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Complex systems are to be seen as typically having multiple levels of organization. For 
instance, in the behavioural and cognitive sciences, there has been a long lasting trend, 
promoted by the seminal work of David Marr, putting focus on three distinct levels of 
analysis: the computational level, accounting for the What and Why issues, the algorithmic 
and the implementational levels specifying the How problem.

However, the tremendous developments in neuroscience knowledge about processes at 
different scales of organization together with the complexity of today cognitive theories 
suggest that there will hardly be only three levels of explanation. Instead, there will be many 
different degrees of commitments corresponding to the different granularities—from high-level 
(behavioural) models to low-level (neural and molecular) models of the cognitive research 
program. For instance, Bayesian approaches, that are usually advocated for formalizing 
Marr’s computational level and rational behaviour, have even been adopted to model 
synaptic plasticity and axon guidance by molecular gradients. As a result, we can consider the 
behavioural scientist as dealing with models at a multiplicity of levels. 

The purpose of this Research Topic in Frontiers in Theoretical and Philosophical Psychology 
is to promote an approach to the role of the levels and explanation and models which is of 
interest for cognitive scientists, neuroscientists, psychologists, behavioural scientists, and 
philosophers of science.
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INTRODUCTION
This Research Topic aimed at deepening our understanding of
the levels and explanations that are of interest for cognitive sci-
entists, neuroscientists, psychologists, behavioral scientists, and
philosophers of science.

Indeed, contemporary developments in neuroscience and psy-
chology suggest that scientists are likely to deal with a multiplicity
of levels, where each of the different levels entails laws of behavior
appropriate to that level (Berntson et al., 2012). Also, gathering
and modeling data at the different levels of analysis is not suffi-
cient: the integration of information across levels of analysis is a
crucial issue.

Given such state of affairs, a number of interesting questions
arise. How can the autonomy of explanatory levels be properly
understood in behavioral explanation? Is reductionism a satis-
factory strategy? How can high-level and low-level models be
constrained in order to be actually explanatory of both behav-
ioral and neurological or molecular evidence? What is the kind of
relationship between those models?

PLURALITY OF LEVELS WITH AND BEYOND MARR
Marr (1982) distinguished between three levels of explanation,
the what/why level (computational theory), the how level (algo-
rithm), and the physical realization level (implementation). His
influential framework has had a far-reaching influence in both
neuroscience and cognitive science over the years and it has
become a sort of paradigm. However, the tremendous develop-
ments in such sciences suggest that there will hardly be only three
levels of explanation.

For instance, Castelfranchi (2014) claims for several different
layers of “theory”: the cognitive representations and mechanisms;
the neural processes; the evolutionary history and adaptive func-
tions of our cognition and behaviors; the social structures and
dynamics with their relation and feedbacks on individual minds
and behaviors; the historical and cultural mechanisms; the devel-
opmental paths.

Clearly, on the one hand, dealing with such complexities calls
for models that simulate those processes so that they can be used
as explanatory tools, i.e., instances of the “synthetic” method
(Cordeschi, 2002). In this perspective, Conte and Paolucci (2014)
make the point that simple recipes have prevailed up to now and
shadowed the application of rich cognitive models. As a viable

solution, they discuss Agent Based Modeling and its role at the
highest behavioral level of Computational Social Science.

On the other hand, to cope with multi-level complexity, Abney
et al. (2014) propose explanatory pluralism. They present one
concrete example, the analysis of a corpus of conversing indi-
viduals solving a joint decision-making task, performed by using
decision-making at the behavioral level, confidence sharing at the
linguistic level, acoustic energy at the physical level.

A further interesting issue is that of the objective vs. subjec-
tive meaning of the explanatory levels. Varma (2014) discusses
how Marr’s approach focused on the objective meaning of each
level—how it supports computational models that correspond to
cognitive phenomena—and he develops a complementary analy-
sis of the subjective meaning of each level—how it helps cognitive
scientists understand cognition. With the goal of showing that
different kinds of explanation arise because we have different
kinds of explanatory concerns, a clear case study is proposed
by Wilkinson (2014) by using contrasting theories of delusional
misidentification.

RELATIONSHIPS, CONSTRAINTS AND MECHANISMS
Addressing any level of description involves a certain degree of
realist commitment at that level, which, in turn, has some con-
sequences on the problems of reduction and of causality between
levels. In this respect, one important case study is presented by
Albertazzi and Poli (2014), who address the conundrum of color.
They claim that color is a different entity for each level of reality
and it generates different observables in the epistemologies of the
different sciences.

Ramos (2014) introduces the hypothesis that the sophisticated
psychological constructs classically associated with the concept of
mental representation are essentially of the same nature of simple
interactive behaviors. Thus, the capacity of generating elaborated
mental phenomena like beliefs and desires emerges gradually
during evolution, and social interaction. Here, mental represen-
tations are biological phenomena whose construction is achieved
by a correlational mechanism of information exchange with the
external world.

In a related perspective and in order to cope with the mul-
tiscale nature (Abney et al., 2014) of cognitive and behavioral
phenomena, Costa and Ferraro (2014) argue that a statistical
mechanics approach is almost inescapable. Starting from very
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simple systems, connectivity gives rise to levels of increasing
functional complexity.

Here the key issue is that, at any level, systems obey laws hold-
ing for the lower levels; meanwhile, they are subjected to new
constraints (related to and implemented through neural struc-
tures). These, in turn, generate new features, like novel patterns
of activity, requiring adequate levels of representation in terms of
model structures and variables.

Indeed, accounting for constraints is a central point: as Abney
et al. (2014) put it, “mapping across levels should create mutual
constraints, in that levels should be consistent, if qualitatively,
with each other.” A hallmark of the present state of research in
cognitive/behavioral sciences is that one is generally ignorant of
how exactly to cast the different levels into a grounded relation-
ship. In this case the notions of structure and architecture—and
related graphical modeling tools—become crucial, since they are
necessary to embody constraints at the chosen level of explanation
(Boccignone and Cordeschi, 2007, 2012).

The exploitation of structure/architecture as a tool for bridg-
ing intra- and inter-level constraints has the merit of paving
the way for reconciling rational or information-based analyzes
(Danks, 2008) with mechanism-based explanations (Bechtel and
Abrahamsen, 2005). As fostered by Castelfranchi (2014), “laws”
are not enough, both the “why” and “how” must be addressed.

In this respect, Datteri and Laudisa (2014) lucidly address
the subtelties of graphical explanations, making the case for
the relationship between box-and-arrow (BA) explanations and
neuroscientific mechanism descriptions (NMDs). The interest-
ing point raised by Datteri and Laudisa is that the BA analysis
imposes constraints on the formulation of the NMD by postu-
lating a number of regularities to be sought for in the neural
activities of the system. Conversely, the NMD constrains the space
of the possible BA analyzes of the system by postulating a number
of neural regularities.

CONCLUSION
Taken together, the papers in “What levels of explanation in the
behavioral sciences” give us some important indications of where
the field is going and also demonstrate how lively and open the
field is today.

We hope this Research Topic paves the way to new avenues and
challenges for future work.
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Traditionally different approaches to the study of cognition have been viewed as competing
explanatory frameworks. An alternative view, explanatory pluralism, regards different
approaches to the study of cognition as complementary ways of studying the same
phenomenon, at specific temporal and spatial scales, using appropriate methodological
tools. Explanatory pluralism has been often described abstractly, but has rarely been
applied to concrete cases. We present a case study of explanatory pluralism. We discuss
three separate ways of studying the same phenomenon: a perceptual decision-making
task (Bahrami et al., 2010), where pairs of subjects share information to jointly individuate
an oddball stimulus among a set of distractors. Each approach analyzed the same corpus
but targeted different units of analysis at different levels of description: decision-making at
the behavioral level, confidence sharing at the linguistic level, and acoustic energy at the
physical level. We discuss the utility of explanatory pluralism for describing this complex,
multiscale phenomenon, show ways in which this case study sheds new light on the
concept of pluralism, and highlight good practices to critically assess and complement
approaches.

Keywords: explanatory pluralism, philosophy of science, joint decision-making, alignment, complexity matching

INTRODUCTION
Behavioral and cognitive processes are complex phenomena span-
ning multiple scales of organization, which may require multiple
approaches to be fully understood. However, researchers have
often aimed for a singular, unifying paradigm in the study of
cognition (e.g., Fodor, 1975; Port and Van Gelder, 1995). The
“paradigm wars” in cognitive science originated in the notion that
one, or perhaps a limited number, of theoretical accounts will turn
out to be most appropriate for the study of cognition. Herein, we
will argue that multiple approaches should be used to study cog-
nition at different scales of analysis. We consider a specific case
study in detail, and show how, in practice, distinct methodological
tools can be used to understand the same phenomenon in greater
detail than any single paradigm could alone.

We begin this article by reviewing the history of reduction-
ism and anti-reductionism. We then describe a third intermediate
view, explanatory pluralism, which advocates the complementary
use of more than one perspective at once, and has emerged as a
way of studying complex systems in physics, biology, and other
areas (Dale et al., 2012). This view, we argue, is especially well
suited to the study of multiscale behavioral and cognitive phe-
nomena (Ihlen and Vereijken, 2010; Kello et al., 2010; Dixon et al.,
2012). We identify two benefits from practicing explanatory plu-
ralism – top-down constraining and bottom-up scaffolding – and
illustrate them through a case study of explanatory pluralism. We
describe three empirical investigations of the same phenomenon
at different levels of analysis, and from different theoretical per-
spectives. We end by considering how to critically assess and
complement approaches, what is gained in this case by the pluralist

approach, and what would be lost by more traditional reductive
and non-reductive approaches.

MULTISCALE NATURE OF COGNITIVE AND BEHAVIORAL
PHENOMENA
A clear example of the need for a plurality of approaches is to
be found in the multiscale nature of cognitive and behavioral
processes. Visual recognition happens through rapid millisec-
ond dynamics of neural population codes in the brain (Mauk
and Buonomano, 2004). However, precisely the way this hap-
pens is shaped on the longer timescales of ontogenesis and
cultural evolution. For instance, sensitivity to certain color distinc-
tions seems largely influenced by linguistic inheritance (Roberson
et al., 2005; Winawer et al., 2007) and even the famous Müller-
Lyer illusion has been found to be modulated by the saliency
of carpentered corners in a given culture and environment:
infants growing up in some cultures will be more prone to per-
ceive all angles as square corners distorted by distance (Henrich
and McElreath, 2003; Henrich et al., 2010). It is increasingly
acknowledged that cognitive and behavioral phenomena gener-
ally involve multiple temporal and spatial scales (e.g., Newell, 1994;
Dale et al., 2012).

As a working definition, we can define the scale of a method
as the set of units typically used in analyses. On this defini-
tion the temporal scale of neural activity tends to emphasize a
milliseconds-to-seconds range, while the temporal scale of geol-
ogy tends to emphasize a kiloannums-to-gigannums (thousands to
billions of years) range (cf. Newell’s “Bands of Cognition”: Newell,
1994). The spatial scale of a discipline or method relative to a
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phenomenon can be defined in a similar way. Neuroscience works
mainly in the nanometer-to-centimeter scale, while ecology con-
siders environments on a meter-to-kilometer scale. It has to be
noted that a discipline or method can consider multiple spatial
and or temporal scales, as well as relations between them: ecolo-
gists, for example, sometimes consider the relationship between
relatively low-level chemical processes in the soil of a region and
higher-level processes like the viability of species in that region;
and of course, physics considers everything from the smallest
scales of particle physics to the largest scales of the cosmos as a
whole.

A prime example of a complex, multiscale cognitive and behav-
ioral phenomenon is human language (Beckner et al., 2009). Units
of language such as phonemes, syllables, words, phrases, texts,
and discourse exist at distinct scales. They are studied at corre-
sponding temporal and spatial scales, from raw acoustic energy
patterns unfolding in the milliseconds range, to larger structures
encompassing minutes, hours, and even days. The range extends
further still, to the slower pace of language change and evolu-
tion that occurs over years and centuries. These different scales
are studied using a variety of different frameworks and methods,
including Fourier analysis, Markov chain analyses, discrete- and
continuous-unit power law analyses, and for language in particu-
lar, corpus methods and semantic analyses. Linguistic behavior has
been shown to be systematically organized across multiple time
scales. Phonological distributions, word frequencies in a given
language, and sequences of words in texts all follow power law dis-
tributions, where the frequencies of a given unit are in proportion
across multiple scales of analysis (e.g., Zipf, 1949; Ferrer i Cancho
et al., 2004; Kello and Beltz, 2009; Altmann et al., 2012).

As a consequence, we argue that no cognitive or behavioral phe-
nomenon can be exhaustively described by reference to a single
temporal or spatial scale or theoretical framework. The ques-
tion thus should not be which one scale of analysis or which one
theoretical framework is the right one to target and study for a
given phenomenon. Rather, the issue is which scales and which
theoretical frameworks are relevant for the question at hand, and
how they relate to each other. This is the essence of the position
called “explanatory pluralism.” The alternative and more tradi-
tional account, which we delineate in more detail below, would be
to focus on one scale of analysis and/or one theoretical framework
for each given scale of phenomena.

EXPLANATORY PLURALISM
Contemporary philosophy of science grew out of the logical
positivist movement of the 1920s, according to which the only
meaningful statements are those that can be empirically verified.
Psychology, for example, was taken to be meaningful only insofar
as its statements could be translated in to the verifiable statements
of a physical language (Carnap, 1959), and in that sense reduced to
physics. This kind of view ran into various problems (e.g., the prin-
ciple of verification seems to be meaningless according to its own
criteria)1, but the overarching project persisted: to understand in

1The argument does not go through quite so easily, but there are still numerous
problems with logical positivism and empiricism. For a detailed history and review,
see Creath (2011) and Dienes (2008).

a formally rigorous way what science is and how different sciences
are related to each other.

A standard view among the logical positivists, which remained
even after positivism went out of fashion, was reductionism
(Oppenheim and Putnam, 1958; Nagel, 1961; Cat, 2013 for
review). According to the standard “layer cake” version of reduc-
tionism, higher-level “special sciences” (e.g., chemistry, biology)
are arranged into a hierarchy, from physics to sociology, with
physics at the bottom. It was thought that all the statements of
any sciences besides physics could be reduced to the statements
of the next lower level science via a system of “bridge laws.”
For example, one might assume that sociology would reduce to
psychology, psychology would reduce to biology, biology would
reduce to chemistry, and chemistry would reduce to physics. In
this way, all empirical claims could ultimately be reduced to the
laws of physics. This was the “reductionist” consensus until about
40 years ago2. It was also known as the “unity of science” view3.

The more radical proponents of reductionism were also “elim-
inativists,” who thought that, in light of ongoing reductions, all
special sciences (psychology, economics, etc.) would be elimi-
nated. In the end we would only need physics, because the other
sciences are really just describing physical stuff using labels and
other descriptive conveniences.

In the early 1970s the reductionist consensus came under attack.
Fodor (1974), in an influential paper subtitled “the disunity of sci-
ence,” challenged reductionism by arguing that, even if it is true
that nature is in some sense organized hierarchically, with fun-
damental particles aggregating into larger and larger systems of
particles, this does not entail that higher level “special sciences”
will be eliminated or reduced. The special sciences are, for Fodor,
not eliminable; they are “autonomous.” The reason is that higher-
level theoretical vocabularies do not line up in tidy one-to-one
ways with lower level theoretical vocabularies, the way the bridge-
law approach suggested. A term like “desire” does not correspond
one-to-one to a “natural kind” of neuroscience, since it is multiply
realized in different kinds of organisms. Thus “desire” is a propri-
etary term of a distinctive science, psychology, which cannot be
eliminated. Fodor’s argument and other similar arguments (e.g.,
Davidson, 1969; see Cat, 2013 for review) were highly influential,
and “non-reductive physicalism” became the new consensus for at
least a decade.

