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Editorial on the Research Topic

Mouse Models of Hematopoietic Stem Cell Transplantation

Bone marrow or hematopoietic stem cell transplantation (HSCT) is a curative treatment option for
hematological malignancies, several non-malignant hematological disorders and severe combined
immune deficiencies. However, relapse, graft-versus-host disease (GVHD) and opportunistic
infections represent major complications following allogeneic HSCT which compromise the
survival and quality-of-life of the recipient, limiting the wider application of this
immunotherapy. Basic research has significantly advanced our understanding of the underlying
mechanisms of these complications and has led to the development of promising pharmaceutical,
immune and cellular therapies. Despite intensive research and development, GVHD, infection and
relapse remain significant clinical problems and represent major unmet needs in HSCT.

This Frontiers In Immunology Research Topic presents the latest insights from preclinical studies
of HSCT, highlighting opportunities and challenges, and sheds light on the future of HSCT. The
collection is comprised predominantly of review articles which focus on GVHD pathophysiology,
regulatory T cell-mediated immune tolerance, antigen presentation, microbiota/metabolite
modulation of GVHD, intestinal immunopathology and infectious pulmonary complications,
with an emphasis on the biological relevance to the clinic and translational potential.

The perspective article by Teshima and Hill provides a historical overview of major experimental
concepts in bone marrow transplantation discovered using murine models and the translation of
these findings into clinical practice, highlighting the pivotal insights afforded by murine models.

Since the discovery of regulatory T cells (Tregs) by Sakaguchi in 1995, Tregs have been of great
interest to researchers studying immune tolerance and regulation after HSCT. In this collection,
Guo et al. review the biology of Tregs, their role in GVHD and GVL and the challenges related to
Treg adoptive cell therapy to treat and/or prevent GVHD. The authors review Treg expansion
strategies and discuss new sources of Tregs to address challenges encountered with this therapy. In
the review by Ikegawa and Matsuoka, the authors detail the importance of Treg homeostasis post-
HSCT and discuss strategies to manipulate this to modulate post-HSCT immunity to treat and/or
prevent GVHD.

The cardinal feature of GVHD is immune-mediated tissue pathology. Gastrointestinal GVHD is
the most challenging to treat and the greatest cause of GVHD-related mortality. In this collection,
org April 2022 | Volume 13 | Article 88259214
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Varelias et al. Editorial: Mouse Models of HSCT
Ara and Hashimoto review historical and recent advances in our
understanding of the cellular and molecular mechanisms of
GVHD-induced tissue damage in the gastrointestinal tract,
providing important novel insights garnered from mouse
models which inform translational potential. With technological
advances in genomic/metagenomic sequencing and
metabolomics, the ability to study intestinal microorganisms and
their secreted molecules in HSCT has rapidly generated new
knowledge in the field. In this collection, Fujiwara provides an
in-depth review of the intestinal microbiota, metabolite and
epithelial cell crosstalk critical in GVHD regulation, highlighting
the complex relationships and potential microbiota-based
therapeutic strategies.

Conditioning-induced toxicity, immunosuppressive therapies
and alloimmunity permit opportunistic infections post-HSCT, a
major cause of morbidity and mortality. Zhou and Moore review
murine models of infectious pulmonary complications after
HSCT (e.g. bacterial, fungal and viral) focusing on host-
pathogen interactions and the important insights garnered
from these studies.

The therapeutic effect of HSCT, mediated by alloimmunity
towards malignant cells (graft-versus-leukemia/tumor; GVL), is
compromised by detrimental alloimmunity towards recipient
tissues (GVHD). Antigen presentation is central to these two
processes, however the ability to delineate between these remains
elusive and is considered the holy grail in HSCT. Koyama and
Hill review the field and discuss recent advances uncovered by
the use of antigen-specific murine models of GVHD, providing
novel insights for the translational potential of targeting this
pathway. Critically, the authors review antigen presentation in
xenograft transplantation models used to study GVHD and GVL
and discuss the controversies associated with the interpretation
of findings from these models.

Chronic GVHD continues to be a major clinical problem in
HSCT survivors. Song et al. review important mechanistic
findings identified using murine models of chronic GVHD
which reflect features characteristic of the disease in humans.
The authors highlight low P-selectin glycoprotein ligand 1
expressing CD4 T cells as key players in cGVHD pathophysiology.
Original research presented by Choi et al. revealed that deletion of the
endoplasmic reticulum stress protein, XBP-1, reduced B cell activity
Frontiers in Immunology | www.frontiersin.org 25
and the ability to stimulate allogeneic CD4 T cells via a regulated IRE-
1a-dependent decay pathway which led to a reduction in cGVHD.
These preclinical findings demonstrate targeting XBP-1 a potentially
useful strategy to ameliorate cGVHD.

Finally, Shaikh et al. present a detailed description of the
development of a murine model of orthotopic mesenteric lymph
node transplantation to study immune cell responses and
migration in the gastrointestinal tract. The authors determined
its utility in a HSCT setting and suggest potential for
broader application.

In summary, murine models have proven to be instrumental
for advancement of our understanding of the complications that
occur following HSCT. As demonstrated in this collection,
murine models of HSCT have led to the discovery of new
scientific knowledge, permitted established concepts to be
challenged and emerging concepts to be explored, enabled the
development of new therapeutics and provided important
insights that have guided clinical studies. With the development
of new ideas, technologies and tools, murine models of HSCT will
continue to empower academic research and translation into the
clinic in the future.
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Graft versus host disease (GVHD) is a common complication and the leading cause of
morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-
HSCT). Pharmacological immunosuppression used in GVHD prophylaxis and treatment
lacks specificity and can increase the likelihood of infection and relapse. Regulatory T
lymphocytes (Tregs) play a vital role in restraining excessive immune responses and
inducing peripheral immune tolerance. In particular, clinical trials have demonstrated that
Tregs can prevent and treat GVHD, without increasing the risk of relapse and infection.
Hence, adoptive transfer of Tregs to control GVHD using their immunosuppressive
properties represents a promising therapeutic approach. To optimally apply Tregs for
control of GVHD, a thorough understanding of their biology is necessary. In this review, we
describe the biological characteristics of Tregs, including how the stability of FOXP3
expression can be maintained. We will also discuss the mechanisms underlying Tregs-
mediated modulation of GVHD and approaches to effectively increase Tregs’ numbers.
Finally, we will examine the developing trends in the use of Tregs for clinical therapy.

Keywords: regulatory T cells, acute graft versus host disease, chronic graft versus host disease,
hematopoietic stem cell transplantation, adoptive cellular therapy
INTRODUCTION

Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a curative therapy for patients
with many hematological malignancies; however, graft versus host disease (GVHD) is a major
obstacle to the utility of allo-HSCT as it contributes to subsequent mortality and morbidity. GVHD
can be classified into acute (aGVHD) and chronic (cGVHD) forms and is characterized by attack of
host tissues by donor lymphocytes, owing to disparities in major histocompatibility complex
(MHC) molecules or minor histocompatibility antigens (mHAs), which elicit an immune response.
Although the immunosuppressive agents, cyclosporine and methotrexate, are administered after
allo-HSCT as prophylaxis, aGVHD incidence rates range from 20 to 80% (1), while 6 to 80% of
patients develop cGVHD. Glucocorticoids are the first-line treatment for GVHD (1–3); however,
only 50–80% and 40–50% of patients with aGVHD and cGVHD, respectively, respond to steroid
therapy (1, 2). If patients are resistant to glucocorticoids, overall survival rates are dismal at only 5 to
30% (4). At present, there is no consensus on standard second-line treatment. This situation
emphasizes the need for development of innovative therapeutic strategies to control pathological
immune responses following allo-HSCT.

In recent years, with increased understanding of regulatory cell populations, cellular therapy,
particularly adoptive transfer of CD4+CD25+ regulatory T cells (Tregs), has attracted more attention (5).
org June 2021 | Volume 12 | Article 69785416
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Guo et al. Role of Tregs in GVHD
In 1995, Sakaguchi (6) first identified a population of CD4+ cells
expressing high levels of IL-2 a-chain receptor (CD25) in lymph
nodes and spleens of BALB/c nu/+ mice, which could protect
thymectomized mice from autoimmune disease and contribute to
maintaining peripheral immune tolerance by suppressing immune
responses against self- or non-self-antigens. Later, transcription
factor forkhead box P3 (FOXP3) was identified as specifically
expressed in Tregs and as making an indispensable contribution
to controlling Treg development and suppressive function (7),
deepening the understanding of this cell subset. The IL-7 receptor,
CD127, is a biomarker inversely correlatedwith FOXP3 expression
and Tregs’ inhibitory activity (8). Since FOXP3 is expressed
intracellularly, the combination of CD4, CD25, and CD127 has
been widely used to isolate Tregs and CD4+CD25+CD127– T cells
are now referred to as Tregs. In addition to self-tolerance, Tregs
also have a vital role in inducing tolerance of alloantigens (9–11). at
url breaking operator Taylor et al. (9) found that CD25-depleted
CD4+ cells showed increased responsiveness to allogeneic antigens
and that addition of CD4+CD25+ cells had a potent capacity to
regulate CD4+ T cell alloresponses. Meanwhile, CD4+CD25+ cells
were found to induce transplantation tolerance in experiments
involving transfer of CD4+CD25+ Tregs from primarily tolerant
mice to syngeneic recipients, which protected recipients from graft
at url breakingoperator rejection (10, 11). Basedon the suppressive
capacity of CD4+CD25+ Tregs toward alloreactive T cells, Cohen
et al. (12) demonstrated that removal of CD4+CD25+ Tregs from
the graft during transplantation accelerated the occurrence of
GVHD, while addition of freshly isolated or ex vivo-expanded
CD4+CD25+ Tregs could delay or even prevent GVHD after
allo-HSCT. Tregs were found to prevent GVHD for a long time
due to their survival and expansion in vivo after transplantation
in bone marrow transplantation models (13). Besides, adoptive
transfer of Tregs could accelerate the immune reconstitution after
transplantation, owing to the prevention of damage of the thymic
and secondary lymphoid microenvironment caused by GVHD,
which was important for T cell immunity (14). Given these
properties of suppressing excessive allogeneic responses, cellular
therapy, based on adoptive transfer of Tregs to control GVHD has
been the focus of study (12, 15–18).

T cells with immunosuppressive function are a diverse group of
cells. Except for CD4+ Tregs, it has been confirmed that CD8+ Tregs
can regulate excessive immune responses to control GVHD in
animal models as well (19). Being different from CD4+ Tregs, the
characteristics of CD8+ Tregs are controversial, and specific surface
markers to isolate them have not reached agreement (20). In
addition to ab T cells, gd T cells are also capable of
immunoregulation (21). Regulatory gd T cells (gd Tregs) function
to regulate GVHD, which can be induced by granulocyte colony-
stimulating factor (G-CSF) (22). In this review, we will focus on
CD4+CD25+FOXP3+ Tregs.

Tregs have the potential to attenuate GVHD without
impairing the graft versus leukemia (GVL) effect significantly,
making the adoptive transfer of Tregs a promising strategy for
treatment of GVHD (23, 24); however, translation of this
phenomenon into clinical application continues to face
numerous challenges, particularly the instability of Tregs and
Frontiers in Immunology | www.frontiersin.org 27
the difficulties in obtaining sufficient quantities of cells to
transfer. In this review, we discuss the biological characteristics
of Tregs administered in the context of GVHD. Furthermore, we
focus on how to solve the problem of insufficient Treg numbers
for adoptive transfer and discuss the clinical prospects for
application of Tregs.
THE THEORETICAL BASIS OF TREGS’
ADMINISTRATION TO TREAT GVHD

Tregs’ Definition and Function
Tregs account for only 5–10% of CD4+ T cells in peripheral
blood, but they are essential for maintenance of immunological
tolerance (6, 9–12). FOXP3 is specifically expressed in Tregs and
acts as a major regulator that controls their development and
stability (7, 25). Inactivating mutations or specific deletion of
FOXP3 causes a lethal autoimmune syndrome due to a
deficiency of Tregs (7). Tregs can be roughly divided into two
groups according to their developmental origin. First, thymic
Tregs (tTregs), also known as nTregs, are generated when CD4+

single-positive thymocytes encounter self-antigen stimuli in the
thymus during development; T cell receptors (TCRs) expressed
on tTregs mainly recognize self-antigens, which means tTregs
have advantages in preventing autoimmune disease (26, 27). The
other type of Tregs develops from naïve CD4+ T cells in the
periphery following antigen encounter, through exposure to
appropriate cytokines, such as transforming growth factor-b
(TGF-b) and IL-2 (28–31). When this pathway occurs in vivo,
the resulting FOXP3+ Treg cells are referred to as peripherally
induced Tregs (pTregs), whereas, when it takes place in vitro,
they are termed induced Tregs (iTregs) (28–31). Relative to
tTregs, pTregs are considered to play an important role in
maintaining mucosal tolerance, as the TCRs expressed on pTregs
can also be specific for foreign antigens from commensal bacteria
(32). In mice, neuropilin-1 (NRP1) is selectively expressed on
nTregs rather than pTregs, whether they are generated in vivo or
in vitro, and can be used to distinguish nTregs from pTregs (33).
Based on analysis of NRP1, Yadav et al. (33) found that NRP-1lo

Tregs have similar ability to suppress autoimmune responses as
NRP-1hi Tregs, but that the function of NRP-1lo Tregs was
compromised in inflammatory and lymphopenic environments,
relative to that ofNRP-1hiTregs.Unfortunately, nocellularmarkers
have been found to distinguish nTregs and pTregs in humans.
Currently, the evaluation of Treg-specific demethylated region
(TSDR), a conserved CpG-rich region within the FOXP3 locus, is
the only way to distinguish nTregs, and the stability of FOXP3
expression is positively correlated with DNA demethylation at the
TSDR (34). The TSDR is completely demethylated in nTregs, but
iTregs exhibit incomplete demethylation of TSDR and are prone to
losing FOXP3 expression and suppression ability (34), which may
explain their instability in inflammatory environments.

FOXP3 Stability in Tregs
FOXP3, which is regarded as a Treg lineage-specific factor, acts
as a master regulator of gene expression in Tregs and exerts
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regulatory functions at the transcriptional, epigenetic, and post-
transcriptional levels (35). Continuous FOXP3 expression is
indispensable for maintenance of the Tregs’ immunosuppressive
phenotype; however, under certain proinflammatory conditions,
Tregs are prone to los ing FOXP3 express ion and
transdifferentiating into pathogenic T cells, also referred to as ex-
Tregs (36). Therefore, it is particularly important to enhance
FOXP3 expression in Tregs to ensure that they continue to exert
immunosuppressive activity under post-transplantation
conditions. Our laboratory and others found that liver kinase b1
(LKB1) is essential for maintaining the stability of FOXP3
expression and the suppression capacity of Tregs in murine
models by deletion of the gene encoding LKB1 specifically in
Tregs (37–40). We also found that LKB1 may prevent STAT4-
mediated methylation of the TSDR, ensuring stable FOXP3
expression (37). Furthermore, we observed dramatically
decreased expression of FOXP3 in human Tregs owing to
knockdown of the LKB1 gene (40). MicroRNAs (miRNAs) can
govern the expression of protein-coding genes at the post-
transcriptional level (41). Cobb et al. found that miRNA profiles
expressed inTregswere distinct fromthose in conventionalCD4+T
cells and confirmed that eliminating miRNAs by conditional
deletion of Dicer (an RNAse III enzyme needed to generate
functional miRNA) could influence the development of Tregs in
the thymus, reduce the number of Tregs in the periphery, and
down-regulate FOXP3 expression (42). Moreover, mice lacking
Dicer were prone to developing immune pathology (42).
Nevertheless, the detailed mechanisms underlying interactions
between miRNAs and FOXP3 are not fully understood. MiR-
146b can restrain FOXP3 protein levels by targeting TNF
receptor-associated factor 6 (TRAF6) and suppressing the NF-kB
pathway (43). Conversely, MiR-146b antagomirs function to
promote the proliferation and suppressive ability of Tregs (43).
Further, miR-4281 interacts directly with the TATA-box motif in
the FOXP3 promoter, thereby strongly increasing FOXP3
expression (44). Similarly, miR-142-3p knockdown upregulates
FOXP3 expression and enhances the anti-apoptotic and
suppressive function of Tregs (45). Ectopic expression of FOXP3
can confer partial Tregs miRNA profiles, demonstrating that
FOXP3 may control Treg-specific miRNA expression (42).
Hence, miRNAs may have important roles in regulating Tregs’
biology and potentially represent strong targets for intervention
against GVHD.

Characteristics of GVHD
The clinical manifestations of aGVHD include an exaggerated
inflammatory response, usually involving the skin, intestine, and
liver, which occurs within the first 100 days after allo-HSCT (46).
Ferrara categorized the occurrence of aGVHD into three
continuous phases (47): First, the activation of antigen
presenting cells (APCs) by proinflammatory cytokines and
danger-associated molecular pattern molecules (DAMPs),
which originate from damaged host tissues in response to
primary disease and conditioning regimens (47, 48); Second,
after encountering activated APCs, donor T cells are rapidly
expanded and differentiated into effector T cells (Teffs); Finally,
Teffs migrate to target organs with the help of chemokines,
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causing further damage to host tissues (47, 48). Compared with
aGVHD, the mechanisms underlying cGVHD are not clearly
understood. The manifestations of cGVHD are similar to those
of autoimmune diseases, involve more organs than aGVHD, and
usually develop more than 100 days after allo-HSCT (47).
Overall, GVHD can be considered as an imbalance between
the effector and regulatory arms of the immune system and is
characterized by an overproduction of inflammatory cytokines
(49, 50).

Numbers of Tregs in the peripheral blood and target organs
decline in the inflammatory environment of GVHD, which, in
turn, increases GVHD severity (51, 52). Conversely, when Tregs
are co-transferred in equal numbers with CD4+ T cells, GVHD
can be modestly inhibited in animal models (53). Furthermore,
improving early reconstitution of Tregs can prevent GVHD by
inhibiting the rapid oligoclonal proliferation of pathogenic CD4+

Teffs (54). Understanding the mechanisms underlying immune
tolerance induction by Tregs can provide information about
potential therapeutic targets of GVHD.

Role of Tregs in GVHD
In general, Tregs can regulate and suppress excessive responses
to alleviate GVHD using both contact and non-contact-
dependent mechanisms, which can be classified into four
categories: cytolysis, secretion of inhibitory cytokines,
metabolic disruption, and targeting of dendritic cells (DCs)
(55) (Figure 1). Perforin and granzyme B secreted by Tregs
can kill Teffs directly (55). Furthermore, inhibitory cytokines,
such as interleukin-10 (IL-10), IL-35, and TGF-b, which are
expressed by Tregs, are required for Tregs’ function (48, 55–57).
IL-2 is indispensable for the homeostasis of both Tregs and Teffs.
Tregs consume high amounts of IL-2 in local sites, since CD25
(the IL-2 receptor alpha chain) is highly expressed by Tregs, and
this may lead to IL-2 starvation of Teffs (48, 55). The reciprocal
relationship between Tregs and DCs performs a vital and
complex function in controlling GVHD. In addition to killing
reactive T cells via cell–cell contact, Tregs can act on multiple
target cells, particularly DCs. Moreover, Tregs appear to have a
more stable association with DCs than that with CD4+ T helper
(TH) cells in NOD mouse models, which prevents subsequent
interaction between DCs and TH cells (58). Thus, the interaction
between Tregs and DCs may have a core role in the mechanisms
underlying Tregs-mediated immune suppression (58, 59). DCs
are considered the most powerful APCs and have a dual role in
GVHD development (60–65); host DCs or de novo generated
donor DCs both contribute to T-cell priming by presenting
alloantigens in the context of HLA molecules, as well as
providing secondary signals to promote full T cell activation
(60–63). Tregs constitutively express cytotoxic T-lymphocyte
antigen 4 (CTLA-4), the affinity of which for CD80/86
expressed on DCs is superior to that for CD28, hindering
complete T-cell activation via blocking the binding of CD28
and CD80/86 (66). Further, Tregs can facilitate the removal and
degradation of CD80/86 from DCs via CTLA-4 through the
process of trans-endocytosis (67). In addition, immunosuppressive
cytokines, such as IL-10, released by Tregs can interfere with DC
activation and antigen presentation (68). Tregs can hamper DC
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maturation, rendering them deficient in priming T cell activation,
and lymphocyte activation gene 3 (LAG-3), expressed by Tregs,
may play a dominant role in the process of DCmaturation (69–72).
Recently, Mavin et al. (70) discovered that human Tregs can
modulate DC function through disturbing their reprogramming
during maturation, which may involve the NF-kB signaling
pathway and WNT5A expression. In addition to influencing the
activity of DCs themselves, Tregs may alter DC function; for
example, Treg-treated DCs tend to skew CD4+ naïve T cell
polarization and impair CD8+ Teffs function in inducing GVHD
(70). In contrast, DCs can induce donor T cell tolerance by
promoting the expansion and function of Tregs, thus protecting
them from GVHD (60, 73). Our laboratory found that LKB1 has an
important role in DCs to increase the number of Tregs, which has
also been confirmed in other studies (74–76). Granulocyte-
macrophage colony-stimulating factor (GM-CSF) functions to
increase CD4+CD8– DC numbers, thus preferentially inducing
Tregs expansion, and alleviating tissue damage in a cGVHD
mouse model (77). The relationship between DCs and Tregs
intricately controls GVHD, and further research is warranted to
inform the development of new strategies to prevent GVHD.

Tregs in GVL
T cells originating from donors can eliminate remaining tumor
cells, hence allo-HSCT is considered the only curative therapy for
Frontiers in Immunology | www.frontiersin.org 49
numerous malignant hematological diseases. This also means
that immunosuppressive Tregs controlling GVHD by inhibiting
the initial activation of alloreactive T cells may compromise the
GVL effect, thereby increasing the risk of relapse and infection.
Experiments in several animal models have revealed that Treg
therapy can suppress GVHD while maintaining GVL, thus
separating GVHD from GVL (78, 79). This may involve Treg-
mediated inhibition of excessive donor T cell proliferation and
downregulation of serum proinflammatory cytokine levels, while
not interfering with the activation of conventional T cells
(Tcons), particularly the ability of CD8+ T cells to kill tumors
(78); however, some preclinical experiments have also
demonstrated that CD4+ iTregs can partially impair GVL in a
mouse model, with animals suffering short-term leukemia
relapse (80, 81). The combination therapy of CD4+ iTregs and
CD8+ iTregs may provide a new way to solve the problem
because the GVL effect can be preserved by CD8+ iTregs, and
CD4+ iTregs function to attenuate GVHD in the meanwhile,
which achieves the effect of one plus one being greater than two
(81). Excitingly, Treg-based therapy has seldom been found to
have a detrimental influence on the risk of relapse and infection
in clinical trials (18, 82–84).
TREGS’ EXPANSION FOR
GVHD THERAPY

Expansion Ex Vivo
As mentioned above, Tregs account for a small proportion of
CD4+ T cells in the peripheral blood. Therefore, the numbers of
Tregs freshly isolated from donors are far from sufficient to cater
for clinical infusion requirements. Furthermore, the purity of
Tregs isolated from donors is sub-optimal, as there is a lack of
specific markers to distinguish Tregs from Tcons. Currently,
Tregs isolated by leukapheresis from healthy donors and
expanded by exposure to aCD3/aCD28 beads and IL-2
stimulation are a common source for cellular therapy in the
clinic (85) (Figure 2). Tregs expanded by using good
manufacturing practices–compatible protocol were confirmed
to prevent GVHD and retain GVL effectively in animal models
(86). The approach of automated clinical-grade expansion of
Tregs ex vivo has been developed to improve the purity and
quantity of the infused Tregs (85, 87). Nevertheless, the
technology to isolate and expand Tregs is complex and costly;
hence, new strategies to produce sufficient functional Tregs
are required.

Although iTregs are intrinsically unstable, adoptive transfer
of iTregs may also function to control GVHD (53, 88, 89).
Notably, iTregs can overcome the problem of lack of sufficient
cell quantity, as they can be manufactured abundantly ex vivo.
Further, alloantigen-specific iTregs are considered more effective
than polyclonal Tregs as they directly target specific antigens (29,
88). Nevertheless, iTregs are prone to lose FOXP3 expression,
particularly under inflammatory conditions, which limits their
therapeutic activity in GVHD (29, 90). There have been attempts
to optimize iTregs’ stability (Figure 2). Kasahara et al. (88) found
FIGURE 1 | Tregs can secrete perforin and granzyme B to kill Teffs directly
and secret IL-10, IL-35, and TGF-b, inhibitory cytokines to suppress
functions of Teffs; Tregs can cause IL-2 starvation of Teffs via highly
expressing CD25. Tregs exert the function of suppression by interaction
with DCs, such as downregulating the expression of CD80/CD86 in DCs
and interfering with the maturation of DCs. Tryptophan is vital for the
survival of Teffs and Tregs can enhance the expression of indoleamine 2, 3-
dioxygenase (IDO) in DCs, which accelerates the decomposition of
tryptophan. Adenosine triphosphate (ATP) is a pro-inflammatory factor, and
CD39/73 expressed on Tregs can transform ATP to adenosine, an anti-
inflammatory factor.
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that stable iTregs could be generated using a combination of all-
trans retinoic acid and vitamin C. Vitamin C-treated iTregs
significantly alleviated GVHD symptoms in murine models
compared with untreated iTregs. Further, iTregs treated with
STAT3 inhibitor exhibited dramatically enhanced suppression
ability and achieved stability via high levels of FOXP3
demethylation (91). Furthermore, STAT3 phosphorylation-
inhibited iTregs have potent function in preventing xenogeneic
GVHD by reducing excess immune responses caused by
Frontiers in Immunology | www.frontiersin.org 510
alloreactive T cells (92). Zinc supplementation may also
increase iTreg numbers while maintaining their stability by
prolonging FOXP3 expression (93). Enhancing iTregs’ stability
will solve the problem of insufficient Treg quantity for the
requirements of clinical application.

Expansion In Vivo
Fujioka et al. (94) found that a low ratio of Tregs to CD4+ T cells
in the early stage after allo-HSCT can predict impending
FIGURE 2 | Treg expansion. (A) Expansion of Tregs in recipients and donors. Administration of low-dose IL-2 can expand Tregs of hosts preferentially in vivo since
a high-affinity IL-2 receptor is expressed highly on Tregs. Considering IL-2 can also enhance the activation of Teffs, antibody-IL-2 complex is created, which can
electively expand Tregs in vivo due to altering the structure of IL-2. Besides, RGI-2001 also has the function to accelerate the expansion of Tregs in vivo. The
effectiveness of these cells has been tested in human and animal models. Reagents to expand Tregs of donors have been administrated in animal models, such as
agonistic antibody against aDR3 and TL1A-Ig combined with IL-2. (B) Expansion of Tregs isolated from donors in vitro and methods to improve iTregs’ stability.
Tregs isolated from healthy donors and expanded in vitro are the most common source at the expense of complex technologies and costly prices. Because of the
unstable properties of iTregs, methods have been tried to improve its stability, such as the combination of all-trans retinoic acid and vitamin C, administration of
STAT3 inhibitor, and the supplementation of Zinc.
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aGVHD. Our laboratory results also suggest that Tregs from
patients with aGVHD become defective in terms of their
stability, survival, and suppressive function (40). Expansion of
Tregs in recipients after allo-HSCT may be a promising strategy
to alleviate GVHD (Figure 2). It is established that IL-2 is vital
for the development, proliferation, and activity of Tregs (95),
which can react to low concentrations of IL-2 by expressing high
levels of a high-affinity IL-2 receptor (CD25). Administration of
low-dose IL-2 in cGVHD patients was associated with
preferential expansion of Tregs in vivo and attenuated the
symptoms in certain patients (96, 97). Notably, IL-2 can also
target many other cells, including promoting conventional T cell
activation, and the appropriate effective dose for controlling
GVHD is difficult to manage (95). Trotta et al. (98) generated
a human antibody against IL-2 and combination with the
antibody altered IL-2 conformation. The antibody–IL-2
complex could considerably and selectively expand Tregs in
vivo and was effective in protecting mice from GVHD.
Recently, Hirai et al. (99) innovatively engineered an
orthogonal IL-2/IL-2 receptor (IL-2R) pair. The results
demonstrated that transduced Tregs with orthogonal IL-2R
were selectively expanded by orthogonal IL-2 stimulation
without increasing other T cell subsets in murine models.
Besides, this method did not reduce the function of Tregs and
improved graft tolerance. Infusion of RGI-2001, a liposomal
formulation carrying a-galactosylceramide dramatically
improved the survival of mice with aGVHD by enhancing the
expansion of alloantigen specific CD4+CD25+ Tregs in vivo;
notably, administration of RGI-2001 did not abrogate GVL
(100). Further, a clinical trial of RGI-2001 showed that the
incidence of severe GVHD was lower in responders than in
non-responders (101).

In addition to expanding Tregs in hosts, methods to increase
the number of donor Tregs for transfer in vivo have been
attempted (Figure 2). An agonistic antibody against death
receptor 3 (aDR3) has been found to enhance CD4+FOXP3+

Treg proliferation in vivo when administered to the donor, thus
increasing the percentage of Tregs in the graft (102–104).
Further, aDR3-treated Tregs demonstrated potent proliferation
and suppression abilities when transferred to host mice. The
severity of GVHD in recipient mice receiving grafts from aDR3-
treated donors was significantly less than that in isotype-treated
donors (102–104). Similarly, TL1A-Ig (a soluble fusion protein
from the natural ligand of tumor necrosis factor superfamily
receptor 25 (TNFRSF25)) combined with IL-2 led to marked
Treg expansion in donors via respective targeting of TNFRSF25
and CD25 in vivo. Adoptive transfer of Tregs from donors
treated with TL1A-Ig/IL-2 effectively protected recipients from
GVHD (16, 17). Furthermore, preclinical trial data suggest that
GVHD after allo-HSCT can be controlled in patients with
low numbers of Tregs stimulated by TL1A-Ig combined with
IL-2, as this method of amplification can enhance Tregs’
suppressive activity (16). Reagents found to increase Tregs’
numbers and promote their inhibitory function in the donor
may be used to develop new strategies for expanding Tregs
ex vivo in the future.
Frontiers in Immunology | www.frontiersin.org 611
NEW SOURCES OF TREGS FOR GVHD

Third-Party Tregs
In animal models and clinical trials, donors have been the most
common source of Tregs used to modulate GVHD. As
CD4+CD25+FOXP3+ Tregs are scarce in the peripheral blood
and HLA-matched donors are not always available, the efficacy
and safety of Tregs from other sources have been evaluated for
use in GVHD control (105). Tregs derived from a third-party
[umbilical cord blood (UCB)] could confer protection from
GVHD in a xenogeneic GVHD mouse models (106). Mice
prophylactically injected with UCB-derived Tregs achieved
better GVHD scores and overall survival rates than those
receiving peripheral blood mononuclear cells (PBMCs) only
(106). Another study found that Tregs derived from third-
party mice could inhibit GVHD development compared with
those originating from donors or hosts. Although the optimal
therapeutic effect was observed in mice treated with donor Tregs,
third-party Tregs could still be considered as a promising
alternative source (105). Large numbers of Tregs can be
isolated from pediatric thymuses, which are generally removed
during cardiac surgery (107). Expanded thymic Tregs manifest
stable FOXP3 expression and even maintain inhibitory ability
under inflammation conditions. Furthermore, thymic Tregs
more effectively protected mice from GVHD than Tregs
derived from peripheral blood in xenogeneic GVHD mouse
models. Therefore, pediatric thymuses may become an
alternative source of functional Tregs (107).

CAR Tregs
Compared with polyclonal Tregs, alloantigen-specific Tregs,
particularly those with chimeric antigen receptors (CARs),
have the advantage of being able to achieve specific
immunosuppression using fewer cells (108). CAR technology
confers Tregs with superior ability to identify whole proteins
expressed in cells, dispensing with HLA molecule restriction.
MacDonald et al. (108) created alloantigen-specific Tregs using a
CAR targeting HLA-A2, which is commonly mismatched in
transplantation, and the A2-CAR Tregs maintained phenotypic
stability and suppressive function. Surprisingly, the A2-CAR
Tregs prominently delayed GVHD development and improved
mouse survival compared with polyclonal Tregs in xenogeneic
GVHD models. Further, owing to their larger numbers in
circulation and considerable proliferation rates, CD4+ T cells
can be transduced to express both A2-CAR and FOXP3 (109).
These genetically modified CD4+ T cells (A2-CAR/FOXP3 CD4+

Tregs) obtained a stable inhibitory phenotype and could
suppress inflammation responses. Further, A2-CAR/FOXP3
CD4+ Tregs could significantly alleviate inflammatory
pathology in a GVHD mouse model (109).

Third-party and engineered Tregs raise the prospect of
universal Tregs, which could be provided as off-the-shelf
products for use in patients (110). Universal donor Tregs can
be manufactured to reduce immunogenicity by knocking out
classical HLA molecules and knocking in non-canonical HLA
molecules, such as HLA-E or HLA-G, thus escaping host
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immune system recognition (110). With advances in genome
editing technology, induced pluripotent stem (iPS) cells may
become a potential source of universal donor Tregs, with optimal
immunosuppressive activity after engineering (110). Adoptive
therapy of universal donor Tregs may represent a promising
approach for patients with GVHD.
TREGS APPLICATION STRATEGIES IN GVHD

As mentioned above, Tregs play an essential role in maintaining
immunological tolerance. Therefore, adoptive transfer of Tregs
to directly reduce the incidence or severity of GVHD after allo-
HSCT has been the focus in the field of transplantation. Main
clinical trials have been summarized in Table 1. What is more,
increasing the frequency and stability of Tregs in vivo by
reagents, such as IL-2, to control excessive immune responses
has also aroused interest.

Tregs to Prevent GVHD
A clinical trial showed that early adoptive transfer of Tregs
freshly isolated from donors, followed by conventional T cells
(Tcons) four days later, could prevent GVHD without increasing
infection or relapse following haploidentical HSCT, which
confirmed the prophylactic efficacy of Tregs against GVHD for
the first time (82). Furthermore, Brunstein et al. also confirmed
the safety of umbilical Tregs expanded in vitro using IL-2 and
aCD3/aCD28 beads to prevent aGVHD after umbilical cord
blood (UCB) transplantation without increasing the likelihood of
infection, relapse, or early mortality (83). This study included 23
patients who received UCB-derived Tregs at a dose of 0.1–30 ×
105 UCB Tregs/kg on day one after transplantation, alongside a
cohort receiving a second dose of 30 × 105 Tregs/kg at day +15,
and compared with 108 historical controls, the incidence rates of
grade II–IV aGVHD were reduced by 43 and 61%, respectively
(P = 0.05). A clinical trial of in vivo Treg expansion by injection
of ultra-low dose IL-2 also reduced the incidence of GVHD
(111); 16 patients were administered with ultra-low doses of IL-2
(100,000 units subcutaneously × 3 weekly for 6–12 weeks) after
allo-HSCT. The percentage of Tregs increased after IL-2 therapy,
with the mean of 4.8% rising to 11.1%, and no IL-2 treated
patients suffered from grade II–IV aGVHD, compared with 12%
(4/33) of the control group who did not receive IL-2. Besides,
Pierini et al. (18) conducted a clinical trial which included 50
patients with acute myeloid leukemia (AML). An age-adapted
myeloablative conditioning regimen was combined with Treg/
Tcon adoptive immunotherapy, resulting in an impressive 75%
moderate/severe cGVHD/relapse-free survival rate. Only two of
the 50 patients relapsed, and GVL was not impaired by this
therapy with Tregs, which may be related to the low levels of
CXCR4 bone marrow homing receptor in Tregs.
Tregs to Treat GVHD
Notably, no large-scale trial of Treg administration to treat GVHD,
particularly aGVHD, has been conducted. The first case of cGVHD
patients to receive Treg infusion reported an improved outcome,
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but this was not conclusively demonstrated in patients with
aGVHD (15). In another clinical trial, Tregs from HLA-matched
donorswere administered tofivepatientswith treatment-refractory
cGVHD; two patients achieved symptomatic relief, while four had
reduced immunosuppressive treatment with increased numbers of
Tregs in vivo; however, two patients were diagnosed with skin
cancer months after adoptive transfer of Tregs (112). Further
studies are needed to evaluate the feasibility of this approach for
treating GVHD. Regarding Treg infusion to treat patients with
aGVHD, related reports are rare; however, the therapeutic efficacy
of Tregs in established aGVHD has been investigated in a mouse
model (113). The severity of tissue damage caused by aGVHDwas
alleviated and Tregs migrated to aGVHD targeted organs and
lymphoid sites to exert immunosuppressive function, particularly
in the gastrointestinal tract.Mice treatedwithTregs showed relief of
aGVHD symptoms and achieved prolonged survival (113). These
results suggest that adoptive transfer of Tregs to treat aGVHDmay
be effective, although more studies are required.

Tregs Combined With DLI
Previous investigations have focused on the feasibility and safety of
Tregs’ transfer to control GVHD at the time of transplantation. As
an effective strategy to rescue patients with relapsed hematological
malignancies after allo-HSCT, donor lymphocyte infusion (DLI)
can boost GVL to eliminate tumor cells, but increases the risk of
severe GVHD (114). Recently, Di Ianni et al. (115) reported the
case of a patient with acute promyelocytic leukemia (APL) treated
with Treg-protected DLI in the early stage of recurrence after
second allo-HSCT. The patient received a first infusion dose of
2.5 × 106/kg Tregs, followed by infusion of 5 × 106/kg Tcons one
week later; a second infusion (2.5 × 106/kg Tregs and 2 × 106/kg
Tcons) was performed twomonths later. The results demonstrated
that complete hematological remission was achieved, with a
progression-free survival of 6 months, and no apparent GVHD
symptomswere observed.Whether Tregs can be administeredwith
DLI to prevent GVHD deserves more investigation, and this is a
potential new strategy to apply Tregs for GVHD control.

Tregs and Immunosuppressive Agents
Since Tregs play a vital role in maintaining peripheral immune
tolerance, pharmacological immunosuppression for GVHD
prophylaxis and treatment may influence the regulation of Tregs
after allo-HSCT. As hypomethylating agents, azacitidine (AzaC)
and decitabine (Dec) can cause CD4+CD25– T cells to obtain
suppressive properties by inducing FOXP3 expression (116).
Thus, the effect of AzaC in mitigating GVHD symptoms without
abrogating GVL involves the conversion of alloreactive T cells to
suppress Tregs (116). Further, nTregs are essential for AzaC
protection against GVHD, as depletion of nTregs in vivo in mice
compromised the effect of AzaC (117). The GVHD prophylactic
regimen based on sirolimus without calcineurin inhibitors in
patients with high-risk hematological malignancies can promote
Treg proliferation and accelerate immune reconstitution in vivo
(118). Low-dose post-transplant cyclophosphamide could
attenuate and prevent GVHD by increasing Treg frequency, and
the effects were enhanced by combination with anti-thymocyte
globulin (119). Lee et al. (120) appliedmetformin and tacrolimus to
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treat GVHD in mice and found that combined therapy with these
two drugs suppressed type 1 helper T (Th1) and Th17 cell
development, while it enhanced the expression of Treg-related
genes. This combination therapy alleviated GVHD severity and
improved mouse survival. Furthermore, combination treatment
also reduced human alloreactiveT cell proliferation andproduction
of proinflammatory cytokines by balancing the Treg/Th17 cells
ratio (120). Understanding the effects of pharmaceutical
preparations on Tregs could help clinicians to formulate optimal
regimens to generate equilibriumbetween relapse andGVHD, thus
achieving immune homeostasis.

DISCUSSION

Treg administration for GVHD has been investigated for several
years. Numerous animal studies have confirmed that Tregs have
important roles in restraining excessive immune responses and can
preventGVHD,without increasing the risk of relapse and infection.
Tregs may lose their immunosuppressive phenotype due to
unstable expression of FOXP3 under inflammatory conditions.
Notably, upstream factors that regulate Tregs’ stability have not
been clearly elucidated; therefore strategies to maintain FOXP3
stability warrant investigation to ensure that Tregs exert a
suppressive function after adoptive transfer. The numbers of
Tregs available in peripheral blood samples are far from sufficient
for clinical application. In addition to exploring methods to
effectively freshly isolate high purity Tregs from donors, methods
for generating large numbers of functional iTregs in vitro deserve
more attention, given the intrinsically unstable properties of Tregs
cultured ex vivo. Notably, alloantigen-specific Tregs may possess
potent inhibitory function against specific tissues, facilitating
achievement of satisfactory suppressive effects using fewer cells.
Furthermore, universal Tregs may broaden the utility of Treg
infusion, opening a new avenue to resolution of the problem of
GVHD after allo-HSCT. Many clinical trials have demonstrated
that adoptive transfer ofTregs is an effective and safeway toprevent
GVHD, rather than treating GVHD after it occurs. More trials are
needed to verify the feasibility of cell therapy basedonTreg infusion
to treat GVHD, particularly aGVHD.
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Mesenteric lymph nodes (mLNs) are sentinel sites of enteral immunosurveillance and
immune homeostasis. Immune cells from the gastrointestinal tract (GIT) are constantly
recruited to the mLNs in steady-state and under inflammatory conditions resulting in the
induction of tolerance and immune cells activation, respectively. Surgical dissection and
transplantation of lymph nodes (LN) is a technique that has supported seminal work to
study LN function and is useful to investigate resident stromal and endothelial cell biology
and their cellular interactions in experimental disease models. Here, we provide a detailed
protocol of syngeneic mLN transplantation and report assays to analyze effective mLN
engraftment in congenic recipients. Transplanted mLNs allow to study T cell activation and
proliferation in preclinical mouse models. Donor mLNs proved viable and functional after
surgical transplantation and regenerated blood and lymphatic vessels. Immune cells from
the host completely colonized the transplanted mLNs within 7-8 weeks after the surgical
intervention. After allogeneic hematopoietic cell transplantation (allo-HCT), adoptively
transferred allogeneic CD4+ T cells from FVB/N (H-2q) mice homed to the transplanted
mLNs in C57BL/6 (H-2b) recipients during the initiation phase of acute graft-versus-host
disease (aGvHD). These CD4+ T cells retained full proliferative capacity and upregulated
effector and gut homing molecules comparable to those in mLNs from unmanipulated
wild-type recipients. Wild type mLNs transplanted into MHCII deficient syngeneic hosts
sufficed to activate alloreactive T cells upon allogeneic hematopoietic cell transplantation,
even in the absence of MHCII+ CD11c+ myeloid cells. These data support that
orthotopically transplanted mLNs maintain physiological functions after transplantation.
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The technique of LN transplantation can be applied to study migratory and resident cell
compartment interactions in mLNs as well as immune reactions from and to the gut under
inflammatory and non-inflammatory conditions.
Keywords: acute graft-versus host disease, alloreactive T cells, mesenteric lymph node, lymph node
transplantation, mouse models, lymph node stromal cells
INTRODUCTION

Lymph nodes (LNs), spleen and Peyer’s patches (PPs) are
secondary lymphoid organs that serve as sites for immune cell
interaction and activation. LNs are unique in morphology and
function. These filter-like structures continuously scan lymph
content that moves from the afferent lymph into the subcapsular
lymph node sinus and serve as spatially highly organized hubs of
immune cell interactions (1). After recognition of a pathogenic
antigen (Ag), an immune response is mounted, whereas in case
of dietary or commensal antigens, tolerance is induced.

Surgical LN transplantation is a pre-clinical tool that has been
instrumental to study tissue-resident LN stromal cells (LNSCs)
in the immune microenvironment of LNs as well as their role in
the modulation of cells of hematopoietic lineage under
homeostatic and inflammatory conditions (2–5). In seminal
work, others have utilized LN transplantation to demonstrate
that LNSCs regulate peripheral tolerance (6) and that stromal
cells of mLNs imprint gut-homing properties on antigen-
responsive T cells to express a4b7 integrin and CC chemokine
receptor 9 (CCR9) (5, 7). Furthermore, mLN stroma shapes
resident dendritic cells (DCs) to attain high Treg-inducing
capacity soon after birth in a Bmp2-dependent manner (8).

Worbs and colleagues elegantly showed oral tolerance
induction exclusively takes place in the mLNs with antigens
transported from the intestinal surface by DCs through the
afferent lymphatics, whereas roles of PPs in the induction of
oral tolerance were dispensable (9). Oral tolerance is in part
mediated by the generation of FoxP3+ Tregs (peripherally
induced Tregs, pTregs) converted from conventional FoxP3-

CD4+ T cells (10–14).
Notably, mLNs not only serve as sites for oral tolerance to

food antigens but form an important firewall blocking systemic
dissemination of microbes as potential pathogens and priming of
intestinal immune cells by mounting effective immune responses
(15, 16). mLNs drain lymph from various sites of GIT including
the small intestine (SI) and colon, however different nodes of
mLNs are anatomically segregated of lymphatic drainage from
the SI and colon (17–19).

As pointed out above, lymphocytes primed in mLNs are
imprinted for gut tropism and accordingly the ligands specific
for their homing receptors a4b7 integrin and CCR9 are found in
the gastrointestinal tract (GIT) (5, 7, 20, 21). These allow for
efficient homing of immune effector cells to the lamina propria of
the intestinal tract via the blood stream to protect from intestinal
infections but are also relevant in pathological inflammatory
conditions such as inflammatory bowel disease (17, 22–27) and
intestinal acute graft-versus-host disease (aGvHD) (28–36).
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Therefore, we performed surgical mLNs transplantation to
study the mucosal immune system of the gut in physiology
and disease conditions.

Here, we provide an in-depth methodological description of
the surgical mLNs transplantation procedure in C57BL/6 mice.
We show that donor mLNs are viable after surgical
transplantation, retain their histologic immune architecture,
topological organization, normal vascular and lymphatic
function. Furthermore, by transplanting mLNs from
B6.CD45.1 congenic donor mice (B6.CD45.1) revealed the
kinetics of repopulation of transplanted mLNs with all lineages
of host-type hematopoietic cells. Transplanted mLNs provided
all the required stimuli for the effective proliferation,
differentiation and expansion of CD4+ T cells similar to non-
transplanted mLNs, e.g., in a mouse model of aGvHD even in
otherwise MHCII deficient hosts.

Hence, the described procedure is a suitable technique to
study complex and dynamic immune cell interactions within the
alimentary tract.
MATERIAL AND EQUIPMENT

Materials
Materials are listed in Table 1 corresponding to the
experimental procedures.

Preparation of Reagents

- Anesthetic: add 2 ml of Xylavet® (20 mg/ml, CP-Pharma) and
2 ml of Ursotamin® (100 mg/ml, Serumwerk) to 21 ml of
DPBS. PromAce® (10 mg/ml, Boehringer Ingelheim) was
prepared separately and used for experiments involving
surgery. Inject 10 ml/g of body weight to reach desired
concentration. (Xylazin 16 mg/kg, Ketamine 80 mg/kg and
Acepromazine 2 mg/kg).

- Analgesic: Carprofen (5 mg/kg) to relieve pain 30 min before
opening the abdominal cavity and, if needed, every 12 h up to
third day after the surgery.

- Erythrocyte lysis buffer: dissolve 89.9 g of NH4Cl, 10 g of
KHCO3, and 0.37 g EDTA in 1 l of autoclaved, deionized
water.

- Trypan blue solution: dissolve 1 g of trypan blue in 100 ml of
PBS. Dilute 1:10 in PBS to get working solution to mix at
equal volume with cell suspension.

- Magnetic cell enrichment buffer: 0.375 g of EDTA and 0.5 g of
BSA in 500 of DPBS, sterile-filter.
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TABLE 1 | Materials used for the LN transplantation and associated techniques.

Materials Catalog # Company

Mesenteric lymph node transplantation operation
Anesthetic solution

1 ml syringe 26GA x 3/8’’ (0.45 mm x 10 mm), BD Plastipak™ 300015 Becton Dickinson

1 ml insulin syringe 30GA x 1/2’’ (0.3 mm x 12 mm), Omnican® 100 9151141 Braun
Fibrin sealant (TISSEEL, Fibrin Sealant kit with DUPLOJECT system) 1504516 Baxter
Eye ointment (Bepanthen®) Bayer
Analgetic (Carprofen) 53716-49-7 Midas Pharma GmbH
Hair removal cream Müller
Sterile razors 704028 Body products, Relax Pharma u.

