highest during TLVsupine and lowest during OLV
in the prone position, while there was no difference between
normovolemia and hypovolemia (Table 2).

Regional Ventilation (EIT)
In the ventilated left lung, the center of ventilation along the
left-right axis shifted toward the lung hilum during OLV in

Frontiers in Physiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 717269103

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wittenstein et al. Perfusion During One-Lung Ventilation

FIGURE 2 | Representative three-dimensional perfusion maps for one animal from each group. Lungs are shown from the dorsal with the left lung on the left side and

right lung on the right side. Axes are divided in cm. Lighter colors represent lower relative pulmonary perfusions, while darker colors represent higher relative

pulmonary perfusions.

FIGURE 3 | Relative perfusion of the left and right lungs. Mean and single values. Significance was accepted at P < 0.05. Differences between the two groups,

respective body positions, and the sequences of interventions were compared using a linear mixed-effects model with repeated measures, with TLVsupine,

OLVsupine, OLVsemilateral, OLVlateral, and OLVprone as within-subject factors and with group and sequence as fixed between subject-factors. The significance of

the within-subject factors was corrected for sphericity according to Greenhouse–Geisser. Pairwise post-hoc multiple comparisons were performed according to LSD

when appropriate. #P < 0.05 TLVsupine vs. all the others, *P < 0.05. The relative perfusions of the ventilated and the non-ventilated lungs were not different between

normo- and hypovolemia (P = 0.457 and P = 0.418, respectively). Mixed effects position × group ventilated lung: P = 0.852 and mixed effects position × group

non-ventilated lung: P = 0.891.

all positions as compared with TLVsupine. Furthermore, it also
shifted toward the lung hilum during OLV in the prone as
compared with the lateral position (Table 3). In addition, the
center of ventilation along the dorsal-ventral axis of the left lung
shifted toward the dorsal during OLV in the prone as compared
with the supine position. The center of ventilation along the
left-right and dorsoventral axes did not differ among the
groups (Table 3).

Gas Exchange
The variables of gas exchange are summarized in Table 4, where
PaO2/FIO2 differed significantly between TLVsupine and OLV in
all the positions. It was higher in the lateral as compared with
the other positions during OLV, while there was no difference
between normovolemia and hypovolemia. Additionally, PaCO2

in the arterial blood gas analysis differed significantly between
TLVsupine and OLV in all the positions, while it was not
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TABLE 2 | Perfusion of the left lung.

Variable Group TLVsupine OLVsupine OLVsemilateral OLVlateral OLVprone Sequence P = Group P = Position P = ME P =

Center of perfusion left-right

axis [% from left]

Normo 30.7 ± 5.0 p 28.8 ± 3.6 se, l, p 31.6 ± 2.6 p 31.1 ± 4.2 p 32.8 ± 2.6 0.614 0.695 ≤0.001 0.368

Hypo 28.5 ± 4.9 29.0 ± 3.3 29.9 ± 3.5 30.8 ± 3.1 33.4 ± 2.7

Center of perfusion

dorsal-ventral axis [% from

dorsal]

Normo

Hypo

27.5 ± 3.6

27.5 ± 4.4

28.9 ± 3.0

28.3 ± 3.9

sl, l, p 27.1 ± 3.1

27.7 ± 4.1

27.3 ± 2.9

27.5 ± 3.3

27.5 ± 3.0

27.7 ± 3.8

0.673 0.948 0.025 0.627

Center of perfusion

caudal-cranial axis [% from

caudal]

Normo

Hypo

45.4 ± 6.0

42.9 ± 3.7

sl 46.0 ± 5.2

44.2 ± 4.1

46.8 ± 4.6

46.1 ± 4.5

46.1 ± 4.7

45.0 ± 4.0

45.2 ± 3.1

45.3 ± 3.5

0127 0.462 0.048 0.444

CV of relative perfusion % Normo 157.9 ± 19.1 sl, l, p 154.4 ± 11.2 151.4 ± 15.9 147.2 ± 10.3 139.4 ± 10.4 s, se 0.026 0.075 ≤0.001 0.104

Hypo 180.0 ± 24.3 153.4 ± 14.7 152.9 ± 14.9 145.4 ± 8.4 143.8 ± 8.0

Mean ± SD; Normo, normovolemia group; Hypo, hypovolemia group; TLV, two-lung ventilation; OLV, one-lung ventilation; CV, coefficient of variation; ME, mixed effects position × group. Significance was accepted at P < 0.05. The

differences between the two groups, respective body positions, and the sequences of interventions were compared using a linear mixed-effects model with repeated measures, with TLVsupine, OLVsupine, OLVsemilateral, OLVlateral, and

OLVprone as within-subject factors and with group and sequence as fixed between subject-factors. The significance of the within-subject factors was corrected for sphericity according to Greenhouse–Geisser. Pairwise post-hoc multiple

comparisons were performed according to least significant difference (LSD) when appropriate. s P < 0.05 vs. OLVsupine, se P < 0.05 vs. OLVsemilateral, l P < 0.05 vs. OLVlateral, and p P < 0.05 vs. OLVprone.

TABLE 3 | Electrical impedance tomography of the left lung.

Variable Group TLVsupine OLVsupine OLVsemilateral OLVlateral OLVprone Sequence P = Group P = Position P = ME P =

CoVleftright [% from left) Normo 51.1 ± 3.9 s, se, l, p 50 ± 3.6 56.5 ± 4.3 55 ± 3.7 p 54.8 ± 3.4 0.527 0.456 ≤0.001 0.743

Hypo 51.6 ± 3.2 51.8 ± 3.4 56.5 ± 1.8 56.3 ± 2.3 54.3 ± 3.6

CoVdorso-ventral [% from dorsal] Normo 49.6 ± 1.9 49.2 ± 1.6 p 49.8 ± 1.5 49.6 ± 1.4 48.9 ± 1.4 0.822 0.636 0.040 0.958

Hypo 49.1 ± 2.2 49.3 ± 1.6 50 ± 1.2 50 ± 1 49.4 ± 1.8

Mean ± SD; Normo, normovolemia group; Hypo, hypovolemia group; TLV, two-lung ventilation; OLV, one-lung ventilation; CoV, center of ventilation along the left-right and dorso-ventral axes; ME, mixed effects position × group.

Significance was accepted at P < 0.05. Differences between the two groups, respective body positions, and the sequences of interventions were compared using a linear mixed-effects model with repeated measures, with TLVsupine,

OLVsupine, OLVsemilateral, OLVlateral, and OLVprone as within-subject factors and with group and sequence as fixed between subject factors. The significance of the within-subject factors was corrected for sphericity according to

Greenhouse–Geisser. Pairwise post-hoc multiple comparisons were performed according to LSD when appropriate. s P < 0.05 vs. OLVsupine, se P < 0.05 vs. OLVsemilateral, l P < 0.05 vs. OLVlateral, and p P < 0.05 vs. OLVprone.
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different for the different positions during OLV, and there was no
group difference. Arterial pH also differed significantly between
TLVsupine and OLV in all the positions, while it was similar in
the different positions during OLV. Arterial pH was lower in
hypovolemic as compared with normovolemic animals. Mixed
venous oxygen saturation was significantly different between
TLVsupine and OLVsupine and between OLVsemilateral and
OLVprone. Furthermore, the mixed venous oxygen saturation
was higher during OLVlateral compared with OLVsupine and
OLVprone. There was no difference between the two groups.

Hemodynamic and Respiratory Variables
Hemodynamic and respiratory variables are summarized in the
(Supplementary Material Tables 1, 2).

DISCUSSION

In a model of thoracic surgery and OLV with normovolemia and
moderate hypovolemia in pigs, we found that (1) the relative
pulmonary blood flow of the ventilated lung was highest in
the lateral position and lowest in the supine position; (2) the
relative pulmonary blood flow of the non-ventilated lung was
lowest in the lateral position and highest in the supine and
prone positions; (3) the spatial heterogeneity of pulmonary blood
flow of the ventilated lung was lowest in the prone position; (4)
PaO2/FIO2 during OLV was highest in the lateral position; and
(5) hypovolemia did not influence the distribution of perfusion,
irrespective of body position.

To the knowledge of the authors, this is the first in vivo
study that systematically investigated the effects of body position
and intravascular volume status on the distribution of relative
pulmonary perfusion duringOLV in a clinically relevantmodel of
thoracic surgery. Previous physiological studies have investigated
the effects of OLV through either a closed chest or minor
surgeries (Bardoczky et al., 2000; Szegedi et al., 2010). In contrast,
major surgeries trigger the inflammatory cascade (Hannon et al.,
1990; Kiss et al., 2019), which can blunt HPV (Himmat et al.,
2018) and interfere with the distribution of pulmonary perfusion.
We also used LPSs to mimic the inflammatory response to
major thoracic surgery, which was previously shown to reliably
reduce hypoxic pulmonary vasoconstriction (Reeves and Grover,
1974; Theissen et al., 1991) while not altering hemodynamics
significantly (Traber et al., 1989). Another strength of this
study is that normovolemia and moderate hypovolemia (Silva
et al., 2013), both of which may occur during thoracic surgery
(Nakamura et al., 2015) and can influence HPV (Deem et al.,
1995), were addressed. We chose the left semilateral and lateral
decubitus positions because of the fact that the effects of
mediastinal compression are more pronounced in the left than
in the right semilateral and lateral positions (Chang et al., 2002).

Effects of Body Position on Regional

Pulmonary Perfusion and Ventilation
The finding that the relative perfusion of the ventilated lung
was highest in the lateral decubitus position during OLV is
in line with clinical data (Bardoczky et al., 2000; Szegedi
et al., 2010). In the lateral decubitus position, gravitational T
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forces, in addition to HPV, reduce the blood flow of the
non-ventilated lung. Furthermore, HPV also allows ventilation-
perfusion matching by reducing perfusion to poorly oxygenated
lung tissue through smooth muscle contractions in primarily
low-resistance pulmonary arteries (Weir et al., 2005). In addition
to HPV, hypercapnic pulmonary vasoconstriction (HCPV)
reduces perfusion to hypo-ventilated and, therefore, hypercapnic
lung regions (Dorrington et al., 2010). In the supine and
prone positions, HPV, HCPV, and regional mechanical forces
determine regional pulmonary perfusion, while gravity does
not influence the shift of perfusion toward the ventilated lung
(Szegedi et al., 2010). In addition to the geometry of the vascular
tree, which branches asymmetrically (Glenny and Robertson,
2011) regional mechanical forces in the ventilated lung determine
the distribution of pulmonary blood flow. Regional mechanical
forces are defined by tissue deformation, thorax shape (Tawhai
et al., 2009), andmechanical ventilation (Alfery et al., 1981). High
airway pressures can divert the blood flow from the ventilated to
the non-ventilated lung by compressing the capillaries. In fact,
peak, mean, and plateau airway pressures were higher during
OLVsupine as compared with OLVlateral, possibly contributing
to lower relative perfusion of the ventilated lung in this position.

HPV, HCPV, gravity, and regional mechanical forces as well as
lung volume do not only influence the distribution of blood flow
toward the ventilated and non-ventilated lung but also determine
its regional distribution within the ventilated lung. In fact, during
OLV, the lateral position center of perfusion along the left-right
axis shifted toward the lung hilum as compared with the supine
position, while the center of ventilation along the left-right axis
shifted toward peripheral lung areas as compared with the supine
position, possibly resulting in improved ventilation-perfusion
matching. This might represent another mechanism of better gas
exchange for this body position during OLV.

During OLV in the semilateral position, HPV is augmented
by gravity. In line with our results, in a small clinical trial arterial
saturation as a surrogate for regional pulmonary perfusion was
not different between semilateral and lateral position (Watanabe
et al., 2000). Thirty-three adult patients undergoing right
thoracotomy with left OLV were divided into three groups:
supine position (n= 11), left semilateral decubitus position (n=

9), and left lateral decubitus position (n= 13). The final PaO2 and
SaO2 at the end of the OLV were lowest in the supine position,
while there was no difference between the semilateral and lateral
decubitus positions (Watanabe et al., 2000).

Gas Exchange
The fact that PaO2/FIO2 was higher during OLV in lateral as
compared with the supine, semilateral, and prone positions can
be explained by the differences in regional pulmonary perfusion,
namely, the lower perfusion of the non-ventilated lung and
the better ventilation-perfusion matching of the ventilated lung.
The gas exchange itself, especially hypercapnia, may influence
intrapulmonary shunt andHPV (Benumof et al., 1976). However,
PaCO2 did not differ significantly during OLV in the four
positions and the groups. Nevertheless, arterial pH was lower
in the hypovolemia group. Furthermore, lower arterial pH has
the potential to increase HPV (Brimioulle et al., 1990). In this

study, the lower arterial pH in the hypovolemia group might
have counteracted the deleterious effects of hypovolemia onHPV,
resulting in similar regional perfusions for both groups. However,
the differences in the arterial pH between the groups were small
and most likely clinically irrelevant.

Intravascular Volume Status
The finding rejects the hypothesis that intravascular hypovolemia
influences regional pulmonary perfusion, which is in contrast
with previous studies. In isolated rat lungs perfused with plasma,
HPV was weakened, when compared with lungs perfused with
blood (McMurtry et al., 1977; Deem et al., 1998). Similar results
were found in isolated rat, cat, and rabbit lungs (Hakim and
Malik, 1988). In this experiment, we performed low-dose LPS
infusions in both groups, which altered pulmonary vascular
resistance (Theissen et al., 1991), possibly masking the further
effects of acute intravascular hypovolemia on the distribution
of pulmonary perfusion. As stated, during OLV in the supine
and prone positions, the distribution of regional perfusion to the
ventilated and non-ventilated lungs is mainly determined with
HPV, HCPV, and lung volume, with gravity playing a minor role.
Therefore, the most pronounced effects of acute intravascular
hypovolemia would be expected in these positions. However,
even in OLVsupine and OLVprone, we found no differences
between the groups, supporting the claim that an acute moderate
hemorrhage during thoracic surgery only has a minor effect on
the distribution of pulmonary perfusion.

Possible Clinical Implications
The results suggest that the lateral decubitus position may
serve as a means to improve the distribution of perfusion
and oxygenation during OLV. In fact, during OLV in the
supine, semilateral, and prone positions, but not the lateral
decubitus position, the central venous oxygen saturation was
lower than 70%, indicating tissue hypoxia (Sevuk et al., 2016) in
the normovolemia group. Interestingly, moderate hypovolemia
did not influence the distribution of perfusion and shunting,
challenging the concept that the intravascular volume expansion
in patients with volume depletion might be useful for the reversal
of hypoxemia during OLV.

Limitations
This study has several limitations. First, the thoracic surgery
model did not fully represent the clinical scenario, especially
because of the lack of the surgical manipulation of the
lungs and its potential effects on atelectasis in the dependent
lung and pulmonary vascular resistance. Furthermore, the
absolute values of ITBVI, GEDVI, and EVLWI in this study
need to be interpreted with caution, since there were no
reference tables and they vary between species (Längin et al.,
2020). Additionally, HPV is more pronounced in pigs than
in humans and other species (Tucker and Rhodes, 2001).
Thus, we could not extrapolate the findings directly to human
patients. Second, we addressed only the short-term effects of
the different body positions during OLV, although OLV is
usually limited to short periods. Third, we did not measure
lactate as a surrogate of organ hypoxia. However, we determined
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mixed venous oxygen saturation, which is an important
marker for the oxygen supply of organs (Janotka and Ostadal,
2021).

CONCLUSIONS

During OLV in endotoxemic pigs, the relative perfusion of the
ventilated lung and oxygenation were higher in the lateral than
the supine position and not impaired by hypovolemia.
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Knowledge of gas volume, tissue mass and recruitability measured by the quantitative
CT scan analysis (CT-qa) is important when setting the mechanical ventilation in acute
respiratory distress syndrome (ARDS). Yet, the manual segmentation of the lung requires
a considerable workload. Our goal was to provide an automatic, clinically applicable and
reliable lung segmentation procedure. Therefore, a convolutional neural network (CNN)
was used to train an artificial intelligence (AI) algorithm on 15 healthy subjects (1,302
slices), 100 ARDS patients (12,279 slices), and 20 COVID-19 (1,817 slices). Eighty
percent of this populations was used for training, 20% for testing. The AI and manual
segmentation at slice level were compared by intersection over union (IoU). The CT-qa
variables were compared by regression and Bland Altman analysis. The AI-segmentation
of a single patient required 5–10 s vs. 1–2 h of the manual. At slice level, the algorithm
showed on the test set an IOU across all CT slices of 91.3 ± 10.0, 85.2 ± 13.9, and
84.7 ± 14.0%, and across all lung volumes of 96.3 ± 0.6, 88.9 ± 3.1, and 86.3 ± 6.5%
for normal lungs, ARDS and COVID-19, respectively, with a U-shape in the performance:
better in the lung middle region, worse at the apex and base. At patient level, on the
test set, the total lung volume measured by AI and manual segmentation had a R2 of
0.99 and a bias −9.8 ml [CI: +56.0/−75.7 ml]. The recruitability measured with manual
and AI-segmentation, as change in non-aerated tissue fraction had a bias of +0.3% [CI:
+6.2/−5.5%] and −0.5% [CI: +2.3/−3.3%] expressed as change in well-aerated tissue
fraction. The AI-powered lung segmentation provided fast and clinically reliable results.
It is able to segment the lungs of seriously ill ARDS patients fully automatically.

Keywords: ARDS, fully automatic lung segmentation, deep learning, U-Net, LabVIEW, DeepLTK, Maluna,
mechanical ventilation

INTRODUCTION

The quantitative analysis of lung tomography [quantitative CT scan analysis (CT-qa)]
images has been used extensively for more than 20 years and has significantly improved
our knowledge of the pathophysiology of the acute respiratory distress syndrome (ARDS;
ARDS Definition Task Force et al., 2012). Indeed, with CT-qa we have clarified how densities are
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distributed in ARDS, advancing the concept of the “baby lung”
(Gattinoni et al., 1987; Bone, 1993; Gattinoni and Pesenti, 2005),
showing how densities redistribute in prone position (Gattinoni
et al., 1991; Pelosi et al., 1998; Cornejo et al., 2013), and
explaining the mechanisms by which positive end-expiratory
pressure (PEEP) acts (Pelosi et al., 1994). Determining the change
in the non-aerated tissue fraction at two end-expiratory pressure
levels, i.e., 5 and 45 cmH2O, is considered the gold standard
for assessing recruitment in ARDS (Gattinoni et al., 2006).
We were recently able to show that CT-qa can also provide
valuable information for the respiratory management of COVID-
19 (Chiumello et al., 2020). A precise segmentation [the inclusion
of a structure into a region of interest (ROI) for the subsequent
analysis] of the lung is mandatory for a reliable CT-qa. The actual
segmentation procedure in several hospitals required constisten
manual intervention. The time requirement and need of expert
personal has serious hindered a broder adoption of CT-qa in
clinical practice.

The application of machine learning techniques to image
processing is currently of rapidly growing interest in the medical
community (Seo et al., 2020a). Artificial neural networks (ANN)
are a subfield of machine learning in which the underlying
mathematical algorithm simulates the organization of the brain.
By doing so, increasingly complicated tasks, such as voice and
face recognition, recommender systems etc., which, until recently
were considered impossible for a machine, have become part
of our everyday life. The term deep learning (DL) goes back to
around 2006 (Hinton et al., 2006). LeCun et al. (2015) explained
DL in detail in 2015. Goodfellow et al. (2018) published an
excellent textbook on DL in 2018. DL uses ANNs with many
hidden layers. The larger the amount of data, the better DL
works. Certain neural Network architectures such as the so-called
convolutional neural networks (CNNs) are used specifically for
image recognition. DL with CNNs are very common in medicine
today (Chartrand et al., 2017; Litjens et al., 2017; Suzuki, 2017;
Yasaka et al., 2018; Currie et al., 2019; Chassagnon et al., 2020;
Al-Fatlawi et al., 2021; Guimarães et al., 2021; Jünger et al., 2021;
Schwartz et al., 2021; Sułot et al., 2021; Wang C. et al., 2021;
Yi et al., 2021).

There are two interesting CNN architectures for image
segmentation. The “SegNet” developed by Badrinarayanan
et al. (2017) and the U-Net developed by Ronneberger et al.
(2015). SegNet was developed as an efficient architecture for
semantic pixel-wise segmentation. It is primarily developed
to recognize and classify in street scenes, streets, sidewalks,
buildings, cars and pedestrians. SegNet was already used for
Medical Image Segmentation (Sravani, 2019; Almotairi et al.,
2020; Hu et al., 2020; Lei et al., 2021). The U-Net, was
mainly developed for segmenting neuronal structures in electron
microscopic stacks and light microscopic cell and tissue sections
and works very effectively with comparatively little training
data. In recent years, U-Net has been used successfully in
medicine to segment certain structures and organs in chest
x-rays and CT images (Zhou et al., 2018; Alom et al., 2019;
Dong et al., 2019; Jeong et al., 2019; Hojin et al., 2020; Seo
et al., 2020b; Umapathy et al., 2020; Causey et al., 2021;
Ghosh et al., 2021; Wang Z. et al., 2021; Yan and Zhang, 2021).

Some working groups have also segmented lungs in the CT
images (Skourt et al., 2018; Park et al., 2020; Zhou et al., 2020;
Chen et al., 2021; Jalali et al., 2021; Kumar Singh et al., 2021;
Qiblawey et al., 2021). In a current publication, in the course
of the COVID-19 pandemic, lung CT image segmentation with
SegNet and U-Net was compared with each other, whereby the
lungs segmented better with U-Net (Saood and Hatem, 2021).
Gerard et al. (2020, 2021) developed a multi-resolution 3D-
SegNet-CNN for the segmentation of inflamed, fibrotic and also
ARDS lungs from the CT. This very interesting model consists of
a high-res and a low-res Network and showed very good results.
Seg3DNet is a fully convolutional CNN, but it uses less memory
than SegNet and U-Net and can therefore process 3D images.
There are now several modifications of the U-Net, such as U-Net
++ (Zhou et al., 2018), Res-U-Net (Umapathy et al., 2020),
Recurrent Res-U-Net (Alom et al., 2019), 3D U-Net (Park et al.,
2020), and more. Hofmanninger et al. (2020) trained a U-Net
with 231 clinical cases (231 volumes with 108,248 slices). This
data set contained different pathologies, reconstruction kernels,
slice thicknesses, etc. This 2D U-Net231 showed surprisingly
good results in the lung series tested. Hofmanninger et al. were
able to show that automatic lung segmentation in routine clinical
imaging is primarily a problem of data diversity. This was a very
interesting aspect for us because we are working with clinical
data. Due to the complexity of Networks such as 3DSegNet or the
U-Net modifications, we decided to implement the 2D-U-Net.

The successful application of DL to the segmentation process
of CT lung images in ARDS would greatly increase the use
of CT-qa. It would become available to clinical practice for
monitoring relevant variables, such as the size of the lung, the
severity of lung injury, hyperinflation, recruitability, differentiate
atelectatic and consolidated tissue, and assess parenchymal
homogeneity. We developed a DL algorithm, based on the
graphical programming language LabVIEW to automatically and
efficiently analyze and segment acutely injured lungs over the full
spectrum of ARDS severity.

MATERIALS AND EQUIPMENT

Dataset Descriptions
The CT scan dataset used in this study (n patients = 100, n
slices = 12,279) was extracted from an ARDS dataset in which we
included the patients enrolled into different trials or physiological
studies from 2003 to 2018 the Policlinico Hospital in Milan. The
CTs of these ARDS patients were taken during an end inspiratory
pause at 45 cm of water (recruitment) and at 5 and 15 cm of water
during end expiratory pressure. The CT scan of these patients
were performed within 4.1 ± 2.6 days after admission into the
hospital. To this ARDS group, we added acquired CT scans from
20 COVID-19 patients (n slices = 1,817) from the San Paolo
hospital, Milan and CT scans from 15 patients with normal lungs
(n slices = 1,302) from the Medical University of Göttingen.
From the included patients, we obtained 15,398 CT slices which
were all manually segmented. We did not exclude any lung
slice. Computed Tomography scans from eighty percent of the
patients, randomly selected (n patients = 108, n slices = 11,932)
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FIGURE 1 | Flowchart of the inclusion of patients and related CT scans. We collected data from different centers, from healthy and acute respiratory distress
syndrome (ARDS) lungs. As shown, the model was also trained and tested with recently acquired COVID-19 lungs.

were used for training of the algorithm and the remaining 20%
(n patients = 27, n slices = 3,466) for the testing dataset. The
characteristics of the dataset used in this study are summarized
in Figure 1 and the characteristics of the patient population
are presented in Table 1. The technical characteristics of the
CT used to acquire the images are reported in Table 2. The
ethics committee was notified and permission to use the data was
granted (Göttingen Application Number 14/12/12).

Hardware and Software Used
We used a DELL Precision 5820 Tower with 32 GB RAM,
a 3.70 GHz Intel (R) Xeon (R) W-2135 CPU and Windows
10 64-bit operating system. An Nvidia Quadro P 5000 with
16 GB GDDR5 RAM and 2560 CUDA cores was used as the
graphics card. We used the same hardware for segmentation,

TABLE 1 | Summary of the datasets used to train and test the convolutional
neural network.

Train dataset Test dataset Sum

Patients
(n◦)

Slices
(n◦)

Patients
(n◦)

Slices
(n◦)

Patients
(n◦)

Slices
(n◦)

Normal lung 8 716 7 586 15 1,302

ARDS 89 10,222 11 2,057 100 12,279

COVID-19 11 994 9 823 20 1,817

Sum 108 11,932 27 3,466 135 15,398

quantitative analysis, and training. The U-Net was programmed
with LabVIEW, NI-Vision (NI, Austin, TX, United States)
and the Add-On Toolkit DeepLTK (Ngene, Yerevan, Armenia).
There are many frameworks for DL (Caffe, Keras, TensorFlow,
Theano, and Torch) on the market, but they mainly support
the Python and C/C++ programming language. The DL toolkit,
developed by Ngene, is a high abstraction level API providing the
possibility to build, configure, train, evaluate and deploy deep
neural Networks in the LabVIEW programming environment

TABLE 2 | Technical characteristics of the CT scanner used.

Hospital San Paolo
Hospital Milan

Policlinico
Hospital Milan

University Hospital
Göttingen

CT Scanner GE Light Speed
Qx/i

Siemens
Somaton

Definiton Flash

GE
Lightspeed

VCT

Siemens
Sensation 16

KVP 120 kV, 140 kV 120 kV, 140 kV 140 kV 120 kV, 140 kV

Slice
Thickness

2.0, 2.5, and
5.0 mm

5.0 mm 5.0 mm 5.0 mm

Pixel
Spacing

0.6–0.8 mm 0.6–0.7 mm 0.6–0.7
mm

0.6–0.7 mm

Convolution
Kernel

STANDARD B30f, B31f,
B40f

LUNG B41f, B75f

Filter Type BODY FILTER 0, FLAT,
WEDGE_3

BODY
FILTER

0

Patient
Position

FFS, HFS FFS FFS FFS, HFS
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(Ngene, 2021). The GPU acceleration functionality of the toolkit
is based on Nvidia’s CUDA and CUDNN toolkit, by calling
corresponding shared libraries. CUDA is a parallel computing
platform and programming model using a GPU for general
purpose computing, and CUDNN is a GPU-accelerated library
of primitives for deep neural Networks.

METHODS

Image Preprocessing
Anonymized CT scans of the lungs obtained in the Policlinico
Hospital Milan, San Paolo Hospital Milan and the University

Hospital Göttingen were stored in DICOM (Digital Imaging and
COmmunication in Medicine) format (∗.dcm) on DVD data
carriers. In addition, a corresponding file with the coordinates
of the manually drawn ROI was saved for each DICOM file
(∗.xroi). These ∗.xroi files were created as follows. All reference
segmentations (ground truth) were carried out manually and/or
semi-automatically by experienced intensive care physicians
using our own software (Maluna 3.14, Maluna 2020). The
coordinates of these lung masks were then saved for each CT
in a so-called ∗.xroi file (same file name as the Dicom image
file name). They are loaded automatically when the DICOM
image is loaded and placed as an ROI over the original image.
Lung-specific calculations can be carried out within this ROI.

FIGURE 2 | Image preprocessing steps to create the input data for the artificial neural network. (A) Original 16-bit gray value Digital Imaging and COmmunication in
Medicine (DICOM) image. (B) 16-bit HU image. (C) 8-bit image. (D) Binary thorax mask. (E) Masked image. (F) Normalized image. (G) Manually drawn ROI. (H)
Binary mask created from the region of interest (ROI). (I) Normalized lung mask (ground truth). (K) Rotated prone image. (L) Rotated prone mask.
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Before the ANN could be trained with the lung CTs, the original
DICOM images were preprocessed (Figure 2). In a first step, the
gray values were converted into Hounsfield units (HUs) from the
original 16-bit DICOM image (A,G) using the DICOM attributes
“Rescale Intercept” (×0028,×1,052) and “Rescale Slope” (×0028,
×1,053). The resulting image was then scaled to the range−1,024
HU to +100 HU and then converted into an 8-bit image (B,H).
An 8-bit image is one with 256 levels of gray. A binary thorax
mask was created (C, I) using a threshold and particle filter
(Klapsing et al., 2017). Image B (H) was then masked in order
to remove superfluous information from the image (D, J). In the
final step, the pixels were normalized to the range between −1
and +1. This was done by subtracting 128 from each pixel and
then dividing the result by 128.

To create the lung mask (known as “ground truth”), the ROI
coordinates loaded from the ∗.xroi file drawn as an ROI in
image E (K) are converted into a binary mask (F, L). Then, as
with the lung image, the mask is normalized to the range −1
to +1 (I). For the CT images that were not obtained with the
patient in the supine position, the images and masks were rotated
accordingly (H, I M). To check the position of the patient, we
used the DICOM attribute “patient position” (×0018, ×5,100).
A total of 11,932 images and their manually generated ROI
coordinates were preprocessed in this way and then loaded into
the ANN. The image preprocessing was carried out with our own
software Maluna 2020.

The ANN
Structure of the ANN
The network we use is based on the U-Net architecture.
The U-Net was programmed with the graphical programming
language LabVIEW, with which we had many years of experience
in the development of software for image analysis. The unique
concept of U-Net is that it is able to generate a new, altered image

as the output from an input image, after appropriate processing.
This is very useful for generating segmentation images. The
U-Net is a so-called fully convolutional network. Our U-Net
programmed with LabVIEW is shown in Figure 3.

The architecture has a symmetric “U” shape and consists
of two major parts: a contraction path (left side) and an
expansion path (right side). The path follows the typical
architecture of a convolution neural network. It consists of the
repeated application of two convolution layers, each layer with
batch normalization, followed by an activation function. In all
convolution layers we use a filter kernel size of 3 × 3 pixels.
For each convolution we used the so called “SAME” padding
type, which means there is automatically enough padding that the
output image of the convolution layer has the same dimensions as
the input image.

In the original U-Net by Ronneberger, the image is filtered
twice with 64 convolution filters in the first level of the
contraction path. Due to insufficient graphics memory, we had
to modify the original U-Net a bit. In the first level of the
contraction path, the preprocessed lung CT image is therefore
filtered twice with only 32 different convolution kernels. We used
a filter kernel size of 3 × 3 pixels. A copy of this batch of 32
filtered images is transferred to the right part of the network.
In the original U-Net, the next step is a max pooling layer for
down sampling. We used a 3 × 3 convolution layer with stride
2, which halves the size of the input image (from 512 × 512
to 256 × 256 pixels) and doubled in the number of filtered
images (from 32 to 64 images or channels). This principle, i.e.,
twice convolution filtering, halving the image size, and doubling
the number of channels, is followed until we finally get a stack
of 1,024 channels with a size of 16 × 16 pixels (this size is
approximately in the range of an acinus). Since these small images
no longer have any resemblance to the original image, but show
certain extracted properties of the image, i.e., corners, edges,
structures, they are also referred to as feature maps. These feature

FIGURE 3 | Our used U-Net architecture. Each green or blue box corresponds to a multi-channel feature map. The number of channels is shown above the box.
The specifications 512 × 512 to 16 × 16 (in the lowest resolution) show the x, y dimensions in pixels of the input and output images (or feature maps).
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maps are processed further in the expansion path (right part) of
the U-Net.

Each step on the expansion path consists of upsampling the
feature map, followed by a convolution layer (“up-convolution”)
which halves the number of feature channels and doubles the size
of the input image. Then, a concatenation is carried out with
the corresponding feature map from the contraction path (left
part of the U-Net) followed by two convolution layers with batch
normalization and an activation function. In the lowest path with
the lowest resolution (16 × 16 pixels, 1,024 feature channels)
a drop-out layer (with probability set to 0.4) was programmed
between two convolutional layers.