A key feature of non-reductive-physicalism was the idea that,
in practice, autonomous special sciences need not interact with
lower-level sciences. Economists don’t need to understand quan-
tum field theory in order to study labor markets, even though
labor markets are physical systems that obey the laws of funda-
mental physics. In fact, it would be a mistake, a waste of time, for
an economist to consider such low-level phenomena. In a similar
way, Fodor claims, psychology should describe laws of behavior

2Reductionism (as well as anti-reductionism and other positions we consider) can
be understood as ontological or epistemological theses. As an ontological thesis,
reductionism, for example, corresponds to the physicalist claim that there is noth-
ing over and above physical entities. Our emphasis here is on the epistemological
theses, which concern (for example) whether and to what extent knowledge and
understanding at higher levels requires knowledge and understanding at lower levels.
3The concept of unity was actually understood in several, subtly different ways. See
Cat (2013).
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and cognition without wasting time on the low-level “implemen-
tation details” of neuroscience4. So non-reductive physicalism is
associated with a kind of theoretical segregationism or “siloism”
(our term), whereby different sciences are different levels, which
maintain a principled isolation from one another.

So we have two views: (1) reductionism, where all special sci-
ences reduce to physics, so that (in extreme eliminativist forms
of this view) all sciences can in principle be eliminated except
physics, and (2) anti-reductionism, where special sciences remain
autonomous, and (in extreme “siloist” forms of this view) need
not consult one another to do their work.

Explanatory pluralism is an intermediate third view, where spe-
cial sciences are taken to be semi-autonomous (Edelman, 2008;
Dale et al., 2009; de Jong, 2010; Hotton and Yoshimi, 2010;
Yoshimi, 2012)5. On this view, different sciences have a degree
of autonomy (they are not to be eliminated), but also interact in
an effort to understand physical reality at different scales (they are
not fully autonomous silos). According to the form of pluralism
we advocate, different sciences and theoretical approaches should
maintain their emphasis on different proprietary scales but should
also work to unify their work as much as possible, insofar as they
often describe the same phenomena in different but compatible
ways.

Consider the old story about the blind men and an elephant
(Saxe, 1884). Each of a group of blind men feels a different part of
an elephant and then comes up with an incomplete, incompatible
account of it.

Six blind men encounter an elephant. Each feels a different
part, and infers from the properties of the portion encountered
the nature of the whole (one feels the tusk and concludes that he
has encountered a spear, another feels the trunk and deduces that
he has met a snake, etc.). It is often suggested that we are in the same

4Fodor’s claim is that, assuming that a given pair of sciences (e.g., psychology and
neuroscience) “cross-classify” the same phenomena, in the sense that they introduce
predicates that do not map 1-to-1 onto each other (there is no isomorphism or set of
“lawful coextensions” between them), then in practice it does not make sense for the
two theories to interact (see Fodor, 1974, p. 113). Fodor clearly thinks it is a mistake
to encourage cross-level interaction in the case of psychology and neuroscience:
he bemoans the very idea of what would today be called “cognitive neuroscience”:
“There are departments of ‘psycho-biology’ and ‘psychology and brain sciences’ in
universities throughout the world whose very existence is an institutionalized gam-
ble that lawful co-extensions can be found” (Fodor, 1974, p. 105). Such attempts are
“foredoomed.” In another text Fodor and Pylyshyn argue at length against “brain-
style modeling” in the cognitive sciences, and again treat it as a mistake, which they
trace back to Lucretius: “the structure of ‘higher levels’ of a system are rarely isomor-
phic, or even similar, to the structure of ‘lower levels’ of a system. No one expects
the theory of protons to look very much like the theory of rocks and rivers, even
though, to be sure, it is protons and the like that rocks and rivers are ‘implemented
in’. Lucretius got into trouble precisely by assuming that there must be a simple
correspondence between the structure of macrolevel and microlevel theories. . .it
seems that the commitment to ‘brain style’ modeling leads to many of the character-
istic Connectionist claims about psychology, and that it does so via the implicit and
unwarranted-assumption that there ought to be similarity of structure among the
different levels of organization of a computational system.” (Fodor and Pylyshyn,
1988, p. 63). Though Fodor clearly abides by some kind of disciplinary isolation
principle in such cases, subsequent non-reductive physicalists did not uniformly
follow him in this (see, e.g., Sober, 1999).
5There are differences between these views, but our focus here is on a generic form
of explanatory pluralism which captures the general idea that no one science is
proprietary and that multiple sciences are needed to understand physical reality in
all its complexity.

position with respect to consciousness: different (even incompat-
ible) theories may be derived from correct, but incomplete, views
of reality. (Sloman and Chrisley, 2003, p. 4)

But with a little collaboration they can recognize that they
are describing the same thing in different ways, and thereby
collectively contribute to a fuller understanding of their target
phenomenon.

Within cognitive science, variants of this pluralistic theme have
a history, even if not by name. The concept of distinct “levels
of analysis” goes back at least to Marr (1982), with his famous
explanatory hierarchy of the computational, algorithmic, and
implementational levels; each level with its own focused program
of investigation. However, Marr’s (1982) work was appropri-
ated by Fodor and others to support strong forms of autonomy,
which discourage interaction between theories at different levels.
Just as software engineers don’t need to understand the imple-
mentation details of the computer that runs the algorithms they
write, so too psychologists don’t need to understand the neural
hardware that implements the algorithms and computations they
describe6.

Approaches advocating more pluralistic interactions between
theories emerged in the 1980s and early 1990s, as researchers
began to develop ways of unifying connectionist and symbolic
approaches to cognition in common frameworks (e.g., Smolen-
sky, 1988; Bechtel, 1990). More recently, a variety of theorists
have developed frameworks for integrating different approaches
to cognition. One example is the area of symbolic dynamics,
where the lower-level dynamics of a system can be “coarse-
grained” (multiple states at a lower level are treated as a single
state at a higher level) and thereby analyzed in terms of dis-
crete computational states (Dale and Spivey, 2005; Edelman, 2008;
Yoshimi, 2010). These types of approaches allow researchers to
study systems using multiple theoretical frameworks (e.g., dynam-
ical systems theory and finite automata theory), but also to
study the relationship between these theories (e.g., Crutchfield,
1994; Shalizi and Crutchfield, 2001; beim Graben and Potthast,
2009; Atmanspacher, 2011; Butterfield, 2011; Yoshimi, 2012;
Dale and Vinson, 2013)7.

Explanatory pluralism does not imply the anarchistic idea that
“anything goes”8: often, more than one approach is needed, but
not all approaches are equally motivated, and many are even not
warranted. If two approaches contribute the same (or largely cor-
related) information about a phenomenon, they should be treated
as competing alternatives. In such a case, either one will pro-
duce a better explanation (and the other is a mere symptom,

6We would not subscribe to this view of the relationship between software and
hardware, at least in purist terms.
7Within pluralism, we find that explanatory pluralism and truth pluralism have
potentially interesting relationships. For example, Lynch (2001) provides argu-
ments for a metaphysical pluralism countering questions of absolutism. Considering
our proposal for an explanatory pluralism that sits between reductionist and anti-
reductionist views, there is room for ample discussion on how epistemic and
ontological pluralism can fit together. We hold our views on the matter for a future
paper, as we consider this important topic to be out of the scope of the current
paper.
8Cf. Feyerabend (1975)“. . .there is only one principle that can be defended under all
circumstances and in all stages of human development. It is the principle: anything
goes.”
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which can be discarded), or it might turn out that they are
both driven by a third factor that needs to be identified. A crit-
ical criterion for explanatory pluralism is thus that the multiple
approaches should not only be motivated by complementary per-
spectives, but should also contribute different and independent
(minimally correlating) information about the subject matter.
The cumulative addition of approaches to a research question
is only justified to the extent that each new approach enables
the researcher to account for new aspects of the phenomenon
that would be inaccessible given other approaches. Comparisons
between approaches are also necessary in order to assess their
reciprocal productivity and explanatory power. This can be done in
at least three often related ways: (1) through a conceptual analysis
of the approaches involved, (2) through a data-driven statistical
model comparison, and (3) through a more direct experimen-
tal manipulation of the factors involved, aimed at disentangling
the reciprocal role of the mechanisms suggested by the different
models.

The current case study is an example of a conceptual analysis of
explanatory pluralism. In this case there is no explicit model fitting
or experimentation across levels, but rather a theoretical analysis
of how multiple independently motivated analyses of the target
phenomenon, framed at different temporal and spatial scales, are
related to one another. If the role of the scientist is to investigate,
observe, and continually add to explanations of phenomena, it
seems obviously valuable to show how multiple observations and
theories, despite differences in method and scale, can be comple-
mentary. A conceptual analysis can take different forms depending
on the specific features (e.g., types of analysis) of the theories
being integrated. The main idea is that there is a synthesis of
results from various levels of analysis. The way to go about syn-
thesizing depends in part on the type of analytic practice involved
in the theories being synthesized, which we discuss later in this
section.

A more direct way of applying explanatory pluralism is by
using data-driven analysis. This requires the utilization of model-
fitting procedures (e.g., stepwise linear regression indices such as
adjusted R-squared, log-likelihood, AIC, BIC; see Schwarz, 1978;
Hastie et al., 2009; see also Myung and Pitt, 1997) and, most
importantly, commensurate units of data from multiple levels of
analysis. Under this strategy, the question becomes: how much
variance of the phenomenon does each level of analysis explain?
Although this strategy might seem to be most optimal for “com-
patible” (Giere, 2004) levels of analysis, issues of measurement
error and methodological assumptions can become limiting fac-
tors that need to be addressed. Related to data-driven practice
is the experimental practice of carefully manipulating parame-
ters in order to discriminate between “causal” roles of different
mechanisms9.

The third approach – designing experiments to test competing
theories – is quite common in the realm of cognitive psychology, in
which behavioral data can be leveraged against theoretical sticking
points. By directly testing the predictions of potentially competing
theories, an experimenter might confirm one theory or disconfirm

9Both these latter practices could be profitably applied to the case in analysis, but
escape the scope of the current paper.

another. This strategy is perhaps the most common approach to
the theoretical sticking points in cognitive science. Famous recent
examples include the “past-tense debate” (Pinker and Ullman,
2002) in psycholinguistics, or “prototypes vs. exemplars” in cate-
gorization research (Rouder and Ratcliff, 2006), in which dozens
if not hundreds of empirical papers have explored these topics. In
general, however, the degrees of freedom available to a theory, and
to an experimenter, make it very difficult to develop “critical tests”
and the weight of evidence on one side or the other has to grad-
ually accumulate. Incidentally, neither of the vigorously pursued
debates cited in this paragraph has been resolved to consensus, but
integrative approaches have indeed been proposed for some (e.g.,
Love et al., 2004).

Explanatory pluralism affords the scientist a method for devel-
oping fuller explanations of relevant phenomena. The question
then becomes how to apply explanatory pluralism in practice. In
practice, what techniques are available for analyses and expla-
nations of a phenomenon that exists at multiple temporal and
spatial scales? Though there is no universally agreed upon model
of explanation (Woodward, 2009), we can make a start by describ-
ing several specific approaches to explanatory pluralism: top-down
constraining and bottom-up scaffolding.

Top-down constraining affords the scientist a basis for unify-
ing multiple levels of analysis by identifying longer-scaled levels
as contextual constraints for the smaller-scaled levels. For example,
the amount of phonetic convergence (Pardo, 2006) – the phe-
nomenon where the phonetic properties of interlocutors tend to
align over the course of an interaction – depends on the contex-
tual properties such as participant role and sex of the dyad. The
contextual properties, such as the role of a participant in a conver-
sational task, constrain behaviors occurring at shorter timescales
such as the phonetic repertoire of interlocutors. We are not assert-
ing a problematic “downward causality,” but rather are describing
a pattern of scientific practice. We are advocating that scientists
identify and analyze the different types and levels of contextual
influences on a phenomenon.

Bottom-up scaffolding provides a framework for identifying
what can emerge from lower-level patterns (i.e., patterns existing at
shorter time scales or smaller spatial scales), and the dynamics and
processes by which these patterns are formed. It is the substrates of
lower levels that allow higher-level phenomena to emerge. As with
top-down constraining, we need not assert any kind of problematic
cross-level causality. Bottom-up scaffolding provides the scientists
with a means of expressing how (for example) symmetries at lower
levels must be broken for distinct phenomena at higher levels to
occur (Kugler and Shaw, 1990).

These ideas are inspired by the heuristic identity theory (HIT)
proposed by McCauley and Bechtel (2001). In this theory, pro-
cesses of bridging across levels of explanation are not a matter
of simplistic isomorphism between laws, or mappings between
ontologies. Instead, mapping across levels should create mutual
constraint, in that levels should be consistent, if qualitatively,
with each other. Mapping should also generate new questions,
as each level may inspire new lines of investigation in the
other. These two benefits of heuristic mapping may guide an
eventual synergy between levels of analysis. “They enable sci-
entists working at one analytical level to exploit the conceptual,
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theoretical, and methodological and evidential resources available
at another.” (p. 743). HIT embraces both streams of influence
proposed here: from top-down constraints and from bottom-up
scaffolding.

Despite all this theoretical work supporting explanatory plu-
ralism, there have been few if any detailed studies of specific
cases. We fill this gap by considering a specific case in detail.
In the case we consider, multiple frameworks are used to ana-
lyze the same data: a corpus of conversing individuals solving
a joint decision-making task (Bahrami et al., 2010). We discuss
three approaches: a systemic approach at the timescale of ∼60–
90 min in which the entire sequence of joint decisions is analyzed
for its statistical properties, a lexical approach emphasizing the
words spoken in the conversation at the timescale of minutes,
and a physical approach focusing on the multiple time-scales of
micro and macro coordination as expressed by the timescale of
acoustic energy of participants’ speech events. Each approach is
born from very different theoretical assumptions, and focuses on
a different scale using different theoretical and methodological
tools. No single approach fully encompasses the phenomenon of
joint decision-making. However, by taking all three approaches
into account, we argue, joint decision-making is understood in a
more articulated way than if it were studied at just one scale or
using just one methodology. This is our notion of explanatory
pluralism: the synergy of multiple theoretical frameworks target-
ing various scales of analysis in the investigation of a particular
phenomenon10.

CASE STUDY: JOINT DECISION-MAKING
Most of us must work in groups to complete complex tasks such
as organizing conference symposia and collaborating on research
projects; the production of this manuscript is one such example.
In the past decade, a substantial research literature has emerged
focusing on the cognitive, neurocognitive, behavioral, and physio-
logical effects of working collectively in pairs or groups (for reviews
see Fusaroli et al., in press; Pickering and Garrod, 2004; Shockley
et al., 2009; Cooke et al., 2012). However, there is still much debate
about whether individuals perform better than pairs or groups,
and if so, how and under which conditions (e.g., Rajaram and
Pereira-Pasarin, 2010).

Bahrami et al. (2010) recently developed a paradigm for study-
ing collective perceptual decision-making that begins to address
questions of joint perceptual performance. The paradigm was
inspired by models of sensory integration that address how indi-
viduals integrate information from different sensory modalities
(Ernst and Banks, 2002). Their goal was to test the question: Would
two people be able to integrate their perceptual information, as
individuals integrate information from different senses, in order
to optimize their decisions? In other words, would two heads be
better than one, and in particular, better than the best individual
performance in a pair? They found that when two people were
given the opportunity to communicate freely about their level

10Our review is inevitably selective. However, there are many variants of a pluralistic
approach to science and cognition, in various domains, including: Abrahamsen and
Bechtel (2006), Atmanspacher and beim Graben (2009), Dennett (1991), Dupré
(1993), Eliasmith (1996), Kellert et al. (2006), Kelso and Enstrøm (2006), Mitchell
(2003), Weiskopf (2009), among others.

of confidence on a trial-by-trial basis, two heads became better
than one. However, this collaborative benefit was dependent on
the interlocutors being equally good at solving the task on their
own: differently performing interlocutors would not benefit from
collaboration.

We argue that this joint decision-making paradigm provides a
concrete case study for assessing explanatory pluralism. The three
studies discussed are semi-autonomous in that they originate from
disparate theoretical perspectives and focus on very different time
scales, but at the same time complement each other, increasingly
building an understanding of how and when interlocutors gain a
collaborative benefit.

