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Editorial on the Research Topic

The Role of Microbiota in the Onset and Development of Intestine and Liver Diseases and
Cancer: Molecular and Cell Mechanisms

In the last decades, numerous studies highlighted the huge taxonomic and functional
complexity that characterizes the human microbiota, demonstrating its role in several
physiological processes necessary for host survival. This evidence supports the hypothesis
that the microbiota constitutes an “essential organ” instead of a “simple” conglomerate of
microbial symbionts. Furthermore, findings point out a mutual host-microbiota interaction,
whose imbalance can trigger dysbiosis and, in turn, the onset of illnesses or vice versa. In the
latter case, dysbiosis can magnify sicknesses. Several factors can alter microbiota homeostasis
and the present Research Topic collects seven reviews and four original contributions focused
on the cellular and molecular mechanisms involved in the interaction between host and
microbiota which can help to unravel the possible cause of disease and find new therapeutic
approaches.

Soffientini et al. and Bi et al. describe new cellular and molecular mechanisms that strengthen the
role of the gut microbiota in pathogenesis and progression of liver diseases.

Using a mouse model, Soffientini et al. reported that the deficiency of caspase-11, a protease
involved in the intracellular LPS sensing and triggering cell death pathways, gives protection against
multi-organ injury induced by low-dose injection of LPS in CCl4-induced hepatic fibrosis.
Furthermore, they found that high levels of the human orthologue, caspase-4, in the liver of
patients with acute decompensation of cirrhosis is correlated with the degree of injury and clinical
outcome. Overall, these data showed for the first time a causal relationship between translocation of
gut-derived bacterial products and multi-organ injury in cirrhosis.

Bi et al. provided theoretical support for future clinical practice, discussing the more recent
findings regarding the immuno-molecular mechanisms of the gut microbiota and their metabolites
in the occurrence and development of liver cancer. They pointed out that a balanced composition in
the gut microbiota is able to improve chemotherapy treatment in liver cancer and to reduce adverse
reactions.
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Furthermore, in this Research Topic recent findings are
reported on the identification of either new molecules derived
from both bacteria (Visekruna and Luu) and the diet (Ibragimova
et al.; Li et al.) or host-microorganism cellular interaction (Jiang
et al.; Linares et al.; Rocco et al.) that act as modulators on the
host-microbiota interplay and are involved in the development of
cancer, intestine and liver diseases. Also,Wang et al. provides new
clues regarding the recovery of microbiota after antibiotic therapy
and the role of low-intensity exercise in its balance.

Visekruna and Luu discussed the molecular and cellular
mechanisms by which short-chain fatty acids and bile acids as
dominant classes of bacterial metabolites impact intestinal and
liver function, inflammation, and carcinogenesis. The authors
examined numerous mechanisms, including epigenetics and the
more classical ligand-receptor ones, highlighting current gaps in
the field and providing input on possible therapeutic
interventions.

Li et al. questioned whether diet can affect the post-antibiotic
recovery of the gut microbiome and host metabolism. Indeed,
excessive antibiotics exposure leads to various detrimental
impacts on host metabolism resulting from an imbalanced gut
microbiome. In a mouse model, an integrated metagenomic and
transcriptomic approach was used to demonstrate that the effects
of an antibiotic intervention on host metabolism are long-lasting,
antibiotic-specific, and diet-dependent. Furthermore, it was
found that a high-fat diet could worsen the host metabolism
recovery from short-term antibiotic perturbation in an antibiotic

specific fashion, thus emphasizing the crucial role played by
nutrition during post-antibiotic recovery.

Ibragimova et al. reviewed the emerging concepts regarding
the relationship between diet, the microbiome, and cancer. They
discuss the growing evidence indicating that a primary link
between diet and cancer is mediated through dietary
constituents influencing the composition and function of the
gut microbiome. Furthermore, they underscore that future cancer
prevention and treatment should possibly focus on optimizing
favourable gut microbiomes and metabolomes.

Jiang et al. investigated the role of prolyl endopeptidase
(PREP), an enzyme involved in the gut metabolic homeostasis,
finding new clues regarding the crosstalk between gut microbiota
and pathogenesis and progression of non-alcoholic fatty liver
disease (NAFLD). In a mouse model of NAFLD induced by a
high-fat diet, they described that the PREP-gene disruption can
promote the abundance of several beneficial butyrate-producing
bacteria and reduce hepatic inflammation, ameliorate liver
lipogenesis and AMPK/SIRT1 signalling (involved in hepatic
steatosis). They proposed PREP as a possible target for NAFLD.

Linares et al. reviewed the current literature regarding the
interaction between intestinal bacterial translocation and the
development of inflammatory responses in Crohn’s disease.
They outlined several factors that contribute to an
uncontrolled bacterial translocation in patients with Crohn’s
disease, such as dysbiosis, increased permeability of the
intestinal barrier, altered immune response, and a genetic
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predisposition. They also focused in their discussion on the loose
response to anti-TNF-alpha biologic therapy observed in patients
with Crohn’s disease and the role of bacterial translocation as a
contributing factor.

Rocco et al. focused on the role of the gut milieu in the
pathogenesis of hepatic encephalopathy. They critically reviewed
the latest research findings in the field highlighting novelty and
limitations and discussed the therapeutic options and novel
treatment strategies.

Wang et al. studied the possible protective role of low-
intensity exercise against radiation enteritis. They showed
that in a mouse model walking and other comfortable
forms of exercise can mitigate the radiation-induced
gastrointestinal tract toxicity by restructuring the gut
microbiota configuration. More specifically, they found that
walking elevates the frequency of Akkermansia muciniphila in
the digestive tract after radiation exposure and, furthermore,
oral gavage of Akkermansia muciniphila protects against
intestinal radiation toxicity. Their results suggest that A.
muciniphila can be a useful agent to mitigate the radiation
intestinal injury of patients who are clinically unfit to exercise.

In addition to wet lab experiments, bioinformatic based
approaches have much to offer to microbiota research. Here, it
is also highlighted the need to develop new bioinformatics
approaches that describe the dynamics/interactions between
the microbial population rather than the mere composition of
the microbiota (Pratt et al.; Tudela et al.).

Pratt et al. illustrated the current “-omics” technologies for the
study of the gut microbiome in order to identify metabolic
biomarkers and patterns. Moreover, based on the results
derived by other “-omics” studies, they discussed the
significance of biological markers in the homeostasis and
immune signalling pathways that affect inflammation or
tumour development in the gut microenvironment. In
particular, they focused on short-chain fatty acid and bile acid
metabolism, inflammasome activation, and cytokine regulation
in the context of inflammatory bowel disease and colorectal
cancer.

Tudela et al. proposed that there is a need to identify specific
keystone members of the gut microbiota ecosystem that carry

essential functions that support a healthy symbiotic interaction
with the host. Indeed, they underscored the weakness of current
bioinformatic tools that focus on “presence or absence”
information and do not provide a view of species interactions,
thus missing the microbiota dynamics in disease status.

In this Research Topic, we discuss the latest findings and our
current understanding of molecular and cellular mechanisms
involved in the host-microbiota interaction and disease onset,
improving the state of the art and emphasizing the need for
further study.
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The gut-liver axis is increasingly recognized as being involved in the pathogenesis
and progression of non-alcoholic fatty liver disease (NAFLD). Prolyl endopeptidase
(PREP) plays a role in gut metabolic homeostasis and neurodegenerative diseases. We
investigated the role of PREP disruption in the crosstalk between gut flora and hepatic
steatosis or inflammation in mice with NAFLD. Wild-type mice (WT) and PREP gene
knocked mice (PREPgt) were fed a low-fat diet (LFD) or high-fat diet (HFD) for 16 or
24 weeks. Murine gut microbiota profiles were generated at 16 or 24 weeks. Liver
lipogenesis-associated molecules and their upstream mediators, AMP-activated protein
kinase (AMPK) and sirtuin1 (SIRT1), were detected using RT-PCR or western blot in all
mice. Inflammatory triggers and mediators from the gut or infiltrated inflammatory cells
and signal mediators, such as p-ERK and p-p65, were determined. We found that PREP
disruption modulated microbiota composition and altered the abundance of several
beneficial bacteria such as the butyrate-producing bacteria in mice fed a HFD for 16 or
24 weeks. The level of butyrate in HFD-PREPgt mice significantly increased compared
with that of the HFD-WT mice at 16 weeks. Interestingly, PREP disruption inhibited
p-ERK and p-p65 and reduced the levels of proinflammatory cytokines in response to
endotoxin and proline-glycine-proline, which guided macrophage/neutrophil infiltration
in mice fed a HFD for 24 weeks. However, at 16 weeks, PREP disruption, other than
regulating hepatic inflammation, displayed improved liver lipogenesis and AMPK/SIRT1
signaling. PREP disruption may target multiple hepatic mechanisms related to the liver,
gut, and microbiota, displaying a dynamic role in hepatic steatosis and inflammation
during NAFLD. PREP might serve as a therapeutic target for NAFLD.

Keywords: liver, gut microbiota, non-alcoholic fatty liver disease (NAFLD), gene knockout, prolyl endopeptidase
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a growing global
health concern that affects around one-fourth of the general
population worldwide (Younossi et al., 2016). The spectrum of
NAFLD consists of non-alcoholic fatty liver (NAFL), the more
advanced stage non-alcoholic steatohepatitis (NASH), NASH-
related cirrhosis, and hepatocellular carcinoma (Saltzman et al.,
2018; Aron-Wisnewsky et al., 2020). NAFLD pathogenesis is
highly complex and involves numerous pathways, including
insulin resistance, inflammation, lipotoxicity, increased de novo
lipogenesis, oxidative stress, and gut dysbiosis (Tilg and
Moschen, 2010; Suzuki and Diehl, 2017; Lonardo et al., 2018).
Several factors, likely acting in parallel, contribute to NAFLD
development and progression. These factors need to be better
understood since no effective drug regimen that completely
reverses the disease is currently available (Tilg and Moschen,
2010; Younossi et al., 2018).

A new model called “multiple organs-multiple hits” was
proposed to explain NASH progression mechanisms (Schuster
et al., 2018; Yan et al., 2020). A growing body of experimental and
clinical evidence suggests that gut microbiota may be implicated
in NAFLD pathogenesis (Abu-Shanab and Quigley, 2010; Safari
and Gerard, 2019). Recently, studies found that certain plant
extracts with prolyl endopeptidase (PREP) inhibitory function
exert both intestinal flora and anti-NAFLD/NASH effects (Chen
et al., 2014; Babkova et al., 2017; Wang et al., 2017). Consumption
of chlorogenic acid (often through coffee) benefits intestinal
functions and regulates the abundance of certain bacteria in
the cecum (Chen et al., 2019). Berberine, commonly used
for treating diarrhea in China (Kong et al., 2004; Yan et al.,
2020), could induce gut microbiota-derived bioactive metabolite
production, including butyrate, ultimately improving energy
metabolism (Wang et al., 2017). It is worth mentioning that
these extracts are naturally occurring PREP inhibitors (Adolpho
et al., 2013; Babkova et al., 2017). As mechanisms may vary
via different pathways in NAFLD development, various PREP
roles in different organs need to be identified for further
therapeutic applications.

Plant extracts with prolyl endopeptidase belongs to a unique
family of serine proteases that specifically hydrolyze prolyl-
containing bioactive peptides at the C-termini of proline residues
(Shan et al., 2005). PREP is mainly found in the brain (Myohanen
et al., 2007); however, significant PREP activities and protein
levels have been measured in peripheral tissues, such as the
liver and colorectal tumors (Larrinaga et al., 2014). One study
has reported a beneficial effect of PREP in the intestine. PREP
induction translated gluten into gluten immunogenic peptides
in the intestine, thus improving metabolic homeostasis in mice
fed a high-fat diet (HFD) (Olivares et al., 2019). However,
another study showed PREP detrimental effect when collagen
was cleaved by matrix metalloproteinases and PREP into proline-
glycine-proline (PGP), which guided neutrophilic infiltration
in the intestine and induced a vicious cycle in neutrophilic
inflammation in the context of inflammatory bowel disease
(Koelink et al., 2014). Our previous work found that N-acetyl-
seryl-aspartyl-lysyl-proline (AcSDKP), generated from thymosin

β4 (Tβ4) through hydrolysis of meprin-α and PREP, exerts a
therapeutic effect on inflammatory bowel disease (Shi et al.,
2020). Our studies also indicated that PREP inhibition improves
hepatocyte steatosis in vitro and in vivo (Zhou et al., 2016; Jiang
et al., 2020). However, the interactions between PREP and the
gut environment in HFD-induced NAFLD and their potential
multi-organ mechanisms remain unknown.

Herein, we conducted in vivo experiments at different times
and in different organs to explore the role of PREP disruption
on HFD-induced steatohepatitis, focusing on its controversial
role in gut flora and its relationship with HFD-induced hepatic
steatosis and inflammatory responses, and to elucidate its
possible mechanism of action.

MATERIALS AND METHODS

Animal Model and Diets
Wild-type (WT) C57BL/6J and PREP-disrupted (PREPgt) mice
were obtained from the Shanghai Model Organisms Center, Inc.
The details of PREP knockout mice are provided in the Methods
section of our previous study (Jiang et al., 2020). Mice were fed
a standard chow diet or a HFD (fat 30 kcal%, carbohydrates
52 kcal%, protein 18 kcal%, and cholesterol 2%) for 16 or
24 weeks. All mice were housed under a 12:12 h light/dark cycle
at 25 ± 2◦C and were allowed free access to food and water.
All animal experiments followed the National Research Council’s
Guide for the Care and Use of Laboratory Animals and were
approved by the Institutional Animal Care and Use Committee
of SHRM (SHRM-IACUC-022).

Gut Microbiota Analysis
Cecal content samples were snap-frozen and stored at −80◦C.
Bacterial DNA was isolated from the cecal contents using a
DNeasy PowerSoil kit (Qiagen, Hilden, Germany) according
to the manufacturer’s protocols. The quality and quantity of
DNA were measured using a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, United States) and agarose
gel electrophoresis, respectively. The V3–V4 regions of the
bacterial 16S ribosomal RNA gene were amplified in a
25-µl reaction using PCR. The amplicons were purified
using Agencourt AMPure XP beads (Beckman Coulter Co.,
United States). Purified amplicons were then applied to
the Illumina MiSeq platform (Illumina Inc., San Diego,
United States). After paired-end reads were preprocessed using
Trimmomatic software (Bolger et al., 2014) to detect and cut
off ambiguous bases, FLASH software was used to assemble
paired-end reads (Reyon et al., 2012). All results were based on
sequenced reads and operational taxonomic units (OTUs).

Hematoxylin and Eosin and
Immunohistochemistry Staining
Liver tissue and ileum were fixed in 4% paraformaldehyde
at 4◦C overnight, then embedded in paraffin wax or snap-
frozen in liquid nitrogen and stored at −80◦C. Paraffin
sections were stained with hematoxylin-eosin (H&E) for
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pathological analysis. NALFD activity score (NAS) is calculated
from the semi-quantitative evaluation of hepatic steatosis,
lobular inflammation, and hepatocyte ballooning, as the
previous review concluded (Aron-Wisnewsky et al., 2020).
For immunohistochemistry, liver sections were incubated
with antibodies against F4/80 (gb11027, Servicebio, China)
and myeloperoxidase (MPO) (gb11224, Servicebio, China).
The number of positive cells in the liver sections was
normalized to the tissue area. Ileum sections were incubated
with antibodies against zonula occludens 1 (ZO-1) (ab96587,
Abcam, United Kingdom) and occludin (ab216327, Abcam,
United Kingdom). Images were captured using an optical
microscope (Olympus BX51, China).

PREP Activity Fluorometric Assay
The PREP activity assay was performed as described previously
(Zhou et al., 2016). Briefly, 60 mg liver tissues were homogenized
in 500 µl assay buffer (10 mmol/L Tris–HCl buffer, pH 7.4)
and then centrifuged for 20 min at 4◦C. Thereafter, 465 µl
Tris–HCl (pH 7.4) was added to 10 µl supernatant for 30 min
at 37◦C. Next, 25 µl of the substrate (4 mmol/L Suc-Gly-Pro-
AMC, Bachem) was added. The reagents were mixed, and the
reaction was incubated for 60 min at 37◦C. After adding the
stop solution (500 µl, 1 mol/L sodium acetate buffer, pH 4.2),
the fluorescence intensity was read at Ex/Em = 360/460 nm.
The final concentrations were normalized to protein content
and reaction time.

MMP9 Fluorometric Assays
Liver tissue samples were homogenized in assay buffer and
centrifuged for 15 min at 10,000 × g 4◦C, followed by their
activation with APMA (1 mM; AnaSpec, United States) for 2 h
at 37◦C. The active MMP-9 was detected using SensoLyte 520
MMP-9 Assay Kit (fluorometric) using a 5-FAM/QXLTM520
fluorescence resonance energy transfer peptide (AS-71155,
AnaSpec, United States), according to the manufacturer’s
instructions. The reagents were mixed, and the fluorescence
intensity was read at Ex/Em = 490/520 nm after adding the
stop solution. The final concentrations were normalized to
protein content.

Immunoblots
Liver or ileum tissue was homogenized and lysed in ice-
cold RIPA lysis buffer (Beyotime, Shanghai, China). Total
protein concentrations were measured using the BCA Protein
Assay Kit (Beyotime, Shanghai, China). For immunoblotting,
the protein extracts were loaded onto SDS-polyacrylamide
gels (SDS-PAGE) and separated. Then, the proteins were
transferred onto polyvinylidene difluoride membranes and
blocked with 5% skimmed milk. Next, the membranes were
incubated with primary antibodies, followed by incubation
with secondary antibodies and enhanced chemiluminescence.
Antibodies against sirtuin1 (SIRT1, 9475T), phosphorylated-
adenosine 5′-monophosphate-activated protein kinase (PAMPK,
2535T), AMPK (4150P), fatty acid synthase (FAS, 3180S),
phosphorylated-p65 (3033P), p65 (8242P), phosphorylated-
ERK1/2 (4370T), and ERK1/2 (4695T) were obtained from Cell

Signaling Technology (Beverly, MA, United States). Antibodies
against sterol regulatory element-binding transcription factor 1
(SREBP1 and GB11524) and GAPDH (GB11002) were obtained
from Servicebio (Wuhan, China). Antibodies against MMP9
(ab38898) were obtained from Abcam. The bands were quantified
using Image Lab Version 2.0.1 (Bio-Rad, Hercules, CA,
United States). The western blots used for analysis are included
in the Supplementary Files (Supplementary Figures 3, 4).

Quantitative Reverse
Transcription-Polymerase Chain
Reaction (RT-PCR) Analysis
The tissue samples were homogenized using TRIzol reagent
(Takara, Dalian, China) to extract total RNAs, which were reverse
transcribed to cDNA using reverse transcriptase (Takara, Dalian,
China). Thereafter, cDNA was used to perform real-time PCR
using SYBR Premix Ex Taq (Tli RNase H Plus) (Takara, Dalian,
China) using a ViiA7 real-time PCR system (Applied Biosystems,
United States). Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as an internal control. Relative mRNA
expression levels were determined using the 2−11Ct method.
The gene-specific primers in this experiment are listed in
Supplementary Table 1.

Statistical Analysis
All data are expressed as the means ± SEM. Comparisons were
performed using a one-way analysis of variance (ANOVA) in
GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA,
United States). Tukey’s post-hoc comparisons were applied for
comparisons between multiple experimental groups. Differences
were considered significant at P-values < 0.05.

RESULTS

Hepatic Steatosis and Liver Injury Were
Ameliorated by PREP Disruption in the
Liver of HFD-Fed Mice at Different Time
Points
After ingesting an HFD for 16 weeks (w), HFD-WT mice
developed enlarged and yellow greasy livers compared to LFD-
WT mice, while the gross picture was more evident after 24 weeks
feeding (Figure 1A). The general view of the liver improved after
PREP disruption (Figure 1B). The HFD-WT mice gained more
body weight than LFD-WT mice, while the weights of HFD-
PREPgt mice decreased to varying degrees after 16 and 24 weeks
feeding (5.24 and 10.26%, respectively) compared to HFD-WT
mice (Figure 1B). Additionally, ALT and AST serum levels were
greatly elevated in HFD-WT mice and significantly decreased in
HFD-PREPgt mice after 24 weeks feeding (Figure 1C). However,
after 16 weeks feeding, only the ALT serum results displayed
statistical significance. H&E staining demonstrated substantially
increased fat accumulation in the livers of the HFD-WT mice (16
and 24 weeks) compared with that in the LFD-WT, respectively,
while lobular inflammation is more evident in the 24 weeks
HFD-WT mice (Figure 2A). Specifically, histological changes
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FIGURE 1 | PREP disruption reduced mice weight and protected against liver injury in HFD-fed mice as NAFLD progressed. (A) Representative gross pictures of the
livers in different groups; (B) Body weight was measured at 16 and 24 w, respectively; (C) Plasma levels of ALT and AST were measured. All data are presented as
the means or mean ± SEM (n = 8–13). *P < 0.05 and **P < 0.01, LFD-WT vs. HFD-WT; †P < 0.05 and ††P < 0.01, HFD-WT vs. HFD-PREPgt.

improved in HFD-PREPgt mice at both 16 and 24 weeks,
NAS decreased by 29.51 and 27.82% compared with HFD-WT
mice, respectively (Figures 2A,B). Hepatic triglyceride content
increased significantly at both time points with HFD feeding,
while the indexes of 16 and 24 weeks HFD-PREPgt mice
decreased by 35.75 and 43.41% compared with HFD-WT mice,
respectively (Figure 2C). Hepatic cholesterol results from both
time points were similar to hepatic triglycerides to a certain
extent (Figure 2D).

PREP Disruption Dynamically Activates
the AMPK/SIRT1 Pathway to Regulate
Hepatic Lipid Synthesis in HFD-Induced
NAFLD Mice at Different Time Points
To further understand the mechanisms that exacerbate NAFLD
progression, we measured the hepatic AMPK/SIRT1 pathway’s

protein levels in mice. We observed downregulation of PAMPK
and SIRT1 protein expression in 16 weeks HFD-WT mice
compared with LFD-WT mice at the corresponding time (25.79
and 31.63%, respectively), while significant upregulation was
observed in 16 weeks HFD-PREPgt mice compared with the
HFD-WT mice (150.47 and 54.54%, respectively; Figures 3A,B).
The differences in P62 levels and the LC3B-II/LC3B-I ratios
(autophagy-related proteins) between HFD-WT mice and HFD-
PREPgt mice at 16 weeks display no significance (Supplementary
Figure 1a). We also determined the levels of downstream
factors, such as sterol regulatory element-binding protein 1c
(SREBP1c) and fatty acid synthase (FASN), to evaluate PREP
disruption effects on lipid metabolism. Upregulation of SREBP1c
and FASN were observed in 16 weeks HFD-WT mice, while
significant downregulation was observed in HFD-PREPgt mice
at the corresponding time compared with the HFD-WT mice
(43.17 and 37.1%, respectively; Figures 3A,B). In addition, liver
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FIGURE 2 | Lipid accumulation and hepatic steatosis ameliorated by PREP disruption in the liver of HFD-fed mice as NAFLD progresses. (A) Liver sections were
harvested and stained with hematoxylin-eosin (200× magnification) at 16 and 24 w; (B) NAS is calculated from the semi-quantitative evaluation of hepatic steatosis,
lobular inflammation, and hepatocyte ballooning in different groups; hepatic levels of triglycerides (C) and cholesterol (D) were detected in mice. All data are
presented as the mean or mean ± SEM (n = 8–13). **P < 0.01, LFD-WT vs. HFD-WT; ††P < 0.01, HFD-WT vs. HFD-PREPgt.

mRNA levels of AMPK/SIRT1-mediated lipogenesis enzymes,
such as acetyl-coenzyme A carboxylase (ACC), FASN, stearoyl-
CoA desaturase1 (SCD1), SREBP1c, and CD36, were lower in
the 16 weeks LFD-WT mice (40.17∼84.47%) and HFD-PREPgt

mice (44.58∼51.23%) compared with the corresponding levels in
the HFD-WT mice (Figure 3C). However, PAMPK and SIRT1
protein levels were not significantly upregulated in 24 weeks
HFD-PREPgt mice compared to HFD-WT mice (31.47 and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 May 2021 | Volume 9 | Article 62814312

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-628143 May 13, 2021 Time: 15:51 # 6

Jiang et al. PREP Disruption Delays NAFLD Progression

FIGURE 3 | PREP disruption dynamically activates the AMPK/SIRT1 pathway to regulate hepatic lipid synthesis in HFD-fed mice as lipid accumulation progresses.
(A) Liver expression of total and phosphorylated AMPK (PAMPK) and SIRT1 proteins and their downstream molecules (SREBP1c and FASN) were detected at 16 w
in mice using western blot analysis; (B) relative bar graphs display blot quantification analysis for 16 w mice; (C) hepatic mRNA levels of lipid synthesis-associated
genes of 16 w mice were examined using RT-PCR; (D) protein levels of PAMPK/SIRT1, SREBP1c, and FASN in livers were detected in 24 w mice; (E) relative bar
graphs display blot quantification analysis for 16 weeks mice; (F) hepatic mRNA levels of lipid synthesis-associated genes of 24 w mice were examined using
RT-PCR. All data are presented as the mean ± SEM (n = 4). *P < 0.05 and **P < 0.01, LFD-WT vs. HFD-WT; †P < 0.05 and ††P < 0.01, HFD-WT vs. HFD-PREPgt.

36.34%), along with the protein levels of SREBP1c and FASN,
which were downregulated (16.78 and 41.46%; Figures 3D,E).
Reduced P62 levels were observed in 24 weeks HFD-PREPgt

mice compared with HFD-WT mice, but the LC3B-II/LC3B-I
ratios did not display a significant difference (Supplementary
Figure 1b). However, the reduced LC3B-II/LC3B-I ratio in
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24 weeks HFD-WT mice was more evident than that observed
in 24 weeks HFD-PREPgt mice than LFD mice, respectively
(Supplementary Figure 1b). After 24 weeks, liver mRNA levels
associated with the de novo lipogenesis pathway (ACC, FASN,
SREBP1c, SCD1, and CD36) were lower in LFD-WT mice
(32.38∼79.36%) and HFD-PREPgt mice (7.95∼47.15%) relative
to HFD-WT mice (Figure 3F). However, some differences did not
display significance.

Hepatic Inflammation and Related Signal
Molecules Were Attenuated by PREP
Disruption in HFD-Fed Mice
Upon examination of hepatic inflammatory status, we observed
that liver sections from HFD-PREPgt mice contained fewer
MPO-positive cells (neutrophils) and F4/80-positive cells
(macrophages and Kupffer cells) compared with HFD-WT
mice at 16 weeks (22.76 ± 3.31 vs. 39.76 ± 4.46, 22.62 ± 2.23
vs. 33.46 ± 13.32, respectively, Figure 4A). Moreover, the
phosphorylation states of ERK (p-ERK) and nuclear factor κB
(NFκB) p65 (p-p65) and related proinflammatory cytokines in
livers were detected in different groups. However, differences in
protein expressions of p-p65 and MMP9, including total MMP9
and its active form, were not statistically significant between
HFD-WT mice and HFD-WT mice at 16 weeks (Figure 4B,C).
p-ERK protein expression was significantly higher in HFD-WT
mice than in LFD-WT mice, while this appeared downregulated
in HFD-PREPgt mice (P = 0.073; Figure 4B). Besides, hepatic
mRNA levels of CCL2, tumor necrosis factor α (TNFα),
interleukin 1β (IL1β), and IL6 were increased in the livers of
HFD-WT mice and HFD-PREPgt mice at 16 weeks; however,
these differences were not statistically significant (Figure 4D).
Interestingly, we detected the same indexes in mice’s liver at
24 weeks, while results differed in terms of hepatic inflammation
progression. Liver sections from 24 weeks HFD-PREPgt mice
contained fewer MPO-positive cells and F4/80-positive cells
compared with HFD-WT mice at 24 weeks (13.71 ± 2.28
vs. 19.88 ± 3.91, 26.05 ± 2.53 vs. 57.82 ± 4.21, respectively;
Figure 5A). HFD-fed PREPgt mice also showed significant
decreases in the phosphorylation states of p-ERK and p-p65,
and mRNA levels of CCL2 and TNFα, compared with HFD-fed
WT mice at 24 weeks (Figures 5B,D). Moreover, the active form
of MMP9 was downregulated in HFD-PREPgt mice compared
with HFD-WT mice (32.6%), consistently with its protein level
(Figures 5B,C). Furthermore, PGP production of HFD-WT
mice markedly increased as hepatic inflammation progressed,
and it was further downregulated in the liver of 24 weeks
HFD-PREPgt mice compared with 24 weeks HFD-WT mice
(47.56%; Figure 5E).

PREP Gene Disruption Alleviated Gut
Microbiota Dysbiosis in Mice Fed a HFD
The PREPgt mice used in this study carry a partial exon
three deletion in the PREP gene, which caused complete
PREP protein loss. The liver PREP activity of HFD-WT mice
was higher than that of LFD-WT mice at both time points.
Figures 6A,B shows representative PREP western blot images
(Figure 6A) and activity measurements (Figure 6B) of the

liver in mice, respectively. In PREPgt mice, specific PREP
activity was significantly downregulated compared with WT mice
(Figure 6B).

Fecal samples were collected at 16 and 24 weeks, and the
microbiota composition was analyzed using 16S rRNA gene
amplicon sequencing. First, the gut microbial profile at the
phylum level was assessed. At the phylum level, we observed
increased Firmicutes abundance and decreased Bacteroidetes
abundance in the HFD-WT mice and the HFD-PREPgt

mice at 16 weeks (Figures 6C,D). However, the difference
in the Firmicutes to Bacteroidetes ratio between the LFD-
WT, and HFD-WT mice, was not statistically significant
at 24 weeks (Figures 6C,E). Non-metric multidimensional
scaling analysis and principal coordinate analysis showed
that the overall composition of the gut flora expectedly
changed in the 24 weeks HFD-WT mice, and the microbial
profile slightly shifted in 24 weeks HFD-PREPgt mice
(Figures 6F,G). The overall composition of the gut flora in
16 weeks HFD-WT and 16 weeks HFD-PREPgt mice was
similar (Figures 6F,G). However, pathways related to energy
and nutrient (amino acid, lipid, and glucose) metabolism
were upregulated and downregulated in HFD-WT in HFD-
PREPgt mice, respectively, at both time points, suggesting that
PREP may affect metabolic processes by regulating the gut
flora (Figure 6H).

After analyzing the microbial profile in detail, levels of
Ruminiclostridium 9, Blautia, Corprocccus 2, Lachnospiraceae
NK4A139, Oscillibacter, and Odoribacter increased in the
16 weeks mice (Figure 7A). The levels of Ruminiclostridium 9,
Blautia, Lachnospiraceae NK4A139, Odoribacter, Intestinimonas,
and Faecalibaculum decreased in 24 weeks HFD-WT mice
and increased after PREP gene knockout (Figure 7B).
Desulfovibrio, Romboutsia, and Bilophila increased in HFD-
WT mice and decreased in HFD-PREPgt mice at 16 and 24 weeks
(Figures 7A,B). The expression of SCFAs receptors (GPR41
and GPR43) decreased in HFD-WT mice and slightly improved
after PREP disruption at 16 and 24 weeks (Supplementary
Figures 2a–d). The level of butyrate in 16 weeks HFD-PREPgt

mice significantly increased compared with HFD-WT mice
(Supplementary Figure 2e).

PREP Gene Disruption Diminished
Damage to the Intestinal Epithelial
Barrier in Mice Fed a HFD
We explored whether PREP loss exerted beneficial effects on
the integrity of the intestinal barrier in mice under HFD
stimulation. As shown in Figure 8A, we observed abnormal
morphological alterations of intestinal mucosa in HFD-WT
mice compared with LFD-WT mice and HFD-PREPgt mice.
A loss of normal villus structure in the terminal ileac epithelium
was observed in HFD-WT mice (Figure 8A). The villus
height and crypt depth were significantly decreased in the
terminal ileum of HFD-WT mice compared with LFD-WT
mice and HFD-PREPgt mice; however, changes in the villus
to crypt ratio were not evident (Figures 8A,B). Besides,
we detected protein and mRNA expression levels of zonula
occludens 1 (ZO1) and occludin. Protein levels of ZO1 and
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FIGURE 4 | Hepatic inflammation and expression of related signaling molecules were slightly attenuated by PREP disruption in HFD-fed mice at 16 w. (A) Liver
sections harvested from mice at 16 w were stained with anti-F4/80 and anti-MPO; (B) protein levels of p-ERK, p-p65, and MMP9 were detected using western blot
analysis; (C) hepatic active MMP9 levels were measured using fluorometric assays; (D) mRNA expression of proinflammatory cytokines. All data are presented as the
mean or mean ± SEM (n = 4–6). *P < 0.05 and **P < 0.01, LFD-WT vs. HFD-WT. ††P < 0.01, HFD-WT vs. HFD-PREPgt.
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FIGURE 5 | Hepatic inflammation increased as NASH progressed, while PREP disruption suppressed the detrimental microenvironment at later stages of
HFD-induced NASH. (A) Liver sections harvested from mice after 24 w were stained with anti-F4/80 and anti-MPO; (B) protein levels of p-ERK, p-p65, and MMP9
were detected using western blot analysis; (C) hepatic active MMP9 levels were measured using fluorometric assays; (D) mRNA expression of proinflammatory
cytokines; (E) Production of PGP in the liver. All data are presented as the mean or mean ± SEM (n = 4–6). *P < 0.05 and **P < 0.01, LFD-WT vs. HFD-WT;
†P < 0.05 and ††P < 0.01, HFD-WT vs. HFD-PREPgt.

occludin were reduced in the intestine of HFD-WT mice
compared with LFD-WT mice, and the two were increased in
HFD-PREPgt, as shown by immunostaining and immunoblots

(Figures 8A,C). mRNA expression of ZO1 and occludin were
consistent with protein expression, respectively (Figure 8D).
As shown in Figure 8E, elevated liver endotoxin levels were
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FIGURE 6 | PREP gene disruption improved the gut flora structure and altered the metabolic pathways involved with the microbiota of mice fed a HFD.
(A) Representative anti-PREP western blot images of the liver of WT and PREPgt mice; (B) PREP enzymatic activity measured (± SEM) in liver samples from WT and
PREPgt mice, *P < 0.05; (C) relative abundance of taxa at the phylum level as 16S rRNA-based gut microbial profiling was performed; (D) the Firmicutes to
Bacteroidetes ratio at 16 weeks mice, *P < 0.05, LFD-WT vs. HFD-WT; (E) the Firmicutes to Bacteroidetes ratio at 24 weeks mice, *P < 0.05, LFD-WT vs. HFD-WT;
(F) principal coordinate analysis of an unweighted unifrac distance matrix; (G) non-metric multidimensional scaling analysis of an unweighted unifrac distance matrix.
(H) prediction of the functional genes in the bacterial community in the gut, performed using PICRUSt (n = 4).
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FIGURE 7 | (A) The abundance of OTUs and representative bacterial taxa information (phylum, family, and genus) of 16 w mice (n = 4); (B) the abundance of OTUs
and representative bacterial taxa information (phylum, family, and genus) of 24 w mice (n = 4).

significantly increased in HFD-WT mice compared with LFD-
WT mice. Although the indexes were slightly decreased in
HFD-PREPgt mice, this difference was not statistically significant
(Figure 8E).

DISCUSSION

The involvement of the gut-liver axis in the pathogenesis and
progression of NAFLD is increasingly being recognized. PREP
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FIGURE 8 | Damage to the intestinal epithelial barrier in mice fed a HFD was reversed by PREP gene knockout. (A) Representative H&E staining and
immunostaining of ZO-1 and occluding of the terminal ileum sections are shown; (B) as the villus height and the depth of the crypts were measured, the ratio of villus
height to crypt depth was calculated; (C) protein levels of ZO-1 and occludin in the intestine were measured using western blot. Bar graphs display the quantification
of western blots; (D) intestinal mRNA levels of tight junction protein-associated genes and inflammatory factors were examined using RT-PCR; (E) the hepatic level of
endotoxin was measured using a mouse lipopolysaccharide ELISA kit. All data are presented as the mean or mean ± SEM (n = 4–6). *P < 0.05 and **P < 0.01,
LFD-WT vs. HFD-WT; †P < 0.05 and ††P < 0.01, HFD-WT vs. HFD-PREPgt.

action is quite complex, as it can induce metabolic benefits
or proinflammatory damage to the intestinal environment
(Koelink et al., 2014; Olivares et al., 2019). Our previous

study found that PREP disruption plays a beneficial role in
NAFLD progression, mainly through decreases in the number of
chemokines (such as PGP) and inflammatory cell accumulation
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(Jiang et al., 2020). Notably, different hepatic pathogenesis
mechanisms have previously been described, and complex PREP
actions have been reported; therefore, we carried out this
study to imitate the different NAFLD stages to uncover PREP’s
influence on the mice gut. We found that (Younossi et al., 2016)
hepatic lipid metabolism improved dynamically by activating
the SIRT1/AMPK pathway via PREP disruption under HFD
feeding conditions; (Saltzman et al., 2018) PREP disruption
markedly improved hepatic proinflammatory status progression
by inhibiting phosphorylated ERK and p65 as NASH progresses
to more severe stages; (Aron-Wisnewsky et al., 2020) PREP
disruption improves intestinal dysbiosis and protects against
intestinal epithelial barrier damage induced by a HFD. Therefore,
we provided compelling evidence to demonstrate that PREP
inhibition effects may play various roles in NAFLD progression.

Numerous studies revealed that regulating the gut dysbiosis
contributed to restraining NAFLD development (Si et al., 2018;
Wang X. et al., 2019; Aron-Wisnewsky et al., 2020). When the gut
microbiota is in dysbiosis, the host’s health is compromised as the
gut microbiota is unable to maintain control of local homeostasis,
thereby increasing intestinal permeability (Saltzman et al., 2018).
The modulation of the gut microbial profile by PREP disruption
may prevent NAFLD by altering the relative abundance of
several “beneficial indicators” in the cecum, thereby promoting
homeostasis. Odoribacter and Oscillibacter are closely associated
with intestinal epithelial homeostasis, while Lachnospiraceae
NK4A139 negatively correlated with serum lipid levels (Zhao
et al., 2019; Mu et al., 2020). Besides, Ruminiclostridium 9
belongs to the Ruminococcaceae family; reportedly, a high
abundance of Ruminococcaceae in the cecum could effectively
prevent malnutrition (Million et al., 2016). The short-chain
fatty acid butyrate-producing bacteria, such as Ruminococcaceae,
Odoribacter, Intestinimonas, and Faecalibaculum (Kang et al.,
2021; Liu et al., 2021). Notably, the abovementioned bacteria were
more abundant in HFD-PREPgt than HFD-WT mice.

PREP inhibition may benefit flora homeostasis by suppressing
protein fermentation, which reduces indole and phenol
production, thus preventing the thinning of the intestinal
mucous barrier. In addition, increased phosphorylation and
activation of AMPK and its downstream lipid metabolism targets
(Chiu et al., 2015) in the liver are associated with butyrate-
producing bacteria (Leung et al., 2016). Butyrate bounds to
endogenous GPR41- and GPR43-containing receptors in the
liver, impacting lipid de novo synthesis (Lu et al., 2016). We only
detected butyrate levels in the colon of 16 weeks mice; however,
a previous study reported that sodium butyrate could delay the
onset of early signs of NAFLD in mice (Jin et al., 2016). Our
previous studies also indicated that PREP is closely related to
energy metabolism and the downstream lipid metabolism targets
of AMPK (Jiang et al., 2020). The functional consequences of
this taxa shift and our previous work provide clues about how
PREP inhibition may regulate flora homeostasis, trigger the
AMPK signaling pathway, and improve liver lipid metabolism.
Protective intestinal microbiota also associates other metabolites
such as the specific bile acids, which promotes protection against
NAFLD (Petrov et al., 2019). However, the potential relationship
between the bile acids and PREP warrants further study.

Our study detected phosphorylated AMPK (PAMPK) in
the liver after 24 weeks HFD feeding. The changes were
not evident as the activation of PAMPK appeared slightly
elevated with no statistical significance alongside its downstream
molecules (SIRT1/SREBP1c/FASN (Teng et al., 2019)), although
we observed a noticeable improvement in lipid accumulation
in PREP knockout mice after 24 weeks HFD feeding. It is
known that lipogenesis can be promoted by SIRT1-mediated
inhibition of AMPK phosphorylation and activation, leading to
hepatic steatosis (Srivastava et al., 2012; Teng et al., 2019). We
should further consider that PREP expression levels, protein
distribution, and activity correlate with aging and are reported
in many neurodegenerative conditions (Svarcbahs et al., 2019).
Besides, aging promotes the development of diet-induced murine
steatohepatitis, but not steatosis (Fontana et al., 2013), and
hepatic steatosis and inflammation may contribute to the
development of NAFLD via different pathways, respectively
(Mahli et al., 2018). We hypothesized that PREP might affect
NAFLD progression at different time points. To verify our
conjecture, we investigated the early stage of NASH – before
the 24-week HFD feeding model. Interestingly, activation
of PAMPK/SIRT1 and improvements in lipid metabolism
were pronounced in the liver of 16 weeks HFD-PREPgt

mice. Autophagy could be activated through PREP inhibition
via protein phosphatase 2A in the brain (Svarcbahs et al.,
2020). Further, autophagy may be mediated directly by the
AMPK/SIRT1 pathway in hepatic steatosis (Wang Y. et al.,
2019). As NASH progressed, we observed apparent autophagy
damage in 24 weeks HFD-WT mice compared with LFD-
WT mice; however, this improved upon PREP gene knockout.
However, it is unclear which pathway is responsible for the
dynamic autophagy changes observed during NASH, and further
research on the subject is warranted. Since PREP disruption
improved intestinal flora disorders and results showed the liver
in different NAFLD stages, we concluded that PREP inhibition
might improve lipid metabolism via the PAMPK/SIRT1 pathway
in early NAFLD stages when lipogenesis plays a major role
compared to inflammation.

However, hepatic lipotoxicity and inflammation are not
easily separated, as hepatic lipotoxicity-induced wound healing
requires subsequent inflammation, remodeling of the hepatic
vasculature and matrix, and outgrowth of liver progenitors
(Suzuki and Diehl, 2017). Tissue outside the liver (such as
adipose tissue or the gut) and processes within the organ
(for instance, lipotoxicity) contribute to NASH development
(Schuster et al., 2018). Besides tracking the lipid metabolic
benefits from gut dysbiosis improvement, our results indicated
that PREP gene disruption attenuates mucosal lesions caused by
HFD feeding. Dysbiosis increases gut permeability to bacterial
products and increases hepatic exposure to injurious substances
that increase hepatic inflammation and fibrosis (Leung et al.,
2016). Notably, Bilophila and Desulfovibrio are gram-negative
endotoxin-producing bacteria known to increase intestinal
permeability and circulate gut-derived antigens, primarily LPS
(Moreno-Indias et al., 2016; Zhuang et al., 2020).

On the one hand, compared with the 24 weeks HFD-WT
mice, the corresponding HFD-PREPgt mice display a lower
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FIGURE 9 | Model of the proposed mechanism underlying PREP disruption-mediated dynamic amelioration of hepatic steatosis and inflammation via intestinal
dysbiosis regulation, AMPK/SIRT1 pathway activation, and inflammatory signaling pathway inhibition.

abundance of Desulfovibrio and decreased hepatic LPS content,
although this was not statistically significant. On the other
hand, a former study indicated that PREP might play a role in
microglial activation since PREP knockout mice lack a response
to LPS (Hofling et al., 2016). Therefore, we hypothesize that
the combined effects of PREP disruption on gut dysbiosis and
its response to inflammatory triggers inhibit NASH progression.
Interestingly, factors associated with proinflammation and its
related signaling molecules showed dynamic changes in HFD-
PREPgt mice upon hepatic inflammation progression. Our
previous works demonstrated that PREP could potentially affect
the progression of hepatic inflammation, possibly by regulating
chemotactic factors (such as PGP and MMPs) (Jiang et al.,
2020), and in this study, we found this effect was more
important and evident in the later and more severe stage
of NAFLD. This observation may be partially explained by
the fact that NASH is considered a potentially progressive
disorder, as liver inflammation may prompt collagen matrix
synthesis and deposition (Suzuki and Diehl, 2017), which
PREP and MMP9 hydrolyze to produce PGP (chemotaxis
of neutrophils) (Weathington et al., 2006; Gaggar et al.,
2008). Nevertheless, endotoxin-mediated TLR4/NF-κB pathway
activation in macrophages reportedly plays a pivotal role in
NASH pathogenesis (Zhao et al., 2019). PREP increased PGP
production, possibly activating ERK and facilitating crosstalk
between neutrophils, which release MPO and lipocalin2, and
macrophages to exacerbate their migration and activation

(Ye et al., 2016; Jiang et al., 2020). Based on the above, our
findings demonstrate that HFD-induced NAFLD status in
mice was alleviated to varying degrees by PREP disruption,
contributing to the remission of gut flora dysbiosis and hepatic
inflammation (Figure 9).

Our study also has some limitations. First, the specific PREP
deletion mechanisms (such as in the liver and gut) in mice
need to be further explored. We believe that their complexity
and heavy workload warrant further study. Second, we have
reported the effect of PREP-specific inhibitors (S17092) on
lipid synthesis in vitro (Zhou et al., 2016). A PREP inhibitor
suitable for use in vivo experiments is still in progress. Third,
we did not explore the complex relationship between PREP,
autophagy, and the microbiota during NAFLD progression,
which warrants future studies.

CONCLUSION

In summary, PREP disruption may target multiple detrimental
hepatic mechanisms related to systems, including the liver,
macrophages, neutrophils, the gut, and microbiota, which may
show dynamic changes during NAFLD progression. Our study
demonstrates that PREP disruption dynamically ameliorates
hepatic steatosis and inflammation by regulating intestinal
dysbiosis, activating the AMPK/SIRT1 pathway, and inhibiting
the inflammatory signaling pathway. Therefore, targeting PREP
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may be a viable therapeutic or preventive approach for the
management of NAFLD.
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The balance of gut microbiome is essential for maintaining host metabolism
homeostasis. Despite widespread antibiotic use, the potential long-term detrimental
consequences of antibiotics for host health are getting more and more attention.
However, it remains unclear whether diet affects the post-antibiotic recovery of gut
microbiome and host metabolism. In this study, through metagenomic sequencing and
hepatic transcriptome analysis, we investigated the divergent impacts of short-term
vancomycin (Vac), or combination of ciprofloxacin and metronidazole (CM) treatment
on gut microbiome and host metabolism, as well as their recovery extent from antibiotic
exposure on chow diet (CD) and high-fat diet (HFD). Our results showed that short-term
Vac intervention affected insulin signaling, while CM induced more functional changes
in the microbiome. However, Vac-induced long-term (45 days) changes of species were
more apparent when recovered on CD than HFD. The effects of antibiotic intervention on
host metabolism were long-lasting, antibiotic-specific, and diet-dependent. The number
of differentially expressed gene was doubled by Vac than CM, but was comparable after
recovery on CD as revealed by the hepatic transcriptomic analysis. In contrast, HFD
intake during recovery could worsen the extent of post-antibiotic recovery by altering
infection, immunity, and cancer-related pathways in short-term Vac-exposed rats and
by shifting endocrine system-associated pathways in CM-exposed rats. Together, the
presented data demonstrated the long-term recovery extent after different antibiotic
exposure was diet-related, highlighting the importance of dietary management during
post-antibiotic recovery.
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INTRODUCTION

The human intestine is colonized by trillions of microbes that
participate in many physiological and pathological processes
of host including energy metabolism, xenobiotic metabolism,
and immune response (Lozupone et al., 2012; Festi et al.,
2014; Valdes et al., 2018). A stable and healthy gut microbiota
structure is essential for maintaining metabolic homeostasis
(Rinninella et al., 2019; Fan and Pedersen, 2021), preventing
colonization by pathogens (Pickard et al., 2017; Ducarmon
et al., 2019), improving immunity (Pickard et al., 2017), and
extending lifespan (Biagi et al., 2016; Vaiserman et al., 2017).
Mounting evidence in humans and rodents has shown that
disruption of gut microbiota homeostasis and loss of bacterial
diversity could cause metabolic disorders, neurological and
immunological diseases, and impaired immunotherapy response
(Gilbert et al., 2016; Gopalakrishnan et al., 2018a,b; Routy et al.,
2018; Aron-Wisnewsky et al., 2020).

Many factors affect the composition of gut microbiota, such as
antibiotic administration (Quigley, 2017). Antibiotics have been
widely used to prevent and treat bacterial infections in humans
and animals since the 1940s (Lewis, 2013; McPherson et al.,
2018). However, exposure to antibiotics reduces the diversity
of gut microbiota and leads to dysbiosis sometimes (Ianiro
et al., 2016). There is increasing concern about the potential
long-term detrimental consequences of antibiotic use for host
health (Blaser, 2014; Cox and Blaser, 2015; Neuman et al., 2018).
Clostridium difficile infection-associated diarrhea is a common
consequence of antibiotic use (Guh and Kutty, 2018). Early
life exposure to low-dose penicillin led to long-term increased
adiposity, amplified diet-induced obesity (Cox et al., 2014),
increased brain cytokine expression, and altered behavior in
animal models (Leclercq et al., 2017). In addition, antibiotic-
driven changes in microbiota affected glucose homeostasis and
murine immune response and increased susceptibility to allergic
asthma (Russell et al., 2012; Russell et al., 2013; Fujisaka et al.,
2016). Epidemiological studies have found that early exposure to
antibiotics is associated with subsequent development of obesity,
inflammatory bowel diseases, allergic diseases, and detrimental
neurodevelopmental outcomes (Hviid et al., 2011; Trasande
et al., 2013; Forrest et al., 2017; Han et al., 2017; Hirsch et al.,
2017; Slykerman et al., 2017; Mitre et al., 2018; Slykerman
et al., 2019). These findings suggest that antibiotic-induced
microbiome disruption can have long-term substantial effects
on host health. However, how to eliminate the detrimental
consequences of antibiotic use for host metabolism should
particularly be given more attention.

Post-antibiotic recovery of gut microbiota composition is
essential for the long-term health of host. Many studies have
demonstrated that gut microbiota recovery following antibiotic
treatment can be incomplete and the differential recovery of gut
microbiota to the same antibiotic treatment is associated with
their initial gut microbiota structure (Dethlefsen and Relman,
2011; Raymond et al., 2016a,b; Chng et al., 2020). For example,
higher initial microbial diversity is positively correlated with
better recovery from antibiotic-induced dysbiosis (Dethlefsen
and Relman, 2011; Raymond et al., 2016a,b). In addition, certain

bacterial species and enriched carbohydrate-degradation and
energy-production pathways exhibit a robust association with
post-antibiotic recovery (Chng et al., 2020). Nevertheless, besides
the initial gut microbiota composition, our understanding on the
factors that affect post-antibiotic recovery process is very limited.
Diet is another critical factor influencing the composition of
the gut microbiota within days (Carmody et al., 2015; Gentile
and Weir, 2018; Kolodziejczyk et al., 2019; Zmora et al., 2019).
Unbalanced diet was found to affect host health, such as causing
metabolic disorders, immunological diseases, and neurological
diseases (Brandsma et al., 2015; Gentile and Weir, 2018; Riccio
and Rossano, 2018; Zmora et al., 2019; Tong et al., 2020).
However, it is not clear whether and how environmental factors,
such as diet, accelerate or impede the process of post-antibiotic
recovery from different antibiotic-induced dysbiosis, which, in
turn, affects the host phenotype and metabolism.

In this study, we investigated the divergent impacts of a 5-
day intervention with two antibiotic regimens (vancomycin, Vac,
or combination of ciprofloxacin and metronidazole, CM) on gut
microbiota composition and host metabolism in rats, as well
as the recovery from antibiotic exposure on either chow diet
(CD) or high-fat diet (HFD) for 45 days. Our results revealed
that the impacts of antibiotic exposure on host metabolism were
long-lasting, antibiotic-specific, and diet-dependent. Compared
to the effect of CD on post-Vac recovery, HFD affected post-
Vac recovery of host metabolism and significantly regulated
infection, immunity, and cancer-related pathways. In sum, diet
plays a critical role in the recovery of host metabolism after
antibiotic intervention, which points to the fact that the dietary
management should particularly be given more attention at the
post-antibiotic recovery stage.

MATERIALS AND METHODS

Antibiotic Intervention Experiment
Male SD rats of 200-g body weight (BW) were provided
by the Laboratory Animal Center of Shanghai University of
Traditional Chinese Medicine (Shanghai, China). Rats were
orally administrated with vehicle or vancomycin (100 mg/kg per
dose) or combination of ciprofloxacin (50 mg/kg per dose) and
metronidazole (50 mg/kg per dose) twice daily for 5 days. The
dose was doubled at the first and last administration. For the
insulin intervention experiment, 8 min after insulin injection
(10 U/kg), rats were euthanized and tissues were collected for
protein analysis (Stahel et al., 2017). For the recovery experiment,
rats were fed with chow diet or high-fat diet for 45 days after
antibiotic intervention. All rats were housed in a 12-h light (7
am to 7 pm) and 12-h dark (7 pm to 7 am) cycle, with free
access to water and diet. The experiments were conducted under
the Guidelines for Animal Experiment of Shanghai University of
Traditional Chinese Medicine, and the protocol was approved by
the institutional Animal Ethics Committee.

Glucose and GTTs
Glucose-tolerance tests were performed on fasted rats (15 h,
paper bedding) by monitoring glucose levels after a glucose bolus
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(1 g/kg of BW) by intraperitoneal injection (IP). Data acquisition
was carried out at 0, 15, 30, 60, 90, and 120 min after injection.
For the diet stimulation experiment, blood glucose was measured
on fasted rats (15 h) and re-fed rats (2 h) (Dick et al., 2015).

Biochemical Analysis
Serum biochemical indices such as triglycerides (TG),
cholesterol (TC), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), low-density lipoprotein (LDL), and
high-density lipoprotein (HDL) were determined according
to the instructions of specific kits (Nanjing Jiancheng
Bioengineering Institute, China). Serum insulin was measured
according to the instructions of Elisa kit (Briggs et al., 2014). The
liver tissues were added with lysate and ground with magnetic
beads. After centrifugation, the supernatant was taken for the
determination of TC and TG according to the instructions.

Quantification of Protein
Liver and muscle protein lysates (20 mg) were subjected to
polyacrylamide gel electrophoresis under reducing conditions
followed by transfer to polyvinylidene difluoride membranes.
The membranes were incubated with 5% skimmed milk
followed by antibodies specific for p-AKT (Cell Signaling
Technology, Danvers, MA, United States), AKT (Cell
Signaling Technology, Danvers, MA, United States), p-IR
(Cell Signaling Technology, Danvers, MA, United States), IR
(Cell Signaling Technology, Danvers, MA, United States),
and β-ACTIN (Sigma-Aldrich, Shanghai, China). Membranes
were then incubated with horseradish peroxidase-conjugated
secondary antibodies. The signals were detected using an
enhanced chemiluminescence (ECL) system with Pierce
SuperSignal West Pico chemiluminescent substrates (Biyuntian
Biotechnology, Shanghai, China).

Histological Evaluation on the Degree of
Hepatic Steatosis
Liver tissues were fixed with 10% neutral formalin for 24 h,
embedded in paraffin, stained with hematoxylin–eosin staining
(H&E), and sections were observed for the degree of hepatic
steatosis under the light microscope. The degree of hepatic
steatosis was evaluated according to a previous publication in a
blinded way (Kleiner et al., 2005). The criteria for scoring include
0 (absent), 1 (rare), 2 (mild), 3 (moderate), and 4 (severe).

16S rRNA Sequencing
Fecal DNA was isolated using the Qiagen QIAamp DNA Stool
Mini Kit (Qiagen, Dusseldorf, Germany). Illumina sequencing
was done based on published methods (Ma et al., 2020). The
V3–V4 region of the 16S ribosomal RNA gene was amplified
and sequenced. Sequence reads were analyzed using QIIME
software 1.9.1 (Caporaso et al., 2010). Functional profiles of
microbial communities for 16S rRNA sequencing were predicted
using PICRUSt2 (Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States). Sequence data associated
with this project have been deposited in the NCBI Short Read
Archive (SRA) database (Accession Number: PRJNA702866).

Metagenomics
Total genomic DNA was extracted from fecal samples using
the E.Z.N.A. tissue DNA Kit (Omega Bio-tek, Norcross, GA,
United States) according to the manufacturer’s instructions. The
concentration and purity of extracted DNA were determined
with TBS-380 and NanoDrop 2000, respectively. DNA extract
quality was checked on 1% agarose gel. Read analysis was
performed according to our previous publication (Hong et al.,
2020). Adapter sequences were stripped from the 3′ and 5′ end
of paired-end Illumina reads using SeqPrep1. Reads with length
<50 bp or a quality value <20 or having N bases would be
considered as low-quality and be removed by Sickle2. The hit
would be removed if it was associated with the reads, which
was aligned to the Rattus norvegicus genome by BWA,3 or
their mated reads. MEGAHIT, which utilized succinct de Bruijn
graphs, was used to assemble data4 (Li et al., 2015). Only contigs
with the length being or over 300 bp were selected as the final
assembling result and were used for further gene prediction and
annotation. Open reading frames (ORFs) from each assembled
contig were predicted using MetaGene5 (Noguchi et al., 2006).
The predicted ORFs with length being or over 100 bp were
retrieved and translated into amino acid sequences using the
NCBI translation table6. Then, CD-HIT would be used for
clustering predicted genes with a 95% sequence identity (90%
coverage7) (Fu et al., 2012); the longest sequences from each
cluster were selected as representative sequences to construct
a nonredundant gene catalog. Reads after quality control were
mapped to the representative sequences with 95% identity using
SOAPaligner8 (Li et al., 2008), and gene abundance in each
sample was evaluated. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotation was conducted using BLASTP
(Version 2.2.28+) against the KEGG database (Xie et al., 20119)
with an e-value cutoff of 1e−5. The higher-order functional
information is stored in the KEGG PATHWAY database, which
contains three different classification levels (Kanehisa and Goto,
2000). In this study, we focused on KEGG pathway level 1 and
level 3. Sequence data have been deposited in the NCBI SRA
database (Accession Number: PRJNA719272).

RNA Sequencing Analysis
Total RNA was extracted from the liver using TRIzol Reagent
according to the manufacturer’s instructions (Invitrogen), and
genomic DNA was removed using DNase I (TaKara). Then,
RNA quality was determined by 2100 Bioanalyzer (Agilent) and
quantified using ND-2000 (NanoDrop Technologies). Only the
high-quality RNA sample was used to construct the sequencing

1https://github.com/jstjohn/SeqPrep
2https://github.com/najoshi/sickle
3http://bio-bwa.sourceforge.net
4https://github.com/voutcn/megahit
5http://metagene.cb.k.u-tokyo.ac.jp/
6http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?
chapter=tgencodes#SG1
7http://www.bioinformatics.org/cd-hit/
8http://soap.genomics.org.cn/
9http://www.genome.jp/keeg/
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library. Illumina HiSeq X Ten/NovaSeq 6000 Sequencing and
reading were finished based on the published method (Ma et al.,
2020). Sequence data were deposited in the NCBI SRA database
(Accession Number: PRJNA713932).

Bioinformatics and Statistical Analysis
Shannon index and Simpson index are the measures of
biodiversity (α diversity). Shannon index is intended to quantify
both richness and evenness of the species/individuals in the
ecosystem or community (Shannon, 1997). Shannon index was

calculated as follows: Hshannon = −
Sobs∑

i =1

ni
N ln ni

N . Based on the

assumption on the probability of obtaining similar species
samples randomly in an infinite community, Simpson index
takes into account the number of species present, as well as the
abundance of each species (Simpson, 1949). Simpson index is

calculated as follows: Dsimpson =
∑Sobs

i =1 ni(ni−1)
N(N−1) , where Sobs = the

number of OTUs actually observed; ni = the number of sequences
contained in the ith OTU; and N = number of all sequences.
Bray–Curtis as the distance algorithm is used to represent β

diversity; its calculation is based on the independent taxa (such
as OTU, genus, etc.), the weighted calculation method is adopted,
and the existence and abundance of species are considered
at the same time, but without considering the evolutionary
relationship or association information among species (Beals,
1984). The Bray–Curtis dissimilarity index was calculated as
follows: DBray−Curtis = 1− 2

∑
min(SA,i,SB,i)∑
SA,i+

∑
SB,i

, where SA,i = the
number of sequences contained in the ith taxon in sample
A; SB,i = the number of sequences contained in the ith
taxon in sample B. Data shown in this study are expressed
as mean ± standard error of mean (SEM) unless otherwise
noted. Differences between groups at microbiota phylum and
genus levels were calculated by the Mann–Whitney U test.
Other comparisons were calculated by two-tailed Student’s t-test.
p < 0.05 was considered statistically significant.

RESULTS

Short-Term Antibiotic Exposure
Divergently Alters the Composition and
Function of Gut Microbiota
SD rats were given vancomycin (Vac group), combination
of ciprofloxacin and metronidazole (CM group), or water
(Con group) twice daily for 5 days on CD (Figure 1A). The
16S rDNA amplicon sequencing of fecal bacteria showed
reduced richness and evenness after antibiotic interventions
(Figures 1B,C). The three groups clustered separately as
shown by Bray–Curtis analysis and hierarchical cluster tree
on OTU level, suggesting a significant alternation of the gut
microbiota structure (Figures 1D,E). Compared with the Con
group, the Vac group had increased relative abundance of
Proteobacteria and Tenericutes and reduced Bacteroidetes,
while the CM group showed increased relative abundance
of Firmicutes and reduced Proteobacteria and Bacteroidetes,

resulting in an increased Firmicutes-to-Bacteroidetes ratio
in both Vac and CM groups (Figure 1F). At the genus
level, the relative abundance of 36 genera were differentially
altered by both Vac and CM, while Vac uniquely altered
18 genera (11 upregulated and 7 downregulated) and CM
uniquely altered 5 genera (4 upregulated and 1 downregulated)
(Supplementary Figure 1). Among them, the dominant
bacteria were changed from Norank_f_Bacteroidates_S24-
7_group (19.4%) and Helicobacter (10.3%) in the Con group
to Norank_f_clostridiates_vadinBB60_group (23.8%) and
Anaeroplasma (20.5%) in the Vac group (Figure 1G). Most
strikingly, the proportion of Lactobacillus genus increased to
81% after CM intervention.

These compositional and diversity changes of gut microbiota
induced by Vac or CM were accompanied by functional
alternations. Based on the KEGG pathway at level 1, Vac
intervention impacted metabolism and organismal systems,
whereas CM intervention affected all pathways except cellular
processes (Figure 1H). At KEGG level 3, CM induced more
pathway changes (p < 0.01, fold change (FC) < 0.5 or >2)
compared with Vac-induced changes (130 vs. 48 pathways)
(Figure 1I). Among them, 32 pathways were found to be
in common between Vac- and CM-induced pathway changes,
and half of them were metabolic pathways (Figure 1J). In
addition, most of the 16 unique pathway changes caused by Vac
intervention were related to metabolism and human diseases
based on KEGG pathway analysis at level 1 (Figure 1K), while
the top 15 of CM-induced pathways were metabolic pathways
including amino acid biosynthesis and fatty acid metabolism
(Figure 1L). In summary, short-term intervention with Vac
or CM significantly decreased microbial diversity and altered
potential functions of gut microbiota, in which CM had more
impact on regulating gut microbial function than Vac in rats.

Short-Term Antibiotic Exposure Affects
Insulin-Signaling Pathway
Since the influences of antibiotic intervention on glucose
tolerance have been previously reported (Suez et al., 2014; Vrieze
et al., 2014; Fujisaka et al., 2016), we expected to test whether
the impacts on glucose homeostasis were different when different
antibiotics regimens were applied. Results showed that the fasting
serum insulin level was comparable among the three groups,
whereas the fasting serum glucose levels were higher in both Vac
and CM groups than in the Con group (Figure 2A). Interestingly,
the serum glucose level of the Vac group remained higher than
that of the Con group, but was normalized in CM group 2 h
after feeding (Figure 2A). These findings suggested that short-
term exposure of Vac and CM affected glucose homeostasis
under fasting condition, while Vac caused worse glucose control
compared to CM under fed conditions.

Impaired insulin signaling is the important cause for
dysglycemia (Kubota et al., 2017). Thus, the expression of
proteins involved in insulin signaling pathways was measured in
rats that were challenged with insulin injection in the context
of either Vac or CM pretreatment. The results showed that
insulin increased the protein levels of both phosphate-insulin
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FIGURE 1 | The effects of Vac and CM intervention on regulating gut microbiota composition and function. Rats were given vancomycin (Vac) or combination of
ciprofloxacin and metronidazole (CM) by oral gavage twice daily. Rats in the control group (Con) were orally administrated with water. (A) Intervention process chart.
(B) Shannon index. (C) Simpson index. **p < 0.01, ***p < 0.001 by Student’s t-test. (D) Principal co-ordinate analysis based on the Bray–Curtis distance algorithm
on OTU level. (E) Hierarchical tree of sample clustering. (F) Fecal microbiota at phylum level by 16S rRNA sequencing. (G) Fecal microbiota at the genus level.
(H) The function differences between Vac vs. Con and CM vs. Con on KEGG pathway level 1 predicted by PICRUSt2. *p < 0.05, **p < 0.01, and ***p < 0.001 by
the Mann–Whitney U test. (I) Venn diagram of the overlap of differential enriched pathways between Vac vs. Con and CM vs. Con by PICRUSt2 analysis on KEGG
pathway level 3 (p < 0.01 under the Mann–Whitney U test, fold change (FC) <0.5 or >2). (J) The 32 common pathways between Vac vs. Con and CM vs. Con.
(K) The 16 unique pathways between Vac and Con groups. (L) Top 15 unique pathways between CM and Con groups. n = 6 per group.
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FIGURE 2 | The impact of antibiotic intervention on rat phenotype and liver transcriptome. (A) Body weight, fasting serum insulin, fasting serum glucose, and fed
serum glucose after antibiotic intervention. (B) Western blot analysis of hepatic protein level. Rats were injected with insulin 8 min before tissues were collected. For
index determination, n = 5–6 per group; for protein analysis, n = 2–4 per group; *p < 0.05, **p < 0.01, and ***p < 0.001 by Student’s t-test. (C) Venn diagram of the
overlap of differential expressed genes between Vac vs. Con and CM vs. Con (p < 0.05 based on edgeR software, and FC ≤0.5 or ≥2). (D) KEGG pathway
enrichment analysis of 487 and 266 differential genes. Triangles on the left showed the same pathways between Vac vs. Con and CM vs. Con. (E) The same
pathways between Gene Set Enrichment analysis (GSEA) and KEGG pathway enrichment analysis. (F) Different regulatory effects of Vac and CM on insulin related
genes. n = 4 per group for transcriptome.

receptor (p-IR) and IR, resulting in an increased trend of the
p-IR/IR ratio in the liver, and this trend was not changed
by either Vac or CM. Meanwhile, insulin challenge also
significantly elevated the expression of both p-AKT and AKT,
as well as the p-AKT/AKT ratio. Vac, not CM, pretreatment

markedly reduced p-AKT expression leading to a decreased
p-AKT/AKT ratio, suggesting impaired hepatic insulin signaling
in Vac-pretreated rats (Figure 2B). In contrast, Vac or CM
pretreatment did not affect the insulin signaling pathway
in the gastrocnemius (Supplementary Figure 2B). Together,
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although the fasting insulin levels were comparable among the
three groups, Vac and CM elevated the fasting blood glucose
level, demonstrating that impaired insulin signaling occurred
in Vac- and CM-treated rats. Further re-fed experiment and
reduced hepatic p-AKT level and p-AKT/AKT ratio suggested
impaired insulin signaling under fed conditions, especially
in the Vac group.

Short-Term Antibiotic Exposure Alters
Hepatic Transcriptome
Given the critical roles of gut microbiota in host metabolism
(Fan and Pedersen, 2021), we further compared the impacts
of short-term Vac or CM pretreatment on host metabolism
by using the hepatic transcriptome approach. Compared with
the Con group, Vac pretreatment induced 487 differentially
expressed genes, while there were only 266 genes that
were regulated in the CM group (Figure 2C). The KEGG
enrichment analysis of these differentially expressed genes
revealed that 20 and 24 pathways were significantly altered
by Vac and CM, respectively (Figure 2D). The top three
altered metabolic pathways in the Vac group were also
found to be changed in CM. Additionally, Vac regulated
carbohydrate metabolism, such as galactose metabolism and
starch and sucrose metabolism. CM mainly affected infection
and immunity-related pathways, as well as insulin resistance and
cholesterol metabolism.

To further explore Vac- and CM-induced changes of biological
function, Gene Set Enrichment Analysis (GSEA) was employed
to identify significantly enriched biological pathways on the
basis of normalized enrichment score (NES) ranking. Compared
with the Con group, Vac and CM regulated 67 and 44
gene sets (NES > 1 or <-1, p < 0.05, p-adjust < 0.25),
respectively (Supplementary Figures 2C–E). Some pathways
that were shifted by both KEGG enrichment analysis and
GSEA are shown in Figure 2E, suggesting the importance
and significance of these pathways that respond to different
antibiotic treatments. We also noticed that Vac intervention
has a more extensive disturbance effect on insulin signaling-
related genes than CM intervention, and most genes were
downregulated (Figure 2F and Supplementary Figure 2F).
Because orally administered vancomycin is poorly absorbed in
the gut, we speculate that Vac-induced changes of gut microbiota
might be correlated with hepatic insulin dysregulation. In
sum, Vac and CM had divergent effects on regulating hepatic
gene expression where Vac pretreatment affected more gene
expression than CM. The metabolic pathways were mainly
altered by Vac, whereas pathways of infection and immunity were
predominantly changed by CM.