Preprocessed lung CT-images are input to the contracting
path, and lung mask predictions are output from a final layer
following the expansive path. This final output layer is a
1 × 1 convolutional layer with no activation and a single
filter. Batch normalization and dropout are proven methods
of avoiding overfitting with CNNs (Srivastava et al., 2014;
Ioffe and Szegedy, 2015).

Convolution Layers
The input image is first processed by a set number of convolution
filters that have a fixed pixel size. In our case the size was 3 × 3
pixels. This filter then moves in a constant step size (stride) like a
window from left to right over the pixels of the input image. After
each pass, the filter skips to the next-lower row. The so-called
padding is used to determine how the filter should behave when
it hits the edge of the matrix. We use “SAME” padding. With
“SAME” padding and Stride 1, the convolution layer output will
have the same spatial dimensions as its input. With a 3 × 3 pixel
filter, nine pixels of the input image are simultaneously connected
to the filter (local connectivity) and are convolved to a new value.

The following equation shows the computation of the discrete
convolution

O[i, j] =

S
2∑

p=−S2

S
2∑

q=−S2

[i− p, j− q] · K[p, q] (1)

O = I · K(convolution) (2)

where I is the Input Image, O is the Output Image, K is the Filter
Kernel, and S is the Filter Size.

Depending on the property and number of filters, the
convolution layer is able to recognize and extract individual
features in the input data. These can be lines, edges or certain
shapes (Figure 4). The step size of the filter determines whether
the output image should have the same size as the input image,
or whether it should be reduced in size. For example, for
downsampling we chose a stride of 2 to halve the size of the
input image. For upsampling we use an upsampling layer. This
layer increases the dimensionality (rows and columns) of output
feature maps by doubling the values (stride = 2).

Activation Function
In the activation function of the neural network, you decide
whether the neuron fires or not. There are different types of
activation functions such as sigmoid function, tangent function,

rectified linear unit (ReLU) and leaky rectified linear unit
(LReLU). In our case we used LReLU. LReLU s are one attempt to
fix the “dying ReLU” problem. Instead of the function being zero
when x< 0, a leaky ReLU will instead have a small negative slope
like 0.1 or 0.3 (Maas et al., 2013; Goodfellow et al., 2018). That is,
the function computes:

f (x) = 1(x < 0) · (α · x)+ 1(x ≥ 0) · (x) (3)

where α is a small constant. So, if the input x is greater than 0,
then the output is x. If the input is less than 0, the output will be
alpha α times the input.

In the DeepLTK toolkit LReLU activation function uses 0.1 as
a hardcoded alpha parameter.

Batch Normalization
Batch normalization is a layer that allows every layer of
the network to perform learning more independently. Batch
normalization can be used as a regularization strategy to avoid
overfitting the model. The layer is added to the sequential model
to standardize the input or the outputs. It can be used at several
points between the layers of the model. It is often inserted just
after defining the sequential model and after the convolution and
pooling layers. Batch normalization is a technique that has been
widely used over the years and has proven to be very effective in
several DL tasks. It uses the mean and variance computed within
a small data stack to normalize its features during activation
(Ioffe and Szegedy, 2015).

Dropout Layer
Dropouts are the regularization technique that is used to prevent
overfitting in the model. Dropouts are added to randomly
switching some percentage of neurons of the network. When the
neurons are switched off, the incoming and outgoing connections
to those neurons are also switched off. This prevents units from
co-adapting too much (Srivastava et al., 2014).

Initialization of the Weights in the ANN
With each pass through a layer, the variance should remain as
constant as possible. This prevents the signal from increasing
toward infinity or vanishing to zero. This means that the weights
in the network must be initialized so that the variance for x
and y remains the same. This initialization process is known as
Xavier initialization (Glorot and Bengio, 2010). We use Xavier
initialization for all the weights in our U-Net.

Training of the U-Net
The ANN programmed in this manner was trained with 11,932
CT slice images of lungs and the associated manually drawn
lung masks (ground truth). The training was performed on
113,784 iterations. One iteration includes miniBatch sampling
(we use a miniBatch size of 12)→ Forward Propagation→ Loss
Evaluation (the predicted masks were compared to the manually
generated lung masks) → Back Propagation and update of
the weights in the network. In simple terms the network
then tried to minimize the error between the manual mask
and the mask generated in each iteration by selecting the
appropriate combinations of convolution filters with more than
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FIGURE 4 | Input image and five different output images generated with different convolution kernels.

6,000 different convolution kernels used. This took about 1.4 s.
The complete training duration was 44.2 h. Return values are the
evaluated loss value and a value for the current iteration. We used
the Mean Square Error Regression Loss function. The course of
the learning curve is shown in Figure 5. The complete training
process is shown in Figure 6.

Testing of the Trained Model
The trained U-Net was tested on 3,466 CT lung slice images from
27 patients. The predicted ROIs were used to segment each slice
and the whole lung CT-qa was then performed. Briefly, the lung
is composed by two compartments with very different densities:
tissue, with a density close to the one of water (0 HUs), and gas,
with a density of−1,000 HU. For each voxel:

Vgas =
−CT(HU)

1, 000
· Vvoxel (4)

ρL =
CT + 1, 000

1, 000
(5)

Tissue mass = ρL · Vvoxel (6)

The voxel gas volume and voxel tissue mass were multiplied
by the total number of voxels to obtain the total tissue mass
and the total gas volume. Lung tissue was classified according
to its gas/tissue content as not inflated (CT number between
+100 and−100), poorly aerated (CT number between−101 and
−500), normally inflated (CT number between−501 and−900),
and hyper-inflated (CT number between −901 and −1,000)
(Cressoni et al., 2013).

We estimated recruitability as:

Recruitability =

non aerated tissue5cmH2O − non aerated tissue45cmH2O

non aerated tissue5cmH2O
(7)

The first formula indicates the fraction of gasless tissue which
regains inflation increasing the pressure. The complete testing
workflow is shown in Figure 7.

Statistical Analysis
The masks obtained by manual and artificial segmentation were
compared by the intersection over nion (IoU) metric method.
The variables computed by CT quantitative analysis after manual
and artificial Intelligence (AI)-segmentation were compared by
linear regression, and Bland-Altman analysis, and calculating
95% confidence intervals to evaluate the agreement between the
masks. Student’s t test was used to test the difference between
the means of normally distributed values. Otherwise, we used
the Wilcoxon test. Two-tailed p values < 0.05 were considered
statistically significant. All statistical analyses were performed
using R 4.1 (The R Project for Statistical Computing).

Intersection Over Union Metric
The IoU, also known as the Jaccard index, is an established
method for determining the segmentation quality of segmented
images. It is used to quantify the correspondence between the
manually created lung mask (ground truth) and the lung mask
predicted by the trained model. The IoU metric measures the
number of pixels common to the manually created masks and the
prediction masks divided by the total number of pixels present in
both masks. A value of 1 indicates a 100% agreement of the masks
and 0 means no agreement (Nowozin, 2014).

The following equation shows the computation of the IoU:

IoU =
|A ∩ B|
|A ∪ B|

(8)

where A is the manual generated mask (ground truth) and B is
the predicted mask.

RESULTS

Slices-Level Performance
For all lung scans, the agreement between manual and AI-
segmentation (IoU metric) was 87% ± 10% in the test set, as
shown in Table 3. In Figure 8 we show the agreement between
manually and AI-segmentation in the training and test sets
along the cranio-caudal axis in normal lungs (Panel A), ARDS
(Panel B), and COVID-19 (Panel C). Regardless of the lung type,
the mean agreement between manual and AI segmentation across
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FIGURE 5 | Graphical representation of the loss during the training period over 44.2 h.

FIGURE 6 | The complete training workflow.

FIGURE 7 | The complete test and analyzing workflow.
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TABLE 3 | Mean Intersection over Union calculated per slices and per volumes.

IoUmean ± SD
per slices

N Slices IoUmean ± SD
per volumes

N volumes

Normal lung 91.3 ± 10.1% 586 96.3 ± 0.6% 9

ARDS 85,2 ± 13.9% 2,057 88.9 ± 3.1% 30

COVID-19 84,7 ± 14.0% 823 86.3 ± 6.5% 12

All lungs 87.3 ± 10.0% 3,466 89.6 ± 5.1% 51

all CT slices was 91.3 ± 10.0, 85.2 ± 13.9, and 84.7 ± 14.0%, and
across all lung volumes 96.3 ± 0.6, 88.9 ± 3.1, and 86.3 ± 6.5%
for normal lungs, ARDS and COVID-19, respectively. In this
test set, we found that the agreement between manual and AI-
segmented lungs followed an inverse U-shape: higher in the
central regions of the thorax and lower at the apex or near
in the pleural recesses. Note that in these regions, the absolute
amount of lung tissue is just a small fraction (4.1 ± 2.0%) of
the entire parenchyma. The worst results were obtained in severe
ARDS compared with moderate and mild ARDS (Figures 8D–F).
Figure 9 shows the worst segmentation results, mainly in the
peripheral zones of the lung slices. In addition to the IOU
metric, the difference in lung volume between ground truth
and predicted mask can also be seen. Figure 10 shows the best
segmentation results with up to 99% agreement (IOU = 99%)
in normal lungs.

Patient-Level Performance
Lung Volume
The regressions and the Bland Altman analysis of the total
lung volumes (gas + tissue volume) computed with manual
and AI-segmentation both in the training set and in the test
set are summarized in Supplementary Figure 6. As shown,
the regression lines in these sets were close to identity. The
Bland Altman plots on the sets showed biases of −3.1 ml [CI
+13.0/−19.1] and−9.8 ml [CI:+56.0/−75.7 ml], respectively.

Lung Tissues
In the CT-qa, the overinflated, well-aerated, poorly aerated
and non-aerated tissue fractions were almost identical in the
manually or AI-segmentated images. Indeed, the R2 of the
linear regressions between manual and AI-segmentation on
overinflated, well-aerated and poorly aerated and non-aerated
tissue was 0.99, 0.99, 0.98, and 0.91, respectively. The Bland
Altman analyses comparing overinflated (p = 0.99), well-aerated
(p = 0.91), poorly aerated (p = 0.91), and non-aerated tissues
(p = 0.53) obtained after manual and AI-segmentation on the
test set is summarized in Figure 11. The whole lung tissue
fraction in all cases is 41.8 ± 17.2% in manual segmentation and
41.1± 16.2% (p = 0.85).

Recruitability
Assessment of recruitability is likely the most relevant variable
that can be measured with CT-qa. In Supplementary Figure 7,

FIGURE 8 | Intersection over Union (IoU) metric performance on the training (green line) and test set (blue line) along the cranio-caudal axis in normal lungs (A),
ARDS (B), COVID-19 (C), severe ARDS (D), moderate ARDS (E), and mild ARDS (F). As shown, in the training set, the AI algorithm almost perfectly matched the
manual segmentation. In the test set the performance was slightly poorer. The Figure also shows the anatomical distribution of the error. Indeed, the algorithm was
able to achieve a higher performance in the middle of the lung, while at the apex and the base, locations where also for a trained eye is sometimes difficult to
distinguish the lung parenchyma from the surrounding structures and the pleural effusion, as is the case with severe ARDS (D), it struggled more.
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FIGURE 9 | Selected slices with very poor segmentation results with an IOU of up to 43% in ARDS Lung. Most of the lungs were poorly recognized in the peripheral
areas. (A) preprocessed CT, (B) ground truth (transparent green), (C) predicted mask (transparent blue), (D) quantitative calculations within the manual ROI and (E)
quantitative calculations within the automatic ROI (green = normally aerated, blue = overextended, orange = badly aerated and red = not aerated).

we report the recruitment fraction computed for the manual
and AI-segmented lungs in the test set. The recruitment is
expressed both as variations of non-aerated tissue (panel A) and
as a variation of well-aerated tissue (panel B). The agreement
between the two techniques is within +6.2 and −5.5% (bias
+0.3%) when the recruitment is expressed as variation of the
percentage of non-aerated tissue and between +2.3 and −3.3%
(bias −0.5) when expressed as variation of the percentage of
well-aerated tissue.

Inaccuracies
To determine the inaccuracies of manual and AI-segmentation
we assumed that the lung weight should not change in the
same individual when increasing the airway pressure from 5
to 15 and to 45 cmH2O. A difference in lung weight between

the two airway pressure levels can be considered as a sign of
segmentation inaccuracy. As shown in Table 4, the average
lung weight differences between 5 and 15 cmH2O or between 5
and 45 cmH2O obtained by manual and AI-segmentation were
negligible. However, in the individual patients the differences
could be as high as 336 g.

Workload
The complete training of the neural Network up to the level used
in this analysis lasted 44.2 h. The learning curve of the algorithm
is reported in Figure 5. With our current configuration the
analysis of an unknown single CT slice requires 0.041 ± 0.007 s.
Therefore, automatic segmentation of a complete lung CT-scan
with approximately 100 slices of 5.0 mm thickness, required
approximately 5 s.

Frontiers in Physiology | www.frontiersin.org 10 September 2021 | Volume 12 | Article 676118119

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-676118 September 8, 2021 Time: 17:3 # 11

Herrmann et al. Automatic Lung Segmentation in CT

FIGURE 10 | Selected slices with very good segmentation results with an IOU of up to 99% with normal lungs. The differences in lung volume between manually and
automatically segmented lungs are 0.24 ml. (A) preprocessed CT, (B) ground truth (transparent green), (C) predicted mask (transparent blue), (D) quantitative
calculations within the manual ROI and (E) quantitative calculations within the automatic ROI (green = normally aerated, blue = over-inflated, orange = poorly aerated
and red = not aerated).

DISCUSSION

In this study, we found that automatic lung segmentation
performed by a properly trained neural network provided lung
contours in close agreement with the ones obtained by manual
segmentation. When comparing lung CT slices with the original
Ronneberger network (Hofmanninger et al., 2020, Table 3: test
data set for lung slice only), the IOU of damaged lungs is in
a similar range (85% vs. 80–87% for trauma and 85% vs. 83–
91% for atelectasis). In the case of normal lungs, however, the
results are worse in comparison (91% vs. 94%). The automatic
approach completed segmentation of the entire lung in 5–10 s
making immediately available the CT-qa. Therefore, the whole

process from DICOM image extraction to the lung CT-qa
with data on the fractions of inflated, well aerated, poorly
aerated and non-aerated tissue, as well as lung recruitability
can be completed in just a few minutes. Beyond their use
for research, these data may prove important for the clinical
diagnosis and respiratory therapy. Indeed, the greatest limitation
in implementing CT-qa in the everyday clinical practice is the
amount of man-hours required for lung segmentation. This
study presents a possible solution to this problem. The trained
model is not perfect, as it showed weaknesses in the edge
regions of the apex and base, especially in severely damaged
lung areas that are difficult to identify even for a trained
radiologist. These represent, however, only a minor fraction
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FIGURE 11 | Bland Altman analysis of the agreement between manual and AI-segmentation on the test set when CT-qa was used to measure the over-inflated (A),
well-aerated (B), poorly inflated (C) and non-aerated (D) tissues on the test set. As shown, biases never exceeded 50 g. The largest CI were, as expected, in the
non-aerated tissue, where also for a trained eye is, at times, difficult to distinguish parenchyma from pleural effusion.

of the total lung parenchyma that this should not exceed
10% of the entire lung mass. Overall, the results obtained are
fully adequate for pathophysiological decision processes and
consequent clinical application.

We may wonder to which extent one may be confident in
the AI-segmentation compared to the manual one. In ARDS,
image segmentation is especially difficult as, in some cases,
it is almost impossible to discriminate the edge of the lung
parenchyma from a pleural effusion, so common in ARDS
(Chiumello et al., 2013), particularly in the most dependent lung
regions and most severe ARDS forms. However, this problem is
also present in manual segmentation. Indeed, when the CT scan
of the same lung is taken under different operating conditions,
for example, at different airway pressures, we observed, as in
previous studies, differences in lung weights which, on average
were rather trivial (∼10–20 g), but they could be as high as 336 g

in the individual patient. These variations may result either from
the segmentation procedure and/or from actual changes in lung
weight, primarily due to a possible airway pressure-dependent
blood shift. It is unfortunately impossible to determine how much
of the weight variation is due to an intrathoracic blood shift
or to inaccuracies of the segmentation process. The decrease
in intrathoracic blood volume we estimated in a previous work
(Chiumello et al., 2007) with increasing airway pressures was
about 100 ml, leading to a small decrease in lung weight. In
the present study, we found more pronounced variations of
lung weight between 5 and 45 cmH2O than between 5 and 15
cmH2O. Indeed, especially in the train set, we found maximum
differences in lung weight between the two pressure levels as large
as 336 g, making unlikely that blood shift alone accounted for
the entire variation. Indeed, at 5 cmH2O it is more difficult, even
for trained personnel, to discriminate between parenchyma and
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TABLE 4 | Differences in lung weight detected at different airway pressures.

Train dataset Test dataset

Manual Automatic Manual Automatic

5–15
cmH2O

Mean (g) −6.5 1.2 5–15
cmH2O

Mean (g) 17.2 −14.8

SD (g) 64.7 60.5 SD (g) 83.9 54.3

Min (g) −227.5 −168.5 Min (g) −103.0 −150.4

Max (g) 173.2 196.2 Max (g) 194.8 42.6

5–45
cmH2O

Mean 7.5 14.5 5–45
cmH2O

Mean 39.8 −2.6

SD (g) 93.8 92.6 SD (g) 92.1 72.4

Min (g) −226.0 −231.9 Min (g) −94.8 −145.7

Max (g) 336.0 339.8 Max (g) 150.7 101.8

pleural effusion, a process that is easier at 45 cmH2O. Therefore,
manual segmentation is intrinsically associated with some degree
of inaccuracy. Interestingly, as shown in Table 3, AI had the
same degree of inaccuracy and closely mimicked the manual
segmentation. Moreover, the more severe the ARDS, i.e., the
extent of the densities and pleural effusions that are is present
in approximately 80% of ARDS patients (Gattinoni et al., 1986),
the greater the probability of inaccuracy. As opposed to the CT
images of the training set, the lungs of the patients in the test
CT were more poorly segmented, which may indicate a slight
overfitting of the CNNs.

The most relevant quantitative CT variables that may have
an impact on clinical management are the recruitability and the
volume of the lung open to the gas. The latter is frequently
referred to as “baby lung,” since in ARDS its size may resemble
that of a 3-year-old child. The baby lung is represented by
the amount of normally aerated tissue, which conventionally
includes the voxels between −500 and −900 HUs (Gattinoni
et al., 1986). AI-segmentation performed remarkably well under
this definition, with an overall agreement within few grams.
Knowledge of the baby lung and its associated gas volume will
allow a straightforward measurement of the strain occurring
during mechanical ventilation. Determining the strain, i.e.,
the ratio of tidal volume plus PEEP volume to the FRC, is
a fundamental information when setting the ventilator, since
excessive strain is a primary cause of ventilation-induced lung
injury (Chiumello et al., 2008).

The recruitability can be estimated either by assessing the
amount of lung tissue which regains aeration, or by measuring
the increase in the size of the baby lung when the airway pressure
is increased. This allows the normal aeration of pulmonary
units, which were previously collapsed or simply poorly inflated.
Measuring recruitment as a non-aerated tissue fraction difference
had a bias of +0.3% (CI: +6.2/−5.5%) on the test set. We
believe, from a clinical standpoint, that these numbers are
more than adequate to define the recruitability, which is usually
roughly defined as a binary variable, i.e., the patient is either
a “recruiter” or a “non-recruiter.” A more precise definition
of recruitability, which may range from 0% to more than 50%
of the total lung mass, that would be easily clinically available
with AI-segmentation, may represent an important step ahead
when tailoring mechanical ventilation or setting PEEP. When we

defined recruitment as changes in the baby lung dimensions, AI
performed extremely well compared with manual segmentation.

Most of the advances on our pathophysiological
understanding of ARDS derive from the quantitative CT
scan analysis. An easy availability of the CT-qa may play an
important role in setting a proper ventilation and, maybe more
importantly, to avoid harmful approaches.

LIMITATIONS

In the original U-Net, the original input image is first convoluted
with 64 filters. Due to hardware limitations, this was not possible
with our U-Net, so we started with 32 convolution filters. We
have found that in the edge areas of the lungs, especially with
very badly damaged lung tissue, segmentation is much worse.
In addition, the lung CTs unknown to the model are segmented
more poorly than the trained lung CTs, which indicates on
the one hand that the Network is slightly overfitted, or on the
other hand, that training was carried out with too few lung
CT variations. Our ANN was developed with NI-LabVIEW, NI-
Vision and the Deep Learning Toolkit from Ngene (DeepLTK).
These are all commercial, license-protected software products.
This means that an application cannot be used freely. The
DeepLTK still has a number of limitations: IOU and Dice
coefficient are the only metrics so far. More will be added in the
next releases. Shape quality performance metrics like ASSD or
BF-Score are not yet supported. The only optimization algorithm
is Stochastic gradient descent. Further algorithms such as Adam,
Adagrad, AdaDelta, RMSProp, and Nesterov are being developed
for the next releases. So far, Mean Squared Error is the only loss
type for 3D data. Cross Entropy loss is currently only available
for 1D data. But it will be available for 3D data in the next
update. It is a specific of DeepLTK toolkit (at the moment)
that the complete dataset is preloaded on the CPU RAM (as a
4D single precision floating point array) to speed up miniBatch
fetching and feeding to the Network for the training process. As
during the training process, the whole dataset will be utilized for
several (hundreds of) epochs, it is reasonable to preload decoded
dataset and store it on the RAM to speed up the training process.
Loading a miniBatch of data from disk is also reasonable, in
case of large datasets, and at the cost of speed, but currently it
is not implemented in the toolkit. A 3D semantic segmentation
architecture is still not possible with the DeepLTK.

CONCLUSION

The trained model based on the U-Net can automatically
segment the lungs in the CT with the limitations mentioned.
The automatic segmentation of a full lung CT scan with
approximately 100 sections with a slice thickness of 5.0 mm
took approximately 5 s, compared to manual segmentation which
can take up to an hour. Due to the still poor performance
compared to Python-based CNNs, we plan to further improve the
U-Net developed with LabVIEW and optimize it for the detection
of differently damaged lung areas. We are convinced that the
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widest possible variety of different lung pathologies and CT
reconstruction parameters can significantly improve a suitable
segmentation CNN. Therefore, we will increase the amount of
input data through augmentation by varying the brightness,
contrast, gamma and grain of the CT images and applying
them to an increasing number and variety of lung pathologies.
We plan to further modify the Network architecture through
tests, while changing the miniBatch size, varying the probability
of dropout layers, and varying the training parameters (i.e.,
optimizer, loss type, momentum, weight decay, and training type)
are interventions for future research and further improvement.
This should widen the field of potential applications and increase
the already convincing validity of image data processing. In
order to play with all these possibilities, one will require greatly
advanced hardware with much better performance compared
with the hardware used for this study.

The development of a reliable clinical diagnostic system,
able to perform the automatic detection and consecutively
the quantitative analysis of lung tissues immediately after
performance of a lung CT scan seems conceivable and
also practicable. Such a tool would have significant impact
on diagnosing and selecting the appropriate therapeutic
interventions for each individual patient suffering from severe
lung injury.
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Background: The pathophysiological effects of positive end-expiratory pressure (PEEP)

on respiratory mechanics, lung recruitment, and intracranial pressure (ICP) in acute

brain-injured patients have not been completely elucidated. The primary aim of this study

was to assess the effects of PEEP augmentation on respiratory mechanics, quantitative

computed lung tomography (qCT) findings, and its relationship with ICP modifications.

Secondary aims included the assessment of the correlations between different factors

(respiratory mechanics and qCT features) with the changes of ICP and how these factors

at baseline may predict ICP response after greater PEEP levels.

Methods: A prospective, observational study included mechanically ventilated patients

with acute brain injury requiring invasive ICP and who underwent two-PEEP levels lung

CT scan. Respiratory system compliance (Crs), arterial partial pressure of carbon dioxide

(PaCO2), mean arterial pressure (MAP), data from qCT and ICP were obtained at PEEP

5 and 15 cmH2O.

Results: Sixteen examinations (double PEEP lung CT and neuromonitoring) in 15

patients were analyzed. The median age of the patients was 54 years (interquartile

range, IQR = 39–65) and 53% were men. The median Glasgow Coma Scale (GCS) at

intensive care unit (ICU) admission was 8 (IQR = 3–12). Median alveolar recruitment

was 2.5% of total lung weight (−1.5 to 4.7). PEEP from 5 to 15 cmH2O increased

ICP [median values from 14.0 (11.2–17.5) to 23.5 (19.5–26.8) mmHg, p < 0.001,

respectively]. The amount of recruited lung tissue on CT was inversely correlated with

the change (1) in ICP (rho = −0.78; p = 0.0006). Additionally, 1Crs (rho = −0.77,

p = 0.008), 1PaCO2 (rho = 0.81, p = 0.0003), and 1MAP (rho = −0.64, p = 0.009)

were correlated with 1ICP. Baseline Crs was not predictive of ICP response to PEEP.
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Conclusions: Themain factors associated with increased ICP after PEEP augmentation

included reduced Crs, lower MAP and lung recruitment, and increased PaCO2, but none

of these factors was able to predict, at baseline, ICP response to PEEP. To assess the

potential benefits of increased PEEP in patients with acute brain injury, hemodynamic

status, respiratory mechanics, and lung morphology should be taken into account.

Keywords: positive end expiratory pressure, intracranial pressure, brain injured patients, quantitative computed

tomography, mechanical ventilation

INTRODUCTION

A substantial number of patients with acute brain injury
require mechanical ventilation (Borsellino et al., 2016) due to
both neurological and respiratory causes (Della Torre et al.,
2017). The aim of mechanical ventilation is to optimize oxygen
delivery and minimize lung and brain injury (Frisvold et al.,
2019). The use of lung-protective ventilation strategies has been
shown to reduce morbidity and mortality in acute respiratory
distress syndrome (ARDS) and non-ARDS critically ill patients
(Sutherasan et al., 2014; Serpa Neto et al., 2015; Simonis et al.,
2018). However, strategies comprising the use of high positive
end-expiratory pressure (PEEP) have been challenged in brain-
injured patients because of concerns regarding their effects on
cerebral hemodynamics (Nemer et al., 2011; Borsellino et al.,
2016; Robba et al., 2020), in particular intracranial pressure
(ICP). Possible mechanisms responsible for ICP augmentation
after PEEP application include alveolar overdistension with
the increase of arterial partial pressure of carbon dioxide
(PaCO2) levels, and hemodynamic instability (Caricato et al.,
2005; Mascia et al., 2005; Nemer et al., 2011). To date,
the pathophysiological interplay between intracranial changes,
respiratory system mechanics, and alveolar recruitment has not
been completely elucidated, and no specific recommendations
are available regarding the optimal levels of PEEP to be applied in
acute brain-injured patients (Robba et al., 2020). We, therefore,
conducted an observational study whose primary aim was to
investigate the effects of two levels of PEEP (5 and 15 cmH2O) on
respiratory mechanics, quantitative lung computed tomography
(qCT) findings, and its relationship with ICP changes in brain-
injured patients. Secondary aims included the assessment of the
correlation between different factors (respiratory mechanics and
qCT features) with the changes of ICP, and how these factors
at baseline may predict ICP response after greater PEEP levels.
Finally, we explored whether non-invasive neuromonitoring
tools are able to assess changes of ICP following augmented
PEEP levels. We hypothesized that the effect of greater PEEP
levels on ICP depends on the amount of alveolar recruitment and
respiratory mechanics.

METHODS

We followed the “Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE)” statement guidelines for
observational cohort studies (Supplementary Table 1) (von Elm
et al., 2014). This study was performed at San Martino

Policlinico Hospital, Genoa, Italy, a tertiary academic hospital
with neurocritical care facilities, from August 1, 2020, to March
8, 2021. The study was approved by the ethics review board
“Comitato Etico Regione Liguria” (protocol n. CER Liguria:
23/2020). According to the local regulations, written consent was
obtained from next of kin of the patients, as all patients were
unconscious at the time of inclusion.

Inclusion and Exclusion Criteria
Inclusion criteria were critically ill adult patients who required
intubation and invasive mechanical ventilation following
acute brain injury (traumatic brain injury, TBI; subarachnoid
hemorrhage, SAH; intracranial hemorrhage, ICH) admitted
to the intensive care unit (ICU), requiring invasive ICP and
other neuromonitoring tools (Transcranial Doppler, TCD
and optic nerve sheath diameter, ONSD) and who underwent
two-PEEP CT scan based on clinical indication with PEEP 5
and 15 cmH2O. Exclusion criteria were the absence of informed
consent; the absence of indications for invasive ICP monitoring
(i.e., coagulopathy); the absence of temporal window for
TCD evaluation; basal skull fracture with the cerebrospinal
fluid leak, or ocular trauma for ONSD measurement; patients
requiring contrast medium during CT for clinical reasons or
having contraindications to higher PEEP (e.g., emphysema and
undrained pneumothorax), or judged too instable to be safely
transported to the CT facility (e.g., hemodynamic instability,
need for high doses vasopressors, or acute and refractory
increased ICP).

Data Collection and Patients’ Management
Demographic, epidemiologic, and clinical data were obtained
from electronic medical records of patients and collected by
physicians trained in critical care at admission to the ICU and
on the day when a double PEEP CT scan was obtained. Recorded
data included admission demographics [age, gender, and body
mass index (BMI)], comorbidities (asthma, chronic respiratory
disease, hypertension, chronic cardiac disease diabetes mellitus,
chronic kidney injury, and previous neurological disease), type
of brain injury, neurological status at ICU admission (Glasgow
Coma Scale, GCS), type of ICP monitoring (intraparenchymal
and external ventricular drain), ICU complications, ICU length
of stay (LOS), and Glasgow Outcome Score (GOS) at ICU
discharge. Patients were sedated with propofol and/ormidazolam
and fentanyl, targeting the tidal volume of 6–8ml per kg of
predicted body weight (PBW), but increases were tolerated
based on the driving pressure. The respiratory rate was titrated
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to maintain pH between 7.35 and 7.45. On the day of CT
scan, ventilatory data, respiratory mechanics, and blood gases
parameters (i.e., inspired fraction of oxygen (FiO2), PEEP,
plateau pressure (Pplat), respiratory system compliance (Crs),
tidal volume (VT), respiratory rate (RR), arterial and venous
saturation of oxygen (SaO2 and SvO2), arterial pH (pHa), partial
pressure of oxygen (PaO2 and PaCO2) were obtained at PEEP= 5
cmH2O (T0) and at PEEP= 15 cmH2O (T1). Vital signs, such as
mean arterial pressure (MAP) and neuromonitoring parameters
[ICP, ONSD, systolic, mean, and diastolic flow velocities (FVs,
FVd, and FVm)] were also collected at T0 and T1.

Clinical Rationale for PEEP Test
The decision to perform a PEEP test was based on the
judgment of the treating physician, if optimization of mechanical
ventilation was required. PEEP test was performed in Volume-
Controlled Ventilation aiming to target the tidal volume of 6–
8ml per kg/PBW. To date, no universal recommendations are
available concerning the optimal PEEP levels in the invasively
ventilated brain-injured patients (Robba et al., 2020). Therefore,
in our institution, a PEEP test is performed to increasing PEEP
from 5 to 15 cmH2O, assessing both respiratory mechanics
and cerebral hemodynamics. These values have previously been
demonstrated to be safe and can lead to increased brain
oxygenation, without the increase in ICP (Nemer et al., 2011).
However, as greater PEEP levels may result in worsening of
the respiratory mechanics with eventually increased alveolar
hyperdistention (Mascia et al., 2005), two-PEEP CT, when
possible, has become part of our routine clinical evaluation and
has been performed in our institution in other groups of patients
(Ball et al., 2021). Evaluation and calculation of gas exchanges,
respiratory mechanics, and details on the protocol for two-PEEP
CT acquisition and analysis are described in the ESM.

CT Scan Acquisition and Analysis
Images were acquired during expiratory breath-hold at 5 and 15
cmH2O. The two scans were acquired in sequence, interleaved
by 1–2min of uninterrupted ventilation at PEEP 15 cmH2O (Ball
et al., 2021). This time of ventilation at 15 cmH2O of PEEP was
applied before repeating the CT scan (T1). For safety reasons, no
recruitment maneuver was performed.