APPROACH 1: BEHAVIORAL/DECISION-MAKING (Bahrami et al., 2010)
In the original study (Bahrami et al., 2010), dyads were given a
perceptual oddball task. The participants were recorded while sit-
ting in front of their own respective screen at right angles to each
other in a darkened room. The screens were identical and displayed
exactly the same video output. On each trial the participants were
sequentially shown two 85 ms long visual displays containing six
Gabor patches. One of the displays would contain a contrast odd-
ball: one of the six Gabor patches would have a stronger contrast
and therefore look slightly darker (Figure 1).

The strength of the contrast varied randomly across trials. The
participants were instructed to individually and separately indicate
which of the displays contained this contrast oddball, by pressing
a button. As long as both participants gave the same answer they
would automatically proceed to the next individual trial. However,
if their individual choices disagreed, they were prompted to nego-
tiate, by freely discussing with each other, a joint decision. There

FIGURE 1 | Experimental setup (adopted with permission from

Fusaroli et al., 2012). (A) The experimental setup. (B) Schematic illustration
of a typical trial.
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was no time or other constraint on the joint decision dialogs.
Individual and collective accuracy were then calculated by fit-
ting a psychometric function to the dyad data11. The benefit of
collaborating was then computed as the ratio between collective
accuracy and the individual accuracy of the better of the two
individuals.

Bahrami et al. (2010) used the empirical data thus produced to
compare four models of information processing and transfer, each
emphasizing different components of sensory processing, joint
decisions, and communication: decision-making as relying on (1)
a coin flip, (2) prioritizing the most perceptually competent group
member’s decision, (3) the sharing of confidence on the individual
decisions, and (4) the sharing of the full perceptual information
on the stimulus. The best explanation for the empirical data was
model 3 – the weighted sharing of confidence on the individ-
ual decisions. However, the collaborative benefit was dependent
on similarity of individual sensitivities to the stimuli contrasts:
in other words, differently performing interlocutors would not
benefit from collaboration.

From our perspective, the approach employed by Bahrami
et al. (2010) required the coarse-grained aggregation of behaviors
from every trial: The overall unit of analysis was the psychome-
tric function calculated on the full sequence of joint decisions
per each individual and per each pair. Finding that “two heads
were better than one” required the aggregation of local behavioral
responses (decision-making) into the global perceptual sensitiv-
ity – operationalized as the estimated psychometric functions for
each individual and each dyad.

Aggregating over the dynamics of a given decision process is
common to theoretical approaches in cognitive science. Indeed,
testing the predictions of some theories requires such aggrega-
tion of outcomes, rather than of processes. Consider, for example,
Bayesian accounts of cognition (Chater and Oaksford, 2003, 2008;
Chater et al., 2006). Bayesian approaches consider distributions
over potential decisions or states; the only way this can be achieved
is by aggregating a large number of decisions or behaviors and
characterizing their distribution. By doing so, we are able to use
the Bayesian framework to predict the longer-term properties of
a decision process, and assess whether that process obeys certain
principles of rationality or optimality. In this way, the Bayesian
approach and associated behavioral methods target specific levels
of analysis, e.g., the purposive/computational of Marr’s levels.

The thesis of the original Bahrami et al. (2010) paper has these
same properties. In order to assess the overall optimality of a
joint decision process, we must aggregate over perceptual deci-
sions. The underlying dynamics of the decision process (which
we consider below) seem less relevant here; we want to know
whether participants were interacting, and whether the presence
of interaction (as a discrete variable) shaped their joint accu-
racy in interesting ways. Put simply, these questions require us
to point to certain aspects of a task, aggregate over these decisions,

11Psychometric functions were computed by plotting the proportion of trials in
which the oddball match was reported in the second interval, as a function of the
contrast difference with the surrounding patch array. The functions were fit with a
cumulative Gaussian function. The slope of each function provided an estimate of
perceptual sensitivity: the steeper the slope, the higher the sensitivity.

and assess the outcome of our analyses with respect to predic-
tions from these frameworks. See Figure 2 for a diagram of the
Bahrami et al. (2010) paradigm, which shows how different lev-
els of the task are studied by the different approaches considered
here.

APPROACH 2: LINGUISTIC/CONFIDENCE (Fusaroli et al., 2012)
The second study we discuss had a very different starting point.
During conversation, interlocutors have been observed to align
to each other’s linguistic behaviors (Pickering and Garrod, 2004;
Fusaroli and Tylén, 2012). The degree of linguistic alignment
has been shown to have functional value; for example, high
linguistic alignment tends to assist in some contexts of prob-
lem solving (Garrod and Anderson, 1987; Garrod and Doherty,
1994). However, it is disputable whether linguistic alignment
is always beneficial and in what ways (for instance the extreme
case of echolalia, where one interlocutor simply repeats what the
other says, does not seem to be an effective conversational strat-
egy; Fusaroli et al., 2014). Fusaroli et al. (2012) re-analyzed the
Bahrami et al. (2010) experiment to explicitly investigate differ-
ences in conversational strategies employed by well- and poorly
performing dyads. The aim was to map which aspects of lin-
guistic alignment were functional for group performance in the
joint decisions. This perspective required a finer-grained look
at the actual process of decision-making, and not just on its
results.

The videos of the joint decision-making tasks were transcribed.
Following on Bahrami et al.’s (2010) insights that confidence shar-
ing is crucial to effectively solve the task, the transcripts were coded
for participants’ spontaneous ways of sharing confidence linguis-
tically, for instance through expressions such as “I think I saw
something.” Across the 16 dyads analyzed, 35 types of such con-
fidence expressions were identified, e.g., modulations of “to see”
as opposed to “to be sure.” Distributional patterns and token fre-
quencies for each type of confidence expression were quantified
in each transcript. Local linguistic alignment was calculated for all
lexical items as the transitional probability of any given expression
used by one participant being used by the other participant in the
preceding joint decision. For example, local linguistic alignment
was computed as the probability of Participant B using the expres-
sion “to see” when Participant A used the same expression in the
previous trial.

By having indices of different types of linguistic alignment –
one type that subsumes all lexical expressions (indiscriminate
alignment) and one that subsumes only confidence expressions
(discriminant alignment) – Fusaroli et al. (2012) were able to
determine which type of alignment benefitted joint decision-
making: task-specific, discriminate alignment or general, indis-
criminate alignment. To measure the lasting effects of alignment,
Fusaroli et al. (2012) also calculated a more coarse-grained mea-
sure of global linguistic convergence of confidence expressions.
This was computed as the percentage of the overall sum of
confidence tokens used by the dyad throughout the experi-
ment, which belonged to the most frequent confidence type thus
abstracting from the local linguistic exchanges between inter-
locutors and focusing on long term linguistic consistency of the
pair.
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FIGURE 2 |The three approaches to decision-making paradigm discussed here, with an indication of their characteristic temporal and spatial scales

as well as their favored methodological tools.

Relying on Bahrami et al.’s (2010) psychometric function for
calculating collective performance, Fusaroli et al. (2012) observed
that task-specific, local linguistic alignment and global linguistic
convergence positively correlated with collective benefit, whereas,
local indiscriminate alignment negatively correlated with collected
benefit. Furthermore, global convergence strongly predicted col-
lective benefit: when dyads continually and consistently used
shared sets of linguistic expressions for expressing confidence, col-
lective benefit was observed to be higher. Fusaroli et al. (2012)
concluded that in order for dyad members to benefit from coop-
eration they should not just parrot each other (indiscriminate
alignment). Rather dyads that jointly adapted linguistic tools
to meet the functional affordances of the task (sharing and
comparing confidence) reached high collective performance.

Summing up, the search for functional linguistic alignment
led Fusaroli et al. (2012) to conduct a corpus analysis of trial-to-
trial transcripts highlighting the actual communication strategies
employed to solve the joint decision task. Computing the transi-
tional probabilities of lexical alignment required a fine-grained

analysis of the local dynamics of lexical choices – the unit of
analysis being lexical expressions within adjacent joint decisions –
keeping track of individuals’ productions. It has to be noted that
coarse-grained analyses were also crucial for the study: global
linguistic convergence, collective benefit and even the aggregate
measures of linguistic alignment to be used as dyad-level corre-
lates for collective benefit. Importantly, the aggregation procedure
applies at a different level of the analysis – at the finer-grained
timescale of words being used by interlocutors.

As described above, aggregation in Bahrami et al. (2010)
derived from a desire to quantify coarser-grained characteristics
of the decision process: psychophysical sensitivity and the benefits
of interaction. The Fusaroli et al. (2012) study provided insight
into the mechanism and process of collective benefit, whereas the
Bahrami et al. (2010) study provided a description of why these
mechanisms work in a particular way. But, as discussed in back-
ground sections above, every theory has boundary conditions that
limit the claims it can make about complex systems. Put simply,
the aggregation approach is unable to specify both how and why
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the content or structure of an interaction helps joint decisions.
Trying to get at these new aspects invokes more dynamic linguis-
tic and psycholinguistic theoretical machinery, quickly leading to
new questions and different levels of analysis. Instead of aggre-
gating decisions alone, we “peel back” those decisions and peer
into their contents, before aggregating in different ways from
before.

APPROACH 3: PHYSICAL/ACOUSTIC ENERGY (Fusaroli et al., 2013)
Recent work on “complexity matching” in the field of statistical
physics has shown that information transmission between two
complex systems is optimal when the complexities of the behav-
iors of the two systems match (West et al., 2008). Fusaroli et al.
(2013) investigated whether such ideas would apply to human
interactions (see also Abney et al., under review). Indeed, it has
been shown that humans produce behaviors with long-range cor-
relations at increasing time scales, and additionally, behaviors are
observed to follow scaling laws evidenced by heavy-tailed distri-
butions (Kello et al., 2010). Fusaroli et al. (2013) thus investigated
if the statistical complexities of behaviors would match between
two interacting humans, and if so, according to the physical mod-
els, the degree of complexity matching would predict information
transfer to be optimal. Already Fusaroli et al. (2012) were look-
ing for a functional relationship between the degree of matching
of a particular behavior and the accompanying performance out-
come; however, the use of complex systems physical models creates
important divergences in the level of description and in the time
scales of subsequent analyses.

To estimate the multiscale complexity matching of human
behavior during interactions, Fusaroli et al. (2013) had to employ
yet a new unit of analysis, capturing more basic perceptuomo-
tor coupling between interlocutors. For this new unit they had to
first assess the complexity (hierarchical scaling; cf. Abney et al.,
under review) and then the match in complexity between inter-
locutors, with the hypothesis that the more the complexity of
participants’ speech behavior matched, the higher the collab-
orative benefit. They analyzed the physical basis or “skeleton”
of linguistic exchanges: the acoustic energy of speech events of
individuals in conversation. Onset/offset intervals of the acous-
tic signal from the conversations were extracted by identifying
boundaries between speech and pauses (pauses were defined as
reduced acoustic intensity and the absence of pitch lasting beyond
20 ms). Binary spike trains of speech events were computed from
the onset/offset intervals; states were coded with “0s”; “1s” were
used to code changes in state, that is, the onset or offset of a
speech event. Thus, the unit of analysis was the onset/offset of
a speech event defined by the presence or absence of particular
properties of acoustic energy. A temporal estimate of complexity
of human behavior was computed for each participant and each
joint conversation trial employing Allan Factor (AF, Allan, 1966),
a multiscale method for estimating the correlated clustering of
speech events12. Complexity matching was defined as the degree of

12The Allan factor analysis computes the correlation estimate – α – of the variance
of speech events at a particular time scale across multiple time scales. A scaling
relation, or power law, of speech events is evidenced when α ∼ 1 whereas, and α ∼ 0
is considered a Poisson process. The complexity of a participant’s speech behavior
is determined by the computation of α.

correlation between AF estimates of participants in a dyad. Across
all trials, the authors found a positive correlation between degree
of complexity matching and collective benefit: when the complex-
ities of participants’ speech behaviors matched, collective benefit
on the joint perceptual decision task was higher. These findings
can be interpreted as preliminary evidence for complexity match-
ing in interpersonal coordination (West et al., 2008): Increased
collective benefit in a dyad can be considered an index of the opti-
mality of information transfer, which increased as a function of
the coordination of human behavior across multiple time scales.
In other words, the more fine-tuned the turn-taking coordination
of the interlocutors, the better the information transfer, which
in turn led to a higher collective benefit. Crucially, the degree of
complexity matching increased from the first to the second half
of the experiment, suggesting that complexity matching express
the degree to which interlocutors adapt to coordinate with each
other.

This third study used a trial-by-trial measure that summa-
rized the multiscale properties of speech coordination in its very
basic form of acoustic energy. The overall unit of analysis was
the onset/offset of acoustic energy at a 10 ms time scale. This
fine-grained analysis was then aggregated into a coarse-grained
analysis that operationalized the degree of complexity matching
between dyads. The degree of complexity matching was then cor-
related with collective benefit computed for either all trials or
session-by-session.

Again, the questions regarding the microstructure of coordina-
tion cannot come from linguistic analysis or from aggregation
of perceptual decisions. Instead, it starts from a much more
fine-grained level of analysis, specifically the dynamics of the
perceptuomotor structure of the task. Just as theories about
optimal decisions or linguistic alignment require selecting par-
ticular levels of description and analysis, here researchers choose
a finer timescale and extract signals, which may be subject to
their own (but different) aggregation. Researchers who adopt
this theory often require very densely sampled behaviors to quan-
tify and characterize the dynamics that underpin some behavior
or cognitive process. Now quite different observations can be
made about the process of interaction, regarding the composi-
tion of the task in terms of the perceptuomotor coupling of its
participants.

The past three sections laid out sample re-analyses of the
Bahrami et al. (2010) dataset, with quite different goals in mind.
The upshot of this research scenario is to select disparate scales
of analysis, different means of measurement, and different pat-
terns of aggregation in order to assess particular predictions about
the cognitive system, or to characterize the cognitive system in
different ways at different levels. However, we do not mean to sug-
gest that these are completely independent levels of analysis (à la
Fodor, 1974, 1975; Fodor and Pylyshyn, 1988). Instead, these pro-
cesses should be seen as interdependent, inspiring each other and
providing reciprocal insight. Indeed, Fusaroli et al. (2012, 2013)
already shows hints of this integration: The optimality of the joint
decision process can be correlated with the structure of the linguis-
tic interaction; similarly, the joint decision process and linguistic
structure itself may be related to the dynamics of the acous-
tic speech behaviors of dyad members, such as the correlation
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between complexity matching indices. In the next section, we dis-
cuss this potential integration more fully, noting that explanatory
pluralism also encourages this kind of synthesis across theoretical
domains.

SYNTHESIS OF LEVELS OF DESCRIPTION
Explanatory pluralism has been presented as a view intermedi-
ate between extreme forms of reductionism (where everything
ends up being physics) and anti-reductionism or strong auton-
omy (where different sciences are insulated from one another).
Above, we have seen a detailed example of explanatory plu-
ralism in practice, with three different studies approaching the
same phenomenon – joint decision-making by a pair of partic-
ipants engaged in a perceptual discrimination task – at differ-
ent temporal and spatial scales, using distinct methodological
tools.

In this section, we return to the topic of explanatory plural-
ism, and consider how this kind of approach works in practice.
First we discuss the benefits of each level of description. Then
we discuss advantages of interactions between these levels, and
how syntheses between them can motivate new questions and
insights.

BENEFITS OF INDEPENDENT LEVELS OF DESCRIPTION
Against views which emphasize the value of a single paradigm
in cognitive science (e.g., reductionism in its most radical form,
which advocates focusing only on the physical level), explana-
tory pluralism holds that it is important to study phenomena
using multiple independent levels of analysis. We have seen
how the three levels discussed above are important to under-
standing performance in joint decision-making. Bahrami et al.
(2010) found that, when perceptual sensitivities were equal, dyads
benefitted from interaction by comparing levels of confidence.
Fusaroli et al. (2012) observed that group performance was higher
when interlocutors shared common task-relevant lexical pat-
terns during conversations about confidence. Finally, Fusaroli
et al. (2013) provided evidence that group performance increased
when the hierarchical structure of the very basic patterns of
interlocutors’ vocalizations – with the base unit of the onset of
acoustic energy – matched within the dyad. These insights were
obtained while remaining within the relevant spatial and tempo-
ral scale and while making use of the characteristic tools of each
approach.

