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Editorial on the Research Topic

Behavioral Addictions, Risk-Taking, and Impulsive Choice

This special topic presents theoretical and experimental work on the biopsychological mechanisms
of impulsivity. While impulsivity is regarded as a core symptom in various psychiatric disorders,
ranging fromADHD to disruptive disorders and behavioral addiction, current frameworks indicate
that impulsivity is a multidimensional construct, which is currently interpreted as a cluster of
different behavioral domains that likely reflect separate neurobiological mechanisms (Strickland
and Johnson, 2020).

One of the main facets of impulsivity is maladaptive decision making, whereby immediate
benefits (such as the rewarding effect of a drug or alcohol use or the escape/avoidance of
physical/emotional pain) are preferred over more consequential, but delayed negative outcomes
(e.g., health deficits, relationship loss). This devaluation of untoward consequences (i.e., steep
delay-discounting) is borne out in the literature by meta-analyses showing robust (replicable,
medium-to-large effect size) correlations between a variety of substance-use disorders and delay
discounting (MacKillop et al., 2011; Amlung et al., 2017). In addition, several studies indicate that
decreased delay discounting is associated withmaladaptive health decision-making (e.g., Stein et al.,
2016; Athamneh et al., 2021). Therefore, interventions that aim to decrease delay discounting are
of some importance. The special topic paper by Stein et al. finds, for the first time, that a choice-
bundling intervention reduces the extent to which cigarette smokers discount delayed gains and
losses, the latter being analogous to loss of health, relationships, etc. Bundling interventions allow
the decision-maker to make one choice and then experience a series of either smaller-sooner or
larger-later rewards (depending on the initial choice). These interventions have proven effective
in reducing delay discounting in human and non-human subjects (Rung and Madden, 2018; Smith
et al., 2019), with the Stein et al. paper being the first to show the bundling strategy works to decrease
the devaluation of delayed negative outcomes. The authors discuss bundling-based therapies that
could help those at risk of substance use disorders to give greater consideration to the future
outcomes of decisions made today.

Beyond interventions, there are several state-factors known to influence the rate of delay
discounting (Odum et al., 2020). The special topic paper by Downey et al. reviews the human and
non-human literature to evaluate if deprivation (e.g., hunger, thirst, acute drug withdrawal) is one
such state variable that, when increased, increases impulsive choice. They find little uniformity
in the literature, either in how deprivation is imposed (e.g., hypothetical vs. real deprivations of
varying durations) or in the effect sizes these manipulations induce. They discuss the importance
of better understanding deprivation effects, and how greater uniformity might be brought to
the literature.
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The special topic paper by Gilroy et al. examines the
practice of excluding data because the shape of the discounting
function is irregular, potentially reflecting inattention, or careless
survey responding. To avoid the inadvertent exclusion of valid
data, the authors explore a Latent Class Mixed Modeling
approach, which classifies groups of obtained uncharacteristic
patterns of choice. Their application of that approach to
a publicly available dataset suggests it may prove a useful
supplement to existing methods for screening out unsystematic
discounting data. The paper by Grunevski et al. reveals that
an independent measure of ambivalence systematically increases
as participants complete survey questions that approach
the point of subjective equivalence (i.e., when the smaller-
sooner and larger-later outcomes are equally valued). Such
measures of ambivalence are potentially useful in detecting (and
excluding) data produced by careless participants, or in detecting
shifting indifference points in interventions designed to reduce
delay discounting.

Less is known about the correlation between delay discounting
and maladaptive decision-making that does not involve
substance use. The special topic paper by Weinsztok et al.
provides a pre-registered systematic review and meta-analysis
of 78 published studies evaluating delay discounting rates
among those with a behavioral (non-substance) addiction. The
clearest relation was observed among those with a gambling
disorder, whereas other “addictions” (e.g., internet/smartphone,
compulsive buying) have either not been adequately studied or
are not consistently correlated with delay discounting. Concerns
are raised about the potential for publication bias.

Gambling disorders are, unsurprisingly, also correlated with
putting greater subjective value on probabilistic outcomes.
The special topic paper by Schneider et al. replicates this
finding in an American Indian sample of gamblers and non-
gamblers. They also explore neural responses correlating with
choices made in the probability discounting task. In a rat
model of gambling, Vonder Haar et al. explore the effects of
traumatic brain injury (TBI) on risky, suboptimal choices.
They report that, despite considerable individual differences
within groups, TBI rats were less sensitive to contingencies,
less sensitive to recent outcomes, and demonstrated a
general bias toward the riskier alternatives. Clustering the
patterns of choice revealed distinct behavioral phenotypes,
with TBI rats rarely demonstrating the optimal of these
choice phenotypes.

Another critical dimension that can influence impulsivity is
the sensitivity to environmental stress. In fact, ample evidence
indicates that exposure to acute stress can modify decision
making and promote the choice of rewarding options. Building

on this idea, the article by Dong et al. shows that tail-
clip stress increases self-administration of propofol in rats

through corticotropin-releasing factor (CRF) receptor 1, a key
orchestrator of the stress response. These mechanisms, which
are likely supported by dopamine 1 receptors in the nucleus
accumbens, point to the crosstalk between CRF and mesolimbic
dopamine neurotransmission as a key process shaping the
negative influence of stress on drug seeking.

In addition to neuroeconomic alterations (such as those
observed in delay and probability discounting), impulsivity
is likely to encompass other constructs related to sensation-
seeking, boredom susceptibility, and venturesomeness (Depue
and Collins, 1999). However, operationalizing these dispositions,
and identifying valid animal models that may appropriately
capture their neurobiological foundations, has proven complex.
In their article, Festucci et al. present a novel paradigm based
on an adapted version of the suspended wire bridge protocol
originally developed for mice (Bortolato et al., 2009). Using this
behavioral task—which measures the propensity to engage in
risky actions irrespective of rewards—the authors document that
early-life exposure to adults with impaired dopamine reuptake
reduces venturesome-like behavior.

Overall, we believe that the contributions to this Special Topic
highlight the multifaceted nature of impulsivity and open to
new empirical and theoretical perspectives in the definition of
this complex behavioral construct. In closing, we would like to
dedicate this Special Topic to the memory of Stephen C. Fowler,
who passed away far too young in June 2020, and had dedicated
his entire scientific life to behavioral pharmacology. As part of
his extensive scientific legacy (attested in over 160 publications,
many of which in high-impact, peer-reviewed journals, including
Science, Cell, and PNAS), Steve developed novel quantitative
methods for the detection and analysis of motor and cognitive
responses. He provided major contributions to the research
field of impulsivity and addiction by studying the impact of
dopaminergic agonists in several animal models of risky choice
and attention deficits. He was a brilliant scientist and innovator,
and a staunch advocate of the essential value of animal models in
neuropsychopharmacological and behavioral research. We both
had the good luck to collaborate with him, and we will always
remember him as a kind, open, and generous friend. We miss
him deeply.
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“Himalayan Bridge”: A New Unstable
Suspended Bridge to Investigate
Rodents’ Venturesome Behavior
Fabiana Festucci 1,2, Clelia Buccheri 1, Anna Parvopassu 1, Maurizio Oggiano 3,

Marco Bortolato 4, Giovanni Laviola 1, Giuseppe Curcio 2 and Walter Adriani 1*
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Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy, 3 European Mind and Metabolism
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While both risk-taking and avoidant behaviors are necessary for survival, their imbalanced

expression can lead to impulse-control and anxiety disorders, respectively. In laboratory

rodents, the conflict between risk proneness and anxiety can be studied by using their

innate fear of heights. To explore this aspect in detail and investigate venturesome

behavior, here we used a “Himalayan Bridge,” a rat-adapted version of the suspended

wire bridge protocol originally developed for mice. The apparatus is composed of two

elevated scaffolds connected by bridges of different lengths and stability at 1m above

a foam rubber-covered floor. Rats were allowed to cross the bridge to reach food, and

crossings, pawslips, turnabouts, and latencies to cross were measured. Given the link

between risky behavior and adolescence, we used this apparatus to investigate the

different responses elicited by a homecage mate on the adolescent development of

risk-taking behavior. Thus, 24 wild-type (WT) subjects were divided into three different

housing groups: WT rats grown up with WT adult rats; control WT adolescent rats (grown

up with WT adolescents), which showed a proclivity to risk; and WT rats grown up with

an adult rat harboring a truncated mutation for their dopamine transporter (DAT). This

latter group exhibited risk-averse responses reminiscent of lower venturesomeness. Our

results suggest that the Himalayan Bridge may be useful to investigate risk perception

and seeking; thus, it should be included in the behavioral phenotyping of rat models of

psychiatric disorders and cognitive dysfunctions.

Keywords: dopamine, risk-taking behavior, wild-type, knock-out, adolescence, bridge length, bridge height

INTRODUCTION

The decision-making process that leads individuals to choose between different beneficial and
harmful options is at the heart of everyday life.When faced with these choices, subjects can evaluate
the likely outcome of their behavior by weighing risks and rewards, and ultimately decide whether
to engage in venturesome or conservation behavior. Abnormal risky decision-making, which is
associated with dysregulated dopamine receptor expression, is a characterizing feature of many
psychiatric disorders, such as impulse-control disorders, attention deficit hyperactivity disorder
(ADHD), schizophrenia, major depression, addiction, and Parkinson’s disease (Bechara et al., 2001;
Ernst et al., 2003; Ludewig et al., 2003; Taylor Tavares et al., 2007; Kobayakawa et al., 2008).
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Crossing a suspended bridge is considered venturesome not
only because of the risk of falling but also because of the fear
of heights. The acquisition of fear of heights is probably based
more on tactile than visual cues because the rat is myopic and
with an undifferentiated floor would be unable to make graded
depth judgments; it is also likely that depth is judged in an
“all-or-none” manner: low enough and safe vs. high enough to
evoke fear (File et al., 1998). The fact that the fear of heights is
rapidly acquired during initial exposure to the apparatus suggests
that there is a genetic, innate predisposition to develop this
fear. Conditioned fear, based on associating cues/contexts to
unescapable aversive stimuli, or instrumental punishment, based
on negative reinforcement to cancel an unwanted action with its
punishment, has been used to model phobia; however, simple
exposure to frights or innately scary situations has not yet been
used to prove useful animal models of phobia. Therefore, this
rapidly acquired fear of heights using a naturalistic test situation
may prove more useful (Klein, 1980). We presently challenge rats
with acute fear induced by the feeling of danger, and therefore
this task is not directly comparable to any conditioned-fear task.
As far as phobic behavior is concerned, however, Zelli et al. (2020)
recently developed a “sudden fright” task that proved useful to
highlight a phobic phenotype in dopamine transporter (DAT)-
heterozygous rats. This feeling of danger causes excessive and
maladaptive avoidance that contributes to the development and
maintenance of anxiety disorders and prevents the extinction of
fearful responses in humans (Craske et al., 2009; Lovibond et al.,
2009) and rodents (Muigg et al., 2008).

The elevated plus maze (EPM) is the gold standard to assess
approach–avoidance behavior in rodents, but a homologous test
in humans is lacking. For this reason, Biedermann et al. (2017)
translated the EPM test into a human paradigm, using a novel
task in mixed reality through a combination of virtual and real-
world elements. Such task allows tracking of approach–avoidance
behavior that is ecologically and ethologically valid. Firstly,
experimenters observed a high immersion in the mixed-reality
test: participants often gasped at the beginning of the procedure
and moved precariously and slow on open arms. Secondly, on a
physiological level, the EPM stimulated the sympathetic nervous
system; this has been demonstrated by a rise in skin conductance
level (SCL), heart rate, and respiration rate. On a behavioral level,
participants spent most of the time in the safe compartments of
the EPM; on a subjective level, after the experiment, participants
stated that they had felt more anxious on open vs. closed
arms and center (safe zones). Thirdly, the authors found a
high correlation between subjective and behavioral outcomes.
Lastly, the authors found significant associations of behavioral
measures with trait measures of acrophobia and sensation-
seeking (Biedermann et al., 2017).

The goal of our study was to develop a new structure to
be able to study the proclivity of rats in risk-taking. For our
purpose, we were inspired by the work by Bortolato et al. (2009).
To investigate the impact of monoamine oxidase (MAO) B
deficiency on the emotional responses elicited by environmental
cues, these authors tested MAO B knockout (KO) mice in a
set of behavioral assays capturing different aspects of anxiety-
related manifestation, including the wire-beam bridge test. Low

levels of platelet MAO activity have been strongly associated
with features of the behavioral disinhibition spectrum including
impulsivity, sensation-seeking, and risk-taking. To capture these
elements, the authors measured the animals’ proclivity to cross
an unrailed flexible bridge suspended over a 30-cm-deep gap to
reach a food reward. MAO B KO mice exhibited a significantly
shorter latency to access the bridge. In the time before accessing
the bridge, MAO B KO mice engaged in a significantly higher
sniffing frequency compared to wild-type (WT) mice. These
results provide further support that MAO B KO mice display
greater impulsivity, sensation-seeking, and risk-taking behaviors
than WT mice (Bortolato et al., 2009). The same apparatus was
used by the same group to study the combined effect of reserpine
(RES), a monoamine-depleting agent, and pramipexole (PPX),
a D2 and D3 dopamine receptor agonist, on rats’ impulsive
behavior. The rationale of this study relies on the hypothesis that
PPX would stimulate sensation-seeking in a context of dopamine
depletion. The authors found that the association of RES and PPX
does not augment the proclivity of rats to cross the bridge to
obtain a reward. This result suggests that the effect of RES and
PPX does not reflect a generalized increase in impulsivity and
venturesomeness (Orrù et al., 2020). The advantage of this task
is that the animals may feel the risk of falling solely because the
bridge bends. On the EPM, the platform is stable, and the subjects
instinctively know that their risk of falling is minimal as long
as they stay on the platform. In contrast, the present paradigm
imposes a perception of current (rather than potential) danger,
which requires the enactment of coping strategies.

On a neurobiological level, several studies tried to identify
the brain regions responsible for the decision-making behavior.
Salamone et al. (1994) found that dopamine depletion in the
nucleus accumbens biased rats toward making less effortful
choices in a T-maze cost–benefit procedure. Walton et al. (2002)
later showed that relatively large lesions of the medial pre-frontal
cortex in rats also reduced the likelihood of effortful choices.
This same group also demonstrated that relatively small lesions of
the anterior cingulate cortex decreased effortful choices, whereas
lesions to the prelimbic/infralimbic cortex and orbitofrontal
cortex did not (Walton et al., 2005). Finally, Floresco and
Ghods-Sharifi (2007) showed that the amygdala may also serve
as a locus of effort-based decision-making in the brain, since
bilateral inactivation of the basolateral amygdala concurrent
with inactivation of the contralateral anterior cingulate cortex
decreases effortful behavior driven by a food reward. All brain
regions currently implicated in effort-based decision-making
utilize dopamine released from neurons in the ventral tegmental
area as a neurotransmitter: this observation suggests a central role
for dopamine in effort-based decision-making. Despite this, the
specific dopamine receptor subtypes required for such responses
have not been identified (Bardgett et al., 2009).

The DAT is involved in the uptake of dopamine released
into the extracellular space; deficiency of DAT function can
lead to a hyperdopaminergic phenotype, altering gratification,
cognitive, emotional, and motor functions (Salatino-Oliveira
et al., 2018). In this context, a new rat model has been developed.
In these animals, the gene encoding DAT has been disrupted by
using zinc finger nuclease technology: bearing a truncated DAT

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 April 2021 | Volume 15 | Article 6370748

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Festucci et al. Himalayan Bridge: Rodents’ Venturesome Behavior

(DAT-trunk) protein, KO (DAT-KO) rats develop normally but
weigh less than heterozygous (HET) and WT rats. DAT-KO rats
display elevated locomotor activity and restless environmental
exploration associated with a transient anxiety profile, as well as
a pronounced stereotypy and compulsive-like behavior (Adinolfi
et al., 2019).

In this experiment, a suspended bridge (named “Himalayan”
to underscore its similarity to the rope bridges extending over
canyons and valleys across Nepal) was exploited to assess the
potential difference in novelty-seeking and venturesomeness
using a rat model for deviant adolescent trajectories. This
was achieved by housing normal WT adolescent rats with
either WT adult rats or with DAT-trunk adult rats. These
housing arrangements were intended to represent a continuum
of adolescent rearing and development ranging from “normal”
(adolescent rats reared with adolescent peer rats) and “slightly
abnormal” (adolescent rats housed with adult WT rats) to
“highly abnormal” (adolescent rats reared with behaviorally
atypical adult-DAT-trunk rats) (see Parvopassu et al., 2021).
The goal of this study was to investigate how the developing
behavior of adolescent WT rats was influenced by the DAT-
trunk adult’s actions after a period. During adolescence, rats
develop behavioral skills through social interaction and play with
conspecifics. Given the restricted behavioral profile expressed
by DAT-trunk rats, consisting of hyperactivity and stereotypy
(Cinque et al., 2018), we hypothesized that growing WT rats
would have no way to develop behavioral skills due to a
narrowed and altered interaction. However, since DAT-trunk
cagemates were also adult, there was the need for a third
“intermediate” group, which was housed with an adult but of
a WT genotype. Adult WT rats express a normal behavioral
repertoire but are however less prone to play with adolescents,
whose development may thus take a somewhat altered trajectory.
In both cases, such poor social interaction might interfere
with the proneness to express, later, appropriate coping skills
during a challenge. Influence on them was recently shown to
yield a depressive and compulsive phenotype (Parvopassu et al.,
2021).

In this way, we were able to assess whether companion
affects the risk-taking proclivity, regardless of the genotype.
Studies conducted in humans and other mammalian species
have reported that adolescents often exhibit more risk-taking
behavior than adults (Doremus-Fitzwater et al., 2010; Sturman
and Moghaddam, 2011). Such differences are likely driven by
neurobiological and hormonal changes that affect cognition
and motivation (Doremus-Fitzwater et al., 2009). It has
been suggested that these typical adolescent alterations are
evolutionarily adaptive in that they cause animals to leave
the nest, to mate, acquire resources (Steinberg and Belsky,
1996; Spear, 2010), and, ultimately, facilitate the transition
from juvenile period to adulthood (Gore-Langton et al., 2020).
It has been postulated that an imbalance between the early-
maturing reward and later-maturing cognitive control systems
may lead to the elevated impulsive and risk-taking behaviors
of adolescents (Ernst et al., 2006; Doremus-Fitzwater et al.,
2010; Sturman and Moghaddam, 2011). For these reasons, it
is our opinion that WT adolescent rats grown up with WT

adolescent rats will be more likely to take the risk of falling to get
the food.

The apparatus consisted of an arrival point and a departure
point linked by metal bridges of different lengths. This structure
was placed 1m above the floor, which was covered with foam
rubber to avoid damage to subjects in case of a fall. Subjects had
to cross the bridge to reach the arrival point where a food reward
was available.

MATERIALS AND METHODS

Subjects
The generation of Wistar-Han DAT-KO rats was previously
described elsewhere (Leo et al., 2018). The colony wasmaintained
in a heterozygous-heterozygous breeding fashion; these animals
were intercrossed for >10 generations at Istituto Italiano di
Tecnologia (ITT, Genoa, Italy). Some progenitors were shipped to
Istituto Superiore di Sanità (ISS, Rome, Italy), where male DAT-
KO rats (and their DAT-WT siblings) were bred with outbred
Wistar-Han WT females (Charles River, Italy). As such, we
obtained a G0 of founders (namely, heterozygous and WT G0
subjects, respectively). From that step onward, two parallel lines
were maintained with a heterozygous-heterozygous vs. a WT-
WT breeding fashion. Present subjects are G4 of our ISS colony.
All rats were born by “typical” breeding. In particular, WT rats
were offspring by WTmothers bred with WT fathers, while HET
rats were offspring by HET mothers bred with HET fathers.
Animals were maintained under a 12-h reverse dark–light cycle
(lights off at 7:00 a.m.) in a temperature- and humidity-controlled
environment (T 21± 1◦C, relative humidity 60± 10%) with food
(ALTROMIN-R, Rieper SpA, Vandoies, Italy) and water provided
ad libitum. All test procedures were performed during the dark
phase of the cycle.

The experimental group consisted of 24 subjects (eight
subjects per group): for the cagemates, 16 rats were male adults,
eight rats were male adolescents (respectively born in February
2019 and inMarch 2019, all weaned at postnatal day 24), and they
all weighed around 300–400 g at the beginning of the habituation
session. Subjects were at least 3–4 months old at the beginning
and no more than 4–5 months old at the end of the procedure.

Subjects were housed in pairs in Makrolon cages. The first
group consisted of eight WT rats grown up with truncated-DAT
rats (DATtrunk adult companion); the second group consisted of
eight WT rats grown up with WT rats (WT adult companion);
the third group consisted of eight WT adolescent rats grown up
with WT adolescent rats (WT peer companion).

Apparatus and Procedure
Our experiment aimed to observe the behavior differences ofWT
rats grown in different conditions and faced with a suspended-
bridge task.

The apparatus consisted of two plastic boxes (34× 24× 25 cm
each) with black floor and sidewalls, one of which was the starting
point (A) and the other one, containing pieces of food pellet,
was the endpoint (B), connected by a steel bridge that had a
5-cm width.
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FIGURE 1 | The apparatus consisted of two plastic boxes (34 × 24 × 25 cm each leaning on the long side), one of which was at the starting point (A) and the other

at the end point (B, containing pieces of food pellet), connected by a steel wire-mesh bridge that had a 5-cm width. Each box was placed on a wooden scaffold 1m

above the ground, and the room floor was covered with foam rubber to avoid damage to subjects in the event of a fall. The distance between the boxes depended on

the length of the bridge used in specific phases of the procedure: first, 33 cm long, with a 3.75-cm difference in level (midway bending); second, 66 cm long, with a

7.5-cm difference in level; third, 99 cm long, with a 15-cm difference in level. Lastly, the 99-cm bridge was made unstable by means of short chains suspending it to

the end scaffold; eventually, we added a “gap” between the bridge and the end scaffold, requiring a little jump as the last step.

Each box was placed on a wooden scaffold 1m above the
ground, and the room floor was covered with foam rubber to
avoid damage to subjects in the event of a fall. None of the
subjects ever fell. The distance between the boxes depended on
the length of the bridge used in specific phases of the procedure
(Figure 1).

To build the bridges, we used a wire-mesh metallic grid,
cutting some of the internal links, so the wire-mesh became
composed of rectangles (5 × 3.5 cm each). We used three stable
bridges with different lengths: first, 33 cm long, with a 3.75-cm
difference in level due to bending; second, 66 cm long, with a 7.5-
cm difference in level; third, 99 cm long, with a 15-cm difference
in level. Lastly, we made the 99-cm bridge unstable by means of
short suspending chains, so that it oscillated under the animal’s
weight; eventually, we added a “gap” between the bridge and the
endpoint to investigate the subjects’ last “step” behavior in that
particular situation. Each subject performed the task at least once
on each bridge.

The procedure was conducted 3 days per week, for 4 weeks,
on Tuesday, Wednesday, and Thursday. Each rat performed
one trial per day. Animals were food-deprived at homecage

on Monday morning and food was available ad libitum on
Thursday evening. From Monday until Thursday, rats could
eat only by reaching end box, to increase motivation for food.
Initially, subjects underwent 2 days of habituation: they had
a 25-cm steel plate to cross from “A” to “B.” During the 1st
week, subjects performed on the 33-cm bridge; during the 2nd
week, subjects performed on the 66-cm bridge; during the 3rd
week, subjects performed on the 99-cm stable bridge; during
the 4th week, subjects performed on the 99-cm unstable bridge.
In the latter case, during the 2nd day of exposure, we added
a space between the bridge and the arrival point to increase
the subjects’ perception of danger. Moreover, in this way, the
bridge swung more during the last “step.” See Figure 2 for
the timeline.

For each trial, subjects were placed in box “A” and remained in
the apparatus for a total of 5min. During the trials, observations
considered the complete crossings of the bridge (crossings), the
slips during the crossing (pawslips), when the subject returned
to the starting point without completing the initiated crossing
(turnabout), the time elapsed between the introduction of the
subject into the apparatus and the first crossing (latency).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 63707410

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Festucci et al. Himalayan Bridge: Rodents’ Venturesome Behavior

FIGURE 2 | The procedure was conducted 3 days per week for 4 weeks on Tuesday, Wednesday, and Thursday. Animals were food-deprived at homecage on

Monday morning, and food was available ad libitum on Thursday evening. Initially, subjects underwent 2 days of habituation. They had a 25-cm steel plate to cross

from “A” to “B.” During the 1st week, subjects performed on the 33-cm bridge. During the 2nd week, subjects performed on the 66-cm bridge. During the 3rd week,

subjects performed on the 99-cm stable bridge. During the 4th week, subjects performed on the 99-cm unstable bridge. In the latter case, during the 2nd day of

exposure, we added a space between the bridge and the arrival point to increase the subjects’ perception of danger. Moreover, in this way, the bridge swung more

during the last “step”.

The behaviors were scored by a blind observer. The observer
scored every behavior (see Tables 1–3 for the complete data),
such as the number of crossings, pawslips, and turnabout,
also tracking their times with a stopwatch (i.e., latencies for
the crossings).

Statistical Analysis
We ran three different analyses to investigate three
different conditions.

First, we investigated the subjects’ performances (crossings,
pawslips, turnabouts, and latencies) in the three different
“distance” conditions (33-, 66-, 99-cm stable bridges) using a
repeated-measure ANOVAwith a 3× 3× 2 design: “companion”
(three levels: DATtrunk companion, WT adult companion, WT
peer companion) was a between-subjects factor; all the factors
were within-subjects: “bridge” (three levels: 33 vs. 66 vs. 99 cm),
“day” (two levels: day 1 vs. day 2).

Then, we investigated the subjects’ performances (crossings,
pawslips, turnabouts, and latencies) in the two different
“stability” conditions (during the 1st day on the 99-cm stable
bridge and during the 1st day on the 99-cm unstable bridge) using
a repeated-measure ANOVA with a 3 × 2 design: “companion”
(three levels: DATtrunk companion, WT adult companion, WT
peer companion) was a between-subjects factor; the within-
subjects factor was “stability” (two levels: stable vs. unstable).

Eventually, we investigated the subjects’ performances
(crossings, pawslips, turnabouts, and latencies) in the “step”
condition (during the 1st day vs. during the 2nd day on the
99-cm unstable bridge) using a repeated-measure ANOVA with
a 3 × 2 design: “companion” (three levels: DATtrunk companion,
WT adult companion, WT peer companion) was a between-
subjects factor; the within-subjects factor was “step” (two levels:
no-step vs. step).

A p-value < 0.05 was considered significant. The range
between 0.05 < p < 0.10 was considered a significant trend.
Tukey honestly significant difference (HSD) post-hoc test was
then performed.

Ethical Note
All experimental procedures have been approved by the ISS
animal welfare survey board on behalf of the Italian Ministry
of Health (formal license 937/2018-PR and 1008/2020-PR for

TABLE 1 | Mean (±SEM) number of the performances on the different bridges in

Group 1 (WT rats grown up with DATtrunk rats).

Bridge Crossings Pawslips Turnabouts Latencies (s)

33 cm, stable 4.12 ± 5.51 0.13 ± 0.35 0.38 ± 0.74 106.20 ± 47.12

66 cm, stable 3.25 ± 3.15 0.00 ± 0.00 0.13 ± 0.35 36.50 ± 29.78

99 cm, stable 2.37 ± 2.20 0.00 ± 0.00 0.00 ± 0.00 58.25 ± 44.16

99 cm, unstable 0.78 ± 0.77 0.13 ± 0.35 1.25 ± 1.28 10.00 ± 8.48

99 cm, unstable w/ gap 0.38 ± 0.74 0.50 ± 0.75 1.25 ± 1.28 11.00 ± 8.48

TABLE 2 | Mean (±SEM) number of the performances on the different bridges in

Group 2 (WT rats grown up with WT rats).

Bridge Crossings Pawslips Turnabouts Latencies (s)

33 cm, stable 4.50 ± 3.07 0.38 ± 0.35 0.38 ± 0.74 97.78 ± 44.89

66 cm, stable 3.50 ± 3.33 0.00 ± 0.00 0.62 ± 0.91 40.08 ± 28.02

99 cm, stable 3.13 ± 2.29 0.13 ± 0.35 0.13 ± 0.35 74.33 ± 36.89

99 cm, unstable 1.25 ± 0.88 0.38 ± 0.51 0.88 ± 0.64 39.00 ± 23.70

99 cm, unstable w/ gap 0.75 ± 0.88 0.38 ± 0.51 1.50 ± 1.92 144.75 ± 80.78

TABLE 3 | Mean (±SEM) number of the performances on the different bridges in

Group 3 (WT adolescent rats grown up with WT adolescent rats).

Bridge Crossings Pawslips Turnabouts Latencies (s)

33 cm, stable 4.50 ± 3.16 0.13 ± 0.35 0.50 ± 0.75 113.42 ± 56.27

66 cm, stable 4.38 ± 3.24 0.00 ± 0.00 0.63 ± 0.51 31.35 ± 18.12

99 cm, stable 4.13 ± 3.60 0.13 ± 0.35 0.13 ± 0.35 63.85 ± 56.30

99 cm, unstable 1.62 ± 1.30 0.00 ± 0.00 0.63 ± 0.74 32.00 ± 55.03

99 cm, unstable w/ gap 1.38 ± 0.91 0.75 ± 0.88 1.38 ± 0.91 53.67 ± 39.64

project D9997.110, delivered to W. Adriani). Procedures were
carried out in close agreement with the directive of the
European Community Council (2010/63/EEC) and with Italian
law guidelines. All efforts have been made to minimize the
suffering of the animals and to use as few animals as possible,
according to the 3Rs principle.
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FIGURE 3 | Wild-type (WT) rats grown up with adult WT rats (white) (n = 8) slip significantly more (*p < 0.05) than WT adolescent rats grown up with WT adolescent

rats (gray) (n = 8) when they faced up both the 99-cm stable bridge and the 99-cm unstable bridge.

RESULTS

Stable Bridges Differing for Distance
For “crossings” and “pawslips,” the ANOVA does not show
any significant effects. For “turnabout,” a significant trend was
presented (p < 0.08; F2,42 = 2.777) for “bridge” due to increasing
lengths. Pairwise comparisons show that subjects returned to the
starting point significantly more (p < 0.05) when they faced
the 66-cm bridge than the 99-cm one. The ANOVA shows a
significant effect for the “day” (p < 0.001; F1,21 = 21.295).
Subjects returned to the starting point significantly more during
each 1st day of the task weeks than during the second one.
The ANOVA shows a significant interaction for “bridge ∗ day”
(p < 0.05; F2,42 = 3.500). The ANOVA does not show any
between-subjects significant effect.

For “latency,” the ANOVA shows a significant effect (p <

0.001; F2,30 = 13.689) for “bridge” due to increasing lengths.
Pairwise comparisons show that subjects cross the 66-cm bridge
significantly earlier (p < 0.001) than the 33-cm one. Moreover,
pairwise comparisons show significant trends for the 99-cm
bridge. Indeed, subjects cross the 99-cm bridge earlier than the
33-cm one (p < 0.09) but later than the 66-cm bridge (p <

0.09). The ANOVA shows a significant effect for the “day” (p
< 0.001; F1,15 = 41,934). During each 2nd day, subjects cross
the bridges significantly earlier than during each 1st day. Finally,
the ANOVA shows an interaction significant effect for “bridge ∗

day” (p < 0.05; F2,30 = 4.859). The ANOVA does not show any
between-subjects significant effect.

Longest Bridges Differing for Stability
For “crossings,” the ANOVA shows a significant “stability” effect
(p < 0.05; F1,21 = 5.402). Subjects cross significantly more the
stable bridge than the unstable one. The ANOVA does not show
any between-subjects significant effect.

For “pawslips,” the ANOVA does not show a within-subjects
significant effect, but it shows a between-subjects significant effect
(p<0.05; F2,21 = 3.957). Tukey HSD post-hoc test shows thatWT
with adult companion rats slip significantly more (p < 0.05) than
WT peer companion rats which nearly never slip at all (Figure 3).

For “turnabout,” the ANOVA shows a significant “stability”
effect (p< 0.001; F2,21 = 18.485). Subjects returned to the starting
point significantly more when they faced the unstable bridge than
the stable one. The ANOVA does not show any between-subjects
significant effect.

For “latency,” the ANOVA shows a significant “stability” effect
(p < 0.05; F1,14 = 6.920). Indeed, subjects cross the unstable
bridge significantly earlier than the stable one. The ANOVA does
not show any between-subjects significant effect.

Unstable Bridges Differing for the Last
Step
For “crossings,” a significant trend was presented for “step” (p
< 0.07; F1,21 = 3.733). Subjects cross the bridge without the
gap more than the bridge with the gap (with need of a last
step). Moreover, a significant trend was presented for a between-
subjects effect (companion, p < 0.06; F2,21 = 3.111). Tukey HSD
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FIGURE 4 | Wild-type (WT) adolescent rats grown up with WT adolescent rats (gray) (n = 8) cross more (*p < 0.06) than WT rats grown up with DATtrunk rats (black) (n

= 8) when they faced up both the 99-cm unstable bridge without the “step” and the 99-cm unstable bridge with the “step”.

post-hoc test shows that control WT peer companion rats cross
more than WT with DATtrunk companion rats do (Figure 4).
More than half of the latter rats did not cross at all, yielding
overall to an average below one.

For “pawslips,” a significant trend was presented for “step” (p
< 0.06; F1,21 = 4.079). Subjects slip more when they face the
bridge with the step than the bridge without it. The ANOVA does
not show any between-subjects significant effect.

For “turnabout,” a significant trend was presented (p < 0.09;
F1,21 = 3.172). Subjects returned to the starting point more
often when they faced the bridge with the step than the bridge
without it. The ANOVA does not show any between-subjects
significant effect.

For “latency,” the ANOVA shows a significant effect for “step”
(p< 0.05; F1,9 = 9.406). Subjects cross the bridge without the gap
significantly earlier than the bridge with the gap (with need of a
last step). Moreover, the ANOVA shows a significant interaction
for “step ∗ companion” (p < 0.05; F1,9 = 5.720). Indeed, all
groups crossed the bridge without the “step” with a lower latency.

DISCUSSION

In this study, we used an adapted protocol of a task
previously developed in mice (Bortolato et al., 2009) to capture
venturesomeness-related behaviors. Bridges of various kinds
allowed rats to reach a food reward by making a choice: either
take risks of falling in order to reach the food or waive the food

and stay safe. Specifically, we explored the phenotypic differences
of WT rats spending adolescence in different circumstances to
understand if the companion of a diverse nature could influence
the rats’ risk-taking behavior.

We can affirm that all the subjects have shown rapid
habituation to the apparatus, since they crossed both the 66
and the 99-cm bridges with shorter latency compared to the 33-
cm one. Furthermore, due to such rapid habituation, subjects
crossed the different bridges with lower latency on the 2nd
day of exposure than on the first. Finally, they noticed the
different bridges’ length since they crossed the 99-cm bridge
with a higher latency than the 66-cm one. Although they have
become accustomed to the precarious situation, they hesitated to
immediately cross the 99-cm bridge.

As for “stability” of the longer bridge, subjects crossed
the stable bridge more times than the unstable one perhaps
due to the oscillation of the latter. On this occasion, WT
with adult companion rats slipped more often than WT peer
companion and WT with DATtrunk companion rats. A probable
interpretation of this finding is that the latter was more scared
and crossed more quickly, or did not cross at all; while the
former took their time and crossed more calmly, suggesting
some problems with motor coordination. In general, subjects
crossed the unstable bridge with lower latency than the stable
one, denoting again a quick habituation. However, they went
back more often while crossing the unstable bridge probably
because, at first, they did not expect it to swing. The fact that the
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unstable bridge was crossed with lower latency seems strange, but
a possible explanation is that, as soon as they perceived it to swing
and felt in danger, rats hurried up to complete the crossing, thus
yielding overall to a lower latency.

Finally, all subjects crossed the bridge without the “gap” more
often than the bridge with the gap and need of a last “step”
probably because of the increased swing of the latter. Besides,
subjects crossed the bridge without the “gap” in less time. When
they were preparing to make the first step by placing the two
forepaws on the bridge, they probably perceived the increased
oscillation compared to the day just before, and this delayed their
stepping and/or caused a turnabout. This gap-induced increased
oscillation also explains the greater number of pawslips observed.
Turnabouts are also particularly numerous on the bridge with
the “step.”

WT with DATtrunk companion rats immediately showed
a restless environmental exploration. Compared to the other
groups, the WT with DATtrunk companion rats made fewer
crossings on average, regardless of the length of the bridge.
Moreover, even if they crossed the bridge, after eating some
food pellets, they rarely went back through the bridge to the
starting point, but they spent more time exploring the endpoint
box. Avoiding the bridge, they displayed a risk-averse and more
anxious behavior compared to both WT adult companion rats
and control WT peer companion rats. A “restless exploration”
is a typical feature of KO rats (Adinolfi et al., 2019); therefore,
we can say that the observing of truncated-DAT rats by growing
WT rats influenced the WT rats’ developing phenotype. Besides,
controlWT peer companion rats crossed more than other groups
on average. Particularly when they faced the unstable bridge,
WT peer companion rats crossed significantly more than WT
with DATtrunk companion rats did, confirming the link between
normal adolescence and enhanced risk-taking behavior (Gore-
Langton et al., 2020).

Given the results, we can state that different types of
companions influenced the development of WT rats’ risk-
taking behavior. WT peer companion rats showed a risk-taking
behavior proclivity, while the WT with DATtrunk companion
rats seemed to feel unsafe, showing a continuous environmental
exploration. Furthermore, it is interesting to highlight that WT
peer companion rats continually crossed back and forth from the
start point to endpoint and vice versa over and over, although
the food reward was only in the endpoint, while the WT with
DATtrunk companion rats often did not cross at all, and rarely
crossed back again to return to the start point—they preferred to
stay at the end point to eat and greatly explore.

In our opinion, these apparatus and procedure could be useful
to investigate risk-taking behavior. Indeed, to cross the bridge,
each subject has to take the risk of falling because of a sudden

bending of the bridge and cope with the feeling in danger for
this unavoidable situation. In this context, such procedure can
be combined with other tests to create a statistically valid battery
of tests to study animal behavior, perception, and cognitive
functions. As for limitations, the apparatus can be cumbersome,
and the procedure can be dangerous to the animals. The
experimenters should be careful in the choice of appropriate floor
covering to avoid harm for the subject in case of fall.

In conclusion, we used this paradigm to investigate the risky
behavior of rats and the influence that diverse companions at
adolescence could have on it. We believe that the use of our
“Himalayan Bridge” could be extended to model other behavioral
anomalies like those observed in some human psychiatric
disorders and cognitive dysfunctions.
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Steep delay discounting, or a greater preference for smaller-immediate rewards over
larger-delayed rewards, is a common phenomenon across a range of substance
use and psychiatric disorders. Non-substance behavioral addictions (e.g., gambling
disorder, internet gaming disorder, food addiction) are of increasing interest in
delay discounting research. Individual studies have reported steeper discounting in
people exhibiting various behavioral addictions compared to controls or significant
correlations between discounting and behavioral addiction scales; however, not all
studies have found significant effects. To synthesize the published research in this area
and identify priorities for future research, we conducted a pre-registered systematic
review and meta-analysis (following PRISMA guidelines) of delay discounting studies
across a range of behavioral addiction categories. The final sample included 78
studies, yielding 87 effect sizes for the meta-analysis. For studies with categorical
designs, we found statistically significant, medium-to-large effect sizes for gambling
disorder (Cohen’s d = 0.82) and IGD (d = 0.89), although the IGD effect size was
disproportionately influenced by a single study (adjusted d = 0.53 after removal).
Categorical internet/smartphone studies were non-significant (d = 0.16, p = 0.06).
Aggregate correlations in dimensional studies were statistically significant, but generally
small magnitude for gambling (r = 0.22), internet/smartphone (r = 0.13) and food
addiction (r = 0.12). Heterogeneity statistics suggested substantial variability across
studies, and publication bias indices indicated moderate impact of unpublished or
small sample studies. These findings generally suggest that some behavioral addictions
are associated with steeper discounting, with the most robust evidence for gambling
disorder. Importantly, this review also highlighted several categories with notably smaller
effect sizes or categories with too few studies to be included (e.g., compulsive buying,
exercise addiction). Further research on delay discounting in behavioral addictions is
warranted, particularly for categories with relatively few studies.
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INTRODUCTION

Delay discounting refers to the tendency to devalue rewards as
a function of the delay to their receipt (Rachlin and Green,
1972; Madden and Bickel, 2010; Odum, 2011). In behavioral
economics, delay discounting is an index used to conceptualize
the overvaluation of smaller, immediate rewards over larger,
delayed rewards (Bickel et al., 2014), Delay discounting is
generally assessed by providing an individual with a series of
choices between a small amount of a commodity (e.g., money,
cigarettes, food) which is available immediately vs. a larger
amount of the given commodity only obtainable after a certain
delay (e.g., “would you prefer $40 today or $200 in 6 months?”).
Researchers systematically vary either the commodity amount or
the magnitude of the immediate and delayed rewards (e.g., $40
today or $200 in 6 months, $75 today or $200 in 6 months).
Researchers will also vary the length of the delay (e.g., 1 month,
6 months, 1 year). Varying reward amount and delay to the
larger reward across trials produces an indifference point, i.e.,
the amount at which the delayed reward has equivalent subjective
value to the immediate reward. Plotting these indifference points
across different delays generates a discounting curve with the
steepness of this curve reflecting the degree of discounting. Delay
discounting has been considered a measure of impulsivity in the
past; however, recently researchers have begun to debate whether
this is appropriate (see Strickland and Johnson, 2021, for a more
thorough analysis of this issue). While resolving this debate is
outside the scope of the current review, we will avoid use of the
term impulsive to describe steep discounting.