Lung segmentation was performed excluding big airway,
vessels, and pleural effusion. Segmentations were performed
using ITKSnap (http://www.itksnap.org), image analysis was
performed with Matlab scripts (Mathworks, MA, USA), based on
widely adopted numerical methods (Malbouisson et al., 2001).
Alveolar recruitment was defined as the difference in the non-
aerated compartment from PEEP 5–15 cmH2O, divided by total
lung weight at PEEP of 5 cmH2O (Gattinoni et al., 2006).

Neuromonitoring
The indications for invasive ICP placement followed the
latest Brain Trauma Foundation Guidelines (Carney et al.,
2016). Ultrasound measurement was performed by a selected
group of experienced operators (CR, SN, and DB) using a
standardized insonation technique to reduce inter-operator

variability. Ultrasound measurements were performed after
PEEP augmentation and after repeating the second CT.

Transcranial Doppler was performed bilaterally on the middle
cerebral artery (MCA) through the temporal window using a
traditional 2-MHz transducer (Philips SparQ R©) as previously
described (Robba et al., 2017b). Non-invasive ICP estimation
using TCD (ICPTCD) was obtained using a previously validated
formula (Rasulo et al., 2017). Ultrasound examination of the
ONSD was performed using a 7.5 MHz linear ultrasound
probe (Philips SparQ R©) using the lowest possible acoustic
power that could measure the ONSD. The probe was oriented
perpendicularly in the vertical plane and at around 30◦ in the
horizontal plane on the closed eyelids of both eyes of subjects in
the supine position. Ultrasound gel was applied on the surface
of each eyelid, and the measurements were made in the axial
and sagittal planes of the widest diameter visible 3mm behind
the retina in both eyes. The final ONSD value was calculated as
previously described (Robba et al., 2016, 2017a).

Statistical Analysis
An a priori sample size calculation was not feasible due to the
lack of data on quantitative CT analysis in brain-injured patients,
but our sample size was similar to previous physiologic studies
regarding PEEP augmentation in ARDS or brain-injured patients
(Mascia et al., 2005; Nemer et al., 2011; Mauri et al., 2016, 2020).
Data are reported as median (interquartile range, IQR), if not
otherwise specified. We compared data between groups with the
Mann–Whitney U or Fisher’s exact test, as appropriate. Variables
acquired at two-PEEP levels were compared with the Wilcoxon
signed-rank test. Changes of variables from PEEP 5 to PEEP 15
were calculated as 1 (value at PEEP 15 cmH2O–value at PEEP
5 cmH2O). Correlations were sought using Spearman’s rho. A
linear regression analysis was performed using 1ICP (invasive
ICP) as the dependent variable and alveolar recruitment, 1MAP,
Crs, and PaCO2 as independent variables. As an exploratory
analysis, we modeled 1ICP as a function of clinically sound
covariates using linear regression, adopting a variance inflation
factor threshold of 5 as an acceptable limit for multi-collinearity.
All statistical analyses were performed in SPSS Statistics, Version
25.0 (IBM Corp., Armonk, NY, USA). Significance was assumed
at two-tailed p < 0.05.

RESULTS

General Characteristics
A total of 16 examinations (double PEEP quantitative CT and
neuromonitoring, including invasive ICP, ONSD, and TCD) from
15 patients were included in the analysis (in one patient, the
measures were obtained twice). The median age of the patients
was 54 years (IQR = 39–65); 53.3% were men. Six patients
(40%) were admitted for SAH, six after TBI (40%), and three
(20%) for ICH (Table 1). The median GCS was eight (IQR =

3–12); intraparenchymal and intraventricular monitoring were
inserted in seven (46.6%) and eight (53.3%) cases, respectively.
One patient died in ICU (6.6%) and the median ICU LOS was 16
(IQR= 13–21) days.
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TABLE 1 | Characteristics of the patients at ICU admission.

Demographics

Gender, male, n (%) 8 (53.3%)

Age [years], median [IQR] 54 [39–65]

BMI [kg/m2 ], median [IQR] 26.3 [25.5–27.9]

PBW [kg], median [IQR] 68.7 [57–78]

Comorbidities

Respiratory disease, n (%) 3 (20)

Cardiovascular disease, n (%) 1 (6.6)

Cancer, n (%) 0 (0)

Neurologic disorders, n (%) 1 (6.6)

Moderate/severe liver disease, n (%) 1 (6.6)

End-stage kidney injury, n (%) 0 (0)

Hypertension, n (%) 7 (46.6)

Diabetes mellitus, n (%) 3 (20)

ICU characteristics

Reason for ICU admission, n (%)

TBI 6 (40)

SAH 6 (40)

ICH 3 (20)

GCS score, median [IQR] 8 [3–12]

Type of ICP monitor, n (%)

Bold 7 (46.6)

EVD 8 (53.3)

Need for vasopressors, n (%) 13 (86.7)

ICU complications

Respiratory failure, n (%) 1 (6.6)

Ventilator- associated pneumonia, n (%) 4 (26.6)

Cardiovascular, n (%) 2 (13.3)

Acute kidney injury, n (%) 0 (0)

Sepsis, n (%) 1 (6.6)

Vasospasm, n (%) 2 (13.3)

ICU discharge characteristics

Mortality, n (%) 1 (6.6)

GOS, median [IQR] 4 [3–4]

ICU length of stay, median [IQR] 16 [13–21]

IQR, Interquartile range; n, number; BMI, body mass index; PBW, predicted body weight;

ICU, intensive care unit; TBI, traumatic brain injury; SAH, subarachnoid hemorrhage; ICH,

intracranial hemorrhage; GCS, Glasgow Coma Scale; ICP, intracranial pressure; EVD,

external ventricular drain; GOS, Glasgow outcome score.

Effect of PEEP Augmentation on
Respiratory Mechanics, Quantitative CT
Findings, and ICP
Figure 1 shows two representative examples of CT images at
5 and 15 cmH2O of PEEP in two patients with low and
high alveolar recruitment. After greater PEEP levels, systemic
oxygenation [PaO2, from 96.4 (81–108) to 98 (85.4–148) mmHg;
p = 0.039], and PaCO2 [from 40 (36.8–44.9) to 44 (41.4–48.6)
mmHg; p = 0.034] increased, while median Crs did not change
(Table 2 and Figure 2). Total lung volume was augmented after
greater PEEP levels, as also the gas volume, but not total lung
weight (Table 2). Median alveolar recruitment was 2.5% (−1.5–
4.7). Figure 3 illustrates the frequency distribution of Hounsfield

units at 5 and 15 cmH2O of PEEP. The increase of PEEP from 5
to 15 cmH2O resulted in higher median invasive ICP values [14
(11.2–17.5) vs. 23.5 (19.5–26.8) mmHg, p < 0.001; Figure 2] and
non-invasive ICP measured through TCD and of ONSD values.
Higher PEEP also resulted in a significant reduction of cerebral
perfusion pressure (CPP) [78 (71–81.7) vs. 63 (57.8–74.8)mmHg,
p= 0.001; Table 2].

Correlation Between the Changes of
Quantitative CT Variables, Respiratory
Mechanics, and ICP
The variations of lung volume and gas volume evaluated at qCT
analysis were not correlated with the changes of ICP (rho= 0.05;
p = 0.86 and rho = −0.07; p = 0.80, respectively). However, the
amount of recruited tissue was inversely correlated with 1ICP
(rho = −0.78; p = 0.0006). 1Crs, 1Plateau pressure, 1PaCO2,
and 1MAP were significantly correlated with 1ICP (rho =

−0.77; p= 0.008; rho= 0.54; p= 0.0002; rho= 0.81; p= 0.0003;
rho=−0.64; p= 0.009, respectively; Figure 4).

At linear regression analysis, 1PaCO2 (regression coefficient
B = 0.96, 95% CI from 0.1 to 1.8, p = 0.028) and 1Crs (B
= −0.41, 95% CI from −0.647 to −0.183, p = 0.02) were
the only independently variables associated with 1ICP. We
did not observe correlations between the ICP increase and the
following parameters assessed at PEEP 5 cmH2O: Crs, CO2, MAP,
ONSD, ICPTCD, and invasive ICP (p > 0.40 in all correlations
with 1ICP).

Correlation analysis between qCT variables, respiratory
mechanics, and non-invasive ICP estimated through TCD and
ONSD are presented in Supplementary Table 2. A significant
correlation was found between the changes of ONSD and ICP
(rho = 0.8096; p = 0.0003), but not between ICPTCD and ICP
(Supplementary Figure 1).

DISCUSSION

In a population of mechanically ventilated patients with acute
brain injury, we found that (1) PEEP augmentation from 5 to
15 cmH2O may lead to higher oxygenation, PaCO2, and ICP
values, with alveolar recruitment of 2.5% of total lung weight; (2)
ICP increase with PEEP was correlated to higher PaCO2, poor
alveolar recruitment, reduction of Crs, and decreased MAP; (3)
baseline values of Crs, PaCO2, MAP, and ICP are not predictive
for ICP increase with PEEP; and (4) changes in ONSD, but not
ICPTCD, are correlated to changes in ICP.

To our knowledge, this is the first study quantitatively
assessing alveolar recruitment and its distribution in the whole
lung in mechanically ventilated patients with acute brain injury
and its associations with changes in ICP and main physiological
and clinical parameters.

Acute brain-injured patients with a clinical indication
for chest CT, such as respiratory failure, and/or suspect of
pneumonia were included in the study. This explains why the
alveolar recruitment induced by PEEP was 2.5% of total lung
weight, similar to a previous cohort of patients with COVID-19
(Ball et al., 2021). In fact, in the healthy population, the average
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FIGURE 1 | Representative cases representing CT images at 5 and 15 cmH2O of PEEP in a patient with poor alveolar recruitment (A) and good alveolar

recruitment (B).

lung weight is 930 g and gas volume 4,000ml (Cressoni et al.,
2013) in patients with ARDS-COVID-19, average lung weight is
1,500 g and gas volume 1,360ml (Ball et al., 2021), whereas in
our cohort of acute brain-injured patients average lung weight
is 1,076 g and gas volume 1,693 ml.

Patients with acute brain injury admitted to ICU frequently
require mechanical ventilation, and PEEP is often useful to
support oxygenation, with the aim to ensure reliable oxygen
delivery (Stevens et al., 2008; Borsellino et al., 2016; Del Sorbo
et al., 2017) and minimize lung injury. However, mechanical
ventilation and increased intrathoracic pressure can exert
harmful effects on the brain due to complex physiological
interactions between brain and lung compartments. The
optimization of PEEP application in the general ICU population
(Sutherasan et al., 2014; Algera et al., 2020) and in particular in
patients with acute brain injury is still controversial. Recently,
a systematic review of the literature revealed only marginal
evidence for a specific ventilatory strategy in this group of
patients (Robba et al., 2020), and only a few small physiologic

studies have explored the effect of PEEP on intracranial
dynamics (Caricato et al., 2005; Nemer et al., 2011). The use
of higher PEEP may lead to possible negative hemodynamic
effects, which could potentially lead to a reduction of MAP
and therefore CPP. However, two small studies suggested that
slow and progressive PEEP augmentation may be safe and can
improve systemic and cerebral oxygenation without significant
changes in ICP and CPP (Huynh et al., 2002; Nemer et al.,
2011). Another important pathophysiological mechanism is the
effect of respiratory mechanics on ICP. Caricato et al. (2005)
demonstrated that in patients with low Crs (those with greater
severity of lung injury and requiring higher PEEP), PEEP
application had no important effects on cerebral and systemic
hemodynamics. However, this finding was not confirmed in the
present study.We observed a correlation between changes in ICP
and worsening of Crs, but the absolute value of Crs at lower PEEP
was not predictive for ICP increase with PEEP. We speculate that
Crs measured at lower PEEP alone might not identify patients
that will increase ICP at higher PEEP is not necessarily associated
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TABLE 2 | Ventilator settings, respiratory mechanics, arterial blood gases, quantitative CT analysis, neuromonitoring data, and hemodynamics in our cohort at PEEP = 5

and 15 cmH2O.

Parameter PEEP = 5 PEEP = 15 p

(N = 16) (N = 16)

Ventilator settings and arterial blood gases

Tidal volume, median [IQR], ml/kg PBW 7.4 [6.9–7.9] 7.4 [6.9–7.9] 0.999

Respiratory rate, median [IQR], 1/min 21 [18–23] 21 [18–22] 0.257

Plateau pressure, median [IQR], cmH20 21 [18–22] 30 [28–34] <0.001

Respiratory system compliance, median [IQR], ml/cmH20 30 [30–38] 34 [28–41] 0.759

Venous admixture, median [IQR], (%) 25.7 [15.1–32.3] 21.6 [15–31.2] 0.717

Ventilation ratio, median [IQR] 1.7 [1.5–2] 1.9 [1.7–2.2] 0.109

pH, median [IQR] 7.41 [7.36–7.45] 7.45 [7.39–7.48] 0.343

PaO2, median [IQR], mmHg 96 [81–108] 98 [85–148] 0.039

SaO2, median [IQR], mmHg 98 [97–100] 99 [97–99] 0.724

PaCO2, median [IQR], mmHg 40 [37–45] 44 [41–49] 0.034

SvO2, median [IQR], mmHg 72 [63–78] 75 [68–78] 0.453

PaO2/FiO2, median [IQR], mmHg 195 [163–216] 195 [171–296] 0.049

Quantitative computed tomography analysis

Total lung volume (ml) 2,704 [2,360–3,574] 3,334 [2,883–4,228] 0.001

Total lung weight (g) 1,076 [915–1,368] 1,010 [884–1,365] 0.679

Gas volume (ml) 1,693 [1,204–2,292] 2,429 [1,862–2,864] <0.001

Mean attenuation (HU) −601 [-671 –−557] −677 [-724 –−618] 0.001

Hyper-aerated tissue (g) 10 [3–17] 23 [14–32] 0.002

Hyper-aerated tissue (% of total lung weight) 0.8 [0.3–1.5] 2 [1.4–2.3] 0.001

Normally aerated tissue (g) 449 [382–592] 533 [402–655] 0.002

Normally aerated tissue (% of total lung weight) 45 [31.4–54.2] 48 [35–55] 0.008

Poorly aerated tissue (g) 250 [193–307] 199 [167–278] 0.023

Poorly aerated tissue (% of total lung weight) 22.4 [16.6–26.1] 19.7 [13.1–21.6] 0.017

Non-aerated tissue (g) 434 [213–563] 344 [189–567] 0.121

Non-aerated tissue (% of total lung weight) 30.1 [25–44.6] 31.2 [21.2–39] 0.017

Neuromonitoring

ICP, median [IQR], mmHg 14 [11–17] 23 [19–26] <0.001

CPP, median [IQR], mmHg 78 [71–82] 63 [58–75] 0.001

FVs, median [IQR], cm/s 112 [106–121] 97 [55–116] 0.036

FVd, median [IQR], cm/s 43 [32–51] 19 [15–27] 0.001

FVm, median [IQR], cm/s 65 [59–74] 46 [31–56] 0.001

ONSD, median [IQR], mm 4.5 [4.1–5.1] 5.8 [5.4–6.4] 0.001

ICPTCD, median [IQR], mmHg 21 [18–25] 33 [31–45] 0.001

Hemodynamics

Mean arterial pressure, median [IQR], mmHg 91 [87–97] 90 [84–94] 0.086

Data are presented as median [IQR, interquartile range]. IQR, interquartile range; PaO2, arterial partial pressure of oxygen, SaO2, arterial oxygen saturation; PaCO2, arterial partial

pressure of carbon dioxide; SvO2, venous saturation of oxygen; PaO2/FiO2 (inspired fraction of oxygen); HU: Hounsfield Units; ICP, intracranial pressure; FVs, FVd, FVm, systolic,

diastolic, mean flow velocity; ONSD, optic nerve sheath diameter; ICPTCD, intracranial pressure measured with transcranial Doppler (TCD); CPP, cerebral perfusion pressure.

with the potential for lung recruitment. Patients with greater
lung recruitment will improve lung gas distribution not resulting
in ICP increase, while non-recruiters will over-inflate already
aerated areas with a negative impact on dead space and possibly
on venous return. In a prospective study that has 12 brain-
injured patients, where 5 and 10 cmH2O of PEEP was randomly
applied, patients defined as recruiters increased Crs and PaO2,
while in non-recruiters Crs decreased and PaCO2 increased.
Furthermore, ICP and jugular saturation remained constant in
recruiters but significantly increased in non-recruiters, showing

a significant correlation between changes in ICP, compliance,
and PaCO2.

This suggests that PEEP may have a detrimental effect on ICP
only when it causes alveolar hyperinflation leading to a significant
increase in PaCO2, whereas when PEEP leads to good alveolar
recruitment, ICP does not change.

Our results and previous evidence suggest that a precise
evaluation of respiratory mechanics and gas exchange
modifications may be of great importance in the assessment
of recruitment. Comparative studies have shown that the only

Frontiers in Physiology | www.frontiersin.org 6 October 2021 | Volume 12 | Article 711273131

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Robba et al. PEEP in Brain-Injured Patients

FIGURE 2 | Intracranial pressure (ICP), partial pressure of carbon dioxide (PaCO2), respiratory system compliance (Crs), and mean arterial pressure (MAP) at PEEP of

5 and 15 cmH2O. Black dots and lines represent individual patient data. PEEP, positive end-expiratory pressure.

possible method to evaluate the amount of collapsed lung
tissue regaining inflation is the CT scan (Gattinoni et al.,
2017), thus making our study unique in the description of
the pathophysiological effects of PEEP on the intracranial
compartment, based on the characteristics of lung morphology.
Our results show that in patients with acute brain injury
increased PaCO2 and reduction of CPP and Crs with PEEP
are the main factors associated with increased ICP. In fact,
the potential mechanisms related to the overall ICP increase
observed in our cohort might be related to the increase of
PaCO2 and reduction of CPP. However, as MAP did not change,
this latter mechanism was probably related to a reduction of
intracranial compliance consequent to the supine position, thus
possibly reducing jugular venous outflow.

We also demonstrated that the amount of alveolar recruitment
is an important determinant of changes in ICP, thus suggesting
that in patients with good response to alveolar recruitment, which
leads to the improvement of Crs without affecting hemodynamic

status and without causing alveolar hyperdistension of patients
and therefore increased PaCO2, PEEP augmentation might
be safe.

All in it, the principles for PEEP safety and titration in
patients with acute brain injury seem not to be importantly
different from those applied in the general ICU population
and should take into account hemodynamic status, respiratory
mechanics, and CT findings of patients (Ball et al., 2021). Indeed,
a recent expert consensus (Robba et al., 2020) suggested that
in brain-injured patients the levels of PEEP should be the
same as for the general critically ill population. Similarly, a
survey of the European Society of Intensive Care (Stocchetti
et al., 2014) and a recent large multicenter study (Tejerina
et al., 2021) suggest that moderate-high levels of PEEP
are currently part of the clinical practice of neurocritical
care physicians.

Finally, we explored the potential role of non-invasive ICP
methods for the evaluation of changes of ICP after PEEP
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FIGURE 3 | Histogram distribution of lung volume aeration at 5 and 15 cmH2O of PEEP. PEEP, positive end-expiratory pressure.

application. We found no significant correlation between non-
invasive methods and qCT or respiratory mechanics data. This
suggests that invasive ICP methods should be always considered
as the gold standard for the evaluation of cerebral hemodynamics
(Robba et al., 2015). However, changes in ONSD seem to be
correlated with changes in ICP, thus making this tool a promising
method for the bedside assessment of intracranial modifications
when ICP is not available or contraindicated (Robba et al., 2018).

There are several limitations in our study that deserve to
be mentioned. First, the sample size is small, despite similar to
previous physiological studies exploring the effect of PEEP on
lung recruitment (Mascia et al., 2005; Nemer et al., 2011; Mauri
et al., 2016, 2020).

Second, in our center, a CT scan with double PEEP is routinely
performed in selected patients with acute brain-injured patients,
but only when CT is clinically indicated and in sufficiently stable
patients. Therefore, patients were affected by brain damage of
different nature and were heterogeneous as for comorbidities and
lung damage.

Third, we cannot exclude that different ventilator setting may
have led to different results (Gattinoni et al., 2006). However,
we standardized mechanical ventilator settings, respiratory

mechanics evaluation, and arterial blood gases measurement.
In addition, we used a relatively short time for high PEEP
exposure before repetition of CT. However, studies showed
that most changes in volume and recruitment occur in this
timeframe and that most respiratory units recruit below 30
cmH2O (Katz et al., 1981; Crotti et al., 2001). In fact, we
were able to detect a clear recruitment effect in some patients.
In addition, more data and details regarding hemodynamics
and cardiac performance would have added greater insights
regarding the effect of PEEP on cardiac function; however,
unfortunately, we do not routinely perform in our institution
echocardiography or carotid flow assessment during PEEP
challenge. Finally, patients were in a supine position during CT,
and this might have led to an increase of ICP regardless of the
implementation of PEEP.

CONCLUSIONS

Quantitative CT can help in the assessment of lung recruitability
and the effect of different PEEP levels on ICP. The main factors
associated with an increase of ICP after PEEP augmentation
include worsening of Crs, reduction of MAP, low lung
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FIGURE 4 | Scatterplots showing the linear association and correlation between alveolar recruitment (A), 1 respiratory system compliance (Crs; B), 1 carbon dioxide

(PaCO2; C), 1 mean arterial pressure (MAP; D) vs. 1 intracranial pressure (ICP) at different study time points. Dotted lines represent the 95% CIs for the linear

regression.

recruitment, and increased PaCO2. The potential benefits of
PEEP augmentation in acute brain-injured patients should take
into account hemodynamic status, respiratory mechanics, and
lung morphology of patients. Further research is warranted to
assess the effect of PEEP on ICP and the application of non-
invasive ICP methods in this context.
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Background: Mechanical ventilation (MV) may initiate or worsen lung injury, so-called
ventilator-induced lung injury (VILI). Although different mechanisms of VILI have been
identified, research mainly focused on single ventilator parameters. The mechanical
power (MP) summarizes the potentially damaging effects of different parameters in one
single variable and has been shown to be associated with lung damage. However, to
date, the association of MP with pulmonary neutrophilic inflammation, as assessed
by positron-emission tomography (PET), has not been prospectively investigated in a
model of clinically relevant ventilation settings yet. We hypothesized that the degree of
neutrophilic inflammation correlates with MP.

Methods: Eight female juvenile pigs were anesthetized and mechanically ventilated.
Lung injury was induced by repetitive lung lavages followed by initial PET and computed
tomography (CT) scans. Animals were then ventilated according to the acute respiratory
distress syndrome (ARDS) network recommendations, using the lowest combinations of
positive end-expiratory pressure and inspiratory oxygen fraction that allowed adequate
oxygenation. Ventilator settings were checked and adjusted hourly. Physiological
measurements were conducted every 6 h. Lung imaging was repeated 24 h after first
PET/CT before animals were killed. Pulmonary neutrophilic inflammation was assessed
by normalized uptake rate of 2-deoxy-2-[18F]fluoro-D-glucose (KiS), and its difference
between the two PET/CT was calculated (1KiS). Lung aeration was assessed by lung CT
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scan. MP was calculated from the recorded pressure–volume curve. Statistics included
the Wilcoxon tests and non-parametric Spearman correlation.

Results: Normalized 18F-FDG uptake rate increased significantly from first to second
PET/CT (p = 0.012). 1KiS significantly correlated with median MP (ρ = 0.738, p = 0.037)
and its elastic and resistive components, but neither with median peak, plateau, end-
expiratory, driving, and transpulmonary driving pressures, nor respiratory rate (RR),
elastance, or resistance. Lung mass and volume significantly decreased, whereas
relative mass of hyper-aerated lung compartment increased after 24 h (p = 0.012,
p = 0.036, and p = 0.025, respectively). Resistance and PaCO2 were significantly higher
(p = 0.012 and p = 0.017, respectively), whereas RR, end-expiratory pressure, and MP
were lower at 18 h compared to start of intervention.

Conclusions: In this model of experimental acute lung injury in pigs, pulmonary
neutrophilic inflammation evaluated by PET/CT increased after 24 h of MV, and
correlated with MP.

Keywords: mechanical ventilation, acute respiratory distress syndrome, ARDS, ventilator- induced lung injury,
VILI, mechanical power, pulmonary neutrophilic inflammation, 18F-FDG

INTRODUCTION

Mechanical ventilation (MV) is often life-saving in critically ill
patients with acute respiratory failure and/or acute respiratory
distress syndrome (ARDS) (Bellani et al., 2016). However, MV
may lead to ventilator-induced lung injury (VILI) (Dreyfuss
and Saumon, 1998). Different mechanisms of VILI have been
identified so far. High distending pressures may promote
baro- and volutrauma, whereas repetitive aeration and collapse
of alveoli may induce atelectrauma (Güldner et al., 2016).
Inhomogeneous lung aeration can further aggravate mechanical
stress and lung injury (Mead et al., 1970). Although certain
measures to prevent VILI have been established (Acute
Respiratory Distress Syndrome Network Brower et al., 2000;
Amato et al., 2015), e.g., limitation of tidal volume (VT) or
airway plateau and driving pressures, discussion about adequate
levels of positive end-expiratory pressure (PEEP) is ongoing, and
the interplay among parameters is complex (Battaglini et al.,
2021). Irrespectively of specific parameters, mechanical energy
is inevitably transferred to the respiratory system in every single
MV cycle, resulting in transferred mechanical power (MP) when
multiplied with respiratory rate (RR). Although it has been
known that the transferred energy, or power, is partly restored

Abbreviations: %E2, volume-dependent elastance; 1KiS, difference in KiS
between first and second lung imaging; 1P, driving pressure; 1Ptrans,
transpulmonary driving pressure; 18F-FDG, 2-deoxy-2-[18F]fluoro-D-glucose;
AaDO2, alveolo-arterial oxygen difference; ACCT, attenuation-correction
computed tomography; ARDS, acute respiratory distress syndrome; CO, cardiac
output; E, elastance; FIO2, inspiratory oxygen fraction; HU, hounsfield units; HR,
heart rate; I:E, inspiratory to expiratory time ratio; IQR, interquartile range; KiS,

normalized 18F-FDG uptake rate; ME, mechanical energy; MP, mechanical power;
MV, mechanical ventilation; PaCO2, arterial partial pressure of carbon dioxide;
PaO2, arterial partial pressure of oxygen; PaO2/FIO2, horovitz index; Paw, airway
pressure; Ppeak, peak airway pressure; PEEP, positive end-expiratory pressure; Peso,

esophageal pressure; Pmean, mean airway pressure; Pplat, mean plateau pressure; R,
resistance; RR, respiratory rate; SV, stroke volume; VILI, ventilator-induced lung
injury; VT, tidal volume.

and dissipated in the respiratory system (Sassoon and Mahutte,
1998; Guttmann, 2010), the concept gained new attention
recently when MP was proposed as the main determinant of
VILI (Cressoni et al., 2016; Gattinoni et al., 2016), which is
still under development (Huhle et al., 2018). Although recent
research mainly focused on single ventilator parameters as VILI
determinants, MP may summarize the potentially damaging
effects of different parameters in one single variable. Yet, MP
was shown to be associated with different characteristics of
experimental lung injury, i.e., radiological signs of lung edema,
lung wet/dry ratio, and histological features (Cressoni et al.,
2016; Collino et al., 2019; Vassalli et al., 2020). In retrospective
clinical trials, MP was associated with mortality in critically ill
patients (Serpa Neto et al., 2018; Costa et al., 2021). However, its
effects on the pulmonary neutrophilic inflammation as assessed
by positron-emission tomography (PET)/computed tomography
(CT) have not been determined yet, though neutrophilic
inflammation is a mainstay in ARDS pathogenesis (Grommes
and Soehnlein, 2011). In this study, we aimed to investigate
the applied resulting MP and the neutrophilic pulmonary
inflammation in a clinically relevant model of acute lung injury in
pigs ventilated with fixed combinations of PEEP and inspiratory
oxygen fractions (FIO2), as recommended by the ARDS network’s
low PEEP table (Brower et al., 2004). We hypothesized that
neutrophilic inflammation correlates with MP.

MATERIALS AND METHODS

The Institutional Animal Care and Welfare Committee and
the Government of the State of Saxony, Germany, approved
the study protocol (file 25-5131/474/31; 27.09.2019; Dr. B.
Langen, Landesdirektion Sachsen). Animals received humane
care according to German law and the Principles of Laboratory
Animal Care formulated by the National Society for Medical
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Research and the United States National Academy of Sciences
Guide for the Care and Use of Laboratory Animals, and
the Animal Research: Reporting of in vivo Experiments
guidelines were followed.

Animal Preparation and Mechanical
Ventilation
Eight female landrace pigs (35–51 kg) were intravenously
anesthetized (ketamine, 15 mg/kg/h; midazolam, 1 mg/kg/h),
orotracheally intubated, and mechanically ventilated. The
following initial settings were used: Volume-controlled
ventilation, tidal volume (VT) 6 ml/kg, PEEP 5 cmH2O,
inspiratory to expiratory ratio (I:E) 1:1, inspired fraction
of oxygen (FIO2) 1.0, RR adjusted to normocapnia, and
inspiratory flow 35 L/min (Evita XL, Dräger, Lübeck,
Germany). VT was reduced if airway plateau pressure
(Pplat) was ≥30 cmH2O. The right carotid artery, jugular
vein, and urinary bladder were catheterized under sterile
conditions. A pulmonary artery thermodilution catheter and
an esophageal balloon catheter (Cooper Surgical, Trumbull,
CT, United States; filling volume 0.5 ml) were introduced.
The correct position of the balloon catheter was confirmed
as described elsewhere (Lanteri et al., 1994). Animals were
paralyzed (atracurium, 3 mg/kg/h) throughout the whole
experiment and received a balanced electrolyte infusion
of 10 ml/kg/h during preparations and 4 ml/kg/h during
intervention time, respectively. The mean arterial pressure
(MAP) was kept >60 mmHg by means of norepinephrine and
colloid infusion, as appropriate.

Lung Injury
Following instrumentation, lung injury was induced by
repetitive lung lavage with warmed 0.9 % saline in a
prone and supine position (37◦C; 35 ml/kg; lavage pressure
approximately 30 cmH2O), until PaO2/FIO2 was <200 mmHg
for at least 30 min.

Experimental Protocol and Intervention
Time
The sequence of events is depicted in Figure 1, which represents
a subprotocol of a larger study on the effects of different MV
on lung inflammation and function. After instrumentation and
induction of lung injury, PET and CT scans were obtained
under baseline MV settings, but PEEP of 10 cmH2O. Later, MV
was adjusted according to the ARDS network recommendations
(Brower et al., 2004), as follows: volume-controlled ventilation,
VT 6 ml/kg, I:E 1:1, RR adjusted to normocapnia, and flow
35 L/min. The lowest possible fixed PEEP and FIO2 combination
were applied according to the low PEEP table (Brower et al.,
2004) to keep PaO2 between 55 and 80 mmHg. Lung recruitment
maneuvers were not applied. Ventilator settings were titrated
within 30 min, and interventional time was started afterwards.
Settings were checked hourly and adjusted if necessary. PET/CT
lung imaging was repeated 24 h after first PET/CT, and animals
were killed by intravenous bolus injection of 2 g thiopental and
50 ml 1 M potassium chloride.

Measurements
We recorded physiological variables and respiratory signals
before (Baseline) and after inducing lung injury (Injury), at
the start of intervention time (0 h) and every 6 h thereafter
(6, 12, and 18 h), respectively. Blood gasses were analyzed
using a commercially available device (ABL80, Radiometer,
Brønshøj, Denmark) and cardiac output (CO) was determined by
thermodilution method (MP70, Philips Healthcare, Eindhoven,
the Netherlands). Stroke volume (SV) was calculated by dividing
CO by heart rate (HR).

Respiratory Signals and Calculations
Respiratory signals were recorded using a LabVIEW-based
software (National Instruments, Austin, TX, United States)
and analyzed semi-automatically (MATLAB, R2019a, The
MathWorks Inc., Natick, MA, United States). Airway (Paw)

FIGURE 1 | Experimental time course. Experimental time course. PEEP, positive end-expiratory pressure; FIO2, inspiratory fraction of oxygen; VCV,
volume-controlled ventilation; I:E, inspiratory to expiratory time ratio; RR, respiratory rate; ARDSnet, acute respiratory distress syndrome network.
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and esophageal pressure (Peso) were measured using differential
pressure transducers (Sensortechnics GmbH, Puchheim,
Germany) at the endotracheal tube and the balloon catheter,
respectively. Furthermore, air flow and airway pressure signals
were recorded from the ventilator using a serial interface.
The ventilator’s airway pressure signal was used for the
offline synchronization of all recorded signals. Peak (Ppeak)
and mean (Pmean) airway pressure were determined as Paw
maximum and average during one respiratory cycle from the
respiratory tracings, respectively. Driving pressure (1P) and
transpulmonary pressure (Ptrans) were calculated as Pplat−PEEP
and Paw−Peso, respectively. Transpulmonary driving pressure
(1Ptrans) was calculated as plateau−minimal Ptrans. Elastance
(E) and resistance (R) were derived by fitting the equation
of motion to the acquired respiratory signals (multiple linear
regression). The percentage of volume-dependent elastance
(%E2) was determined as described elsewhere (Kano et al., 1994;
Carvalho et al., 2013). MP was calculated using the recorded
respiratory signals, which included continuous recordings of
airway pressure and flow. VT was calculated from the latter. First,
mechanical energy by breath (ME) is defined as the numerical
integral of the airway pressure and volume changes (Huhle et al.,
2018), constituting the tidal pressure–volume curve (PV curve),
see Figure 2. Second, ME was multiplied by RR to achieve MP.
During each breath, energy is spend to overcome resistance and
elastic forces; thus, the corresponding components, i.e., resistive
and elastic power, can be calculated. Alveolo-arterial oxygen
difference (AaDO2) and venous admixture were calculated using
standard formulas.