What if a more traditional approach were followed, which only
allowed for one way of analyzing joint decision-making? What
would be lost?

If “Approach 1” were pursued in isolation, we would not know
that the development and sharing of a linguistic confidence scale
among members of a dyad makes a difference in the performance
in the task (Fusaroli et al., 2012). Furthermore, the performance of
the task is also successfully predicted by the hierarchical structure
of acoustic energy onsets (Fusaroli et al., 2013).

If “Approach 2” were pursued in isolation, we would not know
that the degree of matching in individual sensitivity is an impor-
tant drive in the efficacy of confidence sharing. Additionally,
we would not consider that the patterns of matching found in
local linguistic alignment might be complemented by more basic

patterns of matching of the hierarchical structures of acoustic
energy onsets.

Finally, if “Approach 3” were pursued in isolation, we would
not know that the rate of indiscriminate matching of lexical items
negatively predicts performance; the alignment of language not
functionally relevant for the particular context, does not help the
dyad. Additionally, we would never be able to consider the pos-
sibility that unequal perceptual capabilities of individuals might
have a significant effect on group tasks and relatedly, how, in turn,
these asymmetries might affect linguistic-level and acoustic-level
matching dynamics.

These considerations support the idea that strong forms of
reductionism, which at times suggest outright elimination of all
but the lowest level physical sciences, are problematic. All three
approaches shed light on important features of joint decision-
making. Eliminating any of these approaches leaves important
features of the phenomenon unexplained. The synthesis of these
three levels provides a more complete description of how people
work together to solve a particular task.

BENEFITS OF INTERDEPENDENT LEVELS OF DESCRIPTION
Against views like strong anti-reductionism or “siloism”, which
advocate that different levels of analysis be completely autonomous,
we believe that multiple theories should interact when describing
the same phenomenon (cf. Simon, 1992). To make a case for this
idea, we first consider what would be missing from a description of
joint perceptual decision-making if the different approaches did
not interact with each other.

If none of these three approaches informed each other, various
research opportunities crossing scales and mixing methods would
be lost. For example, can people with asymmetric perceptual
capabilities effectively overcome their difference by communicat-
ing about common environmental constraints (Approach 1) and
what do the language properties (Approach 2) look like when they
successfully coordinate? Additionally, does local linguistic align-
ment or global convergence of linguistic coordination (Approach
2) relate to the matching of hierarchical structures at the level of
acoustic energy onsets (Approach 3)? Finally, how does the degree
of matching of hierarchical structures of acoustic energy onsets
(Approach 3) relate to different dyad-level perceptual asymme-
tries (Approach 1)? All of these questions pertain to the corpus
of data described in the present case study, and indeed some
of these questions are currently being tested. What is impor-
tant to understand is that all three levels are describing the same
phenomenon, and there are certainly more levels of description
that can be included. Asking these cross-level questions might
persuade some to argue for reductionism, e.g., “does linguis-
tic alignment just merely reduce to complexity matching?” or
“how does linguistic alignment interact with dyad-level percep-
tual asymmetries?” We suggest that there is interdependence across
levels, where theories can inform each other, ultimately leading to
a better understanding of the phenomenon. Having an epistemo-
logical process prioritizing the interdependence across different
levels stands in contrast to views suggesting that each level is inde-
pendent, autonomous and represents competing explanations of
a phenomenon and that higher levels can be reduced to lower
levels.
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TOPICS FOR FURTHER WORK IN EXPLANATORY PLURALISM
We have argued for explanatory pluralism using a detailed case
study. However, it is important to point out that not all levels of
description are complementary, and the principle of “more lev-
els of description is better” is problematic if applied haphazardly
and without a proper supporting framework. While a plurality
of approaches is necessary to better explain a given phenomenon,
not all approaches are equal: At what point does the diffusion
toward a troubled eclecticism stop? We have earlier suggested three
methods: (1) conceptual analysis, (2) data-driven statistical model
comparison, and (3) experimental manipulations. This paper is
an example of the first: we have assessed three approaches to the
same phenomenon (and dataset) articulating their differences and
complementarity. A data-driven statistical model comparison –
which is outside of the scope of this paper – would comparatively
assess the relation between the models and between the models
and the data. In other words, it would look at the comparative
explanatory power of individual performance, linguistic align-
ment and complexity matching: Do they equally fit the data? Do
they explain comparable amount of variance in the data? Do we get
better statistical fit and explanatory power by integrating individ-
ual performance, linguistic alignment and complexity matching
in the same model and how do they interact? An experimental
approach could push these comparisons further by investigating
the causal relations between parameters and opening new venues
of inquiry. For example, if we systematically vary one of the
parameters (e.g., similarity in individual performance, by intro-
ducing noise in the stimuli presented to the worse performer in
a dyad), how do the others vary in their levels and relation to
performance?

In conclusion, if the goal of a scientific endeavor (e.g.,
understanding decision-making of pairs of humans) is to fully
understand and thus predict future behaviors, then taking into
account multiple levels and theoretical approaches is warranted if
not necessary.

We have provided a conceptual treatment of what explanatory
pluralism looks like in cognitive science. Although beyond the
scope of the current paper, we also advocate the use of data-driven
statistical model comparison and experimental manipulations
to critically assess the interest and complementarity of different
approaches. Indeed, some of us (Fusaroli and Tylén, under review)
have already implemented this technique.

Additionally, we introduced two benefits of practicing explana-
tory pluralism in scientific investigations: top-down constraining
and bottom-up scaffolding. Both benefits provide frameworks that
may lead to future research questions about a particular phe-
nomenon. Again, top-down constraining unifies multiple levels
of analysis by identifying the longer-scaled levels as contextual
constraints for the smaller-scaled levels. For example, Approach 1
provided contextual constraints for the linguistic tools (Approach
2) participants might utilize, and therefore, the patterns of acoustic
energy (Approach 3). This framework affords the identification of
contextual influences of a phenomenon not otherwise integrated
across multiple levels of analysis.

Bottom-up scaffolding can be used to identify what can
emerge from lower-level patterns. For example, the lexical items
participants jointly use and align (Approach 2) emerge from the

multiscale patterns of acoustic energy (Approach 3). Furthermore,
an optimal model of joint perceptual decision-making, requir-
ing the sharing of confidence (Approach 1), is comprised of the
lexical items (Approach 2). Again, it is the substrates of lower
levels of analysis that afford the possibility for higher-level com-
ponents – via higher levels of analysis – of a phenomenon to
emerge.

CONCLUSION
We have defended explanatory pluralism using a case study,
which involved three separate analyses of the same phenomenon.
We have made the case that integrating data and theory from
multiple scales of analysis provides a fuller explanation of a
cognitive phenomena than would be possible if we pursued a
more traditional, theoretically autonomous style of scientific
investigation.

Our call is for more researchers in the cognitive and behavioral
sciences to consider studying phenomena of interest using the
framework of explanatory pluralism. This can encompass a vari-
ety of practices ranging from conceptual analysis to full fledged,
data-driven analysis. Acknowledging that theoretical approaches
influence methodological decisions and practices, we argue that
explanatory pluralism might be beneficial to the ultimate scientific
endeavor of explanation.
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I use an example from neuropsychiatry, namely delusional misidentification, to show
a distinction between levels of explanation and kinds of explanation. Building on a
pragmatic view of explanation, different kinds of explanation arise because we have
different kinds of explanatory concerns. One important kind of explanatory concern
involves asking a certain kind of “why” question. Answering such questions provides a
personal explanation, namely, renders intelligible the beliefs and actions of other persons.
I use contrasting theories of delusional misidentification to highlight how different facts
about the phenomenon that is being explained impose constraints on the availability of
personal explanation.
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INTRODUCTION
Neuropsychiatry involves the study of people with mental ill-
nesses in a way that makes use of the tools and understanding
of the cognitive and brain sciences. As a result, a foundational
question for neuropsychiatry is: What is the nature and extent
of the contribution that the cognitive and brain sciences can
make to our understanding of psychopathologies and mentally
ill individuals? That is why, in this paper, I use neuropsychiatry
to draw attention to two explanatory constraints. Although these
constraints are important in all areas of the cognitive sciences,
broadly construed, they are particularly visible in neuropsychi-
atry. One constraint concerns levels of explanation. The other
constraint, which is often overlooked, often misunderstood, and
is of particular importance to neuropsychiatry, concerns kinds of
explanation.

I proceed as follows. I start by contrasting three general views
about the nature of explanation, and opt for a pragmatic view. I
then introduce and characterize both the “levels” and the “kinds”
constraint within a pragmatic framework. I then illustrate the lat-
ter constraint by examining recent work on delusion. I end by
addressing an illustrative objection.

THREE CONTRASTING VIEWS OF EXPLANATION
Before looking at explanatory constraints, it is important to reflect
on what explanation is generally. Differing answers to the fol-
lowing two questions yield different views about the nature of
explanation. These two questions are:

(1) What kinds of things are the relata in explanations? (viz.
When we say that x explains y, what kinds of things are the
values for x and y? Or alternatively, what kinds of things are
the explanans and the explananda.)

(2) What is it for x to successfully explain y?

Following Faye (2007), I think it is useful to distinguish between
three kinds of views of explanation, namely: Formal-logical,

Ontological, and Pragmatic views of explanation. My aim is not to
adjudicate between these, but rather to show that the pragmatic
view provides an especially helpful way of approaching the issues
in this paper.

THE FORMAL-LOGICAL VIEW
On the formal-logical view, first and famously put forward by
Hempel (1965), an explanation is an abstract entity; in particu-
lar, it is a logically valid argument with propositional structure.
Indeed, an explanandum, according to Hempel, is a proposition
that follows deductively from an explanans. A number of things
should be noted about this approach.

(i) Scientific and ordinary (everyday) explanations are pro-
foundly different in nature. The things we call “explana-
tions” in daily life never, or at best rarely, pick out logically
related propositions.

(ii) This characterization is prescriptive rather than descrip-
tive. It is neither interested in capturing how we use the
word “explain,” nor in capturing what scientists are actually
engaged in doing when they explain things. It aims to tell
us what something ought to be if it is to count as an explana-
tion in this refined, ideal, sense. (One might alternatively put
this in evaluative rather than constitutive terms and say that
explanations are good explanations to the extent that they
approximate this ideal.)

(iii) Explanations are objectively “out there” to be discovered.

The formal-logical view of explanation includes a number of
views of explanation besides Hempel’s original covering-law ver-
sion. For example, it includes Salmon’s statistical-relevance model
as well as the unificationist theory of scientific explanation as
elaborated by Friedman (1974) and Kitcher (1989).

In answer to questions 1 and 2, sets of propositions explain
other propositions, and they do so by standing in valid and sound
deductive relations to each other. Practically speaking, although
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it may apply to areas of physics, it is too demanding to usefully
apply to psychology, and it does not reflect what psychologists
actually do or ought to do. Of course, given the aim of this view
of explanation, that is not necessarily a criticism.

THE ONTOLOGICAL VIEW
On the ontological view, explanations are not made up of logi-
cally related propositions. They are made of concrete entities like,
for example, objects, states of affairs, or events. For example, you
might think that events explain other events. In particular, it is
common within this approach, to think of causes explaining their
effects. An instance of fire explains an instance of smoke.

So, in answer to questions 1 and 2 above, we get: Events (or
states of affairs) explain other events (or states of affairs), and they
do so by standing in predicable law-like causal relations.

A couple of things should be noted about this view:

(i) Again, scientific and ordinary (everyday) explanations are
different in nature. We rarely explain things to each other by
picking out law-like causal relations.

(ii) Again, explanations are out there to be unearthed. You dis-
cover them. You find a particular event, and you unearth the
explanation of that event, namely, its cause or causes.

One recent theorist, who buys into this account in philosophy of
science generally, is Woodward (2003). Another, who applies a
related view specifically to psychological explanation, is Donald
Davidson. To simplify somewhat, Davidson (1970) takes causal
relata to be not objects, not properties, but events, namely, he
takes events to cause other events. He also takes explanations to
require the picking out of a cause (which is an event) to explain
an effect (which is also an event). However, these events are only
explanatory “under a certain description.” In other words, he is
sensitive to the fact that picking out events that are causally related
is not sufficient to be explanatory: you have the pick them out
in a causally relevant way. For example, to explain why the scales
go down when weighing some plums, you appeal to the weight
of the plums, not their color, even though those are two aspects
of one and the same event (namely, the putting of purple plums
on the scales). This has some affinities with the pragmatic view.
However, we will see that, crucially, the pragmatic view opens up
the possibility of non-causal explanation.

THE PRAGMATIC VIEW
According to a pragmatic view of explanation, an explanation is
a good answer (and, we shall see, a variety of factors, both psy-
chological and objective, may contribute to this “goodness”) to
an explanation-demanding question. The relata of explanations
are not events, nor are they propositions; they are speech acts
that are heavily dependent on a number of contextual factors.
The relevant contextual factors can include a number of things
(for example, conversational context) but the most important
for our purposes are the explanatory concerns of the demander
of the explanation (which I will henceforth call “the deman-
der”). An explanation has to address the explanatory concerns
of the demander, and has to be (at least a candidate for being)
considered satisfying. This potential subjective satisfaction is a

necessary but not a sufficient condition of something being a
good explanation. Obviously, there are many objectively bad
explanations that we may wrongly consider satisfying (e.g., “just-
so stories”). So they have to be satisfying in a non-illusory way.
Different theories will flesh out what it is for something to be
“satisfying in a non-illusory way,” but, very roughly, it will mean
that it is true or accurate, which can then be cashed out in terms
of corresponding to reality, or something weaker such as “useful-
ness,” or “assertability.” The finer details of this objective criterion
are not as important for our purposes (viz. of distinguishing
the pragmatic view and introducing explanatory constraints that
are grounded in it) as the subjective criteria. These are that
the demander has to understand the candidate explanation, and
that the explanation has to address the demander’s explanatory
concerns.

Crucially, an explanation that is objectively good by the stan-
dards of either the ontological or formal-logical view, but which
leaves the demander completely in the dark, is not considered a
good explanation on the pragmatic view. Explanations are rela-
tive to a particular instance of a question being asked, and have to
cater to the demander’s epistemic state. The demander, it must be
noted, is not necessarily an individual, but could be a collective.
The “question” could be asked implicitly by the scientific commu-
nity as a whole (or a subset of that community), or explicitly by
an individual.

There are some varieties of the pragmatic view. The view was
first introduced by Van Fraassen (1980). Achinstein (1983) has
an attractive version that relies heavily on the tenets of ordi-
nary language philosophy, and Faye (2007) puts forward his own
refinements. Here is what all versions of the pragmatic view have
in common, in particular, in contrast to the formal-logical and
the ontological views characterized above.

(i) Scientific and ordinary explanation is essentially the same.
The former simply has a more regimented context (viz. the
explanatory concerns are regimented and shared across a
community, namely the scientific community).

(ii) Explanations, being the products of communicative acts, are
not discovered as pre-formed entities. They are answerable
to how things stand in the world, but they need to be selec-
tive and carefully formulated so as to be comprehensible to
the demander of the explanation. In sharp contrast to both
formal-logical and ontological views, explanations simply do
not exist in a possible world devoid of inquiring beings that
demand and give explanations. Furthermore, these expla-
nations are demanded within a wider pragmatic context,
whether it is everyday life, the court of law, the lab, or the
clinic.

So, to sum up, in answer to questions 1 and 2, explanations are
communicative speech acts, and they explain in virtue of satisfy-
ing the demander’s explanatory concerns in a non-illusory man-
ner (where “illusion” can arise at the level of truth or accuracy, or
at the level of comprehension, namely, thinking that one compre-
hends when one does not). The epistemic or informational state
of the demander of the explanation will in part determine her
explanatory concerns, and her explanatory concerns will dictate

Frontiers in Psychology | Theoretical and Philosophical Psychology April 2014 | Volume 5 | Article 373 | 19

http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology
http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology
http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/archive


Wilkinson Levels and kinds of explanation: lessons from neuropsychiatry

the kind of explanation that would be satisfying. A broadly prag-
matic view of explanation is what I will be building on for the rest
of this paper.