Gut Microbiota Composition and
Function Are Partly Restored After 45
Days Recovery on Chow Diet
Gut dysbiosis caused by antibiotics can persist for extended
periods. To study the recovery extent of gut microbial profile
and function after a short-term Vac or CM pretreatment,
metagenomic analysis was performed when rats recovered on

CD for 45 days (Figure 3A). Although long-term (45 days)
CD intake recovered the general structure of gut microbiota in
the Vac_CD (post-Vac recovery under CD) and CM_CD (post-
CM recovery under CD) groups, revealed by alpha and beta
diversity analysis (Figures 3B-D), many bacterial species and
potential microbial functions were still significantly different
among groups. At the species level, the relative abundance
of 63 species and 15 species was different between CD and
Vac_CD and between CD and CM_CD (p < 0.05), respectively.
In particular, four species of top 10 species that changed
in the Vac_CD group belonged to Lactobacillus, indicating
that the difference of Lactobacillus might account for the
difference of the gut microbiota profile between the Vac_CD
and CD groups after recovery (Figure 3E). Additionally, among
the significantly changed species in the CM_CD group, four
belonged to Firmicutes bacterium in CM_CD and two species
belonged to Faecalibacterium. Moreover, the biggest reduction at
species level after recovery was Firmicutes bacterium CAG:110,
which was consistently reduced in the Vac_CD and CM_CD
groups (Figure 3F).

We next predicated the potential function of gut microbiota to
study whether bacterial function was restored after recovery from
antibiotic exposure. At KEGG level 1, environmental information
processing, organismal systems, and cellular processes were
increased in the CM_CD group, while no pathway was altered
in the Vac_CD group (Figure 3G). At KEGG level 3, 11 and
49 pathways were significantly different between Vac_CD and
CD groups and between CM_CD and CD groups (p < 0.05),
respectively (Figures 3H–J). Pathways of starch and sucrose
metabolism and cyanoamino acid metabolism, which were
not different after antibiotic perturbation, were found to be
increased in both the Vac_CD and CM_CD groups. In addition,
the number of differential pathways narrowed after recovery
under CD when compared with the number after antibiotic
intervention, suggesting partly recovery of intestinal bacterial
structure and function in rats.

Physiological Status After 45 Days
Recovery From Antibiotic Exposure on
Chow Diet
Pretreatment with CM reduced energy intake during the
prolonged CD feeding, resulting in slightly lower BW compared
to the CD group (Figures 4A,B). In addition, the levels of
serum TG and HDL tended to be decreased in the Vac_CD
and CM_CD groups, while serum LDL tended to be increased
(Figures 4C–E). Moreover, CM_CD has reduced the hepatic
TC level, while the levels of serum TC, LPS, hepatic TG, and
liver histology were comparable between groups (Figure 4F and
Supplementary Figures 3A,B). The fasting glucose level was a
little bit lower in the Vac_CD group, and the fasting insulin
levels were significantly lower in both Vac_CD and CM_CD
groups (Figures 4G,H). However, the area under the curve
(AUC) of the glucose tolerance test revealed a similar glucose
clearance capacity in the three groups (Figure 4I). These findings
suggested the enhanced insulin capacity of regulating glucose
homeostasis in the Vac_CD and CM_CD groups. Post-antibiotic
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FIGURE 3 | The long-lasting impact of antibiotic treatment on bacterial composition and function when rats were fed with chow diet. (A) Intervention process chart.
Rats were treated with vehicle, Vac, or CM for 5 days and then fed with chow diet for another 45 days. (B) Shannon index. (C) Simpson index. (D) Principal
co-ordinate analysis based on the Bray–Curtis distance algorithm on species level. (E,F) Top 10 differential species between Vac_CD and CD and between CM_CD
and CD (p < 0.05 by the Mann–Whitney U test). (G) The function differences among groups on KEGG pathway level 1 predicted by PICRUSt2. *p < 0.05 by
Student’s t-test. (H) Venn diagram of the overlap of differential enriched pathways between Vac_CD vs. CD and CM_CD vs. CD by PICRUSt2 analysis on KEGG
pathway level 3 (p < 0.05 under the Mann–Whitney U test). The overlapped pathways between Vac_CD vs. CD and CM_CD vs. CD. (I) The unique shifted pathways
between Vac_CD and CD. (J) Top 15 unique shifted pathways between CM_CD and CD.
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FIGURE 4 | The long-lasting impact of antibiotic treatment on rat phenotype and liver transcriptome when rats were fed with chow diet. The body weight (A), energy
intake (B), serum triglyceride level (C), serum high-density lipoprotein level (D), serum low-density lipoprotein level (E), and liver total cholesterol level (F) were shown
at the end of the 45-day recovery. (G–I) Fasting blood glucose level, fasting blood insulin level, and glucose tolerance test result. (J) Venn diagram of the overlap of
differential expressed genes between Vac_CD vs. CD and CM_CD vs. CD (p < 0.05 based on edgeR software, and FC ≤0.5 or ≥2). (K) KEGG pathway enrichment
analysis of 167 and 182 differential genes. (L) The same pathways between Gene Set Enrichment analysis (GSEA) and KEGG pathway enrichment analysis.
(M) Different regulatory effects of Vac and CM on insulin-related genes. n = 9–10 per group for biochemical analysis, *p < 0.05, **p < 0.01, and ***p < 0.001 by
Student’s t-test; n = 3 per group for transcriptome, Mann–Whitney U test.

recovery of gut microbiota reversed impaired insulin signaling in
rats fed with CD.

Liver Gene Expression Is Partly Restored
After 45 Days Recovery on Chow Diet
Since gut microbiota composition was partly restored after 45
days CD feeding, we next assessed the status of host metabolism

by analyzing the hepatic transcriptome. First of all, the number of
differentially expressed genes was comparable between Vac_CD
and CM_CD groups, both of which were greatly reduced after 45
days recovery on CD (Figures 2C, 4J). The KEGG enrichment
analysis revealed that 13 pathways were altered in the Vac_CD
group (p < 0.05) (Figure 4K). However, nine pathways were
enriched in the CM_CD group (p < 0.05), four of which were
related to sugar and lipid metabolism, such as arachidonic
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acid metabolism, steroid hormone biosynthesis, fructose and
mannose metabolism, and regulation of lipolysis in adipocytes
(Figure 4K). Meanwhile, four pathways were commonly found
by KEGG enrichment analysis and GSEA in the Vac_CD group,
including Staphylococcus aureus infection, allograft rejection,
leishmaniasis, and autoimmune thyroid disease (Figure 4L and
Supplementary Figure 3C). Interestingly, post-Vac recovery on
CD increased the number of differentially expressed genes of
the insulin-related pathway when compared with short-term Vac
intervention, while post-CM recovery on CD had the opposite
effect (Figures 2F, 4M). In addition, the number and specific
expression panel of altered genes in this pathway were largely
different in the Vac_CD or CM_CD group, where more genes
were kept upregulated in CM_CD but downregulated in the
Vac_CD group compared with the CD group (Figure 4M and
Supplementary Figure 3D). Altogether, these results suggested
that the host metabolic responses to short-term antibiotic
exposure were long-lasting and antibiotic-specific.

The Recovery of Gut Dysbiosis After the
45-Day High-Fat Diet Feeding
High-fat diet is an important factor for influencing gut
microbiota composition resulting in the changes of host
metabolism (Gentile and Weir, 2018; Zmora et al., 2019). To
further evaluate the dietary impact on post-antibiotic recovery,
rats were switched to HFD for 45 days after a short-term
antibiotic intervention (Figure 5A). In general, similar with
the results after recovery on CD, the Shannon and Simpson
indices as well as PCoA results showed no significant difference
among HFD, Vac_HFD (post-Vac recovery under HFD), and
CM_HFD (post-CM recovery under HFD) groups (Figures 5B–
D). At species level, the number of significant differential
species between pre-Vac-treated and untreated groups was
dramatically reduced from 63 when rats were recovered on
CD to 14 when recovered on HFD, while the differential
number between pre-CM-treated and untreated groups was
increased from 15 when recovered on CD to 21 when recovered
on HFD. Among the top 10 significant differential species
between Vac_HFD and HFD groups, four species belonged to
Desulfovibrio, indicating the importance of Desulfovibrio for the
difference of gut microbiota structure during recovery on HFD
(Figure 5E). In addition, the CM_HFD group had markedly
increased s_Lactobacillus_johnsonii (the fold change was 2.85)
and decreased three species of Lachnospiraceae_bacterium
and three species of Desulfovibrio compared to the HFD
group (Figure 5F).

Further prediction on the potential function of gut microbiota
demonstrated that the cellular process pathway was reduced in
the CM_HFD group compared to the HFD group at KEGG
pathway level 1 (Figure 5G). At level 3, the number of altered
pathways was greatly reduced after recovery on HFD than
recovery on CD. Vac_HFD and CM_HFD only altered 14 and 22
pathways, respectively, in which two pathways were commonly
changed by both (Figure 5H). The most significant changes
after recovery on HFD was the induction of sugar metabolism
and insulin signaling-related pathways in Vac_HFD, including

fructose and mannose metabolism, glucagon signaling pathway,
insulin resistance, and insulin signaling pathway, while the
glucagon signaling pathway was increased in both Vac_HFD and
CM_HFD (Figures 5I,J). Different with the findings that most
KEGG pathways were elevated in Vac_HFD, most pathways were
decreased in CM_HFD compared to the HFD group. Together,
the results suggested that the gut dysbiosis which resulted
from short-term Vac or CM intervention was long-lasting and
antibiotic-related after the 45-day recovery on HFD feeding.

The Recovery of Glucose Homeostasis
After the 45-Day High-Fat Diet Feeding
Since recovery on HFD shifted sugar metabolism and
insulin signaling-related pathways, we further studied the
phenotype changes after long-term HFD feeding post-antibiotic
intervention. There was no difference among the three groups
regarding BW and energy intake post-antibiotic recovery on
HFD (Figures 6A,B). Different from the obvious changes of
lipid profiles in serum and liver observed during post-antibiotic
recovery on CD, HFD feeding after antibiotic exposure had
little effects on regulating these phenotypes (Figures 6C–F
and Supplementary Figures 4A,B). Although short-term Vac
intervention reduced fasting blood glucose when rats were
recovered on CD, it had little effect on improving glucose
homeostasis when recovered on HFD. By contrast, short-
term CM intervention followed by HFD feeding lowered the
fasting blood glucose level and improved glucose tolerance as
revealed by the decreased AUC in CM_HFD (Figures 6G,I).
In addition, fasting insulin levels were slightly higher in
Vac_HFD and CM_HFD groups without significant difference
(Figure 6H). These findings suggested that different early
antibiotic exposures divergently affected glycemia at the
recovery stage on HFD.

The Recovery of Hepatic Gene
Expression After Antibiotic Exposure Is
Affected by High-Fat Diet
The number of differential expressed genes between groups was
markedly increased when rats were recovered on HFD than
on CD. Specifically, the expressions of 283 and 215 hepatic
genes were changed by Vac_HFD and CM_HFD, respectively,
in which more genes were downregulated (Figure 6J). KEGG
enrichment analysis revealed that 78 pathways were shifted
between Vac_HFD and HFD (p < 0.05), while there were
only 13 differential pathways when comparing Vac_CD with
CD, suggesting that HFD feeding enlarged short-term Vac
treatment-induced changes of liver function at the recovery
condition. Among them, 30 pathways were related to infection
and immunity and 10 pathways were associated with cancer
(Figure 6K). However, only 15 pathways were shifted between
CM_HFD and HFD (p < 0.05) and 7 of them were
associated with the endocrine system (Figure 6K). GSEA results
further showed that 37 gene sets were changed by Vac_HFD,
many of which were related to infectious disease or the
immune system (Figure 6L and Supplementary Figures 4C–
E). Regarding insulin signaling-related genes, when compared
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FIGURE 5 | HFD affects post-antibiotic recovery of gut microbiota composition and function. (A) Intervention process chart. Rats were treated with vehicle, Vac, or
CM for 5 days and then fed with a high-fat diet for another 45 days. (B) Shannon index. (C) Simpson index. (D) Principal co-ordinate analysis based on the
Bray–Curtis distance algorithm at species level. (E,F) Top 10 differential species between Vac_HFD and HFD and between CM_HFD and HFD (p < 0.05 by the
Mann–Whitney U test). (G) The function differences among groups on KEGG pathway level 1 predicted by PICRUSt2. *p < 0.05 by Student’s t-test. (H) Venn
diagram of the overlap of differential enriched pathways between Vac_HFD vs. HFD and CM_HFD vs. HFD by PICRUSt2 analysis on KEGG pathway level 3
(p < 0.05 under the Mann–Whitney U test). (I) The shifted pathways between Vac_HFD and HFD. (J) Top 15 shifted pathways between CM_HFD and HFD.

with the number of differential genes between CM_CD and
CD (most genes were upregulated in the CM_CD group),
HFD intake reduced the number of differential genes between
CM_HFD and HFD, with most genes downregulated in both
cases (Figure 6M and Supplementary Figure 4F). These
results might correlate with the improved glucose tolerance in
the CM_HFD group. These results might correlate with the

improved glucose tolerance in the CM_HFD group. Together,
short-term Vac and CM interventions have unique long-
term effects on modulating liver function. The long-lasting
effects of early Vac and CM perturbation after recovery
on HFD were associated with the changes of infection,
immunity, cancer-related pathways, and endocrine system-
related pathways, respectively.
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FIGURE 6 | High-fat diet affects post-antibiotic recovery of rat phenotype and hepatic transcriptome. The body weight (A), energy intake (B), serum triglyceride level
(C), serum high-density lipoprotein level (D), serum low-density lipoprotein level (E), and liver total cholesterol level (F) were shown at the end of the 45-day recovery.
(G–I) Fasting blood glucose level, fasting blood insulin level, and glucose tolerance test result. (J) Venn diagram of the overlap of differential expressed genes
between Vac_HFD vs. HFD and CM_HFD vs. HFD (p < 0.05 based on edgeR software, and FC ≤0.5 or ≥2). (K) KEGG pathway enrichment analysis of 283 and
215 differential genes. Triangles on the left showed the same pathways between Vac_HFD vs. HFD and CM_HFD vs. HFD. (L) The same pathways between Gene
Set Enrichment analysis (GSEA) and KEGG pathway enrichment analysis. (M) Different regulatory effects of Vac and CM on insulin-related genes. n = 9–10 per group
for biochemical analysis, **p < 0.01 and ***p < 0.001 by Student’s t-test; n = 3 per group for transcriptome, Mann–Whitney U test.
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FIGURE 7 | The changes of gut microbiota and liver gene after antibiotic intervention and post-antibiotic recovery. (A–D) Venn diagram and line chart show the
number changes of differential genus, functional prediction of bacteria at KEGG pathway level 3, differential expression of liver genes, and functional prediction of
genes among the three conditions under the same screening conditions.

Post-antibiotic Recovery on HFD
Enlarges Antibiotic-Induced Metabolic
Differences
To investigate how diet affects host recovery after different
antibiotic perturbations, we compared the composition and
function of gut microbiota as well as the gene expression and
biological function of the liver after short-term Vac and CM
exposure and at post-antibiotic recovery state when rats were
fed with CD or HFD. After short-term antibiotic intervention,
compared with the control group, the number of differential
genera was higher in Vac than in the CM group. However,
the differential genus number was dramatically reduced after
recovery on both CD and HFD with a slightly higher number in
CM than in Vac (Figure 7A). The Venn diagram showed that only
a few genera were commonly altered by any two conditions with
no genus commonly regulated by three conditions. Although
short-term Vac induced more changes at the genus level, CM
affected more pathway changes of the bacterial function pathway,
and the differential pathway number was reduced post-antibiotic
recovery, suggesting partly recovery of gut bacterial function
(Figure 7B and Supplementary Figure 5).

Liver gene expression was affected more significantly by
Vac than by CM based on the number of regulated genes
(Figure 7C). Post-antibiotic recovery with CD reduced the
number of differential expression genes, but recovery with
HFD increased this number especially in the Vac_HFD group
(Figure 7C). In addition, the shifted pathway number between

Vac- and CM-induced changes was comparable in short-term
antibiotic intervention and recovery on CD condition. However,
post-Vac recovery on HFD markedly elevated the differential
pathway number to 78, in which most pathways were infection-,
immunity-, and cancer-related, whereas only 15 pathways
were changed with post-CM recovery on HFD, and most of
them were endocrine system-related (Figure 7D). Glutathione
metabolism was the only pathway affected by all three conditions
with Vac perturbation (Supplementary Tables 1, 2). These
results suggested that although gut microbiota composition and
function were partly restored from antibiotic exposure, recovery
on HFD, but not on CD, significantly increased the impact of
early Vac exposure on host metabolism.

DISCUSSION

Gut microbiota composition and diversity exert profound effects
on host physiology and metabolism. Mounting evidences have
shown that exposures to antibiotics in both animals and
humans have transient and prolonged effects on host metabolism
homeostasis. As summarized in Figure 8, the current study
systematically investigated gut microbiota composition and host
metabolism after short-term antibiotic intervention and at post-
antibiotic recovery state and found that the impacts of antibiotic
exposure on host metabolism were long-lasting, antibiotic-
specific, and diet-dependent. These findings suggest that dietary
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FIGURE 8 | The effects of short-term antibiotic intervention on gut microbiota composition and host metabolism were long-lasting, antibiotic-specific, and
diet-dependent. The 5-day intervention with Vac and CM dramatically influenced gut microbiota composition, in which Vac and CM had unique or common effects
on regulating the relative abundance of certain gut bacteria. In addition, short-term Vac and CM intervention differential affected blood glucose homeostasis and liver
transcriptome, by mainly regulating carbohydrate metabolism-related pathways and infection- and immunity-related pathways, respectively. After a 45-day recovery
on either CD or HFD, gut microbiota composition and function, as well as blood glucose imbalance, were partly restored. However, when rats were recovered on
CD, certain species in Lactobacillus genus and in Faecalibacterium genus were reduced at post-Vac and post-CM recovery states, respectively. Differences in
infection and immunity-related pathways were apparent after recovery from Vac treatment, while sugar and lipid metabolism-associated pathways were shifted after
recovery from CM treatment as revealed by hepatic transcriptome. When rats were recovered on HFD, the relative abundance of species in Desulfovibrio and
Lachnospiraceae genera was reduced, whereas Lactobacillus johnsonii was elevated significantly at post-CM recovery state. Moreover, HFD feeding worsened the
extent of post-antibiotic recovery in Vac-treated rats including the alterations of infection, immunity, and cancer-related pathways and in CM-treated rats including
endocrine system-associated pathways. CD, chow diet; CM, ciprofloxacin and metronidazole; HFD, high-fat diet; Vac, vancomycin.

management during post-antibiotic recovery should particularly
be given more attention.

Exposure to antibiotics is closely linked with the changes
of glucose metabolism in both human and animal studies.
A randomized double-blinded study showed that 7-day Vac
treatment reduced peripheral insulin sensitivity in obese males

with metabolic syndrome (Vrieze et al., 2014), whereas another
study found that it did not affect tissue-specific insulin sensitivity
in obese, prediabetic males (Reijnders et al., 2016). In an animal
study, short-term or long-term Vac intervention reduced fasting
blood glucose in obese mice (Fujisaka et al., 2016; Aron-
Wisnewsky et al., 2020). It has been reported that not only
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Vac but also CM combination can improve noncaloric artificial
sweetener-induced glucose intolerance in mice (Suez et al., 2014).
However, in contrast with several previous studies in rodents, our
results showed that 5-day exposure of Vac and CM increased the
fasting blood glucose level and Vac alone elevated blood glucose
under a re-fed state. In particular, short-term Vac decreased the
insulin-induced p-AKT/AKT ratio, suggesting impaired hepatic
insulin signaling after 5-day Vac intervention. Inconsistent
with our findings, Fujisaka et al. (2016) found that Vac could
increase the p-AKT/AKT ratio in the liver and muscle in HFD-
fed mice without insulin supplementation, while metronidazole
increased p-AKT level in the liver and adipose tissue only in
response to insulin. These inconsistent results suggest that the
interaction between gut microbiome and insulin signaling is very
complex and many factors, such as animal model, diet, and host
health conditions, will affect the outcomes. Additionally, changes
of bacterial metabolites after antibiotic intervention, such as
secondary bile acids and short-chain fatty acids, might play an
important role in causing hepatic insulin dysregulation through
the gut–liver axis, which warrants further investigation.

Since antibiotic treatment dramatically impacted glucose
homeostasis and insulin signaling, to our surprise, little is known
about how glucose levels change at post-antibiotic recovery
state and whether diet will affect the recovery. Fu et al.
(2018) have reported that treatment with antibiotic cocktail
for 12 days reduced blood glucose in db/db mice, and this
difference disappeared 24 days after antibiotic withdrawal. This
result suggested that post-antibiotic recovery reversed antibiotic-
induced changes of glucose homeostasis. However, another
clinical trial showed that host metabolism, such as whole-
body insulin sensitivity, remained unchanged by 7-day Vac
perturbation as well as 8 weeks post-intervention (Reijnders et al.,
2016). Our data revealed impaired insulin signaling after short-
term Vac treatment, while recovery on CD could decrease fasting
blood glucose level and insulin level, suggesting enhanced insulin
activity at post-Vac recovery state on CD. More importantly, our
further investigation found that HFD feeding during recovery
increased the fasting insulin level in post-antibiotic groups
(1.7 ng/ml in the Vac_CD group and 2 ng/ml in the CM_CD
group, 5.6 ng/ml in the Vac_HFD group, and 5.7 ng/ml in the
CM_HFD group) but not in the vehicle group (3.8 ng/ml in CD
and 4.1 ng/ml in the HFD group), suggesting that early antibiotic
exposure enhanced rat susceptibility to HFD-induced changes of
fasting insulin level.

Short-term antibiotic perturbations have a long-term effect on
gut microbial composition and function. Based on the KEGG
pathway analysis, compared with the effect of CD on post-Vac
recovery, HFD intake during post-Vac recovery led to functional
changes in bacteria which related to glucose homeostasis. This
result was in line with the phenotype changes that HFD
reversed the CD-induced decrease in fasting insulin level during
post-antibiotic recovery. The most significant change of gut
microbiota composition induced by 5-day CM treatment was the
127-fold induction of the abundance of the Lactobacillus genus.
Interestingly, when rats recovered under CD, the abundance of
three species from Lactobacillus genus, Lactobacillus intestinalis,
Lactobacillus reuteri, and Lactobacillus sp. ASF360, was reduced

in the Vac_CD group, while there was no difference in the
Lactobacillus species between the CM_CD and CD groups.
Previous study reported that L. intestinalis was increased in
Zucker diabetic fatty rats and can be a potential biomarker for
the progression and complications of T2DM (Wang et al., 2020).
However, some strains of L. reuteri are used as probiotics to
improve insulin sensitivity (Mobini et al., 2017; Kolodziej and
Szajewska, 2019). These findings suggested that Lactobacillus
might play an important role in post-Vac recovery of glucose
homeostasis. In contrast to the findings in the Vac_CD group,
when rats were fed with HFD, the most significant long-term
effect of Vac intervention was the reduction of the Desulfovibrio
genus, which can be boosted by HFD and can produce hydrogen
sulfide leading to acute inflammation (Attene-Ramos et al., 2006;
Kushkevych et al., 2019; Rohr et al., 2020). Among the top
10 changed bacteria, four species in the Desulfovibrio genus
were reduced in the Vac_HFD group compared with the HFD
group. Desulfovibrio has been reported to positively correlate
with the AUC of OGTT, insulin, and HOMA-IR (Zhou et al.,
2018). Therefore, short-term Vac exposure might affect post-Vac
recovery of host glucose homeostasis by regulating Lactobacillus
abundance and Desulfovibrio abundance during long-term CD
feeding and HFD feeding, respectively.

Early CM intervention also affected gut microbiota recovery
based on diet. Compared with their respective control groups,
among the top 10 changes species, two species that belong
to the Faecalibacterium genus were reduced in the CM_CD
group, while three species that belong to the unclassified
Lachnospiraceae genus were reduced in the CM_HFD group.
Faecalibacterium prausnitzii, which is a butyrate-producing
bacteria, has anti-inflammatory properties and plays a crucial
role in maintaining host physiology (Lopez-Siles et al., 2017).
Certain strains of Lachnospiraceae, which also produce butyrate,
can regulate host metabolism, immune response, and colonocyte
growth (Meehan and Beiko, 2014). Additionally, higher levels of
Lachnospiraceae have been negatively associated with the risk
of some types of cancer (Flemer et al., 2018). These findings
suggested that the long-term effect of CM exposure might
be correlated with decreased beneficial butyrate production.
Surprisingly, the abundance of L. johnsonii was the only
significantly increased species in the CM_HFD group than in the
HFD group. Because many studies have shown that L. johnsonii
modulates host immune responses (Fonseca et al., 2017; Marcial
et al., 2017; Xia et al., 2020), the elevated L. johnsonii might
lead to better immune response in the CM_HFD group. In sum,
different short-term antibiotic exposures have divergent effects
on regulating host physiology and metabolism, which depend on
the diet used during the recovery state.

Although few studies have reported altered expressions
of hepatic genes and shifted functional pathways long after
antibiotic exposure (Cho et al., 2012; Nobel et al., 2015), to
our knowledge, little is known about the changes of liver
biological functions after short-term antibiotic treatment and
post-antibiotic recovery, especially with different diet feedings.
Our data showed that short-term Vac exposure, but not CM
exposure, induced more profound effects in later life on
HFD than on CD, including altered infection, immunity, and
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cancer-related pathways. Plenty of evidences have shown that
HFD-driven dysbiosis was accompanied by a vast expansion
of pathogen infection (Zeng et al., 2018; Las Heras et al.,
2019; Mefferd et al., 2020). It has been shown that 2 weeks
after Vac treatment, mice were still susceptible to pathogen
colonization (Isaac et al., 2017). Therefore, our results of hepatic
transcriptomics demonstrated that HFD-induced long-lasting
effects of Vac treatment on liver function, including altered
infection and immunity pathways as well as cancer-related
pathways, might be partly due to enhanced susceptibility to
pathogen intestinal colonization under HFD feeding.

In conclusion, long-lasting effects of antibiotic exposure
on host metabolism are antibiotic-specific and diet-dependent.
Our current study reveals the interplay between antibiotic-
driven dysbiosis and biological functions of liver, and more
importantly, we demonstrate that HFD intake during recovery
could worsen Vac-induced long-term detrimental consequences.
Although the role of dietary fiber in post-antibiotic recovery of
gut microbiome is reported previously (Ng et al., 2019; Tanes
et al., 2021), our study evaluates how high-fat diet affects post-
antibiotic recovery of host metabolism, which will add our
knowledge of the dietary effect on host health. Our finding
highlights the importance of dietary management after antibiotic
exposure. Further investigations are warranted to find out better
dietary types that can reduce antibiotic-induced detrimental
consequences, which might be of importance to benefit clinical
use for post-antibiotic recovery.
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(C) Venn diagram of the overlap of the differential enriched gene sets between
Vac_CD vs. CD and CM_CD vs. CD based on GSEA (NES > 1 or <-1, p < 0.05,
p-adjust < 0.25). The gene sets that were regulated by either Vac or CM based on
GSEA result. (D) Heatmaps show the different regulatory effects of Vac and CM
on insulin related genes. n = 3 per group for transcriptome.

Supplementary Figure 4 | HFD affects post-antibiotic recovery of rat phenotype
and hepatic transcriptome. (A) Serum LPS, serum TC, hepatic TG level. (B)
H&E-stained liver sections and HE score. (C) Venn diagram of the overlap of the
differential enriched gene sets between Vac_HFD vs. HFD and CM_HFD vs. HFD
based on GSEA (NES > 1 or <-1, p < 0.05, p-adjust < 0.25). (D) The common
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Supplementary Figure 5 | Shared bacterial functional pathways among three
conditions. (A) The 11 shared pathways between Vac vs. Con, Vac_CD vs. CD
and Vac_HFD vs. HFD on KEGG pathway level 3 were shown with heatmap (Log2

Fold change). (B) The 48 shared pathways between CM vs. Con, CM_CD vs. CD
and CM_HFD vs. HFD on KEGG pathway level 3 were shown with heatmap
(Log2 Fold change).
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Background and Aims: The development of multi-organ injury in cirrhosis is
associated with increased intestinal permeability, translocation of gut-derived bacterial
products [e.g., lipopolysaccharide (LPS)] into the circulation, and increased non-
apoptotic hepatocyte cell death. Pyroptosis is a non-apoptotic, lytic form of cell death
mediated by the LPS-sensing caspase(s)-4/11 (caspase-4 in humans, caspase-11 in
mice), which leads to activation of the effector protein Gasdermin D (GSDMD) and
subsequent formation of pores in the plasma membrane. Endoplasmic reticulum (ER)
stress, a feature of cirrhosis, has been identified as a factor promoting the activation
of caspase-11, thus increasing sensitivity of the cell to LPS-mediated pyroptosis. The
aim of this study was to determine the role of bacterial LPS in the activation of hepatic
caspase(s)-4/11 and progression of hepatic and extra-hepatic organ injury in cirrhosis.

Materials and Methods: Human liver samples from patients with stable cirrhosis
(SC) or acutely decompensated cirrhosis (AD) were analyzed for caspase-4 activation
by immunohistochemistry. Wild-type and Casp11−/− mice underwent CCl4 treatment
by gavage to induce advanced liver fibrosis, and subsequently low-dose injection of
LPS to mimic bacterial translocation and induce multi-organ injury. Liver, kidney, and
brain function were assessed by plasma ALT/creatinine and brain water respectively.
The activity of inflammatory caspases was assessed by fluorometric assay and the
occurrence of pyroptosis and overall cell death in liver tissue by GSDMD cleavage
and TUNEL assay, respectively. Primary human hepatocytes were cultured according
to standard techniques.

Results: Human liver samples demonstrated increased caspase-4 activation in AD
cirrhosis. Caspase-4 activation was associated with MELD score and circulating
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GRAPHICAL-ABSTRACT | Model of caspase-4/11 activation in cirrhosis. Gut-derived bacterial LPS (1) enters the portal circulation after translocation across the
gut epithelium and is internalized by hepatocytes. Cytoplasmic LPS is recognized by caspase-4/11 (2), which undergoes self-activation upon ligand binding. The
activity of caspase-4/11 is enhanced by endoplasmic reticulum stress (3), which occurs in fibrosis/cirrhosis, leading to “sensitization” of this pathway. Active
caspase-4/11 cleaves the dimeric protein Gasdermin D (GSDMD) (4), and freeing the N-terminal domain to migrate to the plasma membrane and form GSDMD
N-terminal octameric pores (5). GSDMD pores insert themselves into the plasma membrane, allowing the deregulated passage of molecules and causing cell
swelling and membrane rupture, eventually resulting in pyroptotic cell death (6).

levels of LDH. Wild-type mice treated with CCl4 developed significant multi-organ
injury (increased ALT, creatinine, and brain water) upon LPS injection, and showed
increased hepatic GSDMD cleavage compared to mice treated with CCl4 alone. Primary
human hepatocytes could be sensitized to pyroptosis by pre-treatment with the ER-
stress inducer tunicamycin and LPS. Casp11−/− mice treated with CCl4 + LPS were
significantly protected from multi-organ injury compared to wild-type CCl4 + LPS.

Conclusion: These data demonstrate for the first time a causal relationship between
LPS-mediated activation of caspase(s)-4/11 and development of hepatic and extra-
hepatic injury in cirrhosis.

Keywords: cirrhosis, lipopolysaccharide, caspase, liver failure, endotoxin, dysbiosis, pyroptosis

INTRODUCTION

Cirrhosis is responsible for over 1 million global deaths each
year, equating to 2% of deaths worldwide (Mokdad et al.,
2014). The natural history of cirrhosis is considered to be
a progression through an asymptomatic compensated phase,
to a decompensated state following the development of acute

complications such as jaundice, variceal bleeding, ascites or
hepatic encephalopathy (HE). Amongst patients with acutely
decompensated cirrhosis (AD), a subgroup of 1 in 3 patients
develop severe hepatic and extra-hepatic organ injury – a
condition that has been termed acute-on-chronic liver failure
(ACLF), and is associated with high short-term mortality
(Moreau et al., 2013).
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The mechanisms determining susceptibility to multi-organ
injury in cirrhosis remain undetermined, but clear associations
have been shown with systemic inflammation and altered host
response to injury (Clària et al., 2016). The most common
precipitants of multi-organ injury in cirrhosis are bacterial
infection and alcoholic hepatitis (Moreau et al., 2013). In patients
without an identified precipitating event, it is considered likely
that translocation of bacterial products from the intestinal
lumen contributes to systemic inflammation and multi-organ
dysfunction (Markwick et al., 2015). Indeed, the presence of
circulating bacterial products is a predictor of multi-organ injury
and prognosis in cirrhosis (Michelena et al., 2015).

The major consequence of bacterial translocation (BT)
in cirrhosis is systemic inflammation, through the action
of pathogen-associated molecular patterns (PAMPs) such as
bacterial lipopolysaccharide (LPS). Our group, and others, have
shown circulating levels of LPS to be elevated in patients with
severe alcoholic hepatitis, and to be a predictor of multiple
organ failure and mortality (Markwick et al., 2015; Michelena
et al., 2015). Additionally, increased host sensitivity to bacterial
PAMPs has been noted in cirrhosis, with exaggerated ex vivo pro-
inflammatory cytokine responses to LPS in humans and animal
models (Tazi et al., 2007; Gandoura et al., 2013).

In parallel, there is accumulating evidence to support a role
for excessive cell death in development of multi-organ failure in
cirrhosis. We have previously shown that acute decompensation
in cirrhosis is associated with elevated circulating markers of
cell death, which progressively increase with disease severity
(Macdonald et al., 2018). Moreover, the mode of cell death also
changes with disease severity, from predominantly apoptotic
to non-apoptotic cell death with development of multi-organ
dysfunction. This may partly explain the negative clinical results
from efforts to inhibit apoptosis in acute decompensation of
cirrhosis using pan-caspase inhibitors (Mehta et al., 2018).

A direct link between LPS-sensing and non-apoptotic cell
death has recently been described. Pyroptosis is a non-apoptotic,
lytic mode of cell death mediated through inflammatory caspases,
also termed the “non-canonical inflammasome.” Intracellular
LPS is directly sensed by caspase-4 (human)/caspase-11 (mouse)
which directly leads to activation of this pathway through
cleavage of the cytoplasmic protein Gasdermin-D (GSDMD).
Subsequently, the N-terminal fragment of GSDMD forms pores
in the plasma membrane which may precipitate lytic cell death,
release of damage-associated molecular patterns (DAMPs), and
amplification of local inflammatory responses (Ding et al., 2016).

Abbreviations: ACLF, acute-on-chronic liver failure; AD, acutely decompensated
cirrhosis; ALT, alanine aminotransferase; ATF4, activating transcription factor
4; CCl4, carbon tetrachloride; CHOP, C/EBP homologous protein; CPA,
collagen proportionate area; DAMP, damage-associated molecular pattern;
DC, decompensated cirrhosis; DDIT3, DNA damage-inducible transcript 3
(gene coding for CHOP protein); ER, endoplasmic reticulum; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; GSDMD, gasdermin-D; HC, healthy
control; HE, hepatic encephalopathy; HSPA5, heat shock protein family A
(Hsp70) member 5 (gene coding for BiP); LDH, lactate dehydrogenase; LPS,
lipopolysaccharide/bacterial endotoxin; MELD, model for end-stage liver disease;
PAMP, pathogen-associated molecular pattern; PPIB, peptidylprolyl isomerase B;
SC, stable cirrhosis; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end
labeling; XBP1, X-box binding protein 1.

Unlike apoptosis, which is immunologically silent, pyroptosis is
an immunogenic form of cell death. This is of potential benefit to
the host in the elimination of intracellular pathogens. However,
in the context of cirrhosis, high levels of hepatocyte pyroptosis in
response to circulating LPS may lead to greater liver dysfunction,
increased systemic inflammation and multi-organ failure. A link
between endoplasmic reticulum stress, a feature of cirrhosis,
and activation of LPS-sensing caspases has also been described,
providing a potential mechanism for sensitization of pyroptosis
pathways in cirrhosis (Endo et al., 2006).

The aim of the present study was to evaluate the role
of LPS-sensing caspase(s)-4/11 in hepatic and extra-hepatic
organ injury in cirrhosis. Cirrhosis is associated gut bacterial
dysbiosis, the degree of which correlates with the severity of
the disease (Bajaj, 2019). Moreover, cirrhosis is also associated
with increased intestinal permeability, and it has been recently
demonstrated that translocation of bacterial products to the
circulation underpins the sensitization of hepatocytes to cell
death that is observed in chronic liver disease (Isaacs-Ten et al.,
2020). The hypothesis of this study was that activation of
caspase(s)-4/11 and high levels of hepatic pyroptosis are causally
related to the development of multi-organ injury in cirrhosis.
To interrogate this hypothesis, we characterized activation of
caspase-4 in liver tissue from patients with stable compensated
and acutely decompensated cirrhosis, and explored the activation
of caspase-11 and GSDMD in a mouse model of liver fibrosis with
multi-organ injury. Further, we used Casp11−/− mice to dissect
the role of this pathway in hepatic and extra-hepatic organ injury.

MATERIALS AND METHODS

Human Liver Samples
Liver biopsy specimens formalin-fixed and paraffin-embedded
(FFPE) were available from the Institute for Liver and Biliary
Sciences (ILBS) Biobank, from an established cohort of 79
hospitalized patients presenting with acutely decompensated
(AD) alcohol-related cirrhosis, and a further 10 outpatients with
stable, compensated (SC) alcohol-related cirrhosis. Clinical data
from these patients was collected from the time of biopsy, and
Child-Pugh (CP) and Model for End Stage Liver Disease (MELD)
scores calculated. Ethical approval was granted by the ILBS IRB
(Ref: IEC/2019/71/MA07, November 02, 2019).

Mouse Model of Advanced Fibrosis and
Multi-Organ Dysfunction
Male C57BL/6J mice, wild type (Charles Rivers,
United Kingdom) or Casp11−/−, were used for all experiments.
Casp11−/− mice have a targeted deletion of 16 amino acids
from exon 5 of casp-11, including the QACRG enzymatic active
site (Wang et al., 1998). All mice were housed in a temperature
and light controlled (12 hours light/dark cycle) facility at
the Comparative Biology Unit, UCL, and received standard
chow and water ad libitum. All procedures were performed
in accordance with United Kingdom Home Office Animals
(Scientific Procedures) Act 1986 (updated 2012). The study was
approved by the University College London Animal Welfare
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and Ethical Review Board (AWERB) and conducted with a
United Kingdom Home Office project license.

The model of advanced fibrosis and multi-organ dysfunction
was previously described by Sanyal and colleagues (Carl
et al., 2016). Briefly, advanced fibrosis was induced by gavage
of carbon tetrachloride (CCl4 0.5ml/kg, 1:1 olive oil, 20
doses over 10 weeks). Control mice were treated with olive
oil alone. Subsequently, low-dose Klebsiella pneumoniae
lipopolysaccharide (LPS) (Merck, United Kingdom) was
injected intraperitoneally (i.p) at 2–4 mg/kg to mimic bacterial
translocation and induce ACLF, or equivalent volume of 0.9%
saline as control. For some experiments, a high-dose of LPS
(12 mg/kg) was injected in naïve mice. All experiments were
terminated at 4 h following intervention.

Histopathological Assessment and
Immunostaining
Human and mouse samples were formalin fixed, paraffin
embedded and sections cut according to standard techniques.
Human samples underwent immunostaining for Caspase-4
(Caspase-4 polyclonal antibody raised against AA: 95–137, AMS
Bio, United Kingdom) according to manufacturer’s protocols.
Slides were reviewed by two investigators (CB and AS) blind to
clinical characteristics. Under high magnification, 20 consecutive
high-power fields (hpfs) were selected and the positive staining
cells (dark brown cytoplasmic staining) were counted. The mean
scores of both investigators were taken, and data expressed as
average positive cells/hpf. Mouse sections were stained with
hematoxylin and eosin (H&E) or picro-Sirius red, and collagen
proportionate area (CPA) calculated as previously described
(Hall et al., 2013). Additionally, terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) staining was
performed on mouse liver sections (In Situ Cell Death
Detection Kit, POD – Roche Diagnostics, United Kingdom)
according to manufacturer’s protocols. Degree of cell death was
quantified by analysis of immunohistochemical positive areas
measured by FIJI Image J software as described previously
(Hall et al., 2013).

Characterization of Organ Dysfunction in
Mouse Models
Mouse plasma alanine aminotransferase (ALT) and creatinine
concentration were measured by Cobas Integra 400 automated
analyzer (Roche Diagnostics, Burgess Hill, United Kingdom)
using the relevant kits according to the manufacturer’s
instructions. Plasma lactate dehydrogenase (LDH) was also
measured as a circulating marker of non-apoptotic cell
death, using the LDH-Glo Cytotoxicity Assay (Promega,
United Kingdom). Brain tissue water content was measured
according to a previously described gravimetric technique
(Marmarou et al., 1982). Circulating levels of LPS were measured
by end-point chromogenic endotoxin detection assay based
on the amebocyte lysate method (Thermo Fisher Scientific,
United Kingdom).

Cell Culture
Cryopreserved primary human hepatocytes (Lonza Biologics,
United Kingdom) were cultured with HCM Thawing Medium,
Hepatocyte Plating Medium and HCM Hepatocyte Culture
Medium (Lonza Biologics, United Kingdom) according to
supplier’s instructions. For some experiments cells were exposed
to LPS from Klebsiella pneumoniae (Merck, United Kingdom)
or tunicamycin (Merck, United Kingdom) according to
the doses stated.

Protein Expression Analysis
Proteins were isolated from snap frozen human and mouse tissue
samples and cell culture samples, by standard techniques
and analyzed by Western blot. In brief, frozen tissues
were aliquoted (50–100 mg) into screw cap tube (Starlab,
United Kingdom) containing 1mm glass beads (Merck,
United Kingdom) and homogenized in PBS using a Precellys
24 Tissue Homogenizer (Bertin Instruments, France). 2×

RIPA buffer (Merck, United Kingdom) and protease inhibitor
cocktail (Roche Diagnostics, Burgess Hill, United Kingdom)
was added to the homogenate and incubated at 4◦C with
agitation for 10 min. Tubes were then centrifuged at 15.000g
× 15 min and the supernatant collected aliquoted and stored
at −80◦C for future analysis. Cell culture samples were
processed on-plate. Briefly, culture medium was removed
and 20 µl/cm2 RIPA buffer (protease inhibitor added to each
well or flask. Cells were detached with a rubber policeman
(Thermo Fisher scientific, United Kingdom), transferred to
microcentrifuge tubes, incubated at 4◦C with agitation for
10 min, then centrifuged at 15.000g × 15 min. Supernatant
were collected, aliquoted, and stored at −80◦C for future
analysis. Blots were probed using the primary antibodies
described in Supplementary Table 1A. Immune complexes
were detected using horseradish peroxidase (HRP)-conjugated
secondary antibodies (Cell Signaling Technology, United States)
and enhanced chemiluminescence (ECL) reagents (BioRad,
United Kingdom). Densitometric quantification was performed
using ChemiDoc imaging stem and Image Lab software (BioRad,
United Kingdom).

Messenger RNA Expression Analysis
Total RNA was extracted from snap frozen mouse liver and
cell samples using TRI reagent (Merck, United Kingdom),
and retrotranscribed using AffinityScript cDNA synthesis kit
(Agilent, United Kingdom). Subsequently, gene expression was
analyzed according to manufacturer’s protocols, using the
primers described in Supplementary Table 1B.

Measurement of Caspase Activity
Caspase-1 and Caspase-11 activity was measured in mouse
liver homogenate using a fluorometric assay (Abcam,
United Kingdom) as previously described (Khanova et al.,
2018). Caspase-1 activity was measured by cleavage of the motif
WEHD, and Caspase-11 by cleavage of the motif LEVD.
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Statistics
Variables are presented as mean ± standard error, or median
and interquartile range, depending on normal or non-normal
distribution. Data were analyzed by t-test (with Welch correction
where necessary), Mann-Whitney test, one-way ANOVA (with
Tukey’s post hoc test), Kruskal-Wallis (with Dunn’s post hoc
test), Pearson’s or Spearman correlation as appropriate, using
GraphPad Prism (version 5.03 for Windows; GraphPad Software,
San Diego, CA, United States) and Minitab17 (Minitab, Inc. State
College, PA, United States).

RESULTS

Caspase-4 Expression Is Increased in
Liver Tissue of Patients With Acutely
Decompensated Cirrhosis and
Correlates With Disease Severity
Clinical characteristics for outpatients with stable compensated
cirrhosis (SC) and hospitalized patients with acutely
decompensated cirrhosis (AD) are presented in Table 1.

The expression of caspase-4 in the liver was measured by
immunohistochemistry, employing an antibody raised against
the central portion of caspase-4 (AA range: 95–137) and
quantified as number of positively stained cells per high power
field. Abundance of caspase-4 in hepatocytes was significantly
increased in AD patients, compared to stable cirrhotic controls
(Figure 1A), and circulating LDH levels, a marker of non-
apoptotic cell death, were significantly correlated with hepatic
expression of caspase-4 in AD (r = 0.3287, p = 0.026). In AD,
the expression of caspase-4 was also significantly correlated with
disease severity by MELD score at time of biopsy (r = 0.2700,
p = 0.011). By contrast, no significant correlation of caspase-4
expression with MELD score was noted in stable compensated
patients (r = 0.01972, p = 0.666). In hospitalized patients with
AD cirrhosis, further laboratory tests were available at 14-days
and 28-days following liver biopsy; hepatic caspase-4 expression
was also significantly correlated with MELD score at day 14
post-biopsy (r = 0.2587, p = 0.027), and more strongly correlated
with MELD score at day 28 post-biopsy (r = 0.4800, p < 0.001).
To explore the influence of hepatic caspase-4 expression on
disease trajectory, we examined change in MELD score at day
28 (delta MELD) in AD cirrhosis patients. In patients with

TABLE 1 | Patient characteristics for liver tissue characterization.

Stable compensated
cirrhosis (SC) n = 10

Acutely
decompensated

cirrhosis (AD) n = 79

Age [mean (SEM)] 44.9 (3.2) 45.5 (1.0)

Male [n (%)] 10 (100) 78 (99)

Cause of acute decompensation [n (%)]

Infection N/A 15 (18.9)

Alcohol N/A 26 (67.0)

GI bleeding N/A 4 (5.0)

Unknown N/A 7 (8.8)

Aetiology [n (%)]

Alcohol 10 (100) 79 (100)

Clinical data at time of biopsy

Bilirubin [median (IQR)] 0.75 (0.60–0.95) 20.2 (13.45–28.37)

INR [median (IQR)] 1.00 (0.93–1.00) 1.99 (1.75–2.29)

Creatinine [median (IQR)] 0.60 (0.50–0.70) 0.54 (0.34–0.78)

MELD score [median (IQR)] 6.00 (6.00–6.75) 19.66 (16.08–23.79)

Child-Pugh Class

A 10 (100) 18 (23)

B 0 (0) 59 (75)

C 0 (0) 2 (2.4)

Clinical data at 28 days

Bilirubin [median (IQR)] N/A 10.6 (5.77–20.70)

INR [median (IQR)] N/A 1.62 (1.14–2.00)

Creatinine [median (IQR)] N/A 1.00 (0.59–1.50)

MELD score [median (IQR)] N/A 19.16 (13.31–27.38)

Comorbidities [n (%)]

None 9 (90) 75 (95)

T2DM 0 (0) 2 (2.4)

Cardiomyopathy 0 (0) 1 (1.2)

Hypertension 1 (10) 1 (1.2)

Caspase-4 positive cells [mean (SEM)] 10.2 (1.3) 25.8 (1.2)
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decompensated cirrhosis, a change in MELD score of 5 points
at 1 month has been shown to predict short-term mortality
(Merion et al., 2003). Accordingly, AD patients were classified
into three groups based on delta MELD [improved (< –5;
n = 22), stable (–5 to + 5; n = 30), and worsened (> + 5; n = 25)].
The level of caspase-4 expression across the three groups was
significantly different by multivariate analysis (Figures 1B,C),
with post hoc testing showing a significant increase in caspase-4
expression between the ‘improved’ group and both the “stable”
and “worsened” (improved vs. stable: 20.02 vs. 26.17, p = 0.017;
improved vs. worsened: 20.02 vs. 30.48; p < 0.001). Taken
together, these data demonstrate an association of hepatic
caspase-4 expression with severity of liver disease in cirrhosis,
and a further association with disease trajectory in hospitalized
patients with decompensated cirrhosis.

Mice With Advanced Liver Fibrosis
Treated With LPS Develop Multi-Organ
Injury Associated With Activation of
Hepatic Caspase-11 and GSDMD
Cleavage
In order to study the relationship between acute decompensation
of cirrhosis with activation of the caspase-4/11 pathway,
we utilized an established mouse model of liver fibrosis
with multi-organ injury. Mice were treated with carbon
tetrachloride (CCl4) over 10 weeks to establish advanced liver
fibrosis (Supplementary Figure 1A), and subsequently injected
intraperitoneally (i.p.) with LPS (2 mg/kg) to precipitate multi-
organ injury. Mice treated with CCl4 + LPS developed features
of ACLF, with exaggerated liver injury and extra-hepatic organ
injury compared to CCl4 control (Figure 2A).

In accordance with the findings in humans, mice treated
with CCl4 + LPS showed increased abundance of active caspase-
11 in the liver compared to naïve mice and mice treated with
CCl4 alone, as measured by abundance of the p26 fragment
(Figure 2B). Further to that, the CCL4 + LPS group also
displayed increased caspase-11 enzymatic activity, as measured
by fluorometric assay on liver lysates (Figure 2C). consistent
with activation and processing of caspase-11 following LPS
exposure. Accordingly, circulating LPS levels, a marker of
intestinal permeability and translocation of gut-derived bacterial
products, showed a trend toward increased levels in the CCl4
and CCl4 + LPS groups compared to naïve (Supplementary
Figure 1B). In contrast to caspase-11, no changes in the activity
of caspase-1 were observed between naïve, CCl4 and CCl4 + LPS
treated mouse liver samples (Supplementary Figure 1C). Taken
together, these findings are consistent with increased activity,
or ‘sensitization’, of the caspase-4/11 pathway in liver tissue in
cirrhosis, predisposing to increased responsiveness to gut-derived
bacterial products such as LPS.

Since caspase-11 acts upstream of GSDMD, we measured
the abundance of active GSDMD by quantification of the
GSDMD N-terminal. Mice treated with CCl4 + LPS showed
increased levels of hepatic GSDMD N-terminal compared to
the CCl4 control group (Figure 2D), which was accompanied
by a significant increase in overall cell death in liver tissue, as

FIGURE 1 | Hepatic caspase-4 expression correlates with the severity of liver
disease. The expression of caspase-4 in the liver was measured by
immunohistochemistry and quantified as number of positive cells/high power
field. (A) Patients with acutely decompensated cirrhosis were found to have
elevated expression of caspase-4 in the liver compared to patients with
stable, compensated cirrhosis (Mann-Whitney U test, p < 0.001). (B) Patients
were divided into three categories, based on 1MELD score (MELD d28 –
MELD d0): ‘Improved’ patients with 1MELD below –5, “stable” with 1MELD
between –5 and + 5, and “worsened” with an increase in MELD score greater
than + 5 points. Panels 1–4 show representative caspase-4 staining for (1)
stable cirrhosis (SC), (2) ‘improved’ AD, (3) “stable” AD, and (4) “worsened”
AD. (C) Caspase-4 expression in the liver was significantly different among the
three groups (Kruskal-Wallis test p < 0.001), being significantly higher in
“stable” and “worsened” groups, compared to ‘improved’ patients (Dunn’s
test, p = 0.017 and p < 0.001 respectively).

assessed by TUNEL staining (Supplementary Figure 1D). In
a separate experiment, naïve mice were treated with high-dose
LPS (12 mg/kg) and showed no significant increase in hepatic
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FIGURE 2 | Mouse model of decompensated liver cirrhosis displays activity of Caspase-11 and GSDMD cleavage. (A) Mice were treated with CCl4 to develop
advanced hepatic fibrosis. Following intraperitoneal injection of low-dose LPS (2 mg/kg), mice developed features of ACLF at 4 h (n = 7/group). The CCl4 + LPS
group demonstrates elevated plasma ALT (left panel; Student’s t-test, p = 0.05), creatinine (center panel; Student’s t-test, p = 0.003) and brain swelling (right panel;
Student’s t-test, p < 0.001). (B) Activation of caspase-11 was measured by relative abundance of active caspase-11 p26 compared to the housekeeping gene
PPIB. CCl4 + LPS treated mice (n = 7; n = 6 showed in the image) showed higher levels of caspase-11 p26 than naïve mice (n = 5) and mice treated with CC4 alone
(one-way ANOVA with Tukey post hoc test; p = 0.002 and p = 0.003, respectively). (C) The enzymatic cleavage of LEVD-AFC substrate in snap-frozen liver extracts
showed a trend toward increase in the CCl4 group, and was significantly elevated in CCl4 + LPS-treated mice (n = 7) compared to naïve animals (n = 5) (one-way
ANOVA with Tukey post hoc test p = 0.02). (D) Compared to animals treated with CCl4 alone, the CCl4 + LPS group shows higher expression of active GDSMD,
measured as abundance of cleaved GSDMD N-terminal (Student’s t-test, p = 0.001). (E) There is no apparent increase in hepatic GSDMD activation in naïve mice or
naïve mice treated with high-dose LPS (12 mg/kg) groups (Student’s t-test, p = 0.28).
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GSDMD cleavage over baseline level in naïve mice (Figure 2E),
thus suggesting that prior sensitization of the caspase-11 pathway
is required to trigger hepatic GSDMD cleavage in response
to LPS exposure.

Importantly, no increase in GSDMD cleavage was
seen in the kidney or brain of the CCl4 + LPS group
compared to CCl4 alone despite the increase in plasma
creatinine and brain tissue water content noted in
the CCl4 + LPS group (Supplementary Figure 2A).
Representative liver and kidney H&E sections from
naïve, CCl4, and CCl4 + LPS groups are presented in
Supplementary Figure 2B.

Endoplasmic Reticulum Stress Is
Associated With the Upregulation in
Caspase-11 Activity in Liver Tissue From
Mice With Advanced Fibrosis
Prior work has demonstrated that hepatocyte ER
stress is associated with liver fibrosis and cell death
(Lebeaupin et al., 2015; Iracheta-Vellve et al., 2016). ER stress
occurs as a consequence of disrupted intracellular homeostasis
and accumulation of misfolded proteins, and has been associated
with induction of caspase-11 activity through a direct interaction
with the ER stress protein C/EBP homologous protein (CHOP)

FIGURE 3 | Cirrhotic mice display increased hepatic endoplasmic reticulum stress. The expression of key genes involved in ER stress were measured by qPCR
and/or Western blot from snap-frozen liver extract in CCl4-treated (n = 7), and naïve (n = 5) mice. The housekeeping gene ppib was used for normalization across
experiments. (A) Gene expression of the ER-stress marker Ddit3, coding for the protein CHOP, was increased in mice treated with CCl4 + LPS (Dunn’s test,
p = 0.028). (B) Protein expression of mature CHOP was significantly increased in the CCl4-treated group, compared to control (Dunn’s test p = 0.049). (C) Gene
expression of Hspa5, Atf4, and ratio of spliced to unsplice xbp1 were significantly different across groups (one-way ANOVA: Hspa5, p = 0.039; Atf4, p < 0.001;
sXbp1/Xbp1, p = 0.002).
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(Endo et al., 2006). Accordingly, CHOP expression was measured
in liver tissue from naïve and CCl4-treated mice, and a significant
upregulation of Ddit3 mRNA and CHOP protein expression
was found in mice with advanced liver fibrosis compared to
control (Figures 3A,B). ER stress was further confirmed by
measurements of other markers genes: Hspa5, coding for the ER
chaperone protein GRP78, Atf4, a stress-induced transcription
factor, and spliced Xbp1, which were found to be elevated
in the liver of CCl4-treated mice (Figure 3C). These results
demonstrate an association between hepatic ER stress and
upregulation of the caspase-11 pathway in CCl4-treated mice.

Caspase-11 Deficient Mice Are
Protected From Hepatic and
Extra-Hepatic Organ Injury in ACLF
To explore the specific role of caspase-11 in the onset of multi-
organ injury in response to LPS insult, we employed caspase-
11 deficient mice (Casp11−/− mice). Upon treatment with
CCl4, Casp11−/− mice developed a similar level of advanced
fibrosis compared to wild-type (wt) mice (collagen proportionate

area measurement: 5.3 ± 0.3 vs. 5.8 ± 0.5%, p = 0.36; result
not shown), but were significantly protected from hepatic
and extra-hepatic organ injury following i.p. injection of LPS
(4 mg/kg) (Figure 4A). This was associated with a significant
reduction in circulating LDH (Figure 4B) and in the number
of TUNEL-positive cells on liver immunostaining (Figure 4C),
consistent with a reduction in hepatocyte cell death. Absence
of caspase-11 protein in the liver of Casp11−/− mice following
treatment with CCl4 and LPS was confirmed by western blotting
(Supplementary Figure 3).

Hepatocytes Undergo Pyroptosis in a
Dose-Dependent Manner in Response to
LPS, and Are “Sensitized” by Prior
Low-Dose LPS Exposure and ER Stress
Prior data has shown that hepatocytes are the key cells
undergoing apoptotic and non-apoptotic cell death in rodent
models of ACLF (Adebayo et al., 2015). This observation was
supported by TUNEL staining of liver tissue from CCl4 and
CCl4 + LPS mice, which demonstrated primarily hepatocyte

FIGURE 4 | Caspase-11 deficiency protects from hepatic and extra-hepatic organ injury in ACLF. Wild type and casp11-/- type mice were treated with CCl4
(0.5ml/kg, 20 doses) to develop advanced hepatic fibrosis, and subsequently injected i.p., with LPS (4 mg/kg). (A) 4 h following LPS injection, Casp11-/- mice
(n = 6) displayed significantly lower ALT (Student’s t-test, p = 0.002), creatinine (Student’s t-test, p = 0.048), and brain tissue water content (Student’s t-test,
p = 0.046) than wild type (n = 8). (B) Lower levels of cell death were also reflected in reduced levels of plasma LDH (Student’s t-test with Welch correction,
p = 0.025). (C) Hepatocyte cell death was assessed by TUNEL assay and quantified by measuring positively stained areas. Casp11-/- mice displayed lower levels of
hepatocyte cell death than wild type (Student’s t-test, p = 0.051).
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FIGURE 5 | LPS-dependent pyroptosis in hepatocytes and sensitization by ER stress. (A) Primary human hepatocytes treated for 24 h with very low-dose LPS
(100 ng/ml) and the ER-stress inducer tunicamycin (1 µM) prior to subsequent LPS ‘hit’ (6 µg/ml) show increased GSDMD cleavage compared to control (one-way
ANOVA with Tukey post hoc test, p = 0.046, n = 3 experiments/group). (B) Susceptibility to induced pyroptosis was confirmed by increased release of LDH upon
LPS “hit,” by hepatocytes treated with low-dose LPS (100 ng/ml) and tunicamycin (1 µM) (one-way ANOVA with Tukey post hoc test, p = 0.049, n = 3
experiments/group). (C) Primary human hepatocytes showed a trend toward increased active Caspase-4 upon tunicamycin treatment, as measured by the
abundance of the p20 fragment.
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death following LPS injection, and a significant increase in
overall cell death in the CCl4 + LPS group (Supplementary
Figure 1D). Prior work has also demonstrated that hepatocytes
can actively internalize LPS through carrier mechanisms, and
that hepatocytes play a key role in the clearance of LPS during
endotoxemia (Deng et al., 2013; Topchiy et al., 2016).

Recent work has utilized a model of exposure of hepatocytes
to low-dose LPS to mimic low-level gut-derived translocation
of bacterial products in cirrhosis (Isaacs-Ten et al., 2020).
Accordingly, we pre-treated primary human hepatocytes with
low-dose LPS (100 ng/ml) alongside the ER stress inducer
tunicamycin for 24 h to reflect the hepatocyte microenvironment
in cirrhosis, prior to a subsequent LPS ‘hit’ (6 µg/ml).
These experiments demonstrate that hepatocytes are resistant
to pyroptosis in the baseline state but can be sensitized to
pyroptosis in an environment of ER stress and low-dose
LPS exposure, displaying increased abundance of GSDMD
N-terminal (Figure 5A) and LDH release (Figure 5B). Treated
hepatocytes also showed a trend toward increased activation of
caspase-4, measured as abundance of the active (p20) fragment
(Figure 5C), recapitulating the data collected in vivo.

DISCUSSION

In this study we demonstrate, for the first time, a role for LPS-
sensing inflammatory caspases and the pyroptosis pathway in
the progression to multi-organ injury in cirrhosis. The novel
findings of this study are: (i) increased hepatic expression of
caspase-4 is a feature of acutely decompensated cirrhosis and
correlates with disease severity, (ii) hepatic expression of caspase-
11 is also upregulated in a mouse model of advanced liver fibrosis,
(iii) hepatic expression of the cleaved fragment of GSDMD, the
effector protein of the pyroptosis pathway, is increased in mice
with liver fibrosis and multi-organ injury, (iv) Casp11−/− mice
with advanced liver fibrosis are protected from excess hepatocyte
death and multi-organ injury. These findings are of particular
relevance, since cirrhosis is associated with progressive changes
in the composition of the microbiome as well as translocation
of bacterial-derived products (Bajaj, 2019). The work presented
here provides a mechanistic link between bacterial dysbiosis
and LPS translocation in cirrhosis, and LPS-mediated liver and
multi-organ dysfunction (see graphical abstract). Moreover, these
findings have translational importance through the potential
utility of pyroptosis inhibitors as novel therapeutic strategies for
acutely decompensated cirrhosis and ACLF.

Two groups have recently implicated activation of the
pyroptosis pathways as a feature of fatty liver disease and
alcohol-related liver disease. Xu et al. (2018) demonstrated
increased expression of capases-1/4/5 and resulting GSDMD
cleavage in patients with non-alcoholic steatohepatitis (NASH),
with degree of cleavage correlating with hepatic inflammation.
Further, they demonstrated protection from NASH in Gsdmd−/−

mice, and additionally used a hepatocyte-directed vector
expressing GSDMD N-terminus to exacerbate hepatic injury.
Khanova and colleagues also investigated the caspase-4/11-
GSDMD pathway in alcoholic hepatitis and identified hepatic

GSDMD cleavage as a feature of alcoholic hepatitis in mice
and patients (Khanova et al., 2018). Additionally, they also used
hepatocyte-specific over-expression of GSDMD N-terminus to
exacerbate the alcoholic hepatitis phenotype, and demonstrated
protection using Casp1/Casp11 double knockout mice. Both
these studies demonstrate a role for hepatocyte pyroptosis
in steatohepatitis, although the mechanisms responsible for
activation of caspase(s)-4/11 in liver disease remain ill-defined.
The present study extends these previous observations and
demonstrates a mechanistic link between translocation of gut-
derived LPS and hepatocyte cell death in cirrhosis. Specifically,
our study is the first to explore this pathway in advanced
liver disease and to use mice with selective deficiency in
caspase-11, thereby confirming a causal role for this pathway
in multi-organ injury associated with decompensated cirrhosis.
Importantly, these data are also consistent with human data,
which demonstrate much higher levels of cell death in
decompensated cirrhosis than in stable cirrhosis (Macdonald
et al., 2018). Additionally, prior data supports a shift in mode of
cell death, from apoptotic to non-apoptotic, with development of
multi-organ failure in cirrhosis. Thus, although pyroptosis may
be a feature of steatohepatitis, high levels of pyroptotic cell death
are likely to play a pivotal role in the development of severe liver
injury and multi-organ failure.

The data presented here also demonstrate that despite the
occurrence of kidney injury and brain swelling in ACLF, there
is no significant GSDMD cleavage in the kidney or brain
in our mouse model of ACLF in response to LPS injection,
suggesting that the injury observed in these organs is caused by
mechanisms other than GSDMD-dependent pyroptosis. Indeed,
the marked protection of the extra-hepatic organs in Casp11−/−

mice suggests that the primary event is hepatic pyroptosis
subsequently leading to extra-hepatic organ injury, rather than
direct LPS-induced injury in these extra-hepatic organs. The
recently described roles of extracellular vesicles in inter organ
communication and the correlation between liver injury and
increased levels of extracellular vesicle release from hepatocytes
(Malhi, 2019), warrant investigation into whether they might be
conduit of the signal leading to multi-organ failure in response to
liver injury in cirrhosis.

Currently, there are no specific therapies for acutely
decompensated cirrhosis and ACLF, and previous attempts to
modify cell death pathways in this group, through pan-caspase
inhibition, have been unsuccessful (Mehta et al., 2018). The
data presented here suggest that a more targeted approach
to inhibit inflammatory caspases or downstream pyroptosis
pathways would be preferable. Recent work from Hu et al.
demonstrates that disulfiram, a licensed drug with an excellent
safety record, is an inhibitor of pyroptosis (Hu et al., 2020).
Consequently, it is clear that disulfiram is an attractive candidate
for repurposing as a potential therapeutic for cirrhosis and ACLF,
and clinical trials are warranted.

The limitations of this work are the skewed distribution of
patients between the AD and SC groups, which is however
justified by the limited variability among the SC patients,
and that we cannot exclude a role for pyroptosis in hepatic
phagocytic cells, such as infiltrating bone-marrow derived
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monocytes or Kupffer cells, in the development of ACLF. The
immunostaining data, in mice and humans, presented here
demonstrate primarily hepatocyte staining in liver tissue samples,
although the involvement of monocyte-macrophage cells cannot
be absolutely excluded histologically. The data presented here
are also consistent with the findings from Khanova et al. (2018)
and Xu et al. (2018) in previous studies who noted primarily
hepatocyte pyroptosis in disease models, as well as clinical
data from the CANONIC cohort study which demonstrate that
circulating markers of cell death in ACLF are correlated with
markers of hepatic injury (bilirubin, alanine aminotransferase)
rather than markers of extra-hepatic organ dysfunction (Moreau
et al., 2013; Khanova et al., 2018; Xu et al., 2018). Fundamentally,
these findings build upon an existing body of work supporting
a specific role of hepatocytes in handling circulating LPS, as
distinct from the innate immune compartment which plays a
primary role in responding to microorganisms and DAMPs
(Mimura et al., 1995; Deng et al., 2013; Topchiy et al., 2016).
Our data further suggests that the handling of circulating LPS
in cirrhosis is aberrant due to sensitization of the hepatocyte
caspase-4/11 pathway.

CONCLUSION

In this study we demonstrate for the first time upregulation
of inflammatory caspase(s)-4/11 and increased hepatocyte
pyroptosis in acutely decompensated cirrhosis, and a causal
link between translocation of gut-derived LPS and liver- and
multi-organ injury in mouse models of liver fibrosis. This work
highlights pyroptosis as a potential novel target for therapy in
patients with acutely decompensated cirrhosis and ACLF.
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During the past decade, researchers have investigated the role of microbiota in
health and disease. Recent findings support the hypothesis that commensal bacteria
and in particular microbiota-derived metabolites have an impact on development of
inflammation and carcinogenesis. Major classes of microbial-derived molecules such
as short-chain fatty acids (SCFA) and secondary bile acids (BAs) were shown to
have immunomodulatory potential in various autoimmune, inflammatory as well as
cancerous disease models and are dependent on diet-derived substrates. The versatile
mechanisms underlying both beneficial and detrimental effects of bacterial metabolites
comprise diverse regulatory pathways in lymphocytes and non-immune cells including
changes in the signaling, metabolic and epigenetic status of these. Consequently,
SCFAs as strong modulators of immunometabolism and histone deacetylase (HDAC)
inhibitors have been investigated as therapeutic agents attenuating inflammatory
and autoimmune disorders. Moreover, BAs were shown to modulate the microbial
composition, adaptive and innate immune response. In this review, we will discuss the
recent findings in the field of microbiota-derived metabolites, especially with respect
to the molecular and cellular mechanisms of SCFA and BA biology in the context of
intestinal and liver diseases.

Keywords: liver, microbiome and dysbiosis, intestine, immunology, short-chain fatty acid, bile acids, T cell,
myeloid cells

INTRODUCTION

The triangular interdependency between gut microbiota, diet and immune cells is substantially
connected to the functionality of a symbiotic cellular network and therefore to the host’s health
status. The gut as residence for a highly dense microbial community harbors a unique diversity
of non-mammalian genes required for the synthesis of various bioactive molecules. These soluble
messengers are bridging the gap between host cells as well as commensal bacteria and are
required for the maintenance of energy homeostasis, shaping the mucosal immune system and
even influencing host behavior (Blumberg and Powrie, 2012; Levy et al., 2016). Changes in the
microbiota have been shown to be involved in pathophysiological processes. While microbial
diversity is associated with a beneficial outcome in allogenic stem cell transplantation, the impact
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of the gut microbiota on checkpoint blockade in cancer therapy
showed opposing effects (Coutzac et al., 2020; Peled et al., 2020).

The production of short-chain fatty acids (SCFAs), a major
class of microbial metabolites, requires bacterial fermentation
of both water-soluble dietary fiber (e.g., pectin, guar gum, and
inulin) and insoluble fiber (e.g., resistant starch) in the gut lumen
by members of the human microbiome (Figure 1). Upon food
intake, indigestible complex carbohydrates pass the upper part of
the gastrointestinal tract, where they become metabolized under
anaerobic conditions with peak concentration of SCFAs in the
cecum and proximal colon (Cummings et al., 1987). Acetate,
propionate and butyrate are the most abundant SCFAs in the gut
of conventionally raised mice. Additionally, pentanoate, formate
and branched-chain fatty acids (BCFAs) have been identified at
much lower levels in the intestine of rodents and humans (Koh
et al., 2016). In contrast to SCFAs and lactate, which is another
product of the carbohydrate metabolism, BCFAs are derived
from fermentation of branched amino acids such as valine,
leucine and isoleucine (Smith, 1998; Yang et al., 2010; Rios-
Covian et al., 2020). SCFAs are absent in germ-free (GF) animals
and were shown to affect different aspects of human health.
These implicate, besides autoimmunity and inflammation, the
maintenance of gut homeostasis, an equilibrium of interactions
between the intestinal epithelium, the host immune system,
commensal bacteria and regulatory mechanisms (Kim et al., 2014;
Luu et al., 2019).