PET and CT
The PET-based assessment of tissue uptake rate of the radio-
tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) served as

surrogate for neutrophilic pulmonary inflammation (Musch
et al., 2007; Wadsak and Mitterhauser, 2010) and was measured
by dynamic 18F-FDG PET scans (Biograph Vision 600 PET/CT,
Siemens Healthineers, Knoxville, TN, United States), as described
elsewhere (Braune et al., 2019; Kiss et al., 2019; Wittenstein
et al., 2020). In brief, a static low-dose CT scan (attenuation-
correction computed tomography, ACCT, approximately 5 s) for
attenuation correction of the following PET scan was performed
at mean airway pressure hold and followed by injection of 18F-
FDG (∼200 MBq) and dynamic PET scan (26 cm craniocaudal
field of view, 75 min) before the start of the intervention time.
Blood samples were collected throughout the dynamic PET scan
to assess the tracer’s plasma activity (cross-calibrated gamma
counter). These lung imaging procedures were repeated 24 h after
first PET/CT. The dynamic PET scans were reconstructed using
an OSEM 3D iterative reconstruction, applying point spread
function (PSF) and time of flight and correcting for attenuation
and scatter, into an image matrix size of 440× 440, resulting in a
voxel size of 1.65 mm× 1.65 mm× 2.0 mm. ACCTs co-registered
to PET scans were used to semi-automatically create lung masks
and calculate gas fractions by FGas = CT number [Hounsfield unit
HU]/−1000 (Gattinoni et al., 2001). The 18F-FDG uptake rate
(Ki) was calculated using the Patlak model using the software
Rover (ABX GmbH, Radeberg, Germany) (Schroeder et al., 2011;
Torigian et al., 2009). Ki was then normalized to the tissue
fraction (KiS) (Wittenstein et al., 2020) as follows:

KiS =
Ki

FTissue
=

Ki
(1− FGas − FBlood)

, (1)

where, KiS stands for tissue-normalized 18F-FDG uptake rate,
FGas for gas fraction, and FBlood for blood fraction derived using
the Sokoloff model (Schroeder et al., 2011). Differences between
lung imaging data before and after intervention time (second

FIGURE 2 | Schematic pressure–volume curve for calculation of mechanical energy. Schematic visualization of changing lung volume and pressure per respiratory
cycle, constituting the pressure–volume curve. MP, mechanical power; ME, mechanical energy; RR, respiratory rate; PEEP, positive end-expiratory pressure; Pplat,
plateau airway pressure; VT, tidal volume; EELV, end-expiratory lung volume.
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PET/CT – first PET/CT) were calculated using median over the
respective semi-automatically segmented lung regions of interest
(ROIs). ROIs were segmented using a semi-automatic approach
consisting of automated segmentation using a deep convolutional
neural network algorithm trained on static CT scans from
previous animal studies, followed by manual correction by two
independent, trained physicians. Hyper (<−900 HU), normal
(−900 to −500 HU), poor (−500 to 100 HU), and non-aerated
(>−100 HU) lung compartment were computed as described
elsewhere based on ACCT data (Hedenstierna et al., 1989).

Statistical Analysis
This study was exploratory in nature, and thus, its sample size was
based on the experience of our group with previous studies on
MV and neutrophilic inflammation (Kiss et al., 2019; Wittenstein
et al., 2020). However, we defined KiS as the primary outcome.
Data are presented as median and interquartile range (IQR), if
not stated differently. Statistical differences of variables between
baseline and injury and between 0 and 18 h were analyzed
using a paired non-parametric test (Wilcoxon test, asymptotic
significance, two-sided). Association between median variables
and inflammation was assessed using non-parametric spearman
correlation. Statistics were performed using SPSS (version 27,
IBM Corp., Armonk, NY, United States). Significance was

accepted at p < 0.05. Graphs were created using GraphPad Prism
(version 6.0, GraphPad Software, San Diego, CA, United States).

RESULTS

General Results
All eight animals were included in the analysis. Median body
weight was 47.7 (8.0) kg. Animals received median 8 (3) lavages to
reach the lung injury criteria. The median intervention time, i.e.,
time from start of intervention time to completion of last lung
imaging, was 22.75 h (27 min). In total, animals received median
doses of 174 (4) ml/kg of crystalloids, and 0.144 (1.863) µg/kg of
norepinephrine during the intervention time. Median cumulative
urine output was 67 (12) ml/kg.

Respiratory Variables
Table 1 shows the respiratory variables and Figure 3 depicts
the individual time course of MP for each experiment. After
induction of experimental lung injury, RR, Ppeak, Pplat, 1P, peak
Ptrans, 1Ptrans, resistance, elastance, %E2, MP, elastic MP, resistive
MP, AaDO2, and venous admixture were significantly higher as
compared to baseline. PaO2 and PaO2/FIO2 were significantly
lower after injury than at baseline, whereas other variables

TABLE 1 | Respiratory variables.

Variable Baseline Injury 0 h 6 h 12 h 18 h BL vs. Injury
p

0 h vs. 18 h
p

Tidal volume (ml/kg) 6.5 (0.2) 6.6 (0.2) 6.5 (0.2) 6.5 (0.2) 6.5 (0.2) 6.5 (0.3) 0.327 0.484

Respiratory rate (1/min) 25 (7) 31 (9) 31 (5) 22 (6) 19 (5) 17 (3) 0.018 0.012

FIO2 (0.0–1.0) 1.00 (0.03) 1.00 (0.00) 0.32 (0.09) 0.32 (0.01) 0.32 (0.01) 0.32 (0.02) 0.109 0.438

Ppeak (cmH2O) 19.2 (2.8) 36.9 (6.6) 28.9 (3.8) 29.3 (2.7) 30.6 (2.9) 30.1 (4.5) 0.012 0.889

Pplat (cmH2O) 13.8 (1.1) 30.2 (4.9) 24.5 (2.3) 23.1 (3.9) 23.1 (3.5) 22.9 (3.1) 0.012 0.093

1P (cmH2O) 8.8 (0.9) 25.3 (5.2) 19.1 (3.4) 18.1 (3.9) 18.3 (3.6) 18.2 (3.0) 0.012 0.779

PEEPset (cmH2O) 5.0 (0) 5.0 (0) 5.0 (0) 5.0 (0) 5.0 (0) 5.0 (0) – –

PEEPmeasured (cmH2O) 5.1 (0.3) 5.0 (0.2) 5.1 (0.1) 4.9 (0.2) 4.8 (0.2) 4.9 (0.1) 0.352 0.011

Resistance (cmH2O s/l) 10.5 (4.0) 14.9 (1.8) 12.4 (2.0) 15.4 (2.3) 16.6 (3.4) 16.6 (5.6) 0.012 0.012

Elastance (cmH2O/l) 26.2 (4.9) 83.0 (20.6) 57.3 (15.0) 56.3 (12.0) 56.3 (10.7) 54.7 (9.3) 0.012 0.484

%E2 (%) −37.8 (0.4) −12.6 (9.4) −24.6 (3.5) −28.3 (4.1) −v28.6 (3.1) −29.5 (4.0) 0.012 0.069

MP (J/min) 6.6 (2.9) 17.3 (10.4) 13.5 (4.9) 9.8 (3.5) 9.9 (2.6) 8.5 (2.2) 0.012 0.012

MP elastic (J/min) 4.5 (1.9) 11.8 (7.1) 9.1 (3.3) 6.7 (2.5) 6.7 (1.8) 5.7 (1.5) 0.012 0.012

MP resistive (J/min) 2.2 (1.0) 5.5 (3.3) 4.4 (1.6) 3.1 (1.0) 3.2 (0.8) 2.7 (0.7) 0.012 0.017

Ptrans peak (cmH2O) 8.8 (4.2) 25.1 (4.8) 18.4 (3.2) 17.9 (3.4) 18.6 (4.0) 18.7 (2.4) 0.012 0.889

Ptrans endex (cmH2O) −3.5 (2.7) −4.4 (2.0) −3.9 (2.9) −4.8 (2.8) −4.3 (2.6) −4.4 (0.8) 0.123 0.123

1Ptrans (cmH2O) 12.0 (4.0) 29.3 (4.5) 21.6 (4.5) 22.3 (3.3) 23.4 (2.3) 23.2 (3.7) 0.012 0.327

PaO2 (mmHg) 530.3 (277.3) 100.5 (73.1) 106.0 (50.8) 109.5 (17.3) 110.5 (23.5) 105.5 (19.1) 0.012 0.327

PaCO2 (mmHg) 55.7 (5.6) 50.2 (10.4) 46.4 (16.9) 54.0 (9.3) 51.3 (5.1) 60.2 (4.4) 0.161 0.017

pHa 7.37 (0.08) 7.37 (0.07) 7.42 (0.11) 7.40 (0.04) 7.42 (0.03) 7.40 (0.05) 0.528 0.236

PaO2/FIO2 (mmHg) 528 (265) 101 (73) 301 (125) 352 (44) 349 (74) 320 (91) 0.012 0.208

AaDO2 (mmHg) 115.1 (241.4) 549.8 (93.6) 79.4 (40.4) 45.0 (32.7) 49.0 (37.2) 50.8 (38.1) 0.012 0.036

Venous admixture (%) 8.8 (37.1) 47.6 (16.9) 21.1 (14.0) 14.7 (3.2) 10.9 (7.9) 14.6 (13.2) 0.012 0.327

Median (IQR); BL: baseline; VT , tidal volume; FIO2, inspiratory oxygen fraction; Ppeak , peak airway pressure; Pplat, plateau airway pressure; 1P, driving pressure; PEEP,
positive end-expiratory pressure; %E2, volume-dependent elastance; MP, mechanical power calculated from pressure–volume curve; Ptrans peak, peak transpulmonary
pressure; Ptrans endex, end-expiratory transpulmonary pressure; 1Ptrans, transpulmonary driving pressure; PaO2, arterial partial pressure of oxygen; PaCO2, arterial partial
pressure of carbon dioxide; pHa, arterial pH value; PaO2/FIO2, Horovitz index; AaDO2, alveolo-arterial oxygen difference. Comparisons baseline vs. injury and 0 h vs.
18 h: Wilcoxon test, asymptotic significance, two-sided, significance accepted at p < 0.05. Bold p-values show significant differences (all p-values below 0.05).
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FIGURE 3 | Individual time course of mechanical power derived from the pressure–volume curve for each of the eight experiments.

did not differ significantly between these two pre-intervention
time points. After 18 h of intervention, resistance and PaCO2
were significantly increased, whereas RR, PEEP, MP, and elastic
and resistive MP were significantly lower as compared to the
start of the intervention. The remaining variables did not differ
significantly between begin and end of the intervention time.

Neutrophilic Inflammation
Representative PET/CT scans are presented in Figure 4. As
compared to the first PET/CT, KiS was significantly higher after
24 h (second PET/CT 0.0320 (0.0203) min−1 vs. first PET/CT
0.0136 (0.0041) min−1; p = 0.012; Figure 5). 1KiS significantly
correlated with median MP derived from the PV curve (Figure 6)
and with the median elastic and resistive MP components
(Table 2). In contrast, the other respiratory variables did not
correlate with 1KiS (Table 2).

Lung Aeration
Both median total lung mass and total pulmonary gas volume
significantly decreased from first to second lung imaging [854.1
(177.2) vs. 635.6 (121.9) g, p = 0.012; and 850.7 (143.2) vs.
780.2 (185.9) ml, p = 0.036, respectively]. In relation to total
lung mass in the corresponding PET/CT, the relative mass of
hyper-aerated compartment of the lung increased significantly

from the first to the second PET/CT scan [0.48 (0.45)% vs. 0.75
(0.64)%, p = 0.025]. The relative mass of normally, poorly, and
non-aerated lung mass did not differ significantly between the
scan before and after the intervention time (Figure 7). The net
relative lung aeration, defined as sum of poorly, normally, and
hyper-aerated lung compartments, did not differ between first
and second PET/CT [69.4 (11.1)% vs. 67.1 (15.8)%, p = 0.889].

Hemodynamic Variables
Table 3 depicts the hemodynamic variables. As compared with
baseline, MAP, mean pulmonary arterial pressure (MPAP),
pulmonary capillary wedge pressure, and central venous pressure
were significantly higher after induction of lung injury, whereas
HR, SV, and CO did not differ significantly. The majority of
hemodynamic variables did not differ significantly between start
and end of intervention time, despite cardiac SV, which was
significantly higher after 18 h of intervention time.

DISCUSSION

The main findings of the present study are in pigs ventilated
mechanically according to the low PEEP table of the ARDS
network: (1) pulmonary neutrophilic inflammation, as assessed
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FIGURE 4 | Representative PET/CT scans. Representative PET/CT scans from one representative animal, showing gas fraction (upper row) and normalized
18F-FDG uptake rate (lower row) from first (left column) and second lung scans (middle column). The right column shows the difference between second and
first scan after co-registration of ACCTs using Elastix Library. The lung masks are outlined in copper color. Fgas, gas fraction; arb. un., arbitrary units; 18F-FDG,
2-deoxy-2-[18F]fluoro-D-glucose; KiS, normalized uptake rate of 2-deoxy-2-[18F]fluoro-D-glucose.

by PET/CT, increased significantly over time; (2) among all
ventilatory variables investigated, only MP and its elastic
and resistive components showed a positive correlation with

FIGURE 5 | Normalized 18F-FDG uptake rate (KiS) before and after
intervention time. Normalized 18F-FDG uptake rate (KiS) before and after
intervention time. PET/CT, positron-emission tomography; CT, computed
tomography.

neutrophilic inflammation; and (3) global pulmonary gas
volume decreased whereas hyper-aerated relative lung mass
increased over time.

To the best of our knowledge, this is the first experimental
study that prospectively investigated the relationship between
MP and pulmonary neutrophilic inflammation as assessed
with PET/CT. Previous studies were limited to a less sensitive
assessment of VILI, including radiographic evidence of
pulmonary edema, cumulative histological scores, and lung
wet/dry ratio (Cressoni et al., 2016; Collino et al., 2019;
Vassalli et al., 2020). Neutrophilic infiltration and inflammation
is deemed to be a main pathological mechanism in the
development and course of ARDS (Zemans et al., 2009;
Grommes and Soehnlein, 2011; Matthay and Zemans, 2011).

A particular strength of our study is that we used MV settings
of a clinically common MV concept in a model of moderate acute
lung injury, rather than intentionally provoking lung injury by
unusual or artificial settings or investigating the roles of certain
ventilator parameters. Instead, we applied fixed PEEP/FIO2
combinations according to the ARDS network recommendations
(low PEEP table) (Brower et al., 2004). Although large clinical
trials did not reveal an outcome advantage of high over low
PEEP in patients with ARDS (Brower et al., 2004; Meade et al.,
2008; Mercat et al., 2008), MV concepts tolerating formation
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FIGURE 6 | Correlation of 1KiS and mechanical power. Normalized 18F-FDG uptake rate, expressed as difference between the two PET/CT scans (1KiS), and
mechanical power (MP) as assessed from the pressure–volume curve; dotted lines: 95 % confidence band of the best-fit line. Correlation was assessed as
non-parametric bivariate correlation (Spearman). Colors represent corresponding animals from Figure 3.

of atelectasis and moderate hypercapnia in order to avoid
aggressive ventilation in terms of high distending pressures are
under debate (Pelosi et al., 2018) and clinically favored. Use
of the low PEEP table was recently shown to increase survival
in patients with ARDS as compared with individualized but
higher PEEP (Cavalcanti et al., 2017). In addition, titrating
PEEP according to lung morphology did not improve outcome
and even increased mortality if morphology was misclassified,
respectively. Thus, as proposed earlier (Brower et al., 2004), fixed
PEEP/FIO2 combinations should still be used for patients with
ARDS (Chiumello et al., 2014; Battaglini et al., 2021), which
justified our selected experimental setting.

The finding that MV at relatively low PEEP increased
neutrophilic inflammation is in line with a previous experimental
study by our group (Kiss et al., 2019). Therein, PEEP was
titrated according to end-expiratory transpulmonary pressure
allowing end-expiratory alveolar collapse. This approach was
shown to increase neutrophilic inflammation as compared with
higher PEEP under controlled MV (Kiss et al., 2019). In
the present study, PEEP was titrated according to clinically
common oxygenation thresholds, and according to the low
PEEP/FIO2 table from the ARDS Net, yielding PEEP levels
even lower than the titrated PEEP in the mentioned previous
trial. Thus, it is not surprising that pulmonary neutrophilic

inflammation was detected and even increased over time herein.
Furthermore, median 1P was higher than 15 cmH2O throughout
the intervention time, which was postulated as a threshold for

TABLE 2 | Correlation between respiratory variables and 1KiS.

Variable Spearman ρ P

MP (J/min) 0.738 0.037

MP elastic (J/min) 0.738 0.037

MP resistive (J/min) 0.738 0.037

Ppeak (cmH2O) 0.405 0.320

Pplat (cmH2O) 0.310 0.456

1P (cmH2O) 0.310 0.456

1Ptrans (cmH2O) 0.095 0.823

RR (1/min) −0.108 0.798

Elastance (cmH2O/l) −0.357 0.385

Resistance (cmH2O s/l) 0.452 0.260

%E2 (%) 0.262 0.531

Spearman coefficient ρ for correlation of displayed respiratory variables with
1KiS. MP, mechanical power obtained from pressure–volume curves; Ppeak , peak
airway pressure; Pplat, plateau airway pressure; 1P, driving pressure; 1Ptrans,
transpulmonary driving pressure; RR, respiratory rate; %E2, percentage of volume-
dependent elastance. Statistical test two-sided, significance accepted at p < 0.05.
Bold p-values show significant differences (all p-values below 0.05).

Frontiers in Physiology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 717266144

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-717266 November 16, 2021 Time: 15:53 # 9

Scharffenberg et al. Mechanical Power and Pulmonary Neutrophilic Inflammation

FIGURE 7 | Relative lung aeration. Different degrees of lung aeration, expressed as % relative lung mass.

TABLE 3 | Hemodynamic variables.

Variable Baseline Injury 0 h 6 h 12 h 18 h BL vs. Injury
p

0 h vs. 18 h
p

MAP (mmHg) 72 (11) 85 (15) 81 (16) 75 (13) 74 (7) 76 (13) 0.011 0.127

MPAP (mmHg) 17 (4) 33 (4) 25 (5) 24 (5) 23 (6) 24 (10) 0.012 0.526

PCWP (mmHg) 9 (4) 11 (5) 7 (2) 8 (3) 8 (3) 8 (3) 0.017 0.053

CVP (mmHg) 6 (4) 9 (4) 5 (4) 5 (2) 6 (4) 6 (2) 0.011 0.139

HR (1/min) 96 (17) 94 (22) 120 (28) 98 (20) 94 (9) 104 (30) 0.092 0.058

SV (ml) 54 (10) 59 (12.0) 50 (15) 63 (19) 63 (9) 68 (13) 0.036 0.012

CO (l/min) 5.3 (1.0) 5.8 (1.8) 6.2 (2.4) 6.1 (2.6) 5.9 (1.9) 7.1 (2.1) 0.612 0.093

Median (IQR); BL, baseline; MAP, mean arterial pressure; MPAP, mean pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure; CVP, central venous
pressure; HR, heart rate; SV, stroke volume; CO, cardiac output; comparisons baseline vs. injury and 0 h vs. 18 h, Wilcoxon test, asymptotic significance, two-sided,
significance accepted at p < 0.05. Bold p-values show significant differences (all p-values below 0.05).

increased risk of mortality in a retrospective clinical analysis of
patients with ARDS (Amato et al., 2015). Although existing meta-
analyses are ambiguous, our finding of increased pulmonary
neutrophilic inflammation might be recognized as contradictory
to the observation that survival in ARDS may be higher with
lower PEEP (Cavalcanti et al., 2017). However, in general, clinical
outcomes are influenced by many effects, e.g., disease severity,
comorbidities, ventilation settings potentially inducing VILI, and
hemodynamics. One could hypothesize that there is a similar
inflammatory response in patients with ARDS undergoing
similar ventilator settings, but that other effects in the recent
clinical trials, e.g., impaired hemodynamics, affect outcomes
majorly as well. Our study cannot assess how clinically relevant

our observed pulmonary inflammation is and direct comparison
with the recent large clinical trials must be done cautiously.
However, we focused on an established mechanism in ARDS
pathophysiology, the neutrophilic inflammation, which served as
VILI surrogate in many high-quality experimental studies.

Despite the time point directly after starting the intervention
time (0 h), median MP was always lower than the initially
postulated VILI threshold of 12 J/min (Cressoni et al., 2016).
However, it was high at Injury and the start of intervention
time (0 h). Thus, it is not surprising that there is neutrophilic
inflammation, though MP was relatively low during intervention
time. This is also in line with the findings from another
experimental study, where the lowest power was also associated
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with histological evidence of VILI (Collino et al., 2019). In a
third experimental investigation, cumulative histological lung
injury did not differ between MP around 14 and 29 J/min
(Vassalli et al., 2020). In this regard, two major considerations
have to be made. First, absolute MP values depend on the way
of calculation. We used the respiratory tracings to assess MP,
whereas different MP formulas have been postulated since the
seminal publication in 2016 (Giosa et al., 2019). The major
criticism regarding the initial formula was that there is incorrect
mathematical modeling of the role of PEEP (Huhle et al., 2018),
whereas others tried to reduce the formula’s complexity (Marini
and Jaber, 2016; Giosa et al., 2019). This issue needs further
investigation. Second, different experimental models and settings
preclude from direct comparison of certain MP values and their
respective associated results.

Although 1P, E, and VT did not change and R increased
during the intervention time, both RR and MP decreased, i.e.,
changed in the same direction. Of course, RR contributes linearly
to MP; thus, RR and MP are closely linked mathematically. Still,
one could hypothesize that it could be mainly RR contributing
to VILI in our study. In fact, RR was associated with lung injury
under certain circumstances (Rich et al., 2003). However, only
MP correlated significantly with 1KiS in our study, whereas RR
did not. The finding that MP but not is determinants, i.e., 1P and
RR, were associated with pulmonary neutrophilic inflammation
may strengthen the potential role of MP regarding VILI as a
unifying variable, summarizing the burden resulting from the
clinically selected ventilator settings. For the first time, our study
combined concepts of pulmonary neutrophilic inflammation and
MP. Although the first is generally considered a cellular quantity
indicative of VILI, the latter is discussed as a VILI determinant.
MP depends on a number of factors including ventilator settings
(1P, VT, RR, etc.) and respiratory mechanics (R and E). Although
driving pressure may reflect the mechanical burden, i.e., stress
per breath alone, it does not reflect how often this mechanical
stress is applied per unit of time. RR quantifies mechanical
stress applied per unit of time. In a gross approximation, MP
is the product of both RR and driving pressure. Consequently,
although neither driving pressure nor RR are associated with
neutrophilic inflammation, MP may still do because both do
not necessarily covariate. In this investigation, we found an
association of MP with neutrophilic inflammation supporting the
notion that MP may be a determinant of VILI superior to the
single respiratory components. Of note, this statistical association
does not prove causality. During our intervention time, PEEP
decreased significantly. However, its median difference between
0 and 18 h was only 0.2 cmH2O, which we would not consider as
clinically relevant. Thus, its contribution to the shown decrease
of MP may have been negligible.

The CT scans revealed that both the total pulmonary gas
volume decreased during the intervention time, whereas the
relative mass of lung aeration compartments did not change
substantially, despite the significantly increased hyper-aerated
compartment. The decreased lung mass may be explained by a
decrease of intrapulmonary fluid content, because lung lavage
fluid partly remained in the airways and alveoli after induction
of lung injury, but was removed by positive pressure ventilation

and capillary/lymphatic resorption within the intervention time
and before second CT. This is in line with our experiences
with the lavage model. The total gas volume decreased most
likely because first CT scan was performed at PEEP of
10 cmH2O, whereas median PEEP was substantially lower
at the moment of second CT (∼5 cmH2O). Interestingly,
net relative lung aeration (defined as aerated relative lung
mass in relation to total lung mass at respective CT scans)
did not differ; thus, the atelectatic compartment remained
stable. Accordingly, median end-expiratory transpulmonary
pressure was negative throughout the intervention time,
which promotes end-expiratory lung collapse and atelectasis
formation. Furthermore, elastance, 1P, and transpulmonary
driving pressure did not differ significantly between start and
end of the intervention time. The significant increase of PaCO2
over time could suggest decreasing lung aeration, but venous
admixture did not differ between 0 and 18 h. More likely, PaCO2
increased because RR was decreased to keep arterial pH in
a desired range. Within the aerated lung compartments, only
relative hyper-aeration increased significantly. Although this was
not accompanied by significant changes of %E2, it fits to the
finding of increased KiS in the second PET/CT.

As the only hemodynamic variable, SV significantly differed
between 0 and 18 h. Most likely, hemodynamics were still
impaired at 0 h related to the recent induction of lung
injury. Already 6 h later, SV increased and remained stable
or even increased until 12 and 18 h, respectively. The latter
may reflect further hemodynamic stabilization or recovery, and
may be related to the increasing cumulative intravenous fluid
administration. In contrast, increased SV could be interpreted
as a reaction to the increasing inflammatory status. However,
HR, CO, MAP, and the need for norepinephrine did not change
significantly, rendering this explanation less likely.

Possible Clinical Implications of the
Findings
Because MP was associated with a major pathological mechanism
of lung injury in ARDS, namely neutrophilic infiltration and
inflammation, clinicians may consider adjusting MV to reduce
MP, whereas providing minimally acceptable gas exchange.

Limitations
The present study knows limitations. First, this was a relatively
small, explorative experimental trial in pigs to investigate
prospectively the association of MP with pulmonary neutrophilic
inflammation, which limits direct extrapolation to humans.
Second, we used an injury model based on lung lavages only,
precluding direct translation to different models. Third, we did
not provoke different magnitudes of MP, which may limit the
extrapolation to other MV settings or concepts, e.g., higher PEEP
or open lung approach. However, we aimed to investigate the
effects in an experimental model reflecting common clinical
settings. Fourth, PEEP differed between the first and the second
PET/CT. However, PEEP was adjusted according to defined
criteria, did not differ between animals, and may reflect clinically
relevant time course. Fifth, we assessed VILI in terms of
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the metabolic activity as indicated by normalized 18F-FDG
uptake rate. Although other metabolically active cells may also
accumulate this tracer, previous studies identified KiS as a reliable
VILI surrogate (Jones et al., 1997; Musch et al., 2007; Costa et al.,
2010; Saha et al., 2013). We addressed only the short- to mid-term
effects, resembling the very early phase of ARDS. Sixth, we did not
evaluate histological VILI features, because other investigators
have successfully completed histological analyses previously
(Collino et al., 2019; Vassalli et al., 2020). In this regard, our
study expands previous trials. Seventh, results are only valid for
controlled ventilation, which we used herein. Results may differ
in a clinical setting where spontaneous breathing is increasingly
accepted nowadays, also within the first 24 h.

CONCLUSION

In experimental acute lung injury in pigs, MV according
to the recommendations of the ARDS network and using
the low PEEP/FIO2 table resulted in increased PET/CT-
derived pulmonary neutrophilic inflammation, which
correlated with MP.
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This review focuses on the advances in the understanding of the pathophysiology of 
ventilator-induced and acute lung injury that have been afforded by technological 
development of imaging methods over the last decades. Examples of such advances 
include the establishment of regional lung mechanical strain as a determinant of ventilator-
induced lung injury, the relationship between alveolar recruitment and overdistension, the 
regional vs. diffuse nature of pulmonary involvement in acute respiratory distress syndrome 
(ARDS), the identification of the physiological determinants of the response to recruitment 
interventions, and the pathophysiological significance of metabolic alterations in the acutely 
injured lung. Taken together, these advances portray multimodality imaging as the next 
frontier to both advance knowledge of the pathophysiology of these conditions and to 
tailor treatment to the individual patient’s condition.

Keywords: positron-emission tomography, tomography X-ray computed, magnetic resoance imaging, ventilator-
induced lung injury, acute lung injury, respiratory distress syndrome, respiratory physiological phenomena, isotopes

INTRODUCTION

Most reviews of imaging for acute lung injury start from the specific method and then derive, 
based on its technical and physical properties, the corresponding application. The approach 
of this review will be  different. It will start from fundamental pathophysiologic and metabolic 
hallmarks of ventilator-induced and acute lung injury to derive the corresponding phenotypic 
trait that can be  leveraged as an imaging target. Not aiming to be  an exhaustive review of 
this topic, for which there are recent comprehensive papers (Cereda et  al., 2019), the emphasis 
herein will be  on phenotype-based imaging approaches that hold promise of significant new 
developments and applications as well as on the insights that such approaches have already yielded.

HETEROGENEOUS LOSS OF AERATION AND 
CONCENTRATED LUNG STRAIN

Since the late 1980s, it became clear that what had been previously considered a homogeneous 
loss of aeration throughout the lung of patients with acute respiratory distress syndrome 
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(ARDS) was instead heterogeneously distributed. Such loss 
involved only certain portions of the lung, most frequently 
the dependent, dorsal, and caudal regions, while often sparing 
the more anterior nondependent ones (Puybasset et al., 1998). 
A functional consequence of this heterogeneous loss of aeration 
is that the amount of lung available to accommodate tidal 
volume is reduced and hence potentially exposed to greater 
mechanical strain during ventilation (Gattinoni and Pesenti, 
2005). Because the lung, in contrast to solid organs like the 
liver or the brain, contains gas, mechanical strain is accompanied 
by a change in gas volume and thus lung density and electrical 
impedance. This property has been leveraged by, respectively, 
computed and electrical impedance tomography to measure 
the regional distribution of tidal volumetric strain in 
mechanically ventilated patients with, and animal models of, 
ARDS. Computed tomography (CT) measures the x-ray 
absorbance of each “piece” (voxel) of lung, which is inversely 
proportional to its gas content. Multi-detector CT scanners 
allow coverage of the entire lung fields at very high spatial 
resolutions of 1–2 mm. This enables reconstruction of a detailed 
three-dimensional map of the distribution of lung gas volume 
vs. tissue volume. By taking CT scans at different phases of 
the respiratory cycle, such as end expiration and end inspiration, 
or at different end-expiratory pressures, one can derive 
information on the distribution of both static and dynamic 
lung strain. While CT has the definite advantage of a very 
high spatial resolution, its main limitations are: cost, radiation 
exposure, and extreme difficulty, if not inability, to use it as 
a bedside tool to guide ventilator strategy. Electrical Impedance 
Tomography (EIT) partially obviates these limitations, albeit 
at the expense of a much lower spatial resolution. In EIT, 
an electrode belt is placed around the chest and used to 
record cross-sectional voltages after stimulation with 
low-amperage alternating current. Changes in thoracic electrical 
impedance are related to changes in the amount of gas relative 
to lung tissue, edema, or blood volume, and hence have 
been used mainly to assess the regional distribution of 
ventilation and end-expiratory lung gas volume. A distillate 
of the findings of literally hundreds of studies performed 
with CT and EIT is:

 a. Loss of aeration is predominant in dependent dorsal and 
caudal regions (Puybasset et  al., 1998).

 b. As a result, tidal volume distributes preferentially to the 
non-dependent ventral regions (Gattinoni et al., 1995; Spinelli 
et  al., 2021), exposing them to increased and potentially 
injurious strain, which compounds the inflammatory process 
of ARDS and leads to ventilator-induced lung injury (VILI).

 c. The increased vertical pleural pressure gradient of the 
edematous lung defines a transition zone of poorly aerated 
lung tissue that undergoes the greatest cyclical changes in 
lung density during the respiratory cycle. This zone is thought 
to act as a focus of propagation of subsequent injury (Cereda 
et  al., 2017; Xin et  al., 2018)

 d. Recent evidence indeed suggests that lung regions that exhibit 
the greatest cyclical change in density with tidal volume at 
the start of a period of mechanical ventilation eventually 

become “injured” as defined by a stable increase of their 
density above −300 Hounsfield Units (Cereda et  al., 2017);

 e. All of the above phenomena can be  partially reversed with 
positive end-expiratory pressure (PEEP) or prone positioning 
(Gattinoni et al., 1995; Cornejo et al., 2013; Xin et al., 2018).