Delay discounting tasks (DDTs) may be administered via a
survey with a pre-established number of questions in which the
reward values and delay length varies across questions like the
monetary choice questionnaire (MCQ; Kirby et al., 1999). They
may also be adjusting intertemporal choice tasks administered on
a computer or mobile device in which the delay lengths or the
reward value automatically adjusts up or down (titrates) based
on the participant’s response to the previous choice. Still others
provide a single choice between a smaller, immediate reward and
a larger, delayed reward (i.e., “single-shot” discounting tasks). The
magnitude of the immediate and delayed rewards, the length of
the delays, the number of choices offered, and the commodity
of interest all may differ across tasks; thus, sizeable heterogeneity
exists across published delay discounting data sets.

To assess individual and group differences in delay
discounting, theoretical [k, log(k), effective delay 50] or
atheoretical (area under the curve, impulsive choice ratio)
measures may be derived from the data. The k parameter
is derived from exponential, hyperbolic, or hyperboloid
discounting functions and quantifies the degree of discounting
observed. Effective delay 50 (ED50) is the inverse measure of
k (Yoon and Higgins, 2008) and reflects the delay at which
the subjective value of the delayed reward loses 50% of its
value. Traditionally, most delay discounting curves are best fit
by hyperbolic or hyperboloid functions that can account for
preference reversals, in other words, the phenomenon observed
in which an initial preference for the smaller, immediate reward
shifts to the larger, delayed reward as the delays to both the

immediate and delayed reward are increased (Green et al.,
1994; McKerchar et al., 2009; Odum, 2011). Quantifying the
area under the curve or the proportion of choices made for
the immediate reward (impulsive choice ratio) are alternative,
atheoretical methods of assessing discounting (Myerson et al.,
2001; Mitchell et al., 2005).

Despite differences in calculating delay discounting and
deriving discounting parameters, discounting rates appear to be
elevated across a wide range of addictive disorders. Because of
the consistency of excessive delay discounting observed across a
variety of disorders and unhealthy behaviors, delay discounting
has been proposed as a trans-disease or transdiagnostic process
(e.g., Bickel et al., 2012; Amlung et al., 2019). Several reviews
and meta-analyses have synthesized this body of literature,
primarily focusing on substance use disorders (e.g., MacKillop
et al., 2011; Amlung et al., 2017) and other psychiatric and
neurodevelopmental disorders (e.g., Jackson and MacKillop,
2016; Amlung et al., 2019; Lempert et al., 2019). While there is still
ongoing debate as to whether measures of delay discounting can
be considered a transdiagnostic process (see Bailey et al., 2021,
for a recent critique), reviewing the growing body of literature on
delay discounting and non-substance behavioral addictions can
contribute to this discussion.

The “Substance-Related and Addictive Disorders” category
in the fifth edition of the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5; American Psychiatric Association,
2013) DSM-5, introduced “behavioral addictions,” with gambling
disorder recognized as the first “non-substance-related”
disorder (American Psychiatric Association, 2013). In addition
to gambling, many different behavior patterns have been
proposed as behavioral addictions [for a comprehensive
account of criteria, see Rosenberg and Feder, 2014, including,
videogaming, smartphone and internet use, food consumption,
sex, and compulsive buying (Holden, 2001)]. While initially
pleasurable, increasing priority of these behaviors over others
can lead to dysregulation, as an individual experiences negative
consequences and impaired control. The DSM-5 substance-
related disorders work group examined Internet gaming and
other non-substance-related behaviors (e.g., shopping) other
than gambling. While they found a large literature base for
internet gaming, the work group concluded that additional
research was still needed, and that research on other behaviors
was even more preliminary (Hasin et al., 2013). Other APA
working groups for addictions examined sex and eating, finding
insufficient peer-reviewed evidence to classify these behaviors
as addictive disorders (American Psychiatric Association,
2013). However, the state of the research demonstrated similar
phenomenological and neurobiological substrates between
gambling and substance use disorders, warranting the inclusion
of the new classification (Frascella et al., 2010). Currently,
gambling disorder is the only behavioral condition included
in this category in the DSM-5, although internet gaming
disorder (IGD) is now included in the ICD-11 (World Health
Organization, 2018) and listed in Section III of the DSM-5 as a
condition requiring additional study.

There is increasing concern that symptom-based models of
addictive disorders can lead to a pathologizing of common
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behaviors, thereby reducing the relevance and credibility of the
diagnosis (Kardefelt-Winther et al., 2017). Some have argued that
the lack of a theoretical framework for behavioral addictions,
such as those which exist for substance-related addictions, is
cause for concern and that research on behavioral addictions
should be guided by process-based as opposed to criteria-based
approaches (Billieux et al., 2015). However, phenomenological,
clinical, and neurobiological similarities do exist between
gambling disorder and proposed behavioral addictions. For
example, many risky behaviors such as gambling, hypersexuality,
compulsive shopping and excessive eating have been linked
to Parkinson’s disease and are related to dopamine receptor
functioning, thereby suggesting a common biological pathway
(e.g., Evans et al., 2009). Additionally, the clinical presentation
is often that of these conditions co-occurring and individuals
often seek help for these behaviors at clinics, despite no specific
diagnosis or treatment for them. For these reasons, we believe
that an improved understanding of these conditions is warranted.

While excessive use or engagement in a particular activity may
not be enough to categorize that behavior as pathological (Billieux
et al., 2015), examining these behaviors through a behavioral
economic lens may provide more insight into underlying
processes that warrant further investigation. A systematic review
of both established and proposed behavioral addictions research
is an important step toward compiling existing evidence across
these behaviors to better understand the phenomena. We
make these caveats because most categories of behavioral
addiction present in the current review are not listed in
the DSM-5; however, whether these disorders should be
considered diagnosable behavioral addictions is beyond the
scope of the review.

Delay discounting rates in gambling disorder and IGD have
been the focus of separate meta-analyses (MacKillop et al., 2011;
Amlung et al., 2017; Cheng et al., 2021; Yao et al., 2021); however,
no review has synthesized findings across all proposed behavioral
addictions. Therefore, the purpose of the current study was
to conduct a systematic review and meta-analysis of published
studies comparing delay discounting rates between individuals
with non-substance behavioral addictions and healthy controls
or studies assessing dimensional associations between delay
discounting and quantity/frequency or severity of the behavioral
addiction presented. Secondary purposes included updating and
synthesizing the novel research on gambling disorder conducted
since previous meta-analyses and comparing rates of delay
discounting across behavioral addictions. A final purpose, based
on the results of the review and meta-analysis, is identifying areas
that warrant further study.

METHODS

Literature Search and Study Selection
The current systematic review and meta-analysis was pre-
registered with PROSPERO (#CRD42021257164) and followed
the Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA; Page et al., 2021) standards. Searches of
PubMed and PsycInfo databases were conducted to identify

studies using an all-text search strategy with keywords listed
in Supplementary Table 1. Database searches were conducted
through June 25, 2021 and were not restricted by year or
journal (except for English language). The returned records were
uploaded to Covidence1 (Level 10, Melbourne, Australia), an
online software used to help streamline the systematic review
process. To be included, studies had to meet the following criteria:
(i) published in an English language peer-reviewed journal,
(ii) assessed one or more types of behavioral addiction among
human participants, (iii) included at least one measure of delay
discounting, (iv) included either a comparison of a behavioral
addiction group and a control group OR a correlation coefficient
measuring the association between delay discounting and the
behavioral addiction of interest. Because a formal diagnosis of
“behavioral addiction” does not exist for every present category,
studies were included if the authors measured engagement with
the activity using an empirically validated psychometric scale
that differentiated between non-problematic and problematic,
excessive, or pathological use or engagement. The full study
selection procedure is outlined in Figure 1.

The articles were screened for inclusion first by abstract, then
by the full text, by two independent raters (SW and MA) with
conflicts resolved by consensus rating at each stage. A total of
78 studies met inclusion criteria. The number of unique effect
sizes in each behavioral addiction category were as follows:
gambling = 53 (28 categorical, 25 dimensional), IGD = 15
(13 categorical, 2 dimensional), internet/smartphone = 16 (6
categorical, 10 dimensional), food addiction = 6 (1 categorical,
5 dimensional), and compulsive and pathological buying = 2
(1 categorical, 1 dimensional). Characteristics of included
studies are presented in Supplementary Table 2. Three studies

1www.covidence.org

FIGURE 1 | PRISMA diagram.
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(Williams, 2012; Wölfling et al., 2020; Acuff et al., 2021) included
more than one behavioral addiction category in their assessments;
effect sizes from each category were included in the meta-
analysis. Kräplin et al. (2020) examined a combined group of
non-substance-based addictions but did not differentiate between
specific categories of behavioral addictions; thus, it was omitted
from the analysis.

Data Extraction
Study characteristics, task parameters, addiction scales, and
participant demographics were coded for each study. Means,
standard deviations, and group ns were extracted for each
categorical study. If means were not reported in text but a figure
presenting these values was available, we used WebPlotDigitizer2

to estimate the mean and standard deviation from the high-
resolution figure. Standard error values were converted to
standard deviation prior to data entry. For dimensional studies,
correlation values and sample sizes were extracted. In cases
where data were not available in the published paper or
Supplementary Materials, we contacted the authors to request
data (4/5 contacted authors provided data). When reporting
AUC and indifference points, a larger value indicates shallower
discounting. The reverse is true for k, log(k), ln(k), or ICR.
Therefore, to maintain consistency across studies, the direction
of effect sizes from studies using area under the curve (AUC) or
indifference points were reversed prior to analysis. Extracted data
were checked for accuracy by two authors.

Meta-Analytic Approach
Quantitative meta-analysis was conducted in Comprehensive
Meta-Analysis Software Version 3.0 (Biostat, Englewood, NJ).
Separate meta-analyses were conducted for each design type
(categorical, dimensional) using a random-effects model. First,
we estimated the aggregate effect size collapsed across all
addiction types to examine the overall effect size for differences
in discounting between groups or correlations with behavior
addiction variables. Next, we examined each addiction category
separately and calculated between-groups heterogeneity statistics
to determine if effect sizes significantly differed across addiction
type. Only categories with 4 or more effect sizes were included
in this subgroup analysis; however, the findings of the remaining
studies are described in narrative review. Several indices of
effect size heterogeneity were calculated. Cochran’s Q reflects
the sum of squared differences between individual weighted
study effects and the overall mean. I2 captures the proportion of
variation within study effect sizes explained by heterogeneity. Of
note, Borenstein et al. (2009) emphasized that Q is less reliable
with small sample sizes while I2 is not affected by sample size.
Therefore, given the variability in number of studies per category,
both statistics were reported to be comprehensive. A “one-study-
removed” analysis quantified the impact of individual studies on
the aggregate results (Tukey, 1958). Differences in effect sizes
across different delay discounting measures were examined in
a moderator analysis. This analysis was first conducted at the
aggregate level for categorical and dimensional studies (collapsed

2https://apps.automeris.io/wpd/

across behavioral addiction type), and then repeated within each
type individually. For the latter analysis, only categories with at
least 4 effect sizes per level of the moderator were examined.
Due to low statistical power for the funnel plot indices with
small sample sizes, publication bias indices were only examined
for categories with 10 or more effect sizes (Sterne et al., 2000).
Indices included Orwin’s modified fail-safe N using a criterion
of 50% reduction in aggregate effect size (Orwin, 1983) and
examination of the funnel plots using the two-tailed Begg-
Mazumdar test (Begg and Mazumdar, 1994) and the one-tailed
Egger’s test (Egger et al., 1997). Finally, adjusted estimates of effect
size were generated using the Duval and Tweedie (2000) trim
and fill approach.

RESULTS

Complete demographic variables, task parameters, and other
relevant characteristics from the included studies are provided
in Supplementary Table 1. For those studies that did report
race or ethnicity, most of the participants identified as White
and non-Hispanic. For studies that reported gender, an average
of 36.2% of participants reported as female. While most DDTs
employed hypothetical outcomes, 9 studies provided real rewards
to participants. Aside from Buono et al. (2017), all included
studies used money as the only target commodity. The most
common delay discounting measures used were k (or a log or
natural log transformation of k) and AUC. Eleven studies utilized
less-common measures such as impulsive choice ratio (ICR),
total number of choices for the immediate reward, a discounting
factor, indifference point, or some other derived proportion of
choices of immediate and delayed rewards.

Results of the aggregate and subgroup meta-analyses for
categorical and dimensional studies are presented in Table 1 and
effect sizes by study are presented in forest plots (Figures 2, 3).
See Supplementary Table 3 for complete effect size data by
individual studies.

Categorical Studies
The aggregate meta-analysis for categorical studies included 47
effect sizes yielding an overall Cohen’s d of 0.76 (p < 0.0001),
reflecting a medium-to-large effect size difference in discounting
between the behavioral addiction groups and control groups.
Results of the one-study-removed analysis revealed that no
single study had a disproportionate impact on the aggregate
effect size. There was substantial heterogeneity in the aggregate
analysis, as indicated by both Cochran’s Q and I2 statistics
(Table 1). Gambling, IGD, and internet/smartphone categories
had sufficient effect sizes for subgroup analyses (findings of food
addiction and compulsive buying categories are described in
narrative review below). Gambling and IGD yielded comparable
aggregate effect sizes (ds = 0.82 and 0.89, respectively) that
were highly significant (ps < 0.0001; see Figure 2). However,
the one-study-removed analysis revealed that the IGD category
was markedly influenced by a single study (Raiha et al.,
2020). Removal of this study reduced the aggregate effect
size from d = 0.82 to 0.59. Both categories had statistically
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TABLE 1 | Meta-analytic results.

Category k N d or r p 95% CI OSR Q Pq I2

Categorical designs

Aggregate effect 47 5,393 0.76 <0.0001 0.58–0.93 0.70–0.78 268.27 <0.0001 82.85

Gambling 28 2,252 0.82 <0.0001 0.60–1.04 0.76–0.88 113.02 <0.0001 76.11

Internet gaming disorder 13 641 0.89 <0.0001 0.53–1.24 0.68–0.94 65.76 <0.0001 81.75

Internet smartphone 6 2,500 0.16 0.141 −0.05–0.37 0.02–0.28 10.54 0.061 52.57

Dimensional designs

Aggregate effect 40 13,441 0.19 <0.0001 0.15–0.23 0.18–0.20 198.94 <0.0001 80.40

Gambling 25 7,129 0.22 <0.0001 0.16–0.27 0.20–0.23 10.40 <0.0001 75.64

Internet smartphone 10 3,479 0.13 0.0001 0.06–0.20 0.10–0.16 10.40 0.0006 81.92

Food addiction 5 2,833 0.12 0.003 0.04–0.20 0.12–0.19 13.11 0.011 63.48

k, # of effect sizes; N, total number of unique individuals; d, Cohen’s d effect size statistic for categorical designs; r, Pearson’s correlation coefficient for dimensional
designs; p, statistical significance of effect size; OSR, range of effect sizes obtained from one-study-removed jackknife analysis; Heterogeneity statistics from the fixed
effects analysis: Q, Cochran’s Q-test of homogeneity; Pq, p-value corresponding to Cochran’s Q; I2, proportion of variability due to heterogeneity.

significant heterogeneity (see Table 1). In contrast to the
findings for gambling and IGD, the aggregate effect size for
internet/smartphone studies was small in magnitude and not
statistically significant (d = 0.16, p = 0.141).

Dimensional Designs
Before presenting the results for dimensional designs, an
important detail to consider when aggregating correlations across
studies is whether the sample was restricted to participants
meeting clinical criteria or an established cutoff (e.g., participants
diagnosed with gambling disorder or reporting a history of
gambling problems) or a non-restricted sample of participants
(i.e., a general sample of community volunteers or university
students). The latter sample type presumably represents the full
range of possible scores on the addiction scales, while the former
may be subject to restricted range on the scales. All studies
within the internet/smartphone and food addiction categories
were non-restricted/general samples; eight of the 25 gambling
studies were restricted to participants meeting clinical criteria for
pathological gambling, gambling disorder, or reporting problems
with gambling (see Supplementary Table 3).

The aggregate analysis of studies using dimensional designs
included 40 effect sizes. The overall correlation across studies
was small magnitude (r = 0.19, p < 0.0001). The one-study-
removed analysis indicated minimal influence of individual
studies on the overall effect size (r 0.18–0.20). Cochran’s Q and
I2 statistics indicated substantial heterogeneity across studies
(Table 1). Gambling, internet/smartphone, and food addiction
had sufficient effect sizes for subgroup analysis (IGD and
compulsive buying are summarized below). The effect size for
gambling studies (r = 0.22) was moderately larger than the
other two categories (r 0.12–0.13), with the caveat that all effect
sizes are considered small magnitude (see Figure 3). As with
the aggregate analysis, there was significant heterogeneity within
each category (Table 1).

Delay Discounting Measure Type
A moderator analysis was conducted to examine differences
in effect size between types of delay discounting measures.

Following a similar procedure as previous meta-analyses (e.g.,
Amlung et al., 2017), individual effect sizes were coded as
either using the MCQ or a multi-item DDT. This latter
category was considerably heterogeneous; however, there were
insufficient studies with specific types of discounting tasks
(e.g., adjusting amount vs. titration vs. experiential) to examine
these individually. Therefore, the moderator analysis considered
whether the MCQ yielded significantly different effect sizes
compared to other “non-MCQ” discounting measures. At the
aggregate level collapsing across all behavioral addiction types,
there were no significant differences between MCQ and non-
MCQ for categorical studies (MCQ d = 0.64, k = 21; non-MCQ
d = 0.85, k = 26; Q = 1.43, p = 0.233) or dimensional studies
(MCQ r = 0.19, k = 18; non-MCQ r = 0.19, k = 21; Q = 0.05,
p = 0.819). Importantly, although the Cohen’s d for categorical
studies was somewhat larger than MCQ studies, the between-
study heterogeneity statistic was non-significant. There were also
no significant differences between MCQ and non-MCQ measures
when behavioral addiction types were examined separately
(ps = 0.23–0.95). Thus, the moderator analysis provided evidence
of similar effect sizes regardless of the type of discounting
measure administered.

Publication Bias
Publication bias indices were examined for two categorical
design categories (gambling and IGD) and two dimensional
design categories (gambling and internet/smartphone). Results
are provided in Table 2. Owrin’s modified fail safe N-values for
gambling categorical and dimensional studies indicated that 30
and 26 non-significant studies (respectively) would be needed
to reduce the aggregate effect size by 50%. A smaller number
of studies would be needed for IGD categorical (k = 13)
and internet/smartphone dimensional (k = 11) to yield a
similar 50% reduction. Kendall’s tau and Egger’s intercepts were
significant for all but one category (gambling dimensional). The
trim and fill approach identified missing effect sizes for the
gambling and internet/smartphone categories (see funnel plots in
Supplementary Figure 1). After imputation, the adjusted effect
size was reduced for both categories (gambling: 0.22–0.16 and
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FIGURE 2 | Forest plots depicting effect sizes for categorical studies. Individual data points reflect effect size (Cohen’s d) and 95% confidence intervals. The
aggregate effect size generated by the random-effects model is provided at the bottom of each forest plot. Complete data is provided in Supplementary Table 3.

0.13–0.08 for internet/smartphone). Of note, the lower bound of
95% confidence intervals for the adjusted internet/smartphone
category approached 0.0, essentially indicating a non-significant
aggregate effect size.

Narrative Review of Studies Not in
Meta-Analysis
Compulsive and pathological buying was the focus of only
two included studies. Nicolai and Moshagen (2017) compared
rates of delay discounting using AUC (for which greater values
indicate a larger area, thus, less steep discounting) with severity
of pathological buying using the pathological buying scale (PBS).
The resulting correlation was −0.15, indicating that greater

delay discounting was associated with increased severity on the
PBS. Williams (2012) used a two-choice impulsivity program
(TCIP) to examine discounting between a group of healthy
controls and a group of individuals who met the proposed
DSM criteria for impulse control disorder (ICD) for compulsive
buying. Taking the sum of impulsive choices across groups,
the mean and standard deviation for the compulsive buying
group was 20.56 (13.82), and for the healthy controls group was
8.5 (9.33). Thus, individuals in the compulsive buying group
selected more immediate choices on the TCIP than individuals
in the control group.

In addition to the four dimensional food addiction studies
included in the meta-analysis (Davis et al., 2011), employed
a categorical design comparing individuals who met the Yale
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FIGURE 3 | Forest plots depicting effect sizes for dimensional studies. Individual data points reflect effect size (Pearson’s r) and 95% confidence intervals. The
aggregate effect size generated by the random-effects model is provided at the bottom of each forest plot. Complete data is provided in Supplementary Table 3.

Food Addiction Scale (YFAS) diagnostic scoring criteria for
food addiction to a group of controls. The mean and standard
deviation of indifference points for the food addiction group
was 231.7 (138.2) and for the control group was 306.5 (123.2),
indicating that individuals in the food addiction group generally
had steeper delay discounting rates than controls.

Two studies focusing on IGD employed dimensional designs.
Acuff et al. (2021) correlated delay discounting (using ICR) with
severity of responses on the Gaming Addiction Scale (GAS). The
resulting Pearson r correlation was 0.031. Bailey et al. (2013)

also correlated ICR with severity responses on a revised version
of the Problematic Video Game Play (PVP) Scale, reporting a
correlation of 0.12.

DISCUSSION

The results of this meta-analysis show that individuals across
a range of behavioral addictions exhibit similar patterns of
steeper delay discounting both compared to controls and as a
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TABLE 2 | Publication bias indices.

Category Orwin’s N Kendall’s tau Egger’s intercept Trim and fill # studies Adjusted effect (CI)

Categorical designs

Gambling 29 0.29* 4.21* 0 –

Internet gaming disorder 13 0.45* 6.28* 0 –

Dimensional designs

Gambling 26 0.27 2.73* 6 0.16 (0.10–0.22)

Internet smartphone 11 0.49* 2.16* 4 0.08 (0.01–0.15)

Orwin’s N, Orwin’s modified fail-safe N assuming a 50% reduction in effect size. *Statistical significance (p < 0.05) of Kendall’s Tau (two-tailed) and Egger’s Intercept
(one-tailed). CI, 95% confidence interval; Publication bias indices were not calculated for categories with less than 10 effect sizes (see Supplementary Table 3).

function of the severity of the behavioral addiction. We found
statistically significant results for the two aggregate analyses
and significant effects for most behavioral addictions categories.
However, several categories returned larger effect sizes than
others. The effect sizes from the analysis of categorical studies in
gambling and IGD categories were medium-to-large magnitude
(although IGD was strongly influenced by a single study),
while the effect size for internet/smartphone addiction was
smaller and not statistically significant. The effect sizes from the
analysis of continuous measures returned a somewhat different
pattern of results. Although the category-specific effect sizes
for gambling, food, and internet/smartphone addiction were
statistically significant, the aggregate correlation for gambling
was larger than for internet/smartphone or food addiction. One
possible explanation for these discrepancies is that the scales used
in the internet/smartphone addiction studies require additional
validation and perhaps are not identifying certain behavior
patterns that more well-validated scales, such as those for
gambling and IGD, can ascertain. Due to the current ubiquity of
mobile devices, additional scale validation and delay discounting
research in this area is warranted.

Gambling disorder has been a category of focus in two prior
meta-analyses (MacKillop et al., 2011; Amlung et al., 2017).
Synthesizing research on continuous associations, Amlung et al.
(2017) calculated a Pearson r effect size statistic of 0.16. In
the current meta-analysis, the overall effect size statistic of
gambling studies using dimensional designs was slightly larger
(r = 0.22). MacKillop et al. (2011) calculated effect size statistics
for studies with categorical designs. The overall effect size for
the clinical group was 0.79, and for the subclinical group was
0.41, whereas the Cohen’s d in the current meta-analysis was
0.82. The number of gambling disorder studies using categorical
designs increased from 7 total in MacKillop et al., 2011 to 28
studies in the current analysis. A smaller number of dimensional
studies were added (4 more than Amlung et al., 2017); however,
the change in total sample size was substantial, increasing from
2,940 to 7,129. It is plausible that modest increase in aggregate
effect size was due, in part, to greater precision from larger
sample sizes. In sum, the addition of updated gambling studies
results in somewhat larger effect sizes for both dimensional and
categorical designs.

The relationship between delay discounting rate and presence
of IGD has been a focus of prior meta-analyses (Cheng et al.,
2021; Yao et al., 2021). Cheng et al. (2021) focused only on

categorical designs. While the present review was originally
designed to examine dimensional designs, there were not enough
to be included in the meta-analysis. Cheng et al. (2021) calculated
an overall effect size statistic for studies that used k-values to
analyze discounting rate (k) of Hedges’ g = 0.76, and for studies
that used AUC of g = 1.44. Similarly, Yao et al. (2021) included
categorical designs but also focused on a range of decision-
making deficits beyond discounting. The effect size statistic (g)
for delay discounting was 0.58 while d = 0.68 in our analysis after
removal of the highly influential result from Raiha et al., 2020.
Both results indicate steeper discounting in participants with
IGD. Updating past meta-analyses with sufficient new research
advances our understanding of the relationship between delay
discounting and the present disorders. Indeed, we found that
recent research has further strengthened the relationship between
gambling disorder and IGD and steep delay discounting.

Food addiction and obesity, while occasionally conflated, are
in fact distinctly separate constructs (Gordon et al., 2018). Thus,
the results from the food addiction category should not be
compared to the results of the meta-analysis on delay discounting
among individuals with obesity conducted by Amlung et al.
(2016). Indeed, apart from Davis et al. (2011) in which the
inclusion criteria for participation was a body mass index (BMI)
in the obese range, the average BMI in most studies in the food
addiction category was in the normal weight range. While a
positive association was found across most studies between food
addiction severity and BMI, this was not the focus of the present
review and future research examining the relationship between
BMI, food addiction, and delay discounting is warranted.

The paucity of compulsive or pathological buying studies,
food addiction studies using categorical designs, and IGD
studies using dimensional designs prevented us from calculating
aggregate effect sizes. While the narrative summary of these
studies generally suggests steeper discounting associated with
presence of these behavioral addictions, we are unable to evaluate
the reliability of these findings or directly compare the results to
the other categories included in the meta-analysis. Replications
and extensions of the current research in these areas is integral.
Additionally, it is worth highlighting that in the search for studies
to include in the current systematic review and meta-analysis,
several categories proposed as behavioral addictions (e.g., sex,
love, work, indoor tanning, kleptomania) returned no results (see
Supplementary Table 1). These too are areas of importance for
future research.
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The current review and meta-analysis raises several additional
questions for future research. First, because not all categories
included in the current review are officially recognized as
behavioral addictions, whether some of these categories are
over-pathologized should be a topic of continued research and
discourse (Billieux et al., 2015). By definition, “impulsivity”
inherently pathologizes behavior patterns that may not
necessarily be maladaptive. Such a concern can be raised
for all behaviors labeled “impulsive.” A functional and theoretical
approach to describing behavior patterns often characterized
as facets of impulsivity—specifically, steep delay discounting—
is integral to our understanding of the importance of and
limitations to this line of research.

The considerable heterogeneity across studies within each
category limits the generality of these findings. While the use of
a random-effects model addresses this limitation to some extent,
the differences in the discounting tasks and behavioral addiction
scales used may have impacted the results. Additionally, while we
did not include groups of subjects for whom there was an explicit
comorbid substance use or other psychiatric disorder, we did not
exclude all studies in which there were possible comorbidities
with behavioral addictions. Many behavioral addictions likely
include co-morbidity with substance use disorders which may
be difficult or impossible to disentangle based on participant
descriptions, thus, these comorbidities may have confounded the
results in unknown ways.

We could not always identify the specific procedures of the
DDTs. However, the results of the moderator analysis indicated
similar effect sizes in studies using the MCQ compared to non-
MCQ measures. This is consistent with prior meta-analyses
reporting no significant differences between MCQ and non-MCQ
multi-item tasks (e.g., MacKillop et al., 2011; Amlung et al.,
2017). Providing details of delay discounting methods in future
studies may help in determining whether more specific types
of discounting task used may function as a moderator between
discounting rates and the independent variable of interest.
Though the exact task procedures in the included studies were
not always clear, it is worth discussing the potential implications
of the use of monetary rewards as the only target commodity for
all included studies except one (Buono et al., 2017). Individuals
with substance use disorder tend to discount their substance of
choice (e.g., cigarettes, crack/cocaine, cannabis, alcohol) more
steeply than monetary rewards (e.g., Bickel et al., 1999; Coffey
et al., 2003; Johnson et al., 2010; Moody et al., 2017). Buono
et al. (2017) examined discounting of monetary rewards and
video game time among high-, medium-, and low-frequency
video game players. Results indicated that AUC was lower (i.e.,
steeper discounting) across all groups when the commodity was
video game play compared to money. Although these findings are
from a single study, they do underscore the need for additional
investigation of commodity effects in behavioral addictions.

To our knowledge, this is the first systematic review and
meta-analysis comparing rates of delay discounting across
multiple categories of behavioral addictions. In sum, the
results revealed that there is generally a relationship between
steepness of delay discounting rates and severity of behavioral
addiction (except for internet/smartphone addiction); however,

the magnitude of these relationships varies across categories.
Several categories included in the review are not listed as
addictions in the DSM-5 (food addiction, internet/smartphone
addiction, compulsive/pathological buying) and thus warrant
caution when interpreting results. Additionally, some scales used
to assess the presence and severity of a given behavioral addiction
are not as well-validated as others, which may have contributed
to the smaller effect sizes in the internet/smartphone category.
Importantly, the present review highlights the need for additional
research to deepen our understanding of the relationship between
discounting and behavioral addiction.
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Propofol addiction has been detected in humans and rats, which may be facilitated
by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor
(CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate
target for the interaction between stress and drug abuse, but its role on propofol
addiction remains unknown. Tail clip stressful stimulation was performed in rats to test
the stress on the establishment of the propofol self-administration behavioral model.
Thereafter, the rats were pretreated before the testing session at the bilateral lateral
ventricle with one of the doses of antalarmin (CRF1R antagonist, 100–500 ng/site),
antisauvagine 30 (CRF2R antagonist, 100–500 ng/site), and RU486 (glucocorticoid
receptor antagonist, 100–500 ng/site) or vehicle. The dopamine D1 receptor (D1R)
in the nucleus accumbens (NAc) was detected to explore the underlying molecular
mechanism. The sucrose self-administration establishment and maintenance, and
locomotor activities were also examined to determine the specificity. We found that the
establishment of propofol self-administration was promoted in the tail clip treated group
(the stress group), which was inhibited by antalarmin at the dose of 100–500 ng/site
but was not by antisauvagine 30 or RU486. Accordingly, the expression of D1R in the
NAc was attenuated by antalarmin, dose-dependently. Moreover, pretreatments fail to
change sucrose self-administration behavior or locomotor activities. This study supports
the role of CRF1R in the brain in mediating the central reward processing through D1R
in the NAc and provided a possibility that CRF1R antagonist may be a new therapeutic
approach for the treatment of propofol addiction.
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INTRODUCTION

Propofol is an intravenous anesthetic mainly used for anesthesia
induction and sedation in more than 50 countries. However,
with the sedative and relaxing effect of propofol, its recreational
abuse and dependence have risen (Earley and Finver, 2013).
The abuse and misuse of propofol have recently become
a social problem in many countries, and anesthesiologists
are the main potential abusers, who usually suffered great
pressure from daily clinical work (Wischmeyer et al., 2007;
Fry et al., 2015; Park et al., 2015). We have demonstrated
propofol as a substance for addiction in animals with the self-
administration model, which was mediated by dopamine D1
receptor (D1R) in the nucleus accumbens (NAc) (Lian et al.,
2013). We also found that propofol self-administration behavior
was prompted by glucocorticoid—a stress hormone released
from the hypothalamic-pituitary-adrenal (HPA) axis under the
regulation of D1R in the NAc in rats (Wu et al., 2016, 2018).
This effect can be attenuated by the intraperitoneal injection
of RU486, an antagonist of the glucocorticoid receptor (GR)
(Wu et al., 2016). However, whether the corticotropin-releasing
factor (CRF) participates in the modulation of propofol self-
administration behavior remains to be elucidated.

Previous studies demonstrated that stress increased the
susceptibility of an individual to drug abuse (Sinha, 2008).
The self-administration of psychomotor stimulants in animals
were escalated after intermittent exposure to various stressors
such as amphetamines and cocaine (Newman et al., 2018).
The neuropeptide of CRF is a key modulator of physiological
endocrine and behavior during stress, as well as the first identified
central initiator of the classic HPA axis stress neuroendocrine
response (Roberto et al., 2017). The CRF-containing system
not only includes the HPA axis, but many findings also
confirmed that stress-induced drug seeking can be mediated
by extrahypothalamic CRF sites in the brain (Lasheras et al.,
2015). As such, CRF has been a candidate target for the
interaction between stress and drug abuse, playing a critical
role in stress-escalated drug taking (Koob and Volkow, 2010;
Newman et al., 2018).

Corticotropin-releasing factor signaling via CRF receptor-1
(CRF1R) and CRF receptor-2 (CRF2R), and is a preferential
agonist for CRF1R over CRF2R. Corticotropin-releasing factor
receptors widely signal throughout the brain, such as the ventral
tegmental area (VTA), NAc, amygdala, and bed nucleus of the
stria terminalis (Baumgartner et al., 2021). It was reported that
the CRF-induced increase in the activity of dopamine (DA)
neurons in the VTA might enhance release in the NAc, which
potentiates drug-seeking behaviors and the response to reward
(Wanat et al., 2008). To investigate the modulation of CRF in
the central system for addiction, the ventricle injection of CRF
was adopted in many studies. Both acute and chronic blockade
of CRF1R by the lateral ventricle injection of CRF1R antagonist

Abbreviations: CRF, corticotropin-releasing factor; CRF1R, CRF1 receptor;
CRF2R, CRF2 receptor; GR, glucocorticoid receptor; D1R, dopamine D1 receptor;
D2R, dopamine D2 receptor; FR1, fixed ratio 1; NAc, nucleus accumbens; VTA,
ventral tegmental area; mPFC, medial prefrontal cortex; CPP, conditioned place
preference.

attenuated cocaine-induced DA release in the NAc (Lodge and
Grace, 2005). Antagonizing CRF1R but not CRF2R blocked
morphine-induced conditioned place preference (CPP) (Lasheras
et al., 2015). These findings include the results of pharmacological
and transgenic studies, indicating that CRF1R and CRF2R have
differential roles in regulating addiction behavioral response
(Valdez et al., 2004; Roberto et al., 2017). Corticotropin-releasing
factor receptor-1 and CRF2R messenger RNA (mRNA) were
detected in the VTA and NAc in rodents (Wischmeyer et al.,
2007), in which both areas are pivotal in reward processing and
drug abuse (Liu et al., 2020). Multiple studies suggested that drugs
of abuse implement reward effects by increasing DA release in the
NAc, where the dopaminergic afferent can be received from the
VTA (Koob, 1999), and also, it was reported that CRF increases
dopamine release in the NAc through CRF receptors (Lemos
et al., 2012). Based on these findings, we assumed that CRF might
regulate propofol self-administration behavior through the CRF
receptors in the mesolimbic DA system.

In the present study, we adopted tail clip pretreatment to
explore the effects of stress on propofol self-administration
model establishment. After that, the role of CRF receptor and
GR in the brain on propofol self-administration behaviors was
examined with the tail clip-induced propofol self-administration
model by the microinjection of antalarmin (a CRF1R antagonist),
antisauvagine 30 (a CRF2R antagonist), and RU486 (an
antagonist of GR) at the bilateral lateral ventricle. In addition,
the pre-treatments on the expressions of D1R in the NAc,
sucrose self-administration, and locomotor activities were
also researched.

MATERIALS AND METHODS

Animals
Adult male Sprague-Dawley rats weighing 300–350 g (14-week-
old) were purchased from the Experimental Animal Center of
Wenzhou Medical University. All procedures were consistent
with the Guide for the Care and Use of Laboratory Animals
and were approved by the Animal Care and Use Committee of
Wenzhou Medical University. All operations were performed
under anesthesia with sodium pentobarbital, and efforts were
made to minimize the number of animals and suffering. The
rats were housed in a temperature-controlled room individually
under a 12-h light/dark cycle at 22–24◦C, with free access to
food and water. Only the rats that were successfully implanted
with chronic indwelling catheters via the jugular vein and guide
cannulae in the bilateral lateral ventricle were randomly assigned
to continue the subsequent experiments.

Drugs
Propofol in this study was obtained from Astra Zeneca
(10 mg/ml, Diprivan, Italy), and was prepared daily for
self-administration behavioral training. A single dose of
1.7 mg/kg/injection was used for the training as described in
previous studies (McAulliffe et al., 2006). The CRF1R antagonist
antalarmin (Axon Medchem, the Netherlands), CRF2R
antagonist (Tocris Bioscience, Ellisville, MO, United States),
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and GR antagonist RU486 (Sigma-Aldrich, St-Louis, MO,
United States) were dissolved in artificial cerebrospinal fluid
(ACSF) (Zhongxing Chemical Reagent Co., Ltd., Zhejiang,
China) (122.5 mM NaCl, 3.5 mM KCl, 25 mM NaHCO3, 1 mM
NaH2PO4, 2.5 mM CaCl2, 1 mM MgCl2, 20 mM glucose, 1 mM
ascorbic acid (pH: 7.40, 295-305 mOsm) (Yarur et al., 2020).
The doses of the agents adopted in the present study were
determined on previous behavioral studies (Blacktop et al., 2011;
Taslimi et al., 2018).

Surgeries
The implantations of intravenous catheters were performed as
described previously (Zhou et al., 2007). The rats were implanted
with the chronically indwelling intravenous catheters under
sodium pentobarbital anesthesia (40 mg/kg) and the catheter
were flushed daily with 0.2 ml saline-heparin solution to maintain
the patency. Meanwhile, the rats were treated with penicillin B
once a day through the implanted catheter to prevent infection
during the recovery period for at least 7 days. The intra-lateral
ventricle injections (A/P −0.8 mm, M/L ± 1.4 mm, D/V—3.5
mm) were done through bilaterally implanted guide cannulae (20
gauge, Small Parts Inc., United States) (Biagioni et al., 2006).

Tail Clip Procedure
The acute pain induced by the tail clip test was according to
a tail clip procedure described in a previously published study
(Goebel-Stengel et al., 2014; Lee et al., 2017). The rats were put
in a custom-made acrylic cylinder and given 10 min to accustom
themselves to the new environment. An alligator clip exerting
a force of 2.5 N was manually applied to the tail at a position
approximately 2.5 cm proximal to the tail tip to induce pain for
2 min. The force was measured by attaching a flexible force sensor
to the tail (FSR-400, Interlink Electronics, CA, United States).
We observed that the tail clip pretreatment did not cause any
apparent physical damage in the rats.

Intra-Lateral Ventricle Microinjection
Procedure
To evaluate the effects of the agents on the establishment and
maintenance of tail clip-induced propofol self-administration
behavior, sucrose self-administration, and locomotor activities,
the rats were treated with ACSF (vehicle), antalarmin (100 and
500 ng/site), antisauvagine 30 (100 and 500 ng/site), or RU486
(100 and 500 ng/site) 10 min before the behavior test session.
The microinjection in the lateral ventricle was delivered through
the previous indwelling infusion cannula with a microinjection
pump (MD-1001, Bioanalytical System Inc., West Lafayette, IN,
United States) in a volume of 0.25 µL over 5 min.

Self-Administration Apparatus
The apparatus for propofol self-administration (Ningbo
Addiction Research and Treatment Center, Zhejiang, China)
behavior training has been described in a previous study (Dong
et al., 2021). Briefly, the apparatus was accompanied with
custom-made operant boxes that sized 30 cm × 30 cm × 30 cm
and equipped with two nose-poke operanda (active nose-poke

and inactive nose-poke) located 5 cm above the floor with a
yellow LED light inside each nose-poke hole. The rats were
trained for the self-administration of propofol through the
jugular injection with a 5-ml syringe that was attached to a
special pump at the speed of 1.2 ml/min. The rats would receive
a propofol infusion of 1.7 mg/kg after one active nose-poke
as a reward (fixed ratio 1, FR1), which was paired with a 5-s
extinguishing of the house light and the noise from the propofol
infusion pump. No injection was given after an inactive nose-
poke. Each active nose-poke was followed by a 30-s time-out
period, no injection or reward would be given even if nose-poke
occurred, both house light and the lights in the active and
inactive nose-poke hole remained illuminated when active or
inactive nose-poke occurred during the time-out period, and
the numbers of nose-poke would be recorded. All the behavioral
training sessions were automatically recorded by the computer.

Propofol Self-Administration Training
The rats were trained under a fixed ratio 1 (FR1) schedule
with a daily 3-h training session for 14 consecutive days, and
the training session ended when the 3-h training time or
100 propofol infusions was reached. The numbers of active
nose-poke and propofol infusion increased to a stable stage as
the training proceeded till a successive 14-day training, and the
inactive nose-poke decreased to a minimal level. The successful
establishment of the propofol self-administration behavior model
was determined by the variability of less than 10% in the last
three sessions (Filip and Frankowska, 2007). The rats that did not
reach the criteria were excluded in this step. There were 25 rats
trained for establishing propofol self-administration behavior
model with (the stress group, n = 12) or without tail-clip
stimulation (the control group, n = 12), and one rat was ruled out.
Another 58 rats received a 2 min tail-clip stressful stimulation
30 min before propofol self-administration training, and two rats
were excluded. Finally, there were 56 rats randomly assigned to
the groups that received a lateral ventricle injection of ACSF,
antalarmin, antisauvagine 30, or RU486 (the vehicle group, n = 8;
the antalarmin group n = 8; the antisauvagine 30 group, n = 8; the
RU486 group, n = 8).

Specific Experiments
Experiment 1: To explore the role of CRF1R in the brain on the
stress-induced propofol self-administration behavior model, the
rats that received tail clip-induced propofol self-administration
training were microinjected at the bilateral lateral ventricle with
ACSF (vehicle) or antalarmin (100 and 500 ng/site) 10 min prior
to the behavior test session on day 15.