Notably, besides dietary components, commensal bacteria
are able to modify host-derived molecules such as bile acids
(BAs). Upon food uptake, stimulation of the gallbladder leads
to influx of primary liver-derived BAs into the duodenum
being responsible for emulsification of dietary fat (Ridlon et al.,
2006). Although most BAs become reabsorbed in the ileum
and transported to the liver via the enterohepatic circulation, a
smaller fraction is transformed into secondary BAs by bacterial
conversion in the colon (Schaap et al., 2014). It has been
described that both primary and secondary BAs interact with a
family of nuclear (FXR) and G-protein-coupled receptors (GPRs)
agonistically or antagonistically, collectively known as BA-
activated receptors (BARs), thereby modulating cellular signaling
as well as immune response (Chen et al., 2011; Carr and Reid,
2015). Recently, it has been shown that secondary BAs such
as 3β-hydroxydeoxycholic acid (isoDCA) were able to increase
differentiation of regulatory T cells (Tregs) by interaction with
the farnesoid X receptor on dendritic cells (DCs) highlighting a
potential for novel therapeutics (Campbell et al., 2020b).

In this review, we examine recent work investigating the
modes of action by which two major groups of bacterial
metabolites, SCFAs and BAs, impact on liver- and gut-associated
inflammatory and cancerous diseases.

MECHANISMS OF SCFA-MEDIATED
MODIFICATION OF HOST CELLS

The research focus on SCFAs as a major class of bacterial-derived
metabolites has revealed various of their modes of action as
well as different cellular modifications (Figure 2A) depending

on the respective cell type (Figure 3). The diffusible molecules
have been shown to be agonists for eukaryotic GPRs which are
involved in diverse signaling pathways. Previous studies have
demonstrated that binding of acetate and propionate to GPR41
and GPR43 expressed on colonocytes induces p38 and ERK/
MAPK activation contributing to the inflammatory response
(Kim et al., 2013). Apart from colonocytes, enteroendocrine
cells were shown to sense SCFAs via GPR41 and GPR43 (Nøhr
et al., 2013). SCFA binding to GPR43 on regulatory T cells
(Tregs) mediated protection against colitis in mice (Smith et al.,
2013). Similarly, SCFA interaction with GPR109a on dendritic
cells (DCs) promoted Treg differentiation and tolerance in the
intestinal tissue (Singh et al., 2014).

Due to their small size, either passive diffusion across the cell
membrane or active transport via sodium-coupled transporters
enable SCFAs to enter the cytoplasma or even the nucleus of
eukaryotic cells where they elicit a histone deacetylase (HDAC)-
inhibitory activity of a distinct magnitude. A rather weak
HDAC-inhibitory activity has been observed in experiments
using acetate, while propionate and especially butyrate show
stronger enzyme inhibition. SCFAs regulate the expression of
genes associated with cell proliferation, differentiation, epithelial
integrity, and immune response (Kim et al., 2014, 2016;
Schilderink et al., 2016; Goverse et al., 2017; Luu et al., 2018).
Recent studies have shown that not only enhanced histone H3
acetylation at the Foxp3 locus but also increased acetylation of
the Foxp3 protein itself can be modulated by butyrate, stabilizing
the genetic integrity of Tregs (Arpaia et al., 2013; Furusawa et al.,
2013).

Besides their HDAC-inhibitory properties, SCFAs are able
to increase the activation of mammalian target of rapamycin
(mTOR), a central regulator of cell growth and energy
homeostasis (Sengupta et al., 2010). Consequently, mTOR-
mediated enhancement of glycolysis contributes to the pool of
acetyl-CoA. Balmer and colleagues showed that excess acetyl-
CoA enters the tricarboxylic acid cycle (TCA) where it becomes
converted into citrate. The pharmacologic inhibition of the ATP-
citrate lyase (ACLY), an enzyme involved in the conversion of
TCA-derived citrate into acetyl-CoA in the nucleus, strongly
reduced the IFN-γ production in acetate-treated CD8+ memory
T cells (Balmer et al., 2016). The nuclear acetyl-CoA served as
a substrate for histone acetyltransferases (HATs) which facilitate
the conjugation of acetyl groups to histones, thereby regulating
gene expression and consequently the production of cytokines
such as IL-10 and IFN-γ (Wellen et al., 2009; Zhao et al.,
2016; Bantug et al., 2018; Luu et al., 2019). These data strongly
support the concept of a metabolic-epigenetic crosstalk in
which cellular metabolism-derived molecules serve as source for
posttranslational modifications (PTMs) (Figure 2A).

As one of the most frequent PTMs, acetylation of proteins,
such as histones, has been investigated intensively. Recent studies
identified even longer alkyl motifs derived from SCFAs as
substrates for histone modification (Kebede et al., 2017; Fellows
et al., 2018). Kebede and colleagues described the propionylation
and butyrylation of histone H3 as a novel mark of active
chromatin in HeLa cells. In accordance with the concept that
microbiota-derived metabolites act on the epigenetic state of
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FIGURE 1 | Impact of BAs and SCFAs on the gut-liver-axis.

host cells, it has been shown that antibiotic treatment reduces
the microbial SCFA-mediated histone crotonylation in intestinal
crypts (Fellows et al., 2018). These findings suggest a link between
microbiota and epigenetic regulation opening the venue for
investigating new PTMs based on microbial metabolites.

SCFAS IMPACT ON INTESTINAL
HOMEOSTASIS AND INFLAMMATION

The gut is home to a diverse and dense bacterial community,
a unique site of interaction between host and microbiota.
Disturbance of this finely regulated balance was shown to
be involved in inflammatory diseases such as inflammatory
bowel disease (IBD) and colitis-associated carcinogenesis
(CAC) (Kamada et al., 2013). Maintenance of the intestinal

immune system requires an equilibrium between defense against
pathogens as well as tolerance to commensals and food antigens.
Therefore, various mechanisms are involved in regulating the
immunological response, impacting on intestinal epithelial cells
(IECs), induction of anti-inflammatory cells and suppression of
inflammatory cells.

Recent studies have identified several effects of SCFAs on
epithelial cells. SCFA administration was shown to stimulate
retinoic acid (RA) production in the intestinal epithelium,
a vitamin A derivate converted by aldehyde dehydrogenases,
which is associated with signaling and expansion of peripheral
Tregs (pTregs) in the context of a immunosuppressive response
(Figure 3; Benson et al., 2007; Hill et al., 2008; Schilderink et al.,
2016). Further, butyrate treatment of epithelial cells increased
the production of IL-18 via a GPR109a-mediated mechanism
which contributes to intestinal homeostasis and protects against

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 July 2021 | Volume 9 | Article 70321858

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-703218 July 20, 2021 Time: 15:43 # 4

Visekruna and Luu Microbial Metabolites Bridging the Gaps

FIGURE 2 | Cellular mechanisms of action of SCFAs and BAs. (A) SCFAs influence cell signaling, metabolic activity, and histone modification. (B) BAs bind to
surface and nuclear receptors.

colorectal carcinogenesis (Kalina et al., 2002; Zaki et al., 2010;
Singh et al., 2014). Similarly, binding of SCFAs to GPR41
and GPR43 enhanced both expression of anti-microbial factors
such as RegIIIγ and β-defensins in IEC by enhancing mTOR
and STAT3 signaling, whereas mice deficient for the receptors
suffered from impaired immune response against C. rodentium
infection (Kim et al., 2013; Zhao et al., 2018). Besides regulation
of anti-microbial molecules in epithelial cells, the increase
in metabolic input and consequently acetyl-CoA upon SCFA
or dietary fiber administration also regulates genes involved
in plasma cell differentiation and IgA antibody production,
important factors in maintaining gut homeostasis as well (Kim
et al., 2016). The relevance of bacterial-derived SCFAs to gut

homeostasis has been investigated in GF mice suffering from
reduced mucosal integrity and IgA (Moreau et al., 1978; Duboc
et al., 2013; Zeng et al., 2016).

SCFAs also mediate immunosuppression by either inducing
IL-10 in different immune cells or repressing inflammatory
macrophages in the lamina propria causing hyporesponsiveness
to commensal bacteria (Hayashi et al., 2013; Sun et al.,
2018). The importance of this aspect in IBD was highlighted
by antibiotics-treated mice deficient for SCFAs and suffering
from hyperresponsive macrophages and inflammation (Scott
et al., 2018). A link between SCFA-mediated mTOR activation
and IL-10 production in T cells and regulatory B cells
(Bregs) has recently been shown by our lab investigating
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FIGURE 3 | Cell types affected by SCFAs and BAs.

the subdominant microbiota-derived pentanoate (also known
as valerate). Pentanoate enhanced glycolysis and consequently
intracellular acetyl-CoA levels as HAT substrate, suggesting a
regulation of the Il10 locus by this mechanism (Luu et al., 2019).

The research on Tregs as crucial mediators of gut homeostasis
and oral tolerance has identified acetate, propionate and butyrate
as central molecules bridging the gap between commensals
and the mucosal immune system. Their importance was
emphasized by restoration of the colonic Treg population
in GF mice, lacking both microbiota and commensal-derived
metabolites, by SCFA supplementation (Smith et al., 2013).
Different mechanisms underlying colonic Treg expansion have
been proposed. Inhibition of HDACs leads to hyperacetylation
at histone H3 and H4, particularly the acetylation in the
promoter and CNS regions of the Foxp3 locus which causes
an increased expression of the Treg master regulator (Furusawa
et al., 2013). Furthermore, enhanced acetylation of the Foxp3
protein itself upon butyrate treatment was shown to stabilize
this transcription factor, protecting it from degradation (Arpaia
et al., 2013). Apart from acting as HDAC inhibitors, Smith
and colleagues described GPR43 to be exclusively expressed on
colonic Tregs but not on those of other tissues, thereby pointing

out the receptor-mediated Treg induction by SCFAs (Smith
et al., 2013). Recent studies have identified several Clostridium
strains among the commensal species, shown to facilitate colonic
Treg maturation (Atarashi et al., 2011, 2013). Colonization of
mice with 17 Clostridium strains producing SCFAs isolated from
healthy humans resulted in a TGF-β-rich environment which
supported Treg expansion and differentiation (Atarashi et al.,
2013). Moreover, spore-forming Clostridia are involved in the
fermentation of indigestible dietary fiber in the colon fueling the
pool of SCFAs as key metabolites (Koh et al., 2016). In conclusion,
these results demonstrate the complexity of microbiota-mediated
regulation of gut homeostasis.

SCFAS IN DEVELOPMENT OF
COLORECTAL CANCER AND STEM
CELL RENEWAL

Although the contribution of SCFAs to maintenance of gut
homeostasis has been investigated extensively, there is an
increasing body of evidence that commensal bacteria and
bacterial metabolites have opposing roles in inflammatory
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responses and carcinogenesis depending on the cell type and the
environment. Park and colleagues revealed that HDAC inhibition
and mTOR activation rather than interaction with GPR43 is
functionally important for the impact of SCFAs on T cells (Park
et al., 2014). Further, they suggested that this main class of
microbial metabolites boosts differentiation of naïve T cells into
Th1 and Th17 cells during encounter with pathogens. Since
these T cell subtypes were also described to be involved in
colitis and inflammation-associated carcinogenesis in the colon,
an involvement of SCFAs in colon carcinogenesis has been
investigated recently (Grivennikov et al., 2010).

In a steady-state situation, butyrate is present in the mM
range in the gut lumen and serves as the primary energy
source for colonocytes (Flint et al., 2012). Butyrate’s HDAC-
inhibitory properties have been pointed out by various studies
(Park et al., 2014; Kespohl et al., 2017; Luu et al., 2018,
2019). Further, its impact on the cellular metabolism of
colonocytes was investigated by the analysis of colonic tissue
derived from GF mice. Colonocytes from these mice showed
an energy-deprived state accompanied by reduced levels of
enzymes involved in intermediary metabolism such as the TCA
cycle, oxidative phosphorylation and ATP. Reconstitution with
butyrate restored mitochondrial respiration in GF colonocytes
(Donohoe et al., 2011). However, in the context of cancerous
colonocytes, butyrate was shown to act paradoxically. While
low-dose butyrate stimulates the proliferation of cancerous
colonocytes not undergoing the Warburg effect in a low-glucose
environment, comparably to non-cancerous ones, butyrate
inhibits the proliferation of colonocytes utilizing the Warburg
effect in a glucose-rich environment (Donohoe et al., 2012).
The anti-proliferative effect of butyrate on glycolytic cells was
attributed to histone hyperacetylation and changes in expression
of genes involved in proliferation and apoptosis. High-
dose butyrate caused histone hyperacetylation via its HDAC-
inhibitory properties, whereas low-dose butyrate provided acetyl
groups for HATs through its metabolization (Donohoe et al.,
2012). These results emphasize a differential utilization of
butyrate depending on the metabolic demand of the respective
cell. In contrast to the potentially beneficial inhibition of
cancerous colonocytes, the metabolization of butyrate by normal
colonic epithelial cells was shown to mediate protection from
its rather detrimental effect on colonic stem cells. Kaiko and
colleagues exposed stem/progenitor cells in vivo to butyrate either
by mucosal injury or application to zebrafish, naturally crypt-
less host organisms, resulting in inhibited cell proliferation as
well as impaired wound repair. These results suggested that the
crypt structure anatomy might have co-evolved with metabolic
pathways reacting to the microbiome (Kaiko et al., 2016). In
contrast to the inhibitory effect of butyrate on colonic stem
cells, high butyrate concentrations promoted differentiation of
embryonic stem cells into hepatic progenitor cells (Ren et al.,
2010). Interestingly, conversion of phytate into inositol-1,4,5-
triposphate by commensals was identified as HDAC3 modulator
countering the inhibition of epithelial growth by butyrate
(Wu et al., 2020). In addition to that, butyrate is capable of
promoting carcinogenesis in a genetic mouse model based on
mutations in the Apc and the mismatch repair gene Msh2

(ApcMin/+;Msh2−/−) (Belcheva et al., 2014). The authors showed
an inflammation-independent contribution of butyrate to tumor
development which was likely associated with an increased
proliferation of epithelial stem cells and was reduced by feeding
low-carbohydrate diet, linking the impact of microbiota and
nutrition on tumorigenesis.

SCFAS AND BAS IMPACT ON LIVER
FUNCTION, INFLAMMATION AND
CARCINOGENESIS

The fermentation of dietary soluble fiber into SCFAs has been
considered broadly as beneficial, promoting studies investigating
the effect of various diets on host immunity and pathophysiology
(Trompette et al., 2014; Tan et al., 2016; Zou et al., 2018).
Although most of the interactions between diet, immune system
and microbiota have been observed in the gut tissue, effects on
organs in the periphery were described (Trompette et al., 2014;
Haghikia et al., 2016). Recently, the profile of gut microbiota
derived from feces of cirrhotic patients with hepatocellular
carcinoma (HCC) showed an increase in E. coli pointing out that
liver function is influenced by gut microbes (Gra̧t et al., 2016). It
has been hypothesized that detection of the microbiota via surface
receptors on hepatocytes such as TLR4 or TLR9 contributes to
chronic liver injury, thus promoting cholestasis and HCC (Dapito
et al., 2012; Cai et al., 2017). In contrast, TLR5 on hepatocytes
mediated protection in a mouse model of high-fat-diet (HFD)-
induced liver steatosis being important for bacterial clearance
(Etienne-Mesmin et al., 2016). Emerging evidence has implicated
that HFD enhances intestinal permeability, inflammation, and
disease risk (Murphy et al., 2015). In mouse models, HFD
induced alteration of the microbiota composition and reduced
microbial diversity (Liu et al., 2021). Interestingly, clinical trials
associated diet-induced obesity with decrease of microbial gene
richness as well as increase of low-grade inflammation (Cotillard
et al., 2013). Dysbiosis was further shown to cause reduction of
intestinal integrity leading subsequently to bacterial translocation
and endotoxemia (Cani et al., 2008; Dapito et al., 2012). Hence,
HFD links diffusion of lipopolysaccharide from the gut to
systemic inflammatory response as an exemplary factor involved
in the gut-liver-axis (Cani et al., 2007, 2008; Laugerette et al.,
2012).

A growing body of evidence suggests that SCFAs are key
molecules of the gut-liver-axis with the capacity to either
indirectly or directly impact on physiological liver function. On
the one hand, they trigger the secretion of gut hormones such
as GLP-1 by enteroendocrine cells improving glucose tolerance
(Tolhurst et al., 2012). These effects have been attributed to
GPR41 and GPR43 signaling in L cells which showed increased
surface expression of both receptors. Ablation of these beneficial
effects on liver function was observed in Gpr41-/ Gpr43-deficient
mice (Tolhurst et al., 2012; Shimizu et al., 2019). On the other
hand, the portal circulation enables the direction of gut-derived
SCFAs toward the liver. Based on experiments with physiological
amounts of isotope-labeled SCFAs, den Besten and colleagues
demonstrated that 62% of the infused propionate in the
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murine cecum was involved in whole body glucose production,
accounting for 69% of total glucose synthesis (den Besten et al.,
2013). Consistently, hepatocyte-like cells in a coculture system
with epithelial cells were treated with propionate and showed
increased glycogen synthesis as well as storage (El Hage et al.,
2020). Further, oral administration of HFD supplemented with
acetate and propionate in different ratios was associated with
increased insulin sensitivity and reduced triglyceride content
in the liver (Weitkunat et al., 2016). Mice fed either HAc or
HPr showed lower blood glucose levels 240 min after glucose
administration as compared to HFD feeding. At the same time,
decreased levels of plasma insulin were detected in the HAc
and HPr groups. These results highlighted a more efficient
glucose uptake with a lower demand for insulin upon SCFA
treatment (Weitkunat et al., 2017). The beneficial effects on
insulin resistance might be attributed to the previous observation
that SCFAs promote GLP-1 secretion (Tolhurst et al., 2012).

It has been found that SCFAs are able to stimulate hormone
secretion by enteroendocrine cells but their effect on hepatic
responsiveness was investigated to lesser extent. A recent study
showed similar levels of GLP-1 in the serum of NAFLD patients
and healthy controls but detected a downregulation of the
hepatic GLP-1 receptor (GLP-1R) in NAFLD patients. In a
mouse model of NAFLD, administration of butyrate reversed
the reduction of GLP-1R and led to upregulation of hepatic
AMPK phosphorylation and insulin receptor expression in
treated mice. Moreover, increase in GLP-1R expression levels
in HepG2 cells was mediated by butyrate’s HDAC-inhibitory
activity, acting indepently of GPR43 and GPR109a (Zhou et al.,
2018). Interestingly, binding of propionate to GPR43 on hepatic
tumor cells inhibited their growth (Bindels et al., 2012). Early
studies investigating the effect of butyrate on a myeloid subset
of hepatic cells, Kupffer cells, showed a significant decrease
in TNF-α as well as an increase in prostaglandin E2 (PEG2)
production (Perez R. et al., 1998; Perez R.V. et al., 1998).
These observations highlighted a potential role of butyrate in
Kupffer cell immunoregulation which might protect from HCC
by alleviating inflammatory responses as prerequisite.

In addition, the role of SCFAs, BAs and diet in HCC
development was investigated resulting in opposing observations.
Singh and colleagues have found that the addition of the
soluble fiber inulin to the diet induced HCC in a microbiota-
dependent manner in dysbiotic mice but not in germ-free or
antibiotics-treated mice (Singh et al., 2018). Moreover, inulin-
enriched HFD promoted dysbiosis and HCC in WT mice
which was associated with liver inflammation, neutrophil influx
and cholestasis (Figure 1). These pathologies were ameliorated
by either depleting butyrate-producing bacteria or excluding
soluble fiber from diet as source of SCFA generation. Of
note, inhibition of the enterohepatic recycling of BAs reduced
liver carcinogenesis suggesting their involvement in hepatic
inflammation (Singh et al., 2018). The nourishment of mice with
fermentable dietary fiber guar gum altered the gut microbiota
composition and elevated the bile acid levels in the liver (Janssen
et al., 2017). Although diet-induced obesity was reduced, guar
gum-related BA levels enhanced liver inflammation and fibrosis.
Consistently, administration of taurocholic acid led also to

hepatic inflammation which could be reduced by antibiotics
treatment (Janssen et al., 2017). In agreement with these findings,
analysis of gut microbiome from stool of non-alcoholic fatty
liver disease (NAFLD) patients, who suffer from adipokine
dysregulation, insulin resistance and fat accumulation in the liver,
revealed elevated levels of propionate and BAs (Lee et al., 2020).

While various mechanisms have been proposed for
SCFA activity, the effects of BAs on liver injury remain
controversial. Treatment of murine and human hepatocytes
with pathophysiologic levels of BAs induced the expression
of pro-inflammatory cytokines which recruit neutrophils to
the hepatic tissue in a CCL2-dependent manner. In addition,
TLR9 in hepatocytes was identified as an important mediator of
BA-induced liver inflammation (Cai et al., 2017).

Yamada and colleagues demonstrated that secondary BAs
promote HCC development in a model of non-alcoholic
steatohepatitis (NASH), a progressive form of NAFLD
characterized by liver inflammation and fibrosis with the
potential to develop into HCC (Yamada et al., 2018). The
group fed a new class of steatohepatitis-inducing high fat diet
(STHD-01), inducing NASH within 9 weeks post administration
consequently progressing into HCC after 41 weeks in WT mice.
Accumulation of both cholesterol and BAs in liver and feces were
observed after STHD feeding. Interestingly, antibiotics treatment
reduced the accumulation of secondary BAs suggesting an impact
on bacterial conversion of primary BAs. The group hypothesized
that secondary BA-induced mTOR activation in the liver might
be responsible for hepatic carcinogenesis in NASH. Another
study depicted a connection between circulating BAs and mTOR
signaling via the Takeda G protein-coupled receptor 5 (TGR5),
emphasizing the role of BA receptors in modulating cellular
processes (Figure 2B; Zhai et al., 2018).

BA RECEPTORS HAVE AN AMBIGUOUS
ROLE IN SHAPING THE MICROBIOME,
LIVER FUNCTION AND INFLAMMATORY
RESPONSE

Researchers have focused on the regulation of BA and host
metabolism mediated by the farnesoid X receptor (FXR) and
TGR5 (Figure 1). The FXR is a nuclear receptor with the highest
expression in liver and ileum functioning as a transcription
factor which regulates various target genes either as monomer
or upon dimerization with the retinoid X receptor (RXR) and
subsequent promoter binding (Figure 2B; Kassam et al., 2003;
Lefebvre et al., 2009; Teodoro et al., 2011). The target genes are
related to BA, lipoprotein and glucose metabolism (e.g., BSEP,
ApoE, G6Pase) but also to liver regeneration as demonstrated
for the expression of transcription factor FoxM1b (Huang et al.,
2006; Wang et al., 2008). With respect to liver regeneration, BA
signaling was shown to promote stem cell differentiation toward
hepatocytes (Sawitza et al., 2015).

The generation of Fxr-deficient mice was a prerequisite
for mechanistic studies which showed partially contradictory
results, attributed to differences in diet, genetic background
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as well as microbiota changes among animal facilities. These
mice fed chow diet were susceptible to hyperglycemia and
hypercholesterolemia (Lambert et al., 2003; Ma et al., 2006).
On the one hand, Fxr-deficient mice on Ldlr−/− background
were protected against HFD-induced obesity and atherosclerosis
(Zhang et al., 2012). On the other hand, Fxr-deficient mice
on Apoe−/− background showed elevated atherosclerosis scores
(Hanniman et al., 2005). However, in the context of HFD
and genetically obese backgrounds (ob/ob), Fxr-deficient mice
prevalently showed beneficial effects with regards to glucose
homeostasis and obesity (Prawitt et al., 2011; Zhang et al., 2012;
Parséus et al., 2017). Similar discrepancies were observed in
studies investigating the effect of intestinal and hepatic Fxr-
deficiency on liver steatosis. FXR expression in the gut was shown
to mediate HFD-induced NAFLD, whereas liver-specific FXR
activity protected against hepatic steatosis (Li et al., 2013; Jiang
et al., 2015; Schmitt et al., 2015).

The gut microbiota has been identified as another crucial
factor impacting FXR signaling. Sayin and colleagues revealed
that the primary BA tauro-β-mauricholic (TβMCA) can be
metabolized by gut bacteria (Sayin et al., 2013). Hence, reduction
of the natural FXR antagonist improved FXR signaling in
mice. Additionally, microbial activity provides secondary BAs
as TGR5 ligands by conversion of primary ones (Kuipers
et al., 2014). Experimental approaches with gnotobiotic animals
revealed that microbiota influences diet-induced obesity in a
FXR-dependent manner (Li et al., 2013; Jiang et al., 2015).
Further, transfer of microbiota derived from HFD-fed Fxr-
deficient into GF mice inhibited weight gain compared to
bacterial colonization from WT mice (Parséus et al., 2017).
Fxr-deficient mice on HFD not only showed enhanced levels
of the primary BAs βMCA and TβMCA. At the same
time, BA profiles of GF Fxr-deficient and WT animals were
comparable. These findings suggest that the altered microbiota
has reduced conversion of primary to secondary BAs due
to FXR deletion.

While gut bacteria contribute to the pool of available BAs,
vice versa, these are able to shape the microbial composition
by either supporting the growth of BA-metabolizing bacteria or
growth inhibition of bile sensitive bacteria. Early studies have
observed that blockade of bile flow into the gut as result of a
biliary obstruction led to bacterial translocation (Clements et al.,
1996). Interestingly, experiments in rats showed that bacterial
expansion can be reduced by oral bile acid treatment (Lorenzo-
Zúñiga et al., 2003). Besides the intrinsic bactericidal properties of
BAs, stimulation of FXR induces the production of antimicrobial
molecules by immune cells, additionally shaping the microbial
colonization (Inagaki et al., 2006).

The membrane-bound G protein-coupled receptor TGR5
is ubiquitously expressed in various tissues such as intestine,
liver and gallbladder (Cipriani et al., 2011; Bidault-Jourdainne
et al., 2021). In contrast to FXR, TGR5 mainly binds secondary
BAs. Therefore, Tgr5-deficient mice have served as models
to investigate its impact on BA and microbial composition.
Although breeding of these mice resulted in healthy offspring, a
reduction of the bile acid pool suggested a role of TGR5 in BA
homeostasis (Maruyama et al., 2006).

In a model of diet-induced obesity, Thomas and colleagues
found that TGR5 signaling leads to glucagon-like peptide-
1 (GLP-1) secretion by enteroendocrine cells (Figure 2B;
Thomas et al., 2009). Thereby, improvement of both pancreatic
and liver function as well as tolerance of glucose were
observed in obese mice. In addition to that, TGR5 targeting
with the specific agonist INT-777 inhibited hepatosteatosis,
offering a treatment option for metabolic diseases. Moreover,
TGR5 stimulation is involved in the expression of junctional
adhesion molecule A (JAM-A) by biliary epithelial cells (Merlen
et al., 2020). While JAM-A was downregulated as well as
hypophosphorylated in BA ducts and gallbladder from Tgr5-
deficient mice, administration of a specific TGR5 agonist in
WT mice stabilized the adhesion molecule via JAM-A Ser28
phosphorylation. Additionally, TGR5-agonist-treated mice were
less susceptible to choleostasis-induced liver damage due to
reduced bile leakage, in contrast to JAM-A-KO mice. Hence,
hepatic TGR5 signaling mediates liver protection. Interestingly,
also in the context of intestinal inflammation, TGR5 deletion
was associated with increased intestinal permeability leading to
higher severity during colitis (Cipriani et al., 2011). Additionally,
TGR5 activation was shown to activate intestinal stem cells
inducing Src/YAP-driven regeneration in response to tissue
injury (Sorrentino et al., 2020).

Similarly, it was shown that TGR5 deletion in a model of
alcohol-induced liver disease causes even greater liver damage as
a result of steatosis and inflammation (Spatz et al., 2021). This
phenotype was related to enhanced recruitment of inflammatory
macrophages to the liver. Furthermore, deficiency in the BA
receptor resulted in dysbiosis as demonstrated by microbiota
transfer from Tgr5-deficient mice into their WT counterparts,
worsening alcohol-mediated hepatic inflammation. Of note,
the pool of secondary BAs was reduced in these animals
attributed to a lower abundance of bacterial genes related to
BA transformation. The importance of BA transformation was
further demonstrated in the work by Ma and colleagues which
showed that the conversion of primary into secondary BAs
by Clostridium species repressed production of CXCL16 in
liver sinusoidal endothelial cells. Antibiotic depletion of BA-
transforming bacteria increased the levels of primary BAs and
CXCL16 production. Subsequent recruitment of natural killer T
cells controlled growth of liver cancer (Ma et al., 2018).

Recently, investigations of inflammatory macrophages in
chronic liver disease pointed out that TGR5 expression was
reduced in liver samples from humans and mice suffering from
NASH (Shi et al., 2020). The group described that macrophages
derived from Tgr5-deficient were prone to M1 polarization
accompanied by pro-inflammatory cytokine production.
Mechanistically, TGR5 inhibits the NLRP3 inflammasome
activation as well as caspase-1 cleavage, protecting against liver
steatosis. Data supporting the contribution of TGR5 deletion
to inflammation revealed that Tgr5-deficient macrophages and
Kupffer cell enhanced the expression of pro-inflammatory factors
such as IL-6 and MCP-1 in response to LPS. This phenotype
was associated with reduced β-arrestin2-dependent suppression
of the NF-κB pathway (Figure 2B; Witherow et al., 2004;
Wang et al., 2011). Importantly, it was pointed out that the
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inflammatory activity of Kupffer cells promotes the progression
of HCC (Maeda et al., 2005; He and Karin, 2011).

While the mentioned studies have focused on inflammatory
myeloid cells in the onset of BA-dependent liver disease,
a recent study has identified a role of BAs in inducing
immunosuppressive Treg response via DCs. The secondary
BA 3β-hydroxydeoxycholic acid (isoDCA) was shown to reduce
the immunostimulatory activity of DCs and to enhance Treg
differentiation (Campbell et al., 2020b). Genetic deletion of
FXR in DCs mimicked the effects of isoDCA administration
suggesting an antagonistic mechanism involved in Treg
generation. Furthermore, the design of a bacterial consortium
comprised of isoDCA-producing Bacteroides strains induced
the differentiation of colonic RORγt+ Tregs. Another study
revealed that the Treg-intrinsic BA receptor VDR contributes to
the pool of extrathymic Tregs which elicited anti-inflammatory
response during colitis (Song et al., 2020). Interestingly,
Hang and colleagues (2019) suggested another mechanism
by which the BAs 3-oxolithocholic acid (3-OxoLCA) and
isoallolithocholic acid (isoalloLCA) act directly on T cells.
Binding of 3-OxoLCA to RORγt inhibited development of TH17
cells, whereas induction of mitochondrial reactive oxygen species
by isoalloLCA enhanced Treg differentiation. Thereby, BAs are
able to modulate the Th17/Treg balance which is an example of
how they contribute to immunoregulatory mechanisms of gut
homeostasis, rather than acting pro-inflammatory, as part of
the gut-liver-axis.

CONCLUSION AND FUTURE
DIRECTIONS

Various studies have highlighted microbiota-derived SCFAs and
BAs as factors impacting host physiology, development of
diseases and outcome of treatment strategies. The identification
of microbial metabolites and their respective modes of action
might be crucial for the development of new therapeutic
approaches and identification of biomarkers.

Especially with respect to SCFAs, different mechanisms were
identified by which these small aliphatic molecules influence
cellular signaling, metabolism and epigenetics (Kim et al., 2013,
2016; Luu et al., 2018). However, most studies have investigated
these independently, not covering the potential crosstalk between
the pathways. Recently, a connection between the induction
of the mTOR pathway and the provision of acetyl-CoA as
substrate for HAT-mediated histone acetylation in lymphocytes
was pointed out (Luu et al., 2019; Qiu et al., 2019). Additionally,
Schulthess and co-workers described a link between butyrate-
mediated inhibition of HDAC3 and the decrease in mTOR
activity by macrophages (Schulthess et al., 2019). These results
emphasize a bidirectional connection between the epigenetic and
metabolic pathways and that more research should be invested
into unraveling pathway inter-connectivity to understand cell-
specific regulatory networks.

Considering the utilization of acetate as source for PTMs, it
is conceivable that even longer SCFA-derived histone alkylations
will be identified as new biomarkers (Kebede et al., 2017;
Fellows et al., 2018). More experimental evidence is needed to

evaluate their biological role in transcriptional regulation of
cells such as colonocytes and intestinal immune cells and their
potential as therapeutic or diagnostic markers.

Although SCFAs are considered for therapeutic
administration, studies have reported contradictory observations
with regards to the effects of SCFAs. Their effects have been
described as both beneficial and adverse depending on the
disease model (Smith et al., 2013; Singh et al., 2014, 2018;
Trompette et al., 2014; Kim et al., 2016; Kespohl et al., 2017).
Although the research on these small molecules was focused on
their immunosuppressive capacities, recent data propose a role
in inflammatory responses (Smith et al., 2013; Trompette et al.,
2014; Kespohl et al., 2017; Luu et al., 2018, 2019; Bachem et al.,
2019). For instance, it has been reported that SCFAs are able
to boost Th17 differentiation as benefical effect upon pathogen
encounter but similar mechanisms were demonstrated to repress
Th17 cells in a mouse model of autoimmune encephalomyelitis
(Park et al., 2014; Luu et al., 2019). We have recently shown that
SCFAs are also capable of promoting the cytotoxic phenotype
of tumor-specific CD8+ T cells and chimeric antigen receptor
(CAR) T cells, thereby enhancing their anti-tumor activity
(Luu et al., 2021). These findings suggest that the impact of
microbial metabolites is highly context-dependent. Hence, future
work should investigate both their immunostimulatory and
immunosuppressive capacities for a comprehensive analysis.

Likewise, studies have reported contradictory observations
with regards to the effects of BAs in genetically modified animals
and different disease models which need further investigation
(Hanniman et al., 2005; Zhang et al., 2012; Li et al., 2013; Schmitt
et al., 2015; Parséus et al., 2017).

As an example, the work with Fxr-deficient animals has
identified the genetic background as crucial factor influencing
the experimental outcome. Fxr-deficient mice on Ldlr−/− and
ob/ob background were protected against HFD-induced obesity
and atherosclerosis in contrast to mice on Apoe-/- background
(Hanniman et al., 2005; Ma et al., 2006; Zhang et al., 2012).
Even work on organ-specific FXR-deletion in the liver and
intestinal tissue showed conflicting results underlining the need
for a systematic comparison between these models (Li et al.,
2013; Schmitt et al., 2015). The development of next generation
in vivo tools might comprise tissue- or cell-specific FXR-deletion
combined with Ldlr- or Apoe-deficiency in the same tissue rather
than systemic knockouts, thereby reducing incidental effects.

Moreover, the reviewed studies were dependent on
administration of fiber-rich diet or HFD to either shape the
microbial composition or to stimulate inflammatory response.
Due to a wide range of commercially available diets and
supplements, the exact composition might differ between the
studies (Pellizzon, 2016). Standardization of diet composition for
in vivo experiments could help to unify newly developed models.

With regards to standardization, the microbial composition
is another crucial aspect impacting on disease outcome.
A prominent example is the Il10-deficient mouse model for
spontaneous colitis. Different groups have reported varying
histopathology scores depending on the SPF condition in their
respective animal facility and the colonization with commensal
strains (Burich et al., 2001; Balish and Warner, 2002; Schultz
et al., 2002; Keubler et al., 2015). Moreover, Ivanov and
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colleagues (2009) identified segmented filamentous bacteria
(SFB) in the murine gut as inducer of intestinal Th17 cells
which were demonstrated to promote central nervous system
autoimmmunity (Luu et al., 2019). Of note, SFB were present in
the gut of WT mice derived from Taconic Farms, while there were
not detected in those raised at Jackson Laboratory (Ivanov et al.,
2009). Therefore, not only uniformity of bacterial colonization
in WT mice but also of its variations in genetically modified
strains needs to be considered to assure reproducible results and
will additionally improve the monitoring of changes within the
microbiota composition over the course of the experiment.

Although the impact of BAs on various immune cell types has
been investigated, their effect on B cells has not been described
yet. Recent studies demonstrated that microbiota-derived
serotonine-derivates and SCFAs can act as aryl-hydrocarbon
receptor ligands or metabolic enhancer in regulatory B cells
(Bregs), respectively (Rosser et al., 2020). Also the finding that
BAs impact on intestinal Treg differentiation underlines their
immunosuppressive capacities (Hang et al., 2019; Song et al.,
2020). As BAs are capable of inducing either tolerogenic or
inflammatory responses, it remains to be clarified whether B cells
are prone to become Bregs, antigen-presenting or plasma cells
upon BA treatment. Also the interaction between BAs and CD8+
T cells has been investigated insufficiently. Both the involvement
of CD8+ T cells in controlling the BA synthesis by inducing
cholangitis and the effect of FXR deletion on T cell fitness were
described previously (Glaser et al., 2019; Campbell et al., 2020a).
In addition, a recent study has revealed accumulation of CXCR6+
auto-aggressive CD8+ T cells in the liver of mice and patients
suffering from NASH (Dudek et al., 2021). Yet, the underlying
mechanisms linked to BAs as well as the assessment of Fxr- and
Tgr5-deficient CD8+ T cell in the context of NASH or HCC
remain to be subject of future work.

Finally, there are gaps in our knowledge regarding the inter-
connectivity between SCFA and BA biology. Although many
mechanistic insights were provided by work on either SCFAs or
BAs, their simultaneous impact on the same pathways, synergistic
or opposing effects have not been elucidated in depth. For
instance, the activity of SCFAs as GPR41/GPR43 agonists might
influence the BA-induced signaling via TGR5. Moreover, limited
data is available on the interaction between SCFA producers,
BA-sensitive and BA-transforming bacteria. A first attempt of
analyzing the interaction between SCFAs and BAs was analyzed
by Sheng and colleagues. The group has demonstrated that
lack of butyrate-producing bacteria enhanced hepatitis in Fxr-
deficient mice fed a western diet, while administration of butyrate
reversed inflammation caused by the Fxr-deficiency-derived BA
dysregulation (Sheng et al., 2017). This work highlighted the
potential of the joint expertise from the SCFA and BA biology
field which might enable future research to fill the gaps within our
knowledge with respect to the complex inter-kingdom crosstalk
between commensals and eukaryotic cells.
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The community of the diverse microorganisms residing in the gastrointestinal tract,
known as the gut microbiota, is exceedingly being studied for its impact on health
and disease. This community plays a major role in nutrient metabolism, maintenance
of the intestinal epithelial barrier but also in local and systemic immunomodulation.
A dysbiosis of the gut microbiota, characterized by an unbalanced microbial ecology,
often leads to a loss of essential functions that may be associated with proinflammatory
conditions. Specifically, some key microbes that are depleted in dysbiotic ecosystems,
called keystone species, carry unique functions that are essential for the balance of
the microbiota. In this review, we discuss current understanding of reported keystone
species and their proposed functions in health. We also elaborate on current and future
bioinformatics tools needed to identify missing functions in the gut carried by keystone
species. We propose that the identification of such keystone species functions is a
major step for the understanding of microbiome dynamics in disease and toward the
development of microbiome-based therapeutics.

Keywords: microbiome, dysbiosis, keystone, metagenomics, bioinformatics, inflammation, immunity, metabolism

INTRODUCTION

Animals are superorganisms composed of eukaryotic and prokaryotic cells in a similar proportion
along an even larger number of viruses (Sender et al., 2016). The reason for this intricate mixture
of organisms spanning all kingdoms of life is that every living animal is the result of a long co-
evolution between all of these organisms. Hence, within every gut lies a complex community of
microorganisms composed of trillions of prokaryotic and eukaryotic microbial cells, including
bacteria, fungi and archaea along a multitude of viruses (Hillman et al., 2017; Moissl-Eichinger
et al., 2018). As a result, we humans carry within our microbiomes an immense reservoir of genes
that perform numerous functions for our own benefit, many of which are still unknown.

There is currently no consensus about the definition of a healthy gut microbiome because of
high inter-individual variability, which is influenced by numerous external factors (Rinninella et al.,
2019). Nevertheless, it is generally considered that a healthy gut microbiome is a rich and diverse
ecosystem acting in symbiosis with its host (van de Guchte et al., 2018). Even if there is a lack
of evidence to identify a robust universal set of core healthy microbial taxa, there is a remarkable

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 September 2021 | Volume 9 | Article 71907270

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.719072
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.719072
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.719072&domain=pdf&date_stamp=2021-09-01
https://www.frontiersin.org/articles/10.3389/fcell.2021.719072/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-719072 August 26, 2021 Time: 12:37 # 2

Tudela et al. Identifying Keystone Species Missing Functions

stability of microbial functions that maintain symbiosis with
the host (Human Microbiome Project Consortium, 2012).
Conversely, we have learned over the past 20 years that some
chronic disorders are consistently associated with a shift in
microbial patterns, often referred to as “dysbiosis” (Hooks
and O’Malley, 2017). For example, obesity has been reported
to be associated with a low Bacteroidetes/Firmicutes ratio
(Turnbaugh et al., 2009). Even if the Firmicutes phylum regroups
a large number of potentially beneficial bacteria, this ratio
has progressively been established as a hallmark of the obese
dysbiotic gut microbiome (Crovesy et al., 2020). Another feature
of obesity-associated dysbiosis is a reduced microbiome diversity,
as illustrated by the high proportion of fecal samples from
obese individuals that fall within the “low gene count” category
(Le Chatelier et al., 2013). Similarly, several chronic diseases
have been associated with reduced gut microbiome diversity,
such as Crohn’s disease (Manichanh et al., 2006), hypertension
(Li et al., 2017) and non-alcoholic steatohepatitis (NASH)
(Astbury et al., 2020).

THE KEYSTONE SPECIES CONCEPT AS
A DRIVER OF MICROBIAL DIVERSITY

An important ecological concept is that every complex ecosystem
is structured by a few important species dubbed “keystones.”
This term was coined in 1966 by the American ecologist Paine
(1966) who identified specific sea stars as important predators
that regulate the biodiversity of seashores. Since, this term has
been used in various ways and with different meanings. For the
purpose of this review, we adopt the definition of keystone taxa
proposed by Banerjee et al. (2018): where “microbial keystone taxa
are highly connected taxa that individually or in a guild exert a
considerable influence on microbiome structure and functioning
irrespective of their abundance across space and time. These taxa
have a unique and crucial role in microbial communities, and
their removal can cause a dramatic shift in microbiome structure
and functioning” (Banerjee et al., 2018). This is a crucial concept
as it shapes our understanding of the regulation of complex
ecosystems, how they establish, how they remain stable over long
periods of time and how they adapt to environmental changes.

Translated to the gut environment, we must first appreciate
that mammals harbor not just one gut ecosystem, but a variety
of ecosystems, each roughly corresponding to a different section
of the gastrointestinal tract from the mouth to the rectum. Each
ecosystem is regulated by a set of environmental factors such
as pH, bile acid concentration and peristalsis, which have long
been thought of as a barrier that segregates ecosystems from
one another. However, this view has been recently challenged,
as it is now proposed that oral bacteria act as a reservoir
of microorganisms that pass through the gut to replenish the
downstream ecosystems (Schmidt et al., 2019). Within each
ecosystem, microbes interact with each other through numerous
mechanisms, such as secretion of quorum sensing molecules,
cross-feeding and synthesis of antimicrobial compounds. Of
particular interest, quorum sensing is a cell-cell interaction
mechanism used by bacteria to regulate their own population.

Usually in biofilms, some bacterial cells stimulate their own
growth and those of their neighboring kin, through secretion
of autoinducer molecules (Mukherjee and Bassler, 2019). In
the gut microbiota, it has been shown that Firmicutes use
this strategy to maintain their population level (Thompson
et al., 2015). Interestingly, there is emerging evidence that
host cells can interfere with these bacterial signals to shape
the microbial community (Mukherjee and Bassler, 2019). Yet,
most of our knowledge of quorum sensing is derived from the
study of pathogens and there remains numerous gaps in our
understanding of its use by commensal bacteria. Inter-species
syntrophy or cross-feeding occurs when a species depends on the
availability of nutrients (e.g., sugars, amino acids, and vitamins)
that are produced by other species. For instance, this typically
involves degradation of complex molecules such as carbohydrates
by specialized species that release monosaccharides in the
environment. The latter are then taken up by non-degrading
species for their own benefit. These mechanisms have been
recently thoroughly reviewed by D’Souza et al. (2018). Inter-
species cross-feeding interactions within an ecosystem cause
reliance on specific microbes that carry essential functions for
other species. Hence many keystone species have been described
based on the identification of enzymes involved in cross-feeding
interactions (Centanni et al., 2018; Table 1). These are only a few
examples of the diversity of possible microbial interaction routes.
For a thoughtful review of the topic, we refer the reader to the
review by Pacheco and Segrè (2019).

Together, these mechanisms depict a high level of inter-
dependencies between bacterial species within an ecosystem.
These interactions lead the ecosystem to structure around clusters
of microbes that co-develop into a guild of co-abundant species.
This concept was well illustrated in a recent study aimed
at identifying gut bacterial species involved in post-antibiotic
recovery in human cohorts. In a metagenome-wide association
study, Chng et al. (2020) demonstrated that a succession of
primary colonizers set the stage for late dominant species, which
feed on the breakdown products of the pioneer species (Gibbons,
2020). This study identified 7 bacterial species acting as primary
colonizers, with a metabolic capacity to extract carbon and energy
from mucin and complex dietary carbohydrates, thus acting at
the bottom of the food chain. Even if in this example most
of the identified primary colonizers were abundant species, low
abundance bacteria (<0.1% relative abundance) should not be
neglected as they may carry essential functions that support
growth of other dominant species. This concept has been very
well illustrated in a study of “Candidatus Desulfosporosinus
infrequens,” a sulfate-reducing organism found in wetlands
(Hausmann et al., 2019). Although it remained in a seemingly
dormant state at zero-growth over more than 7 weeks, it was
reported to be in fact highly metabolically active, contributing to
regulate methane production and therefore to sustain a diverse
ecosystem (Hausmann et al., 2019).

In view of the intricate interplay between the gut microbiome
function and its host metabolism, it is now established that
loosing part of these functions is associated with a number
of modern non-communicable diseases. As a consequence,
techniques designed to manipulate gut dwelling microbiomes
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TABLE 1 | Non-exhaustive list of prominent keystone taxa of the human gut microbiome.

Keystone species (in
alphabetical order)

Function Method of identification Example of reported disease association in
humans

Akkermansia muciniphila Mucin degrader Empirical (Belzer et al., 2017) Intestinal inflammation, obesity and metabolic
diseases (Yassour et al., 2016)

Bacteroides
thetaiotaomicron

Degradation of complex
carbohydrates (arabinogalactan);
selective BSH activity (Yao et al.,
2018)

Empirical (Cartmell et al., 2018) Unclear – Controversial association with IBD
(Sitkin and Pokrotnieks, 2019)

Bifidobacterium longum Degradation of complex
carbohydrates, particularly Human
Milk Oligosaccharides; BSH activity
(Tanaka et al., 2000)

Empirical (Yu et al., 2013;
Gotoh et al., 2019)

Highly prevalent in healthy newborns (Favier
et al., 2003)

Bifidobacterium
pseudolongum

Degradation of complex
carbohydrates

Empirical (Centanni et al., 2018) Highly prevalent human breast milk (Lugli et al.,
2020)

Christensenella minuta Stimulate ecosystem diversity (Mazier
et al., 2021); acetate producer
(Morotomi et al., 2012); BSH activity
(Déjean et al., 2021)

Co-occurrence networks
(Goodrich et al., 2014;

Kumpitsch et al., 2020 ahead
of publication)

Empirical (Ruaud et al., 2020;
Mazier et al., 2021)

Obesity and metabolic diseases (Goodrich
et al., 2014); Crohn’s disease (Pascal et al.,
2017)

Faecalibacterium prausnitzii Butyrate producer Presence/absence (Leylabadlo
et al., 2020)

Crohn’s disease (Sokol et al., 2008), Ulcerative
Colitis (Varela et al., 2013)

Methanobrevibacter smithii Produces methane from H2 and
acetate

Empirical and co-occurrence
networks (Goodrich et al.,

2014; Kumpitsch et al., 2020
ahead of publication)

Obesity (Goodrich et al., 2014), Crohn’s disease
(Pascal et al., 2017)

Ruminococcus bromii Resistant starch degrader; Butyrate
producer

Empirical (Ze et al., 2012) Highly prevalent microbe in healthy individuals
(Beghini et al., 2021)

are gaining increasing attention, and several microbiome-based
biotherapies are currently in development (Doré et al., 2017;
Valencia et al., 2017). Hence, a deep understanding of gut
microbiome ecology and how it can be durably restored is crucial
for effective clinical translation. In this regard, a recent study
evaluated bacterial dispersal strategies of human gut-associated
microbes and classified them in five categories that may provide
a guide for appropriate restoration strategies: (i) “tenacious”
strains that are highly persistent among human communities, (ii)
“spatiopersistent” strains that tend to be associated with specific
geographical locations but colonize at a later developmental stage
(i.e., not in infants), (iii) “heredipersistent” strains that tend to
persist within closely related individuals such as within families
and have broad geographical presence, (iv) average persistent
strains, and (v) non-persistent strains (Hildebrand et al.,
2021). Interestingly, the authors propose that fecal microbial
transplantation may be most efficient to target tenacious and
spatiopersistent taxa while heredipersistent taxa may require
regular reinfections, which may therefore be best targeted
through chronic single strain exposure.

IMPORTANT METABOLIC PATHWAYS
UNDER THE GUT MICROBIOME
INFLUENCE

Beyond microbiota classification, insights on the functional
impact of the microbiome are emerging from metagenomic

analyses, integration with omics data sets, particularly
metabolomics and in vivo validation studies. In this section,
we review recent studies highlighting the key contribution of
microbial metabolites and associated pathways in controlling
host physiology. Among the multitude of metabolic activities
harbored by human gut microbiomes, we focus on the roles of
short chain fatty acids (SCFA), tryptophan- and cholesterol-
derived metabolites, and their crosstalk with host factors, e.g.,
histone modifying enzymes, G proteins-coupled receptors, aryl
hydrocarbon receptor (AhR), indoleamine 2,3-dioxygenase
1 (IDO1) and tryptophan hydroxylase 1 (TpH1) in barrier
maintenance, immune regulation, and the gut-brain axis.

SCFAs
Short chain fatty acids are the primary end products of bacterial
fermentation of dietary fibers (but can also be derived from
proteins and peptides in a lesser extent) and are important
regulators of gut microbial ecology as well as host physiology. The
main SCFAs are acetate, propionate, and butyrate (Cummings
et al., 1987). Fiber-derived monosaccharides, such as hexoses,
deoxyhexoses, and pentoses are converted by several bacterial
metabolic enzymes to pyruvate which is then further metabolized
to acetyl-CoA, succinate or lactate that primarily feed SCFA
production. Acetate is derived from acetyl-CoA generated from
pyruvate directly or through the Wood-Ljungdahl pathway.
Butyrate is also produced from acetyl-CoA, but through the
condensation of two acetyl-CoA molecules into acetoacetyl-CoA
that is metabolized to butyryl-CoA and then butyrate. Some gut
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bacteria can also convert lactate to butyrate. Propionate is derived
from lactate or succinate in the acrylate and succinate pathways,
respectively. It can also be produced by the propanediol
pathway that converts deoxyhexoses to proprionyl-CoA. The
concentration of SCFAs is highest in the proximal colon reaching
∼130 mmol/kg of luminal content (Cummings et al., 1987).
However, the effective concentration reaching the intestinal cells
is presumably lower due to the thick mucus layer and intestinal
peristalsis. Among the SCFAs, butyrate constitutes an important
energy source for colonocytes and is mostly consumed in the
colon. Propionate and acetate are further metabolized in the liver,
but taken the high concentration of acetate in the gut, it is the
main SCFA that remains in the systemic circulation. Nonetheless,
butyrate and propionate can also impact host systemic physiology
indirectly through hormonal and nervous system signals. SCFAs
can enter the cells though diffusion or via the transporter SLC5A8
and exert their effects through three reported mechanisms: (a)
epigenetic control of gene expression via inhibition of histone
deacetylases (HDAC), e.g., in intestinal epithelial cells (IECs)
and immune cells, (b) by acting as ligands of G-protein coupled
receptors (GPCRs), primarily GPR43 and GPR41, also called
free fatty acid receptors 2 (FFAR2) and FFAR3, respectively, and
GPR109A, also known as niacin receptor 1 or Hydroxycarboxylic
Acid Receptor 2 (HCA2), and/or (c) by acting as an AhR agonist,
as has been shown for butyrate in IECs (Marinelli et al., 2019).

Because of the energetic reliance of colonocytes on butyrate,
it is not surprising that this SCFA is a critical regulator of
intestinal barrier integrity and mucosal immune homeostasis.
Butyrate confers a protective role in experimental mouse models
of colitis [e.g., with dextran sodium sulfate (DSS)], Il10−/−

mice (Wang et al., 2016) or Clostridium difficile infection (Fachi
et al., 2019). These effects were also noted in ulcerative colitis
patients, as shown early on by Scheppach et al. (1992). Butyrate
also protects against colitis-associated colorectal cancer (CRC)
as has been reported using the APCmin/+ mice (Singh et al.,
2014) or with the azoxymethane (AOM)-DSS model (Singh
et al., 2014). In contrast, in the APCmin/+MSH2−/− mouse
model with stem-like CRC characteristics, butyrate was shown
to promote tumorigenesis (Belcheva et al., 2014), presumably
through enhancing stem cell regeneration. Mechanistically,
butyrate signals through GPR43 and GPR109A on IECs to
stimulate inflammasome-dependent IL-18 production (Macia
et al., 2015), which is required for intestinal epithelial integrity
(Dupaul-Chicoine et al., 2010; Figure 1). It also protects from
colonic inflammation through HDAC inhibition that blunts
lamina propria macrophages inflammatory signaling (Chang
et al., 2014) and dendritic cells differentiation (Millard et al., 2002;
Wang et al., 2008; Singh et al., 2010), and promotes regulatory
T cells (Treg) generation (Arpaia et al., 2013; Furusawa et al.,
2013), through acetylation of the FoxP3 locus (Figure 1). More
recently, butyrate, in addition to propionate and acetate, was
shown to induce IL-22 expression in CD4+ T cells and innate
lymphoid cells (ILC) through GPR41 and HDAC inhibition;
the latter enabling enhanced binding of HIF1α to the Il22
gene promoter (Yang et al., 2020). In cancer cells, which
favor glucose metabolism (Warburg effect), butyrate was shown
to accumulate in the nuclei leading to effective inhibitory

concentrations of HDACs (Donohoe et al., 2012). As a result,
butyrate can epigenetically deregulate the expression of key genes
involved in cell proliferation, cell death and differentiation in
cancer cells but not normal colonocytes (Donohoe et al., 2012).
Propionate, but not acetate, similarly promotes these processes
through HDAC inhibition. A metagenomic-based approach
was able to identify the main butyrate producers of the gut
microbiome as Eubacterium rectale, Faecalibacterium prausnitzii,
and Anaerostipes coli S22/1 (Louis et al., 2010; Muñoz-Tamayo
et al., 2011). Yet, only F. prausnitzii was formally identified
as a keystone species (Table 1). Interestingly, E. rectale was
identified in another study using metagenomic time series as
a bacterium benefiting from the presence of putative keystone
species such as Bacteroides fragilis and Bacteroides stercosis
(Fisher and Mehta, 2014).

In metabolism, dietary fibers and SCFAs are generally
associated with lean weight and improved glycemic index.
For example, an improvement in insulin sensitivity was
reported in a trial in which individuals were given a diet
supplemented with a resistant starch for 4 weeks (Robertson
et al., 2005). This beneficial effect can be attributed to SCFA.
In a randomized controlled trial, administration of an inulin-
propionate ester to overweight adult humans over 24 weeks
reduced body weight gain, abdominal adiposity and hepatic lipid
accumulation compared to the inulin-control group (Chambers
et al., 2015). Similarly, colonic infusion of SCFA mixtures in
overweight/obese men, at concentrations comparable to those
reached after dietary fibers intake, increased fat oxidation and
energy expenditure (Canfora et al., 2017). Mechanistically, SCFAs
may act by stimulating the production of the anorexigenic
gut hormones peptide YY (PYY) and glucagon-like peptide-
1 (GLP-1) (Figure 1), as has been shown in humans with
acetate (Freeland and Wolever, 2010) and propionate (Venter
et al., 1990) or through intestinal gluconeogenesis (IGN), where
both propionate and butyrate were shown to enhance IEC
de novo synthesis of glucose, stimulating increased insulin
sensitivity through gut-brain communication (De Vadder et al.,
2015). GPR41 mediates improved energy metabolism through
its expression on neurons of the enteric nervous system (ENS)
and on sympathetic neurons that promote enhanced energy
expenditure (Figure 1). Consistently, Gpr41−/− mice were
shown to be leaner than wild-type controls (Samuel et al.,
2008). On the other hand, the results with Gpr43−/− mice are
controversial as these mice were described to be obese even
on normal diet in one study (Kimura et al., 2013), but lean
with improved metabolic parameters in another (Bjursell et al.,
2011). Nonetheless, these mouse phenotypes were lost under
germ-free conditions or with antibiotic treatment, demonstrating
microbiota-mediated metabolic effects.

Tryptophan Metabolism
Microbial metabolism of dietary tryptophan (enriched in
cruciferous green leaf vegetables, e.g., parsley, cauliflower, kale,
broccoli, etc.) has recently emerged as an important pathway
by which the microbiota regulates intestinal homeostasis,
particularly through AhR activation. Since its cloning in 1992
(Burbach et al., 1992), AhR has gained much interest for
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FIGURE 1 | Schematic representation of the effects of select microbial metabolites on intestinal homeostasis, mucosal immune regulation, and metabolic health of
the host.

its role as an environmental sensor. Beyond its activation
by xenobiotics, tryptophan-derived ligands catabolized by the
microbiota, including indole, indolo[3,2-b]carbazole, indole
acetic acid (IAA), 3-methylindole and tryptamine, to name a few,
have been demonstrated to act as potent high-affinity AhR ligands
(Zelante et al., 2013; Hubbard et al., 2015). AhR is expressed
in different intestinal cell types, including IECs, immune cells,
particularly intraepithelial lymphocytes (IELs), innate lymphoid
cells (ILC)3 (Gomez de Agüero et al., 2016), more recently ILC2
(Li et al., 2018), Th17 and Treg (Quintana et al., 2008; Veldhoen
et al., 2008), and neurons of the ENS (Obata et al., 2020).
Through this collective expression, AhR exerts physiologically
crucial roles in barrier integrity and intestinal and immune
homeostasis, notably through regulation of IEC tight junctions
(Yu et al., 2018; Singh et al., 2019), generation and survival of IELs
(Cervantes-Barragan et al., 2017), production of IL-22 (Zelante
et al., 2013) and IL-10 (Aoki et al., 2018; Powell et al., 2020),

and regulation of peristalsis and microbiota density (Figure 1).
In IECs, AhR has been recently implicated in the regulation of
goblet cells differentiation, particularly in preventing goblet cell
depletion in the colon during aging (Powell et al., 2020). This
process is mediated by IL-10 and induced by AhR in response
to microbiota-derived indoles. IL-22 or type I IFN, which are
involved in intestinal tissue repair following acute injury, do
not seem to be required in this case (Powell et al., 2020). In
parallel to IECs, AhR activation in CD4 + T cells was shown
to regulate their differentiation into CD4 + CD8αα + double-
positive immunoregulatory IELs. These cells are absent in germ-
free mice but restored with Lactobacillus reuteri, a species
with tryptophan catabolizing capacity (Cervantes-Barragan et al.,
2017). AhR activity is similarly required for the generation and
maintenance of ILC3 (Gomez de Agüero et al., 2016), and
patients with Crohn’s disease exhibit decreased AhR expression
in their inflamed ileum accompanied by a conversion of ILC3
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to ILC1 (Li et al., 2016). Last, AhR expression is elevated in
intestinal Treg and seems to be required for their gut homing
as well as for suppression of Th1 inflammatory gene expression
(Ye et al., 2017). AhR is also expressed in colonic neurons,
in a microbiota-dependent manner, and this neuronal-specific
expression is central in the control of intestinal peristalsis,
positioning AhR as a nexus of intestinal neural circuitry
(Obata et al., 2020). Collectively, AhR protects the epithelial
barrier, promotes intestinal immune tolerance and protects
from intestinal inflammation. Consequently, deregulation of its
activity is associated with inflammatory and metabolic diseases,
and microbiome stimulation of this pathway, particularly
through tryptophan metabolism, has been demonstrated as
an “environmental” mean to counter these pathologies. For
instance, individuals with inflammatory bowel diseases (IBD)
(Lamas et al., 2016), the metabolic syndrome (Natividad et al.,
2018) or celiac disease (Lamas et al., 2020) have decreased
fecal concentrations of AhR ligands and reduced AhR activity.
Interestingly, supplementation of experimental mice modeling
these pathologies with a high-tryptophan diet, AhR ligands
or with bacterial species that metabolize tryptophan such as
L. reuteri, improved the mice health status (Marafini et al., 2019;
Chen et al., 2020). In a randomized controlled clinical trial,
administration of AhR ligands in the form of the traditional
Chinese medicine indigo naturalis to ulcerative colitis patients
for 8 weeks showed clinical benefit, including a decrease in
the Mayo score, mucosal healing and remission in some cases
(Naganuma et al., 2018). Nonetheless, caution is warranted prior
to considering the development of AhR ligands for therapeutics
taken toxicity issues with deregulated AhR responses.

Besides AhR ligands, tryptophan is additionally metabolized
into kynurenine and serotonin (Clarke et al., 2012; Yano
et al., 2015). In the kynurenine pathway (KP), IDO1 is
mainly responsible to convert tryptophan to kynurenine and
downstream end products including niacin, nicotinamide
adenine dinucleotide (NAD), quinolinic acid and kynurenic
acid (Cervenka et al., 2017; Kennedy et al., 2017). The latter
exerts immunoregulatory effects and protects the intestine by
signaling through GPR35, expressed on IECs and immune
cells (Gao et al., 2018). The serotonin pathway converts
tryptophan into the neurotransmitter 5-hydroxytryptamine (5-
HT), i.e., serotonin, via TpH1 expressed in a specialized IEC
type known as enterochromaffin cells in the gut, and TpH2
in the brain. While peripheral 5-HT, which constitutes 90% of
all serotonin produced in the body, does not cross the blood–
brain barrier (BBB), it regulates several intestinal processes
including stimulation of ENS neurons, peristalsis and nutrient
absorption, to name a few (Mawe and Hoffman, 2013). Moreover,
both tryptophan and 5-HT precursor (5-HTP) cross the BBB
impacting central serotonin effects on host physiology. The
commensal microbiota plays important roles in tryptophan
metabolism to kynurenine and serotonin as demonstrated
in GF or antibiotics-treated mice [reviewed in Agus et al.
(2018)]. Several commensal bacteria express enzymes related
to KP enzymes and can thus produce kynurenine metabolites,
e.g., the neurotoxic 3-hydroxyanthranilic acid (O’Farrell and
Harkin, 2017). Further, through SCFA and BA metabolism, the

microbiota can induce TpH1 and stimulate 5-HT biosynthesis
(Reigstad et al., 2015; Yano et al., 2015). Gut-derived kynurenines
and 5-HT are additionally implicated in the pathogenesis of
chronic inflammatory, metabolic and neuropsychiatric diseases.
For instance, IDO1−/− mice are more susceptible to 2,4,6-
trinitrobenzene sulfate-induced colitis (Takamatsu et al., 2013)
whereas TpH1−/− mice show enhanced protection in response
to DSS- or dinitrobenzene sulfonic acid-induced colitis (Ghia
et al., 2009), suggesting that while kynurenine is protective in the
gut, 5-HT might be deleterious. However, more recent findings
indicate that 5-HT could exert pro- or anti-inflammatory effects
in the gut depending on the respective engagement of 5-HT7
versus 5-HT4 receptors (Spohn and Mawe, 2017). Kynurenines
and 5-HT play contrasting roles in obesity and insulin resistance.
The KP is overactivated in obesity and its activity correlates with
BMI and the metabolic syndrome, presumably through the action
of kynurenine derivatives such as xanthurenic acid (Oxenkrug,
2013). In contrast, 5-HT levels are decreased in obese individuals,
which is consistent with the role of 5-HT in promoting satiety
(Voigt and Fink, 2015), lipolysis in white adipose tissue and
hepatic gluconeogenesis (Sumara et al., 2012).

Cholesterol and Lipid Metabolism
Cholesterol and lipid metabolism by the intestinal microbiota
is an additional facet by which the microbiota influences host
physiology. On one hand, microbial components, specifically
Peptostreptococcus anaerobius, have been identified as inducers
of cholesterol biosynthesis in colonocytes, mediated by SREBP2
activation downstream of TLR signaling, which supports
dysplasia and CRC development in a mouse model, and
is consistent with elevated levels of this bacteria in the
stool of CRC patients (Tsoi et al., 2017). On the other
hand, microbial metabolism of cholesterol into coprostanol,
a poorly absorbed sterol, has been recently demonstrated as
a mechanism reducing host serum cholesterol levels (Kenny
et al., 2020). Notably, this function was attributed to a clade of
uncultured bacteria harboring ismA genes encoding cholesterol
dehydrogenases (Kenny et al., 2020). Besides cholesterol, bacterial
metabolism of sphingolipids (SL), lipids with a long-chain amino
alcohol backbone, also contributes to immune homeostasis in
the gut and to the host metabolic health. Bacteria of the
Bacteroidetes phylum, which constitutes∼30–40% of the healthy
human intestinal microbiota, have the capacity to synthesize
sphingolipids (SL), owing to their expression of the enzyme serine
palmitoyltransferase (Heaver et al., 2018). Bacterially derived SL
promote immune homeostasis in the gut, acting early in life to
tame invariant natural killer T (iNKT) cells proliferation (An
et al., 2014). Consistently, in a model of oxazolone-induced
colitis, treatment of mice with B. fragilis SL lessened the colitis
phenotype by reducing iNKT cell numbers (An et al., 2014).
Notably, the stools of IBD patients contain an elevated signature
of host SL including ceramides, but are depleted of bacterially
derived SL which protect the intestine. Indeed, colonization of
germ-free mice with Bacteroides thetaiotaomicron deficient in SL
elicited intestinal inflammation (Brown et al., 2019). To address
how the gut microbiota influence host metabolic pathways and
ceramide levels, a recent study explored this question in a
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model of diet-induced obesity (Johnson et al., 2020). The authors
showed that bacterially derived SL can enter colonocytes and
reach the liver through the portal vein circulation, impacting
metabolic parameters, e.g., insulin resistance, primarily through
liver ceramides (Johnson et al., 2020). Together, these indicate
that cholesterol and lipid metabolism by gut bacteria significantly
influence host metabolism and physiology. However, these
pathways are still poorly understood and require to be fully
investigated before further therapeutic exploitation.

Bile Acid Metabolism
Bile acid metabolism by the gut microbiota has gained
considerable interest in the recent years as they are being
recognized as crucial microbiome-derived metabolites that
regulate multiple important functions involved in health and
disease (Hylemon et al., 2018). Primary bile acids are mostly
synthesized by the liver hepatocytes from cholesterol following
irreversible 7alpha-hydroxylation by the cytochrome P450
CYP7A1 (Chávez-Talavera et al., 2017). In humans, these
are cholic acid (CA) and chenodeoxycholic acid (CDCA),
while in mice, CDCA is further metabolized into beta-
muricholic acid (betaMCA) (Pandak and Kakiyama, 2019). These
hydrophobic primary bile acids are then made amphipathic
through conjugation with glycine and taurine before being
secreted in the gall bladder along phospholipids to make up the
bile that will primarily serve as detergent upon release into the
duodenum during digestion (Chávez-Talavera et al., 2017). In
the small intestine, conjugated bile acids are deconjugated by
microbial bile salt hydrolases (BSH) that release the hydrophobic
moieties that are reabsorbed mostly through passive diffusion
along the epithelium and through active reabsorption in the
terminal ileum. In total, 95% of the initial bile acid pool is
reabsorbed through this enterohepatic cycle. Yet, 5% of bile
acids escape reabsorption and travel down the colon where they
undergo further metabolism by gut bacteria such as 7alpha-
dehydroxylation, which leads to formation of secondary bile acids
such as deoxycholic acid and litocholic acid from the metabolism
of CA and CDCA, respectively, (Ridlon et al., 2016). This is
a brief overview of the complex metabolism of bile acids. For
an exhaustive review of the role of gut microbes on bile acid
metabolism, we refer the reader to the work by Ridlon et al.
(2016). Gut microbial taxa with documented BSH activity include
Lactobacillus spp. (Foley et al., 2021), Bifidobacterium longum
(Tanaka et al., 2000), Enterococcus faecalis (Chand et al., 2018),
B. thetaiotaomicron (Yao et al., 2018), and Christensenella minuta
(Déjean et al., 2021), some of which have been classified as
keystone species (Table 1).

Beyond their role in lipid absorption, bile acids have systemic
functions as they also regulate hepatic energy metabolism,
adipocyte differentiation and dampen immune activation
through their interaction with bile acid receptors Farnesoid X
Receptor (FXR) and Takeda G protein Receptor 5 (TGR-5) (Foley
et al., 2021). Because of these multiple effects, they were recently
suggested to form gut microbiota-derived hormones (Kliewer
and Mangelsdorf, 2015; Hylemon et al., 2018). Both conjugated
and unconjugated bile acids participate in this host-microbiota
crosstalk. Interestingly, new bile acid conjugates specifically

produced in the small intestine, were recently discovered. These
involve bacterial conjugation with phenylalanine, tyrosine, and
leucine, three hydrophobic amino acids, which had never been
described associated with these molecules. Unsurprisingly, we
still ignore the physiological role of these novel microbially
derived compounds (Quinn et al., 2020).

Bile acids have been associated with a number of chronic
disorders including obesity, NASH, IBD (Schirmer et al., 2019),
Primary Biliary Cholangitis (formerly known as Primary Biliary
Cirrhosis) and Primary Sclerosing Cholangitis. Interestingly,
some disorders have been specifically associated with a defect
in gut bacterial metabolism of bile acids such as Clostridioides
difficile infections, which have been shown to be corrected
by restoring gut microbial BSH activity (Mullish et al., 2019).
Indeed, bile acid deconjugation releases free unconjugated bile
salts that are toxic to most bacteria and thus act as a regulator
of the microbial ecosystem. Hence, this is one of the key
functions carried by gut bacteria that impacts significantly on the
composition of the gut microbiome community.

