About this Research Topic
While local bifurcations are well explained by means of linear analysis, normal forms and desingularization techniques, global phenomena remain a challenging topic in both continuous and discrete systems. Common tools on the subject range from reductions to Poincaré return maps in suitable cross sections to software packages to detect and path-follow the associated bifurcation sets in parameters, and even sophisticated techniques to compute the relevant invariant manifolds involved. Today, the scope of bifurcation theory has broadened to make an impact on rapidly growing branches of dynamics such as slow-fast systems, piece-wise models, delay differential equations, Hamiltonian systems, stochastic systems, as well as across the pattern formation theory. Recent discoveries in these areas have seen the emergence of new exciting types of bifurcations, some of which have yet to be addressed in all their complexity.
This is of special interest to understand the nature of systems near bifurcations in many applications, such as in laser dynamics, nerve impulses in neurons, electrochemical reactions, extinction/survival/synchronising thresholds in population models in ecology and developmental biology, fluid mechanics and celestial mechanics, to name a few examples.
The aim of this Research Topic is to present recent progresses in the study and computation of bifurcations in both theoretical and applied contexts, in order to obtain deeper insight into old and new challenges arising from these phenomena.
Both original research and review articles are expected for this issue. Some of the topics addressed in this collection include the following themes:
• Bifurcation theory of ODEs and maps.
• New bifurcation phenomena in systems with different time scales, piece-wise systems, delay differential equations, dynamical networks, and stochastic dynamical systems.
• Numerical bifurcation analysis.
• Global bifurcations and invariant manifolds.
• Reaction-diffusion and spatially extended systems.
• Homoclinic and heteroclinic phenomena.
• Bifurcations and chaos.
• Applications in physics, biology, chemistry, medicine, engineering, and social sciences.
Keywords: bifurcation, chaos, invariant manifolds, stochastic dynamical systems, delay differential equations, reaction diffusion, homoclinic, heteroclinic, ODEs
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.