Kosmetik GmbH
Sterile dissecting swab (Setpack® size 2) 12780 Lohmann & Rauscher
Sterile gauze swab (Gazin® 5 cm x 5 cm) 13695 Lohmann & Rauscher
Sterile cotton swab (Rotilabo®) EH12.1 Carl Roth
Operation towel 800430 BARRIER, Mölnlycke Health Care
Pasteur pipettes 2600111 Neolab
70% ethanol T931.3 Carl Roth
Quickpad® 70% 2-propanol Holtsch Medizinprodukte GmbH
Povidone iodine (Bruanol® 7.5% solution) 3864065 Braun
0.9% NaCl (Aqua ad iniectabilia) 14NM32 Fresenius Kabi Deutschland
Suture, 6-0 with beveled needle V301G Ethicon
Cell isolation
DPBS without Ca2+/Mg2+ P04-36500 Pan Biotech
Sterile scalpel blades, feather # 10 BB510 B. Braun
Disposable serological pipettes 760180, 607180, 606180 Greiner Bio-one
Pipette controller (Accu-jet® pro) 26300 Brandt
Cell counting chamber (Neubauer) ZK03 Hartenstein
Micropipettes 042760930, 642752433, 942741768, 342733754,

042720454, 942711302
VWR

Cell strainer, 70 mm EASYstrainer™ 542070 Greiner Bio-one

Tube 50 ml 227261 Greiner Bio-one
Microtubes 1.5 ml 72.706 Sarstedt
Erythrocyte lysis buffer
DNase I 10104159001 Roche
Collagenase VIII C2139 Sigma Aldrich
Collagenase P 11213865001 Roche
Dispase II 4942078001 Roche
Trypan blue solution T8154-100ML Sigma Aldrich
Magnetic cell enrichment buffer
Antibodies
Anti-CD3e antibody (145-2C11) coupled to APC 100312 Biolegend
Anti-CD3 antibody (SP7) RBG024 Zytomed
Anti-CD4 antibody (RM4-5) coupled to PE 100512 Biolegend
Anti-CD4 antibody (RM4-5) coupled to PerCP/Cy5.5 100540 Biolegend
Anti-CD8a antibody (53-6.7) coupled to PerCP/Cy5.5 100734 Biolegend
Anti-CD11c antibody (N418) coupled to AF647 117312 Biolegend
Anti-CD19 antibody (6D5) coupled to APC/Cy7 115530 Biolegend
Anti-CD19 antibody (D4V4B) 90176S Cell Signaling
Anti-CD24 antibody (M1/69) coupled to PerCP/Cy5.5 101824 Biolegend
Anti-CD25 antibody (PC61) coupled to APC 102012 Biolegend
Anti-CD31 antibody (MEC13.3) coupled to AF488 102514 Biolegend
Anti-CD31 antibody (390) coupled to biotin 102404 Biolegend
Anti-CD31 antibody (SZ31) DIA 310 Dianova
Anti-CD44 antibody (IM7) coupled to PE 103008 Biolegend
Anti-CD45 antibody (30-F11) coupled to PerCP/Cy5.5 103132 Biolegend
Anti-CD45.1 antibody (A20) coupled to APC-Cy7 110716 Biolegend
Anti-CD45.2 antibody (104) coupled to AF488 109816 Biolegend
Anti-CD62L (L-Selectin) antibody (MEL-14) coupled to PE-Cy7 25-0621-82 Invitrogen
Anti-CD90.1 antibody (OX-7) coupled to APC-Cy7 202519 Biolegend
Anti-LPAM-1 (Integrin a4b7) antibody (DATK32) coupled to PE 120606 Biolegend
Anti-MAdCAM-1 antibody (MECA-367) coupled to biotin 120706 Biolegend
Anti-Podoplanin antibody (8.1.1) coupled to APC 127410 Biolegend
Anti-Ter119 antibody (M1/69) coupled to PerCP/Cy5.5 116228 Biolegend
Anti-Ki67 antibody (16A8) coupled to AF647 652408 Biolegend

(Continued)
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- FACS buffer: 0.375 g of EDTA and 5ml of FBS in 500ml of DPBS.

- FACS blocking buffer: 20% normal rat serum in DPBS.

- Luciferin: 5 g D-lucifirin in 165 ml of 0.9% NaCl (Aqua ad
iniectabilia), stored at -20°C.
Frontiers in Immunology | www.frontiersin.org 421
- 4% PFA solution: 4 g PFA in 100 ml DPBS, dissolved at 65°C,
pH: 7.4

- LSFM clearing solution (BABB): 1:2 ratio of benzyl alcohol and
benzyl benzoate.
TABLE 1 | Continued

Materials Catalog # Company

Commercial kits
LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit L34955 Thermo Fisher

Foxp3/Transcription Factor Staining Buffer Set 00-5523-00 eBioscience

CD4+ T cell enrichment kit (Dynabeads™ Untouched™ Mouse CD4
Cells Kit)

11415D Thermo Fisher

T cell depletion kit (CD90.1 MicroBeads, mouse and rat) 130-121-273 Miltenyi Biotec

Streptavidin, Alexa Fluor™ 750 conjugate S21385 Invitrogen

Streptavidin, Alexa Fluor™ 546 conjugate S11225 Invitrogen

Other consumables
V-bottom 96-well plate
Normal rat serum 10710C Thermo Fisher
Evans blue E2129 Sigma-Aldrich
D-Lucifirin, potassium salt 7903 BioVision
Diphtheria toxin from Corynebacterium diphtheriae D0564-1MG Sigma-Aldrich
Light sheet fluorescence microscopy
Fetal bovine serum (FBS) 10099, 10100 Gibco
Paraformaldehyde, granulated 0335.3 Carl Roth
Triton® X 100 3051.4 Carl Roth
n-hexane 139386-500 ml Sigma Aldrich
Benzyl benzoate B6630-1 l Sigma Aldrich
Histology
Target Retrieval Solution, Citrate pH 6.1 (10x) S1699 Dako Agilent
VECTASTAIN® Elite ABC-HRP Kit, Peroxidase (Standard) PK-6100 Vector laboratories
ImmPACT® DAB SK-4105 Vector laboratories
Mayer´s hemalum for counter-staining 109249 Merck
Equipment
ISMATEC Reglo analog pump ISM795C IDEX Health and Science LLC
Stereo microscope SZ51 Olympus
Light source KL1500 LCD Schott
Isis animal shaver GT420 Braun
X-ray irradiation source CP-160 Faxitron
Surgery tool: 2 fine forceps, 1 pair of small scissors, 1 flexible needle
holder

Karl Hammacher GmbH and mergo

2 heating mats (20 cm x 30 cm) 76085 Trixie Heimtierbedarf GmbH
Infrared lamp BF 27 Beurer
Thermometer (dual thermo max/min) E609790 Amarell Electronic
Centrifuge (Megafuge 40R) Thermo Scientific
Water bath WNB 14 Memmert
Attune NxT flow cytometer equipped with 405, 488, 561 and 638 nm
lasers and an autosampler

Thermo Scientific

IVIS Spectrum 124262 Perkin-Elmer
Gas anesthesia system for IVIS imaging platform XGI-8 Perkin-Elmer
Light sheet fluorescent microscope (LSFM) Home build setup (37, 38)
Software
FlowJo Version X TreeStar
Imaris Versions 7.7.2 and 8.1.1 Bitplane
Living Image® Version 4.0 Perkin-Elmer
Matlab Version R2016a Mathworks
Mice
C57BL/6 (C57BL/6NCrl) Strain code 027 Charles River
FVB/NCrl (FVB) Strain code 207 Charles River
FVB.L2G85 Bred in-house
C57BL/6.Tyrc-2J (B6 albino) Bred in-house
C57BL/6.L2G85.CD45.1 Bred in-house
C57BL/6.L2G85.DsRed Bred in-house
C57BL/6.129S2-H2dlAb1-Ea/J Stock no. 003584 Bred in-house
C57BL/6.Tg(Itgax-DTR/OVA/EGFP)1Garbi MGI no. 463655 Bred in-house
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- Enzyme mix for lymph node digestion: RPMI-1640, 0.8 mg/ml
Dispase II, 0.3 mg/ml Collagenase P and 0.15 mg/ml DNase I.

- Enzyme mix for small intestine digestion: 10 ml solution (1.5
mg/ml Type VIII Collagenase dissolved with 40 mg/ml of
DNase I in pre-warmed HBSS Ca2+/Mg2+, 2% FCS.
STEPWISE PROCEDURES

This protocol focuses on syngeneic mLN transplantation from a
C57BL/6 mouse into another C57BL/6 mouse and the
subsequent analysis of successful engraftment and the
functionality of the transplanted mLN to initiate an immune
response in aGvHD inflammatory settings. Therefore, these
sections are in greater detail, whereas additional procedures are
outlined in brief.

Animal experiments were performed according to project
license number 55.2.2-2532.2-1038-9, which was approved by
the Regierung von Unterfranken, Würzburg.

Mesenteric Lymph Node Transplantation
We performed mLN transplantation in 8- to 12-week-old
C57BL/6 mice from syngeneic donors expressing different
reporter transgenes (firefly luciferase or fluorescent proteins)
or congenic markers. Preference was given to males over female
animals, as they recovered faster from the operation.

Preparation
Donor and recipient were anesthetized with an intraperitoneal
(i.p.) injected mixture of Ketamine (80 mg/kg body weight) and
Xylazine (16 mg/kg body weight), one day prior to the operation.
To allow for sterile conditions at the site of surgery, ventral fur was
wetted with 70% ethanol using a dissecting swab, trimmed with a
shaver and removed with hair removal cream. Alternatively, mice
were anesthetized with 2% isoflurane in O2 (XGI-8 gas anesthesia
system, Perkin-Elmer) during hair removal.

On the day of operation, two sterile working places were
prepared: one for the donor mLN isolation and recipient
preparation while the other one for the mLN transplantation
operation. For each of the spaces, a heating mat was pre-warmed
and covered with a sterile OP towel, all needed surgical
instruments and reagents were sterilized and laid out.

An operation coverwas prepared by cutting anOP towel to a size
of 15 cm x 15 cm, and an oval windowwas cut into the center with a
diameter of 1.5 cm x 2.5 cm to be placed on the operation site.

A gauze pad was prepared by folding it to 7.5 cm x 5 cm and
incising a 2 cm long central slit.

A clean recovery cage was placed under an infrared lamp, and
the sensor of thermometer was placed on the bedding to monitor
the local temperature and not let it rise above 30°C to
avoid overheating.

Operation and Lymph Node
Transplantation
Mice were anesthetized with an i.p. injected mixture of Ketamine
(80 mg/kg body weight), Xylazine (16 mg/kg body weight) and
Frontiers in Immunology | www.frontiersin.org 522
Acepromazine (2 mg/kg body weight) (39) dissolved in PBS (200
– 250 ml) and placed on a sterile, heated OP towel for
preparation. The animals were subcutaneously (s.c.) injected
with the perioperative analgesic Carprofen (5 mg/kg) to relieve
pain 30 min before opening the abdominal cavity and every 12 h
up to the third day after the surgery if required. Eyes were
protected from dehydration by applying eye ointment -
Bepanthen® - Augen- und Nasensalbe (Bayer Vital GmbH,
Leverkusen, Deutschland). The shaved abdomen was wetted
with 70% ethanol using a dissection swab; the skin was
disinfected with Braunol® (B. Braun, Melsungen, Germany) in
an outward circling motion.

After 10 min, anesthetic depth was ensured to be stadium III.2
(surgical tolerance) by pinching the hind paw (plantar reflex).
The dosage of the anesthetic used is usually very well tolerated
and leads to a reliable depth of anesthesia up to stage III.2.

If in exceptional cases by checking the plantar reflex,
anesthesia depth up to stage III.2 was not achieved, an i.p.
additional dose of the anesthetic was provided (20% of the
original dose). The volumes can easily be applied accurately
using an insulin syringe. For a more precise dosage of the
amount of anesthesia, the anesthetic was additionally diluted
1:1 in PBS so that the injection volume doubled.

The prepared animal was transferred onto a fresh sterile and
heated OP towel and the prepared OP-cover was applied. A 1-
1.5 cm midline incision was made in the skin and in the
peritoneum on the linea alba, no bleeding should be visible.
The wound was covered with the prepared gauze pad, the slit
overlaid on the incision. The pad was soaked with PBS to prevent
drying of externalized intestinal tissue. Next, two cotton swabs
were soaked with PBS and used to handle the intestinal contents.
The swabs were inserted into the peritoneum to localize and
gently exteriorize the caecum, which is located on the animals’
right side to the craniolateral incision. The intestinal tissue was
handled with great care to prevent postoperative ileus. First, the
caecum was placed on the gauze pad left to the incision,
and the intestinal tissue was kept moist at all times by dripping
PBS on it using a Pasteur pipette. The large intestine was then
gently pulled out, starting from the caecum, until the mLN
appeared attached to mesentery. The most distal part of small
intestine was also gently pulled out to have visible access to the
chain of mLNs and to identify the bottom node next to the
caecum (Figure 1A).

With the help of fine surgical scissors, the mLNs of the
recipient mice were excised from the bottom to the top with
minimal fat and connective tissue (Figure 1B). Extra care was
taken to avoid injuring the superior mesenteric artery lying
behind the mLNs. Minor bleeding was stopped by holding the
Setpack dissecting swabs (Lohmann & Rauscher, Rengsdorf,
Germany) to wounded areas. The donor LN was joined to the
mesenteric tissue using a two-component fibrin glue (TISSEEL
(Baxter, Höchstadt, Germany): 10 ml of fibronectin (component
to TISSEEL) was pipetted on the area from where the recipient
mLN was excised. The donor mLNs (isolated with the same
procedure as recipient mice) were dipped in thrombin solution
(component to fibrin glue) and placed on the wound in the same
bottom-to-top-orientation as removed recipient LN: from distal
July 2021 | Volume 12 | Article 689896
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(from the caecum) to the proximal region (towards the ileum)
(Figure 1C). For firm adhesion, the glue was allowed to
polymerize for 3-5 min. Subsequently, the small and large
intestine along with the caecum were carefully placed back into
the peritoneum. The repositioning in the correct orientation of
intestinal loops was important to prevent a postoperative ileus.
The peritoneum was closed with three non-consecutive stitches
with coated VICRYL® (polyglactin 910) suture (Ethicon,
Dülmen, Germany). Subsequently, the skin was closed with
four stitches. Bepanthen® Wund- und Heilsalbe (Bayer Vital
GmbH, 51368 Leverkusen, Deutschland) was applied on
the closed surgical wound. The overall operation procedure
took 15-25 min per animal. The mice were placed into a clean
cage and held warm with an infrared lamp until recovered
from anesthesia. The drinking water was supplemented with
Baytril (Enrofloxacin, 0.05%) for 7 days after surgery to
avoid infections.

Lymphatic Drainage Assay
Mice were anesthetized with an i.p. injected mixture of
Ketamine (80 mg/kg body weight) and Xylazine (16 mg/kg
body weight) and Acepromazine (2 mg/kg) (39) dissolved in
PBS (200 – 250 ml) and placed on a sterile, heated OP towel for
Frontiers in Immunology | www.frontiersin.org 623
preparation. The animals were s.c. injected with the
perioperative analgesic Carprofen (5 mg/kg) to relieve pain
30 min before opening the abdominal cavity. To evaluate the
lymphatic drainage from the bowel into the transplanted
mLNs, 5 ml Evans blue dye (2% in DPBS) was injected into
PPs of the ileum using 33-gauge needle with a Hamilton
syringe under a SZ51 stereo microscope (Olympus,
Hamburg, Germany) by gently holding the intestine with
blunt forceps. Five min after injection, mLNs were
photographed for Evans blue drainage.

Preparation of Lymph Nodes for Light
Sheet Fluorescent Microscopy (LSFM)
Mice were anesthetized with an i.p. injected mixture of Ketamine
(80 mg/kg body weight) and Xylazine (16 mg/kg body weight)
and Acepromazine (2 mg/kg) (39) dissolved in PBS (200 – 250
ml) and placed on a sterile, heated OP towel for preparation. The
animals were s.c. injected of the perioperative analgesic
Carprofen (5 mg/kg) to relieve pain 30 min before opening the
abdominal cavity. For blood vessels staining, mice were retro-
orbitally injected with 20 mg of anti-CD31 biotin antibody in 100
ml of DPBS, after 20 min mice received 10 mg of Streptavidin,
Alexa Fluor™ 750 conjugate in 100 ml of DPBS.
A B

D

C

FIGURE 1 | Procedure of mesenteric lymph node (mLN) transplantation. (A) Peritoneal cavity of the mice was carefully opened and the bowel along with the
caecum taken out and laid on DPBS-wetted gauze pad to make all the mLNs lobes visible. (B) All the lobes of recipient mLNs were excised out avoiding bleeding
from the superior mesenteric artery lying behind the mLNs (C) 10 ml of fibronectin were pipetted on the scar, donor mLNs soaked in thrombin were carefully placed
on the scar and incubated for 3-5 min before internalizing the complete bowel for subsequent suturing. (D) Absolute weight change of male and female mice
undergoing surgical intervention.
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After 20 min, anesthetic depth was ensured to be stadium
III.2 (surgical tolerance) by pinching the hind paw. If anesthesia
was insufficient, further anesthetic was provided retro-orbitally.
Not more than 20-50 ml were injected at a time to avoid over-
dosage. Prior to mLN extraction, mice were perfused for 2 min
with DPBS and 8 min with paraformaldehyde (PFA) 4%. mLNs
were further fixed for 2 hours in 4% PFA and washed with DPBS
three times with 30 min incubations before processing at 4°C.
The mLNs were blocked overnight in DPBS containing 2% FBS,
0.2% Triton X100. To stain for high endothelial venules (HEVs):
Anti-MAdCAM-1 antibody (MECA-367) coupled to biotin at a
dilution of 1:100 was used. Samples were incubated for 24 hours
with gentle shaking at 4°C. On the next day, samples were
washed with DPBS three times with 30 min incubations at 4°C
and then incubated with Streptavidin, Alexa Fluor 546™

conjugate for 24 hours with gentle shaking at 4°C. After
staining, mLNs were washed with DPBS three times with
30 min incubations at 4°C and dehydrated in a graded ethanol
series (30%, 50%, 70%, 80%, 90%) for 90 min each at room
temperature and in 100% overnight at 4°C. The following day,
the samples were rinsed for 2 hours in 100% n-hexane;
subsequently n-hexane was replaced stepwise by LSFM
clearing solution. Special care was taken at this step to strictly
avoid air exposure of the samples. mLN samples became
optically transparent and suitable for LSFM imaging after
incubation in the LSFM clearing solution for at least 2 hours
at room temperature (30).

LSFM Setup and Data Acquisition
The LSFMmodular setup is home-built providing four excitation
lines of 491, 532, 642 and 730 nm as described elsewhere (37).
Images acquired by LSFM were analyzed on IMARIS software
v8.1.1 (Bitplane AG, CA, USA). When required, background
subtraction was applied in accordance with the diameter of the
cell population to eliminate unspecific background signals.

Allogeneic Hematopoietic Cell
Transplantation
Donor T Cell Enrichment
Naïve T cells were enriched from the spleen of 8- to 12-week-old
FVB.L2G85 (H-2q) donor mice (28, 40), expressing firefly
luciferase and congenic cell markers (CD90.1 and CD45.1).
Splenocytes were enriched for T cells with (Dynabeads™

Untouched™ Mouse CD4 Cells Kit, Thermo Fisher) according
to the manufacturer’s protocols, counted by trypan blue
exclusion, stained with Cell trace CFSE according to
manufacturer protocol. Typically, T cell yields ranged between
15 to 30% of total splenocyte input with a final T cell purity of 90
to 97%.

Donor Bone Marrow Isolation and T Cell Depletion
Bone marrow cells were isolated from the hind limbs (femur and
tibia) of 8- to 12-week-old wildtype donor FVB/NCrl mice. Cell
numbers were determined by trypan blue exclusion and depleted
of T cells by utilizing Thy 1.1 enrichment kit (Thermo Fisher),
following manufacturer’s protocol. Typically, bone marrow cell
Frontiers in Immunology | www.frontiersin.org 724
yields ranged between 1 – 1.5 x 108 cell per donor mouse, while T
cell depletion purity was between 95 to 98%.

Allogeneic Hematopoietic Cell
Transplantation
Untreated C57BL/6 or C57BL/6 mice transplanted with mLNs
were myeloablatively irradiated (9 Gy), and 1.2 x 106 FVB.L2G85
donor T cells were intravenously injected via the retro-orbital
venous plexus together with 5 x 106 T cell-depleted bone marrow
cells in a total volume of 200 ml. The drinking water was
supplemented with Baytril (Enrofloxacin, 0.05%) for 7 days
after transplantation to avoid infections. aGvHD was scored
clinically and body weight was assessed daily.

Diphtheria Toxin Mediated Cell Depletion
For DCs depletion in B6a.CD11c.DOG donor mice prior to the
isolation of mLNs, animals were injected intraperitoneally (i.p.)
with diphtheria toxin (Sigma-Aldrich, Hamburg, Germany) at
doses of 20 ng/g body weight on day -5, -3, and -1 prior to the
day of surgery.

Histology
Formalin-fixed, paraffin-embedded (FFPE) specimens were
processed for hematoxylin and eosin staining (H&E) as
previously described (41) and immunohistochemical
assessment of mLN architecture. Briefly, 1 µm paraffin sections
were deparaffinized and rehydrated in graded ethanol. Antigen
retrieval was performed in a steam cooker (Biocarta Europe,
Hamburg, Germany) at 120°C for 2.5 min using a commercially
available cooking buffer: target retrieval solution, citrate pH 6.1
(Catalog #, S1699, Dako Agilent). Primary antibodies, anti-CD3
(1:200, rabbit, monoclonal, clone SP7, Catalog # RBG024,
Zytomed), anti-CD19 (1:500, rabbit, monoclonal, Catalog #
90176S, Cell Signaling) and anti-CD31 (1:200, rat IgG2a,
monoclonal, Catalog # 15219/01, Dianova), were added over
night at room temperature. After washing biotinylated secondary
antibodies were incubated for 30 minutes at room temperature
(all 1:500). For detection ECTASTAIN® Elite ABC-HRP kit,
peroxidase (standard), catalog # PK-6100 and ImmPACT® DAB
substrate, Catalog # SK-4105, (both Vector Laboratories) were
used and Mayer´s hemalum for counter-staining (Catalog #
109249, Merck). Images were taken with Zeiss Axio imager A1
at 100x original magnification.

Bioluminescence Imaging
In vivo bioluminescence imaging was performed with an IVIS
Spectrum CCD-imaging system (Perkin-Elmer). Mice were
anesthetized by injecting 10 ml of anesthetic solution
(Ketamine and Xylazine) per gram of body weight
intraperitoneally. D-Luciferin was injected in a concentration
of 150 mg/g body weight and images were taken 10 min after the
injection which allowed the identification of T cell proliferation
and migration.

To perform ex vivo imaging mice were injected with the same
mixture of anesthetic and D-Luciferin. 10 min after injection
mice were euthanized and organs were removed within 4 min.
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Ex vivo images provided higher resolution of selective organ
signal distribution. Bioluminescence imaging data was analyzed
on Living image® 4.5.5 software.

Isolation of Cells
Day 3- and 6- after allo-HCT mice were sacrificed, and the
mLNs, and small intestine were harvested for analysis.

Cell Isolation From Lymph Nodes
Cells from the LNs were isolated using a protocol modified from
Fletcher and colleagues (42). mLNs were pierced with a syringe
needle 2 – 3 times and directly transferred into a centrifuge tube
conta in ing 2 ml RPMI-1640 med ium on ice fo r
further processing.

The RPMI-1640 medium was replaced with 2 ml freshly
prepared enzyme mix containing 0.8 mg/ml Dispase II, 0.3
mg/ml Collagenase P and 0.15 mg/ml DNase I in RPMI-
1640 medium.

Tubes were incubated at 37°C in a water bath for 20 min and
gently inverted several times at 5 min intervals. To carefully
disrupt the capsule after the first incubation step, the cell
suspension was gently resuspended with a 1 ml pipette. Tissue
pieces were allowed to settle down for 1 min and subsequently
released leukocytes in the cell suspension were transferred into a
new tube containing 10 ml FACS-buffer stored on ice.

2 ml of fresh enzyme-mix were added to the remaining mLNs
pieces and mixed with a 1 ml pipette and again incubated for
10 min in a water bath at 37°C. After incubation, the cell
suspension was again gently resuspended and released cells
were transferred to the tube containing the previous
supernatant in ice-cold FACS-buffer. For the last time, 2 ml of
digestion-solution were added to the residual tissue fragments
and this time vigorously mixed every 5 min using a 1 ml pipette
until all fragments were digested. Collected supernatants, that
have been stored on ice, were centrifuged at 400 g, 4°C for 5 min
and counted.

Cell Isolation From Small Intestine
T cells from the small intestine were isolated as described before
(43). Small intestinal tissue from the stomach to caecum was
excised. Fat and mesenteric tissue was cleared from the intestine,
Peyer’s patches were removed, and intestine was washed with
PBS. After removal of all fecal material, intestine pieces were cut
into 2 cm pieces and transferred to a 50 ml centrifuge tube
containing 20 ml medium 2 - HBSS medium (Ca-/Mg-, 2 mM
EDTA, 5% FCS) and incubated for 20 min at 37°C with gentle
rotation (100 RPM).

After incubation, gut pieces were passed through a 70 µm cell
strainer over a new 50 ml centrifuge tube. The flow-through,
containing the intraepithelial cells were stored on ice. Remaining
gut pieces were transferred back into the tube containing
medium 2 and again incubated for 20 min in a thermal
incubator at 37°C with gentle rotation (100 RPM). This step
disrupted the remaining intraepithelial fraction form the
underlying mucosa. After incubation, gut pieces were again
passed through a 70 µm cell strainer and pooled with the first
fraction. This cell fraction contained the gut intraepithelial
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lymphocytes (IELs). IELs fraction was centrifuged at 400 g for
5 min at 4°C, resuspended in appropriate volume and counted.

To further process lamina propria, the remaining intestine
pieces on the cell strainer were transferred onto a plastic
weighing pan and reduced to pulp using fine dissection
scissors. The gut-pulp was transferred to a new 50 ml
centrifuge tube containing 10 ml of digestion solution: 1.5 mg/
ml Type VIII Collagenase (Sigma, Hamburg, Germany)
dissolved with 40 mg/ml of DNase I (Sigma, Hamburg,
Germany) in pre-warmed HBSS Ca2+/Mg2+, 2% FCS) and
incubated at 37°C for 20 min under vigorous rotation (200
RPM). Following incubation, cell suspension was vortexed for
30 secs and passed through a 100 µm cell strainer (Miltenyi
Biotec, Gladbach, Germany). The cell strainer was rinsed with
30 ml of ice-cold Ca2+/Mg2+ HBSS containing 10% FCS as
washing-buffer and centrifuged at 500g for 10 min at 20°C.
Cell pellet was resuspended in 10 ml PBS for counting.

Flow Cytometry
Up to 1 x 106 cells were stained per well in 96-well v-bottom
plates. Cells were resuspended in 100 ml of blocking solution and
incubated for 5 min at 4°C. 100 ml of antibody mix were added
and cells were stained for 30 min at 4°C in the dark. Cells were
pelleted at 400 g for 5 min 4°C and resuspended with FACS
buffer for acquisition on the flow cytometer.

For intracellular staining cells were fixed, permeabilized and
stained with Foxp3/Transcription Factor Staining buffer set
(eBioscience) following the manufacturer’s protocol.

Statistical Analysis
Data are shown as mean ± standard deviation (SD). Different
groups were compared by two-tailed unpaired student’s t-tests
using GraphPad Prism 8 software (La Jolla, CA, USA). Level of
significance was set at p < 0.05.
RESULTS

Donor mLNs Sustain Functionality After
Surgical Transplantation
Mice undergoing surgical transplantation of mLNs lost
approximately 10% of body weight post-surgery, however they
recovered 5% body weight within five days (Figure 1D). First, we
determined the viability of mLNs after surgical transplantation, in
this set of experiments mLNs from B6.L2G85.CD45.1 expressing
firefly luciferase were transplanted into congenic B6 albino mice.
The bioluminescence signal from the transplanted cells was initially
measured at day 14 post-surgery and sustained signal was acquired
even until 5 weeks (35 days) post-surgery (Figure 2A). The
decrease in bioluminescence signal can be explained by the efflux
of hematopoietic cells from the LN via vascular and lymphatic
system subsequent to successful engraftment.

To assess the functionality of the donor mLN and its
connection with the vascular system of the mouse, we employed
LSFM and stained the blood vessels with CD31. The
vascularization of blood vessels in the transplanted mLNs as
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measured by the length, diameter and density was comparable to
the mLNs from wild-type mice (Figure 2B), suggesting adequate
neovascularization and adjoining of small blood vessels to the
mesenteric artery after surgery. To determine if the transplanted
mLNs retained a functional post-capillary venous system, we
performed 3D-LSFM imaging of mucosal vascular addressin cell
adhesion molecule 1 (MAdCAM-1), which revealed HEVs length
and diameter was not altered in the surgically transplanted mLNs
however density of HEVs in the transplanted LNs was significantly
reduced (Figure 2C). In conclusion, these findings reveal that the
transplanted mLNs retain physiological vascular function after
surgical transplantation.
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Transplanted mLNs Retain
Normal Morphology and Drain
Lymph From the PPs
To evaluate the morphology and immune architecture of the
transplanted mLNs, we performed H&E stainings. We observed
that the lymph node architecture was preserved in transplanted
mLNs similar to non-transplanted mLNs: CD19+ B cells
distributed regularly and accentuated in follicles in the cortex
whereas CD3+ T-cells predominantly located in the paracortical
area. In both, transplanted and non-transplanted mLNs
displayed some germinal centers (Figure 3A). CD31 staining
revealed no obvious differences in the vasculature, moreover
A

B

C

FIGURE 2 | Donor mLNs engrafted in the recipient mice after surgical transplantation. (A) Bioluminescence signals emitted from luc+ mLNs from B6.L2G85 mice
transplanted into a B6 albino recipient mouse and quantification (p/s/cm2/sr) of BLI signal from donor luc+ mLNs. (B) Zoomed LSFM images of blood vessels
staining with anti-CD31 antibody and 3D reconstruction (20x objective, scale bar = 100 mm) and quantification of blood vessel length, diameter and density were
analyzed from reconstructed images on Imaris, 5 weeks after mLN transplantation. (C) Zoomed LSFM images of HEVs staining with anti-MAdCAM-1 antibody and
3D reconstruction (20x objective, scale bar = 100 mm) and quantification of HEVs vessel length, diameter and density were analyzed from reconstructed images on
Imaris, 5 weeks after mLN transplantation. Each data point represents one mouse, data pooled from two experiments; unpaired non-parametric Mann-Whitney test,
(Mean± SD); *p < 0.05; ns, not significant.
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CD31 staining on LECs in the subcapsular sinus revealed intact
structure of the mLN capsule, which is necessary for the
lymphatic drainage from afferent lymphatics to the medullary
sinuses. As the only remarkable difference we observed signs of
fibrosis of the mLN capsule in transplanted animals as opposed
to untreated animals (Figure 3A).

To test, whether functional lymphatic anastomoses formed in
transplanted mLNs, we evaluated lymphatic drainage from the
small intestines. To visualize lymphatic vessels and to assess
efficient lymphatic drainage we injected Evan’s blue into the
jejunal and iliac Peyer’s patches, which drained to the
transplanted mLNs (Figure 3B). Staining of lymph vessels and
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immediate drainage revealed Evans blue labeled to mLNs
indicating that functional lymphatic vessel anastomoses had
formed with transplanted lymph nodes.

Donor mLNs Are Populated by Recipient
Hematopoietic Cells After Transplantation
To address whether donor mLNs would be colonized by donor
hematopoietic cells or by recipient hematopoietic cells after
surgical transplantation, we transplanted mLNs from
B6.L2G85.CD45.1 into congenic B6.WT (CD45.2) mice. Five
weeks post-surgery the animals were euthanized and analyzed
for the CD45.1+ and CD45.2+ population in mLNs by flow
A

B

FIGURE 3 | Transplanted mLNs retain normal morphology, cell distribution and lymphatics. (A) H&E stainings of transplanted vs. non-transplanted mLNs reveal a
regular immune architecture with B cell follicles and some germinal centers (arrowheads) in both settings in the cortex and T cell zones (top). Lymph node capsules
(arrow) display signs of capsule fibrosis in transplanted mLNs. Immunohistochemical analysis of CD19+ B cells confirm proper B cell follicles in the cortex and
distribution of CD3+ T cells dominating in the paracortical areas. CD31 staining on LECs in the subcapsular sinus (asterisk) revealed an intact structure of the mLN
capsule, 5-6 weeks after mLN transplantation. (B) Donor mLNs lymph vessels conjoin to recipient’s intestinal lymphatic vasculature after transplantation. Evans blue
injected into the iliac Peyer’s patches drains into the transplanted mLNs, 5 weeks after mLN transplantation.
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cytometry (Figure 4A). The vast majority of hematopoietic cells
in the transplanted mLNs (95.4%) were of host (CD45.2) origin
when compared to 0.47% of donor (CD45.1) origin. We could
not detect CD45.1+ myeloid cells (CD11c+MHCII+), however we
detected very few remaining CD45.1+ T cells (CD3+CD4+ and
CD3+CD8+) in the transplanted mLNs (Figure 4B). The
proportion of host hematopoietic cells found in the
transplanted mLNs was relatively similar to the frequency in
untreated C57BL/6 mice (Figure S1).

To further probe the origin of non-hematopoietic LN stromal
and endothelial cells we employed transgenic mice that
ubiquitously expressed a red fluorescent reporter gene and
transplanted mLNs from these B6.DsRed donor mice into a
B6.WT recipients. After successful engraftment we could
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confirm fibroblastic reticular cells (FRCs), lymph endothelial
cells (LECs) and blood endothelial cells (BECs) (Figure S2A)
based on their emission of DsRed protein fluorescence supporting
that they originated from the donor mLNs (Figure 4C).

In summary, transplanted mLNs were entirely repopulated
with recipient hematopoietic cells while retaining LNSCs of
donor origin within five weeks of transplantation.

Transplanted mLNs Sustain Normal T Cell
Activation and Proliferation
To assess whether transplanted mLNs are fully functional and
can initiate an adaptive immune response, we employed a
murine model of aGvHD. After allo-HCT, we evaluated
alloreactive T cell activation and proliferation in mice with and
July 2021 | Volume 12 | Article 689896
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FIGURE 4 | Donor mLNs are repopulated with recipient hematopoietic cells after surgical transplantation. (A) Flow cytometry gating of hematopoietic cells in mLNs
from B6.CD45.1 mouse transplanted in a B6.CD45.2 mouse. (B) Absolute numbers of hematopoietic cells, myeloid cell (dendritic cells and macrophages), B cells
and CD3+ pre-gated CD4+ and CD8+ T cells in CD45.1+ and CD45.2+ sub-populations, 5 weeks after mLN transplantation. Data pooled from five mice analyzed in
two experiments. (C) Flow cytometry gating of non-hematopoietic LNSCs and DsRed fluorescence signal from B6.DsRed mLNs transplanted in a B6.WT mouse,
with DsRed+ living cells from a DsRed+ mouse as positive and living cells from a WT mouse serving as negative controls. Analysis performed 5 weeks after mLN
transplantation. Error bars represent Mean± SD.

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shaikh et al. Mesenteric Lymph Node Transplantation in Mice
without previously transplanted mLNs (Figure 5A). In the
initiation phase of aGvHD (day 3 of allo-HCT) (28),
alloreactive donor CD4+ T cells as gated in (Figure S2B)
expanded in the transplanted mLNs and upregulated the
expression of T cell activation markers CD44 and CD25
(Figure 5B), the donor CD4+ T cells in the transplanted mLNs
upregulated Ki67 protein, indicating active proliferation
comparable to WT group (Figure 5C).

Day 6 of allo-HCT is considered as an effector phase of
aGvHD, at a time-point at which the alloreactive T cells already
infiltrate the aGvHD target organs (28). At this time point we
detected similar BLI signal intensities derived from luciferase+

donor T cells and absolute number of alloreactive CD4+ T cells
(Figure S3A), indicating extensive alloreactive CD4+ T cell
expansion in transplanted mLNs (Figure S3B) and other
aGvHD target organs, similar to allo-HCT control recipients
without previous mLN transplantation. Furthermore, donor
CD4+ T cells upregulated T cell activation maker CD44 and
intestinal homing receptor integrin a4b7 (Figure S3C) required
for the T cell migration into the intestine and functional
proliferation as measured by the upregulation of Ki67 (Figure
S3D). Moreover, allogenic CD4+ T cells differentiated into
effector, effector memory and central memory T cells based on
differential expression of CD44 and CD62L (L-Selectin) (Figure
S3E). At the same time-point we evaluated the activation status
of allogeneic donor CD4+ T cell infiltrating the small intestines,
an organ whose immune response is especially regulated by
mLNs. Likewise, here we could not detect any differences in the
allogenic CD4+ T cell activation and expansion that might be a
result due to surgically transplanted mLNs (Figures S4A–C).

Next, we asked whether non-hematopoietic cells of the mLNs
can prime allogenic CD4+ T cells in the absence of professional
hematopoietic antigen presenting cells (APCs). To this end we
isolated mLNs from CD11c.DOG mice that had been depleted of
CD11c+ cells by the administration of diphtheria toxin (DTx)
(Figure S5) and surgically transplanted these mLNs into a
complete MHCII deficient animal (MHCIID). Subsequently
we transplanted allogeneic MHCIID TCD BM and FVB CD4+ T
cells into these MHCIID mice harboring transplanted
MHC competent CD11c.DOG mLNs as well as MHCIID

recipients without transplanted mLNs (Figure 5D). In MHCIID

mice harboring transplanted MHC competent mLNs we observed
priming of allogeneic donor CD4+ T cells that differentiated into
effector/effector memory T cells (CD44highCD62L-). In contrast,
allogeneic donor CD4+ T cells mostly displayed a naïve (CD44-

CD62Lhigh) and central memory (CD44highCD62Lhigh) phenotype
on day +13 of allo-HCT (Figure 5E).

Taken together these experiments reveal the transplanted
mLNs were able to induce an effective T cell response under
inflammatory conditions, even in MHCII deficient hosts.
DISCUSSION

Strategically positioned between the layers of the mesentery,
mLNs locate in the center of the GIT and their dysfunction (44)
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or lymphadenectomy (45, 46) disrupts gut immunity. In rats, it
has been demonstrated that mLNs excision protects from lethal
GvHD (47, 48). Others have shown that LN transplantation can
decrease pathology of lymphedema (49–51).

Here we detailed a protocol of mLN transplantation and show
that this surgical procedure is a feasible method to study the
immune system of the gut in steady-state or under inflammatory
conditions. Transplanted mLNs are engrafted into the host
mesenteric tissue within a few weeks after surgery, achieving a
functional mesenteric vascular and lymphatic system.

We surgically removed all mLNs from healthy C57BL/6 mice
and replaced them with mLNs from different donor mice
depending on the experimental question. It is to be pointed
out that here we used healthy mice as recipients, nevertheless
mice already under experimental intervention can be used as
recipients. However, care has to be taken as the surgical
procedure is quite intensive and might result in animal
mortality during or after the surgical procedure. Extended
troubleshooting guideline are displayed in Table 2.

The transplanted mLNs in the recipient mice were viable after
surgical procedure, which we confirmed with non-invasive
bioluminescence imaging detecting the emission of signals
from luciferase-transgenic donor mLNs. The transplanted
mLNs retained physiological vascular and lymphatic function,
suggesting the adjoining of blood vessels of the donor mLNs to
the mesenteric artery and connection of the transplanted mLNs
lymphatics vessels to the lymphatic system of the intestine within
weeks after surgery. This was consistent with the report on
axillary LN transplantation by Aschen and colleagues (49).
However, we observed a reduction in HEVs density in
transplanted mLNs when compared to endogenous non-
transplanted mLNs. This could be attributed to a certain
degree of vessel atrophy, as in our described procedure vessels
from the host were not surgically conjoined to the donors rather,
they joined spontaneously after resorption of fibrin glue during
the engraftment phase. Furthermore, the transplanted mLNs
maintained normal morphology with intact B cell follicles and
T cell zones. However, we observed fibrosis on the capsule of
transplanted mLNs, which could be explained by the deposition
offibrin glue during the surgical mLN transplantation procedure.
Importantly, transplanted mLN retained their full capacity of
lymphatic drainage from the intestinal tract. In line with our
observations, others have shown that LN transplantation induces
lymphangiogenesis, however lymphatic vessels induced by LN
transplantation are abnormal in appearance but are functional
and are able to transport lymph fluid and also cells (53).

Within a few weeks after surgical transplantation, the host
hematopoietic cells of different lineages populated the
transplanted mLNs, the efflux of donor derived hematopoietic
cells resulted in the decrease of bioluminescence signal emitted
by luc+ donor cells over the course of observation. The residual
bioluminescence signal that we acquired stemmed obviously
from the tissue resident stromal and endothelial cells of the
transplanted mLNs. Hammerschmidt and colleagues also
demonstrated that donor non-hematopoietic stromal and
endothelial cells survive the surgical transplantation and that
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donor- and host-derived stromal cells were unevenly distributed
in the transplanted LNs (7).

Whether to maintain peripheral tolerance under steady-state
conditions or to mount an effective immune response under
Frontiers in Immunology | www.frontiersin.org 1330
inflammatory conditions, different immune cells interact and are
activated in a highly regulated microenvironment of secondary
lymphoid organs. To assess the functional capacity of transplanted
mLNs to induce an efficient adaptive immune cell response, we
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FIGURE 5 | Alloreactive CD4+ T cells are robustly activated in the transplanted mLNs under aGvHD inflammatory conditions. (A) Experimental strategy: mLNs from
B6.WT mice were transplanted into B6.WT recipient; 5-6 weeks post-surgery; MHC major mismatch aGvHD was induced by lethal irradiation (9 Gy) and allogenically
transplanting with 5x106 TCD BM cells and 5x106 CD4+ T cells from FVB/N mice. (B) Mean fluorescence intensity (MFI) of CD44 and CD25 on donor T cells d+3 of
allo-HCT. (C) Proliferative capacity of donor CD4+ T cells were analyzed by expression of Ki67 d+3 of allo-HCT. (D) Experimental strategy: mLNs of B6.MHCIID

mouse were surgically removed and transplanted with donor mLNs from B6.CD11c.DOG mice that had been depleted of CD11c+ cells by i.p. administration with
diphtheria toxin 20 ng/gram body weight day -5, -3, and -1 day before surgery. 10 weeks post-surgery MHCIID (CD11c.DOG mLNs), untreated B6.WT and MHCIID

mice were myeloablatively irradiated with 9 Gy and i.v. transplanted with 5x106 T cell-depleted (TCD) BM and 5x106 CD4+ T cells from MHCIID and FVB mice
respectively. (E) Analysis for T cell subsets - CD44 and CD62L (pre-gated on CD4+CD90.1+) on day +13 of allo-HCT from mLNs. Each data point represents one
mouse, data pooled from two experiments; unpaired non-parametric Mann-Whitney test, (Mean± SD); **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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employed a murine allo-HCT model that resulted in allogeneic T
cell activation and their migration to the target tissues in aGvHD.
Donor CD4+ T cells effectively migrated from the blood to the
transplanted mLNs in the initiation phase of aGvHD (day 3) and
were activated and proliferated comparably to that in the mLNs
from untreated animals. Furthermore, we observed similar CD4+

T cell activation and upregulation of gut homing receptors on
CD4+ T cells in the transplanted mLNs indicating robust T cell
priming, which was ensued by effector T cell infiltration in the
lamina propria of the small intestine without time delay in the
effector phase of aGvHD (day 6) (28–30). Taken together, these
findings suggest that orthotopic syngeneic mLNs transplantation
did not affect subsequent allogenic T cell activation under
inflammatory conditions of aGvHD.

In recent years, a crucial role of non-hematopoietic APCs in
aGvHD has emerged as it has been shown that DCs or B cells are
dispensable in the initiation of aGvHD and allogenic activation
of CD4+ T cells (54–56). Moreover, it was recently proposed that
intestinal epithelial cells have the capacity to provide allo-antigen
to allogenic CD4+ T cells (57). Here, we transplanted mLNs
depleted of CD11c+ APCs into MHCIID mice and observed
allogenic CD4+ T cells priming within these mLNs. Notably,
our data suggest that non-hematopoietic LNSCs in mLNs can
provide priming signals to allogenic CD4+ T cells under aGvHD
like inflammatory conditions. However, it still remains to be
determined, which subtype of LNSCs can initiate alloreactive
CD4+ T cell responses.

In contrast to previous LN transplantation studies on axillary
LNs (49), popliteal LNs (8) and inguinal LNs (58), the use offibrin
glue served as a biological adhesive in our study and supported the
engraftment of donor mLNs into the mesenteric tissue. Different
nodes of mLNs drain from the jejunum, ileum and the colon (17–
19) but in this study we did not elucidated if the orthotopically
transplanted mLNs retained the similar lymph drainage pattern of
distinct intestinal segments after surgical transplantation.
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In conclusion, here we provide an elaborate protocol along
with the necessary assays to perform successful mLNs
transplantation in mice. This protocol can be used to study
the role of resident LN stromal cells of mLNs in homeostasis (8,
12) and inflammatory conditions (6) and their interaction with
the hematopoietic cells of the innate and adaptive immune
system. Furthermore, mLNs being a major site of gut mucosal
immunity regulation, this protocol provides an alternate tool to
study gut immunology. With minor adjustments, this technique
can also be applied to different disease models in mice to study
e.g., the impact of microbiota and metabolites on particular
stromal LN environments, modification of migrating antigen-
presenting cells by distinct LN microenvironments or in
cancer metastasis.
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TABLE 2 | Troubleshooting guide.

Step Problem Possible reason Solution

Anesthesia Mice reacts to footpad
pinching

Anesthesia underdosed Slowly add small doses of anesthetic i.p. until desired anesthetic depth is achieved

Mice take longer than 1 h
to recover from anesthesia

Anesthesia overdose Do not use more anesthesia than needed to reach desired anesthetic depth
Low body temperature Monitor the body temperature with a rectal probe. Place the animal in its cage in front

of infrared lamp (but avoid overheating)
Lethality up to 24 hr
after operation
despite recovery
from anesthesia

Post-operative ileus Rough handling of the
bowel

Handle bowels gently and with care. Always use pre-wetted cotton swabs to handle
the bowels. Refrain from pinching the bowl with forceps. Do not apply pressure to the
bowel. Keep bowel lubricated at all times

Intestinal bleeding Aneurysm at the site of
mLN removal

Care should be practiced not to rupture/cut blood vessels while removing the host
mLNs. If bleeding occurs, quickly stop the bleeding by holding Setpack® size 2 at the
site of bleeding until coagulation occurs. Inject 200 – 300 ml solution of 0.9% NaCl s.c.
to maintain blood volume

Peritonitis Introduction of infection
during the operation
procedure

Work aseptically according to (52)

Introduction of infection
after wound closure

Suture both peritoneum and the skin sufficiently

Donor mLNs
placement into
recipient mesenteric
tissue

Intestinal loops stuck
together with fibrin glue

Excessive use of fibrin
glue

Pipette minimal amount of fibronectin at the site of removed mLNs
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Pulmonary infections remain a major cause of morbidity and mortality in hematopoietic cell
transplantation (HCT) recipients. The prevalence and type of infection changes over time
and is influenced by the course of immune reconstitution post-transplant. The interaction
between pathogens and host immune responses is complex in HCT settings, since the
conditioning regimens create periods of neutropenia and immunosuppressive drugs are
often needed to prevent graft rejection and limit graft-versus-host disease (GVHD).
Experimental murine models of transplantation are valuable tools for dissecting the
procedure-related alterations to innate and adaptive immunity. Here we review mouse
models of post-HCT infectious pulmonary complications, primarily focused on three
groups of pathogens that frequently infect HCT recipients: bacteria (often P.
aeruginosa), fungus (primarily Aspergillus fumigatus), and viruses (primarily
herpesviruses). These mouse models have advanced our knowledge regarding how the
conditioning and HCT process negatively impacts innate immunity and have provided new
potential strategies of managing the infections. Studies using mouse models have also
validated clinical observations suggesting that prior or occult infections are a potential
etiology of noninfectious pulmonary complications post-HCT as well.
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INTRODUCTION

Hematopoietic cell transplantation (HCT) is a potentially curative treatment for high-risk
hematopoietic neoplastic disorders, metabolic, genetic and immune-mediated diseases. It involves
eradication or suppression of the recipient’s hematopoietic cells using a conditioning regimen
followed by infusion of stem cells collected from the bone marrow, placenta (cord blood) or
peripheral blood (1). The source of hematopoietic cells can be either autologous (auto, recipient-
derived) or allogeneic (allo, matched related or unrelated donor-derived) hematopoietic cells. HCT
has been carried out increasingly over the years with 47,468 transplants in 50 European and
associated countries (2), and 22,573 transplants in the United States in 2018 (3).