TOMOGRAPHIC IMAGING OF INHALED 
GASES TO DERIVE MEASURES OF 
REGIONAL VENTILATION AND 
ALVEOLAR GEOMETRY

The above measurements of lung gas content with an external 
source be  it of radiation or electricity, cannot directly trace 
the transport and distribution of inhaled gases to the alveolar 
airspace where gas exchange occurs. Several techniques were 
developed to overcome this limitation by administering inhaled 
gases that would yield a signal to be  imaged. Herein, we  will 
review three such techniques that hinge on three different 
imaging modalities, and the insights they provided.

Xenon is a radiodense gas and can thus be  used as an 
inhaled contrast agent to study regional gas transport, ventilation, 
and lung strain with CT. Using this technique, Herrmann et al. 
(2021) recently demonstrated that multifrequency oscillatory 
ventilation, a new approach to oscillatory ventilation that uses 
more than one frequency in the ventilatory waveform, achieved 
fast gas transport rates, similar to conventional mechanical 
ventilation, but with much lower delivered volumes, comparable 
to high frequency oscillatory ventilation. This mode should 
thus afford the lower lung stretch of high frequency oscillation, 
while compensating the drawback of less efficient gas transport 
than conventional mechanical ventilation.

Another approach is to administer an inhaled radioactive 
gas, either a single photon, like krypton-81, or positron, like 
nitrogen-13 (13N2), emitter. The washin, equilibration, and 
washout kinetics can then be imaged by single photon emission 
computed tomography (SPECT) or positron emission tomography 
(PET), respectively. Using inhaled 13N2, Wellman et  al. (2014) 
showed that high PEEP decreases tidal strain in middle and 
dependent lung regions of mechanically ventilated sheep exposed 
to intravenous lipopolysaccharide, an experimental model for 
sepsis. Inhaled gas methods have also allowed validation of 
strain measurements derived from lung density changes against 
other measurements of regional mechanics such as specific 
ventilation (Wellman et  al., 2010) and parenchymal marker 
displacement (Fuld et  al., 2008).

A third approach is based on inhalation of hyperpolarized 
gases, in particular helium-3 (3He) and xenon-129 (129Xe), the 
distribution of which can be  imaged with magnetic resoance 
imaging (MRI). 3He has been used to measure the apparent 
diffusion coefficient (ADC) in models of ARDS and atelectasis 
during mechanical ventilation (Cereda et  al., 2011, 2013a,b, 
2016). Helium’s small nucleus enables rapid diffusivity, which 
is limited only by the restriction imposed by the alveolar wall. 
The ADC is a measure of how freely and far a nucleus can 
diffuse within a specific medium. This diffusivity is decreased 
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by barriers that do not allow free passage of the nucleus, as 
are the alveolar walls in the lung. Consequently, the smaller is 
the size of the acinar space, the more restricted is the movement 
of 3He and the lower is the ADC. This technique has thus been 
particularly valuable to yield insights on airspace size changes 
with atelectasis and PEEP. In particular, this technique has led 
to an appreciation of the importance of alveolar interdependence 
when considering the effects of alveolar overdistension and 
derecruitment (Cereda et  al., 2011). Whereas classical thinking 
had these two phenomena occurring at high and low extremes 
of airway pressure, respectively, and in topographically distinct 
parts of the lung (non-dependent vs. dependent), 3He MRI 
studies revealed that ADC of ventilated airspaces increases during 
ventilation at low airway pressure that promotes atelectasis, that 
this increase is reversed by alveolar recruitment maneuvers 
(Cereda et  al., 2011), and that the highest ADC increase tends 
to colocalize with the loss of aeration in dependent dorsal regions 
(Cereda et al., 2016). In a saline-lavage model of ARDS (Cereda 
et al., 2013a), surfactant depletion resulted in a wider distribution 
of ADC, shifted toward higher ADC values. Combined application 
of PEEP and exogenous surfactant restored ADC values and 
distribution similar to those before lavage (Figure 1). In another 
study, application of PEEP to initially healthy but derecruited 
lungs resulted in reversal of ADC-hysteresis, with smaller ADC 
values on the descending than on the ascending limb of the 
pressure-ADC curve as opposed to the whole lung pressure-
volume curve (Cereda et al., 2013b). Taken together, these results 

have been interpreted to indicate that alveolar derecruitment 
leads to overstretching of airspaces that remain open, due to 
alveolar interdependence. Interalveolar traction forces between 
open and atelectatic airspaces in the same or contiguous regions 
are relieved by alveolar recruitment, which results in a greater 
number of open airspaces, with consequent reduction of the 
forces and smaller and more homogenous distribution of 
alveolar size.

TOMOGRAPHIC IMAGING OF SHUNT, 
EDEMA, AND VASCULAR 
PERMEABILITY

A pathophysiological hallmark of ARDS is increased pulmonary 
vascular permeability, which leads to interstitial and intraalveolar 
edema. The functional consequence of edema is shunt, whereby 
gas exchange with pulmonary capillary blood is impeded. These 
physiological alterations, and their topographical distribution, 
can be measured with PET of several isotopes. The key concept 
here is that the delivery of the tracer by inhalation is not 
useful because, by definition, inhaled tracer cannot reach regions 
of shunt, which are not ventilated. Therefore, even techniques 
like 129Xe MRI, which can measure gas transport efficiency in 
healthy lungs from the loss of 129Xe signal to the blood phase 
as Xe is absorbed into the pulmonary circulation (Ruppert 
et al., 2019), do not yield a measurable signal in shunting regions.

One approach to circumvent this roadblock is to administer 
a gaseous tracer in saline solution intravenously, so that it can 
reach shunting regions, which are perfused. Historically, the 
first gas used for this purpose was sulfur hexafluoride, as part 
of the multiple inert gas elimination technique. A necessary 
prerequisite for measuring “true” shunt is that such gas must 
have very low solubility in blood so that it entirely diffuses 
into the gas phase of non-shunting units at first pass, and is 
retained only in shunting units. A gas that has similarly low 
solubility and also the advantage of a positron emitting isotope 
is nitrogen. The corresponding PET technique to measure 
regional pulmonary perfusion and shunt is based on the 
intravenous administration of [13N]nitrogen (13N2) in saline 
solution (Galletti and Venegas, 2002; Vidal Melo et  al., 2003). 
A bolus of 13N2 gas dissolved in 20–30 ml of saline is infused 
intravenously at the beginning of a 30- to 60-s apnea while 
the pulmonary kinetics of 13N2 is measured with sequential 
PET frames. Because of the low solubility of nitrogen in blood 
and tissues (partition coefficient between water and air is 0.015 
at 37°C); virtually all infused 13N2 diffuses into the airspace 
of aerated alveoli at first pass, where it accumulates in proportion 
to regional perfusion (Musch et  al., 2002). However, if alveoli 
are perfused but not aerated, for example because they are 
atelectatic or flooded with edema, 13N2 kinetics shows an early 
peak of tracer activity, reflecting perfusion to that region, 
followed by an exponential decrease for the remainder of apnea, 
as 13N2 to shunting units is carried away by ongoing blood 
flow. The magnitude of this decrease is proportional to regional 
shunt, and robust estimates of regional perfusion and shunt 

FIGURE 1 | Effect of positive end-expiratory pressure (PEEP), surfactant 
depletion by saline lavage, and exogenous surfactant administration on 
helium-3 (3He) spin density (A) and alveolar size as inferred by apparent 
diffusion coefficient (ADC) for 3He (B) in a coronal slice of rat lung. At PEEP = 0 
cmH2O, saline lavage shifted the ADC distribution toward higher values and 
increased its variance (C), consistent with greater heterogeneity of aerated 
acini’s size and alveolar overdistension, as it can be appreciated by yellow 
and red speckling on the lung ADC map. PEEP and surfactant reduced this 
speckling, both individually and through a combined effect that resulted in 
restoration of an ADC map similar to the healthy state (Modified from 
Cereda et al., 2013a).
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fraction can be  derived by applying a mathematical model to 
the pulmonary kinetics of a 13N2–saline bolus, measured by 
PET during apnea (Galletti and Venegas, 2002; O’Neill et al., 2003).

A distillate of the main findings obtained with this technique is:

 a. Surfactant depletion is accompanied by alveolar derecruitment 
in dependent regions without major perfusion redistribution 
toward non-dependent regions. As a result, substantial shunt 
develops in dependent lung regions in the supine position 
(de Prost et  al., 2011);

 b. Interventions aimed at recruiting alveoli with increased 
airway pressure, such as recruitment maneuvers and PEEP, 
exert two competing effects on the determinants of 
oxygenation: on one hand they promote re-aeration of 
derecruited airspaces, thus favoring an improvement of 
oxygenation, on the other they divert blood flow toward 
regions that remain derecruited, thus favoring an increase 
of shunted perfusion and a worsening of oxygenation. The 
net result of these two effects determines whether oxygenation 
improves or worsens, and the change in oxygenation can 
be precisely predicted based on the effect of these interventions 
on regional shunted blood flow (Musch et  al., 2004, 2008);

 c. Prone positioning restores gas exchange to the dorsal lung 
in a model of surfactant depletion while only minimally 
increasing shunted perfusion to the ventral, dependent lung, 
with consequent dramatic improvement in blood gases 
(Richter et  al., 2005).

Shunt is a functional consequence of edema. Using 
intravascular tracers that freely diffuse across the endothelium 
into edematous regions, it is possible to quantify the regional 
distribution of pulmonary perfusion and extravascular 
extracellular lung water, i.e., edema fluid. One such technique 
is based on PET imaging of the pulmonary kinetics of 15O-
water (H2

15O) to measure regional perfusion and lung water, 
coupled with PET blood volume scans after inhalation of 11C- 
or 15O-carbon monoxide to subtract pulmonary blood volume 
from regional water (Mintun et  al., 1986). Extravascular lung 
water can then be  obtained by subtracting intravascular water 
from regional water. This technique thus allows determination 
of regional pulmonary blood flow and extravascular lung water 
(i.e., edema). Main findings obtained with this technique and 
other PET techniques that measure regional blood flow are:

Perfusion redistributes away from dependent edematous lung 
regions in oleic acid-induced lung injury (Gust et  al., 1998), 
to a much greater extent than observed in the lung lavage 
model (Musch et  al., 2004, 2008; de Prost et  al., 2011). This 
redistribution, which acts to preserve arterial oxygenation, is 
impaired by intravenous endotoxin, thus worsening oxygenation. 
Because endotoxin blunts hypoxic pulmonary vasoconstriction 
(Brimioulle et al., 2002; Easley et al., 2009; Fernandez-Bustamante 
et  al., 2009), this observation implies that vascular smooth 
muscle contraction is responsible for at least part of the observed 
perfusion redistribution in this model;

Studies in patients with ARDS using the H2
15O technique 

have also revealed lack of substantive perfusion redistribution 
away from edematous regions (Schuster et al., 2002), suggesting 

that hypoxic pulmonary vasoconstriction is, at least to some 
extent, impaired, similarly to the experimental endotoxin studies 
(Gust et  al., 1998);

Redistribution of perfusion away from injured regions, similar 
to the oleic acid model, was instead demonstrated after unilateral 
endobronchial instillation of hydrochloric acid, a model for 
gastric aspiration, using PET of 68Ga labeled microspheres to 
measure perfusion in rats (Richter et  al., 2015).

Edema in ARDS is a consequence of increased pulmonary 
vascular permeability. This pathophysiological abnormality 
can be leveraged with PET by imaging the regional distribution 
of the pulmonary transcapillary escape rate of a radiolabeled 
protein, such as 68Ga-transferrin or 11C-methylalbumin, 
between the intravascular and extravascular space (Schuster 
et  al., 1998). The most consequential insight into ARDS 
provided by this technique was a dissociation between the 
topographical distribution of pulmonary vascular permeability 
increase and that of the resultant edema (Sandiford et  al., 
1995). Whereas permeability was similarly increased in ventral 
and dorsal lung regions, extravascular lung density was 
significantly higher in dorsal, dependent regions, than in 
ventral, nondependent ones. This finding suggests that even 
when the inflammatory process involves the entire lung 
parenchyma, the resultant edema is heterogeneously distributed 
and tends to concentrate in dependent regions, most likely 
as a consequence of the effect of gravity.

In addition to PET, a technique that has recently emerged 
as a potentially useful clinical tool to image the mismatch 
between pulmonary gas and blood volume distribution is 
contrast-enhanced dual energy CT. Two CT scans with different 
radiation energy are simultaneously acquired and then 
processed to reconstruct the spatial distribution of pulmonary 
blood volume, a surrogate for pulmonary perfusion (Fuld 
et  al., 2013). Using this technique, Ball et  al. (2021) showed 
that patients with ARDS due to SARS-CoV-2 requiring invasive 
mechanical ventilation showed both a ventro-dorsal and 
cranio-caudal gradient in blood volume opposite to that in 
gas volume, with the result that regions with low gas-to-
blood content (i.e., mismatch) increased from ventral to 
dorsal and from cranial to caudal. Interestingly, however, 
there were also areas of nonaerated lung that did not appear 
to contain blood, especially in dependent regions, consistent 
with pulmonary vascular thrombosis in opacities due to 
SARS-CoV-2 ARDS.

LEVERAGING ANAEROBIC METABOLISM 
AS AN IMAGING BIOMARKER FOR 
NEUTROPHILIC INFLAMMATION

Acute respiratory distress syndrome and VILI are characterized 
by a neutrophilic inflammatory response. Neutrophils have very 
few mitochondria and hence rely primarily on glycolysis for 
their energy needs. A corollary of this phenotypic trait is that, 
because glycolysis has low energy yield, activated neutrophils 
increase their glucose consumption and lactate production 
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disproportionately to other cell types to satisfy their increased 
energy requirement. This trait can be leveraged by two different 
metabolic imaging modalities: PET of 2-[18F]fluoro-2-deoxy-
D-glucose ([18F]FDG) and MRI of hyperpolarized [1-13C]pyruvate. 
In the former modality, the positron emitting glucose analog 
[18F]FDG is taken up by cells through facilitative glucose 
transporters and phosphorylated by hexokinase to [18F]FDG-6-
phosphate, which cannot proceed further along the glycolytic 
pathway and thus accumulates in proportion to cellular metabolic 
rate. Substantive experimental and clinical evidence has 
established PET measurement of [18F]FDG uptake as a tool 
to noninvasively assess the activation of inflammatory cells in 
the noncancerous lung (Jones et  al., 1994; Chen and Schuster, 
2004). In particular, the increase in [18F]FDG uptake during 
VILI was shown to be largely attributable to neutrophils (Musch 
et  al., 2007) and, to a lesser extent, other cell populations 
such as macrophages and type 2 epithelial cells (Saha et  al., 
2013). The main insights into the pathophysiology of acute 
and ventilator-induced lung injury afforded by PET of [18F]
FDG are:

 a. Inflammatory cell metabolic activation is an early event in 
the pathogenesis of lung injury, as increased [18F]FDG uptake 
precedes impairment of pulmonary gas exchange in an acute 

smoke inhalation model of lung injury (Musch et  al., 2014) 
and development of lung densities in an endotoxemia model 
with superimposed mechanical ventilation (Wellman 
et  al., 2016);

 b. The topographical distribution of [18F]FDG uptake reflects, 
at least in part, that of mechanical lung strain. Regions 
of lung that are most exposed to the biophysical determinants 
of VILI also show increased [18F]FDG uptake (Wellman 
et  al., 2014; Motta-Ribeiro et  al., 2018; Retamal et  al., 
2018). This topographical heterogeneity of [18F]FDG uptake 
is enhanced by the infusion of low-dose endotoxin 
concomitantly with mechanical ventilation (Costa et  al., 
2010), a model for clinical sepsis, and reduced by protective 
ventilation with high PEEP and low tidal volume (de Prost 
et  al., 2013);

 c. Importantly, regions of lung that present increased [18F]
FDG uptake on PET also reveal gene expression patterns 
indicative of activation of specific inflammatory pathways, 
adhesion molecules, and epithelial and endothelial stretch 
markers (Wellman et  al., 2016; Motta-Ribeiro et  al., 2018). 
In addition, parameters derived from [18F]FDG kinetic 
modeling correlate with specific aspects of the inflammatory 
response, such as neutrophil infiltration and cytokine 
expression (de Prost et  al., 2014);

A B

FIGURE 2 | Computed tomography (CT) scans (upper row) and positron emission tomography (PET) scans of [18F]FDG uptake (bottom row) in two patients with 
acute respiratory distress syndrome (ARDS). In patient A, [18F]FDG uptake is highest in regions of increased lung density on CT, suggesting that these opacities are 
inflamed and possibly responsible for ARDS. In contrast, in patient B, there is a dissociation between [18F]FDG signal and density, with increased [18F]FDG uptake in 
nondependent normally aerated regions of both lungs. A hypothesis is that, in this case, the [18F]FDG signal mainly reflects ventilator-induced lung injury (VILI), as 
these are the regions exposed to mechanical ventilation (Reproduced from Bellani et al., 2009).
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 d. Whereas there is consistent evidence that volutrauma leads 
to increased pulmonary [18F]FDG uptake (Musch et  al., 
2007; Güldner et  al., 2016), results have been conflicting 
on the role of so called “atelectrauma.” Studies in both 
animal models (Güldner et  al., 2016) and patients (Bellani 
et  al., 2011) have not been able to conclusively demonstrate 
increased [18F]FDG uptake in regions of cyclical tidal 
recruitment-derecruitment, which are the expected origin 
of atelectrauma;

 e. In patients with ARDS, the distribution of lung opacities 
on CT does not necessarily overlap with that of [18F]FDG 
uptake measured by PET (Bellani et  al., 2009; Cressoni 
et  al., 2016). In some patients, the highest [18F]FDG uptake 
occurs in areas that appear consolidated on CT, suggesting 
that the primary inflammatory process responsible for ARDS 
is also responsible for the increased PET signal. In other 
patients, instead, the PET signal is higher in regions with 
normal aeration. The increased signal in these aerated and 
ventilated regions could reflect the iatrogenic injury from 
mechanical ventilation (Figure  2).

Some of the above findings were recently corroborated by 
metabolic imaging of hyperpolarized [1-13C]pyruvate in a 
hydrochloric acid instillation model of ARDS with superimposed 
VILI. This MRI method showed increased lactate production, 
consistent with neutrophilic inflammation, when acid instillation 
was followed by ventilation with no PEEP. The increased lactate 
localized predominantly to the dependent dorsal lung in this 
model, together with increased proton signal intensity consistent 
with the development of increased lung density from exudate, 
consolidation, or atelectasis. Protective ventilation with PEEP 
prevented the increase in lactate signal after acid instillation 
(Pourfathi et  al., 2018).

Main advantages and limitations of the pulmonary imaging 
modalities presented in this review are summarized in Table 1.

CONCLUSION

Over the past 4 decades, substantive evolution in image technology 
and processing has enabled application of an array of imaging 
methods to study the acutely injured lung. These methods 
have yielded fundamental insights into the pathophysiology of 
VILI and of the gas exchange impairment and inflammatory 
response of ARDS.
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Lung diseases are the most common conditions in newborns, infants, and children and
are also the primary cause of death in children younger than 5 years old. Traditionally,
the lung was not thought to be a target for an ultrasound due to its inability to penetrate
the gas-filled anatomical structures. With the deepening of knowledge on ultrasound
in recent years, it is now known that the affected lung produces ultrasound artifacts
resulting from the abnormal tissue/gas/tissue interface when ultrasound sound waves
penetrate lung tissue. Over the years, the application of lung ultrasound (LUS) has
changed and its main indications in the pediatric population have expanded. This review
analyzed the studies on lung ultrasound in pediatrics, published from 2010 to 2020, with
the aim of highlighting the usefulness of LUS in pediatrics. It also described the normal
and abnormal appearances of the pediatric lung on ultrasound as well as the benefits,
limitations, and possible future challenges of this modality.

Keywords: lung ultrasound, LUS, children, pediatrics, imaging, lung disease

INTRODUCTION

Lung diseases are the most common conditions in newborns, infants, and children and are also the
primary causes of death in children younger than 5 years old (Liu et al., 2015b). Therefore, accurate
and timely diagnosis is extremely important in order to enable efficient treatment and to improve
the prognosis of patients with lung diseases.

In the past, the diagnosis of lung disease in the pediatric population mainly depended on
chest X-ray (CXR) and/or computed tomography (CT). However, CXR may not be efficient
bedside, requires transfer to specific radiological settings with all the infectious risks for patients
and operators, and exposes the patient to ionizing radiation. Ultrasound imaging is based
on the reflection and scattering of ultrasound (US) beam occurring at the interfaces between
different media.

Traditionally, the lung was not thought to be a target for ultrasound waves due to their inability
to penetrate the gas-filled anatomical structures. With the deepening of knowledge on ultrasound
in recent years, it is now known that the affected lung produces ultrasound artifacts resulting from
the abnormal tissue/gas/tissue interface when US waves penetrate lung tissue. Such artifacts are the
basis of lung ultrasound (LUS) application in the clinic (Coley, 2011; Joshi et al., 2019).
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Until recently, LUS has been underutilized for evaluation
of the lung in pediatrics. Over the years, its applications have
changed and its main indications in the pediatric population
have expanded. Hence, ultrasound, which was previously used
mainly to confirm the presence and nature of pleural effusion
as well as to differentiate solid from cystic masses, was later
used to evaluate the lung as well. To date, LUS is a frequently
used diagnostic tool in daily pediatric clinical practice among
clinicians and radiologists, but its application is not yet widely
accepted, despite the numerous literature data.

This review analyzed the studies on LUS in pediatrics,
published from 2010 to 2020, with the aim of highlighting the
usefulness of pediatric LUS. It also described the normal and
abnormal appearances of the pediatric lung on ultrasound as
well as the benefits, limitations, and possible future challenges
of this modality.

METHODS

Our work is a narrative review that included articles from
October 2010 to February 2020.

To be included in the review, papers needed to focus on
pediatric experience with lung ultrasound to diagnose different
pathological conditions.

The bibliographic database named PubMed was chosen to
identify potentially relevant documents using keywords “lung
children ultrasound” and “lung children echography.” The
articles published between October 2010 and February 2020,
written in French or English, and concerning the pediatric age
including the neonatal age, were taken into consideration.

Papers that did not fit into the conceptual framework of this
review or that dealt with the ultrasound experience of adult
patients were excluded.

We grouped the studies according to the topic:
ultrasound techniques and images; pneumonia; bronchiolitis;
pneumothorax; neonatal ultrasound; wheezing.

Furthermore, each section has been divided by year
(Supplementary Materials).

INDICATIONS, LIMITATIONS, AND USE
OF LUNG ULTRASOUND IN THE
PEDIATRIC POPULATION OVER THE
LAST 10 YEARS

Until recently, LUS has been underutilized for evaluation of the
lung in pediatrics. The bony chest and the presence of air within
the lungs were thought to interfere with the transmission of US.
Currently, it is known that ultrasonography is suitable for the
pediatric chest due to the lack of significant subcutaneous fat.
Additionally, the pediatric chest wall is only partially ossified,
providing additional acoustic windows that are not available in
older children or adults. The thymus also allows for adequate
acoustic windows for the evaluation of the anterior chest and
mediastinum. Non-ossified sternal and costal cartilage which

appears relatively hypoechoic in US gradually ossifies with aging
thus decreasing acoustic access (Coley, 2011; Joshi et al., 2019).

Over the years, the applications of LUS have changed and its
main indications in children have expanded.

From 2010 to 2015: Lung Ultrasound as a
Support Diagnostic Tool
In the first years during which lung ultrasound was used in
pediatric clinical practice, the authors were rather skeptical of its
use for which they emphasized its limits rather than advantages
and limited its use to a few conditions, in clinical practice, mainly
in support of other radiological investigations.

The most common indication for LUS was to evaluate the
opacities detected by CXR and the pleural abnormalities (Coley,
2011; Joshi et al., 2019). For example, it allowed differentiating
whether the cause of a completely opaque hemithorax was
parenchymal or pleural disease (or both) guiding the appropriate
direction of therapy and the eventual thoracic surgery.

Other classic applications of LUS in children – in support of
classical radiology – were the evaluation of mediastinal widening
and the study of chest wall lesions. Specifically, focal masses were
studied by LUS to determine their location and whether they were
solid or cystic (Coley, 2011; Joshi et al., 2019).

Reviewing the studies performed up to that moment in
the pediatric field, several authors (Supakul and Karmazyn,
2013; Tomà and Owens, 2013; Trinavarat and Riccabona, 2014)
concluded that the exclusive approach with LUS instead of CXR
could only be applicable in case of assessment of large areas of
consolidation in contact with the pleural surface or a suitable
acoustic window and for the presence of pleural effusions.
They (Supakul and Karmazyn, 2013; Tomà and Owens, 2013;
Trinavarat and Riccabona, 2014) stated that CXR was the primary
imaging modality for evaluating respiratory disease and that
chest CT should typically be performed when better pathology
characterization or surgical planning was needed.

However, according to other authors (Coley, 2005; Riccabona,
2008; Chira et al., 2011; Mong et al., 2012), LUS could be used in
the evaluation of lesions/diseases that appeared to be occult on
chest radiography.

From 2010 to 2015: Lung Ultrasound,
More Limits Than Advantages?
Most of the authors (Supakul and Karmazyn, 2013; Tomà and
Owens, 2013; Trinavarat and Riccabona, 2014) – reviewing the
papers carried out up to 2013–2014 – underlined the limits of the
use of LUS in children and the weaknesses of the idea of regularly
replacing CXR with LUS.

These limitations included the following: (1) the lack of
studies in the pediatric population aimed at evaluating the
pathology of the broncho-tracheal airways; (2) the need for
contact between the diseased lung portion and the pleural surface
and the need to find an adequate acoustic window; (3) the
fact that acoustic phenomena are not always directly convertible
into images of the human body as direct biomarkers; (4)
the difficult sonographic differentiation between consolidation
and atelectasis due to the conflicting opinions of the different
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authors up to that moment (2014). In this regard, Lichtenstein
et al. (2009), hypothesized that in infectious lung disease
LUS shows an alveolar consolidation with air bronchograms
with a specificity of 94% and a sensitivity of 61% for the
diagnosis of pneumonia (Lichtenstein et al., 2009; Tomà and
Owens, 2013). On the other hand, Riccabona (2008), stated
that ultrasound cannot reliably differentiate between atelectasis
caused by pneumonia and other causes and that caution is
needed about the significance of small areas of subpleural lung
consolidation and pleural line abnormalities (Kim et al., 2000;
Riccabona, 2008; Caiulo et al., 2013). (5) The comparison
of LUS was with CXR in the studies performed. Instead,
the gold standard for the respiratory disease should be lung
CT, which cannot be used habitually for ethical reasons
of radiation exposure (Supakul and Karmazyn, 2013; Tomà
and Owens, 2013; Trinavarat and Riccabona, 2014); (6) the
fundamental dependence on the patient’s clinical information
before performing LUS and the usefulness of having the most
recent CXR because, according to the authors (Supakul and
Karmazyn, 2013; Tomà and Owens, 2013; Trinavarat and
Riccabona, 2014), it would allow to guide the study in the area
of interest. In addition, other studies (Tomà, 2013a,b; Tomà and
Owens, 2013; Trovato et al., 2013a,b; Trovato and Sperandeo,
2013) on a larger population did not confirm the usefulness
of using B-lines/vertical artifacts in the differential diagnosis of
dyspnea due to poor specificity. These studies did not also find
sufficient evidence for the use of LUS as a substitute for CXR in
diagnosing pneumonia.

Nevertheless, the same authors of these reviews conducted
up to 2014 (Supakul and Karmazyn, 2013; Tomà and Owens,
2013; Trinavarat and Riccabona, 2014), following the ALARA
principle, also stated that LUS should be promoted in pediatric
respiratory disease as a valuable imaging tool while respecting of
its restrictions and limitations that could be overcome by adding
diagnostic tool. The author’s further state that it is not important
to stick to the old concept of technique choice substitution. Surely
the best results are obtained by choosing case by case and by
integrating the different tools.

All things considered, such reviews (Supakul and Karmazyn,
2013; Tomà and Owens, 2013; Trinavarat and Riccabona, 2014)
have limitations: few articles have been analyzed on pediatric lung
disease (Caiulo et al., 2013) and some of them also have a low
number of cases. Most of the reported studies were performed
on adults in an emergency setting. The objective evaluation
of experimental data of studies on the pediatric population
and those increasingly produced worldwide has been neglected
(Shah et al., 2013).

Since 2015: Lung Ultrasound and the
Reassessment of Its Use
For many years the new LUS applications remained strictly
within the confines of adult critical care units. Over the years,
several authors (Kim et al., 2000; Copetti et al., 2008; Mong
et al., 2012; Reissig et al., 2012; Caiulo et al., 2013) proposed
translating this acquired experience in adults for LUS application
in children. This trend has prompted a re-evaluation of the

classic ultrasound patterns, contemporarily introducing a new
sonographic semiotic.

In this regard, over the years, evolving technology and greater
understanding of the artifacts of LUS allowed for its greater
applicability of the pediatric chest (Kim et al., 2000; Copetti et al.,
2008; Mong et al., 2012; Reissig et al., 2012; Caiulo et al., 2013).

The new clinical and preclinical phase studies (Volpicelli et al.,
2012; Soldati et al., 2015; Martelius et al., 2016; Sferrazza Papa
et al., 2017; Buonsenso et al., 2020) describe the B-lines as vertical
hyperechoic reverberations that move in synchrony with the
lung and then as key artifacts in the interpretation of the lung
ultrasound findings. According to this new point of view, the
physiological basis of B lines is represented by a decreased lung
aeration and they generally indicate an ultrasound non-specific
finding (Volpicelli et al., 2012; Soldati et al., 2015; Sferrazza
Papa et al., 2017). However, its quantitative characterization and
according to the most recent studies also qualitative can be
indicative of an ultrasound pattern more specific.

Multiple B-lines are seen in congestive heart disease,
interstitial lung disease, respiratory infections, and neonates. B-
lines could also be observed in a limited number of healthy
individuals (Volpicelli et al., 2012; Soldati et al., 2015; Sferrazza
Papa et al., 2017; Buonsenso et al., 2020).

In this field, Martelius et al. (2016) performed the first study
on the pediatric population. They prospectively evaluated 60
patients (0 to 18 years) who underwent chest CT for different
clinical reasons and compared the extent of parenchymal changes
observed with the number of B-lines on sonography. No
pathological findings were detected on CT in 30 cases; in the
others, parenchymal changes were seen in the anterolateral
regions. The number of B-lines on LUS was found to
consistently increase with the growing extent of parenchymal
changes on CT. Parenchymal changes on CT associated with a
significantly increased B- line count often included ground-glass
opacities, interlobular septal thickening, parenchymal bands, and
atelectasis. The results of this study suggested that B-lines were
considered to be highly non-specific in children and not useful
to differentiate pathologic processes of the lung parenchyma.
However, the authors proposed LUS as a screening and follow-
up tool for estimating the extent of parenchymal changes
in children with respiratory symptoms, taking into account
that few published data were available on LUS findings in
healthy individuals.

Moreover, in a large population with multiple respiratory
conditions, one could expect one-third of the lung ultrasound
studies to show a B-line pattern in at least one thoracic area,
with etiology varying between different age groups. Since this
pattern could be attributed to a wide range of conditions, its
interpretation cannot withstand analysis of the distribution,
extension, and severity of the B-line pattern along with accurate
clinical correlation (Sferrazza Papa et al., 2017).

In 2017, Yousef (2017) published a study in which the
population was represented by pediatric patients of the cardiac
intensive unit undergoing congenital heart surgery. Patients
underwent both CXR and LUS in the post-operative time. On
LUS, the number of B-lines increased proportionally with the
increase in extravascular lung water (EVLW) and progressed
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to white lungs which are the equivalent of the ground glass
appearance on chest X-rays and CT. The results of this study
are highly interesting. The authors reported a significant positive
correlation between early B-line scores, obtained during the first
hours after surgery, and short-term clinical outcomes. The author
concluded that in consideration of the inability to see non-
superficial lesions, LUS can be used as a complement to the CXR
in order to improve patient care (who is at risk to develop or who
has already developed cardiogenic pulmonary edema) and reduce
accumulated radiation doses.