Experiment 2: To investigate the role of central CRF2R
on stress-induced propofol self-administration behavior, the
tail clip-induced propofol self-administration training rats were
randomly assigned to the groups that received microinjection at
the bilateral lateral ventricle with ACSF (vehicle) or antisauvagine
30 (100 and 500 ng/site), 10 min prior to the behavior test
session on day 15.

Experiment 3: To evaluate the effects of GR on the tail
clip-induced propofol self-administration behavior, the training
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rats received ACSF (vehicle) or RU486 (100 and 500 ng/site)
pretreatment 10 min prior to the behavior test session on day 15.

Sucrose Self-Administration Training
The rats were trained for sucrose self-administration daily for
food reward under an FR1 schedule during a 0.5-h session
consecutively for 7 days (n = 6). The paradigm for sucrose self-
administration was similar to the paradigm of propofol, but the
reward was changed to a 45-mg sucrose pellet (Dustless precision
pellets, Bio-Serv, United States) that was delivered via a special
cup after an active nose-poke, and inactive nose-pokes did not
result in any programmed consequence. The sessions ended after
either 0.5 h or if 100 pellets occurred, and the behavioral training
sessions were automatically recorded by a computer. All rats
reached the criteria of the successful establishment of the sucrose
self-administration behavioral model. The rats were trained to
establish a sucrose self-administration behavior model with (the
stress group, n = 6) or without tail clip stimulation (the control
group, n = 6) for 2 min to investigate the effects of the tail
clip stressful stimulation on the establishment of sucrose self-
administration behavioral model. The other 42 rats that received
the 2-min tail clip stimulation 30 min before daily sucrose self-
administration training were microinjected with ACSF (vehicle),
antalarmin, antisauvagine 30, or RU486 at the bilateral lateral
ventricle injection on day 8 to examine the maintenance of the
sucrose self-administration behavioral model (the vehicle group,
n = 6; the antalarmin group n = 6; the antisauvagine 30 group,
n = 6; the RU486 group, n = 6).

Locomotor Activity
The testing of the locomotor activity was performed in an
experimental box with the size 30 cm × 40 cm × 50 cm, and
was equipped with an image tracking and processing system. The
rats received tail clip stressful pretreatment and a microinjection
of ACSF (vehicle), antalarmin, antisauvagine 30, or RU486
at the bilateral lateral ventricle as described above prior to
the locomotor activity testing, which was followed by a 1-h
acclimation and a 3-h test session. The path length of the rats
was monitored by a digital camera on the top of the experimental
box and recorded automatically by the camera tracking system
(the vehicle group, n = 6; the antalarmin group n = 6; the
antisauvagine 30 group, n = 6; the RU486 group, n = 6).

Western Blot Analysis
The NAc was removed immediately after the completion of the
propofol self-administration test on day 15 (n = 4). The rats were
deeply anesthetized with sodium pentobarbital (40 mg/kg) and
then were euthanized by decapitation. The brain was removed
and the NAc was dissected out (Paxinos and Waston, 2007).
The total protein was extracted from the NAc and the protein
concentration was measured with a bicinchoninic acid (BCA)
protein assay kit (Beyotime, Shanghai, China). After being
denatured at 100◦C for 10 min, 40 µg protein was loaded on
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) for electrophoretic separation, which was followed by
the transfer to polyvinylidene fluoride (PVDF) membranes and
non-specific binding site blocked with 5% skim milk (Merk)

for 2 h at room temperature (RT). The band was incubated
in primary D1 antibody (rabbit, 1:1,000, Abcam, Cambridge,
MA, United States) at 4◦C overnight, and in the secondary
antibody (goat anti-rabbit, 1:5,000, Bioworld, Minnesota, United
States) that was diluted in tris-buffered saline (TBST) for 2 h at
RT. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
adopted as the internal control. Finally, the band was visualized
with an enhanced chemiluminescence (ECL) solution (GE
Healthcare, Chicago, IL, United States) and photomicrographed
with Image Quant LAS 4000 mini (GE Healthcare, Chicago,
IL, United States).

Statistical Analysis
The continuous data were presented as mean ± SD, and the
normality of data distribution was tested. For the normally
distributed data, one-way ANOVA was adopted for the analyses
between multiple groups when the data also meets the
homogeneity of variance, and Dunnett’s post hoc test was used for
multiple comparisons. The data of the repeated measurements
were analyzed with the two-way ANOVA of repeated measures.
The Kruskal–Wallis test was used for data that were non-
normally distributed. Statistical calculations were performed with
SPSS 25.0 (SPSS Inc., Chicago, United States), and p-value < 0.05
was considered significant.

RESULTS

Stress Stimulation Facilitated the
Establishment of Propofol
Self-Administration Behavior Under the
FR1 Schedule
Figure 1 shows the rats in both stress group that suffered tail clip
stressful pretreatment and the control group that did not receive
the tail clip stimulation successfully established propofol self-
administration behavior within 14 days, presenting a significant
increase in the active nose-poke response and propofol infusions,
and a decrease in the inactive response. However, the numbers of
active nose-poke responses and propofol infusions were higher
in the stress group than the control group (Figure 1A, active
nose-poke response, F = 8.975, p < 0.001; Figure 1B, infusion,
F = 4.882, p < 0.001), but the number of inactive nose-poke
responses was not significantly different between the two groups
(Figure 1C, F = 1.875, p = 0.16) with significant differences.
The results suggested that the establishment of propofol self-
administration under the FR1 schedule was facilitated by the tail
clip stressful pretreatment.

Different Effects of the Bilateral
Microinjection of Antalarmin,
Antisauvagine 30, and RU486 at the
Lateral Ventricle on Stress-Induced
Propofol Self-Administration Behavior
The rats that were trained to have propofol self-administration
behavior with the tail clip stressful pretreatment were either
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FIGURE 1 | The numbers of active nose-poke responses (A), propofol infusions (B), and inactive nose-poke responses (C) were compared between the stress
group (with tail clip pretreatment) and the control group (without tail clip pretreatment) by using the two-way ANOVA of repeated measures, showing that the active
nose-poke responses and propofol infusions were higher in the stress group than the control group (active nose-poke response p < 0.001, infusion p < 0.001,
n = 12), and the number of inactive nose-poke response was not significantly different in both groups (p = 0.16). SD, standard deviation, *p < 0.05.

microinjected with ACSF (vehicle) or antalarmin (100 and
500 ng/site) at the bilateral lateral ventricle 10 min before
the propofol self-administration behavior testing session on
day 15. It was found that antalarmin dose-dependently
attenuated the numbers of active nose-poke responses and
propofol infusions compared with the vehicle group (Figure 2A,
active nose-poke response, H = 15.965, p < 0.001; infusion,
F = 65.653, p < 0.001), but the inactive nose-poke was
not significantly affected (F = 1.195, p = 0.32). Whereas,
no significant difference was found after the rats were
pretreated with antisauvagine 30 (100 and 500 ng/site) in
either active nose-poke (Figure 2B, F = 0.062, p = 0.94),
propofol infusions (F = 0.997, p = 0.39) or inactive nose-
poke (F = 0.057, p = 0.95) compared with the vehicle
group. These results indicated that CRF1R but not CRF2R
in the brain participated in the process of propofol self-
administration modulation.

To further explore the role of central GR on tail clip-induced
propofol self-administration behavior, the rats were bilaterally
intra-lateral ventricle microinjected with the vehicle or RU486
(100 and 500 ng/site). All the pretreatments failed to alter the
numbers of active nose-poke responses (Figure 2C, F = 0.051,
p = 0.95), propofol infusions (F = 1.460, p = 0.26), or inactive
nose-poke responses (F = 0.551, p = 0.59).

The Expressions of D1R in the NAc Were
Attenuated by Bilateral Lateral Ventricle
Microinjection of Antalarmin, Not
Antisauvagine 30 or RU486
The expressions of D1R in the NAc were detected after the
completion of the tail clip pretreated propofol self-administration
behavior testing session on day 15. The ANOVA analysis
found that antalarmin significantly inhibited the expression of
D1R in the NAc at the doses of both 100 and 500 ng/site
(Figure 3A, F = 28.267, p < 0.001). However, there was no
significant difference detected in the groups that were pretreated
with antisauvagine 30 (Figure 3B, F = 0.087, p = 0.92) or
RU486 compared with the vehicle group (Figure 3C, F = 3.631,
p = 0.070).

Stress Stimulation Failed to Affect the
Establishment of the Sucrose
Self-Administration Behavioral Model
Under the FR1 Schedule
The establishment of sucrose self-administration in the stress
group and the control group was shown in Figure 4. The numbers
of active nose-poke responses and sucrose pellets (food tray)
increased as the training proceeded and stabilized at a high
level in both the stress and control groups, and the inactive
nose-poke responses decreased to a minimal level after the 7-
day training. We found that neither active nose-poke response
(Figure 4A, F = 0.109, p = 0.88), food tray (Figure 4B, F = 0.330,
p = 0.76), nor inactive nose-poke response (Figure 4C, F = 0.743,
p = 0.62) was changed in the stress group compared with
the control group.

Microinjection of Antalarmin,
Antisauvagine 30, or RU486 at Lateral
Ventricle Did Not Alter Sucrose
Self-Administration Behavior or
Locomotor Activities
The effects of the microinjections of antalarmin, antisauvagine
30, or RU486 at the bilateral lateral ventricle on sucrose self-
administration and general locomotor activities were examined
to further confirm the specificity of these pretreatments on
propofol self-administration. The sucrose self-administration
test was carried out on day 8. The results showed that all of
the pretreatments failed to affect the numbers of active nose-
poke responses (Figure 5, antalarmin, F = 0.669, p = 0.53;
antisauvagine 30, F = 2.110, p = 0.16; RU486, F = 1.522, p = 0.25),
food tray (antalarmin, F = 1.116, p = 0.35; antisauvagine 30,
F = 0.166, p = 0.85; RU486, F = 0.077, p = 0.93), and inactive
response (antalarmin, F = 0.227, p = 0.80; antisauvagine 30,
F = 0.155, p = 0.86; RU486, F = 0.069, p = 0.93). Meanwhile,
no pretreatments changed the general locomotor activities in the
tail clip-stimulated rats as judged by the path length (Figure 6,
antalarmin, F = 0.757, p = 0.49; antisauvagine 30, H = 114.047,
p = 0.98; RU486, F = 0.651, p = 0.54).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 77520933

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-775209 November 26, 2021 Time: 11:48 # 6

Dong et al. Antagonism of CRF1R Inhibits Popofol Addiction

FIGURE 2 | (A) Intra-lateral ventricle injection of corticotropin-releasing factor (CRF) receptor-1 (CRF1R) antagonist antalarmin attenuated active nose-poke
responses and propofol infusions in a dose-dependent manner (active nose-poke response p < 0.001, infusion p < 0.001, n = 8) in the rats who received tail clip
stimulation before daily training and the testing session, while the numbers of inactive nose-poke responses did not show a significance compared with the vehicle
group (p = 0.32). (B) Intra-lateral ventricle pretreatment of the CRF receptor-2 (CRF2R) antagonist antisauvagine 30 did not alter the active nose-poke responses
(p = 0.94), propofol infusions (p = 0.39), or inactive nose-poke response (p = 0.95). (C) The pretreatment with the glucocorticoid receptor (GR) antagonist RU486 at
the lateral ventricle was unlikely to affect the active nose-poke responses (p = 0.95), propofol infusions (p = 0.26), or inactive nose-poke responses (p = 0.59). The
normally distributed data were analyzed by one-way ANOVA with Dunnett’s post hoc test for multiple comparisons, otherwise were analyzed with a Kruskal–Wallis
test. SD, standard deviation.*p < 0.05, ***p < 0.001.

FIGURE 3 | (A) The bilaterally intra-lateral ventricle injection of antalarmin significantly attenuated the expression of dopamine D1 receptor (D1R) in the nucleus
accumbens (NAc) at the doses of 100 ng/site (p = 0.016) and 500 ng/site (p < 0.001) in the rats who received tail clip stimulation prior to daily training and the
testing session (n = 4). (B) The expression of D1R in the NAc was not altered by the pretreatment of antisauvagine 30 at the bilateral lateral ventricle (p = 0.92).
(C) The pretreatment with RU486 at the bilateral lateral ventricle did not significantly change the D1R expression in the NAc (p = 0.070). The data was analyzed with
one-way ANOVA with Dunnett’s post hoc test for multiple comparisons. SD, standard deviation. *p < 0.05, ***p < 0.001.

FIGURE 4 | The numbers of active nose-poke responses (A), food tray (B), and inactive nose-poke responses (C) were compared between the stress group and
the control group, indicating that neither the active nose-poke responses (p = 0.88), food tray (p = 0.76), nor the number of inactive nose-poke responses (p = 0.62)
was affected by the tail clip stressful stimulation. The data were analyzed with repeated measures of ANOVA. SD, standard deviation.

DISCUSSION

In this study, it was found that the establishment of the
propofol self-administration behavioral model was facilitated
by tail clip stressful stimulation prior to the daily training
session, which can be inhibited by the central administration
of the antagonist of CRF1R antalarmin but was not affected by
antisauvagine 30 or RU486 at the bilateral lateral ventricle. The

detected expression of D1R in the NAc has been approved to
be a crucial concern in mediating propofol self-administration
behavior to explore potential molecular mechanisms (Lian
et al., 2013). Our findings show that the expression of D1R
in the NAc was notably attenuated by antalarmin but not by
antisauvagine 30 or RU486. We also found that the establishment
and maintenance of the sucrose self-administration behavioral
model or general locomotor activities were not affected
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FIGURE 5 | The intra-lateral ventricle injection of antalarmin (A), antisauvagine 30 (B), or RU486 (C) bilaterally were unlikely to affect the numbers of active
nose-poke responses, food tray, and inactive nose-poke responses in the rats who received tail clip stressful stimulation. The normally distributed data were
analyzed with one-way ANOVA, otherwise was analyzed with a Kruskal–Wallis test. SD, standard deviation.

FIGURE 6 | The pretreatment with antalarmin (A), antisauvagine 30 (B), or RU486 (C) at the bilateral lateral ventricle did not cause any difference that reached
significance of the numbers of active nose-poke responses, food tray, and inactive nose-poke responses in the rats that receive tail clip stressful stimulation
compared with the vehicle group. The normally distributed data were analyzed with one-way ANOVA, otherwise was analyzed with a Kruskal–Wallis test. SD,
standard deviation.

by all the pretreatments. Taken together, these findings
support the role of CRF1R in the central nervous system in
promoting propofol self-administration behavior, which may act
through D1R in the NAc.

Addiction is conceptualized as a cycle of increasing the
dysregulation of brain reward and anti-reward mechanisms
that would result in a negative emotional state, subsequently
contributing to compulsive drug-seeking behaviors (Koob, 2010).
These counter-adaptive processes were hypothesized to be
mediated by reward pathways and the brain stress systems.
The neuropeptide CRF exerts a salient role in the neuronal
networks for drug abuse initiation, escalation, and relapse
(Newman et al., 2018). Previous research suggested that the
chronic administration of drugs with dependence potential
dysregulated the stress response mediated by CRF (Koob, 2010).
The CRF was not only included in the HPA axis but also
in the extrahypothalamic stress system in the brain. Also, the
extrahypothalamic stress system includes the areas of VTA, NAc,
and medial prefrontal cortex (mPFC) (Kelly and Fudge, 2018).
The central administration of CRF at the ventricles reinstated
heroin (Shaham et al., 1997), cocaine (Erb et al., 2006), and
alcohol (Lê et al., 2002) seeking. Moreover, these reinstatements
of drugs mimic the activation of behavioral responses to stress in
rodents were blocked by competitive CRF receptor antagonists
(Koob, 2010).

It is well known that the VTA and its dopaminergic projection
to the NAc is one of the most important substrates for
drug reward (Wischmeyer et al., 2007). Corticotropin-releasing

factor was demonstrated to mediate the interaction between
glutamatergic projection and dopaminergic neurons (Wise
and Morales, 2010); induce glutamate release activates the
mesocorticolimbic dopamine system (Wang et al., 2005);
promote mesocorticolimbic DA release in the areas including the
NAc; and cause lasting neural changes that may induce stress-
escalated drug consumption (Park et al., 2015; Steger et al.,
2020). Corticotropin-releasing factor plays roles through CRF1R
and CRF2R but binds CRF1R with a 10-fold greater affinity
compared with CRF2R (Hupalo et al., 2019). Previous studies
implied that CRF1R but not CRF2R was involved in cocaine
self-administration and morphine-induced CPP (Boyson et al.,
2011; Lasheras et al., 2015). The NAc received dopaminergic
projection from the VTA where CRF1R and CRF2R co-expressed
on the dopaminergic neurons in rodents (Van Pett et al., 2000;
Tan et al., 2017). The antagonism of CRF1R but not CFR2R in
the VTA decreased footshock-induced reinstatement of cocaine
seeking in rats and reduced the induction of locomotor cross-
sensitization to cocaine (Blacktop et al., 2011; Boyson et al., 2014).
As consistent with the above findings, the central administration
of CRF1R antagonist antalarmin inhibited the tail clip-induced
propofol self-administration but not the CRF2R antagonist
antisauvagine 30, and activating CRF1R mimic the effect of
footshock stress on reinstatement, and activation of the CRF2R
did not (Blacktop et al., 2011). Both the acute and chronic
blockade of CRF1R by the lateral ventricle injection with CRF1R
antagonists attenuated cocaine-induced DA release in the NAc
(Lodge and Grace, 2005). Despite the evidence above, the role
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of CRF1R and CRF2R on DA releasing remains controversial.
Some studies indicated that CRF2R also was involved in the
mediation of cocaine reinstatement, and the neuronal process
of releasing DA and glutamate in the VTA (Wise and Morales,
2010). The footshock-induced reinstatement of cocaine-seeking
was reported to be decreased by the VTA perfusion of CRF2R
antagonists but not selective CRF1R antagonists (Mantsch et al.,
2016), and cocaine induced a significant increase of VTA DA
extracellular levels in the repeated stress rats at the presence
of CRF1R antagonists (Sotomayor-Zárate et al., 2015). This
discrepancy was ascribed to the distinct mechanisms underlying
different abused drugs, and we speculate that the activation of
CRF on the mesolimbic DA system might go through CRF1R
but not CRF2R (Almela et al., 2012), all these needs to be
further determined.

The mPFC is another vital site in the brain that contributes to
drug addiction, innervating the VTA with glutamatergic efferent
and receiving dopaminergic afferent (Tzschentke and Schmidt,
2003; Keramatian et al., 2019). Corticotropin-releasing factor
receptor-1 is considered as the primary functional receptor
subtype in the prefrontal cortex (PFC) (Perrin et al., 1995). We
speculate that the mPFC may be inactivated after the central
administration of the selective CRF1R antagonist antalarmin, and
then causes the subsequent inhibition of dopaminergic neurons
in the VTA, thereby resulting in the reduction in DA release
in the NAc. In addition, CRF was reported to induce the rapid
phosphorylation of the cyclic-AMP response element-binding
protein (CREB) via the activation of CRF1R, while CRF2R played
no discernable role (Stern et al., 2011). Along with the signaling
pathway, NMDAR-D1R/ERK/CREB in the NAc was indicated to
regulate reward-seeking behaviors (Kirschmann et al., 2014), and
our previous findings stated that propofol self-administration
behavior was regulated by ERK1/2 in the NAc (Wang et al.,
2016). Therefore, we presume that the mediation of CRF1R on
the D1R/ERK1/2/CREB signal pathway may be underlying the
molecular mechanisms. This postulation is supported by our
results in this study that the expression of D1R in the NAc was
significantly inhibited by CRF1R antagonist antalarmin, but the
effects on the expression on ERK1/2 and CREB needs to be
examined in the following study. Although the tail clip-induced
propofol self-administration behavior and expression of D1R
in the NAc were not affected by the central pretreatment of
RU486 in this study, our published study reported that both were
attenuated by the systemic administration of RU486 (Wu et al.,
2016). We believe that the difference in the approaches of agent
delivery, doses, and the methods in establishing the propofol
self-administration model might lead to the distinction on D1R
expression in the NAc and propofol self-administration behavior.

Corticotropin-releasing factor receptors also take part in food
addiction. The pretreatment with antalarmin reduced the stress-
induced reinstatement of palatable food-seeking (Ghitza et al.,
2006), but some other studies reported that the antagonism of
CRF1R with R121919 or CP-154526 did not affect the response
to food (Goeders and Guerin, 2000; Roberto et al., 2017). And
we also found that sucrose self-administration was not affected
by either tail clip stressful stimulation or the pretreatments
of antalarmin, antisauvagine 30, or RU486. This seems to be

contradictory between the previous findings and our study, which
might be ascribed to the different food addiction testing models
and the distinction of the mechanisms underlying the stage of
self-administration and reinstatement in food addiction.

The limitations of this study should be mentioned. As previous
studies indicated, the DA release in the NAc and VTA is regulated
by CRF and may be a potential for CRF receptor mediating
propofol self-administration behavior, we only detected the
D1R expression in the NAc, but the changes of dopamine
concentration and the downstream signal pathway of D1R in the
NAc were not examined. Beyond that, the neuroadaptation in
the VTA that is modulated by the glutamatergic afferent from
the mPFC, the interactions between the presynaptic glutamate
afferent, and the CRF receptor on postsynaptic on dopaminergic
neurons in the VTA is also unclear. All these questions will be
elucidated in the future.

CONCLUSION

In conclusion, this study provides clear evidence that propofol
self-administration behavior was facilitated by stressful
stimulation, which could be inhibited by the central antagonism
of CRF1R, not CRF2R or GR, and the neuronal process is
mediated by the DA D1R in the NAc. This study emphasizes the
role of CRF1R in the central reward processing and moreover,
indicated that the CRF1R antagonist may provide a new
therapeutic approach for the treatment of propofol addiction.
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Choice Bundling Increases Valuation
of Delayed Losses More Than Gains
in Cigarette Smokers
Jeffrey S. Stein1,2* , Jeremiah M. Brown1,2, Allison N. Tegge1, Roberta Freitas-Lemos1,
Mikhail N. Koffarnus3, Warren K. Bickel1 and Gregory J. Madden4

1 Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States, 2 Department of Human Nutrition, Foods,
and Exercise, Virginia Tech, Blacksburg, VA, United States, 3 Department of Family and Community Medicine, University
of Kentucky, Lexington, KY, United States, 4 Department of Psychology, Utah State University, Logan, UT, United States

Choice bundling, in which a single choice produces a series of repeating consequences
over time, increases valuation of delayed monetary and non-monetary gains.
Interventions derived from this manipulation may be an effective method for mitigating
the elevated delay discounting rates observed in cigarette smokers. No prior work,
however, has investigated whether the effects of choice bundling generalize to reward
losses. In the present study, an online panel of cigarette smokers (N = 302), recruited
using survey firms Ipsos and InnovateMR, completed assessments for either monetary
gains or losses (randomly assigned). In Step 1, participants completed a delay-
discounting task to establish Effective Delay 50 (ED50), or the delay required for an
outcome to lose half of its value. In Step 2, participants completed three conditions of
an adjusting-amount task, choosing between a smaller, sooner (SS) adjusting amount
and a larger, later (LL) fixed amount. The bundle size (i.e., number of consequences)
was manipulated across conditions, where a single choice produced either 1 (control),
3, or 9 consequences over time (ascending/descending order counterbalanced). The
delay to the first LL amount in each condition, as well as the intervals between all
additional SS and LL amounts (where applicable), were set to individual participants’
ED50 values from Step 1 to control for differences in discounting of gains and losses.
Results from Step 1 showed significantly higher ED50 values (i.e., less discounting)
for losses compared to gains (p < 0.001). Results from Step 2 showed that choice
bundling significantly increased valuation of both LL gains and losses (p < 0.001),
although effects were significantly greater for losses (p < 0.01). Sensitivity analyses
replicated these conclusions. Future research should examine the potential clinical utility
of choice bundling, such as development of motivational interventions that emphasize
both the bundled health gains associated with smoking cessation and the health losses
associated with continued smoking.

Keywords: choice bundling, sign effect, intertemporal choice, delay discounting, cigarette smoking, impulsive
choice, choice bracketing
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INTRODUCTION

Behavioral outcomes are devalued as a function of the delay
until they are experienced (for review, see Odum, 2011). This
process, known as delay discounting, is reliably associated with
cigarette smoking (for meta-analysis, see MacKillop et al., 2011;
Amlung et al., 2016) and other tobacco use (e.g., Stein et al.,
2018a; DeHart et al., 2020). For example, high discounting
rates for delayed monetary gains are cross-sectionally associated
with smoking status (e.g., Mitchell, 1999) and longitudinally
predict both smoking initiation (Audrain-McGovern et al.,
2009) and relapse following smoking cessation treatment (e.g.,
Yoon et al., 2007; Sheffer et al., 2014). These findings indicate
that delay discounting is a potential therapeutic target in
tobacco cessation (Riddle and Science of Behavior Change
Working Group, 2015), in which interventions that increase
valuation of delayed outcomes may also reduce cigarette smoking
(e.g., Stein et al., 2016, 2018b; Chiou and Wu, 2017). Thus,
understanding how delay discounting influences intertemporal
choice between smaller, sooner (SS) and larger, later (LL)
outcomes is critical and may lead to efficacious interventions
for tobacco use.

A large and growing literature has explored the effects
of various behavioral, pharmacological, and neurocognitive
interventions on delay discounting. The intertemporal choices
arranged in these studies involve economic gains, such as
monetary and food rewards (for reviews, see Perry and Carroll,
2008; Bickel et al., 2017; Rung and Madden, 2018). However,
remarkably few studies have explored the effects of these
interventions on choices involving economic losses. This is
concerning, as at least three sets of findings suggest that
intervention effects on gains may not generalize to losses.
First, losses are discounted at a lower rate than gains of an
equivalent size (i.e., the “sign effect”; Thaler, 1981; Benzion
et al., 1989; Murphy et al., 2001; Estle et al., 2006); thus,
interventions may prove ineffective with losses due to a ceiling
effect. Second, although discounting of losses is associated with
cigarette smoking in a manner similar to that of gains (Odum
et al., 2002; Baker et al., 2003; Johnson et al., 2007), prior
research reveals mixed findings on whether discounting rates
for gains and losses are correlated (Chapman, 1996; Hardisty
and Weber, 2009; Mitchell and Wilson, 2010; Harris, 2012).
Third, and finally, the commonly reported inverse relationship
between discount rate and amount of the outcome (i.e., the
“magnitude effect”) appears less robust for losses than for
gains (Estle et al., 2006; Mitchell and Wilson, 2010; Green
et al., 2014). Collectively, these findings suggest the presence
of one or more processes, secondary to discounting, that differ
between valuation of delayed gains and losses. Thus, further
research investigating whether valuation of delayed gains and
losses are amenable to the same interventions is warranted.
Knowledge gained from these studies may help guide whether
clinical interventions for tobacco use should focus on enhancing
sensitivity to the delayed health gains associated with smoking
cessation, the delayed health losses associated with continued
smoking, or both.

Delay Discounting of Gains and Losses
The extent to which the value of an outcome (gain or loss) is
devalued with increasing delay is generally well-described by the
following hyperbolic form (Mazur, 1987):

V =
A

1+ kD
(1)

where V is the subjective value of an outcome, A is its objective
amount, D is its delay, and k is a free parameter that describes
the nonlinear rate of discounting. This model may be used to
predict intertemporal choice between SS and LL outcomes. When
the outcomes are gains, choice is allocated to the option that
maximizes subjective benefit. In contrast, when the outcomes
are losses, choice is allocated to the option that minimizes
subjective harm.

Consider a choice between receiving either $450 now or $900
in 1 year. The SS gain is available immediately and, thus, is not
discounted—its subjective value is equal to its nominal value
($450). In contrast, the LL gain ($900) is discounted according
to the prevailing value of k (determined by both trait and state
factors; Odum and Baumann, 2010). If k = 0.003, for example, the
subjective value (V) from Equation 1 of the $900 LL reward would
be $429.59. Here, preference for the SS monetary gain is predicted
because it provides a larger gain ($450) than the subjective value
of the LL option ($429.59). In contrast, if this same choice were
instead between losing either $450 now or $900 in 1 year, then
preference for the LL option is predicted because it minimizes
subjective loss ($429.59) compared to the SS option ($450).

Choice Bundling of Gains and Losses
As originally noted by Ainslie (1975, 2001), a prediction unique
to hyperbolic (as opposed to exponential) delay discounting is
that conditions in which a single choice produces a series of
repeating SS or LL outcomes (i.e., a choice bundle) can increase
relative preference for the LL option compared to equivalent
choices for unbundled (single) outcomes. This is due to the non-
constant rate of devaluation in hyperbolic discounting in which
value is lost quickly at short delays and more slowly at long
delays. When a single choice produces repeating outcomes, the
relatively stable subjective values of individual LL outcomes sum
to a larger value than the sum of individual SS outcomes (for
further discussion, see Ainslie, 2001; Ashe and Wilson, 2020;
Stein and Madden, 2021).

This effect of choice bundling on delay discounting is
predicted quantitatively by an additive model of hyperbolic
discounting (Mazur, 1986, 1989):

Vbundle =

n∑
i=1

(
A

1+ kD

)
(2)

in which the subjective value of a bundled series of outcomes
(Vbundle) is equal to the summed values of all rewards in
the bundle (all parameters are as described for Equation 1).
For example, consider again the (unbundled) choice between
receiving $450 now or $900 in 1 year. When k = 0.003, choice
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for the SS option is predicted because its undiscounted value
($450) exceeds the subjective value of the LL option ($429.59). In
contrast, if these same amounts ($450 and $900) were distributed
equally across a series of repeating rewards and the choice were
instead between receiving either (a) a SS bundle of $150 now,
$150 in 1 year, and $150 in 2 years or (b) a LL bundle of $300
in 1 year, $300 in 2 years, and $300 in 3 years, the summed
subjective values (Vbundle) of the SS and LL options would now
be $268.62 and $307.25, respectively. Thus, choice bundling is
predicted to shift preference toward the LL over the SS gains, even
though neither the absolute nor the relative differences between
these amounts have changed. Likewise, if this same choice were
instead between bundled losses, choice bundling is predicted to
shift preference toward the SS over the LL losses.

Several studies have offered empirical support for
this predicted effect of choice bundling (for review, see

Ashe and Wilson, 2020), showing that bundling increases
preference for LL gains (money and/or food) in both
humans (Kirby and Guastello, 2001; Hofmeyr et al., 2011) and
nonhumans (Ainslie and Monterosso, 2003; Stein et al., 2013).
These include a recent study from our group (Stein and Madden,
2021) showing in an online sample from the general population
(N = 252) that the efficacy of choice bundling is enhanced by
increasing the number of rewards in the choice bundle (for a
similar finding in rats, see Stein et al., 2013). Observed effects
in this online study also approximated those predicted by the
additive model of hyperbolic discounting (Equation 2).

Despite these encouraging results, more work remains to
be done. Specifically, no prior studies have investigated if
comparable effects of choice bundling can be achieved with
losses. Equation 2 makes no distinction between gains and
losses but, as previously noted, some degree of discordance

FIGURE 1 | CONSORT flow diagram showing participant flow through study screening, group allocation, and data analysis. aDenotes sample size in primary
analysis. Subsets of this sample were used in sensitivity analyses (see text for details).
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characterizes the discounting of delayed gains and losses (i.e.,
the “sign effect”; Thaler, 1981; Benzion et al., 1989; Murphy
et al., 2001; Estle et al., 2006). In addition, only one study
to our knowledge has investigated choice bundling in clinical
populations (cigarette smokers; Hofmeyr et al., 2011) who may
benefit from interventions to mitigate high discounting rates.
Accordingly, the present study used a mixed between- and
within-subjects design to examine the effects of choice bundling
on valuation of delayed gains and losses in an online panel
of cigarette smokers. We did so using an adaptive, two-step
procedure in which we: (1) assessed delay discounting to establish
individual participants’ values of Effective Delay 50 (ED50), or
the delay required for an outcome to lose half of its value (Yoon
and Higgins, 2008), and (2) used these participant-specific ED50
values to inform the delays experienced in the choice bundling
assessments in order to control for differences in discounting of
gains and losses.

MATERIALS AND METHODS

A US-based panel of cigarette smokers (N = 308) were recruited
by market research firms, Ipsos (iSay panel1) and InnovateMR,2

for a separate parent study examining the effects of cigarette
and nicotine vaping product flavor restrictions on hypothetical
tobacco product purchasing. Ipsos distributed the survey to
panelists in July and August 2021. Both the parent and present
study were registered on www.clinicaltrials.gov (NCT05110872
and NCT05110716, respectively).Participants first completed a
brief screening questionnaire in which they reported their
smoking history, current smoking status, usual brand of cigarette,
and age. To be eligible for both the parent and present
study, participants were required to: (1) currently smoke at
least 10 cigarettes per day, (2) have smoked at least 100
cigarettes in their lifetime, and (3) be 21 years of age or
older. Menthol and non-menthol smokers were recruited in
approximately equal numbers.

After screening, eligible participants first completed
procedures for the parent study. These included multiple
conditions in the Experimental Tobacco Marketplace (for
review, see Bickel et al., 2018), in which they made hypothetical
tobacco product purchases while the price of cigarettes and
the available tobacco product flavors were varied. Following
completion of these procedures, participants were randomly
assigned in the present study to complete assessments for either
monetary gains (n = 155) or losses (n = 153) and completed
relevant procedures, described below (section “Procedures”).

The numbers of participants who screened for, completed, and
were analyzed for the present study are provided in Figure 1.
Note that six participants did not complete the study (n = 3
each from gains and losses groups), leaving a final analytic
sample of N = 302. Participants required a median time of
36.95 min to complete the full survey (interquartile range: 29.47–
55.78) and received the equivalent of $8.57–$14.28 of monetary

1social.i-say.com
2innovatemr.com/panels/consumer-panel

compensation in the form of virtual currencies (e.g., online and
mobile gift cards).

Procedures
Study procedures were implemented using Qualtrics online
survey software (Qualtrics, Provo, UT, United States). All
procedures were reviewed and approved by the Virginia Tech
Institutional Review Board. Informed consent was implied
through completion of the survey.

Step 1: Assessment of Delay Discounting
Delay discounting was assessed using a version of the recently
developed six-trial, adjusting-delay task (Koffarnus et al., 2021).
This task was modified from the similar and commonly used
five-trial, adjusting-delay task (Koffarnus and Bickel, 2014) to
provide greater range and resolution in measurement of ED50
(and k). Specifically, whereas the original five-trial task provides
the ability to measure only 32 possible ED50 values ranging from
1 h to 25 years, the six-trial task allows measurement of 64
possible ED50 values. In the version used in the present study,
possible ED50 values ranged from 4 s to 90 years in approximately
logarithmic intervals. We note, however, that these values in the
original version of the six-trial task developed by Koffarnus et al.
(2021) range from 5 s to 65 years.

Participants were presented with repeated, hypothetical
choices between receiving or losing (depending on group) a larger
amount ($900) after a delay and half of this amount ($450)
immediately. The delay to the LL amount started at 1 day on
the first trial and was adjusted following each trial, based on the
preceding choice. Specifically, in the gains task, choices for the
larger amount increased the delay, and choices for the smaller
amount decreased the delay, on the next trial; in the losses task,
this relationship was reversed. The adjusted value after the final
trial was the delay expected to produce indifference between
options and provided a measure of ED50. Higher values of ED50
reflect less discounting of the delayed outcome. Additional details
regarding this task, including the task instructions, logic for trial
branching, and method for scoring ED50 and k, are provided in
Supplementary Material.

Step 2: Assessment of Choice Bundling Effects
Participants completed three conditions of an adjusting-amount
task, modified from those used previously (Du et al., 2002;
Athamneh et al., 2017) to allow assessment of choice bundling
effects. The instructions participants read prior to the task are
provided in Supplementary Material.

As depicted in Figure 2, the bundle size (i.e., number
of consequences) was manipulated across conditions, where a
single choice produced either 1 (control), 3, or 9 outcomes
(gains or losses) over time. Participants completed these
bundle-size conditions in either ascending or descending order
(counterbalanced). Each condition featured six trials in which
participants chose between receiving or losing (depending on
group) either LL fixed amounts or adjusting SS amounts.
The total amount of the LL option equaled $900. This value
was divided equally among all gains/losses in the bundle (see
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FIGURE 2 | Choices in the adjusting-amount task between the smaller, sooner (SS) and larger, later (LL) options in the bundle-size 1 (control), 3, and 9 conditions.
The total monetary value (gain or loss, depending on group) of the SS adjusting amount (A) started at $450 on the first trial and was adjusted after each trial until
reaching an indifference point. The delays to the first LL consequence, as well as the intervals between all SS and LL consequences, were set to individual
participants’ Effective Delay 50 (ED50) values from the six-trial, adjusting-delay task.

Figure 2) in order to hold the amounts constant across bundle-
size conditions. This procedure controlled for the “magnitude
effect” in delay discounting research, in which degree of
discounting is inversely related to amount (e.g., Estle et al.,
2006; for further discussion relevant to choice bundling, see
Stein and Madden, 2021).

The total SS amount was also divided equally among all
gains/losses in the bundle. This value started at $450 on the first
trial in each condition and was adjusted following each of six
trials, based on the preceding choice, according to procedures
described previously (Du et al., 2002). In the gains task, choices
for the LL option increased the total SS amount, and choices for
the SS option decreased the total SS amount, on the next trial.
In the losses task, this relationship was again reversed. The size
of these adjustments (up or down) started at $225 after the first
trial (half of the SS amount) and was reduced by half at each
subsequent trial ($112.50 after the second trial, $56.25 after the
third trial, etc.). The total adjusted amount after the final, sixth
trial served as the indifference point, with higher values reflecting
greater valuation of the LL option.

The delay to the first LL amount in each condition, as well as
the intervals between all additional SS and LL amounts (where
applicable), were set to individual participants’ ED50 values from
Step 1. This maximized the probability that indifference points
in the bundle-size 1 control condition would be near the $450
midpoint. Moreover, in the bundle-size 3 and 9 conditions, this
ensured that the intervals between all contiguous gains or losses
were directly proportional to participants’ baseline level of delay

discounting. This was done to both control for differences in
discounting of gains and losses (e.g., Green et al., 1997) and to
provide approximately equal sensitivity to detect both increases
and decreases in valuation of the LL option.

Data Quality
Neither the six-trial, adjusting-delay task nor the use of
the adjusting-amount task in this study allowed application
of standardized criteria to detect nonsystematic responding
(Johnson and Bickel, 2008). To mitigate this concern, data
quality in the choice bundling assessment was monitored by
inclusion of three quality control questions, similar to methods
used previously (Stein et al., 2018a; Stein and Madden, 2021).
Specifically, after the sixth trial in each of three adjusting-
amount conditions, a seventh trial asked participants to choose
between $450 now and $900 now. In the bundle-size 3 and 9
conditions, these monetary amounts were framed as separate
rewards, as described above for these conditions; however, all
delays were removed (e.g., $300 now, $300 now, and $300 now;
Stein and Madden, 2021). Choice of the smaller option in these
questions was interpreted as inattention or atypical valuation of
monetary rewards.

Demographic and Smoking Characteristics
At the end of the survey, participants completed a
demographics questionnaire and the Heaviness of Smoking
Index (Heatherton et al., 1989).
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Data Analysis
All analyses were performed in SPSS version 27.0 (IBM SPSS
Statistics for Windows, IBM Corp.). The final analytic sample
(N = 302) provided 95% power to detect an approximately
small effect size (f = 0.108) within-subjects x between-groups
interaction in analysis of variance (ANOVA), assuming three
repeated measures, four groups, a = 0.05, and a correlation
between repeated measures of r = 0.50.

Participant Characteristics
Demographic, smoking, and other sample characteristics
were compared between the four groups (gains/ascending,
gains/descending, losses/ascending, and losses/descending) using
two-way ANOVA, Fisher’s Exact tests, or logistic regression.

Step 1: Assessment of Delay Discounting in the
Six-Trial, Adjusting-Delay Task
Effective Delay 50 values were compared between the gains and
losses group using one-way analysis of covariance (ANCOVA),
with sign (gain, loss) as a between-subjects factor. ED50 values
were nonnormally distributed and were thus log (base 10)
transformed prior to analysis.

Step 2: Effects of Choice Bundling in the
Adjusting-Amount Task
Indifference points in the bundle-size 1, 3, and 9 conditions
were analyzed using repeated-measures ANCOVA, with bundle
size as a within-subjects factor and sign (gain, loss) and order
(ascending, descending) as between-subjects factors. Significant
results were followed by between-group and within-subject post-
hoc comparisons. Bonferroni correction was used to maintain the
family-wise error rate in each post-hoc test at a = 0.05.

Sensitivity Analyses
Analysis of covariances described above were repeated in
sensitivity analyses when excluding: (1) participants who failed
one or more of the quality control questions and (2) participants
whose ED50 values in Step 1 produced unrealistic delays to one or
more bundled consequences in Step 2 (described further, below).

RESULTS

Participant Characteristics
Table 1 provides demographic characteristics for gains and losses
groups, by bundle-size order (ascending and descending). On
average, participants smoked 19.43 cigarettes/day (±11.78) and
were 48.89 years old (±13.66). The sample was exactly 50%
male and female. The majority were white (89.7%), non-Hispanic
(84.8%), and reported low (i.e., <$50,000/year; 49.3%) or middle
(i.e., $50,000–$150,000/year; 40.7%) incomes.

No participant characteristics differed significantly between
groups (ps > 0.05), with the exception of ethnicity. Participants
reporting Hispanic/Latino ethnicity were sampled less frequently
in the losses group (10.0%) compared to the gains group
(20.39%), OR = 0.261 (0.098, 0.697), p = 0.007, though likely due
to chance because the groups were randomized. No significant

associations were observed between ethnicity and either order or
the Sign× Order interaction (in both cases, ps > 0.05). Ethnicity
was included as a covariate in ANCOVA, described below.