Unfortunately, the toxicity of conditioning regimens, alloimmune responses and
immunosuppressive therapies cause severe post-transplant complications, in which the lung is
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https://www.frontiersin.org/articles/10.3389/fimmu.2021.718603/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.718603/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.718603/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xiazhou@umich.edu
https://doi.org/10.3389/fimmu.2021.718603
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.718603
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.718603&domain=pdf&date_stamp=2021-08-16


Zhou and Moore Post-HCT Infectious Pulmonary Complication Models
one of the most common target organs. Pulmonary
complications occur in up to 60% of allo-HCT recipients (4)
and 25% of auto-HCT recipients (5). The frequent pulmonary
complications and their significant contribution to post-
transplant morbidity and mortality limit the success of HCT
(6–8). These complications are heterogeneous, and include
pathologies generated by infectious agents and noninfectious
disorders. Although infectious pulmonary complications after
HCT have been significantly reduced due to aggressive
prophylaxis and the use of broad-spectrum antimicrobial
medications, these infections still remain problematic,
especially among the patients with graft-versus-host disease
(GVHD). Major noninfectious pulmonary complications
include early onset idiopathic pneumonia syndrome (IPS) (7),
and late onset bronchiolitis obliterans syndrome (BOS) (9).Current
experimental data support alloimmunity as an underlying
mechanism of these idiopathic noninfectious lung injuries (7, 9).
For a review on non-infectious pulmonary complications of stem
cell transplantation, please see references (10, 11).

Animal models have been extensively used for the
establishment and improvement of HCT therapy (12, 13).
Animal models allow manipulation of single factors during the
development of complications associated with HCT, and thus are
crucial for successfully improving clinical applications. Most of
the current knowledge regarding defects in immune responses
during infectious pulmonary complications come from studies
using mouse models of HCT. In this review, we will first briefly
introduce infectious pulmonary complications post-HCT, and
then describe relevant mouse models and current understanding
of host immune responses to lung infections post-HCT that have
been acquired from studying these models.
CLINICAL PHENOTYPES OF INFECTIOUS
PULMONARY COMPLICATIONS
POST-HCT

The immune system of HCT recipients is eradicated or weakened
by either myeloablative or less intense nonmyeloablative
conditioning regimens before transplant to eradicate/reduce
tumor burdens and to prevent graft rejection. Thus, it is not
surprising that infections are a major complication post-HCT.
Infectious complications are more frequent and severe in
patients with allo-HCT due to prolonged immunosuppressive
therapy and GVHD (14). The timing of reconstitution of the
immune system post-HCT varies considerably among patients,
depending on the type of transplant (autologous vs allogeneic),
the intensity of conditioning regimen, the source of
hematopoietic cells, the presence of GVHD and the length of
immunosuppressive therapies. Nevertheless, post-HCT
reconstitution can be roughly divided into three phases: severe
neutropenia or pre-engraftment phase (first 2-4 weeks), early
engraftment phase (second and third month) and late
engraftment phase (after second or third month) (14).

The prevalence and types of infection change over time and
often follow the course of immune reconstitution post-transplant
Frontiers in Immunology | www.frontiersin.org 236
in patients (14). During the pre-engraftment phase, the depletion
of neutrophils and damage to the mucosal barriers caused by
conditioning regimens allow opportunistic pathogens to become
infectious. The predominant pathogens during this phase are
Pseudomonas, Candida and Aspergillus species (15–18). During
the early engraftment phase, most innate immune cell subsets
such as monocytes, neutrophils, and natural killer cells
repopulate at normal levels (19), but lymphocyte counts are
still low. This allows the reactivation of herpesviruses, such as
cytomegalovirus (CMV), Epstein–Barr virus (EBV), human
herpesvirus 6 (HHV-6), and new infections with respiratory
viruses (20–22). A second peak of invasive Aspergillus infection
occurs at the end of the early engraftment phase in allo-HCT
recipients due to prolonged GVHD and its immunosuppressive
therapy (18). During the late posttransplant phase (about three
months after transplant), innate immunity is mostly
reconstituted, but the recovery of T cells takes about a year
and B cells may take even longer to completely repopulate (23).
Bacterial pneumonia is less common during this late phase, but
allo-HCT recipients are still at risk of late CMV reactivation and
fungal infection. Current preemptive therapeutic strategies have
significantly reduced early onset CMV infections after allo-HCT,
but the incidence of late CMV infections have increased (24, 25).
CMV reactivation remains a life-threatening infectious
complication that is difficult to manage following allo-HCT
(26–28). Allo-HCT recipients with chronic GVHD and
immunosuppressive therapy continue to be susceptible to
Aspergillus and Gram-positive bacteria as well (29). It is thus
important to understand the interplay among host immunity,
pathogens and GVHD in an allo-HCT setting.
MOUSE MODELS OF INFECTIOUS
PULMONARY COMPLICATIONS
FOLLOWING BONE MARROW
TRANSPLANTATION

There have been many functional studies on immune responses
to pathogens in mouse models of HCT. These have included
both syngeneic (syn) and allogeneic strain combinations to
recapitulate autologous or allogeneic HCT in patients. The
pneumonia pathogens studied span bacteria (mostly
Pseudomonas aeruginosa), fungus (primarily Aspergillus
fumigatus), and viruses (primarily herpesviruses). There are
also reports of sepsis subsequent to gastrointestinal damage
due to conditioning regimens in HCT mouse models (30).

Mouse Models of Post-HCT
Bacterial Pneumonia
Bacterial pneumonia usually occurs early after HCT during the
neutropenic period (31), but can also occur post-engraftment.
P. aeruginosa is the most common pathogen isolated from the
lower respiratory tract within 100 days post-transplant (15).
P. aeruginosa is a ubiquitous environmental bacterium, and if
inhaled into the lung airway by a immunocompetent individual,
it is quickly cleared by alveolar macrophages (AMs) (32).
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Because P. aeruginosa has become increasingly resistant to
multiple antibiotics over the years (33), it can be difficult to
treat multidrug resistant Pseudomonal pneumonia (MDRPa)
(16). About 40% of the hematologic malignancy patients
infected with MDRPa will die in 30 days (34) and MDRPa
outbreaks are associated with a death rate as high as 80% (35).

A syn-HCT mouse model was established in our laboratory to
understand why HCT recipients are susceptible to P. aeruginosa
(36). This model is clinically relevant, as both autologous and
allogeneic transplant patients are susceptible to P. aeruginosa
infection (37). Like auto-HCT recipients, mouse syn-HCT
recipients have no risk of GVHD, and thus the model can be
used to explore how the transplant procedure alone impacts
pulmonary immunity. Recipient C57BL/6 mice are given a split
dose of 13 Gy total body irradiation (TBI) from either a 137Cs or
x-ray orthovoltage source with an interval of 3 hours between
doses. Bone marrow is harvested from donor C57BL/6 mice, and
5x106 whole bone marrow cells are infused into the recipients via
tail vein injection. Five weeks after transplant, the percentage of
donor-derived cells is approximately 95% in the spleen and the
percentage of donor-derived AMs in the lung is about 83% (38).
At this time point, HCT or age-matched non-HCT control mice
are infected with P. aeruginosa PAO1 via intratracheal (i.t.)
inoculation (36). These experiments demonstrated increased
bacterial burden in the lung and dissemination to the blood at
24 h post-infection in HCT mice compared to non-transplant
Frontiers in Immunology | www.frontiersin.org 337
controls (36). See Figure 1 for schematic illustration of the
model system.

The defect in bacterial clearance in HCT mice is associated
with reduced phagocytosis and killing of P. aeruginosa in lung
AMs (39, 40) and impaired killing and defective formation of
neutrophil extracellular traps (NETs) in neutrophils (41). Similar
to HCT patients, the levels of immunosuppressive prostaglandin
E2 (PGE2) are elevated in HCT mice (39, 42). Subsequent studies
found that overproduction of PGE2 impairs the functions of both
AMs and neutrophils, and pharmacologic inhibition of PGE2
production in vivo restores host defense of HCT mice (39, 41).

The syn-HCT model permits further dissection of the
mechanisms explaining how the HCT procedure promotes
AMs to overproduce PGE2. Conditioning-associated cellular
stress stimulates alveolar epithelial cells to produce TGF-b
(43). TGF-b signaling stimulates AMs to transcribe microRNA
(miR)-29b which suppresses the expression of DNA
methyltransferases (DNMTs) (44). Under homeostatic
conditions, DNMT3a and DNMT3b methylate the promoter
region of cyclooxygenase (COX)-2 gene which encodes a critical
enzyme for the production of PGE2 (40). Methylation of the
COX-2 promoter limits transcription and reduces COX-2 gene
expression. Suppression of DNMTs by the TGF-b-miR-29b axis
releases this endogenous break on COX-2 expression and thus
increases the production of PGE2 in AMs (44). Interestingly,
these epigenetic changes can be long lived with human HCT
FIGURE 1 | Schematic illustration of syn HCT mouse model. The figure shows the process of syn HCT used in experiments to test impaired host defense against
Pseudomonas aeruginosa as described in the text. The figure is created with Biorender.com.
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patients (even 6 years post-HCT) showing elevated levels of
PGE2 in the lung. Thus, this mechanism likely accounts for long-
lived innate immune impairment post-HCT.

The immunosuppressive function of PGE2 is mediated by its
receptors E prostanoid receptor 2 (EP2) and EP4 (44). Signaling
via these receptors can activate a cyclic adenosine
monophosphate (cAMP)-mediated signaling cascade with
multiple downstream effects. One effect is downregulation of
the scavenger receptor MARCO which is critical for recognition
and phagocytosis of P. aeruginosa (45). Another effect is
upregulation of IL-1 receptor associated kinase M (IRAK-M),
which is an inhibitor of TLR signaling (46). Ultimately, this
alteration impairs the proinflammatory cytokine response (e.g.
TNF-a and IFN-g) that could help clear bacterial infection. At
the same time, PGE2 promotes transcription of IL-1b which is a
mediator of tissue damage in the lung (47). Furthermore, PGE2
stimulates the expression of phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), which negatively regulates
phagocytosis and killing of P. aeruginosa (48). A summary figure
Frontiers in Immunology | www.frontiersin.org 438
describing some of the innate immune changes in AMs post-
HCT is found in Figure 2.

In contrast to the impaired phagocytosis of P. aeruginosa post-
HCT by AMs, phagocytosis of Staphylococcus aureus is actually
enhanced (45). This increased phagocytosis of S. aureus, is also
regulated byPGE2, by stimulating the expression ofmiR-155which
upregulates scavenger receptor (SR-)AI/II (45). However, despite
the enhanced uptake of S. aureus, AMs fromHCTmice are unable
to effectively kill the pathogen intracellularly as a result of the
impacts on IRAK-M and PTEN described above. Additionally, the
impaired innate immune function of neutrophils likely contributes
to poor S. aureus clearance. Interestingly, a study by Zimecki et al.
explored the use of bacteriophages as a therapeutic strategy for syn-
HCT mice infected with S. aureus strain L (49). Similar to the
findings reported above, HCT mice were highly susceptible to
S. aureus infection (only 8.3% of infected mice survived whereas
mice treatedwith phage showed 72% survival. Itwas also noted that
the phage therapy increased the circulating leukocyte and
neutrophil counts.
FIGURE 2 | Schematic illustration of Syn HCT induced changes in innate immunity. Conditioning with TBI causes injury to lung epithelium resulting in production of
TGF-b. Binding of TGF-b to alveolar macrophages results in increased miR29b expression which then limits expression of DNA methyltransferases (DNMT). This
allows for the promoter of the cyclooxygenase 2 (COX-2) gene to be unmethylated resulting in increased production of prostaglandin E2 (PGE2). PGE2 then binds to
the E prostanoid 2 (EP2) receptor which is also upregulated post-HCT. Downstream signaling by PGE2 results in upregulation of IL-1, elevations in phosphatase and
tensin homolog on chromosome 10 (PTEN) and elevations in IL-1 receptor associated kinase (IRAK-M). These changes impair intracellular killing while downregulation
of the MARCO scavenger receptor impairs phagocytosis of P. aeruginosa. Original references described in text. The figure is created with Biorender.com.
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While the majority of the studies reviewed above show
defective innate immune function, there is one study from
1989 showing that early after marrow transfer in allogeneic
radiation chimeras that macrophages can be non-specifically
activated by the conditioning milieu and show enhanced
resistance to Listeria monocytogenes initially, but that this
protection eventually declines with time (50).

Mouse Models of Post-HCT
Fungal Pneumonia
Invasive fungi have become the leading infectious cause of
morbidity and mortality in HCT recipients in the era of
improved prophylaxis and treatment of bacterial and viral
infections (51, 52). Invasive pulmonary aspergillosis (IPA) is
the most common fungal infection in the lung of HCT recipients.
IPA causes high mortality among HCT patients, ranging from
30% to 70% (53), accounting for 10% of all death among the
recipients (54). IPA is highly associated with neutropenia,
GVHD and its related immunosuppressive therapy, and thus
the incidence of IPA peaks early in the pre-engraftment phase
and then later post-engraftment in allo-HCT recipients (18).
This bimodal distribution of IPA post-HCT reflects different
etiologies of Aspergillus infection: early IPA is due to prolonged
neutropenia, especially when using myeloablative conditioning
regimens, while late IPA is secondary to receiving corticosteroid
or other immunosuppressive therapies to treat GVHD (55).
Interestingly, the pro-inflammatory status noted in allo-HCT
mice without immunosuppressive treatment may enhance
clearance of Aspergillus as noted in one study by Hildebrandt
et al. (56). The significant shift to using lower intensity non-
myeloablative regimens allows a shorter neutropenic period and
the systematic use of antifungal prophylaxis has led to a decrease
in the incidence of early IPA (57). The early and late IPA time
periods present distinct immunopathology patterns in HCT
recipients. Early IPA in the neutropenic phase is characterized
by rapid fungal growth and low levels of inflammation, but late
IPA in immunosuppressed patients usually presents with
overabundant inflammation including excessive neutrophil
infiltration with insufficient fungal clearance (58).

Accordingly, several animal models have been established to
understand the pathogenesis of early or late aspergillosis in HCT
patients (59). Neutropenic models include treating mice with
chemotherapeutic agents such as cyclophosphamide (60), TBI
(61, 62), and using antibody depletion of neutrophils (63).
Immunomodulated models usually involve the use of
corticosteroids (64). These two types of mouse models
recapitulate the different pathologies of IPA that present in
neutropenic and immunosuppressed patients respectively (64,
65). For the neutropenic mouse models, it is most common to
administer cyclophosphamide at 150 mg/kg via the
intraperitoneal route thrice weekly before infection. Some
studies have used monoclonal antibodies to achieve neutrophil
depletion. A dose of 100µg of anti-Ly6 (Gr1) rat IgG2b MAb57
(clone RB6-8C5) via intraperitoneal injection on the day before
and 2 days after fungal intranasal inoculation dramatically
reduces the number of neutrophils for up to 5 days (63). The
Frontiers in Immunology | www.frontiersin.org 539
lethal dose of irradiation varies depending on mouse strain
receiving the treatment. For example, a single lethal dose of
9 Gy given to C3H/HeJ mice followed by transplants with 2x106

T-cell-depleted allogeneic bone marrow cells from DBA/2 mice
shows profound neutropenia 3 days after transplant (63).
Immunomodulated models commonly administer cortisone at
100 to 200 mg/kg via subcutaneous injection thrice weekly for 1
or 2 weeks before experimental infection. In a cortisone-treated
immunosuppressive model, myeloid cells such as neutrophils
and macrophages, are massively recruited to the lungs upon
infection, but lymphocytes fail to be recruited to the lung,
indicating the requirement of lymphocytes to efficiently clear
the infection (64). The most common routes of inoculation of
Aspergillus are intranasal and intratracheal administration. A
conidial suspension of A. fumigatus inoculated into the nares is
close to natural infection, but due to upper mucociliary clearance
of mice, only about 10% of the inoculum actually enters into the
lungs (66). As a result, the development of IPA is highly variable
in intranasally inoculated mice. Delivery of spore suspension
directly into the trachea, by either tracheotomy or oropharyngeal
aspiration in anesthetized mice, can more tightly control the
fungal inoculum and lead to reproducible IPA (59). The most
commonly used A. fumigatus strains are the low virulent strain
AF293 (ATCC MYA4609 or CBS101355) and the high virulent
strain Dal/CEA10 (ATCCMYA1163 or CBS 144.89). Depending
on the strain of A. fumigatus and the route, the dose ranges from
1.0×102 to 1.0×109 conidia for mice infected through the
intranasal route, and 1.0 to 2.0x107 conidia through the
intratracheal route (59).

Studies on mouse models and human patients have greatly
increased our knowledge of the host immune responses to A.
fumigatus and have aided in the development of novel
therapeutic targets to treat IPA [reviewed in references (67,
68)]. Here we highlight a few advances in the field during
recent years. Mouse models have confirmed or identified
several important pattern recognition receptors (PRRs) on the
cell surface of innate immune cells, such as AMs, which include
dectin-1 (61), TLR2 (69, 70), TLR4 (70), TLR9 (71–73), NOD2
(74), soluble pentraxin-3 (75) and TREM1 (76) in recognizing
Aspergillus components. Inflammatory cytokines such as IL-1a
and IL-1b are critical for host defense against A. fumigatus in
neutropenic mice (77, 78). The role of antigen presentation and
development of antigen specific T cell subsets has been studied
with respect to clearance of IPA, but with some conflicting
results. For example, adoptive transfer of dendritic cells pulsed
with conidia stimulates a T helper type 1 (Th1) responses and
improves survival in a syn-HCT model suggesting an important
role of Th responses to clear infection (79). This is consistent
with several other studies in mouse HCT models that also
demonstrated that Th1-mediated immunity is important in
clearing A. fumigatus infection (80–82). Interestingly, it
appears paradoxical that CCR7 deficient HCT mice whose
dendritic cells cannot enter draining lymph nodes to prime T
lymphocytes show improved survival in a monoclonal antibody
(anti-Gr1) induced neutropenic model (83). This study suggests
that retaining CD11b+ dendritic cells inside the neutropenic
August 2021 | Volume 12 | Article 718603
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lung during initial infection with Aspergillus is beneficial,
potentially by complimenting the loss of neutrophils. The role
of the Th17 response in the pathogenesis of IPA is somewhat
controversial, as it can be either protective (84, 85) or pathogenic
(80). Th2 responses and the production of IL-4 are detrimental
to control A. fumigatus infection, as IL-4-/- mice are protected
from IPA (86). Finally, regulatory T cells are producers of IL-10
which is l inked to disease progress ion in steroid
immunosuppressive experimental IPA (87, 88). Figure 3
provides a summary of recent insights from mouse models of
HCT or neutropenia with regards to Aspergillus infection.

Mouse Models of Post-HCT
Viral Pneumonia
Viral infections often occur after engraftment when the
reconstitution of lymphocytes is not yet complete, or when
immunosuppression due to prophylaxis or treatment of
GVHD in allo-HCT recipients is needed. Nearly every human
being is infected with one or more herpesviruses in the first two
decades of life and the viruses can establish life-long latency to
escape immune surveillance and detection (20). Viral pneumonia
can be caused by reactivation of latent human herpesviruses or
new infection with community acquired respiratory viruses.
Additionally, primary herpesvirus infections can occur in
seronegative patients receiving grafts from seropositive donors
(89). Besides causing direct lung injuries, such as,
Frontiers in Immunology | www.frontiersin.org 640
cytomegalovirus (CMV) pneumonia (20), occult or prior
herpesvirus infections appear to trigger the development of
“noninfectious” pulmonary complications at later time points
after allo-HCT (21, 22, 90).

Most human herpesviruses have very strict host-species
specificity, and it is thus difficult to study human herpesviruses in
mice.Herpes simplex virus type 1 (HSV-1) is an exception, as it can
directly cause pneumonia inHCTmice (91). To bypass this hurdle,
some researchers have generated transgenic mouse models that
express receptors for human herpesvirus. For example, human
CD46, an HHV-6A receptor, is expressed in the brain of a mouse
line to study host innate immunity against HHV-6A (92). Other
researchers engrafted human CD34+ hematopoietic progenitor
cells into NOD-scid IL2Rgcnull (NSG) mice which can then be
directly infected with human herpesvirus (93). More often, murine
homologs of their corresponding human herpesviruses are used in
mousemodels to study the principles of virus-host interactions that
are thought to be shared among human andmouse systems.Mouse
CMV (mCMV), murine gammaherpesvirus 68 (MHV-68) and
murine roseolovirus (MRV) are frequently used to study human
CMV, Epstein-Barr virus (EBV) and human herpesvirus (HHV)-
6A/B, respectively in HCT settings.

Most murine herpesvirus models fall into two categories: pre-
HCT latent infection or post-HCT infection models. Both
syngeneic and allogeneic HCT have been studied. Latent
infection models usually involve a primary infection in
FIGURE 3 | Factors important for clearance of Aspergillus fumigatus in HCT or neutrophil (PMN) depleted mouse models. See text for details. The figure is created
with Biorender.com.
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neonates or adult mice to mimic the natural history of
herpesviral infection, followed by various lengths of “waiting
time” to let the virus enter latency (21, 94). After that, an allo-
HCT is usually performed to stimulate viral reactivation.
Latently infected mouse models are most suitable for studying
the reactivation of herpesvirus, their subsequent effects and for
testing novel therapeutic strategies. This model has facilitated the
discovery of the critical role of humoral immunity in controlling
the reactivation of mCMV (94). The half-life of preexisting
antibodies in latently infected mice and the elimination of
recipient plasma cells due to GVHD can lead to a loss of anti-
mCMV antibodies, which eventually leads to mCMV
reactivation in recipients. Importantly, the reactivation of
mCMV in allo-HCT recipients can be prevented by the
transfer of immune serum (94). In a similar latent infection
model, two doses of leukotriene B4 administered via intravenous
route effectively reduced the reactivation of mCMV in allo-HCT
mice through yet unknown mechanisms (95). To determine the
relationship between herpesviral reactivation and noninfectious
pulmonary complications, MRV, a mouse homolog of HHV-6,
was given to neonatal mice and then reactivated in response to a
minor histocompatibility antigen mismatched allo-HCT 8 weeks
later. Indeed, the reactivation of MRV not only caused IPS-like
pathology but also exacerbated histologic signs of acute GVHD
in the gut (21).

Due to variable waiting times for entering latency and the
heterogenous nature of post-HCT viral reactivation among
latently infected mice, some researchers infect mice post-HCT
or concurrent with HCT to mimic the reactivation of herpesvirus.
The HCT procedure creates an immunosuppressive lung
microenvironment, characterized by increased levels of PGE2
(39), TGF-b (91, 96) and Kynurenine (97). Reduced influx or
altered function of CD8+ T cells, which are critical for clearance of
mCMV (98, 99), HSV-1 (91) and community acquired respiratory
viruses (100, 101), were observed in both syn- and allo-HCT
recipients. As a result, most HCT mice experienced delayed viral
clearance and persistent pneumonitis. Interestingly, the impact of
HCT on T cell immunity does not seem to be mediated by the
elevated levels of PGE2 (101), but rather by TGF-b (91).

Recently, studies using MHV-68, a mouse herpesvirus
genetically related to Kaposi’s sarcoma-associated herpesvirus
(KSHV) and EBV, in a syn-HCT model in our laboratory have
advanced our understanding of host immune response to
herpesvirus infection in the HCT setting. A C57BL/6 to
C57BL/6 syn-HCT mouse model as described above was
adopted to study MHV-68 infection. The HCT procedure not
only causes an immunosuppressive environment, but also
changes the structure of the lung microbiome (102). Together,
these alterations in the lung microenvironment have significant
impacts on the biology of conventional dendritic cells (cDCs) in
HCT lungs. After exposure to MHV-68, the cDCs in syn-HCT
mice increased their expression of pro-Th17 cytokines such as
IL-6 IL-23 and TGF-b relative to the responses noted in
untransplanted mice (103). These HCT lung cDCs also become
deficient for delta like ligand 4 (DLL4), a Notch ligand, on their
cell surface which further permits Th17 polarization (104). In
Frontiers in Immunology | www.frontiersin.org 741
addition, the migration of cDCs into mediastinal draining lymph
nodes is impaired, significantly reducing Th1 responses, but
augmenting Th17 responses which appear to be primed locally
in the lung (105). Thus, the functional changes of lung cDCs
post-HCT tip the balance of Th responses against MHV-68
infection from protective Th1 responses to pathogenic Th17
responses (96, 103).

Excessive IL-17A due to Th17 responses eventually causes the
development of pneumonitis and pulmonary fibrosis 3 weeks
after infection, when lytic MHV-68 is no longer detectable (103,
106). Administration of anti-IL-17A antibodies or using bone
marrow cells isolated from IL-17A-/- donor mice protects HCT
recipients from pneumonitis and fibrosis after infection with
MHV-68 (103). Figure 4 highlights some of the changes noted in
HCT lungs post-infection with herpesvirus. Note that the
pathology seen in this mouse model also resembles many
histological features seen in noninfectious complications such
as IPS and restrictive lung disease, suggesting a potential etiology
of noninfectious pulmonary complications caused by prior or
occult infections that trigger pathogenic immune responses
leading to lung injury and improper repair. This hypothesis is
supported by recent discoveries of occult infections in IPS
patients (90), and the strong association between the infections
with herpesviruses (21) or community acquired respiratory
viruses (22) and noninfectious complications in HCT
recipients. Furthermore, direct evidence comes from a study
mentioned above showing that reactivation of MRV in allo-HCT
mice causes IPS-like pathology and exacerbates acute
GVHD (21).
DISCUSSION

Pulmonary infections remain a major cause of morbidity and
mortality in HCT patients. This is not surprising given that the
conditioning regimens create periods of cytopenia and
immunosuppressive drugs are often needed to limit GVHD.
The rise of antibiotic resistant strains of bacteria, challenges of
vaccinating immunocompromised patients, and limited
availability of vaccines for many of the common pathogens in
this patient population all help explain the infectious challenges
facing HCT patients. Additionally, mucosal tissue damage as a
result of GVHD and bacterial colonization can significantly
increase the likelihood of opportunistic infection (107–109). As
discussed above, non-myeloablative conditioning and fungal and
viral prophylaxis have helped reduced infections during the
cytopenic/neutropenic phases; however, there is a growing
appreciation that even post-engraftment, innate and adaptive
immune cells display altered immune function.

Even as early as 1982, it was noted that AMs from HCT
patients were defective at phagocytosis, chemotaxis towards, and
killing of fungal and bacterial pathogens when studied 4 months
post-HCT (110). Importantly, while phagocytic and chemotactic
defects normalized, the killing defects persisted even 12 months
post-HCT (110). This suggests that alterations in the lung milieu,
most likely caused by conditioning regimens may interfere with
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the function of innate immune cells. It also suggests that long-
lived alterations may result from epigenetic alterations. A decade
later, elevated levels of PGE2 were noted in both auto and allo-
HCT patients; however, this finding was not linked to impaired
innate immune function (42). It was not until 2006 that murine
models were able to provide a mechanistic link between these
two observations and demonstrate that overproduction of PGE2
post-HCT was responsible for impaired phagocytosis and killing
by AMs (39). It took almost another decade to describe the
epigenetic alterations in methylation of the COX-2 promoter
that were caused by elevated levels of TGFb1 caused by the
conditioning regimen (44). Interestingly, this same mechanism
that impairs innate immune function in HCT, has recently been
shown to explain defective macrophage responses to wound
healing and wound infection in diabetes as well (111). No
doubt there are many other, yet to be discovered pathways that
impair the function of innate immune cells in the transplant
Frontiers in Immunology | www.frontiersin.org 842
setting that are likely to be regulated via epigenetic alterations
induced by the altered lung milieu.

We are also starting to learn more about how alterations of
the normal microbiota in the lung and gut of HCT recipients
may alter immune tone. The process of allo-HCT has been
shown to reduce the diversity of the gut microbiota in humans
(112). Furthermore, low diversity of gut flora at the time of
neutrophil engraftment predicts mortality (113). Interestingly,
when focused on the connection between gut microbiome and
pulmonary complications, an observational study found that
HCT patients that had low baseline gut microbiome diversity
or proteobacteria domination early post-HCT had the highest
incidence of pulmonary complications (114). This highlights the
potential for a gut-lung axis when considering regulation of
pulmonary immunity and such a concept has previously been
suggested (115–118). More recently, the concept of alteration of
the lung microbiome in the setting of HCT has demonstrated
FIGURE 4 | Schematic showing alterations shown to occur in Syn HCT mouse models of murine gammaherpesvirus infection. In responses to HCT, lung
conventional dendritic cells 2 (cDC2) display defective delta like ligand 4 leading to impaired notch signaling when interacting with virus-specific T cells. This leads to
production of cytokines able to drive both Th1 and Th17 cell differentiation, but because of poor ability of the cDCs to migrate to the draining lymph nodes
secondary to reduced CCL21 levels, the Th1 response is impaired, while the Th17 response is primed efficiently in the lungs. Elevated IL-17 levels stimulate lung
epithelium to produce CXCL1 and recruit PMNs prominently, although other cell types also accumulate. The IL-17 can also directly activate myofibroblast
proliferation and extracellular matrix production leading to fibrosis. Alterations to the lung and gut associated microbiome are also prominent post-HCT and may
contribute to altered immune cell functions. See text for details. The figure is created with Biorender.com.
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that dysbiosis is associated with alterations in inflammatory
cytokines and poor outcomes (102, 119). Interestingly, in the
murine studies, it was found that while the HCT procedure alone
altered the microbiota, there was a more profound and
prolonged alteration in the setting of herpesviral infection as
well (102). Similarly, HCT patients with confirmed
transcriptionally active pathogens in the bronchoalveolar
lavage fluid display overall lower microbiome diversity in the
lung, and many of these patients had viral infections (120).
Whether the alterations caused by disturbances of the lung or gut
microbiota are related to altered signaling via pathogen
recognition receptors on immune cells or altered metabolites
secreted by the microbiota or both remains to be determined.
Interestingly, such findings may offer new diagnostic approaches.
Zinter et al. recently performed metatranscriptomic analysis of
pre-HCT bronchoalveolar lavage fluid in pediatric patients and
found that children with evidence of viral enrichment and innate
immune activation had the highest incidence of post-HCT lung
injury while patients with diverse oropharyngeal taxa and lacking
inflammatory signatures rarely developed post-HCT lung injury
(119). While there are known differences in the composition of
human and murine microbiota, murine models should still be
useful for proof-of-concept studies regarding the role of potential
prebiotics, fecal microbiome transplant and other potential
therapies to improve outcomes post-HCT.

Our understanding of the host-pathogen interaction in HCT
recipients has been accumulated over decades from studying
animal models. Mice and humans have fairly similar organs and
systems, immunity and pathology. Mouse models permit tightly
controlled experimental conditions and unified genetics of host
and pathogens. One of the most important advantages of mice is
the availability of a huge collection of gene knockout or
transgenic mouse strains, and it is now relatively easy to
generate such mice if they are not readily available. In practical
aspects, the cost of mice is inexpensive and experiments are
reproducible. However, there are a few important limitations
that need to be kept in consideration. First, the immune system
in mice is considerably different from that in humans (121), and
thus the knowledge acquired from mice may serve as “proof-of-
concept”, but may not readily be translated to human clinical
treatment. Second, mice are small and have short live spans. The
small sizes of the body and lungs of mice may contribute to the
different kinetics of immune reconstitution post-HCT and
disease course in the lung compared with humans, as mouse
lungs can be quickly overwhelmed by pathogens or immune cell
Frontiers in Immunology | www.frontiersin.org 943
infiltration. While there have been mouse models of BOS in mice
that have provided important insights (122–128), it is not clear
that the evolution of this disease in mice which have short
lifespans fully recapitulate the features of disease that evolve
over years in humans. Similarly, long term effects of chronic
latency and reactivation of herpesviruses may be difficult to
capture. Third, the host-pathogen interactions, especially with
viral infections, is usually species-specific, which reduces clinical
translatability. Other limitations of mouse models include a lack
of parallel methodologies with the ones commonly used in
clinical settings. Many of the studies have used syn-HCT
models to avoid the complications of alloimmune responses,
yet clinically, allo-HCT patients often have the most severe
pulmonary complications and many of the current mouse
models do not sufficiently explore the effects of GVHD or
immunosuppressive therapy and how those factors impact
immune function. Additionally, for convenience, mouse
models often use TBI as the conditioning regimen, yet human
HSCT is often accomplished with chemotherapy, reduced
intensity irradiation or combinations. Despite these limitations
however, the power of mouse genetics and the ability to
genetically modify gene expression in a cell-type specific
manner makes these murine models important tools that
enable the dissection of fundamental mechanisms which
underlie disease. Given that we do not have good anti-
microbial strategies for many of the common pathogens that
plague patients post-HCT, it is important to better understand
how we can quickly repopulate the immune cells of the host and
how we can manipulate the HCT regimens to improve the
functionality of these immune cells. The power of HCT to cure
inherited genetic diseases and malignancies will never be fully
realized until the infectious complications, particularly in the
lung can be better managed.
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Takanori Teshima1* and Geoffrey R. Hill 2,3*

1 Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan, 2 Clinical Research Division, Fred
Hutchinson Cancer Research Center, Seattle, WA, United States, 3 Division of Medical Oncology, The University of
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Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic
malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and
metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening
complication after allogeneic HCT. New insights into the pathophysiology of GVHD
garnered from our understanding of the immunological pathways within animal models
have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical
translations include histocompatibility matching, GVHD prophylaxis using cyclosporine
and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase
inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve
T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This
review highlights the use of animal transplantation models to guide new
therapeutic principles.

Keywords: graft-versus-host disease, animal models, pathophysiology, history, treatment
EARLY HISTORY

In 1956, two groups observed that mice exposed to lethal dose of total body irradiation (TBI) and
administered allogeneic splenocytes survived for a shorter time than those transplanted with
syngeneic splenocytes (1–3). The recipients of allogeneic cells exhibited diarrhea, weight loss, skin
lesions, and died (1, 4). This syndrome was initially designated as “secondary disease”, which was
later renamed as graft-versus-host disease (GVHD). In 1963, Mathé and colleagues reported the first
case of a human allogeneic bone marrow transplantation (BMT) recipient that survived beyond a
year. This patient had complete engraftment and the development of a lethal “secondary disease”
was described (5). Subsequently, the clinical and pathological characteristics of GVHD was
described (6). The outcomes for the initial 200 patients transplanted prior to 1967 were
disparaging; all patients died of either graft failure, GVHD, infection, or leukemia relapse (7).
These poor outcomes reflected a limited understanding of histocompatibility matching and the
requirement for immune suppression after BMT to control GVHD (8).

Although many investigators lost their enthusiasm for BMT, several groups increasingly utilized
animal models to gain a better understanding of the allogeneic barrier with regard to both GVHD
and graft rejection. Studies of allogeneic BMT in Seattle using dog models in the 1980s provided the
scientific groundwork for the field leading to the concepts of histocompatibility matching,
org August 2021 | Volume 12 | Article 715424148
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conditioning regimens and pharmacological GVHD prophylaxis
(9–13). These findings were soon translated to the clinic and
successful clinical BMT was established (14), subsequently
leading to E. Donnall Thomas being awarded the Nobel prize
within Physiology or Medicine in 1990 (see Figure 1 for
a timeline).

For a detailed discussion of the various mouse models of
GVHD currently available and the penetrance of disease therein,
we refer the reader to some of the excellent reviews on this
subject (15–17).
ACUTE GVHD

Donor T Cells
In the 1970’s and 1980’s, Korngold and Sprent performed
extensive studies in a series of mouse models across MHC and/
or minor histocompatibility antigen mismatches demonstrating
the role of donor T cells in the etiology of GVHD. They showed
that donor-derived T cells were causative of GVHD and identified
T cell subsets (CD4 versus CD8) responsible for the induction of
GVHD in each model (18–20). Following the observation that T
cell depletion prevented GVHD in mice (18), clinical studies
confirmed that GVHD also failed to develop following rigorous
donor T cell depletion with CD34 positive selection of the donor
inoculum and the administration of anti-thymocyte globulin
(ATG); none developed GVHD even without posttransplant
immunosuppression (21, 22).

Donor T cells exert graft-versus-leukemia (GVL) effects. In
1956, Barnes et al. reported that leukemia-bearing mice receiving
Frontiers in Immunology | www.frontiersin.org 249
allogeneic cells eventually died of GVHD without evidence of
leukemia (2). Mathe et al. proposed a concept of GVL effect (23),
which was soon demonstrated clinically (24–27). Importantly, pan
T-cell depletion was shown to reduce GVHD at the expense of an
increased risk of opportunistic infection and leukemia relapse (28).
Shlomchik and colleagues refined our understanding of the subsets
of mature T cells responsible for GVHD, demonstrating that naïve
T cells rather than memory T cells played the major role in
inducing GVHD in mice (29, 30). Early clinical trial data of naïve
T cell-depleted PBSCT has shown promising results (31), but
definitive randomized data is needed to confirm a role of naïve
versus memory T cells in GVHD and GVL.

The predominant expansion of Th1/Tc1 and Th17/Tc17
cells in mice and the cytokines derived from these cells
suggests that acute GVHD is primarily driven by Th1/Tc1-
and Th17/Tc17-associated immune reactions (32–35). There is
a crosstalk between GVHD and infection; GVHD-associated
immunodeficiency, dysbiosis, and disruption of epithelial and
mucosal barrier are risks for infections, while bacterial and viral
infections are risks for GVHD by activating innate immunity
(36). Neutrophils activated by translocation of intestinal bacteria
can also accelerate GVHD early after BMT via tissue injury (34).
Mechanistically, bacteria and virus-derived molecules behave as
pathogen-associated molecular patterns (PAMPs) that accelerate
allogeneic T cell responses. Candida colonization is a risk for
acute GVHD and fluconazole prophylaxis is associated with
reduction of severe acute GVHD (37, 38). In mouse models,
fungal cell wall components such as sugar polymers, are
recognized by macrophages and promote Th17 differentiation
that exacerbate GVHD (39). These results highlight importance
of infection prophylaxis in the control of GVHD.
FIGURE 1 | Timeline of major experimental concepts that have translated into clinical practice. GVHD was initially described as a wasting syndrome in transplanted
mice in 1956. Early clinical bone marrow transplantation was associated with high mortality due to GVHD, infection and relapse. Recognition of T cells as the
mediators of GVHD and GVL and initiating rudimentary tissue-typing. Conditioning and GVHD prophylaxis regimens were developed in dog models in the 1980s that
led to reduced intensity and non-myeloablative conditioning in the 1990s. Stem cell mobilization following cytokine administration was developed in the early 1990s
and gained widespread clinical translation. New approaches to GVHD prophylaxis, including post-transplant cyclophosphamide (PT-Cy) and naïve T (Tn) cell
depletion developed in the 2000s and are increasingly utilized in the clinic. In the last decade the widespread use of gene editing, initially in T cells, has been widely
translated to modulate GVHD and GVL. Figure generated with biorender.com.
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Unfortunately, it is impossible to discern cause and effect
from human microbiota studies which generate associations
between bacterial taxa typically derived from 16s ribosomal
sequencing and transplant outcomes (40). The use of shotgun
sequencing allows for the imputation of various functional
properties of bacterial species (e.g. the likely ability to generate
various metabolites) which provide further granularity and
allows hypothesis generation (41). Recently, gnotobiotic and/or
antibiotic decolonized mice have allowed true cause and effect to
be ascertained whilst permitting dissection of the mechanisms
by which microbiota invoke GVHD, both at initiation and
amplification phases of the disease (42, 43).

Regulatory T cells (Treg) defined by the transcription factor
FoxP3 are pivotal for the maintenance of self-tolerance and the
induction of tolerance after allogeneic hematopoietic stem cell
transplantation (HCT). Depletion of CD25+ cells from the donor
inoculum exacerbates acute GVHD and infusion of CD4+CD25+

Treg inhibits GVHD in mice (44–46). Mogamulizumab, anti-
CCR4 antibody, eliminates Treg, in which CCR4 is highly
expressed (47). Pretransplant administration of mogamulizumab
is a risk for severe acute GVHD (48). Following the link between
Treg and acute GVHD, early phase clinical studies of Treg infusion
demonstrate safety of Treg infusion (49–54) but definitive data on
efficacy is awaited. The use of epigenetic modifiers such as histone
deacetylase inhibitors has been shown to attenuate acute GVHD
and enhance regulatory T cell activity in preclinical systems (55).
Promising activity in subsequent early phase clinical GVHD
prophylaxis studies has also been seen (56). Additional
immunomodulatory effects of these agents have recently been
reviewed elsewhere (57).

GVHD prophylaxis using calcineurin inhibitors (cyclosporin
or tacrolimus) reduce the expansion of effector T cells (Teff) by
blocking IL-2 and prevent acute GVHD, but fail to reduce
chronic GVHD (58–60). Calcineurin inhibitors regulate Teff at
the expense of Treg inhibition and the major challenge of GVHD
prophylaxis is to selectively control Teff, while preserving Treg.
In addition, calcineurin inhibitors are not sufficient in isolation
to control GVHD in HLA-mismatched HCT (61, 62). Alternative
approaches have been explored in preclinical systems. A study in
the early 1960’s showed that high-dose cyclophosphamide (Cy)
prolonged murine skin allograft survival only when given shortly
after transplant (63). Mayumi and Nomoto then continued studies
to elucidate mechanisms of tolerance induction by post-transplant
Cy (PTCy) in mice (64). Tolerogenic effects of PTCy were exerted
through selective elimination of alloreactive T cells, while
preserving bystander T cells and Treg (65–67). Subsequently, the
Johns Hopkins group translated PTCy to the clinic and confirmed
a low incidence of both acute and chronic GVHD, even after
haploidentical HCT (68, 69). GVHD prophylaxis using PTCy is a
standard of care in haploidentical HCT and also potentially in
HLA-matched related and unrelated donor transplantation, either
with bone marrow or peripheral blood stem cell sources (70, 71).

Role of the Conditioning Regimen
In the setting of BMT, donor T cells are infused into recipients
that have potentially experienced tissue injury by prior
Frontiers in Immunology | www.frontiersin.org 350
treatments of the underlying malignancy, infections, and more
immediately, pre-transplant conditioning. The inflammatory
environment invoked by these therapies predispose to a state
of enhanced alloantigen-presentation. Johnson and Truitt
demonstrated that delayed infusion of donor T cells induced
less severe GVHD (72). The Ferrara group demonstrated that the
conditioning regimen, particularly total body irradiation (TBI),
induced proinflammatory cytokine secretion (e.g. IL-1 and TNF)
and increased the severity of acute GVHD in animal models (73,
74). These studies demonstrated that GI tract injury and
associated pathogen-derived danger signals are critical to the
propagation of the ‘‘cytokine storm’’ characteristic of acute
GVHD (75). In humans, clinical studies clearly show that
myeloablative conditioning, particularly TBI is a risk for acute
GVHD (76, 77). Given this link between conditioning intensity
and acute GVHD, non-myeloablative and reduced intensity
conditioning regimens were developed by Storb and colleagues
in dog models (78). The translation of these to humans were
associated with reduced incidence of acute GVHD although
later-onset acute GVHD, occurring after day 100 was noted (79).

Antigen Presentation
In 1999, Shlomchik et al. demonstrated in preclinical mouse
systems that recipient antigen presenting cells (APCs) were
responsible for donor T cell activation and the induction of
acute GVHD (80). They subsequently showed that although host
APCs were much more potent, reconstituting donor
hematopoietic APCs were necessary to invoke the full spectrum
and severity of acute GVHD (81). They also demonstrated that
these donor APCs could cross-present host antigens to induce
chronic GVHD (82, 83). These hematopoietic (or professional)
recipient or donor APCs were predominantly dendritic cells (DCs)
(84, 85). Unexpectedly, Koyama et al. showed that non-
hematopoietic recipient APCs exhibited a potent capacity to
induce lethal acute GVHD (86) and consistent with this,
depletion of recipient professional CD11c+ or CD11b+ APCs do
not prevent GVHD (86, 87).

Subsequent mouse studies have demonstrated that intestine is
a critical site for alloreactive T cell activation by APCs (86, 88,
89). Importantly, the pathogenic donor APCs in the colon are
GM-CSF dependent, providing a potential therapeutic target
[reviewed in (90)]. Intestinal epithelial cells highly express
MHC class II and thereby regulate tolerance to intestinal
commensals while inducing immunity against pathogens (91).
Koyama et al. have demonstrated that prior to HCT, intestinal
epithelial cells (IEC) express MHC class II in the ileum and can
stimulate donor T cells and initiate acute GVHD, defining the
lineage of the non-hematopoietic APC that initiates lethal
GVHD (43). Both microbiota and conditioning invoke
IL-12p40 dependent generation of interferon (IFN)-g to
mediate these effects by IEC (43). A translational clinical study
has now commenced blocking IL-12p40 prior to conditioning in
an attempt to prevent the initiation of MHC class II dependent
GVHD within the GI tract (NCT04572815) (see also below).

Other mouse studies have been shown that intestine is a
critical site for alloreactive T cell activation by APCs (86, 88). The
August 2021 | Volume 12 | Article 715424

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Teshima and Hill Pathophysiology and Treatment of GVHD
a4b7 integrin-MAdCAM (mucosal addressin cell adhesion
molecule) -1 pathway is critical for T cell homing to the
intestine (88). Such a pathway found in mice has clinical
potential for translation. Maraviroc is a small-molecule drug
that block CCR5. However, addition of Maraviroc to standard
GVHD prophylaxis composed of tacrolimus and methotrexate
failed to reduce incidence of acute GVHD (92). Vedolizumab
and Natalizumab, a humanized monoclonal antibody specifically
target a4b7 integrin showed potentially promising results in
phase I/II studies (93, 94), and these agents are currently tested in
larger studies.
Co-Stimulation
The activation, proliferation and differentiation of donor T cells
requires recognition of alloantigen presented within MHC in the
context of additional signals, usually a cognate costimulatory
signal (characteristically CD40L – CD40 and CD28 – CD80/86
on the T cell and APC, respectively) and a differentiation signal
in the form of cytokine as defined above. The recognition of the
importance of cognate costimulatory signals has led to the
investigation of the relative ability of inhibitory antibodies that
block these pathways in preclinical models. Thus CTLA-4-Ig that
inhibits CD80 and CD86, anti-CD28 and anti-CD40 have all
been shown to attenuate GVHD in preclinical models (95–97).
The clinical reagent abatacept (CTLA-4-Ig) has also shown
promise in preventing acute GVHD in early phase clinical
studies (98, 99). Additional pathways such as OX40L and
ICOSL may also be clinically tractable [reviewed in (100)].
Cytokines
Cytokines play a pivotal role in the pathogenesis of GVHD. Many
inflammatory cytokines (e.g. IL-1, IL-6, TNF, HMGB1) are
generated in response to chemoradiotherapy during conditioning
and promote the activation of APCs. Other cytokines act in a
costimulatory role to promote pathogenic T cell differentiation (e.g.
IL-12, IL-6). Finally pivotal T cell derived cytokines (e.g. IFNg, GM-
CSF, IL-17) can in turn invoke target tissue apoptosis and
secondary myeloid cell migration to amplify GVHD [reviewed in
(100)]. Initial studies in experimental GVHDmodels suggested that
cytotoxicity mediated by cytotoxic T lymphocytes (CTLs) have a
central role in GVHD target tissue injury through the Fas/Fas
ligand pathway and perforin/granzyme pathways (101–104).
Subsequent studies demonstrated that inhibition of inflammatory
cytokines such as TNF, IL-1 and IL-6 also ameliorated GVHD (74,
105–109). In 2002, Teshima et al. formally demonstrated that
cytokines alone could generate the typical acute GVHD
pathology in the absence of cognate cell-to-cell dependent
cytotoxic mechanisms (110). These studies facilitated clinical
trials of cytokine blockade for acute GVHD. However, individual
cytokine blockade (e.g. TNF-a, IL-1, and IL-2) did not demonstrate
significant benefits in randomized trials, suggesting considerable
redundancy in these pathways and a likely requirement to inhibit
multiple cytokines to gain clinical efficacy (111, 112). With this
concept in mind, Ruxolitinib inhibits the signaling of multiple
Frontiers in Immunology | www.frontiersin.org 451
cytokines involved in the pathogenesis of experimental GVHD
(113, 114) and a recent randomized study has demonstrated the
efficacy of this agent in the treatment corticosteroid-refractory acute
GVHD (115). This represents the first successful randomized study
for the treatment of acute GVHD and highlights the successful
translation of our understanding of the role of cytokines in GVHD
from preclinical models. Ruxolitinib also targets Jak2, which relays
signals for growth and differentiation of hematopoietic cells, in
addition to Jak1, which relays inflammatory cytokines. Although it
remains to be determined which pathway is critical for GVHD
mitigation, animal studies suggest that neutrophils recruited to GI
tract in response to bacterial translocation enhance intestinal
GVHD via tissue damage (34). a1-Antitrypsin (ATT) inactivates
serine proteases produced from neutrophils and macrophages and
protect tissues from proteolytic degradation. Administration of
AAT ameliorates murine acute GVHD via multiple mechanisms
(116, 117). A phase 2 study of ATT shows promising results (118)
and ATT is currently tested in larger studies.
Tissue Homeostasis in GVHD
The pathophysiology of GVHD beyond donor effector T cells is
now better understood. Damage to the intestine plays a central
role in propagating a proinflammatory cytokine milieu and
amplifying systemic GVHD. Indeed, intestinal GVHD is the
major cause of non-relapse mortality after allogeneic HCT (75).
Intestinal GVHD is characterized by severe villous atrophy and
crypt degeneration; the latter has long been thought of as the
cardinal and pathognomonic feature of intestinal GVHD (119–
121). Recent data indicate that intestinal stem cells (ISCs) and
their Paneth cell niche are targeted in GVHD, resulting in
dysregulation of intestinal homeostasis and associated microbial
ecology (122–124). Goblet cells are also significantly reduced in
GVHD, resulting in disruption of inner mucus layer of the colon
and increased bacterial translocation into colonic mucosa (125). In
humans, reduced Paneth-cell numbers in duodenal biopsies and
Goblet-cell numbers in colon biopsies correlate with the severity of
GI-GVHD and transplant outcome (125, 126). Patients who
undergo allogeneic HCT exhibit dysbiosis characterized by loss
of diversity and expansion of potentially pathogenic bacteria (127–
129). The microbiota and their metabolites shape the immune
system and intestinal homeostasis (130). Lower microbial diversity
and Enterococcus domination are associated with increased
GVHD and poor survival across diverse ethnicity (40, 42). In
addition, recent studies suggest an unexpected association between
fungal and viral colonization and GVHD (39, 131). However,
there are many open questions to be addressed in this field (132).
What are the most important microbes that control transplant
outcomes? Should we consider microbiota stewardship in addition
to antibiotic stewardship in our transplant teams? Can we use
interventions that modify the microbiome to improve transplant
outcomes? What is the role of skin microbes in skin GVHD?