DIFFERENT EXPLANATORY CONCERNS ABOUT THE SAME
PHENOMENON
On a pragmatic view (in contrast to an ontological view), one
phenomenon can arouse different explanatory concerns, each of
which demand different explanations. Sometimes we have dif-
ferent explanatory concerns because we happen to be interested
in different things. At other times, however, the phenomenon
itself can impose constraints on what explanatory concerns are
suitable, namely, what questions one should ask.

Suppose there is a plane crash. One can, for example, ask for an
explanation of the plane crash in terms of poor decision-making,
or neglected obligation. Or one may ask for an explanation in
terms of technical problems with the plane; or in terms of the
weather conditions. Depending on certain facts about the crash,
either of these explanations may be unavailable. For example,
if the weather had been so extreme that even the most skilled
of pilots would have been unable to avoid a crash, then the
explanation in terms of poor decision-making is unavailable.
Conversely, if the pilot had been a terrorist who had deliberately
crashed the aircraft, then an explanation in terms of the weather
or the aircraft malfunctioning will be unavailable. Realizing the
unavailability of certain explanations is extremely important
since it should prompt us to not ask questions that have no
answers.

The crucial point is this. Certain facts about the phenomenon
that you are trying to understand can restrict what questions can
be asked, what explanatory concerns you should have, what expla-
nations will be available. Somebody looking to hold someone
accountable for a plane crash in situations where the weather was
too extreme, is asking the wrong question. This issue of asking the
right questions is extremely important in all areas of science, and
especially visible when looking at mental illness.

LEVELS OF EXPLANATION
The notion of “levels of explanation” is usually introduced with-
out any particular commitment to a general view of explanation.
However, it makes good sense to view it within a pragmatic frame-
work. Indeed, the classic mention of “levels of explanation,” in
David Marr’s book Vision (1982), is phrased in terms of answering
three kinds of question:

Computational theory: What is the goal of the computation, why
is it appropriate, and what is the logic of the strategy by which
it can be carried out?
Representation and algorithm: How can this computational the-
ory be implemented? In particular, what is the representation
for the input and output, and what is the algorithm for the
transformation?
Hardware implementation: How can the representation and
algorithm be realized physically? (p. 25)

Marr’s three levels makes a point that applies to any talk of levels
of explanation. It is the functionalist point of there being multiple

realizability of high-level or functional properties in lower-level
properties (e.g., the property of being a bottle-opener can be
physically realized in a number of different ways, as long as it
opens bottles). If our explanatory concerns are about the higher-
level properties (e.g., computational properties) then addressing
them by drawing attention to lower-level properties (e.g., hard-
ware properties) will be unsuitable (nevertheless, lower level
implementational properties clearly impose constraints on higher
level properties: you cannot make a bottle opener out of cream
cheese). If one has explanatory concerns that operate at a certain
level, addressing them at a different level is at best, sub-optimal,
and at worst, completely irrelevant or opaque.

Some theorists see what is called the “personal level” as just
another level in this sense: as a particular functional level where
we are talking about whole persons, what they believe, desire,
feel etc. These “personal level” properties are (if we assume
physicalism) physically implemented, but they could in princi-
ple be implemented by different physical states. Dennett’s doc-
trine of the “intentional stance” seems to view things in this
way. He presents us with the following thought experiment.
Suppose:

“some beings of vastly superior intelligence—from Mars, let us
say—were to descend upon us [. . . ] suppose, that is, that they did
not need the intentional stance—or even the design stance—to
predict our behavior in all its detail” (Dennett, 1981, p. 68).

The question then is: do these Martians miss out on anything in
failing to use the intentional stance, the personal-level vocabulary
of beliefs, desires etc.? According to Dennett, although they might
be able to predict the exact motions of the fingers and the vibra-
tions of vocal cords during an instance of a stockbroker buying
shares in General Motors, if they fail to see

“that indefinitely many different patterns of finger motions and
vocal cord vibrations—even the motions of indefinitely many dif-
ferent individuals—could have been substituted for the actual
particulars without perturbing the market, then they would have
failed to see a real pattern in the world they are observing” (1981,
p. 69).

Note that even here, with its non-reductive take-home message,
Dennett calls this “a predictive strategy.” The plan is to predict
how a causal system will behave at the relevant fineness of grain.
The finger motions are not a relevant fineness of grain for gaining
a predictive understanding of the stock market. The intentional
stance is the relevant fineness of grain for gaining a predictive
understanding of persons.

If this is correct, then the distinction between levels and
kinds of explanation that I want to put forward is unneces-
sary. There are only levels, and one level (perhaps the “top”
level) is the “personal level.” Many theorists seem to subscribe
to this view (which is somewhat encouraged by the presence of
the word “level” in “personal level”). They take the challenge of
connecting, say, a neurobiological story to a cognitive story to
be the same kind of challenge as that of connecting a subper-
sonal and a personal story. I hope to show now that this is not
the case.
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KINDS OF EXPLANATION
The pragmatic view of explanation allows there to be as many
kinds of explanation as there are kinds of explanatory concerns
(or, which comes to the same thing, kinds of questions worth
asking). And, crucially, we have explanatory concerns that are
not just causal or mechanistic. We ask questions like, “Why did
this person do that?,” “Why does this person believe that?” We
trade on the fact that there are correct and incorrect answers
to these questions, and that these answers genuinely inform us.
However, they do not do so by giving us a causal, predictive,
understanding of the situation. These questions demand personal
explanations, and personal explanations are not merely another
“level” of explanation, but a different kind of explanation.

We can illustrate the difference between the personal and sub-
personal kinds of explanation, by reflecting on different kinds of
explanation-demanding question. Roughly, whereas subpersonal
explanation is mechanistic or causal, answering “How” and “How
come” questions (respectively), personal explanation answers a
“Why” question, where “Why” is understood in a certain way.

CAUSAL AND MECHANISTIC EXPLANATIONS
Within a pragmatic view one can distinguish causal and mech-
anistic explanation in the following way. A causal explanation
merely tells you what causes what, whereas a mechanistic explana-
tions is far more informative in telling how a certain phenomenon
comes about. A causal explanation provides some degree of
understanding, and a sufficient degree of understanding for some
situations, for example, if one wants to avoid a particular effect.
Thus we might establish that smoking causes cancer. We might
not know exactly how it does so, but knowing that, at least, is
enough to suggest that (ceteris paribus), if we do not want can-
cer, we should not smoke. We can think of causal explanations
as answering a certain kind of question, namely, a “How come?”
question. “How come he got cancer?” This is often expressed with
a causal use of “Why,” as in “Why did he get cancer?” This causal
use of “why” is very different from a justificatory use that we are
about to encounter.

A mechanistic explanation answers instead a “How?” question.
It provides not just the cause, but the mechanism whereby a cer-
tain causal process operates. Using the cancer example, it is not
enough to know that smoking causes cancer: what is required
is a description of the mechanism, for example, in terms of car-
cinogenic disruption of genetic material through radiation given
off by substances present in tobacco smoke. Mechanistic explana-
tion provides a greater degree of understanding than merely citing
causes. It is reasonable to think of mechanistic and causal expla-
nations as being the same kind of explanation insofar as the kinds
of concerns addressed are of the same kind; namely, of predicting
how a brute causal system will behave in relevant counterfactual
circumstances.

PERSONAL EXPLANATIONS
As I said, we do sometimes use “why,” when our explanatory con-
cerns are causal or mechanistic, for example, when we ask “Why
is there a hole is the ozone layer?” We mean, “By what cause or
process is there a hole in the ozone layer?” We know it is not there
for a reason. However, when we ask, “Why is there a STOP sign at

the end of that road?” we are asking for a reason, a justification, a
rationale, for its being there. Along with the distinction between
justificatory and causal uses of “why” in the question (“Why is
there a STOP sign there?/Why did you raise your hand?” vs. “Why
did he get cancer?”) we have the distinction between justificatory
and causal uses of “because” in the answer (“Because there tends
to be fast-moving traffic in the main road/Because I wanted to ask
a question” vs. “Because he smoked too heavily”). Answering such
a “why” question involves citing a person’s reasons or grounds for
believing certain things and acting in certain ways (or the general,
publicly agreed, reasons, not attributable to a specific person, as
in the case with the STOP sign).

With beliefs and actions, we often ask questions of one
another: “Why do you believe that?” “Why did you do that?” In
doing this, we are asking a very particular kind of question, and
one that requires a very particular kind of answer. This answer
is commonly called a rational explanation (Davidson, 1963).
However, “rational” has a categorical and evaluative sense. The
opposite of “rational” in the categorical sense is “a-rational” (or
“non-rational”), whereas the opposite of “rational” in the eval-
uative sense is “irrational.” The way “rational” is used here is
categorical, not evaluative. As we are about to abundantly see, you
can have rational explanations of irrational phenomena. Indeed,
something that cannot be given a rational explanation cannot be
irrational; it is merely a-rational. Consider a nervous tick. You
cannot ask why (in the justificatory sense) someone with a ner-
vous tick is behaving the way they are. And, clearly, you cannot
evaluate their reasons as bad reasons if there are none. However,
because of this ambiguity with the word “rational” I have made
the terminological decision to use “personal explanation” rather
than “rational explanation.”

If you ask me, “Why did you raise your hand?” and I answer,
“Because I wanted to ask a question,” that is normally a satisfy-
ing explanation. If I tell you a full physiological story about what
happened up until the point when my hand went up, that may
be interesting, but it is not an answer to that question. You were
after a reason. You wanted to know what I was hoping to achieve
by raising my hand. The same applies when you ask the question
“Why do you believe this?” You are after reasons for my belief, not
any mechanistic story. You want to know what grounds I have, if
any, for believing something.

IS PERSONAL EXPLANATION CAUSAL EXPLANATION?
Now, you might agree that these are common and valid explana-
tory practices. However, you might question whether there is
anything fundamentally different about them. Why are these not
causal explanations? We know that certain beliefs and desires in
certain contexts will give rise to certain actions. This seems rather
causal.

It is worth noting that there are those who are fully accepting
of the explanatory autonomy of reason-giving explanation, but
who also claim that reasons are causes. For example (unlike, say,
Anscombe, 1957 and the early Dennett, 1969) Davidson sees rea-
sons as causes. Now, although I prefer not to think of reasons as
causes, I am willing to accept for the sake of argument, that rea-
sons are causes, especially if one accepts a counterfactual theory
of causation. A counterfactual theory of causation is (roughly)
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one whereby A causes B, if and only if, had there not been A,
there would not have been B. If I had not wanted to ask a ques-
tion, I would not have raised my hand. In that very simple sense,
my desire to ask a question was a cause of my action. However, it
does not follow from something being a cause, that something is
explanatory in virtue of being a cause. Since our explanatory con-
cerns when we ask this special variety of “why” question are not
causal concerns, the explanation given in terms of reasons is not
a causal explanation, even if one thinks that reasons are causes.
In short, conceding that reasons are causes does not concede that
rational explanations (explanations in terms of reasons) are causal
explanations.

So, what are our explanatory concerns when we ask for a
personal explanation and why are they not causal? We want to
understand the person qua agent, not qua causal system. Suppose
somebody behaves in a way that, unlike a nervous tick, looks
controlled and deliberate, and yet you still cannot give it an expla-
nation. To take an unrealistic example, suppose someone holds
up a poisonous mushroom, and announces: “This mushroom is
deadly poisonous and I have no intention of killing myself” but
then pops the mushroom in his mouth. This behavior is surpris-
ing, but it is not just surprise that you feel, but perplexity and
confusion. In particular, you do not understand why this person
ate the mushroom. You can hypothesize that he was lying, either
about the poisonous nature of the mushroom, or his intentions
to stay alive. Or he was demonstrating an antidote. Or he doesn’t
know the meaning of one or more of the words he was using.
However, taken at face value, this action is perplexing. When this
happens, we are not just bemoaning a failure to predict. There is
more to it than this: we are perplexed by this person qua agent,
by the fact that we find the person unintelligible. In fact, it seems
that if his behavior can in no way be reinterpreted so as to confer
intelligibility then the best way to understand it is as a brute causal
process (perhaps he’s a realistic-looking android, programmed to
behave in just this way to prove the point I’m making here). But
explaining it in these terms would require us to ask (and answer)
a different question (“How come?” rather than “Why?”).

Other human beings often behave in ways that we have failed
to anticipate, but that are still perfectly intelligible. We might
say that, while causal and mechanistic explanations confer pre-
dictability, personal explanations confer intelligibility. Of course,
assuming that people will be intelligible makes them more pre-
dictable, in the sense that it narrows down the ways they might
behave in certain circumstances, but that does not mean that any
given personal explanation improves, or is aimed at improving,
our causal understanding of a person. Indeed, all of the causal
understanding we need is already in place: we know that certain
beliefs and desires give rise to certain actions, certain kinds of evi-
dence give rise to certain beliefs. We just want to know, in this
instance, what beliefs, or desires, or evidence the subject actually
had, so that we can understand and evaluate them as persons.

ON THE RELATIONSHIP BETWEEN SUBPERSONAL AND
PERSONAL EXPLANATIONS
We have looked at what personal explanation is, and what causal
and mechanistic subpersonal explanations are. But what is the
relationship between them? We will start by looking at how they

can compete, and then we will look at how they can inform each
other.

HOW THEY COMPETE WITH EACH OTHER
Personal and subpersonal explanations do not compete with each
other in the way that they compete amongst themselves. Within
a pragmatic framework competing explanations are competing
answers to the same question. When you compare a personal and a
subpersonal explanation, you are comparing answers to different
questions (and indeed to different kinds of questions). However,
competition comes in at a different level: at the level of asking
the question in the first place. Asking a certain question presup-
poses that it is appropriate, that it can be answered, and that
presupposes certain facts about the phenomenon in question. So,
personal and subpersonal explanations will not directly compete
(in the way that, as we are about to see, two personal expla-
nations can directly compete). However, in some cases, both of
them being offered at all will presuppose the obtaining of two
incompatible states of affairs. Two demanders of explanations
for a plane crash might ask: “Who was to blame for the crash?”
or “What kind of weather conditions caused the crash?” Each
implies different facts concerning the plane crash (e.g., the for-
mer implies that blame is to be attributed and that it wasn’t
a so-called “Act of God”). Asking a question betrays assump-
tions about the phenomenon that you are asking questions about.
We will see more on this when we look at examples from
delusion.

Another important way in which personal and subpersonal
explanations compete is by imposing constraints on one another.
If a personal explanation claims that, for example, the subject
believed that p because they had an experience with a certain
quality, but the best available subpersonal account suggests that
the experience could not have been like that, then clearly these
two explanations conflict. However, we will see that it is precisely
through this constraining that the two kinds of explanation can
inform each other.

HOW THEY INFORM EACH OTHER
We can use both personal and subpersonal explanations to fur-
ther our understanding of the same individual. To use an example
that will be relevant to us, we can ask about a patient with the
Capgras delusion the subpersonal question, “How has this brain
damage disrupted normal cognitive functioning?” A really good
answer to this will make it altogether unmysterious why (how
come) this particular damage has disrupted functioning in this
particular way, and not in any other way. This will require causal
and mechanistic explanations at different levels. However, one
can also ask, “Why (on what grounds) does she believe what she
does?” In answering this, you cannot use the same vocabulary as
when answering the first, subpersonal, question. Dopamine dys-
regulation, modular damage, etc. none of these are even the right
kind of thing to provide grounds for the subject. Similarly, to take
a non-pathological case, you might ask me:

Q: Why did you think that James was at home?
And I might answer:
A: Because I saw his car in the driveway.

www.frontiersin.org April 2014 | Volume 5 | Article 373 | 22

http://www.frontiersin.org
http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/archive


Wilkinson Levels and kinds of explanation: lessons from neuropsychiatry

You would think it some kind of joke if I instead gave you a story
about light hitting my retina, causing activation in V1, and so on.
You want to know on what grounds I came to believe what I did.