Step 1: Assessment of Delay Discounting
in the Six-Trial, Adjusting-Delay Task
Analysis of log transformed values revealed higher ED50s (i.e.,
lower discounting) for delayed losses compared to gains, F(1,
299) = 14.008, p < 0.001; ηp

2 = 0.045 (see Figure 3). Ethnicity was
a significant covariate, F(1, 299) = 3.940, p = 0.048; ηp

2 = 0.013,
with lower ED50 values (i.e., greater discounting) observed in
participants reporting Hispanic/Latino ethnicity.

Step 2: Assessment of Choice Bundling
Effects in the Adjusting-Amount Task
Analysis of covariance revealed significant main effects of bundle
size, F(2, 594) = 10.793, p < 0.001, ηp

2 = 0.035, and sign (F(1,
297) = 13.837, p < 0.001, ηp

2 = 0.045, although significant
Bundle Size× Sign, F(2, 594) = 4.765, p = 0.009, ηp

2 = 0.016, and

TABLE 1 | Demographic and smoking characteristics.

Sign Gains Losses

Bundle-size order Ascending Descending Ascending Descending

n 76 76 75 75

Demographics

Age (year; ± SD) 49.6 ± 14.5 47.2 ± 12.6 49.7 ± 13.9 49.1 ± 13.6

Gender

% Male (n) 53.9 (41) 42.1 (32) 52.0 (39) 52.0 (39)

% Female (n) 46.1 (35) 57.9 (44) 48.0 (36) 48.0 (36)

Race

% White (n) 89.5 (68) 86.8 (66) 94.7 (71) 89.2 (66)

% Asian (n) 3.9 (3) 0.0 (0) 0.0 (0) 1.3 (1)

% Black/African
American (n)

5.3 (4) 10.5 (8) 5.3 (4) 1.3 (1)

% Other race or
multi-racial (n)

1.3 (1) 2.6 (2) 0.0 (0) 8.1 (6)

% Not answered (n) 0.0 (0 0.0 (0 0.0 (0 1.3 (1)

Ethnicity

% Non-Hispanic/
Latino (n)

73.7 (56) 85.5 (65) 90.7 (68) 89.3 (67)

% Hispanic/
Latino (n)

25.0 (19) 13.2 (10) 8.0 (6) 9.3 (7)

% Not answered (n) 1.3 (1) 1.3 (1) 1.3 (1) 1.3 (1)

Household income 46.7 (35)

% <$50k (n) 46.1 (35) 56.6 (43) 48.0 (36) 41.3 (31)

% $50k-$149,999 (n) 39.5 (30) 34.2 (26) 48.0 (36) 12.0 (9)

% ≥$150k (n) 14.5 (11) 9.2 (7) 4.0 (3)

Education

% ≤High school (n) 30.3 (23) 35.5 (27) 22.7 (17) 30.7 (23)

% Some college (n) 28.9 (22) 40.8 (31) 36.0 (27) 29.3 (22)

% ≥4-year college
degree (n)

40.8 (31) 23.7 (18) 40.0 (30) 40.0 (30)

Smoking characteristics

Cigarettes/day ( ± SD) 20.9 ± 14.6 19.5 ± 8.8 17.7 ± 7.9 19.8 ± 14.5

HSI ( ± SD) 3.2 ± 1.5 3.4 ± 1.3 3.0 ± 1.4 3.2 ± 1.2

Usual brand flavor

% Menthol (n) 47.4 (36) 43.4 (33) 48.0 (36) 46.7 (35)

Cigarettes/day reflects daily cigarette consumption in the month
preceding the survey.
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FIGURE 3 | Median Effective Delay 50 (ED50) values in the six-trial,
adjusting-delay task for monetary gains (n = 152) and losses (n = 150), scaled
in both days (left y axis) and corresponding years (right y axis). Higher values
of ED50 reflect less discounting of the delayed gain or loss. Significantly
higher ED50s were observed for losses compared to gains (p < 0.001).

Bundle Size × Order, F(2, 594) = 3.304, p = 0.037, ηp
2 = 0.011

interactions were also observed (see Figure 4). No other main
effects or interactions were significant (in all cases, Fs < 2.609,
ps > 0.106; see Supplementary Material for complete reporting
of nonsignificant results). Following ANCOVA, Bonferroni-
adjusted post hoc comparisons were conducted to further
investigate the significant Bundle Size × Sign and Bundle
Size× Order interactions.

Bundle Size × Sign
Analysis of within-subject comparisons revealed significantly
higher indifference points in the bundle-size 3 and 9 conditions
compared to the bundle-size 1 condition in both the gains and
losses groups (in all cases, ps < 0.001). No significant differences
were observed between bundle-sizes 3 and 9 in either the gains or
losses groups (in both cases, ps > 0.174). Analysis of between-
subject comparisons revealed significantly higher indifference
points in the losses compared to the gains group at bundle-size 3
and 9 (in both cases, ps < 0.001), but not bundle-size 1 (control),
p = 0.179.

Bundle Size × Order
Analysis of within-subject comparisons revealed significantly
higher indifference points in the bundle-size 3 and 9 conditions
compared to the bundle-size 1 condition in both the ascending
and descending orders (in all cases, ps < 0.001). No significant
differences were observed between bundle-sizes 3 and 9 in
either the ascending or descending orders (in both cases,
ps > 0.270). Analysis of between-subject comparisons revealed no
significant differences in indifference points between ascending
and descending orders at any bundle size (in all cases, ps > 0.174).

Sensitivity Analysis: Data Quality Checks
A total of 29 participants (9.60% of the sample) failed
one or more of the three quality control questions in

the choice bundling assessment (n = 7, 4, 8, and 10 in
the gains/ascending, gains/descending, losses/ascending, and
losses/descending groups, respectively). In logistic regression, the
odds of this response type did not differ significantly between the
gains and losses groups, OR = 1.177 (0.404, 3.427), p = 0.765,
ascending and descending order groups, OR = 0.548 (0.153,
1.954), p = 0.354, or their interaction, OR = 2.353 (0.469, 11.796),
p = 0.298.

In a sensitivity analysis, the ANCOVA described above
was repeated when excluding these 29 participants. Briefly,
all conclusions for main effects, interactions, and adjusted
post hoc comparisons were consistent with those from the
primary analysis. Full results are provided in Supplementary
Material Section 2.2.

Sensitivity Analysis: Unrealistic Delays
Due to the use of participant-specific ED50 values as intervals
between consecutive gains/losses in the adjusting-amount task,
participants with high ED50 values encountered delays to one
or more bundled consequences that exceeded their expected
lifespan. For example, if a participant’s ED50 value in the six-
trial, adjusting delay task were approximately 20 years, then
any delayed gain or loss beyond the third in the bundle-size
9 condition would feature a delay exceeding 60 years (e.g.,
20 years × 4 = 80). We thus explored the frequency with
which participants encountered these unrealistic delays and their
possible influence on outcomes.

Taking a conservative approach, we identified all participants
exposed to a maximum delay in the choice bundling assessment
(i.e., the final gain or loss at bundle-size 9, or ED50 × 9) that
exceeded their expected remaining life years, given their current
age. Expected remaining life years for the United States general
population were collected from data reported by the National
Center for Health Statistics and the Centers for Disease Control
(Arias, 2021), and ranged from 56.9 years for 20-year-olds to
9.1 years for 80-year-olds. A total of n = 57 such participants
(18.87% of the sample) were identified who met this criterion
(n = 6, 5, 18, and 28 in the gains/ascending, gains/descending,
losses/ascending, and losses/descending groups, respectively). In
logistic regression, the odds of this response type was significantly
greater in the losses compared to gain groups, OR = 3.684
(1.372, 9.894), p = 0.010, but did not differ significantly
between order groups, OR = 0.822 (0.240, 2.816), p > 0.755,
or the Sign × Order interaction, OR = 2.296 (0.555, 9.502),
p = 0.251.

In a sensitivity analysis, we repeated the ANCOVA described
above when excluding these 57 participants. Briefly, conclusions
for main effects and interactions were consistent with those from
the primary analysis, with the following exception: the effect of
ethnicity was significant, F(1, 240) = 4.357, p = 0.038, ηp

2 = 0.018,
with lower indifference points observed for Hispanic/Latino
compared to other participants; however, ethnicity did not
significantly interact with bundle size, F(2, 480) = 1.277, p = 0.280,
ηp

2 = 0.005. Conclusions from adjusted post-hoc comparisons
were also consistent with those from the primary analysis,
with the following exception. Indifference points in the losses
group were significantly higher compared to the gains group
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FIGURE 4 | Significant effects of the Bundle Size x Sign (A) and Bundle Size x Order (B) interactions on indifference points in the adjusting-amount task. Error bars
reflect 95% confidence intervals. Higher indifference points reflect greater valuation of the LL option. aSignificantly different from bundle-size 1 within the same sign or
order group, p < 0.001. bSignificantly different from the opposing sign or order group at the same bundle size, p < 0.001.

at bundle-size 1 (p = 0.035). Full results are provided in
Supplementary Material, Section 2.3.

DISCUSSION

Data from the present study replicate prior findings in which
choice bundling increases valuation of delayed gains (Kirby
and Guastello, 2001; Ainslie and Monterosso, 2003; Hofmeyr
et al., 2011; Stein et al., 2013; Stein and Madden, 2021),
and extend these findings by showing that choice bundling
produces even larger increases in valuation of delayed losses.
This interaction between choice bundling and sign (gain vs.
loss) was evident in the primary analysis including all data
as well as in sensitivity analyses excluding participants with
potentially poor quality data and unrealistic delays. Likewise,
adjusted post-hoc comparisons generally revealed larger effects
of choice bundling for losses compared to gains. The effects of
bundle size also significantly interacted with bundle-size order
(ascending vs. descending) in all analyses. Importantly, however,
we observed no significant three-way interaction between bundle
size, sign, and order, indicating that the differential effects
of choice bundling for losses compared to gains did not
depend on order.

Choice Bundling and the Sign Effect
In choices for unbundled outcomes, losses are reliably discounted
at a lower rate than gains (Thaler, 1981; Benzion et al., 1989;
Murphy et al., 2001; Estle et al., 2006; Tanaka et al., 2014),
meaning that individuals are typically more likely to minimize
losses in intertemporal choice (by preferring the SS loss) than
to maximize gains (by preferring the LL gain). Indeed, this
“sign effect” for unbundled outcomes was replicated in the
present study in the initial assessment of discounting (see
Figure 3). Although the mechanisms underlying this gain–
loss asymmetry are not well understood, some have argued

(e.g., Loewenstein and Prelec, 1992) that it may emerge from
the phenomenon of loss aversion, in which losses exert greater
influence on choice than equivalently sized gains (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1991; Rasmussen
and Newland, 2008). Loss aversion may, in turn, interact with
the “magnitude effect,” in which larger amounts are discounted
at a lower rate than smaller amounts (Thaler, 1981; Kirby and
Maraković, 1995; Green et al., 1997; Mellis et al., 2017). Because
losses are subjectively valued more highly than gains, the sign
effect in intertemporal choice may be a special instance of the
magnitude effect (e.g., Loewenstein and Prelec, 1992).

The sign effect may also be the result of feelings of dread and
anticipatory anxiety experienced when waiting for losses (Berns
et al., 2006; Hardisty and Weber, 2019; Molouki et al., 2019).
As others have noted (e.g., Hardisty and Weber, 2020), waiting
for gains is a multi-dimensional experience in which individuals
may enjoy imagining the delayed, positive outcomes while also
disliking having to wait for them. In contrast, waiting for losses
or other aversive events is unidimensional, in which individuals
dislike both the outcomes and having to wait for them, producing
greater motivation to escape that aversive emotional state and
“get it over with.”

The present study is the first to demonstrate that the sign
effect is also evident in intertemporal choice for bundled
outcomes. That is, significant interactions between bundle size
and sign were observed in all analyses. Interestingly, in using
the present study’s two-step adaptive procedures, this asymmetry
in bundling effects was evident even when controlling for
baseline differences in discounting of gains and losses; that
is, in analyses in which indifference points in the bundle-
size 1 control did not significantly differ between gains and
losses (see Figure 4 and Supplementary Figure 1). Only in
one sensitivity analysis (see Supplementary Figure 2) were
significant differences between losses and gains observed in the
bundle-size 1 control condition, although the Bundle Size× Sign
interaction nonetheless remained significant in that analysis.
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Choice Bundling and the Preference
Reversal Effect for Unbundled Outcomes
Choice bundling effects are related to another set of experimental
findings, the “preference reversal” effect, in which adding a delay
to both choice options can shift preference between unbundled
SS and LL outcomes (for review, see Madden and Johnson, 2010).
For example, one may prefer an immediate SS reward over a
LL reward (e.g., $500 now vs. $1000 in 1 year), but switch their
preference to the LL reward as the delays to both options increase
(e.g., $500 in 1 year vs. $1,000 in 2 years).

Both the preference reversal effect for unbundled choices and
choice bundling effects emerge from predictions of hyperbolic
delay discounting. Specifically, in the preference reversal effect,
adding an equal delay to both choice options of sufficient length
(depending on individual delay discounting rate; Pope et al.,
2019) allows the hyperbolic discounted value curve of the LL
option to transect and exceed that of the now-discounted SS
option, resulting in greater preference for LL gains (e.g., Rachlin
and Green, 1972; Green et al., 1994; Pope et al., 2019) and SS
losses (Holt et al., 2008). Notably, choice bundling manipulations
also involve adding delays to each sequential pair of SS and
LL outcomes (e.g., see Figure 2). For example, in the present
study, the second SS and LL outcome in the bundling condition
occurred at ED50 and 2∗ED50, respectively; the third SS and LL
outcomes occurred at 2∗ED50 and 3∗ED50, respectively; and so
on (see Figure 2). Thus, the greater relative value of the LL option
in each of these outcome pairs accumulates incrementally in the
summed subjective value of the LL option to exceed that of the SS
option. In this way, choice bundling effects leverage hyperbolic
discounting to influence choice.

Potential Clinical Utility of Choice
Bundling
Prior research demonstrates that high rates of delay discounting
predict initiation of cigarette smoking (Audrain-McGovern
et al., 2009), differentiate smokers from non-smokers and
former smokers (Odum et al., 2002; Stein et al., 2018a),
are associated with greater addiction severity (Johnson et al.,
2007; Sweitzer et al., 2008), and predict relapse following
cessation (Yoon et al., 2007; Sheffer et al., 2014). These findings
establish delay discounting as a potential therapeutic target
(Riddle and Science of Behavior Change Working Group,
2015), in which interventions that reduce delay discounting
may also facilitate smoking cessation (e.g., by increasing the
relative value of long-term good health compared to immediate
nicotine reinforcement). Preliminary experimental evidence
further supports this view, as an intervention that guides
individuals to engage in episodic prospection (i.e., to simulate
future events) reduces delay discounting, cigarette smoking,
and economic valuation of cigarettes (Stein et al., 2016, 2018b;
Chiou and Wu, 2017).

Given these findings, development of additional methods to
mitigate the possible role of high discounting rates in smoking
behavior may yield efficacious treatments for cessation. Choice
bundling has been shown in several studies to increase adaptive
preference for LL gains (for review, see Ashe and Wilson, 2020)

and, in the present study, SS losses. However, the majority of
these studies employed precise control over the timing and
magnitude of behavioral consequences in order to observe
these effects. In contrast, in clinical contexts, manipulation of
the natural consequences of cigarette smoking is not possible.
For example, a treatment provider cannot control when or
how frequently a patient may experience the health losses
associated with continued smoking or health gains associated
with cessation. For this reason, adaptation of laboratory-based
choice bundling methods is necessary before attempts at clinical
application. Two prior laboratory studies (Kirby and Guastello,
2001; Hofmeyr et al., 2011) have shown that a bundling-
focused framing intervention, in which experimenters suggested
to participants’ that their current choices were predictive of
future choices (and are, therefore, bundled) increases preference
for LL gains. Although this framing intervention has not been
evaluated clinically to our knowledge, these studies suggest that
interventions that prompt individuals to view their decisions as
a temporally extended pattern of behavior producing cumulative
outcomes may promote more adaptive intertemporal choice.

Importantly, most of the negative health consequences of
cigarette smoking (e.g., COPD) are chronic conditions in
which bundled symptoms (e.g., impaired breathing, circulation,
and stamina) are experienced and escalate over time. As
suggested previously (Stein and Madden, 2021), bundling-
focused, motivational interventions could therefore be designed
to guide individuals to repeatedly evaluate (e.g., with every urge
to smoke) the cumulative value of long-term health against the
momentary value of nicotine reinforcement. Toward this end,
evidence from the present study that choice bundling produces
larger effects for losses compared to gains may be critical.
That is, gain-loss asymmetry in choice bundling suggests that
attempts to develop bundling-focused clinical interventions for
smoking cessation may take advantage of the sign effect by
emphasizing the negative consequences of continued smoking
as opposed to the positive consequences of smoking cessation.
However, further research is required to determine whether the
sign effect in choice bundling for monetary outcomes generalizes
to other commodities, such as hypothetical health (e.g., Odum
et al., 2002). Likewise, further research should examine whether
the effects of choice bundling are observed during nicotine
withdrawal, as prior research shows that 12 h of smoking
abstinence increases delay discounting (Heckman et al., 2017)
and this nicotine-deprived state may more closely approximate
the clinical environment in which individuals are attempting to
abstain from smoking.

Potential Limitations
A few limitations of the present study deserve note. First, use
of the adjusting-amount task to generate a single indifference
point may have limited resolution to detect effects of choice
bundling. The adjusting-amount task is most commonly used
to assess indifference points across a range of delays (e.g., 1
month to 20 years; Du et al., 2002), yielding a full discounting
curve, from which high-resolution estimates of discounting may
be derived. In contrast, assessment of only a single indifference
point yields a less granular estimate of discounting and may
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have resulted in a ceiling effect that diminished sensitivity to
detect differences between bundle-sizes 3 and 9, as differences
in intertemporal choice for gains between these conditions have
been shown in prior studies using alternative methods (Stein
et al., 2013; Stein and Madden, 2021).

Second, use of the two-step, adaptive procedure in which we
assessed ED50 using the 6-trial, adjusting-delay task followed by
assessment of indifferent points using the adjusting-amount task,
limited the ability to examine concordance between observed
effects and those predicted by individual participants’ k values
in the additive hyperbolic discounting model (Equation 2),
as done previously (Stein et al., 2013; Stein and Madden,
2021). Specifically, if both tasks produced perfectly concordant
estimates of choice, then assessment at the bundle-size 1 (control)
condition should have yielded indifference points at $450 (half
of $900). In contrast, mean indifference points in this condition
were all above $540, regardless of sign or order. This suggests
that the six-trial task overestimates k (i.e., underestimates ED50)
relative to the adjusting-amount task. This is consistent with
prior evidence that the similar five-trial, adjusting-delay task
also produces higher estimates of k than the adjusting-amount
task, despite strong correlations between tasks (e.g., r = 0.67–
0.86 Koffarnus and Bickel, 2014; Stein et al., 2017). In future
studies, researchers should consider the use of only a single task
to minimize measurement error.

Third, as a result of the method in which choice bundling
was arranged, approximately 19% of the sample were exposed
to one or more delays in the adjusting-amount task that likely
exceeded their expected lifespan. This did not substantially
impact our conclusions, as a sensitivity analysis excluding
these participants revealed largely similar effects as the primary
analysis. Nonetheless, in future studies, researchers may explore
use of alternative delays and intervals between bundled
consequences (e.g., half of ED50) in order to reduce or
eliminate the probability of exposure to these unrealistic delays.
Alternatively, as suggested previously (Stein et al., 2013; Stein
and Madden, 2021), bundle size could be limited to no more
than three gains or losses to reduce the cumulative delay period.
This is unlikely to substantially limit effect sizes because observed
effects of choice bundling and those predicted by Equation 2
are largest at smaller bundle sizes, with larger bundle sizes
subject to diminishing marginal efficacy (for discussion, see
Stein and Madden, 2021).

Fourth, although recruitment of opt-in, online panels in
addiction science can provide useful and generalizable evidence
in decision-making research (Strickland and Stoops, 2019; Mellis
and Bickel, 2020), it often yields participant samples that are not
representative of the broader population of interest. This was true
in the present study, in which college-educated adults were over-
represented and minorities were under-represented compared
to prevalence in the United States population of smokers. As
such, future research should examine the generality of the
effects observed here in more diverse, nationally representative
samples. Moreover, despite use of random allocation and
minimal attrition, groups were not balanced on ethnicity (90.0
and 79.61% Non-Hispanic/Latino in the gains and losses groups,
respectively). This imbalance contributed unwanted variability in

choice estimates and may have reduced effect sizes. Nonetheless,
effects of choice bundling were evident even when including
this relatively minor difference in ethnicity as a covariate and,
importantly, ethnicity did not significantly interact with bundle
size, sign, or order to influence choice in the assessment of
choice bundling.

CONCLUSION

We conclude that choice bundling increases valuation of both
delayed monetary gains and losses in cigarette smokers, although
effects for losses are larger compared to gains. Future research
should examine whether choice bundling effects generalize to
non-monetary, health outcomes and whether choice bundling
can lead to efficacious interventions for smoking cessation.
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Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, United States

Delay discounting (DD) research has become ubiquitous due to its robust associations
with clinical outcomes. Typical DD tasks involve multiple trials in which participants
indicate preference between smaller, sooner and larger, later rewards. Scoring of these
binary choice tasks has not considered trial-level ambivalence as a possible decision-
making construct. The present study explored the extent to which trial-level ambivalence
varied within-individual using an established assessment of DD (the Monetary Choice
Questionnaire). Results indicate that degree of ambivalence peaks around the trials
associated with the DD rate. Moreover, ambivalence is associated with a diminished
impact of reward delay differences on choice, where greater delay differences decrease
the odds of choosing the larger, later rewards. Taken together, we believe ambivalence
to be a relevant construct for research on intertemporal decision making, and it may be
particularly useful in the study of manipulations on individual rates of DD.

Keywords: ambivalence, choice, preference, delay discounting, Monetary Choice Questionnaire

INTRODUCTION

Delay discounting (DD) refers to the reduction in the subjective value of an outcome when its
delivery is delayed (Odum, 2011), and a substantial body of literature has linked rates of DD
to behaviors where immediate rewards have delayed consequences. For instance, higher rates of
DD, indicating steeper reductions in subjective value across increasing delays to reward receipt,
are associated with substance misuse (Yi et al., 2010; MacKillop et al., 2011) and poor treatment
outcomes (MacKillop and Kahler, 2009; Sheffer et al., 2012; Stanger et al., 2013), risky sexual
behavior (Chesson et al., 2006), overeating (Kekic et al., 2020), and other behaviors associated with
similar intertemporal trade-offs.

Common procedures for assessing DD are multi-trial binary choice tasks where the individual
indicates preference between smaller, sooner rewards (SSs; usually money) and larger, later rewards
(LLs; also money). Though the manner of determining the index of DD (i.e., scoring) varies by
task, most variations of these binary choice tasks summarize the pattern of choices across all trials
to determine a rate of DD, e.g., the k value per Mazur’s (1987) hyperbolic discounting equation. For
instance, the Monetary Choice Questionnaire (MCQ; Kirby et al., 1999) is a 27-trial binary choice
task where participants are presented fixed pairs of immediate/delayed outcomes and asked to
indicate the preferred outcome in each trial (e.g., “Would you prefer $15 today, or $35 in 13 days?”).
A DD rate obtained from the MCQ reflects the approximate point of switching from preferring the
SSs to LLs when trials are placed in rank order of associated DD rate (i.e., the discount rate at which
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the SS and LL are of equal value). However, an implicit
assumption not explicitly stated in scoring these tasks is that
an individual has a constant degree of certainty (conversely,
ambivalence) in their preference across trials. That is, it is
assumed that a participant who prefers $34 today rather than $35
in 186 days is equally certain in their preference for $15 today
rather than $35 in 13 days. We hypothesize that this assumption
is likely incorrect. That is, as the immediate/delayed outcomes
approach values of subjective equivalence at an individual level,
the decisions become more difficult and increase the degree of
ambivalence about the participant’s preference.

Previous efforts have sought to examine this possibility using
behavioral proxies for the ambivalence construct. As it is intuitive
for a greater degree of deliberation to occur as the subjective
values of two options approach equivalence, one might expect
that the deliberation period increases as the outcomes become
subjectively equivalent at the individual level. Multiple studies
examining choice reaction times (RTs) in DD tasks as the indirect
measure of ambivalence have found that RTs tend to be longest
on trials around the point of subjective equivalence (Robles and
Vargas, 2007, 2008; Rodriguez et al., 2014). Moreover, a study
examining mouse cursor trajectories in similar tasks discovered
that trials around the point of subjective equivalence (termed
indifference point in other DD assessments; Mazur, 1987) were
associated with significantly greater mouse curvatures and, by
implication, deliberation (Dshemuchadse et al., 2013). As these
studies examined behavioral proxies for ambivalence, the current
study sought to explore decision making as it relates to choice
difficulty via degree of participant-reported ambivalence on each
trial of a binary choice DD task. Defining ambivalence as the
state of indecision toward an attitude (in this case, preference),
we proposed to evaluate within-individual variability in degree
of self-reported ambivalence across trials in the MCQ. We used
previous research on ambivalence as a starting point (Priester
and Petty, 1996, 2001) to develop four different assessment
strategies. Within the MCQ, and individual’s k value represents
the approximate point where they switch from preferring SSs to
LLs. Stated differently, along the continuum of MCQ trials, the
k value ostensibly denotes the point of equivalence between SSs
and LLs of the surrounding trials; as such, degree of ambivalence
should steadily increase toward and peak around this “switch
point.” Our overall hypothesis was that ambivalence would
vary across MCQ trials and, specifically, that the (H1) within-
individual variability in ambivalence would track switches in
preference (i.e., ambivalence peaks around switch point).

In addition to discount rates, another means of analyzing
discounting data is via how “sensitive” a participant is to the
relative differences in reward delays and magnitudes of both
choice options (Wileyto et al., 2004; Young, 2018). Within
this paradigm, the reward magnitude and delay sensitivities
individually predict trial-level preference: high sensitivity to
when choice options would be received is associated with
choosing SSs more frequently due to their immediacy, whereas
high sensitivity to how much money each choice option would
deliver is associated with choosing LLs more frequently due to
their magnitude. If a participant’s ambivalence across trials is
relatively high, however, their ability to discriminate between

choice options would likely be reduced. Therefore, we further
hypothesized that individuals experiencing ambivalence between
the choice options would show reduced sensitivities to the
options’ reward delay and magnitude differences. Specifically, as
ambivalence increases, it was hypothesized (H2) that the relative
impact of the reward magnitude and delay sensitivities on trial-
level choices would diminish (i.e., trend toward 0).

MATERIALS AND METHODS

Participants

Participants (N = 370; 79.9% White, 37.5% women,
Mage = 35.12 years, age range: 19–65 years) who self-reported
to be 18 years or older and located in the United States were
recruited from the Amazon Mechanical Turk (MTurk) worker
pool. To qualify, MTurk workers had to have completed at least
100 MTurk “jobs,” i.e., Human Intelligence Tasks (HITs), and to
have at least a 95% HIT approval rate. Participants with these
characteristics have been shown to provide higher quality data
without the use of attention check questions (Peer et al., 2014).

Measures
Delay Discounting Assessment
The standard 27-item MCQ (Kirby et al., 1999) presents
participants with choices between SS/LL monetary rewards. SS
magnitudes range from $11 to $78 and LL magnitudes range from
$25 to $85; the delays for the LLs range from 7 to 186 days. Each
trial is classified into a magnitude condition based on the amount
of the LL, and we only used the small ($25–$35) and large ($75–
$85) magnitude items, resulting in 18 trials used per participant.
Each magnitude condition consists of nine trials, each of which
has an associated discount rate, i.e., k of Mazur (1987), and can
be rank ordered from 1 (lowest associated k value) to 9 (highest
associated k value). See Table 1 for listing of MCQ trials used.

Ambivalence Measurement Conditions
Monetary Choice Questionnaire trials were adapted with four
possible strategies to assess ambivalence (i.e., ambivalence
measurement conditions): A1, A2, A3, and A4. Inclusion of these
four conditions was exploratory, as we are aware of no previous
efforts to assess trial-level ambivalence for preferences in binary
choice DD tasks.

In the A1, A2, or A3 conditions, each MCQ trial was followed
with a question asking the participant to indicate degree of
certainty (A1), unhappiness if receiving the choice they didn’t
select (A2), or indecision (A3; adapted from Priester and Petty,
2001). Participants in the A1, A2, and A3 conditions responded
using an 11-point Likert scale ranging from 0 (not at all
certain, not at all unhappy, feel no indecision at all, respectively)
to 10 (completely certain, completely unhappy, feel maximum
indecision, respectively). In condition A4, the binary choice trials
were replaced with a 100-point continuous slider to indicate
degree of relative preference between strongest preference for the
SS at the far left (0th point) and strongest preference for the LL at
the far right (100th point).
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TABLE 1 | Abbreviated Monetary Choice Questionnaire.

SS LL Delay in days k at indiff. k rank

$34 $35 186 0.00016 1

$78 $80 162 0.00016 1

$28 $30 179 0.00040 2

$80 $85 157 0.00040 2

$22 $25 136 0.0010 3

$67 $75 119 0.0010 3

$25 $30 80 0.0025 4

$69 $85 91 0.0025 4

$19 $25 53 0.0060 5

$55 $75 61 0.0060 5

$24 $35 29 0.016 6

$54 $80 30 0.016 6

$14 $25 19 0.041 7

$41 $75 20 0.041 7

$15 $35 13 0.10 8

$33 $80 14 0.10 8

$11 $30 7 0.25 9

$31 $85 7 0.25 9

Note: k at indiff. = the value of the discount rate at which the immediate and delayed
rewards are of equal value; k rank = trials with the same values of k grouped in
ascending rank order; SS = smaller, sooner rewards; LL = larger, later rewards.
Table adapted from Kirby et al. (1999).

Procedure
The study was administered using Qualtrics. Magnitude
conditions and ambivalence measurement conditions were
paired and counterbalanced such that all participants were
exposed to each magnitude condition of the MCQ (small and
large) via a different ambivalence measurement condition,
termed magnitude-ambivalence pairings. Specifically, initial
data collection only included the A1 and A2 conditions,
whereas subsequent participants (latter half of the sample)
were exposed only to the A3 and A4 conditions. This resulted
in four possible magnitude-ambivalence pairings in A1/A2
(Small-A1 and Large-A2; Small-A2 and Large-A1; Large-A1
and Small-A2; Large-A2 and Small-A1) and four possible
magnitude-ambivalence pairings in A3/A4 (Small-A3 and Large-
A4; Large-A4 and Small-A3; Large-A3 and Small-A4; Small-A4
and Large-A3). Trials within magnitude conditions were blocked
and randomized within that block. Upon completion of the
study, which was estimated to take no longer than 5 min,
participants were compensated the recommended pay rate
requested by MTurk workers, i.e., $0.10 per minute for a total
of $0.50 (Chandler and Shapiro, 2016). Participants read over
an information statement before deciding to participate, and
all procedures were approved by the Institutional Review Board
(Human Research Protection Program) at the University of
Kansas-Lawrence campus.

Data Analysis
All data preparations and plotting were conducted using
the tidyverse framework (Wickham et al., 2019) in the R
3.6.3 statistical environment (R Core Team, 2019). Mixed
model analyses were conducted using the lme4 package

(Bates et al., 2015), and subsequent contrasts and interactions
were probed using the emmeans package (Lenth, 2021).
We report b, the unstandardized coefficients of our
regression models.

Data Preparation
Ambivalence and Choice Scoring
Due to differences in question phrasing and scale ranges,
equivalent numerical scores between the ambivalence
measurement conditions did not necessarily correspond to
identical degrees of ambivalence. For instance, degree of
certainty (A1) refers to the exact opposite of degree of indecision
(A3); moreover, a 10-point Likert scale denoting degree of
certainty (A1) produces qualitatively different scores compared
to a 100-point slider scale (A4) that indicates relative preference
between the SS and LL. Therefore, ambivalence scores were
adjusted such that the minimum possible score represents
least ambivalence, and the maximum possible score represents
most ambivalence. For A1 and A2, scores were flipped about
the midpoint such that 0 represents least ambivalence, and
10 represents most ambivalence. For A3, the original scaling
was preserved (i.e., 0 represents least ambivalence, and 10
represents most ambivalence). For A4, the raw 0–100 scale
provides the relative preference of the LL to the SS (0-completely
prefer SS; 100-completely prefer LL); therefore, to calculate
ambivalence via the distance from the midpoint, each score
was subtracted by 50, made an absolute value, subtracted again
by 50, made again an absolute value (so that 0 represents least
ambivalence, and 50 represents most ambivalence), and lastly
divided by 5 to match the scale range (0–10) of the other
ambivalence conditions.

Maximum Ambivalence and Switch Trial Computation
Within a magnitude condition for each participant, the
maximum ambivalence trial was denoted as the trial with
the highest ambivalence score. Trial numbers were averaged
if multiple trials had the same maximum ambivalence score.
To designate the trial for the switch point, we denoted the
second trial around the switch in preference as the switch trial
(i.e., the first trial where an LL is preferred when trials are
ordered by ascending k rank) for participants who switched
preference once across trials. For participants with multiple
switch points, k values were computed as the discount rate
most consistent with the response pattern or as the geometric
mean of discount rates that were equally consistent (Gray
et al., 2016). Then, the switch trial was denoted as the trial
with the k value of the next highest k rank. For instance,
if a response pattern yielded a 0.0019 k value, the switch
trial would be marked as 4 according to its k rank (in
Table 1).

H1: Within-Individual Ambivalence Tracks Preference
Switches
Prior to any H1 analyses, trial numbers were centered within
individuals such that 0 represents the switch trial. Although
the location of switch trials varied between individuals and
magnitude conditions, preference switches occurred most often
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within two trials around MCQ trial 6 by k rank. Thus,
switch-centered trials farthest away from the 0-point had
relatively few data points and high standard errors. To
address this, switch-centered trials with cell counts totaling
less than 20% of the participant count within each magnitude-
ambivalence pairing were removed prior to H1 analyses.
Moreover, if a participant never switched preference for a
given magnitude condition, then that trial set was excluded
from analyses because switch trials cannot be readily estimated
from such response patterns (their data are shown in the
Supplementary Material). For reference, 15.1 and 16.5% of
our response patterns in small and large magnitude conditions,
respectively, did not show a preference switch, whereas by
ambivalence measurement condition, response patterns without
preference switches were: A1 (16.8%), A2 (14.6%), A3 (14.1%),
and A4 (17.8%).

As previously stated, it was expected that ambivalence would
peak around the switch point. Initially, we attempted to fit non-
linear curves (i.e., Gaussian and Cauchy) to the ambivalence
scores via the nlme package in R (Pinheiro et al., 2021) due to
the apparent non-linear form of the data. However, the non-
linear models had convergence issues potentially due to a subset
of individuals not showing the apparent non-linear form. Thus,
instead of a non-linear approach, we used a dual-slopes mixed
model with two linear slopes for before and after the switch
trial and set the intercept on the switch trial; this intercept
was chosen via model comparisons showing that the point of
maximum ambivalence for most individuals was indeed at the
switch trial (see Supplementary Material for more information
on this approach).

The two slope terms were then quantified to determine (1) if
ambivalence scores do indeed increase prior to the switch trial,
(2) if, after a switch trial, ambivalence scores decrease again,
and 3) whether there is asymmetry between slopes before versus
after the switch trial. All nominal factors (magnitude condition,
ambivalence measurement condition) within the model were
effects coded. Random effects included both slope terms and
random intercepts that were nested within individuals.

H2: Trial-Level Ambivalence Covaries With
Diminished Sensitivities to Reward Delay and
Magnitude
The goal of H2 analyses was to investigate whether greater
degree of ambivalence is associated with diminished sensitivity
to reward magnitude and delay differences as it relates
to trial-level choice. We compared logistic mixed models
following previous examples (Wileyto et al., 2004; Young, 2018)
to determine if adding ambivalence variables (measurement
conditions and scores) provided incremental predictive validity
according to Akaike Information Criterion (AIC; Akaike,
1974). When interpreting AIC values, lower values indicate
preferred models with a minimum difference of 4 required
to prefer one model over another (Burnham et al., 2011).
Three models were compared: (1) a “Base” model with only
reward magnitude and delay sensitivity predictors (natural log-
transformed LL/SS ratios) as done previously (Wileyto et al.,
2004; Young, 2018), (2) a “BaseAmbMag” model with the

reward sensitivities and magnitude-ambivalence pairings, and
(3) an “AmbMag” model with reward sensitivities, magnitude-
ambivalence pairings, and ambivalence scores. The interaction
terms between the reward sensitivities and ambivalence scores
would directly test H2, assuming that AmbMag is found to
be the preferred model according to AIC differences. For
all models, reward sensitivities were included as continuous,
random effects in addition to their fixed effects. Any model
terms that did not include the reward sensitivities, either as first-
order terms or interactions, were removed as done previously
(Young, 2018).

RESULTS AND DISCUSSION

Participant Attention and Data Quality
We used the detection of the magnitude effect (Thaler, 1981;
Benzion et al., 1989; Myerson and Green, 1995; Green et al., 1997;
Grace and McLean, 2005), the well-established phenomenon
where smaller rewards are discounted more steeply than larger
rewards, as our group-level attention check. A paired samples
t-test contrasted within-individual differences in natural log-
transformed k values between small and large magnitude
conditions, and detected a significant difference, t(369) = 26.35,
p < 0.001, Cohen’s d = 0.32, with small magnitude rewards
being discounted more steeply than large magnitude ones,
MDifference = 0.66, SD = 0.48. Although this study is limited in
the lack of response validity indicators to gauge participants’
attentiveness and engagement, our replication of the well-
established magnitude effect serves as our group-level attention
check and provides some assurance that participants were paying
attention to the survey. Moreover, only MTurk workers that
had completed at least 100 HITs with at least a 95% HIT
approval were eligible for this study, which has been shown
to provide higher quality data (Peer et al., 2014) and has
been recommended as an alternative to using attention checks
(Chandler and Shapiro, 2016). Additionally, when averaging
consistency estimates between magnitude conditions, 79.2%
of our participants had perfect consistency (one switch point
per magnitude condition). Some researchers have suggested
consistency scores serve as a proxy for attentiveness (Gray
et al., 2016), so we believe the majority of our participants
paid attention to and understood the task. Finally, there have
been reports of “poorer data quality” in MTurk studies because
of the presence of non-United States participants who may
be hiding their IP address and subsequent geolocation (for a
discussion, refer to Kennedy et al., 2020). Our data suggest
that 2.9% of our sample consisted of participants with IP
addresses outside the United States, whereas 7.3% of our
sample used a virtual private network (VPN) to mask their
geolocation. We elected not to remove these participants because
(1) we believed the proportion of non-US participants was
sufficiently small and unlikely to impact our results and (2)
it is not uncommon for many United States participants to
use a VPN service (Security.org Team, 2021). Moreover, even
amongst the literature suggesting that a higher proportion of
data from individuals using VPN is “poorer quality” (e.g.,
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Kennedy et al., 2020), the absolute rate of “poorer quality”
data remains low.

H1: Within-Individual Ambivalence
Tracks Preference Switches
Figures 1, 2 show mean ambivalence scores centered on switch
trials across magnitude-ambivalence pairings overlaid with dual-
slopes mixed model predictions. Visual inspection of the figures
suggests qualitative support for H1. That is, when centered on
participants’ respective switch trials, ambivalence peaks around
and steadily declines away from the switch trial. However, while
the aggregate data took on an apparent non-linear form, many
participants also showed constant ambivalence across trials (8.7–
29.9% of individuals depending on the magnitude-ambivalence
pairing; see Supplementary Figure 3 in the Supplementary
Material for exemplar ambivalence score patterns). This
between-subject variability may have led to the non-linear models
described in section “Materials and Methods” failing to converge.
As such, a dual-slopes linear mixed model quantified the apparent
trends utilizing slope terms for ambivalence scores both before
and after the switch trial.

The results from the dual-slopes linear mixed model overall
supported the H1 hypothesis (see Table 2). Across magnitude-
ambivalence pairings, ambivalence scores increased prior to the
switch trial (b = 0.37, 95% CI = [0.32, 0.42], SEM = 0.02,
p < 0.001) and decreased after the switch trial (b = −0.53, 95%
CI = [−0.60, −0.46], SEM = 0.04, p < 0.001). The decreases in
ambivalence scores following the switch trial were also sharper
than the increases preceding it (ps < 0.001); however, post-switch
slopes were likely steeper due to the right side of the switch
trial on the X-axis containing more trials across pairings (see
Figures 1, 2). All slope values between pairings were significantly
different from 0 (positive before switch, negative after switch;
ps < 0.001), meaning each ambivalence measurement condition
seemed to adequately characterize degree of ambivalence
across the switch-centered MCQ trials. Given the multiple
ambivalence measurement conditions, a secondary question
of interest was concerned with identifying the condition that
characterized ambivalence with highest sensitivity. However,
the data showed minimal differences between conditions: the
only significant comparison was A4 having a more negative
slope after switch compared to A3 (p < 0.01). In that
regard, ambivalence measurement conditions showed relatively
consistent sensitivity in characterizing ambivalence scores for
switch-centered trials. Additionally, ambivalence score means
for switch-centered trials (Figures 1, 2) were relatively low
and close to score means for trial sets where participants
did not switch preference (Supplementary Figures 1, 2).
Although this observation is important to note, we believe
the lack of within-individual variation in participants who did
not switch preference provides further support for H1 and
that the relevant comparison is the constant versus variable
ambivalence for trial sets without a switch trial and those with
one, respectively.