BIOINFORMATIC TOOLS TO IDENTIFY
KEYSTONE SPECIES AND FUNCTIONS
OF THE GUT MICROBIOME

In light of these findings, restoring key metabolic pathways
carried by gut microbiota could open a wide range of therapeutic
perspectives. In particular, the identification of keystone species
carrying these functions in the gut microbiome appears as
an essential step for the development of future biotherapies
targeting the gut microbial ecosystem. Keystone species of the
human microbiome have often been identified using empirical
evidence (Banerjee et al., 2018). Nevertheless, bioinformatics
is increasingly used to identify keystone species and several
methods have been developed to exploit next-generation
sequencing (NGS) data.

“Presence or Absence” Associated With
Health and Disease
One of the most common methods to characterize the human gut
microbiome has been the use of amplification and sequencing
of marker genes in stool samples. The most used marker gene
is the 16S rRNA gene for the detection of bacteria, but other
housekeeping genes are occasionally used to capture bacterial
diversity (Case et al., 2007; Ogier et al., 2019). 16S rRNA can
be used to compare the abundance of microorganisms at the
genus or species level in different states (e.g., healthy versus
diseased, different food sources, etc.) by assigning the reads
to clusters of organisms grouped by taxonomic marker gene
similarity, called Operational Taxonomic Units (OTUs). A widely
used technique to then assess variations between microbial
communities is to use UniFrac beta-diversity metric coupled with
unsupervised multivariate statistics using Principal Component
Analysis (PCA) or its derivatives (Lozupone and Knight, 2005;
Ramette, 2007). However, the main hurdle associated with
the calculation of the UniFrac method is the high computer
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power required, although this has been largely improved in the
latest Striped UniFrac algorithm (McDonald et al., 2018). More
complex probabilistic methods, such as Dirichlet multinomial
mixtures, have been developed to improve the analysis of
metagenomics samples by clustering and classifying microbial
communities based on a probability distribution. This method
especially considers the discrete nature, the sparsity and the
variability of the sequencing depth, and has been applied to the
analysis of samples from obese and lean twins and to IBD patients
(Holmes et al., 2012; Ding and Schloss, 2014).

Even if evaluating the presence or absence of a genus or
species between two states using marker gene sequencing in stool
samples seems promising, a key part of the keystone species
definition is the interspecies interaction (Banerjee et al., 2018).
Hierarchical clustering of bacterial communities correlated with
disease association have been extensively used to attempt
identification of important bacterial taxa (Jackson et al., 2018).
Correlation with taxon presence or absence is often confirmed
using metrics such as Jaccard’s index: between two species, this
index is defined by the ratio between the number of samples
where both species are present out of the number of samples
tested. The values of this index range between 0 and 1, from
no correlation to a strong correlation, respectively, (Mainali
et al., 2017). Nevertheless, an extensive study on microbial
community modeling showed that indexes selected to evaluate
correlations between species should be adapted to the specific
dataset being studied. It is noteworthy that Jaccard index has
been reported to have a relatively low sensitivity compared to
other metrics such as the Pearson index when applied to co-
occurrence networks (Berry and Widder, 2014). Therefore, even
if the use of Jaccard’s index is reliable to identify the correlations
using taxon presence or absence, the use of Pearson or Spearman
indexes should be preferred to assess correlations when using
network-based methods.

To overcome the issues associated with taxon-based
correlation analysis that may lead to conflicting results due
to spurious associations, it is noteworthy that Wu and co-
authors have recently proposed to exploit the concept of
bacterial guild to reduce metagenomic data dimensionality
into ecologically meaningful functional units (Wu et al., 2021).
Although this approach is still limited by the use of relative
abundance data, it proposes an interesting approach to refine
data analysis of 16S-based datasets to identify relevant disease
associations.

Prediction of Interspecies Interactions
by Network-Based Methods
The need to consider interspecies interactions to identify
keystone species in a community led to the development of
new network-based methods. The most common methods are
co-occurrence or co-abundance networks applied to 16S rRNA
gene (or other marker gene) sequencing or metagenomic data.
These networks are often produced by calculating a pairwise
correlation coefficient between each pair of OTUs but other
methods are being developed to build interaction networks
(Berry and Widder, 2014).

Co-occurrence networks have been extensively used to
identify keystone species. An exhaustive study by Berry
and Widder (2014). evaluated the performance of these
networks in interaction with several correlation metrics. They
used generalized Lotka-Volterra modeling (gLVM) to simulate
competitive and cooperative interactions between species (Berry
and Widder, 2014). This study revealed that high mean degree
(the average number of edges a node has in the network),
high closeness centrality (the average distance of a node to any
other node), high transitivity and low betweenness centrality
(the betweenness centrality of the node A is the number of
shortest paths between a pair of nodes B and C passing through
the node A) can predict the keystone nature of species with
85% accuracy (Berry and Widder, 2014). These parameters
produce highly interconnected nodes (i.e., keystone species)
called “hub” patterns corresponding to a number of species
interacting together directly and indirectly (Berry and Widder,
2014; Layeghifard et al., 2017; Banerjee et al., 2018). This enables
identification of the guilds of bacteria that depend on the presence
of keystone species. For example, this method was used by Zhang
et al. (2014) on 454-pyrosequencing 16S rRNA sequencing data
from human intestinal biopsy samples. It allowed to identify
Ruminococcus gnavus, Faecalibacterium prausnitzii, Prevotella
copri, and Anoxybacillus flavithermus as potential keystones of
a healthy human intestinal mucosal microbiota because they
displayed the highest number of linkers (Zhang et al., 2014). As
already mentioned, only F. prausnitzii has been so far empirically
validated as a keystone species for its ability to produce butyrate
(Table 1). Its loss has been associated with the development of
IBD in several studies (Sokol et al., 2008; Varela et al., 2013).

Another study from Fisher and Mehta (2014) used discrete-
time Lotka-Volterra models to simulate the abundance variations
of 10 species for 1000 timesteps and 100 initial conditions.
After demonstrating that correlations in species abundance were
not predictive of interactions between species, they used this
simulated dataset to prove that LIMITS, an algorithm that
uses sparse linear regression corrected by bootstrap aggregation,
can be relevant to identify keystone species in two time-series
samples from the gut microbiome (Fisher and Mehta, 2014).
They concluded that B. stercosis and B. fragilis showed more
interactions than other bacteria and that these interactions were
mainly beneficial, since the growth of these two bacteria has been
correlated with an increased abundance of B. thetaiotaomicron
and E. rectale, the latter being a well-known butyrate producer
(Fisher and Mehta, 2014). These results are coherent with other
studies identifying Bacteroides sp. as key members of the gut
microbiome (Loftus et al., 2021) involved in the degradation
of complex carbohydrates (Cartmell et al., 2018). Nevertheless,
the major drawback of this method is the need of time-series
samples which are difficult and time-consuming to obtain.
Furthermore, only a few abundant species are studied, thus the
identification of low abundant keystone species is fairly unlikely
using this method.

Other network-based methods, such as association rule-
mining, are being applied to microbiome sequencing data in
order to identify keystone species. Briefly, this method allows
to estimate whether the presence of a species is required for
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the presence of other species. In a study by Chng et al. (2020),
using the “efficient_apriori” Python package, they inferred binary
association rules between species on 782 microbiome profiles.
This method allowed to identify “primary” species, which
presence is required for other species to thrive. Furthermore, they
showed that some of these “primary” species, such as Bacillus
uniformis, F. prausnitzii or Ruminococcus torques, were associated
with the recovery of the gut microbiota after antibiotic exposure
and carried specific metabolic functions such as mucin and
carbohydrates degradation (Chng et al., 2020). As mentioned in
Table 1, other members of the Ruminococcus genus have been
identified as resistant-starch degraders (Ze et al., 2012) essential
to maintain a healthy gut microbiome (Beghini et al., 2021).

Co-occurrence networks between members of the microbiota
can also be applied using generalized boosted linear models
(GBLMs), as exemplified in a study where it was implemented
to investigate the Human Microbiome Project cohort (Faust
et al., 2012). More recently, a co-occurrence network using the
Random Matrix Theory (RMT) method was applied to murine
gut microbiome data in order to identify putative keystone
species. In this study, 32 were identified as highly connected
species linked to other OTUs (Liu et al., 2019).

Although these methods are useful to predict putative
keystone species, the identification of the keystone functions
carried by these species is essential to understand the interactions
between the keystone bacteria and its guild. However, the use
of amplicon sequencing does not allow the precise identification
of the strains or the metabolic functions they carry within
the gut microbiome because the assignation of OTUs only
allows the reconstruction of metabolic pathways based on
reference genomes, thus inducing a possible loss of strain-
specific metabolic functions (Frioux et al., 2020). Therefore, a few
recent methods have been developed to overcome these issues
using metagenomic sequencing that reconstruct strain-specific
metabolic pathways.

Reconstruction of Metabolic Pathways
at Ecosystem Level
The recent development of metagenomics has provided a clearer
view of the diversity of the gut microbiota, especially by allowing
access to yet-uncultured bacteria (Almeida et al., 2019). The
reconstruction of genome-scale metabolic networks and models
(GSMNs) using Metagenome-Assembled Genomes (MAGs) or
the inference of functional categories to single genes allows to
precisely predict the metabolic capabilities of the gut microbiome
(Frioux et al., 2020). A good example of such tools is the
Metage2Metabo algorithm developed by Belcour et al. (2019) that
enables the analysis of metabolic pathways at the ecosystem level
using both reference genomes and MAGs. As keystone species
carry essential metabolic functions in the gut ecosystem, this
tool was used to detect putative keystone bacteria. In order to
accurately predict the metabolic capabilities of the communities,
both available nutrients and genome information (from reference
databases or metagenomic samples) are combined to predict
minimal communities of bacteria that can produce target
metabolic compounds. The bacteria encountered in all predicted

minimal communities are considered essential symbionts,
whereas bacteria encountered in at least one of the predicted
minimal communities, but not necessarily all of them, are
considered alternative symbionts (Belcour et al., 2019). This
method has been applied to a set of over 1,500 reference
genomes from the human gut, allowing the identification of
11 essential symbionts, namely Propionibacterium sp. KPL2009,
Paenibacillus polymyxa, Bacillus licheniformis, Lactococcus lactis,
Enterococcus casseliflavus, E. faecalis, Hungatella hathewayi,
Dorea longicatena, R. torques, Burkholderiales bacterium, and
Citrobacter portucalensis, and 194 alternative symbionts (Belcour
et al., 2019). As the reference genomes were assembled from
155 fecal samples, bacterial communities from each individual
were mixed, maybe explaining the large amount of alternative
symbionts (Zou et al., 2019). In addition, the fairly reduced
number of predicted keystone species compared to the input
dataset of genomes could be due to the non-exhaustive list
of initial nutrients and target metabolic compounds that need
to be provided to the software in order to predict minimal
communities. Nonetheless, this tool is the first tool to the
best of our knowledge that is specifically designed to identify
both putative keystone species and their associated metabolic
functions in complex microbial communities.

FINAL CONSIDERATIONS

Modern sequencing technologies enable broad mapping of
virtually any microbial ecosystem. Nevertheless, it is important
to keep in mind that the quality of microbiome data and the
information we derive from them highly rely on the quality of
the original sampling. Indeed, environmental factors strongly
influence bacterial communities that adapt to any variation, being
the time of day, temperature, pH, food supply (i.e., diet for
gut microbiomes), and the age of their host for host-associated
microbiomes. In this regard, the keystone species C. minuta
has been reported to be increased with aging (Waters and Ley,
2019). Hence, repeated sampling can be recommended in order
to account for temporal variations and obtain more accurate
pictures of bacterial ecosystem compositions (Ji et al., 2019).

Another important consideration about sampling is that most
large human studies focus on easily accessible locations with
non-invasive tools, analyzing oral and fecal samples for instance.
As a consequence, the analyzed microbiomes poorly represent
the inner ecosystems located deep within the gut. Typically,
fecal samples reflect the microbiome of the distal colon, largely
dominated by Clostridiales, while it has been shown that the
gut microbiota follows a specific spatial distribution along the
gastrointestinal tract, which is even further complicated by
regional specificities as illustrated by the differences observed
between luminal and mucosa-associated species (Donaldson
et al., 2016). Hence, most studies of human cohorts are
limited to the study of the distal gastrointestinal tract. Despite
this limitation, NGS methods and bioinformatics have been
effectively supporting the search for keystone species in the
gut microbiome. The rapid improvement of NGS techniques
that generates increasingly large datasets allowing for deep
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characterization of the gut microbiome community also calls
for new bioinformatics tools to analyze NGS datasets in a more
effective and complete way.

For metagenomics studies and as summarized in Figure 2, two
methodology decisions drastically influence the results: (i) the
DNA sequencing technology and (ii) the bioinformatic methods
that will be applied to analyze these datasets.

The choice of a DNA sequencing strategy determines the
information retrieved from a sample. Amplicon sequencing,
especially 16S rRNA gene sequencing, allows to have an overview
of the bacterial content of the samples by assigning the obtained
reads to taxonomies. Metabolic networks can then be inferred
using the reference genomes of the species or genus identified
in the samples (Frioux et al., 2020). Although this approach
has some merits, several technological biases can result in
partial taxonomic assignation, thus reducing the completeness
of the analysis. For instance, 16S rRNA gene sequencing is
often partial because it mostly targets a couple of hypervariable
regions, although it is technically possible to target a nearly
complete 16S rRNA sequence, depending on chosen primers and
sequencing technology. Indeed, an extensive study by Johnson
et al., revealed that a full 16S rRNA gene sequencing significantly

improves the taxonomic resolution. Out of all of the partial
sequencing tested, the V4 region performed worst, and the
relative number of OTUs produced using the different sub-
regions was not consistent depending on the identity threshold
(Johnson et al., 2019). It has also been noted that the development
of long-read sequencing platforms enhanced the accuracy of the
sequencing thus improving the detection of single nucleotide
polymorphisms (SNPs) in the complete 16S rRNA gene. Multiple
copies of the 16S rRNA genes carrying unique SNPs can
even be detected using this technique, allowing a strain-level
identification (Johnson et al., 2019).

The thrive of metagenomic sequencing also benefited from
the use of NGS to perform shotgun sequencing. A study by
Ranjan et al. (2016) concluded that the use of shotgun sequencing
compared to 16S sequencing significantly improved the diversity
of bacterial species detected, thus allowing a finer prediction of
the genes carried by a bacterial community. For instance, their
study showed that more than 1,000 species of proteobacteria
were only detected by shotgun sequencing performed on a
stool sample and twice the amount of genes were predicted
on average using one of the shotgun short-reads metagenomic
technologies. The comparison of different short-read sequencing

FIGURE 2 | Diagram of the most used bioinformatic strategies to identify microbiota keystone species using next-generation sequencing. The bacteria shown in red
is a keystone species that disappears from the stool of patients in differential analyses (bottom left), is highly connected to other species through beneficial
interactions (“hub”) (bottom middle), or produces essential metabolites (e.g., SCFAs) that enhance the growth of other bacteria (bottom right).
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technologies, namely MiSeq and HiSeq, showed that the extra
length produced by MiSeq sequencing (150–300 bp compared
to 100 bp) enables a more specific identification of bacterial
species and improves accuracy and completeness of MAGs that
are essential to reliably predict the metabolic potential of the
ecosystem (Ranjan et al., 2016; Frioux et al., 2020). A more
recent study showed that the use of long-read technologies (e.g.,
PacBio) improved drastically the completeness of the MAGs and
associated predicted genes: more than 98% of the genes predicted
from PacBio-assembled MAGs were complete compared to only
40% using HiSeq-assembled MAGs (Xie et al., 2020). Indeed,
the use of long reads enables the detection of repeated elements
often found in ribosomal RNA genes or bacteriophage-related
insertions that are frequently missed with short read sequencing
(Derakhshani et al., 2020).

Once sequencing data have been acquired, the identification
of species in the gut microbiome requires the assignment
of the reads to taxonomies. At this step, not only is the
quality of the reads important, but the accurate assignment
to taxonomies also depends on the reference catalog used.
For the assignment of 16S rRNA genes, two factors strongly
influence results. First, there is high reliance on the diversity
contained in the reference catalog and second, the amplified
regions can skew the identification of OTUs. Indeed, 16S rRNA
gene catalogs are often built from complete 16S sequences
whereas the amplification and sequencing of the 16S rRNA
gene usually targets hypervariable regions (V-regions), leading
to biased performances and challenges when comparing different
studies. To overcome this hurdle, a new tool called OTUX has
been proposed, that combines several custom datasets of OTUs
defined by 16S rRNA V-regions retrieved from full-length 16S
rRNA sequences (Yadav et al., 2019). This new method was
challenged against conventional full-length 16S databases and
revealed an improved assignment of reads for all of the V-regions
targeted, except for the V1–V3 region (Yadav et al., 2019). For
the assignment of shotgun reads, using MAGs could significantly
improve identification accuracy of bacterial species. Recent
research efforts produced a comprehensive catalog containing
more than 200,000 reference genomes from the human gut
microbiome referenced as the UHGG database (Almeida et al.,
2020). This work also revealed that 81% of the species in the
catalog lacked a cultured representative, indicating the huge
potential for discovering new keystone species in the future
(Almeida et al., 2020).

Another critical parameter in the analysis of microbial
communities using NGS is the sequencing depth. Several
keystone species from the human gut microbiome, such as
C. minuta, which presence in stool samples is significantly
associated with BMI, are low abundance microbes that can be
missed when using a reduced sequencing depth (Waters and Ley,
2019). Thus, an increased depth is required to ensure that the
whole diversity of species from the gut microbiome is identified
(Berry and Widder, 2014).

Considering data processing using bioinformatic tools, one
of the main issues regarding the use of sequencing data to
identify correlations between taxa within the gut microbiota
is the compositional nature of these datasets. The analysis

of read counts begins with their normalization by the total
number of sequenced reads. As explained by Friedman and
Alm, the estimation of correlation between parameters (e.g.,
species) is biased by the relationship between the fractions:
because they must sum to 1, they are not independent (Friedman
and Alm, 2012). Thus, a study can be artificially biased by
the disappearance of highly abundant species due to technical
or assignment issues: the relative abundance of low-abundant
species will increase as the variables are dependent even if their
absolute abundance is constant. Quantitative PCR (qPCR) is the
predominant method to quantify biomass using 16S rRNA gene
amplification, however, this method could significantly influence
the models. Li et al. (2019) noticed a high variation between
replicates when quantifying biomass from stool samples. Another
flaw of this technique is due to the variable number of 16S
rRNA gene copies in several microbial phyla such Firmicutes and
Bacteroidetes, which results in an over-representation of such
species. Friedman and Alm (2012) demonstrated that standard
Pearson correlation estimation can falsely predict negative
correlations between one dominant and several low abundant
species because of the dependence between abundances. This
issue has also been pointed by Berry and Widder (2014): they
noted a loss of specificity in the co-occurrence networks when
relative abundances were used. As a consequence, the SparCC
method was developed to estimate the linear Pearson correlation
between transformed variables: the log transformation of the
ratio of abundances between a pair of OTUs because the ratio
between abundances is independent from other OTUs included.
Using SparCC, it was demonstrated that the bias observed in
standard correlation studies that is induced by dominant species,
is greatly reduced in simulated data of varying diversity. Applied
to the HMP dataset, SparCC revealed new positive correlations
between highly abundant and low abundant species, instead of
the spurious negative correlations usually observed when using
standard correlations (Friedman and Alm, 2012).

Recently, another method was developed by Li et al., to
overcome the compositional bias when using generalized Lotka-
Volterra (gLV) models. As explained above, gLV models are
one of the most common approaches for modeling microbial
interactions. These models also suffer from the compositional
bias induced by the relative abundances. Indeed, absolute
biomass values are needed in order to accurately fit the gLV
differential equations model of each organisms’ growth rate to
the data (Li et al., 2019). Therefore, Li et al. (2019) developed
an algorithm called BEEM that estimates biomass in silico before
inferring interactions when total biomass cannot be estimated
experimentally. This algorithm introduces relative abundances in
the equation modeling the growth rate of each species, resulting
in two parameters that can be estimated using longitudinal
datasets. This method was applied to diverse synthetic or
existing datasets and accurately estimated biomass and gLVM
parameters. It also allowed the identification of F. prausnitzii
and B. uniformis as putative keystone species sharing numerous
positive interactions with other bacteria (Li et al., 2019). Yet, this
method is limited by available growth information for common
species. Hence, only common dominant bacteria for which the
information exists, may be accurately predicted.
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Finally, recent developments have proposed to apply
inferential statistics to network-based models in order to gain
confidence in result interpretation. A study by Röttjers et al.
(2021) recently proposed the use of null models to identify
network properties that can be used to compare networks.
They showed that among 20 networks built from time-series
stool samples collected from 20 women, the new tool called
anuran, could identify patterns that were found in 20–25% of
the networks but only 3 associations were found in 10 networks
or more, suggesting that associations between species or taxa may
greatly vary from one individual to another (Röttjers et al., 2021).
Although this is a proof-of-concept work applied to a limited
population, this is an interesting approach to robustly identify
keystone species based on stable interaction networks.

CONCLUSION

In this review, we discussed the role of key gut microbes-derived
metabolites in intestinal homeostasis, metabolic health, immune
regulation, and gut-brain interactions. We next described current
bioinformatic tools used in microbiome studies and highlighted
weaknesses associated with some of these approaches for the
identification of keystone species and their missing functions.
We point for instance that commonly used bioinformatic
tools that provide “presence or absence” information are not
suitable in this regard as they fail to provide a view of
species interactions. Network-based methods that calculate co-
occurrence or co-abundance of species are thus more suited
to predict keystoneness. However, these methods need to be
complemented with approaches that reconstruct species-specific

metabolic pathways, such as the Metage2Metabo algorithm, but
in a system where nutrient, genomic information and metabolites
output are simultaneously analyzed.

Our review has provided a snapshot of recent discoveries
on gut microbiome metabolic activities and the current state
of the field with respect to bioinformatics analysis of the
microbiome. We propose that in the quest for keystone species,
future studies should consider harmonization of sample and
data processing and the integration of additional variables
including age, gender, nutrition, and other environmental cues.
It is also particularly important to provide mechanistic evidence
supporting the functions of keystone species in modulating the
microbiome ecosystem for instance through quorum sensing,
cross-feeding, bacteriocins or through other as of yet unknown
mechanisms. Such studies will set the stage to design microbiota-
based therapeutic interventions to counter chronic diseases,
by restoring keystone species and their beneficial effects on
microbiome balance to support a healthy symbiotic interaction
with their host.
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Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract
responsible for intestinal lesions. The multifactorial etiology attributed to CD includes
a combination of environmental and host susceptibility factors, which result in an
impaired host–microbe gut interaction. Bacterial overgrowth and dysbiosis, increased
intestinal barrier permeability, and altered inflammatory responses in patients with CD
have been described in the past. Those events explain the pathogenesis of luminal
translocation of bacteria or its products into the blood, a frequent event in CD, which,
in turn, favors a sustained inflammatory response in these patients. In this review, we
navigate through the interaction between bacterial antigen translocation, permeability
of the intestinal barrier, immunologic response of the host, and genetic predisposition
as a combined effect on the inflammatory response observed in CD. Several lines
of evidence support that translocation of bacterial products leads to uncontrolled
inflammation in CD patients, and as a matter of fact, the presence of gut bacterial
genomic fragments at a systemic level constitutes a marker for increased risk of relapse
among CD patients. Also, the significant percentage of CD patients who lose response
to biologic therapies may be influenced by the translocation of bacterial products, which
are well-known drivers of proinflammatory cytokine production by host immune cells.
Further mechanistic studies evaluating cellular and humoral immune responses, gut
microbiota alterations, and genetic predisposition will help clinicians to better control
and personalize the management of CD patients in the future.

Keywords: Crohn’s disease, bacterial translocation, intestinal permeability, dysbiosis, NOD2, inflammatory
response, anti-TNF-α

INTRODUCTION

Crohn’s disease (CD) is a type of chronic idiopathic inflammatory bowel disease (IBD) that may
affect any part of the gastrointestinal (GI) tract and causes inflammatory, stricturing, or penetrating
intestinal lesions (Torres et al., 2017). The prevalence of CD has increased worldwide in the
past 50 years, and it imposes a considerable economic burden on health systems as it requires
new and costly treatment options and trained specialists to manage CD patients (Ng et al., 2017;
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Windsor and Kaplan, 2019). The etiology of CD includes several
aspects involving environmental factors, genetic susceptibility,
and the impaired immune interaction of the host with the
intestinal microbiota (Chang, 2020).

The immune response in CD is induced by different cell
types such as neutrophils and macrophages that act together
with epithelial cells in promoting and generating inflammatory
phenomena by releasing soluble factors as tumor necrosis factor-
alpha (TNF-α) and antimicrobial peptides like defensins and
cathelicidins (Ramasundara et al., 2009; Gutiérrez et al., 2011).
Intestinal bacteria are key contributors to the onset, perpetuation,
and pathogenesis of chronic intestinal inflammation suggesting
a disturbed immune gut response to bacterial antigens. This
hypothesis is supported by several lines of evidence: (1) CD
clinical lesions are mainly located in the distal ileum and
colon, which are regions of high microbial concentration,
(2) several studies demonstrate that luminal bacteria are
necessary for the development of disease in murine models
(Harper et al., 1985; Elson et al., 2005), and (3) CD patients
present dysbiosis or reduced biodiversity in the composition
of their gut microbiota associated with increased bacteria with
proinflammatory properties and less anti-inflammatory bacterial
species (Willing et al., 2010; Chassaing and Darfeuille-Michaud,
2011; Manichanh et al., 2012).

Our gut epithelial cells act as a physical barrier between
the lumen of the GI tract and the inner mucosa contributing
to nutrient and fluid absorption and impeding intact bacteria
penetration. Genetic polymorphisms affecting barrier function or
chronic inflammation may contribute to an abnormal intestinal
permeability and, therefore, favor bacterial translocation (BT)
and aggravate the course of disease. Genes associated with
intestinal homeostasis involve autophagy, innate and adaptive
immune regulation, microbial defense, or barrier function,
among others (Franke et al., 2010; Khor et al., 2011). Some risk
loci might influence immunological function such as nucleotide-
binding oligomerization domain-containing 2 (NOD2), which
encodes an intracellular receptor for muramyl dipeptide (MDP),
a component in bacterial cell walls (Inohara et al., 2003). In
this regard, three common variants of NOD2 loci apparently
confer susceptibility to CD (Hugot et al., 2001) suggesting that
an impaired response to bacterial antigens may contribute, and
further studies indicate that low Foxp3+ regulatory T-cell (Treg)
counts and a variant NOD2 genotype can be markers of loss of
response to anti-TNF-α in CD patients (Juanola et al., 2014).

In this review, we integrate the effect of bacterial antigen
translocation, the host immunologic response, and the genetic
background in the inflammatory response observed in CD.

GUT-DERIVED BACTERIAL ANTIGEN
TRANSLOCATION

Bacterial translocation is known as the passage of bacteria
or its products, such as endotoxins, from the GI tract to
mesenteric lymph nodes and systemic circulation (Alexander
et al., 1990). This event has been demonstrated in CD by several
studies in which the presence of bacteria in the lymph nodes

(Takesue et al., 2002; Peyrin-Biroulet et al., 2012; O’Brien et al.,
2014) or bacterial genomic fragments in the blood (Gutiérrez
et al., 2009, 2011, 2014) are detected. Bacterial passage from
the bowel lumen is a common phenomenon in CD, and it
is involved in the pathogenesis by inducing, perpetuating, or
exacerbating an inflammatory state (Swank and Deitch, 1996).
The risk factors influencing BT are mainly intestinal bacterial
overgrowth or dysbiosis, increased intestinal permeability, and
local and systemic immunological alterations and can be followed
in Table 1.

Human species have evolved with the symbiotic intestinal
microbiota, which is composed of 10 (Franke et al., 2010) to 10
(Inohara et al., 2003) microorganisms including bacteria, fungus,
archaea, and viruses whose total genome represents 100 times
our own genome (Gill et al., 2006). GI microbiota is mainly
composed of four bacterial divisions: Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria, but the composition and
the luminal concentrations of bacterial species may vary in
the different GI tract regions (Eckburg et al., 2005). These
commensal bacteria provide an abundant source of antigens
that can activate pathogenic immune responses resulting in
chronic intestinal inflammation and clinical manifestations of
CD-susceptible patients.

An increase in the number and/or altered composition
of microbial species in the small bowel is known as small
intestinal bacterial overgrowth (SIBO), which is potentially
caused by fistulae, strictures, a slowed intestinal transit, low
acid gastric secretion, and altered local immune activity such
as common variable immunodeficiencies associated with low
IgA (Pignata et al., 1990; Husebye, 2005; Klaus et al., 2009).
Patients with CD show some of these features, so they are
predisposed to develop SIBO and a complicated clinical course
of CD. Bacterial overgrowth or abnormal microflora (dysbiosis)
within the gut have been described in the past in CD patients
(Manichanh et al., 2006; Lupp et al., 2007; Sartor, 2008),
and they are present in the early stages of CD being further
amplified by antibiotic treatment (Gevers et al., 2014; Kowalska-
Duplaga et al., 2019). Also, healthy first-degree relatives of
CD patients show an altered microbiota suggesting a genetic
predisposition to develop this condition (Joossens et al., 2011).
In addition, there are differences in the diversity of microbiota
depending on disease activity: between inflamed areas in different
IBD phenotypes, and in microbial metabolism (Forbes et al.,
2016; Franzosa et al., 2019; Lloyd-Price et al., 2019). Overall,
the dysbiotic profile in CD patients is characterized by a
decrease in Bacteroidetes and Firmicutes, and an increase in
Enterobacteriaceae microbial populations (Frank et al., 2007;
Kostic et al., 2014; Khan et al., 2019). The decrease in
Faecalibacterium prausnitzii has been widely observed (Hedin
et al., 2016), which is a bacterium with an important role in
the regulation of Th17 cells (Zhang M. et al., 2019). In fact,
this species, together with Lactobacillus and Bifidobacterium,
among others, display a protective role in intestinal inflammation
(Hrdý et al., 2020; Singh et al., 2020). Additionally, reduced
abundance of Lachnospiraceae and Ruminococcaceae families
producing short-chain fatty acids (SCFAs) are associated with
poor response to TNF-α biologic therapy and frequent relapses
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TABLE 1 | Risk factors for bacterial translocation in Crohn’s disease include intestinal dysbiosis, altered intestinal integrity, and immune dysfunction.

Altered parameter Study Observation

Dysbiosis ↓ Bacteroidetes
↓ Firmicutes
↑ Enterobacteriaceae

Kostic et al., 2014 The authors give an overview of the microbial changes observed in IBD.

↓ Faecalibacterium
prausnitzii

Hedin et al., 2016 CD patients show intestinal dysbiosis associated with reduced diversity of
microbiota and lower counts of F. prausnitzii. This bacterial species regulates Th17
responses.

↓ Lactobacillus
↓ Bifidobacterium

Hrdý et al., 2020;
Singh et al., 2020

Treatment with specific Bifidobacterium and Lactobacillus probiotic strains reduce
experimental intestinal inflammation and induce tolerogenic dendritic cells.

↓ Lachnospiraceae
↓ Ruminococcaceae

Yilmaz et al., 2019 Reduced abundance of Lachnospiraceae and Ruminococcaceae families is
associated with poor response to anti-TNF-α and frequent relapses.

↑ Desulfovibrio Metwaly et al., 2020 Enrichment of sulfate-reducing bacteria in active CD patients and mice with
microbiota from CD patients with active disease.

↑ Mycobacterium avium
paratuberculosis

Schwartz et al., 2000;
Naser et al., 2004

Increased counts of the intracellular pathogen MAP have been detected in tissue
and blood samples from CD patients.

↑ Adherent-invasive
Escherichia coli

Darfeuille-Michaud
et al., 2004

High prevalence of adherent-invasive E. coli in the ileal mucosa of CD patients.

↑ Clostridiodes difficile Razik et al., 2016 IBD patients have increased Clostridiodes difficile infections.

↑ Debaryomyces hansenii Jain et al., 2021 Expansion of D. hansenii fungi in inflamed intestinal tissue is associated with
reduced mucosal healing in IBD.

↑ Caudovirales Norman et al., 2015 Increased richness of Caudovirales bacteriophages in fecal samples obtained from
IBD patients.

Intestinal
permeability

↓ MUC-1, 3, 4, 5B Buisine et al., 1999 Reduced gene expression of mucin genes in healthy and inflamed mucosa of CD
patients.

↓ E-cadherin
↓ β-catenin

Kosovac et al., 2010 Patients with CD and NOD2 polimorphisms show increased BT associated an
altered composition of the epithelial barrier.

↑ Claudin-2
↓ Claudin-3, 5, 8
↓ Occludin

Zeissig et al., 2007 The authors describe a barrier dysfunction in active CD patients due to altered
epithelial tight junction structure.

Immune
response

Paneth cells Wehkamp et al., 2005 Reduced secretion of antimicrobial peptides in intestinal mucosal extracts of CD
patients.

Macrophages Kamada et al., 2008;
Smith et al., 2009

Macrophages contributing to chronic intestinal inflammation in CD produce IL-6,
IL-23, TNF-α and INF-y proinflammatory cytokines and display an impaired
clearance of bacteria.

Neutrophils Hayee et al., 2011 Neutrophils from CD patients show reduced respiratory burst and release
extracellular traps which impair intestinal integrity.

Eosinophils Yantiss, 2015;
Click et al., 2017

Increased eosinophilia in mucosal biopsies and peripheral blood in patients with CD.

Dendritic cells Middel et al., 2006;
Baumgart et al., 2009;
Senhaji et al., 2015

Patients with CD have increased amount of mature dendritic cells expressing high
levels of co-stimulatory molecule CD40 and excessive inflammatory response.

ILC1 Bernink et al., 2013 High frequency of IFN-γ-producing ILC1 cells in inflamed intestines of CD patients.

ILC2 Bailey et al., 2012 IL13-producing ILC2 cells contribute to collagen deposition in fibrotic intestinal
samples of CD patients.

ILC3 Geremia et al., 2011 Accumulation of ILC3 cells that produce IL-17, IL-22, and IFN-γ in response to
IL-23 in inflamed intestines of CD patients.

Th1 Fuss et al., 1996;
Monteleone et al.,
1997; Parronchi et al.,
1997; Pizarro et al.,
1999

Crohn’s disease is associated with type 1 T-helper lymphocyte intestinal responses
and secretion of IFN-γ, IL-12 and IL-18.

Th17 Fujino et al., 2003;
Cummings et al., 2007;
Geremia et al., 2011

Immunity mediated by type 17 T-helper responses is relevant in CD as
demonstrated by increased expression of Th17-related cytokines and increased
susceptibility to CD in patients with IL-23R gene variants.

Treg Chamouard et al.,
2009; Hovhannisyan
et al., 2011; Qiao et al.,
2013; Ueno et al., 2013

Reduced tolerogenic regulatory T cell response in CD patients is associated with
reduced expression of regulatory-associated transcription factors and a Th17-like
cytokine profile observed in Tregs.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 September 2021 | Volume 9 | Article 70331088

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-703310 August 31, 2021 Time: 12:21 # 4

Linares et al. Bacterial Translocation in Crohn’s Disease

in CD (Yilmaz et al., 2019). Also, the altered gut microbiome is
associated with enrichment of sulfate-reducing bacteria in active
CD patients and mice with microbiota from CD patients with
active disease (Metwaly et al., 2020).

Decreased complexity and diversity of commensal bacteria
that promote intestinal homeostasis play a critical role in CD due
to the disrupted capacity of the microbiota to exclude pathogens,
which can favor inflammatory responses. Mycobacterium avium
paratuberculosis (MAP) is an obligate intracellular pathogen
detected in intestinal samples of CD patients by different
molecular biology and cell culture techniques (Mishina et al.,
1996; Schwartz et al., 2000). The contribution of MAP in the
pathogenesis of CD was further confirmed by the detection of
cultivable MAP in the blood of patients with CD (Naser et al.,
2004). Therefore, MAP has been proposed as a potential etiologic
infectious agent of CD, although this hypothesis remains to be
validated (McNees et al., 2015). Another microbial pathogen
such as adherent/invasive E. coli has been detected in biological
samples of the ileum in patients with CD (Darfeuille-Michaud
et al., 2004), and more interestingly, there is an increased severity
of CD in those patients with high levels of serum antibodies
detecting porin C present in the outer membrane of E. coli
(Mow et al., 2004). Clostridiodes difficile is also an opportunistic
pathogen in IBD patients frequently causing symptoms ranging
from diarrhea to fulminant colitis and death (D’Aoust et al.,
2017). IBD patients have a higher risk of Clostridiodes difficile
infection, which is associated with longer hospitalization periods
and increased resource costs (Nguyen et al., 2008; Razik et al.,
2016). Despite literature showing a clear perturbation in IBD
microbiota, it is not a clear cause–effect link. It is known that
the inflammatory state in CD affects the microbial composition
(Craven et al., 2012) but also that IBD microbiota can induce
intestinal inflammation (Nagao-Kitamoto et al., 2016). In this
regard, treatments addressed to restore healthy gut microbiota
in IBD, such as administration of prebiotics and probiotics
(Limketkai et al., 2020), antibiotic therapy (Castiglione et al.,
2003), and fecal microbiota transplantation (Britton et al., 2020)
need further investigations.

Antibiotics used on patients with inflammatory intestinal
disease are targeted toward bacteria that, in turn, favor the
colonization of intestinal niches by other members of the
intestinal microbiota. Relevance of fungal microbiota dysbiosis
have been described in patients with CD (Liguori et al., 2016), and
antibodies to anti-Saccharomyces cerevisiae have been detected
in CD (Seow et al., 2009). The interaction between intestinal
fungi and host immune system occurs through receptors of
the host innate immune system such as Dectin-1 (Iliev et al.,
2012). Recently, poor mucosal healing in CD has been associated
with overgrowth of Debaryomyces hansenii underlying that not
only bacteria but also fungi species may modulate the intestinal
inflammatory disease (Jain et al., 2021). Relevance of fungi
in mucosal healing was evidenced in the study of Jain et al.
(2021) by detecting the presence of D. hansenii in intestinal
wounds with impaired healing after antibiotic treatment, whereas
the administration of antifungal amphotericin B reduced fungi
detection and increased wound regeneration. Oral gavage of
D. hansenii altered crypt regeneration in conventional mice not
treated with antibiotics and increased the severity of experimental

colitis. The authors confirmed that macrophages were recruited
in the areas colonized by D. hansenii and that CCL5 and
type I IFN secreted by myeloid cells are required to alter
mucosal healing, supporting CCL5 as a potential target in CD.
Additionally, changes in the enteric virome associated with an
expansion of Caudovirales bacteriophages have been described
in patients with CD (Norman et al., 2015). Viral infection by
the enteric murine norovirus in experimental models carrying
the CD susceptibility gene ATG16L1 is associated with multiple
pathologic abnormalities in the intestine (Cadwell et al., 2010).
Even if increasing knowledge is required to understand the
interactions existing between intestinal microbiota and the host
during CD, we can assume that intestinal microbes play an active
role in the progression of intestinal inflammatory disease.

The intestinal epithelium acts as a physical and antimicrobial
barrier against pathogenic bacteria and environmental antigens
(Okamoto and Watanabe, 2016). When the intestinal barrier
is disrupted, commensal microbiota, which in physiological
conditions exist in a symbiotic relationship with humans, can
cross the epithelium and contribute to intestinal inflammation.
The intestinal mucosal barrier is composed of both the
outer mucus layer, which is comprised by secreted mucinous
and antibacterial components, and the inner subepithelial
elements involving the immune system (Salim and Söderholm,
2011). Epithelial cells together with M-cells, mucus-secreting
globet cells and Paneth cells form a polarized monolayer
structure linked by apical junctions which are formed by
tight junctions and subadjacent adherens junctions (Turner,
2009). The junctional complex is composed of transmembrane
and peripheral proteins including actin, claudins, occludins,
zonula occludens (ZO)-1, and junctional adhesion molecules.
Enteric glial cells located in the intestinal mucosa also regulate
the permeability of the intestinal epithelial barrier in CD by
producing 15-hydroxyeicosatetraenoic acid, a polyunsaturated
fatty acid that increases the expression of ZO-1 (Pochard
et al., 2016). Crucial functions of the intestinal barrier include
maintenance of intestinal homeostasis by allowing the absorption
of essential nutrients, as well as tolerance to commensal
bacteria, and prevention of the entry of injurious bacterial
components. A disturbance in one of the components that
are involved in the epithelial barrier function can increase
its permeability leading to an impaired ability to avoid BT.
Altered expression of mucins 1, 3, 4, and 5B in the ileal
mucosa of patients with CD favor the binding of microbes
to the intestinal surface (Buisine et al., 1999). Additionally,
the protein composition of tight and adherens junctions on
intestinal cell–cell contacts is altered on CD patients (Zeissig
et al., 2007; Kosovac et al., 2010). Disturbances in the permeability
of the intestinal barrier associated with a derangement of the
tight junction were also probed by freeze–fracture electron
microscopic analysis (Marin et al., 1983a,b). Reduced integrity of
the intestinal barrier leads to an increased absorption of luminal
microbial antigens and serum concentrations of endotoxins,
lipopolysaccharide-binding protein (LBP), and CD14s, which
are markers of disease activity in CD (Pastor Rojo et al., 2007;
Lakatos et al., 2011).

The importance of genetic background as a contributing
factor to the impaired barrier function in CD comes from

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 September 2021 | Volume 9 | Article 70331089

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-703310 August 31, 2021 Time: 12:21 # 5

Linares et al. Bacterial Translocation in Crohn’s Disease

studies with first-degree relatives of patients with CD showing
that NOD2 3020insC mutation is associated with increased
mucosal permeability (Irvine and Marshall, 2000; Buhner et al.,
2006). Also, a gene polymorphism in adherens junction protein
E-cadherin (CDH1 gene) was observed in some patients with
CD resulting in a cytoplasmic mis-localization of the protein
pointing to a defect in the intestinal barrier structure (Muise
et al., 2009). From a clinical point of view, increased intestinal
permeability has been reported to predict an increased risk of
relapse in CD patients on remission (Arnott et al., 2000; Tibble
et al., 2000) and is considered as a risk factor for CD onset (Turpin
et al., 2020). Serum proteins and antibodies related to immune
responses to intestinal microbiota can predict the development
of CD up to 5 years before the diagnosis (Torres et al., 2020).
Therefore, leaky gut in patients with CD may allow the passage
of intestinal microbes across the intestinal epithelium and drive
local and systemic proinflammatory responses that worsens the
prognosis in patients with CD.

As a consequence of the impaired intestinal integrity, CD
patients need to respond to the frequent bacterial challenges
to which they are exposed to and ensure the clearance of
translocating bacteria. A competent intestinal antimicrobial
peptide response is required to protect host from pathogens
and to provide tolerance to normal flora (O’Neil et al., 1999;
Ramasundara et al., 2009). Several studies have shown that
Paneth cells in CD patients display alterations in the production
and the activity of different antimicrobial peptides such as
cathelicidin (Schauber et al., 2006; Tran et al., 2017), α-defensins
(Wehkamp et al., 2005; Elphick et al., 2008), and β-defensins
(Kocsis et al., 2008; Schroeder et al., 2011), which are detrimental
in the control of BT. Mutations in ATG16L1 and NOD2 in
Paneth cells are associated with abnormalities in packaging
and secretion of antimicrobials (Liu et al., 2014; VanDussen
et al., 2014), therefore, affecting the antibacterial activity of the
intestinal barrier by reduced secretion of mucosal α-defensins
observed in CD (Wehkamp et al., 2004, 2005; Kobayashi et al.,
2005; Petnicki-Ocwieja et al., 2009). Intriguingly, serum levels
of α-defensins, but not β-defensins, are increased in patients
with CD and they have been associated with serum C-reactive
protein and TNF-α (Yamaguchi et al., 2009), while in healthy
donors, peripheral α-defensins remain constitutively expressed
and β-defensins are induced by bacterial-derived products (Fang
et al., 2003). We have demonstrated that bactDNA can modulate
the expression of β-defensin (DEFB) 2 and cathelicidin LL-
37 through the mediation of NOD2 status by the signaling
pathway of nuclear factor (NF)-κB in CD (Gutiérrez et al.,
2011). This evidence suggests that the NOD2 gene regulates
signaling pathways linked to defensins and cathelicidins through
the nuclear factor (NF)-κβ (Wehkamp et al., 2004; Voss et al.,
2006). Consequently, patients with a NOD2 mutation have an
increased likelihood of developing ileal CD, and it is commonly
accepted that an impaired NOD2 function can lead to a poor
host clearance of bacteria, which can promote and perpetuate
intestinal inflammation. A reduction in bacterial clearance has
also been related to polymorphisms in ATG16L1 and IRGM
genes, autophagy genes related to CD susceptibility (Hampe
et al., 2007; Parkes et al., 2007; Rioux et al., 2007). A mutation

on ATG16L1 and IRGM genes induces an injured autophagy
pathway, resulting in a defective elimination of damaged
cellular organelles and long-lived proteins as well as an altered
degradation of intracellular bacteria.

Consequently, increased BT burden and altered microbial
clearance in CD patients will induce sustained intestinal
inflammatory responses that will be the topic addressed in the
following section.

INFLAMMATORY RESPONSE TO
BACTERIAL TRANSLOCATION IN
CROHN’S DISEASE

The GI tract represents the largest surface area exposed to a wide
and heterogeneous community of bacterial antigens. The gut is
strictly regulated by innate and adaptive defense mechanisms,
which altogether interact with commensal bacteria to promote
the maintenance of intestinal homeostasis. Since CD is an
immune-mediated condition triggered by environmental factors
that imbalance the gut microbiota, perturb the intestinal barrier,
and abnormally stimulate the gut immune response, an alteration
in any of these compartments determines how the inflammatory
immune response develops and may predispose to a disturbance
of the bowel, leading to chronic inflammation. Here, we will
describe in each one of the components involved in the process
of BT and its role in the gut immune response and inflammation,
which are summarized in Figure 1.

Intestinal barrier permeability increases the bacterial pressure
to which the immune system needs to respond. When BT
occurs, the first line of defense against microbial pathogens
in the gut is composed of germline-coded pattern-recognition
receptors (PRRs), which belong to the innate immune system
(Medzhitov and Janeway, 2002). These receptors are located
on both the extracellular or the intracellular side, and they
recognize molecular patterns that are conserved in bacteria:
pathogen-associated molecular patterns (PAMPs). PRRs are
composed of transmembrane Toll-like receptors (TLRs), which
have a key role in microbial recognition and induction of
antimicrobial genes, and cytosolic NOD receptors whose main
activity relies on bacterial clearance (Cario, 2005). Bacterial
antigens such as endotoxin, forming complexes with LBP or DNA
can sense and activate monocytes and macrophages via TLR
receptors triggering the release of proinflammatory cytokines and
chemokines TNF-α, IL-6, IL-8, IL-21, or IFN-γ through (NF)-
κβ pathway (Hemmi et al., 2000; Wagner, 2002), similar to what
MDP does via NOD2 (Lala et al., 2003; Eckmann and Karin,
2005) contributing to microbiota dysbiosis and tissue damage.

NLRs are important mediators in the control of intestinal
inflammation, since the presence of gene polymorphisms in
these molecules confers susceptibility to CD (Cummings et al.,
2010). The activation of NLRs by PAMPs or danger-associated
molecular patterns (DAMPs) result in downstream NF-kB
signaling or caspase-1-mediated formation of inflammasomes
(Rubino et al., 2012). NLRP3 inflammasome is activated in
CD (Lazaridis et al., 2017), and its inhibition suppress the
release of proinflammatory mediators (Liu et al., 2017). However,
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FIGURE 1 | Bacterial translocation in Crohn’s disease. Intestinal tolerogenic mechanisms are altered in Crohn’s disease leading to sustained inflammatory status.
Integrity of the epithelial barrier is altered due to reduced expression of tight junction proteins. Increased populations of Enterobacteriaceae and pathogens, as well
as reduced Bacteroidetes, Firmicutes, and populations of bacteria producing short chain fatty acids define intestinal dysbiosis in CD. Paneth cells display alterations
in the production and secretion of antimicrobial peptides that can be explained by the gene status (NOD2). Translocating bacteria or its products can activate antigen
presenting cells as macrophages and dendritic cells. Gene variants in ATG16L1 and NOD2 are associated with abnormalities in the secretion of antimicrobial
peptides by Paneth cells and altered function of intestinal DCs and macrophages. Dendritic cells express higher levels of CD40 leading to increased interactions with
T-lymphocytes and production of proinflammatory cytokines. Low regulatory T-lymphocyte differentiation will favor Th1 and Th17 subsets that will further produce
proinflammatory cytokines. Neutrophils and eosinophils will be recruited to the site of infection and further contribute to induce an inflammatory environment in the
attempt to eliminate translocating bacteria. AMPs, antimicrobial peptides; IgA, Immunoglobulin A; IL, interleukin; TGF, transforming growth factor; TNF, tumor
necrosis factor; IELs, intraepithelial lymphocytes; ILCs, innate lymphoid cells; SCFAs, short chain fatty acids; TJPs, tight-junction proteins; TREG, regulatory T-cells.
This figure has been created using the BioRender platform.

results from experimental models show controversial results
since adverse and protective roles for NLRP3 have been reported.
Attenuated colitis was described in both NLRP3-deficient mice
(Bauer et al., 2012) and after selective blockade of NLRP3
(Perera et al., 2018) in different animal models of intestinal
inflammation, whereas inflammatory progression associated with
altered intestinal integrity and increased mortality have also been
outlined in NLRP3 knockout mice with experimental colitis (Zaki
et al., 2010). It seems that the contribution of NLRP3 to the
pathogenesis of IBD is highly influenced by the environment,
including intestinal microbiota, as this molecule not only controls
potential invading pathogens (Song-Zhao et al., 2014) but also
participates in an inflammatory lytic cell death of innate immune
cells mediated by caspase-1, known as pyroptosis (Fink and
Cookson, 2006). NLRC4 is another relevant member of the NLR
family able to detect flagellin and components of the type III
bacterial secretory apparatus. NLRC4 inflammasome expressed
in intestinal phagocytes seems to become relevant in the
discrimination of pathogen and commensal microbiota through
the production of IL-1β (Franchi et al., 2012). Additionally,
NLRC4-deficient mice were more susceptible to experimental

colitis associated with increased mortality following flagellated-
Salmonella infection (Carvalho et al., 2012). Recent studies
demonstrated that NLRP6 inflammasome can be activated either
by lipoteichoic acid from Listeria monocytogenes (Hara et al.,
2018) or via interaction with LPS and ATP (Leng et al.,
2020). NLRP6 not only becomes relevant in the host immune
response to microbial infections through the production of IL-
18 but also mediates the secretion of mucins by globet cells
(Wlodarska et al., 2014). Indeed, NLRP6-deficient mice showed
more severe experimental colitis associated with a thinner mucus
layer, susceptibility to bacterial infections, and altered intestinal
microbiota (Elinav et al., 2011; Wlodarska et al., 2014). AIM2
belongs to the innate immune receptors sensing self or foreign
cytosolic double-stranded DNA that results in the activation of
caspase-1 mediated by the AIM2 inflammasome and consequent
release of processed IL-1β and IL-18 (Hornung et al., 2009). AIM2
protects against intestinal inflammation induced by experimental
colitis by limiting the growth of E. coli and by affecting to the
production of antimicrobial peptides (Hu et al., 2015).

In this first-line defense system, macrophages and dendritic
cells (DC) play a key role. Alterations in these cell populations
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have been widely studied in the context of human IBD.
Macrophages derived from the peripheral blood monocytes from
CD patients showed impaired secretion of cytokines after E. coli
insult and TLR ligation, contributing to a defective bacterial
clearance (Smith et al., 2009). In addition, these cells showed an
altered expression of surface markers, abundant secretion of IFN-
γ, IL-6, IL-23, and TNF-α (Kamada et al., 2008). TNF-α and IFN-
γ are major contributors to intestinal permeability (Cao et al.,
2013; Xu et al., 2019). Intestinal DC directly samples luminal
bacteria and transfers bacterial antigens to the mesenteric lymph
nodes and Peyer’s patches to recruit neutrophils and eosinophils,
and to modulate the subsequent T-cell responses (Rescigno et al.,
2001; Hart et al., 2005).

Neutrophils recruited to the site of infection phagocyte and
kill invading pathogens through reactive oxygen species (ROS)
production, neutrophil extracellular traps (NETs), and generation
of lytic proteins (Wéra et al., 2016). Neutrophils can also
orchestrate local immune responses by releasing cytokines and
chemokines such as IL-8, CXCL1, CCL3, CCL4, and CCL20
among others, that can interact and recruit leukocytes from
innate and adaptative immune populations including other
neutrophils, basophils, eosinophils, macrophages, monocytes,
DCs, and T cells (Tecchio and Cassatella, 2016). The proper
functioning of neutrophils is crucial to resolve the inflammation
induced by translocating pathogens since the lack of function
or an increased neutrophil activity may be the origin of
intestinal inflammation. While accumulation of neutrophils in
the lamina propria correlates with the activity of the disease
in UC (Bressenot et al., 2015), several research lines report
deficient neutrophil activity in CD. Some studies suggest that
neutrophils from CD patients show impaired ROS generation
(Hayee et al., 2011); however, it is not clear if there exists
an intrinsic failure in neutrophils activity in CD or if this
is due to defective macrophage signaling and consequent
reduced neutrophil recruitment within the inflammatory area
(Segal and Loewi, 1976). Reduced production of the neutrophil
chemokine IL-8 support the abnormal neutrophil chemotaxis
observed in inflammatory lesions during CD (Marks et al.,
2006). The reduced activity of neutrophils against luminal
microbes may partially explain the chronic local and systemic
inflammation underlying CD induced by a permanent activation
of macrophages and T cells (Segal, 2018). On the other hand,
eosinophilia is present in CD mucosal biopsies, and it is specially
abundant in mucosal nerves (Yantiss, 2015). Some clinical studies
suggest peripheral blood eosinophilia as a marker of worse
outcome in CD patients (Click et al., 2017).

Under physiological conditions, DC ensures homeostasis
inducing a tolerogenic intestinal state (Kretschmer et al., 2005;
Tsuji and Kosaka, 2008; Raker et al., 2015). However, the
proinflammatory intestinal milieu in CD hinders the tolerogenic
profile of these cells (Iliev et al., 2009). During inflammation,
there is an increase in the number, maturation, and retention of
DC, contributing to inflammation (Middel et al., 2006; Verstege
et al., 2008). In CD, DC express higher levels of CD40 leading
to increased interactions with T-lymphocytes and the production
of great amounts of proinflammatory cytokines (Senhaji et al.,
2015) such as IL-6 and IL-12, which are related to microbial

changes (Ng et al., 2011) and dysregulation in T-cell apoptosis
(Atreya et al., 2000) and, also, IL-8 and TNF-α (Baumgart et al.,
2009). TNF-α is the key effector cytokine driving tissue injury
during intestinal inflammation (Garrett et al., 2007); it can
modulate intestinal mucus secretion and composition (McElroy
et al., 2011) and the epithelial barrier function (Al-Sadi et al.,
2016; Grabinger et al., 2017). In addition, NOD2 variants, which
are most widely detected genetic risk variants associated with CD
pathogenesis, disturb DC bacterial sensing, cytokine production,
and antigen presentation pathways (Cooney et al., 2010).

Innate lymphoid cells (ILC) cells are also involved in the
innate immune response in CD. Its biological relevance lies in
their capacity to sense environmental signals and to respond
with the secretion of cytokines, producing a profound impact
on epithelial cells (Maloy and Powrie, 2011; Sonnenberg and
Artis, 2012), and conditioning T-cell responses (von Burg et al.,
2015). In CD patients, there is an expansion of an intraepithelial
ILC1 subset that produces IFN-γ in response to stimulation
with IL-12 and IL-15 (Bernink et al., 2013; Fuchs et al., 2013),
possible implication of ILC2 in the development of intestinal
fibrosis through IL-13 secretion (Bailey et al., 2012), and
ILC3 accumulation in inflamed areas, where they contribute
to inflammation through increased IL-17 production and the
recruitment of other immune cells (Geremia et al., 2011).

Mucosal CD4+ T-cells are central players in maintaining a
proinflammatory cytokine response by pushing a predominantly
T-helper type 1 (Th1)-mediated inflammatory state in
environments where IL-12 is released by antigen-presenting cells
(APCs). For many years, it was accepted that CD was mainly
mediated by Th1 cells (Brand, 2009), based on the fact that an
elevation of the Th1 cytokines was observed in CD patients
(Fuss et al., 1996; Monteleone et al., 1997; Parronchi et al., 1997;
Pizarro et al., 1999). However, further studies had led to the
identification of another subset of CD4+ T characterized by
the production of IL-17A, IL-17-F, and IL-22, which mediate
T-helper type 17 (Th17) cells responses in CD (Strober and
Fuss, 2011). An increase in Th17 cytokines produced by Th17
cells in inflamed gut mucosa (Fujino et al., 2003; Nielsen et al.,
2003) as well as isolation and characterization of Th17 cells from
gut mucosa of patients with CD (Annunziato et al., 2007) has
supported the role of this cell population in IBD pathogenesis.
CD displays a complex frame where Th1 and Th17 responses
shift and depend on disease progression (Friedrich et al., 2019).

The differentiation of naïve T cells to Th17 cells is induced
primarily by IL-6 and transforming growth factor (TGF)-
β (Bettelli et al., 2006; Ivanov et al., 2006) and further
reinforced by IL-1β and IL-23 (Langrish et al., 2005; Chung
et al., 2009). IL-23 displays a central role in the maintenance
and terminal commitment of naïve cells (Stritesky et al.,
2008; McGeachy et al., 2009) and is implicated on the
proliferation and expansion of Th17 cell populations (Veldhoen
et al., 2006; Bettelli et al., 2007). IL-23R signaling in T
cells drives the accumulation of intestinal Th17 cells while
reducing the differentiation of tolerogenic FoxP3+ T-cells,
as well as a reduced production of IL-10 by T-cells (Ahern
et al., 2010). IL-23 induces T-cell expression of IL-17A, IL-
17F, TNF-α, and granulocyte macrophage colony-stimulating
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factor (GM-CSF) (Langrish et al., 2005; Tait Wojno et al., 2019).
Increased expression of IL-17A and IL-17F has been detected in
the mucosa of patients with active CD (Fujino et al., 2003; Nielsen
et al., 2003; Hölttä et al., 2008; Seiderer et al., 2008; Geremia
et al., 2011). In addition, genome association analysis has revealed
many IL-23R variants linked with CD (Cummings et al., 2007;
Cotterill et al., 2010), and some IL-23R loss of function mutations
are protective in both UC and CD (Kim et al., 2011). Therapies
targeted to IL-23 and its signaling pathways are promising
approaches in CD treatment as observed in other inflammatory
disorders such as psoriasis or multiple sclerosis (Neurath, 2017;
Visvanathan et al., 2018). Antibodies targeting the IL-23 signaling
are classified in those recognizing the p40 subunit shared by IL-
12 and IL-23 or the p19 subunit unique in IL-23. Ustekinumab
is an anti-p40 antibody with a favorable safety profile due to
low rate of adverse events that shows a high rate of response
and induce remission in moderate to severe CD patients (Feagan
et al., 2016). Results from a phase 2 clinical trial in CD patients
who failed in anti-TNF-α showed that selective IL-23 blockade
using brazikumab, an anti-p19 antibody, was associated with
clinical improvement at weeks 8 and 24, and higher serum
levels of IL-22 (Sands et al., 2017). Similarly, another anti-IL-
23-specific antibody, risankizumab, induced clinical remission in
CD patients with active disease at week 12 (Feagan et al., 2017).
Biological treatments targeting the IL-17 signaling are effective
in psoriasis (Langley et al., 2014). Nevertheless, antibody therapy
against IL-17, secukinumab, and its receptor IL-17R, brodalumab,
have demonstrated unexpected results in CD, since two different
clinical trials reported that the administration of secukinumab
and brodalumab in moderate to severe CD patients were not
effective and reported more adverse events and worsening of CD
(Hueber et al., 2012; Targan et al., 2016).

IL-22 is another Th17-derived cytokine whose implication in
IBD has been controversial. Some studies point to a protective
role in the intestinal epithelium, stimulating the production
of antimicrobial peptides (Okumura and Takeda, 2017), mucus
secretion (Sugimoto et al., 2008), intestinal cell proliferation and
survival (Zhang X. et al., 2019), and mucosal healing (Patnaude
et al., 2021), while others mark that IL-22 may drive intestinal
inflammation and gut epithelial cell death (Zha et al., 2019).
These data suggest that its role during intestinal inflammation
is highly context dependent. In fact, in the presence of
eosinophilia, which is common during intestinal inflammation,
IL-22 protective actions could be insufficient due to an increase
in IL-22-binding protein (IL-22BP) (Martin et al., 2016).

Intensive research aiming to elucidate the contribution of
Th17 responses to IBD have reported that IL-17 may exacerbate
(Zhang et al., 2006) or protect (Yang et al., 2008; O’Connor
et al., 2009) against intestinal inflammation depending on the
experimental model studied. Results from Zhang and colleagues
showed that IL-17R knockout mice presented reduced activity of
experimental colitis induced by trinitrobenzenesulfonic (TNBS)
acid. In line with this, the treatment with a soluble IL-17
receptor IgG fusion lessened intestinal inflammation induced by
TNBS. On the other hand, studies conducted in animal models
of colitis induced either by dextran sulfate sodium in IL-17
knockout mice or by CD45RBhi adoptive transfer using IL-17
or IL-17R-genetically deficient T-cells revealed an accelerated

disease, therefore suggesting a protective role of IL-17 in those
experimental systems. In order to determine the contribution of
both Th1 and Th17 responses in CD, Sakuraba et al. isolated
dendritic cells and lymphocytes from mesenteric lymph nodes
of patients with CD. The authors observed that isolated CD4+

T-cells were producing increased levels of IFN-γ and IL-17,
but isolated dendritic cells were activating CD4+T-lymphocytes
toward the production of IFN-γ (Sakuraba et al., 2009). Taken
together, these evidences suggest that BT might contribute to
modulate the inflammatory response in CD via enhancing a
Th1/Th17 response associated with the presence of bacteria or
their products, which perpetuates the progression of the disease
in a subgroup of patients.

The intestinal Treg population is relevant in the inflammatory
responses to BT in CD, as they oversee tissue repair and
immunological tolerance toward food antigens and microbiota
in the gut, contributing to intestinal homeostasis (Kim et al.,
2016; Tanoue et al., 2016; Xu et al., 2018). They belong to CD4+

lymphocytes and can suppress the immune response interacting
with different components of the innate and adaptive immune
response. Treg cells are highly heterogenous and express different
lineage-specific transcription factors and cellular markers in
different scenarios (Zhang et al., 2020). Treg cell populations
produce IL-10 and TGF-β, and they can be naturally synthesized
through thymic selection or induced after antigenic stimulation
outside the thymus (Roncarolo et al., 2006; Sakaguchi et al.,
2010), also in the gut by mucosal CD103+ dendritic cells via
a TGF-β and retinoic acid-dependent mechanism (Coombes
et al., 2007). Treg secretion of IL-10 is important to control
the gut balance. In fact, intestinal Th1-mediated inflammatory
responses result in spontaneous colitis in IL-10-deficient mice
(Davidson et al., 1996), and polymorphisms in the human
IL-10R result in exacerbated intestinal immune responses
(Glocker et al., 2009).

Changes in the percentage of Treg cells in patients with IBD
have been reported (Maul et al., 2005), and a decreased number
of CD4+ CD25+ FoxP3+ Treg cells have been observed in
the lamina propria of patients with CD-related NOD2 variants
(Rahman et al., 2010). Also, mutations in FOXP3 gene are
related to the development of IBD (Okou et al., 2014). In the
inflammatory milieu of CD, some groups have reported an
enhanced recruitment of Treg cells in mucosal areas, suggesting a
deficient suppressive activity during inflammation (Chamouard
et al., 2009). These could be explained through changes in its
cytokine profile similar to Th17 cells in the context of IBD
(Hovhannisyan et al., 2011; Ueno et al., 2013) and also a
diminished expression of transcription factors involved in Treg
regulation in CD (Qiao et al., 2013). On the other hand, recently,
a subset of Treg CD161+ cells has been found highly enriched in
the mucosa of CD patients, which are involved in wound healing
and associated with reduced inflammation (Povoleri et al., 2018).
All of these suggest that different Treg subsets could behave
differentially in IBD. Due to its immunomodulatory capacity,
therapies targeting this cell population are being assessed with
promising results (Desreumaux et al., 2012; Trotta et al., 2018;
Clough et al., 2020).

The microbiome is key in the equilibrium between Treg and
Th17 in the gut (Lochner et al., 2011; Ohnmacht et al., 2015;
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Sefik et al., 2015). Microbiota from IBD donors into germ-
free mice reduced the presence of RORγt+ Treg cells but
increased Th17 and Th2 populations (Britton et al., 2019).
On the other hand, commensal microbiota can promote
CD4+ CD25+ FoxP3+ Treg cells in vivo, which control
the innate inflammatory cascade to translocating microbes by
reducing proinflammatory cytokine production, reducing T-cell
proliferation, reducing dendritic cell co-stimulatory molecule
expression, and attenuating (NF)-κβ activation (O’Mahony
et al., 2008). SCFAs produced by Bifidobacteria and Clostridia,
like butyrate, cause inhibition of histone deacetylase (HDAC),
promoting FoxP3 expression (Arpaia et al., 2013) and production
of retinoic acid (Smith et al., 2013; Schilderink et al.,
2016) polysaccharide A of Bacteroides fragilis induces an
intestinal tolerogenic environment by promoting the IL-10-
producing Foxp3+ Treg population (Round and Mazmanian,
2010), and indole-3-aldehyde, produced by Lactobacillus reuteri,
is a tryptophan precursor involved in the plasticity of T
cells (Lamas et al., 2016). In addition, Clostridiodes spp.
mixture transplantation is also associated with increased
counts of intestinal Treg cells in mice (Atarashi et al., 2013;
Narushima et al., 2014).

EFFICACY OF ANTI-TNF-α TREATMENT
IN PATIENTS WITH BACTERIAL
TRANSLOCATION

Biologic treatments including anti-TNF-α, adhesion molecule
inhibitors, and p-40 IL-12/23 inhibitor, ustekinumab, are effective
therapies for patients with moderate to severe IBD (Katsanos
et al., 2019). Anti-TNF-α monoclonal antibodies were the first
biologic agents that demonstrated effectiveness in the treatment
of CD (Rutgeerts et al., 1999; Hanauer et al., 2002; Sands et al.,
2004; Xiao et al., 2016) as TNF-α is increased in the intestinal
mucosa of IBD patients (Breese et al., 1994; Dionne et al., 1997).
Increased intestinal TNF-α could be directly involved in BT, as
it can disrupt intestinal epithelial integrity (Al-Sadi et al., 2016;
Grabinger et al., 2017) and mediate tissue injury (Garrett et al.,
2007). However, it is known that 30–40% of patients with IBD
under anti-TNF therapy show a primary non-response, and up
to 50% may present adverse events or develop secondary non-
response over time (Ben-Horin and Chowers, 2011; Papamichael
et al., 2017). Focusing on the efficacy of anti-TNF-α therapy,
further research has also found that undetectable serum through
concentration of anti-TNF-α levels (Maser et al., 2006) and
decreased free TNF-α binding capacity of anti-TNF-α drugs
(Ainsworth et al., 2008) are predictors of poor response to anti-
TNF-α treatment of patients with CD. Even if serum levels of
TNF-α have also been proposed to predict the efficacy of anti-
TNF-α in CD patients (Martínez-Borra et al., 2002), several
studies have reported that serum TNF-α is not a good predictor
of clinical response to anti-TNF-α therapy (Ogawa et al., 2012).
Besides clinical factors and the development of antibodies against
anti-TNF-α agents (Baert et al., 2003), several other factors such
as BT and a susceptible genotype, intestinal dysbiosis, and even
the Treg population may have a role in this loss of response.

In the past, we investigated the effects of different gene
variants and BT in the efficacy of anti-TNF-α therapy in CD.
We identified a subgroup of CD patients characterized by
the presence of a variant NOD2 genotype, in combination
or not with a variant ATG16L1 genotype, who may need
an intensified anti-TNF-α drug schedule since they showed
increased bactDNA translocation, augmented inflammatory
response, and increased risk of relapse. In detail, the presence
of a variant NOD2 genotype, either alone or combined with
ATG16L1 variant genotype, was associated with increased
bactDNA translocation, and the presence of serum bactDNA
was associated with relapse at 6 months. Patients with bactDNA
showed increased proinflammatory cytokines response that was
further augmented in patients who were also carrying combined
NOD2/ATG16L1 variants. A variant NOD2 genotype correlated
with reduced phagocytic and bactericidal activities in neutrophils
and exacerbated in vitro TNF-α secretion in response to E. coli,
suggesting that neutrophils from CD patients carrying a variant
NOD2 genotype have altered bacterial clearance. Evaluation
on anti-TNF-α therapy on patients carrying NOD2/ATG16L1
combined genotypes revealed that most of these patients were
on an intensified anti-TNF-α drug schedule. Moreover, free anti-
TNF-α levels were significantly decreased in the serum of patients
with bactDNA translocation and a variant NOD2 genotype and,
especially, in patients with a combined NOD2/ATG16L1 variant,
suggesting that increased drug consumption is necessary on these
patients to promote an adequate tolerogenic response (Gutiérrez
et al., 2014). We further demonstrated that the presence of
bactDNA in CD patients is a significant independent risk factor
of short-term relapse in those in remission, especially in the ones
with mucosal lesions, suggesting that the presence of mucosal
damage is not essential for BT, but it contributes to it, in
synergy with bactDNA (Gutiérrez et al., 2016). In line with this,
we observed that the increase in bactDNA and TNF-α in CD
patients could be related with a variant in IL-26 gene. This
variant was associated with an impaired antibacterial clearance,
increased inflammatory cytokines, and an increment in anti-
TNF-α consumption in CD patients (Piñero et al., 2017). This
also contributes to explain why SNPs in IL-26 gene confer
genetic susceptibility to CD (Silverberg et al., 2009). All these
findings suggest that BT aggravates the inflammatory response
and predisposes to risk of relapse and need of intensified anti-
TNF-α drug therapies in susceptible CD patients.