The sensitivity of target tissues to GVHD may be modulated
by tissue-intrinsic resilience and homeostasis. Thus, integration
of both immune tolerance and tissue tolerance could optimize
GVHD treatment (133). In the 1990’s, Ferrara’s group proposed
August 2021 | Volume 12 | Article 715424
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a concept of using cytokine shields to prevent target tissue
damage in the GI tract. IL-11 and keratinocyte growth factor
(KGF) protect gut injury from TBI and have anti-inflammatory
properties. In mice, IL-11 and KGF ameliorated GVHD
(134–136). However, a clinical trial of IL-11 was halted by
unexpected severe side effects (137). This trial highlighted that
clinical toxicity cannot always be estimated in mice and
subsequent studies have also utilized primate models to study
efficacy and toxicity (138). Protection of the ISC-niche and
modification of the intestinal microbiota and metabolome to
restore intestinal homeostasis may also represent a novel
approach to modulate GVHD and also infection. In mice,
IL-22 and R-Spondin are growth factors for ISCs that
ameliorate GVHD in mice (122, 123, 139, 140). Glucagon-like-
peptide-2 (GLP-2) is an enteroendocrine tissue hormone.
Administration of GLP-2 promoted regeneration of ISCs and
Paneth cells and restored intestinal homeostasis, resulting in
amelioration of GVHD (141). IL-25 protects Goblet cells and
also could improve transplant outcome (125). ISCs and
Paneth cells express IFN-g receptors. IFN-g secreted by donor
T cells induces ISC and Paneth cell death in vitro (142,
143). Ruxolotinib inhibits IFN-g signaling and protects ISCs
and Paneth cells (142, 143), which may be an additional
mechanism of ruxolitinib’s action in intestinal GVHD (113,
144). Despite the promising mouse data, it remains to be
elucidated whether modification of GVHD target tissue
sensitivity can attenuate clinical GVHD.

Although most studies of tissue stem cell injury in GVHD
have focused on the intestine, a recent study demonstrated that
skin stem cells are injured in GVHD in association with impaired
skin homeostasis (145). Topical corticosteroids suppressed skin
inflammation but failed to protect skin stem cells and restore
skin homeostasis. In contrast, topical ruxolitinib protected skin
stem cells, resulting in restoration of hair regeneration and
wound healing (145). These results in animals deserve further
clinical scrutiny but will promote to open a new avenue for
improved tissue homeostasis in GVHD beyond the GI tract.
CHRONIC GVHD

Chronic GVHD, a pleiomorphic syndrome, is the major cause of
nonrelapse mortality and severely impairs the quality of life in
long-term survivors of allogeneic HCT. The highly variable
clinical manifestations of chronic GVHD frequently involve
the skin, liver, eyes, mouth, upper respiratory tract, esophagus,
and less frequently serosal surfaces, lower gastrointestinal tract,
female genitalia, and fascia (146). The biological mechanisms
leading to chronic GVHD are not yet as well understood as those
leading to acute GVHD, complicated by the fact that chronic
GVHD can present with more heterogenous phenotypes than
acute GVHD. Individual mouse models have dominant disease
manifestations that typically involve a limited number of organs.
The B6 into B10.BR model induces chronic GVHD primarily
presenting as bronchiolitis obliterans (147). The B10.D2 into
Frontiers in Immunology | www.frontiersin.org 552
BALB/c model induces scleroderma as the primary manifestation
(148). G-CSF-mobilized SCT (bothB6 into B6D2F1 and Balb/c to B6
mouse models) generate scleroderma, liver disease and Sjogren’s
features (149). Using these preclinical models, significant progress has
beenmade in the last decade andmousemodels have demonstrated a
critical role for donor Treg defects, germinal center B cell expansion
and alloantibody secretion, and dysregulated Th17/Tc17 and T
follicular helper (Tfh) differentiation in the development of chronic
GVHD (150–157). Ibrutinib, an inhibitor of Bruton’s tyrosine kinase,
has showed clinical efficacy in a phase II clinical trial and was
approved for chronic GVHD, representing the first such agent
(158). Treg are numerically decreased and dysfunctional in patients
with chronic GVHD (159, 160). Low-dose IL-2 preferentially
stimulates proliferation, function, and survival of Treg; low-dose
IL-2 administration to patients has been shown expands Treg and
ameliorates chronic GVHD in a proportion of patients (161, 162).　
Efavakeukin-a, IL-2 mutein, is currently tested in a clinical trial.
Ruxolitinib suppresses dysregulated inflammatory cytokine
responses in chronic GVHD and is effective in patients with
chronic GVHD (144); results of a prospective phase 3 trial of
ruxolitinib for steroid refractory chronic GVHD are expected
soon. Tfh and germinal center B cells (GCB) play a role in the
development of chronic GVHD and bronchiolitis obliterans
syndrome (152, 153, 163). The rho-associated coiled-coil
kinase 2 (ROCK2) inhibitor, belumosudil (KD025), inhibits the
differentiation of Th17 and Tfh together with GCB, and
alloantibody generation (164). Syk inhibition induces apoptosis
of activated B cells and ameliorates chronic GVHD (165, 166).
Belumosudil and the Syk inhibitor Fostamatinib are currently
being tested in clinical trials. Tissue fibrosis, the main
manifestation of chronic GVHD, is characterized by increased
deposition of collagen fibers secreted from activated fibroblasts
in response to profibrotic cytokines such as TGF-b and PDGF-a
secreted by CSF-1R-dependent macrophages (157, 167–172)
[reviewed in (173)]. This pathological cascade of fibrosis
defined in mice, has given rise to a number of new potential
targets, including TGF-b, PDGF-a and CSF-1R; CSF-1R
antibody axatilimab, which inhibits signaling through CSF-1
and IL-34, is currently undergoing assessment in clinical
trials (NCT04710576).
CONCLUSIONS

Mouse models of GVHD faithfully recapitulate the pathological
lesions seen in clinical disease and allow the dissection of
pathogenic versus protective immunological mechanisms of
action and tissue resistance. While the ability to tightly control
MHC and minor antigen barriers is a strength, the inbred nature
of these systems may overlook variables present in outbred
human populations (e.g. microbiota, age, obesity, prior
therapy, comorbidities, conditioning, immune suppression).
Some of these limitations can be overcome by more thorough
study of these variables in mice (e.g. age, obesity, conditioning,
concurrent immune suppression) and/or the use of non-human
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primates or dog models (especially pharmacological immune
suppression). Additional limitations include the widespread use
of cell lines to study graft-versus-leukemia effects and the lack of
relevant models to study pathogen-specific immunity in the
context of new therapies, at least until recently. Nevertheless,
to date almost all effective therapeutic paradigms that are now
established in humans have their genesis in animal models,
suggesting that these systems will continue to provide valuable
insights and therapeutic advances to the field. Importantly, it
would seem critical that well-established preclinical systems are
utilized to analyze the effects of various therapeutic interventions
before they are translated into early phase clinical trials.
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Prophylaxis for and treatment of graft-versus-host disease (GVHD) are essential for
successful allogeneic hematopoietic stem cell transplantation (allo-SCT) and mainly
consist of immunosuppressants such as calcineurin inhibitors. However, profound
immunosuppression can lead to tumor relapse and infectious complications, which
emphasizes the necessity of developing novel management strategies for GVHD.
Emerging evidence has revealed that tissue-specific mechanisms maintaining tissue
homeostasis and promoting tissue tolerance to combat GVHD are damaged after allo-
SCT, resulting in exacerbation and treatment refractoriness of GVHD. In the
gastrointestinal tract, epithelial regeneration derived from intestinal stem cells (ISCs), a
microenvironment that maintains healthy gut microbiota, and physical and chemical
mucosal barrier functions against pathogens are damaged by conditioning regimens
and/or GVHD. The administration of growth factors for cells that maintain intestinal
homeostasis, such as interleukin-22 (IL-22) for ISCs, R-spondin 1 (R-Spo1) for ISCs
and Paneth cells, and interleukin-25 (IL-25) for goblet cells, mitigates murine GVHD. In this
review, we summarize recent advances in the understanding of GVHD-induced tissue
damage and emerging strategies for the management of GVHD.

Keywords: allogeneic hematopoietic stem cell transplantation, GVHD, graft-versus-host disease, intestinal stem
cells, tissue stem cells, microbiota, Paneth cell, goblet cell
INTRODUCTION

Mature epithelial cells in the gut, skin, and liver have long been recognized as the primary target of acute
graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT).
Mature epithelial cells in the gut are composed of functionally distinct populations, including
enterocytes, Paneth cells, goblet cells, tuft cells, and enteroendocrine cells. Each of these epithelial
populations contributes to the maintenance of tissue homeostasis (Table 1). Thus, injury of these
epithelial cells results in alteration of the tissue microenvironment and disruption of tissue homeostasis,
potentially amplifying GVHD-induced tissue damage. Furthermore, emerging evidence indicates that
adult tissue stem cells are primarily targeted by GVHD, which decreases tissue resilience in GVHD target
organs (5, 7, 19). Here, we review recent advances in the understanding the cellular and molecular
mechanisms of GVHD-induced tissue damage and disruption of the tissue microenvironment.
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This review mainly focuses on gastrointestinal GVHD, while recent
findings on the injury of tissue stem cells in the other organs are
also summarized.
TISSUE DAMAGES IN GVHD

It has been recognized that bacterial and fungal pathogen-associated
molecular patterns (PAMPs) such as lipopolysaccharide and a-
mannan, play a critical role in initiating GVHD (20–23). PAMPs
enhance production of proinflammatory cytokines, host alloantigen
presentation, and infiltration of innate cells into the gastrointestinal
tracts early after conditioning (21, 24, 25). Recent advances revealed
the critical role of sterile damage-associated molecular patterns
(DAMPs) in pathophysiology of GVHD. Tissue damage induced
by conditioning chemotherapy and/or irradiation promotes release
of DAMPs from damaged cells and initiates the inflammatory
cascade which culminates in expansion of donor alloreactive T
cells and development of acute GVHD. DAMPs are comprised of
various molecules that are sequestrated in the cells in the steady
state, while released into the extracellular space by cellular damages.
Extracellular ATP activates host antigen presenting cells and
inflammatory monocytes via the purinergic P2X7 and P2Y2
receptors, respectively, that exaggerates mouse GVHD (26, 27). It
has been shown that lack of nucleotide-binding oligomerization
domain–like (NOD) receptor protein 3 (NLRP3), a known target of
ATP/P2X7 receptor signaling, in the recipient mice ameliorated
GVHD, suggesting that ATP exaggerates GVHD via activation of
NLRP3 inflammasome (28). ATP-induced NLRP3 activation in
myeloid-derived suppressor cells reduces anti-GVHD effects of
Frontiers in Immunology | www.frontiersin.org 260
these cells after adoptive transfer (29). Another NLRP3 activator,
uric acid is released into the extracellular space after conditioning
and exaggerates GVHD (28). Interleukin-33 (IL-33) is released from
epithelial cells after injury and promotes effector T-cell
differentiation of donor T cells, that results in the exaggeration of
GVHD (30, 31). Heparan sulfate and high-mobility group box 1
protein bind to toll like receptor 4 and induce GVHD after allo-SCT
(32, 33).

DAMPs and PAMPs primarily activate myeloid inflammatory
cells such as neutrophils and monocytes, and antigen presenting
cells such as dendritic cells and macrophages. Conditioning-
induced tissue damage promotes accumulation of host
neutrophils and production of reactive oxygen species in the
gastrointestinal tract, that in turn amplifies the tissue injury (25).
Interestingly, neutrophils accumulated in the gastrointestinal
tract early after conditioning migrate to mesenteric lymph
nodes and promote activation of host antigen presenting cells
and donor T cells (34). It has been shown that donor neutrophils
also exaggerate GVHD (35). In patients’ samples, higher density
of neutrophil infiltration in the gut was associated with worse
outcomes of GVHD, further emphasizing critical role of
neutrophils in pathophysiology of acute GVHD (36).
Monocytes and inflammatory macrophages also contribute to
development of GVHD by producing proinflammatory cytokines
in response to DAMPs and PAMPs and promoting activation of
donor T cells (23, 27, 37). Importantly, IL-12 produced from
monocytes and macrophages after irradiation enhances antigen
presentation by host non-hematopoietic cells and exaggerates
GVHD (24). On the other hand, host tissue resident macrophage,
the ontogenetically independent population from monocytes and
TABLE 1 | Intestinal cells that maintain intestinal homeostasis.

Cell Type Location Function Mouse
GVHD

Human
GVHD

References

DCS cell LI Secrete ISC growth factors such as EGF and NOTCH ligands Unknown Unknown Sasaki et al. (1), PMID: 27573849
Goblet Cell SI/LI Maintain the mucus layers by mucin production ↓ ↓ Ara et al. (2), PMID: 32611682
ILC2 SI/LI Secrete goblet cell growth factors such as IL-4/IL-13 in response to

IL-33 and IL-25
↓ a) ↓ a),b) Bruce et al. (3), PMID: 28375154

Munneke et al. (4), PMID: 24855210
ILC3 SI/LI Secrete a ISC growth factor, IL-22 ↓ Unknown Hanash et al. (5), PMID: 22921121

Lindemans et al. (6), PMID: 26649819
Munneke et al. (4), PMID: 24855210

ISC SI/LI Differentiate into all types of intestinal epithelial cells ↓ ↓ Takashima et al. (7), PMID: 21282378
Takashima et al. (8), PMID: 31811055

L Cell SI/LI Secrete a ISC growth factor, GLP-2 ↓ ↓ Norona et al. (9), PMID: 32542357
LEC SI Secrete a ISC growth factor, R-Spondin 3 ↓ Unknown Ogasawara et al. (10), 30013036
MRISC LI Secrete a ISC growth factor, R-Spondin 1 (Production of R-Spondin1

is enhanced in response to gut injury).
Unknown Unknown Wu et al. (11), PMID: 33658717

Paneth Cell SI Secrete ISC growth factors such as EGF and Wnt3
Secrete antimicrobial peptides, such as a-defensins

↓ ↓ Eriguchi et al. (12), PMID: 22535662
Jenq et al. (13), PMID: 22547653
Hayase et al. (14), PMID: 29066578
Levine et al. (15), PMID: 23760615

Telocyte
(at crypt
base)

SI/LI Secrete a ISC growth factor, R-Spondin 3 Unknown Unknown Shoshkes-Carmel et al. (16), PMID: 29720649

Tuft Cell SI/LI Stimulate ILC2 by production of IL-25 Unknown Unknown Gerbe et al. (17), PMID: 26762460
von Moltke et al. (18), PMID: 26675736
DCS cell, deep crypt secretory cell; ILC2, type 2 innate lymphoid cell; ILC3, type 3 innate lymphoid cell; ISC, intestinal stem cell; LEC, lymphatic endothelial cell; LI, large intestine; MRISC,
Map3k2-regulated intestinal stromal cell; SI, small intestine.
a) Prolonged ILC2 reduction is induced by irradiation and/or chemotherapy. b) Reduction of ILC2 has been only demonstrated in the peripheral blood.
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inflammatory macrophages, plays a protective role against
GVHD by suppressing donor T cell expansion (38–40).
TISSUE STEM CELLS AS TARGET
OF GVHD

Injury of ISCs in Intestinal GVHD
Histological features of intestinal GVHD include epithelial
apoptosis, crypt degeneration, and mucosal sloughing, as well as
inflammatory cell infiltration (41). Early preclinical studies
pointed out that proliferation of crypt cells was enhanced in
less severe GVHD, while more severe GVHD abrogated crypt cell
proliferation in association with villus atrophy and loss of the
crypt; these findings indicated that severe GVHD targets putative
tissue stem cells residing in the intestinal crypt (42). More
recently, leucine-rich-repeat-containing G protein-coupled
receptor 5 (LGR5) was found to be a unique marker for cycling
intestinal stem cells (ISCs) residing at the crypt base of the small
intestine and colon (43) (Figure 1). In the steady state,
approximately 10 cells are produced every hour in each crypt
and migrate to the villus tip in 2-3 days, and a lineage-tracing
study using the LGR5-Cre reporter system revealed that LGR5+

ISCs give rise to all gut epithelial lineages (43, 44). Depletion of
Frontiers in Immunology | www.frontiersin.org 361
LGR5+ ISCs in the mice, in which diphtheria toxin receptor
(DTR) was specifically expressed in LGR5+ cells, significantly
delayed epithelial regeneration after irradiation-induced intestinal
damage, suggesting that LGR5+ ISCs are important also for the
regenerative process after gut injury (45). Adoptive transfer of
eGFP-specific TCR-transgenic T cells (Jedi T cells) depleted
LGR5-eGFP+ ISCs and profoundly impaired the regenerative
response after irradiation, suggesting that ISCs are susceptible
to T cell-mediated injury (46–48). Furthermore, the crypt base
region is the primary site infiltrated by donor T cells after allo-
SCT; donor T cells migrate to the crypt base region in a
MAdCAM-1-dependent manner as early as day 4 after murine
allo-SCT, suggesting that ISCs are the primary target of gut
GVHD (49).

A landmark study by Takashima et al. demonstrated that ISCs
marked by another ISC-specific marker, olfactomedin-4 (Olfm4),
are targeted by intestinal GVHD (7) (Figure 2). The reduction of
LGR5+ ISCs in intestinal GVHD was then confirmed using a
LGR5 reporter system (5). Due to the rapid turnover of gut
epithelial cells, depletion of cycling ISCs in the crypt in intestinal
GVHD soon leads to villus atrophy and causes refractory colitis
(44). In the small intestine, quiescent Bmi1+ stem cells exist at
four cell diameters above the base of the crypt and are called +4
stem cells (50). These cells are activated only after severe gut
A B

C

FIGURE 1 | The mechanism maintaining intestinal homeostasis. ISCs residing at the crypt base give rise to all cell lineages in the epithelium and are supported by
growth factors produced by definitive and putative niche components. SCFAs produced by commensal bacteria serves as energy source of intestinal epithelial cells.
(A) In the small intestine, Paneth cells and telocytes produce Wnt3, telocytes and LECs produce R-Spo3, L cells produce GLP2, and ILC3s (green round cells in the
figure) produce IL-22. Paneth cells also produce a large amount of AMPs such as a-defensins and REG3, and maintain healthy intestinal microbiota. (B) In the colon,
deep crypt secretory cells produce EGF and NOTCH ligands, telocytes produce WNT3, and MAP3K2-regulated intestinal stromal cells produce R-Spo1. There are
tremendous numbers of bacteria in the colonic lumen, which is segregated from epithelial cells by the inner mucus layer containing mucins produced by goblet cells
and antimicrobial molecules such as REG3 and LYPD8 produced by enterocytes. IL-25 produced from Tuft cells stimulates ILC2s (blue round cells in figure) to
secrete goblet cell growth factors such as IL-4 and IL-13. SCFAs produced by commensal bacteria serves as energy source of intestinal epithelial cells. (C) The
intestinal epithelial tight junctions exhibit both size and charge selectivity and regulate the selective paracellular permeability, inhibiting penetration of bacteria and
bacterial components while permitting the passage of water, ions, and small molecules. AMP, antimicrobial peptide; EGF, epithelial growth factor; GLP-2, Glucagon-
like peptide 2; LEC, lymphatic endothelial cell; ILC2/3, type 2/3 innate lymphoid cell; IL-4/13/22/25, interleukin-4/13/22/25; ISC, intestinal stem cell; LYPD8, Ly6/
PLAUR domain-containing protein 8; R-Spo1/3, R-spondin 1/3; SCFA, short-chain fatty acid.
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injury or depletion of LGR5+ ISCs and differentiate into all types
of epithelial cells, including LGR5+ ISCs (51, 52). However, the
fate and role of this second stem cell population in GVHD remain
to be clarified. The mechanisms by which GVHD causes injury of
LGR5+ ISCs have been studied intensively using a gut organoid
culture system. Single LGR5+ ISCs isolated from the intestine give
Frontiers in Immunology | www.frontiersin.org 462
rise to crypt–villus organoids containing all differentiated cell
types of the intestinal epithelium without the support of niche
cells (53). Coculture of intestinal organoids with activated T cells
induced caspase-3/caspase-7 cleavage and apoptosis of LGR5+

ISCs in the organoid, while IFN-g blockade prevented T cell-
mediated injury of the organoids, indicating that activated T cells
A B

C

FIGURE 2 | Pathophysiology of gastrointestinal graft-versus-host disease (GVHD). (A) In the small intestine, activated alloreactive donor T cells (pink round cells in figure)
migrate to the crypt base region early after allogeneic transplantation in a MAdCAM-1-dependent manner and damage ISCs, resulting in impairment of mature intestinal
epithelial cell regeneration. Paneth cell injury causes the reduction of AMP production and loss of function as an ISC niche. IFN-g plays an important role in both ISC and
Paneth cell injury in GVHD, and ruxolitinib protects ISCs and Paneth cells against GVHD. Moreover, growth factors of ISCs such as R-Spondin 3, IL-22, and GLP-2 are
reduced in the intestine due to GVHD-induced reduction of LECs, ILC3s, and L cells. The expression of tight junction molecules such as claudin-4 are also reduced in
GVHD, resulting in disruption of intestinal epithelial barrier function. (B) In the large intestine, goblet cell injury in GVHD results in disruption of the mucus layers bleaching
both chemical and mechanical barrier functions of the intestinal mucosa. ILC2s, producer of goblet cell growth factors, are profoundly depleted by conditioning
radiotherapy or chemotherapy, likely inhibiting regeneration of goblet cells. (C) Microenvironmental perturbation after allo-SCT induced by administration of antibiotics
and/or total parenteral nutrition, reduction of AMP production, and lactose malabsorption leads to intestinal dysbiosis, frequently accompanying Enterococcus domination.
Dysbiosis and disruption of barrier function of the intestinal mucosa enhance bacterial translocation, further exaggerating GVHD. Replacement of growth factors for ISCs,
Paneth cells, and goblet cells ameliorate GVHD. Allo-SCT, allogeneic hematopoietic stem cell transplantation; DAMP, damage-associated molecular pattern; EGF,
epidermal growth factor; IFN-g, interferon-g; KGF, keratinocyte growth factor; LYPD8, Ly6/PLAUR domain-containing protein 8; PAMP, pathogen-associated molecular
pattern; REG, regenerating islet-derived protein; R-Spo1, R-spondin1; uhCG, urinary-derived human chorionic gonadotropin.
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damage LGR5+ ISCs in an IFN-g-dependent manner (8, 54). In
mouse models of allo-SCT, significantly more LGR5+ ISCs
persisted after transplantation with IFN-g-deficient donor T
cells than after transplantation with wild-type (WT) donor T
cells (54). Furthermore, administration of IFN-g significantly
reduced LGR5+ ISCs in the mice conditioned with total body
irradiation, while it induced a proliferative response in the crypt
in nonirradiated mice (54). Thus, IFN-g seems to be more
harmful for ISCs in the presence of genotoxic stress, such as
irradiation, in vivo, while a high concentration of IFN-g alone
could induce apoptosis of ISCs in vitro. Alternatively,
radiosensitive niche components could protect ISCs from IFN-g
in vivo to some extent.

Injury of the ISC Niche
The ISC niche, which provides survival and growth factors for
ISCs, is also targeted by GVHD (Figures 1 and 2). Interleukin-22
(IL-22) produced by type 3 innate lymphoid cells (ILC3s) is a
well-described growth factor of LGR5+ ISCs (5). Total body
irradiation (TBI) enhances IL-22 production from radioresistant
ILC3s in an interleukin-23 (IL-23)-dependent manner, which is
believed to promote regeneration of epithelial cells from
radiation-induced damage. IL-22-producing ILC3s persisted
after syngeneic bone marrow transplantation, while they were
depleted after mouse allogeneic transplant, indicating that
GVHD targets ILC3s. A reduction in IL-22 producing ILC3s in
GVHD is associated with prolonged depletion of ISCs and
exacerbation of gut GVHD.

Crypt bases have enriched transcription of Wnt target genes,
and Paneth cells produce high levels of Wnt3, suggesting that
Paneth cells are an ISC niche component (55, 56). Although the
survival and proliferation of LGR5+ ISCs were not affected in
Paneth cell-deficient mice in the steady state, Paneth cells may
protect ISCs against gut injury (57). Because Paneth cells are also
susceptible to IFN-g-induced apoptosis in GVHD, regeneration
of the gut epithelium from ISCs could be further disturbed in
intestinal GVHD (12, 13). On the other hand, Paneth cell-
derived Wnt3 is redundant with that produced from
subepithelial telocytes (16, 58–60). It remains to be clarified
whether telocytes are targeted by GVHD. In the colon, which is
devoid of Paneth cells, deep crypt secretory (DCS) cells residing
at the crypt base act as the niche for LGR5+ ISCs by producing
NOTCH ligands and epidermal growth factor (EGF) (1). While
DCS cells do not produce Wnt ligands, stromal tissues
surrounding colonic crypts produce Wnt ligands and support
colonic ISCs (58). It also remains to be clarified whether DCS cell
are targeted by GVHD. R-spondins are the ligands of LGR4,
LGR5, and LGR6 and enhance Wnt/b-catenin signaling by
preventing ubiquitination and degradation of the Wnt receptor
Frizzled (61, 62). The R-spondin family is composed of four
molecules. R-Spo1-R-Spo4 share a similar structure, and each of
these four molecules can bind to LGR4, LGR5 and LGR6 (63).
We found that R-Spo3 is the major molecule produced in the
small intestine (10). Although it has been reported that
mesenchymal cells, including telocytes, produce R-Spo3, we
found that CD90+CD31+podoplanin+ lymphatic endothelial
Frontiers in Immunology | www.frontiersin.org 563
cells are the main producers of R-Spo3 in the intestine (10,
16). Importantly, both the R-Spo3 production and absolute
numbers of lymphatic endothelial cells are significantly
reduced in GVHD (10). On the other hand, it remains to be
clarified whether R-Spo3-producing telocytes are targeted by
GVHD. The importance of R-Spo3 was also demonstrated in
an antibody-mediated inhibition study, in which administration
of anti-R-Spo3 antibodies alone reduced LGR5+ ISCs in naïve
mice and suppressed the regenerative response after irradiation
(64). Although this study showed that anti-R-Spo2 antibodies
and anti-R-Spo3 antibodies work synergistically in the depletion
of LGR5+ ISCs, the cellular source of R-Spo2 in the intestine
remains to be clarified. Interestingly, recent study showed that
Map3k2-regulated intestinal stromal cells (MRISCs) residing
around the crypt base enhance production of R-Spo1 in
response to dextran sodium sulfate (DSS)-induced colitis and
protect colonic ISCs (11). Map3k2-deficient mice are more
susceptible to DSS-induced colitis compared with wild type
controls, further emphasizing a protective role of MRISCs
against inflammation of the colon (11). These findings suggest
that there are distinct ISC niche systems in the small intestine
and the colon, and further studies are required to assess the fate
of these ISC niches in GVHD.

GVHD Prophylaxis and Treatments
Targeting ISCs
Strategies that protect ISCs or induce their regeneration could be
therapeutic options for GVHD that avoid strengthening immune
suppression, which could lead to infection or leukemia relapse.
As mentioned above, the reduction in IL-22 produced by ILC3s
in GVHD leads to depletion of ISCs. IL-22 induces the
proliferation and differentiation of ISCs and inhibits the
apoptosis of ISCs after genotoxic stress (65). Replacement of
IL-22 by administration of F-652, a recombinant fusion protein
consisting of an rhIL-22 dimer and Fc fusion protein, after
mouse allogeneic bone marrow transplantation enhanced the
recovery of ISCs, increased epithelial regeneration, and
ameliorated GVHD (6). However, the potential benefit of IL-
22 could be limited because IL-22 secreted from donor T cells has
been shown to aggravate GVHD by reducing Tregs and
enhancing inflammatory responses (66–68). It has been
suggested that IL-22 induces Th1 cell infiltration in the
gastrointestinal tract via a host type I interferon dependent
manner (69). Thus, the safety and efficacy of IL-22
replacement therapy must be evaluated in clinical studies; F-
652 is now being tested for the treatment of lower
gastrointestinal acute GVHD (NCT02406651). Because ILC3s
produce IL-22 in response to bacterial metabolites such as short-
chain fatty acids (SCFAs), probiotics that produce SCFAs could
be used for GVHD prophylaxis (70).

Administration of R-spondins is also promising for GVHD
prophylaxis, as this strategy protects ISCs against mouse GVHD.
Recombinant human R-Spo1 (rhR-Spo1) was found to stimulate
the proliferation of epithelial cells in the intestinal crypt (71).
Subsequently, it was shown that rhR-Spo1 expands ISCs in naïve
mice and mice undergoing allo-SCT. Importantly, rhR-Spo1
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administered in the peritransplant period protects ISCs against
GVHD and ameliorated GVHD after allo-SCT in TBI-
conditioned mice (7). In contrast, rhR-Spo1 does not impact
the severity of GVHD after allo-SCT without conditioning,
potentially indicating synergistic effects of TBI and T-cell-
derived IFN-g on ILC injury (7, 54). Administration of a Robo
ligand, Slit2 works synergistically with R-Spo1 in preventing ISC
loss after chemoradiotherapy, suggesting that this combination
could be useful for GVHD prophylaxis (72).

Type III interferon plays a protective role against gastrointestinal
GVHD. Type III interferon family was discovered in 2003 and
consists of four molecules, IFN-l1 (IL-29), IFN-l2 (IL-28A), IFN-
l3 (IL-28B), and IFN-l4 (73). Among them, IFN-l2 and IFN-l3
are expressed in both humans and mice, while IFN-l1 gene is a
pseudogene in mice, and IFN-l4 gene is absent in mice. IFN-l
receptor consists of two chains, including a unique subunit, IFN-l
receptor 1 (IFNLR1) and common IL-10 receptor-b (IL-10RB)
chain, which is shared with cytokines of the IL-10 family. IFNLR1 is
preferentially expressed in gastrointestinal epithelium, suggesting
that IFNl is a key effector cytokine in mucosal immunity (74, 75).
Recently, Henden and colleagues showed that IFNl treatment
improves the proliferative and regenerative capacity of LGR5+

ISCs independently of IL-22 and ameliorates murine GVHD (76).
Since, pegylated recombinant IL-29 is being developed as an
adjunctive therapy for Hepatitis C, this agent may be rapidly
testable for clinical GVHD (77).

Ruxolitinib, a JAK1/2 inhibitor, has been shown to ameliorate
mouse and human GVHD and has been approved by the Food
and Drug Administration (FDA) in the United States for the
treatment of steroid-refractory acute GVHD (78, 79). Ruxolitinib
profoundly suppresses T cell activation, proliferation, and
differentiation toward T helper 1 (Th1), Th17 and cytotoxic T
cells (79). Given the critical role of IFN-g in ISC injury, it has been
tested if ruxolitinib could protect ISCs against GVHD by
inhibiting JAK1/2-STAT1 pathway, an indispensable pathway
in IFN-g receptor signaling. Organoid culture systems have
demonstrated that allogeneic T cells induce apoptosis of
organoids and ISCs in an IFN-g-dependent manner (8).
Ruxolitinib protected ISCs and Paneth cells in organoids from
IFN-g and allogeneic T cells (8, 54). Furthermore, ruxolitinib
prevented IFN-g-induced ISC injury after syngeneic SCT,
indicating that ruxolitinib protects ISCs independent of
suppression of allogeneic T cell activation (54). These ISC-
targeting strategies for GVHD prophylaxis and treatment are
promising and could promote regeneration of all types of
intestinal epithelial cells after GVHD-mediated injury (Figure 2).

Tissue Stem Cells in Other Organs
Tissue stem cells in other target organs, such as the skin and liver,
could be involved in GVHD pathophysiology. The fate of skin
stem cells in acute cutaneous GVHD has been studied. Multiple
tissue stem and/or progenitor populations of epithelial cells have
been identified in the skin. The bulge of hair follicles has long
been recognized to foster tissue stem cells because long-lived
label-retaining cells exist in the hair bulge (80). More recently, it
became possible to identify hair follicle stem cells (HFSCs) in the
Frontiers in Immunology | www.frontiersin.org 664
lower part of the bulge as CD34+, cytokeratin 15 (CK15)+, and
LGR5+ cells using flow cytometric or immunofluorescent studies
(81–83). These HFSCs alone can regenerate all structures of hair
follicles and hair shafts and contribute to regeneration of the
epidermis after skin injury (19, 82, 84). In addition to HFSCs,
LGR6+ stem cells residing directly above the bulge and leucine-
rich repeats and immunoglobulin-like domains 1 (Lrig1)+ stem
cells in the isthmus maintain the upper pilosebaceous units (85,
86). Other than stem cells in the hair follicles, there are CK15+

epidermal progenitor and/or stem cells in the rete-like
prominences (RLPs) of mouse tongues, a surrogate of human
epidermal rete ridges of the skin.

Early studies demonstrated that donor T cells primarily
migrate to stem cell-rich parts of the skin, such as mouse
RLPs, human rete ridges, and the bulge of hair follicles,
suggesting that skin stem cells could be targeted by GVHD
(87–90). Among multiple stem cell populations, CK15+ stem
and/or progenitor cells in mouse RLPs have been shown to
undergo cytokine-induced apoptosis in cutaneous GVHD (90–
92). Recently, we found that LGR5+ HFSCs were significantly
reduced in mouse cutaneous GVHD, in association with reduced
numbers of hair follicles, alopecia, and delayed wound healing
(19). This finding was rather surprising because a previous study
showed that injection of eGFP-specific Jedi T cells did not
deplete LGR5-eGFP+ HFSCs, suggesting that these LGR5+

HFSCs are immune privileged (47). This discrepancy suggests
that HFSCs are not inherently immune privileged and that the
environment and/or HFSC niche protect HFSCs against
immune-mediated injury. An extensive inflammatory
environment or disruption of the HFSC niche could be
responsible for HFSC damage in cutaneous GVHD. One of the
HFSC niche components, subcutaneous fat, which acts as
regulator of hair cycling and energy reservoir for HFSCs,
becomes atrophic in cutaneous GVHD, which can lead to a
reduction of LGR5+ HFSCs (19, 93–95). Although the
mechanism by which GVHD depletes LGR5+ HFSCs and
CK15+ RLP stem cells remains to be clarified, it is worth of
note that topical administration of ruxolitinib protects these
stem cells from mouse GVHD (19). On the other hand, topical
corticosteroids demonstrate direct toxicity that leads to depletion
of HFSCs after syngeneic and allogeneic SCT, even though
topical steroids dramatically reduce donor T cell infiltration to
the skin in cutaneous GVHD. Protection of LGR5+ HFSCs with
topical ruxolitinib was associated with suppression of alopecia
and enhancement of wound healing after allo-SCT, while topical
corticosteroid was not (19). Based on its protective effects on
both ISCs and skin stem cells, ruxolitinib could be an ideal
therapeutic agent for GVHD (78, 79). The fate of other stem cell
populations in the skin, such as LGR6+ stem cells and Lrig1+

stem cells in the hair follicles, remains to be clarified (85, 86).
The liver, another major target organ in acute GVHD, is a

highly regenerative organ, and there are two main epithelial
populations: hepatocytes and biliary epithelial cells (BECs).
Lineage-tracing studies have shown that there are stem and/or
progenitor populations of hepatocytes that maintain the
hepatocyte pool in steady states, for example, studies in Axin2-
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Cre/ER reporter mice (96). However, some of these lineage-
tracing strains have aberrant proliferation of labeled hepatocytes,
possibly due to deletion of exons of the target molecule, which
potentially leads to overestimation of the contribution of labeled
cells to tissue regeneration after liver injury (97). More recently,
it has been shown that mid-lobular hepatocytes cycle and
maintain whole hepatocytes in the liver, except glutamine
synthetase (GS)-expressing hepatocytes facing the central vein,
which are maintained independently from other hepatocytes (97,
98). In certain contexts of liver injury, LGR5+ and Sox9+

hepatocytes endowed with the potential to differentiate both
into hepatocytes and BECs emerge, and BECs proliferate and
contribute to the reconstitution of hepatocytes after severe liver
injury (99–103). Because jaundice and biliary dysfunction are the
cardinal features of liver GVHD, it should be more important to
study BEC stem cells rather than stem cells of hepatocytes. Huch
et al. found that single LGR5+ cells isolated from the hepatic duct
give rise to liver organoids that can be differentiated into both
hepatocytes and BECs (99). The fate of BEC stem cells needs to
be clarified in future studies.
ALTERATION OF THE
MICROENVIRONMENT INDUCES
INTESTINAL DYSBIOSIS IN GVHD

Intestinal dysbiosis is frequently observed after allo-SCT and is
associated with exacerbation of GVHD and transplantation-related
death (13, 104, 105). Multiple factors, such as antibiotics and total
parenteral nutrition, can lead to dysbiosis after allo-SCT (Figure 2
and Table 1). In addition, GVHD-induced tissue injury can
generate a microenvironment related to dysbiosis. a-Defensins,
major antimicrobial peptides (AMPs) produced from Paneth cells,
exert potent bactericidal effects on pathogenic bacteria that occupy a
minor proportion of the healthy microbiota but are minimally
effective on nonpathogenic commensals that dominate the healthy
gut microbiota (106, 107). Paneth cells are highly sensitive to
GVHD, and a-defensin production is profoundly decreased in
GVHD (12, 13, 108). This reduction is mediated by IFN-g
signaling, and ruxolitinib can protect Paneth cells against GVHD
(54). R-Spo1, a growth factor of ISCs, is also a potent inducer of
Paneth cell differentiation from ISCs, and we found that
administration of rhR-Spo1 induced expansion of Paneth cells in
naïve mice, leading to marked elevation of fecal levels of a-defensins
such as cryptdin-1 (Crp-1) and cryptdin-4 (Crp-4) (14). In mouse
GVHD, peritransplant administration of R-Spo1 protects not only
ISCs but also Paneth cells, resulting in preserved a-defensin
production and prevention of intestinal dysbiosis after allo-SCT
(14). Short-term oral administration of Crp-4 to allogeneic recipient
mice temporally mitigated intestinal dysbiosis and inflammation in
the gut after allo-SCT, while dysbiosis developed after cessation of
Crp-4 treatment, indicating that long-term administration of Crp-4,
until Paneth cell regeneration, is required for the prevention of
dysbiosis after allo-SCT (14). Paneth cell numbers in duodenal
biopsies from transplanted patients are negatively related to gut
Frontiers in Immunology | www.frontiersin.org 765
GVHD severity, further emphasizing the protective role of Paneth
cells against GVHD (15).

REG3, another major AMP in the intestine, is produced by
intestinal epithelial cells, including Paneth cells and enterocytes,
and diffuses into the inner mucus layer, segregating luminal
bacteria from the gut epithelium (109, 110). In mouse models of
allo-SCT, the expression levels of REG3g, the mouse homolog of
human REG3a, in the small intestine were significantly reduced
in GVHD, and REG3g leaked from the gut to the blood, leading
to elevation of plasma levels of REG3g (111, 112). In clinical allo-
SCT, the plasma levels of REG3a and ST2 are now widely
appreciated as diagnostic and prognostic biomarkers of acute
GVHD (113–115). In mouse models of steroid-refractory
GVHD, it has been shown that IL-22 produced by donor Th/
Tc22 cells stimulates REG3g production in the intestine, and
excess REG3g leads to dysbiosis and exacerbation of GVHD (67).
Thus, REG3g could be a therapeutic target for treating steroid-
refractory GVHD.

Enterococcus domination, defined as a status in which 30% or
more of all the bacteria in the fecal microbiota are enterococci,
develops frequently after allo-SCT and is associated with blood
stream infection, development and exacerbation of GVHD, and
GVHD-related death after allo-SCT (105, 116–119). Because the
presence of theVanA gene in fecal samples from allo-SCT recipients
has been associated with Enterococcus domination, antibiotics likely
contribute to the development of Enterococcus domination (119).
However, Enterococcus domination is also observed after murine
allo-SCT in which no antibiotics are used, indicating that antibiotics
are not the only reason for Enterococcus domination and that
GVHD may induce a microenvironment suitable for the
expansion of enterococci. The growth of enterococci is strictly
dependent on lactose, and the expression of lactase, a critical
enzyme for the absorption of lactose from the diet, in the
intestine is reduced in GVHD (119, 120). The reduction in lactase
in GVHD leads to ineffective absorption and an increase in lactose
availability in the gut lumen, leading to enterococcal expansion.
Importantly, the lactose intolerance allele is associated with the
persistence of Enterococcus domination after the cessation of
antibiotics. These data suggest that a lactose-free diet or lactase
administration could be used for prophylactic treatment of
Enterococcus domination, which could improve the outcomes of
allo-SCT. In addition to antibiotic administration and lactase
reduction, reduction of a-defensins, which exert potent
bactericidal effects on Enterococcus, could contribute to
enterococcal expansion after allo-SCT (107).
THE BARRIER FUNCTION OF GUT
EPITHELIAL CELLS IN GVHD

The intestinal mucosa has the complex task of acting as a
semipermeable barrier that allows the absorption of nutrients
and water while limiting the transport of potentially harmful
microbes and microbial components. Sheets of gut epithelial cells
are bound to each other via tight junctions, acting as a physical
barrier against luminal components (Figure 1). Conditioning and
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allogeneic T cell responses damage epithelial cells (Table 1),
leading to the loss of the physical barrier function of the
mucosal epithelium against bacteria and bacterial components ,
which fosters an environment prone to GVHD development
(121). Thus, epithelial growth factors have been proposed as
therapeutic options for acute GVHD (Figure 2). Keratinocyte
growth factor (KGF) promotes the proliferation and
differentiation of epithelial cells. It was suggested that ISCs are
also supported by KGF; however, whether KGF protects ISCs
against GVHD has not been explored using specific ISC markers,
such as LGR5 (122, 123). Although it has been reported that KGF
ameliorates murine gut GVHD (124, 125), human recombinant
KGF did not demonstrate significant beneficial effects on the
incidence and severity of GVHD in randomized clinical trials
(126–128). Although the reason for this discrepancy between
preclinical and clinical studies is not fully understood, it has been
suggested that KGF could exert more potent anti-GVHD effects
in recipients conditioned with TBI alone than in those
conditioned with TBI in combination with cytotoxic agents; the
latter strategy is used in the clinical setting (126).

Glucagon-like peptide 2 (GLP-2) is another growth factor of
gut epithelial cells, and administration of a GLP-2 analog
protects ISCs against irradiation-induced injury (129). GLP-2-
producing enteroendocrine L cells are targeted by GVHD, and
reduction of L cells in the patients’ colon is associated with worse
outcome after allo-SCT. Because GLP-2 is inactivated by DPP-4,
a DPP-4-resistant GLP-2 analog, teduglutide, was tested for a
GVHD prophylaxis. Peritransplant administration of teduglutide
protected ISCs and Paneth cells against GVHD, and prolonged
survival after mouse allo-SCT (9). Furthermore, GLP-2 and
GLP-2 analogues enhance the expression of tight junction
molecules such as claudin-4, possibly enhancing intestinal
barrier function in GVHD (9, 130). A clinical trial in which
teduglutide is tested for treatment of short bowel syndrome
(NCT04733066) is ongoing, and future clinical studies
are required to test if teduglutide could protect patients
against GVHD. Interestingly, a small-scale phase II study
demonstrated that peritransplant administration of high-dose
sitagliptin, a DPP-4 inhibitor, prevented the onset of acute
GVHD (131). Although it is most likely that DPP-4 inhibition
prevents GVHD by suppressing donor T cell activation (132),
DPP-4 inhibition may mitigate damage to the intestinal
epithelium by inhibiting GLP-2 degradation (133). The impact
of DPP-4 inhibitors on GVHD-induced damage to gut epithelial
cells needs to be clarified in future studies.

In rodent models of radiation colitis, administration of EGF
enhanced gut epithelial regeneration (134, 135). In a phase I
clinical trial, it has been shown that administration of a urinary-
derived human chorionic gonadotropin (uhCG) agent
containing abundant EGF was safe and possibly effective for
the treatment of high-risk or steroid-refractory acute GVHD
(136). This agent may improve GVHD via EGF-induced
protection of gut epithelial cells, while the Treg expansion
observed after administration of this agent could contribute to
GVHD suppression, too. This inexpensive and commercially
available uhCG agent will be studied in phase II and III trials.
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In mouse GVHD, the TNF-a/MLCK210 axis increases tight
junction permeability to larger molecules (137). IFN-g also
regulates tight junction permeability (138). Thus, GVHD
actively increases permeability through tight junctions, which
promotes the absorption of bacterial components, further
recruiting donor T cells and propagating GVHD (137).
Prevention of increase of tight junction permeability could be
another prophylactic strategy against GVHD.

Loss of commensals in intestinal microbiota after allo-SCT
leads to the reduction of bacterial metabolites which contribute to
maintenance of tissue homeostasis. Among these metabolites,
butyrate is mainly produced by commensal anaerobes such as
Clostridia and Blautia, and mitigates harmful immune reactions
by promoting differentiation of regulatory T cells (139).
Microbiota-derived butyrate is also taken up by intestinal
epithelial cells through G-protein coupled receptor, GPR43 and
serves as a major energy source of intestinal epithelial cells.
Butyrate acts as a histone deacetylase (HDAC) inhibitor and
promotes tricarboxylic acid cycling, improving integrity of barrier
function of intestinal mucosa (140, 141). Thus, dysbiosis with the
reduction of butyrogenic bacteria reduces butyrate in the
intestinal epithelial cells and impairs the resilience of the gut
epithelium after allo-SCT (142). Probiotics containing
butyrogenic bacteria or prebiotics containing butyrogenic fibers
and starch are promising therapeutic options against mouse and
human GVHD (140, 143). The urinary levels of 3-indoxyl sulfate
(3-IS) are positively correlated with the abundances of
Lachnospiraceae and Ruminococcaceae in the gut microbiota,
and higher levels of urinary 3-IS predicts better survival after
allo-SCT. Although the direct role of 3-IS in GVHD remains to be
clarified, 3-IS could act as a ligand for aryl hydrocarbon receptor,
the critical receptor for maintenance of intestinal epithelial barrier
function and production of AMPs (144–146).
THE ROLE OF THE GUT MUCUS LAYER
IN GVHD

The intestinal mucus layer constitutes a critical barrier that
segregates millions of microbes and environmental antigens in the
gut lumen from the host immune system (Figure 1). The mucus
layer serves as the first line of innate defense, and gel-forming
mucins secreted by goblet cells form the basic scaffold of the mucus
layer. Mice lacking theMuc2 gene, encoding the major gel-forming
mucin in the intestine, are devoid of mucus layers and prone to
developing severe colitis, suggesting that direct contact between
luminal bacteria and the intestinal mucosa triggers inflammation
(147, 148). The large intestine has a system with two mucus layers;
the inner mucus layer is enriched with antimicrobial molecules
(AMMs), such as Ly6/Plaur domain-containing 8 (LYPD8), and
devoid of bacteria, suggesting that the mucus layer also acts as a
chemical barrier against luminal bacteria (149, 150).