In the following years, Soldati and other authors (Soldati et al.,
2016, 2019; Soldati and Demi, 2017) through studies on physical
models clarified the concept of the sonographic interstitial
syndrome (SIS). It is a characteristic ultrasound picture of the
hyperdense and unconsolidated superficial lung characterized by
the presence of multiple vertical, patched, or diffuse artifacts (B
lines) that fan out from the lung wall interface (see dedicated
paragraph “Imagine Findings”).

In the presence of edema, ARDS, interstitial lung disease,
non-consolidating pneumonia, and contusions, part of the lung
volume originally occupied by air can be replaced with water,
connective tissue, cells, hyaline membrane, or edematous tissue,
eventually creating acoustic traps for the US beam containing
a medium that is physically (in terms of acoustic impedance)
very different from the surrounding environment (air). Vertical
artifacts or B-lines are artifactual and not real images and in
their variable aspect, indicate a loss of peripheral lung aeration
(without tissue consolidation) due to interstitial disease or simply
to lung deflation without histological alterations.

The transition from vertical artifacts to consolidation is a
continuum with something similar to the transition between
the ground glass and consolidation in chest CT, where ground
glass is due to thickening of the interstitium and/or the
presence of fluid and/or the presence of collapsed areas and/or
increased circulation. In a sense, the vertical artifacts have some
correspondence with ground glass, even if they are already
present in sufficient conditions to create acoustic channels that
anatomically do not reach the entity of the ground glass.

Soldati et al. (2016, 2019); Soldati and Demi (2017) through
studies on physical models explain how B-lines or vertical
artifacts cannot easily differentiate the causes in the absence of
an analysis of their appearance. The same authors demonstrated
on physical models that the B lines are heterogeneous entities
in terms of aggregation and visual structure, the nature of
which is linked to the superficial histological characteristics of
their wavelength.

Vertical artifacts generated by a fibrotic or inflammatory lung
have a different appearance from those generated by cardiogenic
edema (see dedicated paragraph “Imagine Findings”).

In the context of the re-evaluation of LUS applications in
pediatric clinical practice, different studies, that compared the
use of LUS vs. CXR and vs. pulmonary auscultation in the
evaluation of pulmonary consolidations and other injuries, had
new goals which were as follows: (1) to understand if LUS could
be a diagnostic tool not only supporting diagnostic chest X-ray;
(2) to reassess the implementation of the LUS as point-of-care
ultrasound (PoCUS).

Some authors (Berant et al., 2015; Chen et al., 2015; Zhang,
2015; Coca Pérez et al., 2016; Cox et al., 2017) have re-evaluated
the implementation of the LUS as PoCUS intended as bedside
ultrasound examination of the patient by the physician in charge
mainly in the Pediatric Intensive Units (PIU) and in the Pediatric
Emergency Departments (PED).

In this study, LUS was compared to CXR in the diagnosis
of pulmonary diseases. The authors evaluated the following: (1)
the characterization of non-specific areas of the white lung on
chest x-ray; (2) the detection of small subpleural consolidations
not detected on chest x-ray; (3) the diagnosis and monitoring of
acute pulmonary edema in patients with acute heart disease; (4)
the early diagnosis and post-treatment follow-up of respiratory
complications in children with acute respiratory disease such as
atelectasis and secondary pneumothorax; (5) the guiding to the
complex alveolar recruitment maneuver in small patients with
acute respiratory distress and areas of atelectasis; (6) the diagnosis
and characterization of the pleural effusion when less than 10 ml.
Several authors (Berant et al., 2015; Chen et al., 2015; Zhang,
2015; Coca Pérez et al., 2016; Cox et al., 2017) stated that there
are limitations to CXR such as poor image quality, presence of
artifacts, the time required to obtain the image and exposure to
ionizing radiation. It was also shown (Berant et al., 2015; Chen
et al., 2015; Zhang, 2015; Coca Pérez et al., 2016; Cox et al., 2017)
that CXR is insensitive for detecting small volumes of pleural
fluid less than 200 ml and is not able to define the nature of
the pleural fluid. Some studies (Chen et al., 2015; Cox et al.,
2017) confirmed a sensitivity and a specificity of POCUS for
the diagnosis and follow-up of the most common pediatric and
neonatal lung diseases higher than that of CXR.

There are also limitations to CT, the gold standard for
the diagnosis of respiratory pathology, including its high cost,
reduced availability, high radiation exposure, and difficulty in
transporting the patient out of the hospitalization unit (Chen
et al., 2015; Cox et al., 2017). So, the authors (Chen et al., 2015;
Cox et al., 2017) proposed LUS as a convenient, non-invasive,
safe, and radiation-free tool that can be quickly performed
at the patient’s bed without the need to move, to help in
the differentiation of lung diseases and to become a reference
instrument for the monitoring of respiratory dynamics and the
follow-up of respiratory diseases (Chen et al., 2015; Cox et al.,
2017). According to them (Chen et al., 2015; Cox et al., 2017), the
clinical information collected at the bedside is essential to guide
care quickly and correctly and decrease uncertainty so giving the
LUS a fundamental role in the diagnostic and therapeutic process
of respiratory diseases.

In a prospective study, Lovrenski et al. (2016) compared LUS
with auscultation findings. In children with clinical suspicion of
pneumonia, LUS showed positive findings of lung consolidations
to a greater extent than auscultation which, on the contrary, was
to a greater extent associated with negative findings. According
to the authors, moreover, a craniocaudal size of subpleural
consolidation of less than 30 mm significantly reduced the
possibility of auscultator detection (in approximately 95% of
auscultator examinations). In addition, the use of an additional
trans-abdominal US approach, along with the standard trans-
thoracic approach, could be expected to result in a further
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increase in US sensitivity for the diagnosis of pneumonia,
which was already high (the sign referred to as “dynamic air
bronchogram” had a reported positive predictive value of 97% for
the diagnosis of pneumonia) (Lovrenski et al., 2016).

Some authors (Copetti, 2016; Lovrenski et al., 2016; Cox
et al., 2017; Lovrenski, 2020) based on their review studies,
stated that whenever lung US is consistent with clinical and
laboratory findings and auscultation, chest radiographs might be
avoided. Furthermore, when clinical findings are uncertain, but
a classic LUS pneumonic pattern is evident (for example, lung
parenchyma consolidation with branched air bronchogram), we
should consider avoiding chest radiography, using lung US to
monitor the effects of therapy.

In conclusion, studies performed over the last few years report
that one of the most valuable aspects of LUS application is
its utility in the follow-up of pneumonia helping clinicians to
make proper therapeutic adjustments if needed without exposure
to radiation. It enables detection of early stages of necrotizing
pneumonia by revealing minor areas of necrosis, which often
cannot be seen on CXR.

Moreover, it allows a significant reduction in the number of
chest CT and CXR in children with necrotizing pneumonia, both
early and extensive ones, and sometimes allows even avoidance of
chest CT, especially when the clinical course of the disease shows a
regression of symptoms and improvement of laboratory findings.
Of course, CT should be employed in complicated cases and when
the clinical course of the disease is not improving.

Although most studies report that trans-thoracic examination
is sufficient, the trans-abdominal (trans-hepatic and trans-
splenic) approach can increase the sensitivity of lung US
in detecting pneumonia by recognizing patterns other
than normal mirror-image phenomenon, which represent a
supradiaphragmatic projection of the liver and spleen. (Copetti,
2016; Lovrenski et al., 2016; Cox et al., 2017; Joshi et al., 2019;
Lovrenski, 2020).

Since 2018, several authors have begun to conduct studies
in specific settings - not only in pediatric and neonatal ICUs -
with the aim of defining specific ultrasound patterns for each
disease with the possibility of creating ultrasound scores for the
various pediatric lung diseases. In this way, LUS could be used
as a non-invasive clinical marker to evaluate the evolution of
a particular acute or chronic lung disease and the response to
therapy (see the section “The main fields of application of LUS
in pediatrics”).

TECHNIQUE AND METHOD OF
SCANNING

As for the scanning technique and method, there was
substantial homogeneity among the different studies that were
included in this review.

Lung Ultrasound Scanning Mode
The ribs in neonates and small infants have low mineral
content, thus allowing trans osseous scanning, especially
in the parasternal region where the ribs are cartilaginous

(Shah and Greenberg, 2017; Joshi et al., 2019). This can be done
through the trans-sternal and trans-costal approaches.

Although most studies report trans-thoracic examination
as sufficient, trans-abdominal (trans-hepatic and trans-splenic)
approach can increase the sensitivity of LUS in detecting
pneumonia or SIS areas (Copetti, 2016; Lovrenski et al., 2016;
Cox et al., 2017; Joshi et al., 2019; Lovrenski, 2020). According
to some authors (Joshi et al., 2019), evaluation of the diaphragm,
the subdiaphragmatic space as well as the liver and spleen should
form part of the protocol as lung consolidation and empyema
may be secondary to a liver abscess.

Probes and Transducers
The type and frequency of transducer used would vary with the
age of the patient and the location of the lesion.

Linear transducers with high frequency with a small footprint
are preferred to perform sagittal and intercostal scans in neonates
and infants. In addition, the linear probe is the best choice for
studying the dynamics of breath-dependent motion as well as
pleural line abnormalities.

Lower-frequency transducers are used for older children and
overweight or obese adolescents (Lovrenski et al., 2016). Curved
array transducers are used to insonate between ribs, below the
diaphragm, or from the suprasternal notch (Joshi et al., 2019;
Strzelczuk-Judka et al., 2019).

In particular, all the studies used a high-resolution linear
probe 10 MHz or more. However, the use of both high-frequency
linear probes and lower or intermediate frequency linear probes
(Zhang, 2015; Lovrenski et al., 2016; Martelius et al., 2016; Song
et al., 2017; Strzelczuk-Judka et al., 2019; Tripathi et al., 2019) and
low-frequency convex probes have been used in the same studies
(Lovrenski et al., 2016; Strzelczuk-Judka et al., 2019; Tripathi
et al., 2019).

Two studies (Ho et al., 2015; Yadav et al., 2017) only
used the convex probe which, however, did not bring about
changes in the execution of the ultrasound investigation and the
evaluation of the images.

Scanning Protocol and Examination
Position
Most of the LUS studies in the pediatric population have
been performed in critically ill patients with or without
respiratory distress in the pediatric emergency departments or
pediatric/neonatal intensive care units (Cattarossi, 2014; Zhang,
2015; Song et al., 2017, 2018; Yousef, 2017; Tripathi et al.,
2019). Therefore, patients were scanned in the supine position.
Only if conditions allowed, they were scanned in sitting or
reclining position.

In the case of stable patients, each hemithorax is
divided into six regions using two longitudinal lines
(anterior and posterior axillary line) and two axial lines
(one above the diaphragm and the other 1 cm above
the nipples). The lung areas are the anterior (between
the sternum and the anterior axillary line), the lateral
(between the anterior and posterior axillary lines), and
the posterior (between the posterior axillary line and
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the spine) (Lovrenski et al., 2016; Martelius et al., 2016;
Weerdenburg et al., 2016; Yousef, 2017; Strzelczuk-Judka et al.,
2019; Lovrenski, 2020).

For a comprehensive examination, the 12 lung areas are
sequentially scanned from right to left, cranial to caudal until the
diaphragm is revealed, and anterior to posterior.

IMAGING FINDINGS

There has been a complete consensus among all the studies
with respect to the imaging criteria required for diagnosing
the various respiratory conditions. Most of the studies clarify
that US findings are considered physiological and pathological
and describe the LUS pathological findings mainly translating
the experience gained from the adult population into pediatric
clinical practice.

Normal Pattern of the Lung (Figure 1 and
Electronic Supplementary Video 1)
The LUS findings of a normal lung (Copetti et al., 2008;
Lichtenstein and Mauriat, 2012; Volpicelli et al., 2012;
Lichtenstein, 2014; Chen et al., 2015; Saraogi, 2015; Shah
and Greenberg, 2017; Joshi et al., 2019) are represented by:

- The pleural line represents the normal lung surface (an
intense interface due to high variation of impedance from
the chest wall to lung parenchyma) and results in a single
smooth regular hyperechogenic line with a thickness of
lesser than.5 mm below the rib line, formed by sound waves
reflected from the parietal and visceral pleura. A normal
pleural line is characterized by the presence of sliding: a
“to and fro” movement of lung surface synchronized with
respiration (Copetti et al., 2008; Volpicelli et al., 2012; Chen
et al., 2015; Shah and Greenberg, 2017; Joshi et al., 2019).

In pathological conditions, the pleural line can be absent or
present with a thickness more than.5 mm or with a coarse and
irregular appearance with or without evidence of small subpleural
consolidation; just as pleural sliding can be absent or poorly
represented (Copetti et al., 2008; Volpicelli et al., 2012; Chen et al.,
2015; Shah and Greenberg, 2017; Joshi et al., 2019).

- A-lines, echogenic horizontal lines parallel and equidistant
from each other, which indicate the presence of normally
aerated lung. The lung and the soft tissues differ in their
acoustic characteristics causing reflection of the ultrasound
waves from the lung surface creating reverberation artifacts
that are configured in these lines (Copetti et al., 2008;
Lichtenstein and Mauriat, 2012; Lichtenstein, 2014; Chen
et al., 2015; Joshi et al., 2019).

The search, identification, and evaluation of these US
findings of normality are performed in B-mode (Copetti et al.,
2008; Lichtenstein and Mauriat, 2012; Volpicelli et al., 2012;
Lichtenstein, 2014; Chen et al., 2015; Saraogi, 2015; Shah and
Greenberg, 2017; Joshi et al., 2019).

Pneumothorax (Figure 2 and Electronic
Supplementary Video 2)
The accuracy of US as a first-line investigation for detection of
pneumothorax (PTX) is almost comparable to the accuracy of CT
and far exceeds the accuracy of plain radiographs (Coley, 2011;
Volpicelli, 2011; Chen et al., 2015; Chen and Zhang, 2015; Zhang,
2015; Coca Pérez et al., 2016; Raimondi et al., 2016; Cox et al.,
2017; Joshi et al., 2019).

According to the US signs of PTX, there is an agreement
between the various studies taken into consideration. In
particular, it is identified by:

- Absence of lung sliding (specificity and sensitivity of
91.1 and 95.3%, respectively) and absence B-lines, both
identified in B-mode, originating from the visceral pleura
(negative predictive value of 99.2–100%).

- Lung point, (specificity and sensitivity of 100 and 79%,
respectively), identified in B-mode, the point at which
normal sliding disappears because of the presence of air in
the pleural cavity (Electronic Supplementary Video 2).

- Double lung point, (Zhang, 2015), identified in B-mode,
whose presence indicates limited pneumothorax so
indicating conservative management. Between two lung
points, there is no lung sliding or B-line, suggesting
separation of visceral and parietal pleura. Laterally to the
points, the pleural sliding and B-line signs are evident. Both
lung points move simultaneously with respiration.

- The barcode sign, identified and studied in M-mode,
occurs as there is no motion of the chest wall and no motion
of the lung due to the presence of air in the pleural cavity.
This is seen as multiple parallel horizontal lines resembling
a bar code. It is represented by the transition from the
normal lung (linear granular pattern) to the pneumothorax
(linear pattern) (Figure 2).

Pleural Effusion (Figures 3, 4A)
The role of LUS in confirming the presence of pleural effusion is
well established (Coley, 2011; Prithviraj and Suresh, 2014; Berant
et al., 2015; Cox et al., 2017; Joshi et al., 2019; Toma et al., 2019).

Lung ultrasound (LUS) is a useful and safe tool for evaluating
pleural effusion because it allows the distinction between effusion
and lung consolidations and has greater accuracy in detecting
pleural effusion than bedside CXR. CXR can detect the presence
of pleural effusion in patients in an orthostatic position only if
the volume of the effusion is at least 200 mL and the sensitivity
of this method decreases in the supine position, while LUS can
detect effusions as small as 10-20 mL (Coley, 2011; Prithviraj and
Suresh, 2014; Berant et al., 2015; Cox et al., 2017; Joshi et al., 2019;
Toma et al., 2019).

Lung ultrasound (LUS) evaluation of a patient in a sitting
or standing position is better because it allows for more precise
quantification of pleural effusion and the visualization of small
amounts of fluid in the pleural cavity. In this position, the free
fluid will collect in decline space while it will be found in a
posterior location with the patient supine.

In addition, ultrasound allows the identification of adjacent
structures: chest wall, hemidiaphragm (over the liver or spleen),
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FIGURE 1 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) shows a normal lung ultrasound
pattern: hyperechoic, regular, and smooth pleural line with a thickness of less than 0.5 mm (arrows), pleural sliding present, and normally represented characterized
by “to and fro” movement of lung surface synchronized with respiration (Electronic Supplementary Video 1). Below the pleural line, lung ultrasound imagines
show A-lines (arrowheads): echogenic horizontal lines parallel and equidistant from each other which indicate the presence of normally aerated lung.

and visceral pleural surface. This is important, especially in the
case of an invasive procedure, in order to avoid organ injury
(Coley, 2011; Prithviraj and Suresh, 2014; Berant et al., 2015; Cox
et al., 2017; Joshi et al., 2019; Toma et al., 2019).

Unlike CXR, US can provide information on the nature of the
pleural fluid. It is superior to CT in characterizing the nature
of pleural fluid collections and can help guide percutaneous
drainage. However, in complicated and refractory cases CT may
be a better option, especially if surgery is planned (Coley, 2011;
Prithviraj and Suresh, 2014; Berant et al., 2015; Cox et al., 2017;
Joshi et al., 2019; Toma et al., 2019).

Pleural effusions have a different echogenicity on US
depending on the underlying causes (Coley, 2011; Prithviraj and
Suresh, 2014; Berant et al., 2015; Cox et al., 2017; Joshi et al., 2019;
Toma et al., 2019).

- Transudative effusions (Figure 4A) appear as a space
(usually anechoic) between the parietal and visceral pleura
that changes depending on the patient’s position. The
lung appears with varying degrees of compression and,
depending on the amount of fluid, also moves with
breathing (“sinusoid sign”) or heartbeat (“pulse sign”).

- Exudative effusions (Figure 3) show echoes that suggest
the presence of debris (cell, blood fibrin). Fibrin can
be observed in exudative effusions but the amount,
distribution, and organization in septa or loculi differ from

patient to patient, depending on the cause of the effusion
and the time from the onset.

The additional presence of a thickened pleura or pulmonary
consolidation with dynamic air bronchogram may suggest the
infectious nature of the pleural effusion (Coley, 2011; Prithviraj
and Suresh, 2014; Berant et al., 2015; Cox et al., 2017; Joshi et al.,
2019; Toma et al., 2019).

The presence of a diffuse sign of lung congestion (B-lines or
vertical artifacts) suggests transudative effusion during heart
failure (Yousef, 2017) (Figure 4).

Although various US methods for quantifying the volume
of pleural effusions have been described, all require several
measurements. Many authors believe that knowing the exact
amount of fluid is of limited usefulness in clinical practice.

A qualitative approach may be useful, summarized in the
Table 1 below (Prina et al., 2014). Additionally, LUS can help
estimate the effect of pleural effusion on lung parenchyma
by allowing visualization of different degrees of collapse
(Prina et al., 2014).

Lung Consolidations (Figures 5–8)
When a lung area loses its normal aeration due to an
inflammatory event or collapse of the airways, a consolidation
is created in the lung parenchyma, and the displayed image is
a real image and not an artifact (Coley, 2011; Chen et al., 2015;
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FIGURE 2 | The grayscale lung ultrasound examination (transverse scan between the intercostal fields; linear probe with a frequency of 12 MHz) of a 15-year-old boy
with left apical pneumothorax shows the Barcode sign identified in M-mode as a transition from the normal lung (linear granular pattern on the right of the figure) to
the pneumothorax (linear pattern on the left of the figure). The grayscale lung ultrasound examination (transverse scan between the intercostal fields; linear probe
with a frequency of 12 MHz) of a 16-year-old boy with right apical pneumothorax, shows the Lung Point sign identified in B-mode as the point where normal sliding
disappears due to the presence of air in the pleural cavity.

Coca Pérez et al., 2016; Lovrenski et al., 2016; Claes et al., 2017;
Cox et al., 2017; Joshi et al., 2019; Lovrenski, 2020). In fact, within
the consolidated area we can recognize:

- Hepatization (Figure 5), which is defined as that area of
the lung without air that mimics the appearance of the
liver. In consolidations, alveoli are replaced with fluid and
inflammatory debris resulting in hepatization of the lung
that is characterized in the US by a hypoechoic aspect and
Doppler vessels (Chen et al., 2015; Cox et al., 2017; Joshi
et al., 2019).

- Dynamic air bronchograms (Figure 6; Electronic
Supplementary Video 3), the branching echogenic foci
within a consolidation, represent the residual air within
the bronchi and some of the alveoli. They are represented
by hyperechoic images of air bubbles moving within
the airways with a centrifugal respiratory progression in
inspiration. The presence of dynamic air bronchogram is
associated with pneumonia identification in approximately
70–97% of cases and with the exclusion of an atelectasic
area and/or bronchial obstruction (Lichtenstein et al.,
2009; Chen et al., 2015; Cox et al., 2017; Joshi et al., 2019;
Lovrenski, 2020).

- Fluid or mucus bronchograms (Figure 5), identified
by ultrasound in B-Mode and by Color-Doppler, are

represented by echo-free tubular structures without any
perfusion signal. The air in the bronchi is replaced by
fluid. Their presence is associated with the identification of
pneumonia (Chen et al., 2015; Joshi et al., 2019; Lovrenski,
2020).

- Normal branching pattern of vessels within the
consolidated lung, identified by ultrasound in B-Mode
and by Color-Doppler, is useful for differentiating a lung
consolidation air from a mass (Chen et al., 2015; Joshi et al.,
2019).

- Linear, parallel, and static bronchograms (Figure 7) are
hyperechoic images of air bubbles that do not move
inward during breathing and are parallel to each other.
Their presence is usually associated with the identification
of atelectasis. In fact, in atelectasis, the lung appears
hypoechoic, triangular in shape with crowding of the
bronchi due to loss of lung volume. Only a few of these can
have air within them (Chen et al., 2015; Coca Pérez et al.,
2016; Joshi et al., 2019; Lovrenski, 2020).

- Extremely small subpleural consolidations (Figure 8)
with sizes of less than 5–0.1 mm with or without
adjacent single or confluent B-lines, whose presence
is associated with abnormal ventilated areas or Viral
pneumonia or Bronchiolitis (Lovrenski et al., 2016;
Lovrenski, 2020).
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FIGURE 3 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) of a 5-year-old child with
pneumococcal pleuropneumonia (complicated by pleural empyema), shows exudative pleural effusion, with internal echoes non-homogeneously distributed: it is
fibrinous, plural-septate, and concamerated and with thickened septa (arrows).

- Areas of breakdown/small areas of lung necrosis and
lung abscess. The small areas of lung necrosis appear as
areas of decreased echogenicity with no color Doppler
flow within a region of pulmonary consolidation. Larger
abscesses can develop a thick wall and air-fluid levels may
be seen if there is cavitation or if the abscess communicates
with the bronchial tree. They are commonly seen in
staphylococcal cases of pneumonia, where pneumatoceles
can also occur, as well as in acute necrotizing cases of
pneumonia (Coley, 2011; Claes et al., 2017; Joshi et al.,
2019).

Sonographic Intesitial Syndrome
(Figures 4, 9)
Coley, 2011; Cattarossi, 2014; Chen et al., 2015; Coca Pérez et al.,
2016; Martelius et al., 2016; Sferrazza Papa et al., 2017; Yousef,
2017; Joshi et al., 2019; Soldati et al., 2019; Buonsenso et al., 2020.

Vertical artifacts of B-lines are seen as vertically oriented
artifacts and indicate an abnormality in the interstitial or
alveolar compartment. They extend from the pleural line to the
edge of the screen.

B-lines or vertical artifacts, in their variable appearances,
indicate a loss of peripheral lung aeration (without tissue
consolidation, therefore indicating an artifactual image) due to
interstitial disease or simply to lung deflation without histologic
changes. However, B-lines could not be sufficient to differentiate
the causes without an analysis of their appearance.

The fetal lung has a high fluid content hence B-lines can be
seen even on the first day of life in neonates without respiratory

distress and they usually disappear by the third day. Furthermore,
B-lines can also be seen in healthy individuals especially in
newborns and/or infants (Buonsenso et al., 2020). B lines are also
seen to a greater extent in pulmonary edema, interstitial lung
disease, infections, lung contusion, and atelectasis.

Recent studies (Soldati et al., 2019; Buonsenso et al., 2020)
have shown that the vertical artifacts have a different appearance
depending on the underlying cause: for example, those generated
from a fibrotic lung have a different appearance from those
generated by cardiogenic edema. Several authors (Soldati et al.,
2019) are currently trying to understand and interpret the
causes of these differences by performing preclinical studies (e.g.,
vertical artifacts can be thicker, brighter, and longer than others,
each bearing different acoustic information).

In recent years, Soldati et al. (2019) generated a different
point of view, demonstrating on physical models that B-lines
are heterogeneous entities in terms of aggregation and visual
structure, the nature of which is linked to the superficial
histologic characteristics of the lung.

Therefore, rather than simply developing algorithms to
count artifacts, it could be much more useful to develop new
software that, with the help of artificial intelligence, is able
to extract quantitative and qualitative information from the
vertical artifacts.

- Cardiogenic origin (Figure 4) can be characterized by:
typical B-lines or vertical artifacts (laser-like, bright) with
the septal disposition (early stage); modulated B-lines
(early stage); regular pleural line; the presence of pleural
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FIGURE 4 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) of a 10-year-old child with
congestive heart disease resulting from untreated rheumatic carditis, shows in Panel (A), on the basal posterior-lateral fields on the right, an anechoic pleural effusion
(asterisk) that appears like an anechoic space between the parietal (arrow) and visceral pleura (arrowhead) below which lung appears atelectasis. Panels (B,C) show
the SIS pattern of the upper right and left fields, respectively; Panel (D) shows that of the right lower/basal fields: the pleural line is regular (arrows); vertical artifacts or
B-lines are separated, laser-like artifacts, with gravitational course spreading from the pleural line to the bottom of the screen and they show an internal sequence of
alternating horizontal bands and homogeneous distribution in the affected spaces. Ultrasound picture compatible with the septal pattern of early CPE (Soldati and
Demi, 2017; Soldati et al., 2019). CPE, cardiogenic pulmonary edema; SIS, sonographic interstitial syndrome.

sliding; diffuse pulmonary involvement without spared
areas (bilaterally); absence of consolidations, pleural
nodules or pleural irregularities. Furthermore, they are all
characteristics that can take on a dynamic aspect depending
on the patient’s position, the effects of the exercise and
therapy (Coca Pérez et al., 2016; Martelius et al., 2016;
Sferrazza Papa et al., 2017; Yousef, 2017; Joshi et al., 2019;
Soldati et al., 2019; Buonsenso et al., 2020).

- Pneumogenic origin (Figure 9) can be characterized by:
unusual septal disposition of B-lines; blurred, uneven,
coalescent B-lines and white lung; non-modulated B-lines
or pseudo-B-lines; irregular pleural line; reduced pleural
sliding; monofocal or multifocal, patchy or inhomogeneous
involvement; consolidations, subpleural nodules or
micronodules (generating pseudo-B-lines). Furthermore,
the US features do not have dynamic aspects and do not
change with the patient’s position, therapy, or movements
(Soldati et al., 2019; Buonsenso et al., 2020).

In the context of neonatal pathology, however, the differential
diagnosis of the interstitial syndrome commonly falls between the

respiratory distress syndrome (RDS) and Transient Tachypnea
of Newborn (Joshi et al., 2019) (see specific section on the
neonatal disease).

THE MAIN FIELDS OF APPLICATION OF
LUNG ULTRASOUND IN PEDIATRICS

Pneumothorax
The detection of PTX is a growing interest section within
pediatric PoCUS even if most of what is reported is based

TABLE 1 | Lung ultrasound assessment of pleural fluid and its estimate of volume.

Quantification Ultrasound visualization Volume estimation mL

Minimal Costophrenic angle ≤ 100

Small Range, one probe 100–500

Moderate Range, two probes 500–1.500

Large or Massime Range, three or more probes > 1500
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FIGURE 5 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) of a 7-year-old boy with
bacterial lobar pneumonia, shows hepatized subpleural consolidation with fluid bronchograms (arrows) and fibrinous inflammatory reactive pleural effusion (asterisk).

on descriptive cases of retrospective works. Pneumothorax is
defined as the pathological presence of air between the parietal
and visceral pleura resulting in collapsing of the lung. In its
extreme degree, tension PTX is a life-threatening event leading
to increased intrathoracic pressure, elevated central venous
pressure, and decreased venous return with consequent reduced
cardiac output, bradycardia, and ultimately cardiac arrest.
Symptoms of PTX may be extremely variable including chest
pain, shortness of breath, cough, and increases in heart rate or
breathing until respiratory failure. PTX is traditionally classified
as spontaneous, traumatic, or iatrogenic and its diagnosis is based
on a combination of clinical suspicion along with supporting
imaging studies. Computed tomography remains the gold-
standard imaging test in the evaluation of PTX, but it is limited
by its high radiation exposure, especially in pediatric age, and
the need of transporting critically ill patients. So, the most
widely used method for bedside evaluation is CXR even if its
diagnostic sensitivity is well known to be limited in the supine
position with a small pneumothorax (Volpicelli, 2011). These are
the reasons why POCUS is getting an ongoing interest in the
diagnosis of PTX, although its application in pediatric age is once
again deriving mainly from observations conducted on the adult
population (Volpicelli, 2011; Volpicelli et al., 2012; Chen and
Zhang, 2015; Liu et al., 2017).

Lung ultrasound (LUS) diagnostic accuracy for PTX has been
confirmed and can even reach 100% in sensitivity, specificity,
positive and negative predictive value (Volpicelli et al., 2012;
Raimondi et al., 2016). The diagnosis of PTX by LUS is as
reliable as conventional CXR in neonatal age and even more
sensitive especially for small PTXs (Deng et al., 2020). Lung
ultrasound can help with rapid and timely diagnosis and thus
in bedside treatment (Deng et al., 2020) and PTX can even
be earlier detected by applying LUS rather than by using only
X-ray (Szymońska et al., 2019); furthermore, LUS application in
the follow-up of diagnosed PTXs significantly reduces the CTXs
performed (Szymońska et al., 2019) and limits the exposure to
ionizing radiation (Szymońska et al., 2019; Deng et al., 2020).

There may be some limitation in the ability of LUS to
assess the volume of PTX that would be required for choosing
surgical vs. conservative treatment. Although there is not a close
correlation between the extension on the chest wall and the
volume of the intrapleural air, the localization of the lung point
in the supine patient allows predicting the extension of PTX
through a semi quantification of the volume: large and small PTX
(Volpicelli, 2011).

Lung ultrasound (LUS) can therefore be definitely considered
the novel approach for PTX evaluation, due to the advantages of
timeliness and its high accuracy and reliability.
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FIGURE 6 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) of a 5-year-old boy with
bacterial pneumonia lobar, shows subpleural consolidation of an inflammatory/infectious nature with numerous elements of surface dynamic arborized
bronchograms (arrows) – (Electronic Supplementary Video 3) and deep fluid bronchogram.

For the ultrasound diagnostic criteria of pneumothorax
(Volpicelli, 2011; Volpicelli et al., 2012; Chen and Zhang, 2015;
Liu et al., 2017) see the specific section in “Imaging findings.”

Neonatal Respiratory Diseases
In the past years, neonatal respiratory diseases have been a
diagnostic dilemma for the clinician due to the low sensitivity
and specificity of their signs and symptoms and the CXR has not
always been able to solve the diagnostic challenge since inter- and
intra-observer variability has always been wide.

Lung ultrasound (LUS) may be useful in detecting congenital
lung diseases such as pulmonary sequestration, congenital
pulmonary airway malformation, and congenital diaphragmatic
hernia. Although most of these congenital conditions are
detected in utero and CT is needed for surgical road-mapping,
it is not uncommon to find them accidentally during an
abdominal US exam or when referral diagnosis points to another
pulmonary condition, such as pneumonia (Lovrenski, 2018;
Yousef et al., 2018).