It is well-known that levels of anti-TNF-α determine
the treatment response (Moore et al., 2016), but recent
studies manifest that intestinal dysbiosis might also play
a role in the efficacy of the biologic therapy. Therefore,
initial gut microbial composition and cytokine profile
before anti-TNF-α therapy, as well as anti-TNF-α-induced
microbial changes during the treatment are key in the
achievement of clinical remission (Jones-Hall and Nakatsu,
2016; Franzin et al., 2021) and IBD patients with greater
gut dysbiosis achieve clinical remission later (Aden et al.,
2019). The treatment with anti-TNF-α improves the intestinal
dysbiosis in CD by increasing SCFAs producing bacteria
like Anaerostipes, Blautia, Coprococcus, Faecalibacterium,
Lachnospira, and Roseburia (Kowalska-Duplaga et al., 2020;
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Seong et al., 2020) and decreasing bacterial species associated
with mucosal damage (Busquets et al., 2015; Ribaldone et al.,
2019). The relevance of intestinal microbiota in the efficacy of
current IBD treatments is certainly an open research field that
deserves more in-depth investigations.

Finally, the Treg population has been shown to actively
participate in the loss of response to anti-TNF-α. An increased
peripheral blood Treg cell population after anti-TNF-α therapy
administration is related with increased serum levels of TGF-
β and IL-10 and with the clinical improvement observed in
patients with CD (Di Sabatino et al., 2010; Guidi et al., 2013).
Indeed, we have also reported that Treg population is susceptible
to significantly increase after anti-TNF-α administration in CD
patients bearing a wild-type NOD2 genotype. Nevertheless, CD
patients carrying a polymorphism in NOD2 have lower available
serum levels of anti-TNF-α and an impaired capacity to induce
the Treg population. Altogether, these results suggest an impaired
immunological function in this subgroup of CD patients, as
demonstrated by increased serum levels of TNF-α. Accordingly,
most of these patients were on anti-TNF-α intensified therapy
and showed a more aggressive CD phenotype. Furthermore,
we found that CD patients showing perianal lesions had lower
circulating Treg population. Thus, immunophenotyping Treg
cells in blood of patients with CD can be a fast and helpful
methodology to anticipate not only the clinical response to
biological therapy but also a more aggressive phenotype of CD
(Juanola et al., 2014).

FUTURE DIRECTIONS

To predict CD behavior is a topic of strong interest that
would greatly improve the welfare of patients. The multifactorial
etiology of the disease makes it necessary to consider several
aspects from genetic to environmental factors in an attempt to
determine the risk of relapse (Timmer et al., 1998; Tibble et al.,

2000; Beaugerie et al., 2006; Takeuchi et al., 2006). However, the
clinical value, so far, is limited due to lack of specificity.

As shown in this review, many lines of evidence point to
the translocation of bacterial products as an important player
leading to uncontrolled inflammation in CD patients. Even if the
question still arises about BT as the cause or the consequence of
intestinal inflammation, it is widely accepted that host–bacterial
interactions influence CD. Therefore, evaluating the presence
of gut bacterial antigens at a systemic level may constitute a
new marker for increased risk of relapse among CD patients.
Of particular interest is the combination of BT and CD-related
susceptibility genes such as NOD2, which probably facilitates the
translocation of bacterial antigens; this is worth exploring in the
context of response to TNF-α antagonists and risk of relapse.

Further studies aimed at understanding the interaction
between the immune system, both at systemic and mucosal level,
gut microbiota, and genetic predisposition will help clinicians to
better control and individually treat CD patients in the future.
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Radiation-induced gastrointestinal (GI) tract toxicity halts radiotherapy and degrades
the prognosis of cancer patients. Physical activity defined as “any bodily movement
produced by skeletal muscle that requires energy expenditure” is a beneficial lifestyle
modification for health. Here, we investigate whether walking, a low-intensity form of
exercise, could alleviate intestinal radiation injury. Short-term (15 days) walking protected
against radiation-induced GI tract toxicity in both male and female mice, as judged
by longer colons, denser intestinal villi, more goblet cells, and lower expression of
inflammation-related genes in the small intestines. High-throughput sequencing and
untargeted metabolomics analysis showed that walking restructured the gut microbiota
configuration, such as elevated Akkermansia muciniphila, and reprogramed the gut
metabolome of irradiated mice. Deletion of gut flora erased the radioprotection of
walking, and the abdomen local irradiated recipients who received fecal microbiome
from donors with walking treatment exhibited milder intestinal toxicity. Oral gavage of
A. muciniphila mitigated the radiation-induced GI tract injury. Importantly, walking did not
change the tumor growth after radiotherapy. Together, our findings provide novel insights
into walking and underpin that walking is a safe and effective form to protect against GI
syndrome of patients with radiotherapy without financial burden in a preclinical setting.

Keywords: radiotherapy, radiation-induced gastrointestinal tract toxicity, intestinal inflammation, low-intensity
exercise, walking, gut microbiota, Akkermansia muciniphila

INTRODUCTION

As non-infectious diseases, cancers have been attributed as the leading cause of death globally.
It is estimated that there will be at least 10,000,000 new cases of cancer and 6,800,000 cancer
deaths from 2018 to 20401. Radiation therapy serves about 4,70,000 patients per year in the
United States, and up to 50% of cancer patients will undergo radiotherapy for either curative or
adjuvant purposes (Citrin, 2017). Radiotherapy is the first-line treatment for multiple cancers,
including head and neck tumors and abdominopelvic tumors. Although ionizing radiation kills

1https://gco.iarc.fr/tomorrow/home
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malignant tumor cells effectively, early and late adverse side
effects are common and grievously intertwined with the remedy
(De Ruysscher et al., 2019; Romesser et al., 2019). Iatrogenic
local irradiation for abdominopelvic cancers aligns with varying
degrees of gastrointestinal (GI) tract complications, covering
nausea, malabsorption, diarrhea, and intestinal obstruction,
which halt radiotherapy prematurely and degrade the life quality
of patients (Hauer-Jensen et al., 2014). To date, safe and
effective therapeutic options have been scarce to fight against
these complications in clinical application (Vozenin et al., 2019;
Whelan et al., 2019).

Bad living habits, such as smoking, drinking, and sedentary
lifestyle, emerge as potential pitfalls propelling nearly half
of cancers (Islami et al., 2018). The sedentariness has been
proved to precipitate the occurrence and development of
several cancers (Kerr et al., 2017). Lately, mounting evidence
corroborates that physical activity is beneficial for health,
including adjusting metabolism, preventing cancer occurrence
(Hespanhol Junior et al., 2015; Geng et al., 2019; Rezende
et al., 2019; Takahashi et al., 2019), and even synergizing
cancer treatment as an immune adjuvant or chemosensitizer
(Betof et al., 2015; Febbraio, 2017; Duggal et al., 2019).
Heretofore, most researches focus on vigorous exercise, which
carries potential cardiovascular risk and is not suitable for
frail patients with surgery or radiotherapy (Marijon et al.,
2011). As a form of low-intensity exercise, walking has been
proved to improve mental health and sleep quality and to
prolong the progression-free survival of patients with locally
advanced or metastatic colorectal cancer (CRC; Hamer and
Steptoe, 2008; Oja et al., 2018; Guercio et al., 2019; Tang
et al., 2019). However, whether walking can be employed as
a rehabilitation strategy for cancer patients with radiotherapy
remains unidentified.

Neonatal gut is colonized by microorganisms immediately
following birth. The gut microbiome of infant is modified
with development and participates in the formation and
improvement of innate and adaptive immunity (Milani et al.,
2017). Recently, studies on gut microbiota have experienced
a renaissance and explored the tight relationships between
enteric flora and host’s health. On the one hand, the gut
microbiota modulates metabolism and maintains energy balance
of hosts (Lim et al., 2017). On the other hand, intestinal
flora dysbiosis precipitates a broad range of intra-intestinal
diseases, such as inflammatory bowel disease (IBD) and CRC,
and extra-intestinal diseases, covering cardiovascular disorders,
diabetes, obesity, and neurodegenerative diseases (Gérard, 2016;
Pistollato et al., 2016; Tang et al., 2017; Leiva-Gea et al.,
2018; Ostojic, 2018; Fattorusso et al., 2019). Our previous
studies have identified the vital roles of intestinal microbes in
rehabilitation of radiation-induced GI tract toxicity (Cui et al.,
2017). Notwithstanding that heredity, diet, and antibiotic usage
are key determinants for gut flora configuration, lifestyle, stress,
and exercise have been proven to educate and tune the gut
microbiota community as well (Conlon and Bird, 2014; Zhong
et al., 2019). Notably, physical exercise modifies the gut bacteria
configuration to benefit the host’s haleness (Monda et al., 2017;
de Sire et al., 2020). In this study, we reported that short-term

walking reshaped the gut microbiota and mitigated radiation-
induced GI toxicity in both male and female mice without
accelerating the proliferation of cancer cells. Further exploration
demonstrated that the radioprotective effects of walking were
partly dependent on gut microbiota, such as Akkermansia
muciniphila. In brief, our findings provide new insights into
the function and underlying protective mechanism of walking
in the context of intestinal radiation toxicity in a preclinical
experimental setting.

MATERIALS AND METHODS

Mice
Male/female 6- to 8-week-old C57BL/6J mice or 4-week-old
male BALB/c athymic nude mice were purchased from Beijing
Huafukang Bioscience Co., Inc. (Beijing, China). Mice were
housed in the specific pathogen-free (SPF) level animal facility
at the Institute of Radiation Medicine (IRM), the Chinese
Academy of Medical Sciences (CAMS), and maintained in an
enriched environment with a temperature-controlled room in
a 12-h light–dark cycle, with food and water available. Before
the experiment, the mice were adapted to the experimental
environment for a week. Animal experiments were performed
according to the institutional guidelines approved by the Animal
Care and Ethics Committee of IRM-PUMC (the Ethical Approval
number is IRM-DWLL-2019096), which complied with the
Guide for the Care and Use of Laboratory Animals and the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Walking Protocol
The speed of walking (defined as less than 6 m/min in
mouse models) was determined firstly according to the
previous studies (Bellardita and Kiehn, 2015; Caggiano
et al., 2018). Analysis of the movement behavior and the
breath measurement of mice showed that compared with
6 m/min, 35 min of 1 m/min walking is a sustainable
way of exercise for mice under pathological conditions,
which ensures the quality and quantity of the walking
(Supplementary Figure 1). Taking the physical exercise
ability of the irradiated mice or patients with radiotherapy,
1 m/min walking was finally selected for intervention in the
mice. In order to synchronize the segmented radiotherapy
strategy for clinical cancer patients, walking strategy was
adjusted to 6 days per week. Due to the physical fitness of
the BALB/c athymic nude mice, the daily time and speed of
walking were reduced on the basis of walking in C57BL/6J mice
(30 min of 1 m/min). All mice completed the walking with
quality and quantity.

Radiation Study and Experimental Group
A Gammacell-40 137Cs irradiator (Atomic Energy of Canada
Limited, Chalk River, ON, Canada) at a dose rate of 0.88 Gy/min
was used for all experiments (Con, control; TAI, total abdominal
irradiation; W, walking; FMT, fecal microbiota transplantation;
ABX, antibiotic cocktail; ABXW, antibiotic cocktail and
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walking). The C57BL/6J mice were divided into Con, TAI,
TAI + W, TAI + FMT, ABX, and ABXW five groups; and
mice in each group except for Con group received 12 Gy
of γ-ray TAI when the body weight reached 19–20 g (Li
et al., 2020a). The mice in TAI + W group maintained
walking on the treadmill (Beijing Zhongshidichuang Science
and Technology Development Co., Ltd., Beijing, China)
for 15 days (1 m/min, 35 min/day, 6 days/week) following
radiation exposure, while TAI group was maintained on
fasting and water deprivation for 35 min to eliminate
the influence of food and water. For TAI + FMT group,
abdominal local irradiated mice were administrated with
fecal microbiome via oral route (Cui et al., 2017). The
donors were abdominal local irradiated male C57BL/6J
mice with walking treatment (based on the “Walking
protocol”). The mice in ABX group were housed with
drinking water supplemented with an antibiotic cocktail
(ABX) (vancomycin, metronidazole, ciprofloxacin, ampicillin,
and streptomycin) that can subvert existing gut microbes
(Xiao et al., 2020), while ABXW group maintained the walking
treatment for 15 days during ABX treatment. During the
non-experimental period, the water and food were available
ad libitum.

Culture of Akkermansia muciniphila and
Akkermansia muciniphila
Transplantation Treatment
A. muciniphila MucT (ATCC BAA-835) was cultured in
brain heart infusion broth containing 10 mg/L of resazurin
(an oxidation–reduction indicator) under strict anaerobic
conditions. A representative culture stock was used to
determine the CFU/ml under anaerobic conditions by plate
counting using mucin media containing 1% agarose. This
culture was diluted with anaerobic phosphate-buffered saline
(PBS) to a final concentration of 1.5 × 108 CFU/100 µl.
To explore the effects of A. muciniphila on radiation-
induced intestinal injury, the irradiated mice (12 Gy of
TAI) were treated with an oral administration of A. muciniphila
(1.5 × 108 CFU) suspended in sterile PBS for 15 days, while
the contrast mice were given sterile PBS with equivalent
volume. For the quantitative analysis of A. muciniphila in
colon, the colons of mice were cut lengthwise; and few
feces and mucus layer were scraped off with sterile cotton
brush. Then the DNA was extracted by using TIANamp
Stool DNA kit (TIANGEN, Beijing, China) and used
for q-PCR.

Cell Culture
Human CRC cell line HCT-8 or human lung cancer cell
line A549 were obtained from the American Type Culture
Collection (ATCC) and certified to be mycoplasma-free. The
cells were cultured with 10% fetal bovine serum (Gibco,
Grand Island, NY, United States), 100 U/ml of penicillin, and
100 mg/ml of streptomycin and grown at 5% CO2 and 37◦C
(Van Hoorde et al., 2000).

Tissues Collection
After 15 days of walking treatment or A. muciniphila
supplementation treatment, the C57BL/6J mice were sacrificed
to assess the inflammation of the intestine. The length of
colon was measured (Xiao et al., 2020), and small intestine
tissue was removed for RNA isolation, protein extraction, and
histological staining.

Quantification of the Expression of IL-1β,
IL-6, TNF-α, and Reactive Oxygen
Species by ELISA
Small intestine tissues in each experimental group were ground
with 200 µl of saline, followed by centrifugation for 10 min at
6,000 rpm and 4◦C. Protein levels were measured from the clear
supernatant using ELISA kit (Mlbio, Shanghai, China) according
to the manufacturer’s instructions. Optical density was read at
450 nm (Rayto, Shenzhen, China).

RNA Isolation and Quantitative Reverse
Transcription Real-Time PCR
Total RNA was extracted from intestine tissues using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States) according
to the manufacturer’s protocol. Complementary DNA was
synthesized from total RNA using poly(A)-tailed total RNA and
reverse transcription primer with ImPro-II Reverse Transcriptase
(Promega, Madison, WI, United States), according to the
manufacturer’s protocol. The qRT-PCR was performed according
to the instructions of Fast Start Universal SYBR Green
Master (Rox) (Roche Diagnostics GmbH, Mannheim, Germany).
Experiments were conducted in duplicate in three independent
assays. Relative transcriptional folds were calculated as 2−11Ct.
GAPDH was used as an internal control for normalization. All
primers are listed in Supplementary Table 1.

Histology
Following euthanasia, small intestine tissues of C57BL/6J
mice were fixed in 4% buffered formalin overnight at room
temperature and then embedded in paraffin. Tissues were
sectioned at 5-µm thickness and co-stained with hematoxylin
and eosin (H&E) using HE Staining Kit (Solarbio, Beijing, China)
(Cardiff et al., 2014). For periodic acid–Schiff (PAS) staining,
the small intestines of mice were fixed in Carnoy’s solution
(absolute ethanol:chloroform:glacial acetic acid = 6:3:1) for 3 h.
Dewaxed sections were hydrated and incubated in 1% periodic
acid for 10 min followed by incubation in Schiff ’s reagent for
10 min. Sections were counterstained with Mayer’s hematoxylin
for 30 s and then washed and dehydrated before mounting with
Pertex. Immunohistochemical (IHC) staining of tumor samples
from BALB/c athymic nude mice were performed as previously
reported (Xiao et al., 2020); and the primary antibody of rabbit
anti-Ki-67 (Proteintech Group, Chicago, IL, United States) was
used. Categorization of immunostaining intensity was performed
by three independent pathologists. Sections were examined under
light microscopy.
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In vivo Tumor Xenograft Assay
HCT-8 (or A549) cells were harvested and suspended at
2 × 107 per ml with sterile normal saline. Groups of
4-week-old-male nude mice were subcutaneously injected in
the armpit with 200 µl of cell suspensions (Xiao et al., 2020).
When the tumor volume reached approximately 100 mm3,
the mice were divided into two groups randomly based on
the sizes of the tumors (n = 8 per group) (Sack et al., 2011;
Martín-Ruiz et al., 2020) and received 10 Gy of radiotherapy
(2 Gy × 5 day) (Kogelnik and Withers, 1978; Xiao et al.,
2020). For the irradiation, mice were positioned under a lead
shield so that only the tumor area was exposed. The mice in
TAI + W group maintained the walking treatment for 15 days
following radiotherapy, while TAI group maintained fasting
and water deprivation for the same time. Tumor growth was
measured every 3 days. Tumor volume (V) was monitored
by measuring the length (L) and width (W) with calipers
and calculated with the formula V = (L × W2) × 0.5. After
15 days, tumor-bearing mice were sacrificed, and the tumors were
excised and weighed.

Bacterial Diversity Analysis
Stool samples were freshly collected from two independent
experiments and stored at −80◦C until use. DNA was
extracted from the stool using the Power Fecal R© DNA
Isolation Kit (MoBio, Carlsbad, CA, United States). The
DNA was recovered with 30 ml of buffer in the kit. PCR
products were mixed in equidensity ratios. Then, mixture
PCR products were purified with Qiagen Gel Extraction Kit
(Qiagen, Hilden, Germany). The 16S ribosomal RNA (rRNA)
V4 gene was analyzed to evaluate the bacterial diversity using
lonS5TMXL lon 530 Chip (Thermo Fisher, Waltham, MA,
United States). Sequence analysis was performed by Uparse
software (Uparse v7.0.1001)2. Sequences with ≥97% similarity
were assigned to the same operational taxonomic units (OTUs).
Representative sequence for each OTU was screened for further
annotation. For each representative sequence, the Silva123
Database was used based on RDP classifier (Version 2.2)3

algorithm to annotate taxonomic information. Briefly, each
cohort contains 16 mice, and four mice share one cage. For
gut microbiota analysis, we collected two fecal pellets from
each cage to avoid cage effects. The primers are listed in
Supplementary Table 1.

Untargeted Metabolomics–Metabolite
Extraction
Feces were individually grounded with liquid nitrogen, and
the homogenate was suspended with prechilled 80% methanol
and 0.1% formic acid (FA) by well vortexing. The samples
were incubated on ice for 5 min and then were centrifuged
at 15,000 rpm, 4◦C for 5 min. Some of supernatant was
diluted to final concentration containing 60% methanol by liquid
chromatography–MS (LC-MS)-grade water. The samples were

2http://drive5.com/uparse/
3http://sourceforge.net/projects/rdpclassifier/

subsequently transferred to a fresh Eppendorf tube with 0.22-
µm filter and then were centrifuged at 15,000 g, 4◦C, for 10 min.
Finally, the filtrate was injected into the LC-MS/MS system
analysis (Xiao et al., 2020).

Untargeted
Metabolomics—Ultra-High-Performance
Liquid Chromatography–MS/MS Analysis
LC-MS/MS analyses were performed using a Vanquish UHPLC
system (Thermo Fisher, Waltham, MA, United States) coupled
with an Orbitrap Q Exactive HF-X mass spectrometer (Thermo
Fisher, Waltham, MA, United States). Samples were injected
into a Hyperil Gold column (100 × 2.1 mm, 1.9 µm) using
a 16-min linear gradient at a flow rate of 0.2 ml/min. The
eluents for the positive polarity mode were eluent A (0.1% FA
in water) and eluent B (methanol). The eluents for the negative
polarity mode were eluent A (5 mM of ammonium acetate,
pH 9.0) and eluent B (methanol). The solvent gradient was
set as follows: 2% B, 1.5 min; 2%–100% B, 12.0 min; 100% B,
14.0 min; 100%–2% B, 14.1 min; and 2% B, 16 min. Q Exactive
HF-X mass spectrometer was operated in positive/negative
polarity mode with spray voltage of 3.2 kV, capillary temperature
of 320◦C, sheath gas flow rate of 35 arb, and aux gas
flow rate of 10 arb.

Untargeted Metabolomics—Data
Analysis
The raw data files generated by UHPLC-MS/MS were
processed using the Compound Discoverer 3.0 (CD 3.0,
Thermo Fisher, Waltham, MA, United States) to perform
peak alignment, peak picking, and quantitation for each
metabolite. The main parameters were set as follows: retention
time tolerance, 0.2 min; actual mass tolerance, 5 ppm; signal
intensity tolerance, 30%; signal/noise ratio, 3; and minimum
intensity, 100,000. After that, peak intensities were normalized
to the total spectral intensity. The normalized data were
used to predict the molecular formula based on additive
ions, molecular ion peaks, and fragment ions. And then
peaks were matched with the mzCloud4 and ChemSpider5

database to obtain the accurate qualitative and relative
quantitative results.

Statistical Analysis
Each experiment was repeated at least three times. Data were
assessed with normal distribution using the Kolmogorov–
Smirnov test. The data are presented as the means ± SD with
respect to the number of samples (n) in each group. Significance
was assessed by comparing the mean values using Student’s t-test
and Wilcoxon rank sum test for independent groups, as follows:
∗p < 0.05; ∗∗p < 0.01; and ∗∗∗p < 0.005. Results with p < 0.05
were considered statistically significant.

4https://www.mzcloud.org/
5http://www.chemspider.com/
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RESULTS

Walking Alleviates Radiation-Induced
Gastrointestinal Tract Injuries in Male
Mice
All experimental mice were exposed to abdomen local irradiation.
Then, one cohort of mice was enforced to walk (35 min of
1 m/min, Supplementary Figure 1) for 2 weeks. As shown
in Figure 1A, walking did not change the body weight loss
of irradiated mice. To address the effects of walking on
radiation-induced GI toxicity, we assessed the colon length
and histological structure of the small intestines. Intriguingly,
mice with walking treatment had longer colon (Figures 1B,C),
denser small intestinal villi, and more goblet cells (Figure 1D)
than did the mice with irradiation only. In addition, abdominal
radiation stimuli elicited the syndromes for enteritis, as judged
by the upregulation of inflammatory factors expression in the
small intestine; however, short-term walking erased the elevation
(Supplementary Figure 2; Figures 1E–I). Meanwhile, walking
reduced the level of intestinal oxidative stress following ionizing
radiation (Figures 1I,J). Together, our findings demonstrate that
walking as a form of low-intensity exercise protects against
radiation-induced GI tract toxicity in male mice.

Walking Reshapes Gut Microbiota
Configuration Following Radiation
Challenge
Given the close relationship between the gut microbiota and
the radiation-induced GI tract toxicity, we performed 16S rRNA
gene amplicon surveys to analyze the bacterial composition in
fecal pellets from abdomen local irradiated mice with or without
short-term walking treatment. As shown in Figures 2A–C,
2 weeks of walking treatment decreased the alpha diversity of
gut flora in the irradiated mice. Reversely, the beta diversity of
microorganism in droppings was increased from the mice with
walking treatment (Figure 2D; Supplementary Figures 3A–C).
Weighted principal coordinates analysis (PCoA) and non-
metric multidimensional scaling (NMDS) further exhibited an
obvious separation of enteric bacteria between the two cohorts,
indicating that walking indeed remolds the radiation-shifted
intestinal bacterial profile (Figures 2E,F). In detail, the mice
with short-term walking treatment showed a predominance of
Dubosiella, Bacteroides, Akkermansia, and Lactobacillus at the
genus level (Figures 2G,H; Supplementary Figures 3D–F). Next,
the analysis of metabolome of gut microbiome showed that
walking propelled a variation in metabolite profile (Figures
2I,J; Supplementary Figures 3G,H), indicating that walking not
only alters the gut microbiota structure but also impacts the
function of gut flora. Together, our observations demonstrate
that short-term walking restructures the gut microbiome after
radiation exposure.

Walking Mitigates Intestinal Radiation
Toxicity Depending on Gut Microbiota
To find out whether walking mitigating radiation-induced GI
tract toxicity depends on gut microbiota, an antibiotic cocktail

(ABX) was added in the drinking water to remove the gut
microbes of the irradiated mice. Intriguingly, ABX treatment
hindered the radioprotection of walking toward GI injuries,
as judged by shortening colon, loss of intestinal villi, reduced
goblet cells, and elevated inflammatory status (Supplementary
Figure 4), implying that gut microbiota might contribute to the
radioprotection of short-term walking.

Next, FMT was performed to further validate the roles
of gut microbiota in the system. The donor mice walked
for 2 weeks after abdomen local irradiation (Supplementary
Figure 5). Same with the donors, the alpha diversity of gut
bacteria in irradiated recipients declined as compared with that
of the mice with irradiation only (Figures 3A,B). Although
weighted_unifrac analysis showed no change of the enteric
microbiota statistically (Figure 3C), PCoA and NMDS plot was
conducted to visualize differences in bacterial taxa composition
between the two groups (Figures 3C–E; Supplementary
Figure 6D). In parallel, FMT caused an enrichment on
Dubosiella, Bacteroides, Akkermansia, and Lactobacillus at the
genus level in recipients compared with saline-treated controls
(Figure 3F; Supplementary Figures 6E–G), indicating the gut
microbiota community of recipients is shifted and similar to that
of the donors after FMT. Consistent with the aforementioned
results, recipients shared the same dynamic changes of body
weight to irradiated controls (Supplementary Figure 6H) and
had longer colon (Figure 3G), denser intestinal villi, more
goblet cells (Figure 3H), lower proinflammatory cytokine levels,
and fewer reactive oxygen species (ROS) production than in
saline treatment (Figures 3I–L; Supplementary Figures 6I–K).
Together, our observations corroborate that walking fights
against radiation-induced GI tract injuries at least partly
depending on modulating gut microbiota.

Akkermansia muciniphila Mitigates
Radiation-Elevated Inflammatory Status
in Digestive Tract
The 16S rRNA sequencing analysis showed a predominance of
A. muciniphila at the genus level following walking and FMT
experiments. In addition, A. muciniphila has been reported to be
negative correlation with numerous diseases including IBDs, and
the frequency of the bacteria was increased in dextran sodium
sulfate (DSS) mice with running treatment. Thus, we speculated
that as a potential probiotic, A. muciniphila might be the key
element for the radioprotection of walking. The abdominal
irradiated mice were treated with A. muciniphila (1.5× 108 CFU)
via oral route for 15 days. As shown in Figure 4A, the
relative abundance of A. muciniphila in feces increased after
the treatment, validating that A. muciniphila was colonized in
the intestinal tract of mice successfully. Although oral gavage of
A. muciniphila did not change the body weight of irradiated mice
(Figure 4B), the length of colon and the integrity of intestinal
villi were improved (Figures 4C,D; Supplementary Figure 7A).
In addition, A. muciniphila treatment reduced the levels of
inflammatory markers in the small intestine (Figures 4E–K;
Supplementary Figure 7B), suggesting that the enrichment of
A. muciniphila in lower digestive tract ameliorates radiation-
induced enteritis. Together, our observations demonstrate
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FIGURE 1 | Walking as a non-pharmacological regimen alleviates radiation-induced GI tract injuries in male mice. Male mice were exposed to 12 Gy of TAI, and
TAI + W group maintained walking for 15 days, and TAI group had no treatment. Then the colon and small intestine tissues were obtained at day 16, n = 10 per
group. (A) The body weight of male mice in the three groups. (B) Photographs of dissected colon from male mice in the three groups. (C) Statistical results of colon
length between two groups. (D) The morphology of the small intestine from male mice in the three groups is shown by H&E and PAS staining. The black arrows point
to the goblet cells. (E–I) The expression levels of IL-1β, IL-6, TNF-α, NLRP3, and NRF2 were examined in small intestine tissues from male mice by qRT-PCR.
(J) The levels of ROS in the small intestine of male mice were measured by ELISA. Significant differences are indicated: *p < 0.05, **p < 0.01, and ***p < 0.005 by
Student’s t-test between two cohorts. GI, gastrointestinal; TAI, total abdominal irradiation; W, walking; PAS, periodic acid–Schiff; ROS, reactive oxygen species.

that A. muciniphila might bolster the radioprotection of
walking treatment.

Walking Fights Against
Radiation-Induced Gastrointestinal Tract
Toxicity in Female Mice
Given that sexual dimorphism affected the treatment efficacy in
radiation syndrome (Cui et al., 2019), we elucidated whether
walking as a non-pharmacological remedy can be used to protect
females against GI tract toxicity following irradiation. Same to the
male counterparts, abdomen local irradiated female mice with
short-term walking treatment did not show further weight loss
(Figure 5A). As expected, the female mice with walking treatment
had longer colons, denser small intestinal villi, and more goblet
cells (Figures 5B–D). ELISA and qRT-PCR assays revealed

that walking reduced the expression of inflammatory factors
(Figures 5E–H; Supplementary Figures 8A,B) and the level of
oxidative stress (Figures 5I,J). Together, our findings indicate
that walking is an efficacious strategy to mitigate radiation-
induced GI tract toxicity in both male and female mice.

Walking Does Not Alter the Proliferation
of Cancer Cells Following Radiation
Exposure
To find out the safety of walking for cancer patients with
radiotherapy, we injected HCT-8 (or A549) cells into nude
mice subcutaneously and recorded the tumor growth after local
radiation stimuli with or without walking treatment. Intriguingly,
walking did not change the proliferation of HCT-8 (or A549) cells
and the terminal weight of the xenografts (Figures 6A–C,E–G).
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FIGURE 2 | Walking reshapes gut microbiota configuration following radiation challenge. The gut bacterial composition structures in male mice of TAI (radiation
alone) and TAI + W (walking after radiation) groups were measured by 16S rRNA high-throughput sequencing at 16 days following TAI exposure, n = 7 (TAI group) or
n = 8 (TAI + W groups). The gut metabolite composition was detected by untargeted metabolomics at 16 days following TAI exposure, n = 6 (TAI group) or n = 6
(TAI + W groups). (A–C) Alpha diversity was measured: (A) the observed species number, (B) Chao1 diversity index, and (C) Shannon diversity index. (D) The beta
diversity of intestinal bacteria was compared by weighted t-test analysis. (E,F) PCoA (weighted) and NMDS were performed to assess the alteration of gut bacteria
taxonomic profile from male mice in two groups. (G) The relative abundances of the top 10 varied strain bacteria at the genus level in male mice of two groups.
(H) The abundance of Akkermansia in male mice of two groups. (I) The PLSDA score of positive metabolites in feces in the two groups. (J) The volcano diagram of
positive metabolites in feces. (A–C) Significant differences are indicated: Wilcoxon rank sum test. (D,H) Significant differences are indicated: *p < 0.05 by Student’s
t-test between two cohorts. TAI, total abdominal irradiation; W, walking; PCoA, principal coordinates analysis; NMDS, non-metric multidimensional scaling; PLSDA,
partial least-squares discriminant analysis.

Then we tested the expression of Ki-67, a cell proliferative marker,
in the tumor tissues from the two groups. IHC assay revealed that
walking did not alter the expression of Ki-67, further indicating
that walking does not interfere with the tumoricidal effects of
radiation therapy (Figures 6D,H).

DISCUSSION

Radiotherapy as a milestone for oncotherapy is applied to more
than 50% of the global cancer patients, but the radiation toxicity
of the whole body, especially for adjacent organs, is urgently

worrisome (Citrin, 2017; De Ruysscher et al., 2019). For example,
abdomen local irradiation, as a common means for treating
abdominopelvic tumor, always leads harm to the hematopoietic
system, GI tract, and even reproductive system, which is near
the exposed area (Rappleye et al., 1975; Zhang et al., 2016;
Oktem et al., 2018). As an organ within the treatment field
for all intra-abdominal, retroperitoneal, and pelvic tumors, the
intestine gets interfered unavoidably during or after radiotherapy,
manifesting in acute (or chronic) inflammation, apoptosis, and
fibrosis (Wei et al., 2016). In the United Kingdom, about 90%
of patients receiving pelvic radiation reported alterations in their
bowel function, which leads to negative effects on daily activity
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FIGURE 3 | Walking mitigates intestinal radiation toxicity depending on gut microbiota. Male mice were exposed to 12 Gy of TAI, and for TAI + FMT group, irradiated
mice were administrated with fecal microbiota via oral route from male donors that maintained walking following radiation exposure. The gut bacterial composition
structures in male mice of TAI and TAI + FMT groups were measured by 16S rRNA high-throughput sequencing at 16 days after TAI exposure, n = 8 per group. The
colon and small intestine tissues were obtained at day 16, n = 10 per group. (A,B) Alpha diversity was measured: (A) the observed species number and (B) Chao1
diversity index. (C) The beta diversity of intestinal bacteria. (D,E) PCoA (weighted) and NMDS were performed to assess the alteration of gut bacteria taxonomic
profile from male mice in two groups. (F) The abundance of Akkermansia in male mice of two groups. (G) Photographs of dissected colon and morphology of the
small intestine shown by H&E from male mice in the two groups. (H) Statistical results of colon length between two groups. (I,K) The expression levels of IL-1β and
NRF2 were examined in small intestine tissues from male mice by qRT-PCR. (J,L) The levels of IL-1β and ROS in the small intestine of male mice were measured by
ELISA. (A–C) Significant differences are indicated: Wilcoxon rank sum test. (D–L) Significant differences are indicated: *p < 0.05, **p < 0.01, and ***p < 0.005 by
Student’s t-test between two cohorts. TAI, total abdominal irradiation; FMT, fecal microbiota transplantation; PCoA, principal coordinates analysis; NMDS,
non-metric multidimensional scaling; ROS, reactive oxygen species.

in up to 50% (Andreyev, 2007; Takemura et al., 2018). Despite
great advancement in delivery technology of radiotherapy [e.g.,
FLASH-RT and accelerated partial breast irradiation (APBI)],
these adverse side effects remain an overwhelming medical
challenge (Vozenin et al., 2019; Whelan et al., 2019). In addition,
mounting evidence proves that proinflammatory cytokines,
such as interleukin-1β, interleukin-18, and inflammatory CC
chemokines, are associated with carcinogenesis (Vetrano et al.,
2010; Chen and Núñez, 2011). The chronic proinflammatory
state of intestine hijacking immune system precipitates tumor
outgrowth (Biragyn and Ferrucci, 2018; Olafsson et al., 2020).
All the reports highlight the ill effects of intestinal inflammation
in tumorigenesis and oncotherapy. Importantly, there are no
safe and effective therapeutic approaches to overcome intestinal

radiation injury currently, and some studies show that the
secondary reactions of the corresponding drugs reduce patient
tolerability and even interrupt the treatment (Rios et al.,
2014; Lawrie et al., 2018). In this study, we observed that
short-term walking, a low-intensity physical activity, drove
milder GI tract toxicity, especially lower level of intestinal
inflammation. The findings suggest that walking might be a
rehabilitation maneuver for cancer patients with radiotherapy.
Physical activities are identified as low, moderate, and vigorous
intensities on the basis of those metabolic equivalents (Martínez
et al., 1997). Different intensities of exercise elicit different
responses (Marijon et al., 2011; Schnohr et al., 2015). Running
as a form of vigorous exercise receives more attention; however,
the intertwined adverse effects on knee and heart are still an
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FIGURE 4 | Akkermansia muciniphila (AKK) mitigates radiation-elevated inflammatory status in digestive tract. Male mice were exposed to 12 Gy of TAI; and for AKK
group, the male mice were orally administrated with A. muciniphila (1.5 * 108 CFU) for 15 days following radiation challenge, n = 10. (A) The relative abundance of
A. muciniphila in the colon was detected by q-PCR. (B) The body weight of male mice in the two groups. (C) Photographs of dissected colon and morphology of the
small intestine shown by H&E from male mice in the two groups. (D) Statistical results of colon length between two groups. (E–G) The expression levels of IL-6,
TNF-α, and NRF2 were examined in small intestine tissues from male mice by qRT-PCR. (H–K) The levels of IL-1β, IL-6, TNF-α, and ROS in the small intestine of
male mice were measured by ELISA. Significant differences are indicated: *p < 0.05, and **p < 0.01 by Student’s t-test between two cohorts. TAI, total abdominal
irradiation; ROS, reactive oxygen species.

issue (Whyte et al., 2008; Alentorn-Geli et al., 2017). Compared
with running, walking is a more comfortable and feasible form
of exercise and can be acceptable to weak patients undergoing
radiotherapy. Many meta-analyses have revealed that walking
reduces cardiovascular risk, governs body mass index, and
regulates blood glucose and lipid (Hamer and Steptoe, 2008; Oja
et al., 2018). In this study, walking did not cause weight loss
in experimental mice, indicating that walking is a kind of safe
exercise for cancer patients with radiotherapy. Importantly, due
to the low-intensity and short exercise time per day, walking is
suitable for almost all mobile cancer patients without economic
burden. Sexual dimorphism impacts the curative effects and the

prognosis of cancer patients (Cui et al., 2019). Thus, we collected
the data from male and female mouse models in this study and
reported that walking is applicable to cancer patients in both sexes
to improve the prognosis following radiotherapy.

National Comprehensive Cancer Network (NCCN)
Guidelines point out that radiotherapy is the optional remedy
for pelvic and abdomen tumors including prostate cancer (early,
middle, and late stages) and cervical cancer (invasive cancer of
various stages) and thoracic tumors such as breast cancer (early,
locally advanced and metastatic breast cancer). In this study,
we identified that walking did not accelerate the proliferation
of cancer cell in tumor xenograft models. Although the model
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FIGURE 5 | Walking protects against radiation-induced GI tract toxicity in female mice. Except for female mice in Con group, female mice of the other two groups
were exposed to 12 Gy of TAI, TAI + W group maintained walking for 15 days, and TAI group had no treatment. (A) The body weight of male mice in the three
groups. (B) Photographs of dissected colon from male mice in the two groups. (C) Statistical results of colon length between two groups. (D) The morphology of the
small intestine from male mice in the two groups was shown by H&E and PAS staining. The black arrows point to the goblet cells. (E–G) The expression levels of
IL-6, TNF-α, and NRF2 were examined in small intestine tissues from male mice by qRT-PCR. (H–J) The levels of IL-6, TNF-α, and ROS in the small intestine of male
mice were measured by ELISA. Significant differences are indicated: *p < 0.05, **p < 0.01, and ***p < 0.005 by Student’s t-test between two cohorts. GI,
gastrointestinal; Con, control; TAI, total abdominal irradiation; W, walking; PAS, periodic acid–Schiff.

cannot be used to evaluate the stage of cancers, we focused on
the ameliorating effect of walking on radiotherapy-intertwined
intestinal toxicity. Therefore, all the patients with radiotherapy
suffering from GI tract syndrome could perform walking to
mitigate the complications.

Millions of commensal microbes inhabit the GI tract
of mammals and are involved in immune regulation and
energy metabolism. Intestinal microorganism imbalance propels
multiple diseases. More and more studies suggest that gut
microbiota plays vital roles in intestinal radiation injury
(Touchefeu et al., 2014; Huang et al., 2019). Clinical trials

identify that exercise indeed improves the prognosis of cancer
patients; however, the underlying mechanism remains confusing
(Wang et al., 2011; Bjerre et al., 2019; Lundt and Jentschke,
2019). In light of the close relationship between exercise and
gut microbiota, the irradiated mice were treated with antibiotic
cocktail or FMT in the present study. Gut flora deletion erased
the radioprotection of walking, and recipients harboring gut
microbes from donor with walking treatment exhibited milder
GI tract injuries. All the results indicated that radioprotection
of walking might be partly dependent on gut bacterial structure
reorganization. Walking spurred an enrichment on some
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FIGURE 6 | Walking did not alter the proliferation of cancer cells following radiation exposure. We subcutaneously injected HCT-8 or A549 tumor cells into the armpit
of nude mice; then the mice received 10 Gy of radiotherapy (2 Gy * 5 days) when the tumors reached 100 mm3. The growth of tumors was observed in mice with
walking (TAI + W) or not (TAI). The tumor volume was recorded during the tumorigenicity process every 2 or 3 days, n = 8 per group. (A–C) The growth curves of
tumors, tumor weights, and representative image of excised tumors of HCT-8 group. (D) The expression levels of Ki-67 in HCT-8 tumor tissues were examined by
IHC staining. (E–G) The growth curves of tumors, tumor weights, and representative image of excised tumors of A549 group. (H) The expression levels of Ki-67 in
A549 tumor tissues were examined by IHC staining. GI, gastrointestinal; Con, control; TAI, total abdominal irradiation; W, walking; PAS, periodic acid–Schiff; IHC,
immunohistochemical.

FIGURE 7 | Illustration of walking for the alleviation of radiation-induced intestinal inflammation.
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intestinal bacteria, such as Akkermansia, Bacteroides, Dubosiella,
and Lactobacillus. Bacteroides shows an enrichment at the early
stage after irradiation, implying that the bacteria might be a
driver for radiation toxicity (Wang et al., 2019; Li et al., 2020b).
Yet the effect of Dubosiella on enteritis is still controversial
(Sheng et al., 2020). Lactobacillus as well-known probiotics have
been proved to be associated with improvement in patients
suffering from radiation syndrome in clinical trials (Linn et al.,
2019). A recent study has reported that A. muciniphila improves
intestinal radiation injury following whole body irradiation (Kim
et al., 2021). Notably, the experimental mice in the present study
were exposed to abdominal local irradiation, which is more
similar to iatrogenic irradiation such as radiotherapy for pelvic
and abdominal tumors. In addition, the published study focuses
on the relationship between A. muciniphila supplement and the
function of intestinal stem cells. Given that radiation-induced
gastroenteritis and colitis are common adverse side effects in
cancer patients with systemic therapy or radiotherapy (Jairam
et al., 2019), we wondered whether A. muciniphila might be
employed to protect against radiation intestinal inflammation in
this study. We treated irradiated mice with A. muciniphila via
oral route. A. muciniphila replenishment reduced inflammation
levels and increased integrity of the small intestine after local
radiation stimuli. The results bolster that A. muciniphila might
be a potential probiotic for cancer patients with radiotherapy.
However, the optimal use method of A. muciniphila in clinical
application required further study.

There are still some limitations requiring further study to pave
the way for walking to be integrated into clinical application.
Firstly, although the walking protocol ensures the quality and
quantity of exercise, involuntary walking cannot be completely
avoided. Secondly, the frequency and intensity of walking for
patients with radiotherapy need to be further explored based
on clinical trials. Finally, long-term low-intensity exercise has
been proved to reduce the occurrence of CRC and stimulate
tumor cell apoptosis (Kim et al., 2020), and our findings identify
that 15-day walking treatment does not accelerate the growth
of tumors. Therefore, long-term walking might be necessary to
explore its effects on metastasis of cancers. In conclusion, walking
as a low-intensity physical activity alleviates intestinal radiation
toxicity in both male and female mice. Mechanistically, walking
remolded the gut microbiota configuration and reprogrammed
the intestinal microbial metabolome of abdomen local irradiated
mice. A. muciniphila, a potential probiotic, might be employed
to fight against radiation-induced GI tract injuries (Figure 7).
Together, our observations provide new insights into the function

of walking and underpin that walking is a safe and effective form
to improve the prognosis of cancer patients with radiotherapy
suffering from GI tract syndrome without financial burden in a
preclinical setting.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: MetaboLights, and the
accession number is MTBLS2826.

ETHICS STATEMENT

The animal study was reviewed and approved by animal
experiments were performed according to the institutional
guidelines approved by the Animal Care and Ethics
Committee of IRM-PUMC.

AUTHOR CONTRIBUTIONS

BW, Y-XJ, and MC designed the experiments, analyzed the
data, and wrote the manuscript. BW and Y-XJ performed
the experiments and wrote the manuscript. MC provided
writing assistance. S-QZ, H-WX, J-LD, Y-XJ, and YL proofread
the article. MC, X-DY, and S-JF oversaw the entire project.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Science Foundation
for Distinguished Young Scholars of Tianjin under grant
20JCJQJC00100 and the National Natural Science Foundation
of China under grants 81872555 and 81730086.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
706755/full#supplementary-material

REFERENCES
Alentorn-Geli, E., Samuelsson, K., Musahl, V., Green, C. L., Bhandari, M.,

and Karlsson, J. (2017). The association of recreational and competitive
running with hip and knee osteoarthritis: a systematic review and meta-
analysis. J. Orthop. Sports Phys. Ther. 47, 373–390. doi: 10.2519/jospt.2017.
7137

Andreyev, J. (2007). Gastrointestinal symptoms after pelvic radiotherapy: a new
understanding to improve management of symptomatic patients. Lancet Oncol.
8, 1007–1017. doi: 10.1016/s1470-2045(07)70341-8

Bellardita, C., and Kiehn, O. (2015). Phenotypic characterization of speed-
associated gait changes in mice reveals modular organization of locomotor
networks. Curr. Biol. 25, 1426–1436. doi: 10.1016/j.cub.2015.04.005

Betof, A. S., Lascola, C. D., Weitzel, D., Landon, C., Scarbrough, P. M., Devi,
G. R., et al. (2015). Modulation of murine breast tumor vascularity, hypoxia
and chemotherapeutic response by exercise. J. Natl. Cancer Inst. 107:djv040.
doi: 10.1093/jnci/djv040

Biragyn, A., and Ferrucci, L. (2018). Gut dysbiosis: a potential link between
increased cancer risk in ageing and inflammaging. Lancet Oncol. 19, e295–e304.
doi: 10.1016/s1470-2045(18)30095-0

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 October 2021 | Volume 9 | Article 706755114

https://www.frontiersin.org/articles/10.3389/fcell.2021.706755/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.706755/full#supplementary-material
https://doi.org/10.2519/jospt.2017.7137
https://doi.org/10.2519/jospt.2017.7137
https://doi.org/10.1016/s1470-2045(07)70341-8
https://doi.org/10.1016/j.cub.2015.04.005
https://doi.org/10.1093/jnci/djv040
https://doi.org/10.1016/s1470-2045(18)30095-0
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-706755 October 15, 2021 Time: 16:18 # 13

Wang et al. Walking Alleviates Radiation-Induced Gut Injuries

Bjerre, E. D., Petersen, T. H., Jørgensen, A. B., Johansen, C., Krustrup, P., Langdahl,
B., et al. (2019). Community-based football in men with prostate cancer: 1-year
follow-up on a pragmatic, multicentre randomised controlled trial. PLoS Med.
16:e1002936. doi: 10.1371/journal.pmed.1002936

Caggiano, V., Leiras, R., Goñi-Erro, H., Masini, D., Bellardita, C., Bouvier, J., et al.
(2018). Midbrain circuits that set locomotor speed and gait selection. Nature
553, 455–460. doi: 10.1038/nature25448

Cardiff, R. D., Miller, C. H., and Munn, R. J. (2014). Manual hematoxylin and
eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014, 655–658.
doi: 10.1101/pdb.prot073411

Chen, G. Y., and Núñez, G. (2011). Inflammasomes in intestinal inflammation
and cancer. Gastroenterology 141, 1986–1999. doi: 10.1053/j.gastro.2011.10.
002

Citrin, D. E. (2017). Recent developments in radiotherapy. N. Engl. J. Med. 377,
1065–1075. doi: 10.1056/NEJMra1608986

Conlon, M. A., and Bird, A. R. (2014). The impact of diet and lifestyle on
gut microbiota and human health. Nutrients 7, 17–44. doi: 10.3390/nu701
0017

Cui, M., Xiao, H., Li, Y., Zhang, S., Dong, J., Wang, B., et al. (2019). Sexual
dimorphism of gut microbiota dictates therapeutics efficacy of radiation
injuries. Adv. Sci. 6, 1901048–1901048. doi: 10.1002/advs.201901048

Cui, M., Xiao, H., Li, Y., Zhou, L., Zhao, S., Luo, D., et al. (2017). Faecal microbiota
transplantation protects against radiation-induced toxicity. EMBOMol. Med. 9,
448–461. doi: 10.15252/emmm.201606932

De Ruysscher, D., Niedermann, G., Burnet, N. G., Siva, S., Lee, A. W. M., and
Hegi-Johnson, F. (2019). Radiotherapy toxicity. Nat. Rev. Disease Primers 5:13.
doi: 10.1038/s41572-019-0064-5

de Sire, A., de Sire, R., Petito, V., Masi, L., Cisari, C., Gasbarrini, A., et al. (2020).
Gut-Joint axis: the role of physical exercise on gut microbiota modulation in
older people with osteoarthritis. Nutrients 12:574. doi: 10.3390/nu12020574

Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J., and Lord, J. M.
(2019). Can physical activity ameliorate immunosenescence and thereby reduce
age-related multi-morbidity? Nat. Rev. Immunol. 19, 563–572. doi: 10.1038/
s41577-019-0177-9

Fattorusso, A., Di Genova, L., Dell’Isola, G. B., Mencaroni, E., and Esposito, S.
(2019). Autism spectrum disorders and the gut microbiota. Nutrients 11:521.
doi: 10.3390/nu11030521

Febbraio, M. A. (2017). Exercise metabolism in 2016: health benefits of exercise -
more than meets the eye!. Nat. Rev. Endocrinol. 13, 72–74. doi: 10.1038/nrendo.
2016.218

Geng, L., Liao, B., Jin, L., Huang, Z., Triggle, C. R., Ding, H., et al. (2019).
Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21
sensitivity in adipose tissues. Cell Rep. 26, 2738–2752.e4. doi: 10.1016/j.celrep.
2019.02.014

Gérard, P. (2016). Gut microbiota and obesity. Cell Mol. Life Sci. 73, 147–162.
doi: 10.1007/s00018-015-2061-5

Guercio, B. J., Zhang, S., Ou, F.-S., Venook, A. P., Niedzwiecki, D., Lenz, H.-J.,
et al. (2019). Associations of physical activity with survival and progression
in metastatic colorectal cancer: results from cancer and leukemia group B
(Alliance)/SWOG 80405. J. Clin. Oncol. 37, 2620–2631. doi: 10.1200/JCO.19.
01019

Hamer, M., and Steptoe, A. (2008). Walking, vigorous physical activity, and
markers of hemostasis and inflammation in healthy men and women. Scand.
J. Med. Sci. Sports 18, 736–741. doi: 10.1111/j.1600-0838.2007.00747.x

Hauer-Jensen, M., Denham, J. W., and Andreyev, H. J. N. (2014). Radiation
enteropathy–pathogenesis, treatment and prevention. Nat. Rev. Gastroenterol.
Hepatol. 11, 470–479. doi: 10.1038/nrgastro.2014.46

Hespanhol Junior, L. C., Pillay, J. D., van Mechelen, W., and Verhagen, E. (2015).
Meta-Analyses of the Effects of Habitual Running on Indices of Health in
Physically Inactive Adults. Sports Med. 45, 1455–1468. doi: 10.1007/s40279-
015-0359-y

Huang, R., Xiang, J., and Zhou, P. (2019). Vitamin D, gut microbiota, and
radiation-related resistance: a love-hate triangle. J. Exp. Clin. Cancer Res. 38:493.
doi: 10.1186/s13046-019-1499-y

Islami, F., Goding Sauer, A., Miller, K. D., Siegel, R. L., Fedewa, S. A., Jacobs, E. J.,
et al. (2018). Proportion and number of cancer cases and deaths attributable to
potentially modifiable risk factors in the United States. CA Cancer J. Clin. 68,
31–54. doi: 10.3322/caac.21440

Jairam, V., Lee, V., Park, H. S., Thomas, C. R. Jr., Melnick, E. R., Gross, C. P.,
et al. (2019). Treatment-Related Complications of Systemic Therapy and
Radiotherapy. JAMA Oncol. 5, 1028–1035. doi: 10.1001/jamaoncol.2019.0086

Kerr, J., Anderson, C., and Lippman, S. M. (2017). Physical activity, sedentary
behaviour, diet, and cancer: an update and emerging new evidence. Lancet
Oncol. 18, e457–e471. doi: 10.1016/S1470-2045(17)30411-4

Kim, M. K., Kim, Y., Park, S., Kim, E., Kim, Y., Kim, Y., et al. (2020). Effects
of Steady Low-Intensity Exercise on High-Fat Diet Stimulated Breast Cancer
Progression Via the Alteration of Macrophage Polarization. Integr. Cancer Ther.
19:1534735420949678. doi: 10.1177/1534735420949678

Kim, S., Shin, Y. C., Kim, T. Y., Kim, Y., Lee, Y. S., Lee, S. H., et al. (2021). Mucin
degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated
epithelial development. Gut Microbes 13, 1–20. doi: 10.1080/19490976.2021.
1892441

Kogelnik, H. D., and Withers, H. R. (1978). Radiobiological considerations in
multifraction irradiation. Radiol. Clin. (Basel) 47, 362–369.

Lawrie, T. A., Green, J. T., Beresford, M., Wedlake, L., Burden, S., Davidson, S. E.,
et al. (2018). Interventions to reduce acute and late adverse gastrointestinal
effects of pelvic radiotherapy for primary pelvic cancers. Cochrane Database
Systematic Rev. 1:CD012529. doi: 10.1002/14651858.CD012529.pub2

Leiva-Gea, I., Sánchez-Alcoholado, L., Martín-Tejedor, B., Castellano-Castillo, D.,
Moreno-Indias, I., Urda-Cardona, A., et al. (2018). Gut microbiota differs in
composition and functionality between children with Type 1 diabetes and
MODY2 and healthy control subjects: a case-control study. Diabetes Care 41,
2385–2395. doi: 10.2337/dc18-0253

Li, Y., Dong, J., Xiao, H., Zhang, S., Wang, B., Cui, M., et al. (2020a).
Gut commensal derived-valeric acid protects against radiation injuries. Gut
Microbes 11, 789–806. doi: 10.1080/19490976.2019.1709387

Li, Y., Yan, H., Zhang, Y., Li, Q., Yu, L., Li, Q., et al. (2020b). Alterations of the Gut
Microbiome Composition and Lipid Metabolic Profile in Radiation Enteritis.
Front. Cell Infect. Microbiol. 10:541178. doi: 10.3389/fcimb.2020.541178

Lim, M. Y., You, H. J., Yoon, H. S., Kwon, B., Lee, J. Y., Lee, S., et al. (2017).
The effect of heritability and host genetics on the gut microbiota and metabolic
syndrome. Gut 66, 1031–1038. doi: 10.1136/gutjnl-2015-311326

Linn, Y. H., Thu, K. K., and Win, N. H. H. (2019). Effect of probiotics for
the prevention of acute radiation-induced diarrhoea among cervical cancer
patients: a randomized double-blind placebo-controlled study. Probiotics
Antimicrob Proteins 11, 638–647. doi: 10.1007/s12602-018-9408-9

Lundt, A., and Jentschke, E. (2019). Long-Term changes of symptoms of
anxiety, depression, and fatigue in cancer patients 6 months after the end
of yoga therapy. Integr. Cancer Ther. 18:1534735418822096. doi: 10.1177/
1534735418822096

Marijon, E., Tafflet, M., Celermajer, D. S., Dumas, F., Perier, M. C., Mustafic, H.,
et al. (2011). Sports-related sudden death in the general population. Circulation
124, 672–681. doi: 10.1161/circulationaha.110.008979

Martínez, M. E., Giovannucci, E., Spiegelman, D., Hunter, D. J., Willett, W. C., and
Colditz, G. A. (1997). Leisure-time physical activity, body size, and colon cancer
in women. Nurses’ Health Study Research Group. J. Natl. Cancer Institute 89,
948–955. doi: 10.1093/jnci/89.13.948

Martín-Ruiz, A., Fiuza-Luces, C., Rincón-Castanedo, C., Fernández-Moreno, D.,
Gálvez, B. G., Martínez-Martínez, E., et al. (2020). Benefits of exercise and
immunotherapy in a murine model of human non-small-cell lung carcinoma.
Exerc. Immunol. Rev. 26, 100–115.

Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., et al.
(2017). The first microbial colonizers of the human gut: composition, activities,
and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev.
81:e0036-17. doi: 10.1128/MMBR.00036-17

Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., et al.
(2017). Exercise modifies the gut microbiota with positive health effects. Oxid.
Med. Cell Longev. 2017:3831972. doi: 10.1155/2017/3831972

Oja, P., Kelly, P., Murtagh, E. M., Murphy, M. H., Foster, C., and Titze, S. (2018).
Effects of frequency, intensity, duration and volume of walking interventions
on CVD risk factors: a systematic review and meta-regression analysis of
randomised controlled trials among inactive healthy adults. Br. J. Sports Med.
52, 769–775. doi: 10.1136/bjsports-2017-098558

Oktem, O., Kim, S. S., Selek, U., Schatmann, G., and Urman, B. (2018). Ovarian
and uterine functions in female survivors of childhood cancers. Oncologist 23,
214–224. doi: 10.1634/theoncologist.2017-0201

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 October 2021 | Volume 9 | Article 706755115

https://doi.org/10.1371/journal.pmed.1002936
https://doi.org/10.1038/nature25448
https://doi.org/10.1101/pdb.prot073411
https://doi.org/10.1053/j.gastro.2011.10.002
https://doi.org/10.1053/j.gastro.2011.10.002
https://doi.org/10.1056/NEJMra1608986
https://doi.org/10.3390/nu7010017
https://doi.org/10.3390/nu7010017
https://doi.org/10.1002/advs.201901048
https://doi.org/10.15252/emmm.201606932
https://doi.org/10.1038/s41572-019-0064-5
https://doi.org/10.3390/nu12020574
https://doi.org/10.1038/s41577-019-0177-9
https://doi.org/10.1038/s41577-019-0177-9
https://doi.org/10.3390/nu11030521
https://doi.org/10.1038/nrendo.2016.218
https://doi.org/10.1038/nrendo.2016.218
https://doi.org/10.1016/j.celrep.2019.02.014
https://doi.org/10.1016/j.celrep.2019.02.014
https://doi.org/10.1007/s00018-015-2061-5
https://doi.org/10.1200/JCO.19.01019
https://doi.org/10.1200/JCO.19.01019
https://doi.org/10.1111/j.1600-0838.2007.00747.x
https://doi.org/10.1038/nrgastro.2014.46
https://doi.org/10.1007/s40279-015-0359-y
https://doi.org/10.1007/s40279-015-0359-y
https://doi.org/10.1186/s13046-019-1499-y
https://doi.org/10.3322/caac.21440
https://doi.org/10.1001/jamaoncol.2019.0086
https://doi.org/10.1016/S1470-2045(17)30411-4
https://doi.org/10.1177/1534735420949678
https://doi.org/10.1080/19490976.2021.1892441
https://doi.org/10.1080/19490976.2021.1892441
https://doi.org/10.1002/14651858.CD012529.pub2
https://doi.org/10.2337/dc18-0253
https://doi.org/10.1080/19490976.2019.1709387
https://doi.org/10.3389/fcimb.2020.541178
https://doi.org/10.1136/gutjnl-2015-311326
https://doi.org/10.1007/s12602-018-9408-9
https://doi.org/10.1177/1534735418822096
https://doi.org/10.1177/1534735418822096
https://doi.org/10.1161/circulationaha.110.008979
https://doi.org/10.1093/jnci/89.13.948
https://doi.org/10.1128/MMBR.00036-17
https://doi.org/10.1155/2017/3831972
https://doi.org/10.1136/bjsports-2017-098558
https://doi.org/10.1634/theoncologist.2017-0201
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-706755 October 15, 2021 Time: 16:18 # 14

Wang et al. Walking Alleviates Radiation-Induced Gut Injuries

Olafsson, S., McIntyre, R. E., Coorens, T., Butler, T., Jung, H., Robinson, P. S.,
et al. (2020). Somatic evolution in Non-neoplastic IBD-Affected colon. Cell 182,
672–684.e11. doi: 10.1016/j.cell.2020.06.036

Ostojic, S. M. (2018). Inadequate production of H(2) by gut microbiota and
parkinson disease. Trends Endocrinol. Metab. 29, 286–288. doi: 10.1016/j.tem.
2018.02.006

Pistollato, F., Sumalla Cano, S., Elio, I., Masias Vergara, M., Giampieri, F., and
Battino, M. (2016). Role of gut microbiota and nutrients in amyloid formation
and pathogenesis of Alzheimer disease. Nutr. Rev. 74, 624–634. doi: 10.1093/
nutrit/nuw023

Rappleye, A. T., Johnson, G. H., Olsen, J. D., and Lagasse, L. D. (1975). The
radioprotective effects of vasopressin on the gastrointestinal tract of mice.
Radiology 117, 199–203. doi: 10.1148/117.1.199

Rezende, L. F. M. D., Lee, D. H., Keum, N., Nimptsch, K., Song, M., Lee, I. M.,
et al. (2019). Physical activity during adolescence and risk of colorectal adenoma
later in life: results from the Nurses’ Health Study II. Br. J. Cancer 121, 86–94.
doi: 10.1038/s41416-019-0454-1

Rios, C. I., Cassatt, D. R., Dicarlo, A. L., Macchiarini, F., Ramakrishnan, N.,
Norman, M.-K., et al. (2014). Building the strategic national stockpile through
the NIAID radiation nuclear countermeasures program. Drug Dev. Res. 75,
23–28. doi: 10.1002/ddr.21163

Romesser, P. B., Kim, A. S., Jeong, J., Mayle, A., Dow, L. E., and Lowe, S. W. (2019).
Preclinical murine platform to evaluate therapeutic countermeasures against
radiation-induced gastrointestinal syndrome. Proc. Natl. Acad. Sci. U. S. A. 116,
20672–20678. doi: 10.1073/pnas.1906611116

Sack, U., Walther, W., Scudiero, D., Selby, M., Kobelt, D., Lemm, M., et al. (2011).
Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic
progression in colon cancer. J. Natl. Cancer Inst. 103, 1018–1036. doi: 10.1093/
jnci/djr190

Schnohr, P., O’Keefe, J. H., Marott, J. L., Lange, P., and Jensen, G. B. (2015). Dose of
jogging and long-term mortality: the copenhagen city heart study. J. Am. Coll.
Cardiol. 65, 411–419. doi: 10.1016/j.jacc.2014.11.023

Sheng, K., Zhang, G., Sun, M., He, S., Kong, X., Wang, J., et al. (2020). Grape
seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced
colitis through intestinal barrier improvement, oxidative stress reduction, and
inflammatory cytokines and gut microbiota modulation. Food Funct. 11, 7817–
7829. doi: 10.1039/d0fo01418d

Takahashi, H., Alves, C. R. R., Stanford, K. I., Middelbeek, R. J. W., et al.
(2019). TGF-β2 is an exercise-induced adipokine that regulates glucose and
fatty acid metabolism. Nat. Metab. 1, 291–303. doi: 10.1038/s42255-018-
0030-7

Takemura, N., Kurashima, Y., Mori, Y., Okada, K., Ogino, T., Osawa, H., et al.
(2018). Eosinophil depletion suppresses radiation-induced small intestinal
fibrosis. Sci. Trans. Med. 10:eaano333. doi: 10.1126/scitranslmed.aan0333

Tang, M.-F., Chiu, H.-Y., Xu, X., Kwok, J. Y., Cheung, D. S. T., et al. (2019).
Walking is more effective than yoga at reducing sleep disturbance in cancer
patients: a systematic review and meta-analysis of randomized controlled trials.
Sleep Med. Rev. 47, 1–8. doi: 10.1016/j.smrv.2019.05.003

Tang, W. H., Kitai, T., and Hazen, S. L. (2017). Gut microbiota in cardiovascular
health and disease. Circ. Res. 120, 1183–1196. doi: 10.1161/circresaha.117.
309715

Touchefeu, Y., Montassier, E., Nieman, K., Gastinne, T., Potel, G., Bruley, et al.
(2014). Systematic review: the role of the gut microbiota in chemotherapy- or
radiation-induced gastrointestinal mucositis - current evidence and potential
clinical applications. Aliment. Pharmacol. Ther. 40, 409–421. doi: 10.1111/apt.
12878

Van Hoorde, L., Pocard, M., Maryns, I., Poupon, M. F., and Mareel, M. (2000).
Induction of invasion in vivo of alpha-catenin-positive HCT-8 human colon-
cancer cells. Int. J. Cancer 88, 751–758.

Vetrano, S., Borroni, E. M., Sarukhan, A., Savino, B., Bonecchi, R., Correale,
C., et al. (2010). The lymphatic system controls intestinal inflammation and
inflammation-associated Colon Cancer through the chemokine decoy receptor
D6. Gut 59, 197–206. doi: 10.1136/gut.2009.183772

Vozenin, M.-C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond,
J.-F., et al. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig
and cat-cancer patients. Clin. Cancer Res. 25, 35–42. doi: 10.1158/1078-0432.
CCR-17-3375

Wang, Y. J., Boehmke, M., Wu, Y. W., Dickerson, S. S., and Fisher, N. (2011).
Effects of a 6-week walking program on Taiwanese women newly diagnosed
with early-stage breast cancer. Cancer Nurs. 34, E1–E13. doi: 10.1097/NCC.
0b013e3181e4588d

Wang, Z., Wang, Q., Wang, X., Zhu, L., Chen, J., Zhang, B., et al. (2019). Gut
microbial dysbiosis is associated with development and progression of radiation
enteritis during pelvic radiotherapy. J. Cell Mol. Med. 23, 3747–3756. doi: 10.
1111/jcmm.14289

Wei, L., Leibowitz, B. J., Wang, X., Epperly, M., Greenberger, J., Zhang, L., et al.
(2016). Inhibition of CDK4/6 protects against radiation-induced intestinal
injury in mice. J. Clin. Invest. 126, 4076–4087. doi: 10.1172/jci88410

Whelan, T. J., Julian, J. A., Berrang, T. S., Kim, D.-H., Germain, I., Nichol,
A. M., et al. (2019). External beam accelerated partial breast irradiation versus
whole breast irradiation after breast conserving surgery in women with ductal
carcinoma in situ and node-negative breast cancer (RAPID): a randomised
controlled trial. Lancet (London, England) 394, 2165–2172. doi: 10.1016/S0140-
6736(19)32515-2

Whyte, G., Sheppard, M., George, K., Shave, R., Wilson, M., Prasad, S., et al. (2008).
Post-mortem evidence of idiopathic left ventricular hypertrophy and idiopathic
interstitial myocardial fibrosis: is exercise the cause? Br. J. Sports Med. 42,
304–305. doi: 10.1136/bjsm.2007.038158

Xiao, H. W., Cui, M., Li, Y., Dong, J. L., Zhang, S. Q., Zhu, C. C., et al. (2020). Gut
microbiota-derived indole 3-propionic acid protects against radiation toxicity
via retaining acyl-CoA-binding protein. Microbiome 8:69. doi: 10.1186/s40168-
020-00845-6

Zhang, J., Xue, X., Han, X., Yao, C., Lu, L., Li, D., et al. (2016). Vam3 ameliorates
total body irradiation-induced hematopoietic system injury partly by regulating
the expression of Nrf2-targeted genes. Free Radical Biol. Med. 101, 455–464.
doi: 10.1016/j.freeradbiomed.2016.10.501

Zhong, H., Penders, J., Shi, Z., Ren, H., Cai, K., Fang, C., et al. (2019). Impact
of early events and lifestyle on the gut microbiota and metabolic phenotypes
in young school-age children. Microbiome 7:2. doi: 10.1186/s40168-018-
0608-z

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wang, Jin, Dong, Xiao, Zhang, Li, Chen, Yang, Fan and Cui.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 October 2021 | Volume 9 | Article 706755116

https://doi.org/10.1016/j.cell.2020.06.036
https://doi.org/10.1016/j.tem.2018.02.006
https://doi.org/10.1016/j.tem.2018.02.006
https://doi.org/10.1093/nutrit/nuw023
https://doi.org/10.1093/nutrit/nuw023
https://doi.org/10.1148/117.1.199
https://doi.org/10.1038/s41416-019-0454-1
https://doi.org/10.1002/ddr.21163
https://doi.org/10.1073/pnas.1906611116
https://doi.org/10.1093/jnci/djr190
https://doi.org/10.1093/jnci/djr190
https://doi.org/10.1016/j.jacc.2014.11.023
https://doi.org/10.1039/d0fo01418d
https://doi.org/10.1038/s42255-018-0030-7
https://doi.org/10.1038/s42255-018-0030-7
https://doi.org/10.1126/scitranslmed.aan0333
https://doi.org/10.1016/j.smrv.2019.05.003
https://doi.org/10.1161/circresaha.117.309715
https://doi.org/10.1161/circresaha.117.309715
https://doi.org/10.1111/apt.12878
https://doi.org/10.1111/apt.12878
https://doi.org/10.1136/gut.2009.183772
https://doi.org/10.1158/1078-0432.CCR-17-3375
https://doi.org/10.1158/1078-0432.CCR-17-3375
https://doi.org/10.1097/NCC.0b013e3181e4588d
https://doi.org/10.1097/NCC.0b013e3181e4588d
https://doi.org/10.1111/jcmm.14289
https://doi.org/10.1111/jcmm.14289
https://doi.org/10.1172/jci88410
https://doi.org/10.1016/S0140-6736(19)32515-2
https://doi.org/10.1016/S0140-6736(19)32515-2
https://doi.org/10.1136/bjsm.2007.038158
https://doi.org/10.1186/s40168-020-00845-6
https://doi.org/10.1186/s40168-020-00845-6
https://doi.org/10.1016/j.freeradbiomed.2016.10.501
https://doi.org/10.1186/s40168-018-0608-z
https://doi.org/10.1186/s40168-018-0608-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Dietary Patterns and Associated
Microbiome Changes that Promote
Oncogenesis
Shakhzada Ibragimova1, Revathy Ramachandran1, Fahad R. Ali 1, Leonard Lipovich1 and
Samuel B. Ho1,2*

1College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE,
2Department of Medicine, Mediclinic City Hospital, Dubai Healthcare City, Dubai, UAE

The recent increases in cancer incidences have been linked to lifestyle changes that
result in obesity and metabolic syndrome. It is now evident that these trends are
associated with the profound changes that occur in the intestinal microbiome,
producing altered microbial population signatures that interact, directly or indirectly,
with potentially pro-carcinogenic molecular pathways of transcription, proliferation,
and inflammation. The effects of the entire gut microbial population on overall health are
complex, but individual bacteria are known to play important and definable roles.
Recent detailed examinations of a large number of subjects show a tight correlation
between habitual diets, fecal microbiome signatures, and markers of metabolic health.
Diets that score higher in healthfulness or diversity such as plant-based diets, have
altered ratios of specific bacteria, including an increase in short-chain fatty acid
producers, which in turn have been linked to improved metabolic markers and
lowered cancer risk. Contrarily, numerous studies have implicated less healthy,
lower-scoring diets such as the Western diet with reduced intestinal epithelial
defenses and promotion of specific bacteria that affect carcinogenic pathways. In
this review, we will describe how different dietary patterns affect microbial populations
in the gut and illustrate the subsequent impact of bacterial products and metabolites on
molecular pathways of cancer development, both locally in the gut and systemically in
distant organs.