As noted above, GVHD-induced Paneth cell injury and
lactose malabsorption together with other factors, such as
antibiotic administration and induction of total parenteral
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nutrition, lead to intestinal dysbiosis after allo-SCT. In such a
situation, the mucosal barrier must act as the final line of defense
against pathogenic bacteria expanding in the gut lumen.
However, GVHD leads to a reduction in intestinal goblet cells,
which results in disruption of the mucus layer due to its rapid
turnover (Figure 2 and Table 1); the mucus layer is renewed
every 1 to 2 hours by newly produced mucus from goblet cells
(151–153). Recently, we studied the role of goblet cells and the
inner mucus layer in the pathophysiology of acute GVHD using
mouse models of acute GVHD (2). First, we confirmed that
goblet cells were profoundly and persistently reduced in the
colon after allo-SCT, which led to disruption of the colonic two-
layered mucus system in allogeneic recipients in association with
enhanced bacterial translocation, elevated plasma levels of
proinflammatory cytokines, and exacerbation of GVHD.
Although the mechanism by which GVHD targets goblet cells
remains to be clarified, it is possible that goblet cells are reduced
due to GVHD-induced depletion of ISCs considering the rapid
turnover of goblet cells (3 to 7 days) (154). In the steady state and
after parasite infections, ILC2s produce growth factors of goblet
cells, such as interleukin 13 (IL-13), in response to interleukin-25
(IL-25) secreted from Tuft cells (17, 18). We found that
pretransplant administration of IL-25 expanded goblet cells
that persisted after GVHD, preventing bacterial translocation,
elevation of proinflammatory cytokines, and exacerbation of
GVHD (2). Conditioning TBI and chemotherapy lead to
prolonged depletion of ILC2s in mice and humans (3, 4),
which could further reduce goblet cells or impair regeneration
of these cells. Bruce et al. showed that donor ILC2 infusion
promotes IL-13 production by ILC2s and enhances the survival
of donor myeloid suppressor cells, suppresses donor T cell
production of proinflammatory cytokines, and reduces GVHD
(3). Although this study demonstrated that transfer of donor
ILC2s improves intestinal epithelial integrity, the impact on
goblet cells was not addressed. Deficiency of NOD-like
receptor family pyrin domain-containing 6 (NLRP6), the
critical molecule for goblet cell secretion of mucus, in
nonhematopoietic cells of recipients mitigates goblet cell injury
after allo-SCT and ameliorates intestinal GVHD, suggesting that
NLRP6 is another target molecule for protection of goblet cells
after allo-SCT (155).

LYPD8 is produced by enterocytes in the colon and enriched
in the inner mucus layer (149). LYPD8 binds to flagellated
bacteria such as Escherichia coli and prevents bacterial
translocation by inhibiting bacterial motility. Based on these
findings, we studied the protective role of LYPD8 in murine
GVHD using LYPD8-deficient mice as recipients (2). First, we
found that disruption of the inner mucus layer in allogeneic
recipients led to disappearance of the LYPD8-rich layer in the
mucus layer. Next, we found that bacterial translocation was
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dramatically enhanced in LYPD8-deficient recipients compared
to WT recipients after allo-SCT, in association with exacerbation
of GVHD. Furthermore, goblet cell expansion using IL-25 did
not ameliorate GVHD in LYPD8-deficient recipients, suggesting
that the mucus layer containing LYPD8 is critical for goblet cell-
mediated GVHD suppression (2).
CONCLUDING REMARKS

The discovery of specific markers for tissue stem cells has
enabled us to study the fate of tissue stem cells in mouse
GVHD, and we found that ISCs and HFSCs are targeted by
GVHD. Furthermore, niche components that support tissue
stem cells are also damaged after allo-SCT, likely inhibiting the
recovery of tissue stem cells after GVHD-mediated injury.
Emerging evidence also indicates that human and mouse
GVHD targets specific epithelial populations, such as Paneth
cells, L cells, and goblet cells, resulting in disruption of tissue
homeostasis (Figure 2 and Table 1). Strategies to promote
recovery of tissue stem cells and maintenance of the tissue
microenvironment are promising adjuncts to standard
immunosuppressive GVHD prophylaxis and treatment, which
may enable the separation of GVHD and graft-versus-
leukemia effects.

There remain many unanswered questions in this field.
Although the existence of LGR5+ ISCs is also demonstrated in
the human intestine, the fate of LGR5+ tissue stem cells in the
intestine and skin after human allo-SCT remains to be clarified
(156). The role and fate of BEC stem cells need to be studied both
in human and mouse liver GVHD. Furthermore, the role of tissue
stem cells in pathophysiology of chronic GVHD has not been well
studied, and studies about intestinal dysbiosis in chronic GVHD
has only just begun (157). Although it has been shown that
protection of intestinal stem cells, Paneth cells, or goblet cells
represents a promising anti-GVHD treatment, these strategies
have been tested only in mouse models of GVHD in a
prophylactic manner. It should be tested if these strategies are
also useful for treatment of established GVHD.
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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an evidence based-
cellular immunotherapy for hematological malignancies. Immune reactions not only
promote graft-versus-tumor effects that kill hematological malignant cells but also graft-
versus-host disease (GVHD) that is the primary complication characterized by systemic
organ damages consisting of T-cells and antigen presenting cells (APCs) activation. GVHD
has long been recognized as an immunological reaction that requires an
immunosuppressive treatment targeting immune cells. However immune suppression
cannot always prevent GVHD or effectively treat it once it has developed. Recent studies
using high-throughput sequencing technology investigated the impact of microbial flora
on GVHD and provided profound insights of the mechanism of GVHD other than immune
cells. Allo-HSCT affects the intestinal microbiota and microbiome-metabolome axis that
can alter intestinal homeostasis and the severity of experimental GVHD. This axis can
potentially be manipulated via dietary intervention or metabolites produced by intestinal
bacteria affected post-allo-HSCT. In this review, we discuss the mechanism of
experimental GVHD regulation by the complex microbial community-metabolites-host
tissue axis. Furthermore, we summarize the major findings of microbiome-based
immunotherapeutic approaches that protect tissues from experimental GVHD.
Understanding the complex relationships between gut microbiota-metabolites-host
tissues axis provides crucial insight into the pathogenesis of GVHD and advances the
development of new therapeutic approaches.

Keywords: graft-versus-host disease, microbial metabolite, dysbiosis, microbiota, allogeneic stem
cell transplantation
INTRODUCTION

Hematological malignancies, such as leukemia, lead to high mortality, especially in the elderly.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an immune therapy that has
become widely used for the treatment of life-threatening hematological malignancies and congenic
immune deficiencies (1). However, many complications following allo-HSCT occur due to immune-
related reactions, the most challenging and serious of which is graft-versus-host disease (GVHD) (2).
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GVHD is composed of complexes of immune cells and
tissues (3). After T-cells activation and migration to GVHD
target organs, such as the lung, gut, liver and skin, cytotoxic
T-cells and helper T-cells attack target cells in these target
organs. Once GVHD develops, recipients require additional
immunosuppressive therapies using steroids in addition to
GVHD preventive immunosuppressants consisting of
calcineurin inhibitors. However, GVHD is frequently refractory
to standard steroid therapy and has a dismal prognosis, with only
5–30% overall survival (4). In steroid-refractory GVHD, novel
treatment approaches include the use of anti-thymocyte
globulin, extracorporeal photopheresis, mesenchymal stromal
cells, mycophenolate mofetil, everolimus, sirolimus, etanercept,
infliximab, and ruxolitinib (5). Intensified immunosuppressive
therapies for aggravated GVHD suppress immune reactions and
permit bacterial translocation from injured intestinal epithelium
cells; this leads to subsequent systemic infections that increase
the release of pathogen-associated molecular patterns (PAMPs)
and damage associated molecular patterns (DAMPs). This
negative feedback loop can result in fatal GVHD. In addition,
excessive immunosuppression increases malignancy relapse after
HSCT. Thus, immunosuppressive therapies are limited.

Current focus has been shifted to the target tissues, the third
player in GVHD, in addition to APCs and T-cells (3). The role of
tissue-intrinsic factors that might contribute to the regulation of
GVHD severity has been largely overlooked. Tissue-specific
programs contribute to target tissue resilience, repair, and
regeneration and mitigate the severity of GVHD without
altering the load or function of alloreactive immune cells (6).
In this context, the gastro-intestinal (GI) tract has close
interactions with the microbiota, and recent genomic microbial
analyses have revealed intricate connections between the
microbiota and various diseases. Particularly, in GVHD,
disturbance of microbial composition, that is, dysbiosis, is
strongly associated with poor outcomes after allo-HSCT (7).
However, whether a causal relationship exists remains unclear.
In this review, we focus on the connection among gut
microbiota, microbial metabolites and intestinal environment
that affect GVHD. We also discuss the recent findings on
microbiome-based immunotherapeutics that affect or mitigate
GVHD and enumerate the emerging strategies for the regulation
of dysbiosis and microbial metabolites in the regulation
of GVHD.

Gut Microbiota and Intestinal
Epithelial Cells
A close relationship between microbiota and human health has
been investigated. Microbiota refers to the community
comprising trillions of microorganisms, including bacteria,
fungi, and viruses, that symbiotically colonize the human body,
most members of which reside in the gut and are largely
nonpathogenic anaerobic commensal bacteria (8). This balance
is finely tuned in the gastrointestinal (GI) tract and influenced by
the environment, diet, and host factors, including host
physiology (9). The mammalian GI tract is a relatively hypoxic
tissue and has a steep oxygen (O2) gradient between the O2-rich
Frontiers in Immunology | www.frontiersin.org 274
lamina propria and the gut lumen, which is dominated by
anaerobic organisms (10). Aerobic and facultative anaerobic
bacteria have been suggested to consume oxygen in the distal
intestine and maintain hypoxia in the lumen, leading to the
colonization by strict anaerobes and the production of short-
chain fatty acids (SCFAs) (11). Complex dietary carbohydrates
(fiber) are broken down by these bacteria into digested
fermentation products, that are absorbed by the host and
utilized for host nutrition, immune development, and niche
protection against enteric pathogens (12–19). Members of
Clostridia and Bacteroidia are the obligate anaerobic bacteria
dominating in the colon and capably digest any carbohydrate
complex into fermentation products (20, 21). Facultative
anaerobic bacteria such as Proteobacteria are not specialized in
consuming fiber, and rather interfere with host nutrition by
changing metabolites to carbon dioxide under oxygen (22, 23).
Fermented metabolite effects have been observed in a neonatal
mouse model with Clostridia species colonization that protected
neonatal mice form virulent pathogens (24). Intestinal epithelial
cells (IECs) are continuously renewed from the crypts where
intestinal stem cells (ISCs) are located. ISCs divide and
differentiate into transit-amplifying (TA) cells, IECs,
enteroendocrine cells and goblet cells (25). In contrast to TA
and ISCs that utilize glucose to obtain energy through glycolysis,
IECs produce energy viamitochondrial b-oxidation of fatty acids
and oxidative phosphorylation, both of which require oxygen
(26, 27). Butyrate is a favored metabolic substrate that maintains
epithelial energy homeostasis (26). Despite low O2 conditions,
high butyrate levels result in the downregulation of the glycolytic
pathway and the upregulation of mitochondrial respiration (28).
This drastic change of energy production was triggered with the
expression of peroxisome proliferator-activated receptor-g
(PPAR-g), which is a nuclear receptor synthesized in
differentiated IECs of rodents and humans (29). The energy
metabolism in IECs consumes a high amount of oxygen, leading
to low oxygen pressure in the lumen (30). This oxygen
consumption in IECs permits epithelial hypoxia and helps to
maintain anaerobic bacterial flora in the intestinal lumen (31). The
hypoxic environment enables obligate anaerobic bacteria that
produce carbohydrate metabolites to colonize and provide
benefits to the host. Epithelial metabolism of SCFA is a primary
determinant of ‘‘physiologic hypoxia’’ in the mucosa with O2

consumption and hypoxia-inducible factor (HIF) stabilization
that promotes barrier function (32). Therefore, IECs are
uniquely adapted to this hypoxic environment, and cells
programmed by “physiological hypoxia” have been shown to
tonally regulate barrier function (33). These mechanisms
indicated that IECs influence the shaping of beneficial
microbiota, and those microbiotas bring metabolic profits to the
host. In this process IECs play a central role in maintaining gut
homeostasis (Figure 1).

The IECs and gut microbiota function in two distinct
manners: protection against ingested pathogens and induction
of tolerance to beneficial commensals. The intestinal immune
system matured by microbiota stimulates the mucosa-producing
cells (i.e., Paneth cells and goblet cells) to secrete antimicrobial
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peptides, antibodies, and mucin to form intestinal physical
barriers, such as the mucus layer and tight junctions that
regulates the relationship between the microbiota and the host
(34). Germ-free mice have distinct gut features, such as altered
intestinal morphology and slower turnover of IECs than
conventional mice (35). After exposure to exogenous
commensal bacteria, germ-free mice responded to intestinal
bacteria. Four days post-exposure, innate immune responses
and structural changes in the intestinal epithelial crypts were
observed, i.e., increased TNF-a and interferon-g (IFN-g)
expression and upregulation of MHC class I molecules (35).
IECs in SPF mice also expressed MHC class II molecules that
were deficient in germ free mice (36). Under the inflammatory
status such as GVHD, gut microbiome stimulated IL-12
production from myeloid cells, resulting in increased
expression of MHC class II on IECs through IFN-g produced
from lamina propria lymphocytes. In summary, the intestinal
environment shapes and maintains the microbiota. Also,
Frontiers in Immunology | www.frontiersin.org 375
microbiota and those metabolites play important roles on both
the function and metabolism in IECs.

Mechanism of Dysbiosis in Hematopoietic
Cell Transplantation
Associations between the microbiota and HSCT outcomes have
been extensively studied in the 1970s (37). According to these early
studies, specific pathogen-freemice treated with antibiotics or germ-
free mice that received HSCT developed less severe GVHD than
their respective controls. These attempts were validated in HSCT
patients with gut decontamination by antibiotics (38). Recently,
broad-spectrum antibiotics that target anaerobic pathobionts have
been revealed to increase GVHD-related mortality in mouse and
human (39). Therefore, some antibiotics that perturb microbial
composition were unsuitable for patients in HSCT settings. The
microbial compositions of various anaerobic commensal intestinal
bacterial species were robustly disturbed and reduced due to chemo/
radiotherapy, antibiotics, or HSCT itself in patients (40). Decreased
FIGURE 1 | Suggestive mechanisms of epithelial metabolism and gut microbiota in HSCT. (A) Before HSCT, gut microbiota, especially obligate anaerobic bacteria,
ferment fiber from diet into metabolites, such as SCFAs. Intestinal epithelial cells (IECs) metabolize short chain fatty acids (SCFAs) and consume oxygen to produce
energy. High oxygen consumption limits the oxygen diffusion into the lumen and maintains hypoxia in the lumen. Hypoxic condition enables obligate anaerobes to
keep growth. The scale bar indicates oxygen (O2) levels, usually between 3% to 10% in normal intestines. (B) During HSCT, conditioning treatments including
irradiation and high-dose chemotherapy damages IECs, and injured IEC decreases oxygen consumption. Decreased dietary fiber and antibiotics treatments during
HSCT disrupt microbiota composition, especially reduce obligate anaerobes, and deplete the fermentative products. Reduced SCFAs limit oxygen consumption to
produce energy in IECs and permit oxygen diffusion into the gut lumen. Elevated oxygen concentration drives an expansion of facultative anaerobic bacteria and
might lead to a contraction of obligate anaerobes. In GVHD, allogeneic T-cells promote IEC injuries and require antibiotics treatments, that could enhance and
maintain dysbiosis in the gut.
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diversity and expansion of specific bacteria, including Enterococcus
spp., were reported as risk factors that resulted in poor outcomes
after HSCT (41). The mono-domination of Enterococcus was
significantly associated with severe GVHD and treatment related
mortality (TRM) in mice and human studies (42). These studies
indicate the causative role of Enterococcus in the pathogenesis of
GVHD. However, the mechanism of dysbiosis post-HSCT remains
unclear (7, 43). Before and after HSCT, patients receive various
interventions that are likely to contribute to the microbial dysbiosis.
Importantly, in a mouse model of acute GVHD exposure to a
GVHD-associated gut microbiome pre- and/or post- HSCT
accelerated GVHD development and severity demonstrating the
complex relationship between GVHD and microbiota (44). These
factors could affect the intestinal microbial composition (Figure 1).

Radiotherapy
As a part of allo-HSCT, systemic irradiation is frequently used to
kill fast-dividing leukemia/lymphoma cells and host myeloid cells/
lymphocytes. However, radiation causes intestinal damage, and
the potential correlation between dysbiosis and radiation-induced
damage has been revealed (45, 46). Radiation induces oxidative
stress via the generation of reactive oxygen species (ROS),
including hydroxyl radical (OH), superoxide anion (O2−), and
hydrogen peroxide (H2O2), resulting in the activation of
cyclooxygenases (COX), nitric oxide synthases, lipoxygenases,
and nicotinamide adenine dinucleotide phosphate oxidases.
These products of oxidative stress cause DNA damage,
inflammation, and apoptosis in IECs and affect the gut
microbiota composition through homeostatic disturbances (45).
The relationship between radiation enteritis and dysbiosis was
observed in patients receiving radiotherapy. Relatively high
abundances of Proteobacteria and Gammaproteobacteria,
characterized by increased oxidative stress resistance in
Enterobacteriaceae, Phyllobacteriaceae, and Beijerinckiaceae, and
low abundance of Bacteroides with decreased Bacteroidaceae
and Ruminococcaceae that were sensitive to oxidative stress,
were detected (46). Recently, a multi-omics study reported
Lachnospiraceae and Enterococcaceae as radioprotective
microbes and elevated SCFA levels due to irradiation damage in
mice receiving irradiation (47). Bifidobacterium can utilize
indigestive fibers, such as fructose oligosaccharides (FOS),
inulin-type fructans (ITF), and xylo-oligosaccharides (XOS), and
cross-feed with lactate-converting bacteria and butyrate-
producing bacteria, i.e., Eubacterium hallii and Anaerostipes
caccae (48). Although Bifidobacterium cannot produce butyrate,
it is associated with increased abundance of butyrogenic bacteria
in a cross-feeding manner (49). Moreover, Eubacterium hallii L2-7
and Anaerostipes caccae L1-92 could not grow in starch but grew
upon co-culture with Bifidobacterium adolescentis L2-32 to
produce butyrate (50). Collectively, the abundance of specific
bacterial species is reduced and eventually lost post irradiation
before allo-HSCT.

Chemotherapy
Elaborating the purpose of repeated intensive chemotherapy before
allo-HSCT reduces microbiota diversity in both human and mice
and leads to the expansion of Escherichia Coli and Enterococcus
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spp (51). During allo-HSCT, disrupted gut microbial composition
and diversity, including decreased abundances in Bifidobacterium,
butyrate-producing Faecalibacterium and Lachnospiraceae, were
highly associated with transplant-related mortality (7).
Methotrexate treatments caused a significant reduction in the
number of Bifidobacterium and Lactobacillus species and
Escherichia coli in children with leukemia (52). Etoposide exhibits
broad bacterial inhibitory activity that changes microbial
composition in vitro (53). In leukemia patient data, it is suggested
that chemotherapy induces dysbiosis (51). Healthy volunteers in the
Human Microbiome Project (HMP) and patients with acute
myeloid leukemia in the pre-induction phase showed no
significant differences in terms of microbial diversity. After
neutrophil recovery, microbial diversity in the leukemia group
was significantly decreased and this dysbiosis was associated with
an increased risk of infections and the use of broad-spectrum
antibiotics. Within 3 months of anti-anaerobic antibiotic
administrations including carbapenem and piperacillin-
tazobactam, a significant reduction in microbial diversity was also
observed before allo-HSCT in the recipients (54). Multiple intensive
chemotherapies for acute leukemia patients also disrupt the
microbial composition and promote the outgrowth of pathogenic
bacteria such as Enterococcus (55). Another study demonstrated
that pre-transplant microbial composition differed from the healthy
controls due to decreased abundances of beneficial bacteria,
Bifidobacterium, Faecalibacterium, and Lachnospiraceae (56).
Overall, these findings suggest that pre-transplant microbe
disruption increased HSCT comorbidity. However, the
mechanisms of dysbiosis onset and the disruption of the
microbiota by chemotherapy are still unknown. Furthermore,
these studies could not separate the effects of HSCT from those of
antibiotics (39).

Antibiotics
Chemotherapies for hematological malignancies cause high-
grade neutropenia and require systemic antibiotic
administration to prevent or treat life-threatening bacterial
infections. The influence of antibiotics on the microbial
composition should be accounted for. Recent microbiome
studies have observed undesirable consequences in dysbiosis,
including antibiotic resistance, pathogenic bacteria dominance,
transient or profound loss of microbial diversity, increased
susceptibility to infection, and the risk of recurrent infections,
after antibiotic usage in cancer patients (57). However,
immunocompromised individuals are at high risk of intestinal
infections, which are difficult to treat without using broad-
spectrum antibiotics (58). As reported by various studies,
oxygen-tolerant species, Enterococcus, Enterobacteriaceae,
Klebsiella spp., and Viridans streptococci, are most commonly
translocated from damaged intestinal mucosal barrier due to
chemotherapy, irradiation, and antibiotics to the bloodstream
(59). Prophylactic antibiotics, such as quinolones, are usually
utilized to prevent infections in patients receiving HSCT. Once
they develop fever or infections, broad-spectrum antibiotics,
such as piperacillin-tazobactam or meropenem, are prescribed
(60). Compared to pre-transplant conditions, decreased
Firmicutes and Actinobacteria and increased Bacteroides and
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Proteobacteria have been detected at 1week post-conditioning
(61). Notably, the use of rifaximin could preserve gut beneficial
commensals and improve patient outcomes (62). HSCT patients
receiving rifaximin showed significantly lower TRM, prolonged
OS, and a tendency for low acute GI-GVHD rates than historical
controls. These observations remained unknown even in patients
who developed neutropenic fever and received systemic
antibiotics without an increase in sepsis rates or pathogenic
bacterial colonization. Efforts to investigate and identify the
antibiotics that could spare microbial compositions to reduce
acute GI-GVHD and adverse outcomes have been attempted
(63). A study in patients from Canada also assessed the effects of
prophylactic and therapeutic antibiotic administration before
day 0 of HSCT (64). The antibiotic-receiving group had a
significantly higher incidence of acute GVHD (aGVHD) and
shorter survival. The early administration of systemic antibiotics
before engraftment was also associated with low 3-IS levels and
reduced Clostridia abundance in the intestines, leading to higher
TRM rates than those without systemic antibiotics before
engraftment (65). These studies suggest the association of
antibiotic usage affecting microbial diversity and GVHD-
related outcomes. Piperacillin-tazobactam and meropenem,
known as broad-spectrum antibiotics that are also effective
against anaerobic bacteria, caused decreased microbiome
diversity during transplantation in mice and humans (39, 66).
In mouse models, these antibiotics lead to microbial injury with
loss of colonic mucosa and intestinal barrier function caused by
mucin-degrading bacteria, Akkermansia muciniphila (39). The
load of anti-anaerobic antibiotic usage was correlated with a
significant decrease in anti-inflammatory Clostridia (AIC)
abundance and aGVHD in pediatric HSCT patients (67). This
decrease was recovered by the administration of AIC after
clindamycin treatment and improved survival in a mouse
GVHD model (67, 68). Among the broad-spectrum antibiotics
administered during HSCT, meropenem showed significantly
decreased microbial diversity and a higher rate of GI-HVHD
onset compared to no antibiotics, but cefepime did not change
the diversity with a trend of increased GI-GVHD onset rates
(69). In a pediatric study, anti-anaerobic antibiotics resulted in a
significant decrease of SCFA-producing bacteria, especially
butyrate-producing commensals and butyrate levels in the
luminal content. These patients developed aGVHD with low
butyrate levels in stools compared to patients without GVHD
(70). Single bacterial taxa dominated by Enterococcus and
Streptococcus was observed in two-thirds of patients with
bloodstream infections around the time of engraftment (71).
The significant elevation of enterococcus expansion was
increased by metronidazole administration, and VRE
bacteremia was significantly increased (3-fold and 9-fold,
respectively). Integrating these studies, although antibiotic
prophylaxis and systemic administration clearly improved
TRM, especially infection-related mortality, we need
comprehensive choices of antibiotic usage around HSCT
periods comparing weights of disease status, donor sources,
history of antibiotic usage, status of microbial injuries, and
other risk factors.
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METABOLIC CHANGES IN
COLONOCYTES

IECs might control the homeostasis that shapes the microbiota
to be beneficial (72). Dysbiosis that caused increased abundance
of facultative anaerobic bacteria, is observed in the population
consuming a high-fat Western-style diet, patients with
inflammatory bowel disease, colorectal cancer, irritable bowel
syndrome or necrotizing enterocolitis (73–80). It has been
proposed that shift of microbial community from obligate to
facultative anaerobic bacteria that can utilize oxygen could be
associated with a disruption in aerobiosis, a concept “oxygen
hypothesis” in mouse inflammatory bowel disease models (81,
82). This microbial shift might be associated with the colonocyte
metabolic dysfunction (31). Disruption of gut homeostasis was
observed in antibiotic treatment that altered IECs metabolism by
depleting microbes that produce SCFAs in a mouse colitis model
(19, 32). Decreased SCFAs increases the inflammatory tone of
the colonic mucosa in mice (83). In the animal model, elevation
of inflammatory signals shifts the metabolism in IECs toward an
aerobic glycolysis, reduced oxygen consumption and high
glucose consumption and high lactate release (84). These
metabolic changes result in a loss of epithelial hypoxia (32).
Increased oxygen concentration elevates the amount of oxygen
in mucosal surface, therefore drives an expansion of facultative
anaerobic bacteria (85). These associations between metabolic
condition in IECs and dysbiosis are not validated in GVHD
settings and the future investigations are required.

Butyrate and Lactase Pathway
Recent evidence has suggested that dysbiosis post allo-HSCT are
related to the butyrate and lactase pathways (86). Butyrate is
produced from non-digestible fiber by anaerobic bacterial
species, including those belonging to Firmicutes, Lachnospiraceae,
Ruminococcaceae, Lactobacillus spp., and Bifidobacterium
adolescentis. Other bacterial phyla including Bacteroides,
Actinobacteria, Fusobacteria, and Proteobacteria are also potent
butyrate producers (87). These bacteria are sensitive to oxidative
stress caused by chemotherapy and irradiation administered
before HSCT, leading to their reduced abundances and the
subsequent decrease in butyrate volume in the lumen. At the
intestinal level, butyrate is a protective molecule against
inflammation, a histone deacetylase inhibitor, and an energy
source for epithelial cells (68, 88). Therefore, decreased butyrate
concentration led to GVHD augmentation due to the disturbance
of intestinal homeostasis and the activation of inflammatory
environment in the intestine. Another mechanism that causes
dysbiosis post-HSCT in GVHD patients involves the domination
of the lactic acid bacteria (LAB) Enterococcus faecium in the
gut (42). In GVHD patients, metabolism of lactose and galactose
is impaired by the overexpression of enzymes and lactases (89).
In adults, lactase is mainly produced by the microbiota,
including species belonging to Actinobacteria, Proteobacteria,
and Firmicutes (90). Each LAB has distinct enzymatic
characteristics and behaves differently depending on each
feature. LABs are mainly gram-positive, acid-tolerant bacteria
August 2021 | Volume 12 | Article 703298

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fujiwara Microbial Metabolites and GVHD
from the genera Lactobacillus, Enterococcus, Streptococcus,
Pediococcus, Lactococcus, and Oenococcus (91). They produce
lactase that catalyzes the conversion of carbohydrates (such as
lactose, glucose, sucrose, and galactose) into lactic acid and
facilitates lactose absorption (92, 93). The reduction in the
number of commensal LAB mediated by conditioning
chemotherapy, radiotherapy, and antibiotics post-HSCT leads
to high lactose concentrations. For example, Enterococci are a
part of the normal intestinal microbiota and can cause clinical
problems. Particularly, Enterococcus faecium and some
Enterococcus faecalis encode genes related to lactose and
galactose metabolism (42). Enterococcus faecium metabolizes
citrate and lactose to produce lactate, whereas E. faecalis can
produce superoxide and H2O2 that damage colonic epithelial
cells (94, 95). These enterococci require lactose for growth
in vitro (lactose auxotroph) and are associated with intestinal
inflammation and damages (96). These pathways were observed
following the expansion of Enterococci early after HSCT in
patients with the increased risk of HSCT-related mortality (43).
Butyrate and lactase pathway could be a target for treating
dysbiosis in HSCT. The analysis of these pathways for TRM
post HSCT has been reviewed in detail previously (89).
MICROBIAL METABOLITES IN GVHD

The intestinal microbiota produces various microbial
metabolites that maintain intestinal homeostasis (97, 98).
These metabolites affect both IECs and immune cells in the
intestine to maintain intestinal barrier function and host
immune responses (97). Changes in microbial composition led
to poor HSCT outcomes; however, to date, there is no conclusive
evidence that changes in gut microbial metabolites affect GVHD
severity and TRM.

Short-Chain Fatty Acids
SCFAs, including acetate, butyrate, and propionate, are products
of fermented carbohydrates by anaerobic commensal bacteria
Clostridia spp (99). SCFAs have multipotent effects on both IECs
and intestinal immune cells (Figure 2). Particularly, butyrate
serves as an energy source for IECs as demonstrated by reduced
autophagy in SPF mice compared to germ-free mice (26). In
addition, SCFAs preserve the intestinal mucosal barrier by
supporting goblet cells via upregulating mucin-related genes.
The supplementation of SCFA-producing bacteria in germ-free
rats showed goblet cell maturation (100–102). SCFAs also
maintain the IEC barrier integrity that prevents pathogenic
bacterial translocation (103). Furthermore, they play an
important role in innate immunity, neutrophils, mononuclear
cells, macrophages, and dendritic cells and act as histone
deacetylase (HDAC) inhibitors with anti-inflammatory effects
(99, 101, 102). SCFAs also affect Tregs to promote differentiation
and anti-inflammatory responses in a mouse colitis model (17).
Moreover, anti-inflammatory IL-10 production from Foxp3-
positive Tregs via HDAC inhibition was observed in germ-free
mice with SCFA supplementation (18, 104). A high-fiber diet
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and acetate activated the inflammasome and promoted IL-18
production, which modulated epithelial repair in murine colitis
model (105). Butyrate also increased IL-18 expression in IECs
and IL-10 expression in DCs and macrophages, thereby inducing
Treg differentiation in mice (106). Recently, a metabolomic
analysis of murine intestine and contents revealed a significant
reduction in butyrate in the IECs from GVHD mice and that the
supplementation of butyrate or butyrate-producing bacteria
ameliorated acute GVHD via HDAC inhibition and gut
integrity maintenance (68, 107). Butyrate and propionate
directly protected IECs via inflammasome activation through
SCFA-sensing receptors in murine GVHD model (108). In
humans, small clinical studies have found that the high fecal
butyrate and propionate concentrations are decreased in acute
GVHD patients and that high circulating butyrate and
propionate concentrations in the blood are associated with
protection from chronic GVHD (70, 107). Other studies
examined fecal SCFA concentrations after allo-HSCT and
reported that the concentrations of butyrate and other SCFAs
correlate with the abundance of butyrate-producing bacteria in
the intestinal microbiota and are higher in patients with
resistance to lower tract respiratory infections (109). However,
the effect of SCFAs on GVHD needs to be examined in patients
after allogeneic HSCT.

During HSCT, recipients have problems that limit oral intake
due to mucositis and receive total parenteral nutrition (TPN). In
both mice and humans, TPN skewed immune responses to pro-
inflammatory conditions (110, 111). Positive nutritional support
using sucrose improved hematopoietic recovery compared to
antibiotic-treated recipients in mice (112). These studies overall
suggest the potential of specific diet elements (prebiotics) during
HSCT. Resistant carbohydrate supplementation can stimulate
SCFA production in the intestine as the microbiota can
metabolize resistant starch (RS) (113). Among various
formulations of RS, that derived from potatoes was identified
as a potent candidate for increasing fecal butyrate levels in
healthy adults (114). Remarkably, RS administration to allo-
recipients around HSCT periods was demonstrated as feasible
and safe and lead to increased fecal butyrate levels concomitant
with high RS degrading and butyrate-producing bacteria in a
human pilot study (115). However, the clinical data on the effects
of prebiotics in acute GVHD are limited. Inulin and fructo-
oligosaccharides have potential as prebiotics in inflammatory
bowel disease patients as they led to the expansion of intestinal
microbial diversity (116, 117). To determine the exact role of
nutritional modulation using RS in the microbiome and
metabolites affecting GVHD severity, clinical trials are
currently ongoing (www.clinicaltrials.gov: NCT02763033). A
clinical trial that evaluating the safety and tolerability of fructo-
oligosaccharides in HSCT patients (NCT02805075) is
also underway.

Bile Acids
Bile acid is a microbial metabolite affected by intestinal microbial
composition (118). Primary bile acids are generated in the liver via
cholesterol catabolism. These primary bile acids are conjugated to
glycine and taurine in the final step of synthesis and are secreted
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into the intestine. Most bile acids are taken up by the IECs and
transported to the liver (119). Secondary bile acids are converted by
microbial enzymes from primary bile acids that were not absorbed.
Two main receptors, the nuclear farnesoid X receptor (FXR) and G
protein-coupled bile acid receptor 1 (GPBAR1; TGR5), are known.
FXR-deficient mice showed abnormal IEC functions, thus causing
bacterial translocation from the intestine (120). TGR5 signaling
from bile acids activates macrophages and inhibits the production of
pro-inflammatory cytokines TNF-a and IL-1 by inhibiting the
nuclear factor-kB (121). Dietary fat-induced taurocholic acid in
IL-10-deficient mice enhanced colitis in mice by altering the
intestinal microbiota and pro-inflammatory Th1 responses (75).
Frontiers in Immunology | www.frontiersin.org 779
While bile acids are not well absorbed in patients with intestinal
GVHD and serum sample analysis of allo-HSCT patients revealed
altered bile acid concentrations, ursodeoxycholic acid, a secondary
bile acid, is clinically used to reduce hepatic complications and
GVHD (122–124). In a recent study, tauroursodeoxycholic acid,
another bile acid, reduced the experimental murine GVHD severity
(124). Tauroursodeoxycholic acid decreased antigen presentation
on IECs, and the apoptosis of IECs without affecting the
microbial composition and graft-versus-leukemia/lymphoma
(GVL) effects. Taurine is a metabolite related to bile acids that
stimulates the Nod-like receptor family protein domain
containing 6 (NLRP6). NLRP6 stimulation leads to innate
FIGURE 2 | Mechanisms of short chain fatty acids on intestinal epithelial cells in the pathophysiology of gastrointestinal GVHD. In the normal condition, short chain
fatty acids (SCFAs) that are metabolites from microbial fermentation of dietary fibers, protect intestinal epithelial cells (IECs) in at least 3ways. (i) G-protein-coupled
receptors (GPRs) on IECs, especially GPR43, sensor SCFAs and signal ERK phosphorylation leading to subsequent NLRP3 inflammasome activation, that promotes
IEC integrity. In graft-versus-host disease (GVHD), decreases of GPRs on IECs and reduced SCFAs from dysbiosis diminish intracellular signaling via ERK-NLRP3
pathway, resulting in IEC damages. (ii) One of SCFAs, butyrate acts as a histone deacetylase inhibitor, and increases various target gene expressions, including anti-
apoptotic BCL-B and the junctional protein JAM (junctional adhesion molecule). These gene expressions result in decreased IEC apoptosis and enhanced junctional
integrity, leading to IEC protection. In GVHD, reduced butyrate fails to protect histones from deacetylation and decreased target gene expression, resulting in low
resistance against allogeneic T-cell injuries. (iii) Butyrate activates peroxisome proliferator-activated receptor-g (PPAR-g) signaling in IECs and promotes mitochondrial
ß-oxidation that produce enough amount of energy to protect and maintain IECs from cellular damages. In GVHD, reduced butyrate might not activate PPAR-g,
resulting in mitochondrial dysfunction for energy production that are inappropriate for IEC protection against allogeneic T-cell injuries. This mechanism is studied in
inflammatory bowel disease but not validated in GVHD. Further investigations are required.
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immune cell activation, increased apoptosis/necroptosis,
inflammasome-related cytokine production, and promotion of
intestinal epithelial integrity (125). Taurine has been reported to
stimulate NLRP6 in IECs and augment GVHD severity in mice
(126). These data suggest that bile acids are promising microbial
metabolites that can be used to reduce GVHD severity.

Aryl Hydrocarbon Receptor Ligands
Aryl hydrocarbon receptor (AhR) modulates mucosal immune
responses via the ligand-activated transcription factor. AhR
ligands are produced from the endogenous and exogenous
pathway in the body. In an endogenous pathway, they are
produced through intestinal microbial metabolism. Lactobacilli,
Fusobacterium, Bacteroides and Enterococcus faecalis convert the
amino acid, tryptophan, into AhR ligands, such as indole-3-
aldehyde and its derivatives (127, 128). In a human GVHD
cohort, preserved microbial diversity and Clostridia spp were
correlated with 3-IS concentrations in the urine (129). In serum
metabolic comparisons of HLA identical donors and recipients,
indolepropionate that was derived from microbiota, was a
smaller amount in recipients at the time of GVHD onset (123).
3-IS is also known as a uremic toxin associated with adverse
outcomes in renal disease patients. In this setting, monocytes
respond to 3-IS through AhR pathway and release TNF-a,
resulting in the pro-inflammatory condition with endothelial
damage leading to cardiovascular disease (130). AhR ligands
maintain IEC barrier functions. AhR-deficient mice have
decreased levels of anti-microbial peptides and intestinal
epithelial lymphocytes and reduced IEC turnover with altered
microbial composition in mice (131). AhR also regulates innate
immunity in the intestine by expanding the IL-22-producing
retinoic acid receptor-related orphan receptor gt (RORgt)+
group 3 innate lymphoid cells (ILC3s) (132), thereby affecting
adaptive immunity (133). In murine GVHD models, a few
investigations were reported. Recipient mice that exposed to
lethal irradiation or chemotherapeutic conditioning regimens
had lower urinary concentrations of 3-IS (134). The
supplementation of indole-3 carboxaldehyde, an indole
derivative, ameliorated gut epithelial damages with reduced
inflammatory cytokines, leading to improved survival. In
murine GVHD models, AhR-deficient T-cells ameliorated
GVHD through the expansion of peripherally induced Tregs
(135). AhR ligand levels were decreased in patients at the onset of
GVHD (123). However, the mechanism by which the AhR
pathway affects GVHD in mice and humans remains unknown.

Tyrosine Derived Metabolites
Tyrosine derived metabolites are produced from tyrosine
fermentation by microbiota in the large intestine (136).
Tyrosine is one of the non-essential amino acids that is
involved in catecholamine synthesis (137). The function of
tyrosine has been well studied in brain physiological and
pathological conditions (138). In a mouse GVHD model, the
metabolic profiles in recipient mice have been determined (139).
The low concentration of tyrosine in the gut was observed in
GVHD mice, and the tyrosine derived metabolites were
decreased in the mice that has less Blautia and Enterococcus.
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Dietary supplementation of tyrosine ameliorated GVHD and
restored the microbial diversity. In GVHD patients, the
metabolite markers in the serum have been investigated (140).
Alteration of tyrosine derived metabolites, such as p-cresol
sulfate and 3-phenylpropionate, were identified. Also, lysine
and phenylalanine were suggested as the altered metabolites.
To elucidate the importance of these metabolites, further
research is necessary.

Choline Derived Metabolites
Choline derived trimethylamine N-oxide (TMAO) results from
oxidation by hepatic flavin monooxygenases of trimethylamine
(TMA) that is a microbial metabolite of choline and other
choline containing compounds in the diet (141). TMAO is well
known to play a role in the initiation of atherosclerosis and
thrombosis in vascular inflammation and endothelial function
(142). TMAO and choline induced the GVHD progression in a
murine GVHD model (143). TMAO and choline induces M1
macrophages and M1-like cytokines in tissues and bone marrow
via NLRP3. TMAO are produced by the wide range of bacteria,
Anaerococcus hydrogenalis, Clostridium asparagiforme,
Clostridium hathewayi, Clostridium sporogenes (144).

Riboflavin (Vitamin B2) Derived
Metabolites
Riboflavin derived metabolites are also known to have an
important role in the GVHD pathogenesis. Various bacteria
including E. coli, Staphylococcus aureus and Pseudomonas
aeruginosa, produce these metabolites (145). These metabolites
expand the numbers of mucosal associated invariant T-cells
(MAIT) (146). Vitamin B2/B9 derived metabolites are
presented by MR1, the MHC class I-like molecule, to MAIT
cells producing IFN-g, IL-17 and antibacterial products. In
mouse and human GVHD, studies involving riboflavin derived
metabolites and GVHD have been accumulating, but there is still
no direct evidence that the riboflavin concentration in feces has a
direct impact on HSCT complications and outcomes (147–150).
In cord blood transplantation, microbial expression of enzymes
in the riboflavin synthesis pathway was associated with greater
MAIT reconstitution after HSCT (151).

Polyamines
Polyamines are polycationic molecules found in the
gastrointestinal tract and are produced by microbial
metabolism. They have various biological functions, including
IEC barrier function, innate immunity, pro-inflammatory
cytokines, and adaptive immunity (152). Spermine, a
polyamine, preserves TGF-b and IL-10 production by
inhibiting pro-inflammatory cytokine production in activated
macrophages (153). Moreover, the amino acid arginine is
metabolized to produce polyamines and decreases the
production of pro-inflammatory cytokines when administered
with bifidobacterial LKM512 (154). The oral supplementation of
spermine or spermidine promoted intraepithelial CD8+ T-cell
maturation and CD4+ T-cell increase in the lamina propria and B
cell increase in the rat spleen (155). However, the effects of
polyamines on GVHD have not yet been well studied. The oral
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microbiome is suggested to play a role in pathological conditions
and mucositis in allo-HSCT settings (156, 157). During allo-
HSCT, oral microbiota derived metabolites are altered in patients
with severe oral mucositis, and reduction of N-acetylputrescine
and agmatine, metabolites involved in the polyamine pathway,
were reported from salivary metabolic analysis in patients (158).

Fecal Microbiota Transplant
Alterations in intestinal microbiota composition and its
contribution to allo-HSCT outcomes have been studied to
determine the role of the intestinal microbiota in acute GVHD
severity. The strategy of manipulating or improving dysbiosis
post allo-HSCT via fecal microbiota transplant (FMT) were
introduced in the HSCT field because FMT treatment for
Clostridium difficile infection in non-HSCT settings has been
successfully reported (159). Recently, the utility of FMT in
patients with refractory GVHD after allo-HSCT has also been
reported (160). After FMT treatment, dysbiosis improvement
was observed as evidenced by increased beneficial bacteria and
resolution of clinical symptoms (161). The effects of FMT from
third parties were also assessed in a pilot study, and the feasibility
and effects on microbiome diversity in recipients have been
reported (162). An increase of Clostridiales abundance was
correlated with a significant increase of 3-IS concentration in
the urine in this study. In a randomized trial involving
autologous FMT early after allo-HSCT without broad-
spectrum antibiotics, the expansion and reestablishment of gut
microbiota diversity in autologous FMT recipients was reported
(163). Although only a limited number of studies regarding FMT
and GVHD treatment have been conducted, they have reported
similar results (164). FMT products were freshly processed or
frozen until subsequent use. The routes of administration mainly
include oral in packed capsules, nasogastric/nasoduodenal tubes,
or enema. Most FMT recipients were treated using third-line or
more therapies, whereas some received second-line therapy after
steroid failure. Complete response rate was high upon treatment
with second-line therapy. Responses to treatment were observed
within an average 14 days, with a median of two FMT
administrations. Changes in the stool microbiome were
analyzed using bacterial sequences. FMT recipients had
increased diversity and enrichment of Bacteroides ,
Lactobacillus, Bidifobacterium, and Faecalibacterium compared
with pre-FMTs (160). These changes were observed only when
anti-anaerobic systemic antibiotics were discontinued; however,
the fourth generation cephem did not affect the efficacy of FMT.

The gut microbiome comprises communities of bacteria,
fungi, and viruses that affect each other. Similar to bacterial
dysbiosis, alterations in the gut viral community are also
associated with gut GVHD (165). For instance, human herpes
virus 6 was detected in the serum, and picornavirus in the stool of
acute GVHD patients (166). The intestinal fungal composition
(mycobiome) after HSCT remains not well investigated. The
expansion of pathogenic Candida species was associated with a
substantial loss of bacterial diversity, especially that of anaerobes,
and increased the risk of fungal bloodstream infections (167).
There is a paucity of data regarding the changes in the
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mycobiome and virome in allo-HSCT post-FMT (168). In a
GVHD patient with repeated FMT treatments, longitudinal
studies observed dynamic changes in the microbiome,
mycobiome, and virome in the stool. In contrast to the
expansion of intestinal microbial composition post-FMT, the
gut mycobiome was first expanded and decreased after multiple
FMTs. The gut virome community varied substantially over time
with a stable increase in diversity. Furthermore, increased
microbial diversity post-FMTs was consistently reported;
however, the suggested mechanisms need to be elucidated,
including the changes in the microbial metabolites and the key
bacterial strains.

Overall, most studies have concluded that FMTs are generally
safe and effective for steroid-refractory GVHD patients.
However, infectious complications and deaths have been
reported, including death due to transmitted drug-resistant
bacteria from the FMT donor, bacteremia not from FMT
products, diarrhea due to norovirus in the FMTs, and other
infections, and were attributed to the immunocompromised
states of the patients. Importantly, critical complications
related to the recipient death have been reported, such as the
transmission of extended spectrum beta-lactamase producing
Escherichia coli that was proven using genomic sequencing from
FMT products (169). Before the clinical application of FMTs, the
preparation of FMT products should be standardized, and
universal stool banks are warranted (170). The precise practical
aspects of FMT treatments have been reviewed in detail
elsewhere (171).
FUTURE PERSPECTIVES

The effects of dysbiosis post-HSCT on GVHD have been
investigated. Currently new studies on mycobiome and virome
in the intestine post-HSCT are focused because intestinal
environments were composed of various microorganisms other
than microbiota. As viruses and fungi are also part of the gut
microbiome, they are expected to provide a deeper
understanding of the connection between the microbiome and
GVHD. Microbial-derived metabolites, such as SCFAs and
indoles, play critical roles in promoting intestinal homeostasis
to overcome unwanted antibiotic influences and unfavorable
outcomes after HSCT. There are various targets that can affect
the results of HSCT, including microbial metabolites and specific
microbial strains that potentiate as prebiotics, probiotics, or FMT
in the clinical settings. All potential interventions are still under
investigation or not yet determined. However, the mechanisms
that cause dysbiosis post-HSCT, excluding broad-spectrum
antibiotics, remain elusive. Because IECs utilize oxygen for
energy, the intestinal environment has low oxygen levels (26,
89), resulting in the domination of anaerobic bacteria in the gut
microbiota. As shown in an inflammatory bowel disease model,
the metabolic change through PPAR-g signaling in IECs might
lead to dysbiosis in GVHD, which still require further
investigation (19). The role of SCFAs in cell metabolism
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suggests that tissue damage can be reduced by directly
intervening target cells without substantially affecting the
immune system (68, 172). Tolerance mediated by tissue
homeostasis reduces immunological damage from T-cells and
other cells. In addition, GVHD and GVL can also be separated.
Furthermore, the connection between GVL effects and dysbiosis
should be explored to identify potential strategies that boost
immune reactions.

Understanding the precise mechanisms and conditions in the
intestinal environment can promote the development of
prophylactic/therapeutic strategies targeting single or combined
modalities (such as FMT or FMT + butyrate, combinations of
metabolites) to reduce immunological reactions originating from
the gut (Figure 3). Furthermore, investigating the crosstalk
between local microbiota and injuries in target organs, such as
the lungs, could unveil other strategies to prevent HSCT-related
complications (173).
Frontiers in Immunology | www.frontiersin.org 1082
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CD4+CD25+Foxp3+ regulatory T cells (Tregs) are functionally distinct subsets of mature T
cells with broad suppressive activity and have been shown to play an important role in the
establishment of immune tolerance after allogeneic hematopoietic stem cell
transplantation (HSCT). Tregs exhibit an activated phenotype from the stage of
emigration from the thymus and maintain continuous proliferation in the periphery. The
distinctive feature in homeostasis enables Tregs to respond sensitively to small
environmental changes and exert necessary and sufficient immune suppression;
however, on the other hand, it also predisposes Tregs to be susceptible to apoptosis in
the inflammatory condition post-transplant. Our studies have attempted to define the
intrinsic and extrinsic factors affecting Treg homeostasis from the acute to chronic phases
after allogeneic HSCT. We have found that altered cytokine environment in the prolonged
post-HSCT lymphopenia or peri-transplant use of immune checkpoint inhibitors could
hamper Treg reconstitution, leading to refractory graft-versus-host disease. Using murine
models and clinical trials, we have also demonstrated that proper intervention with low-
dose interleukin-2 or post-transplant cyclophosphamide could restore Treg homeostasis
and further amplify the suppressive function after HSCT. The purpose of this review is to
reconsider the distinctive characteristics of post-transplant Treg homeostasis and discuss
how to harness Treg homeostasis to optimize posttransplant immunity for developing a
safe and efficient therapeutic strategy.