In recent years, LUS is becoming a useful tool in neonatal
intensive care units (Avery et al., 1966; Persson and Hanson,
1998; Lichtenstein et al., 2004; Bober and Swietliński, 2006;
Copetti and Cattarossi, 2007; Copetti et al., 2008; El-Malah et al.,
2015; Liu et al., 2015a; Kurepa et al., 2018; Raimondi et al.,

2018; Corsini et al., 2019; Deng et al., 2020) with a variety of
differential diagnoses including RDS, transient tachypnea of the
newborn, meconium aspiration syndrome, neonatal pneumonia,
pulmonary hemorrhage, pneumothorax and bronchopulmonary
dysplasia (Lovrenski, 2020).

Some authors (Cattarossi et al., 2010; Cattarossi, 2014;
Lovrenski, 2020) have supported the validity of LUS to follow
the dynamics of interstitial lung fluid clearance in the postnatal
hours, to accurately detect the presence of interstitial and/or
alveolar fluid in RDS with ultrasound images that are in full
concordance with the clinical course of RDS, but not with x-ray.
Lung US showed a sensitivity of 95.6% and a specificity of 94.4%,
with a positive predictive value of 91.6% and a negative predictive
value of 97.1% for RDS, and a sensitivity of 93.3% and a specificity
of 96.5% with a positive predictive value of 96.5% and a negative
predictive value of 93.4% for transient tachypnea of the newborn
in a more recent article (Liang et al., 2018).

Some authors (Cattarossi et al., 2010; Cattarossi, 2014; Liang
et al., 2018) strongly suggest the use of LUS in neonatal age
as a first-line imaging technique. The main potential of LUS
in the neonatal intensive care unit lies in a dynamic follow-
up of changes in the pulmonary condition of neonates; in
these cases, LUS can help neonatologists in decision-making
in this more vulnerable group of children. Nevertheless, the
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FIGURE 7 | The upper part of the figure shows chest X-ray and lung ultrasound images of a 7-year-old girl with uncontrolled asthma and an ongoing severe asthma
attack, with no clinical or laboratory signs of infections. The chest X-ray shows non-specific areas of reduced transparency in the right apical and right basal sites.
Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) shows – on the right paracardiac area –
subpleural consolidation with hyperechoic images of air bubbles (static aerial bronchograms, arrows) that do not move inward during breathing and are parallel to
each other. Their presence is associated with the identification of atelectasis, supported by the clinical and laboratory context of the patient being examined. The
lower part of the figure shows chest X-ray and lung ultrasound images of a 4-year-old girl with neuromuscular pathology in nocturnal non-invasive ventilation with
ongoing respiratory exacerbation without laboratory and clinical signs of infections. The chest X-ray shows a completely white left lung not well definable. Grayscale
lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) shows the entire left lung’s subpleural consolidations
with hyperechoic images of air bubbles (static aerial bronchograms, arrows) static and parallel to each other. Their presence is associated with the identification of
left pulmonary atelectasis. The ultrasound suspicion is supported by the clinical and laboratory context of the patient being examined.

combination of diagnostic modalities in neonatal intensive
care units is essential (Lovrenski, 2020). Chest X-rays are
still needed to detect the exact position of lines and tubes,
as well as air-leak syndromes (especially pneumomediastinum,
pneumopericardium, and interstitial emphysema).

The most encountered applications of LUS in the context
of neonatal pathology are RDS and transient tachypnea of the
newborn (TTN):

Respiratory distress syndrome (RDS) is one of the most
frequent pathological conditions of a newborn. It can occur at
birth or in the first hours of life with tachypnea (respiratory rate
over 70), dyspnea, gasping, hypotension, pallor, and tachycardia
and it moves toward a usual resolution between the second and
the fourth day of life. Its principal risk factors are prematurity,
because of the lack of surfactant (which begins to be produced
from the 24th gestational week), and gestational diabetes, because
of fetus hyperinsulinism that interferes with glucocorticoids axes
and with surfactant production. The condition is traditionally
diagnosed by CXR that shows typical ground glass images.

By LUS, B lines associated with irregularity of the pleural
line and subpleural consolidations can lead to the “white lung”
condition frequently observed in neonates affected with RDS.
A debate about the real concordance between CXR and LUS is
ongoing in the literature (Bober and Swietliński, 2006; Copetti
et al., 2008; El-Malah et al., 2015; Liu et al., 2015b; Blank et al.,
2018; Corsini et al., 2019), although Corsini et al. (2019) described
a concordance between LUS and X-Ray of 91%. They also made a
comparison in terms of diagnosis time: almost 9 min for LUS vs.
50 min for CXR. Moreover, they proposed a theoretical training
of 2 h for novice sonographers and a 30 min hands-on training.
The sonographers performed LUS with a successive blinded
evaluation by an expert sonographer and a perfect concordance
between CXR and LUS was described after 25 performed exams.

Transient tachypnea of newborns (TTN) is a postnatal
condition due to a delay in fetal fluid clearance. Principal
risk factors are gestational diabetes and cesarean section,
considering that in vaginal delivery there is lung compression
which would remove excess fluid (Avery et al., 1966;
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Persson and Hanson, 1998). Kurepa et al. (2018) described
the presence of B-lines (not white lung), thickened pleural line,
and presence of a typical sign: the double lung points which
consists of a straight difference in upper (no B lines) and lower
(presence of B lines), in neonates with TTN (Kurepa et al., 2018).

Differential diagnosis between RDS and TTN is not always
easy on CXR, but it can allow physicians to differ clinical
strategies: the administration of surfactant is performed in RDS
while in TTN only ventilation is sufficient. Double lung point has
a high sensitivity (although it is reported to vary from 76.6 to
100%) and specificity (100%) in TTN (Lichtenstein et al., 2004;
Copetti and Cattarossi, 2007).

Differentiating RDS from TTN
RDS TTN

B Lines Bilateral confluent
B-lines
No double lung
point

Very compact B
lines in the
inferior
pulmonary fields,
not so compact in
superior lung field
- “Double Lung
point”

Pleural Line Thickened and
irregular

Normal regular
echogenic

Evolution of B
Line

Persists, no
change even after
surfactant

Disappears by day
two coinciding
with clinical
improvement

Lung
Consolidation

Associated lung
consolidation may
be seen

No lung
consolidation

RDS: Respiratory Distress Syndrome; TTN: Transient
Tachypnea of Newborn (Joshi et al., 2019).

- Pneumothorax (PTX) can also be detected in newborns.
Deng et al. (2020) described a cohort of 86 newborns
diagnosed PTX by LUS and CXR. In neonates, LUS was
more sensitive and more specific for early detection of PTX.
Indeed, the absence of B lines, absence of sliding sign, and
presence of lung point reached a sensitivity of 100, 100, and
94%, respectively (Deng et al., 2020).

- Atelectasis can also be studied by LUS; it is usually
described in newborns under mechanical ventilation with
no sufficient pressure (Kurepa et al., 2018).

- Meconium aspiration syndrome usually shows an LUS
finding characterized by one or more consolidations with
associated thickened pleura and air bronchograms non-
uniformly distributed (Kurepa et al., 2018).

Pneumonia
Pneumonia remains the leading cause of death globally in
children under the age of five.

The first study about the role of LUS in the diagnosis and
management of pneumonia was conducted by Caiulo et al.

(2013). It’s a single-blind observational study performed on 102
children evaluated in a PED, with the aim of evaluating LUS
findings both in the diagnosis and in the follow-up of pneumonia
and comparing the sensitivity and specificity of LUS vs. CXR. The
authors proved that LUS is a simple and reliable imaging tool,
not inferior to CXR in identifying pleuropulmonary lesions in
children with suspected pneumonia.

However, according to Tomà (2013a), the use of LUS as a
diagnostic tool for infectious respiratory diseases in children
would not have been safe if based on the criteria used in studies
that involved adult patients. Don et al. (2013) also suggested
that to understand the role of LUS in the diagnosis of pediatric
pneumonia, further studies with larger, multicenter test samples
would be needed, since, until 2014, only a few studies with
small sample sizes have been published (Gargani et al., 2012;
Shah et al., 2013).

The study of Reissig and Copetti (2014) reviewed the various
studies performed up to then on the pediatric population and
defined the US characteristics of pneumonia as a hypoechogenic
area with: poorly defined borders, presence of B-lines at the
far-field margin, less echogenic pleural line in the area affected
by the lung consolidation and reduced or absent lung sliding.
Furthermore, branching echogenic structures representing air
bronchograms were described in the area of the infected zone in
the context of consolidations.

Subsequently, several studies that focused on the pediatric
population were published in the literature (Copetti and
Cattarossi, 2008; Reissig et al., 2012; Chiappini et al., 2013;
Audette and Parent, 2016; Milliner and Tsung, 2017; Pervaiz
et al., 2018; Xin et al., 2018). The most used study model
was the prospective one, but we also took into consideration
the other studies whose scientific validity is lower (case report,
letter to editor, commentary, meta-analysis, and reviews). In
the present review, 27 studies (Gereige and Laufer, 2013;
Shah et al., 2013; Esposito et al., 2014; Liu et al., 2014; Reali
et al., 2014; Chavez et al., 2015; Iorio et al., 2015; Pereda
et al., 2015; Urbankowska et al., 2015; Ambroggio et al., 2016;
Claes et al., 2017; Guerra et al., 2016; Hajalioghli et al., 2016;
Ianniello et al., 2016; Jones et al., 2016; Ključevšek, 2016;
Boursiani et al., 2017; Ellington et al., 2017; Man et al., 2017;
Milliner and Tsung, 2017; Yadav et al., 2017; Yilmaz et al.,
2017; Biagi et al., 2018; Liang et al., 2018; Pervaiz et al.,
2018; Xiao et al., 2018; Zhan et al., 2018; Lissaman et al.,
2019; Najgrodzka et al., 2019; Tsou et al., 2019; Yan et al.,
2020) evaluated LUS in terms of sensitivity and specificity
regarding the diagnosis of pneumonia. The individual studies’
sensitivity ranged from 87 to 100 (94%; IQR: 89–97%) and
specificity ranged from 85 to 100% (with an average of
94%; IQR: 86–98%).

Among the 27 studies, 8 of these (Shah et al., 2013; Liu
et al., 2014; Reali et al., 2014; Boursiani et al., 2017; Balk et al.,
2018; Biagi et al., 2018; de Souza et al., 2019; Lissaman et al.,
2019) compared sensitivity and specificity of LUS vs. CRX. CXR
sensitivity ranged from 82 to 95, while CXR specificity ranged
from 90 to 100. These studies suggest that LUS examination can
detect lung consolidation and the other ultrasound features of
pneumonia in children with the similar accuracy and reliability
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FIGURE 8 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) of children with viral lower
respiratory tract infection [(A): 2-year-old boy with H1N1 Influenza pneumonia; (B,C): 8-month-old infant with Respiratory Syncytial Virus bronchiolitis]. Lung
ultrasound findings show sonographic interstitial syndrome (SIS) with areas of the white lung with multiple, coalescent vertical artifacts (B-lines, asterisks) and small
subpleural consolidations (hypoechoic areas, arrows) less than 1 centimeter in size associated with areas of “white lung” or confluent B-lines (asterisks).

as chest radiographs with the benefits of no exposure to ionizing
radiation and savings in cost and time, both in diagnosis
and in follow-up.

Furthermore, several studies have demonstrated the
superiority of LUS in identifying even minimal pleural effusion
that occurs with pneumonia (Shah et al., 2013; Reali et al., 2014;
Balk et al., 2018; de Souza et al., 2019) with a sensitivity of LUS
that is higher compared to CXR.

One variable that influenced the specificity is the size of the
lesion. In fact, in the work of Shah et al. (2013) the specificity rises
from 89 to 97% in children with consolidation greater than 1 cm.
According to Biagi et al. (2018), the specificity reaches 98.4%
when there are >1 cm consolidations. Another variable regarding
sensitivity and specificity seems to be age. According to Liu et al.
(2014), a large area of lung consolidation with irregular margins
had 100% sensitivity and 100% specificity for the diagnosis of
neonatal pneumonia.

Two studies deviate from the results of the previous ones. In
one study, Lissaman et al. (2019) reported that LUS sensitivity
was 91% (95% CI: 78 to 98%) and specificity was 68% (95%
CI: 54 to 80%). However, in this regard, the sonographers were
a first-year pediatric emergency medicine fellow and a final-
year medical student, both without prior US experience but
trained specifically for this study by an emergency physician
with 5 years of POCUS experience and a Diploma in Diagnostic
Ultrasound. In the other study (Biagi et al., 2018) the diagnosis
of consolidations by LUS showed a high sensitivity of 93% but
low specificity (14% for expert operators and 25% for novice

operators). However, in this study, although CXR was used as
the gold standard, LUS and CXR were not always performed
consecutively and changes in the lung disease process may have
occurred due to the time elapsed between the two imaging
studies. Also, the sample size is very small, in which only 23
patients were recruited.

Although lung CT is considered the gold standard for the
diagnosis of pneumonia, for reasonable ethical reasons no studies
have subjected patients to lung CT except in case of clinical need.
In most studies, LUS was therefore compared with CXR, the
widely used diagnostic tool to diagnose pediatric Community-
Acquired Pneumonia (pCAP).

On the other hand, the other authors, evaluated the diagnostic
accuracy of LUS in the diagnosis of pneumonia by comparing it
with clinical diagnosis defined by WHO guidelines (Chavez et al.,
2015). They showed that the WHO algorithm did not agree with
the results of POCUS in over a third of children and had an
overall low performance compared to point-of-care ultrasound
to identify lung consolidation. One of the future challenges of
LUS may be precisely that of being able to improve cases of
pneumonia management in limited-resource settings. To test this
possibility, Lenahan et al. (2018), with their multicenter pilot
study, proposed to pilot LUS in Mozambique and Pakistan and
to generate evidence regarding the use of LUS as a diagnostic tool
for childhood pneumonia.

In conclusion, the main purpose of all the studies was to
evaluate whether LUS can be used as an alternative method to
X-ray in the diagnosis of pneumonia. The consensus opinion
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FIGURE 9 | Grayscale lung ultrasound examination (transverse scan between intercostal fields; linear probe with 12 MHz frequency) of a 4-year-old boy with viral
pneumonia – due to Coronavirus (non-COVID-19), Bocavirus, and Metapneumovirus coinfection- requiring respiratory assistance with High- flow nasal oxygen at the
pediatric department. It shows sonographic interstitial syndrome (SIS) which is characterized by blurred, uneven, coalescent B-lines and white lung; irregular pleural
line (arrows); reduced pleural sliding; multifocal inhomogeneous involvement; subpleural microconsolidations (generating pseudo-B-lines) (arrowheads).

of the aforementioned studies is that LUS has been proposed
as a method with better sensitivity and specificity than CXR.
The advantage of LUS is not only relative to the diagnosis of
pneumonia, but also the lack of exposure to X-rays and the
possibility of performing the examination at the patient’s bed as
well as performing a follow-up.

However, some open questions did emerge. In particular,
the question regarding how to determine when a negative LUS
requires further evaluation with CXRs or whether it is safe
not to prescribe antibiotics in cases of suspected pneumonia
when LUS is normal or only shows interstitial syndrome or very
small sonographic consolidations. Moreover, there is the need
to standardize the appropriate protocol to interpret the LUS
findings in childhood pneumonia and the need for international
guidelines about the LUS use for pneumonia diagnosis. Future
studies should focus on these aspects.

Future studies should also focus on ultrasound-based
etiological diagnosis. Not only the presence or absence of the
inflammatory event but the etiological hypothesis by which LUS
could lead to a change in the current antibiotic therapy thereby
encouraging personalized antibiotic treatment.

Bronchiolitis
Bronchiolitis is a typical lower respiratory tract infection that
usually affects children in the first two years of life. Its etiology

is viral and more frequently it’s caused by Respiratory Syncytial
Virus (RSV) (Meissner, 2016).

Bronchiolitis physiopathology is characterized by edema,
increased production of mucus, and necrosis of cells of
the small airway causing obstruction of distal bronchioles
(Meissner, 2016).

In recent years, the clinical evaluation of children affected
by bronchiolitis has been completed with LUS (Miller, 1995;
Jaszczołt et al., 2018), exploiting the advantages of ultrasound
especially in young children (non-invasive, non-ionizing
radiation tool characterized by a rapid, affordable, point-of-care
imaging modality that allows both real-time diagnosis and
follow-up of respiratory diseases).

According to LUS findings (Caiulo et al., 2011; Basile et al.,
2015; Cohen et al., 2017; Di Mauro et al., 2019; Supino et al.,
2019), the ultrasound pattern of bronchiolitis is not specified in
an absolute sense. We can find it for example in the case of
pneumonia of viral origin. It is characterized by the presence
of a thickened pleura that reflects ultrasound waves from the
sliding sign and by the presence of long vertical artifacts/B-
lines and small subpleural consolidations. B-line/vertical artifacts
derive from interstitial inflammation and/or disventilation.
Inflammation in particular can be such as to also affect the
alveolar component and therefore such as to cause the formation
of a consolidation which can then become macroscopic and
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also characterized by elements of dynamic air bronchogram
(Basile et al., 2015; Supino et al., 2019). Basile et al. (2015)
proposed a US pattern classification that can be associated with
the clinical classification. It has been described as having a
good concordance between clinical condition and US pattern,
highlighting a worse clinical course for those patients who have
a subpleural consolidation with a diameter greater than 10 mm
(Basile et al., 2015; Jaszczołt et al., 2018; Supino et al., 2019).

Lung ultrasound (LUS) shows better sensitivity than CXR in
the detection of subpleural parenchymal consolidations of small
dimensions (1–2 cm) (Jaszczołt et al., 2018) and it is also able to
detect bacterial superinfection by detecting large consolidations
and aerial bronchograms (Biagi et al., 2018).

In conclusion, considering the advantages of LUS over
chest radiography in detecting and characterizing bronchiolitis
findings and considering that there is a good concordance
between clinical condition and ultrasonographic pattern (Caiulo
et al., 2011), LUS is especially important in the follow-up to
avoid repeated chest radiographs. However, considering that the
LUS findings of bronchiolitis are not specific, integration with
clinical and laboratory data remains important in the diagnostic
approach to the child with suspected bronchiolitis.

Wheezing and Asthma
A field in which the use of LUS is not still well defined or
is in development is that of asthmatic pathology. The studies
available in the last ten years (from 2010 to 2020) in the
literature are very few.

In the PED, children frequently present with respiratory
distress and concomitant wheeze. Clinicians need to determine
whether the pathophysiological process is one such as
bronchiolitis, asthma, or pneumonia. The management of the
aforementioned common conditions of childhood is dramatically
different (Varshney et al., 2016; Dankoff et al., 2017).

A point-of-care tool that could differentiate between etiologies
and/or guide the management of children with respiratory tract
infections and wheeze would prove useful to the emergency care
of these patients.

Varshney et al. (2016), performed the first study, a prospective
study, featuring LUS findings in 94 children ≤2 years of age
presenting to the PED with signs of a respiratory tract infection
and wheeze. Among this category of children, a positive LUS
seems to distinguish between clinical syndromes by ruling in
pneumonia and ruling out asthma.

In 2017 same authors (Dankoff et al., 2017) performed the
first study, a prospective study, characterizing lung ultrasound
findings in children (aged between 2 and 17 years) with a
moderate to severe acute asthma exacerbation. This study
demonstrated that 45% of pediatric patients had a positive lung
ultrasound during their acute respiratory presentation, of which
90% had a final physician diagnosis of asthma and 10% had
asthma/pneumonia. Positive lung ultrasound was defined as the
presence of ≥ 1 of the following findings: ≥ 3 B-lines per
intercostal space, consolidation, and/or pleural abnormalities.
Although the authors (Dankoff et al., 2017) have shown that
pulmonary ultrasound is positive even in the course of asthma,
they have not been able to define whether asthma, both in the

acute phase and in the stability phase, is characterized by a
specific LUS pattern.

Future prospective studies, better on larger pediatric
populations, are needed to determine the usefulness and
reliability of this tool in the clinical practice of asthma disease
taking into account of (1) other diagnostic tests - and not
just clinical evaluation associated with LUS evaluation - such
as microbiological tests from the airways, chest X-ray, lung
function assessment; (2) the treatment of acute asthma attack
and any background therapy performed; (3) changes in the LUS
findings and other clinical and instrumental assessments before
and after the administration of therapy for acute attack; (4)
characterization of the ultrasound lung pattern in patients with
stable asthma and its comparison with other instrumental and
functional evaluations.

Lung Ultrasound in Other Specific
Settings
Lung Ultrasound After Cardiac Surgery
The performance of LUS approaches that of chest CT and
surpasses that of CXR for diagnosing lung diseases that occur
frequently after cardiac surgery, including consolidation, pleural
effusion, pulmonary edema, and pneumothorax (Ashton-Cleary,
2013). Song et al. (2018) published a randomized controlled trial
with the aim of assessing the utility of perioperative LUS and the
effect of US-guided recruitment maneuver in pediatric cardiac
surgery taking into account that the optimization of perioperative
respiratory care is crucial for improving outcomes after
pediatric cardiac surgery. Lung ultrasound findings (degree of
consolidations, B-lines, and pleural effusion) were characterized
and evaluated following the evaluation method described by
Song et al. (2017). According to the authors, perioperative
LUS examination followed by ultrasound-guided recruitment
maneuver helped decrease postoperative desaturation events and
shortened the duration of mechanical ventilation in pediatric
cardiac patients.

In particular, among 120 children included in the analysis
(aged 5 years or less and divided into 60 in the control
group and 60 in the intervention group), the postoperative
desaturation occurred more in the control group. LUS scores
were better in the intervention group than in the control one.
Duration of mechanical ventilation was longer in the control
group than in the intervention group. In this way, the authors
encouraged more active LUS application in pediatric cardiac
surgery (Song et al., 2018).

Also, according to Tripathi et al. (2019), who performed a
prospective observational study at PICU using the ultrasound
image acquisition protocol in the critically ill (Lichtenstein,
2014), LUS provides actionable quantitative data and it’s useful
to monitor lung recruitment and other dynamic changes.

Lung Ultrasound in Cystic Fibrosis
The aim of the pilot study of Strzelczuk-Judka et al. (2019)
was to evaluate the diagnostic value of LUS in children with
Cystic Fibrosis (CF) compared to a CXR scoring system and
to assess the diagnostic value of the recently developed LUS
score CF-USS (Cystic Fibrosis Ultrasound Score), devised based
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on the modified Chrispin Norman score and the bronchiolitis
score reported by Caiulo and colleagues who applied LUS
in patients with bronchiolitis, which is also present in CF
patients (Brasfield et al., 1980; Helbich et al., 1999; Caiulo
et al., 2011, 2013; Strzelczuk-Judka et al., 2019). In each
patient, the authors evaluated: – the quality and quantity of
any fluid in the pleural space; - the shape and thickness of
the pleural line, the lung sliding sign; – A-lines and B-lines
artifacts (number, localization, and morphology, including single
ones, “lung rockets” complexes and “white lung” images) and –
the alveolar consolidations (number, dimensions, localization,
morphology, presence of bronchogram and its air or fluid
characteristic and vascularization). Lung ultrasound findings
were also classified according to CF-USS. According to the
authors, LUS should be a supplementary examination in
scheduled follow-up visits in pediatric patients with CF, and
the CF-USS scoring system could provide clinicians with
valuable information on disease progression. The CF-USS results
correlated with the conventional x-ray modified Chrispin–
Norman score. Moreover, the authors emphasize that LUS could
constitute an invaluable tool for the diagnosis of subpleural
consolidations (Strzelczuk-Judka et al., 2019).

However, according to the authors of the studies described
above (Song et al., 2018; Strzelczuk-Judka et al., 2019; Tripathi
et al., 2019), LUS has low negative predictive values and negative
examinations and cannot rule out lung pathology. Limitations
of LUS would include the inability to visualize consolidations
separated from the pleura and larger airways. The numerous
clinical conditions in which B-line artifacts could be present
also make it difficult to recommend LUS as the only diagnostic
modality in some categories of patients such as those with
underlying lung diseases (e.g., CF) (Song et al., 2018; Strzelczuk-
Judka et al., 2019; Tripathi et al., 2019).

DISADVANTAGES OF LUNG
ULTRASOUND

Many studies have commented on the disadvantages of
LUS. These disadvantages included the following (Copetti,
2016; Lovrenski et al., 2016; Cox et al., 2017; Lovrenski,
2020): (1) the inability to visualize the paravertebral regions
(beneath the scapulae); (2) the difficulty in examining some
patients who are characterized as hypoechogenic (e.g., patients
with obesity, subcutaneous emphysema, dressings/wounds);
(3) the non-optimal position in which patients with acute
respiratory distress and dyspnea are often found, which
limits the examination of some lung areas; (4) the air leak
syndromes (pneumomediastinum, pneumopericardium, and
interstitial emphysema) which couldn’t be easily identified by
LUS; (5) the areas of air trapping and hypoalveolarization that
characterize much of the child’s chronic pathology; (6) the
errors that may occur if the operator is not properly trained
and experienced.

Furthermore, in the context of infectious pulmonary disease,
specifically pneumonia, LUS findings are considered non-specific
from an etiological point of view and need to be compared
and associated with clinical and laboratory findings in order to

determine the true etiology of pulmonary changes. No studies
have yet investigated the role of LUS in the etiological diagnosis
of pediatric pneumonia.

WHAT ARE THE FUTURE DIAGNOSTIC
CHALLENGES OF LUNG ULTRASOUND?

Lung ultrasound (LUS) in pediatrics could be used to
expand and improve its diagnostic capabilities in several ways.
These would include the better capability in the following
aspects. First, in the differential diagnosis between viral and
bacterial lower respiratory infections and diagnosis of interstitial
pneumonia in which the application of LUS could determine
the etiological diagnosis of pneumonia in children which could
improve antibiotic stewardship (Berant et al., 2015; Han et al.,
2018). Second, in the qualitative, quantitative, and objective
characterization of vertical artifacts in each of the childhood
respiratory diseases, which include chronic disabling ones,
through the development of artificial intelligence to identify more
specific ultrasound patterns and to create ultrasound scores as
is going on for lung infection by COVID-19 (Soldati et al.,
2020; Vetrugno et al., 2020). Third, in the use of contrast-
enhanced lung ultrasound in complicated pneumonia, both
intravenous and intracavitary: intravenous contrast-enhanced US
can accurately diagnose “necrotizing” pneumonia and delineate
pleural effusion, while intracavitary contrast-enhanced US can
identify the location and patency of the thoracic catheter and
show the presence of loculations (Lovrenski, 2020). Fourth, in
the correlation of LUS with clinical parameters, mechanical
ventilation parameters in the context of neonatal and pediatric
intensive care; LUS also has the potential for enabling a
more focused pulmonary rehabilitation of these children after
extubating, targeting precisely to the poorly ventilated areas that
need treatment. Finally, in the correlation between LUS and
CT findings by performing LUS after each chest CT, which is
the gold standard of lung diseases, which could be indicated
for other reasons.

CONCLUSION

The greatest potential of LUS belongs to the dynamic follow-
up of pulmonary conditions, making many everyday decisions
easier for clinicians and enabling a higher quality of treatment
and faster recovery of children. For some conditions, such as
lung consolidations of both infectious and non-infectious nature,
LUS can be considered the first-choice tool for the diagnosis and
follow-up of pediatric lung diseases.

Conversely, whenever there is a discrepancy between LUS and
other findings (clinical and laboratory), CXR or CT (in more
complicated cases) should be performed. This kind of approach
would probably reduce the number of CXRs significantly.

Importantly, one of the biggest advantages of LUS is its
availability, especially in developing countries (Buonsenso and
De Rose, 2021), because it is often easier to bring the ultrasound
device to children than to conduct the children to ultrasound
rooms of distant hospitals. Unlike most US techniques, LUS
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does not require a high-tech ultrasound device: old ultrasound
devices and two US probes (convex and linear) are sufficient to
provide the necessary information. Fortunately, LUS techniques
are easy to perform and master so they are very convenient both
outside and inside hospitals; however, as in any other aspect
of life, experience is important for lung US, as well (Lovrenski,
2020). The best results are obtained by choosing case by case by
integrating the different diagnostic tools.

In conclusion, over the past 10 years, LUS has enhanced
our ability to diagnose many pediatric respiratory conditions.
Further studies are ongoing that will help us to integrate LUS
with the other more commonly used diagnostic modalities to an
even greater extent.
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Ključevšek, D. (2016). Lung ultrasonography: A new imaging approach in
diagnosis of pneumonia in children. Acta Med. Acad. 45, 76–77. doi: 10.5644/
ama2006-124.160

Kurepa, D., Zaghloul, N., Watkins, L., and Liu, J. (2018). Neonatal lung ultrasound
exam guidelines. J. Perinatol. 38, 11–22. doi: 10.1038/jp.2017.140

Lenahan, J. L., Volpicelli, G., Lamorte, A., Jehan, F., Bassat, Q., and Ginsburg,
A. S. (2018). Multicentre pilot study evaluation of lung ultrasound for
the management of paediatric pneumonia in low-resource settings: a study
protocol. BMJ Open Respirat. Res. 5:e000340. doi: 10.1136/bmjresp-2018-
000340

Liang, H. Y., Liang, X. W., Chen, Z. Y., Tan, X. H., Yang, H. H., Liao, J. Y., et al.
(2018). Ultrasound in neonatal lung disease. Quant. Imaging Med. Surg. 8,
535–546.

Lichtenstein, D. A. (2014). Lung ultrasound in the critically ill. Ann. Intens. Care
4:1. doi: 10.1186/2110-5820-4-1

Lichtenstein, D. A., and Mauriat, P. (2012). Lung Ultrasound in the Critically Ill
Neonate. Curr. Pediatr. Rev. 8, 217–223. doi: 10.2174/157339612802139389

Lichtenstein, D. A., Lascols, N., Mezière, G., and Gepner, A. (2004). Ultrasound
diagnosis of alveolar consolidation in the critically ill. Intens. Care Med. 30,
276–281. doi: 10.1007/s00134-003-2075-6

Lichtenstein, D., Mezière, G., and Seitz, J. (2009). The dynamic air bronchogram.
A lung ultrasound sign of alveolar consolidation ruling out atelectasis. Chest
135, 1421–1425. doi: 10.1378/chest.08-2281

Lissaman, C., Kanjanauptom, P., Ong, C., Tessaro, M., Long, E., and O’Brien,
A. (2019). Prospective observational study of point-of-care ultrasound for
diagnosing pneumonia. Arch. Dis. Childhood 104, 12–18. doi: 10.1136/
archdischild-2017-314496

Liu, J., Cao, H. Y., Wang, H. W., and Kong, X. Y. (2015a). The Role of Lung
Ultrasound in Diagnosis of Respiratory Distress Syndrome in Newborn Infants.
Iran. J. Pediatr. 25:e323. doi: 10.5812/ijp.323

Liu, J., Chi, J. H., Ren, et al. (2017). Lung ultrasonography to diagnose
pneumothorax of the newborn. Am. J. Emerg. Med. 35, 1298–1302. doi: 10.1016/
j.ajem.2017.04.001

Liu, J., Liu, F., Liu, Y., Wang, H. W., and Feng, Z. C. (2014). Lung ultrasonography
for the diagnosis of severe neonatal pneumonia. Chest 146, 383–388. doi: 10.
1378/chest.13-2852

Liu, L., Oza, S., Hogan, D., et al. (2015b). Global, regional, and national causes of
child mortality in 2000-13, with projections to inform post-2015 priorities: an
updated systematic analysis. Lancet 385, 430–440. doi: 10.1016/S0140-6736(14)
61698-6

Lovrenski, J. (2018). Pulmonary sequestration as an incidental finding of pediatric
abdominal ultrasound. J. Health Sci. Med. Res. 37, 61–66. doi: 10.1007/s00383-
014-3572-0

Lovrenski, J. (2020). Pediatric lung ultrasound - pros and potentials. Pediatr.
Radiol. 50, 306–313. doi: 10.1007/s00247-019-04525-y
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Background: Identification of lung parenchyma on computer tomographic (CT) scans

in the research setting is done semi-automatically and requires cumbersome manual

correction. This is especially true in pathological conditions, hindering the clinical

application of aeration compartment (AC) analysis. Deep learning based algorithms have

lately been shown to be reliable and time-efficient in segmenting pathologic lungs. In this

contribution, we thus propose a novel 3D transfer learning based approach to quantify

lung volumes, aeration compartments and lung recruitability.

Methods: Two convolutional neural networks developed for biomedical image

segmentation (uNet), with different resolutions and fields of view, were implemented

using Matlab. Training and evaluation was done on 180 scans of 18 pigs in experimental

ARDS (u2NetPig) and on a clinical data set of 150 scans from 58 ICU patients with lung

conditions varying from healthy, to COPD, to ARDS and COVID-19 (u2NetHuman). One

manual segmentations (MS) was available for each scan, being a consensus by two

experts. Transfer learning was then applied to train u2NetPig on the clinical data set

generating u2NetTransfer. General segmentation quality was quantified using the Jaccard

index (JI) and the Boundary Function score (BF ). The slope between JI or BF and relative

volume of non-aerated compartment (SJI and SBF , respectively) was calculated over data

sets to assess robustness toward non-aerated lung regions. Additionally, the relative

volume of ACs and lung volumes (LV) were compared between automatic and MS.