Overall, H1 was supported in that ambivalence scores tended
to vary across trials and track switches in preferences. Our

TABLE 2 | Parameter estimates of the dual-slopes linear mixed model of
ambivalence scores.

Fixed effects

Parameter b 95% CI SE z/t p

(Intercept) 3.60 [3.36, 3.84] 0.12 29.57 <0.001

SmallMag −0.02 [–0.12, 0.09] 0.05 − 0.30 0.76

A1 –0.65 [−0.93, −0.37] 0.14 –4.52 <0.001

A2 1.98 [1.70, 2.26] 0.14 13.78 <0.001

A3 –0.40 [−0.68, −0.12] 0.14 –2.78 0.01

Pre-Switch 0.37 [0.32, 0.42] 0.02 14.77 <0.001

Post-Switch –0.53 [−0.60, −0.46] 0.04 –14.76 <0.001

SmallMag × A1 −0.12 [−0.47, 0.23] 0.18 −0.67 0.50

SmallMag × A2 0.05 [−0.30, 0.40] 0.18 0.28 0.78

SmallMag × A3 −0.02 [−0.38, 0.33] 0.18 −0.14 0.89

SmallMag × Pre-Switch −0.002 [−0.03, 0.04] 0.02 0.07 0.95

SmallMag × Post-Switch 0.01 [−0.04, 0.07] 0.03 0.51 0.61

A1 × Pre-Switch −0.06 [−0.13, 0.01] 0.04 −1.68 0.09

A1 × Post-Switch −0.02 [−0.13, 0.08] 0.05 −0.46 0.65

A2 × Pre-Switch −0.03 [−0.10, 0.04] 0.04 −0.83 0.40

A2 × Post-Switch 0.07 [−0.04, 0.18] 0.05 1.28 0.20

A3 × Pre-Switch −0.001 [−0.07, 0.07] 0.04 −0.06 0.95

A3 × Post-Switch 0.12 [0.02, 0.22] 0.05 2.38 0.02

SmallMag × A1 × Pre-
Switch

0.04 [−0.03, 0.12] 0.04 1.13 0.26

SmallMag × A2 × Pre-
Switch

0.02 [−0.05, 0.10] 0.04 0.59 0.55

SmallMag × A3 × Pre-
Switch

–0.11 [−0.19, −0.03] 0.04 –2.82 0.05

SmallMag × A1 × Post-
Switch

−0.02 [−0.13, 0.10] 0.06 −0.31 0.76

SmallMag × A2 × Post-
Switch

−0.04 [−0.16, 0.07] 0.06 −0.71 0.48

SmallMag × A3 × Post-
Switch

0.17 [0.06, 0.28] 0.06 3.11 0.002

SmallMag, small magnitude condition; Pre-Switch, slope term before switch point
(i.e., before switch); Post-Switch, slope term after switch point (i.e., after switch);
A1, Ambivalence measurement condition 1; A2, Ambivalence measurement
condition 2; A3, Ambivalence measurement condition 3; 95% CI reflect Wald
confidence intervals. Significant effects in bold.

study shows that participant-reported ambivalence scores peak
at the switch trial and steadily decrease away from it with
minimal differences between magnitude-ambivalence pairings,
which to the authors’ knowledge is the first study to validate
this within an assessment of DD. These findings parallel
those of studies using mouse cursor trajectories (Dshemuchadse
et al., 2013) and response times (Robles and Vargas, 2007,
2008; Rodriguez et al., 2014) to explore decision making
around the point of subjective value equivalence, which show
correlates of greater choice deliberation. While these convergent
findings are interesting, it is presently unclear whether cursor
trajectories or RTs merely covary with ambivalence scores or
directly map onto the ambivalence construct. Regardless, the
demonstrated variability in ambivalence scores and relation
to trials associated with the discount rate allowed us to
investigate how ambivalence factors in trial-level decision
making in H2.
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FIGURE 1 | Mean ambivalence scores and dual-slopes mixed model predictions for small magnitude trials split by ambivalence measurement condition. X-axis
denotes the MCQ trial number centered by switch trial, Y-axis denotes the degree of ambivalence, and the panels denote the specific magnitude-ambivalence
pairing: (A) Small-A1; (B) Small-A2; (C) Small-A3; (D) Small-A4. Black points indicate the trial-level means in self-reported ambivalence scores with standard error
bars. Gray lines indicate the predicted ambivalence scores from the dual-slopes mixed model.

H2: Trial-Level Ambivalence Covaries
With Diminished Sensitivities to Reward
Delay and Magnitude
H1 revealed that within-individual ambivalence tracked switches
in preference across DD trials. H2 sought to extend H1
by testing associations between trial-level ambivalence and
sensitivities to reward magnitudes and delays. We first compared
predictive utility based on AIC scores of an omnibus model
including reward sensitivities, magnitude-ambivalence pairings,
and ambivalence scores (AmbMag) to a model with only
the reward sensitivities and magnitude-ambivalence pairings
(BaseAmbMag) as well as a model with only the reward
sensitivities (Base). Overall, the AmbMag model (omnibus;
AIC = 4112.0) had substantially improved predictive utility
compared to the BaseAmbMag model (AIC = 4159.0, 1AIC = 47
versus AmbMag), which itself evinced substantially improved
predictive utility compared to the Base model (AIC = 4306.1,
1AIC = 147.1 versus BaseAmbMag). The results therefore
warrant that adding ambivalence estimates to models predicting
DD choices improves model accuracies.

The omnibus AmbMag model estimates are shown in Table 3.
The effects of reward magnitude (OR = 420836.64, b = 12.95, 95%

CI = [11.01, 14.90], SEM = 0.99, p < 0.001) and delay (OR = 0.29,
b = −1.25, 95% CI = [−1.38, −1.12], SEM = 0.07, p < 0.001)
both significantly modulated DD choices as shown previously
(Young, 2018). Specifically, as the magnitude differences between
choice options increasingly favored the LL option, so too did
trial choices. Conversely, as the LL became increasingly delayed
relative to the SS, choice allocations favored the SS. Moreover, the
reward delay sensitivity was found to depend on the magnitude
condition (OR = 0.90, b = −0.11, 95% CI = [−0.16, −0.06],
SEM = 0.03, p < 0.001), such that participants were more
sensitive to the reward delay differences in the small magnitude
condition compared to the large magnitude one (p < 0.001).
This interaction reflects what is commonly referred to as the
“magnitude effect” within DD research (Thaler, 1981; Benzion
et al., 1989; Myerson and Green, 1995; Green et al., 1997; Grace
and McLean, 2005), and serves as further evidence that reward
magnitude is a key dimension in DD decision making.

Across magnitude-ambivalence pairings, the effect of reward
delay sensitivity (OR = 1.03, b = 0.03, 95% CI = [0.01,
0.04], SEM = 0.01, p < 0.001) on trial-level choice decreased
as ambivalence scores increased (i.e., increasing ambivalence
trended delay sensitivity values toward 0). In other words, the
delay to the LL seemed to weigh less in participants’ decision
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FIGURE 2 | Mean ambivalence scores and dual-slopes mixed model predictions for large magnitude trials split by ambivalence measurement condition. X-axis
denotes the MCQ trial number centered by switch trial, Y-axis denotes the degree of ambivalence, and the panels denote the specific magnitude-ambivalence
pairing: (A) Large-A1; (B) Large-A2; (C) Large-A3; (D) Large-A4. Black points indicate the trial-level means in self-reported ambivalence scores with standard error
bars. Gray lines indicate the predicted ambivalence scores from the dual-slopes mixed model.

making when they were less certain about their preference.
While we observed significant interactions between reward
delay sensitivity, ambivalence scores, magnitude condition, and
ambivalence measurement condition (see Table 3), we choose
not to interpret these effects as (1) H1 analyses showed all
magnitude-ambivalence pairings to consistently characterize
trends in ambivalence scores and (2) we had no a priori
hypotheses regarding differences between the ambivalence
measurement conditions.

That ambivalence scores covary with reduced sensitivities
to delays between choice options demonstrates a novel finding
in DD research. Nonetheless, H2 is partially supported in that
participants’ sensitivity to reward magnitude differences does not
seem to vary even as their choice ambivalence increases, and they
may also look to features other than the delays between choice
options when making their decision. However, what features may
become more prominent during states of ambivalence is left to
future research.

Limitations and Future Directions
It is necessary to acknowledge that the primary limitation of
our study is the use of hypothetical outcomes for our DD

assessment. However, prior research has shown statistically
equivalent effects when using real versus hypothetical rewards
for these assessments (Matusiewicz et al., 2013). A broader
limitation of our study is the use of the MCQ as our chosen
DD assessment. Although it is a popular task for assessing
DD, some have criticized its fixed-choice structure as lacking in
adequate sampling of the possible parameter space of reward
magnitudes and delays (Young, 2018). For instance, while the
range of magnitude differences is $1–$54 (translates to 0–1 in
natural log transformed magnitude ratio between LL/SS), the
range of delays to LL receipt is 7–186 days (translates to 2–6
in natural log transformed delay ratio between LL/SS). Hence,
it is unclear how ambivalence may track participants’ choice
patterns given an alternative DD assessment. Future research
may consider alternative assessments and models of DD to
study choice ambivalence, including ones that incorporate each
trial-level decision to model discounting behavior (Dai and
Busemeyer, 2014; Rodriguez et al., 2014; Dai et al., 2016; Molloy
et al., 2020; Kvam et al., 2021).

Furthermore, the present study is limited in the lack of
response validity indicators to gauge attentiveness at the level
of individual participants (for a discussion on response validity
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TABLE 3 | Parameter estimates of the logistic mixed model of ambivalence and sensitivities to delay and magnitude ratio.

Fixed Effects

Parameter OR b 95% CI SE z/t p

AmbMag Model

MagRatio 420836.64 12.95 [11.01,14.90] 0.99 13.05 <0.001

DelayRatio 0.29 −1.25 [−1.38, −1.12] 0.07 −18.42 <0.001

MagRatio × SmallMag 0.65 −0.43 [−0.89,0.03] 0.23 −1.84 0.065

DelayRatio × SmallMag 0.90 −0.11 [−0.16, −0.06] 0.03 −4.01 <0.001

MagRatio × A1 0.84 −0.18 [−2.67,2.31] 1.27 −0.14 0.89

MagRatio × A2 0.31 −1.16 [−3.73,1.40] 1.31 −0.89 0.37

MagRatio × A3 1.40 0.34 [−0.92,1.61] 0.65 0.53 0.59

DelayRatio × A1 0.94 −0.06 [−0.19,0.07] 0.07 −0.92 0.36

DelayRatio × A2 1.02 0.02 [−0.12,0.15] 0.07 0.22 0.82

DelayRatio × A3 1.05 0.05 [−0.08,0.18] 0.07 0.78 0.44

MagRatio × AmbScore 0.90 −0.10 [−0.24,0.03] 0.07 −1.49 0.14

DelayRatio × AmbScore 1.03 0.03 [0.01,0.04] 0.01 3.81 <0.001

MagRatio × SmallMag x A1 1.16 0.15 [−1.60,1.90] 0.89 0.17 0.87

MagRatio × SmallMag x A2 0.55 −0.60 [−2.41,1.20] 0.92 −0.65 0.51

MagRatio × SmallMag x A3 1.08 0.08 [−1.63,1.79] 0.87 0.10 0.92

DelayRatio × SmallMag x A1 1.00 0 [−0.16,0.17] 0.08 0.05 0.95

DelayRatio × SmallMag x A2 1.13 0.12 [−0.05,0.30] 0.09 1.41 0.16

DelayRatio × SmallMag x A3 1.16 0.15 [−0.01,0.31] 0.08 1.81 0.07

MagRatio × SmallMag × AmbScore 0.98 −0.02 [−0.13,0.09] 0.06 −0.36 0.72

DelayRatio × SmallMag × AmbScore 1.01 0.01 [−0.01,0.02] 0.01 1.09 0.27

MagRatio × AmbScore × A1 0.78 −0.25 [−0.47, −0.03] 0.11 −2.20 0.03

MagRatio × AmbScore × A2 1.12 0.11 [−0.08,0.31] 0.10 1.15 0.25

MagRatio × AmbScore × A3 1.03 0.03 [−0.16,0.23] 0.10 0.33 0.74

DelayRatio × AmbScore × A1 1.00 0 [−0.02,0.02] 0.01 −0.04 0.97

DelayRatio × AmbScore × A2 0.99 −0.01 [−0.03,0.01] 0.01 −1.33 0.18

DelayRatio × AmbScore × A3 0.97 −0.03 [−0.05, −0.01] 0.01 −3.02 0.002

MagRatio × SmallMag × A1 × AmbScore 0.91 −0.09 [−0.34,0.15] 0.13 −0.75 0.45

MagRatio × SmallMag × A2 × AmbScore 1.06 0.06 [−0.16,0.28] 0.11 0.53 0.59

MagRatio × SmallMag × A3 × AmbScore 1.21 0.19 [−0.004,0.39] 0.01 1.92 0.054

DelayRatio × SmallMag × A1 × AmbScore 1.02 0.02 [−0.001,0.05] 0.01 1.98 0.057

DelayRatio × SmallMag × A2 × AmbScore 0.96 −0.04 [−0.06, −0.01] 0.01 −3.14 0.002

DelayRatio × SmallMag × A3 × AmbScore 0.99 −0.01 [−0.03,0.01] 0.01 −1.08 0.28

MagRatio, sensitivity to magnitude differences; DelayRatio, sensitivity to delay differences; A1, Ambivalence condition 1; A2, Ambivalence condition 2; A3, Ambivalence
condition 3; OR, odds ratio. 95% CI reflect Wald confidence intervals. Significant effects in bold.

indicators, see Chmielewski and Kucker, 2020). While we
believe participants demonstrated sufficient attentiveness on
a group level, we cannot rule out the possibility that the
potential inclusion of participants that might have otherwise
failed response validity indicators impacted our model estimates.
Participants who used a VPN or had a non-United States
IP address may have been more likely to fail such indicators
and bias our estimates further. This project also did not
include a comparator condition to assess whether inquiries
about ambivalence impacted rate of DD, nor did it include
potentially less reactive measures of ambivalence, such as trial-
level RT as in previous work (Robles and Vargas, 2007, 2008;
Rodriguez et al., 2014).

A direction for future research would be to directly assess
the convergence between non-reactive (e.g., response time) and
reactive (e.g., mouse cursor trajectory, self-reported ambivalence

scores) measures relevant to choice difficulty. One idea that
we propose might be particularly worthwhile is a construct
we call the window of ambivalence. Ambivalence is relatively
high for several trials around the switch trial when observing
Figures 1, 2. This range of relatively high ambivalence scores
may be termed the “window of ambivalence,” which has
not been identified in previous research. We attempted to
index this window by assessing the spread parameters from
non-linear distribution curve fits to ambivalence data across
trials. However, similar to our previous non-linear modeling
attempts, the models had convergence issues that deemed the
analysis plan untenable (see Supplementary Material for more
information on this approach). Future research may wish to
expand upon this work through assessing the true functional
form of the window of ambivalence. Then, researchers could
include manipulations of DD (e.g., Radu et al., 2011) to
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see whether the ambivalence window tracks the change in
discounting rate along the trial continuum (such as in the
MCQ) and whether the window expands or shrinks following
the manipulation.

In conclusion, we used largely novel assessment strategies
to characterize trial-level ambivalence in a DD task. On a
group-level, our results showed that: (1) ambivalence tracks
preference switches across trials; and (2) ambivalence is
associated with a reduced ability to discriminate between
reward delays when it comes to trial-level choice. We believe
that ambivalence may be an interesting construct to explore
further in research on DD choice and manipulations of
individual rates of DD.
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Delay discounting, the tendency for outcomes to be devalued as they aremore temporally

remote, has implications as a target for behavioral interventions. Because of these

implications, it is important to understand how different states individuals may face, such

as deprivation, influence the degree of delay discounting. Both dual systems models

and state-trait views of delay discounting assume that deprivation may result in steeper

delay discounting. Despite early inconsistencies and mixed results, researchers have

sometimes asserted that deprivation increases delay discounting, with few qualifications.

The aim of this review was to determine what empirical effect, if any, deprivation has on

delay discounting. We considered many kinds of deprivation, such as deprivation from

sleep, drugs, and food in humans and non-human animals. For 23 studies, we analyzed

the effect of deprivation on delay discounting by computing effect sizes for the difference

between delay discounting in a control, or baseline, condition and delay discounting

in a deprived state. We discuss these 23 studies and other relevant studies found in

our search in a narrative review. Overall, we found mixed effects of deprivation on delay

discounting. The effect may depend on what type of deprivation participants faced. Effect

sizes for deprivation types ranged from small for sleep deprivation (Hedge’s gs between

−0.21 and 0.07) to large for opiate deprivation (Hedge’s gs between 0.42 and 1.72). We

discuss possible reasons why the effect of deprivation on delay discounting may depend

on deprivation type, including the use of imaginedmanipulations and deprivation intensity.

The inconsistency in results across studies, even when comparing within the same type

of deprivation, indicates that more experiments are needed to reach a consensus on the

effects of deprivation on delay discounting. A basic understanding of how states affect

delay discounting may inform translational efforts.

Keywords: delay discounting, review, state, deprivation, withdrawal

INTRODUCTION

Delay discounting refers to the tendency for outcomes to be devalued as they occur more remotely
in the future (Mazur, 1987; Odum, 2011a). Delay discounting is used as a measure of sensitivity
to delayed consequences, where greater delay discounting indicates less sensitivity to delayed
consequences (Strickland and Johnson, 2021). Greater degree of delay discounting has been
associated with a variety of poor health behaviors, including smoking (e.g., Bickel et al., 1999;
Mitchell, 1999), substance use (e.g., Reynolds, 2006; MacKillop et al., 2011), more energy-dense
food purchasing choices (e.g., Appelhans et al., 2019), risky sexual behaviors (e.g., Johnson and
Bruner, 2012; Sweeny et al., 2020), problematic gambling (e.g., Alessi and Petry, 2003), and lower
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exercise frequency (e.g., Daugherty and Brase, 2010; Sweeney
and Culcea, 2017). In addition, a meta-analysis indicated that
individuals diagnosed with schizophrenia, bipolar disorder,
and major depressive disorder may tend to have steeper
delay discounting than controls (Amlung et al., 2019). Delay
discounting also predicts success in substance use treatment
programs for adolescents using marijuana (Stanger et al., 2012)
and for mothers who smoke tobacco cigarettes (Yoon et al.,
2007). Because of associations with numerous health behaviors
and psychiatric illnesses (Amlung et al., 2019; Levitt et al., 2020),
delay discounting has been called a trans-disease process (Bickel
et al., 2019; Felton et al., 2020; although see Bailey et al., 2021).

As a trans-disease process, delay discounting may be so
steep or so shallow that it is considered maladaptive. For
instance, individuals with substance use disorders may show
excessive delay discounting (i.e., less sensitivity to delayed
rewards) whereas individuals with anorexia nervosa may show
especially low delay discounting (i.e., less sensitivity to immediate
rewards; Levitt al., 2020). Several behavioral interventions have
been developed that seek to reduce steep discounting, and thus
patterns of maladaptive behavior (Rung and Madden, 2018). For
instance, episodic future thinking (EFT; prospective imagining)
has been shown to reduce delay discounting of money and
number of self-administered cigarette puffs in the laboratory
(Stein et al., 2016). To help individuals make optimal choices (i.e.,
choices that decrease risk of morbidity andmortality; Fields et al.,
2014), it is important to consider the state that a person is in while
making a choice. Delay discounting may change due to changes
in state (Odum and Baumann, 2010). Deprivation is a state
that may influence sensitivity to rewards. One might reasonably
predict that individuals are more sensitive to immediate rewards
when they are hungry, tired, thirsty, or more broadly, when they
are deprived of something they need.

Deprivation is generally regarded as a fundamental
determinant of reinforcer effectiveness, especially for behavior
analysts (e.g., Michael, 1982; Miller, 2006). For instance, food
may be more valuable when an individual is hungry and less
so when sated. Furthermore, non-human animals are generally
food restricted in behavioral research when food serves as a
reinforcer (e.g., Hurwitz and Davis, 1983). Evolutionarily, it
may be adaptive for immediate outcomes to be more valuable
when deprived (Logue, 1988). Withdrawal, or deprivation from a
drug, may increase valuation for immediate rewards specifically
when the reward may be used to reduce negative affect brought
on by withdrawal (Baker et al., 2004). Deprivation clearly
has implications for the valuation of an outcome; after being
deprived, something one needs immediately to survive may have
a much higher value than other things (see Loewenstein, 1996).

The relationship between deprivation and valuation was
studied as early as the 1980s in the self-control paradigm
(e.g., Christensen-Szalanski et al., 1980). In the self-control and
the delay discounting paradigms, participants make a series of
choices between smaller sooner and larger later outcomes. In
the delay discounting paradigm, tasks aim to find amounts
participants are indifferent to receiving now or at a range of
delays (Odum, 2011a). Indifference points are then plotted to
create a delay discounting curve and mathematical models can

be fit to the indifference points (see, e.g., Mazur, 1987; Green
andMyerson, 2004). The dependent measures often used in delay
discounting, the parameter k and the Area Under the Curve
(AUC), are determined by the shape of the whole curve. In delay
discounting, a greater number of smaller sooner choices results
in a steeper delay discounting curve. In contrast, there are no
indifference point curves in the self-control paradigm. Rather, the
frequency of larger later choices may be determined for a number
of delays or sometimes only one delay (Evenden and Ryan,
1996). A greater number of choices for larger later outcomes
indicates more self-control and less impulsivity (De Wit, 2009).
In humans and non-human animals, number of choices for larger
later outcomes has been found to found to increase, decrease,
and not change as a result of food deprivation (Logue and Peña-
Correal, 1985; Logue et al., 1988; Kirk and Logue, 1997), contrary
to assumptions. Other frameworks that predict an increase in
sensitivity to immediate consequences due to deprivation include
dual systems approaches (e.g., Van den Bos and McClure, 2012).

Delay discounting has long been theorized to involve the
interplay between two (dual) systems (e.g., Schneider and
Shiffrin, 1977; Thaler and Shefrin, 1981; Schelling, 1984). Some
researchers conceptualize impulsivity as transitioning from cold
to hot states (Logue, 1988; Metcalfe and Mischel, 1999; Frederick
et al., 2002) while others refer to a myopic “doer” and a farsighted
“planner” (Thaler and Shefrin, 1981). More recently, researchers
have investigated how several different neurological systems
may interact to determine delay discounting choices (Frost and
McNaughton, 2017; Noda et al., 2020; Loganathan et al., 2021).
These models all include a valuation system and a cognitive
control system. The valuation system consists of at least the
ventral striatum, ventromedial prefrontal cortex, and medial
orbitofrontal cortex and determines the present value of the two
choice alternatives (smaller sooner and larger later, e.g., Noda
et al., 2020; Loganathan et al., 2021; Stanger et al., 2013).The
cognitive control system, including the lateral prefrontal cortex
and dorsal anterior cingulate cortex, compares the present value
of the two choices (Bickel et al., 2018; Noda et al., 2020;
Loganathan et al., 2021).

In the competing neurobehavioral decision systems (CNDS)
dual-systems model, dysregulation of the cognitive control
system and the valuation system leads to maladaptive behavior
(Bickel et al., 2012, 2016, 2019). Greater activation of the
valuation system relative to the control system is associated with
more choices for smaller sooner outcomes in delay discounting
tasks (Frost andMcNaughton, 2017). For example, a smaller Area
Under the Curve (AUC; Myerson et al., 2001) is associated with
greater activation in the valuation system, specifically the ventral
striatum, and less activation in the executive system, specifically
the ventromedial prefrontal cortex (Frost and McNaughton,
2017). Dysregulation of the executive and valuation systems is
thought to be caused by factors such as stress and substance
use (e.g., cocaine, Bickel et al., 2016). For instance, stress may
reduce cognitive resources, leading to a hypoactive control
system (Bickel et al., 2014, 2016). Accordingly, the CNDS model
predicts that deprivation may result in hyperactivity in the
valuation system or hypoactivity in the control system, leading
to a greater number of choices for smaller sooner outcomes in a
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delay discounting task, seemingly resulting in greater sensitivity
to immediate outcomes (Loewenstein, 1996; Bickel et al., 2012;
Van den Bos and McClure, 2012).

Because delay discountingmay be both state-like and trait-like
(Odum, 2011b; Odum et al., 2020; Haynes et al., 2021), one may
also predict that deprivation can modulate delay discounting.
Trait influences on delay discounting are evidenced by the fact
that delay discounting measurements for individuals tend to
be relatively stable over time and relatively similar in different
situations (Odum and Baumann, 2010; Felton et al., 2020). State
effects occur when delay discounting differs across repeated
measurements due to changes in the environment or organism.
For example, in one experiment, 20 individuals with problematic
gambling completed delay discounting tasks in a gambling
setting (i.e., a betting facility with a bar) or at a non-gambling
setting (e.g., a coffee shop; Dixon et al., 2006). Individuals tended
to have a lower AUC (steeper delay discounting) when they
completed the task in the gambling setting compared to the non-
gambling setting, demonstrating that context may play a role in
determining degree of delay discounting. Drug administration
(De Wit and Mitchell, 2010), emotion (Wilson and Daly, 2004),
stress (Fields et al., 2014), blood glucose level (Wang and Dvorak,
2010; Wang and Huangfu, 2017), and context (Dixon et al.,
2006) have all been investigated as states that may influence
delay discounting. Because several state manipulations have
been shown to modulate delay discounting, it is reasonable to
predict that delay discounting may change due to deprivation
manipulations as well.

In sum, deprivation has generally been thought to result in
increased impulsivity, an assumption with arguably high face
validity. However, it is not clear exactly how deprivation (and
other experimental manipulations)may result in changes in delay
discounting (Bailey et al., 2021). Although it seems clear that
valuation of outcomes may change due to deprivation, there
may not necessarily be a direct impact on the process of delay
discounting itself. It may be that deprivation changes subjective
valuation, which may systematically influence choices on a
delay discounting task (and thus k-values), but the underlying
process of discounting delayed rewards and sensitivity to delayed
outcomes may remain the same.

In addition to underdeveloped theoretical explanations,
results of early experiments on the effect of deprivation on delay
discounting are mixed (e.g., Richards et al., 1997; Giordano
et al., 2002; Mitchell, 2004). Researchers have often concluded
that deprivation magnifies impulsivity, generally citing two
experiments that reported large increases in delay discounting
(i.e., Giordano et al., 2002; Field et al., 2006; see, e.g., Berns et al.,
2007; De Wit, 2009; Van den Bos and McClure, 2012; Ashare
and Kable, 2015; see however Bickel et al., 2015). Because studies
that have shown little to no change in delay discounting due to
deprivation may not have been cited as frequently as those that
report large changes, the effects of deprivationmay not be as clear
as is commonly represented. Therefore, we conducted a review of
experiments that measured delay discounting and manipulated
deprivation level in human and non-human animals. For studies
with available data, we computed and compared effect sizes. We
discuss other relevant studies in a narrative review.

METHOD

Literature Search and Screening
We searched PubMed and EBSCOhost to identify studies that
assessed the effect of withdrawal or deprivation on delay
discounting. The original search was conducted in September
2019 using the terms (“delay discounting” or “temporal
discounting” or “intertemporal choice”) and (“deprivation” or
“withdrawal” or “satiation.” Additional searches were conducted
in June 2021 to include any more recently published articles.
The searches resulted in a total of 109 unique articles. Abstracts
were screened to ensure studies were relevant, empirical, and
measured delay discounting. A total of 50 articles passed abstract
screening. We included two additional articles that were not
found in the literature search; these articles were found during
manuscript preparation or in the references of articles that
passed screening and were relevant to the review. Additional
criteria were imposed to compute and compare effect sizes.
Some articles did not clearly measure delay discounting during
a deprivation state and a control state or baseline state and were
thus excluded (n = 10). Studies that did not experimentally
manipulate deprivation were also excluded (n = 9; e.g., studies
that used self-reported deprivation as a covariate). Non-human
animal rearing experiments (e.g., rats reared in social isolation;
n = 2) were excluded because these studies were studying
phenomena that are arguably different from the purpose of
the review, which was to examine short-term state changes in
deprivation state A total of 31 studies met inclusion criteria (see
Figure 1).

Data Collection
Three authors extracted data from articles that met inclusion
criteria. To compute effect sizes, we collected the sample size
of each experimental group and measures of central tendency
and variability for delay discounting for each study. If measures
of central tendency and variability were not available, we used
the result of a t-test or Cohen’s d. We did not compute effect
sizes for studies that solely reported an F-statistic because effect
sizes may be inflated when calculated from F-statistics (Hullett
and Levine, 2003). The data we collected were listed in the
text or Supplementary Material, represented in a figure, or
provided by an author. If data were in a figure, a graphical
data extraction tool was used to estimate the measure (Rohatgi,
2018). If the data were not present in the article and the
study was published in the last 10 years, the corresponding
author was contacted via email, once initially and once a month
later to follow up if necessary. We contacted (or attempted to
contact) authors of 6 articles. We were able to compute 54
effect sizes from 23 studies. Studies that used k as a dependent
measure were reverse coded to aid in interpretation; AUC
and k are inversely related, so reverse coding k results in
similar interpretation for the two measures. For studies without
available effect size data, we discussed the study in a narrative
review if the study conducted an experiment on the effect of
deprivation on delay discounting and at least discussed the result
of the manipulation.
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FIGURE 1 | Number of articles included at each stage of the screening process. Dashed lines indicate points at which articles were excluded.

Computation of Effect Sizes
To estimate the effect of deprivation on delay discounting, we
calculated Hedge’s g for each study with data available and that
met our inclusion criteria. Hedge’s g is a measure of effect size,
calculated from Cohen’s d, that corrects for an upward bias in
effect size among small samples (N < 20; Goulet-Pelletier and
Cousineau, 2018). One study reported only Cohen’s d and no
descriptive statistics (Skrynka andVincent, 2019); however, for all

other studies, we calculated Cohen’s d from descriptive statistics
reported in the text or obtained from the authors, and from
t-statistics. For studies that reported descriptive statistics, we
calculated Cohen’s d using Equation (1),

Cohen’s d =
MNon − Deprived − MDeprived

Pooled SD
(1)
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where MNon−Deprived and MDeprived are the mean estimates of
delay discounting (e.g., AUC) obtained from the non-deprived
and deprived groups, respectively, and pooled SD is the pooled
standard deviation of the estimates of delay discounting. For
between-subject designs, the pooled SD was calculated using
Equation (2),

Pooled SDBetween =

√

(n1 − 1) SD2
1 + (n2 − 1) SD2

2

n1 + n2 − 2
(2)

where nNon−Deprived and nDeprived are the sample sizes for
the non-deprived and deprived groups, respectively, and
SDNon−Deprived and SDDeprived are the standard deviations for
the non-deprived and deprived groups, respectively. For within-
subject designs, the pooled SD was calculated using Equation (3),

Pooled SDWithin =

√

SD2
1 + SD2

2

2
(3)

where SDNon−Deprived and SDDeprived are the standard deviations
from the non-deprived and deprived states, respectively. A small
subset of studies reported standard errors only; therefore, we
calculated standard deviations for these studies by multiplying
the standard error by

√
n. For studies that did not report

descriptive statistics, we calculated Cohen’s d from paired-
samples t-statistics using Equation (4),

Cohen’s d =
t

√
n

(4)

After obtaining Cohen’s d for each study, we calculated Hedge’s g
with Equation (5),

Hedge’s g = Cohen’s d × J (5)

where J is a correction applied to Cohen’s d to correct for an
upward bias in d (Borenstein et al., 2009). The correction J was
calculated with Equation (6),

J =

(

1 −
3

4df − 1

)

(6)

where df are the degrees of freedom, given by N – 2 for between-
subject designs and NPairss – 1 for within-subject designs. Finally,
we calculated 95% confidence intervals around each Hedge’s g.
To do this, we first calculated the variance of Cohen’s d for
between-subject designs with Equation (7),

Vd =
n1 + n2

n1n2
+

d2

2 (n1 + n2)
(7)

and for within-subject designs with Equation (8),

Vd =

(

1

n
+

d2

2n

)

2 (1 − r) (8)

where r is correlation between observations in a pair. As in Rung
and Madden (2018), we assumed an r = 0.5 for all studies. Next,
we calculated the variance of Hedge’s g with Equation (9),

Vg = J2 × Vd (9)

From the variance of Hedge’s g, we calculated the standard error
(SE) with Equation (10),

SEg =
√

Vg (10)

and confidence intervals with Equation (11),

95% C.I. = Hedge’s g ±
(

1.96 × SEg
)

(11)

Figures 2–7 show effect sizes for each study for each outcome
type of which subjects were deprived. Both Hedge’s g and
Cohen’s d are computed using standardized mean differences,
and thus interpretation of the two are similar (Ferguson, 2009).
The midline represents an effect size of 0, which indicates
delay discounting does not differ during deprivation and control
conditions. Accordingly, effect sizes farther from the midline are
larger. Effect sizes to the left of the midline are negative, and
indicate that delay discounting was lower (i.e., less impulsivity)
in the deprivation condition than in the control condition (the
opposite of the predicted effect). Effect sizes to the right of the
midline are positive, and indicate that delay discounting was
higher (i.e., more impulsivity) in the deprivation condition than
in the control condition (the predicted effect).

RESULTS AND DISCUSSION

Overall, we found inconsistent effects of deprivation on delay
discounting. The effect sizes we computed range from Hedge’s
g = −1.98 to 1.81. To try to better understand why the range of
effect sizes is so large, we grouped the findings with respect to the
outcome of which subjects were deprived. We found that most
studies could be classified into the broader deprivation categories
of Food and Water Deprivation, Nicotine Deprivation, Opioid
Deprivation, Deprivation of Other Drugs, Sleep Deprivation, and
Financial Deprivation. For each deprivation type, we also discuss
physiological, affective, or cognitive changes that subjects may
experience as a result of the deprivation manipulation. We first
discuss studies with human and non-human animal subjects,
then we discuss studies with only human participants.

Food and Water Deprivation
Surprisingly, unlike other deprivation manipulations, moderate
food and water deprivation have few effects on cognition and
behavior. Benau et al. (2014) concluded that short-term fasting
in humans has inconsistent or no effects on cognition (e.g.,
Zajac et al., 2021), but does affect motor performance (reducing
reaction times) and increases negative affect. Food restriction in
rats may lead to increased operant responding for drugs and
to increased levels of corticosterone (i.e., stress; Carroll, 1985;
Nowland et al., 2011), but this effect is generally studied as a long-
term manipulation rather than a short-term state manipulation.
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FIGURE 2 | Effect sizes for food and water deprivation experiments. Effect size is Hedge’s g. Points closer to 0 indicate smaller effect sizes. Points to the right of the

line indicate increases in delay discounting due to deprivation, the predicted effect. Solid circles indicate that the delay discounting task used real outcomes and

subjects experienced real deprivation. Unfilled circles indicate that the delay discounting task used hypothetical outcomes and subjects experienced real deprivation.

*Indicates the effect size was calculated using non-transformed k-values and thus may be biased.

Moderate water deprivation in humans similarly has, in general,
no consistent effects on cognition, but does increase negative
affect and decrease alertness (e.g., Neave et al., 2001; see Masento
et al., 2014, for review). One study with human participants and
three studies with non-human animal subjects in the present
review examined the effect of deprivation of food or water on
delay discounting.

Human Participants
Skrynka and Vincent (2019) examined delay discounting of
hypothetical money, food, and music in 50 college students.
For one session, participants were instructed to eat in the 2 h
before coming to the laboratory, and in the other session,
participants were instructed to fast for 10 h prior to the
session. Manipulation compliance was verified by assessing
blood glucose levels and subjective craving in each session.
Blood glucose was within normal fasting levels for the majority
of participants and subjective craving was significantly higher
during the 10 h fast condition compared to the control
condition. For the adjusting amount delay discounting task,
delays ranged from 1 h to 1 year and the larger later amounts
were equivalent to £20. Delay discounting was higher in the
deprivation condition compared to the control condition for
all commodities. Interestingly, the increase in delay discounting
for food (Hedge’s g = 1.73), an in-domain commodity,
was larger than the increase in delay discounting for music
downloads and money (Hedge’s gs= 0.83 and 0.84, respectively),
out-domain commodities.

Non-human Animal Subjects
In Richards et al. (1997), eight Sprague-Dawley rats discounted
100 µl water while deprived of water and while partially satiated
in an ABA design. In the water deprivation condition (A), rats
had 20min of access to water per day, available immediately after
a delay discounting session. The satiation condition (B) consisted
of an additional 20min of water available 4 h prior to the delay
discounting session. Deprivation resulted in small decreases in
delay discounting (Hedges gs = −0.23, −0.14; the opposite of
the predicted direction). Richards et al. (1997) concluded that
there is no effect of deprivation of water on delay discounting.

Providing support for this conclusion, Richards et al. (1997)
suggested that the manipulation was effective in manipulating
water deprivation because weight and latency (time to respond
in the task) increased with greater access to water.

In Carroll et al. (2009), 8 male and 5 female rhesus monkeys
discounted self-administered phencyclidine (PCP) during food
restriction and food satiation. Food restriction (i.e., deprivation)
was defined as 85% free feeding weight and satiation was defined
as being fed double the amount required to maintain 85% of
free feeding weight. In the satiation condition, the amount of
food was adjusted so that monkeys left at least 100 g of food
uneaten. On average, delay discounting was greater during the
restriction condition than in the satiation condition for both
sexes (Hedge’s gs = 0.83 for males, 1.81 for females). In a
similar experiment (Carroll et al., 2009), male rhesus monkeys
(n unspecified) also discounted PCP but were deprived of a
saccharin solution. In the satiation (non-deprived) condition,
saccharin (1,900mL daily) was available for at least 14 days. In
the deprivation condition, water replaced saccharin.Water intake
during the saccharin deprivation period was much lower than
was saccharin intake during the satiation condition. However,
delay discounting was similar during the saccharin deprivation
and satiation conditions.

Oliveira et al. (2013) examined the effect of food deprivation
on delay discounting in pigeons using two different deprivation
procedures. In the first experiment, deprivation was controlled
by modulating percentage of free feeding weight: during the
deprivation condition 5 female pigeons were maintained at 75–
80% free feeding weight, and during the control (i.e., satiation)
condition the same pigeons were maintained at 90–95% free
feeding weight. In the second experiment, deprivation was
controlled by modulating time since the last feeding. In the
deprivation condition, six male pigeons were deprived of food
for 23 h prior to the delay discounting sessions. In the control
condition, the same pigeons were deprived of food for 1 h prior
to sessions. In both conditions, pigeons were maintained at
80–85% free feeding weight. For both deprivation procedures,
delay discounting during the deprivation condition was not
significantly different from delay discounting in the control
condition (Hedge’s gs = −0.01 for Exp. 1, −0.007 for Exp. 2).
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FIGURE 3 | Effect sizes for nicotine deprivation experiments. Effect size is Hedge’s g. Points closer to 0 indicate smaller effect sizes. Points to the right of the line

indicate increases in delay discounting due to deprivation, the predicted effect. Subjects discounted hypothetical outcomes and experienced real deprivation.

*Indicates the effect size was calculated using non-transformed k-values and thus may be biased.

Only measures for delay discounting were reported; it was not
stated whether other behavior changed due to the manipulation.

Conclusion
Overall, the effects of deprivation of food and water on delay
discounting are inconsistent. One possible limitation in this area
is the relatively small sample sizes used; five out of six of the
experiments described above used a sample size <15. According
to a power analysis, for a two-tailed paired samples t-test, a
sample size of 90 is required to detect a medium effect size
(Cohen’s d = 0.3) when power is set to 0.8 and the significance
level is set to 0.05 (Faul et al., 2007). However, in two studies,
the effect size was negative, indicating increased deprivation
may have decreased delay discounting, which is in the opposite
direction than predicted.

As noted in Skrynka and Vincent (2019), studying deprivation
state and measuring delay discounting of different commodities,
specifically in- and out-of-domain commodities, may help to
demonstrate the extent to which delay discounting is state-
like or trait-like. If delay discounting is purely state-like, delay
discounting of all outcomes should increase similarly due to a
state manipulation, regardless of whether the state manipulation
is relevant to the commodity discounted. If delay discounting
is somewhere between a state and a trait, then the commodity
discounted would play a larger role in determining degree
of delay discounting for each commodity (see Figure 1 in
Skrynka and Vincent, 2019). This point has implications for
manipulations that seek to reduce delay discounting; effective
interventions would influence behavior in all domains (i.e.,
financial, health, social) instead of just one.

Nicotine Deprivation
Nicotine withdrawal symptoms in humans are somatic, affective,
and cognitive. Symptoms include irritability, increased appetite,

difficulty paying attention, and impaired working memory
(Heishman et al., 2010; McLaughlin et al., 2015). Withdrawal
is thought to begin within 3–4 h of abstinence and may last up
to 4 weeks (Hughes, 2007; McLaughlin et al., 2015). Impatience
and impulsivity have been investigated as symptoms of nicotine
withdrawal (Hughes, 2007; Hughes et al., 2014). Although
smoking cessation treatments have been developed (Jorenby
et al., 2006; Dallery and Raiff, 2011), many smokers trying to
quit relapse within about a week (Hughes et al., 2004). Because
withdrawal symptoms may play a role in relapse (Robinson
et al., 2019), it is important to understand any withdrawal-
related changes in cognitive processes, such as delay discounting,
that occur during this time (Ashare and McKee, 2012; Ashare
et al., 2014). If changes in delay discounting during withdrawal
lead to more or less successful quit attempts, modulating delay
discounting may help to improve quit outcomes (see Miglin
et al., 2017; Rung and Madden, 2018). A total of 13 articles
in the present review conducted experiments to determine the
effects of nicotine abstinence on delay discounting. Effect sizes
ranged from close to 0 (i.e., no change in delay discounting;
Hedge’s g = −0.04) to large and positive (Hedge’s g = 0.64;
see Figure 4). Several factors may explain differences between
results including the samples, the deprivation length, and delay
discounting tasks. Of the 13 nicotine deprivation articles, 11 used
human participants.