Keywords: regulatory T cell, graft-versus-host disease, interleukin 2, immune checkpoint inhibitor, post-
transplant cyclophosphamide
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment strategy for
patients with various hematological disorders (1). However, graft-versus-host disease (GVHD)
remains a cause of significant morbidity and mortality following HSCT (2, 3). The pathophysiology
of acute GVHD is the response of donor-derived effector T cells to recipient tissues, including the
skin, gut, and liver. During the early phase after HSCT, these immune reactions also evoke
dysregulated reconstitution of T and B cell subsets, leading to the basic pathogenesis of the
org August 2021 | Volume 12 | Article 713358188
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development of chronic GVHD (4). Over the last decade, there
has been increasing evidence showing that regulatory T cells
(Tregs) play a critical role in the regulation of acute and chronic
GVHD, and the robust reconstitution of Tregs is needed to
reestablish a well-balanced immune system that can maintain
appropriate levels of peripheral tolerance.

Tregs are a subpopulation of CD4+ T cells that specifically
retain their immunosuppressive functions. Tregs were initially
identified as CD4+CD25+ T cells (5), and subsequent studies have
shown that Forkhead box P3 (Foxp3) is a master transcription
factor for this subset (6). Mice lacking Foxp3 expression were seen
to develop lethal autoimmune diseases (7), and humans with a
mutation in the Foxp3 gene are known to develop immune
dysregulation, polyendocrinopathy, enteropathy, and X-linked
syndrome, which is a severe multiorgan autoimmune disease
(8). Tregs comprise 5–10% of peripheral blood CD4+ T cells in
healthy individuals and play an essential role in maintaining
peripheral self-tolerance and preventing autoimmune diseases (9,
10). In the context of allogeneic HSCT, CD4+CD25+ cells were
initially found to be indispensable for immune tolerance against
alloantigens using an in vitro mixed lymphocyte reaction assay
(11). Later, using murine GVHD models, depletion of CD25+

cells from the donor inoculum exacerbated the severity of GVHD,
and co-infusion of ex vivo cultured CD4+CD25+ cells resulted in
significant inhibition of rapidly lethal GVHD in vivo (12). In
addition to murine studies, the analyses of clinical samples from
patients after HSCT demonstrated that the expression of the
Frontiers in Immunology | www.frontiersin.org 289
Foxp3 gene in peripheral blood mononuclear cells was negatively
correlated with the incidence and severity of clinical acute and
chronic GVHD (13, 14). High Treg contents in the donor graft
were associated with the low incidence of acute GVHD (15).
Further, prospective monitoring of T cell reconstitution
demonstrated that the unbalanced recovery of Tregs and
effector T cells contributed to the development of chronic
GVHD (16, 17). Notably, studies have shown that Tregs do not
abrogate the cytotoxic activity of effector T cells against leukemia
cells, both in vitro and in vivo, suggesting that Tregs could
separate GVHD from graft-versus-tumor (GVT) activity
mediated by donor-derived effector T cells (18). However, in a
human clinical setting, CD25+ T cell-depleted donor lymphocyte
infusion (DLI) showed a better disease control without increasing
the incidence of acute GVHD than unmodified DLI in
contemporaneous patients, indicating the possibility of Treg
suppressive function against the GVT effect (19).

In general, human T cells express CD25 and Foxp3 after
antigen presentation and undergo cell activation. In contrast,
Tregs highly express such activated markers during migration
from the thymus and maintain continuous proliferation in the
periphery (Figure 1). The distinctive feature in homeostasis
enables Tregs to respond sensitively to small environmental
changes and exert necessary and sufficient immune
suppression. However, on the other hand, it also predisposes
Tregs to be susceptible to apoptosis. In patients after allogeneic
HSCT, Tregs are exposed to a profound inflammatory
FIGURE 1 | Development and maintenance of regulatory T cells. Tregs are positively selected from a population with a higher avidity of TCR/MHC-peptide in the
thymus and emigrate to the periphery. Tregs already exhibit an activated phenotype at emigration to the periphery and undergo rapid homeostatic proliferation.
Constitutive proliferation predisposes Tregs to apoptosis. In contrast, Tcons generally undergo slower proliferation and, thus, stable homeostasis with lower
apoptosis. Tcon, conventional T cell; Treg, regulatory T cell; RTE, recent thymic emigrant; TCR, T-cell receptor; MHC, major histocompatibility complex.
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environment affected by various endogenous factors, including
severe lymphopenia, allogeneic antigen stimulation, and altered
cytokine milieu. In addition to such endogenous factors after
HSCT, various therapeutic immune modulators have been
increasingly used in the peri-transplant period in recent years
(Figure 2). Our studies have elucidated that both endogenous
and exogenous factors have major impacts, particularly on Treg
homeostasis and clinical outcomes after allogeneic HSCT.

In this review, we outline the characteristics of posttransplant
Treg homeostasis and discuss how to harness Treg homeostasis
to optimize posttransplant immunity. In particular, we would
attempt to define the intrinsic and extrinsic factors that affect
Treg homeostasis from the acute to chronic phases after
allogeneic HSCT.
CHARACTERISTICS OF TREG
HOMEOSTASIS AFTER HSCT

The Generation and Maintenance of Tregs
Tregs are positively selected from populations with a higher
avidity of T cell receptor (TCR)/major histocompatibility
complex-peptide in the thymus and emigrate to the periphery
(Figure 1). Therefore, Tregs can be considered as a
physiologically preactivated population and show distinctive
homeostasis in the periphery (Figure 1). Tregs have a high
turnover and fine sensitivity to a variety of signals from the
environment to regulate the cell number, localization, and
Frontiers in Immunology | www.frontiersin.org 390
function required to efficiently react to delicate changes in the
immune system (20). Peripheral Tregs exhibit a high basal
proliferation rate compared with conventional T cells (Tcons)
in both mice (21) and humans (22); however, the high
proliferation rate of Tregs is counterbalanced by a high rate of
apoptosis (16). Interleukin-2 (IL-2), which is mainly produced by
effector T cells, plays a pivotal role in Treg homeostasis (20).
Importantly, Tregs cannot produce IL-2 independently;
therefore, homeostasis critically depends on the extrinsic
cytokine environment of the cell.

The Reconstitution of T Cell Subsets and
Immune Tolerance
The reconstitution of T cell subsets after HSCT is a polymorphic
and long-term process. In general, the initial phase of T cell
reconstitution is primarily dependent on the peripheral
expansion of mature T cells that are contained in the stem cell
graft (23). This process is promoted by lymphopenia-induced
signals and the stimulation of donor T cells by alloantigens (16).
Hematopoietic stem cells (HSC) also differentiate through the
thymus, and thymus-derived T cells are then exported to the
periphery. However, thymus-dependent generation of donor T
cells is generally delayed and incomplete in adult patients
because of natural thymic involution and damage, especially in
thymic epithelial cells, resulting from high-dose chemotherapy
and irradiation administered as part of the conditioning regimen
(24–28). Once naïve T cells are exported into the periphery from
the thymus, they are subject to homeostatic signals that regulate
FIGURE 2 | The balance between effector T cells and Tregs in the distinct post-HSCT environment. After HSCT, donor-derived T cells are exposed to a variety of
endogenous factors, including lymphopenia, alloantigens, danger signals, and cytokine storm, which affect the reconstitution of donor-derived immune cells. In
addition, therapeutic interventions that have immunomodulating effects during the peri-transplant period also affect donor-derived T cell homeostasis. Unbalanced
immune reconstitution may provide a basis for the pathogenesis of GVHD. In contrast, favorable Treg recovery in the post-transplant environment results in the
induction of immune tolerance. GVHD, graft-versus-host disease; Treg, regulatory T cell; HSCT, hematopoietic stem cell transplantation; IL-2: interleukin 2, ICI,
immune checkpoint inhibitor; PTCy, post-transplant cyclophosphamide.
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the expansion and contraction of the T cell population to
maintain the total number of T cell subsets at an appropriate
level. Although the transition of peripheral T cells frommature T
cells in the stem cell graft into thymic-generated naïve T cells is
commonly observed in each T cell lineage after HSCT; each T cell
subset is subject to distinct homeostatic controls in the periphery
(29). Particularly, Treg homeostasis appears to be distinct from
Tcon, and this may contribute to an imbalance between Treg and
Tcon (Figure 2) (10, 22). We previously studied long-term Treg
reconstitution after clinical HSCT and the impacts on the
development of chronic GVHD (16). Our data indicated that
thymic generation of Tregs was markedly impaired, while this
subset maintained a significantly higher level of proliferation as
compared to Tcons. Treg proliferation in vivo appears to be
driven primarily by CD4 lymphopenia. Importantly, high levels
of Treg proliferation are counterbalanced by its increased
susceptibility to apoptosis. Altered Treg homeostasis in
response to the homeostatic pressure under prolonged CD4
lymphopenia resulted in the selective peripheral depletion of
Tregs and the subsequent development of chronic GVHD.

A recent study that analyzed CD4+Treg heterogeneity with a
large panel of functional markers using mass cytometry by time
of flight revealed that in addition to the numerical deficiency,
reduced heterogeneity of CD4+Tregs was associated with the
development of chronic GVHD (30). Thus, the thymic
generation of de novo Tregs from donor HSC plays an
essential role in long-term immune reconstitution. In addition
to Treg heterogeneity, foxp3 stability (31) is also important for
Treg survival and GVHD suppression (32–34). The post-
transplant inflammatory environment may affect the genetic
stability of Tregs and should be taken into consideration for
the understandings of Treg homeostasis after HSCT.

In addition to donor-derived Tregs, host-derived Tregs
appear to play a crucial role in immune tolerance, especially
during the very early phase after HSCT. Since Tregs are relatively
radioresistant (35), murine studies showed that host Tregs could
survive for several weeks after HSCT and contribute to
suppressing the alloimmune response in the experimental mice
model in the low level of irradiation before HSCT (36).

The Basic Framework of Treg
Reconstitution After Clinical HSCT
Based on the above findings, we proposed a basic framework of
Treg reconstitution after clinical HSCT (Figure 3) (37). It comprises
four phases: Treg expansion, transition, repopulation, and
maintenance. Although previous studies have suggested that host-
type Tregs show a temporary expansion immediately after HSCT
after non-myeloablative conditioning, the kinetics of host-Tregs
after HSCT is left out from this schema to simply discuss the donor-
Treg engrafting processes.

Phase 1: Expansion of Graft-Derived Tregs
During the first month post-HSCT, donor stem-cell graft-derived
mature Tregs promptly expand in response to lymphopenia and
alloantigens. The expansion peaks around the first month after
HSCT and appears to be contracted by activation-induced cell
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death (AICD). It remains unclear whether some part of graft-
derived Tregs would survive as functional memory suppressor
cells for a long time after HSCT (38).

Phase 2: Transition of Peripheral
Treg Source
The emergence of HSC-derived Tregs is generally delayed
because of thymic dysfunction after HSCT; therefore, the total
number of Tregs in the periphery decreases after the contraction
of graft-derived Tregs (transitional phase). The decline in the
number of Tregs in this phase may be associated with the late
onset of acute GVHD or overlap syndrome.

Phase 3: Repopulation and Relocation of
Thymus-Generated Tregs
After a dip in the number of Tregs in Phase 2, it takes about a
year for the number of circulating Tregs to increase and
approach the normal range. It is much faster than the
reconstitution of Tcon subsets, which often reach a normal
range within over 2 years (16). Treg repopulation in this phase
is mainly constituted by HSC-derived Tregs. Although thymic
generation of Tregs is markedly impaired after HSCT, newly
generated Tregs maintain higher levels of proliferation during
this phase. Proliferation of Tregs is relatively aggressive as
compared to other Tcons, resulting in high levels of the Treg/
Tcon ratio and the Treg/CD8T ratio in this phase (16, 17). The
FIGURE 3 | Basic framework of Treg reconstitution after HSCT. The basic
framework of Treg recovery after HSCT consists of four phases. In the first
month after HSCT, lymphopenia-driven peripheral proliferation of graft-derived
Tregs (shown in green) induces the initial expansion of this subset, which is
important for preventing acute GVHD (Phase 1). The total number of Tregs
transiently decrease between the contraction of expanded graft-derived Tregs
and the emergence of HSC-derived Tregs (shown in red) (Phase 2).
Prolonged lymphopenia in the first year promotes the continuous aggressive
proliferation of HSC-derived Tregs, which contributes to the recovery of total
Treg cells and provides an essential basis for long-term immune tolerance
(red solid line) (Phase 3). However, highly proliferative Tregs can fail to
maintain homeostasis due to the high susceptibility to apoptosis, and
exhaustion of the Treg population could be a trigger for refractory GVHD
(red dotted line) (Phase 4). GVHD, graft-versus-host disease; Treg, regulatory
T cell; HSC, hematopoietic stem cell.
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recovery of thymus-generated Tregs is highly influenced by age-
related natural thymic involution, thus Treg kinetics in Phase 3
should be carefully evaluated in the pediatric transplant cohorts.

Phase 4: Maintenance of HSC-
Derived Tregs
As only naïve Tregs are capable of aggressive proliferation, the
stable emergence of naïve Tregs from the thymus is thought to be
critical for the maintenance of Treg homeostasis. Tregs can
repopulate by compensatory homeostatic proliferation in Phase
3, even in patients with severe thymic damage; however, high
levels of Treg proliferation in prolonged lymphopenia are
counterbalanced by increased susceptibility to apoptosis, 6–9
months after HSCT. Importantly, peripheral depletion based on
abnormal homeostasis is observed only in Tregs, but not in other
Tcons, resulting in the imbalance of lymphocyte subsets, which
provides a fundamental basis for the development of chronic
GVHD (16, 39, 40).

Treg Migration After HSCT
Appropriate circulation and localization of Treg are crucial
for systemic immune suppression. Luciferase-expressing
Tregs enabled tracking the tissue migration and survival of
Treg longitudinally in mice HSCT model. Transferred Tregs
proliferated in secondary lymphoid organs and sequentially
migrated and localized into peripheral tissue after allogeneic
stimulation in vivo (41). The initial priming of Tregs occurring in
the secondary lymph node required CD62L expression on Tregs
to migrate into lymphoid organs and protect from GVHD
lethality (42). The proinflammatory environment during the
early period after HSCT is essential for early Treg expansion
and migration to GVHD sites. These Tregs exhibited sufficient
suppressive function for alloreactive effector T cell proliferation
in lymphoid organ and peripheral tissue (41).

The above model of Treg reconstitution is based on
the number of Tregs in peripheral blood after clinical
transplantation (16, 17). Most clinical studies test Tregs in
peripheral blood rather than lymph nodes or target peripheral
tissues, while mouse studies often test Tregs in the spleen and
lymph nodes. Therefore, interpretation of the results needs to be
carefully considered. Tregs at each site after HSCT may have
different properties and functions for the overall regulation of
allogeneic immunity.
EFFECTS OF LOW-DOSE IL-2 ON
TREG HOMEOSTASIS

IL-2 and Treg
It was initially found that IL-2 stimulates naïve T cell
proliferation and generates effector and memory T cells. Later,
several reports have shown that the germline knockout of IL-2
(43, 44) or blocking of IL-2 (45) or CD25 (46) results in
autoimmune diseases, suggesting that IL-2 plays an essential
role in immune tolerance. After identifying Tregs, IL-2 is now
known as a critical homeostatic cytokine for Treg function (47),
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Treg differentiation in the thymus, and Treg expansion in the
periphery (48, 49). The IL-2 receptor (IL-2R) is expressed as an
intermediate-affinity dimer (IL-2Rb and IL-2Rg) or high-affinity
trimers, which include IL-2Ra (CD25). Tregs constitutively
express high-affinity to IL-2 receptors, which enables Tregs to
respond to a small amount of IL-2, which other T cell subsets do
not respond to. Initially, low-dose IL-2 was used to prevent
disease recurrence owing to the GVT effect from natural killer
(NK) cells, which also express CD25 in a steady state (50). In this
pioneering study, low-dose IL-2 (2–6 × 105 IU/kg/day) was
administered for up to 3 months, and only one patient
developed acute GVHD. Although the effect of low-dose IL-2
on lymphocyte subsets could not be fully evaluated because Treg
had not been defined at the time of the study, the follow-up study
revealed that the use of low-dose IL-2 induced the increasing
Tregs in patients (51). The results led to the subsequent project of
low-dose IL-2 therapy which aimed to reconstruct immune
tolerance by increasing Tregs in patients with chronic
GVHD (52).

Low-Dose IL-2 for Chronic
GVHD Treatment
Based on the theory that Tregs preferentially respond to low-
dose IL-2, we conducted a phase 1 trial of administering low-
dose IL-2 therapy daily in patients with steroid-refractory
chronic GVHD (SR-cGVHD). In this trial, a total of 29
patients were enrolled, and the maximum tolerated dose of IL-
2 was 1 × 106 IU/m2; none of the patients experienced
progression of chronic GVHD or relapse of hematologic
cancers. Of the evaluable 23 patients, 12 patients had a
major response, and the number of CD4+Tregs was
preferentially increased in all patients (53). A subsequent phase
2 trial evaluated the efficacy of daily IL-2 (1 × 106 IU/m2)
administration for 12 weeks in 35 adult SR-cGVHD patients.
The treatment was well tolerated, with 20 of 33 evaluable patients
demonstrating clinical response at multiple chronic GVHD sites.
The phase 2 trial also showed a rapid increase in the absolute
number of Tregs and a rapid increase in the Tregs/Tcons
ratio (54).

To elucidate the biological mechanisms of low-dose IL-2, we
examined the effects of daily IL-2 therapy on the homeostasis of
CD4+ T cell subsets after transplantation (55). We first
demonstrated that chronic GVHD is characterized by
constitutive phosphorylation of Stat5 in Tcon, associated with
elevated levels of IL-7 and IL-15 and relative functional
deficiency of IL-2. This was promptly corrected after IL-2
therapy, which resulted in the selective increase of Stat5
phosphorylation in Tregs and a decrease in pStat5 in Tcons.
This was associated with profound changes in Treg homeostasis,
including increased proliferation, increased thymic export, and
enhanced resistance to apoptosis (55). A single cell mass
cytometry analysis confirmed that low-dose IL-2 preferentially
activated p-STAT5 in Helios+ naïve Tregs (56), promoted an
increase in the population, and enhanced the suppressive
function. In addition to increasing the number of Tregs by
low-dose IL-2, it may also be important to increase the T cell
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receptor (TCR) diversity of Tregs. Previous studies have already
shown that the limited TCR diversity of Tregs may be associated
with autoimmune diseases (57, 58) and GVHD in the
experimental models (59). A recent study using samples from
patients who received low-dose IL-2 demonstrated that the
increased Treg diversity after IL-2 treatment was associated
with the improvement of clinical symptoms of chronic GVHD
(60). Taken together, low-dose IL-2 therapy restores Treg
homeostasis and promotes the reestablishment of immune
tolerance in patients with chronic GVHD.

To reconsider the optimum algorithm of IL-2 intervention for
safe and efficient Treg expansion, we conducted a murine model
study, and found that the daily administration might not be
required and the intermittent administration within threshold
could be sufficient for the maintenance of expanded Tregs after
the initial intensive IL-2 intervention (61). Based on the idea, we
have designed and started a multicenter phase I/IIa clinical trial
of low-dose IL-2 for patients with SR-cGVHD (62). In the
protocol, IL-2 treatment is composed of two sequential phases:
the induction phase and the maintenance phase. In the induction
phase, IL-2 is subcutaneously administrated once per day for 4
weeks. In the subsequent maintenance phase, IL-2 is
subcutaneously administrated three times per week for
following period up to 1 year. The study had been completed
and showed the favorable results with the stable immunological
and clinical effects (63). Data are now being analyzed
for publication.

Further studies are needed to determine the optimal dosage,
timing, duration, and combination of low-dose IL-2 therapy in
patients with chronic GVHD. Recently, engineered Treg-
selective human IL-2 was developed in humanized mice during
xenogeneic GVHD (64), and Efavaleukin Alfa (AMG-592), a
human IL-2 mutant designed to have greater Treg selectivity and
longer half-life compared with recombinant IL-2, is now under a
clinical trial for patients with SR-cGVHD (NCT03422627).
Additionally, a phase 1 clinical trial focusing on the
combination of donor-Treg infusion followed by low-dose IL-2
for SR-cGVHD is also in progress (NCT01937468).
EFFECTS OF IMMUNE-CHECKPOINT
INHIBITORS ON TREG HOMEOSTASIS

Immune checkpoints play an important role in the activation of
effector T cells and the regulation of cytotoxic activity. In
addition to this, previous studies have shown that they play a
pivotal role in the homeostasis and function of Tregs, which
originally exhibit an activated phenotype.

PD-1 is an immune checkpoint receptor that attenuates T-cell
activation by interacting with its ligands, PD-L1 and PD-L2 (65).
However, the exact role of PD-1 in the immune suppressive
function of Tregs remains unclear. PD-1-deficient Tregs
improved the symptoms of autoimmune pancreatitis in a
mouse model (66), while in human glioblastoma tissues, Tregs
expressing a high level of PD-1 had an exhausted phenotype and
reduced immunosuppressive function (67). Moreover, in
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patients with gastric cancer who developed hyper-progressive
disease after PD-1 blockade, tumors possessed highly
proliferative Tregs after treatment (68). These studies suggest
that PD-1 may regulate the immunosuppressive function of
Tregs. In contrast, in a mouse chronic infection model, PD-1
blockade attenuated immunosuppression by Tregs, mediated by
direct interaction of PD-1 on Tregs with PD-L1 on CD8+ T cells
(69). These discrepant results regarding the role of PD-1 on the
suppressive function of Tregs might be explained by the
differences in the class of Tregs (70).

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is an
inhibitory checkpoint molecule. Tregs constitutively express a
high level of CTLA-4, whereas Tcons express CTLA-4 only after
activation (71). CTLA-4 competes with CD28 for CD80/CD86
ligands, resulting in the inhibition of co-stimulatory signals (72).
CTLA-4 blockade was the first immune checkpoint inhibitor
(ICI) approved for clinical use, and the mechanisms of the anti-
CTLA-4 blockade were distinct from those of PD-1 blockade (73,
74). Regarding the effect of Tregs, several preclinical studies
indicated that the anti-tumor effects of CTLA-4 blockade were
dependent on the depletion of CTLA-4-expressing Tregs in the
tumor microenvironment via antibody-dependent T cellular
cytotoxicity, leading to an increase in the CD8+/Treg ratio
(70). However, anti-CTLA-4 immunotherapy for patients with
solid cancers did not deplete Tregs (75); therefore, further
analyses to address the role of CTLA-4 in Tregs in various
settings are warranted.

The Effect of PD-1 on Treg Homeostasis
During Low-Dose IL-2 Therapy
Low-dose IL-2 therapy increased circulating Tregs and improved
clinical symptoms of chronic GVHD; however, the mechanisms
that regulate Treg homeostasis during IL-2 therapy have not
been well studied. To elucidate these regulatory mechanisms, we
examined the role of inhibitory coreceptors on Tregs during IL-2
therapy in a murine model and in patients with chronic GVHD
(76). Murine studies demonstrated that low-dose IL-2 selectively
increased Tregs and simultaneously enhanced the expression of
PD-1, especially on CD44+CD62L+ central-memory Tregs,
whereas the expression of other inhibitory molecules, including
CTLA-4, LAG-3, and TIM-3 remained stable. PD-1-deficient
Tregs showed rapid Stat5 phosphorylation and proliferation
soon after IL-2 initiation; however, Tregs became proapoptotic
with higher Fas and lower Bcl-2 expression. As a result, the
positive impact of IL-2 on Tregs was completely abolished, and
Treg levels returned to baseline despite continued IL-2
administration (Figure 4). We also examined circulating Tregs
from patients with chronic GVHD who were receiving low-dose
IL-2 and found that IL-2-induced Treg proliferation was
promptly followed by increased PD-1 expression on central-
memory Tregs. Notably, clinical improvement of GVHD was
associated with increased levels of PD-1 on Tregs, suggesting that
the PD-1 pathway supports Treg-mediated tolerance. These
studies indicate that PD-1 is a critical homeostatic regulator of
Tregs by modulating proliferation and apoptosis during IL-
2 therapy.
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The Effect of PD-1 on Treg Homeostasis
After HSCT
It has been observed that PD-1 blockade therapy is an effective
strategy for hematological malignancies such as classical
Hodgkin lymphoma (cHL) and it has made it possible to
bridge chemotherapy-refractory patients to allogeneic HSCT
(77–79). However, PD-1 blockade during the peri-transplant
period theoretically enhances the donor effector T cell response,
leading to an increased risk of severe GVHD. A pioneering
murine model study demonstrated that PD-1 blockade potently
enhanced T cell alloresponses both in vitro and in vivo, and the
effect of PD-1/PD-L1 blockade was largely dependent on interferon
(IFN) production (80). A subsequent study evaluating the role of
PD-1 ligand for GVHD demonstrated that PD-1/PD-L1 blockade,
but not PD-1/PD-L2 blockade, markedly accelerated GVHD
lethality; suggesting an important differential role of host PD-L1
and PD-L2 in controlling GVHD (81). In the clinical setting,
retrospective studies reported that pretransplant PD-1 blockade
increased the risk of severe acute GVHD (82–84). Nieto et al.
investigated clinical samples of patients treated with nivolumab
before HSCT and demonstrated that nivolumab was detectable in
the plasma for up to 56 days after HSCT was performed, and this
residual nivolumab could bind to and block PD-1 expressed on
donor effector T cells during this period. They also showed that
pretransplant nivolumab resulted in a high frequency of IFN-g-
producing effector T cells, which might contribute to severe GVHD
after transplantation (85).

Our group examined the effect of PD-1 blockade on Treg
homeostasis after allogeneic HSCT in murine models and human
clinical samples. First, we demonstrated that pre- and peri-
transplant PD-1 blockade increased the severity of GVHD due
to the unbalanced reconstitution of T cell subsets in recipient
mice with PD-1 inhibition (86). PD-1-/- effector T cells
aggressively increased after HSCT, whereas PD-1-/- Tregs could
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not maintain the expansion due to high susceptibility to apoptosis,
leading to an unbalanced reconstitution of T cells, resulting in lethal
GVHD. Interestingly, post-transplant cyclophosphamide (PTCy)
restored the well-balanced reconstitution of T cell subsets and
prevented tissue damage after HSCT from donor PD-1-/- effector
T cells. Based on fundamental data from a murine study, we
examined clinical samples from patients who underwent HSCT.
The clinical sample analyses revealed that PTCy promoted vigorous
recovery of Tregs in recipients who underwent HLA-haploidentical
transplantation following nivolumab therapy (87). These results
suggest that PD-1 plays a crucial role in Treg homeostasis, especially
in the early phase after HSCT.Moreover, PTCymight be an optimal
GVHD prophylaxis when regulatory PD-1 signaling is functionally
abolished by therapeutic intervention before HSCT (Figure 5).

In fact, recent clinical data have clearly indicated that PTCy was
associated with a low incidence of severe GVHD in recipients with
pre-transplant ICIs (88–91). Furthermore, Merryman et al. recently
reported the results of an international retrospective study that
included 209 relapsed or refractory cHL patients who underwent
HSCT after PD-1 blockade (91). They demonstrated that PTCy-
based haploidentical HSCT was associated with significant
improvements in the progression-free and relapse-free survival of
GVHD as compared with HLA-matched HSCT without PTCy.
This suggests that pretransplant ICI and subsequent PTCy-based
HSCT may provide better GVHD control along with better disease
control (88–91). Further investigations on the impact of peri-
transplant ICIs and PTCy on GVT activity are warranted.

The Effect of PTCy on Treg Homeostasis
After HSCT
PTCy is a novel GVHD prophylactic strategy for acute GVHD
after HSCT from an HLA-haploidentical donor (92), and has
been extended to an HLA-identical donor as a single agent
GVHD prophylaxis (93–95). The mechanisms underlying the
FIGURE 4 | The role of PD-1 in Treg homeostasis during low-dose IL-2 therapy. Low-dose IL-2 therapy increases PD-1 expression on Tregs, and PD-1 preserves
sustainable Treg homeostasis during low-dose IL-2 therapy, resulting in the preferential expansion of Tregs and the clinical improvement of chronic GVHD symptoms
(A). In contrast, without sufficient PD-1 signaling, low-dose IL-2 therapy accelerates Treg expansion soon after initiation, but Tregs are predisposed to the
proapoptotic status and cannot maintain the expansion (B). IL-2, interleukin 2; PD-1, programmed cell death 1; Treg, regulatory T cells.
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effect of PTCy involve impaired function of alloreactive T cells
(96), preserving hematopoietic stem cells and Tregs by their high
expression of aldehyde dehydrogenase (97). The indispensable
role of donor-derived Tregs in preventing GVHD in PTCy was
shown in a mouse model (98), which suggests that PTCy-based
GVHD prophylaxis may preferential ly promote the
reconstitution of Tregs in a clinical setting. However, there are
limited data on Treg reconstitution after HSCT with PTCy-based
GVHD prophylaxis using human clinical samples (99–102). Our
and other groups recently reported the reconstitution of
lymphocyte subsets between HLA-haploidentical PTCy-based
HSCT (PTCy-haplo) as compared to HLA-identical donor
HSCT using conventional GVHD prophylaxis (101, 102).
These studies demonstrated that the number of T cells was
significantly lower in PTCy-haplo than that in HLA-identical
HSCT in the early phase, which was due to slower CD4+Tcons
reconstitution. On the other hand, the recovery of Tregs after
PTCy-haplo was earlier than that after HLA-identical HSCT,
resulting in a significantly higher Tregs/Tcons ratio during the
first 3 months after HSCT (101, 102). Although PTCy is a
promising approach in terms of Treg reconstruction, further
optimization of prophylaxis is required, including the optimal
dose and duration of cyclophosphamide administration, the
timing of calcineurin inhibitor initiation, and combining it
with other immunosuppressant drugs.
EFFECTS OF OTHER IMMUNE
MODULATORS ON TREG HOMEOSTASIS

Anti C-C Chemokine Receptor 4 Blockade
C-C chemokine receptor 4 (CCR4) is a chemokine receptor
expressed in most patients with adult T-cell leukemia lymphoma
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(ATLL). Mogamulizumab (Mog) is a humanized anti-CCR4
immunoglobulin G1 monoclonal antibody that has an almost
50% efficacy in patients with relapsed or refractory ATLL (103,
104). CCR4 is also highly expressed on Tregs; therefore,
pretransplant Mog may affect post-transplant Treg homeostasis
and the incidence of GVHD. A multicenter, retrospective study
demonstrated that pretransplant Mog was significantly associated
with an increased risk of severe acute GVHD (105). Although a
phase 1 study reported the half-life of Mog to be 15 to 18 days,
retrospective data showed that the interval between the last
administration of Mog to HSCT within 50 days was an
independent prognostic factor for non-relapse mortality (105);
therefore, the last treatment schedule of Mog is recommended to
be ≥ 50 days prior to HSCT (106). In addition, the effect of Mog
on Treg recovery after HSCT might be more profound than
expected. We report a case of ATLL in which plasma exchange
(PE) was conducted to eliminate residual Mog to treat severe
GVHD (107). Although plasma Mog concentration was
eliminated, it did not lead to the prompt elevation of Treg levels
in peripheral blood, and the clinical responses of GVHD were
limited to partial remission, suggesting that recovery of donor-
derived Tregs in the acute phase after HSCT is multifactorial, and
the single procedure of PE-based Mog depletion does not
necessarily warrant the quick restoration of Treg homeostasis. As
mentioned above, although Mog is a highly effective treatment for
relapse and refractory ATLL, the increased risk of severe GVHD
cannot be ignored. Avoiding the short interval between the last
administrationofMogandHSCTanddonors at high risk ofGVHD
should be considered to reduce the negative impact ofMog. Having
said that, further clinical and basic research in this field is needed.

a-Galactosylceramide
Although low-dose IL-2 therapy induced the selective expansion
of Tregs in the chronic phase after HSCT, the specificity of the
FIGURE 5 | The role of PD-1 in Treg homeostasis after allogeneic HSCT. PD-1 deficient effector T cells aggressively proliferate after HSCT and produce large
amounts of inflammatory cytokines. The highly inflammatory cytokine milieu accelerates the proliferation of PD-1 deficient Tregs, but they cannot maintain proliferation
due to their high susceptibility to apoptosis. Unbalanced reconstitution of T-cell subsets results in severe GVHD (A). In contrast, with PTCy intervention, alloreactive
proliferative effector T cells are efficiently eliminated, contributing to reduced inflammatory cytokine production. It enables Tregs to restore the appropriate levels of
proliferation and maintain homeostasis, which contributes to the prevention of severe GVHD (B). PD-1, programmed cell death 1; Treg, regulatory T cell; Teff, effector
T cell; PTCy, post-transplant cyclophosphamide.
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IL-2 effect may be shrunk in the acute phase after HSCT since
activated effector T cells also express CD25 and may respond to
the administered IL-2. In contrast, previous murine studies have
demonstrated that invariant natural killer T (iNKT) stimulation
mediated by a-galactosylceramide (a-GC) enables selective Treg
expansion even in the very early phase following HSCT. iNKT
cells are unique immunoregulatory T cell subsets that have
limited TCR repertoires and recognize lipid antigens presented
by CD1d on antigen-presenting cells (108). a-GC is a glycolipid
originally purified from a marine sponge (109) and is also a
ligand for iNKT cells in a CD1d-restricted manner. Previous
studies have shown that a-GC stimulates different iNKT cell
subsets depending on the method of injection (110). In the
murine HSCT model, a single injection of aGC on day 0 after
HSCT promoted Th2 polarization of donor T cells and the
expansion of Tregs in a STAT6-dependent manner, which
resulted in the reduced GVHD mortality (111, 112).
Thereafter, a liposomal a-GC (lipo a-GC) was developed
(113), and lipo a-GC was found to be safe and effective for
acute GVHD prophylaxis in a murine model (114). Regarding
the homeostasis of Tregs, a subsequent study revealed that host
NKT cells induced an IL-4-dependent expansion of donor Tregs
after HSCT (112). In addition, the adoptive transfer of donor
iNKT cells ameliorated GVHD by expanding donor Tregs, in
turn preserving the GVT effect (115). In addition to the acute
GVHD model, our murine study using chronic GVHD models
showed that a-GC treatment could ameliorate chronic GVHD
symptoms through the early expansion of donor-derived Tregs
followed by the suppression of follicular helper T cells and
germinal center B cells (116). Based on the data of preclinical
models, a phase 2 clinical study evaluated the efficacy of RGI-
2001, a novel liposomal formulation of a synthetic derivative of
a-GC in patients who underwent HSCT. A total of 29 patients
received RGI-2001 on day 0 after HSCT, and 28% of recipients
responded to RGI-2001 and increased the frequency and number
of Tregs. These responders developed grade II to IV acute GVHD
significantly less frequently than non-responders (117),
suggesting that a-GC may prevent acute GVHD via Treg
expansion in a clinical HSCT setting.

The combination of a-GC with other therapeutic modalities
may be promising for further effective Treg modulation since the
working mechanism of a-GC is unique and does not overlap
with those of other therapies. Recently, we evaluated the effect of
adding lipo a-GC after PTCy on GVHD and the GVT effect
using the murine GVHD model (118). We demonstrated that a
reduced dose of PTCy followed by adjuvant a-GC enhances the
GVT effect without sacrificing GVHD suppression. Phenotypic
analyses revealed that donor-derived B cells presented the ligand
and induced preferential skewing to the NKT2 phenotype rather
than the NKT1 phenotype, which was followed by the early
recovery of all T cell subsets, especially Tregs. Our results
propose the possibility of a novel strategy for optimizing
PTCy-based transplantation.

Anti-IL-2 Antibody
As the IL-2 receptors express on the activated effector T cells, the
antibody for the IL-2 receptor has been investigated for GVHD
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prophylaxis and treatment. However, as IL-2 is an essential
cytokine for Treg survival (45), the clinical effects of IL-2
receptor blockade appear not to be straightforward in patients
after HSCT. Two IL-2 receptor antagonists, basiliximab and
daclizumab, were added on the standard GVHD prophylaxis
and explored the prophylactic effects against GVHD. These
agents showed the preventive effect against acute GVHD, and
basiliximab showed a superior prophylactic effect against chronic
GVHD (119). However, the subsequent prospective randomized
control study showed no additional prophylactic effect of
daclizumab for acute GVHD, and rather it increased the risk
of chronic GVHD and decreased the risk of disease recurrence
(120). In the treatment setting, daclizumab has shown efficacy for
a part of patients with steroid-refractory acute GVHD in the
initial phase 2 trial (121), but the subsequent randomized control
study showed a significantly worse survival rate in patients
receiving corticosteroid with daclizumab than corticosteroid
with placebo (122).

Denileukin diftitox is a genetically engineered protein
composed of human IL-2 fused to diphtheria toxin and has
cytotoxicity against activated T cells based on preferential
binding to the high-affinity IL-2 receptor. A phase 1 study was
conducted to evaluate the safety and efficacy of denileukin
diftitox for 32 patients with SR-acute GVHD. Overall, 71% of
evaluable patients achieved an overall response, including 33% of
complete remission and 38% partial response (123). However,
animal studies suggested that it could affect Treg homeostasis,
and a case study reported that fatal hyperacute GVHD following
denileukin diftitox treatment (124–126)

These inconsistent results may be attributed that anti-IL-2
antibody could affect the homeostasis of both Tregs and activated
Tcons those expressing the IL-2 receptor. It suggests that anti-IL-
2 antibody influence the patient’s immunity differently based on
the balance between Tregs and activated Tcons in each patient
basis, and the possible duality of the effect should be taken into
account when these agents are used for patients after HSCT.

Tyrosine Kinase Inhibitors
Standard GVHD prophylaxis in recipients with HLA-matched
identical donor consists of the combination of calcineurin
inhibitor (CNI) and short-term methotrexate. CNI reduced IL-2
transcription and activation of effector T cells and is a critical agent
to regulate post-transplant immune reaction but have been shown
to be disadvantageous in maintaining Tregs reconstitution because
CNI inhibits the production of IL-2 from activated Tcons (127).
Recently, novel immune modulating agents targeting Janus kinase
(JAK), Bruton’s tyrosine kinase (BTK), or Interleukin-2 inducible
tyrosine kinase (ITK) have been emerged.

Ruxolitinib (RUX) is a selective JAK1/2 inhibitor, and RUX
reduced the GVHD histology score and prolonged survival in a
murine GVHD model. RUX treatment suppressed the signals of
inflammatory cytokines while sparing the IL-2–JAK3–STAT5
signal, which could lead to reduced CD4+IFN-g+ cells and an
increase of Tregs (128). In the human clinical setting, a phase 3
randomized trial compared the efficacy and safety of RUX with
the investigator’s choice. The overall response was significantly
higher in the RUX group, and RUX treatment significantly
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increased the median overall survival compared to control
treatment (129).

Regarding BTK and ITK pathways, Ibrutinib, a BTK/ITK
inhibitor, reduced the severity of chronic GVHD using two
established chronic GVHD mice models (130). A phase 1b/2
study showed the safety and efficacy of ibrutinib treatment for
patients with SR-cGVHD (131). While the significance of BTK
inhibition on Treg homeostasis remains unknown, some studies
showed that ITK inhibition might increase Tregs in murine
models (132). Mammadli et al. reported that ITK-deficient donor
T cells significantly reduced inflammatory cytokines leading to
less GVHD intensity in the mice model (133). We recently
demonstrated that pharmacological inhibition of ITK on donor
T cells could ameliorate acute GVHD without sacrificing the
GVT effect (134). In the study, we showed that ex-vivo graft
manipulation with ITK inhibitor modulated donor CD4+ T cell
differentiation towards Th1, Th2, and Th17 with sparing Tregs,
resulting in the prolonged overall survival after HSCT.

Adoptive Transfer of Tregs
In addition to the pharmacological in vivo modulation of Treg
homeostasis described above, the GVHD-preventive effect of
adoptive transferred donor-type Tregs has been evaluated in
murine models and clinical studies. The adoptive transfer of
Tregs enables to increase in the Treg pool at least transiently, and
it may provide merit especially in patients having insufficient
thymic recovery. The initial experimental study demonstrated
that the adoptive transfer of Tregs to the graft suppressed the
expansion of alloreactive donor T cells without impairing the
GVT effect (18). In a human acute GVHD prophylaxis setting, a
first in human clinical trial evaluated ex-vivo expanded umbilical
cord blood (UCB)-derived Tregs for patients receiving
nonmyeloablative double UCB transplantation (135). Tregs
were isolated and cultured with anti-CD3/anti-CD28
monoclonal antibody-coated beads supported by IL-2. A total
of 1-30 x 105/kg UCB-derived Tregs infused on day+1 for all
participants and day+15 for an additional cohort. GVHD
prophylaxis consisted of cyclosporine and mycophenolate
mofetil (MMF), but later changed to sirolimus and MMF due
to potential interference with Treg function and survival by
cyclosporine. Grade II to IV acute GVHD and the incidence of
chronic GVHD were lower than the historical control. The
subsequent study from the same group demonstrated the safety
and efficacy of UCB-derived Treg expanded with K562 cells. This
novel approach enabled the expansion of Tregs to up to 30 times
higher than the previous method. In this study, the rate of grade
II to IV acute GVHD was lower than the control without
increasing the infection and relapse rates (136). The Perugia
group infused Tregs followed by stem cell and Tcons infusion
without immunosuppression therapy after transplantation. They
conducted a phase 2 study evaluating the effect of isolated
donor Tregs (1 x 106/kg) on day-4, followed by a purified
CD34+ and Tcons (1 x 106/kg) on day0 without posttransplant
immunosuppression for patients receiving HLA-haploidentical
transplantation (137). In this setting, purified Tregs and Tcons
were harvested from the same donor as the stem cell harvest and
not cultured ex-vivo. The incidence of grade II to IV acute
Frontiers in Immunology | www.frontiersin.org 1097
GVHD was 15%, and this rate of acute GVHD was similar to
the historical controls. Surprisingly, although the high-risk
patients’ background, the relapse rate was significantly lower
than the historical control group, suggesting that adoptive
transfer of Tregs followed by Tcons and CD34+ stem cells as
acute GVHD prophylaxis strategy suppress GVHD without
abrogating the GVT effect in a human setting. Recently, a
subsequent study involving fifty HLA-haploidentical transplant
recipients with Treg adoptive transfer showed excellent results
(138). Fifteen patients developed grade II to IV acute GVHD,
including 12 grade III to IV, and all recipients were treated with
corticosteroids. Only 5 patients were refractory to first-line
steroid therapy, and 3 of them recovered after the second-line
treatment. Of note, only 2 patients relapsed, and the moderate/
severe chronic GVHD/relapse-free survival was 75%.

On the contrary, the data of adoptive transfer of Tregs in the
treatment setting of active ongoing acute GVHD treatment was
limited. Two case series described the use of ex-vivo expanded
Treg infusion for the treatment of acute GVHD and chronic
GVHD (139, 140). These studies demonstrated the feasibility of
the ex-vivo Treg expansion and infusion, but the effect of this
approach should be evaluated by larger clinical trials.

To maintain transferred Tregs in vivo, low-dose IL-2
administration after adoptive transfer of Tregs is theoretically
attractive. In a phase 1 study, 24 SR-cGVHD patients received
freshly isolated Tregs from the original stem cell donor followed
by IL-2 (1 x 106 U/m2/day) treatment for 8 weeks. The response
rate was 33%, and TCRb diversity in Tregs is normalized with
therapy (141). Larger clinical trials are warranted to confirm the
efficacy of this combination therapy in patients with SR-cGVHD.
EMERGING PROBLEMS AND
FUTURE PERSPECTIVES

Ever since the discovery, Tregs have been the focus of many
studies owing to the efficient immunosuppressive function. In
the allogeneic HSCT, as Tregs have a central role in the
regulation of post-transplant immunity, the dynamics of Tregs
have been extensively studied in murine models and clinical
samples. As described in this review, Tregs originally have
different characteristics in homeostasis from conventional T
cell subsets, and understanding the unique homeostasis makes
it possible to give Tregs selective effects in vivo. However, there
remain many unresolved questions about Treg homeostasis
in patients.

First, one of the critical problems is the localization of Tregs
in a human clinical setting. Previous studies suggest that the
phenotype and function of Tregs are different depending on the
localization, such as lymph nodes, target tissues, and tumor
micro-environments. For example, in patients with gastric
cancer, Treg phenotype is different between tumor infiltrating
Tregs and peripheral circulating Tregs (68). Most of human
GVHD clinical studies depended on the circulating Tregs, hence,
an evaluation of Treg localization and the function in each
specific site would be helpful for our further understanding of
Treg homeostasis in the context of GVHD.
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Second, the impact of Tregs on the GVT effect has not been
well characterized in human clinical transplant (142). To further
elucidate the Treg effect on the GVT, further research is needed
to develop clinically-relevant murine models to study anti-tumor
immunity after allogeneic HSCT.

Third, the effect of novel immunotherapies on the Tregs has
not been well studied. Recent developments of immunotherapies
such as chimeric antigen receptor T cell (CAR-T), bispecific T-
cell engagers (BiTE), and ICIs have provided significant progress
for treatment. Despite improvement in the response rate,
patients with refractory diseases still often require post-
remission therapy with HSCT. The effects of a previous history
of CAR-T or BiTE on subsequent allogeneic HSCT are largely
unknown. In particular, it is important to study the effect of
pretransplant novel immunotherapies on donor-derived
immune cell recovery, including Tregs, after allogeneic HSCT.

Advances in the understanding of Treg homeostasis in patients
after HSCT may contribute to the treatment for autoimmune
diseases and solid cancers. In solid cancers, Tregs negatively
influence tumor control; therefore, contrary to GVHD, reducing
Tregs and activating effector T cells may promote the anti-tumor
effect. Based on our previous reports regarding the role of PD-1 on
Tregs after low-dose IL-2 and HSCT (76, 86), the combination
treatment IL-2 and PD-1 blockade may activate effector T cell and
promote Treg apoptosis in the inflammatory environment, like a
tumor microenvironment.

Novel experimental methodologies may enable us to
overcome the remaining issues shown here. In fact, the single-
cell technique made detailed characterization of cells and their
microenvironment, and to answer questions that could not be
Frontiers in Immunology | www.frontiersin.org 1198
addressed by the conventional technique (143). In the context of
acute GVHD, scRNA-seq has identified a novel regulator of T
cell alloimmunity (144). Previous research has investigated the
role of long noncoding RNA after HSCT using scRNA-seq and
identified Linc00402 as a regulator of allogeneic T cell function.
In addition, the TCR sequence method provides information on
the TCR diversity and clonality of these populations. Since each
T cell possesses its own unique TCR, TCR-seq allows for
sensitive tracking of T cells at the clonal level (145). These
novel approaches may solve the limitations of previous studies
by conventional approach and provide a bridge to new findings
in Treg research.
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Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for
hematologic malignancies, but its success is complicated by graft-versus-host disease
(GVHD). GVHD can be divided into acute and chronic types. Acute GVHD represents an
acute alloimmune inflammatory response initiated by donor T cells that recognize recipient
alloantigens. Chronic GVHD has a more complex pathophysiology involving donor-
derived T cells that recognize recipient-specific antigens, donor-specific antigens, and
antigens shared by the recipient and donor. Antibodies produced by donor B cells
contribute to the pathogenesis of chronic GVHD but not acute GVHD. Acute GVHD can
often be effectively controlled by treatment with corticosteroids or other
immunosuppressant for a period of weeks, but successful control of chronic GVHD
requires much longer treatment. Therefore, chronic GVHD remains the major cause of
long-term morbidity and mortality after allo-HCT. Murine models of allo-HCT have made
great contributions to our understanding pathogenesis of acute and chronic GVHD. In this
review, we summarize new mechanistic findings from murine models of chronic GVHD,
and we discuss the relevance of these insights to chronic GVHD pathogenesis in humans
and their potential impact on clinical prevention and treatment.

Keywords: hematopoietic cell transplantation, chronic graft-versus-host disease, mouse models, tissue resident
memory T cell, B cell
INTRODUCTION

Allogeneic hematopoietic cell transplantation (allo-HCT) offers a way to eliminate residual malignant
cells and prevent relapse by taking advantage of the graft-versus-leukemia/lymphoma (GVL) activity of
alloreactive donor T cells (1–6). However, the same alloreactive T cells also mediate graft-versus-host
disease (GVHD) (7–9). Acute GVHD is an acute alloimmune inflammatory response characterized by
infiltration of donor T cells that cause apoptosis and necroptosis of epithelial cells in GVHD target
tissues (10–12). Chronic GVHD is an autoimmune-like chronic inflammation variably characterized
with lymphopenia, IgG autoantibodies in the serum (13), moderate donor cell infiltration, and fibrosis
in certain target tissues (14). Chronic GVHD often occurs as a sequel of acute GVHD, although chronic
org September 2021 | Volume 12 | Article 7008571103
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GVHD can occur in the absence of overt acute GVHD (15). In
humans, acute and chronic GVHD can both involve the skin, liver,
and gut, whereas prototypical target organs affected by chronic
GVHD include salivary and lacrimal glands, oral mucosa,
subcutaneous connective tissue and adipose tissue, lung, genital
tract, and esophagus (15–18). Clinical manifestations of chronic
GVHD typically begin between 2 and 12 months after allo-HCT
(15, 19). In one retrospective study, 75% of the patients diagnosed
with chronic GVHD had prior acute GVHD, and in 10% of the
patients, acute GVHD evolved directly into chronic GVHD (20).