Results: On the experimental data set, u2NetPig resulted in JI = 0.892 [0.88 : 091]

(median [inter-quartile range]), BF = 0.995 [0.98 : 1.0] and slopes SJI = −0.2 {95%

conf. int. −0.23 :−0.16} and SBF = −0.1 {−0.5 :−0.06}. u2NetHuman showed similar

performance compared to u2NetPig in JI, BF but with reduced robustness SJI = −0.29

{−0.36 :−0.22} and SBF = −0.43 {−0.54 :−0.31}. Transfer learning improved overall

JI = 0.92 [0.88 : 0.94], P < 0.001, but reduced robustness SJI = −0.46 {−0.52 :−0.40},
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and affected neither BF = 0.96 [0.91 : 0.98] nor SBF = −0.48 {−0.59 :−0.36}.

u2NetTransfer improved JI compared to u2NetHuman in segmenting healthy (P = 0.008),

ARDS (P < 0.001) and COPD (P = 0.004) patients but not in COVID-19 patients

(P = 0.298). ACs and LV determined using u2NetTransfer segmentations exhibited < 5%

volume difference compared to MS.

Conclusion: Compared to manual segmentations, automatic uNet based 3D lung

segmentation provides acceptable quality for both clinical and scientific purposes in the

quantification of lung volumes, aeration compartments, and recruitability.

Keywords: uNet, COVID-19, lung segmentation, ARDS, Jaccard index, deep learning, transfer learning, lung

recruitment

1. INTRODUCTION

The ongoing COVID-19 pandemic has focused attention on
Acute Lung Injury and the Acute Respiratory Distress Syndrome
(ARDS), a disease mainly characterized by impaired gas exchange
driven by an inflammatory state of the lung (Ferguson et al., 2012;
The ARDS Definition Task Force*, 2012). Optimal treatment
of this pathology is currently being debated and different
approaches have been proposed (Amato et al., 2009; Calfee et al.,
2014; Coppola et al., 2018; Pelosi et al., 2018; Hodgson et al., 2019;
Robba et al., 2020). One of the main clinical questions remaining
is how to choose the best ventilator strategy.

The primary objectives of mechanical ventilation (MV) are
maintaining physiological blood oxygen and carbon dioxide
concentrations. However, MV itself may induce further damage
to the lung parenchyma. This process is known as Ventilator
Induced Lung Injury (VILI) (Slutsky, 1999; Slutsky and
Ranieri, 2013). The concept of protective ventilation has thus
been introduced (Network, 2009) to minimize VILI. While
pathophysiological pathways leading to biotrauma (Curley
et al., 2016), volutrauma (Güldner et al., 2016), barotrauma
(Anzueto et al., 2004), and atelectrauma (Tsuchida et al.,
2012; Güldner et al., 2016) have been identified, the clinical
challenge of individual patient ventilator settings to minimize
VILI still remains. The titration of ventilatory parameters is
often approached by integrating functional assessments of gas
exchange, mechanical properties of the lung and radiological
findings. Both gas exchange parameters and lung mechanics
can be reliably measured bedside, leading to useful assessments
of ventilation to perfusion matching, dead space estimation,
and mechanical stress on the lung. Conversely, important
radiological findings such as aeration compartments and
recruitability are often only assessed qualitatively. Clinicians
often rely on all of these sources of information in deciding to
perform interventions such as positive end-expiratory pressure
(PEEP) setting, recruitment maneuvers, prone positioning,
pharmacologic interventions, or extra-corporeal circulation
(Battaglini et al., 2021).

The classification and quantification of lung regions on
computer tomographic (CT) data may also be used to guide
ventilatory strategies (Pelosi et al., 2011; Cereda et al., 2019;
Robba et al., 2020). While often used in research settings (Ball

et al., 2017), this is, however, not routinely performed in clinical
settings since it requires costly manual lung segmentation by
trained physicians. The challenge of segmenting pathologic lung
parenchyma originates from the fact that non-aerated lung
tissue is not distinguishable from nearby structures by either its
Hounsfield unit nor by its pattern. Segmenting lung parenchyma
thus requires knowledge regarding the anatomical boundary
and shape of the lung. For this reason the several deterministic
algorithms previously proposed (Hu et al., 2001; Karmrodt et al.,
2006; Cuevas et al., 2009; Mansoor et al., 2014; Noshadi et al.,
2017) either lack in accuracy or are prone to fail if any one of their
numerous constituting assumptions is not met, which typically
occurs in ARDS.

The segmentation challenge posed by pathologic lung
parenchyma has been recently successfully tackled using
artificial intelligence (AI) based algorithms such as convolutional
neural networks (CNN) (Shelhamer et al., 2017). The SegNet
(Badrinarayanan et al., 2017) architecture was used successfully
for the automatic segmentation of healthy and injured lung scans
from experimental and clinical data alike (Gerard et al., 2020).
More recently polymorphism was added, further increasing the
robustness of the algorithm in segmenting poorly or non-aerated
lung regions on CT scans with up to 25% volume of the
non-aerated lung compartment (Gerard et al., 2021). Such U-
net like architectures constitute an improvement compared to
previous CNNs, mainly in context feedback. These architectures
are thus particularly well suited to scarce segmentation problems
with only limited available data (Ronneberger et al., 2015).
For example, U-nets have been applied to medical image
recognition and tasks such as brain tumor segmentation (Çiçek
et al., 2016). When applied to the task of lung parenchyma
segmentation, U-nets have shown promising results on healthy
chest CTs by Ait Skourt et al. (2018) and on 2D slices
(Zhou et al., 2021) and 3D volumes (Müller et al., 2020) of
COVID-19 CT scans.

Given these promising results, in this contribution we propose
a three-dimensional U-net based algorithm for segmenting lungs
across different pathological states. We develop our system using
experimental CT data. The resulting algorithm can be run on
personal computers. We further train and evaluate this algorithm
on data from a cohort of ICU patients with both non-respiratory
diseases and respiratory disease, including COVID-19. We
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FIGURE 1 | Flow chart of the design process applied (CT scans were excluded if manual segmentations were of poor quality).

perform the evaluation of the system in terms of the correct
determination of aeration compartments and lung volumes.

2. MATERIALS AND METHODS

2.1. Study Design
The present study is aimed at developing a reliable and
time-efficient method for lung segmentation in pathological
conditions using available data sets for future application. To this
end, we employed only previously gathered research data sets
with granted appropriate ethics committee approvals. Data had
already been annonymized within the original study.

The study was conducted in three phases. First, we compiled
the animal data set and used it to select the better of two
possible network architectures. We then used the clinical data
set to test ex-novo training vs. transfer learning from the animal
data set. Finally, we evaluated if our approach was acceptable
for research and clinical applications. To do so we compared
measures derived from lung CT segmentations, such as aeration
compartments, effective lung volume and recruitability, as
calculated from CNN-segmentations against the same measures
calculated from manual CT segmentations. An outline of the
process is shown in Figure 1.

2.2. Convolutional Neural Network
The architecture implemented here stems from U-net structures,
that apply convolutions to different image resolutions. Our
architecture expands the same concept to 3D volumes. U-nets use
down-sampling on the encoding path of the image processing,

before applying convolutions, to modify the resolution of the
image itself and then implement a symmetric up-sampling and
concatenation of the results before the final convolution layer
(Sudre et al., 2017) (Figure 2).

This algorithm of U-nets is composed of two networks that
operate in series, as suggested by Gerard et al. (2020). For the
first network CT data was down-sampled to 64 × 64 × 64 voxel.
This network has the task of determining general shape and
size of the lung. A second network fine tunes the segmentation
using as input both the output from the first network and the
full-scale CT, re-sampled at one millimeter isotropic voxel for
standardization across data sets. The second network operates
by dividing the data into tiles that can be managed by a current
desktop computer, but has only a partial view of the CT and
relies on the output of the first network for information about
size and shape.

Hyper parameters chosen for all networks based on previous
literature were: three encoding steps, 32 first encoder filters, and
3×3×3 convolutional filters. At every encoder level convolution
(Stride 1 × 1 × 1 voxel, same padding), batch normalization,
and linear rectification was performed twice followed by max
pooling. CT data were not augmented. However, both clinical
data sets included implicit data augmentation, since scans at
different resolution and different CT reconstruction kernels were
used. Training was performed using an Adam solver and an
initial learning rate of 10−4 with the DICE loss function. Weights
were initialized according to He et al. (2015).

Architectures and network training were implemented in
Matlab using the Deep Learning Toolbox (Mathworks Inc.,
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FIGURE 2 | General structure of the segmentation process applied in u2Nets.

Natwick, MA, USA). Training and validation were run in parallel
on multiple GPUs on the High Performance Cluster (HPC) at the
centre of information services and high performance computing
(ZIH) at the TU-Dresden, Germany.

Two connected neuronal networks u2Net64 were
implemented in series and the role of the second networks field
of view on the transversal plane (64 × 64 × 64 voxel - u2Net64)
or (128 × 128 × 32 voxel - u2Net128) was investigated on
experimental data. The algorithm yielding highest performance
on the experimental data was then used to perform training and
evaluation on clinical data only (u2NetHuman).

Finally, we tested the usefulness of transfer learning.
Specifically, a u2Net with the same architecture as u2NetHuman

was initially trained on the pig data set. The resulting network
weights and biases were then kept constant on all layers except
the final convolution and classification layers. These weights were
re-trained on the human data set, with increased weight and
bias learning rate factors to optimize the computational costs of
training. The resulting network (u2NetTrans) was then compared
to u2NetHuman.

2.3. Data Sets
CT scans from two completed animal experimental studies
and two clinical studies were used (Supplementary Table 1).
One manual segmentation was available for each scan. Each
manual segmentation had been performed and corrected by two
experienced experts. These data were employed for the training
and parametrization of the described neural network algorithms.

2.3.1. Experimental Data
68 scans from 11 animals were taken from previously completed
experimental study (Güldner et al., 2014). This study investigated
the effects of different degrees of spontaneous breathing
during biphasic positive airway pressure (BIPAP) ventilation
on neutrophilic inflammation in a double-hit ARDS model
composed of repeated lung lavage with Horowitz ratio below
200mmHg for 30 min. CT scans were acquired using Siemens
Biograph 16 Hirez PET/CT (Siemens Knoxville, TN, USA) at
a resolution of 0.4x0.4x1mm. Scans were taken during end-
expiratory occlusion at an airway pressure of 10 cmH2O of 10s.
The study protocol was approved by local animal care committee
(Landesdirektion Dresden, Dresden, Germany). Further protocol
details are described elsewhere (Güldner et al., 2014).

A further 112 scans from 7 animals were taken from an
unpublished experimental study performed at the University
Hospital Carl Gustav Carus, TU Dresden, Germany. The study
was performed on non-injured pig lungs with negative end-
expiratory airway pressure of as low as −12 cmH2O. The CT
scans (Kernel: BF30f, Resolution: 0.59x0.59x3mm) were acquired
using SOMATOM Definition Edge (Siemens Healthineers,
Erlangen, Germany) in supine position during end-expiratory
and end-inspiratory hold of 10 s with a PEEP of 5 cmH2O as well
as negative externally applied abdominal pressure (NEAP) at the
airway of 0, −5, −8, and −12 cmH2O. The Institutional Animal
Care and Welfare Committee of the State of Saxony, Germany
approved all animal procedures (DD24.1-5131/474/422).

A total of 180 static CT scans from pigs were thus used for
training and 5-fold cross validation as described below.
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2.3.2. Clinical Data
Patient CT scans were collected from previously published
studies with available manual segmentations performed by expert
radiologists. A total of 159 scans from healthy, COPD and ARDS
patients from the University Hospital San Martino in Genoa,
Italy, were included in the current study. One set of 112 scans
were taken from a previous study assessing the influence of
reconstruction kernels and slice thickness on the estimation of
aeration compartments across pathological conditions (Ball et al.,
2016) (KERNEL). A further set of 44 scans from 18 patients
were taken from another previous study investigating the effects
of PEEP levels (8 and 16 cmH2O) on alveolar recruitment in
mechanically ventilated COVID-19 patients (Ball et al., 2021)
(PEEP). Change of relative mass of non- and poorly aerated
compartments from PEEP = 16 cmH2O to PEEP = 8 cmH2O
was used to quantify recruitable lung tissue in a sub-set of 12
COVID-19 patients.

Data acquisition protocols, patient demographic data, ethics
committee approval and further details can be found online in
the original publications (Ball et al., 2016, 2021).

2.4. Five-Fold Cross Validation
Due to the relative scarcity of segmented CT scans,rather than
splitting our experimental data in fixed training and validation
sets, we instead employed a 5-fold cross validation procedure.
This means that each network was trained five times and for
each iteration 80% of available scans were randomly selected
for training and the respective remaining 20% were used
for validation.

2.5. Evaluation of Segmentation Quality
Performance of the automatic segmentation was assessed in
two categories:

1. Similarity was assessed by:

• Jaccard Index (JI), the ratio of number of elements of the
intersection and the number of elements of the union of
two sets - thus quantifying similarity - defined by

JI = Jaccard(GT, PR) =
|GT ∩ PR|

|GT ∪ PR|
(1)

where ground truth (GT) and the prediction (PR)
correspond to logical masks (true or false) specifying
whether a voxel belongs to the lung ROI or not. In our
case GT corresponds to the manual segmentation. Perfect
overlap between GR and PR results in a Jaccard Index of 1,
whereas no intersection would result in a Jaccard Index of 0.

• The Jaccard index is related to the popular Sørensen–Dice
coefficient according to

DICE =
2 · JI

1+ JI
. (2)

In the current study we decided to use JI instead of
DICE since the former allows for a more granular
analysis, especially for values close to JI = 1
(Supplementary Figure 1).

2. Contour agreement was assessed by:

• Boundary Function score (BF-score) was calculated as
proposed by Csurka et al. (2013). Briefly, precision and
recall per class c are defined as:

Pc =
1

|BPR|

∑

z∈BcPR

[

d(z,BcGT) < θ
]

(3)

and

Rc =
1

|BGT |

∑

z∈BcGT

[

d(z,BcPR) < θ
]

(4)

with boundary map of the ground truth BcGT , boundary
map of the predicted segmentation BcPR, Euclidean distance
d, and distance error tolerance θ (chosen to be 0.75% of the
image diagonal). The BF-score for class c is then derived by

BFc =
2 · Pc · Rc

Rc + Pc
(5)

where a perfect BF-score of 1 indicates that both
segmentation boundaries are within the distance error
tolerance θ of each other.

• Average symmetric surface distance (ASSD) was calculated
(Yeghiazaryan and Voiculescu, 2018) as:

ASSD(BPR,BGT) =
1

|BPR| + |BGT |
×





∑

x∈BPR

dmin(x,BGT)

+
∑

y∈BGT

dmin(y,BPR)



 . (6)

A comparison of both measures BF andASSD in an in-silico
example may be found in the Supplementary Figure 2.

We anticipated that the segmentation quality of the proposed
algorithm would depend on the degree of lung injury and,
more specifically, on the size of non-aerated lung regions of the

TABLE 1 | Segmentation quality metrics for the networks u2Net64 and u2Net128
on the experimental data set.

u2Net64 u2Net128 Sign.

DICE (arb. un.) 0.942 [0.93..0.95] 0.955 [0.95..0.96] P < 0.001

JI (arb. un.) 0.891 [0.88..0.9] 0.913 [0.9..0.93] P < 0.001

BF (arb. un.) 0.993 [0.97..1] 0.997 [0.98..1] P = 0.009

ASSD (mm) 1.149 [1.01..1.78] 0.899 [0.79..1.25] P < 0.001

SJI (arb. un.) −0.15 {−0.19..− 0.12} −0.2 {−0.23..− 0.17}

SBF (arb. un.) −0.049 {−0.09..0} −0.082 {−0.13..− 0.04}

values as median [iqr] and slope {95% conf. int.} respectively; with Sørensen–Dice

coefficient (DICE), Jaccard index (JI), BF-score (BF), and average symmetric surface

distance (ASSD) and their respective slopes SJI and SBF ; statistics according to

Wilcoxon test.
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respective scan. To quantify the robustness of the segmentation
method, we took the slope SJI between JI and the relative
volume of non-aerated compartments, defined by voxel value <

−100HU (VnA in arb.un.) of the respective manually segmented
region of interest (ROI) of the lung. This slope was determined

by fitting the following linear equation over all scans in the
respective data set:

JI = SJI · VnA + C (7)

TABLE 2 | Relative volume of aeartion compartments and effective lung volume (ELV) as determined using the networks lung ROI predictions u2Net64 and u2Net128 on

the experimental data set.

Ref. mask u2Net64 P = u2Net128 P =

VnA (%) 12.3± 8.5 15.9± 8.0 < 0.001 15.8± 8.0 < 0.001

Vpoor (%) 25.6± 8.1 25.6± 7.2 0.971 25.7± 7.2 0.952

Vnorm (%) 56.0± 16.6 51.5± 14.5 0.007 51.7± 14.5 0.009

Vhype (%) 3.5± 3.6 3.4± 3.5 0.879 3.4± 3.5 0.876

ELV (ml) 757± 259 768± 262 0.879 768± 262 0.876

values as mean ± sd; P-values indicate difference compared to reference mask from two sample T-test; with rel. volume of non-aerated (VnA), poorly-aerated (Vpoor ), normally aerated

(Vnorm) and hyper-aerated (Vhype).

FIGURE 3 | Jaccard index (top) and BF-score (bottom) for networks trained from human data only (u2NetHuman, “white”) and through transfer learning of networks

trained on animal CT data (u2NetTransfer , “grey.”) In the right column the respective measure over relative size of the non-aerated compartment in % volume and its

linear regressions with slopes SJI and SBF , as well as their respective confidence intervals.
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TABLE 3 | Segmentation quality metrics for the two networks trained on human

data only u2NetHuman and on both experimental and clinical data sequentially

u2NetTransfer .

u2NetHuman u2NetTransfer Sign.

DICE (arb. un.) 0.937 [0.93..0.95] 0.957 [0.94..0.97] P < 0.001

JI (arb. un.) 0.882 [0.86..0.91] 0.918 [0.88..0.94] P < 0.001

BF (arb. un.) 0.965 [0.92..0.98] 0.964 [0.91..0.98] P = 0.917

ASSD (mm) 1.678 [1.2..2.51] 1.493 [0.7..2.45] P = 0.003

SDICE (arb. un.) −0.12 {−0.15..− 0.08} −0.19 {−0.22..− 0.17}

SJI (arb. un.) −0.2 {−0.26..− 0.14} −0.34 {−0.39..− 0.29}

SBF (arb. un.) −0.246 {−0.34..− 0.16} −0.303 {−0.39..− 0.21}

SASSD (mm) 4.011 {2.2..5.82} 6.257 {4.34..8.17}

Values as median [iqr] and slope {95% conf. int.} respectively; Sørensen–Dice coefficient

(DICE), with Jaccard index (JI), BF-score (BF) and F-score (BF), and average symmetric

surface distance (ASSD) as well as their respective slopes SDICE , SJI, SBF , and SASSD;

statistics according to Wilcoxon test.

A robust segmentation algorithm should be independent of the
degree of the non-aerated compartment size, thus resulting in
a SJI = 0 (arb.un.). Any negative/positive slope would instead
indicate worse/better segmentation quality for non-aerated lung
regions. The slopes SDICE, SBF , and SASSD were calculated the
same way and have similar interpretation.

2.6. Aeration Compartment Size and
Effective Lung Volume
The analysis of lung aeration compartments based on CT data is
performed in Matlab (Mathworks Inc., Natwick, MA, USA). We
employed commonly accepted thresholds dividing segmented
lungs into four compartments using Hounsfield Unit (HU) value:
Hyper-aerated < −900,−900 < normally aerated < −500,
−500 < poorly aerated < −100, and non-aerated > −100.
The relative size %volume of each compartment within the
automatically segmented lung ROI was compared to the one
determined by manual segmentation. The effective lung volume
(ELV) was determined as the gas volume within the automatically
segmented lung ROI and compared to ELV as determined using
the manual segmentation.

2.7. Statistical Analysis
Statistical analyses were performed using non-parametric
Wilcoxon test and slope differences assessed by confidence
intervals. Agreement between relative aeration compartment
sizes computed using automatic and manual segmentations was
evaluated as proposed by Bland and Altman (1986). Statistical
analyses were performed using the R statistical programming
language (R Core Team, 2021). Statistical significance was
accepted for P < 0.05.

3. RESULTS

3.1. Performance on Experimental Data
Sets
The network designed with a wider transversal input u2Net128
outperformed the network designed with a wider longitudinal

FIGURE 4 | Outlines of best, worst, and average segmentations generated

from the double resolution architecture u2NetTransfer (cyan) compared to the

manual segmentation (red), overlayed on the relative coronal CT slice. Images

in each row come from a single scan progressing cranio-caudally from left

to right.

view across all quality features (Table 1). Additionally, the two
network architectures did not differ in terms of robustness
relative to non-aerated lung volume: slopes SJI and SBF did not
differ between u2Net64 and u2Net128.

Both u2Nets slightly over-estimated relative volume of non-
aerated and under-estimated relative volume of normally aerated
lung regions, while relative volumes of poorly and hyper-aerated
as well as ELV did not differ significantly (Table 2).

3.2. Performance on Clinical Data
DICE and Jaccard index increased (P < 0.001, both), while
ASSD decreased (P = 0.003) and BF-score did not differ (P =

0.917) for u2NetTransfer compared to u2NetHuman. Absolute slopes
on similarity SDICE and SJI increased while slopes on contour
agreement measures did not differ SBF and SASSD (Figure 3
and Table 3). Three slices in caudal to cranial sequence for
representative scans of the u2NetTransfer segmentations are shown
in Figure 4.
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FIGURE 5 | Jaccard index for u2NetHuman (A) and u2NetTransfer (B) and its dependence on clinical diagnosis; significance was tested using Kruskal-Wallis test followed

by Nemenyi test; asterisk (*) indicates difference between networks; lines between diagnosis indicate difference between diagnosis; significance accepted at P < 0.05.

3.2.1. Dependence on Diagnosis
The Jaccard Index computed from the predictions of u2NetHuman

differed only between scans fromCOPD compared to COVID-19
patients (P = 0.006) in (Figure 5). Conversely the predictions of
the network transfer learned u2NetTransfer showed a significantly
higher JI for scans of healthy lungs and COPD patients compared
to scans from ARDS (P < 0.05) and COVID-19 patients (P <

0.05). Additionally, Jaccard Index was higher for all diagnosis
except COVID-19 in the u2NetTransfer vs. u2NetHuman networks.
The total volume of the lung ROI determined by u2NetTransfer
differed from that determined through manual segmentation by
3.1± 189.5ml (Supplementary Figure 4).

3.2.2. Aeration Compartments
The relative mass of hyper-aerated lung regions as determined by
the uNet2Transfer segmentations had the smallest mean difference
compared to that obtained through manual segmentation
(−0.09 ± 0.66%mass, LoA − 1.37 : 1.2) followed by normally-
(−0.35 ± 4.69%mass, LoA − 9.55 : 8.84), non- (−0.77 ±

3.98%mass, LoA−8.51 : 7.11), and poorly-aerated compartments
(1.00 ± 3.06%mass, LoA − 4.99 : 6.99), respectively (Figure 6).
Independent of the compartment the Limits of agreement of
the difference between both methods was well below 10%. For
statistics on the relative volume of each aeration compartment
refer to Supplementary Figure 3.

The relative mass of non- and poorly aerated compartments
increased from PEEP = 16 cmH2O to PEEP = 8 cmH2O. The
value determined using the u2NetTransfer segmentation was highly
correlated with the value obtained via manual segmentation
(Figure 7) with limits of agreement below 2%.

3.2.3. Effective Lung Volume
The determination of effective lung volume using u2NetTransfer
automated segmentation showed a difference with LV
obtained through manual segmentations of 20.6 ± 61.9ml

(Figure 8). Additionally, total lung volume determination
by automated and manual segmentations may be found in
Supplementary Figure 4.

3.3. Computational Time
The proposed segmentation algorithm was tested on a
commercially available personal computer equipped with
an Intel i5 CPU and 8GB of RAM. On this system, the algorithm
could output low-resolution lung segmentation in under 20 s
and a full resolution analysis in approximately 15 min.

4. DISCUSSION

The main findings of this investigation can be summarized
as follows. We developed and evaluated a three-dimensional
U-net based algorithm for time-efficient segmentation of
the lung parenchyma. The algorithm, consisting of two
deep networks concatenated in series, yielded satisfactory
performance, sufficient for potential clinical applications using
quantitative non-aerated compartment volumetry. Training the
network using transfer learning across species improved the
segmentation quality on theHuman data sets in all patient groups
except COVID-19. The sizes of the aeration compartments and
the effective lung volume could be determined with limits of
agreement of 5% with manual segmentation. The analyses
assessing the dependence of the Jaccard index and the BF-
score on the relative non-aerated lung volume (SJI and SBF ,
respectively) revealed that our proposed algorithm is able to
perform robust segmentation of the diseased lungs.

The sub-analysis of lung recruitability shown in Figure 7

from a subset of patients with available manual segmentations
at PEEP = 8 cmH2O and PEEP = 16 cmH2O shows a strong
correlation between the two methods (R2 = 0.975). This,
combined with the near-perfect correlation in determining ELV
(R2 = 0.999) shown in Figure 8 and the Bland-Altman analysis
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FIGURE 6 | Bland-Altman-plot of relative mass non-aerated (A), poorly-aerated (B), normally-aerated (C) and hyper-aerated (D) compartments using mask

segmented by u2NetTransfer compared to manual segmentations; with upper and lower limits of agreement (mean ±1.96·standard deviation) uLoA and

lLoA, respectively.

of aeration compartments shown in Figure 6, suggests that
our proposed approach is sufficient for the task of monitoring
modifications of poor and non-aerated lung tissue.

The results presented here demonstrate that AI-based analysis
of CT scans yield fast and efficient evaluations of lung aeration
compartments. Such algorithms should therefore be tested more
widely, especially given the potential benefits of the derived
parameters to the management of ventilatory strategies in
ARDS. The varying performance of the algorithms in different
pathological conditions reflects the anatomical alteration of the
healthy lung, an intrinsic property of lung pathologies. In COPD,
emphysema will enhance HU difference between parenchyma
and surrounding structures, while in ARDS (and especially
COVID-19) consolidated lung regions have intrinsically difficult
boundaries to identify on CT scans, even for human experts.
Upon visual examination of the worst scan as shown in Figure 4

our algorithm is able to identify even the completely collapsed
parenchyma, albeit with some uncertainty. This highlights the

need, in developing data-driven approaches, for databases that
span all required pathological conditions. The degree of detail
that can be expected also suggests that this approach is suited for
gross delineation of lung volumes and further research is needed
to develop a system capable of finer distinction of blood vessels
and airways.

One of the strengths of this technique is that it is operator-
independent and highly reproducible. More importantly, if
coupled with a simple threshold-based algorithm for identifying
lung aeration compartments, this method can be used to quantify
the degree of atelectasis or hyper-distension of lung parenchyma.
The aforementioned qualities of AI-based analysis also reduce
the cost of analyzing repeated CT scans, making it possible to
follow the trend of pathological modifications over time and
evaluate the effectiveness of interventions for both research and
clinical purposes.

Quantitative analysis of aeration compartments could thus
be implemented in decision making algorithms and contribute
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FIGURE 7 | Regression plot (A) and Bland-Altman-analysis (B) of relative non-aerated and poorly aerated lung mass from PEEP = 16cmH2O to PEEP = 8cmH2O in

COVID-19 scans using manual segmentation and automatic segmentation from u2NetTransfer ; with upper and lower limit of agreement (mean ±1.96· standard

deviation) uLoA and lLoA, respectively.

FIGURE 8 | Effective lung volume (ELV) measured using segmentation by u2NetTransfer over ELV measured using manual segmentation (A) and corresponding

Bland-Altman-Analysis (B); with upper and lower limit of agreement (mean ±1.96·standard deviation) uLoA and lLoA, respectively.

to the standardization of treatment across different settings and
intensive-care units. The efficiency and accuracy of this method
are appropriate for analysis of large data sets for research on lung
disease that have until now been difficult to access.

This method may have potential clinical applications. While
currently tidal volume is usually titrated to predicted body-
weight, this method allows easy access to an estimation of
lung tissue available for ventilation and can contribute to
further development of lung protective strategies. Moreover, if
coupled with dual-PEEP CT scans, it allows for an estimation
of recruitability of the lung and can aid the clinician in
the decision for recruitment maneuvers and PEEP setting.
Finally, the quantification of non-aerated lung parenchyma
could also be used to stratify severity and inform prognosis
in ARDS.

The proposed transfer learned algorithm showed a lower
performance compared to SegNet based LungSeg algorithm
(DICE = 0.96 compared to DICE = 0.98) (Gerard et al.,
2021) which may be explained by the lower number of available
scans, the more heterogeneous diagnosis, and larger non-aerated
relative lung regions in the data set.

Performance of the algorithm presented here was similar
to the 3D uNet-based approaches trained on COVID-19
scans only with DICE = 0.96 (Müller et al., 2020).
Although the latter had a better performance compared to
the results on COVID-19 scans presented here (DICE =

0.93), it may be anticipated that the algorithm presented
here may perform better on non-COVID ICU thorax CTs.
Compared to 2D-uNet algorithms, our results indicate a
slightly better performance on lung healthy patients (DICE =
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0.95 vs. DICE = 0.97) (Ait Skourt et al., 2018) and
outperformed results on COVID-19 patients (Zhou et al., 2021)
(DICE = 0.83).

In evaluating the performance of lung segmentation
algorithms in ARDS, we advocate for the use of a metric that
takes into account the degree of non-aerated lung parenchyma
present in the training and validation data sets. To this end, we
propose a straight-forward slope index based on Jaccard and
BF metrics. Low slopes in the experimental data set, compared
to the human data set, suggest higher robustness toward non-
aerated lung regions in the experimental data set, that might
be explained by a more homogeneous nature of the surfactant
depleted models. In the human data set both slope measures
showed higher absolute value potentially due to the origin of
non-aerated lung regions being more diverse and thus more
heterogeneously distributed. This idea is supported by the fact
that the transfer trained network indeed showed an increased
Jaccard slope, compared to the network only trained on clinical
data. A similar performance criterion had been implemented
by Gerard et al. (2021) using the slope of DICE and ASSD with
respect to relative volume of non-aerated lung compartments.
Recalculation of the SDICE in arb. un. to DICE slope in %−1

yielded a value of −0.0012%−1 for the human only trained
algorithm and −0.0019%−1 for the transfer trained algorithm,
both values being lower than the lowest value 0.003%−1 reported
by Gerard et al. (2021). Our algorithm trained on human data
sets only showed lower ASSD slope with 0.04mm%−1 compared
to the one by Gerard et al. (2021) (0.07mm%−1), while the
transfer learned algorithm showed similar values 0.06mm%−1.

This study has several limitations. Firstly, the training and
evaluation were performed on scans from a relatively low number
of distinct animals/patients using five-fold cross validation.
While our results are in keeping with others previously published,
it is likely that training our proposed system on larger data
sets would yield better results. Secondly, animal data were
taken only from experimental models of reversible atelectasis,
not resembling heterogeneity and underlying cause of clinical
ARDS. Thirdly, scans from different computed tomographic
scanners, with different resolutions and kernels, were used
for the applied lung volumetry. While this implies reduced
comparability between the respective scans (Mascalchi et al.,
2017), it may also be regarded as an advantage since the networks
experienced a higher diversity during training and may therefore
show higher performance during clinically diverse CT scan
modalities (Hofmanninger et al., 2020). Fourthly, the data used
for this investigations did only contain one manual segmentation
for each CT scan. A comparison of the algorithm to inter-human
manual segmentations could therefor not be performed. Finally,
the deep learning convolutional neural network based approach
consisting of two sequential networks had been proposed before
(Gerard et al., 2021). The present manuscript describes a re-
implementation in Matlab Deep Learning Toolbox trained and
bench-marked on a limited data set focused on pathological lung
segmentation in moderate ARDS where transferability between
species was accounted for.

5. CONCLUSION

Automatic uNet based 3D lung segmentation showed good
quality and thereby allowed reliable estimation of lung volumes,
aeration compartment sizes, and lung recruitability in both
animals and patients with different lung conditions.
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