Human Participants
In all 11 human experiments, deprivation from nicotine
was verified biochemically and with subjective assessments.
Biochemical abstinence was verified in all studies by analyzing
expired carbon monoxide (CO) breath content. The maximum
ppm allowed for abstinence varied from 4 to 11 ppm. Although
analyzing CO breath content does provide indication of acute
abstinence, it may not be able to verify complete abstinence
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over the entire 24 h deprivation periods that many studies
used (Jatlow et al., 2008). Three studies analyzed cotinine
content from urinalyses, which allows for detection of all
nicotine consumption, rather than just inhaled, over a longer
period (Haufroid and Lison, 1998; Jatlow et al., 2008). The
two studies with the longest deprivation periods used urine
cotinine analysis, providing confidence that participants did
indeed maintain abstinence for weeks. Both studies (Yoon et al.,
2009; Hughes et al., 2017) found no change in delay discounting
during nicotine abstinence. The deprivation manipulations
were also verified with cravings and withdrawal symptom
assessments, the most common ones being the Questionnaire
on Smoking Urges (QSU; Tiffany and Drobes, 1991) and
the Minnesota Nicotine Withdrawal Scale (MNWS; Hughes
and Hatsukami, 1986). All 11 studies included some form
of either the QSU or MNWS. Expired CO was lower, and
cravings and withdrawal symptoms were higher, in nicotine
deprivation sessions compared to satiated sessions for all studies
that made this comparison. Finally, many studies included
a battery of tasks in addition to delay discounting tasks.
Changes in other tasks (e.g., cross-commodity discounting,
time reproduction task, response time) were observed during
deprivation for all studies that found no change in delay
discounting during deprivation. For example, Ashare and
Kable (2015) found no effect of nicotine deprivation on delay
discounting but did find that accuracy in a time discrimination
task was lower during deprived sessions compared to satiated
sessions. This combined evidence suggests that overall,
deprivation manipulations were effective and produced
changes in deprivation state, providing increased confidence
in the results.

Overall, experimental design was relatively similar across
studies. All but one study (Heckman et al., 2017) made within-
subject comparisons. Participants completed delay discounting
tasks about 1 week apart except in one study, Roewer et al. (2015),
in which the time between sessions was 24 h. Three studies
were contingency management studies; participants were paid
for biochemically verified abstinence (Yoon et al., 2009; Hughes
et al., 2017; Miglin et al., 2017). In Yoon et al. (2009) and Hughes
et al. (2017), participants completed delay discounting tasksmore
than two times and remained in the study for at least 2 weeks.
In both studies, delay discounting remained relatively stable
over time. Recall that withdrawal symptoms may last up to 4
weeks (Hughes, 2007; McLaughlin et al., 2015). Both studies were
measuring delay discounting during times nicotine withdrawal
symptoms have been observed previously. Although both of
the longer contingency management studies (Yoon et al., 2009;
Hughes et al., 2017) showed no increase in delay discounting
over time, there was no consistent pattern for shorter deprivation
lengths. Field et al. (2006) and Heckman et al. (2017) used
similar lengths of at least 12 and 13 h, respectively, and reported
increased delay discounting, whereas Ashare and McKee (2012)
and Grabski et al. (2020) also used shorter deprivation lengths
(<24 h) but found no effect of deprivation. The most common
deprivation length was 24 h (n = 5). All but one study, Yi
and Landes (2012), found no effect of 24 h of deprivation on
delay discounting. Future research could examine whether delay

discounting fluctuates systematically during the first few days
of abstinence.

Studies on the effect of nicotine deprivation on delay
discounting used markedly different samples (see Table 1). Mean
age varied from 20 to 45 years across studies; some samples
were college students, and some were community members.
Because mean age differed by more than 20 years across studies,
maximum length of nicotine dependence necessarily differed.
Mean score on the Fagerstrom Test for Nicotine Dependence
(FTND; Heatherton et al., 1991) ranged from 3.57 to 7.24
out of a maximum of 10, indicating large differences between
level of nicotine dependence. Study requirements for number
of cigarettes smoked per day also varied from 5 (Grabski et al.,
2020) to 25 (Roewer et al., 2015). Mean number of cigarettes
smoked ranged from 11 to more than 25 per day. Sample size
ranged from 11 to 67 for within-subject comparisons, indicating
that power to detect differences between conditions also varied
greatly. Two studies required participants to be trying to quit
and seven studies specifically excluded smokers trying to quit.
We found no clear relationship between studies with larger effect
sizes and participant age, dependence, or daily cigarettes smoked.

Older and younger smokers, more and less dependent
smokers, and smokers trying or not trying to quit may differ in
important ways that make comparisons between studies difficult
or even inappropriate. Some studies were also published over a
decade apart; a sample of smokers in 2004 may be different in
important ways from a sample of smokers in 2020 (Hughes, 2011;
Drope et al., 2018; Grant et al., 2020). However, because studies
examined many types of smokers and made similar conclusions
for different types of smokers, the findings are more general.

Variations in delay discounting tasks may also have
contributed to the discrepancy between results (see Table 1).
Delay discounting has been shown to be generally similar
regardless of real or hypothetical outcomes (Johnson and
Bickel, 2002; Madden et al., 2003). Interestingly, all studies that
included a potentially real outcome task found no change in
delay discounting of potentially real money due to deprivation
(Mitchell, 2004; Yi and Landes, 2012; Roewer et al., 2015).
Some authors have suggested that tasks with experienced
delays and outcomes may be required to see the effect of state
manipulations (e.g., Reynolds and Schiffbauer, 2004; Dallery and
Raiff, 2007), but the effect sizes computed in the current review
for other deprivation types may indicate otherwise. However, all
potentially real outcomes in these studies were necessarily small
amounts of money, which means that comparisons between
results for real and hypothetical outcomes may be confounded
by the amount of the outcome.

Although we did not compute effect sizes for cross commodity
tasks, during deprived states, Mitchell (2004) found increased
preference for immediate cigarettes over delayed money whereas
Yoon et al. (2009) found decreased preference for immediate
cigarettes. Both Mitchell (2004) and Yoon et al. (2009) suggest
that the change in the reinforcing value of the outcome,
rather than changes in sensitivity to delay, may play a role in
the changed cross-commodity discounting. In Mitchell (2004),
participants were required to stay in the laboratory for several
hours after their 24 h deprivation period and could smoke only
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TABLE 1 | Comparison of participant characteristics and delay discounting tasks in nicotine deprivation experiments.

Participant characteristics Delay discounting task

References Deprivation

length

Effect size Author

conclusion

n Age FTND Cig. per day Quit status Longest

delay

Outcome Magnitude

Mitchell (2004) 24 h — No effect 11 20.2 5a 18.9 — 365 days Potentially

real money

LL $10

Field et al. (2006) ≥13 h 0.42 Increase 30 23.3 3.6 15 Not trying to

quit

25 years Hypothetical

money

LL 500 £

” ” 0.35 ” ” ” ” ” ” ” Hypothetical

cigarettes

LL 500 £

worth of

cigarettes

Ashare and Hawk (2012) Overnight 0.29 Increase (Low

ADHD group)

25 44 5.2 20 Not trying to

quit

180 days Hypothetical

money

LL $100

” ” −0.11 No effect

(High ADHD

group)

31 37 5.3 17 Not trying to

quit

” ” ”

Ashare and McKee (2012) ≥18 h — No effect 58 35.9 5.6 18.7 Not trying to

quit

179 days Hypothetical

money

$25–$85

Yi and Landes (2012) 24 h 0.64 Increase 28 40 6.4a 21 Not trying to

quit

10 years Hypothetical

money

LL $50 and

$1,000

” ” 0.22 No effect ” ” ” ” ” 10 years Hypothetical

cigarettes

LL $50 and

$1,000 worth

of cigarettes

” ” — No effect ” ” ” ” ” 6 months Potentially

real money

LL $50

Roewer et al. (2015) 24 h 0.09 No effect 37 33 7.2 ≥ 25 — 190 days Hypothetical

money

SS $10

Ashare and Kable (2015) 24 h 0.07 No effect

(Male)

21 37.1 4.6 18.6 Not trying to

quit

months Hypothetical

money

—

“ ” 0 No effect

(Female)

12 40.2 4.8 14.3 ” ” ” ”

Heckman et al. (2017) 12 h 0.09 Increase 128 37 6 20 Not trying to

quit

179 days Hypothetical

money

$25–$85

Miglin et al. (2017) 24 h 0.11 No effect 43 45 4.9 13.7 Trying to quit 174 days Hypothetical

money

$15–$85

Grabski et al. (2020) ≥8 h −0.05 No effect 67 21.8 4.4 11 Not trying to

quit

365 days Hypothetical

money

LL 100 £

Hughes et al. (2017) 4 weeksb −0.18 Decrease 61 40 5 19 Trying to quit 5 years Hypothetical

money

LL $1,000

Yoon et al. (2009) <24 h −0.29 No effect 15 28.1 5.3 18.2 Not trying to

quit

25 years Hypothetical

money

LL $1,000

” 7 days −0.33 ” 13 29.1 6.2 21.7 ” ” ” ”

” 14 days −0.34 ” ” ” ” ” ” ” ” ”

Effect size is Hedge’s g. FTND, Fagerstrom Test for Nicotine Dependence. Means are listed for age, FTND score and cigarettes per day. —Indicates information was not specified.

“Indicates the cell contains the same information as the cell above. Author conclusion refers to conclusion made about the effect of nicotine deprivation on delay discounting by authors

of the original study, not our conclusion. LL refers to the larger later amount used in the delay discounting task.
aFagerstrom Tolerance Questionnaire.
bDelay discounting was measured 8 times over 4 weeks. This effect size compares average delay discounting at baseline to average delay discounting over 4 weeks of abstinence.

cigarettes earned in the potentially real commodity discounting
task, which may have increased immediate desire for cigarettes.
The possibility of immediate relief from withdrawal in Mitchell
(2004) may have increased the value of cigarettes. In contrast,
smokers in Yoon et al. (2009) were paid for several days of
abstinence and the value of immediate cigarettes may have
decreased due to an increased motivation to quit smoking.

Out of these 11 human-subject studies, only four concluded
that nicotine deprivation increased delay discounting

(Ashare and Hawk, 2012, in one group only; Field et al.,
2006; Heckman et al., 2017; Yi and Landes, 2012, in monetary
task only). Field et al. (2006) and Yi and Landes (2012) both

1While Heckman et al. (2017) concluded nicotine deprivation increased delay

discounting (Cohen’s d = 0.36), we found the effect to be small based on our

calculations from the descriptive statistics reported (Cohen’s d = 0.06; Hedge’s

g= 0.08). We believe this finding is because effect sizes computed from F-statistics

may be upwardly biased (Hullett and Levine, 2003).
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FIGURE 4 | Effect sizes for opioid deprivation experiments. Effect size is Hedge’s g. Points closer to 0 indicate smaller effect sizes. Points to the right of the line

indicate increases in delay discounting due to deprivation, the predicted effect. Subjects discounted hypothetical outcomes and experienced hypothetical deprivation.

found medium to large increases in hypothetical monetary
delay discounting (Hedge’s gs = 0.64 and 0.42, respectively).
Ashare and Hawk (2012) found increases in delay discounting
in participants with fewer ADHD symptoms, but not in
participants with more ADHD symptoms (Hedge’s g = 0.29).
Mean participant age and nicotine dependence, and deprivation
duration varied across the studies.). The six studies that found
small or no effect of deprivation on delay discounting all had
participant N’s as large or larger than those with large effect sizes
(i.e., Field et al., 2006; Ashare and Hawk, 2012; Yi and Landes,
2012). Additionally, out of the 17 effect sizes we computed for
experiments that examined nicotine deprivation, all but two have
confidence intervals that overlap with 0 (see Figure 4). For these
reasons, we conclude that the effect of acute nicotine deprivation
on delay discounting in humans is probably small at most.
This conclusion is valid only supposing that delay discounting
tasks are indeed sensitive enough to detect pharmacological
state changes (Odum and Baumann, 2010; Odum et al., 2020;
see, however, De Wit and Mitchell, 2010) and accepting the
previously discussed evidence that deprivation actually induced
withdrawal in participants.

Non-human Animal Subjects
Two articles in the present review examined the effect of nicotine
deprivation on impulsive choice in rats. Nicotine withdrawal
in rats includes somatic signs such as head and body shakes,
teeth chattering, ptosis, and yawns; and may include cognitive
changes such as deficits in attention and working memory
(Malin et al., 1992; Shoaib and Bizarro, 2005; Ashare et al.,
2014). In Kayir et al. (2014), 22 male Wistar rats received
6.32 mg/kg/day of nicotine via an osmotic mini-pump for 13
days. In Kolokotroni et al. (2014), 29 male Lister hooded rats
received 3.16 mg/kg/day of nicotine via a mini-pump for 7
days. Rats were food deprived during the duration of both
experiments. Impulsive choice tasks were based on Evenden
and Ryan (1996); rats were offered 1 pellet immediately and
4 or 5 pellets after delays ranging from 0 to 60 s. Rats were
placed into high and low impulsive groups determined by
baseline level of impulsivity. Both studies concluded that in low
impulsive rats, nicotine deprivation leads to increased choice
for smaller sooner food. In high impulsive rats, Kolokotroni
et al. (2014) found decreases in choice for smaller sooner food
and Kayir et al. (2014) found no change in choice for smaller

sooner food. When considering all rats in the study, Kayir
et al. (2014) found no change in choice for smaller sooner
food during nicotine withdrawal. Important to note, Kayir et al.
considered measurements of choice during the first 48 h after
pump removal and Kolokotroni et al. (2014) measured choice
for weeks after pump removal and found effects of withdrawal
only during the first week. The results for the high impulsive
rats could be explained by a ceiling effect; number of choices
for smaller sooner food could have been so high at baseline
that there would be less room to increase during deprivation.
Or, perhaps, rate dependency may help to explain the difference
between high and low impulsive groups (Quisenberry et al.,
2016). It could also be that there is in fact a difference in
the effects of withdrawal between low and high impulsive rats.
In humans, Ashare and Hawk (2012) found a similar effect;
those with low ADHD symptoms had greater increases in delay
discounting after nicotine abstinence compared to those with
high ADHD symptoms. Individual differences in response to
nicotine deprivation conditions may help to explain why many
other human experiments report no effect of deprivation on delay
discounting. It could be that only certain individuals discount
differently due to nicotine deprivation; by aggregating data,
the effect of deprivation could be averaged away, resulting in
apparently no change in delay discounting. Nonetheless, it may
be valuable to analyze individual responses to deprivation and
other state manipulations, rather than the differences in means
across conditions.

Opioid Deprivation
In people who have opioid dependency, opioid deprivation can
lead to pronounced opioid withdrawal symptoms. The severity
and onset of opioid withdrawal symptoms depends on the
severity of opioid dependence as well as if the opioids last used
were short or long-acting (Wesson and Ling, 2003; Kosten and
Baxter, 2019). Deprivation of short-acting opioids, including
heroin and oxycodone, results in opioid withdrawal symptoms
after∼12 h. Symptoms may peak in severity around 36–72 h and
then tend to end after 4–7 days (Kosten and Baxter, 2019). In
contrast, opioid withdrawal symptoms for long-acting opioids,
including methadone and buprenorphine, may last for 2 weeks
(Kosten and Baxter, 2019). Symptom severity is greater for those
that are more dependent (Wesson and Ling, 2003), but the
same symptoms are seen in users of long- and short- acting
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FIGURE 5 | Effect sizes for other drug deprivation experiments. Effect size is Hedge’s g. Points closer to 0 indicate smaller effect sizes. Points to the right of the line

indicate increases in delay discounting due to deprivation, the predicted effect. Solid circles indicate that the delay discounting task used real outcomes and subjects

experienced real deprivation. Unfilled circles indicate that the delay discounting task used hypothetical outcomes and subjects experienced real deprivation.

opioids (Kosten and Baxter, 2019). Opioid withdrawal symptoms
may include anxiety, insomnia, irritability, and cold and flu-like
symptoms (i.e., hot and cold flashes, aches, nausea, vomiting,
runny nose; Wesson and Ling, 2003; Kosten and Baxter, 2019).
Both chronic and acute opioid use are known to produce a
range of cognitive impairments (Ersek et al., 2004; Baldacchino
et al., 2012). For instance, there is evidence that opioid users
tend to discount delayed rewards more steeply than controls
(MacKillop et al., 2011). Less is known, however, about specific
cognitive changes during acute opioid withdrawal in humans.
In the present review, three studies with human participants
and one with non-human animal subjects examined the effect of
opioid deprivation on delay discounting.

Human Participants
In Giordano et al. (2002), 13 participants in outpatient treatment
for opioid dependence completed delay discounting tasks 2 h
after buprenorphine administration (satiation) and 5 days after
buprenorphine administration, when the maintenance dose had
worn off (withdrawal). Each condition was repeated 4 times over
a period of 8 weeks. Participants were on average 37.5 years
old, used 5 bags of heroin daily, and were dependent for 11.9
years. Abstinence from all opioids was verified with urinalysis
two to three times per week. Two positive tests for opioids
over the course of the 8 week study resulted in discontinuation.
An additional 13 participants started the study but did not
continue due to failure to provide negative urine samples or
failure to return after intake. Withdrawal was assessed with
pupil radiusmeasures andwith subjective assessments. Subjective
assessments of withdrawal and pupil radiuses were significantly
higher during withdrawal compared to satiated conditions.
Adjusting amount delay discounting tasks used outcomes of
money and number of bags of heroin at magnitudes of $100,
3,000, and 10,000 (equivalent worth for bags of heroin). For
the 13 participants that completed the study, k-values were
significantly higher for deprived conditions compared to sated
conditions for all commodity and magnitude combinations.
Giordano et al. (2002) results demonstrated that among opiate-
dependent individuals, opioid deprivation may substantially

increase delay discounting. It should be noted, however, that the
sample size was small, and the experiment had a high attrition
rate. Thus, the results should be considered with caution. Two
experiments that employed hypothetical opioid deprivation may
help to provide additional evidence of an increase in delay
discounting during opioid deprivation.

Stoltman et al. (2015) and Moses et al. (2019) developed
a hypothetical opioid deprivation model and found that
delay discounting was steeper during deprived states than
during satiated states. In the hypothetical withdrawal condition,
participants were instructed to answer as if they were
going through opioid withdrawal. In the satiation condition,
participants were instructed to answer as if they had just
taken heroin. For both conditions, a few symptoms or feelings
associated with the state were given in the oral instructions.
The satiated and withdrawal conditions were completed back-
to-back and were counterbalanced across participants. The delay
discounting task was developed to be more ecologically relevant
to decisions heroin users might regularly face; the delays ranged
from 3 to 96 h and the larger later amount was 30 bags of
$10 worth of heroin. Both studies used relatively large samples
(>100) of out of treatment heroin users and required a positive
urinalysis to participate. Although both Stoltman et al. (2015)
and Moses et al. (2019) found increases in delay discounting,
imagined withdrawal is arguably different from experienced
withdrawal. It is also unclear if the increase in discounting
found in Stoltman et al. (2015) and Moses et al. (2019) would
generalize to more traditional delay discounting tasks with larger
amounts of money and longer delays. That is, the large effect
found due to hypothetical opioid withdrawal may only be large
because the task involved heroin. One would predict that delay
discounting for opioids and money would be related (Odum
et al., 2020) but it is possible that there is an interaction
between the deprivation state and the commodity discounted
that does not follow the trait-like pattern (i.e., opioid deprivation
may produce larger changes in delay discounting of opioids
than in delay discounting of money). Nevertheless, all three
human studies report increases in delay discounting due to
opioid deprivation.
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FIGURE 6 | Effect sizes for sleep deprivation experiments. Effect size is Hedge’s g. Points closer to 0 indicate smaller effect sizes. Points to the right of the line indicate

increases in delay discounting due to deprivation, the predicted effect. Circles with a cross indicate that the delay discounting task used potentially real outcomes and

subjects experienced real deprivation. Unfilled circles indicate that the delay discounting task used hypothetical outcomes and subjects experienced real deprivation.

Non-human Animal Subjects
In Eppolito et al. (2013), six unsexed pigeons completed
impulsive choice tasks with food during daily morphine
administration and after morphine discontinuation. For four
pigeons, trial omissions increased sharply after discontinuation,
limiting the authors’ ability to construct delay discounting
curves. Interestingly, the number of choices for the larger later
amount increased after discontinuation compared to during daily
morphine treatment. Despite 8 weeks of, at its highest, 2 daily
100mg/kg doses of morphine, not all pigeons showed withdrawal
signs during saline probes.

In Harvey-Lewis et al. (2015), male Long-Evans rats
maintained on subcutaneously injected 30 mg/kg daily morphine
doses completed impulsive choice tasks with sucrose during a
baseline, satiated condition and 1 h after naloxone-precipitated
withdrawal. Naloxone is an opioid antagonist that has been
shown to induce withdrawal in rats. Preference for smaller
sooner sucrose increased after naloxone administration only
for short delays (i.e., 5 and 9 s). The change in number of
choices for smaller sooner sucrose depended on the naloxone
dose administered, with the larger dose producing greater
increases in number of choices for smaller sooner sucrose
compared to the smaller dose. Although different doses of
naloxone produced significantly different number of choices
for smaller sooner sucrose at some delays, the authors did
not report a statistical result for the comparison between
baseline impulsive choice and impulsive choice after naloxone
administration. The authors did, however, conclude that for short
delays, naloxone-precipitated withdrawal increased the number
of smaller sooner choices.

Conclusion
Although four of the five studies reported increases in
delay discounting due to opioid deprivation, each had some
limitations. Future studies could attempt to further validate and
generalize the hypothetical deprivation condition described in
Stoltman et al. (2015) and Moses et al. (2019). Once validated,
the hypothetical deprivation model could be a preferable
alternative to asking participants to voluntarily go through actual
opioid withdrawal.

Deprivation of Other Drugs
Researchers have also examined the effects of deprivation of
amphetamine, caffeine, ethanol, PCP, and pramipexole on delay
discounting. Due to the limited number of studies in each drug
category, we do not draw any general conclusions.

Pramipexole
In Antonelli et al. (2014), 7 Parkinson’s disease patients
completed a delay discounting task (Kirby et al., 1999) after 12–
18 h of being deprived of their usual antiparkinsonianmedication
and then after 1mg of pramipexole was administered (i.e.,
satiation). These sessions occurred during the same day and in
the same order for each participant. It was not clear if withdrawal
signs and symptoms were measured. Delay discounting was
significantly higher after pramipexole administration than after
deprivation only for the large magnitude task (600–1,000
CAD; Hedge’s gs = −1.99 for large magnitude, −0.07 for
small magnitude).

Stimulants
In Gipson and Bardo (2009), 24 male Sprague-Dawley rats self-
administered amphetamine (0.03 or 0.1 mg/kg/infusion) for 1 h
or 6 h for 36 days. Sucrose delay discounting tasks occurred
during a baseline condition, during self-administration, and
during 7 days after discontinuation. Compared to baseline,
delay discounting increased (i.e., got steeper) during self-
administration for rats in the 6 h access group and decreased for
rats in the 1 h access group. Over the 7 days after amphetamine
discontinuation, delay discounting decreased for rats in the 6 h
access group and increased for rats in the 1 h access group, thus
resulting in both groups returning to baseline levels of delay
discounting. It is not clear if the difference in delay discounting
between the first few days of withdrawal were significantly
different from the 3 days of the baseline condition.

In Diller et al. (2008), seven male Sprague-Dawley rats
received 30mg/kg per day of caffeine via intraperitoneal injection
for at least 15 days. Delay discounting sessions occurred during
a control condition, during chronic caffeine administration
(i.e., satiation), and during chronic saline administration (i.e.,
deprivation). AUC was significantly higher (i.e., discounting was
less steep) during chronic caffeine administration compared to
chronic saline administration. The length of the chronic saline
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FIGURE 7 | Effect sizes for financial deprivation experiments. Effect size is Hedge’s g. Points closer to 0 indicate smaller effect sizes. Points to the right of the line

indicate increases in delay discounting due to deprivation, the predicted effect. Subjects discounted hypothetical outcomes and experienced hypothetical deprivation.

condition was not the same for all rats (mean = 16.2 days).
It is not clear if all sessions or a particular subset of sessions
was used to determine average delay discounting during saline
administration for each rat. There may be an underestimation of
the effect if all sessions were used; the effect of deprivation may
be different on the first day after withdrawal than the effects of
deprivation on day 15 after withdrawal.

PCP
In Carroll et al. (2009, 2013) rhesus monkeys self-administered
0.25 or 0.5 mg/mL of PCP for 2 h per day for at least 10
days and discounted saccharin during a baseline condition,
self-administration of PCP, and for 6 days after withdrawal of
PCP. Carroll et al. (2009) found that for eight males and six
females, for both doses, delay discounting of saccharin was
steeper during PCP withdrawal compared to baseline (before
PCP administration). Only the comparison for males at the 0.5
mg/mL dose was significantly different from baseline, although
all dose and gender combinations were in the same direction.
Carroll et al. (2013) found that for seven females, for both doses
of PCP, delay discounting was steeper during PCP withdrawal
compared to baseline, although the magnitude of the effect may
have depended on phase of the menstrual cycle.

Ethanol
In Carroll et al. (2009), eight male rhesus monkeys self-
administered ethanol (8 or 16% wt/vol) for 10 days and
discounted saccharin during a baseline condition, self-
administration of ethanol, and for 6 days after withdrawal of
ethanol. For both doses, delay discounting was not significantly
different during ethanol withdrawal compared to baseline.

Sleep Deprivation
Acute sleep loss has been associated with a variety of physiological
and affective changes including decreased positive mood states,
increased food intake, and increased blood glucose levels
(Landolt et al., 2014). Sleep deprivation may also impair
cognitive function, including working memory, attention, and
psychomotor tasks (Killgore, 2010; Landolt et al., 2014).

Three studies in the present review examine the effects of
sleep deprivation on delay discounting in human participants.
Acheson et al. (2007) and Libedinsky et al. (2013) both examined
the effect of 24 h of sleep deprivation on delay discounting of
potentially real money. In both studies, the 30 or less participants
were on average in their early 20 s. Demos et al. (2016) examined
the effect of partial sleep deprivation, defined as four nights of
6 h of sleep, using a hypothetical monetary delay discounting

task (i.e., Kirby et al., 1999). Demos et al. (2016) used a slightly
larger (n = 34) and older sample (mean age = 37 years). In all
three studies, participants were only included if they had good
sleeping habits. All studies used a within-subjects design with 1
week in between sessions, except for Experiment 3 in Libedinsky
et al. (2013), which used a between-subjects design. Libedinsky
et al. (2013) and Demos et al. (2016) used activity monitors
to verify compliance with the sleep manipulations, whereas the
sleep deprivation occurred entirely in the laboratory in Acheson
et al. (2007). All studies used other measures besides delay
discounting and found some differences due to sleep deprivation
(e.g., decreases in positive mood, more errors in the Go/No-
Go task, increased effort discounting), providing evidence of the
effectiveness of the deprivation manipulation. All three studies
(six deprived/non-deprived comparisons total) found no effect
of sleep deprivation on delay discounting (Hedge’s gs between
−0.21 and 0.07). Although the results of the included studies are
consistent, it is possible that a longer sleep deprivation period
may induce changes in delay discounting (Libedinsky et al.,
2013). Interestingly, the results of the studies in the present
review are not consistent with Reynolds and Schiffbauer (2004).
They developed an experiential discounting task (EDT), which
includes choices involving both delay and probability, and found
increases in impulsive choice after participants experienced 21 h
without sleep. It may be that the probabilistic aspect of outcomes
in the EDT contributed to the increase in impulsive choice; other
research has demonstrated increases in risky choices due to sleep
deprivation (Killgore, 2010).

Financial Deprivation
Personal relative deprivation, or more broadly, financial
deprivation, can be described as feelings of having fewer
monetary resources, especially when compared to others
(Moeini-Jazani et al., 2019). People who have been made to feel
as if they have fewer financial resources have been shown to
consume more calorie-dense food (Briers and Laporte, 2013),
purchase more lottery tickets (Haisley et al., 2008), and save less,
all arguably present-oriented behaviors (Shah et al., 2012). Lower
income is associated with greater risk aversion and elevated delay
discounting (Green et al., 1996; Haushofer and Fehr, 2014). It
may be that people in financial deprivation states, either actual
or experimentally induced, shift their attention to the present,
thereby increasing delay discounting (Shah et al., 2012; Moeini-
Jazani et al., 2019). An alternative view is that individuals with less
money should value monetary outcomes more so than wealthy
individuals, thereby leading to a magnitude effect in which
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wealthy individuals discount more steeply than lower-income
individuals because money is less valuable to those with high
income (Oliveira et al., 2013).

Three studies in the present review manipulated feelings of
financial status in between-subjects designs. Though the three
studies use different terminology, they all arguably manipulate
the same thing. In Callan et al. (2011; Study 1) participants
were told that their discretionary income was about the same or
much lower than others (i.e., false feedback) to invoke feelings
of relative deprivation. Van den Bergh et al. (2008; Study 3,
control group only1) manipulated the scale in which participants
reported their income and Moeini-Jazani et al. (2019; Study 2,
control group only2) used versions of both methods with each
participant. The scale manipulation method has been established
as an effective way to induce feelings of financial deprivation
and has been shown to affect performance in other tasks (e.g.,
Haisley et al., 2008; Briers and Laporte, 2013). Moeini-Jazani et al.
(2019) also conducted a pretest to validate their manipulation.
Participants in Van den Bergh et al. (2008) and Callan et al.
(2011) were students, with a mean age of around 19 years, while
participants in Moeini-Jazani et al. (2019) were older (mean age
= 36 years) and recruited online via MTurk. Also important to
note, the sample size in Moeini-Jazani et al. (2019) was much
larger (n > 100 for each group) than in Van den Bergh et al.
(2008) and Callan et al. (2011; N’s ∼30–35 for each group). Van
den Bergh et al. (2008) and Moeini-Jazani et al. (2019) used fill in
the blank delay discounting tasks (e.g., $65 now is worth ____ in
x months) with a relatively short set of delays (maximum delays
were 18 months and 1 month, respectively) and relatively small
magnitudes of larger later amounts ($65 and e15, respectively).
Callan et al. (2011) used an adjusting amount task with a fixed
larger later outcome of $1,000 and a slightly longer maximum
delay of 2 years.

For delay discounting of money, all studies found higher
levels of delay discounting for those in the deprivation group
compared to the non-deprivation group. The effect was large and
statistically significant in Callan et al. (2011; Hedge’s g = 0.76)
and Moeini-Jazani et al. (2019; Hedge’s g = 0.64), but Van den
Bergh et al. (2008) did not report any statistical test results for
this comparison. Van den Bergh et al. (2008) also examined delay
discounting of bars of candy and cans of soda. Mean AUC for the
deprived group was similar to the non-deprived group for delay
discounting of both candy and soda. Because of the consistency
in the data overall, we conclude that delay discounting of money
tends to increase after monetary deprivation manipulations. It is
unclear how long the effect of the manipulation lasts; the delay
discounting task occurred soon after the manipulation in all
studies. It is also unclear if the effect would generalize to delay
discounting of other commodities, but it is potentially important
that participants were discounting a commodity that was in-
domain relative to the manipulation (i.e., deprived of money and
discounted money).

2Van den Bergh et al. (2008) and Moeini-Jazani et al. (2019) both had other

manipulations hypothesized to interact with monetary deprivation to increase or

decrease delay discounting; we look at only the control condition to more clearly

understand only the effects of the deprivation manipulation.

CONCLUSION

We were not able to make conclusions for each deprivation
category, but it does appear that the effect of deprivation
on delay discounting may depend on the type of deprivation
subjects faced. In humans, nicotine and sleep deprivation tend
to have little to no effect on delay discounting, whereas opioid
deprivation and feelings of financial deprivation tend to increase
delay discounting. The effect of deprivation of food and water on
delay discounting is less clear. It is interesting that even though
theoretical frameworks (e.g., CNDS model) predict increases in
delay discounting, we do not see consistent effects for all types
of deprivation.

Previous research indicates that delay discounting is both
state-like and trait-like (Odum et al., 2020). The inconsistent
effects of deprivation on delay discounting may provide
additional evidence that delay discounting is not entirely a trait. If
delay discounting was purely trait-like, delay discounting would
not change due to any deprivation manipulation (see Skrynka
and Vincent, 2019). Yet, in the present review, deprivation
resulted in increased, decreased, and no change in delay
discounting. Although these findings do provide additional
evidence that modulation of delay discounting due to state
is possible, it is puzzling that not all types of deprivation
manipulations resulted in changes in delay discounting.

One interesting pattern we found was that manipulations
that were imagined (i.e., imagined opioid withdrawal, financial
deprivation) tended to increase delay discounting, whereas
manipulations that were more physiological in nature (i.e., sleep
and nicotine deprivation) produced little to no change in delay
discounting. This result may suggest that the cognitive appraisal
of states could propel modulations in delay discounting. That is,
intentional acknowledgment of deprivation symptoms may be
important in increasing delay discounting. Related, it may also
be that the instructions given in imagined state manipulations
specifically highlighted a present experience, perhaps thereby
shifting attention to the present, similar to how EFT may shift
attention to the future (Lin and Epstein, 2014). To test this
suggestion, one could examine the effect of imagined sleep
deprivation, for example, on delay discounting. All experiments
in the present review concluded that actual sleep deprivation had
no effect on delay discounting. If imagined sleep deprivation did
increase delay discounting, then something about the imagined
state, rather than experiencing tiredness, may be causing the
change in delay discounting.

Another possible reason we did not see consistent effects of
deprivation is that there may be an effect of domain matching.
Specifically, manipulations may have a greater impact on delay
discounting if the commodity discounted is relevant to the
manipulation (see Skrynka and Vincent, 2019). In many of
the opioid deprivation and financial deprivation experiments,
participants discounted opioids and money, respectively, and we
concluded that deprivation tends to increase delay discounting
for these deprivation types. We do not consistently see this
pattern, however, for other types of deprivation. For instance,
of the two studies in which participants discounted cigarettes
and were deprived of nicotine, one found increased delay
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discounting of cigarettes and one found no change in delay
discounting of cigarettes (Field et al., 2006; Yi and Landes,
2012). More experiments are needed to examine the potential
interaction between domain matching and manipulations; the
generalizability of manipulations has implications for behavioral
interventions that aim to change delay discounting. It is
important to know if changing delay discounting of food will also
influence delay discounting of money, for example, and thus if a
range of behaviors or just a class of behaviors can be changed by
a single intervention.

In dual-systems models, “visceral influences” like hunger
and cravings should increase impulsivity (see e.g., Loewenstein,
1996). The types of deprivation we examined all tend to result
in some sort of negative cognitive, emotional, or physiologic
change, although the severity of deprivation “symptoms” varies.
For instance, opioid withdrawal results in flu-like symptoms
and nicotine withdrawal may result in irritability and anxiety.
Despite all deprivation manipulations resulting in arguably
“visceral” states, we do not see consistent effects of deprivation
manipulations on delay discounting. It may be that there is
a threshold of discomfort or arousal that must be surpassed
in order for a visceral influence to result in significant
dysregulation of the control and valuation systems, and thus
in heightened delay discounting. Nicotine deprivation may
certainly be unpleasant, but arguably not as much as opioid
deprivation may be.

It may be instead, rather than visceral influences requiring
a threshold, that the effect of visceral influences on delay
discounting is more nuanced than previously thought. In
Richards et al. (1997) and Oliveira et al. (2013), the effects of
water and food deprivation were studied in non-human animals;
there was little to no effect of deprivation on delay discounting
in these studies (although see Carroll et al., 2009). Non-human
animals provide arguably more experimental control (e.g., one
can be more certain that a non-human animal subject followed
the deprivation protocol). If there is little effect of food and water
deprivation on delay discounting in non-human animal models,
then perhaps our idea of what constitutes a visceral influence
should change. However, the non-human animal literature on
delay discounting and deprivation must be reconciled with the
human literature, as we found some discrepancies in results
between species.

The effects of deprivation, and other states, on delay
discounting may provide the impetus for the design of behavioral
interventions. In the present review, we found that opioid
deprivation tends to result in increased delay discounting; it
may be that increased delay discounting during abstinence
leads to greater relapse vulnerability. By knowing if people
tend to discount future outcomes more so while going through
withdrawal, contingency management treatments, for instance,

could be designed with shorter delays to incentives to leverage
preference for sooner outcomes (Miglin et al., 2017). Similarly,
EFT has been shown to reduce self-administered cigarette

puffs in the laboratory (Stein et al., 2016); perhaps EFT cues
could be administered strategically during deprivation states
like abstinence to compensate for maladaptive increases in
delay discounting.

The present review is the first to examine the effect of
experimental manipulations of deprivation on delay discounting.
We found more types of deprivation manipulations than
we anticipated, and therefore our search terms may have
been limited. Despite this limitation, our review provides the
advantage of examining the deprivation literature broadly. As
more data emerge, it may be fruitful to examine each deprivation
type individually with search terms more relevant to specific
manipulations (e.g., Hughes et al., 2014).

Deprivation does not always increase delay discounting,
contrary to the predictions of theoretical frameworks. Delay
discounting may be a trans-disease process and has been used
as target for behavioral interventions (Bickel et al., 2019). Thus,
a basic understanding of how delay discounting is affected by
various states, including deprivation, will be needed for future
translational research.
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Probability discounting, a subset of behavioral economic research, has a rich history
of investigating choice behavior, especially as it pertains to risky decision making.
Gambling involves both choice behavior and risky decision making which makes it an
ideal behavior to investigate with discounting tasks. With proximity to a casino being
one of the biggest risk factors, studies into the American Indian population have been
a neglected population of study. Using outcome measures from a pre-scan probability
discounting task, the current study equated the scan task to evaluate behavioral and
neurobiological differences in gamblers vs. non-gamblers. Gamblers showed differences
in behavioral tasks (lower discounting rates) but not in patterns of neural activation.

Keywords: probability discounting, gambling, American Indian, fMRI, behavioral economics

INTRODUCTION

In the United States, more than 80% of adults engage in some form of gambling each year (Barnes
et al., 2017). This pattern is particularly pervasive amongst American Indians (AI). For example,
in the past year, 76.9% of white Americans engaged in gambling, whereas 80.1% of AI gambled
(Barnes et al., 2017). The discrepancies become even more pronounced as we consider those that
frequently gamble and/or engage in problem gambling. Specifically, 9.3% of white Americans
engaged in frequent gambling, with 1.8% reaching pathological criteria. By contrast, 12.6% of
AI’s frequently gambled with 10.5% meeting pathological gambling criteria (Welte et al., 2001).
Although gambling availability and types are constantly changing, high percentages of pathological
gamblers (PG) engage in traditional casino games (22.5%), electronic gambling machines (18%),
and numbers/lotto (5%; Binde et al., 2017).

One reason that PG risk may be elevated in AIs is that many live near casinos. Of the 562 AI
tribes, The National Indian Gaming Commission estimates more than 240 tribes offer gambling
activities at nearly 500 casinos (Ashton, 2002). Further, approximately half of AIs residing in the
continental United States belong to tribes that operate a casino-style gaming operations on tribal
lands (Evans and Topoleski, 2002). Of note, those who reside within 10 miles of a casino were
twice as likely to have issues with problem gambling (Welte et al., 2004). In a study of 7th–12th
grade AI children, approximately 75% had gambled in the last year (Peacock et al., 1999); much
higher than the national average of 45–55% (Winters and Anderson, 2000; Stinchfield, 2011).
Further, in a survey of public school students in Minnesota, 17.4% of the AI children reported
daily/weekly gambling behavior, compared to 12.3% of the white children (Stinchfield et al., 1997).
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Although there are economic benefits to allowing casinos on their
lands, it also brings a potential for unintended problems that put
this population at risk.

Gambling often entails wagering a small amount of money for
the chance to win a larger sum of cash. In behavioral economics,
these sorts of tradeoffs are analoged via probability discounting
tasks. Probability discounting (PD) tasks have subjects choose
between smaller but guaranteed sums of money and larger yet
uncertain sums of money. For example, a subject may choose
between $50 and 95% chance of receiving $100. The presented
options are typically titrated until the value of the two alternatives
are subjectively equivalent (e.g., a subject may find a 95% chance
of receiving $70 is as appealing as receiving $50). These points of
subjective equivalence—called indifference points—are typically
collected across a range of probabilities. By using Rachlin et al.’s
(1991) hyperboloid equation to fit a function through those
indifference points, the rate (h) at which the subject value (V)
of some amount (A) the uncertain reward declines as rewards
become less probable (represented as increasing odds against
([θ = (1-p)/p]; Rachlin et al., 1991) can be calculated using:

V = A/(1+ hθs) (1)

In doing so, h represents the speed at which V declines
as uncertainty increases, frequently called the PD rate (Green
et al., 1999; Estle et al., 2006). In simpler terms, smaller h
values demonstrate a willingness to take risks, whereas larger
values reflect aversiveness to risk (Peters and Buchel, 2009).
Gamblers, who are more prone to risky behaviors (Hewig
et al., 2010), demonstrate more shallow discounting across
probabilities than controls (Holt et al., 2003; Madden et al.,
2009; Miedl et al., 2012). Additionally, PD rates have a
negative correlation with scores on the South Oaks Gambling
Screener (Holt et al., 2003; Madden et al., 2009). These
relations, however, have not been widely investigated in AIs
(cf. Weatherly et al., 2012)—despite their elevated risk of PG.
Specifically, although Weatherly et al. (2012) examined PD in
AI’s the comparison between subjects suffering from GD and
controls was not made.