Keywords: microbiome, dietary pattern, Western diet, plant-based diet, colorectal cancer, alcohol, oncogenesis

INTRODUCTION

Cancer is one of the leading causes of mortality amongst all ages and ethnic groups worldwide.
The incidence of cancer has been increasing every year, with a particularly dramatic increase in
developing countries. In fact, over the last two decades, 55% of total cancer incidences were
documented in developing countries. It is predicted that by the year 2050, this number will
reach to 70% (Bray et al., 2018; Sung et al., 2021). With this current trend, GLOBOCAN
predicts the cancer burden to rise to 27.5 million new cases per year by 2040 (Sung et al., 2021).
Globally, lung, breast, and colon cancers are the most frequently occurring cancers. This
recent increase in cancer incidence has been linked to changes in lifestyles that have resulted in
an increase in obesity and the metabolic syndrome, which are among the leading risk factors
for cancer (Hulvat, 2020).
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With emerging novel technologies, there is an abundance of
information and new knowledge of cancer biology each year.
Among those, recent advancements in metagenomics have
allowed for better characterization of the human gut
microbiome diversity and its impact on the host organism’s
predisposition to various cancers (Yu et al., 2017).
Approximately half of the cells in the human body are
those of commensal bacteria, not human cells (Sender et al.,
2016). Nevertheless, the interplay between the microbiome
and disease has only recently begun to be illuminated. The
human gut microbiome is an extremely dynamic “organ”, with
multiple factors constantly affecting the diversity and
composition of this microenvironment. These factors
include diet, lifestyle, drugs such as antibiotics, delivery
method at childbirth and the genetic makeup of the
individual (Wen and Duffy, 2017). It is now evident that
diet is a major contributor to the variation in gut
microbiota, producing population signatures that interact,
both directly and indirectly, with molecular pathways
affecting key biological processes including transcription,
proliferation, and inflammation, that can have pro-
carcinogenic effects (Cheung et al., 2017). Evolutionarily,
the human diet has always been shaped by many different
factors, including cultural, geographical, economical, and
seasonal. However with the dramatic increase in the rate of
globalization in recent decades, the boundaries between
various dietary patterns and lifestyles have blended (Arkan,
2017). Within the context of this global trend, the broad
assumption—supported by progressively emerging
evidence—is that diet can make us susceptible to certain
diseases through alteration of our microbiome composition.

Of late, research on the microbiome has garnered enormous
attention from the scientific world, as well as from the public.
Although microbiome research is still in its infancy, it has
already been established that the microbiome has a direct
influence on almost all the pathophysiological processes in
the human body (Asnicar et al., 2021; George et al., 2021).
The composition of the gut microbiome and its interaction with
the cellular processes in the gut epithelium have been shown to
predispose an individual to certain diseases, including but not
limited to colorectal, liver, and other cancers, inflammatory
bowel disease (IBD) and other autoimmune and neurologic
diseases including Alzheimer’ (Tedelind et al., 2007; Nosho
et al., 2016; Vogt et al., 2017). However, due to the
tremendous diversity of gut microbiome, and the
heterogeneity of cancer pathophysiology, the direct link
between microbiome composition and cancer pathogenesis is
yet to be established (Scott et al., 2019). The purpose of this
review is to summarize recent research into the relationship
between dietary patterns and the gut microbiome and associated
metabolome, and how they directly regulate pro-carcinogenic
pathways. We look at the effect of altered gut microbiome
locally in the gut colonic tissue and environment and
systemically, where microbiome-derived toxins and
metabolites affect distant organs via portavenous and arterial
circulation. For comparison, this review also focuses on the
beneficial effects of a healthier, “plant-rich” diet.

DIETARY PATTERNS AND CANCER RISK

It is challenging to define an absolute dietary pattern, particularly
as most observational and research studies traditionally focus on
key components of certain types of diet, excluding the overall
effects and the synergy between dietary components (Klement
and Pazienza, 2019). However, in the real-world, and as direct
consequence of globalization making every type of diet accessible
in nearly every country on-demand, people do not consume
isolated products. Moreover, due to the global coverage of the
food manufacturing industry, consumers in many countries are
not given the information necessary to understand what the exact
constituents and additives of their foods are. Today, nutritional
epidemiology is trying to observe the changes in human health
due to the overall dietary composition, since the predominance
and the trend of specific diets is more important than
consumption of certain isolated foods (Hosseinkhani et al.,
2021). Researchers studying nutrition and health often use
food frequency questionnaires (FFQs) to track the frequency
of foods consumed over a fixed period of time. The FFQs are
then evaluated using different dietary indices, that quantitatively
measures an individual diet’s adherence to dietary guidelines in
order to correlate a person’s diet history with various health
outcomes such as obesity or biomarker concentrations
(Supplementary Table S1). In this review, the term “dietary
pattern”, will be used to segregate and draw the line between
“Western type of diet” and “Plant-based diet”.

The dietary pattern labeled “Western diet” is characterized by
relatively high fat content, particularly saturated fats, highly
processed carbohydrates, and lesser amounts of fiber
(Table 1). The main dietary signature of the western type of
diet is the overconsumption of processed food that has undergone
chemical treatment and has a high level of emulsifiers and other
synthetic additives (Cordain et al., 2005). Moreover, increased
consumption of refined sugar, dietary salt and animal-based
products, especially red meat, are also key attributes of the
Western diet, along with dramatically decreased consumption
of dietary fiber (Zhong et al., 2021). The term Western diet has
predominantly come from the correlation of a set of diseases that
mostly occur in the western world (Cordain et al., 2005).
Interestingly, the term Western diet is also used to describe a
specific high-fat diet used in some animal studies, however this
does not apply to this review. An increasing number of
quantitative studies have demonstrated positive links between
continuous overconsumption of red meat and ultra-processed
food (UPF) as one of the key drivers of developing different types
of tumors (Chen et al., 2020a). Adherence to the Western diet is
thus considered as one of the main risk factors in developing
cancer (van den Berg et al., 2021).

Numerous cohort and case control studies have been designed
to interrogate the correlation between processed food
consumption and various health outcomes. A recent cohort
study, amongst the French population from 2009 to 2017,
determined that the risk of developing cancer directly
correlates with the increased consumption of UPF (Fiolet
et al., 2018). The same French cohort study has also observed
a direct association between UPF intake and weight gain, as well
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as increased risk of developing obesity (Beslay et al., 2020). A
German population-based case-control study has established
strong correlation between increased intake of not only
processed meat but also red meat with increased risk of
developing colorectal cancer (CRC) in mixed age groups (Carr
et al., 2017). A population-based case-control study in Israel, has
also established the dose-dependent correlation between the
concurrent intake of UPF and smoking on one hand and the
severity of colorectal neoplasia on the other, with higher intake of
UPF and smoking resulting in more advanced colorectal
adenomas (Fliss-Isakov et al., 2020).

A systematic review, analyzing 11meta-analysis of the effect of
red meat in development of CRC, concluded that increased intake
of red meat and processed meat elevated CRC risk by 20–30%
(Aykan, 2015). Another systematic review, focusing on the
broader effect of UPFs on the health outcomes, pulling from
12 recent cohort studies and 8 cross-sectional studies,
demonstrated significant correlation between UPF intake and
increased risk of developing obesity, type II diabetes and several
types of cancer (Chen et al., 2020a).

In contrast to the Western diet, a plant-based dietary pattern,
which includes the vegetarian, vegan, and Mediterranean diets,
features a preponderance of the dietary components that are
plant-based, such as whole grains, plant-derived oils, and

legumes, with significantly reduced animal and fish products,
as well as minimal to no processed food (Table 1). Although,
geographically plant-based diet is mostly predominant in the
regions of Mediterranean basin (Klement and Pazienza, 2019), in
the recent years plant-based diet is acquiring more followers
around the globe due to its established protective properties
(Tsvetikova and Koshel, 2020). High number of recent
epidemiological studies claim protective effects of a plant-
based diet from a set of non-communicable diseases (NCDs),
such as the metabolic syndrome and various types of cancer,
especially CRC (Pasolli et al., 2019; Alexandrov et al., 2020).
Furthermore, adherence to healthier plant-based dietary patterns
results in a quick shift in microbial population towards more
beneficial bacteria (Alexandrov et al., 2020; Kim et al., 2020). This
shift in microbial populations has multiple consequences which
have been linked with improved tight-junction homeostasis of the
gut epithelium layer, better immune surveillance, and control
over inflammatory processes (Tsvetikova and Koshel, 2020;
Asnicar et al., 2021) as we will explore later.

The relationship between dietary patterns and the microbiome
has been investigated by many studies, with the significant recent
addition of the extensive Arivale/Institute for Systems Biology
study (Manor et al., 2020) and the international multicenter
PREDICT-1 study (Asnicar et al., 2021). The Arivale study

TABLE 1 | Different dietary patterns and components.

Broadly classified as (in this
review)

Diet name Dietary components Less frequent

Frequent

PLANT-BASED Vegan (Craig, 2009) Fruits and Vegetables Dairy and eggs
Whole Grains Animal products
Legumes and Beans Fish
Nuts and seeds Meat products

Vegetarian (Melina et al., 2016) Fruits and Vegetables Meat products
Whole Grains Fish
Legumes and Beans
Nuts/Seeds
Dairy and eggs

Mediterranean (Di Daniele et al., 2017) Fruits and Vegetables High intake of red meat
Whole Grains Dairy
Legumes and Beans
Nuts/Seeds
Fish
Unsaturated fats such as olive oil

DASH (Dietary Advances to Stop Hypertension) (Vogt
et al., 1999)

Fruits and Vegetables High-salt, high-sugar, highly-processed
foods

Low-fat dairy products Refined carbohydrates
WESTERN Omnivore (Cordain et al., 2005) Fruits and Vegetables

Whole Grains
Fish
Meat

Western pattern diet (Clarys et al., 2013) Red meat/Processed meat Vegetables, Fruits
Pre-packaged and fried foods
Butter

Whole grains

Candy and sweets
High-fat dairy products
Refined grains
High-fructose corn syrup drinks
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analysed 3,409 individuals enrolled in a wellness program with
extensive characterization of metabolic markers, lifestyle, diet,
and stool microbiome 16S amplicon sequencing. They found that
specific microbial populations with increased diversity were
associated with improved cardiometabolic markers and plant-
based dietary patterns (health-related group). Conversely, they
found that specific microbial populations with less diversity were
associated with worse cardiometabolic and lifestyle markers
(disease-related group). The health related group had
increased genera Coprococcus, Lachnospira, Faecalibacterium,
and unclassified genera from the Ruminococcaceae and
Clostridiales family/order. The disease-related group had
increased abundance of the genera Bacteroides, Ruminococcus,
Sutterella, Bilophila, Acidaminococcus, and Megasphaera.
PREDICT-1 investigators analyzed stool microbiome
metagenomic sequencing data from 1,098 individuals from the
UK and United States, and correlated the results with
demographic variables, detailed dietary logs, and
cardiometabolic blood markers (Asnicar et al., 2021). Major
findings from the study included that the intrasample alpha
diversity, or an estimate of the total number or richness of
bacterial species in a sample, significantly correlated with 56 of
295 tested correlations with personal characteristics, habitual diet
and metabolic markers. Microbiome species richness was

positively correlated with favorable high-density lipoprotein
levels, whereas body-mass index (BMI), visceral fat, and
probability of fatty liver were inversely correlated with species
richness. Data from individual food diaries were evaluated using
validated dietary indices such as the alternate Mediterranean diet
score (aMED), Healthy Eating Index (HEI) and the Plant-based
Dietary Indices (PDI) that have previously been shown to
correlate with reduced risk of chronic diseases
(Supplementary Table S1). These indices showed a tight
correlation with microbial composition, demonstrating how
habitual diets influence the microbiome. Out of the 30
bacterial species that showed the strongest overall correlation
with markers of nutritional and cardiometabolic health, 15
species were positively associated with healthy plant-based
diets and negatively associated with visceral fat, liver fat
probability, and high-risk metabolic markers. These included
F. prausnitzii, Proventella copri, Roseburia, Oscillibacter, and
several Firmicutes species. Conversely, the other 15 bacterial
species were negatively associated with healthy diets, and
positively associated with increased visceral fat, liver fat
probability, and high-risk metabolic markers. These included
Clostridia species, R. gnavus, and F. plautil. The repertoire of
30 bacterial species represents a novel composite quantitative
marker of the link between dietary patterns and cardiometabolic

TABLE 2 | Microbial signatures of the gut microbiome, in respect to Western dietary (WD) pattern and plant-based (PD) dietary pattern (N/I non-identified).

Bacterial signature of
WDmicrobiome (De Filippis

et al., 2016;
Asnicar et al., 2021)

Function Bacterial signature of
PDmicrobiome (De Filippis

et al., 2016;
Asnicar et al., 2021)

Function

Increased
Population

Clostridium bolteae Increase cardiometabolic risk Faecalibacterium prausnitzii Butyrate production
Atopobium parvulum Hydrogen sulfide production Roseburia intestinalis Butyrate production
Actinomycosis odontolyticus Hydrogen sulfide production Akkermansia muciniphila Enhancement of mucin production
Bilophila wadsworthia Secondary bile acids production Prevotella copri Glucose homeostasis, improvement in

postprandial glucose responses
Streptococcus bovis/
gallolyticus

Nitric oxide production Roseburia hominis Butyrate production

Clostridium saccharolyticum Increase in cardiometabolic risk Agathobaculum
butyriciproducens

Butyrate production

Clostridium innocuum Increase cardiometabolic risk Anaerostipes hadrus Butyrate production
Clostridium symbiosum Increase cardiometabolic risk Firmicutes bacterium Postprandial lipoprotein remodeling
Clostridium spiroforme Increase cardiometabolic risk Haemophilus parainfluenzae Reduces GlycA levels, systemic

inflammation, cardiometabolic risks
Clostridium leptum Increase cardiometabolic risk Eubacterium eligens N/I
Flavonifractor plautii Increase cardiometabolic risk Lawsonibacter

asaccharolyticus
Butyrate production

Ruthenibacterium
lactatiformans

N/I Oscillibacter sp N/I

Escherichia coli N/I Streptococcus thermophilus Probiotic
Collinsella intestinalis N/I Bifidobacterium animalis Probiotic
Eggerthella lenta N/I
Anaerotruncus colihomini N/I
Clostridium spiroforme Increase cardiometabolic risk
Ruminococcus gnavus Increase cardiometabolic risk

Decreased
Population

Lactobacillus acidophilus
(Prebiotic bacteria)

Reduces nitroreductase activity

Prevotella copri Glucose homeostasis, improved
postprandial glucose responses

SCFAs producers SCFA production, immune
homeostasis
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health, and broadly support a dichotomous clinically relevant
separation of healthy “plant-based” and less healthy “western,
high fat” dietary patterns with the associated “healthy”
microbiome or eubiosis and the “unhealthy” microbiome or
dysbiosis (Table 2) (Asnicar et al., 2021). Furthermore, diet
and gut microbiome has been directly linked with the
circulating metabolome of human serum (Bar et al., 2020). Bar
et al. found that over 50% of the observed variance in 1,251
human serum metabolites was explained by diet and microbiome
variables, in a study of 491 subjects who were carefully
phenotyped according to genetics, gut microbiome, diet and
lifestyle measures (Bar et al., 2020). Finally, a recent
longitudinal study of 307 well characterized subjects correlated
adherence to the plant-based Mediterranean diet with specific
microbial and functional patterns which in turn correlated with
favorable cardiometabolic markers (lipids, c-reactive protein, and
hemoglobin A1C) (Wang et al., 2021). These studies strongly

suggest the mechanisms whereby adherence to a Mediterranean
diet results in reduced cardiovascular, metabolic, and cancer
related outcomes demonstrated in the PREDIMED
randomized clinical trial (Estruch et al., 2018; Toledo et al.,
2015). More prospective randomized intervention trials of
dietary components and specific bacterial communities are
needed to further test the link between dietary composition,
microbiome structure/function parameters, and
cardiometabolic and oncogenic outcomes.

MOLECULAR MECHANISMS OF THE ROLE
OF PLANT-BASED DIET IN CANCER
PROTECTION
The gut microbiome and the human intestinal immune system
have co-evolved over evolutionary time to stay in balance and to

FIGURE 1 | Effect of plant-diet on the gut microbiome and intestinal homeostasis. A diet rich in plant-based foods results in high abundance of short-chain fatty acid
(SCFA) producing bacteria in the gut lumen. High production of SCFAs by gut microbiome is strongly associated with pathogen suppression, mucus production,
improved barrier function and immune tolerance (see Molecular Mechanisms of the Role of Plant-Based Diet in Cancer Protection). SCFAs induce a set of anti-
inflammatory events via interaction with GPR41, GPR43, GPR109A receptors and MCT and SLC5A8 transporters that are expressed on the surface of intestinal
epithelial cells and immune cells. 1) SCFAs bind GPR109A on the epithelial cell which leads to increase in TGF- β production, enhancing the differentiation of Treg cells,
which leads to increase of immune tolerance in the gut. 2) SCFAs also bind to GPR43 inhibiting HDAC and NF- κB, resulting in decreased inflammation. 3) SCFAs bind to
GPR41, inhibiting HDAC andMAPK signaling pathway, resulting in inhibition of proliferation. 4) SCFAs cross the epithelial cell barrier and reach lamina propria, where they
induce cascade of anti-inflammatory reactions, regulating immune homeostasis in the lower bowel. In the lamina propria, SCFAs bind to macrophage (MQ cell) inhibiting
HDAC, facilitating polarization of macrophages to M2-anti-inflammatory type, and increasing production of antimicrobial peptides (AMPs). 5) SCFAs bind to dendritic
(DC) cell enhancing retinoic acid production, further facilitating production immunoglobulin A (IgA) and differentiation of Tregs. 6) SCFAs induce production of TGF- β and
retinoic acid, causing B cells to stimulate production of IgA and facilitate plasma B cell differentiation. 7) SCFAs bind to GPR on T cells, initiating the production of IL-10,
which increases Tregs pool, and inhibits expansion of T helper (Th) 17.
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regulate each other, the ideal status quo that corresponds to a
healthy state. This balance is composed of four elements
(Figure 1). First, the bacteria pathogens are suppressed and
are kept compartmentalized from the intestinal epithelium by
a thick mucus layer, the release of antimicrobial peptides
(RegIIIg) and secreted IgA to protect the epithelial surfaces
from invasion, and the presence of intraepithelial immune
cells and neutrophils that can migrate into the intestinal
lumen. Second, the intestinal epithelium has tight junctions
that form the epithelial barrier that are strengthened by
luminal metabolites (Biragyn and Ferrucci, 2018). Third,
inputs from luminal antigens regulate intestinal macrophages
to become hyporesponsive and exhibit tolerance, producing IL-10
and less inflammatory cytokines (Round and Mazmanian, 2010;
Vinolo et al., 2011). Fourth, there is active suppression of microbe
reacting effector T-cells by Foxp3b Treg cells and Roc-3-Tr1 cells
via IL-10; and intraepithelial immune cells use MHC to present
bacterial antigens and down regulates reactive CD4b T cells
(Geuking et al., 2011; Zhang et al., 2019).

Maintenance of a healthy balance for the intestinal barrier and
immune homeostasis depends on a balance of beneficial bacteria
and dietary nutrients, especially dietary fiber. Fiber is a major
component of the plant-based diet and is an indigestible
carbohydrate for the mammalian gastrointestinal tract,
consequently certain bacterial phyla in the gut are responsible
for fiber fermentation and production of short-chain fatty acids
(SCFAs) (Wilson et al., 2020), which is a key metabolite in a
continuous dialogue between the host and the gut microbiome.

Homeostasis of the mucus layer is a key component in
intestinal health (Cai et al., 2020; Paone and Cani, 2020).
Mucus serves as a mechanical and chemical shield, protecting
epithelial cells from the pathogenic attacks. Along with Goblet
cells, the production of mucus is maintained by the commensal
bacteria in the gut microbiome (Paone and Cani, 2020).
Numerous studies have observed that high-fat Western diet
promotes the deterioration of intestinal mucus layer, whereas
plant-based diet enhances mucus layer thickness. One result of
low fiber diets is the reduced delivery of fiber to these bacteria,
resulting in a switch to metabolizing endogenous carbohydrates
present on intestinal mucin glycoproteins. This results in a
reduction in the quality of the protective intestinal mucous
coat (Png et al., 2010; Ijssennagger et al., 2015). This was
shown experimentally by Desai et al. using a gnotobiotic mice
colonized with a synthetic human gut microbiota (Desai et al.,
2016). When these mice were fed a fiber deficient diet, mucin
degrading bacteria levels increased and the susceptibility to
enteric pathogens increased (Desai et al., 2016). These data
indicate the importance of adequate dietary fiber in
maintaining epithelial barrier protection.

Due to the absence of mammalian enzymes that can degrade
carbohydrates, especially resistant starch, certain Firmicutes and
Bacteroides species are able to ferment indigestible carbohydrates
leading to the production of SCFAs (Biragyn and Ferrucci, 2018).
Evidently the predominant majority of SCFAs produced are
acetate, propionate, and butyrate.

SCFAs are extremely bio-active molecules, primarily acting
through interaction with G-protein coupled receptors: GPR41,

GPR43, and GPR109A and by direct inhibition of histone
deacetylase (HDAC). Uptake of SCFAs in colon epithelial cells
occurs by multiple mechanisms. These include passive diffusion,
specific monocarboxylate transporters (MCT), as well as through
SLC5A8 receptors (Ulven, 2012). Increased production of SCFAs
by gut microbiome is strongly associated with the improvement
of barrier junctions, increase in protective mucosal layer, increase
in immune tolerance and suppression of intestinal inflammation
(Smith et al., 2013; Schwiertz et al., 2010). SCFAs are produced in
the gut lumen where they interact with intestinal epithelial cells,
however SCFAs are also able to cross the epithelial layer and reach
the lamina propria, where they can then interact with the set of
immune cells, and also enter into the systemic circulation
(Figure 1) (Blacher et al., 2017; Zhang et al., 2019).

A recent study has shown that mice fed on low fiber intake
resulted in depletion of butyrate production, which in turn
directly caused disruption of the gut microbial diversity,
leading to systemic inflammation and mortality from
necrotizing pancreatitis. The mortality rate in these mice
significantly decreases upon oral and systemic introduction of
butyrate (van den Berg et al., 2021). Immune regulation and
maintenance of anti-inflammatory environment in the gut lumen
is extremely convoluted process, and its disturbance leads to
accumulated mechanisms that may promote oncogenesis. It is
now established that propionate and butyrate bind to GPR43 on
the surface of Foxp3+ expressing Treg cell, and facilitate the
differentiation of Treg cells as well as elevate the production of IL-
10, hence controlling and decreasing level of intestinal
inflammation, and increasing immune tolerance at a large
scale (Smith et al., 2013; Mandaliya et al., 2021). Another
mechanism by which SCFAs regulate Treg cell differentiation
is through the production of TGF-β by the epithelial cells (Basson
et al., 2016).

Similarly to butyrate, propionate acts as a ligand for SCFA-
sensing receptors GPR43, GPR41, and GPR109A (Furusawa et al.,
2015), inhibiting the expression of pro-inflammatory cytokines
such as IL-6, IL-8, and TNF. Propionate inhibits the MAPK
signaling pathway and prevents proliferation of CRC cells
(Davido et al., 2001), while acetate dramatically reduces
production of pro-inflammatory agents via inhibition of NF-
κB signaling pathway in CRC cells, inhibiting the cancer
progression. Thus, depletion of SCFAs can lead to colonic and
extraintestinal inflammation, resulting in unfavorable outcomes
like inflammatory bowel disease (IBD) and CRC (Davido et al.,
2001). Mandaliya et al. introduced butyrate and propionate to
diabetic mice that were fed a high fat diet (HFD), observing both
T cell polarization and inhibition of pro-inflammatory IL-6
cytokine production dramatically minimizing inflammation
grade in the gut (Mandaliya et al., 2021). A single-blind pilot
study compared the contribution of dietary fiber towards SCFAs
concentration and Treg cell population, showing the group with
higher intake of dietary fiber demonstrated a dramatic increase in
total CD4+T cells and Tregs. Moreover, upon activation of its
receptor, GRP109A, butyrate can inhibit several key pro-
inflammatory pathways that are highly involved in CRC, such
as protein kinase B or Akt (PKB/Akt) and NF-κB signaling
pathways (Chen et al., 2018).
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SCFAs regulate epigenetic changes via their ability to inhibit
histone deacetylase (HDAC). HDAC inhibition regulates the
levels of Treg cells in the colon, though the mechanism is not
fully understood (Verma and Shukla, 2013). Through HDAC
inhibition, butyrate also initiates polarization of macrophages to
M2 phenotype, hence leading to a decrease in inflammatory
ability of macrophages cells (Li et al., 2019a). Butyrate also
acts on the population of intestinal macrophages to promote
production of anti-inflammatory IL-10 and through the
inhibition of HDAC, initiates the production of antimicrobial
peptides (AMPs), boosting pathogenic clearance in the intestine
(Mohammadi et al., 2018). Moreover, HDAC inhibition in
macrophages leads to the dramatic decrease in production of
pro-inflammatory cytokines such as, IL-6, IL-12, nitric oxide
(NO), and TNF (Scott et al., 2018). The inhibition of HDAC
activity by propionate, reduced the level the tumorigenic lesions
in the colon (Casanova et al., 2018).

Furthermore, interaction between SCFAs and intestinal
epithelial cells leads to the elevated secretion of NLRP3
inflammasome that further results in increased secretion of IL-
18, hence facilitating the improvement of tight junction’s
homeostasis (Macia et al., 2015; Nowarski et al., 2015).
Moreover, SCFA-receptors are also present on Paneth, Goblet
and L cells, hence binding of SCFAs to these receptors’ triggers
production of molecules of defending nature. When SCFAs bind
GPCR on Goblet cells, it triggers the activation of NLRP6, as well
as mTOR/STAT3 signaling pathway to increase mucus
production in the gut lumen (Wlodarska et al., 2014; Li et al.,
2019b). Simultaneously, butyrate acts via Paneth cell GRP43
receptor resulting in the production of key anti-microbial
peptides, such as RegIIIγ and β-defensin (Birchenough et al.,
2016). These two cascades of reactions, also lead to an improved
barrier junction, as well as elevated innate response to the
continuous flow of pathogens. Interestingly, enteroendocrine L
cells, that are part of the colonic epithelium and express SCFA
receptor on their surface, upon the interaction with acetate and
butyrate, produce glucagon-like peptide-1 (GLP-1) and fasting
peptide YY (PYY) peptides (Brooks et al., 2017; Zhao et al., 2018)
These peptides are thought to increase energy intake while
decreasing appetite, hence these peptide are involved in the
gut-brain axis and are potential therapeutic agents in treating
conditions like obesity. In summary, the majority of research
studies support that SCFA derived from dietary fiber plays a key
role in epithelial defenses and immune regulation in the colon,
however further research is essential to better understand benefit-
based stratification amongst various dietary fiber types. For
instance, a recent study by Singh et al. has demonstrated that
diet rich in soluble inulin fiber provoked icteric hepatocellular
carcinoma (HCC) in dysbiosis mice models (Singh et al., 2018).

WESTERN DIETARY PATTERN—LOCAL
PATHOPHYSIOLOGIC AND MOLECULAR
EFFECTS
Direct effects of dietary constituents, microbiota, and microbial
products are thought to play a causative role in colorectal

carcinogenesis though multiple mechanisms, including
genotoxic, inflammatory, immune mediated, and metabolic
(Scott et al., 2019) In addition to being associated with a
distinct microbial signature, western-type diets are
characterized by certain dietary constituents (N-nitroso
compounds, heterocyclic amines, and heme) and increased
secondary bile acids and other metabolic products derived
from enriched bacterial species that can directly promote a
local pro-inflammatory and pro-carcinogenic environment in
the colon. In addition, the lack of dietary fiber in western-type
diets results in metabolic shifts that impact epithelial defense
against inflammation (Bhaskaran et al., 2018).

The relative increase in specific bacterial genus and species in
the microbiome found in patients with pre-cancerous adenomas
and CRC has fueled investigations into the possible direct pro-
carcinogenic or pro-inflammatory effects of these bacteria (Mima
et al., 2016a; Yu et al., 2018). Initial studies focused on comparing
microbiome and metabolome changes in patients with various
stages of colorectal neoplasia. Yu et al. used shotgun
metagenomic sequencing and identified 20 microbial gene
markers that were significantly associated with CRC (Yu et al.,
2017). A co-occurrence network, generated from the relative
abundance of 20 bacterial species was significantly associated
with CRC. Wirbel et al. conducted a meta-analysis of 8
geographically diverse fecal shotgun metagenomic studies of
CRC patients (n � 768). They found a core set of 29 species
that were enriched in CRC metagenomes. Functional
characteristics of these core species indicated enrichment of
protein and mucin catabolism genes and elevated production
of secondary bile acids, likely reflecting diets high in fat and meat
nutrients (Wirbel et al., 2019). Furthermore, Ng et al. used
metagenomic sequencing to describe a specific virome and
mycobiome signatures associated with CRC (Ng et al., 2019).

Other studies have interrogated the temporal framework
changes in the microbiome during adenoma-carcinoma
development sequence. Fecal samples from patients with CRC,
advanced adenomas, non-advanced polyps, and normal subjects
were studied to represent different stages of neoplastic evolution.
Nakatsu et al. found significant differences in the mucosal
bacterial communities found in normal mucosa, adenoma, and
carcinoma samples (Nakatsu et al., 2015). Zhang et al. showed
that the relative abundance of 24 bacterial species significantly
changed in fecal samples between normal, non-adenomatous
polyps, adenomas and carcinoma groups of patients, with
relatively higher amounts of Fusobacterium nucleatum and
pro-inflammatory periodontal bacteria, along with lower
amounts of beneficial short-chain fatty acid (SCFA) producers
in the CRC groups compared with the other groups (Zhang et al.,
2018). This correlated with a trend for increasing C-reactive
protein and STNFR-II in the adenoma and CRC groups
(Zhang et al., 2018). Similarly, Hale et al. found modest but
significant changes in the fecal 16S rRNA gene characterization of
microbiota of 547 adenoma patients compared with 233 patients
without adenomas (Hale et al., 2017). Taxa that were more
abundant in patients with adenoma included Bilophila,
Desulfovibrio, proinflammatory Mogibacterium, and
Bacteroidetes species; whereas taxa that were increased in
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patients without adenomas included Veillonella, Firmicutes,
Clostridia and Actinobacteria.

Kim et al. expanded these observations to focus on the
differences in the fecal microbiome and metabolome
signatures of 102 patients with advanced adenomas compared
with 102 matched healthy controls without polyps and with 36

patients with CRC, adjusting for sex and age in the groups. They
found that several bioactive lipid pathways were significantly
associated with the adenoma group, including polyunsaturated
fatty acids, secondary bile acid pathways, endocannabinoid
metabolism, and sphingolipid pathways (Kim et al., 2020). The
relative amounts of these lipids were not quantified, which could

FIGURE 2 | Effect of Western diet on the gut microbiome and local pro-carcinogenic pathways. Adherence to Western diet results in the high abundance of
Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), pks+ Escherichia coli and Peptostreptococcus anaerobius. Overpopulation of these bacteria in
the gut microbiome leads to the increased cell proliferation, elevated grade of inflammation and accumulation of DNA damage, eventually resulting in an environment
favorable to initiation or progression of colorectal cancer. (A) F. nucleatum secretes FadA toxin, which binds the E-cadherin complex on the wall of intestinal
epithelial cells. Upon interaction with FadA, E-cadherin undergoes phosphorylation, which lead to cleavage and subsequent translocation of the β-Catenin component of
the complex to the nucleus. β-Catenin binds with TCF/LEF transcription complex, triggering the expression of CCND1 and MYC, that govern cell proliferation. (B) LPS is
a polysaccharide on the cell wall of F. nucleatum, that binds the TLR4 receptor which are expressed on the intestinal epithelial cell membrane. LPS-TLR4 complex
activates MYD88 adaptor that results in inhibition of a Ras GTPase—RASA1. The inhibition of RASA1 leads to unwanted cell proliferation. LPS-TLR4-MYD88 complex
also induces the production of microRNAmiR 21, that in turn activates NF-κB transcription factor and leads to the production of pro-inflammatory agents including KRT-
7AS long non-coding RNA. (C) Upon binding of microbial protein Fap2 with cell membrane receptor, surface expressed polysaccharide Gal-Gal-NAc modulates the
activation of NF-κB transcription factor that leads to the increase in intestinal inflammation through the production of TNF-α, IL-6, and IL-8. Increased intestinal
permeability also, known as “Leaky gut” phenomena, allows the bi-directional passage of bacteria and their metabolites, as well as immune inflammatory agents.
Through the leaky gut, Fap2 is able to reach lamina propria and diminish the activity of Natural killer (NK) cells and T cells. (D) F. nucleatum interacts with intestinal
epithelial cells to stimulate the production of long non-coding RNA (lncRNA) ENO1-IT1 via SP1 transcription factor. Production of ENO1-IT1 increases concurrently the
expression of ENO1. This cascade of reactions leads to the increased level of carcinogenesis and inflammation. (E) ETBF produces BFT toxin, that interacts with
epithelial cells to trigger intestinal inflammation via activation of STAT3 signaling pathway. BFT activates RAS/MAPK pathways to further initiate AP1 and start the
production of IL-8 resulting in intestinal inflammation. BFT stimulates the translocation of β-Catenin to the nucleus initiating expression of C-Myc and production of
reactive oxygen species (ROS), leading to DNA damage. (F) BFT also induce the production of spermine oxidase (SMO) and SMO-dependent ROS production, resulting
in DNA damage. (G)Colibactin is secreted by of pks+ E. coli. Interaction of colibactin with epithelial cells results in accumulation of DNA adducts and further DNA damage.
(H) P. anaerobius surface protein PCWBR2 binds to α2/β1 integrin on the epithelial cells to initiate cell proliferation via activation of PI3K/Akt signaling pathway and NF-κB
transcription factor. This interaction also leads to expansion of neutrophils, macrophages and myeloid derived suppressor cells driving chronic inflammation and tumor
progression.
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determine the pro-vs anti-inflammatory effects of these lipids.
These metabolomic pathways were correlated with genus-level
microbiome sequencing, and they found positive correlations
with Bacteroides and 10 or more sub pathways, whereas four
genera from Firmicutes and one from Actinobacteria showed
negative correlation with these pathways (Kim et al., 2020). The
authors stated that the changes observed in the metabolic
pathways are too small to be useful as diagnostic markers of
adenomas, however these observations illustrate the possible
biological pathways that are early events in the adenoma-
carcinoma pathway. Overall, these studies indicate that there
are specific fecal and mucosal microbiome signatures associated
with the development of colonic neoplasia.

Directly supporting the direct carcinogenic effect of the gut
microbiome is the pivotal observation that fecal samples from
CRC patients promote intestinal tumorigenesis in colon
carcinogenic mouse models induced by azoxymethane (Wong
et al., 2017). To determine the specific mechanisms that can
explain this, potentially pathogenic bacteria found to be enriched
in colorectal adenomas and carcinomas have been investigated to
determine if they have direct carcinogenic effects in the colon
(Figure 2). These include F. nucleatum, Enterotoxigenic
Bacteroides fragilis (ETBF), pks+ Escherichia coli, and
Peptostreptococcus anaerobius (Figure 2) (Dai et al., 2018;
Haghi et al., 2019).

Although the review is focused on the microbial composition
in the gut lumen, it is important to highlight arising areas of
mycobiome and virome and how much they contribute to
oncogenesis. Both fungal and viral composition in the gut, has
been shown to be altered in patients with cancer in comparison to
healthy individuals (Vallianou et al., 2021). It has also been found
that CRC patients show virome dysbiosis, however more studies
are required in order to fully elucidate the contribution of
eukaryotic viruses in cancer development (Massimino et al.,
2021).

Fusobacterium Nucleatum
F. nucleatum is a Gram-negative commensal anaerobe that in the
past decade has drawn a lot of attention due to its strong
association with the development of colorectal neoplasia (Abu-
Ghazaleh et al., 2021). There are numerous studies linking F.
nucleatum overpopulation in the gut microbiome to local and
distant cancers in the human body. Recent population-based
studies have demonstrated overpopulation and presence of F.
nucleatum in biopsies of colorectal adenomas, and patient stool
screening in comparison to the healthy individuals (Mima et al.,
2016b; Mehta et al., 2017). To understand how F. nucleatum
potentially causes carcinogenesis both locally in the colon and
systemically, it is important to establish the interaction of
metabolites produced by F. nucleatum and the cells of the
colonic epithelium.

FadA is one of the virulence toxins produced by F. nucleatum
in the gut microbiome, and it plays a crucial role in initiating
carcinogenic processes in the colonic epithelium. The FadA
protein has a helical form which helps it to bind to the
extracellular domain of E-cadherin, an epithelial cell adhesion
protein E-cadherin is internalized upon interacting with FadA,

and immediately phosphorylated, which results in the release and
accumulation of β-catenin molecules in the cytoplasm. β-catenin
which is then subsequently translocate to the nucleus interacts
with T-cell factor and lymphoid enhancer factor (TCF/LEF)-
family transcription factors (Kostic et al., 2013; Rubinstein et al.,
2013), initiating transcription of a set of pro-inflammatory,
proliferative genes and oncogenes, such as CCND1 and MYC
(Abu-Ghazaleh et al., 2021). Hence, in a situation with
continuous production of FadA, the transcription machinery
constantly drives a set of oncogenes along with pro-
inflammatory genes, resulting in proliferation of CRC cell and
favorable tumor microenvironment.

However, not all CRC cells have E-cadherin on their adherent
tight junctions, therefore, not all cancer progression and
inflammation events are triggered via FadA activity (Rubinstein
et al., 2013; Gholizadeh et al., 2017). Accordingly, another F.
nucleatum metabolite, Fap2, has been identified to be elevated
in CRC patients. A dual mechanism of Fap2 activity leads to both
immune suppression and establishment of tumor
microenvironment (Abed et al., 2016; Hashemi Goradel et al.,
2019). A host polysaccharide Gal-Gal-NAc, was identified to be
predominant on all the types of CRC cells. Gal-Gal-NAc acts as a
polysaccharide modulator for Fap2, and upon this interaction,
Fap2 activates NF-κB signaling pathway that result in
overproduction of TNF-α, IL-6, and IL-8 (Abed et al., 2016;
Abed et al., 2017; Yachida et al., 2019). These immune
chemokines are extremely pro-inflammatory, hence continuous
enrichment of CRC cells via Fap2 leads to chronic inflammation in
the colon and enhancement of the favorable tumor
microenvironment. Moreover, Fap2 binds to the TIGIT receptor
on the Natural Killer (NK) cells and T-cells, inhibiting immune
T cells polarization, leading cancer cells to escape from immune
surveillance (Gur et al., 2015; Mima et al., 2015).

Several studies have shown that F. nucleatum -infected CRCs
have a higher rate of proliferation. Lipopolysaccharide (LPS) is an
antigen found on the cell-wall of F. nucleatum. This key
proinflammatory, immunogenic bacterial metabolite, a well-
known inducer of the Toll-like Receptor (TLR) and NF-κB
pathways that lead to inflammation and oncogenic changes
both locally and systemically (Salcedo et al., 2010; Yang et al.,
2017a). Activated NF-κB transcription factor, results in activation
of MYD88 signaling pathway and promotes an increased
expression of the microRNA 21 (miR-21), which in turn
inhibits the activity of RAS GTPase—RASA1 (Ciesielska et al.,
2021). miR-21 was found to significantly downregulate the
production of RASA1, a member of RAS GTPases family that
plays a key role in inactivating set of oncoproteins such as RAS
(Salcedo et al., 2010). When RASA1 is downregulated, the MAPK
signaling pathways is further activated and results in CRC cell
proliferation and eventual metastasis. Moreover, apart from
inhibiting the production of RASA1, miR21 also
downregulates Pdcd4, which is a key tumor suppressor (Yang
et al., 2017a).

Escherichia Coli
Escherichia coli is a symbiotic and commensal bacterium, widely
occurring in oral, vaginal and intestinal microflora. Certain
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strains of E. coli can induce carcinogenic changes on the cellular
level (Arthur et al., 2012). An E. coli strain from the B2
phylogroup that possesses polyketide synthase island (pks+),
was found to colonizes a healthy gut microbiome in response
to a shift and continuous adherence to a Western dietary pattern.
Recent studies have confirmed an increased level of pks+ E. coli
strain in patients with advanced CRC (Kohoutova et al., 2014).
pks+ E. coli produces colibactin, an extremely virulent secondary
genotoxin. Multiple in vivo studies have confirmed that colibactin
introduces DNA double-strand breaks leading to genomic
instability and thereby considerably elevates the risk of
acquiring further mutations (Cougnoux et al., 2014; Wilson
et al., 2019).

Although colonic inflammation is known to be one the key
risk factors in developing CRC, and bacterial toxins drive
continuous pro-inflammatory agents in the gut, there are also
numerous mutational signatures that distinguish CRC patients,
that are not related to the inflammatory pool. Distinctive
mutational signatures were identified in 5,876 cancer patients,
the majority of them with CRC (Alexandrov et al., 2020). A recent
study by Pleguezuelos-Manzano et al., exposed human intestinal
organoids to the genotoxic pks+ E. coli via luminal injection for
5 months, comparing it to organoids injected with isogenic pks-

mutant bacteria and then performed whole genome sequencing.
They found that organoids injected with genotoxic pks + E. coli
resulted in the same subset of mutational signatures that had been
deduced from a cohort of CRC patients (Pleguezuelos-Manzano
et al., 2020).

Mechanistically, colibactin induces damage due to the
presence of a cyclopropane ring within its structure. Wilson
et al. have demonstrated in vivo evidence of colibactin activity
causing DNA adducts and alkylation, leading to eventual DNA
damage. The study demonstrated the strong link between
colibactin structure and ability to cause DNA double stranded
break, through creating DNA interstand cross-link, leading to
genomic instability, and further accumulation of distinct
mutation leading to CRC (Wilson et al., 2019; Xue et al., 2019).

Enterotoxigenic Bacteroides fragilis
B. fragilis is a commensal Gram-negative anaerobe, that exists in a
symbiotic fashion with the host organism (Gagnaire et al., 2017).
Recent studies have strongly linked adherence to the HFD
Western diet to the elevated population of Bacteroides fragilis
in the gut microbiome (Abu-Ghazaleh et al., 2021). Due to the
sharp increase in CRC cases worldwide, numerous studies have
been looking at the interaction of B. fragilis with the colonic
epithelium. The colonization of colonic epithelium with B. fragilis
is one of the key signatures of the microbiome in CRC patients.
Although the causality of the events is yet to be fully determined,
recent population-based studies have shown increased level of B.
fragilis strains in patients with inflammatory bowel disease (IBD)
and colitis (Dejea et al., 2018; Rashidan et al., 2018). B. fragilis
normally comprises up to 2% of total microbiome volume (Wu
et al., 2007), but only a certain strain, Enterotoxigenic Bacteroides
fragilis (ETBF), is associated with the development of CRC and
can be characterized as carcinogenic (Liu et al., 2020; Mohseni
et al., 2020). ETBF releases the zinc-metalloprotease B. fragilis

toxin (BFT), that binds a receptor on the colonocyte and induces
favorable conditions for CRC progression. This occurs by
establishing chronic inflammatory microenvironment with
activating a set of oncogenes and initiating production of
reactive oxygen species (ROS) (Hernández-Luna et al., 2019).
Upon interaction between BFT and epithelial cell receptor,
β-catenin molecule dissociates from the E-cadherin complex
and travels to the nucleus (Chung et al., 2018). Abundant of
unphosphorylated β-catenin in the nucleus initiates the NF-ĸB/
AP1 transcription machinery, causing the overexpression of pro-
inflammatory cytokine like IL-8 and oncogenes such as C-MYC
(Cheng et al., 2020). Moreover, BFT triggers the STAT3 signaling
pathway, giving rise to the continuous production of IL-17 and
IL-23, significantly increasing the extent of inflammation locally
in the gut (Thiele Orberg et al., 2017; Chung et al., 2018). This
continuous production of BFT promotes proliferation of CRC
cells and maintains chronic inflammation at the sites of colonic
epithelium. Furthermore, ETBF infected colonic cells produce
reactive oxygen species (ROS), leading to the progressive genomic
instability, exponentially elevating risk of acquiring new
mutations, and development of CRC (Cheng et al., 2020).

Peptostreptococcus anaerobius
Another example of a potentially pathogenic species enriched in
CRC samples is Peptostreptococcus anaerobius. This species have
been shown in cell culture to have direct inflammatory and pro-
oncogenic impacts by binding to integrin α2/β1 integrin receptors
on cell surfaces, activating PI3K, Akt, and NF-κB to enhance
proliferation, proinflammatory cytokines, and T cell suppression
(Long et al., 2019).

WESTERN DIETARY
PATTERN—SYSTEMIC
PATHOPHYSIOLOGIC EFFECTS
Dysbiosis is implicated as a bridge between changing gut
microbiome composition and the incipient manifestation of
extraintestinal tumors. The microbial balance shifts away from
commensal bacteria in the gut, creating a favorable environment
for chronic inflammation as well as the suppression of immune
surveillance (Zhou et al., 2020; Kovács et al., 2020). Intriguingly, it
has been hypothesized that pathogenic bacteria, bacterial
products, and metabolites escape into the systemic circulation
via increased leakiness of tight junctions and contribute to
promoting inflammatory pathways in other organs. This
amounts to an organismal-level of carcinogenic circulatory
signaling instigated by the diet-deregulated microbiome.
Contemporary efforts in this field have examined the
contribution of the gut metagenome to the development of
conditions such breast, liver, and pancreatic cancers (Figure 3)
(Chen et al., 2019; Jain et al., 2021).

Breast cancer is a multifactorial disease, aside from the rare
minority of hereditary cases driven by BRCA1 and BRCA2
mutations, and familial predisposition involving genetic
modifiers such as CHK2—that is initiated by a sequence of
pro-carcinogenic events, including destabilized hormonal
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homeostasis. Growing incidence of obesity induced breast cancer,
led to the acknowledgement of a gut-breast axis. Ley et al., have
demonstrated that gut microbial composition differs between
lean and obese people. The group has observed that Bacteroides
phyla is significantly decreased in obese participants, supporting
the evidence that gut microbiome mirrors the dietary and lifestyle
choices (Ley et al., 2006). Moreover, Shively et al. designed a study
focusing on the effect of Mediterranean versus Western diets on
mammary gland microbiome of non-human primates. The group
observed that upon administration of Mediterranean diet,
Lactobacillus abundance increases in the mammary gland
microbiome. Multiple studies have also shown altered gut
microbiome in breast cancer patients as compared to healthy
individuals (Shively et al., 2018; Iyengar et al., 2019; Klann et al.,
2020; Yaghjyan et al., 2021). Nagrani et al., have demonstrated
that obesity is a key risk factor in developing breast cancer,
regardless of menopause manifestation and administration of
hormonal therapy (Nagrani et al., 2016). The population-based
study was performed between 2009 and 2013 amongst Mumbai
female population, revealed the consistency of breast cancer
diagnosis amongst women with higher BMI (Nagrani et al.,
2016). Interestingly, Kabat et al. have conducted a 15-years
prospective cohort study, focusing on the incidence of
postmenopausal breast cancer and its association with obesity
and metabolic syndrome (Kabat et al., 2017). Amongst 21,000
enrolled postmenopausal participants, 1,176 cases of invasive
breast cancer were documented. The 15 years-follow up
showed that obesity is the key risk factor of breast cancer

manifestation, irrespective of metabolic dysregulation. Kabat
et al. confirmed that the increase in BMI is directly
proportional to the development of breast tumorigenesis
(Kabat et al., 2017).

Parhi et al. showed that the increasing abundance of F.
nucleatum positively correlates with metastatic progression of
breast cancer in mice (Parhi et al., 2020). They showed that
colonization of breast cancer cells is solely dependent on the F.
nucleatum secreted lectin Fap2. Interestingly, inactivation of Fap2
significantly suppressed the tumor growth. Furthermore,
metastatic progression of the cancer was facilitated by Fap2
and TIGIT binding, as this interaction results in abrogation of
NK cells and tumor-infiltrating T-cells. Remarkably, breast
cancer progression and speed of metastatic lesion formation
was slowed down upon administration of antibiotic therapy
(Parhi et al., 2020). This provides some evidence for the direct
causal contribution of the gut microbiome to carcinogenesis
beyond CRC, specifically to breast cancer progression.

Furthermore, Rao et al. have shown that chronic inflammation
in the gut is a precursor of tumorigenesis in the mammary glands
(Rao et al., 2006). They introduced Helicobacter hepaticus to
female mice and observed the development of both mammary
carcinoma and intestinal tumor. The main mechanism H.
hepaticus utilizes to induce carcinogenesis was solely TNF-α
dependent. By increasing the population of pro-inflammatory
cytokines that enter the systemic circulation, H. hepaticus can
establish the pro-inflammatory microenvironment in the breast
tissues as well. This finding supports the claim that intestinal

FIGURE 3 | Effect of Western diet on the gut microbiome and extraintestinal pro-carcinogenic pathways. Adherence to Western diet promote the establishment of
chronic dysbiosis in the gut, leading to translocation of pathogenic bacteria and toxic bacterial metabolites entering systemic circulation and reaching extraintestinal
organs. Main drivers of the pro-carcinogenic and pro-inflammatory processes are LPS, lipoteichoic acid, numerous exotoxins, PAMPs, and deoxycholic acid. When
bacterial metabolites reach liver, pancreas, and breast, they bind to receptors, such as TLR4 to activate signaling pathways that drives inflammation and
proliferation.
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inflammation can result in systemic inflammation, causing
neoplastic formation in distant organs (Rao et al., 2006).
Rutkowski et al. showed that depletion of commensal bacteria
in the gut increases the activity of TLR5, resulting in the
production of pro-inflammatory cytokines such as IL-6 and
elevation of the γδ T cell pool. This sequential cascade spreads
inflammation and can fuel tumor microenvironment in the
mammary tissues, resulting in tumor formation (Rutkowski
et al., 2015). Recently, Zhu et al., using shotgun metagenomic
analysis of both premenopausal and postmenopausal breast
cancer patients, have shown that breast cancer patients have a
unique alteration of their gut microbiome in comparison to
premenopausal healthy controls (Zhu et al., 2018). They
demonstrated an enrichment of bacterial population involved
in LPS biosynthesis, which is a stimulus for chronic intestinal
inflammation (Hsu et al., 2011; Yin et al., 2016; Zhu et al., 2018).
Taken together, these and other studies demonstrated that
commensal bacteria are vitally important to maintaining
immune homeostasis, not only locally in the gut microbiome,
but also systemically in distant organs.

In the recent years, with the rising incidence of pancreatic
cancer, the gut microbiome was explored as a potential driver of
pancreatic malignancies. Immediate anatomical connection
between pancreas and gastrointestinal system implicates a role
of gut-pancreas axis in pathological conditions like type II
diabetes, pancreatitis, and pancreatic ductal adenocarcinoma
(PDAC). There is a unique alteration of gut microbiome
between PDAC patients in comparison to healthy individuals
(Pushalkar et al., 2018). Maekawa et al. have demonstrated that
population of Enterococcus faecalis, a virulent bacterium that is
more abundant in people adhering to theWestern diet, is elevated
in patients with pancreatic cancer, supporting the evidence of a
potentially deleterious crosstalk between the gut microbiome and
pancreas (Maekawa et al., 2018).

It is hypothesized that LPS translocated from the gut
microbiome can cause high grade inflammation and
tumorigenesis in the pancreas via the activation of MYD88
and TLR2. Interestingly, Nagathihalli et al. demonstrated that
secondary bile acids, particularly deoxycholic acid (DCA)
promote tumorigenesis in CRC and PDAC (Nagathihalli et al.,
2014). It was observed that in pancreatic tissue, DCA modulate
carcinogenic activity through TGF-α and EGFR interacting with
pancreatic cells, further activating MAPK and STAT3 signaling
pathways.

In mice and humans, there is a characteristic change in the
microbiome signature associated with cancerous pancreas as
compared to that in healthy pancreas. Pushalkar et al. have
recently demonstrated that the microbiome in PDAC shifts
from Bacteroidetes and Firmicutes to Proteobacteria,
Actinobacteria and Fusobacteria, resulting in dysbiosis and
increased bacterial translocation into the pancreatic duct
(Pushalkar et al., 2018). Several studies have demonstrated
that progressive carcinogenesis of PDAC is solely dependent
on toll-like receptor (TLR) activation. Activation of the TLR
family results in dramatic suppression of immune surveillance
through increased pool of Th2-deviated CD4+ T cells and
polarization of tumor-associated macrophages M1, leading to

the rapid progression of PDA in mice. Removal of the
microbiome-derived pathogens results in positive outcomes for
PDAC by causing a reduction in myeloid-derived suppressor cells
and an increase in M1 macrophage differentiation (Zambirinis
et al., 2015; Pushalkar et al., 2018). In addition, emerging data
indicates the mycobiome may play a significant role in pancreatic
oncogenesis. Aykut et al. demonstrated that certain genera of
endoluminal fungi promote the development of pancreatic
oncogenesis in mice, whereas the fungal ablation was shown
to be tumor-protective in this mouse model of pancreatic cancer
(Aykut et al., 2019).

The role of the gut-liver axis has been extensively explored in
the last decade, due to the increasing evidence of strong
association between metabolic disease, obesity, adherence to a
Western diet, and liver cancer. Although up to now the full
spectrum of gut-liver crosstalk is yet to be determined, gut
microbiome seems to add a tremendous contribution in the
liver homeostasis.

Gut-liver axis and bi-directional metabolite translocation is
thought to be maintained through biliary duct, portal vein and
systemic circulation (Schwabe and Greten, 2020; George et al.,
2021). Patients with hepatocellular carcinoma (HCC) have been
shown to have reduced SCFA production and increased
proinflammatory bacterial species (Muñoz et al., 2019;
Suriguga et al., 2020). The disruption of gut barrier in events
like dysbiosis and leaky gut, result in continuous secretion of
microbial associated molecular patterns (MAMPs) such as LPS
into the portal vein and systemic circulation. MAMPs act as
ligand to TLR4 and other members of TLR family, initiating
cascade of inflammatory reactions via activation of molecular
pathways like Wnt and NF-κB, promoting production of
inflammatory like cytokines IL-6 and TNF- α (Dapito et al.,
2012). These TLR4 type receptors are found onmultiple cell types
in the liver, including hepatocytes, stellate cells, and Kupffer cells,
that lead to changes in proliferation, fibrosis, and immune
regulation (Yu and Schwabe, 2017; Yu et al., 2010). Fox et al.
observed that upon H. Hepaticus infection, mice had increased
promotion of tumorigenesis in the liver and lower bowel. The
group observed activation of NF-κB pathway, which increased T
helper 1 (Th1) immune response in both liver and colon.
Moreover H. Hepaticus infection activated Wnt/β-catenin
pathways, which led to cell proliferation as well as poor
clearance of damaged hepatocytes (Fox et al., 2010).

Nutrients in food products can directly interact with gut
microbiome, altering its composition. An emerging biomarker
for some cancers is trimethylamine N-oxide (TMAO), a
secondary metabolite produced upon red meat consumption.
L-carnitine and choline from meat are metabolized to
trimethylamine (TMA) by gut bacteria, this is absorbed and
goes to the liver via the portal vein, where it is metabolized
into TMAO. There are several lines of evidence linking elevated
TMAO production with carcinogenesis and cardiovascular and
other NCD (Liu et al., 2018; Zmora et al., 2019; Li et al., 2021a). It
has been reported that TMAOproduction alters the population of
the mucin-degrading bacteria Akkermansia muciniphila in the
gut lumen, resulting in disruption of the protective mucous layer
that covers intestinal epithelial cells (Ijssennagger et al., 2015; Zhu
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et al., 2016). TMAO was also found to be elevated in the serum of
CRC patients, and the level of TMAO correlated inversely with
patient prognosis, higher levels translating into less survival.

A recent population-based study on 671 patients with primary
liver cancer (PLC), demonstrated that TMAO serum level was
significantly elevated in patients with PLC compared to healthy
controls (Liu et al., 2018). Interestingly, TMAO level was
significantly decreased by reducing consumption of animal-
based products (Oellgaard et al., 2017; Nowinski and Ufnal,
2018). A cohort study based in Finland showed that TMAO
level positively associated with development of aggressive
prostate cancer (Mondul et al., 2015). Additional
epidemiological studies demonstrated the association of
TMAO with liver cancer and CRC (Cho et al., 2017; Guertin
et al., 2017). It is still unclear how exactly TMAO modulates
carcinogenic processes. A possible mechanism that TMAO
production enhances the activation of the Wnt and NF-κB
signaling pathways, promoting a pro-inflammatory
environment (Xu et al., 2015; Chan et al., 2019).

Bile acid homeostasis is also one of the key components of
normal liver and intestine functioning. Bile acids that escape the
absorption by the small intestine, travel to the colon, where they
undergoes conversion into secondary bile acids. Interestingly
secondary bile acid is increased in CRC and HCC patients, as
well as the bacteria metabolizing the secondary bile acids (Modica
et al., 2009). Large amounts of secondary bile acids can reach
systemic circulation via portal vein, leading to liver inflammation
(Wang et al., 1999; Zhou et al., 2020). The secondary bile acid
deoxycholic acid can induce ROS mediated DNA damage and
alter hepatic stellate cell phenotype resulting in IL-6 and IL-1beta
production. One of the key components in bile acid homeostasis
is farnesoid X receptor (FXR) (Yoshimoto et al., 2013). FXR
belongs to the nuclear receptor family, that are mainly expressed
in liver, kidneys, and intestine. Different types of bile acids,
including taurocholic acid (TCA), deoxycholic acid (DCA) and
cholic acid (CA), act as ligand for FXR, this interaction leads to
the suppression of bile acid production. In cases of FXR
deactivation, the bile homeostasis is disrupted resulting in
continuous production of bile acids (Modica et al., 2009;
Gonzalez et al., 2016).

Ma et al., has recently demonstrated that increase in natural
killer T cells population inhibits the tumor progression in liver
(Ma et al., 2018). It was observed that increase in Clostridium
Cluster XIV abundance promoted secondary bile acid
production, inhibited NKT cells, consequently leading to the
progression of liver tumorigenesis. By administrating
vancomycin antibiotic treatment researchers were able to
deplete Gram-positive bacterial population in mice
microbiome. Antibiotic treatment allowed reduced production
of secondary bile acid and an increase in the translocation of
CXCL16 ligand from the gut to the liver. CXCL16 is the key
regulator of liver sinusoidal endothelial cells, by elevating the
levels of CXCL16 researchers were able to improve the liver
barrier from the gut circulated blood. This evidence supports the
association between gut microbiome composition and liver
homeostasis. Microbiome composition influences every organ
and system in the entire body, however the majority of studies

focused on specific microbes out of entire microbial populations,
perhaps limiting the understanding of the microbial activity in
certain diseases. Therefore, taking more systematic approach and
trying to mimic entire gut microbiome signatures may unravel
new avenues in cancer research.

ALCOHOL—MOLECULAR MECHANISMS
OF LOCAL AND SYSTEMIC EFFECTS

Alcohol use is common worldwide across most dietary patterns.
Estimates from an international WHO survey indicate that the
mean lifetime prevalence of alcohol use in all countries is 80%,
with a range of 3.8–97.1%. The combined average population
lifetime prevalence of alcohol use disorders is 8.6%, ranging from
0.7% in Iraq to 22.7% in Australia. As of 2016, the WHO
estimated that 2.3 billion people were current drinkers and
283 million people (5.1% of adults) had alcohol use disorder.
Since alcohol use is so common, most studies on the effect of
specific diets on the intestinal microbiome likely include both
alcohol and non-alcohol users. Approximately 4% of all cancers
are caused by the overconsumption of alcohol, primarily
including cancers of the upper aerodigestive tract, liver,
colorectum, and breast. Alcohol has a myriad number of toxic
and proinflammatory effects (Rumgay et al., 2021) that are
beyond the scope of this review, we will focus here on
microbiome-related changes.

Mouse models have revealed profound changes in intestinal
barrier function induced by chronic alcohol use. The first changes
observed were increased intestinal bacterial overgrowth and
altered microbiome profiles (Yan et al., 2011). This is also
associated with decreased expression of intestinal bactericidal
c-type lectins Reg3b and Reg3g, which help regulate luminal
bacteria (Yan et al., 2011). Interestingly, treatment with prebiotics
could help restore Reg3g levels, reduce bacterial overgrowth, and
decrease steatohepatitis. Alcohol use for 8 weeks results in
reduced intestinal barrier function and increased intestinal
inflammation characterized by an increased number of
inflammatory cells expressing tumor necrosis factor alpha
(TNF-a) (Chen et al., 2015). This is accompanied by
translocation of microbial products to the liver and increased
steatohepatitis.

Studies of the effect of alcohol on the microbiome in humans
have focused on subjects with moderate to heavy alcohol use, with
or without concomitant liver disease (Figure 4). With moderate
alcohol and before the development of significant liver disease,
initial changes include an increase in the numbers of bacteria
cultured from the small intestine, similar to what is observed in
mouse models of alcohol feeding. Further studies have shown
additional qualitative changes in 16S rRNA analysis of bacterial
species, including a relative increase in Proteobacteria and a
decrease in Bacteriodaceae, however overall alpha diversity
remains stable. Increasing burden of alcohol use with
concomitant liver fibrosis or cirrhosis results in further
changes in the microbiome, resulting in major metabolic
consequences affecting intestinal cells and systemic pathways
(Fairfield and Schnabl, 2021). Analysis of stool specimens of
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patients with cirrhosis and alcoholic hepatitis demonstrate a
decrease in SCFA producing bacteria, with an increase in
potentially pathogenic bacteria, such as Enterovaeteriaceae,
Streptococcaceae, Veillonellaceae, and Prevontellaceae. There is
an overall decrease in alpha diversity in luminal bacteria. With
the most severe form of alcoholism and liver disease, alcoholic
cirrhosis and alcoholic hepatitis, further reductions in fungal
diversity with an overgrowth of Candida species has been
demonstrated (Yang et al., 2017a). In patients with alcoholic
hepatitis these changes are accompanied by an increase in the
viral microbiome diversity compared with subjects with alcohol
use disorder and non-alcoholic controls (Jiang et al., 2020). The
viral diversity is in large part related to increases in Escherichia-,
Enterobacteria-, and Enterococcus bacteriophages and an increase
in an often underappreciated non-bacterial component of the
microbiome—mammalian viruses, such as Parvoviridae and
Herpesviridae. In contrast, decreased viral diversity was found
in patients with non-alcoholic fatty liver disease (NAFLD) and
non-alcoholic steatohepatitis (NASH)-cirrhosis, indicating that
increased fecal viral diversity is unique to the effects of alcohol
and/or alcohol-related liver disease (Lang et al., 2020).

The changes in themicrobiome associatedwith heavy alcohol use
have been correlated with worse medical outcomes in individual
patients. Lang et al., have shown that patients with alcoholic cirrhosis
have reduced fungal diversity and an overgrowth of Candida species
compared with healthy individuals and non-alcohol-related
cirrhosis. In the alcoholic cirrhosis subjects, this is accompanied
by increased systemic fungal antigens and higher risk for death (Lang
et al., 2020). These findings are duplicated in mouse models of
alcoholic hepatitis with demonstration of increased circulating
fungal antigens and increased liver inflammation via stimulation

of C-type lectin like receptor CLEC7A on hepatic Kupffer cells
resulting in cytokine IL-1b release (Yang et al., 2017b; Yang et al.,
2019). Furthermore, qualitative differences in fecal viral taxa are
associated with worse 90-days survival in patients with alcoholic
hepatitis (Jiang et al., 2020). Currently there is much interest in
whether interventions targeting the specific fungal and virome
changes associated with poor prognosis can improve patient
outcomes. To demonstrate the feasibility of this approach, Duan
et al. showed that patients with alcoholic hepatitis have increased
abundance of cytolysin-positive Enterococcus faecalis, which
correlates with increased mortality (Duan et al., 2019). Germ free
mice colonized with cytolysin-positive E. faecalis from patients with
alcoholic hepatitis had worse liver disease in a model of alcohol
induced liver disease. Mice were treated with bacteriophages that
target and destroy cytolysin-positive E. faecalis and they showed that
this could ameliorate alcohol induced liver disease in mice. Further
studies targeting specific pathogenic bacteria implicated by
metagenomics in human diseases are needed.

THE NEXT STEP—GENETIC
EPIDEMIOLOGY AND POPULATION
GENOMICS COULD REVEAL POSSIBLE
LINKS BETWEEN HOST GENETICS AND
MICROBIOME

In addition to diet, host genetics is an important factor that
influences the gut microbiome, predisposing individuals to
microbiome-modulated pathologies. A genetic bias for
microbiome composition is suggested by studies of association

FIGURE 4 | Effect of alcohol overconsumption on the gut microbiome and intestinal homeostasis. Over consumption of alcohol positively correlates with the
severity of manifested dysbiosis in the lower bowel and occurrence liver diseases. Dysbiosis resulted from alcohol overconsumption, leads to the increase in abundance
of pathogenic bacteria, increase in viral diversity, production of LPS, secondary bile acids and activation of farnesoid X receptor (FXR). Alcohol overconsumption also
downregulates production of SCFAs, results in decreased alpha and fungal diversity and decrease reabsorption of primary bile acids (PAMPs � pathogen
associated molecular patterns).
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and heritability of certain bacterial species in related individuals.
Monozygotic twins have higher correlation of microbiome
signatures than dizygotic twins (Goodrich et al., 2016). Host
genetic factors can influence the microbiome in mice (Benson
et al., 2010). Genome-Wide Association Studies (GWAS) of the
microbiome have revealed only limited links to host genetics. The
detection of only a small number of associated loci is primarily
due to inter-individual variability, microbiome heterogeneity,
and potential overshadowing of host-genetics factors by the
contributions of the diet, environment, and lifestyle to
microbiome composition (Kurilshikov et al., 2021). While the
link between host genetics and microbiome diversity may be
weak, genetics can modulate specific microbiome-diet,
microbiome-environment, and microbiome-lifestyle
interactions in ways that lead to specific disease outcomes
which are traceable to specific molecular interactions between
host- and microbiome-derived components. Well-controlled
studies, especially those utilizing homogenous populations,
may be able to reveal these impacts more easily. Despite these
limitations, meta-analyses of GWAS have proven effective in
identifying specific molecular mechanisms connecting the
microbiome to numerous diseases, including cancer. In
particular, TMAO, the microbiome-generated metabolite of
red meat and fat previously connected with cardiometabolic
risks, was additionally linked to CRC risk by this approach
(Xu et al., 2015). Aside from colon cancer, other cancers,
including bladder and prostate cancer, show clear associations
with the microbiome in GWAS. These signals were identified
through correlating significant disease-associated genetic variants
from GWAS with microbiome data. The putative causative
relationships do not just go “From microbiome to cancer”, as
they also go the other way around: “From cancer to microbiome.”
Atrial fibrillation, chronic kidney disease, and prostate cancer, as
predicted by host genetics, have potential causal effects on the
abundance of specific gut microbiome components (Xu et al.,
2015). This bidirectionality of the cancer-microbiome axis is
important to take into account, because—while the idea that
the microbiome can regulate, or influence disease pathogenesis is
more intuitive and widely accepted—it means that a disease state
can also influence the microbiome (with potential downstream
feedback effects on the disease).

Given the abundance of long non-coding RNA (lncRNA) genes
compared to conventional protein-coding genes in humans, it is
expected that GWAS-driven interrogation of the microbiome-
disease connection will uncover lncRNA contributors to this class
of regulatory phenomena. Accounting for well over half of human
genes, lncRNAs are now increasingly understood to be fundamental
and essential to all normal cellular and developmental processes, as
well as all human diseases, in which they have been examined (Hong
et al., 2020). There is already a precedent: non-coding genetic
variants from GWAS, including those in a lncRNA gene, have
been associated with defined phyla within the microbiome (Hughes
et al., 2020). Mouse microbiome models demonstrate that lncRNAs
can bemicrobiome targets in regulatory networks, building a case for
microbiome-lncRNA interactions, with functions mediated in part
through the role of lncRNA in immunity (Allen and Sears, 2019)
(Hong et al., 2020).

A recent study of 33 CRC patients has revealed a connection
between the high abundance of F. nucleatum and elevated glucose
metabolism: a spectrum of upregulated lncRNA in CRC cells
infected with F. nucleatum that had increased glycolysis rate
compared to uninfected CRC cells. The ENO1-IT1 lncRNA, a
positive cis-regulator of the pro-oncogenic, pro-glycolysis ENO1
gene is themost overexpressed lncRNA correlated with glycolysis.
Upon F. nucleatum infection, the transcription factor SP1
promotes the expression of ENO1-IT1 lncRNA through the
ENO1 signaling pathway. ENO1-IT1 eventually forms a
complex with KAT7 guide protein that increases the histone
acetylation leading to the CRC progression (Hong et al., 2020).
Chen at el., recently observed that F. nucleatum directly drives the
overexpression of long non-coding RNA Keratin7-antisense
(KRT7-AS) and Keratin7 (KRT7) in human CRC cells. In
vitro and in vivo analysis showed that F. nucleatum activates
the NF-κB signaling pathway, which upregulates KRT7-AS (a
positive regulator of CRC metastasis) which in turn, serves as an
activator of KRT7, stimulating cell migration (Figure 2) (Chen
et al., 2020b).