Although subpersonal vocabulary (neurotransmitters, pro-
cessing streams and so on) cannot feature directly in personal
explanation, this is not to say that subpersonal psychology
(broadly construed to include all the cognitive and brain sciences)
cannot make very important contributions to personal expla-
nations. In particular, it can make two very different kinds of
contribution.

First, it can give us an idea of the nature of the grounds that a
subject might have (e.g., what experiences or emotions they might
be undergoing) and how it is that they have them, or rather, how
come they have these experiences and not others. For example, as
we are about to see, subpersonal psychology can suggest that the
Capgras patient is experiencing a feeling of unfamiliarity toward
a loved one. Once we understand what the subject may be expe-
riencing, there is scope for their beliefs to be rendered intelligible,
namely, to be subject to personal explanation. We can answer the
question: “Why does the subject believe this?” In other words, the
first kind of contribution that subpersonal psychology can make
to personal explanation is one of suggesting the starting point for
such an explanation.

The second kind of contribution that subpersonal psychology
can make is very different. It may be able to warn us when per-
sonal explanation is unavailable. That is to say, it may warn us
when any attempts at understanding the subject in terms of sub-
jective grounds would be a waste of time. We saw with our plane
crash analogy that an understanding of the situation may lead
us to conclude that, for example, no blame is to be attributed.
Similarly, an understanding of certain mentally ill individuals may
lead us to realize that there is no answer to the “why” questions,
“Why did he do this?,” “Why does he believe this?” Sometimes
there may simply be no grounds for certain beliefs and behaviors,
and it is vital that subpersonal psychology can warn us when this
may be the case.

AN EXAMPLE FROM NEUROPSYCHIATRY: DELUSION
Opposing views about the nature of delusional misidentification
map on, in a nicely illustrative manner, to these two kinds of
contributions that subpersonal psychology can make to personal
explanation.

A key figure in the history of theoretical work on delusion is
Karl Jaspers, who, in his General Psychopathology (1963), claimed
that there were two very different projects: one of “understanding
the subject,” and the other of rendering the psychopathological
phenomenon causally tractable. The first project roughly corre-
sponds to personal explanation, whereas the latter corresponds
to subpersonal explanation. He thought that delusions (in partic-
ular the primary delusions of schizophrenia) arise without any
grounds or justification; they are “un-understandable” in the
sense that they are not intelligible. We cannot answer the ques-
tion: “Why (viz. on what grounds) do these subjects believe what
they do?” All we can do is try to understand the subject qua causal
system.

However, half a century later the way was paved for (at least
some delusions) to be rendered intelligible. In particular, Brendan

Maher presciently hypothesized that the “delusional belief is not
being held “in the face of evidence strong enough to destroy it,”
but is being held because evidence is strong enough to support
it” (1974, p. 99). What we then have to do as theorists is figure
out what the evidence is, and how it arises. This will obviously
have the potential to vary from one delusion to another, and may
indeed provide a satisfying explanation of why some patients have
some delusions and others have others (viz. there will be an un-
mysterious connection between the nature of their experience,
and the content of their delusion).

THE CLASSIC BOTTOM-UP MODEL
This project received something of a breakthrough (a full 16
years later) in the case of the Capgras delusion (the delusion
that one or more loved ones have been replaced by identical-
looking impostors). Borrowing Bauer’s (1984) model for facial
processing, whereby there are two streams for processing facial
information—one covert, affective and anatomically dorsal, the
other overt, semantic, and anatomically ventral—Ellis and Young
(1990) put forward the influential proposal that the Capgras
delusion can be understood as a sort of “inverse prosopagnosia.”

People with prosopagnosia have difficulty in the overt recogni-
tion of faces. Show them a picture of a familiar face and they will
not be able to tell you whose face it is. And yet, surprisingly, some
of them appear to have differential autonomic responses (roughly,
affective/emotional responses) to these faces, as measured by
heightened skin conductance response (SCR). In other words,
although they themselves cannot tell you whose face they are
looking at, their affective system seems at the very least to be able
to “tell” that it is someone familiar. Ellis and Young hypothesized
that Bauer’s two streams can be selectively impaired, leading to
double dissociation. According to them, whereas with prosopag-
nosia the affective stream for “covert recognition” is intact and
the semantic stream for “overt recognition” is impaired, with the
Capgras delusion it is the other way around. This means that the
Capgras patient is presented with someone who, thanks to intact
semantic processing, looks to them exactly like a loved one, but
there is a lack of affective response. The perceived person feels
unfamiliar and the patient therefore concludes that this person
cannot be the loved one in question. This model was given exper-
imental support (Ellis et al., 1997) when it was discovered that,
in contra-distinction to prosopagnosia, Capgras patients show
diminished SCR when presented with familiar faces.

According to this etiology, there is scope for the Capgras delu-
sion to be rendered intelligible, to be given a personal explanation,
since it can be seen as something that is inferred on the basis
of experiential evidence. These theories, which take delusions
to be grounded in unusual experiences, are called “bottom-up”
theories. A complete bottom-up account will contain a mix of
personal and subpersonal explanation. The very existence of the
anomalous experience is explained in terms of mechanism (in the
Capgras case, on the Ellis and Young model, this could involve
explaining how lesions disrupt affective processing of familiar
faces). But the judgment itself is personal. The person infers from
their experience. And the relevant question to ask is: “Why does
the person believe that this woman is not his mother?” And the
relevant answer is roughly: “Because this woman feels deeply
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unfamiliar to him.” This is not a causal, mechanistic explanation,
but a personal one. And, if correct, it tells us all we need to know
within the scope of personal explanations.

EXPLANATIONIST vs. ENDORSEMENT ACCOUNTS
However, there is a debate within bottom-up theories about what
precisely the correct answer to this question (viz. “Why does this
person believe that this woman is not his mother?”) is. Phrased in
more technical terms, there is a debate about the content of the
experience in the Capgras delusion. In other words, what exactly
does the subject’s experience tell her; how does it subjectively
support her judgment?

To borrow Bayne and Pacherie’s (2004) terminology, “expla-
nationist” accounts (e.g., Ellis and Young, 1990, Maher, 1999)
claim that the content of the Capgras patient’s experience is
something sparse like, “This woman feels strange,” and that the
delusional judgment explains the bizarre experience (roughly, the
subject reasons: “This woman, in spite of looking like my mother,
doesn’t feel like my mother would feel, therefore she cannot be
my mother”). The opposing accounts, so-called “endorsement”
accounts (e.g., Bayne and Pacherie, 2004) claim that the delu-
sional content is encoded directly in the unusual experience, and
all that suffices is endorsement of that content. The content of the
Capgras patient’s experience, on such a view, is something rich
like, “This woman is not my mother.”

Now, bracketing the plausibility of either account, it is worth
noting an explanatory trade-off. As Pacherie (2009) points out,
the explanationist account can more easily explain how the expe-
rience gets its content, since the content is so sparse. It can simply
say that there is a disruption in emotional or affective process-
ing. The task for subpersonal psychology is comparatively easy.
However, it is a bigger explanatory step from the sparse content
of the experience to the rich content of the delusion. One prima
facie problem with this is that, if the experience is sparse and non-
specific, why is there not a wider array of potential hypotheses
used to explain it? (“Maybe I don’t like mum anymore,” “Maybe
I’m tired” etc.). In contrast, the endorsement theorist can get
from the experience to the judgment just fine, since they have the
same content. However, as Pacherie puts it, where “the endorse-
ment account would appear to be weakest is in explaining how
delusional patients could have the experiences that the account
says they do” (Pacherie, 2009, p. 107). More precisely, subper-
sonal psychology needs to step in and tell us how it is that an
experience can have a rich content like, “This woman is not my
mother.”

Here we get a nice illustration of two directly competing per-
sonal explanations, namely, different answers to the very same
“why” question. It also illustrates how these give rise to two differ-
ent explanatory burdens that need to be picked up by subpersonal
explanations. Presenting the competing accounts in terms of
questions, where “Why?” and “How come?” questions correspond
to the personal (justificatory) and subpersonal (mechanistic)
questions respectively, we get (roughly) the following. For the
explanationist account we get:

Q: “Why does the subject believe that his mother has been
replaced by an impostor?”
A: “Because she feels unfamiliar to him.”

Q: “How come she feels unfamiliar to him?”
A: “Because affective processing has been disrupted in such and
such a way.”

For the endorsement account we get:

Q: “Why does the subject believe that his mother has been
replaced by an impostor?”
A: “Because his experience presents this woman as not being his
mother.”
Q: “How come?”
A: “Because (for example) subpersonal mechanisms responsi-
ble for managing the representation of the identities of known
individuals has been disrupted” (see e.g., Wilkinson, in press).

BACK TO UNINTELLIGIBILITY: TOP-DOWN ACCOUNTS
However, not everyone subscribes to bottom-up theories of delu-
sions (Eilan, 2000; Campbell, 2001). In a way that harks back
somewhat to Jaspers, these theorists claim that the delusion is
not inferred, nor grounded in evidence, but caused. Any report
(or even experimental evidence from SCR), for example, that the
mother feels unfamiliar, is a consequence of (or an accompani-
ment to) the delusional belief, but not grounds for it. She feels
unfamiliar because she is judged to not be the subject’s mother,
and not the other way around. As Campbell puts it, “‘delusion’ is
a matter of top-down disturbance in some fundamental beliefs
of the subject which may consequently affect experiences and
actions” (2001, p. 89). An upshot of this is that the belief can
only be explained subpersonally, and, of course, this leaves a
large explanatory burden for subpersonal psychology. We cannot
answer the question “Why does the person believe that this woman
is not his mother?” We cannot appeal to grounds since there
are none. We are back to Jaspers’ claim that delusional subjects
are “un-understandable.” The only question with an illuminating
answer is: “What has caused this person to believe what she does?”
This is precisely what I meant when I said that some etiologies will
take personal explanation to not be available. However, note that,
although, on these top-down theories, the delusional belief may
not be amenable to personal explanation, any action performed
on the basis of the belief will be, and this explanation will appeal
to the belief. In such a situation we roughly get the following series
of questions and answers.

Q: “Why did the patient stab her father (even though they
seemed to have a good relationship prior to the event)?”
A: “Because she believed that he was not her father, but an
identical-looking impostor.”
Q: “And on what grounds did she believe this?”
A: “There were none. The belief was merely caused.”

At this point we would need to delve into the subpersonal mecha-
nisms to understand what is underpinning the (groundless) belief
in terms of mechanisms.

AN ILLUSTRATIVE OBJECTION
Somebody might say that the “kinds of explanation” constraint is
illusory, and, in particular, that personal explanation has no place
in a scientific enterprise. When people believe things on epistemic
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grounds, or they do things for reasons, nothing fundamentally
different is going on. This could, in principle, all be explained
subpersonally by the cognitive sciences.

I think this is a misleading way to think, and I would like to
run through a thought experiment to illustrate why. Suppose we
had a “complete” subpersonal description (whatever that means!)
of what is going on, say, in an instance of thought insertion. We
are not appealing to anything personal, we are not talking about
grounds or reasons, just mechanistic stuff. Assuming physical-
ism, and highly advanced imaging techniques at our disposal, we
could, in principle, take any given individual and see when they
would (and when they would not) report inserted thoughts. I am
very happy to grant this. Thought insertion is, in a rather trivial
sense, a fundamentally physical phenomenon. However, suppose
that it happens that thought insertion, the denial of ownership of
one’s thoughts, is actually grounded in a very bizarre experience.
We could know exactly what is going on in the brain of someone
(i.e., we know what that neural activity looks like on the scanner)
who is reporting inserted thoughts, but still not know on what
grounds they are denying ownership of their thoughts (or indeed
that there are grounds at all). This seems like a possible epistemic
state for us, as scientists, to be in. More worryingly, it entails igno-
rance of an important and irreducible fact (by “fact,” I mean, a
claim that is determinately true) namely, concerning the grounds
on which somebody is denying ownership of her thoughts.

As the section in this paper that examines the relationship
between personal and subpersonal explanations makes clear, I am
not denying that we could work out, to some extent, the sub-
ject’s experiential grounds from subpersonal data. Here, I have
advocated the fruitful, but careful, contribution of subpersonal
psychology to personal explanation. But this in itself requires us to
take personal explanation seriously. In this thought experiment,
personal explanation is disregarded, eliminated, out of bounds.
And the intuition I hope you share is that this entails a kind of
ignorance.

Of course, where this illustrative objection goes awry is in
making the fallacious step from physicalism to reductionism.
Everything in the universe could well be made of physical stuff,
but as human beings we are constrained, partly by our interests
and concerns, and partly by our cognitive and conceptual limita-
tions. We therefore talk about, and explain, many different things
(and kinds of things) in many different ways (and kinds of ways).
Obviously, there are facts concerning people that go beyond, and
are not reducible to, neural facts. There are epistemic facts (facts
about grounds for belief), motivational facts (facts about people
doing things for reasons). There are also facts about what peo-
ple experience (it is, for example, a fact, as unambiguously true
as anything, that I am currently not in excruciating pain). And it
does not stop there: there are social facts, economic facts, contrac-
tual facts, and so on. You cannot capture what it is for me to sign
a contract using physics and physiology.

SUMMARY AND CONCLUSION
In this paper, I built on a pragmatic view of explanation, on
the basis of which explanations are answers to explanation-
demanding questions, in order to show a distinction between
levels of explanation and kinds of explanation. Different kinds

of questions, and hence explanations, arise because we have
different kinds of explanatory concerns. One important kind of
explanatory concern involves asking a certain justificatory kind
of “why” question. Answering this kind of question provides a
personal explanation, namely, renders intelligible the beliefs and
actions of other persons. I then used contrasting theories of delu-
sional misidentification to illustrate how different facts about the
phenomenon that is being explained impose (i) constraints on
the availability of personal explanation and (ii) leave different
explanatory burdens for subpersonal psychology (broadly con-
strued). More generally, this also illustrated how asking certain
kinds of questions, seeking certain kinds of explanations, carries
implicit assumptions about the nature of the phenomenon about
which the questions are being asked.
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INTRODUCTION
In the first chapter of Vision, Marr (1982) famously decomposed
cognitive theories into three levels. He examined neuroscience the-
ories of vision and found them too focused on neural circuitry –
the lowest level. He examined artificial intelligence models of
vision and found them too focused on data structures and algo-
rithms – the middle level. He argued that understanding the what
and how of vision would not constitute a complete theoretical
account. An understanding of the why of vision – the problem it
solves for the organism – was also needed, and this could only be
provided by the highest level. Marr surveyed the cognitive science
landscape and found only two theories articulated at this level,
Chomsky’s (1965) theory of language “competence” and Gibson’s
(1979) “ecological” theory of visual perception. He argued that
future progress in cognitive science would require greater attention
to all three levels.

Marr was not the only cognitive scientist thinking along these
lines. The cognitive revolution was 25 years old when Vision was
published, and the optimism generated by early computational
models was giving way to a growing recognition of their limi-
tations. Newell (1982), Pylyshyn (1984), and Anderson (1990)
offered analyses that were strikingly similar to Marr’s in the lev-
els they proposed, but that addressed a class of cognitive theories
called cognitive architectures.

Every science strives for a unified theory of all of its phenom-
ena (Oppenheim and Putnam, 1958). For example, physicists are
searching for a grand unified theory of the fundamental forces
of nature (Weinberg, 1993). Its equations, once discovered, will
provide an account of all physical phenomena – at least in princi-
ple. Cognitive scientists are similarly searching for a unified theory
of cognition (Newell, 1990). It will not be a set of equations, as
it will be for physics. Rather, it will be a cognitive architecture –
a computational formalism for expressing computational models
of cognitive phenomena. This reflects the fundamental claim of

the cognitive revolution, that cognition is a form of information
processing. A better analogy, then, is to classical mechanics, the
unified physical theory of its day. Classical mechanics postulates
a continuous universe where forces act on bodies across space
and time. Newton lacked a suitable mathematical formalism for
expressing classical mechanics, and so he designed one – the cal-
culus. Similarly, cognitive architects design new computational
formalisms for expressing the models that cognitive scientists
dream up.