Moreover, relatively little is known about the neurobiological
processes driving PG. One approach to uncovering these
important neuro-correlates is Functional Magnetic Resonance
Imaging (fMRI). fMRI studies use Blood Oxygenation
Level Dependence (BOLD) measures to evaluate changes in
blood oxygenation levels during task involvement. Higher
levels of activity require more oxygen, and therefore,
require more blood flow for oxygenation. Measurements
are collected while participants simultaneously complete
a behavioral and/or neuropsychological tasks, such as
simulated casino games (Miedl et al., 2010) or probability
discounting (Peters and Buchel, 2009; Miedl et al.,
2012).

Using probability discounting tasks in combination with
fMRI, Peters and Buchel (2009) examined specific ROIs [ventral
striatum (VS) and orbito-frontal cortex (OFC)] as participants
completed discounting tasks. Using pre-scan indifference points
from a probability discounting task, researchers equated the scan

tasks so that each participant would make approximately 50% of
choices for the smaller/certain and 50% for the larger/uncertain
outcomes. This assured that there were enough trials wherein
the subject chose each reward type (i.e., smaller certain, larger
uncertain) to make valid comparisons. Significant results were
seen in both the VS and OFC when subjects were coding
for subjective value of the delayed or probabilistic rewards.
Peters and Buchel (2009) noted that the VS and OFC are
part of an integrated system that is activated when subjects
are making decisions about rewards. Additionally, studies have
found decreased activity in the VS and OFC when subjects
were making decisions about delayed/probabilistic rewards
during risky (low probability or long delay) reward trials
(Miedl et al., 2012).

Studies examining the neuro-correlates of PD have added and
will continue to add to our understanding of this behavioral
process and its relation to PG. The extent which prior findings
generalize to AIs—with their elevated risk of GD—remains
unknown. The purpose of the current study was to examine PD
and its neuro- correlates among AIs with and without PG—with
the hope of extending the generality of prior findings.

MATERIALS AND METHODS

Participants
American Indians (ages of 18–65) were recruited by the Center
for American Indian Community Health (CAICH). Participants
were 24 AIs of differing tribes spanning the Midwest plains. Using
DSM-V criteria 12 gamblers and 12 controls were recruited with
mean ages of 39 for gamblers (SD = 19.05) and 36 for controls
(SD = 11.51). During recruitment, care was taken to ensure
participants’ demographic characteristics were representative of
the overall AI population. Participants were excluded from
participation if they reported any condition contraindicating
fMRI, current use of psychotropic medication, current or past
abuse of illicit substances, diagnosis of severe neurological
or psychiatric illness, inability to read and speak English
fluently, left-handedness, or pregnancy. All participants were
compensated $115 and a $20 gas card for their time in the study.

Procedures
Upon arriving at Hoglund Biomedical Imaging Center at Kansas
University Medical Center, participants were escorted to a
consultation room. The consultation room was 8′ × 12′ with a
bank of windows along one wall. The other wall had a door and
bookshelf. There was a round table with chairs in the middle
of the room and a couch to the side. Written consent was
obtained, then all other paperwork was completed, including
demographics, payment form, and the MR safety screener.
Participants then completed a PD task. Participants were then
brought to a locker room and instructed to change into scrubs
and remove any jewelry. Once changed into scrubs, participants
were taken into the scanner. Participants requiring glasses were
fitted with scanner compatible prescription goggles, and sight was
checked by technician before their fMRI session.
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Probability Discounting Task (Pre-scan)
Participants completed a probability discounting task conducted
on an encrypted laptop computer. In this task, participants were
told,

“Now, you’ll be making decisions about some probability of
receiving some amount of money. You’ll see different probabilities
of receiving amounts of money. Although you will not receive these
amounts, pretend you will have the chance of receiving the amount
and answer honestly. You can select between the two options by
pressing the 1 and 2 buttons on this line of numbers. Press the 1
button for the option on the left and the 2-button for the option on
the right.”

Participants then completed four rounds of PD decision
making, one round at each of the probabilities (90, 70, 50, and
10%). Probabilities were presented in descending order and all
trials were completed for each probability before moving on to
the next. On the first trial, participants are presented with a choice
between a smaller, yet certain outcome (100% chance of $50),
vs. a larger, probabilistic outcome (probabilistic chance of $100).
If the participant chose the larger, uncertain reward, the value
of the smaller, certain reward increased by 50% of the previous
titration value (initially $25), but if the participant chose the
smaller, certain reward, the value of the smaller, certain reward
was reduced by 50% of the previous titration value. After the
sixth titration at each probability the value of the smaller, certain
reward was the participant’s indifference point. After completion
of the task, research assistants retrieved the indifference points
from the computer. These values were later entered into the task
program in the scanner to equate the tasks for all participants.

Functional Magnetic Resonance Imaging
Scan
Scanning was performed on a 3-Tesla full body Siemens Skyra
scanner (Siemens, Erlangen, Germany) fitted with a 20-channel
head and neck coil.

Scans collected included an anatomical scan and three
functional probability discounting task runs. T1-weighted 3D
MPRAGE anatomic images were obtained (TR/TE 2,300/2.95 ms,
flip angle 9◦, FOV = 256 mm, matrix = 240 × 256, slice
thickness = 1.2 mm). These images provided slice localization
for functional scans and co-registration with fMRI data. Gradient
echo blood oxygen level dependent (BOLD) scans were acquired
in 43 interleaved slices at a 40◦ angle to the AC/PC line
(TR/TE = 2,500/25.0 ms, flip angle = 90, matrix = 80 × 80,
slice thickness = 3 mm, in-plane resolution = 2.9 mm). The
duration of each functional run varied based on individual
participant reaction times.

Anatomical scans were acquired for participant positioning.
Indifference points from the practice rounds were entered for
each participant to equate the difficulty of the task across
participants. The task adjusted the dollar amounts presented
at each probability to offer the same number of choices above
and below pre-scan indifference points to each participant.
The function of equating the tasks across participants was to
prevent markedly different patterns of choice to more easily

investigate the processes that support choice, rather than the
choices that were made.

Participants were given a control pad with two buttons,
side-by-side, that correlated with the choices projected onto
the screen. The MR tech made sure the screen was visible by
the participant and any last-minute adjustments were made.
Instructions were given by the research assistant about the PD
trials. Instructions were verbally delivered as before:

“Now, you’ll be making decisions about some probability of
receiving some amount of money. You’ll see different probabilities
of receiving amounts of money. Although you will not receive these
amounts, pretend you will have the chance of receiving the amount
and answer honestly. You can select between the two options by
pressing the left and right buttons on the controller. Press the left
button for the option on the left and the right button for the option
on the right.”

Once instructions were delivered, the program was loaded and
automatically triggered by the start of the scanner. All stimuli
(PD choices) were presented using E-Prime (Psychology Software
Tools, Inc., Sharpsburg, PA) for the scan portion of the task.
The same adjusting amount PD procedure was used from the
pre-scan testing, however, for the scan task, percentages were
displayed in a pseudorandomized order. The screen above the
participant showed the two options (the certain and probabilistic
outcomes) the participant was to choose from. Options were
presented in black text on a white background, with the certain
outcome being randomized between the right and left side of
the screen for each trial. Participants are presented with a choice
between a smaller, yet certain outcome (100% chance of $50),
vs. a larger, probabilistic outcome (probabilistic chance of $100).
If the participant chose the larger, uncertain reward, the value
of the smaller, certain reward increased by 50% of the previous
titration value, but if the participant chose the smaller, certain
reward, the value of the smaller, certain reward was reduced
by 50% of the previous titration value. Participants made 32
choices per round, for three total rounds (total of 96 choices),
to determine an indifference point at each probability. Between
trials the instructions were repeated by the MR tech and each
trial ended with a fixation cross that turned from black to gray
to signify the end of the round.

After completing the scans, participants were escorted to
a small office (5′ × 7′) in which they completed additional
questionnaires including timeline follow-back and SOGS
questionnaire. Following completion of questionnaires,
participants were escorted to the changing rooms to return
to their street clothes. After changing, participants received their
compensation and were thanked for their time.

ANALYSIS

Behavioral Analysis
Probability discounting data were screened for orderliness using
the criteria outlined by Johnson and Bickel (2008). Specifically,
participants’ data were removed if an increase of more than 20%
of the undiscounted amount was noted from one condition to
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FIGURE 1 | Upper left panel shows group differences in South Oaks Gambling Screener between gamblers and controls with 95% confidence interval using an
independent samples t-test with Welch’s correction [t(16) = 5.837, p < 0.001]. Upper right panel shows scatterplot of individual South Oaks Gambling Screener
values with the line representing median score per group. Bottom left panel shows group differences of number of hours gambled in the last 90 days with 95%
confidence interval using a one-tailed independent samples t-test with Welch’s correction [t(8) = 2.034, p = 0.038]. Bottom right panel shows group differences in
number of days gambled in last 90 days with 95% confidence interval using a one-tailed independent samples t-test with Welch’s correction [t(8) = 4.142, p < 0.002].

the next, starting with the second indifference point, or if the
final condition indifference point was not less than the first by
at least 10%. Applying these criteria to the participant pool,
three Gamblers and three Controls were removed for analyses of
behavioral components.

Probability Discounting analyses and curve fitting were
performed in GraphPad Prism (version 8), specifically Equation
1 (Rachlin’s Hyperboloid) was separately fit to the median
indifference points for gamblers and controls using least squares
regression. In doing so, the scaling parameter (s) was shared
across groups, isolating the discounting rate (h) as the sole free
parameter. Next, that shared scaling value (s) was input into the
equation, and h values were calculated for each participant. These
h values were used to examine correlations (Spearman) between
discounting rates and SOGS scores. Additionally, PD rates were
calculated using the AUC analysis. AUC is calculated using the
trapezoid method that calculates the aggregate data (area) under
the data path (curve) (Myerson et al., 2001). AUC provided a
measure suitable for use with the parametric statistics used to
examine between group differences in discounting rate.

Functional Magnetic Resonance Imaging
Analysis
All imaging data was collected and managed using RedCap
electronic data capture tools hosted at University of Kansas

Medical Center (Harris et al., 2009, 2019) for data quality
checks. The quality of the fMRI data was checked for processing
errors, alignment, and motion issues. Four subjects (two gambler
and two control) were removed from imaging analysis due to
not completing scans and two gamblers were removed due to
excessive motion (i.e., > 50% censoring).

Data preprocessing and statistical analyses for imaging
data were performed in AFNI (Cox, 1996). Preprocessing
steps included motion correction, alignment, spatial smoothing
and normalization. The fMRI images were realigned to the
minimum outlier in each run to correct for motion. The images
were spatially smoothed to 4 mm FWHM Gaussian kernel.
Anatomic images were aligned to functional images and spatially
normalized to Montreal Neurological Institute space using non-
linear warping implemented with AFNI’s automated algorithm.
Within each functional run were registered to the minimum
outlier. Data points were censored if motion within a volume
was greater than 0.3 mm. Statistical contrasts were conducted
using multiple regression analysis with motion parameters
included as nuisance regressors. Regressors representing the
experimental conditions of interest (i.e., High, Mid, and Low
Probability) were entered into the regression analysis using a
duration modulated basis function. Timing files were created
in Microsoft Excel to identify the beginning and end of each
individual trial. Trials were separated into three groups (High,
Mid and Low Probability). High probability trials consisted
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of the 90% probabilities, Mid probability trials consisted
of the 70 and 50% probabilities, and the Low probability
trials were set for the 10% probabilities. The quality of
the fMRI data was checked for processing errors, alignment,
and motion issues.

The data analysis focused on a whole-brain voxel-wise analysis
of variance (ANOVA) implemented by AFNI’s 3 dMVM (Chen
et al., 2014) to determine brain activation (i.e., percent signal
change from baseline) main effects and interactions [Probability
(Low, Mid, Hight) × Group (Gambler, Control). AFNI’s 3
dClustSim was used to estimate the probability of false positives
and correct for multiple comparisons at p < 0.005 and α < 0.05.

RESULTS

Figure 1 (top) shows South Oaks Gambling Scale scores for
gamblers (range 4–16; M = 8.88. SD = 3.76) and controls (range
1–3; M = 1.44, SD = 0.73), with a significant difference between
groups using an independent samples t-test [t(16) = 5.837,
p < 0.001]. Figure 1 (bottom) shows participants’ histories of
gambling involvement (hours and days). Results of previous
studies have reported variance of gambling behaviors being
unidirectional (gamblers). Our analytical hypothesis, therefore,
was past gambling behavior variance would occur in one
direction (gamblers). Using a one-tailed independent samples
t-test with Welch’s correction resulted in a statistically significant
[t(8) = 2.034, p = 0.038] difference in the number of hours
gambled (Figure 1—bottom left) over the last 90 days between
Gamblers (M = 65.73, SD = 94.02) and Controls (M = 2.00,
SD = 2.68). Using the same analysis on self-reported days gambled
in the last 90 days (Figure 1—bottom right) shows a statistically
significant difference [t(8) = 4.142, p < 0.002] in the number of
days gambled amongst Gamblers (M = 17.91, SD = 11.09) than
Controls (M = 1.00, SD = 1.26).

Figure 2 (top) shows the probability discounting curves
fit to the median indifference points for PG (circles) and
controls (squares) using Rachlin et al.’s (1991) hyperboloid
discounting equation (Equation 1). This equation allows for
two free parameters (discounting rate, h, and psychosocial
scaling of delay, s) during analysis. To control for this, the
scaling parameter (s) was held constant (i.e., shared) across all
participants (s = 0.8165). Analysis showed an excellent fit for
gamblers (R2 = 0.9955) and controls (R2 = 0.9703) to the group
median. Additionally, discounting rates demonstrated a much
more-shallow discounting rate by the gamblers (h = 0.6038)
compared to controls (h = 2.134). When fitting Equation 1
to individual subjects’ data the group mean fit was fair for
PG (R2 = 0.8642) and controls (R2 = 0.8926), with the mean
log-transformed discounting rate (LN[h]) significantly differing
between groups. As a confirmatory step, this analysis was
also conducted using Area under the Curve. Area Under the
Curve measures of indifference points were lower for Gamblers
(M = 0.427, SD = 0.212) than Controls (M = 0.672, SD = 0.057).
An unpaired t-test comparing AUC showed a statistically
significant group difference [t(20) = –3.714, p ≤ 0.001]. Figure 2
(bottom) shows Spearman correlations between SOGS scores to

FIGURE 2 | Top panel shows probability discounting curves using Rachlin’s
Hyperboloid equation for gamblers (R2 = 0.9955) and controls (R2 = 0.9703).
Bottom panel shows results of a Spearman correlation between discounting
rates (h) on the y-axis and SOGS scores on the x-axis. The trendline shows a
negative correlation of r(18) = -0.617, p = 0.006.

discounting rates. Using a Spearman correlation analysis, results
showed a significant negative correlation r(18) = -0.617, p = 0.006.

Whole brain analysis found no significant (p > 0.05) Group×
Condition interaction or main effect of Group. A main effect of
probability condition (Figure 3) was found in decision-making
regions of the dorsal medial prefrontal cortex (dmPFC; x, y,
z = -2, 44, 33, p < 0.005, corrected) and attention regions of
the precuneus (x, y, z = -5, -69, 58), p < 0.005, corrected)
demonstrating greater activation in low compared to high
probability conditions.

DISCUSSION

Consistent with prior reports (Holt et al., 2003; Madden et al.,
2009; Miedl et al., 2012) probability discounting rates were lower
in PG relative to controls. Also consistent with prior studies,
SOGS scores were negatively correlated with discounting rates
(Holt et al., 2003; Madden et al., 2009). Also consistent with prior
studies (Miedl et al., 2012), we did not obtain differences in task-
related neural activation while PG and controls completed the
PD task. There are four additional points we would like to make
about these data.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 February 2022 | Volume 16 | Article 80996384

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-809963 February 16, 2022 Time: 11:1 # 6

Schneider et al. Probability Discounting in Problem Gamblers

FIGURE 3 | Left panel shows activation differences in the dmPFC and precuneus as an effect of condition (probability) of the probability discounting task during
fMRI scan. Upper right panel shows group differences across probabilities in the dmPFC with a main effect of condition (error bars represent mean and SD).
Controlling for multiple comparisons, results were significant at p < 0.005. Bottom right panel shows group differences across probabilities in the precuneus with a
main effect of condition (error bars represent mean and SD). Controlling for multiple comparisons, results were significant at p < 0.005.

First, despite the limited sample size, the between-group
differences in probability discounting rate were robust. While this
modest sample size is a limitation, the consistency of this finding
with findings from prior studies (Holt et al., 2003; Madden et al.,
2009) suggests that we were not capturing a spurious relation. As
a systematic replication (Sidman, 1960) of prior studies in this
novel and relevant population, the current findings strengthen
our understanding of the relation between PD and GD. In
light of prior findings, the current findings suggest probability
discounting rates may be a behavioral process undergirding
the risk taking seen in problem gambling. This possibility is
strengthened by the replication of the negative relation between
SOGS scores and PD seen in prior studies (Holt et al., 2003;
Madden et al., 2009).

Second, the current study failed to find group-based
differences in task-related neural activation when PG and
controls completed the probability discounting task. This is
consistent with prior studies (Peters and Buchel, 2009; Miedl
et al., 2012), but may be based on the sample size providing
insufficient power to demonstrate significant relations once
corrected for multiple comparisons. Similar neurobiological
profiles associated with differing behavioral profiles, however,
is not unprecedented. Ersche et al. (2012), for example, found
that siblings of individuals suffering from stimulant-dependence
had the same underlying neural abnormalities—despite their
abstaining from stimulant use. Future studies with a larger sample
size are needed to determine if the between group consistency was
due to low power or similar neural processing between groups.

Third, while the sample size may have been insufficient
to reveal neurobiological differences between groups, it was

sensitive to task related differences. Specifically, we found
differences between condition activation in the dmPFC and
precuneus. Previous studies have found elevated activation
of the dmPFC during complex decision-making tasks
(Paulus et al., 2002; Pochon et al., 2008; Venkatraman et al.,
2009)—consistent with the complexity of making judgements
regarding probabilities during the current task. These neural
response patterns, however, differ slightly from Abidi et al.
(2018) who found elevated activation in the OFC and VS during
severe side effect conditions and Miedl et al. (2012) who found
a trend toward less pronounced activation in the OFC and VS
in gamblers compared to controls during a PD task. Specifically,
results showed neural values were attenuated for gamblers during
PD tasks (Miedl et al., 2012). Although inconsistent, these results
contribute to our overall understanding of the neural correlates
of this understudied behavioral process. Additional work is
needed to determine the reasons for these discrepancies.

Finally, there were limitations to the study that can be
addressed in future research. The first limitation is the small
group sizes and large amounts of variability within and between
groups that reduced statistical power needed to identify some
group level differences. The next limitation is that indifference
points from the pre-scan task were entered into the scan
computer to equate the task. By equating the tasks, it could
be preventing some differences from being identified. It does,
however, functionally equate the tasks which reduce differences
in task difficulty and differential responding. Equating the tasks
sets the expected outcomes equal across groups. This means
that observed regional differences are reflective of neurological
differences and not tied to task difficulty.
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For future studies, neurobiological differences could be
investigated as to differences in non-task dependent, resting
state activity, outside and inside a gambling environment. Those
differences could then be compared to neural activity while
gambling in a real-world gambling environment. Additionally,
behaviors specific to the gambling environment, such as betting,
collecting their winnings or watching their losses being removed
could highlight some subtleties that are easily lost in translation to
a research study. Further, auditory stimuli need to be investigated
to study the impact on neural activity underlying behavioral
processes during decision making.

In summary, this study replicated previous findings of PG
using PD tasks in an fMRI study, but also highlighted new
findings that need to be further investigated. Additionally, these
differences need to be evaluated in a larger cohort to gain the
necessary statistical power to evaluate some subtleties noted in
regional activation differences. Further research is needed to
replicate and extend these findings to treatments that may target
the mediation of the risky outcome with the reward drive.
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Decision-making is substantially altered after brain injuries. Patients and rats with brain
injury are more likely to make suboptimal, and sometimes risky choices. Such changes in
decision-making may arise from alterations in how sensitive individuals are to outcomes.
To assess this, we compiled and harmonized a large dataset from four studies of
TBI, each of which evaluated behavior on the Rodent Gambling Task (RGT). We then
determined whether the following were altered: (1) sensitivity to overall contingencies, (2)
sensitivity to immediate outcomes, or (3) general choice phenotypes. Overall sensitivity
was evaluated using the matching law, immediate sensitivity by looking at the probability
of switching choices given a win or loss, and choice phenotypes by k-means clustering.
We found significant reductions in sensitivity to the overall outcomes and a bias toward
riskier alternatives in TBI rats. However, the substantial individual variability led to poor
overall fits in matching analyses. We also found that TBI caused a significant reduction
in the tendency to repeatedly choose a given option, but no difference in win- or loss-
specific sensitivity. Finally, clustering revealed 5 distinct decision-making phenotypes
and TBI reduced membership in the “optimal” type. The current findings support
a hypothesis that TBI reduces sensitivity to contingencies. However, in the case of
tasks such as the RGT, this is not a simple shift to indiscriminate or less discriminate
responding. Rather, TBI rats are more likely to develop suboptimal preferences and
frequently switch choices. Treatments will have to consider how this behavior might
be corrected.

Keywords: Iowa Gambling Task (IGT), impulsivity, controlled cortical impact (CCI), statistical approaches, rat

INTRODUCTION

Traumatic brain injury (TBI) affects 2.8 million Americans every year and is associated with
impairments in decision-making (Bhalerao et al., 2013; Zgaljardic et al., 2015). Though these
psychiatric-like symptoms are well-cataloged in this population, the underlying behavioral and
neurological mechanisms are not clear. A better understanding of the behaviors that lead to
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these symptoms may yield effective rehabilitative strategies which
could readily be implemented. Moreover, study of this population
may lead to additional insights regarding the fundamentals
of behavior. Patients with TBI display altered performance of
numerous neuropsychological assessments related to decision-
making, however, as described below, findings are not necessarily
in line with a simple hypothesis of “injury increases risk
taking.” Shifts in behavior such as reduced sensitivity to
outcomes or reduced learning rates may also be sufficient to
explain such findings.

In the Iowa Gambling Task (IGT), which evaluates preference
for safe vs. risky alternatives as people interact with the choices,
patients with TBI make increased risky decisions (Sigurdardottir
et al., 2010; Cotrena et al., 2014; Visser-Keizer et al., 2016). On
the Game of Dice Task, which explicitly presents probabilities
in the form of dice, patients with TBI made significantly fewer
advantageous (safer) choices (Rzezak et al., 2012). However,
in the Balloon Analog Risk Task, which presents a visual
representation of risk/reward in the form of a virtual “balloon”
that participants “inflate” to earn points, patients with TBI
demonstrate no differences (in adolescents, Chiu et al., 2012),
or even risk aversion (in adults, Fecteau et al., 2013). While the
IGT is the most widely used of these tasks, a large confound is
that outcomes must be learned over time through interaction.
However, this also likely yields the best translational value as
explicit consequences of an action are rarely specified in real life
at the time of a decision. In contrast, the Game of Dice Task
gives indicators of probability, but some level of math equivalency
must be carried out (e.g., 4/6 numbers on a die = 0.67 probability
for $100, weighed by cost of bet). Finally, the Balloon Analog
Risk Task likely provides the simplest representation of risk in the
form of a (virtual) balloon which inflates to a point of popping.
However, even with this task, some level of learning is required
to determine the elasticity of the balloon and maximize gains.
In the case of the Fecteau study, the “risk aversion” observed in
patients with TBI was largely due to a lack of adaptation. This
suggests more general deficits of learning over time as opposed to
a fundamental change in preferences regarding risk.

While TBI clearly alters decision-making, given the somewhat
discrepant findings and the nature of the assessments, it is
difficult to conclude that injury explicitly increases risky decision-
making. Instead, insensitivity to outcomes (e.g., a winning or
losing trial) or reduced learning from those outcomes over time
may also account for these same symptoms. Indeed, earlier
work explicitly tested this in patients with TBI and found that
they had difficulty discriminating outcomes and adjusting their
own actions based on those outcomes (Schlund and Pace, 2000;
Schlund, 2002). To evaluate these findings with greater control,
animal models may be used. With the appropriate motivation,
animals can be trained on an array of behaviors similar to the
human condition. In a rat model of TBI, we have reported
findings strikingly similar to the human condition. Rats with
either a frontal or unilateral TBI demonstrated reduced optimal
decision-making on an analog of the IGT, the Rodent Gambling
Task (RGT) (Shaver et al., 2019; Ozga-Hess et al., 2020), in which
rats can make safe or risky choices by nosepoking in different
holes in an operant chamber. Moreover, they distributed their

choices to both a less risky (but suboptimal) choice, and riskier
choices. This suggests a more indiscriminate style of decision-
making as opposed to a pure increase in riskiness. Indeed, in
studies of simple discrimination after TBI in rats, impairments
are substantial (Martens et al., 2012; Vonder Haar et al., 2014;
Muelbl et al., 2018). However, while these deficits resolve, more
complex decision-making tasks such as the RGT may present less
explicit feedback than discrimination tasks and present a much
greater challenge to detection of contingencies.

A large drawback to the existing studies described above are
the relatively small samples sizes. With heterogenous behaviors
such as decision-making, individual differences may make it
difficult to determine whether patients or animals are truly
more risk-preferring or if there have merely been reductions
in sensitivity to outcomes. The use of larger scale, harmonized
datasets may provide an opportunity to gain insight and evaluate
different potential explanations for changes in choice behavior.
In the field of behavioral science, two theoretical approaches are
commonly used to describe many types of decision-making. The
molar viewpoint takes the perspective that behavior is sensitive
to the overall rates of reinforcement amongst alternatives
(Baum, 1989). In contrast, the molecular viewpoint suggests that
immediate outcomes drive subsequent decisions (Shimp, 2020).
Indeed, experimental setups can be designed which provide
evidence for both, but some combination of the two are likely
at work for everyday behaviors. The molar view is epitomized
by the Matching Law, a mathematical description that relative
rates of behavior closely match relative rates of reinforcement
(Baum, 1974). The strongest evidence for this comes from data
collected at a steady state, after the contingencies have been
learned, using experimental setups in which effort is independent
of time spent on an alternative (i.e., interval schedules as
opposed to ratio schedules) (Rider, 1981). The strongest evidence
for molecular viewpoints comes from tasks in which change
occurs rapidly or frequently and behavior must be adapted to
new contingencies (Dalton et al., 2014). Because changes to
either molar or molecular sensitivities after TBI could drive
changes to decision-making, both must be evaluated. Moreover,
if neither are sufficient to describe behavior at the group and/or
subject level, atheoretical statistical data reduction techniques
may provide insight into these changes underlying changes to
decision-making.

In the current set of analyses, we used a dataset collected
across four studies to evaluate molar (overall contingencies),
molecular (immediate contingencies), and atheoretical accounts
(purely descriptive) of behavior. This large dataset was able to
power analyses which would have been impossible with data
from any single one of these studies. The RGT captures decisions
across four distinct alternatives, each associated with a different
probability and magnitude of reinforcement (sucrose pellets) and
punishment (time out from reinforcement). Because choices are
mutually exclusive and probabilistic, decisions should collapse
into exclusive preference of the most optimal option. However,
this is rarely observed at a subject level, and never at the
population level. Thus, there is rationale to evaluate if behavior
is allocated according to relative rates of reinforcement (i.e.,
matching: molar sensitivity) or if there are high sensitivities to
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immediate outcomes (i.e., shifting behavior based on a “win” or
“loss”: molecular sensitivity). TBI causes changes to decision-
making behavior on this task (Shaver et al., 2019; Ozga-Hess
et al., 2020) and may disrupt sensitivity to either molar or
molecular outcome dynamics. In the current study, we aimed
to compare molar, molecular, and atheoretical accounts of RGT
choice behavior.

MATERIALS AND METHODS

The Dataset: Rodent Gambling Task
Performance in a Large Cohort of
Traumatic Brain Injury and Sham Rats
The dataset analyzed in the current study was compiled from
four separate experiments (Table 1). Common methods are
described below in brief. All rats performed the Rodent Gambling
Task, a measure of probabilistic decision-making and motor
impulsivity. The first study assessed the effects of a bilateral
frontal TBI delivered either before (“acquisition” condition), or
after (“trained” condition), learning the RGT (Shaver et al., 2019).
The second assessed the effects of a unilateral TBI on acquisition
of RGT learning (Ozga-Hess et al., 2020). The remaining two
are in preparation for publication, but both used bilateral frontal
TBI. One assessed the effects of a dietary manipulation before
injury (RGT trained pre-injury), and the other a drug treatment
after injury (RGT tested in acquisition). For these two studies, the
control conditions of sham surgery or TBI surgery (no additional
treatment/manipulation) were isolated for the current analysis.
For all experiments, stable performance was evaluated (i.e.,
sessions ≥ 15 for pre-injury and sessions > 10 for post-surgery)
to mitigate learning effects in acquisition experiments. Thus, the
sessions selected represent approximately weeks 4–8 post-injury.
To maximize control numbers, both pre-TBI and post-surgery
sham data were pooled for any Sham-only analyses (e.g., single-
subject plots). This resulted in 80 Sham animals, and 51 TBI
animals with an average of 17 sessions each. Analyses comparing
Sham and TBI performance were carried out using only post-
injury data (Sham = 58, TBI = 51). Three types of analysis
(representing molar, molecular, and atheoretical perspectives)
were evaluated on this dataset to better understand (1) normal
probabilistic decision-making, and (2) how this was disrupted
by brain injury.

Subjects
Subjects were 109 male Long-Evans rats, between 3 and 5 months
of age at time of injury. Rats were either pair-housed in standard
cages (Allentown, Allentown NJ) or triple-housed in larger,
pentagonal cages (Animal Care Systems, Centennial CO) prior
to injury and single-housed after injury. Rats were restricted to
12–14 g of chow daily plus pellets earned during the task. Water
was available ad libitum.

Apparatus
Behavioral testing was conducted in a set of 16 standard 5-choice
operant chambers (Med Associates, St Albans, VT). Each was

enclosed in a sound-attenuating box, and white noise played in
the room. The right side was equipped with a food hopper and
light. The left wall of the chamber was equipped with a 5-hole
array in which rats’ nosepokes were recorded. The chamber was
also equipped with a houselight.

The Rodent Gambling Task
Rats were trained as previously reported on the RGT (Zeeb and
Winstanley, 2013; Shaver et al., 2019; Ozga-Hess et al., 2020). In
brief, nosepoking behavior was shaped by reinforcing pokes to an
illuminated hole. The stimulus duration was gradually decreased
until rats responded within 10 s and responses made prior to
illumination were recorded as “premature” and punished with a
timeout. Rats then began “forced-choice” RGT training in which
only one option was available, but the RGT contingencies were in
effect. Following 7 sessions of forced choice, rats were tested on
the free-choice RGT.

The choice contingencies on the RGT are designed such that
four options are available, named for the number of pellets they
deliver: P1 (90% 1 pellet; 10% 5-s timeout), P2 (80% 2 pellets;
20% 10-s timeout), P3 (60% 3 pellets; 40% 30-s timeout), and P4
(40% 4 pellets; 60% 40-s timeout). The P2 option is optimal (13.71
pellets/min), the P1 suboptimal, but low risk (9.81 pellets/min),
while the P3 (4.5 pellets/min) and P4 (3.31 pellets/min; least
advantageous outcome) are high risk but with large magnitudes.

Multiple other variables were collected on the RGT, including
the number of premature/impulsive responses, omitted trials,
total trials, total reinforcers, response latency, collection latency,
and perseverative pokes to the 5-choice array.

Traumatic Brain Injury: Controlled
Cortical Impact
A controlled cortical impact procedure was used to administer
moderate-severe, focal TBI (Hoffman et al., 1994). Rats were
anesthetized with isoflurane (5% induction, 2–4% maintenance)
in 0.5 L/min oxygen. Then rats were placed into a stereotaxic
frame and administered a local analgesic (Bupivacaine; 0.25%,
s.c.) at the incision site and a subcutaneous general analgesic
(ketoprofen; 5 mg/kg, s.c.). Then, the surgical site was sanitized,
and rats were given a midline incision. A craniectomy was
performed above the injury location and a controlled cortical
impact delivered (bilateral frontal: + 3 mm/ + 0 mm/−2.5 mm
@ 3 m/s; unilateral parietal: −2.4 mm/ + 2.4 mm/−2.5 mm @
3 m/s). Sham surgeries consisted of either craniectomy shams
(all procedures except impact) or “intact” shams which only
received an incision. Rats resumed testing starting at week 2
post-injury and continued until week 8–12 (varied by study).
Sessions evaluated here would represent approximately weeks
4–8 post-injury, a relatively chronic time point for rats.

Data Processing
Raw trial-by-trial data were imported into R for processing.
Any manipulations/treatments other than TBI were filtered away.
Sessions prior to stable post-injury performance were filtered
away. For each subject, session and choice option, total choices,
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earned pellets, and total timeout were summed. Additional
calculations were performed as described below.

Experiment 1—Molar Accounts of
Behavior: The Generalized Matching Law
To maximize pellets earned, the P2 option should be chosen
exclusively. However, this is not observed at the population level
(even in Sham rats) and rarely observed in individual rats. To
determine if this heterogeneity in choice performance was related
to relative reinforcement rates amongst the choice options, the
generalized matching law was evaluated. The matching law
stipulates that behavioral allocation will approximate relative
reinforcement rate (Baum, 1974). While this typically breaks
down under ratio schedules (probabilistic delivery in this task is
analogous to variable ratio), it may account for some behavior.

The ratio of choices for each option was calculated per
subject and for the last 10 sessions of performance. The
obtained reinforcers and punishers were used to calculate a
reinforcement rate for each option. When total choices were
less than 4, the programmed reinforcement rate was used.
When choice of an option was 0, this was replaced with a
1 and added to the total of choices. These adjustments were
necessary to prevent 0 s and infinite values since this experiment
was not designed to eliminate those from the data as would
be typical in a matching experiment. The ratios of choice
and reinforcement rate [e.g., P1/(P2 + P3 + P4)] were then
calculated for each option, subject, and session. These were log
transformed and fit to the generalized matching law using linear
regression [log(RT/RO) = a∗log(BT/BO) + log(b), where RT is
the reinforcement rate of the target option and RO is the sum of
reinforcement rate of other options, BT is the number of choices
on the target option, BO is the sum of choices on other options,
and b is the bias].

From this linear regression, values representing the sensitivity
to reinforcement (slope), bias (y-intercept) and the overall fit (R2)
were calculated. Plots of individual subjects were used to visualize
how many rats demonstrated matching, and a quantitative
comparison (t-test) was made between TBI and Sham. Average
values were used to also fit the matching law at the population
level to Sham and TBI.

Experiment 2—Molecular Accounts of
Behavior: Win/Loss Sensitivity
It is possible that in tasks such as these, greater sensitivity is given
to immediate consequences. Thus, if a choice is reinforced on
a given trial, this may increase what is commonly referred to
as “win-stay” behavior, or an increase in probability of staying

TABLE 1 | Brief description of studies.

Study References Injury Trained or
acquisition

N (TBI)

1 Shaver et al., 2019 Bilateral frontal Both (separate
cohorts)

44 (21)

2 Ozga-Hess et al., 2020 Unilateral parietal Acquisition 25 (11)

3 Under review Bilateral frontal Trained 18 (8)

4 In preparation Bilateral frontal Acquisition 22 (11)

on that option. Conversely, punishment may increase “lose-shift”
behaviors, or the probability of switching away from that option.
To maximize performance on the RGT, rats must persist through
punishment on optimal choices (i.e., P2 option) and switch away
from reinforcement on riskier choices (e.g., P3, P4).

The probability of staying with the same choice on a
subsequent trial was evaluated as a function of the preceding
outcome (“win” or “loss”). Overall data were calculated for the
last 10 sessions from a given study. To power analyses at the
individual choice option level, data from the last 10 sessions for
each choice option were summed to a single value and filtered
so that only choices with greater than 4 observations were used.
Overall switching, probability given a win, and probability given
a loss were evaluated in a linear mixed-effects regression with
Injury and Session as predictors. Individual subjects were plotted
to visually examine the range of sensitivity between the two
groups. The same analyses were then carried out for each choice
option (i.e., P1:P4) but using ANOVA since data were aggregated.

Experiment 3—Atheoretical Accounts of
Behavior: k-Means Clustering
Given that neither opposing theories of behavior strongly
accounted for RGT data, a third experiment was conducted to
determine if an unbiased approach might better describe the
data. A simple k-means clustering approach was used. In this,
the distance from a multidimensional centroid was minimized
by categorizing subjects into k number of clusters. Data were
averaged on a per subject basis from the last 10 sessions of a
given study. A series of clusters was evaluated, starting at 2, and
increasing to 10. Clusters were evaluated using the gap statistic
to determine optimal number and validated by visual inspection
of the elbow plot of the sum of squares. To reduce risk of
overfitting/overestimation given the relatively small dataset, the
number of subjects in each cluster were also monitored to ensure
that any given cluster contained at least 5% of the sample. Sham
data were assessed alone first, followed by TBI alone, and then
the full dataset together. Visualization of the cluster averages were
used to generate descriptive names as “phenotypes.”

Supplemental Analyses
The supplement provides several comparisons between the
various sub-group variables in the current study. Specifically,
comparisons were made between craniectomy and intact shams,
bilateral frontal and unilateral parietal TBI, and within-subjects
pre- and post-injury effects. These subgroup comparisons (with
the exception of intact vs. craniectomy) are of lower power than
the main document, and so should be interpreted with caution.

RESULTS

General Rodent Gambling Task
Performance and Effects of Traumatic
Brain Injury
An examination of the relation between non-choice and other
variables is presented in Supplementary Figure 1. There were
substantial correlations between overall choice and multiple
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FIGURE 1 | Overall choice of the four RGT options shown as mean (solid line) and one standard deviation band (fill). Only sessions after 10 are shown to maximize
visualization of stable choice preference, which represents approximately weeks 4–8 post-injury. There were significant Injury effects on each choice option (P1 and
P2: p < 0.001; P3: p = 0.048; P4: p = 0.022) and P1 had a slight, but significant decline over time (p = 0.001). Analyses indicated substantial individual variation in
choice.

variables of interest, including premature responses and “Win-
Stay” and “Lose-Shift” behaviors. Choice of each option was
analyzed in independent linear mixed effects regressions,
interacting Injury and Session as fixed effects, and allowing slope
and intercepts to vary by subject as random effects. Sessions
from 11 to 30 were selected to minimize early change after TBI
and learning (Figure 1). For P1 choice, there were significant
increases due to Injury and across Session (β = 0.68, t = 4.25,
p < 0.001; β = −0.10, t = 4.00, p < 0.001), but not with
regard to their interaction (β = −0.05, t = 1.26, p = 0.209).
Individual subjects also varied considerably in their intercept
but not in slope (SD = 1.04; SD = 0.03). For P2 choice, there
was a significant decrease due to Injury (β = −0.79, t = 4.76,
p< 0.001), but no effect of Session nor their interaction (β = 0.02,
t = 0.80, p = 0.427; β = 0.01, t = 0.22, p = 0.825). Individual
subjects also varied considerably in their intercept but not in slope
(SD = 0.98; SD = 0.03). For P3 choice, there was a significant
increase due to Injury (β = 0.35, t = 2.00, p = 0.048), but not
because of Session nor their interaction (β = 0.03, t = 1.07,
p = 0.288; β = 0.01, t = 0.17, p = 0.863). Individual subjects
also varied considerably in their intercept but not in slope
(SD = 0.86; SD = 0.03). For P4 choice, there was a significant
increase due to Injury (β = 0.41, t = 2.32, p = 0.022), but no

effect of Session nor their interaction (β = −0.01, t = 0.30,
p = 0.767; β = 0.02, t = 0.63, p = 0.529). Individual subjects
also varied considerably in their intercept but not in slope
(SD = 1.03; SD = 0.03).

Although the P2 option had a large TBI effect, others
were considerably smaller and likely only significant due to
the large power given the number of subjects. Moreover,
there was substantial individual variability as shown by the
standard deviation of the random effects. This variability is
described further in individual subject-level plots below. The
magnitude of these individual differences were of similar or
larger magnitude than the group-level effect. These reinforce
the need to examine data on an individual subject level in
subsequent analyses.

Experiment 1: Molar Accounts of
Behavior
The generalized matching law was fit to each individual
subject. In Sham rats, a large number were sensitive to the
reinforcement contingencies as indicated by steep slopes in
Figure 2. However, a portion also demonstrated anti-matching
or preference for the riskier option as well as indifference to the
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FIGURE 2 | Individual subject fits to the matching law show Sham (left, black) and TBI (right, red) subjects. A wide degree of sensitivity was present across subjects.
The matching law only described a very small subset of animals.

relative rates of reinforcement. For the TBI rats, similar styles
were present at the individual level (Figure 2). However, in
the aggregate, TBI rats had reduced sensitivity to reinforcement
rates [t(107.21) = 4.15, p < 0.001], increased bias toward risky
alternatives [t(104.02) = 3.96, p < 0.001], and worse fits to
the equation [t(107.25) = 3.64, p < 0.001] relative to Sham
rats (Figures 3A–C). Further, the matching law fit poorly
at the population level (Sham R2 = 0.39, TBI R2 = 0.11;
Figures 3D,E).

Experiment 2: Molecular Accounts of
Behavior
To determine if immediate outcomes influenced decision-
making on the RGT, likelihood of switching after a choice was
analyzed, including session as a covariate. Aggregate distributions
of switching are shown as density plots in Figures 4A,B. The
overall tendency to stay was significantly reduced in TBI rats
[F(1, 155.25) = 7.07, p = 0.009]. When analyzed by the prior
trial being a win or loss, TBI rats still were significantly less
likely to stay with an option regardless of win or loss [F(1,

153.1) = 7.29, p = 0.008], and overall rats were less likely to stay
following a loss [F(1,3710) = 5.85, p = 0.016], but there was no
differential sensitivity to losses in the TBI group [F(1,3710) = 0.00,
p = 0.966].