Beyond specific case studies of human microbiome-lncRNA
interactions, mouse models suggest that whole-genome lncRNA
expression profiles distinguish between mouse gut microbiomes
better than protein-coding gene mRNA signatures (Liang et al.,
2015)– a key finding that cements the importance of lncRNAs as
key components of the microbiome-disease axis and justifies
further investigation of the molecular and functional
underpinnings of their global relationship to the microbiome-
cancer interface. The fundamental contribution of lncRNAs to
cancer is, by now firmly established (Allen and Sears, 2019).
Oncogenic lncRNAs have an array of roles linked to microbiome-
related metabolites in cancer. Fusobacterium promotes the EMT
transition in cancer through a long non-coding RNA gene that
also serves as a microRNA host gene (Zhang et al., 2020).
Nevertheless, rather than serving solely as drivers of disease
progression, ncRNAs, if arising from disease-protective
microbiomes and/or under disease-risk-reducing dietary
conditions, may have protective roles. This possibility is
consistent with the observed downregulation of several
microRNAs in F. nucleatum-rich tumors in patients with
recurrent CRC (Allen and Sears, 2019).

Concordant with this hypothesis, 30 lncRNAs have recently
been highlighted to be involved in the inhibition of CRC
progression by sodium butyrate (NaB) (Xiao et al., 2018).
Butyrate-responsive lncRNAs have also been identified in a
lung cancer model (Xi et al., 2021). RAD51-AS1, the
endogenous antisense transcript that overlaps and modulates
the tumor suppressor RAD51, regulates lactate in CRC (Li
et al., 2021b). Although direct links with the microbiome have
not yet been proven for these lncRNAs, it is reasonable to posit
that, because the microbiome is tightly coupled to SCFA and
lactate metabolism, so are these lncRNAs, given their direct
interactions with these metabolites and pathways.

The specific molecular mechanisms that are responsible for,
and mediate, the existence of multiple directional nodes joining
microbiome-derived and host RNA-derived edges in the
microbiome-cancer regulatory network should be characterized
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in future work, so that they can be rationally targeted for
therapeutics.

FUTURE DIRECTIONS

In this review we discussed recent studies that highlight role of
microbiome, in particular abundance of certain pathogenic
bacteria including F. nucleatum and pks+ E. coli, that drive the
process of carcinogenesis through induction of DNA damage,
overexpression of oncogenes like Myc and triggering production
of highly pro-inflammatory agents like IL-6. This review allows the
reader to clearly grasp the main metabolic and molecular events
that lead towards intestinal and systemic carcinogenesis upon
adherence to low fiber, high fat Western dietary pattern. To
compare, this review describes recent studies that uniformly
demonstrate plant-based diet as a protective factor from set of
metabolic conditions including obesity and from various types of
cancer, including CRC. Due to the limitations of space the review is
primarily focused on human studies, and extensive review of many
animal studies related to microbiome and cancer are not included.
The protective properties of plant-based diet are associated with
the increased production of SCFAs by the commensal bacterial in
the gut. The SCFAs are one of the key regulators of immune
tolerance, improved gut barrier junctions, and the intestinal
clearance. The depletion of SCFA producers or SCFA receptors
result in adverse effects including high-grade inflammation and
poor cancer prognosis. In contrast, elevating the abundance of
SCFA producing bacteria in the gut microbiome through the
dietary intervention, results in downregulation of inflammation
and inhibition of tumor microenvironment. Although
microbiome-cancer axis has been extensively studied in the past
three decades, there is tremendous amount of vital information
that is yet to be discovered. This review indicates that diet is the
major regulator of gut microbiome and can act as a first line
preventive measure from developing carcinogenic conditions.
Moreover, major bacteria and metabolites that are associated
with detrimental effects of Western diet on intestinal and
systemic homeostasis that were discussed in this review, can
serve as a potential therapeutic targets in a variety of diseases,
especially cancer. Diet, as a key component of our life should not be
regarded only from the nutritional point of view. Being selective,
consistent, and conscious about the personal diet may prevent a
one’s spectrum of health conditions and improve the quality of life.

Growing numbers of studies are focusing on manipulation of gut
bacterial composition to enhance the efficacy of anti-cancer
therapies. Several recent studies have shown significant
improvement in anti-CTL4 and anti-PD1 based therapies, via
alternating gut microbiome composition towards certain
commensal bacterial species, including Bifidobacterium species
(Sivan et al., 2015; Vetizou et al., 2015). Using dietary
intervention, to enhance certain commensal bacteria population,
can be a supportive measure in vast array of diseases, including
cancer. Personalized targeted microbial therapy is one of the most
promising novel therapeutics. Currently used antibiotics are of a
broad spectrum and are detrimental for both commensal and
pathogenic bacteria in the gut microbiome. In situations like
cancer, antibiotic established dysbiosis is a potential threat to
the successful cancer therapy. Using novel bioinformatic tools
and established metagenomic and metabolomic data, we can
now begin to create a more personalized approach to cancer
therapy and prevention. Soon we will be able to monitor and
shift microbial signatures to high SCFA and anti-inflammatory
metabolite producers, and target specific harmful bacteria using
selective antibiotics, bacteriophages, or competitor probiotic
species. Numerous randomized trials of specific gut
microbiome therapeutics will be needed to expand and prove
these concepts.
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Chronic intestinal inflammation and microbial dysbiosis are hallmarks of colorectal cancer
(CRC) and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative
colitis. However, the mechanistic relationship between gut dysbiosis and disease has not
yet been fully characterized. Although the “trigger” of intestinal inflammation remains
unknown, a wealth of evidence supports the role of the gut microbiome as a mutualistic
pseudo-organ that significantly influences intestinal homeostasis and is capable of
regulating host immunity. In recent years, culture-independent methods for assessing
microbial communities as a whole (termed meta-omics) have grown beyond taxonomic
identification and genome characterization (metagenomics) into new fields of research that
collectively expand our knowledge of microbiomes. Metatranscriptomics,
metaproteomics, and metabolomics are meta-omics techniques that aim to describe
and quantify the functional activity of the gut microbiome. Uncovering microbial metabolic
contributions in the context of IBD and CRC using these approaches provides insight into
how the metabolic microenvironment of the GI tract shapes microbial community structure
and how the microbiome, in turn, influences the surrounding ecosystem. Immunological
studies in germ-free and wild-type mice have described several host-microbiome
interactions that may play a role in autoinflammation. Chronic colitis is a precursor to
CRC, and changes in the gut microbiome may be an important link triggering the
neoplastic process in chronic colitis. In this review, we describe several microbiome-
mediated mechanisms of host immune signaling, such as short-chain fatty acid (SCFA)
and bile acid metabolism, inflammasome activation, and cytokine regulation in the context
of IBD and CRC, and discuss the supporting role for these mechanisms by meta-
omics data.
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INTRODUCTION

The community of microorganisms that inhabit the human
gastrointestinal (GI) tract and their collective genetic material
are referred to as the gut microbiome. The composition and
function of the gut microbiome have been widely implicated in
human health and disease, particularly in GI diseases such as
inflammatory bowel diseases (IBD) and colorectal cancer (CRC),
where specific alteration of the gut microbiome is associated with
pathology (Sobhani et al., 2011; Knox et al., 2019b; Kaplan et al.,
2019). The global incidence of IBD, including component
diseases Crohn’s disease (CD), ulcerative colitis (UC), and
IBD-unclassified (IBD-U), has risen considerably in recent
decades (Molodecky et al., 2012; Kaplan et al., 2019; El-Matary
and Bernstein, 2020). Increasing rates of pediatric-onset IBD in
North America are of particular concern not only because disease
in younger patients is more extensive and can lead to a range of
developmental issues (Carroll et al., 2019) but also because of
associated long-term cancer risk (Akimoto et al., 2020; El-Matary
and Bernstein, 2020). Chronic intestinal inflammation is a
precursor to CRC, and IBD is an established risk factor for
developing both early- and late-onset CRC (Akimoto et al.,
2020; Gausman et al., 2020).

Recent advances in culture-independent techniques for
studying microbial communities have enabled extensive
characterization of the healthy human gut microbiome
(Human Microbiome Project Consortium, 2012; Méndez-
García et al., 2018) and provide context for the host-
microbiome interactions within the gut microenvironment.
Although perturbations in the microbial community
composition—dysbiosis—have been characterized in both IBD
and CRC, the cause and effect relationship between inflammation
and dysbiosis remains unclear. A variety of other host-mediated
factors such as genetic susceptibility, epigenetics, diet, antibiotic
use, and smoking status have been associated with IBD or CRC
risk or both (Glória et al., 1996; Jostins et al., 2012; Kaplan et al.,
2019; Lorzadeh et al., 2021), yet no exact trigger has been
identified. The gut microbiome is thought to be directly
implicated in the etiopathogenesis of both IBD and CRC
(Sellon et al., 1998; Peloquin and Nguyen, 2013); current
theories hypothesize that alterations in the normal gut
microbiome, caused by some environmental exposure [for
example, antibiotic use (Ungaro et al., 2014)], can trigger an
inflammatory immune response that persists in the genetically
susceptible host (Yang and Jobin, 2017; Knox et al., 2019b; Kaplan
et al., 2019; Szamosi et al., 2020).

The intestinal epithelium is a crucial interface for host-
microbiome interactions. In a healthy gut, the host’s immune
system must be able to recognize and tolerate commensal
organisms while retaining its ability to defend against
pathogens. For example, microbial taxa that are considered
protective stimulate CD4+ T regulatory (Treg) cell proliferation
and maintenance of gut immune homeostasis (Atarashi et al.,
2011; Knox et al., 2019b), whereas pathogenic organisms are
recognized by Toll-like receptors (TLRs) and NOD-like receptors
(NLRs) on CD4+ T cells, resulting in a coordinated adaptive
immune response (Himmel et al., 2008). Similarly, the gut

microbiota responds to host immune activation and local
inflammation by altering gene expression and metabolite
production (Becattini et al., 2021). Gathering a better
understanding of this complex, bi-directional signaling is the
basis for untargeted microbiome functional characterization.

Techniques for characterizing entire microbial communities
and their physiological contributions (termed meta-omics) have
now grown beyond taxonomic identification and genome
mapping as studied via metataxonomics and metagenomics,
respectively, into new fields of research (Figure 1).
Metatranscriptomics, metaproteomics, and metabolomics are
omics approaches that allow for further characterization of the
gut microbiome in health and disease (Figure 1). Metagenomics
describes the genetic content of a microbial community within a
sample (typically stool or intestinal biopsy in the case of the GI
microbiome), whereas metatranscriptomics utilizes reverse
transcription to evaluate gene expression patterns from
microbial messenger RNA (mRNA). Both techniques involve
shotgun sequencing of nucleic acids isolated from a biological
specimen and allow for prediction of downstream functional
activity (Figure 1). Metaproteomics generally uses liquid
chromatography with tandem mass spectrometry (LC-MS/MS)
to isolate and quantify proteins, which are then evaluated to
identify potential biomarkers of disease. Lastly, metabolomics can
be used to search for a wide range of biomarkers, including amino
acids, fatty acids, sugars, and vitamins. Using this approach,
metabolites are detected through either nuclear magnetic
resonance (NMR) or MS coupled with chromatography, the
latter offering a wider range of detection and higher
sensitivity. Stool is frequently used as a proxy for the luminal
GI microbiome; however, the mucosal-associated
microbiome—captured through endoscopic biopsy—will differ
from that of the lumen and can provide site-specific evidence.
Likewise, many microbiome studies focus on the bacterial
component of the microbiome as a proxy for the entire
community, which additionally contains eukaryotes and/or
viruses. Meta-omics approaches may be used individually or in
combination to study the microbiome. The application of
multiple techniques to samples from the same cohort yields
correlated functional profiles (Lloyd-Price et al., 2019),
supporting the usefulness of microbial sequence data for
downstream prediction of functional activity (Figure 1).
Uncovering particular taxonomic and metabolic contributions
in the context of IBD and CRC using these approaches gives
insight into the metabolic microenvironment of the gut and the
role of microorganisms within that environment. The potential of
stool meta-omics techniques as non-invasive screening and
detection tools is especially attractive. While this review
focuses on microbiome-mediated signaling specifically, meta-
omics can also be used to profile and predict disease-specific,
location-specific, or longitudinal changes in microbial
communities and many such studies have provided valuable
insights into microbial community dynamics (Gevers et al.,
2014; Hall et al., 2017; Schirmer et al., 2018).

Investigators face several challenges when using meta-omics
data for microbiome research as well as for disease investigation in
a clinical setting. Prior to data generation there are a number of

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7166042

Pratt et al. Meta-Omic Evidence for Microbiota Crosstalk

139

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


ways in which bias may be introduced during sample collection
and storage (Alberti et al., 2014; Reck et al., 2015; Neuberger-
Castillo et al., 2021). Furthermore, due to the dynamic and
compositional nature of microbiomes, many of the techniques
described above require large sample sizes and result in even larger
datasets that must be properly assessed for quality before their
interpretation (Zhang et al., 2021a). Accurate reference-based
taxonomic assignment of sequences depends on the quality of
database that is used and achieving statistical significance, in
differential expression analysis for example, can be challenging
(Zhang et al.,2021b). There is considerable interest in evaluating
individual GI microbiomes within a clinical setting to aid screening
and diagnosis using a personalized approach (Knox et al., 2019a).
However, many of the techniques discussed above require a
substantial computational effort and corresponding technical
expertise, making them difficult to implement routinely in a
clinical setting. Readers are referred to the following discussions
regarding specific challenges associated with meta-omics
techniques (Wishart 2016; Quince et al., 2017; Shakya et al.,
2019; Zhang et al., 2019; Krassowski et al., 2020).

META-OMIC EXPLORATIONS OF THE GUT
MICROBIOME IN IBD AND CRC REVEAL
COMMON PATTERNS OF METABOLIC
DYSREGULATION

The implication of the gut microbiome in CRC and IBD etiology
has prompted many researchers to employ meta-omics to study

microbiome function and activity (Franzosa et al., 2019; Lloyd-
Price et al., 2019; Ocvirk et al., 2020). Indeed, IBD serves as a model
disease for the integrative human microbiome project (iHMP),
which began in 2014 and collects host and microbiome-associated
data using multiple meta-omics strategies (The Integrative HMP
(iHMP) Research Network Consortium, 2014; Lloyd-Price et al.,
2019). Results from the iHMP and other studies reporting
statistically significant changes in the microbiome between
health and disease are shown in Table 1. Extensive
characterization of CRC-associated (Wirbel et al., 2019) and
IBD-associated (Lloyd-Price et al., 2019) microbiomes has
demonstrated that although the dysbiotic communities differ on
a taxonomic level (i.e., biomarker species), there are similarities
between the two diseases at the functional level (e.g., depletion of
butyrate-producers, bile acid dysregulation). Consequently, in this
review we restrict our discussion to the functional potential and
activity of disease-associated microbiomes, rather than focusing on
their taxonomic composition.

Meta-omics studies have revealed that microbial dysbiosis in
IBD and CRC goes beyond taxonomic imbalance. While there are
discrepancies regarding the differential expression of specific
proteins or metabolites between cohorts, the research
collectively paints a picture of systemic dysregulation of
multiple microbe-mediated compounds in disease. For
example, amino acid and fatty acid metabolism are commonly
dysregulated in IBD or CRC compared to healthy controls
(Table 1), although the pattern of dysregulation is
inconsistent. Other biochemical classes and pathways
significantly dysregulated in a subset of studies include bile
acids, vitamins B3 and B5, and sphingolipids. Interestingly, a

FIGURE 1 |Meta-omics techniques for studying the human gut microbiome. Microbial communities can be characterized based on their collective gene content
(metataxonomics or metagenomics), gene transcripts (metatranscriptomics), protein pool (metaproteomics), or metabolite pool (metabolomics). Additionally, sequence
data can be used to predict downstream expression of proteins or metabolites (dashed arrows). Abbreviations: WGS: Whole-genome sequencing; LC: Liquid
chromatography; MS: Mass Spectrometry; GC: Gas chromatography; NMR: Nuclear magnetic resonance.
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TABLE 1 |Meta-omic studies reporting statistically significant changes in the GI microbiome in CRC or IBD. Abbreviations: healthy controls (HC); irritable bowel syndrome
(IBS); high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR); gas chromatography (GC); capillary electrophoresis (CE); ion cyclotron
resonance Fourier transform mass spectrometry (ICR-FT/MS); time-of-flight mass spectrometry (ToFMS); liquid chromatography (LC); high performance LC (HPLC); ultra-
performance LC (UPLC); medium-chain fatty acids (MCFA); long-chain fatty acids (LCFA).

Cohort type
(N)

Sample
type(s)

Method Increased in
disease

Decreased in
disease

References

CRC
CRC (31): Colorectal
tumour biopsy vs. normal
tissue

Mucosal
biopsy

Metabolomics: HR-MAS NMR
and GC/MS

Choline-containing compounds,
taurine, scyllo-inositol, lactate,
phosphocholine, phosphate,
L-glycine, 2-hydroxy-3-methyl
valerate, L-proline, L-phenylalanine,
palmitic acid, margaric acid, oleic acid,
stearic acid, uridine, 11-eicosenoic
acid, propyl octadecanoate,
cholesterol

Lipids, polyethylene glycol,
glucose, fumarate, malate,
mannose, galactose, 1-
hexadecanol, arachidonic acid

Chan et al.
(2009)

CRC (11) vs. HC (10) Stool,
mucosal
biopsy

Metabolomics: GC/ToFMS Uracil, uridine, proline Fructose, linoleic acid, nicotinic
acid, glucose, galactose, 3-
phosphoglycerate, citric acid,
inosine, creatine

Phua et al.
(2014)

Meta-analysis of CRC
(386) vs. tumor-free
controls (392)

Stool Metagenomics: WGS Metabolic modules: amino acid
degradation, organic acid metabolism,
glycoprotein degradation, bile acid
conversion

Metabolic modules: carbohydrate
degradation

Wirbel et al.
(2019)

CRC stage 0 (73); stage I/
II (111); stage III/IV (68);
multiple polypoid
adenomas (MP, 67); vs.
HC (251); normal with
history of surgery
(HS, 34)

Stool Metagenomics: WGS,
Metabolomics: CE/ToFMS

Taxonomy: sulfide-producing species
– Desulfovibrio vietnamensis, D.
longreachensis, Bilophilia wadsworthia
Metabolites: deoxycholate (MP vs.
HC); glychocholate, and taurocholate,
branched-chain amino acids,
phenylalanine, tyrosine and glycine (S0
vs. HC); serine (SIII/IV vs. HC),
Pathway gene abundance: amino acid
metabolism, sulfide production,
phenylalanine and tyrosine
biosynthesis (all CRCs vs. HC); sulfate
reductase (dsrA), cofactor and vitamin
biosynthesis, lysine biosynthesis and
degradation, methane metabolism
(SIII/IV vs. HC)

Taxonomy: butyrate-producing
species - Lachnospira multipara,
Eubacterium eligens, Pathway
gene abundance: tryptophan
biosynthesis (SIII/IV vs. HC)

Yachida et al.
(2019)

Healthy Alaskan Natives
(high-risk group for CRC)
(32) vs. Healthy Rural
Africans (low risk for
CRC) (21)

Stool, urine Metataxonomics: 16S rRNA
sequencing, Metabolomics:
1H-NMR spectroscopy, GC,
HPLC-MS

Enriched in high-risk population:
Actinobacteria, Verrumicrobia,
Lachnospiraceae, Bifidobacterium
spp., Escherichia-Shigella spp.,
choline, formate, cholate,
chenodeoxycholate, deoxycholate,
conjugated bile acids, nicotinamide/
niacin metabolites

Enriched in low-risk population:
Ruminococcaeceae,
Prevotellaceae, Prevotella 9,
Ruminococcaceae, Succinivibrio,
Eubacterium coprostanoligenes,
amino acids, purinesa,
pyrimidinesa, butyrate, propionate,
nicotinate

Ocvirk et al.
(2020)

CRC (14) vs. HC (14) Stool Metaproteomics: LC-MS/MS Desulfobacterales,
Methanobacteriaceae,
Sporolactobacillaceae, Bacteroides
fragilis, Peptostreptococcus
anaerobius, DNA replication,
recombination, and repair proteins,
iron intake and transport proteins,
superoxide dismutases

Sutterellaceae, Epulopiscium,
Gordonibacter, NADH:flavin
oxidoreductases/NADH oxidases,
energy production and conversion
proteins, amino acid transport and
metabolism, coenzyme transport
and metabolism, lipid transport
and metabolism, translation
machinery, cell wall, membrane,
and envelope biogenesis, cell
motility, post-translational
modification, protein turnover, and
chaperones, inorganic ion
transport and metabolism

Long et al.
(2020)

IBD
Identical twin pairs (N �
17 pairs): discordant
colonic CD*(4p);

Stool Metabolomics: ICR-FT/MS Bile acid metabolismb (glycocholate,
glycochenodeoxycholate
taurocholate, Trihydroxy-6β-

Arachidonic acid metabolism/
prostaglandinsa,b (PGs; PGF2a)

Jansson et al.
(2009)

(Continued on following page)
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TABLE 1 | (Continued) Meta-omic studies reporting statistically significant changes in the GI microbiome in CRC or IBD. Abbreviations: healthy controls (HC); irritable bowel
syndrome (IBS); high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR); gas chromatography (GC); capillary electrophoresis (CE); ion cyclotron
resonance Fourier transform mass spectrometry (ICR-FT/MS); time-of-flight mass spectrometry (ToFMS); liquid chromatography (LC); high performance LC (HPLC); ultra-
performance LC (UPLC); medium-chain fatty acids (MCFA); long-chain fatty acids (LCFA).

Cohort type
(N)

Sample
type(s)

Method Increased in
disease

Decreased in
disease

References

discordant ileal CD*(2p);
concordant ICD*(2p);
concordant CCD*(2p) vs.
HC (7 pairs), *in remission

cholanate), amino acid metabolismb,
tyrosineb, tryptophan (ICD only),
phenylalanine (ICD only), fatty acid
biosynthesis (ICD only; oleic acid,
stearic acid, palmitic acid, linoleic acid,
arachidonic acid), Urea cyclea,b,
vitamin B6 metabolismb

CD (83); UC (68);
pouchitis (13) vs. HC (40)

Stool Metabolomics: GC-MS Styrenec MCFAs, hexanoateb, protein
fermentation metabolites

De Preter
et al. (2015)

Paediatric IBD in
remission -CD (26);
UC(10) vs. healthy 1st-
degree relatives (54)

Stool Metataxonomics: 16S rRNA
sequencing, Metabolomics:
UPLC/ToFMS

Enterobacteriaceae, cholateb,
conjugated and sulphated bile acidsb,
taurineb, tryptophanb, adrenateb

Stercobilinb, acetyl-glutamic acidb,
boldioneb, estradiolb,
androstenedioneb, azelaic acidb

Jacobs et al.
(2016)

Paediatric IBD (newly
diagnosed, treatment
naive)-CD (36); UC (20);
IBD-U (13) vs.
endoscopic non-IBD
controls (29)

Stool, blood Metabolomics: UPLC-MS/MS Folate and pterine biosynthesis, purine
metabolismb, amino acid metabolism,
nicotinate and nicotinamide
metabolismb, urea cycle, protein
biosynthesis, bile acid biosynthesisc,
sphingolipid metabolismc, ammonia
recyclingc, taurine metabolismc,
oxidation of branched-chain FAsc,
phospholipidmetabolismc, glycerolipid
metabolismc

L-tryptophan, kynurenic acid,
aspartate, threonine, asparagine,
cytosine, histidineb, taurineb

Kolho et al.
(2017)

CD (208); UC (126); IBD-
U (21); IBS (412) vs. HC
(1,025)

Stool Metagenomics: WGS Sugara degradation, succinate
fermentation, Aspartate and
asparagine biosynthesis, arginine
biosynthesis, lysine biosynthesisb,
proline biosynthesisc, aromatic
compounds degradation, saturated
FA elongationb, specific fatty acid and
lipid biosynthesisb, thiamin salvagec,
Bacteroides spp.,
Enterobacteriaceaeb, Bacteroidaceae

Pyruvate and mixed acid
fermentationb, general amino acid
biosynthesis (see exceptions in
previous column), tryptophan
degradationb, valine degradationb,
coenzyme A biosynthesisb,
coenzyme B biosynthesis, specific
fatty acid and lipid biosynthesisb,
nucleotides and nucleosides
biosynthesis,
phosphopantothenate
biosynthesisb, Faecalibacterium
prausnitziib, Bifidobacterium
longumb, Roseburia hominis,
Actinobacteria, Rikenellaceae,
Akkermansiaceae, Firmicutes

Vich Vila et al.
(2018)

Pediatric IBD (treatment
naïve): CD (25); UC (22)
vs. non-IBD (24)

Mucosal-
luminal
interface
(MLI) biopsy

Metaproteomics: MS DNA replication, recombination, and
repair proteins, defence mechanism
proteins (CRISPR/Cas), cell wall,
membrane and envelope biogenesis
proteins, amino acid transport and
metabolism, mobilome, cysteine
degradation, Proteobacteria,
Verrucomicrobia, Ascomycota,
Spirochetes, F. prausnitzii strain L2-6

Cysteine biosynthesis, Bacteroides Zhang et al.
(2019)

CD (68); UC (53) vs. non-
IBD (34)

Stool Metagenomics: WGS,
Metabolomics: LC-MS

Sphingolipids, carboximic acidsa, bile
acids (cholate, chenodeoxycholate)a,
organonitrogen compounds,
cholesteryl esters, phenylacetamidesb,
phosphatidylcholines, α-amino acids,
lactate

LCFAs, butyrated, propionated,
secondary bile acids (lithocholate,
deoxycholate) d, flavonoids,
indolesa,b, cinnamic acidsa,
triacylglycerols, tetrapyrrolesa,b,
triterpenoids, alkyl-phenylketones,
brassinolidesa,b, ergosterolsa,
quinolinesa,b, vitamin Da,
stigmastanesa, lactones,
β-diketonesb, cholesterolsa,
phenylbenzodioxanes,
pantothenate (vitamin B5)

Franzosa
et al. (2019)

(Continued on following page)
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similar pattern of metabolic dysregulation was apparent in the
metabolome of a healthy CRC high-risk population (based on
heritage and diet) compared to a healthy low-risk population
(Ocvirk et al., 2020) (Table 1), suggesting that dysbiotic
microbiomes are present before disease manifestation and
contribute to CRC development. These shared patterns of
dysregulation could indicate a shared etiology between IBD
and CRC. The remainder of this review will summarize the
biochemical significance of commonly dysregulated
metabolites and pathways in the context of chronic
inflammation and host immunity from in vitro and in vivo
experimental research.

MICROBIOME-MEDIATED MECHANISMS
AND IMPACT ON HOMEOSTASIS

Amino Acid Metabolism and Polyamines
Many amino acids have an essential role in host immune
signaling, and some are precursors for tumour-promoting
compounds such as polyamines, which are capable of
modulating systemic and mucosal adaptive immunity (Rooks
and Garrett, 2016; Thomas et al., 2019). Genes involved in amino
acid degradation were found to be enriched in a meta-analysis of
CRC metagenomic profiles (Wirbel et al., 2019), and differential
abundances of specific amino acids and related pathways are
prevalent in IBD and CRC meta-omics studies (Table 1).

Both host and microbial cells utilize the essential amino acid
tryptophan. Catabolism of tryptophan by macrophages leads to
suppressed T cell proliferation in vitro (Munn et al., 1999).
Tryptophan degradation has also been shown to modulate the

differentiation of T cell subsets, affecting mucosal immunity and
epithelial barrier integrity (Shapiro et al., 2014). Microbial
metabolism of tryptophan can result in the production of
kynurenines and indole-3-aldehyde, metabolites with
immunomodulatory and anti-inflammatory effects including
aryl hydrocarbon receptor activation promoting Treg cell
development and local IL-22 production (Zelante et al., 2013).
Both tryptophan and kynurenic acid were found to be depleted in
newly diagnosed, treatment-naive pediatric IBD patients (Kolho
et al., 2017), whereas patients with remissive IBD displayed
increased levels of tryptophan in stool compared to healthy
controls (Jansson et al., 2009; Jacobs et al., 2016), supporting
an immunoprotective role. Decreased tryptophan degradation in
CD patients has also been predicted from deep sequencing of fecal
metagenomes (Vich Vila et al., 2018). In contrast, kynurenine
levels were elevated inmucosal biopsy samples of treatment-naive
UC patients compared to healthy controls (Diab et al., 2019), as
well as in stool from late-stage CRC patients (Yachida et al.,
2019). Whether these discrepancies result from differing sample
types or the contradictory effects of bioactive kynurenines (Rossi
et al., 2019) is not yet understood.

Polyamines putrescine, spermidine, and spermine are derived
from the amino acids arginine and ornithine in bacterial and
mammalian cells (Gerner andMeyskens, 2004; Pegg, 2016; Rooks
and Garrett, 2016). Other polyamines, such as trimethylamine
(TMA), are synthesized by bacteria from the quaternary
ammonium compounds choline and carnitine (Gerner and
Meyskens, 2004; Thomas et al., 2019). Polyamines are essential
metabolites for both the host and the microbiota. They are
present at high levels in the GI tract, where they enable rapid
turnover of intestinal epithelial cells and regulate specific

TABLE 1 | (Continued) Meta-omic studies reporting statistically significant changes in the GI microbiome in CRC or IBD. Abbreviations: healthy controls (HC); irritable bowel
syndrome (IBS); high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR); gas chromatography (GC); capillary electrophoresis (CE); ion cyclotron
resonance Fourier transform mass spectrometry (ICR-FT/MS); time-of-flight mass spectrometry (ToFMS); liquid chromatography (LC); high performance LC (HPLC); ultra-
performance LC (UPLC); medium-chain fatty acids (MCFA); long-chain fatty acids (LCFA).

Cohort type
(N)

Sample
type(s)

Method Increased in
disease

Decreased in
disease

References

CD (67); UC (38) vs. non-
IBD (27)

Stool, colon
biopsy,
blood

Metagenomics: WGS,
Metatranscriptomics,
Metabolomics: LC-MS

Cholateb, chenodeoxycholateb,
taurochenodeoxycholateb, C8
carnitineb, anti-ompcb, calprotectinc,
adrenate, arachidonate, putrescine,
taurine, Escherichia coli, Klebsiella
pneumoniae, Roseburia gnavusb

Deoxycholate, lithocholate,
propionate, C16:0 LPE, adipate,
C20:4 carnitine, 3’-O-
methyladenosine, suberate,
nicotinate (B3), pantothenate (B5),
F. prausnitzii, Alistipes finegoldii,
Alistipes shahii, Alistipes putredinis,
Subdoligranulum unclassified

Lloyd-Price
et al. (2019)

Treatment-naive UC (18)
vs. HC (14)

Mucosal
biopsy

Metabolomics: GC-ToFMS,
UPLC-MS

Lysophospholipidsc, acyl carnitinesc,
arachidonatec, asparaginec, citrullinec,
dimethylargininec, glutamyl-L-amino
acidsc, glutamatec, kynureninec,
L-valinec, L-isoleucinec, nicotinamidec

beta-alaninec, creatinec,
eicosapentaenoatec, fructosec,
glutaryl-carnitinec, glycerol-3-
phosphatec, guanosinec,
leucylglycinec, linoleatec,
L-glutaminec, methylmalonyl
carnitinec

Diab et al.
(2019)

aIncludes derivatives of the molecule class.
bSignificantly different in CD only.
cSignificantly different in UC only.
dDifference not statistically significant in this cohort.
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eukaryotic gene expression among many other functions. For
many decades now, polyamines have been implicated in
tumorigenesis, including CRC (Gerner and Meyskens, 2004;
Peng et al., 2021), due to their essential role in cell
proliferation. Bacterial TMA production has also been linked
to the consumption of red meat (a source of carnitine) and
cardiovascular disease (Koeth et al., 2014).

In meta-omic CRC studies, levels of choline and choline-
containing compounds (precursors of TMA) were found to be
elevated in colorectal tumour biopsies relative to normal tissue
from the same patients (Chan et al., 2009) and in stool from a
high-risk group for CRC compared to a low-risk group (Ocvirk
et al., 2020). Yachida et al. (2019) reported differentially abundant
acetylated and diacetylated derivates of spermine, which have
been previously proposed as tumour markers (Kawakita and
Hiramatsu, 2006), at different stages of CRC. Of note, the
polyamine putrescine and certain carnitine derivatives were
reported to be differentially abundant in IBD compared to
healthy controls (Diab et al., 2019; Lloyd-Price et al., 2019),
supporting a role for polyamine metabolism in the etiology of
IBD as well as CRC. Carnitine additionally serves as an organic
compatible solute (osmoprotectant) for bacterial cells under
osmotic stress (Meadows and Wargo, 2015). Hyperosmolarity
is correlated to inflammation and serves as the primary
inflammatory mechanism for DSS and other chemically-
induced colitis models (Schwartz et al., 2009).

Levy et al. (2015) described altered amino acid and polyamine
metabolism in the gut microbiome of NLRP6 inflammasome-
deficient mice. Taurine—a bile acid conjugate—was depleted and
shown to induce NLRP6-dependent IL-18 secretion by triggering
intestinal inflammasome activation in vitro. The authors propose
taurine as a microbiota-dependent positive inflammasome/IL-18
modulator and the polyamine spermine as an inflammasome/IL-
18 suppressor. Epithelial IL-18 secretion leads to downstream
antimicrobial peptide production, which in turn affects the
intestinal microenvironment. The addition of taurine,
histamine, or spermine to drinking water induced
compositional changes in the gut microbiome of wild-type
mice, but not in inflammasome-deficient mice nor anaerobic
cultures, suggesting that the capacity of these molecules to alter
the gut microbial balance depends on host signaling via NLRP6.
When dysbiotic microbiota from inflammasome-deficient mice
was transferred into a wild-type host, the authors observed
dominance of the dysbiotic microbiota, leading to
inflammasome suppression and reduced levels of colonic IL-
18. These results highlight the complex interplay of host and
microbial metabolism and the delicate inflammatory balance in
the gut microenvironment. Patterns of dysregulation regarding
amino acid metabolism in IBD (particularly in CD), are
inconsistent with those observed in Irritable Bowel Syndrome
(IBS) patients (Vich Vila et al., 2018), suggesting a disease-specific
mechanism.

Bile Acids
In healthy states, primary bile acids (BAs), including cholate and
chenodeoxycholate, are synthesized from cholesterol in the liver
and conjugated with glycine or taurine before excretion. The

majority of primary BAs are reabsorbed in the ileum; however, a
small proportion (approximately 5%) enter the colon where they
are deconjugated and converted to secondary BAs, including
deoxycholic acid and lithocholic acid, respectively, by the
microbiota (Peng et al., 2021). Dominant members of the
healthy stool microbiome (Human Microbiome Project
Consortium, 2012), namely Firmicutes (including Clostridium
spp., Ruminococcus gnavus and Faecalibacterium prausnitzii) and
Bacteroidetes, are potent BA deconjugators and secondary BA
transformation is attributed to metabolic activity by the genera
Bacteroides, Clostridium, Eubacterium, Lactobacillus, and
Escherichia (Duboc et al., 2013; Jia et al., 2018). In this regard,
metabolism by the microbiome determines the composition of
the BA pool in the gut. Bile acids in the intestine act primarily as
detergents, facilitating the absorption of lipids and fat-soluble
compounds. However, they can also act like hormones, regulating
nutrient metabolism by activating specific nuclear and G protein-
coupled receptors. They have also been shown to act as
antimicrobial agents in the gut through their detergent activity
(Shapiro et al., 2014; Ridlon et al., 2016). Ridlon et al. (2014, 2016)
present in-depth reviews of bile acid metabolism and the gut
microbiome.

Bile acids have been implicated in tumorigenesis, and
particularly in CRC, through their capacity to induce oxidative
stress and DNA damage at high concentrations (Bernstein et al.,
2009; Ajouz et al., 2014; Jia et al., 2018). Increased levels of
secondary BAs, specifically hydrophobic deoxycholic acid, have
been correlated with the presence of colorectal adenomas
(precursor lesions for CRC) and are capable of promoting
intestinal tumorigenesis in experimental mouse models
(Bernstein et al., 2009; Yachida et al., 2019; Peng et al., 2021).
Bilophilia wadsworthia, whose growth is stimulated by the
conjugated primary BA taurocholate, was enriched in patients
with multiple polypoid adenomas and significantly correlated
with the concentration of deoxycholic acid in stool (Yachida et al.,
2019). Dietary fat intake positively influences secondary BA
production, and Western-style diets with high fat intake have
been implicated in the etiology of CRC (Bernstein et al., 2009;
Ajouz et al., 2014). Metagenomic meta-analysis of the gut
microbiome in CRC has indicated that genes for secondary
BA conversion are consistently enriched in disease (Wirbel
et al., 2019), and deoxycholic acid, along with cholate and
chenodeoxycholate, were found to be enriched in a
metabolomic analysis of a CRC high-risk cohort (Ocvirk et al.,
2020). Another metabolomic analysis reported significantly
elevated levels of glycine and taurine conjugates of cholate in
early-stage CRC (Yachida et al., 2019). Metaproteomic analysis of
CRC by Long et al. (2020) revealed elevated abundance of genera
involved in BA metabolism and enrichment of DNA repair
proteins and superoxide dismutases, indicating oxidative stress
response (Jia et al., 2018; Long et al., 2020) (Table 1).

Despite their link to carcinogenesis, non-sulphated secondary
BAs have been shown to exert anti-inflammatory effects in vitro
(Duboc et al., 2013). Signaling via the main BA receptors, G
protein-coupled receptor (GPCR) TGR5 and nuclear receptor
farnesoid X receptor (FXR), leads to downstream inhibition of
NF-κB mediated pro-inflammatory innate immune response
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(Shapiro et al., 2014). FXR activation has been shown to protect
mice from induced colitis via the downregulation of pro-
inflammatory cytokines (Gadaleta et al., 2011). It has also
been demonstrated to play a role in maintaining intestinal
epithelium integrity by preventing bacterial overgrowth
(Inagaki et al., 2006). Conversely, inactivation of FXR and
subsequent BA dysregulation has been associated with
increased colon cell proliferation and tumorigenesis in mice
fed a Western-style diet (Dermadi et al., 2017). Individual BAs
have variable ability to activate FXR and TGR5; unconjugated
BAs are considered to have a greater FXR activation potential
than their conjugated counterparts, and secondary BAs
(including conjugated forms) are potent activators of TGR5
(Jia et al., 2018). Meta-omics of IBD indicates that primary
conjugated and unconjugated BAs are enriched, and secondary
BAs are depleted in disease (Jansson et al., 2009; Jacobs et al.,
2016; Franzosa et al., 2019; Lloyd-Price et al., 2019). This pattern
has likewise been observed in IBD serum metabolomics (Duboc
et al., 2013), indicating systemic disruption. These results support
a disease model in which gut dysbiosis alters the BA pool in
favour of primary BAs. The subsequent reduction in secondary
BAs drives host immune signaling toward an inflammatory
phenotype.

Fatty Acids
Fatty acids, especially short-chain fatty acids (SCFAs), have
received a great deal of attention in GI health. Colonocytes
use SCFAs derived from gut microbial fermentation of dietary
polysaccharides as an important source of energy (Shapiro et al.,
2014; Rooks and Garrett, 2016; Hanus et al., 2021). These
microbial metabolites can also contribute to host
immunostasis through GPCR signaling and histone deacetylase
(HDAC) inhibition, promoting an anti-inflammatory phenotype
in the gut and strengthening the intestinal barrier (Shapiro et al.,
2014; Rooks and Garrett, 2016). In particular, the SCFA butyrate
and butyrate-producing bacteria, such as Faecalibacterium
prausnitzii and Roseburia hominis, are considered to be
beneficial, and their depletion is characteristic of IBD dysbiosis
(Machiels et al., 2014; Patterson et al., 2017; Forbes et al., 2018;
Alameddine et al., 2019). Butyrate is thought to contribute to
intestinal health through a variety of mechanisms, including
promotion of Treg differentiation and macrophage polarization,
inhibition of LPS-induced pro-inflammatory cytokine
production, promotion of apoptosis in colonocytes, and
strengthening intestinal epithelial cell (IEC) barrier function
(Alameddine et al., 2019; Knox et al., 2019b; Silva et al., 2020;
Hanus et al., 2021).

The protective role of SCFAs in CRC has also been suggested
via their ability to epigenetically modulate tumour suppressor
gene translation through HDAC inhibition and activation of
GPCR signaling pathways resulting in colon adenoma and
carcinoma cell apoptosis (Ou et al., 2013; Hanus et al., 2021;
Peng et al., 2021). Although most of the meta-omic explorations
of CRC discussed in this review did not report statistically
significant differences in SCFAs between disease and controls,
butyrate-producing species such as Lachnospira multipara and
Eubacterium eligens were significantly (p < 0.005) depleted in

CRC for one study, which also reported significant elevation of
phenylpropionate in late-stage CRC, specifically (Yachida et al.,
2019). Butyrate was found to be significantly less abundant in the
high-risk CRC population described (Ocvirk et al., 2020)
compared to the low-risk population. Similar results have been
reported in another CRC-risk cohort study (Ou et al., 2013). The
observation that butyrate and butyrate-producing species are
depleted in both IBD and CRC suggests a metabolic link
between diseases and possible mechanism for increased risk of
CRC development among IBD patients via epigenetics.

The gut microbiota has also been implicated in the metabolism
of a wide range of FAs, such as the polyunsaturated FAs
arachidonic acid and linoleic acid, since conjugation and
transformation of these metabolites was found to be
dependent on the gut microbiota (Kishino et al., 2013).
Linoleic and arachidonic acid are essential for the production
of prostaglandins (PGs) and other eicosanoids, molecules that
contribute to immune signaling and inflammation via cytokine
production (Jansson et al., 2009). Increased production of PGs
drives chronic intestinal inflammation and has been identified in
the intestinal mucosa of IBD patients (Raab et al., 1995).
However, there also exists a role for PGs in the maintenance
and repair of intestinal epithelium (Wang et al., 2005). In CRC,
arachidonic and linoleic acid were decreased in some cohorts
(Chan et al., 2009; Phua et al., 2014), while others reported
decreases in global lipid metabolism (Long et al., 2020).

Elevated levels of arachidonic acid were observed in IBD
cohorts (Jansson et al., 2009; Diab et al., 2019; Lloyd-Price
et al., 2019). A decrease in arachidonic acid metabolism and
subsequent PG production, as observed in Jansson et al. (2009),
may explain the accumulation of this FA in the IBD environment.
Overall, the meta-omics data indicates broad disruptions in FA
metabolism in disease, especially in IBD, where depletion of
short-, medium-, and long-chain FAs has been consistently
reported. Further experimental characterization of the complex
interactions of FAs and their metabolites with host immune
regulation in the context of gut inflammation may help to
elucidate the precise role of FA metabolism in pathogenesis.

Vitamins B3 & B5
B vitamins are key intermediates in essential cofactor metabolism
and are indispensable for cellular life. These essential
micronutrients are obtained from dietary sources, bacterial
sources, or both. A deficiency of these vitamins from increased
cellular demand or absorption defect leads to various
physiological disruptions. Many, but not all, members of the
gut microbiota are prototrophic for B vitamin synthesis (Peterson
et al., 2020). It has been suggested that auxotrophic human gut
bacteria rely on B vitamin sharing within the GI
microenvironment for survival, as humanized gnotobiotic mice
supported B vitamin auxotroph survival for at least 4 weeks
regardless of dietary vitamin intake (Sharma et al., 2019).

Vitamin B3, also known as niacin or nicotinic acid, is a
precursor of nicotinamide adenine dinucleotide (NAD), an
essential cofactor involved in cellular redox reactions. Bacteria
synthesize niacin from aspartic acid or tryptophan via the
kynurenine pathway, ultimately resulting in NAD production.
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Human cells can also synthesize NAD via niacin-independent
salvage pathways. In addition to its role in essential redox
reactions, NAD plays a role in epigenetic enzyme regulation
and genomic stability, as well as reactive oxygen species inhibition
(Peterson et al., 2020). Administration of niacin disrupts NF-κB
signaling, leading to suppression of inflammatory cytokines; its
effects have been investigated in the context of several human
diseases, including atherosclerosis, fatty liver disease, and
Parkinson’s disease (Su et al., 2015; Peterson et al., 2020).
Niacin is also known to affect fatty acid synthesis via NAD,
and niacin or tryptophan deficiency can result in Pellagra, a
disease whose symptoms include skin inflammation, diarrhea,
and dementia. In mice, a diet supplemented with niacin and
tryptophan was associated with increased expression of intestinal
antimicrobial peptides and administration of this diet to colitis-
susceptible mutant mice shifted the composition of the gut
microbiota toward that of wild-type mice (Hashimoto et al.,
2012). The receptor for niacin, GPR109A, is present on
monocytes and macrophages and, notably, is also a receptor
for the SCFA butyrate. Activation of GPR109A has been shown to
suppress colonic inflammation and carcinogenesis via targeted
T cell differentiation in mice and was deemed essential for
butyrate-mediated IL-18 expression in the colonic epithelium
(Singh et al., 2014).

Regarding meta-omics, niacin was reported to be decreased in
CRC compared to healthy controls (Phua et al., 2014). The low-
risk CRC cohort revealed elevated levels of niacin compared to
the high-risk group (Ocvirk et al., 2020). In the same study,
nicotinamide, a vitamer of niacin with anti-inflammatory
properties (Peterson et al., 2020), and other niacin metabolites
were enriched in the high-CRC-risk population (Ocvirk et al.,
2020). Nicotinamide is suggested to play a role in cancer
chemoprevention via enhanced DNA repair and suppression
of pro-inflammatory mediators (Nikas et al., 2020). Loss of
niacin-producing organisms in the gut could thus decrease the
bioavailability of niacin to IECs, promoting inflammation and
carcinogenesis. In IBD, vitamin B3 and associated metabolites
appear to be differentially expressed in disease (Table 1).
However, the pattern of dysregulation is inconsistent between
cohorts (Kolho et al., 2017; Diab et al., 2019; Lloyd-Price et al.,
2019). Differences in the type of biological sample(s) used, as well
as cohort design, likely contribute to these inconsistencies. As
already discussed, the stool andmucosal GImetabolic profiles can
provide distinct contextual information (e.g., increased
metabolite utilization or reabsorption in the GI tract mucosa
may result in decreased stool concentrations or vice versa). The
interpretation of these results is additionally challenging since
niacin/NAD metabolism affects many cellular processes.

Vitamin B5, pantothenic acid, is essential for coenzyme A
(CoA) synthesis and is abundant in a large variety of foods, so
deficiency is rare (Peterson et al., 2020). The sodium-dependent
multivitamin transporter (SMVT) facilitates the uptake of
vitamins B5 and B7. It has been demonstrated to play a role
in gut permeability in mice (Sabui et al., 2018), implicating one or
both of these vitamins in gut homeostasis. While there is a lack of
evidence for the pantothenic acid disruption in CRCmeta-omics,
three relatively large-scale IBD studies reported significantly

depleted vitamin B5 in disease compared to healthy controls
(Vich Vila et al., 2018; Franzosa et al., 2019; Lloyd-Price et al.,
2019) (Table 1). Depletion of pantothenic acid in the gut may be a
symptom of IBD-related dysbiosis and the loss of B5-producing
organisms; however, further investigation into the role of vitamin
B5 in IBD is needed to understand the cause and effects of this
perturbation.

Sphingolipids
Sphingolipids such as sphingomyelin (SM) and
glycosphingolipids (GSLs) are essential structural components
of IEC membranes. In addition to a direct role in maintaining
epithelial barrier integrity, sphingolipids and related metabolites
have also been demonstrated to participate in immune signaling
and modulation of inflammation (An et al., 2014; Abdel Hadi
et al., 2016). In a mouse model, early-life exposure to microbial
sphingolipids was shown to reduce invariant natural killer T
(iNKT) cell proliferation and protect the adult host from iNKT
cell-mediated colitis (An et al., 2014). Sphingolipid metabolism is
complex and is reviewed in detail elsewhere (Abdel Hadi et al.,
2016).

Sphingosine and ceramide are sphingolipids that, when
accumulated on the surface of IECs, increase epithelial
permeability and disrupt normal barrier function; ceramide
was additionally found to induce either pro- or anti-
inflammatory effects depending on its enzymatic origin (Abdel
Hadi et al., 2016). The production of PGs from arachidonic acid,
as previously discussed, can also be modulated by sphingolipid
composition in cellular membranes (Nakamura and Murayama,
2014). Meta-omics of IBD reveals enrichment of sphingolipids
(specifically, ceramide and sphingomyelin) and sphingolipid
metabolism in disease (Kolho et al., 2017; Franzosa et al.,
2019) (Table 1), supporting their role as pro-inflammatory
mediators. No significant differences in sphingolipid
metabolism were reported for CRC (Table 1). However,
disruptions in arachidonic acid metabolism and PG
production (Chan et al., 2009) may indicate undetected
upstream changes in sphingolipid composition. Experimental
evidence has tied sphingolipid receptor expression to tumour
suppression in CRC (Petti et al., 2020). Due to their role in
intestinal epithelial barrier maintenance and their varied
capability for immune signaling, further characterization of
sphingolipids in intestinal disease is warranted. Notably,
further experimentation with early-life exposure to microbial
sphingolipids and the resulting effects on host immune
development could have implications related to the hygiene
hypothesis (see below) and IBD development.

SUMMARY

Technological advancements in recent decades have enabled
extensive characterization of the human gut microbiome via
meta-omics techniques. IBD, in particular, is commonly
modelled in microbiome research, and the association with
CRC is thought to indicate some degree of shared etiology
between the two diseases. Genetic, environmental, and
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immunologic factors are thought to contribute to disease
development; however, the mechanisms by which they do so
are complex and not fully understood (Sobhani et al., 2011;
Carroll et al., 2019). The intestinal microbiota have been
implicated in the pathogenesis of both IBD and CRC. In the
absence of a directly causative agent, the microbial community
within the gut is being investigated as a mutualistic pseudo-organ
capable of influencing homeostasis in its host.

It has been suggested that increased urbanization and hygienic
behaviours (e.g., household use of disinfectants) results in
reduced colonization by commensal organisms in early life
and that this lack of exposure directly affects immune system
development, resulting in a predisposition to aberrant immune
responses—i.e., IBD—later in life (Weinstock and Elliott, 2009).
Much support for this “hygiene hypothesis” comes from
experimental studies regarding helminth and parasite
colonization; however, these organisms are not typically
captured in microbiome studies. Given the impact of the
early-life environment on individual microbiome development
and subsequent health outcomes (Nielsen et al., 2020; Boutin
et al., 2021), the role of commensal bacteria in immune
development and sensitization should not be ignored. Meta-
omic cohort studies can provide insights into the mechanisms
of aberrant immune response in disease and identify key
metabolites whose role in immune development warrants
further study.

An advantage of functional meta-omics is the potential to
discover molecular biomarkers of disease that can aid in non-
invasive screening and diagnosis, or in the case of IBD,
distinguishing component diseases from one another. Meta-
omic characterization of IBD and CRC in human cohorts has
revealed similar patterns of metabolic dysregulation that
implicate a disruption in host-microbiota cross-talk leading to
aberrant immune response and inflammation. Dysregulated
metabolism of amino acids, polyamines, bile acids, fatty acids,
and B vitamins has been reported in both IBD and CRC cohorts,
supporting a degree of shared microbiome-mediated etiology
between the diseases. Several of these metabolites directly or
indirectly affect NF-κB activation, a key transcription factor
within the intestinal tumour microenvironment (Schwitalla
et al., 2013). Protective microbially-mediated compounds such
as tryptophan and butyrate have been shown to impact Treg cell
proliferation, and their relative decrease in disease not only
reflects the loss of beneficial organisms, but also potentially
drives autoinflammation through imbalanced T cell
differentiation (Dominguez-Villar and Hafler, 2018). Although
IBD are risk factors for CRC, not all IBD patients develop
malignancies. Changes in the GI microbiome have been
associated with cancer development in animal studies;
however, the precise role of the microbiome in mediating
carcinogenesis has yet to be discovered.

The human genetic landscape is one of many health
determinants that can influence the development of individual
gut microbiomes (Goodrich et al., 2014). Alternatively, studies in
mice have revealed that dysbiotic fecal microbiota from a
genetically susceptible (e.g., Nod2 or Asc deficient) host can be
dominantly transferred to healthy, wild-type recipients and is

sufficient to increase sensitivity to DSS-induced colitis and
tumorigenesis (Couturier-Maillard et al., 2013; Levy et al.,
2015), indicating that dysbiotic communities have the capacity
to increase disease risk in wild-type recipients via molecular
signaling (e.g., cytokine modulation) under these experimental
conditions. These data support a model whereby inflammation
and disease susceptibility depend on critical communication
between the microbiome and the immune system of the host.
Dysbiosis may be driven by a multitude of factors, including
genetic susceptibility, diet, antibiotic usage, smoking status and
other environmental exposures, which could have individual as
well as cumulative effects on the gut microenvironment,
including epithelial barrier integrity and inflammation. Despite
these diverse influences, there appears to be some degree of
shared microbially-mediated metabolic dysregulation in IBD
and CRC, supporting a common etiology related to the GI
microbiome. The discovery of significant metabolic differences
between the microbiomes of healthy individuals in either high- or
low-risk CRC cohorts suggests a model of dysbiotic metabolism
in asymptomatic individuals leading to enhanced risk of immune
imbalance and symptomatic disease.

Due to a high degree of variability in meta-omics data,
systematic meta-analyses can be particularly useful in revealing
disease-specific microbiome signatures across cohorts (Wirbel
et al., 2019). Future research directions include longitudinal
metabolic characterization of the IBD microbiome, including
quantification of specific metabolites discussed here, toward
development of CRC in order to identify why some IBD
patients develop CRC and others do not. The role of microbial
metabolites in infant immune system development may also
provide valuable insights into immune modulation and disease
susceptibility. Additionally, data produced from downstream
meta-omics techniques (i.e., metaproteomics and
metabolomics) can be used to confirm or contradict predicted
functional activity from the plethora of available
metataxonomics, metagenomics, or metatranscriptomics
research. Even if consistent changes in gut meta-omics are
found that are predictive of persons with IBD who develop
CRC there remains the issue of determining cause and effect.
Future studies will benefit from large cohort sizes, detailed
metadata, considerate sample collection and storage
techniques, and robust statistical approaches in order to
address the many challenges associated with meta-omics
research. However, there are studies that show that colon
neoplasia is most likely to develop in the setting of active
inflammation and is unlikely to develop in the absence of
inflammation (Rubin et al., 2013; Shaffer et al., 2021; Yvellez
et al., 2021). The association of meta-omics changes with other
non-IBD chronic immune mediated inflammatory diseases
suggests that the intestinal microbial milieu may drive
systemic inflammation (Forbes et al., 2018). An evolving
paradigm of gut microbial changes driving inflammation and
the knowledge that gut inflammation can drive neoplasia
development, makes it realistic to consider that microbial
changes may underlie the ultimate development of neoplasia
in persons with IBD and identifying these changes early on can be
a mechanism to interrupt the inflammation-neoplasia paradigm
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in IBD. As the field continues to expand, overcoming barriers to
clinical implementation of meta-omics will pave the way for
personalized approaches to diagnosis and screening.
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Gut Microbes and Hepatic
Encephalopathy: From the Old
Concepts to New Perspectives
Alba Rocco*†, Costantino Sgamato†, Debora Compare, Pietro Coccoli, Olga Maria Nardone
and Gerardo Nardone

Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy

Hepatic encephalopathy (HE) is a severe complication of advanced liver disease and acute
liver failure. The clinical spectrum ranges from minor cognitive dysfunctions to lethargy,
depressed consciousness, and coma and significantly impact the quality of life, morbidity,
and mortality of the patients. It is commonly accepted that the gut milieu is essential for the
development of HE; however, despite intensive research efforts, the pathogenesis of HE is
still not fully elucidated. As our knowledge of gut microbiota moves from the pioneering era
of culture-dependent studies, the connection between microbes, inflammation, and
metabolic pathways in the pathogenesis of HE is becoming increasingly clear,
providing exciting therapeutic perspectives. This review will critically examine the latest
research findings on the role of gut microbes in the pathophysiological pathways
underlying HE. Moreover, currently available therapeutic options and novel treatment
strategies are discussed.

Keywords: hepatic encephalopathy, gut microbes, gut-liver-brain axis, antibiotics, probiotics, fecal microbiota
transplantation

INTRODUCTION

Hepatic encephalopathy (HE) encompasses a broad spectrum of neurological or psychiatric
abnormalities ranging fromminor cognitive dysfunction to lethargy, depressed consciousness, and
coma occurring in patients with liver insufficiency or portosystemic shunting (Vilstrup et al.,
2014). According to the severity of the clinical presentation, HE has traditionally been classified
into overt (OHE) and minimal HE (MHE). Clinically manifest neurological-psychiatric
abnormalities characterise OHE, while neuropsychological or electrophysiological alterations
without clinically detectable abnormalities are typical of MHE (Ferenci et al., 2002). HE is likely
the most frequent complication of cirrhosis, with a prevalence ranging from 16 to 21% for OHE in
decompensated cirrhosis to 20–80% for MHE in compensated cirrhosis (D’Amico et al., 1986;
Allampati et al., 2016). The onset of HE is associated with a high risk of recurrence, hospital
admission rate, and poor survival and impacts the quality of life of patients and their caregivers
(Cordoba et al., 2014).

Despite intensive research efforts, the pathogenesis of HE is still not fully elucidated. Thus,
effective therapies for treating and preventing HE are still lacking, hence the urgent need to update
our knowledge, moving from the old concepts to the newest perspectives.
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From the Ammonia Hypothesis to the
Gut-Liver-Brain Axis
It is commonly accepted that neurological impairment and
cognitive decline provoked by liver dysfunction result from
blood-derived factors influencing the permeability and altering
the integrity of the blood-brain barrier. Since the description of
the “meat intoxication syndrome” in portocaval-shunted dogs, at
the end of the 19th century, ammonia has been considered the
critical metabolic factor underlying HE’s development (Amodio,
2015).

Ammonia primarily derives from the gut as an end product of
protein digestion, amino acid deamination, and bacterial urease
activity. Furthermore, multiple organs, such as the brain, muscle,
and kidney, contribute to ammonia production by deaminating
glutamine via glutaminase. In physiological condition, the liver
efficiently extracts (85%) the ammonia from portal blood and,
through the urea cycle, convert it into urea, then excreted in the
kidneys (75%) and the intestine (25%). Only 15% of the ammonia
pool enters the systemic circulation (Rose et al., 2020). Defects in
hepatic function, portal blood flow, and urea cycle enzymes or
intermediates can result in hyperammonemia, as can excessive
ammonia production in the gastrointestinal tract. The ammonia
passes freely into the brain, where astrocytes remove it producing
glutamine via glutamine synthetase. Glutamine induces astrocyte
hypertonia resulting in astrocyte swelling, compromised
neuronal communication, impaired function, and brain edema.
However, ammonia concentration and HE severity are poorly
correlated, thus demonstrating that it is only a piece of the puzzle
underpinning the pathogenesis of HE (Shawcross et al., 2011). In
addition to the direct role of ammonia, systemic inflammation/
oxidative stress and increased blood bile acids impact the blood-
brain barrier permeability, allowing an increased influx of
molecules physiologically unable to cross it (Atluri et al.,
2011). Consequently, the alterations of metabolites in
cerebrospinal fluid and changes in neurotransmission such as
increased GABAergic tone significantly modulate the onset of
neurological decline (Keiding et al., 2006; Riordan and Williams,
2010). More recently, neurosteroids, endogenous
benzodiazepines, and manganese have emerged as synergistic
factors in the onset of HE (Rose et al., 2020). Furthermore, like a
vicious circle, hyperammonaemia “per se” can induce neutrophil
dysfunction and reactive oxygen species release, contributing to
systemic oxidative stress and inflammation, exacerbating its
harmful effects in the brain (Shawcross et al., 2004).

The gut-liver-brain axis refers to the bidirectional relationship
between the gut and its microbiota, the liver, and the brain,
resulting from integrating signals generated by dietary, genetic,
and environmental factors (Mancini et al., 2018). In patients with
liver cirrhosis, defective small intestinal motility, reduced gastric
acid secretion, and weaker antimicrobial defense of intestinal
mucosa determine small intestinal bacterial overgrowth (SIBO).
The concomitant decrease in bile acids (BAs) synthesis due to
liver failure synergistically act with SIBO to determine
pathological changes in the intestinal microbiota composition,
mainly characterised by a massive reduction in microbial
diversity, a decline in autochthonous non-pathogenic bacteria

(Bacteroidetes, Ruminococcus, Roseburia, Veillonellaceae, and
Lachnospiraceae) and an overgrowth of potentially pathogenic
species (Fusobacteria, Proteobacteria, Enterococcaceae, and
Streptococcaceae) (Fukui, 2015; Acharya and Bajaj, 2017).

The paucity of bacteria involved in producing short-chain
fatty acids (SCFAs) and converting primary into secondary BAs
contribute to worsening gut dysbiosis and disrupting intestinal
barrier integrity. Indeed, SCFAs (mainly butyrate, acetate, and
propionate), produced in the colon by bacterial fermentation of
dietary fibers and resistant starch, exert several beneficial
functions: preserving intestinal barrier integrity, nourishing
colonocytes promoting, mucus production, and reducing of
colonic inflammation (Nava and Stappenbeck, 2011; Rowland
et al., 2018). Furthermore, the lower abundance of 7α-
dehydroxylating bacteria in the colon (Lachonospiraceae,
Ruminococcaceae, and Blautia) due to a reduction in primary
BAs determines a change in secondary-to-primary BAs ratio that
can favor the overgrowth of pathogenic taxa (Kakiyama et al.,
2013; Ridlon et al., 2013).

The impaired intestinal barrier integrity enhances bacterial
translocation and the release of bacterial endotoxins in
circulation, such as lipopolysaccharides, flagellin,
peptidoglycan, and microbial nucleic acids, perpetuating liver
damage and contributing to systemic inflammation responsible
for blood-brain barrier dysfunction and neuroinflammation
(Shawcross et al., 2004; Shawcross et al., 2007; Shawcross
et al., 2011; Dhiman, 2012).

Dysregulation of blood-brain barrier permeability may also
lead to a dramatic increase of certain BAs such as lithocholic,
taurocholic, and glycocholic acid in the cerebrospinal fluid of
patients with HE or brain tissue of rodent model of HE (Tripodi
et al., 2012; McMillin et al., 2016; Weiss et al., 2016).

Although a precise role for BAs in the pathogenesis of HE has
not yet been completely defined, they are likely involved in
aberrant neuronal signalling and the promotion of
neuroinflammation through microglia activation (DeMorrow,
2019).

Overall, HE can be considered a typical gut-liver-brain axis
disease model (Figure 1).

GUT MICROBIOTA IN LIVER CIRRHOSIS

Culture-Based Studies on Gut Microbiome
in Human Cirrhosis
First attempts to characterise gut microbiota composition
employed culture-based technologies and analysed microbial
changes after HE therapy (Table 1). Riggio et al. observed a
significant growth, defined as more than 2 log increases of non-
urease producing Lactobacilli spp. after both lactulose and lactitol
treatment and a reduction in proteolytic bacteria (Enterobacteria
and Enterococci) after lactitol alone (Riggio et al., 1990). Lactitol
administration for 4 weeks was also associated with an increased
occupation ratio (number of specific bacteria/total number of
bacteria detected) of anaerobic Bifidobacterium and a rise in
Lactobacilli total count. Furthermore, a reduction in Clostridium

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7482532

Rocco et al. Hepatic Encephalopathy and Gut Microbiota

152

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


and Bacteroides, considered to be ammonia-producing bacteria,
was observed. These changes in gut microbiota paralleled the
decrease in venous ammonia level and improvement of mental
status and asterixis (Tarao et al., 1995). Last, in a randomised,
placebo-controlled trial involving 55 patients withMHE, Liu et al.
demonstrated that a symbiotic treatment with probiotics and
fermentable fiber effectively increased the fecal content of

Lactobacillus spp. at the expense of the overgrowth of
pathogenic bacteria, such as Escherichia coli and
Staphylococcus spp. Symbiotic treatment was further associated
with reduction of serum ammonia and reversal of MHE in 50% of
the patients compared to the placebo group (Liu et al., 2004).
Although the data derived from these pivotal studies were the
cornerstones of the “microbial revolution” in the pathogenesis of

FIGURE 1 | Gut-liver-brain axis in the pathogenesis of hepatic encephalopathy. In liver cirrhosis, the decrease in bile acids synthesis, defective small intestinal
motility and reduced gastric acid secretion induce small intestinal bacterial overgrowth and dysbiosis. The reduced abundance of bacteria synthesising short-chain fatty
acids and converting primary into secondary bile acids contribute to worsening gut dysbiosis and disrupting intestinal barrier integrity. Pathological bacterial translocation
and release of bacterial endotoxins in circulation perpetuate liver damage and contribute to systemic inflammation responsible for blood-brain barrier dysfunction
and neuroinflammation. BAs, bile acids; BBB, blood-brain barrier; SCFAs, short-chain fatty acids.

TABLE 1 | Culture-based studies on gut microbiome in human cirrhosis.

Author Population Sample Methods Results

Riggio et al. (1990) Cirrhotic patients Stool Culture ↑ Lactobacilli spp. after both lactulose and lactitol therapy
↓ Enterobacteria and Enterococci after lactitol

Tarao et al. (1995) Cirrhosis with HE Stool Culture ↑ Occupation ratio of Bifidobacterium and ↓ Clostridium and Bacteroides after lactitol treatment
↓ Serum ammonia and improvement of mental status and asterixis

Liu et al. (2004) Cirrhosis with HE Stool Culture ↑ Lactobacillus spp. and ↓ Escherichia coli and Staphylococcus spp.
↓ Serum ammonia and reversal of MHE in 50% of patients
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chronic liver diseases and HE, culture-based methodologies used
to characterise the microbial communities hamper the results.
Indeed, most bacterial species inhabiting the gut can either not be
cultured or reliably distinguished. Further, these techniques are
only qualitative or, at best, semi-quantitative.

Culture-Independent Studies on Gut
Microbiome in Human Cirrhosis
The introduction of culture-independent techniques has
revolutionised the field of intestinal microbiology (Table 2).
Through the sequencing of the bacterial 16S ribosomal RNA
(16S rRNA) gene containing variable regions useful for
phylogenetic identification, more recent studies better defined
the taxonomic profile of gut microbiota in patients affected by
chronic liver diseases in respect to healthy individuals (Fraher
et al., 2012; Qin et al., 2014).

Chen et al. first characterised fecal microbial communities in
patients with liver cirrhosis using pyrosequencing of the 16S

rRNA V3 region (Chen et al., 2011). Compared to healthy
individuals, cirrhotic patients had lower microbial diversity, as
estimated by the Shannon diversity index, and changes in the
intestinal microbial community composition both in terms of
phyla (with a marked decrease in the relative abundance of
Bacteroidetes and enrichment in Proteobacteria and
Fusobacteria) and families (enrichment in Enterobacteriaceae,
Pasteurellaceae, Streptococcaceae,Veillonellaceae and depletion in
Lachnospiraceae). Interestingly, Streptococcaceae showed a
positive correlation trend, whereas Lachnospiraceae negatively
correlated with the severity of cirrhosis assessed by the Child-
Pugh score. The enrichment of Streptococcus, Veillonella, and
Enterobacteriaceae in fecal microbiota might result from a
relocation of small intestinal bacteria. On the other hand, a
decline in species involved in SCFAs metabolism, such as
Lachnospiraceae, could lead to a higher colonic pH and
ammonia production (Justesen et al., 1984; Vince et al., 1990).

In a more extensive study involving 244 patients covering the
spectrum from healthy controls to decompensated cirrhosis, the

TABLE 2 | Culture-independent studies on gut microbiome in human cirrhosis with or without HE.

Author Population Sample Methods Results

Chen et al.
(2011)

Cirrhosis vs healthy
control

Stool 16S sequencing Proteobacteria and Fusobacteria phyla and Streptococcaceae, Veillonellaceae
and Enterobacteriaceae families higher in cirrhotic patients than in controls
Bacteroidetes phylum and Lachnospiraceae family lower in cirrhotic patients
than in controls

Bajaj et al.
(2014b)

Cirrhosis vs healthy
controls

Stool 16S sequencing, MTPS ↓ Autochthonous taxa (Lachnospiraceae,Ruminococcaceae, and Clostridiales
XIV), non-autochthonous taxa (Enterobacteriaceae and Bacteroideaceae) ratio

Bajaj et al.
(2012b)

OHE/non-OHE/
control

Stool 16S sequencing, MTPS ↑Enterobacteriaceae, Alcaligeneceae, and Fusobacteriaceae and ↓
Ruminococcaceae and Lachnospiraceae in cirrhotic group versus controls
↑ Enterobacteriaceae, Alcaligenaceae, Lactobacilaceae, and
Streptococcaceae in OHE versus controls
↑ Veillonellaceae in OHE versus no OHE
Alcaligeneceae and Porphyromonadaceae associated with poor cognition

Bajaj et al.
(2012a)

OHE/no-OHE/
control

Stool Sigmoid
mucosa

16S sequencing ↑Dorea, Subdoligranulum, Incertae Sedis XIV, Blautia, Roseburia,
Faecalibacterium and ↓ Enterococcus, Burkholderia, Proteus in cirrhosis
↑ Enterococcus, Veillonella, Megasphaera, and Burkholderia and ↓ Roseburia
in OHE mucosal microbiome

Zhang et al.
(2013)

MHE/no MHE/
control

Stool 16S sequencing ↑ Veillonellaceae and Streptococcaceae in cirrhotics
Streptococcus salivarius was higher in MHE
Veillonella parvula and Streptococcus salivarius were correlated with cognitive
function and ammonia level

Bajaj et al.
(2015a)

Previous HE/non-
HE/control

Saliva 16S sequencing ↑Enterobacteriaceae, Enterococcacea and ↓ in autochthonous microbiota and
Erysipelothricaceae in previous HE, compared to non-HE patients and controls

Ahluwalia et al.
(2016)

Previous HE/non-
HE/control

Stool 16S sequencing Streptococcaceae, Enterobacteriaceae, Lactobacillaceae and
Peptostreptococcaceae, were positively linked with hyperammonemia-
associated astrocytic changes
Porphyromonadaceae, were correlated with neuronal integrity and oedema

Iebba et al.
(2018)

Cirrhosis vs control Stool 16S sequencing and NMR
metabolism

Stenotrophomonas pavanii, Methylobacterium as well as metabolites
(methanol, threonine), enhanced the risk of HE

Sung et al.
(2019)

AHE vs. cirrhosis/
control

Stool 16S sequencing ↑ Firmicute, Proteobacteria and Actinobacteria during AHE
Alistipes, Bacteroides, Phascolarctobacterium were associated with HE
recurrence
Clostridium-XI, Bacteroides, Bacteroides, Lactobacillus, Clostridium sedis
were associated with overall survival at 1-year follow-up

Bloom et al.
(2021)

Previous OHE/
no-OHE

Stool Shotgun sequencing and
LC-MS/MS

Anaeromassilibacillus species, Anaerostipes caccae, Bacteroideseggerthii,
Clostridium species, Faecalicatena contorta, Holdemaniafiliformis, Neglecta
timonensis, and Ruminococcus species were linked to a history of OHE
Lower concentrations of 6 faecal SCFAs in patients with a history of OHE

OHE, overt hepatic encephalopathy; MHE, minimal hepatic encephalopathy; AHE, acute hepatic encephalopathy; NMR, nuclear magnetic resonance; LC-MS/MS, liquid chromatography
tandem mass spectrometry.
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authors found a progressive decrease in the ratio between
potentially beneficial autochthonous taxa (Lachnospiraceae,
Ruminococcaceae, and Clostridiales XIV) and harmful non-
autochthonous taxa (Enterobacteriaceae and Bacteroideaceae),
so-called cirrhosis dysbiosis ratio, paralleling the worsening of
liver disease and higher endotoxemia (Bajaj et al., 2014). Thus, the
imbalance of intestinal microbiota composition negatively affects
the natural history of liver disease leading to hepatic and extra-
hepatic complications.