The analyses offered by Marr, Newell, Pylyshyn, and Anderson
focused on the objective meaning of each level – how it supports
models that correspond to the phenomena of cognition. This
paper offers a complementary analysis of the subjective meaning
of each level – how it helps cognitive scientists understand cog-
nition (Varma, 2011). The first half articulates the objective and
subjective meanings of each level. The important point is that
these meanings are quasi-independent: they can mutually con-
strain each other (“quasi”), but cannot entirely replace each other
(“independence”). This paper then draws the implications of this
analysis. It first argues that the subjective meanings of different lev-
els are also quasi-independent, and this precludes the reduction of
higher levels to lower levels, for example, in the name parsimony.
In fact, preserving multiple levels provides working cognitive sci-
entists with the flexibility to choose the most appropriate level for
their modeling activities. It concludes by explaining the current,
disunified state of theoretical cognitive science as the product of
failing to understand the multiple meanings and multiple levels at
which architectures explain cognition, and on which they must be
compared.

THE LOWEST LEVEL
The lowest level of cognitive architecture is the most familiar; it is
what cognitive scientists think of when they think of architecture
at all. This section first describes the objective meaning of the
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lowest level, as articulated by Marr and others, and then describes
its subjective meaning.

COMPUTATIONAL MECHANISMS
Standard decompositions of cognitive architecture differ in how
they name the lowest level. Marr (1982) called it the “hard-
ware implementation,” Newell (1982) the “device” level, Pylyshyn
(1984) the “physical” (or “biological”) level, and Anderson (1990)
the “biological” level. What is common to all is the proposal
that the lowest level defines the interface between the brain and
the mind, where neural information processing elements aggre-
gate into cognitive information processing elements. We call
these cognitive information processing elements computational
mechanisms. They come in three types.

Basic representations are the primitive means for encoding
information. Different architectures provide different basic rep-
resentations. For example, the basic representation of production
system architectures is the declarative memory element, or dme
(Newell, 1973a). A dme is a set of attribute–value pairs, where
each attribute is a distinction that the perceptual-cognitive-motor
system makes and each value is a number, symbol, or another
dme. The basic representation of connectionist architectures is the
vector of microfeatures, where each microfeature has a numeric
value, encoded as the activation level of a unit (Rumelhart
et al., 1986). The basic representation of exemplar architectures
is the episodic trace. It is a vector of features, some encoding
semantic information and others contextual information, that
can assume numeric values (Raaijmakers and Shiffrin, 1981). A
critical difference between dmes on one hand and microfeature
vectors and episodic traces on the other is that the former can
be recursively embedded within each other, whereas the latter
are “flat,” and thus recursive embeddings must be implemented
by a combination of computational mechanisms (Elman, 1990,
1993; Hinton, 1990; Pollack, 1990; Smolensky, 1990; Murdock,
1993).

Basic operators are the primitive means for processing infor-
mation. A basic operator takes basic representations as input,
transforms them, and generates basic representations as output.
For example, the basic operator of production system architectures
is the production (Newell, 1973a). A production has a condition
side and an action side. The condition side is matched against
the available dmes. If a match results and the production is fired,
then the individual actions of the action side are executed, adding,
deleting, and modifying dmes. The basic operators of connec-
tionist architectures include the weighted links that connect units
and the activation functions of the units themselves (Rumelhart
et al., 1986). For example, in a feedforward connectionist archi-
tecture, as activation flows across weighted links and through
activation functions, input vectors are transformed into hidden
layer vectors, and ultimately into output vectors. The basic oper-
ator of exemplar architectures computes the similarity between
two episodic traces. Similarity is a superlinear function of the
number of shared feature values – multiplicative in the search
of associative memory model (SAM; Raaijmakers and Shiffrin,
1981), cubic in Minerva-II (Hintzman, 1986), and exponential in
the generalized context model (GCM; Nosofsky, 1984; Shepard,
1987).

The control structure is the regimen for scheduling the applica-
tion of basic operators to basic representations over time (Newell,
1973a). Different architectures adopt different control structures.
Among production system architectures, ACT-R employs serial
control, firing one production at each point in time (Anderson,
2007), whereas 4CAPS employs parallel control, firing all match-
ing productions (Just and Varma, 2007). Soar utilizes a mixed
control structure, parallel for some aspects of its “decision cycle”
and serial for others (Newell, 1990; Laird, 2012). Connectionist
architectures also exhibit a variety of control structures: Hopfield
(1982) networks update the activation of one unit at a time; inter-
active activation and competition (IAC) networks update all units
simultaneously (McClelland and Rumelhart, 1981; Rumelhart and
McClelland, 1982); and feedforward networks mix the two con-
trol structures, updating units in the same layer in parallel and
units in different layers serially (Rumelhart et al., 1986). Exemplar
architectures offer comparatively rudimentary control structures,
perhaps owing to their origins in mathematical psychology, not
computer science. One exception is Minerva-II, which uses a serial
control structure where the trace retrieved on the current iteration
serves as the probe on the next iteration. This continues until the
content of the probe and the retrieved trace converge (Hintzman,
1986).

CRITERIA FOR COMPUTATIONAL MECHANISMS
Cognitive scientists prefer to construct computational models
within cognitive architectures rather than general-purpose pro-
graming languages such as C and Java. This is because the
computational mechanisms of architectures are psychologically
plausible (e.g., microfeature vectors), whereas those of program-
ing languages are not (e.g., “for loops”). This decreases the degrees
of freedom available during the construction of models, increasing
their generalizability to new phenomena.

There are two criteria for judging the psychological plausibility
of computational mechanisms. The first criterion is that compu-
tational mechanisms be biologically realizable. Prior analyses of
the lowest level define it as the interface between the mind and
the brain. Marr populated his lowest level with neural process-
ing elements such as feature detectors (e.g., Hubel and Wiesel,
1962) and spatial frequency detectors (e.g., Campbell and Robson,
1968). However, he acknowledged the parallel between the neu-
ral architecture and “the detailed computer architecture” (Marr,
1982, p. 25). Newell (1989) offered a similarly dual conception
of the lowest level, noting that in “current digital computers it
is the register-transfer level, but in biological systems it is some
organization of neural circuits” (p. 404). For a computational
mechanism to be biologically plausible, it must be consistent
with what is known about neural information processing. It has
been claimed that the computational mechanisms of connection-
ist architectures are of greater biological realizability than those
of symbolic architectures (Rumelhart and McClelland, 1986).
There are two reasons to doubt this claim. The first is that some
neuroscientists question the correspondence between the compu-
tational mechanisms of connectionist architectures and the details
of neural information processing (Crick and Asanuma, 1986, pp.
369–371). The second reason is that the biological realizability of
the computational mechanisms of some symbolic architectures
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has been demonstrated by the construction of models that can
account for neuroscience data (Anderson, 2007; Just and Varma,
2007).

The second criterion is that computational mechanisms be
disaggregate (Newell and Simon, 1972; Pylyshyn, 1984). A com-
putational mechanism is disaggregate if it can be defined in
non-cognitive terms. A non-cognitive definition can be mathe-
matical, physical, chemical, or biological. By contrast, a cognitive
definition is in terms of other computational mechanisms. A cog-
nitively defined computational mechanism is problematic because
if it is replaced everywhere (i.e., in all models) with its defin-
ing combination, the resulting architecture would have the same
expressive power but would be more parsimonious, and would
therefore be preferable. The computational mechanisms of con-
nectionist architectures are disaggregate, and therefore do well
on this criterion. Units, weighted links, activation functions, and
learning rules can be defined mathematically, without recourse
to cognitive terms. By contrast, the computational mechanisms
of symbolic architectures are on shakier ground. For exam-
ple, the basic operator of production system architectures, the
production, directly supports “variable binding” (Fodor and
Pylyshyn, 1988). Some connectionists have argued that vari-
able binding is an aggregate computational mechanism, and that
it should be replaced everywhere with a combination of sim-
pler computational mechanism, for example, in the “conjunctive
coding” technique (Hinton et al., 1986; Touretzky and Hinton,
1988).

COGNITIVE PRIMITIVES
The subjective meaning of a cognitive architecture is the under-
standing it brings cognitive scientists of cognition (Varma, 2011).
At the lowest level, the computational mechanisms of an architec-
ture are cognitive primitives that specify a metaphysics for cogni-
tion. They offer a particular perspective on cognitive information
processing, guiding cognitive scientists to value some compu-
tational models over others that are “equivalent” in objective
meaning (i.e., correspondence to cognitive phenomena).

That the lowest level makes metaphysical claims is hinted at
in Marr’s analysis. He observed that choices made at the lowest
level necessarily make it easier to express some cognitions (i.e.,
more natural, more parsimonious) but harder to express others
(i.e., more awkward, more complex). He illustrated this with an
example from mathematics: choosing a base-10 representation
for numbers makes some computations easy, such as determining
whether a number is a power of 10, but makes other computations
difficult, such as determining whether a number is a power of 2.
If a base-2 representation is chosen, however, the opposite trade-
off results. More generally, “any particular representation makes
certain information explicit at the expense of information that is
pushed into the background and may be quite hard to recover”
(Marr, 1982, p. 21).

Cognitive primitives are not computational mechanisms; the
subjective meaning of the lowest level is quasi-independent of its
objective meaning. This is evidenced by the fact that different
cognitive primitives can be realized by the same computational
mechanism, and the same cognitive primitive can be realized by
different computational mechanisms. Consider the productions

of the ACT-R and 4CAPS architectures. As computational mecha-
nisms, they are quite similar: their condition sides are matched
against available dmes, and when a matching production is
fired, the actions of its action side are executed, changing the
set of available dmes. As cognitive primitives, however, they
are quite different. ACT-R productions function like goal-driven
schemas for accessing information in perceptual-motor buffers
and long-term declarative memory (Anderson, 2007). By con-
trast, 4CAPS productions function like constraints on dmes,
activating those that are consistent with each other and sup-
pressing those that are inconsistent with each other (Just and
Varma, 2002). As cognitive primitives, 4CAPS make metaphys-
ical claims that are closer to those of the weighted links of
IAC networks (Goldman and Varma, 1995). This commensu-
rability arises because at their highest levels, both 4CAPS and
IAC networks understand cognition as a form of constraint
satisfaction.

To take another example, connectionist architectures include
microfeature vectors as basic representations. However, this
computational mechanism implements very different cognitive
primitives in localist vs. distributed connectionist architectures.
Localist representations gain meaning through denotation – each
unit codes for one and only one referent (Page, 2000; Bow-
ers, 2009). By contrast, in distributed representations, each unit
contributes to the representation of multiple referents, and ref-
erence is via similarity (Hinton et al., 1986). The difference is
so contentious that some advocates of distributed representa-
tions have claimed that localist representations have no place in
connectionist architectures at all (Plaut and McClelland, 2010).
As cognitive primitives, distributed connectionist representa-
tions make metaphysical claims that are closer to those of the
episodic traces of exemplar architectures built upon the convo-
lution and correlation operations (Eich, 1985; Murdock, 1993;
Plate, 1995).

THE HIGHEST LEVEL
If the lowest level specifies the minutiae of cognitive information
processing, it is at the highest level that a cognitive architecture
offers its broadest characterization of thinking. This section first
reviews Marr’s seminal description of this level, which emphasizes
its objective meaning. It then articulates the subjective meaning of
this level.

FUNCTIONAL SPECIFICATION
In Marr’s decomposition, the highest level of a cognitive theory
is the “computational theory” it offers. This is a functional specifi-
cation of cognition “as a mapping from one kind of information
to another” where “the abstract properties of this mapping are
defined precisely” (Marr, 1982, p. 24). The details of how this
mapping is implemented are left to lower levels.

Marr argued for the existence of the highest level through a crit-
ical review of vision research following World War II. Empirical
studies had revealed much about the implementation of the visual
system. Emphasizing the lowest level of theoretical description
was advocated most strongly in Barlow’s (1972) “neural doctrine,”
which asserted that “a description of the activity of individual
nerve cells is a sufficient basis for understanding the function of
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the visual perception” (p. 380). Marr’s review came to a very dif-
ferent conclusion: although neuroscience theories were revealing
the what and how of vision, they were not explaining the why.

Suppose, for example, that one actually found the apocryphal grand-
mother cell. Would that really tell us anything much at all? It would tell
us that it existed – Gross’s hand-detectors tell us almost that – but not
why . . . such a thing may be constructed from the outputs of previously
discovered cells.

(Marr, 1982, p. 15)

The limitations of theorizing only at the lowest level are not
particular to neuroscience (Anderson, 1972; Brooks, 1991). Marr
argued that every cognitive science theory must include a highest
level that specifies the function of its domain. He gave one exam-
ple of a high-level theory from mathematics. The field axioms
specify the abstract properties of algebraic expressions, such as
the commutativity of addition, but are silent on low-level mat-
ters of implementation, such as how numbers are represented
(Roman numerals? base-10? base-2?). Marr gave two examples
from cognitive science. The first was Gibson’s (1979) “ecological”
theory of visual perception, which defines the function of visual
perception – to enable organisms to navigate their ecological envi-
ronments – independently of the computational details of how
that function is implemented. The second example was Chomsky’s
(1965) theory of linguistic “competence,” which defines the set of
language structures. Exactly how these structures are mapped or
computed from inputs such as words or sounds – the data struc-
tures, parsing algorithms, memory systems, and so on – is left to a
lower-level theory of linguistic “performance.”

PROCESSING STYLE
Marr’s characterization of the highest level as a functional mapping
emphasizes its objective meaning. It does not capture its subjective
meaning – the broadest ways in which cognitive theories make
their domains comprehensible to cognitive scientists. This can be
seen by returning to the example of the field axioms. Although they
specify the form of algebraic expressions, they do not completely
capture the meaning of algebra in the lives of mathematicians. To
claim otherwise is to believe that Diophantus, Brahmagupta, and
the other great algebraists who lived before their formulation did
not understand the subject to which they contributed so much.

The subjective meaning of the highest level is the processing
style it attributes to cognition. Although missing in Marr’s analy-
sis of cognitive theories, it is nascent in Newell’s and Anderson’s
analyses of cognitive architectures, as we will see next. This is per-
haps not surprising. Cognitive architectures are computational
formalisms – are programing languages. Programing languages
cluster into “paradigms” or “families” based on their underlying
model of computation. Imperative languages such as C model
computation in terms of the von Neumann architecture, func-
tional languages such as Lisp in terms of the lambda calculus,
logical languages such as Prolog in terms of logical inference, and
so on (Bergin and Gibson, 1996; Wexelblat, 1981). To understand
a programing language is to think through its model of compu-
tation, and to write programs that express this model rather than
fight against it. Similarly, to understand a cognitive architecture at
the highest level is to think through its model of computation –

its processing style – and to write models that express it in their
cognitive information processing.

We next consider two example processing styles. That they
are each implemented by multiple cognitive architectures gives
evidence of their generality.

Rationality and optimality
A number of cognitive scientists have proposed that cognitive
information processing is, at its highest level, rational. This is
true of Newell’s (1982) “knowledge level,” with its accompany-
ing “principle of rationality,” and Anderson’s (1990) “rational
level.”

Rationality is a processing style with a pedigree: many of the
most elegant theories in science appeal to the optimality of the
natural world. One example is Fermat’s principle of least time,
which states that “of all the possible paths that it might take to
get from one point to another, light takes the path that requires
the shortest time” (Feynman et al., 2011, pp. 26-3). This principle
can be stated and applied independently of the details how the
optimal path is computed, which are left to a lower level theory.
Optimality principles seem to give a purpose to – explain the
why of – the natural world. Perhaps for this reason, theories that
appeal to optimality are often judged to be of greater esthetic
merit, another component of their subjective meaning (McAllister,
1996).