While useful to capture global changes in propensity to
stay with a choice, analyzing the overall data could miss
important differences related to individual choice contingencies.
Thus, a similar analysis was conducted, but data from the
10 sessions were summed for each option to ensure sufficient
resolution. Aggregate distributions are shown as density plots
in Figures 4C,D. For overall tendency to switch, there was an
interaction of Injury and Choice Option [F(3, 407) = 12.74,
p < 0.001], so each was analyzed separately. TBI rats were
significantly more likely to stay on P1, but less likely on P2
choices [F(1, 105) = 11.44, p = 0.001; F(1, 106) = 19.43, p < 0.001],
but not P3 or P4 [F(1, 99) = 0.75, p = 0.388; F(1, 97) = 2.32,
p = 0.131]. When analyzed by win- and loss-trials, there was
also an Injury × Choice Option interaction [F(3, 812) = 23.28,
p < 0.001], so each was analyzed separately. TBI rats were
significantly more likely to stay on P1 and P4 choice options, but
less likely on P2 [F(1, 208) = 20.04, p < 0.001; F(1, 194) = 5.41,
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FIGURE 3 | Aggregate matching law parameters and group-level fits. (A) TBI reduced sensitivity (p < 0.001), and (B) shifted bias toward suboptimal options
(p < 0.001). (C) The matching law described TBI rats more poorly than Sham (p < 0.001), however the matching law did not describe data well at the individual or
(D,E) at the aggregate level.

p = 0.021; F(1, 212) = 38.08, p < 0.001], and not significantly
different on P3 [F(1, 198) = 1.37, p = 0.243]. There was no injury-
related difference in tendency to switch given a win vs. a loss
(p’s > 0.134).

These wide distributions suggest considerable individual
variability. Indeed, this was confirmed from viewing the average
probability of staying with an option at the subject level
(Figure 5). Both Sham and TBI groups had some rats which
exploited options, and others which were frequently switching
amongst choices.

Experiment 3: Atheoretical Accounts of
Behavior
For the Sham cohort, four clusters were the optimal fit to the data
according to the gap statistic, and it was not until six clusters
that any given one approached the < 5% sample threshold we
established. For the TBI cohort, nine clusters was the optimal
fit according to the gap statistic. However, examination showed

that eight or more clusters resulted in clusters with less than
5% of the sample. A re-analysis of the TBI cohort, limited
to a max of seven clusters identified seven as optimal on
the gap statistic.

Once the data were combined, the gap statistic identified four
clusters as optimal, and six or more clusters resulted in at least
one with < 5% of a given group. Because the k-means algorithm
is agnostic to injury condition, when four clusters were examined,
the group-level fits were imprecise. The cluster number was
increased to five and group-level data fit the clusters much better
while still staying within the previously set parameters.

The clusters that emerged represented five choice phenotypes
(Figure 6): An Optimal (strong P2 preference), an Exploratory
(moderate P2 preference), two Risky (a P3-preferring and a
P4-preferring), and an Indeterminate (P1 + P3 preference).
When these clusters were examined by group, a Fisher’s Exact
Test revealed a significantly uneven distribution of cluster
membership (p = 0.001; Figure 7A). TBI animals were less likely
to be in the Optimal phenotype and displayed small increases in

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 83765494

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-837654 April 15, 2022 Time: 13:12 # 8

Vonder Haar et al. RGT Phenotypes

FIGURE 4 | Density plots of distributions of the probability of staying with a choice in TBI vs. Sham animals. (A) Overall tendency to stay on a choice (regardless of
outcome) was higher in Sham than TBI rats (p = 0.008). Sham rats displayed a bimodal set of peaks around 40 and 90% likelihood of staying on an outcome.
(B) Breakdown of tendency to stay depending on whether the prior outcome was a win (solid) or loss (dashed). The same overall differences were present in TBI
(p = 0.008), and losses reduced the probability of staying (leftward shift in curve; p = 0.016) but TBI rats did not show differential sensitivity to wins or losses
(p = 0.966). (C) When broken down to each choice option, TBI rats were more likely to stay with P1 (p = 0.001), but less likely to stay with P2 (p < 0.001) regardless
of outcome. (D) When choice option data were analyzed depending on whether prior outcome was a win (solid) or loss (dashed), similar overall effects in tendency to
stay were observed with TBI rats more likely to stay with P1 (p < 0.001) and P4 (p = 0.021), but less likely for P2 (p < 0.001). There were no differential effects in
sensitivity to wins vs. losses (p’s > 0.134).

the remaining phenotypes. TBI animals were the only ones to
demonstrate the Indeterminate phenotype.

For each cluster, an ANOVA (Pct Choice ∼ Injury ∗ Choice
Option) was conducted to see if groups differed despite being
grouped together in the k-means process (Figures 7B–F).
TBI were significantly different in the Optimal (Injury∗Choice:
p = 0.018) and Risky (P3) cluster (Injury∗Choice: p = 0.001). To
obtain a coarse measure of differences in variance, the standard
deviations were calculated for each choice option for both groups

and then summed for each phenotype to provide a qualitative
comparison of variance. TBI had higher variance in the Risky (P4)
cluster (48.11 vs. 35.76) and Exploratory cluster (43.77 vs. 36.73),
less variance in the Risky (P3) cluster (31.34 vs. 43.94), and similar
variance in the Optimal cluster (24.13 vs. 24.67).

Supplemental Analyses
There were no differences on overall behavior between
craniectomy and intact shams (Supplementary Figure 2), and
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FIGURE 5 | Individual subject’s probability of staying with a choice across total trials, winning trials, and losing trials in Sham (left, black) and TBI (right, red) subjects.
There was considerable variability in the tendency to stay with a choice across subjects.

so molar/molecular/atheoretical analyses were not applied to
this group. Unilateral parietal TBI significantly decreased molar
sensitivities, but increased tendency to stay with those options
relative to bilateral frontal TBI (Supplementary Figures 3–
5). With regard to the subset where pre- and post-injury
performance was available, TBI significantly decreased molar and
molecular sensitivity (Supplementary Figures 6–8).

DISCUSSION

To understand how to treat the psychiatric-like symptoms which
stem from TBI, more research is needed regarding changes in
behaviors which underlie these conditions. In the current report,
we pooled data collected over multiple studies to better explore
these fundamental changes. This enabled evaluation of the impact
of individual variability and analyses of conditional data (e.g., a
switch in choice after a loss). Rats performed more poorly on
the RGT after TBI and choices tend to be allocated away from
optimal options and toward both safer, suboptimal choices and

riskier choices, suggesting a reduced sensitivity to the outcomes
of choices (Figure 1). Notably, this could be explained by reduced
molar sensitivity (i.e., sensitivity to overall contingencies) or by
changes in molecular sensitivity (i.e., immediate outcomes: a
“win” or “loss”).

An evaluation of the molar perspective of behavior was
carried out in Experiment 1. There were substantial, statistically
significant reductions in sensitivity to reinforcement and
increased bias toward lower reinforcement rates in TBI rats
(Figure 3). On the surface, this could potentially explain how TBI
changes decision-making. However, a closer consideration of the
data reveals significant problems with this interpretation. From
a pure optimization standpoint, a task such as this theoretically
should generate exclusive preference of the P2 option to
maximize reinforcement. However, this is clearly not the case
for almost any rats. This means that theoretically, the matching
law should poorly describe the data. Indeed, at the subject level,
we see this is the case for many subjects (Figures 2, 3). True
matching behavior would result in a sensitivity (slope) of 1, and
a bias (intercept) of 0. However, even in sham rats, there are a
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FIGURE 6 | Normalized preference (z score) for a given option plotted against each other, with clusters superimposed on top. Points represent individual rats. An
Optimal phenotype (green) can be seen as rats that have high P2 values and relatively low values of all others. An Exploratory phenotype (blue) can be seen with
values across all options around 0 (average). Two risky phenotypes can be seen, one which highly prefers P3 (light red), and another which prefers P4 (dark red).
Finally, a small cluster of indeterminate rats (yellow) can be seen with unique preference for P1.

number with negative sensitivity and bias, otherwise understood
as a preference for lower rates of reinforcement. Despite this
problem, a shift in overall sensitivity to outcomes cannot be
ruled out as this task was not explicitly designed to test this
hypothesis. Rather, data of convenience were used to provide a
rough evaluation. Indeed, studies explicitly controlled to examine
matching under similar conditions find that adjustment of
choice probabilities across blocks will generate matching in a 3-
alternative probabilistic task (Kangas et al., 2009). Moreover, in
patients with TBI, when a similar adjusting probability procedure
is used, patients displayed reduced sensitivity to changes
and some tended to overestimate their own performance in

self-report (Schlund and Pace, 2000). Thus, while the matching
law provides some marginal utility to describe behavior on the
RGT, it does not capture the full range of individual subjects nor
the depth of changes in choice behavior after TBI.

Because the RGT, with its fixed contingencies, is not well-
suited for evaluating matching performance, an alternative might
be to evaluate molecular sensitivity to immediate outcomes (i.e.,
“wins” and “losses”) on the task. This molecular perspective
could potentially explain post-injury changes in which reduced
sensitivity to negative outcomes (“losses”) or increased sensitivity
to positive and/or large magnitude outcomes (“wins”) may have
an outsized influence on behavioral impairment. Patient data
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FIGURE 7 | Phenotypes broken down by Injury. (A) TBI rats were significantly less likely to be in the Optimal phenotype and instead were increased across the other
phenotypes. Only TBI rats were classified into the Indeterminate phenotype. (B) TBI was significantly different than Sham (p = 0.018) in the Optimal phenotype, with
lower P2 and higher P4 choice. (C) TBI was not significantly different than Sham but had high variability in the Exploratory phenotype. (D) TBI was not significantly
different than Sham but had high variance in the Risky (P4) phenotype as well. (E) TBI was significantly different than Sham (p = 0.001), with higher P1 and lower P3
preference in the Risky (P3) phenotype. (F) Only TBI animals were present in the Indeterminate phenotype.

suggest that TBI leads to less sensitivity to negative outcomes
because they display less reactivity to fearful stimuli alongside
poor IGT performance (Visser-Keizer et al., 2016). Despite this,
in the current data, we did not find any significant differences
in sensitivity to wins vs. losses on the RGT. TBI rats were

significantly changed overall in their tendency to stay with a given
option (Figure 4), but both TBI and sham had downward shifts
in probability following losses. Further, this was not uniquely
affected by the choice options with more frequent wins or losses.
Interestingly, we again observed drastic individual differences
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(Figure 5), with both sham and TBI rats displaying a range
from exclusive choice to almost absolute alternation amongst
options. Thus, it seems that some level of differential sensitivity
to immediate outcomes is not a driver of TBI-induced deficits on
the RGT. Rather, the overall changes suggest further support for
a more molar viewpoint as discussed above.

Neither the molar nor molecular approach fully explained
choice behavior on the RGT. To determine if a theory-agnostic
approach would provide more explanatory power, k-means
clustering was performed on the full dataset. This generated five
total choice phenotypes: Optimal, Exploratory, two Risky, and
Indeterminate. There was minimal overlap between the pattern
of choices for rats in any given phenotype and can be visualized
by plotting each choice against each other (Figure 6), yielding
distinct patterns which clearly segregate even optimal from
exploratory rats. These phenotypes described choice behavior
very well, and moreover, the changes in TBI animals were
accounted for almost entirely by a reduction in the Optimal
phenotype (Figure 7). However, clustering results should always
be approached with some level of caution. K-means and similar
algorithms are designed to maximize variance accounted for, and
so further explorations should be performed to determine if the
phenotypes found here hold up across future studies or in other
laboratories. Another consideration is that these phenotypes
may merely recapitulate the matching data. Rats who were true
matchers (i.e., sensitivity approximately 1) are likely those in the
Exploratory phenotype, while those with the highest sensitivity
and positive bias are the Optimizers, and those with negative
matching or bias are likely the Risky rats. Still, these phenotypes
illustrate that the matching data are less continuous than might
be inferred from the aggregated plots and that distinct clusters of
preference emerge on the RGT. Finally, these phenotypes open
new avenues of investigation into the underlying neurobiology
or behavioral drivers of such choice. For example, differences
in phasic dopamine activity and/or dopamine receptor and
transporter density may underly TBI-mediated cognitive deficits
(Bales et al., 2009) as well as reactivity to conditioned stimuli (e.g.,
the choice hole) and primary reinforcers (e.g., the sucrose pellets)
for intact rats (Singer et al., 2016).

The current data do not fully explain how choice behavior
develops on a probabilistic task such as the RGT. However,
they do inform our interpretation of how stable behavior
is best described and how it is altered by a brain injury.
A prior study using similar retrospective data (in intact
rats) suggested a combination of immediate consequences and
molar contingencies drove acquisition of behavior on this
task using a model of reinforcement learning (Langdon et al.,
2019). Specifically, it was suggested that reductions in loss
sensitivity would allow for a riskier phenotype and this could
be augmented by pairing complex audiovisual cues with riskier
options. Interestingly, given the current data demonstrating
large-scale shifts in phenotypes immediately following TBI, a
lack of explicit changes in loss sensitivity, and a tendency
toward molar-level insensitivity, the prior study may not fully
explain the development of risky decisions. Unfortunately, these
comparisons are somewhat limited by our current selection
of only stable post-injury data (i.e., 4 + weeks post-injury).

While this gave the ability to compare a large amount of data,
it limited what could be interpreted about acquisition of this
task in TBI rats. Ultimately, the current study highlights the
need to experimentally manipulate these parameters so that we
can dissociate molar from molecular tendencies in decision-
making and evaluate whether the reported phenotypes have
underlying neurobiological substrates. Further data collection
in TBI animals both before and after the injury (N = 19
in current study; Supplementary Figures 6–8), exploration of
differences in unilateral parietal and bilateral frontal TBI (N = 10
unilateral in current study; Supplementary Figures 3–5), and
evaluation of effective therapeutics may also provide insights on
the biobehavioral pathologies which drive maladaptive decision-
making. Using data collected from such studies, we may be
able to devise rehabilitative strategies to treat the devastating
consequences of TBI.
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Operant behavioral economic methods are increasingly used in basic research on the
efficacy of reinforcers as well as in large-scale applied research (e.g., evaluation of
empirical public policy). Various methods and strategies have been put forward to
assist discounting researchers in conducting large-scale research and detecting irregular
response patterns. Although rule-based approaches are based on well-established
behavioral patterns, these methods for screening discounting data make assumptions
about decision-making patterns that may not hold in all cases and across different
types of choices. Without methods well-suited to the observed data, valid data could be
omitted or invalid data could be included in study analyses, which subsequently affects
study power, the precision of estimates, and the generality of effects. This review and
demonstration explore existing approaches for characterizing discounting and presents
a novel, data-driven approach based on Latent Class Analysis. This approach (Latent
Class Mixed Modeling) characterizes longitudinal patterns of choice into classes, the
goal of which is to classify groups of responders that differ characteristically from
the overall sample of discounters. In the absence of responders whose behavior is
characteristically distinct from the greater sample, modern approaches such as mixed-
effects models are robust to less-systematic data series. This approach is discussed,
demonstrated with a publicly available dataset, and reviewed as a potential supplement
to existing methods for inspecting and screening discounting data.

Keywords: discounting, mixed-effects models, statistical analysis, non-systematic data, latent factor

INTRODUCTION

Delay discounting and probability discounting are two key behavioral mechanisms. These are
defined as the devaluation of a relevant consequence resulting from the delay or uncertainty
associated with its receipt. Clinical research has focused on discounting given empirical
work describing and conceptual frameworks positing that many of the behaviors observed in
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neuropsychiatric (and other) health conditions mechanistically
relate to one’s sensitivity to delay and/or uncertainty (Bickel
et al., 2014, 2017; MacKillop, 2016; Amlung et al., 2019).
For example, research in addiction science has shown that
people with substance use disorders have a greater tendency to
devalue delayed rewards than healthy controls, a mechanism
thought to underlie decisions to use drugs (e.g., cigarettes)
and forgo long-term health benefits (e.g., increased later lung
cancer risk; MacKillop et al., 2011; Amlung et al., 2017).
Although research on probability discounting is more mixed in
its relationship with substance use outcomes, similar associations
with clinically relevant behaviors have been observed, particularly
when outcome-specific discounting tasks rather than monetary-
based discounting tasks are used (e.g., probabilistic risk of STI
transmission; Johnson et al., 2020). More recently, discounting
research has been extended to behavioral addictions such as
Internet gaming and gambling, finding comparable predictive
associations between specific discounting profiles and health
behavior engagement (e.g., Petry and Madden, 2010; Kyonka
and Schutte, 2018; Chung et al., 2021). Continued advances
in the analysis of discounting data are needed to ensure that
the growing emphasis on discounting as a candidate marker
of neuropsychiatric health is accompanied by a retained focus
on the rigor of the analytic procedures used to generate
those conclusions.

The available literature shows that delay and uncertainty tend
to decrease reinforcing value and behavioral scientists often
regard any deviations from a monotonically decreasing function
as erred responding by the participant and/or methodological
flaws of the task (Smith et al., 2018). Thus, researchers typically
label such deviations as “non-systematic” response patterns. In
the seminal account of this issue, Johnson and Bickel (2008)
proposed a general framework for assessing whether discounting
data are systematic. Previous methods had often used an arbitrary
R2 value when fitting the data to a model such as the hyperbolic
decay equation, a method that conflates model fit with the
extent of discounting itself as shown by Johnson and Bickel
(2008). Rather, they recommended the use of simple rules for the
empirical data (i.e., indifference points) based on the most basic
expectations of the data. For the data sets they presented, they
classified data as non-systematic using two criteria: when (1) an
indifference point is greater than the preceding indifference point
by a magnitude of 20% of the undiscounted reward value (i.e.,
JB1), and/or when (2) the last indifference point (i.e., at the largest
delay or odds against receipt) is not less than the first indifference
point (i.e., shortest delay or smallest odds against receipt) by at
least a magnitude of 10% of the undiscounted reward (i.e., JB2).
They argued that depending on the data set, the specific criteria
should be modified (e.g., adjustment of parameters, dropping
the second criterion). They also noted that while the framework
can be used to eliminate flagged data, it can be used simply to
characterize data without elimination, and if used for elimination,
variations such as allowing a single violation of the first criterion
may be appropriate. Despite encouragement for such flexibility
and some examples of that flexibility (e.g., Johnson and Bruner,
2012; Johnson et al., 2015), the specific non-systematic criteria
noted in Johnson and Bickel (2008) have since become the de

facto gold standard metrics of data quality in the discounting
literature. That is, information on systematic responding may be
grounds for manuscript rejection or at least substantial revision
(e.g., requested to exclude those participants from analysis).

A recent meta-analysis of non-systematic responding in
discounting studies sought to identify the prevalence of these
patterns in published works (Smith et al., 2018). In their
meta-analysis, Smith and colleagues identified 114 discounting
experiments in human participants that explicitly reference
the use of the Johnson and Bickel (2008) algorithm. Of
these, 95 experiments used both criteria from the algorithm
(i.e., JB1, JB2), and 14 of those 95 modified the criteria to
account for procedural nuances. Across all experiments reviewed,
approximately 18% of participant datasets failed at least 1 of the
criteria. Rates of non-systematic responding were not found to
differ between types of discounting, adults vs. youth, specified
samples vs. general samples, hypothetical vs. real/potentially real
outcomes, or whether the algorithm was modified. However,
non-systematic rates were higher for non-monetary outcomes
than monetary ones, as well as higher for university samples
versus non-university samples. Findings from Smith et al.
(2018) indicated that discounting data are robust and reliable
concerning systematic patterns; however, the finding that 18%
of datasets featured some degree of non-systematic responding
is concerning and questions remain regarding the factors that
account for these deviations.

Latent Class Analyses, Mixed Models,
and Discounting Data
As an alternative to set criteria for characterizing discounters
(i.e., systematic, non-systematic), Latent Class Analyses (LCAs)
can be performed to explore subgroups of responders that
comprise a given data set (e.g., systematic, mostly systematic,
non-systematic, and so on). The term LCA refers to a collection
of methods that are used to extract classes from data (Hagenaars
and McCutcheon, 2002; Muthén, 2004). Class membership
here refers to a latent feature, extracted from variance in the
data, that distinguishes groups or classes of individuals that
appear to be distinct from others within the overall sample
(Lazarsfeld and Henry, 1968; Weller et al., 2020). Broadly, LCA
and derivatives of this methodology are often used as a way
of characterizing latent groups concerning some phenomena
(Muthén, 2004; Proust-Lima et al., 2015). Derivatives of LCA
expand upon the general process, which includes categorical
variables, to evaluate changes in class membership over time
(Latent Transition Analysis), to evaluate differential shapes and
patterns of growth [Latent Class Growth Analysis (LCGA)],
and to determine class membership while simultaneously
modeling individual-level changes [LCGA + Mixing Modeling
(LCMM), Muthén and Muthén, 2000]. Before discussing
LCMMs further, we note that LCA is distinct from other
clustering approaches (e.g., K-means), wherein the emphasis
is on minimizing the distance between some metric (e.g., rate
parameter k) and the values associated with each of the n
fitted clusters. In data-driven approaches such as K-means,
classes are determined by a process of minimizing individual
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data distance from n centroids, and class membership is
established based on proximity to the nearest centroid. That
is, such approaches view class membership as determined by
proximity rather than probability. Approaches such as K-means
are readily applied to large datasets and demonstrate reliable
convergence; however, such approaches are more strongly
influenced by initial starting values, outliers, and conditions
where cluster sizes vary significantly in terms of density and size
(Morissette and Chartier, 2013).

Derivatives of the LCA such as LCMM can be extended
to include linear modeling and to accommodate a range of
longitudinal data types (e.g., continuous, binary; Proust-Lima
et al., 2015). The flexibility provided by LCMM is particularly
suited to evaluating patterns of choice over time, such as
discounting phenomena. When used in this context, LCMMs
can be applied to patterns of intertemporal choice over time
to identify sub-classes of decision-makers that comprise the
greater sample. This approach is distinct from approaches such
as K-means because class membership is based on modeling
differences (e.g., slopes) across individual data rather than
data distance from centroids. Furthermore, class membership
in LCMMs is probabilistic for individuals and this differs
from approaches such as K-means. For example, a sample
is likely to be comprised of multiple classes (with larger
samples likely manifesting greater classes) and the results of
LCMM explore class membership in a probabilistic sense.
That is, the variance regarding individual choice over time
is analyzed and viewed in terms of the classes in which it
most probabilistically emerged from. This is key in viewing
the distinguishing between LCMM and K-means; that is, latent
features are extracted from the results of a model and the results
probabilistically determine which class best characterizes the
individual’s responses. In a relevant example of this approach,
Campbell et al. (2021) applied a derivative of LCA – Latent
Profile Analysis (LPA) – to evaluate various continuous outcomes
(e.g., discounting rate, indicators of demand). Using a latent
approach with continuous indicators, the authors found three
distinct classes of college students who engage in heavy
drinking: low reward value, high discounting (LRHD); moderate
reward value, low discounting (MRLD); high reward value,
high discounting (HRHD). These profiles corresponded with
individuals demonstrating a low demand for alcohol but high
rates of discounting, a medium level of demand for alcohol,
but low rates of discounting, and high levels of demand and
discounting, respectively.

Although the Campbell et al. (2021) study provides an
excellent exemplar of methods derived from LCA to indicators
of demand and decision-making across various tasks, the goal
of the current work is more general and specific to responding
within a decision-making task. That is, the sample of decision-
makers in a discounting task is likely to include classes of
responders that demonstrated monotonically decreasing choices
(i.e., systematic) and those who varied from that expected trend
(i.e., non-systematic). These non-systematic responders are likely
to demonstrate characteristically different patterns of choice as
compared to the overall sample (e.g., ascending trends in the
presence of increasing delays). In this way, LCMM provides

a means to detect responders that behave uncharacteristically
of the greater sample and this provides information that
may be useful to researchers when deciding how to analyze
responding in these tasks.

Despite recommendations by Johnson and Bickel (2008) to
adapt a flexible framework, and examples of the adaptive use
of the proposed framework (e.g., Johnson and Bruner, 2012;
Johnson et al., 2015), many researchers continue to use these
criteria rotely. That is, the criteria are being used to distinguish
between orderly decreasing data and data that does not conform
to this pattern. We propose the use of LCMMs as an alternative
to assuming that a single “true” pattern of discounting exists (i.e.,
systematic vs. unsystematic). That is, LCMMs can be applied
to the data to characterize the various subgroups that behave
in characteristic and uncharacteristic ways (e.g., increasing
value with delays).

Research Aims
The goal of this study was to test the use of LCMMs with
a publicly available data set. The Human Connectome Project
(HCP) was a large-scale open-science collaboration sponsored by
the National Institutes of Health. The HCP provides a repository
of delay discounting data drawn from healthy young adults
participating in neural and behavioral research (full recruitment
and screening procedures are found in Van Essen et al., 2013).
Included among the battery of assessments were two adjusting-
amount tasks (Du et al., 2002) that measured delay discounting
across $200 and $40,000 reward magnitudes. Previous research
has found that HCP delay discounting data are well characterized
by hyperbolic-like discount functions (Yeh et al., 2021), exhibit
the reward magnitude effect (Naudé et al., 2021; Yeh et al.,
2021), and demonstrate the well-published association between
cigarette smoking and greater discounting (Naudé et al., 2021).
The goals of this report were to apply both the two original
Johnson and Bickel (2008) criteria and the LCMM approach
to evaluate the correspondence between the two different
approaches. Specifically, the goal was to evaluate how two
different approaches correlated when LCMMs identified clusters
of responders that responded in characteristically different ways
from the overall sample.

MATERIALS AND METHODS

Participants
A total of 1206 adults were included in the HCP and discounting
data was available for 1198 of those participants. As part of an
effort to better understand the relationship between neurology
and behavior, participants across various ages and demographics
completed a range of neuropsychological and decision-making
measures. The sample included comparable groups of male
(n = 550; 45%) and female (n = 656; 54%) participants. The
amount of participants in each of the 22–25, 26–30, 31–35, and
36 + age ranges was 247 (20%), 527 (43%), 418 (34%), and 14
(1%), respectively. Participants in the HCP project completed two
hypothetical delay discounting tasks as part of the overall battery
of assessments. All data used in this study were drawn from
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the unrestricted set of data and no demographic information
is analyzed here.

Hypothetical Delay Discounting Tasks
The core battery of the HCP included two discounting tasks.
One featured a low magnitude Larger Later Reward (LLR;
$200) and another high magnitude LLR ($40,000). Across both
amounts, indifference points were calculated across delays of
1 month, 6 months, 1 year, 3 years, 5 years, and 10 years.
Indifference points across each delay were calculated using
methods consistent with Du et al. (2002). That is, the initial
value of the Smaller Sooner Reward (SSR) at each delay was
50% of the LLR and the value of the SSR was adjusted following
participant choices. Specifically, the value of the SSR would
increase and decrease following the choice to select the LLR
and SSR, respectively. The degree of adjustment for the SSR was
half of the starting SSR value and halved in each subsequent
iteration. Following a total of five choices, the final SSR value
was considered the indifference point for that delay. This process
was repeated for each delay, in ascending order, across both
tasks. The results of each were used to construct a ratio of
area under the interpolated series to the total area possible,
i.e., point-based area under the curve (AUC; Myerson et al.,
2001). In the presence of a monotonically decreasing data
series, AUC provides a summary index of individual discounting
(see Gilroy and Hantula, 2018, for a discussion on AUC
interpretation).

Analytical Strategy
Participant responses on each of the discounting tasks included in
the HCP were analyzed using multiple methods for characterizing
discounters. Specifically, the criteria in Johnson and Bickel
(2008) were compared to the best-fitting LCMMs for each
of the Hypothetical Money Choice Tasks (HMCTs). These
two approaches are expected to correspond to an unknown
degree, with the Johnson and Bickel (2008) approach reflecting
comparison to an absolute standard (i.e., JB1, JB2) and LCMMs
relative to the trends observed in the sample overall. The methods
used to apply the Johnson and Bickel (2008) indicators were
adapted from source code included in the discountingtools R
package (Gilroy, 2017). LCMMs were applied to the HCP data
set using the lcmm R package (Proust-Lima et al., 2015) and
the R Statistical Program (R Core Team, 2021). Data from each
of the HMCTs were supplied to the lcmm method included
in the R package. The lcmm package provides considerable
flexibility in specifying models; however, this exploration used
the most basic linear model to characterize individual data across
delays. The use of a basic linear model was selected because
it presented the simplest option to index the direction and
rate of change for individual choices over time. Indeed, there
are various competing options for representing the shape of
individual discounting processes (e.g., exponential, hyperbolic)
and the use of the linear model provided the simplest model with
which to perform LCMM. Furthermore, in regards to comparison
with the Johnson and Bickel (2008) comparison, we note that
the rules provided did not reference any specific shape for the
discounting process.

The lcmmmethod was used to evaluate the overall sample with
n latent classes and these various fits were evaluated using the
Sample-size Adjusted Bayesian Information Criterion (SABIC;
Lubke and Neale, 2006). Briefly, the SABIC is a derivative of the
Bayesian Information Criterion (BIC; Schwarz, 1978) adjusted
for sample size. Lubke and Neale (2006) conducted various
simulation studies and their results suggested that the Akaike
Information Criterion (AIC; Akaike, 1974) and SABIC fared
better overall as indices for determining mixture model fitness.
The grouping structure with the lowest SABIC was inspected to
evaluate subgroups of discounters.

RESULTS

Empirical Evaluations of Discounting
Data
The results of screening using the Johnson and Bickel (2008)
criteria are displayed across both decision-making tasks in
Table 1. Results from the $200 task indicated that 80, 93, and
76% of the sample satisfy (i.e., were not flagged as non-systematic
with) JB1, JB2, and both criteria, respectively. Similarly, results
from the $40,000 task indicated that 81, 87, and 71% of the
sample satisfied JB1, JB2, and both criteria, respectively. Across
the sample, 59% (n = 715) demonstrated patterns of responding
that satisfied both JB1 and JB2 across both tasks.

Class-Based Characterization of $200
Discounting Task
LCMMs were performed for the $200 discounting task and model
fitness across each solution is displayed in the upper portion
of Table 2. Model comparisons using SABIC favored a seven-
class solution. A visualization of the favored solution is illustrated
in the left panel of Figure 1. The range of decision-making
patterns in the $200 dataset appeared best characterized by the
presence of seven distinct subgroups of discounters. Among these
subgroups, six demonstrated patterns of discounting that varied
in terms of the estimated intercepts and rates of discounting.
Additionally, modeling revealed that one subgroup did not
correspond with most decision-makers in the sample. Whereas

TABLE 1 | Johnson and Bickel criteria applied to discounting tasks overall.

$200 Decision-making task

Count Percentage

Systematic Local (JB1) 970 80.96

Systematic Global (JB2) 1125 93.91

Both Systematic 920 76.69

$40,000 Decision-making task

Count Percentage

Systematic Local (JB1) 978 81.64

Systematic Global (JB2) 1045 87.23

Both Systematic 860 71.79
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TABLE 2 | Evaluation of latest classes across discounting tasks.

Fits with N Classes (200 USD)

1 2 3 4 5 6 7 8

SABIC 75570.0 75581.7 75144.0 75131.6 75126.0 75152.0 75122.9 75134.1

AIC 75558.5 75564.5 75121.1 75102.9 75091.6 75111.8 75077.0 75082.4

Class 1% 100 ∼100 23 3 <1 25 <1 0.668

Class 2% <1 5 22 49 4 8 7

Class 3% 70 7 30 15 24 47

Class 4% 65 4 6 14 14

Class 5% 16 44 3 24

Class 6% 3 3 3

Class 7% 44 3

Class 8% <1

Fits with N Classes (40,000 USD)

1 2 3 4 5 6 7 8

SABIC 75897.2 75623.2 75265.2 75115.4 75043.5 75039.4 75054.2

AIC 75885.7 75606.0 75242.2 75086.8 75009.1 74999.3 75008.3

Class 1% 100 36 36 22 26 24 26

Class 2% 63 43 34 24 23 24

Class 3% 19 35 22 20 22

Class 4% 7 19 15 15

Class 5% 6 11 <1

Class 6% 4 8

Class 7% 3

Class 8%

The best-performing model amongst fits is bolded for each dataset.

most demonstrated a trend of decreasing value as a function of
time, this subgroup demonstrated responding in the opposing
direction, see Figure 2. Additionally, 6 of the 7 responders failed
both of the Johnson and Bickel (2008) criteria and 1 of the 7 failed
the first of the Johnson and Bickel (2008) criteria. Additional
information regarding the rates of systematic responding is
provided in the right panel of Figure 1 and Table 3. Information
regarding the distribution of AUC within the $200 task across
each of the classes is provided in Table 4.

Class-Based Characterization of $40,000
Discounting Task
LCMMs were performed for the $40,000 discounting task and
model fitness across each solution is displayed in the lower
portion of Table 2. Evaluations of model fitness using SABIC
favored the six-group solution. A visualization of the favored
solution is illustrated in the left panel of Figure 3. The range of
decision-making patterns in the $40,000 dataset appeared best
explained by the presence of six distinct subgroups of discounters
that varied in terms of intercept and rate of discounting. The
analysis did not indicate that there was any particular subgroup
that varied meaningfully in terms of trends across increasing
delays (i.e., in direction). As expected, the various subgroups
of responders passed the Johnson and Bickel (2008) criteria in
varying degrees, see the right panel of Figure 3 and Table 3.

Details regarding the distribution of AUC values within each class
in the $40,000 task are provided in Table 4.

DISCUSSION

Methods for elucidating and analyzing discounting phenomena
continue to be refined, with a growing push toward leveraging
more sophisticated methods, such as mixed-effects models
(Young, 2017, 2018). Mixed-effects models have many
advantages and are more robust to issues that may exist
regarding responders at extremes, e.g., non-systematic patterns
(Young, 2017). However, it is common and expected for
researchers evaluating discounting phenomena to characterize
and describe the decision-makers that comprise the full
sample. Although an improvement over previous methods
based on the R2 metric (Johnson and Bickel, 2008), based on
historically observed behavioral patterns, and easily performed,
the framework presented in Johnson and Bickel (2008) is
only one means of characterizing a discounting dataset. As
such, many approaches likely exist and are associated with
benefits and drawbacks.

The approach reviewed in this work (LCMM) provides a novel
means of evaluating for the presence of subgroups that appear
qualitatively different than others in the sample. This extends
the earlier Johnson and Bickel (2008) method by allowing the
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FIGURE 1 | Latent class analysis and systematic criteria of low magnitude task ($200).

FIGURE 2 | Composition of Non-systematic discounter class.

standards for expected patterns to be derived from the sample
itself (i.e., what the data will be compared against), rather than
an a priori expectation of how individuals should respond in all

instances. That is, no presumptions are necessary and researchers
need not rely on any general criteria to make analytical decisions.
However, it should be noted that the lack of presumptions
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TABLE 3 | Latent class linear mixed modeling across discounting tasks.

200 USD

Class % Systematic
local (JB1)

% Systematic
global (JB2)

% Both systematic

1 (n = 7) 0 14 0

2 (n = 101) 100 67 67

3 (n = 299) 64 98 64

4 (n = 172) 79 99 79

5 (n = 36) 80 41 38

6 (n = 45) 75 97 75

7 (n = 538) 88 98 88

40,000 USD

Class % Systematic
local (JB1)

% Systematic
global (JB2)

% Both systematic

1 (n = 295) 82 98 81

2 (n = 284) 89 59 54

3 (n = 245) 79 97 78

4 (n = 180) 75 98 75

5 (n = 135) 75 94 75

6 (n = 59) 83 61 55

is not a universal positive. The Johnson and Bickel (2008)
framework uses presumptions based on scientific observation to
determine if data may be suspect. As such, the features noted
in Johnson and Bickel (2008) provide a way to reference the
greater population of decision-makers beyond the immediate
sample and across multiple samples. The present framework of
LCMM, while based on the data itself with no presumptions,
categorizes participants into subgroups but is silent on whether
responding deviates from expectations of orderly responding
overall (i.e., correspond with the greater population from which
they are derived). Furthermore, the number of subgroups is also
likely to vary considerably across samples—with larger numbers
of subsets being more likely with larger datasets.

In discussing how LCMMs can help guide discounting
analysis, several points warrant noting as they relate to
mixed-effects models. First, mixed-effects modeling already
provides some means of accommodating responders at extremes
because the manner of optimization (e.g., Maximum Likelihood

Estimation) typically pulls estimates toward the group mean
(Young, 2017). This effect, shrinkage, has the added benefit of
drawing the more extreme (e.g., very low, very high) responses
toward the mean of the group. These more extreme responses
are typically those that result in participants failing one or more
of the criteria provided in Johnson and Bickel (2008). As such,
mixed-effects modeling alone can accommodate such challenges,
to a degree. Second, it is necessary to note that the mixed-effects
approach rests on the assumption that individual fits/estimates
emerge from the same distribution of parameter values as the
respective group. If the overall sample includes individuals or
subgroups that differ characteristically from the overall sample
(e.g., increasing rather than decreasing trends), then it is more
appropriate to treat and analyze these groups separately (i.e.,
remove them from the planned analysis). When paired together,
the LCMM approach complements the strengths of mixed-effects
models quite nicely in this specific regard.

In furthering the argument for both LCMMs and mixed-
effects modeling, this evokes questions regarding the framework
provided by Johnson and Bickel (2008) and how these
conventions fit in a data-driven approach. Indeed, the Johnson
and Bickel (2008) criteria have been used as a proxy for data
quality and the available literature is largely restricted to data that
is considered to be “systematic” in nature. To address some of
these questions, we wish to clarify that the Johnson and Bickel
(2008) criteria have utility beyond their typical use as the basis for
including or excluding responders. For instance, these have good
descriptive utility for characterizing responding within a dataset
and provide an easily interpreted index with which to appraise
an overall sample. Indeed, this provides a standard with which to
classify trends in responding that can be compared across various
samples. As such, it is reasonable to apply both the Johnson
and Bickel (2008) and LCMMs but base decisions on what data
are included in mixed-effects modeling based on the clusters
identified in the LCMMs. However, it warrants reiterating that
using LCMMSs to include or exclude data relies on an individual
data set’s classification within the overall data set, meaning that
decisions to include or exclude would be based on the entire class
rather than on the specifics of any individual data set.

Limitations
Although data-driven, robust, and applicable to discounting,
LCMMs do present several limitations. First, LCMMs entail

TABLE 4 | Distribution of point-based area under curve.

$200 Choice task $40,000 Choice task

Class M (SD) Mdn (Q1-Q3) N M (SD) Mdn (Q1-Q3) N

1 0.66 (0.05) 0.62 (0.57–0.68) 7 0.42 (0.09) 0.36 (0.21–0.43) 295

2 0.05 (0.03) 0.03 (0.02–0.04) 101 0.88 (0.07) 0.82 (0.64–0.88) 284

3 0.28 (0.07) 0.22 (0.09–0.28) 299 0.67 (0.08) 0.61 (0.49–0.67) 245

4 0.46 (0.08) 0.41 (0.27–0.47) 172 0.25 (0.09) 0.18 (0.09–0.25) 180

5 0.89 (0.08) 0.84 (0.71–0.9) 36 0.13 (0.07) 0.08 (0.04–0.11) 135

6 0.7 (0.07) 0.65 (0.58–0.69) 45 0.06 (0.05) 0.03 (0.02–0.04) 59

7 0.13 (0.07) 0.08 (0.04–0.13) 538 — — —
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FIGURE 3 | Latent class analysis and systematic criteria of high magnitude task ($40,000).

both considerable flexibility and considerable complexity (van
de Schoot et al., 2017). For example, the lcmm method
applied provides a range of options for the researcher to
fit individual data (e.g., linear, n-spline), to compare mixture
models (e.g., 1- vs. 2- vs. 3-group fits), and to explore how
many clusters might exist (e.g., 2 vs. 10). The decision to use
a linear model in this evaluation was effective for providing
initial support for LCMMs in this specific regard; however,
additional research and study with models more commonly
used in the literature is warranted (e.g., n-spline, hyperbolic,
hyperboloid). Second, and this challenge is shared with mixed-
effects modeling, computational requirements scale poorly with
complexity. Even with modern hardware, individual LCMMs
may take several minutes, perhaps hours, to converge with
complex data sets. Third, few guidelines currently exist with
which to perform and then evaluate the relative fitness of
LCMMs (Weller et al., 2020). For example, initial fits can be
judged based on the AIC, BIC, the SABIC, or the log of the
likelihood itself, but ultimately, the analyst has considerable
freedom concerning model building (e.g., to vary the number
of classes or covariates; van de Schoot et al., 2017). As
such, LCMMs entail far more complexity than the algorithm-
based approaches to screening discounting data. Fourth, we
acknowledge that level of access to HCP demographic data for
the present report was restricted to broad sample estimates

(e.g., multi-year age range) which precluded a careful analysis
of associations between participant characteristics and latent-
class membership. We note, though, that HCP data were drawn
from healthy young adults with no pre-existing psychiatric or
neuropsychiatric disorders, thereby representing only a subset
of the larger population and potentially constraining the range
of response variability used to identify latent classes. Lastly, the
LCMM approach used in this study was evaluated with just one
publicly available dataset. As such, researchers should continue
to evaluate multiple methods for characterizing individual
discounting patterns.

Although LCMMs and mixed-effects modeling increase the
complexity of work in discounting, we suggest that researchers
in this area consider the use of these methods for several
reasons. First, mixed-effects methods already provide a means
of accommodating responders at extremes (Young, 2017, 2018).
Indeed, these methods should be explored before conducting
planned analyses but should not be considered a replacement
for carefully inspecting the empirical data. Second, when used
together, both empirical reviews and LCMMs can be used to
explore the degree to which the data correspond within the
sample as well as to the greater population from which they are
assumed to emerge. Combining these approaches balances the
desire to both retain as much data as possible and exclude data
that might limit the generality of the analysis.
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