Gut Microbiota and Hepatic
Encephalopathy
Compared with cirrhotic patients without cognitive dysfunction,
patients with both MHE and OHE had specific alterations of gut
microbiota profile. Bajaj et al. firstly demonstrated that the
differences in stool microbiome composition between healthy
controls and cirrhotic were more pronounced analysing the
results according to HE. In detail, the abundance of
Lachnospiraceae and Ruminococceae was significantly higher in
the control group, whereas Enterobacteriaceae, Fusobacteriaceae,
Alcaligenaceae, Lactobacillaceae, and Leuconostocaceae were
significantly lower in the controls compared with cirrhotic
patients, irrespective of HE. However, the HE group differed
from controls on several additional bacterial families compared
with cirrhotics without HE with a significantly higher concentration
of Enterobacteriaceae, Alcaligenaceae, Lactobacilaceae, and
Streptococcaceae. Moreover, altered flora (higher Veillonellaceae),
poor cognition, endotoxemia, and inflammation (IL-6, TNF-α, IL-2,
and IL-13) were observed in HE compared with cirrhotics without
HE (Bajaj et al., 2012b). More strikingly, the authors found that
specific bacterial families (Alcaligeneceae, Porphyromonadaceae,
Enterobacteriaceae) were strongly associated with both cognition
and inflammation in HE. Alcaligeneceae, in particular, can produce
ammonia by degradation of urea, likely explaining the correlation
with cognitive impairment (Bajaj et al., 2012b). Later, the same
authors analysed both the stool and colonic mucosal microbiome of
60 cirrhotic patients. The sigmoidmucosalmicrobiome considerably
differed from the corresponding stool samples, and these differences
persisted in studying the group according to the presence of HE. In
detail, members of genera Enterococcus, Megasphaera, and
Burkholderia were overrepresented in HE and linked to poor
cognition and inflammation, whereas Roseburia prevailed in the
group without HE. The alteration of bile acid metabolism and the
decrease of antibacterial peptides or mucins in the colon, typically
occurring in the advanced stages of liver diseases, could lead to a
selection of potentially pathogenic bacteria adhering to and growing
in the colonic mucosa. Thus, several essential processes in the
pathogenesis of HE probably occur at the mucosal surface rather
than lumens, such as translocation and interaction between
microbiota and the immune system (Bajaj et al., 2012a).

Zhang et al. found that the stool concentration of the gut
urease-containing bacteria Streptococcus salivarius was
significantly higher in cirrhotic patients with MHE than in
those without HE. Furthermore, the change in the amount of
these bacteria positively correlated with ammonia accumulation
(Zhang et al., 2013). The difference in the bacterial families

associated with HE reported by the authors can be explained
by the high interindividual variations in gut microbiota across
populations, or other unknown factors could (Yatsunenko et al.,
2012).

Interestingly, dysbiosis, resulting from decreased
autochthonous or commensal taxa, has also been found in the
saliva of patients with cirrhosis compared to controls. Qin et al.
reported that most of the enteral consortia detectable in cirrhotic
(mainly Streptococcus spp. and Veillonella spp.) belong to the
oropharyngeal inhabitants, suggesting an invasion of the gut by
oral bacterial species (Qin et al., 2014). Salivary microbiome
analysis showed an increase in pathogenic Enterobacteriaceae
and a reduction in autochthonous microbiota Erysipelothricaceae
in HE, compared to non-HE patients and controls, thus
indicating a global mucosal-immune interface alteration (Bajaj
et al., 2015a).

Gut dysbiosis can also directly impact brain homeostasis, with
neuronal and astrocytic dysfunction, particularly in HE. Ahluwalia
et al., using multi-modal magnetic resonance imaging (MRI),
correlated specific microbial families with neuroradiological
findings. Hyperammonemia-associated astrocytic changes
(i.e., increased glutamate/glutamine ratio and reduced myo-
inositol and choline) at the magnetic resonance spectroscopy
(MRS) positively correlated with families Streptococcaceae,
Enterobacteriaceae, Lactobacillaceae, and Peptostreptococcaceae,
while negatively correlated with Lachospiraceae,
Ruminococcaeae, and Clostridiales XIV. On the other hand,
Porphyromonadaceae were only associated with neuronal
changes on diffusion tensor imaging, used to assess neuronal
integrity and edema, without linkages with ammonia (Ahluwalia
et al., 2016).

Despite the impressive results, a more comprehensive
microbiota analysis should combine metagenomics with other
“omics” approaches, particularly metatranscriptomics and
metabolomics. Metatranscriptomics allows understanding gene
expression and protein activity, whereas metabolomics represents
the comprehensive analysis of metabolites released of the entire
micro¬bial community. Iebba et al. made one of the first attempts
to integrate these different approaches. Through the combination
of 16s DNA sequencing, nuclear magnetic resonance (NMR)
metabolomics, and network analysis, they observed that the
translocation of certain species (Stenotrophomonas pavanii,
Methylobacterium extorquens) into the peripheral blood
system, as well as metabolites (methanol, threonine), enhanced
the risk of HE (Iebba et al., 2018).

Identifying specific gut microbiota provides new strategies for
clinical diagnosis, treatment, and eventually weighing the
prognosis of HE. In this regard, in hospitalised patients with
cirrhosis, dysbiosis on admission (mainly changes in
Proteobacteria constituents) was associated with increased risk
of extra-hepatic organ failure, acute liver failure, and death,
independent of clinical factors (Bajaj et al., 2019b).

Stool and salivary unique microbiome patterns predicted
readmission and mortality at 90 days in cirrhotic patients,
respectively (Bajaj et al., 2015b).

Sung et al. profiled dynamic changes in gut microbiomes of
cirrhotic patients with overt HE at the acute episode before
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treatment, 48–72 h after active treatment, and the inactive stage
(2–3 months after the episode) by comparing them with healthy
individuals and patients with compensated cirrhosis. During
acute hepatic encephalopathy (AHE), gut microbiome diversity
and relative abundance of Bacteroidetes phylum diminished,
whereas Firmicutes, Proteobacteria, and Actinobacteria
increased. Moreover, the relative abundance of three species
(Alistipes, Bacteroides, Phascolarctobacterium) and five
operational taxonomic units (OTUs) (Clostridium-XI,
Bacteroides, Bacteroides, Lactobacillus, Clostridium sedis)
found during AHE were respectively associated with HE
recurrence and overall survival during the subsequent 1-year
follow-up (Sung et al., 2019).

Finally, in a prospective study involving 49 cirrhotic patients,
Bloom et al. found eight species significantly less abundant in
those patients with a history of OHE (Anaeromassilibacillus
species, Anaerostipes caccae, Bacteroideseggerthii, Clostridium
species, Faecalicatena contorta, Holdemaniafiliformis, Neglecta
timonensis, and Ruminococcus species). However, none of the
species was able to predict the future event of OHE. Moreover,
they found an inverse correlation between bacterial species
producing SCFAs and cirrhosis severity and lower
concentrations of six specifical fecal SCFAs (acetate,
propionate, butyrate, isobutyrate, valerate, and succinate) in
patients with a history of OHE, thus supporting a crucial role
of these metabolites in HE pathogenesis (Bloom et al., 2021).

THERAPY

Given the fundamental role of gut microbiota alteration in HE
development, it is not surprising that most therapeutic strategies
recommended by current guidelines primarily target gut
microbiota or their bioproducts.

Lactulose
Lactulose, a synthetic non-absorbable disaccharide, is part of the
therapeutic armamentarium to treat HE since its first trials in the
1960s (Elkington et al., 1969). Behind the cathartic effect that
reduces the contact time between luminal contents and the
intestinal mucosa, lactulose lowers colonic pH creating a
hostile environment for urease-producing gut flora and
stimulating growth-acid-resistant, non-urease producing
species. Furthermore, it reduces the absorption of ammonia by
non-ionic diffusion. In 2014, the European and American
Associations for the Study of the Liver (EASL/AASLD)
published a joint practice guideline in which they
recommended lactulose as the treatment of choice for OHE
and secondary prevention after an index event (Vilstrup et al.,
2014).

Despite its effect on ammonia production and improvement of
HE symptoms, evidence linking the impact of lactulose on species
richness in the gut microbiota remains conflicting. In earlier
studies using stool culture, lactulose administration altered the
relative abundance of certain gut bacteria, especially acidophilic,
urease-deficient bacteria, such as Lactobacilli and Bifidobacteria
(Vince et al., 1974; Merli et al., 1992). More recent studies based

on culture-independent methods failed to demonstrate
significant differences in composition or diversity of gut
microbiota associated with lactulose administration or
withdrawal (Bajaj et al., 2012b). Interestingly, patients who
responded to lactulose treatment had a favorable modification
of bacterial taxa. A recent randomised controlled trial conducted
in patients with HE found significant differences between
lactulose responders and non-responders in Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria (Wang et al., 2019).

The apparent disconnection between reduction in blood
ammonia and microbial changes, found in some studies, could
be related to microbial changes below the detectable threshold or
the relatively low sample size of the studies.

Antibiotics
Antibiotics are presumed to exert therapeutic effects by
decreasing colonic populations of urease-producing bacteria
and, in combination with lactulose, are historically a mainstay
of HE treatment. Over time, the prescribing trends evolved from
chlortetracycline in the 1950s to neomycin and others now, with
antibiotics generally falling out of favor because of severe side
effects.

Rifaximin is a common antibiotic with broad-spectrum
activity against aerobic and anaerobic Gram-positive and
Gram-negative bacteria. The administration of rifaximin in
patients with HE improves hyperammonaemia, endotoxemia,
cognitive dysfunction and stimulates the immune system
(Takaya et al., 2018; Mangas-Losada et al., 2019). According to
current clinical practice guidelines, rifaximin is recommended as
add-on therapy to prevent OHE recurrence, although it is also
indicated in combination with lactulose in patients with overt HE.

More recent studies demonstrated that rifaximin impacts the
function or activities of the gut microbiota by increasing serum
levels of long-chain fatty acids and carbohydrate metabolism
intermediates in patients with minimal HE and favorably affect
serum proinflammatory cytokine. Furthermore, rifaximin in
patients with HE has been associated with reduced gut
ammonia-production via the action of glutamine and changes
in the metabolism of bacteria-produced agents, such as
lipopolysaccharide and secondary bile acid (deoxycholic acid)
that contribute to maintaining normal gut microbiota levels
(Bajaj, 2016; DuPont, 2016; Kang et al., 2016).

Regarding the effects on the gut microbiota composition,
rifaximin is associated with a modest decrease in
Veillonellaceae and an increase in Eubacteriaceae.
Furthermore, rifaximin diminished the diversity and
abundance of ammonia-producing bacteria such as
Clostridium and Streptococcus, a risk factor for HE (Bajaj
et al., 2013; Zuo et al., 2017). Nevertheless, although the
favorable modulation of the microbiome by rifaximin in
patients with HE was effective, there was no significant change
in the overall relative abundance of bacteria (Kawaguchi et al.,
2019). A newer agent currently used in clinical trials for the
treatment of HE is nitazoxanide, a broad-spectrum antibiotic and
antiparasitic agent with activity against gut anaerobes. However,
studies on the effect of microbiota composition are still lacking
(Glal et al., 2021).
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Probiotics
The World Health Organization defines probiotics as “live
microorganisms that confer a health benefit on the host”
(Hotel and Cordoba, 2001). Probiotics, with their pleiotropic
effects, may be helpful to treat HE for their ability to suppress
bacterial urease activity, lower ammonia absorption through pH
reduction, modulate the immune response, and reduce intestinal
permeability and uptake other toxins (indoles, oxindoles,
phenols, and mercaptans). Furthermore, probiotics enhance
the hepatic clearance of ammonia and other toxins by
lowering gut-derived inflammatory signalling and oxidative
stress in the liver (Solga, 2003). The most utilised probiotics
include strains of lactic acid-producing bacilli (i.e., Lactobacillus
and Bifidobacterium), non-pathogenic strains of E. coli (i.e., E. coli
Nissle 1917), Streptococcus salivarius, a non-pathogenic strain of
yeast (i.e., Saccharomyces boulardii), and a mixture of strains like
VSL#3, which consists of eight different probiotic strains:
Streptococcus salivarius subp. thermophilus, Bifidobacterium
breve, B. longum, B. infantis, Lactobacillus acidophilus, L.
plantarum, L. paracasei, and L. bulgaricus.

Several studies addressed the effect of probiotics, alone or in
combination with standard therapy, in treating both MHE and
OHE, with conflicting results. In MHE patients receiving
probiotic Lactobacillus GG (LGG), Bajaj et al. described a
significant improvement of dysbiosis characterised by the
reduction of relative abundance of Enterobacteriaceae and
increase in beneficial autochthonous taxa of Lachnospiraceae
and Clostridiales Incertae Sedis XIV, (Bajaj et al., 2014a).

Treatment based on probiotics containing C. butyricum and B.
infantis enriched Clostridium cluster I and Bifidobacterium
abundance and decreased Enterococci and Enterobacteriaceae
in MHE patients with HBV cirrhosis. Additionally, probiotic
treatment was also associated with reducing venous ammonia
and improved cognition (Xia et al., 2018).

The mixture of probiotics VSL#3 was found non-inferior to
the standard therapy with lactulose in improving MHE and
effectively preventing HE in patients with cirrhosis. (Lunia
et al., 2014; Pratap Mouli et al., 2015). Moreover, a daily
intake over 6 months significantly reduced the risk of
hospitalisation for OHE. (Dhiman et al., 2014). On the other
hand,Marlicz et al. did not find differences in incidence and grade
of HE, assessed with critical flicker frequency, during probiotic
supplementation (Marlicz et al., 2016). In the past years, multiple
clinical trials and case reports have demonstrated the efficacy of
symbiotics in HE treatment. The association of probiotics and
fermentable fiber significantly increased the faecal content of
non-urease-producing Lactobacillus species and was associated
with a reduction in blood ammonia levels and reversal of MHE in
50% of patients (Liu et al., 2004). Furthermore, a 60 days
treatment with a combination of Bifidobacterium and
fructooligosaccharides was associated with a significant
improvement of psychometric tests and blood ammonia levels
when compared with the lactulose group in patients with HE
(Malaguarnera et al., 2010).

Unfortunately, data from clinical trials on the use of probiotics
to treat HE are difficult to compare because of differences in
probiotic strains and delivery methods used, heterogeneity in

study design and addressed endpoints (improved quality of life,
progression from MHE to OHE, ammonia and endotoxemia
reduction, gut microbiota modulation) (Khoruts et al., 2020).
Finally, the relatively small number of colony-forming units in
most commercial probiotic formulations hamper the optimistic
conclusion that probiotics are sufficient to overtake the resident
microbial community structure of cirrhosis and HE (Woodhouse
et al., 2018).

A systematic review of 21 intervention trials including 1,420
participants indicated that probiotic supplementation vs placebo
or no treatment reduced HE adverse events (including OHE
development) and improved quality of life by lowering plasma
ammonia concentration (Dalal et al., 2017). A more recent meta-
analysis, including 14 randomised controlled trials and 1,132
patients, concluded that probiotic treatment effectively decreases
serum ammonia and endotoxin levels, improves MHE, and
prevents overt HE development in patients with liver cirrhosis.
In addition, probiotics are as helpful as lactulose for MHE
patients (Cao et al., 2018).

More recently, a meta-analysis including 25 trials and 1,563
participants found that probiotics effectively reversed minimal
HE and prevented episodes of overt HE compared with placebo
or no treatment; however, the evidence was low to moderate
quality (Dhiman et al., 2020). Thus, drawing a definite conclusion
on the efficacy of probiotics in HE still represents a tricky
challenge.

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT) refers to the transfer of
stool from “healthy” donors to patients with disordered gut
microbes, with the purpose to restore eubiosis (Vindigni and
Surawicz, 2017).

In patients with HE, FMT may reduce ammonia synthesis by
shifting the gut microbiota composition to bacterial taxa low in
urease, diminishing ammonia uptake by re-establishing intestinal
barrier integrity, and increasing ammonia clearance by
improving liver function. Earlier studies on animal models
correlated FMT with lower ammonia production in the gut,
reduced risk of encephalopathy, and protective effect against
carbon tetrachloride-induced acute hepatic dysfunction (Shen
et al., 2015; Wang et al., 2017). Interestingly, if the donor was a
patient with HE, FMT results in neuroinflammation and
microbial ecological disorders (Liu et al., 2020).

In a paradigmatic case report, Kao et al. first demonstrated
that serial FMT in a patient with mild HE improved the cognitive
function, assessed with Stroop test and inhibitory control test
(Kao et al., 2016).

Later, in a randomised controlled trial, Bajaj et al. demonstrated
that FMT from a rationally selected donor (i.e., high
Lachnospiraceae or Ruminococcaceae) in 10 cirrhotic patients
suffering from recurrent OHE reduced hospitalisations,
improved cognition, and dysbiosis compared to standard of care
(Bajaj et al., 2017). Similar results were obtained in a phase 1 trial
using FMTvia oral capsules in recurrent OHE. Post-FMT, cognitive
performance improved, and duodenal mucosal diversity increased
with higher Ruminococcaceae, Bifidobacteriaceae, and lower
Streptococcaceae and Veillonellaceae (Bajaj et al., 2019a).
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Recently, a systematic meta-analysis comprising two randomised
clinical trials, three case reports, and three rodent studies highlighted
the association between FMT and improved neurocognitive tests,
lower hospital readmission rate, and a reduction in serious adverse
events (Madsen et al., 2021). Despite the potential benefits, the risk
of infections, likely due to lack of donor screening, burdens FMT
and limits its use in the context of clinical trials.

CONCLUSION

Moving from the pioneering era of culture-dependent studies, the
connection between microbes, inflammation, and metabolic
pathways in the pathogenesis of HE is becoming increasingly
clear. PCR-based deep-sequencing technologies and
metagenomic approaches are potent methods for studying
microbiota and have provided high phylogenetic resolution of
microbial communities inhabiting the gastrointestinal tract and
their connection with the disease. However, they have substantial
limitations. First, they unselectively detect microbes regardless of
their viability, and different depths of sequencing lead to varying
levels of selectivity. Furthermore, the results are based on the
relative read abundances of microbial species in a given sample

and thus do not provide exhaustive information on the function
and dynamics of human-associated microbial ecosystems.

The recent evidence that viruses and fungi are active
components of the gastrointestinal microbial ecosystem
suggests that we are now starting to gain insight into the
complexity of this organ. In-vitro models that resemble the
human microbial environment, new methods to isolate and
culture of previously unculturable bacteria, and emerging
approaches to the study of the virome and mycome are now
available. They will probably fill the gaps in our understanding of
the microbiome’s role in maintaining health and developing
diseases. The next challenge is to apply this understanding to
develop new therapeutic strategies that target the microbial
ecosystem based on the patient’s microbiome fingerprint.
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Intestinal microorganisms are closely associated with immunity, metabolism, and
inflammation, and play an important role in health and diseases such as inflammatory
bowel disease, diabetes, cardiovascular disease, Parkinson’s disease, and cancer. Liver
cancer is one of the most fatal cancers in humans. Most of liver cancers are slowly
transformed from viral hepatitis, alcoholic liver disease, and non-alcoholic fatty liver
disease. However, the relationship between intestinal microbiota and their metabolites,
including short-chain fatty acids, bile acids, indoles, and ethanol, and liver cancer remains
unclear. Here, we summarize the molecular immune mechanism of intestinal microbiota
and their metabolites in the occurrence and development of liver cancer and reveal the
important role of the microbiota-gut-liver axis in liver cancer. In addition, we describe how
the intestinal flora can be balanced by antibiotics, probiotics, postbiotics, and fecal
bacteria transplantation to improve the treatment of liver cancer. This review describes
the immunomolecular mechanism of intestinal microbiota and their metabolites in the
occurrence and development of hepatic cancer and provides theoretical evidence support
for future clinical practice.

Keywords: intestinal flora, metabolites, liver cancer, occurrence and development, immune mechanism,
therapeutics

INTRODUCTION

Liver disease is a critical and common disease, which represents a main health burden worldwide,
with increasing morbidity and mortality (Acharya and Balaji., 2021). Globally, liver cirrhosis and
liver cancer are the 11th and 16th most common causes of death, respectively (Asrani et al., 2019).
Chronic liver disease (CLD) is caused by viral hepatitis, nonalcoholic fatty liver disease (NAFLD) and
alcoholic liver disease (ALD), and can result in hepatocellular carcinoma (HCC) (Avila et al., 2020;
Schwabe et al., 2020; Schwabe and Greten, 2020). Therefore, an active treatment for CLD is urgently
required, especially liver cancer. However, there are currently no effective treatment measures for
HCC because of its complex pathophysiological mechanism.

Recent studies have illustrated the association between intestinal microbiota and carcinogenesis,
which is significant for the pathogenesis of liver cancer (McQuade et al., 2019; Kanmani et al., 2020;
Schwabe and Greten, 2020). Increasing evidence has demonstrated the changes in gut microbiota
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composition and function play a critical role in liver health from
pre-cirrhotic stages to cirrhosis, decompensation, and the
requirement of liver transplantation (Schwabe et al., 2020).
The microbiota-gut-liver axis is the interaction between the
liver, gut, and intestinal microbiota (Tripathi et al., 2018a).
Intestinal-derived metabolites, cellular components, hormones,
and other substances are transported into the liver through the
portal circulation and interact with immune cells, causing
inflammatory reactions and inducing the progression of
various hepatic diseases. The liver is directly related to the
gastrointestinal tract through the portal venous circulation and
biliary system, so it is often exposed to bacterial products
produced by intestinal microorganisms. The pathogenesis of
HCC is linked to negative alterations to the gut microbiota,
and the liver is connected to the intestine directly through the
hepatic portal circulation (Gupta et al., 2019). However, the
molecular mechanism underlying the role of the gut
microbiota in hepatocarcinogenesis remains unclear.

Numerous studies have demonstrated that the association
between the gut microbiota and the immune system may be a
critical cause of hepatocarcinogenesis. The microbe-gut-liver axis
plays an important role in liver cancer (Albillos et al., 2020).
Various factors, such as drinking alcohol, high fat-diet, and
bacterial infection can perturb the intestinal flora and destroy
the intestinal barrier. This disruption results in the release of
intestinal toxins and metabolites that target the liver and trigger
the liver immune response via Kupffer cells (KCs), macrophage
and neutrophil activation, and cell surface receptors combined
with bacterial pathogen-associated molecular patterns (PAMPs);
together, these processes activate a series of reactions that can lead
to liver damage (Golonka and Vijay-Kumar., 2021). The liver may
eventually develop hepatitis, cirrhosis, fibrosis, and even cancer.
Intestinal bacteria and their metabolites also promote the
occurrence and development of liver cancer through their
receptors or inflammatory signal passageway. For example,
intestinal bacteria ferment butyric acid, which is produced by
non-absorbable fiber inulin, and can promote liver cancer
(Wisniewski et al., 2019). Moreover, under the function of
intestinal bacteria, primary bile acids can generate secondary
bile acids, which will promote the occurrence and development of
liver cancer (JM et al., 2014). Thus, intestinal bacteria and their
metabolites are essential in the development of liver cancer and
have attracted wide attention.

The gut microbiota affects immune responses, and studies
have revealed a strong association between the gut microbiota
and the response to immune checkpoint blockade. Therefore,
methods of regulating the microbiome are being developed for
various cancers. These methods include the use of fecal
microbiota transplant, probiotic administration, and dietary
intervention, all of which are being used experimentally for
the treatment of liver cancer (McQuade et al., 2019).

Here, we summarize the molecular immune mechanism of gut
microbiota in the occurrence of liver cancer and reveal the
important role of the microbiota-gut-liver axis. In addition, we
describe how the intestinal flora can be balanced by antibiotics,
prebiotics, postbiotics, and fecal bacteria transplantation to
improve the treatment of liver cancer. In conclusion, we

summarize the immunomolecular mechanism of gut
microorganisms and their metabolites in the occurrence of
liver cancer, and provide theoretical evidence and support for
future clinical practice.

LIVER DISEASES AND THE GUT
MICROBIOME

The gut and liver are interconnected and interact with each other.
Anatomically, the gut microbiota and their metabolites,
enterogenous hormones, and nutrients help to maintain liver
function and metabolism, while the liver absorbs these products
from the gut and secrets bile acids to the gut (Delacroix et al.,
1982). Disruptions of this interaction may lead to the
development of liver diseases such as liver inflammation, ALD,
NAFLD, non-alcoholic steatohepatitis (NASH), fibrosis, and
cirrhosis (Seki et al., 2007; Cassard and Ciocan., 2018).

ALD
In addition to the direct toxicity of alcohol on hepatocytes cells,
the pathogenesis of ALD is also related to gut microbiota
disorder, loss of intestinal barrier function and activation of
Toll-like receptors (TLRs) on hepatic immune cells (Albillos
et al., 2020). Alcohol intake influences the gut microbiome,
which occurs long before fibrosis develops (Bull-Otterson
et al., 2013). In chronic alcoholism patients with jejunal
inhalation, the intestinal overproduction of aerobic and
anaerobic microorganisms has been widely recognized. In
mice fed alcohol or in individuals with chronic ethanol abuse,
metagenomic analysis of the intestinal microbiome has shown
that bacterial diversity decreased and phylogeny transited to
higher protein bacterial abundance (Chen et al., 2011; Yan
et al., 2011; Mutlu et al., 2012). Interestingly, a specific
microbial pattern, including a large number of Bifidobacteria
and Streptococci, has recently found in the intestines of patients
with severe alcoholic hepatitis (Llopis et al., 2016).

NAFLD
NAFLD can be broadly divided into non-progressive phenotype
liver diseases, NAFL and NASH. NAFLD, closely related to
obesity, has common mechanisms with type 2 diabetes
mellitus, insulin resistance, and risk factors of cardiovascular
disease. Previous studies have shown that a high-fat diet can
change the microbiota, thereby damaging the intestinal barrier
(Mouries et al., 2019), promoting the portal influx of bacterial
products, aggravating non-liver inflammation, and generating
metabolic abnormalities. Although a causal link between NAFLD
and gut microbiota remains unclear, numerous studies have
emphasized the effect of the gut microbiome in the
pathogenesis of NAFLD. Indeed, preclinical studies have
revealed that the prevalence of intestinal bacterial overgrowth
(Kapil et al., 2016; Miele et al., 2009) and the changes in
microbiota composition in NAFLD patients (Boursier et al.,
2016) were higher than those in healthy controls. Using
shotgun metagenomics sequencing, researchers have found a
correlation between the microbiological characteristics of
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patients with NAFLD and advanced fibrosis, which is
characterized by the increased abundance of Vulvobacterin and
Escherichia coli (Ren et al., 2019). Although NAFLD and ALD are
the basic mechanisms of intestinal barrier dysfunction, there are
subtle differences in their intestinal microbial composition,
intestinal permeability, bile acids, and ethanol and choline
metabolites, which need to be further studied.

Viral Hepatitis
Viral hepatitis, mainly including hepatitis A virus (HBV),
hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D
virus (HDV), and hepatitis E virus (HEV), is an infectious disease
that seriously harms human health. Several studies have shown
that gut dysbiosis is associated with viral hepatitis, chiefly HCV
and HBV infection. HCV infection is a prime cause of cirrhosis,
HCC, liver failure, and death (Craxì et al., 2008). Liver failure and
disease progression in patients with HBV infection has been
found to be linked to gut flora dysbiosis. HBV infection delays the
development of the gut microbiota, and alters the dynamic
changes in gut microbiota. One study found that the gut
bacterial distribution in HBV infected mice was dominated by
six phyla, namely, Bacteroidetes, Firmicutes, Verrucomicrobia,
Proteobacteria, Actinobacteria, and Spirochaetes (Wang et al.,
2019). Similarly, dysbiosis of intestinal flora can affect the
progression of viral hepatitis.

Cholestatic Hepatitis
Cholestatic hepatitis is a type of bile duct excretion dysfunction with
multiple causal factors. In patients with cholestatic hepatitis, bile
cannot be actively discharged through the bile duct to the intestine
and instead refluxes into the blood.One study identified seven genera,
with different abundances between the intrahepatic cholestatic of
pregnancy and healthy individuals. The seven genera included
Escherichia/Shigella, Parabacteroides, Flavonifractor, Atopobium,
Turicibacter, Lactobacillus, and Megamonas. In addition, the
family Lactobacillaceae and the phylum Proteobacteria were also
different between the two groups (Molinaro et al., 2018). Another
study suggested that intestinal barrier function can be affected by
cholestasis in the intestinal lumen (Abu Faddan et al., 2017). Thus,
breaking the balance between the bile acids and gut microbiota can
lead to inflammation.

Cirrhosis
Liver cirrhosis is accompanied by severe intestinal barrier
impairment. The damage of the intestinal barrier in patients
with decompensated cirrhosis is due to the damage of all levels of
intestinal barrier defense, and is related to liver dysfunction,
reduction of bile flow, and immune function impairment.
Intestinal barrier dysfunction and the gut microbiome directly
participate in the pathogenesis of compensated cirrhosis, and
both are related to the incidence and severity of complications of
decompensated cirrhosis, namely bacterial infection and
encephalopathy. For decades, human and experimental liver
cirrhosis models have highlighted changes in intestinal
microbiota and bacterial overgrowth (Shah et al., 2017).

Currently, metagenomic techniques have been used to
characterize the fecal microbiome in cirrhosis as one of

reduced diversity, increased relative overgrowth of potentially
pathogenic bacterium, such as Enterobacteriaceae,
Staphylococcaceae and Enterococcaceae, and decreased relative
abundance of the potentially beneficial bacterium
Lachnospiraceae and Ruminococcaceae (Bajaj et al., 2013;
Chen et al., 2011; Qin et al., 2014). The change in microbial
composition in cirrhosis is the result of microbiome
management: the decrease in intestinal movement and
transport time occurs mainly at the ascites stage (Pérez
Paramo et al., 2000; Gunnarsdottir et al., 2003; Yan et al.,
2011); bile acid abnormalities, including a decrease in primary
bile acids (PBAs) level and an increase in intestinal secondary bile
acids (SBAs) level (Lorenzo-Zuniga et al., 2003; Kakiyama et al.,
2013, 2014); and impaired intestinal immune function.
Experimental cirrhotic ascites is related to impaired Paneth
cell alpha-defensins and damage to dendritic cells (DCs)
(Teltschik et al., 2012), both of which are particularly severe in
rats with ascites and pathological bacterial translocation. Another
factor leading to microbiota changes is hypochloremia during
cirrhosis (Llorente et al., 2017). Remarkably the abnormal pattern
of pathogenic bacteria is an independent factor in liver cirrhosis
(Chen et al., 2011; Kakiyama et al., 2013).

ROLE OF THE MICROBE-GUT-LIVER AXIS
IN THE OCCURRENCE AND
DEVELOPMENT OF LIVER CANCER
Recently, increasing evidence has shown that the destruction of
the gut-liver axis results in the progression of most CLDs,
including cirrhosis and liver cancer (Kanmani et al., 2020).
Dysbiosis and leaky gut are extraordinary characteristics of
liver cirrhosis, which result in an increase in intestinal
bacterial infections such as spontaneous bacterial peritonitis,
which are considered to be responsible for the development of
liver cancer in patients with cirrhosis. Moreover, striking features
are observed at all phases of CLD, accelerating the gradual
progression from fibrosis to cirrhosis and HCC (Tripathi
et al., 2018b; Yu and Schwable., 2017). Moreover, intestinal
leakage and intestinal disorders are linked; intestine leakages
make bacterial metabolites and microbe-associated molecular
patterns (MAMPs) easier to transpose and reach the liver,
while intestinal disorders can lead to the formation of more
permeable intestinal barriers (Schwabe and Greten, 2020).

Gut Leakage
The cirrhotic liver serves as the initial site for detoxification of
microbial products from portal blood. “Leaky gut” refers to a
situation of increased gut permeability for microbiota and their
metabolites, which often occurs in hepatic cirrhosis and
represents an important pathogenetic factor for major
complications. Prolonged gut transit induces intestinal bacteria
overgrowth, a pathological condition in which colon bacteria
translocate into the small intestine. Furthermore, intestinal flora
disorders have been detected in patients with cirrhosis of the liver,
characterized by excessive growth of potentially pathogenic
bacteria and a decrease in non-pathogenic native bacteria
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(Henao-Mejia et al., 2012). Using high-molecular weight
polyethylene glycol or FITC-dextran methods, intestinal
leakage can be examined in patients or animal models of
ethanol-associated and biliary liver disease (Parlesak et al.,
2000; Yan et al., 2011; Fouts et al., 2012).

The mechanism underlying leaky gut is multifactorial and has
been studied previously (Pradere et al., 2010; Yu and Schwabe,
2017). LPS, a component of the cell wall of Gram-negative
bacteria that induces an inflammatory reaction via TLR4, is
the most commonly used marker for inflammatory bacterial
translocations. The primary levels of LPS gradually increase
throughout the course of CLD, with the highest levels
observed in patients with stage C cirrhosis of Child Pugh (Lin
et al., 1995). Similarly, bacterial DNA levels of TLR9 agonists
were elevated in CLD (Bellot et al., 2010). These results indicate
that livers with chronic lesions are likely to be exposed to a wide
range of TLR ligands as well as other bacterial metabolites.
Moreover, an increase in ethanol metabolism in the gut due to
excessive alcohol consumption, promotes intestinal dysfunction
and excessive bacterial growth, resulting in intestinal leakage.
This results in liver damage, which facilitates the mitosis of liver
cells and inhibits apoptosis, ultimately leading to the
development of HCC (Méndez-Sánchez et al., 2020).

Dysbiosis
When stressed by various disease processes, the human gut
microbiome experiences dysbiosis, which promotes the
progression of liver fibrosis/cirrhosis by increasing the
inflammatory reaction and progressing toward fibrosis/
cirrhosis (Albillos et al., 2020). For instance, alcohol
consumption induces direct hepatoxicity by microbiota
dysbiosis, which results from bacterial proliferation in the
small/large intestine or direct microbial toxicity, and by
immediate local lesion of the intestinal barrier, leading to
increased bacterial translocation and inflammation (Mutlu
et al., 2012; Leclercq et al., 2014; Meroni et al., 2019).

Recently, studies have shown the occurrence of dysbiosis at
various stages of CLD. The most relevant studies reveal gut
dysbiosis in cirrhosis (Qin et al., 2014; Pasolli et al., 2016;
Ponziani et al., 2019; Ren et al., 2019), mainly during the
progression stage of liver cancer and those in patients with
liver cancer (Grąt et al., 2016; Ponziani et al., 2019; Ren et al.,
2019) Clinical studies have demonstrated that the presence of
liver cirrhosis can be accurately predicted by the change in the
intestinal microflora (Pasolli et al., 2016), and emphasized that
end-stage CLD is the most associated-dysbiosis disease. Dysbiosis
alters various processes that influence the development of CLD
and the subsequent progression of liver cancer, including
inflammation, lesions, fibration and regeneration. Although
the most significant changes in the gut microbiota have been
observed between healthy controls and patients with liver
cirrhosis (Qin et al., 2014; Pasolli et al., 2016), there is
growing evidence of differences between patients with liver
cirrhosis and those with HCC (Grat et al., 2016; Ponziani
et al., 2019; Ren et al., 2019). Indeed, in patients with HCC
and cirrhosis, excessive growth of E. coli in the gut was first
reported in 2016 (Grat et al., 2016).

The microbiome study showed a decrease in fecal bacterial
diversity from healthy controls to patients with liver cirrhosis, but
an increase from patients with cirrhosis to those with early liver
cancer with cirrhosis. Compared to NASH-induced cirrhosis without
HCC, the abundance of Ruminococcaceae and Bacteroides increased,
while the abundance of Akkermansia and Bifidobacterium decreased
in patients with HCC (Ponziani et al., 2019). Moreover, researchers
observed that in patients withHBV-relatedHCC, the richness in fecal
microbiota was remarkably greater than in healthy groups and those
with non-HBV non-HCV (NBNC)-related HCC. Furthermore, the
feces of patients with NBNC-related HCC harbored more potential
pro-inflammatory bacteria including Escherichia-Shigella and
Enterococcus, and a decreased abundance of Faeca libacterium,
Ruminococcus, and Ruminoclostridium, contributing to the
reduction of anti-inflammatory short-chain fatty acids (SCFAs)
(Liu et al., 2019). (Figure 1)

Variations in the microbial profile of liver cancer have been
observed in previous studies, which may be due to differences in
etiology, geographic area, and nutrient intake. In addition, the
differences between patients with cirrhosis and HCC and those
with cirrhosis of the liver are less marked than those observed
between healthy patients and those with liver cirrhosis. Therefore,
not only is the microbiome-based diagnostic test more potent
than the liver cirrhosis screening test for liver cancer, it is also
possible that microorganisms that have a functional impact on
the development of liver cancer are primarily affected by cirrhotic
alterations rather than specific HCC alterations.

ROLE OF GUT MICROBIOTA AND THEIR
METABOLITES ON THE IMMUNE
MECHANISMS OF THE PROGRESSION OF
LIVER CANCER

LPS and TLRs
Intestinal microorganisms can affect the health of their hosts by
producing cellular components such as LPS, peptidoglycans,
lipoteichoic acid, flagellin, and DNA. The cellular components
are transmitted from the portal circulation to the liver, where they
actively interact with immune cells, causing inflammation and the
progression of various liver diseases. Among the bacterial
components, LPS is a key inflammatory molecule, which is
increasingly translocated to the liver during intestinal dysbiosis
(Kanmani et al., 2020). LPS can induce a systemic
proinflammatory and fibrotic condition, where the
transduction of insulin signals is disrupted, leading to an
increase in the net lipidization of adipose tissue and the
transport of free fatty acids from adipose tissue to the liver
(Kang et al., 2017). Once excessive lipids are exposed to
cellular stress in the liver, they are ultimately expanded
through the proinflammatory environment of the liver and
system. Subsequently, an acute reaction and liver fibrosis
develop, which ultimately progress to cirrhosis of the liver
(Kumar et al., 2017), and even liver cancer.

PAMPs and metabolites are derived from the actions of the
intestinal microbiome on exogenous (food and environmental
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exposure) and endogenous substrates (amino acids and bile
acids), which can reach the liver through the portal route and
promote inflammatory reactions. In 1989, Charles Janeway first
proposed that pattern recognition receptors (PRRs) recognize
PAMPs to activate innate immunity and adaptive immunity
(Janeway, 1989). TLRs, type-I transmembrane proteins, were
the first identified PRRs to be capable of sensing pathogen
infection. TLRs are the main receptors in cirrhosis for the
identification of gut bacteria and represent an essential
component of the congenital immune system, triggering the
cascade of signals associated with the progression of cirrhosis.
Among the ten human TLRs, TLR2, TLR4, TLR5, and TLR9
identify bacterial infection. TLR4 is the most widely studied
PRR. Through LPS-binding protein, CD14 and myeloid
differentiation protein 2 (MDP2), TLR4 can recognize and
bind to LPS to produce response (Wen et al., 2017).
Preclinical studies have confirmed that the contribution of
PAMPs to NAFLD liver damage by a reduction in liver
degeneration, inflammation, and fibrosis in mice with TLR4-

or TLR9 deficiencies with a high-fat or low-choline diet (Rivera
et al., 2007; Saberi et al., 2009; Miura et al., 2010). In addition,
the absence of inflammatory microorganisms associated with
changes in intestinal flora in mice led to steatosis and
inflammation of the liver through the endovascular flow of
TLR4 and TLR9 agonists, ultimately resulting in increased
expression of TNF-αand inflammation in the liver, which is
particularly severe in mice with liver steatosis (Henao-Mejia
et al., 2012). Unlike TLR4 identifying Gram-negative bacteria,
TLR2 primarily identifies Gram-positive bacteria. Lipoteichoic
acid is a bacterial component of the intestine which, as a ligand
of TLR2, contributes to the development of HCC in obese mice
by increasing tumor-promoting senescence-associated secretory
phenotype (SASP) of hepatic stellate cells (HSCs) and COX2
expression. COX2-induced prostaglandin E2 (PGE2)
neutralizes anti-tumor immunity and facilitates the
progression of HCC. TLR5 and TLR9 identify Gram-positive
and Gram-negative bacterial flagellin and CpG DNA,
respectively.

FIGURE 1 | The role of the microbe-gut-liver axis in the occurrence and development of liver cancer. Intestinal microorganisms, metabolites (SCFAs, IAA), and
bacterial components (LPS, MAMPs, PAMPs) are transported to the liver through the portal vein, where they interact with immune cells and generate inflammatory
responses to induce liver diseases. Intestinal leakage and dysregulation of flora are the important characteristics of the liver disease. DCs, dendritic cells; IAA, indole
acetic acid; LPS, lipopolysaccharides; MAMPs, microbe associated molecular patterns; PAMPs, pathogen associated molecular patterns; SCFAs, short-chain
fatty acids.
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Immune Cells in Liver Cancer
Monocytes/Macrophages
Under the stimulation of endotoxin, monocytes from circulating
sources can infiltrate the liver and differentiate into macrophages,
which promote inflammatory mediators and oxygen free radicals
to induce liver dysfunction and even liver failure. Monocyte-
derived macrophage transformations are key events in hepatic
inflammation (Zhao et al., 2018). In the liver, KCs and bone
marrow-derived macrophages identify PAMPs from
enterohepatic circulation via TLR4. TLR4 upregulation
facilitates binding with its ligand, myeloid differentiation
primary reaction 88, and leads to activation of mitogen-
activated protein kinase (MAPK) and c-Jun N-terminal kinase
(JNK), and subsequent activation of the NF-κβ pathway. This in
sequence induces the release of TNF-α, IFN-γ, prostaglandin-2,
IL-1α, IL-1β, IL-6, reactive oxygen species (ROS), and nitric
oxide, to maintain the liver inflammatory reaction. NF-κB also
activates anti-apoptotic genes with important carcinogenic
effects. An increase in TNF-α production has been shown to
decrease tight junction (TJ) proteins and leads to intestinal barrier
damage (Méndez-Sánchez et al., 2020). In addition, the activation
of the TLR4 signaling pathway and intestinal bacteria accelerates
the progression of liver cancer through mediating increased cell
proliferation, expression of hepatomitogen epiregulin, and
inhibition of apoptosis (Dapito et al., 2012).

KCs are resident macrophages in the liver and are essential to
maintain immune tolerance by phagocytosing toxins from
bacteria and xenobiotics. In the case of KC depletion,
circulating monocytes can adopt the transcriptional profile of
KCs. In the KC niche, interactions with HSCs, hepatocytes, and
endothelial cells can also trigger monocyte recruitment. A cascade
of interactive signals from Notch, liver X receptor-α, and
transforming growth factor-β1 (TGF-β1) recruits monocytes to
fill the population with liver macrophages into KCs. Similar to
cyclic monocytes/macrophages, KCs can differentiate into M1-
and M2-type cells in the chronic inflammatory process of the
liver, but these subtypes serve as a double-edged sword in the
context liver health. For NAFLD and NASH, M2-polarized
macrophages play a protective role in resisting apoptosis and
avoiding lipid accumulation, while a predominance of M1
macrophages aggravates these liver diseases. In contrast,
in vitro studies of mature HCC cell lines and clinical HCC
specimens (such as blood and liver tissue) have shown that a
predominant M2 phenotype in liver cancer promotes tumor
growth, cell migration, metastasis dependent on epithelial-
mesenchymal transformation, drug resistance, and facilitates
an immunosuppressive tumor microenvironment. In addition,
intestinal flora disorder induces the production of IL-25 and
promotes the progression of liver cancer by activating
macrophage substitution and CXCL-10 secretion in the tumor
microenvironment (Li et al., 2019).

Neutrophils
The neutrophil/lymphocyte ratio has been widely defined as a
biological marker for diagnosis, prognosis, overall survival,
preoperative, postoperative, and relapse of HCC. The spectrum
of cytokines surrounding the tumor microenvironment can

determine whether neutrophils differentiate as N1 or N2
immunosuppressant anti-tumor subtypes. In the early-stage of
liver cancer, liver cancer-associated neutrophils (LCANs) are
located in the periphery and have a cytotoxic N1 phenotype
for tumor cells. Neutrophils differentiate into N2 phenotypes at
an advanced stage of liver cancer, due to a shift in cytokine
production in favor of CCL2 and CCL17, as well as an up-
regulation of TGF-β. Thus, neutrophil and TGF-β blockage can
slow the growth of liver cancer, and, in particular, inhibition of
TGF-β can transform the LCAN population from an N2 to N1
phenotype. The intestinal microflora has no direct effect on the
pathology of LCAN in HCC. However, the diversity and
composition of intestinal microorganisms can affect the
circulation and the level of liver neutrophils. Thus, the greater
the diversity of intestinal flora, the lower the proportion of
neutrophils/lymphocytes in the blood (Golonka and Vijay-
Kumar., 2021).

Lymphocytes
When viable bacteria cross the barrier from the intestinal lumen,
bacteria are commonly translocated from the gut to the hepatic or
circulatory system. KCs activate the congenital activate immune
response by releasing cytokines and producing ROS. Released
cytokines stir up immune cells such as neutrophils and
monocytes in the liver to control invasive microorganisms, but
they also promote liver damage. The supplement of lymphocytes
and neutrophils and the activation of HSCs occur, which
ultimately leads to collagen production and fibrosis. Finally,
constant natural killer cells (iNKT), usually present in the
intestine, can also migrate into the liver during bacterial
translocations caused by chronic alcohol abuse, and have been
found to contribute to the apoptosis of liver cells (Bruellman and
Llorente., 2021). In addition, the reduction of the intestinal
microflora through antibiotic treatment inhibits the
development of HCC in mice by increasing the accumulation
of NKT cells in the liver and CD4+ or CD8+ memory T cells (Ma
et al., 2018). Higher levels of PBAs, CXCL16, and CXCR6 can
alter the accumulation of NKT cells in the liver cancer mice.

DCs
DCs in the gut can carry bacteria to mesenteric lymph nodes,
causing a more localized immune response. Prolonged
inflammation can impair the functioning of the lymphatic
system and further damage the immune system of the liver.
One of themainmechanisms of protection of the liver for the host
is the secretion of IgA in the bile attached to bacteria.
Disturbances in the host can cause the liver’s immune system
to further regulate the microflora to protect against damage to the
intestinal barrier. More recently, DCs have received increasing
attention in the cellular treatment of tumors (Montico et al., 2017;
Saxena and Bhardwaj., 2017). Immature dendritic cells (imDCs)
have the ability to phagocytize and process the antigen, but their
ability to present antigen is low. In both in vivo and in vitro
studies, various methods have been used to induce imDCs
maturation to increase their antitumor activity (Crottes et al.,
2016). Researchers have used different antigenic formulas to
modify and charge DCs before injecting them into animal
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models or patients, resulting in anticancer effects (Funda et al.,
2018). (Figure 3).

Gut Microbiota Metabolites and Liver
Cancer
PBAs and SBAs
In the liver, cholesterol is metabolized into PBAs, which are
stored in and released from the gallbladder into the small
intestine, and they can be used to dissolve lipids and fat-
soluble dietary vitamins (JM et al., 2014). Considerable
amounts of PBAs are reabsorbed from the ileum into the liver;
a small proportion (∼3%) are easily deconjugated, which enters
the large intestine and metabolized into SBAs by gut bacteria (Jia
et al., 2018). SBAs are increasingly considered as cancer-
promoting metabolites. The intestinal microflora has been
shown to use bile acids as messengers to impair immune
functions and influence anti-cancer effects (Wahlstrom et al.,
2016; Ma et al., 2018). Studies have suggested that Gram-positive
bacteria will accumulate in mice fed a high-fat diet with enhanced
bile acid processing capacity (Yoshimoto et al., 2013). Thus, when
the antibiotic vancomycin inhibits endogenous production of
deoxycholic acid (DCA), a high-lipid diet leads to an increase in
the levels of DCA produced by bacteria, together with
dimethylbenzanthracene and high-fat diet, which contributes
to the development of liver cancer (Yoshimoto et al., 2013).

The liver is sensitive to the metabolites of intestinal bacteria
and changes in the gut microflora affect the functioning of the
liver’s immune cells. The intestinal microorganisms participate in
the physiological activity of the host by acting on the pool of bile
acids, and thus regulate hormonal secretion and immunization by
the metabolites produced. Ma et al. reported that reducing the
abundance of intestinal Clostridial bacteria can increase PBAs
levels and inhibit liver tumors. Moreover, DCA can increase
TLR2 expression in HSCs together with increased TLR2 agonist
lipoteichoic acid, which results in the tumor-promoting SASP
(Loo et al., 2017).

The onset and development of primary liver cancer are
modulated by SBAs through several different mechanisms,
including DNA injury, inflammation-related tumorigenesis,
and hepatotoxicity (Yoshimoto et al., 2013; Bourzac, 2014),
which favor an immunosuppressive tumor microenvironment
by reducing the accumulation of natural killer T (NKT) cells in
the liver (Hartmann and Kronenberg., 2018; Ma et al., 2018;
Mossanen et al., 2019) Another mechanism by which intestinal
microorganism-induced changes in the metabolism of bile acids
control the growth of liver cancer is via the regulation of CXC
chemokine ligand 16 (CXCL16) expression in the liver and the
recruitment of NKT cells by CXCL16 (Ma et al., 2018). PBAs have
been shown to play a key role in the up-regulation of CXC16 in
endothelial cells in the liver sinus, which in turn contributes to the
recruitment of NKT cells. NKT cells subsequently kill tumor cells
in a CD1-dependent manner. In another study, antibiotics
inhibited the development of liver cancer induced by high
cholesterol and a fat NASH diet, along with a significant
reduction in SBAs, which activate the mammalian target of
rapamycin (mTOR) pathway in liver cells (Yamada et al., 2018).

The liver influences the Th17 and Treg balance of the intrinsic
layer via a derivative of lithocholic acid (LCA), a bile acid
metabolite. 3-OxoLCA can combine with retinoic acid-
associated orphan receptors γT (ROR γT) to prevent the
proliferation of Th17 cells, while isoalloLCA produces
mitochondrial ROS, leading to the up-regulation of forkhead
box protein 3 (FOXP3), a regulator of Treg differentiation. In
mice fed a Lieber DeCarli ethanol diet, the farnesoid X receptor
(FXR), a regulator of bile acid and lipid metabolism, was lowered,
resulting in an increase in bile acid levels produced and secreted
by the liver. Degeneration of liver fat and ALD are likely to occur
in mice depleted by FXR, as well as in chronic feeding models
with excess ethanol. Experimental treatment of DK-naive T cells
isolated frommice defected by FXR with isoalloLCA and 3-oxolca
did not alter the expression of FOXP3 in relation to the control
group. Moreover, in cells treated with 3-oxoLCA, FXR did not
help inhibit Th17 cells (Bruellman and Llorente., 2021).

SCFAs
SCFAs represent an important category of bacterial metabolites, and
are considered to be the richest microbiome-derived metabolites in
the gut (Zhang Z. et al., 2019). Intestinal flora produce various
gastrointestinal enzymes, including propionate and acetate
coenzyme A transferase, and butyrate kinase, all of which transfer
complex or undigested carbohydrates of diets into host absorbable
SCFAs, mainly acetic acid, propionic acid, and butyrate (El Kaoutari
et al., 2013; Wisniewski et al., 2019). For example, Bacteroidetes
produce acetate and propionate, which can be delivered directly
through the portal vein to peripheral tissues, including the liver and
adipose tissue, for lipogenesis and gluconeogenesis (Koh et al., 2016;
Wilson et al., 2017). In addition, SCFAs have a strong ability to
inhibit intestinal inflammation and prevent pathogen invasion, as
well as to maintain barrier integrity, primarily by activating GPCRs
or inducing their inhibitory effects on HDACs to further influence
gene expression (Zhang Z. et al., 2019). Although SCFAs are
generally considered health-promoting factors, particularly for
colonic epithelial cells, one study showed that high dietary
consumption of inulin, a non-absorbable fiber that is converted
to butyrate, promoted the development of HCC in mice with
dysbacteriosis (Singh et al., 2018). Evidence has shown that an
imbalance between T helper 17 cells (Th17s) and regulatory T cells
(Tregs) is associated with aberrant immune responses. Recent
advances in culture-independent techniques for the detection and
identification of intestinal commensal bacteria enabled the discovery
that Th17 and Treg differentiation are regulated by SCFAs,
particularly butyrate, produced by the gut microbiota. This
finding provided a mechanistic link between dysbiosis, defined as
changes in the composition of the gut microbiota, and various
inflammatory diseases. On this basis, research suggested that
dysbiosis with reduced production of SCFAs leading to Th17/
Treg imbalance, is involved in the etiology of liver cancer. Thus,
the inhibition of fermentation by drugs or the depletion of
fermentation bacteria can significantly reduce SCFAs and prevent
HCC (Singh et al., 2018). In contrast, another study showed that
propionate improves the cytotoxic effect of cisplatin on liver cancer
bymodulating the G-protein coupled receptor 41 (GPR41) signaling
pathway (Kobayashi et al., 2018).
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Other Gut Metabolites
Indol-3-acetic acid (IAA), an intestinal-derived metabolite,
reduces high-fat diet-induced hepatotoxicity by improving
liver lipogenesis, lipid metabolism, and inflammatory and
oxidative stress in mice (Ji et al., 2019). Moreover, in SK-HEP-
1-implanted nude mice, IAA can induce tumor regression, and
may represent a novel cancer therapeutic agent (Park et al., 2009).
Another study showed the IAA confers protection against HCC
by affecting antioxidant gene expression and DNA fragmentation
(Mourão et al., 2009). As an endogenous ligand of the human
activation of the aryl hydrocarbon receptor, the tryptophan (Trp)
catabolite kynurenine (Kyn) is a liver-derived Trp-degrading
enzyme that may be associated with HCC (Opitz et al., 2011).
The inability of D-Trp-6-luteinizing hormone releasing hormone
cannot inhibit the development of HCC (Guéchot et al., 1989).
The transcription of enzymes implicated in L-Trp metabolism

causes DNA injury during the early stages of tumorigenesis
(Tummala et al., 2014). (Figure 2).

In short, gut microbiota and their metabolites reach the liver
and activate liver immune cells, including KCs, lymphocytes, and
neutrophils, inhibiting or promoting the occurrence and
development of liver cancer through various immune response
mechanisms. Intestinal DCs interact with IgA released by the
liver, thereby producing anti-cancer effects. Intestine microbe
metabolites (e.g., PBAs, SBAs, DCA, LCA, SCFAs) regulate the
development and progression of liver cancer by stimulating or
inhibiting immune reactions and inflammation in the liver.

In addition, we also focused on the relationship between the
changes of liver cancer biomarkers and intestinal microflora and
metabolites. As it is well known, serum alpha-fetoprotein
(α-AFP), structure-specific recognition protein 1 and lamin B1
are important biomarkers for the diagnosis of liver cancer, as well

FIGURE 2 | The immune molecular mechanism of intestinal microorganisms and their metabolites in the occurrence and development of liver cancer. Bacterial
components such as LPS and SCFA butyrate bind to receptors to regulate the activity of immune cells. Liver-derived PBAs enter the intestinal tract and generate SBAs
under the action of bacteria, which promotes the occurrence of liver cancer through a series of immune reactions. However, SCFA proprionate binds to GPR41 receptor,
and the microbial metabolism produces IAA and Kyn to inhibit the occurrence of liver cancer through a series of reactions. Enterogenous microorganism and
metabolic products reach the liver, activating liver immune cells, including KCs, lymphocytes, and neutrophils; these cell surface receptors and PAMPs undergo ligand
binding, triggering a series of immune cascade, induce inflammation, promote or inhibit liver cell hyperplasia of fibers, liver cell proliferation, differentiation, and apoptosis,
thus playing a role in promoting or inhibiting liver cancer; Intestinal DCs can interact with IgA that is released by the liver to impart an anti-cancer effect. However, SCFAs
and BAs (PBAs, SBAs, DCA, LCA) produced by intestinal microorganisms can bind to corresponding receptors, trigger a series of immune responses, regulate CXC16
levels, SASP, NKT, Treg differentiation, and Th17/Treg, and promote or inhibit liver cancer. CXC16, CXC chemokine ligand 16; c-JNKs, c-Jun N-terminal kinases; DCs,
dendritic cells; DCA, deoxycholic acid; FOXP3, forkhead box protein 3; GPR41, G-protein coupled receptor 41; HCC, hepatocellular carcinoma; HSCs, hepatic stellate
cells; iNKT, invariant natural killer; IAA, indole-3-acetic acid; IFN, interferon; IL-1, interleukin-1; IL-6, interleukin-6; KCs, kupffer cells; Kyn, kynurenine; LCA, lithocholic
acid; LTA, lipoteichoic acid; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor-kB; N1, neutrophils 1; N2,
neutrophils 2; NKT, natural killer; NO, nitric oxide; PBAs, primary bile acids; RORγT, retinoic acid-associated orphan receptors γT ; ROS, reactive oxygen species;
SCFAs, short-chain fatty acids; SASP, senescence-associated secretory phenotype; SBAs, secondary bile acids; TLR, toll-like receptor; TGF-β1, transforming growth
factor-β1; Th17/Treg, T helper 17/ regulatory T; TRAF1/2, tumor necrosis receptor associated factors 1/2.
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as important indicators for the evaluation of therapeutic effect
and prognosis (Feng et al., 2021). Studies have shown that these
biomarkers are involved in the immune and inflammatory
responses in the development and progression of liver cancer,
among which, the level of α-AFP is associated with the diversity of
intestinal microorganisms (Zhang et al., 2019a). Elshaer et al.
reported that in thioacetame-induced liver cirrhosis rats, the
TLR4-CXCL9 pathway was activated and the serum α-AFP
level increased, which could be prevented by administration of
Lactobacillus Plantarum (Elshaer et al., 2019). Another study
reported that the levels of serum zonulin, a marker of intestinal
permeability, increased significantly in patients with liver
cirrhosis and HCC. The combination of zonulin and AFP
exhibited a significantly larger receiver operating characteristic
curve compared to zonulin or AFP alone, suggesting that their
combination confers significant benefit to diagnostic accuracy in
differentiating liver cirrhosis from HCC (Wang et al., 2019).
However, to the best of our knowledge, there are limited studies
on the effects of intestinal bacteria and metabolites on liver cancer
biomarkers. In future, it will be possible to pay attention to their
relationship, or even combine their detection, to provide a basis
for the diagnosis, treatment, and prognosis of liver cancer.

POTENTIATING THE ANTICANCER
EFFECTS OF THERAPEUTIC DRUGS BY
REGULATING THE GUT MICROBIOTA
Changes in intestinal flora are associated with resistance to
chemotherapy drugs. Using antibiotics, post-biotics, probiotics,
fecal microflora transplant (FMT), or nanotechnologies, to
regulate microflora may enhance the anti-cancer effects of
chemotherapy agents (Compare et al., 2017; Cheng et al., 2020).

Antibiotics
Studies have shown that antibiotic treatment at advanced stages of
HCC in mice may be effective in reducing cancer development
(Meroni et al., 2019). For example, rifaximine is currently being
tested on the microflora in various clinical trials of CLD as the safest
non-absorbable antibiotic (Wiest et al., 2017). Rifaximine is a broad-
spectrum compound that reduces endotoxin and anti-inflammatory
effects independent of its bactericidal effects. The combination of
rifaximine and simvastatin for the treatment of key mechanisms of
liver cirrhosis progression, namely liver and intestinal and systemic
inflammatory reactions, is currently undergoing a clinical phase 3,
multicenter, double-blind, placebo-controlled trial to prevent ACLF
in patients with decompensated cirrhosis. Recent studies have
shown that the levels of some SBAs in the liver decreased after
antibiotics depleted commensal bacteria from the gut microbiome
in mice. This relieved inhibition of CXCL16, a potent recruiter of
NKT cells, and also increased the levels of certain PBAs known to
induce CXCL16, resulting in the accumulation of hepatic NKT cells
and a reduction in liver tumors.

Postbiotics
Recent data indicate that the potential mechanisms for controlling
micro-organism-based intestinal homeostasis depend on their

metabolites, also known as postbiotics (Tsilingiri and Resscigno.,
2013). Postbiotics are advancedmicrobiology tools that can be used
to maintain long-term health benefits. Their compounds are
variable and depend on the strain and their metabolic state and
include SCFAs, SBAs, proteins, enzymes, peptides, bacteriocins,
polysaccharides, vitamins and organic acids (Compare et al., 2017),
all of which have been described as having an immuno-regulatory
and protective effect in the intestinal barrier. Postbiotics can
strengthen the structure of the close bonding of the epithelium
by increasing the expression of TJs proteins and intestinal mucin,
which can promote the restoration of intestinal barrier function
(Tsilingiri et al., 2012). In particular, postbiotic agents can act on
immune cells and protect intestinal tissues from
immunopathological damage by increasing the secretion of anti-
inflammatory cytokines such as IL-10 (Mileti et al., 2009; Compare
et al., 2017).

Postbiotic agents also manifest as factors inducing the
elasticity of the microflora. They may act as inhibitors of
pathogenic bacteria or possibly as signal quorum molecules,
regulating the density of bacterial cells and supporting the
formation of biological membranes of microbial composition
(Fanning et al., 2012). Studies have shown that postbiotic agents
have anti-proliferation, anti-inflammatory, and anti-cancer
properties, and are able to regulate the effectiveness of cancer
treatments and reduce the side effects of traditional treatments on
patients with cancer (Rad et al., 2021).

Probiotics
Numerous clinical trials have been conducted to study the effects
of prebiotics/probiotics on cancer. Some trials showed improved
clinical outcomes in patients using probiotics (Mego et al., 2015;
Theodoropoulos et al., 2016; Flesch et al., 2017; Tian et al., 2019),
while others were unable to verify the significant effects of
receiving probiotics. A prospective clinical study in patients
with colorectal cancer showed that Lactobacillus acidophilus
NCFM and Bifidobacterium lactis Bl-04 increased the levels of
butyrate-producing bacteria, including Faecalibacterium and
Clostridiales spp., but decreased the level of bacteria associated
with colorectal cancer, such as Fusobacterium and
Peptostreptococcus (Hibberd et al., 2017). In addition to
altering the features of microorganisms, probiotics have also
been reported to suppress the development of cancer in
animal models. Zhang et al. established a model of liver
cancer in rats using diethylnitroamine to reveal that oral
VSL#3 probiotic mixture reduced intestinal inflammatory
reactions, maintained the integrity of the intestinal mucosa,
and inhibited tumor growth (Zhang et al., 2012). A
subsequent study showed that the probiotic mixture Prohep
decreased the number of Th17 cells in the tumor and thus
inhibited the development of liver cancer in a mouse model
grafted under the skin (Li et al., 2016). Clinical trials evaluating
the therapeutic potential of VSL#3 in patients with liver cirrhosis
(Dhiman et al., 2014) or NAFLD (Anderson et al., 2004) have
shown that probiotics alleviate the severity of diseases closely
related to the progression of liver cancer (Michelotti et al., 2013).

However, some clinical trials have found no evidence of the
clinical benefits of probiotics in the treatment of cancer (McNaught
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et al., 2002; Anderson et al., 2004). Postoperative treatment of
patients with head and neck cancer with mixed strains of
Lactobacillus and Bifidobacterium did not improve clinical
outcomes. Moreover, patients treated with probiotics and those
treated with placebo were shown to have similar postoperative
infection rates, inflammatory markers, and levels of
diaminoxydase, which are indicators of intestinal permeability
(Lages et al., 2018). The conflicting results of clinical trials can
be explained by differences in the microbiome and host genome
between individuals. Colonization and function of probiotics are
affected by native microflora, host gene expression features, and
other exogenous factors (Morgan et al., 2012; Lages et al., 2018).
Evaluating the clinical benefits of probiotics in patients with cancer
therefore remains a challenge. Moreover, most probiotic clinical
trials have limitations such as reduced sample size, short duration
of treatment, and lack of follow-up of long-term effects of
probiotics on patients. Thus, well-designed studies are essential
to evaluate the probiotic treatment of cancer patients with cancer.

FMT
FMT is defined as the digestive transmission of intestinal microflora
from healthy donors to unhealthy recipients, with the objective of
restoring intestinal homeostasis or establishing a new balance to
eliminate or improve disease (van Nood et al., 2013). FMT has been
recognized by official guidelines as the standard treatment for
recurrent clostridium difficile infection (CDI), with a cure rate
close to 90% (van Nood et al., 2013; Chen et al., 2019). A
previous clinical showed that patients with liver cirrhosis and
recurrent liver encephalopathy were well tolerated and safe in the
long term by oral administration in capsules after pre-treatment with
antibiotics (Bajaj et al., 2018; Bajaj et al., 2019a; Bajaj et al., 2019b).
Moreover, FMT has been shown to restore antibiotic-related
microbiological biodiversity and reduce function destruction,
resulting in continuous improvement in cognitive function
parameters and reduced rates of liver encephalopathy re-
emergence and liver-related hospitalization (Bajaj et al., 2018;
Bajaj et al., 2019a; Bajaj et al., 2019b). FMT has also been shown
to reverse early portal hypertension, intra-hepatic endothelial
dysfunction, and insulin resistance in rats on a high-fat, fructose

diet (Garcia-Lezana et al., 2018). Generally, to make FMT more
viable in the treatment of cancer, the choice of the ideal donor
remains a crucial question, as preliminary evidence indicates that the
donor’s intestinalmicrobiome is a determining factor in the response
rate to the patient in cancerous mice (Routy et al., 2018). However,
until we can identify a microflora that supports cancer
immunotherapy, therapists should make use of the balanced fecal
microflora of healthy donors rather than the patient’s disturbed
microflora. There is no consensus on which species or combinations
of bacteria are the best option to enhance immune effects, and
further research is needed in this area.

Nanoparticles
Ongoing clinical trials have shown that nanotechnology can be
used to target cancer-related bacteria or to release anticancer
agents in a controlled manner, with fewer side reactions
(Angsantikul et al., 2018; Song et al., 2019). Given the impact
of nanotechnology on cancer prevention and treatment, the
assessment of toxicity, side effects, and downstream
mechanisms mediated by nanoparticles should be considered.
In addition, the interactions between NPs and the immune
system may have effects on the gut microbiota. For example,
exosome-like NP (ELNs) RNAs regulate gut microbiota to
enhance the function of the gut barrier (Teng et al., 2018),
and phage-guided irinotecan-loaded dextran NPs promote
release of bacterial derived butyrate, which may improve the
therapeutic strategy of tumor (Kannen et al., 2019). By combining
Fe@Fe3O4 NPs with ginsenoside Rg3 (NpRg3), a new nano-drug
is currently being developed, with good efficacy for liver cancer
(Ren et al., 2020). (Figure 3).

CONCLUSION AND PERSPECTIVES

In conclusion, this review summarizes the molecular immune
mechanisms of gut microbiota in the occurrence and
development of liver cancer, revealing the important role of
the microbiota-gut-liver axis on liver cancer. In addition, we
describe how to balance the intestinal flora by regulating diet,

FIGURE 3 | Intestinal microorganisms can be regulated by antibiotics, probiotics, postbiotics, fecal bacteria transplantation, and nanoparticles to enhance the anti-
liver cancer effect of chemotherapy drugs. FMT, fecal microbiota transplantation; SCFAs, short-chain fatty acids; SBAs, secondary bile acids.
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antibiotics, prebiotics, postbiotics, and fecal bacteria
transplantation to improve the treatment of liver cancer.

However, this paper still has some limitations. In this
review, there are more studies on the cell and animal
models, but fewer clinical studies, especially on the
relationship between microbial metabolites and liver cancer,
which need to be further strengthened. In terms of the
molecular immune mechanism, there are still many
problems that need to be resolved in the study of microbes
and metabolites and liver cancer; for example, whether
SCFAs play a role in the occurrence and development of
liver cancer and whether there are differences between
different types and different individuals, particularly
individual differences in microbes and whether the results
are consistent in animals and humans. Second, further
investigations on the regulation of intestinal microbiota to
enhance the efficacy of tumor chemotherapy and preclinical
and clinical studies on HCC are warranted. In conclusion,
intestinal microbes and their metabolites are closely related

to the occurrence and development of liver cancer. Regulating
intestinal microorganisms represents a promising strategy to
enhance the efficacy of immunotherapy in liver cancer and
reduce adverse reactions.
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