Studies of GVHD pathogenesis in humans are limited by the
inaccessibility of target organ tissues other than the skin. Therefore,
preclinical animal models represent important tools for elucidating
the pathogenic processes leading to acute and chronic GVHD (21,
22). Murine models of allo-HCT have become the most important
animal models for the GVHD mechanistic pathogenic studies,
owing to the availability of genetically modified strains (21, 22),
although work with canine and nonhuman primate models has
produced important contributions (23, 24). Murine models of allo-
HCT have demonstrated the role of recipient mismatching for
major and minor histocompatibility antigens in triggering acute
GVHD. These models have also elucidated the role of T-cell subsets
and cytokines in acute GVHD pathogenesis (25–36). As one
example, observations from murine models that NKT cells
specific for nonpolymorphic CD1d suppressed acute GVHD (37)
and preservation of NKT cells by conditioning regimens consisting
of total lymphoid irradiation (TLI) and antithymocytes cell
globulin (ATG) prevented GVHD while preserving GVL activity
(38, 39) have been successfully translated into clinical application in
humans (40, 41). Similarly, observations from murine models that
removal of naïve T cells can ameliorate GVHD while preserving
GVL activity (42, 43) have also been successfully translated into
clinical application in humans (44).

Modeling chronic GVHD appeared to be more complicated, but
murine models of chronic GVHD have evolved and improved
during the past three decades. It was initially thought that murine
models of autoimmune-like chronic GVHD required specific
donor-recipient combinations that differ from those used to study
acute GVHD (21, 22, 45). In this review, we will describe how we
have used identical allogeneic donor and recipient strain
combinations to induce acute GVHD mediated by alloreactive T
cells and to induce autoimmune-like chronic GVHD. In these
models, acute and chronic GVHD can occur sequentially in
murine recipients (46), similar to what most often occurs in
humans (15). These murine models also reflect the characteristic
features of autoimmune-like chronic GVHD in humans (46). We
will also summarize new insights into chronic GVHD pathogenesis
through the murine models.
A MURINE MODEL CAN REFLECT
CHARACTERISTIC FEATURES OF
CHRONIC GVHD IN PATIENTS

We recently found that induction of acute and chronic GVHD does
not require different donor and host combination (46). With the
Frontiers in Immunology | www.frontiersin.org 2104
commonly used acute GVHD model of C57BL/6 donor to MHC-
mismatched BALB/c recipient, acute GVHD recipients develop into
chronic GVHD as long as they survive for up to 60 days after allo-
HCT (46). The induction of both acute and chronic GVHD can be
achieved by adjusting donorT-cell numbers in the graft, and chronic
GVHD in the absence of acuteGVHDcanbe induced by injection of
purified donor CD8+ T cells alone with T-cell–depleted bone
marrow cells (46). Recipients with chronic GVHD induced by
whole splenic T cells or by sorted donor CD8+ T cells both have
lymphopenia, damage in the thymus, serum autoantibodies, and
damage in small intestine, liver, lung, skin, and salivary and lacrimal
glands, together with collagen deposition and fibrosis in target organ
tissues (46, 47). The recipients clearly showed lymphocytic
bronchiolitis and interstitial collagen deposition in the lung (46,
47), although bronchial obstruction (BO) observed in a murine
model conditioned with TBI plus cyclophosphamide (CY) (48) was
not observed in ourmodels. BO inmurinemodel of chronic GVHD
may require special conditioning. In addition, as summarized in
Table 1, chronic GVHD can be induced with low-dose splenic T
cells in otherMHC-mismatched orMHC-matched donor–recipient
combinations, includingMHC-mismatched C57BL/6 (H-2b) donor
to B10BR (H-2k) recipient andMHC-matched LP/J (H-2b) donor to
C57BL/6 (H-2b) recipient and DBA/2 (H-2d) or B10D2 (H-2d)
donor to BALB/c (H-2d) recipient models (46, 49–55). Chronic
GVHDwith little acuteGVHDcan also be induced by naïve CD8+T
cells from C3H.SW (H-2Db, CD45.2) donor to MHC-matched B6/
SJL (H-2Db, CD45.1) recipient (46, 56) or from C57BL/6 donor to
MHC-mismatched BALB/c recipient models (46).

Many characteristic features of acute and chronic GVHD in
humans can be reflected by any murine model, although no
single murine model captures the entire spectrum of
abnormalities observed in humans, just as no single patient
can represent the full spectrum of abnormalities that can be
caused by the disease. Establishing murine models of acute and
chronic GVHD does not require any specific donor and recipient
combination. The key is to adjust the number of donor T cells in
the graft to allow the recipients to survive acute phase, such that
inflammation in acute GVHD can evolve into the myriad
features unique to chronic GVHD.
AUTOREACTIVE PATHOGENIC CD4+ T
CELLS IN CHRONIC GVHD ARE DERIVED
FROM BOTH MATURE CD4+ T CELLS IN
THE GRAFT AND DE NOVO-GENERATED
CD4+ T CELLS IN THE THYMUS

The diversity of TCRs are randomly generated by VDJ
recombination during positive selection in the thymus, and
autoreactive T cells in healthy thymus are depleted by negative
selection in the thymic medullary mediated by medullary
epithelial cells (mTECs) and dendritic cells (DCs). The mTECs
express tissue-restricted antigens (TRA) in AIRE- or Fezf2-
dependent manner (57–59). The CD11c+ DCs in the thymic
medullary include CD11c+B220+PDCA-1+ plasmacytoid DCs
September 2021 | Volume 12 | Article 700857
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TABLE 1 | Summary of murine models of cGVHD.

cell type
ributing to
enotype

Cell type and dose Outcome Reference

CD8+ T, and 2.5 × 106 T-cell–depleted (TCD)
BM cells and 0.5–1.25 × 106

unfractionated spleen cells or 0.5
× 106 CD4+ or 0.5–5 × 106

CD8+ T cells

Systemic disease including (1) damages in
the acute and chronic GVHD overlapping
targets such as thymus, gut, liver, lung,
and skin, as well as chronic GVHD
prototypical targets salivary and lacrimal
glands; (2) increased serum autoantibodies
and tissue antibody deposition; (3)
collagen deposition and fibrosis in target
organ tissues.

Wu et al. (46) and Kong
et al. (47)

nd CD8+ T TCD-BM and 0.75 × 105 purified
splenic T cells

Fibrosis with bronchiolitis obliterans Katelyn Paz et al. (49)

nd CD8+ T Whole spleen (10 × 106) and
TCD-BM (2.5 × 106)

Skin scleroderma Deng et al. (50), Hamilton
and Parkman (51), and
DeClerck et al. (52)

and B cells 2.5–10 × 107 whole spleen cells Autoantibodies; skin scleroderma; kidney
damage

Zhang et al. (53) and Zhao
et al. (54)

nd CD8+ T Whole spleen (10 × 106) and
TCD-BM (2.5 × 106)

Skin scleroderma? Systemic disease? Deng et al. (50), Korngold
and Sprent (27), and
Eyrich et al. (55)

D8+ T TCD-BM (5 × 106) and
CD44lowCD8+ T cells (2 × 106)

Systemic disease including thymus, skin,
liver, and gastrointestinal tract damage.

Zhang et al. (56)
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Donor strain Recipient
strain

Conditioning
regiment

Genetics Main
cont
ph

C57BL/6 (H-2b) BALB/c (H-2d) 850 cGy Mismatched for MHCI,
MHCII, and miHAs

CD4+,
B cells

C57BL/6 (H-2b) B10BR (H-2k) Cyclophosphamide-
treated (120 mg/kg/
day, days −3 and
−2), irradiated (8.3
Gy by radiograph,
day −1)

Mismatched for MHCI,
MHCII, and miHAs

CD4+ a

LP/J (H-2b) C57BL/6 (H-2b) 900–1,100 cGy MHC-matched and miHA-
mismatched

CD4+ a

DBA/2 (H-2d) BALB/c (H-2d) 650 cGy MHC-matched and miHA-
mismatched

CD4+ T

B10D2 (H-2d) BALB/c (H-2d) 850 cGy MHC-matched and miHA-
mismatched

CD4+ a

C3H.SW (H-
2Db, CD45.2)

C57BL/6SJL
(B6/SJL, H-2Db,
CD45.1)

1,000 cGy MHC-matched and miHA-
mismatched

Naïve C
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(pDCs), CD8+SIRPa− thymus-resident DCs (tDCs), and
CD8−SIRPa+ migratory DCs (mDCs) (60–62). TRA from
mTECs can be picked up by thymic DCs, and TRA from
periphery tissues can be brought into the thymus by mDCs
(59). pDCs and tDCs augment thymic negative selection with
limited impact on Treg generation; in contrast, mDCs augment
both negative selection and tTreg generation in the thymus (60–
63). The mTEC- and DC-mediated negative selection deletes
most of the autoreactive thymocytes; however, the deletion is not
100%, and a small portion of the autoreactive T cells is exported
to the periphery (64). The residual autoreactive T cells in the
periphery of healthy individuals are well regulated and controlled
by peripheral tolerance mechanisms consisting of regulatory T
cells and tolerogenic DCs (65).

Residual autoreactive T cells in the graft from healthy donors
are expanded after allo-HCT due to breakdown of tolerance
mechanisms. In murine models, as depicted in Figure 1, early
after allo-HCT, donor T cells including the residual autoreactive
T cells in the graft are activated by host-type APCs and
differentiate into Th/Tc1 cells, and they infiltrate GVHD target
tissues including gut, liver, lung, skin, thymus, and bone marrow
to mediate acute GVHD. Autoreactive CD4+ T cells express
promiscuous TCRs that cross-react with both self-MHC-antigen
complex and allo-MHC-antigen complex (66). Since
autoimmune-like chronic GVHD can be induced in
thymectomized and athymic recipients (53), the autoreactive
CD4+ T cells in those recipients are most likely derived from the
residual autoreactive CD4+ T cells in the graft that expanded
during alloimmune responses (53, 54). The autoreactive CD4+ T
cells recognize both donor antigen-MHC complex and host
Frontiers in Immunology | www.frontiersin.org 4106
antigen-MHC complex, such that they first act as alloreactive
T cells and are activated by host-type APCs, and then they act as
autoreactive T cells and are expanded by donor-type APCs,
particularly by the activated donor-type B cells presenting
donor- or host-type antigens (67).

The autoreactive CD4+ T cells in chronic GVHD recipients
are also derived from de novo-generated CD4+ T cells from
GVHD-damaged thymus (46). The thymus of allo-HCT
recipients can be damaged by condition regimen and GVHD.
The thymus damage by conditioning regimen alone can recover
in an IL-22-dependent manner (68). Alloreactive CD4+ T and
CD8+ T cells mediate damage of mTECs that mediate negative
selection of autoreactive T cells (34, 46, 69). Although donor-
type DCs augment negative selection of autoreactive antidonor
and antihost T cells in non-GVHD recipients with mixed or
complete chimerism (70, 71), donor-type DCs no longer
augment negative selection of the autoreactive T cells in
GVHD recipients due to loss or dysfunction of donor-type
DCs (46, 72). Therefore, damage of thymus, especially by
GVHD leads to an increased generation of autoreactive T cells.

Autoreactive CD4+ T cells in chronic GVHD recipients include
those derived from the mature T cells in the graft or those from de
novo-generation in the damaged thymus. In the recipients with
overt acute and chronic GVHD, majority of pathogenic CD4+ T
cells are from donor-type CD4+ T cells from the graft (46, 47). This
may result from rapid destruction of thymus by acute GVHD that
ends the thymic production. However, in the recipients transplanted
with sorted CD8+ T cells and that developed little acute GVHD, de
novo-generated donor-type CD4+ T cells are required for induction
of chronic GVHD (46). The autoreactive CD4+ T cells from both
FIGURE 1 | Loss of Foxp3+CD4+ Treg cells in the target tissues of chronic GVHD recipients. Lethal TBI-conditioned BALB/c recipients were given T-cell–depleted
bone marrow cells (TCD-BM, 2.5 × 106) only from C57BL/6 donors as GVHD-free control or given TCD-BM plus spleen cells (1 × 106) for induction of chronic
GVHD. Sixty days after HCT, the spleen, liver, lung, and skin tissue mononuclear cells were stained with anti-H-2Kb, TCRb, CD4, and FoxP3. The gated donor-type
H-2Kb+CD4+TCRb+ T cells are shown in CD4 versus Foxp3. The FoxP3+ Treg cells are boxed, and the percentage of the Treg cells among the CD4+ T cells is
shown beside the box. One representative is shown of four recipients in each group.
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sources recognize donor antigen-MHC complex and host antigen-
MHC complex, and they interact with autoreactive B cells to
produce autoantibodies that further damaged the thymus and
causes lymphopenia in chronic GVHD recipients (46, 50, 67, 73).
Therefore, the autoreactive CD4+ T cells derived from the
preexisting autoreactive CD4+ T cells in the graft play a major
role in mediating chronic GVHD pathogenesis in recipients with
overt acute and chronic GVHD, and the de novo-generated
autoreactive CD4+ T cells from damaged thymus play a major
role in chronic GVHD pathogenesis in recipients with little prior
acute GVHD.
CHRONIC GVHD PATHOGENESIS DOES
NOT REQUIRE GERMINAL CENTERS AND
ITS ONSET IS ASSOCIATED WITH
DESTRUCTION OF LYMPHO-FOLLICLES
AND GERMINAL CENTERS

Patients with active chronic GVHD have marked reduction of
PD-1hiCXCR5+CD4+ follicular T helper cells (Tfh) among
peripheral blood mononuclear cells (PBMC), but high serum
concentrations of IgG autoantibodies and CXCL13, the ligand of
CXCR5 (13, 74), suggesting intense T helper activity for B cells.
The results were interpreted to indicate that Tfh had been
recruited into germinal centers of lymphoid follicles in
secondary lymphoid organs, consistent with previous
preclinical studies showing that chronic GVHD onset was
associated with enlarged germinal centers in some murine
models of chronic GVHD (74, 75) . However , this
interpretation conflict with observations that patients with
chronic GVHD usually have lymphopenia (76–79), and that
somatic hypermutation (SHM) in the memory B cells is low at 1
year after HCT (80, 81).

SHM takes place in the B cells during differentiation in the
GCs (82–84). With variety murine models, we have
demonstrated that chronic GVHD onset is associated with
destruction of lymphoid follicles and GCs in the spleen. In
addition, we showed that GC formation is not required for
induction of chronic GVHD, because recipients with an
absence of BCL6 in donor B cells that could not form GCs
nonetheless developed chronic GVHD (50, 73). Recipients with
overt chronic GVHD had no detectable GCs, Tfh cells, or GC B
cells, although recipients with mild chronic GVHD had
remnants of GCs, residual Tfh, and GC B cells (47, 50, 73).
EXTRAFOLLICULAR PSGL1loCD4+ T AND
B CELL INTERACTIONS AUGMENT
AUTOIMMUNE DEVELOPMENT AND
CHRONIC GVHD PATHOGENESIS

P-selectin glycoprotein ligand 1 (PSGL1, also known as CD162)
is an adhesion and coinhibitory receptor; PSGL1 are widely
expressed in almost all T cells in the blood and binds to E-
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selectin and P-selectin (85, 86). A subset of activated CD4+ T
cells in the spleen of SLE mice downregulate expression of
PSGL1 and become CD44hiCD62L-PSGL1loCD4+ T
(PSGL1loCD4+ T) cells (87). PSGL1loCD4+ T cells localize at
the extrafollicular sites of systemic lupus mice and express high
levels of CXCR4, ICOS, and CD40L without expression of
CXCR5 (88). We served that chronic GVHD onset is
associated with expansion of PSGL1loCD4+ T helpers in the
GVHD target tissues (47, 50). Extrafollicular PSGL1loCD4+ T
helpers for autoreactive B cells were first identified as CD4+ T
helpers in the spleen of systemic lupus mice (87). The
differentiation of the PSGL1loCD4+ T helpers in chronic
GVHD recipients depends on the IL-6R-Stat3-BCL6 pathway,
and Stat3 or BCL6 deficiency in donor CD4+ T cells prevented
expansion of the PSGL1loCD4+ T cells in GVHD target tissues
(47, 50). The PSGL1loCD4+ T cell interaction with B cells results
in autoantibody production and augmented thymus damage
early after HCT (50). Prevention of PSGL1loCD4+ T expansion
by BCL6 or Stat3 deficiency and by blockade of ICOS or PD-1
interaction with ICOSL or PD-L2 on B cells markedly reduced
serum concentrations of autoantibodies and decreased the
severity of chronic GVHD (47, 50). In addition, we observed
that chronic GVHD tissues had high levels of CXCL13 as
measured with liver tissue homogenates, and PSGL1loCD4+ T
cells expressed high levels of CXCL13 mRNA (Kong,
unpublished data). Taken together, these results suggest that
the low number of Tfh cells in the PBMC of active chronic
GVHD patients is unlikely due to redistribution of the Tfh cells
into GCs in the lymphoid follicles, and it is more likely due to the
destruction of GCs and lymphoid follicles. The high
concentrations of CXCL13 and IgG autoantibodies in the
serum of the patients may result from expansion of
extrafollicular CD4+ T and B cells in GVHD target tissues.
EXTRAFOLLICULAR PSGL1loCD4+ T
HELPER CELLS ARE TISSUE RESIDENT
MEMORY T CELLS THAT INTERACT WITH
MEMORY B CELLS IN THE GVHD TARGET
TISSUES DURING CHRONIC GVHD
PATHOGENESIS

As mentioned above, extrafollicular PSGL1loCD4+ T cells were
identified in the spleen of systemic lupus more than a decade ago
(87), but their role in human systemic lupus pathogenesis remains
unknown. We have recently found that PSGL1loCD4+ T cells were
not detectable in the peripheral blood of murine or human chronic
GVHD recipients (47). Instead, they were CD4+ tissue-resident
memory T (Trm) cells with upregulated expression of CD69,
CXCR6, P2RX7, and PD-1 and downregulated expression of Klf2,
S1PR1, and CCR7 (47), consistent with Trm cell phenotype
reported by others in infection and autoimmune colitis models
(89). These observations explain why extrafollicular PSGL1loCD4+

T cells are not detectable in the peripheral blood of mice or
patients with chronic GVHD. This may also explain why their role
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in the pathogenesis of systemic lupus has not been investigated
in humans.

The PSGL1loCD4+ Trm cells interact with memory B cells in
the GVHD target tissues in murine recipients, humanized
murine recipients, and in the liver of cGVHD patients (47).
The humanized murine model was established by injection of
HLA-A2−DR4− human PBMC into MHC−/−HLA-A2+DR4+

NSG mice (47). The PSGL1loCD4+ T cells were juxtaposed to
memory B cells in the liver of murine recipients, humanized
murine recipients, and patients with chronic GVHD, as indicated
by immunofluorescent and immunohistochemistry staining of
the tissue-infiltrating cells (47). Sorted PSGL1loCD4+ T cells
from GVHD target tissues (liver and lung) of murine and
humanized murine recipients augmented in vitro differentiation
of syngeneic or autologous memory B cells but not naïve B cells
into IgG-producing plasma cells in a manner that depended on
PD-1/PD-L2 interaction and IL-21 (47).

On the other hand, the expansion of human memory B and
plasma B cells in the GVHD target tissue liver and lung of
humanized murine recipients was associated with expansion of
PSGL1loCD4+ T cells, but little B cell activation and expansion
were observed in the MHC−/− control recipients (47). We also
observed that PD-1 deficiency in donor T cells and PD-L2
deficiency in donor B cells were associated with reduction of
serum anti-dsDNA, reduction of tissue IgG deposition, reduction
of tissue fibrosis, and reduction of chronic GVHD severity (47).
Finally, sorted PD-1+/+ or PD-1−/− PSGL1loCD4+ T and
PSGL1hiCD4+ T cells from liver and lung GVHD target tissues
were adoptively transferred into GVHD-free adoptive recipients
with PD-L2+/+ or PD-L2−/− B cells. The results showed that
PSGL1lo and PSGL1hi CD4+ memory T cells preferentially
migrated back to the original GVHD target tissues in the
adoptive recipients, but only PSGL1loCD4+ T cells augmented
expansion of plasma cells in the GVHD target tissues and
increased serum concentration of total IgG and anti-dsDNA-
IgG in a manner that required PD-1 interaction with PD-L2 (47).
Taken together, these results show that PSGL1loCD4+ Trm cell
interaction with memory B cells in GVHD target tissues
contributes to perpetuation of chronic GVHD pathogenesis.
EXTRAFOLLICULAR PSGL1loCD4+ T
HELPERS ARE DERIVED FROM
PSGL1hiCD4+ T CELLS IN THE GRAFT IN
AN IL-6-STAT3-BCL6-DEPENDENT
MANNER

We observed that all peripheral blood CD4+ T cells from healthy
murine and human donors were PSGL1hi (47). After
transplantation into murine and humanized murine recipients,
a portion (5%–20%) of PSGL1hiCD4+ T cells differentiated into
PSGL1loCD4+ Trm cells in an IL-6-Stat3-dependent manner (47)
because Stat3 deficiency in the CD4+ T cells and administration
of blocking anti-IL-6R mAb markedly reduced the expansion of
PSGL1loCD4+ T cells in the GVHD target tissues of murine
recipients (47). We have also observed expansion of de novo-
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generated PSGL1loCD4+ T cells in chronic GVHD recipients
induced by sorted donor CD8+ T cells (Kong, unpublished data).
These results indicate that PSGL1loCD4+ T differentiation is
similar to prefollicular CD4+ T differentiation that is controlled
by IL-6-Stat3-BCL6 pathways (50, 84).
CIRCULATING ANTIBODIES AUGMENT
SCLERODERMATOUS CUTANEOUS
CHRONIC GVHD

In humans, autoantibodies such as PDGF-1 have been associated
with increased severity of cutaneous chronic GVHD (90).We found
that high serum concentrations of autoantibody were associated
increased IgG deposition and fibrosis in the skin tissues of murine
and humanized murine recipients (47). Donor-derived IgG
antibodies were required to perpetuate cutaneous chronic GVHD
(73). Unexpectedly, we found no PSGL1loCD4+ T or B cells in the
skin tissues of murine or humanizedmurine recipients with chronic
GVHD, although PSGL1loCD4+ T andmemory B cells were present
in the liver and lung (47). Studies are in progress to determine
whether B cells or PSGL1loCD4+ T cells are present in the skin of
patients with cutaneous chronic GVHD.

Taken together, the preclinical results indicate that circulating
autoantibodies contribute to pathogenesis of cutaneous chronic
GVHD. We also observed that circulating IgG antibodies
augmented DC secretion of IL-23 and expansion of Th17 cells
in the skin of chronic GVHD mice (73). MacDonald et al.
showed that in an IL-17-dependent cutaneous chronic GVHD
model, donor-type F4/80+CSF-1R+ type 2 macrophages
augmented cutaneous chronic GVHD in a G-CSF but not GM-
CSF-dependent manner, in which the macrophages mediate
fibrosis via their production of TGF-b (91). Whether
circulating IgG autoantibodies regulate the differentiation and
expansion of type 2 macrophages during cutaneous GVHD
remains to be studied.
LOSS OF FUNCTIONAL THYMIC DCS AND
PERIPHERAL PD-L1hi PLASMACYTOID
DCS MAY CONTRIBUTE TO LOSS OF
FOXP3+CD4+ TREG CELLS IN CHRONIC
GVHD TARGET TISSUES

Chronic GVHD patients had markedly low percentages of
Foxp3+CD4+ regulatory T (Treg) cells in the blood (92). Low-
dose IL-2 preferentially expanded CD4+ Treg cells by binding to
high affinity IL-2Ra (CD25) and ameliorated clinical
manifestation of chronic GVHD (93–95). Consistently, in a
chronic GVHD model with DBA/2 donors and BALB/c
recipients, loss of CD4+ Treg cells was associated with chronic
GVHD onset, and infusion of donor-type Treg cells prevented
the disease onset or ameliorated the progression of chronic
GVHD (96, 97). Importantly, we observed that percentages of
Treg cells were high among CD4+ T cells in the spleen, liver,
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lung, and skin of healthy donor or GVHD-free recipients, but
few Treg cells were found among CD4+ T cells in the same tissues
from mice with chronic GVHD (Figure 1).

The low number of CD4+ Treg cells may result from reduced
thymic Treg (tTreg) output, reduced differentiation of
conventional CD4+ T (Tcon) cells into peripheral Treg (pTreg)
cells, and reduced Treg expansion and survival in the periphery.
Thymic damage or engraftment with MHCII−/− donor DCs
resulted in reduced generation of tTreg cells in GVHD
recipients (98, 99), while engraftment of donor-type DCs
increased donor- and host-type thymic tTreg generation in
GVHD-free MHC-mismatched or haploidentical mixed
chimeras (71, 100, 101). Plasmacytoid DCs that express high
levels of PD-L1 (PD-L1hi pDCs) augment Tcon differentiation
into pTreg cells in a PD-L1/PD-1 interaction-dependent manner
(102–104). DC PD-L1 interaction with CD80 on Treg cells also
augments Treg survival and expansion (96). GVHD in bone
marrow reduced the production of PD-L1+ pDCs, leading to
reduced generation and expansion of Treg cells (105). Therefore,
loss of functional DCs in the thymus and loss of bone marrow
Frontiers in Immunology | www.frontiersin.org 7109
generation of PD-L1hi pDCs may contribute to the marked
reduction of Treg cells in the chronic GVHD recipients, and
prevention of thymus and bone marrow GVHD as well as
restoration of bone marrow production of pDCs might reverse
chronic GVHD.
CONCLUSIONS

In summary, with murine models of chronic GVHD, we have
found that extrafollicular CD4+ T and B interactions and CD4+

Trm cells in the GVHD target tissues play critical roles in chronic
GVHD pathogenesis, and these findings have been linked to
chronic GVHD pathogenesis in humans through studies with
humanized MHC−/−HLA-A2+DR4+ NSG mice and patient
GVHD target tissues (47). These studies have provided new
insights into chronic GVHD pathogenesis in humans.

As depicted in the diagram (Figure 2), we propose how donor
CD4+ T cells mediate autoimmune-like chronic GVHD
pathogenesis. Step 1, early after allo-HCT, in the lymphoid
FIGURE 2 | Pathogenesis of chronic GVHD. Early after allo-HCT, donor-type CD4+, and CD8+ T cells including autoreactive CD4+ T cells are activated by host
APCs in the lymphoid tissues. The majority of the injected alloreactive T cells differentiate into PSGL1hi Th1/Tc1 cells to cause acute GVHD. At the same time, some
of the autoreactive CD4+ T cells differentiate into PSGL1loCD4+ pre-Tfh-like cells via IL-6-Stat3-BCL6 pathway, and they interact with activated donor B cells to
augment antibody production, and some of them remain PSGL1hi. The Th1/Tc1 cells infiltrate GVHD target tissues including thymus and bone marrow. Damage of
thymic medullary epithelial cells (mTECs) leads to decreased generation of thymic Tregs (tTreg) cells and increased release of autoreactive T cells that are cross-
reactive with donor antigen-MHC complex and host antigen-MHC complex. Damage of bone marrow microenvironment results in increased production of
autoreactive B cells and reduced production of tolerogenic plasmacytoid dendritic cells (pDCs). Acute GVHD destroys lymphoid tissues. As acute GVHD subside into
chronic GVHD, alloreactive pathogenic memory T, especially CD4+ memory T cells, that can cross-react with donor APCs become autoreactive CD4+ T cells and
gather in the GVHD target tissue. The de novo-generated autoreactive CD4+ T cells from damaged thymus also infiltrate the GVHD target tissues. The autoreactive
CD4+ T cells from both sources interact with donor-type APCs and become CD69+ tissue resident memory T (Trm) cells in the tissues. The PSGL1hi autoreactive
Trm cells interact with DCs and macrophages to mediate pathogenesis via their production of cytokines such as TGF-b, IFN-g, TNF-a, IL-4, IL-17, and IL-22. The
pre-Tfh-like PSGL1loCD4+ helper T cells interact with B cells to augment memory B-cell differentiation into plasma cells that produce IgG autoantibodies. IgG
autoantibodies enter circulation and deposit in the GVHD target tissues such as skin to augment GVHD pathogenesis.
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tissues, donor CD4+ and CD8+ T cells including cross-reactive
residual autoreactive CD4+ T cells in the graft act as alloreactive
CD4+ and CD8+ T cells; they are activated by interaction with
host-type APCs. The alloreactive T cells differentiate into
PSGL1hi Th1/Tc1 cells and infiltrating GVHD target tissues.
The small portion of autoreactive CD4+ T cells differentiate into
PSGL1hiCD4+ memory T cells and PSGL1loCD4+ pre-Tfh-like
cells via IL-6-Stat3-BCL6 pathway. The alloreactive Th1/Tc1
cells migrate into and cause damage in the thymus and bone
marrow, among other GVHD target tissues such as the liver,
lung, and skin. Those alloreactive Th1/Tc1 cells also destroy
secondary lymphoid tissues as time goes on. Due to GVHD
damage of thymic medullary epithelial cells and defective
negative selection, the thymus increases production of
autoreactive CD4+ T cells that recognize both donor antigen-
MHC complex and host antigen-MHC complex, as well as
reduces production of CD4+ tTreg cells. Those cross-reactive
autoreactive CD4+ T cells are activated in the periphery and
infiltrate GVHD target tissues. The GVHD-damaged bone
marrow has low production of tolerogenic PD-L1hi pDCs,
defective negative selection of autoreactive B cells, and
markedly reduced output of B cells and myeloid cells, leading
to lymphopenia with relative expansion of autoreactive B cells in
the periphery.

Step 2, the cross-reactive autoreactive CD4+ T cells derived
from the residual autoreactive CD4+ T cells in the graft and from
de novo-generation in the damaged thymus interact with donor-
type DCs/macrophages or B cells, leading to their survival and
expansion after acute GVHD subsides. The cross-reactive
autoreactive CD4+ T cells infiltrate GVHD target tissues and
become CD69+ Trm cells. The PSGL1hi Th1, Th2, and Th17
cross-reactive autoreactive Trm cells interact with DCs and
macrophages to mediate chronic GVHD pathogenesis via their
production of cytokines such as TGF-b, IFN-g, TNF-a, IL-4, IL-
17, and IL-22. The pre-Tfh-like autoreactive PSGL1loCD4+ T
cells become extrafollicular PSGL1loCD4+ helper T cells in the
GVHD target tissues (i.e., liver and lung). They attract and
interact with autoreactive B cells in the tissues and become
Trm cells. Their interaction with B cells augments memory B-
cell differentiation into plasma cells that produce IgG
Frontiers in Immunology | www.frontiersin.org 8110
autoantibodies that augment local inflammation and fibrosis or
enter circulation. The circulating IgG antibodies deposit in the
tissues such as skin to augment GVHD pathogenesis.

Finally, lack of tolerogenic pDCs and Treg cells allow the
cross-reactive autoreactive CD4+ Trm cells that recognize both
donor antigen-MHC complex and host antigen-MHC complex
to continuously interact with DCs, macrophages, and B cells to
perpetuate chronic GVHD pathogenesis. Therefore, PSGL1hi and
PSGL1lo CD4+ Trm cells, macrophage, dendritic cells, B cells,
and circulating IgG autoantibodies, all contribute to the
pathogenesis of chronic GVHD, but CD4+ Trm cells play
the essential role. Targeting autoreactive CD4+ Trm cells in the
GVHD target tissues for treatment of chronic GVHD is
under investigation.

We would like to point out that the proposedmodel of cGVHD
pathogenesis is more relevant to chronic GVHD pathogenesis in
recipients with obvious acute GVHD. However, in the clinic, some
chronic GVHD patients did not have a clear phase of acute
GVHD. The origin of the pathogenic T cells in those patients
remains unclear. Theymay derive from de novo thymus-generated
T cells because our murine model showed that sorted donor CD8+

T cells induced thymus damage and chronic GVHD in the absence
of acute GVHD (46). The roles of Tfh and extrafollicular
PSGL1loCD4+ T-cell interaction with B cells in the pathogenesis
of chronic GVHD without obvious acute GVHD remain unclear
and are under investigation.
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Allogeneic stem cell transplantation (alloSCT) is a curative therapy for hematopoietic
malignancies. The therapeutic effect relies on donor T cells and NK cells to recognize and
eliminate malignant cells, known as the graft-versus-leukemia (GVL) effect. However, off
target immune pathology, known as graft-versus-host disease (GVHD) remains a major
complication of alloSCT that limits the broad application of this therapy. The presentation
of recipient-origin alloantigen to donor T cells is the primary process initiating GVHD and
GVL. Therefore, the understanding of spatial and temporal characteristics of alloantigen
presentation is pivotal to attempts to separate beneficial GVL effects from detrimental
GVHD. In this review, we discuss mouse models and the tools therein, that permit the
quantification of alloantigen presentation after alloSCT.

Keywords: transplantation, antigen presentation, allogeneic stem cell transplantation, graft-versus-host disease,
graft-versus-leukemia effects
INTRODUCTION

Allogeneic stem cell transplantation (alloSCT) remains a curative therapy for a broad range of
hematopoietic malignancies including acute myeloid leukemia (AML) and myelodysplastic
syndrome. The therapeutic effect largely resides in graft-versus-leukemia (GVL) effects where
graft-derived donor T cells and NK cells recognize allogeneic, hematopoietic or tumor-associated
antigens. Unfortunately, this process is closely related to adverse immune effects, namely graft-
versus-host disease (GVHD), where donor T cells attack normal recipient tissue. To date, the
separation of beneficial GVL from detrimental GVHD remains the greatest unmet need in alloSCT.

The immunological pathways of both GVL and GVHD are initiated by the presentation of
allogeneic antigens to donor T cells: Autologous or syngeneic (from an identical twin donor)
transplants do not induce classical GVL or GVHD due to the lack of alloreactivity (1). AlloSCT
using rigorous T cell-depletion (TCD) prevents severe GVHD but increases leukemia relapse (2–4),
indicating that the recognition of alloantigens by the donor T cell is essential in disease
pathophysiology. Therefore, studies to elucidate potential spatial and temporal differences in
antigen presentation within GVL and GVHD have been undertaken (i.e. what types of antigen
presenting cells (APC) and donor T cell subsets are involved, in which organs, and at what time
after transplant?).
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When choosing mouse models to study GVHD, at least three
factors should be considered. Firstly, who are the cellular
mediators of disease? As we previously reviewed (5, 6), both
donor CD4 and CD8 T cells which recognize alloantigens
presented by MHC class II (MHC-II) and class I (MHC-I)
respectively, can mediate distinct patterns of GVL and GVHD.
Host APC initiate both GVHD and GVL, in contrast, donor APC
predominantly invoke GVHD but not GVL (7–9). To define the
specific pathways of MHC-I vsMHC-II dependent T cell GVHD
and the donor vs. host APC involved, alloantigen-specific T cell
receptor (TCR) transgenic T cells are useful tools, particularly
when combined with mutant mice bearing defined genetic
defects in antigen presentation. Secondly, donor T cell
responses can generally be initiated by one of two types of
alloantigen presentation. One is the presentation of host minor
histocompatibility antigens (miHAs) derived from polymorphic
proteins which are present in recipients but not donors (10, 11).
A miHA is presented by MHC which is shared by the donor and
the host, and donor T cells recognize miHAs in the same way as
pathogen-derived antigens are seen. This process includes a
process known as epitope or antigen spreading whereby T cells
recognize a family of antigens that have diversified from the
original parental epitope (12). This explains why HLA-matched
unrelated donors are at a higher risk for GVHD than HLA-
matched sibling donors (13), since the frequency of genetic
disparity for individual miHA is generally two-fold higher (10,
14). The other type of antigen recognition by the donor T cell is
within the complex of mismatched MHC and a non-
polymorphic peptide. Naive T cells have been educated in the
thymus to react a peptide loaded on self MHC. Therefore, donor
T cells are not designed to react to antigen presented by a
mismatched MHC. However, a scenario can occur whereby the
molecular complex of a peptide and mismatched MHC is
structurally sufficiently similar to that of another peptide and
matched MHC to activate a donor T cell. This type of donor T
cell antigen recognition happens in MHC-mismatched
transplantation and is known as molecular mimicry (15). This
process explains why increased numbers of mismatched MHC
loci (6/8, 7/8 vs 8/8 HLA match) significantly increases GVHD
and decreases overall survival regardless of the underlying
type of malignant disease (16). Thirdly, the pathophysiology
and manifestations of GVHD seen after transplant should
recapitulate those in clinical GVHD. The pathways of antigen
presentation leading to GVHD are highly promiscuous in
xenograft systems where immune deficient mice (and their
APC) stimulate a human T cell response, such that their
usefulness in studying the mechanisms of GVHD is
somewhat limited.

Many non-transgenic donor and host combinations have
been well established for the study of GVHD. These include
MHC mismatched or MHC-matched but miHA-mismatched
models which are typically dominated by MHC-I or II dependent
GVHD that is largely strain dependent. We direct the reader
to excellent reviews on the subject of these non-transgenic
models (17). Here we focus on antigen-specific models
of GVHD.
Frontiers in Immunology | www.frontiersin.org 2115
ALLOANTIGEN PRESENTATION IN
MODELS OF GVHD TARGETING MINOR
HISTOCOMPATIBILITY ANTIGENS
In MHC matched systems, the cognate recognition of antigen by
a mature, thymically educated, donor T cell requires the TCR to
interact with host polymorphic peptide (miHA) presented by a
HLA molecule common to donor and host. Defined human
miHAs have been the subject of recent reviews (10, 11, 14).
While the most common molecular mechanism generating
miHAs is single nucleotide polymorphisms (SNPs) within gene
exons that modify peptide binding to MHC or TCR, other
mechanisms such as altered protein transport/processing or
transcription can also cause the generation of dramatically new
epitopes (10, 11). The expression of ovalbumin (Ova) in BMT
recipients under control of ubiquitous (e.g. b-actin) promoters
may mimic the latter setting. Since ova is not expressed by
normal mice, transgenic ova production by recipient mice can be
a dominant antigen to CD4+ and CD8+ T cells (18, 19). When
ova expression is limited to specific cell types such as
hematopoietic cells (20, 21) or leukemic cells (22), it may
mimic hematopoiesis-specific or leukemia-specific miHA.
Given that these hematopoietic- or leukemia-restricted miHAs
have attracted attention as targets for clinical TCR transgenic T
cell therapy (23, 24), these antigen model systems can be useful in
understanding immunity within these contexts. In regard to ova,
extensive tool reagents are available. Ova peptide-specific CD4+

and CD8+ TCR transgenic mice (OT-II, DO11.10 and OT-I
mice) can be utilized as a source of donor T cells, whereby short
term T cell activation and expansion can be used to quantify
antigen presentation (18, 19, 25). Ova peptide-MHC tetramers
can be utilized to detect peptide-specific T cells within polyclonal
T cells (26) and the monoclonal antibody (25-D1.16) can also
quantify ova-peptide loaded within MHC -I to quantify direct
antigen presentation (27). Many foreign peptide/proteins other
than ova, such as virus-derived proteins, can also be exploited in
a similar fashion (Table 1).

Similarly, strain-specific models of endogenous antigen also
exist. H60 protein, a ligand for NKG2D, is expressed by
hematopoietic cells but not parenchyma cells in a strain-
specific manner. H60 is expressed by BALB.B mice but not
C57Bl6 (B6) nor C3H.SW mice, and these three stains are all
MHC-matched (H-2b) but miHA disparate. Recently, H60
transduction has been undertaken into B6-background
leukemia or recipient mice and H60 peptide-H2Kb tetramers
used to detect responding CD8+ T cells in combination with
MHC-I deficient mice (H-2Kb-/-) to demonstrate how defects in
leukemia antigen presentation promote exhaustion of donor T
cells and ineffective GVL (42) (Table 1).

HLA molecules are highly polymorphic (43). Since HLA-
mismatched transplants ( including haplo- ident ica l
transplantation) are all semi HLA-matched, mismatched HLA-
derived peptides can be presented by another shared HLA. To
mimic this scenario, TEa transgenic TCR (Va2/Vb6) T cells and
YAe antibody recognize the same complex of mismatched MHC-
derived peptide presented within MHC-II (Ea52-68 peptide and
September 2021 | Volume 12 | Article 715893
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I-Ab respectively) (35, 39, 40). B6 mice lack I-Ea chain, hence, do
not express I-E, a MHC-II locus, whereas many other strains
express the I-Ea chain. Thus the Ea52-68 peptide derived from
the I-Ea chain of relevant recipient strains can stimulate TEa T
cells and bind to the YAe antibody in an I-Ab-restricted manner.
To our knowledge, YAe, the aforementioned 25-D1.16 and
AW3.18 which binds to hen egg lysozyme (HEL) peptide
loaded on I-Ak, are the only antibodies that bind to specific
peptide-MHC complexes that are commercially available
(Table 1). They are highly useful tools for the quantification of
antigen presentation. Thus while antigen-specific T cell
expansion detected by tetramer or as TCR transgenic T cell
expansion reflects overall antigen presentation, these antibodies
allow direct quantification of antigen presentation within
individual APC subsets that are distinguishable by flow
cytometry (e.g. donor cell vs. host cells, dendritic cell subsets vs
macrophages, and within different organs) (44).

The transplantation of a female-derived graft into a male
recipient is a known risk factor for GVHD (13). Multiple H-Y
antigens encoded by Y-chromosome genes have been identified
(e.g. SMCY, UTY, DBY, DEFRY) and reactive T cell clones have
been isolated from female transplant recipients rejecting male
grafts and male recipients transplanted with female grafts (45–
48). Multiple murine TCR clones and TCR transgenic lines
reactive to H-Y antigens (e.g. UTY, DBY) have been generated
on a B6 background (Table 1) (30–34). In addition to their clear
clinical relevance, these systems allow the use of male B6 mice
from most transgenic and mutant strains (e.g. MHC-deficient
recipients) to delineate mechanistic pathways of antigen
presentation. As such, these systems provide powerful tools for
the study of GVHD. The incorporation of reporter constructs
such as luciferase into these TCR transgenic systems allows
Frontiers in Immunology | www.frontiersin.org 3116
detailed and tissue specific compartmentalization of antigen
presentation (20, 44, 49, 50).
ALLOANTIGEN PRESENTATION IN
MODELS CHARACTERIZED BY
MOLECULAR MIMICRY

It is well established in studies some 50 years ago that 1 - 10%
peripheral T cells are reactive to non-self (mismatched) MHC,
although the frequency of T cells that can respond to self
(matched) MHC-expressing cell loaded with foreign Ag is likely
at least 100-fold lower (51, 52). However, the mechanism
underlying the high degree of clonal T cell alloreactivity to
MHC-mismatched antigen has only recently been elucidated (53,
54). For decades there was a controversy over whether a T cell
reacts to peptide-alloMHC (mismatched MHC) complexes in a
peptide-centric or MHC-centric manner. In the former, TCR
primarily interacts with the peptide rather than mismatched
MHC, whereas the latter anticipates that a TCR primarily
recognizes structural determinants on the (mismatched) MHC
structure (15, 54, 55). The dispute has now been settled in favor of
reactivity against the hybrid of peptide- and MHC-centric
hypothesis. A TCR can thus recognize peptide-loaded allogeneic
MHC 1) in docking modes disparate to those that are germline-
encoded following thymic education (55) and 2) in the germline-
encoded mode via molecular mimicry whereby the TCR binds to
very similar structure formed by a foreign peptide presented on
self-MHC and an endogenous peptide presented on allogeneic
MHC (15). Both theories potentially explain allogeneic MHC
reactivity. The former scenario of disparate docking modes has
been demonstrated for 2C TCR (H-2Kb) T cells which react to a
TABLE 1 | Minor antigens within MHC matched systems and antigen-specific TCR transgenic T cells (top), peptide-MHC tetramer to detect antigen-specific T cells
(middle) and antibodies to quantify antigen-MHC complexes (bottom).

Ag protein Ag peptide MHC-restriction TCR-Transgenic mouse Reference

Ova albumin OVA257-264
(SIINFEKL)

H-2Kb OT-I (19)

H60 LTFNYRNL H-2Kb J15 (28, 29)
H-Y, Uty gene WMHHNMDLI H-2Db MataHari (30)
H-Y unknown H-2Db HY-TCR (31)
H-Y unknown I-Ab Rachel (32)
H-Y, Dby gene NAGFNSNRANSSRSS I-Ab Marilyn (33, 34)
I-E Ea52-68 I-Ab TEa (35)
Ova albumin OVA323-339 I-Ab OT-II (18)
Ova albumin OVA323-339,

327-333, 328-338
I-Ad DO11.10 (25)

Ag protein Ag peptide MHC-restriction TCR Detection tetramer Reference

H60 LTFNYRNL H-2Kb H6/H-2Kb tetramer (36, 37)
H-Y, Uty gene WMHHNMDLI H-2Db HY-Uty/H-2Db tetramer (37)
Ova albumin OVA323-339 I-Ab OVA323-339/I-Ab tetramer (38)
Ova albumin OVA323-339 I-Ad OVA323-339/I-Ad tetramer (26)

Ag protein Ag peptide MHC-restriction Antibody reactivity Clone Reference

Ova albumin OVA257-264 (SIINFEKL) H-2Kb Against SIINFEKL bound to H-2Kb 25-D1.16 (27)
I-Ea chain Ea52-68 I-Ab Against Ea52-68

peptide bound to I-Ab
Y-Ae (39, 40)

hen egg lysozyme (HEL) HEL-derived peptide (HEL48-62) I-Ak Against HEL peptide (residue 48-62) bound to I-Ak AW3.18 (41)
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self-peptide (dEV8, also known as Ndufa454–61) derived from
enzyme NADH-ubiquinone oxidoreductase, loaded on H-2Kb

(56, 57) and indeed this clone has been used to study positive
selection in the thymus (57, 58). This scenario is of questionable
relevance to transplant immunology where non-self-reactive
mature T cells recognize MHC-mismatched cells. In the latter
setting, what is striking is the demonstration that a TCR clone
(LC13) recognizing Epstein-Barr virus (EBV)-derived peptide on
self-MHC (HLA-B*0801) can recognize self-peptide on some
allogeneic MHCs (HLA-B*4402 and B*4405, but not B*4403)
due to a similar conformation (molecular mimicry) after TCR
ligation (15). HLA-B*4402 or B*4405 transfected HLA class I-
deficient (C1R) cell lines (C1R-B*4402 and C1R-B*4405) but not a
B*0801 transfected one (C1R-B*0801) can activate LC13,
indicating that endogenous antigens (e.g. ATP-binding cassette
protein) can stimulate TCR clones when they are presented by
some but not all allogeneic HLA molecules. Vice versa, an EBV-
peptide can stimulate LC13 when it is presented by self-HLA
(B*0801) but not allogeneic HLA (B*4405). Indeed, healthy
individuals that are heterozygous for HLA-B*0801 and B*4402
do not possess this dominant LC13 TCR clonotype, demonstrating
this clonotype has been clonally deleted due to potential self-
reactiveness, and instead, they generate alternative clonotypes
reactive to the same viral epitope (59). This suggests a
phenomenon whereby one TCR clone reactive to a foreign
peptide also responds to endogenous peptides presented by other
MHC molecules within one individual. In the MHC-mismatched
allogeneic transplant a donor TCR repertoire will encounter new
MHC molecules, and be activated by host mismatched MHC
molecules loaded with endogenous (non-polymorphic) peptides
[a schematic illustration depicting the different modes of
alloantigen presentation has been published previously (5)].

To study alloantigen presentation by a mismatched MHC
molecule, MHC-mismatched models can be chosen [e.g. B6 (H-
2b) ! BALB/c (H-2d)]. MHC-partial mismatched or haplo-
mismatched models include the possibility that matched MHC
molecules present miHAs derived from mismatched MHC
molecules. In this context, B6-background Bm1 (MHC-I
mutation resulting in amino acid substitution) and Bm12
(MHC-II mutation resulting in amino acid substitution) mice
are useful (Table 2). When either CD4+ or CD8+ T cells and BM
cells from wild-type B6 were injected into lethally irradiated Bm1
and Bm12 recipients, donor CD4+ T cells induced lethal GVHD
in only Bm12 recipients, and donor CD8+ T cells did so only in
Bm1 recipients (67). When Bm12 T cells were transplanted in
MHC-II deficient or wild-type B6 mice, serum IFN-g was
elevated in wild-type recipients but not in MHC-II deficient
recipients (68). Similarly, in-vitro culture (mixed lymphocyte
reaction) demonstrated that B6 CD4+ T cells proliferate in
response to Bm12 cells but not Bm1 or B6 (self) cells, and B6
CD8+ T cells proliferate to Bm1 cells but not Bm12 or B6 cells
(67). Despite the potential possibility that Bm1 and Bm12
mutation themselves serve as miHAs on conserved MHC-I or
II molecules, this scenario would generate both CD4+ and CD8+

T cell responses, and so can be discounted. Instead, they suggest
that both mutated MHC-I and II, H2-Kbm1 and H2-Ab1bm12, are
Frontiers in Immunology | www.frontiersin.org 4117
loaded with endogenous peptides that bind B6 CD8+ and CD4+

TCR repertoires, respectively. There are other many similar
MHC-I-mutated mice, most of which have mutation in the H-
2K locus (e.g. bm3 and bm8) (69, 70), while MHC-II-mutated
strains are limited to Bm12 (Table 2).

In contrast to studies utilizing specific mutations within MHC
class I or II, TCR transgenic T cells which react to specific MHC
disparities have also been exploited. In addition to the previously
described 2C TCR transgenic CD8+ T cells, 4C TCR transgenic
CD4+ T cells from B6 mice respond to an endogenous and
ubiquitously expressed mouse non-polymorphic peptide
presented on I-Ad (66).
ANTIGEN PRESENTATION IN XENOGRAFT
TRANSPLANT MODELS

There has been a controversy in regard to how faithfully inbred
murine allogeneic transplant models recapitulate GVHD in
outbred humans. A number of studies have thus been
conducted in xenogeneic transplant systems whereby human
hematopoietic cells [most commonly peripheral blood
mononuclear cells (PBMC)] are transplanted into severely
immunodeficient mice (e.g. NSG, NRG, NOG mice) (71).
PBMC is predominantly composed of lymphocytes, although
APC including monocytes and dendritic cells are included.
However, there is no hematopoietic progenitor or stem cell
components, hence, the differentiation of human APC is not
sustained. There is also a question as to whether human T cells
can appropriately recognize murine MHC and if not whether
these systems are indeed clinically relevant. In addition, there are
three other major constraints to the interpretation of xenogeneic
transplant systems. Firstly, it does not phenocopy clinical
GVHD. While clinical acute GVHD typically targets the skin,
liver and gastrointestinal (GI) tract and the intestinal disease
usually determines lethality, the skin and GI tract display only
very mild changes after xenogeneic transplant (72, 73). The
major pathogenic manifestations of GVHD in xenogeneic
transplant models are predominantly observed in the liver and
lung and give rise to lethality. Second, since human cell
engraftment is limited and predominantly of T cells after
PBMC are transplanted, the GVHD induced is unlikely to
recapitulate the spectrum seen following full T and myeloid
cell engraftment seen in species-specific systems. Finally, it is
unclear the role that mouse anti-human graft rejection (e.g. by
myeloid cells) plays in the spectrum of GVHD seen in these
systems (72, 74, 75).

It has been demonstrated that murine MHC-I and II
molecules stimulate human T cells after human PBMC
injection into NSG mice (73, 75, 76). When recipient NSG
mice lack murine MHC-I expression, disease lethality and the
frequency of human CD3+ T cells in the recipient are reduced.
The presence or absence of murine MHC-II expression is less
important in isolation since its deficiency does not attenuate
lethality (75). Although these data suggest that human T cells can
react to murine MHC, human T cells primarily respond to
September 2021 | Volume 12 | Article 715893
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humanMHC (HLA) molecules rather than murine MHC in vitro
(77, 78). Therefore, multiple immunodeficient mouse strains
expressing HLA class I (e.g. HLA-A2) and class II (e.g. HLA-
DR1 or DR4) have been developed (73, 79, 80). These mice have
been demonstrated to develop HLA-restricted anti-virus human
T cell clones after human HSC transplantation (79, 80),
suggesting the transgenic human HLA indeed preferentially
invoke human TCR responses. However, physiological
upregulation of MHC and antigen presentation therein are not
assured. While multiple cytokines (i.e. interferon (IFN)-g,
interleukin (IL)-4, IL-6, IL-10, IFN-a/b and tissue necrosis
factor) and glucocorticoids modulate MHC-I and II expression
(81, 82) and many are secreted by human T cells after xenogeneic
transplantation, the majority are not cross-reactive with the
relevant murine receptors.

The presence of both murine and human MHC in these
humanized transgenic systems likely creates promiscuous
antigen recognition. NSG mice with intact murine MHC (H-2)
and transgenic HLA-A*0201 expression develop accelerated
lethality after transplantation with human PBMC, but
equivalent histopathology (relative to HLA-A*0201-negative
NSG mice) (83). In vitro assays demonstrate that multiple
human CD4+ and CD8+ T cell clones are reactive to both
murine MHC-I and II (84). In addition, highly aberrant
CD4+CD8+ T cell expansion within tissue has been seen after
xenogeneic but not clinical transplantation and this likely reflects
non-physiological antigen presentation (85). Thus while the
mechanism by which human TCR can respond to a murine
peptide-MHC complex is an intriguing question, the reality is that
disordered antigen presentation is a serious confounding factor.

Another possible approach of in vivo model is to utilize the
mice which have already been reconstituted by human
hematopoiesis. To achieve human hematopoietic APC
engraftment, the transplant of human bone marrow or cord
blood (CB) derived CD34+ HSC into immune deficient mice is
promising (74, 86, 87). These methods achieved stable and high
level of human cell engraftment in the BM and spleen (> 50%) but
with a low frequency of CD33+ or CD14+ human myeloid cells.
Human CB-derived HSC injection into newborn NSG mice
demonstrated the presence of human HLA-DR+CD11c+ cell in
the spleen three months after transplant (86). NSG-SGM3
Frontiers in Immunology | www.frontiersin.org 5118
(NSGS) mice which express additional transgenic genes for
human IL-3, GM-CSF and SCF and MISTRG mice which
express human IL-3, GM-CSF, M-CSF, thrombopoietin and
SIRPa, significantly improve human myeloid cell reconstitution
(88–90). Nevertheless, the issue of concurrent murine MHC
expression in these systems remains a confounding variable.
CONCLUSIONS

The advantage of fully murine models that permit delineation of
antigen-specific responses includes the ability to spatially and
temporally track antigen presentation and resultant T cell
responses in vivo, coupled with extensive availability of mutant
and transgenic strains to delineate mechanisms of disease.
Nevertheless, it remains important to validate these results
with polyclonal T cells in MHC-mismatched or miHA-
mismatched transplant models. The use of xenograft models
are increasingly important for the examination of immune
independent therapeutic effects (e.g. the effect of a drug on a
human leukemia in vivo) or human-human cellular interactions
in vivo (e.g. a human CAR T cell or TCR transgenic T cell
response against a human leukemia). In contrast, the species
mismatch inherent in these systems at the APC-T cell interface
makes them more problematic as a robust preclinical transplant
platform. Hence, the use of xenogeneic models for GVHD/GVL
studies ought to be used cautiously, sparingly, and ideally as an
adjunct to appropriate allogeneic models.
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TABLE 2 | Antigen presentation within mismatched MHC. miHA matched.

Mismatched
MHC

MHC
mutation

Known peptide/MHC complex T cell’s
self-MHC

Reactive TCR
Detection by

T cell from Reference

H-2Kbm1 7
nucleotides

H-2Kb Multiple clones from
C57BL6

(60)

H2-Ab1bm12 3
nucleotides

H2-Ab1b Multiple clones from
C57BL6

(61, 62)

H-2Ld dEV8 (self-peptide)/H-2Kb,
dEV8/H-2Kbm3,
SIYR (foreign peptide)/H-2Kb,
p2Ca/H-2Ld,
QL9/H-2Ld

H-2b 1B2 (anti-2C TCR
mAb)

2C TCR transgenic
mice

Originally BALB.B CD8+ T
cells when immunized P815
(DBA/2 mastocytoma line)
and BALB/c splenocytes
(63–65).

H2-IAd

(I-Ad)
unknown non-polymorphic mouse
peptide/I-Ad

H2-Ab1
(I-Ab)

4C TCR transgenic
mice

(66)
September 2021 |
Superscript letters indicate MHC types.
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Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic
procedure to treat hematological malignancies. However, the benefit of allo-HCT is
limited by a major complication, chronic graft-versus-host disease (cGVHD). Since
transmembrane and secretory proteins are generated and modified in the endoplasmic
reticulum (ER), the ER stress response is of great importance to secretory cells including B
cells. By using conditional knock-out (KO) of XBP-1, IRE-1a or both specifically on B cells,
we demonstrated that the IRE-1a/XBP-1 pathway, one of the major ER stress response
mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine
models of allo-HCT. Endoribonuclease activity of IRE-1a activates XBP-1 signaling by
converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also
cleaves other ER-associated mRNAs through regulated IRE-1a-dependent decay (RIDD).
Further, ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore,
we hypothesized that RIDD plays an important role in B cells during cGVHD development.
In this study, we found that the reduced pathogenicity of XBP-1 deficient B cells in cGVHD
was reversed by RIDD restriction in IRE-1a kinase domain KO mice. Restraining RIDD
activity per se in B cells resulted in an increased severity of cGVHD. Besides, inhibition of
RIDD activity compromised B cell differentiation and led to dysregulated expression of
MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells.
Furthermore, restraining the RIDD activity without affecting XBP-1 splicing increased B
cell ability to induce cGVHD after allo-HCT. These results suggest that RIDD is an
important mediator for reducing cGVHD pathogenesis through targeting XBP-1s.
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INTRODUCTION

Although it is an effective therapy to treat hematological disease,
the benefit of allogeneic hematopoietic stem cell transplantation
(allo-HCT) is limited by the induction of complications such as
acute and chronic graft-versus-host disease (GVHD) (1, 2).
Chronic GVHD (cGVHD) is still the main cause for the
morbidity and mortality of long-term survivors after allo-HCT
(3). Despite the continuous effort to understand and reduce the
cGVHD pathogenicity, the practical option for treatment is still
very limited except for steroids. Therefore, new strategies to both
prevent and treat cGVHD are urgently required.

It is well established that T cells play a major role in GVHD
development, but emerging evidence from pre-clinical studies
and clinical trials emphasize the importance of B cell
involvement in the pathology of cGVHD (4–6). B cells from
cGVHD patients showed increased B cell receptor response and
resistance to apoptosis resulting in the constant activation of B
cells (5, 7, 8). The presence of auto-antibody secreting B cells
promoted by alloreactive donor CD4 T cells is an important
mediator of autoimmune and fibrotic features of cGVHD (4, 9,
10). Very recently, the US Food and Drug Administration
approved ibrutinib, a Bruton’s tyrosine kinase inhibitor, which
is important for B cell receptor signaling, as second-line therapy
of steroid-refractory cGVHD (11). It shows that B cell regulation
can be one of the essential targets for cGVHD treatment. Thus,
we focus on the role of the unfolded protein response (UPR)
mediators in regulating B cell activity after allo-HCT.

The UPR consists of highly conserved signaling pathways that
allow the cells to manage ER stress in response to the
accumulation of unfolded or misfolded protein (12). There are
three primary UPR mediators including IRE-1a, PERK, and
ATF6 (13). Endoribonuclease activity of IRE-1a activates XBP-1
signaling by converting unspliced XBP-1 to spliced XBP-1
(XBP-1s) and also mediates regulated IRE1a-dependent decay
(RIDD) of ER-associated mRNAs harboring structures and
sequences similar to XBP-1 mRNA stem loops (14–16). It has
been demonstrated that IRE-1a/XBP-1s signaling is required
for normal B cell development and also pivotal for plasma
cell differentiation, which can secrete large amounts of
immunoglobulin (Ig) (17–21). While XBP-1s has been previously
shown to promote immunoglobulin production and secretion by
plasma cells, deletion of IRE-1a kinase or RNase activity, that
results in impaired XBP-1s production but also blocked RIDD
activity, does not significantly compromise the capability of plasma
cells in producing and secreting immunoglobulin (22, 23). Since
deletion of XBP-1s can enhance RIDD of immunoglobulin
mRNAs through upregulating the expression levels and kinase/
ribonuclease activity of IRE-1a leading to scarcity of
immunoglobulin proteins, further targeting IRE-1a kinase/RNase
activity by deleting IRE-1a or mutating serine 729 to alanine
(S729A) in IRE-1a kinase activation loop indeed results in
the recovery of immunoglobulin production and secretion by
XBP-1s-deficient plasma cells (20, 22, 23). We identified a critical
role of IRE-1a/XBP-1s signaling in B cells for the development
of cGVHD through genetic and pharmacological inhibition of
XBP-1s in mouse allo-HCT models (24). However, it is unclear
Frontiers in Immunology | www.frontiersin.org 2123
whether RIDD plays an important role in reducing the severity
of cGVHD.

Here, we identified the role of RIDD in B cell-mediated
cGVHD pathogenicity. Deletion of XBP-1s reduced B cell
activity and ability to stimulate allogeneic CD4 T cells in an
RIDD-dependent manner which reduced the severity of cGVHD
in the murine allo-HCT model. Our results showed that
activating RIDD by targeting XBP-1s is a useful strategy to
reduce cGVHD.
MATERIALS AND METHODS

Mice
BALB/c (H-2d), and FVB (H-2q) mice were purchased from the
National Cancer Institute (Frederick, MD). B cell conditional
XBP-1KO (XBP-1flox/floxCD19-Cre+), IRE-1aKO (kinase domain
(aa652-751) flanked by LoxP site (IRE-1aflox/floxCD19-Cre+),
XBP-1/IRE-1a double KO (DKO) (XBP-1flox/floxIRE-
1aflox/floxCD19-Cre+), and littermate wild-type control (XBP-
1flox/floxCD19-) mice on a C57BL/6(B6, H-2b) background were
generated as described before (20, 23, 25, 26). The S729A knock-in
mousemodelwas generatedaspreviouslydescribed (23).Micewere
maintained at pathogen-free facilities in the American Association
for LaboratoryAnimalCare–accreditedAnimalResourceCenter at
Medical University of South Carolina (MUSC) and the animal
facility at the Houston Methodist Research Institute (HMRI). All
animal experiments were approved by the Institutional Animal
Care and Use Committees at MUSC and HMRI.

Antibodies and Reagents
Antibodies were purchased as followed: Anti-CD4-V450, anti-
CD8a-APCcy7, anti-B220-V450, anti-CD138-Pe-cy7, anti-
CD86-Pe-cy5, anti-FAS-PE, anti-GL-7-APC, anti-CD40-APC,
anti-MHCII-FITC, anti-IL-4-PE, anti-IL-5-PE, anti-IgM-Pe-
cy7, anti-IgG1-APC, anti-IFN-r-Percp5.5, anti-TNF-a-PE, and
anti-IL-17-Pe-cy7 were purchased from BD Biosciences
(Franklin Lakes, NJ). Anti-PDL-1-biotin (eBioscience, San
Diego, CA), anti-XBP-1s (Cell Signaling Technology, Danvers,
MA), and anti-Rabbit IgG-FITC (Thermo Fisher Scientific,
Waltham, MA) antibodies were purchased from commercial
sources. Recombinant mouse IL-4 (PeproTech, Rocky Hill, NJ)
and LPS (Sigma-Aldrich, St. Louis, MO) were purchased from
the commercial companies. Goat F(ab’)2 Anti-Mouse IgM
(1022-01, SouthernBiotech, Birmingham, AL) and anti-mouse
CD40 (BE0016-2, BioXCell, Lebanon, NH) were commercially
purchased from companies.

Allogeneic Bone Marrow Transplantation
Recipient BALB/c mice (8-10 weeks old) were lethally irradiated
at 650 – 700 cGy using X-RAD 320 irradiator (Precision X-ray
Inc., North Brandford, CT). 5 × 106 T cell depleted bone marrow
(TCD-BM) cells were transplanted into recipient mice with or
without 0.3 – 0.5 × 106 splenocytes. Survival, body weight, and
clinical scores of cGVHD from recipient mice were monitored as
described previously (27). Clinical scores were calculated with
the combination of 7 parameters established in the previous
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report (28) including weight loss, posture, activity, fur texture,
skin integrity, diarrhea, and eye inflammation or conjunctivitis.
Individual mice were scored 0 to 2 for each criterion and 0 to 12
overall. We arbitrarily considered mice falling under the score
categories 0.5–3 as mild, 4–7 as moderate, and 8–12 as showing
severe symptoms where scores ≥ 8 required euthanasia as a
humane endpoint.

In Vitro Mixed Lymphocyte Reaction
B cells purified from WT, XBP-1KO, IRE-1aKO, and DKO B6
mice were stimulated with LPS (1mg/ml) and IL-4 (10ng/ml) for
24 h. LPS and IL-4 were removed from culture plate wells. T cells
from FVB mice were stained with Carboxyfluorescein diacetate
succinimidyl ester (CFSE, Invitrogen, Molecular Probes, Inc.,
Eugene, OR) and co-cultured with pre-stimulated B cells for 3-4
days. T cell proliferation and cytokine expression were
determined with flow cytometry analysis.

Serum Immunoglobulin Detection
Using DNA from calf thymus (Sigma-Aldrich), we made double-
strained DNA (dsDNA) (27). ELISA plates were coated with a
5mg/ml dsDNA overnight at 37°C. The plates were blocked with
1% BSA solution in PBS for 30 min. After blocking, serum or cell
supernatant was added at a 1:10 to 1:100 ratio in PBS containing
0.05% Tween and 1% BSA. Plates were incubated at room
temperature (RT) for 45 minutes and then washed. Biotin-
conjugated IgM or IgG1 antibody (BD Bioscience) was added
at a 1:4000 ratio and incubated for another 45 min in RT. Plates
were then washed and added with streptavidin-HRP antibody
(Invitrogen) at a 1:250 ratio and incubated for 45 min in RT.
After washing the plates, TMB Substrate (eBioscience) was added
to the plates. The reaction was stopped after 15 min using 1M
phosphoric acid and the plates were read at 450nm.

Statistics
Data were presented by means ± standard deviation (SD) or
means ± standard error of the mean (SEM) and statistical
analyses were performed by GraphPad Prism software, version
9. Statistics for GVHD scoring and mice weight were performed
using two-way ANOVA with Tukey’s multiple comparison test.
Comparison of the survival distributions of any given groups
were done using log-rank test. One way analysis of variance
(ANOVA) with the Tukey’s multiple comparison test was used
for multiple groups comparisons unless otherwise stated. p <
0.05 is considered statistically significant.
RESULTS

Inhibition of IRE-1a/XBP-1 Signaling
Reduces B Cell Activation, Differentiation,
and IgM Secretion Through RIDD-
Dependent Manner
We hypothesized that enhanced RIDD resulting from XBP-1s
deletion is an important factor to reduce B cell pathogenicity in
cGVHD development. To test this hypothesis, we compared the
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activation, differentiation, and immunoglobulin (Ig) production
of B cells from WT or genetically modified mice that have XBP-
1s, IRE-1a, or XBP-1s/IRE-1a deficiency specifically on their B
cells. Since IRE-1a/XBP-1 signaling is known to be activated by
LPS and IL-4 stimulation, which are also commonly presented in
BMT recipients (29), we stimulated B cells with them. First, we
measured the expression of XBP-1s, and confirmed that it was
eliminated in XBP-1KO, IRE-1aKO, and DKO B cells compared
to WT B cells (Supplementary Figure 1) (23). Activated B cells
increase the expression of MHCII and costimulatory molecules
including CD86, CD40, and ICOS. The expression of CD86 and
ICOSL was reduced on XBP-1KO B cells compared with WT
counterparts, but it was increased on IRE-1aKO and DKO B cells
where RIDD was also impeded (Figures 1A, B). The expression
levels of MHCII and CD40 were significantly increased in IRE-
1aKO and DKO B cells compared to WT B cells (Figures 1C, D).
Germinal center (GC) B cell development was also significantly
lower in XBP-1KO B cells, but it was reversed in IRE-1aKO and
DKO groups (Figures 1E, F). IgM is the first antibody produced
by plasma cells and its mRNA is the representative substrate of
RIDD in B cells (22). B cells from XBP-1KO mice expressed a
significantly lower level of IgM compared to WT B cells, which is
related to the reduced GC B cell population by XBP-1s deletion
(Figures 1E, F) and also confirms that RIDD was increased in
XBP-1s-deficient B cells (Figures 1G, H). Therefore, ablation of
RIDD by deleting IRE-1a in IRE-1aKO or DKO B cells restored
the IgM expression compared to XBP-1KO B cells (Figures 1G,
H). On the other hand, intracellular IgG1 expression was not
dramatically affected in XBP-1KO, IRE-1aKO or DKO B cells
(Supplementary Figures 2A, B). XBP-1KO B cells showed
reduced IL-4/IL-5 expression but such a reduction was not
restored by IRE-1a deletion suggesting these cytokines are not
regulated by RIDD (Supplementary Figures 2C, D).

XBP-1s is also required for the proper signaling through the B
cell receptor (BCR) (20). BCR is composed of a membrane-
bound immunoglobulin (IgM or IgD) and the disulfide-linked
Iga/Igb heterodimer. To induce BCR signaling, we stimulated B
cells with anti-IgM and anti-CD40 for stable activation. Similar
to stimulation with LPS and IL-4, XBP-1s deficiency repressed
the B cell activation, GC cell differentiation and sIgM expression
but these phenotypes were reversed by RIDD inhibition in IRE-
1KO and DKO B cells after BCR stimulation (Supplementary
Figure 3). Taken together, these data indicate that inhibition of
XBP-1s in B cells reduces B cell activation and differentiation
through both RIDD-dependent and -independent manners.

RIDD Is Essential for the Ability of XBP-1s-
Deficient B Cells to Activate T Cells
Activated B cells are important APCs in alloantigen-rich
immunologic microenvironment, which can prime allogenic T
cells in ongoing cGVHD (30). Therefore, we tested whether and
how RIDDmay affect B cell activity to stimulate allogeneic T cells
in vitro. WT T cells from FVB mice were stimulated with
allogeneic B cells from different B6 mice (WT, XBP-1KO, IRE-
1aKO, or DKO). T cells, particularly CD4 T cells, had a reduced
proliferation reflected by a decreased CFSE dilution when
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stimulated with XBP-1KO B cells, but such a reduction was not
observed in those stimulated with IRE-1aKO or DKO B cells
(Figures 2A, B). The proliferation of CD8 T cells was slightly
increased by IRE-1aKO orDKOB cell stimulation (Figures 2C,D).
Moreover, CD4 T cells, but not CD8 T cells, expressed significantly
less inflammatory cytokines including IFN-g (Figures 2E–G) and
TNF-a (Figures 2H–J) when stimulated by XBP-1KO B cells. Both
CD4 and CD8 T cells produced decreased levels of IL-17A when
stimulated with XBP-1s-deficient B cells (Figures 2K–M).
However, similar or even higher levels of cytokines were observed
whenCD4T cells were stimulated with IRE-1aKO andDKOB cells
in which not only XBP-1s was not expressed but also RIDD was
ablated. Collectively, our results indicate that activated RIDD in
XBP-1KOBcells is essential for optimal activationof allogeneicCD4
and potentially CD8 T cells.

XBP-1s Deficiency on B Cells Decreases
Severity of cGVHD Through RIDD
We showed that B cell activation and differentiation can be
regulated by RIDD activation resulting in altered alloreactive T
cell activation. Here, we investigated the role of XBP-1s deficiency-
mediated activation of RIDD in the prevention of cGVHDusing an
MHC-mismatched murine BMT (B6 to BALB/c) model. The
Frontiers in Immunology | www.frontiersin.org 4125
recipients transplanted with XBP-1s-deficient donor-graft showed
significantly reduced cGVHD severity (Figures 3A–C). Induction
offollicular helperT cell (TFH) is required for cGVHDdevelopment
by supportingGC formation andmaintenance (31).We found that
TFHphenotypewas notably increased in the recipients of IRE-1aKO

orDKOgraft (Supplementary Figures 4A, B). Besides, donorCD4
T cells in the recipients of XBP-1KO graft produced a significantly
lower level of IFN-g and IL-17, but T cells from those of RIDD-
ablated IRE-1aKO or DKO grafts expressed similar, or even higher
levels of cytokines compared toWT (Supplementary Figures 4C–
F). These data support that XBP-1s deficiency-mediated activation
of RIDD in B cells affects the T cell pathogenicity and consequently
regulates the cGVHD severity in the long-term period.

RIDD Regulates B Cell Activation and
cGVHD Pathogenesis
To determine the cellular mechanisms associated with cGVHD
development, we used B6 to BALB/c cGVHD model and
euthanized recipient mice at 4 weeks after allo-BMT for analyses
of donor B and T cell responses. Recipients transplanted with
allogeneic grafts from B cell-specific XBP-1KO donors showed
attenuated severity of GVHD represented by reduced GVHD
scoring and improved weight loss (Figures 4A, B). However, the
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FIGURE 1 | Roles of XBP-1s and IRE-1a in B cell activation, differentiation and IgM production in vitro. B cells were isolated from WT, XBP-1KO, IRE-1aKO, and IRE-
1aKO/XBP-1KO (double KO; DKO) mice and stimulated with 1 mu;g/ml LPS and 10 ng/ml IL-4 for 4 days. The cell surface expression levels of CD86 (A), ICOSL (B),
MHCII (C), and CD40 (D) were measured by flow cytometry analysis. Germinal Center B cells (FAS+GL-7+) were detected by flow cytometry (E, F). B cells were
stimulated with PMA and Ionomycin for another 4 hrs. B cells were intracellularly stained and analyzed for IgM production (G, H). Data are representative graphs and
flow cytometry plots of three independently repeated experiments. Data are shown as means ± SD. MFI, mean fluorescence intensity. Statistics were performed
using ordinary one-way ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p < 0.005, ***p < 0.0005, and ****p < 0.0001 when compared to WT. #p < 0.05,
##p < 0.005, ###p < 0.0005, and ####p < 0.0001 when compared to XBP-1KO group.
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recipients with IRE-1aKO or DKO donor grafts showed similar
levels of GVHD development compared to WT counterparts
(Figures 4A, B). The recipients of XBP-1KO donor-grafts had
higher frequencies of donor-derived B cells in their spleens, but
this was not the case in the recipients transplanted with IRE-1aKO

orDKOdonor-grafts where RIDDwas also ablated in donor B cells
(Figures 4C, D). B cells from the recipients with XBP-1KO donor-
grafts showed significantly decreased expression levels of MHCII,
CD86, ICOSL, andCD40,whichwere restored inB cells from those
with IRE-1aKO or DKO donor-grafts (Figures 4E–H). In the
recipients with XBP-1KO donor-grafts, B cell showed significantly
decreased expression of IgM (Figure 4I). Ablation of RIDD in B
cells in IRE-1aKO or DKO donor-grafts enhanced IgM production
Frontiers in Immunology | www.frontiersin.org 5126
compared to those inXBP-1KOdonor-grafts (Figure4I).Consistent
with in vitro data, IgG1, IL-4 and IL-5 expression levels were
reduced in XBP-1s-deficient B cells, but such reductions could
not be restored by further deleting IRE-1a (Supplementary
Figure 5). These data indicate that RIDD is a key mediator,
which can reduce cGVHD in the context of targeting XBP-1s.

RIDD Regulates the Capabilities of B Cells
in Activating T Cells During cGVHD
We observed that MHCII expression and costimulatory activity
of B cells were regulated by RIDD, which can affect T cell
pathogenicity in the induction of cGVHD. Therefore, we tested
donor T cell activation in the recipients transplanted with
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FIGURE 2 | Effects of XBP-1s and IRE-1a on B cell ability to stimulate allogeneic T cells in vitro. B cells isolated from WT, XBP-1KO, IRE-1aKO, and DKO on B6
background mice are stimulated with 1 mg/ml LPS and 10 ng/ml IL-4 for 24 hrs. T cells were isolated from FVB mice and labeled with CFSE and then incubated with
activated B cells for another 4 days. The representative flow panels of CFSE dilution and percentages of CFSE diluted cells on CD4 (A, B) and CD8 (C, D) T cells. T
cells were stimulated with PMA and Ionomycin for 4 h before intracellular cytokine staining for cytokine detection. The representative flow panels and the percentages
of IFN-g (E–G), TNF-a (H–J) or IL-17 (K–M) among proliferated (CFSElow) CD4 and CD8 T cells were shown. Data show representative flow cytometry plots and
graphs from three independently repeated experiments. Statistics were performed using ordinary one-way ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p <
0.005, ***p < 0.0005, and ****p < 0.0001 when compared to WT. #p < 0.05, ##p < 0.005, ###p < 0.0005, and ####p < 0.0001 when compared to XBP-1KO group.
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different donor grafts. We found that Treg differentiation was
increased in T cells in the recipients of XBP-1KO donor-grafts
(Figures 5A, B). Furthermore, Treg frequency was reversed in T
cell populations from the recipients transplanted with IRE-1aKO

or DKO donor-grafts, consistent with CD86 expression on
Frontiers in Immunology | www.frontiersin.org 6127
corresponding types of donor B cells (Figure 4F). Opposite to
Tregs with a suppressive role, T helper (Th)1, Th2, and Th17
cells play a pathogenic role in GVHD development (32, 33). We
measured the presence of Th2 (IL-4/IL-5+), Th1 (IFN-g+), and
Th17 (IL-17+) T helpers in donor T cell populations from the
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FIGURE 4 | Effect of XBP-1s and IRE-1a on B cell activation and cGVHD pathogenicity. BALB/c mice were lethally irradiated and transplanted with 5 x 106 TCD-
BM cells from WT, XBP-1KO, IRE-1aKO, and DKO mice on a B6 background with (n = 20) or without (n = 8) 0.35 - 0.5 x 106 splenocytes. GVHD scoring (A) and
mouse weight (B) were monitored during the experiment. Subsets of recipient mice were euthanized on day 28, and spleens were dissected and processed into
single-cell suspension. The percentages of B220+ B cells (C) and the expression levels of MHCII (D), CD86 (E), ICOSL (F), and CD40 (G) were detected by flow
cytometry analysis. Intracellular expression of IgM (H, I) was also determined using flow cytometry. Data show the representative result from three independently
repeated experiments. 28 recipient mice were used for each experiment. Statistics were performed using two-way ANOVA with Tukey’s multiple comparison test for
(A, B) One-way ANOVA with Tukey’s multiple comparison test was used for others. *p < 0.05, **p < 0.005, and ****p < 0.0001 when compared to WT. #p < 0.05,
##p < 0.005, ###p < 0.0005, and ####p < 0.0001 when compared to XBP-1KO group.
A B C

FIGURE 3 | Long-term impact of XBP-1s and IRE-1a on B cell pathogenicity in the induction of cGVHD. BALB/c mice were lethally irradiated and transplanted with
5 x 106 T cell-depleted bone marrow (TCD-BM) cells from WT (n = 4) or TCD-BM from WT, XBP-1KO, IRE-1aKO, and DKO mice on a B6 background with
0.35 - 0.5 x 106 splenocytes (n = 40). Recipient mice were monitored for the GVHD scoring (A), weight loss (B), and mortality (C) until 60 days after BMT. Data
show results from two out of three independently repeated experiments. 22 recipient mice were used for each experiment. Statistics for scoring and weight were
performed using two-way ANOVA with Tukey’s multiple comparison test. Comparisons of the survival distributions of any given groups were done using log-rank
test. ****p < 0.0001 when compared to WT.
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recipients transferred with various donor-grafts. In XBP-1KO

donor-graft transplanted mice, T cells showed decreased Th1,
Th2, and Th17 differentiation, which was reversed in the recipients
transplanted with IRE-1aKO or DKO donor grafts (Figures 5C–F,
H, I).Ontheotherhand, therewasnosignificantdifference in IFN-g
secreting type 1 CD8 T cell (Tc1) differentiation among the four
groups (Figure 5G). T cells from the recipients transplanted with
XBP-1KO or IRE-1aKO donor grafts were significantly less capable
of differentiating into IL-17-producing CD8 T cells (Tc17)
(Figure 5J). Collectively, these results suggest that activated
RIDD as a result of XBP-1s deficiency specifically in B cells can
change CD4 T cell differentiation during cGVHD.

RIDD Affects Activation and
Differentiation of B Cells, and Their
Ability to Activate T Cells
The kinase domain of IRE-1a is decisive for the ribonuclease
activity of IRE-1a, and especially phosphorylation of the S729
residue is important for RIDD, because IRE-1a carrying the
Frontiers in Immunology | www.frontiersin.org 7128
S729A mutation shows ablated RIDD activity but unabated
activity in splicing XBP-1 mRNA (23). First, we confirmed that
XBP-1s signaling is not affected by S729A mutation in B cells
(Supplementary Figure 6). To evaluate the role of RIDD in B
cells, we investigated activation and differentiation of B cells from
S729A and XBP-1KO/S729A mice and compared them with B
cells from WT and XBP-1KO mice, after B cells were treated with
F(ab’)2 and anti-CD40. As we expected, the reduced expression
levels of MHCII and CD86 resulted from XBP-1s deficiency were
reversed in XBP-1KO/S729A B cells (Figures 6A, B). The
formation of GC B cells was also decreased when XBP-1s is
deleted in B cells, but it was restored by further introducing
S729A into IRE-1a in XBP-1KO B cells (Figure 6C). Decreased
IgM-positive B cells and reduced IgM levels secreted into culture
media resulted from XBP-1s deficiency were also reversed by
further introducing the S729A mutation into IRE-1a
(Figures 6D, F). However, reduced IgG1 expression levels
resulted from XBP-1s deficiency were not reversed by the
S729A mutation of IRE-1a (Figures 6E, G), similar to our
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FIGURE 5 | Effect of XBP-1s and IRE-1a on B cell ability to stimulate allogeneic T cells during cGVHD. Lethally irradiated BALB/c mice were transplanted with 5 x
106 TCD-BM cells from WT, XBP-1KO, IRE-1aKO, and DKO mice on a B6 background with 0.35 - 0.5 x 106 splenocytes (n=20). Recipient mice were euthanized on
day 28 after BMT and single cells were isolated from recipient spleens. The expression of Foxp3 transcription factor (A, B) was measured by flow cytometry analysis.
The cytokine levels in CD4 and CD8 T cells including IL-4/IL-5 (C, D), IFN-g (E–G), and IL-17 (H–J) were determined after intracellular staining by flow cytometry
analysis. Data show the representative result from three independently repeated experiments. 20 recipient mice were used for each experiment. Statistics were
performed using two-way ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p < 0.005, ***p < 0.0005, and ****p < 0.0001 when compared to WT.
#p < 0.05, ##p < 0.005, ###p < 0.0005, and ####p < 0.0001 when compared to XBP-1KO group.
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IRE-1a kinase deletion results (Supplementary Figures 5A, B).
B cells with S729A mutation showed even higher MHCII
expression and IgM secretion compared to WT B cells after
stimulation with F(ab’)2 and anti-CD40 (Figures 6A, F).
However, B cells from S729A mice have already shown
curtailed activity and reduced GC B cell formation compared
to WT B cells when we stimulate B cells with LPS and IL-4
(Supplementary Figures 7A–E) while IgM expression is still
increased in S729A B cells (Supplementary Figure 7F). These
data showed that S729A B cells may respond differently to TLR4
signaling compared to BCR signaling. Taken together, these
results suggest that RIDD is essential for reduced activation
and differentiation of XBP-1s-deficient B cells.

We next tested whether RIDD inhibition by introducing the
S729A mutation to IRE-1a regulates B cell ability to stimulate
allogeneic T cells. CFSE-labeled allogeneic T cells were
stimulated with B cells from WT, XBP-1KO, S729A, or XBP-
1KO/S729A B6 mice in vitro. Similar to the IRE-1aKO and DKO
(Figures 2A, B), B cells from XBP-1KO mice carrying the
S729A mutation did not reduce CD4 T cell proliferation
(Supplementary Figures 8A, B). On the other hand, there was
no significant difference in CD8 T cell proliferation among all
four groups (Supplementary Figures 8C, D). CD4 T cells
stimulated with XBP-1s-deficient B cells produced significantly
less IFN-g, IL-4 and IL-5, but the levels of these cytokines were
restored by further introduction of the S729A mutation of IRE-
1a into XBP-1KO B cells (Supplementary Figures 8E, F, H, I).
S729A knock-in B cells showed reduced expression of MHCII
and costimulatory molecules when stimulated with LPS and IL-4
Frontiers in Immunology | www.frontiersin.org 8129
(Supplementary Figures 7A–D). Consequently, coculture of T
cells with LPS and IL-4 stimulated allogeneic S729A B cells
exhibited reduced proliferation and cytokine production in CD4
but not CD8 T cell populations (Supplementary Figures 8 E–J).
Taken together, these data support inhibition of XBP-1s in B cells
can reduce the allogeneic T cell activity through activating RIDD.

RIDD Affects the Severity of cGVHD
We next wanted to directly test the role of RIDD activity in B cell
pathogenicity in the induction of cGVHD by taking advantage of
the S729A mutation that specifically inhibits RIDD activity of
IRE-1a while preserving its ability in splicing XBP-1
(Supplementary Figure 6). Because S729A is germline
mutation, we isolated B cells from IRE-1a S729A mutant or
control mice and compared their ability to induce cGVHD. The
recipients transferred with S729A mutant B cells developed more
severe cGVHD as reflected by decreased survival, increased
GVHD scores, and weight loss (Figures 7A–C). The recipients
of S729A mutant B cells demonstrated significantly increased
thymus damage (Figure 7D) and reduced frequencies of the
donor-derived B cells in the spleens (Figure 7E). These recipients
also displayed a significantly increased percentage of GC B cells,
exhibited higher expression levels of MHCII, CD86, ICOSL, and
CD40 (Figures 7F–J), and produced significantly higher levels of
anti-dsDNA IgM (Figure 7K) as compared with WT B cells.
Taken together, these data indicate that RIDD activity of B cells
contributes to a diverse repertoire of B cell function including
activation, differentiation, and immunoglobulin production that
resulted in reduced cGVHD (Figure 8).
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FIGURE 6 | Roles of XBP-1s and the S729A mutation of IRE-1a in B cell activation, differentiation, and IgM production in vitro. B cells were isolated from WT, XBP-
1KO, S729A, and XBP-1KO/S729A mice and stimulated with anti-IgM F(ab’)2 (10 mu;g/ml) and anti-CD40 (10 mu;g/ml) for 48 hrs. The expression of MHCII (A) and
CD86 (B) were detected by flow cytometry. The percentages of germinal center B cells (FAS+GL-7+) were presented (C). (D, E) B cells were stimulated with PMA and
Ionomycin for 4 hrs on day 4. Intracellular levels of IgM (D) and IgG1 (E) were detected by flow cytometry analysis. Cell culture media were also collected, and anti-
dsDNA autoantibodies were detected using ELISA (F, G). Statistics were performed using two-way ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p <
0.005, ***p < 0.0005, and ****p < 0.0001 when compared to WT. #p < 0.05, ##p <0.005, ###p < 0.0005, and ####p < 0.0001 when compared to XBP-1KO group.
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DISCUSSION

We previously demonstrated that targeting XBP-1s in B cells
efficiently prevented cGVHD by reducing activation and
differentiation of B cells (24). However, how XBP-1s deficiency
regulates B cell response in cGVHD was not fully defined. Since
the absence of XBP-1s in B cells has been reported to confer the
upregulation of IRE-1a expression accompanied by increased
kinase and ribonuclease activity, we hypothesized that RIDD can
be a key mediator in response to targeting XBP-1s for cGVHD
prevention. IRE-1a has kinase and RNase domains in the
cytoplasmic region, and under ER stress, autophosphorylation
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of the kinase domain results in RNase activity (34). In this study,
we used B cell specific IRE-1a kinase domain deleted mice to
determine how RIDD impacts the role of XBP-1s deficiency in B
cells and found that deletion of IRE-1a kinase activity attenuated
the effect of targeting XBP-1s in the prevention of cGVHD.
In vitro assay revealed that the expression of MHCII and
costimulatory molecules are regulated by RIDD in B cells and
consequently alloreactive stimulation of T cells is attenuated by
activated RIDD in XBP-1s-deficient B cells.

We confirmed that RIDD was significantly increased in XBP-
1s-deficient B cells through IgM expression (Figure 1). However,
the absence of IRE-1a did not fully restore IgM production to the
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FIGURE 7 | Effect of S729A mutation on B cell activation and cGVHD pathogenicity. BALB/c mice were lethally irradiated and transplanted with 5 x 106 TCD-BM
cells from WT and S729A mice on a B6 background with (n = 10) or without (n = 4) 0.12 x 106 B cells from WT or S729A mice and 0.18 x 106 B cell deleted WT
splenocyte. Survival (A), GVHD score (B) and mouse weight (C) were monitored during the experiment. Subsets of recipient mice were euthanized on day 28, and
thymi and spleens were dissected and processed into single-cell suspension. CD4 and CD8 double positive cell percentages in thymus were determined using flow
cytometry (D). The percentages of B220+ B cells (E), germinal center B cells (FAS+GL-7+) (F), the expression of MHCII (G), CD86 (H), ICOSL (I), and CD40 (J) were
detected by flow cytometry analysis. Serum isolated from recipients was collected on day 28 and assayed for anti-dsDNA autoantibodies using ELISA (K).
(A–C) shows combined data from two independently repeated experiments. (D–K) shows representative data from two independently repeated experiments. 14
recipient mice were used for each experiment. Comparison of the survival distributions in (A) was done using log-rank test. Statistics were performed using two-way
ANOVA with Tukey’s multiple comparison test for (B, C) One-way ANOVA with Tukey’s multiple comparison test was used for comparing multiple groups and 2-
tailed Student t test was used for comparing between two groups. *p < 0.05, **p < 0.005, and ****p < 0.0001 when compared to WT. #p < 0.05, ##p < 0.005, ###p
< 0.0005, and ####p < 0.0001 when compared to XBP-1KO group.
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FIGURE 8 | Schematic diagram of our proposed model.

Choi et al. RIDD in Chronic GVHD
levels of WT B cells (Figure 1). We reason that IRE-1a-XBP-1s
signaling is also needed to promote plasma cell differentiation in
an RIDD-independent manner, thus insufficient differentiation
lowers the IgM expression in IRE-1a KO or DKO B cells
compared to WT counterparts. Increased splenic germinal
centers that significantly enhance Tfh and GC B cell
differentiation have been reported to be closely correlated with
cGVHD development (31, 35). Moreover, inducible ICOS/
ICOSL and CD40L/CD40 signaling between Tfh cells and B
cells are essential to initiate a germinal center reaction and
promote cGVHD (36, 37). We found that the expression of
ICOSL and CD40 were repressed by XBP-1s deletion but
restored in IRE-1aKO or DKO B cells (Figure 1), suggesting
that RIDD activation can suppress ICOSL and CD40 expression
on B cells likely through an indirect mechanism. Accordingly,
GC B cell and Tfh differentiation were also modulated by RIDD
activation (Figure 1 and Supplementary Figure 4).

Donor B cell-derived antibodies have been directly implicated
in cGVHD progress by augmenting the fibrosis of target organs
and inflammatory T cell infiltration (6, 38). RIDD has been
shown to regulate IgM and IgG2b expression while IgG1
response relied on a different downstream element of IRE-1a/
XBP-1s signaling (22). Besides, S729A mice with repressed RIDD
activity have also been reported to produce increased serum IgM
and IgG2b levels in response to immunization (23). Likewise, in
vitro assay revealed that IgM expression was partially restored in
IRE-1aKO and DKO B cells (Figures 1G–H). In murine GVHD
model, IgM production was more obviously restored in IRE-
1aKO and DKO B cells in transplanted recipients (Figure 4I)
while IgG1 was curtailed to a level similar to the XBP-1KO group
(Supplementary Figures 5A, B). These data implicate that
RIDD plays a critical role for plasma cells to reduce the
Frontiers in Immunology | www.frontiersin.org 10131
production of IgM and certain subclasses of IgG in GVHD
development. It has been suggested that deposition of IgG can
lead to infiltration and activation of T cells and macrophages
resulting in the cGVHD progress (6, 38). The role of secretory
IgM on cGVHD has not been defined yet, however, it was
reported that both IgG and IgM were frequently found in the
basal epidermis in both acute and chronic GVHD patient
biopsies, and their number was positively related to the degree
of epidermal necrosis observed in histologic section (39). It has
also been reported that patients with hyper IgM syndrome are
prone to exposure the autoimmune disease (40, 41). Although
one report suggests that inhibition of secretory IgM can induce
more autoreactive IgG resulting in the more severe autoimmune
disease in lupus-prone lymphoproliferative mice (42), it is
possible that that sIgM may play a different role in cGVHD. In
addition, the previous paper suggested sIgM suppressed the
development of IgG, but we consider that increased IgG
development may be because of the increased Ig class
switching by restricting IgM secretion. In our mouse GVHD
model, the recipients transferred with XBP-1s deficient B cells
showed reduced sIgM expression, but they didn’t show increased
IgG1 expression (Figure 4I and Supplementary Figure 5). Since
IgM is the main target of RIDD in B cells and their expression in
serum positively correlated with the severity of the disease, we
reason deposition of IgM may play an essential role in the
development of cGVHD. Further studies are needed to
determine this hypothesis.

Alloreactive T cells need to be primed by APCs to initiate
GVHD, and specifically, CD86 and CD40 mediated-
costimulation from APCs has been demonstrated to play an
essential role in eliciting cGHVD (43, 44). In light of our in
vivo and in vitro data on costimulatory molecules, RIDD
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inhibition by deleting IRE-1a restored the expression of CD86
and CD40 in XBP-1s-deficient B cells (Figure 1 and 4). Besides,
the expression of MHCII on B cells that present antigens to
activate CD4 T cells was also modulated by RIDD (Figures 1A,
4E). As a result, we demonstrated that alloreactivity of T cells,
especially CD4 T cells, can be recovered by suppressing RIDD in
XBP-1s-deficient B cells (Figure 2). It has been assumed that Th1
cells play a dominant role in acute GVHD, whereas Th2 cells are
important for cGVHD. However, recent studies have reported
that cytokines from Th1 (IFN-g) and Th17 (IL-17) cells also play
important roles in cGVHD progression (45, 46). Similar to
previous reports, our data demonstrated that the differentiation
of Th1, Th2, and Th17 was reduced upon interaction with XBP-
1s-deficient B cells but restored by suppressing RIDD via further
deleting IRE-1a, which in turn contributed to the severity of
cGVHD (Figure 5). Besides, poor Treg reconstitution after allo-
HCT has been suggested to result in the expansion of Th1 and
Th17 cells that released proinflammatory cytokines and increased
the risk of cGVHD (47, 48). We determined that CD28 mediated-
Lck signaling suppresses the generation of iTreg (49). Based on
these reports, we reason altered CD86 expression by RIDD
increased CD28 costimulatory signaling in T cells, affected Treg
differentiation during cGVHD development, and consequently
influenced Th1 and Th17 differentiation (Figure 5A).

It has been reported that phosphorylation of the S729 residue in
IRE-1a contributes to the upregulation of RIDD in XBP-1s-
deficient B cells (23). We demonstrate that RIDD triggered by
XBP-1s deletion could also be diminished by introducing the
S729A mutation (Figure 6D and Supplementary Figure 7F). As
a result, activation, differentiation, and alloreactivity of B cells were
also restored in S729A/XBP-1KO B cells (Figure 6 and
Supplementary Figure 8). RIDD inhibition with intact XBP-1s
expression in S729A B cells resulted in much higher IgM and
MHCII expression compared to WT, XBP-1KO and S729A/XBP-
1KO B cells (Figure 6 and Supplementary Figure 7), highlighting
the role of RIDD in suppressing GVHD. Unexpectedly, S729A B
cells showed reduced costimulatory factor expression and GC
formation (Figures 6B,C and Supplementary Figures 7A–E).
Since RIDD is important in maintaining basal ER homeostasis in
B cells, we surmise that the increased accumulation of RIDD target
molecules including IgM µ chain mRNA may compete for
ribosomes and limit the expression of costimulatory factors in
S729A B cells. Besides, since S729A B cells still produced XBP-1s,
we interpret that these B cells may upregulate some chaperon genes
under RIDD inhibition. Although S729 is located in the activation
loop of IRE-1a, phosphorylation of IRE-1a is not essential for
splicing the XBP-1 mRNA (23). Consistently, we also found that
mutating the S729 phosphorylation site of IRE-1a did not limit B
cells to produce XBP-1s. Altogether, we provide direct evidence
showing that selective inhibition of RIDD activity of IRE-1a
increases B cell pathogenicity in cGVHD induction (Figure 7).

To sum up, we demonstrate the mechanisms by which
targeting XBP-1s alleviates cGVHD development. Our results
indicate that activated RIDD resulted from XBP-1s deficiency
may be responsible for reduced pathogenicity of B cells in the
development of cGVHD, possibly through reducing IgM
Frontiers in Immunology | www.frontiersin.org 11132
secretion and limiting B cell activation and differentiation
(Figure 8).
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