Different cognitive architectures implement the rational pro-
cessing style using very different lower levels. Soar adopts a
procedural notion of rationality, learning from prior problem solv-
ing new procedural knowledge to optimize the speed of future of
problem solving. ACT-R adopts a Bayesian notion of rationality,
learning statistics over prior experiences to take actions that max-
imize expected utility in the future (Anderson, 2007). That the
rational processing style can be implemented by different sets of
cognitive primitives demonstrates the quasi-independence of the
highest and lowest levels. As Anderson (1990, p. xi) writes,“a ratio-
nal analysis can stand on its own,” independent of the cognitive
primitives of “an architectural theory.”

Constraint satisfaction
A number of cognitive architectures characterize cognition as a
form of constraint satisfaction. The next cognitive state is not
computed directly, as it is in symbolic architectures that uti-
lize “forward chaining” and connectionist architectures where
activation flows in a “feedforward” direction. Rather, a set of
constraints defines the landscape of possible cognitive states,
an objective function defines the “goodness” of each one, and
the next cognitive state is the one that maximizes the objec-
tive function subject to the constraints. In “hard” constraint
satisfaction, the next cognitive state must satisfy all of the con-
straints. It is typically implemented by architectures that utilize
symbolic computational mechanisms, such as marker-passing
networks (Waltz, 1975; Fahlman, 1979) and symbolic program-
ing languages (Sussman and Steele, 1980). In “soft” constraint
satisfaction, the next cognitive state satisfies many, but not nec-
essarily all, of the constraints. It is implemented by connectionist
networks that employ distributed representations and thermody-
namic control structures (e.g., settling, simulated annealing), such
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as Hopfield (1982) networks and Boltzmann machines (Ackley
et al., 1985). It is also implemented by hybrid architectures that
utilize both symbolic and connectionist computational mecha-
nisms at their lowest levels, including Pandemonium (Selfridge,
1959), IAC networks (McClelland and Rumelhart, 1981; Rumel-
hart and McClelland, 1982; Kintsch, 1988), classifier systems
(Holland et al., 1986), and 4CAPS (Just and Varma, 2007). As
these examples demonstrate, the constraint satisfaction process-
ing style is quasi-independent of the cognitive primitives that
implement it.

THE MIDDLE LEVEL, BRIEFLY
There is also a middle level to cognitive theories and cognitive
architectures. We briefly analyze its objective and subjective mean-
ings here, and direct the interested reader to Varma (2011) for a
fuller explication.

Marr defines the middle level objectively, as “the representation
for the input and output and the algorithm to be used to transform
one into the other” (pp. 24–25). Newell (1989, p. 404) gives a sim-
ilar definition, colored by his advocacy of symbolic architectures:
“the symbol level is that of data structures with symbolic oper-
ations on them, being carried out under the guidance of plans,
programs, procedures, or methods” (p. 404). Other objective
characterizations include Pylyshyn’s (1984) “symbolic” level and
Anderson’s (1990) “algorithm” level. What is common to all is the
proposal that at the middle level, the computational mechanisms
of the lowest level combine into data structures and algorithms, to
implement the functional specification of the highest level.

The middle level has a parallel subjective meaning. It is where
the cognitive primitives of the lowest level combine to process
information in an architecture’s characteristic style. We call these
combinations idioms (Lallement and John, 1998; Jones et al.,
2007). They help cognitive scientists understand cognition in at
least two ways.

First, idioms possess pragmatic value. Some problems occur
over and over again during model construction. Each problem
can be solved by multiple combinations of cognitive primitives.
The question, then, is which combination is “best”? Idioms answer
this question. They are patterns of cognitive primitives that solve
recurring problems in a canonical manner, one consistent with the
overall processing style of an architecture (Chase and Simon, 1973;
Gamma et al., 1995). For example, when constructing connection-
ist models of complex cognition (e.g., sentence comprehension),
certain problems occur that cannot be solved at the lowest level.
One such problem is the representation of variable bindings (e.g.,
when computing the agreement between two phrases). It is often
solved using the CONJUNCTIVE CODING idiom, whereby by a pop-
ulation of units is defined, one for each possible combination of
feature values (Hinton et al., 1986; Touretzky and Hinton, 1988).
Another such problem is the representation of recursively embed-
ded information (e.g., syntactic structures). This problem cannot
be solved at the lowest level because the basic representations,
microfeature vectors, are “flat.” Connectionist architectures solve
this problem using a variety of idioms at the middle level. In feed-
forward architectures, the TENSOR idiom can be used to encode
structured information using vector representations (Smolensky,
1990). In recurrent architectures, the STARTING SMALL idiom –

biasing early training toward simpler structures and later train-
ing toward complex structures – can be used to learn structured
representations within hidden layers (Elman, 1993). This raises
the question of why different connectionist architectures solve the
recursive embedding problem using different idioms. The rea-
son is that each idiom solves the problem in a manner consistent
with its architecture’s metaphysical claims at the lowest level and
its processing style at the highest level. Although feedforward and
recurrent architectures have similar cognitive primitives, they real-
ize different processing styles, and therefore solve the recursive
embedding problem using different idioms.

The second contribution that idioms make to the subjective
meaning of the middle level is to enhance communication between
cognitive scientists. They help cognitive scientists understand
computational models written by other members of the architec-
tural community. These models are seen not as tangles of cognitive
primitives (“spaghetti code”), but rather as patterns signifying the
problems that arose during model construction, and how they
were solved. Idioms also increase the efficiency of communica-
tion. Cognitive scientists who belong to the same architectural
community know the same idioms. Therefore, their discussions
can utilize the succinct vocabulary of the middle level, and not
default to the verbose vocabulary of the lowest level.

IMPLICATIONS
We have articulated the objective meanings of the different levels
of cognitive architecture, following analyses originated by Marr,
Newell, Pylyshyn, and Anderson. We have also identified the
subjective meaning of each level – the understanding it brings
cognitive scientists of cognition (see Table 1 for a summary).
Importantly, the objective meaning of a level is quasi-independent
of its subjective meaning: one cannot entirely replace the other
(“independence”), though they can mutually constrain each other
(“quasi”).

Here, we draw several implications of this analysis. We first
argue that the subjective meanings of different levels of a cognitive
architecture are also quasi-independent of one another. We next
argue against reducing higher levels to lower levels, for example,
in the name of parsimony, because this would lose the subjective
meaning unique to higher levels. This would also needlessly limit
the flexibility of cognitive scientists to choose the architectural
level most relevant for understanding the phenomena of inter-
est to them. We conclude by considering the implications of the
multiple meanings and multiple levels of cognitive architecture for
understanding the current, disunified state of theoretical cognitive
science.

QUASI-INDEPENDENCE
We have seen that the objective meaning of each level is quasi-
independent of its subjective meaning. Returning to a previous
example, ACT-R and 4CAPS have similar objective meanings at the
lowest level, with both including productions as basic operators.
However, productions have very different subjective meanings in
the two architectures – are very different cognitive primitives.
They function as goal-driven schemas for accessing relevant infor-
mation in ACT-R, whereas they function as constraints between
representations in 4CAPS.
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Table 1 | Summary of the multiple meanings and multiple levels of cognitive architecture.

Level Objective meaning Subjective meaning

Highest Functional specification: mapping from perceptual-cognitive inputs to

cognitive-motor outputs

Processing style: model or paradigm of computation

Middle Data structures and algorithms: combinations of computational

mechanisms that implement the functional specification

Idioms: combinations of cognitive primitives that solve problems

that recur during model construction in a manner consistent with the

processing style

Lowest Computational mechanisms: basic representations, basic operators,

and control structure of cognitive information processing

Cognitive primitives: specify a metaphysics for cognition

A natural question is the relation between the meanings of
different levels. Simon (1996) observed that complex systems tend
to be organized hierarchically, with components at higher levels
being nearly decomposable into components at lower levels. Marr
(1982) argued that, for the case of cognitive theories, the objective
meanings of different levels are quasi-independent.

The three levels are coupled, but only loosely. The choice of an algo-
rithm is influenced for example, by what it has to do and by the
hardware in which it must run. But there is a wide choice available
at each level, and the explication of each level involves issues that are
rather independent of the other two.

Marr, 1982 (pp. 24–25)

The subjective meanings of different levels are also quasi-
independent. The processing style of the highest level is quasi-
independent of the idioms of the middle level, which are quasi-
independent of the cognitive primitives of the lowest level. Here
“quasi-independence” means that the subjective meanings of dif-
ferent levels can mutually constrain each other (“quasi”), but
cannot entirely replace each other (“independence”). We argue for
this proposal indirectly, by drawing its implications and providing
evidence for them from the history of cognitive architecture.

AGAINST REDUCTION
One implication of the proposal that the subjective meanings of
different levels are quasi-independent is that higher levels cannot
be entirely reduced to lower levels. This implication is provoca-
tive because it flies in the face of parsimony, the standard esthetic
criterion in science. This is the preference for simpler theories
over more complex theories, all other things being equal (McAl-
lister, 1996). For example, the Ptolemaic and Copernican theories
provided comparable accounts of the structure of the solar sys-
tem – of the observed movements of planets. The Copernican
theory came to be preferred in part because it was simpler, i.e.,
did not require ad hoc assumptions about epicycles. This implica-
tion is also provocative because it is antithetical to reduction, the
standard unification strategy in science (Oppenheim and Putnam,
1958). When higher-level theories are reduced to lower-level the-
ories, macroscopic phenomena come to be explained as emergent
properties of microscopic phenomena. An example of a successful
reduction is Pauling’s explanation of the chemical bond in terms of
quantum mechanics, a physical theory. Within cognitive science,
this strategy has been advocated most forcefully by “eliminative”

reductionists (Churchland, 1981). They argue that higher-level
theories are “folk psychological” – approximate at best and incor-
rect at worst – and should be reduced away to lower-level theories
of neural information processing.

There are two reasons why higher levels cannot be entirely
reduced to lower levels. The first is that reduction is underde-
termined. The subjective meanings of different levels are quasi-
independent, and in particular the same processing style can
be realized by different sets of cognitive primitives that make
distinct, even incommensurable metaphysical claims. Therefore,
there is no “best” reduction. Returning to a previous example,
both ACT-R and Soar implement the rational processing style,
but they do so using very different cognitive primitives. To select
the next operator to perform, ACT-R uses Bayesian cognitive
primitives that maximize expected utility. By contrast, Soar uses
set-theoretic primitives, asserting preferences to (partially) order
candidate operators and then selecting the most preferred one.
Should the rational processing style be reduced to the Bayesian
cognitive primitives of ACT-R or the set-theoretic primitives of
Soar?

The second reason that reduction fails is because it is lossy. In
his famous paper“More is Different,”Anderson (1972) argued that
condensed matter physics cannot be entirely reduced to particle
physics because “at each level of complexity entirely new proper-
ties appear” (p. 393). Similarly, because the subjective meaning
of a higher architectural level is quasi-independent of the subjec-
tive meaning of a lower level, some of its unique meaning will be
necessarily lost during reduction. Returning to a previous exam-
ple, the STARTING SMALL idiom solves the problem of representing
recursive embeddings for recurrent connectionist architectures.
If this idiom is reduced away – replaced everywhere in the lit-
erature with its defining combination of cognitive primitives –
then its pragmatic value would be lost. Cognitive scientists trying
to comprehend the sentence processing model of Elman (1993)
would not understand the theoretical claim behind decreasing the
proportion of simple structures and increasing the proportion
of complex structures over training. They would incorrectly dis-
miss it as a “hack.” The communicative value of the idiom would
also be lost. For example, consider connectionists discussing the
modeling of problem solving. They would not be able to discuss
the representation of plans, which are recursively embedded struc-
tures, in terms of the STARTING SMALL idiom. Rather, they would be
forced to converse at the lowest level, in the language of cognitive
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primitives, increasing the ambiguity and verbosity of their
communication.

APPROPRIATENESS
Different levels do not just convey different subjective meanings.
They also explain cognition at different scales. This provides cog-
nitive scientists with the flexibility to select the most appropriate
level for understanding their phenomena of interest. Reducing
away higher levels in the name of parsimony or unification would
needlessly sacrifice this flexibility.

That different theories explain at different scales, and that sci-
entists choose the most appropriate level given the phenomena
they seek to understand, is evident in other sciences. For example,
Carnot formulated classical thermodynamics to explain macro-
scopic phenomena such as the operation of heat engines. A half
century later, Maxwell, Boltzmann, and Gibbs reduced its laws to
those of classical mechanics, applied at the molecular level. Their
statistical thermodynamics did not reduce away the older theory;
scientists did not stop speaking of“temperature”and start speaking
only of “mean molecular kinetic energy.” Rather, scientists gained
an additional level of explanation, and the flexibility to choose
the most appropriate one given the scale of the phenomena to be
understood.

Similarly, cognitive scientists select the level most appropri-
ate for understanding the cognitive phenomena at hand. An
important factor in this selection is the temporal scale or fre-
quency of the phenomena (Newell and Simon, 1972; Pylyshyn,
1984). Higher levels are more appropriate for understanding cog-
nitions that unfold over longer time scales, such as problem
solving, whereas lower levels are more appropriate for under-
standing cognitions that unfold over shorter time scales, such
as word recognition. If the level selected is too high, then the
explanation it offers will be too coarse – will be insensitive to
the moment-by-moment time course. If the level selected is too
low, then the converse problem will arise: cognitive scientists
will be forced to make overly detailed claims about moment-by-
moment processing that cannot be evaluated against empirical
data.

IDENTIFIABILITY
We conclude by considering the implications of the analysis offered
here for progress toward “better” cognitive architectures. Many
cognitive scientists are committed to a fallibilist approach to scien-
tific progress, where competing theories are put to empirical tests,
corroborated theories are retained, and falsified theories are dis-
missed (Popper, 1963). And yet historically, it has proven difficult
to select between competing cognitive theories and cognitive archi-
tectures on empirical grounds (Newell, 1973b; Hintzman, 2011).
[There are some exceptions. For example, that humans can learn
linearly inseparable concepts but perceptrons cannot (Minsky and
Papert, 1969) was used to falsify this particular architecture.]

This difficulty is compounded by the problem of identifiabil-
ity. Cognitive architectures are computational formalisms, and
most are Turing-equivalent in their computational power. That is,
they can express computational models that implement the same
functions from perceptual-cognitive inputs to cognitive-motor
outputs. Because of their computational equivalence, we cannot

select between them based on the “competence” of their com-
putational models. It has been argued that although competing
architectures support models that compute the same input–output
functions, these models exhibit different“performance”character-
istics – different temporal profiles, error distributions, and so on. It
might be possible to select the architecture whose models’ perfor-
mance characteristics most closely resemble those of humans, and
in this way make progress (Pylyshyn, 1984; Newell, 1990). How-
ever, this strategy appears to be undercut by “mimicry” theorems
showing that architectures that adopt even diametrically opposed
computational mechanisms (i.e., symbolic vs. spatial representa-
tions, serial vs. parallel control) can express models that exhibit
identical performance characteristics (Townsend, 1974; Anderson,
1978).

One solution to these problems is to abandon the fallibilism
of Popper (1963) for the methodology of scientific research pro-
grammes proposed by Lakatos (1970). This solution was proposed
by Newell (1990) and has been developed in great detail by Cooper
(2006, 2007).

The analysis offered here points to an alternative understanding
of why progress toward“better”cognitive architectures has been so
slow. Comparisons between competing architectures are typically
conducted in a particular domain, for example, sentence com-
prehension, and at a particular level, typically the lowest. Such
comparisons are often compromised by the failure to consider
appropriateness. If the chosen level is appropriate for modeling
the chosen domain in one architecture but not another, then that
architecture will be judged as “better.” However, if a different
level had been chosen, then the choice might have been reversed.
More generally, the fallibilist approach cannot ensure progress
toward “better” cognitive architectures if appropriateness is
ignored.

For example, consider the long-running debate between propo-
nents of symbolic vs. connectionist architectures. Are productions
superior to weighted links and activation functions for modeling
sentence comprehension, as proponents of symbolic architectures
argue? Notice that the phrasing of this comparison is at the low-
est level (productions, weighted links, activation functions). This
is the appropriate level for addressing the information processing
requirements of sentence comprehension – recursive embeddings,
variable bindings – in symbolic architectures. However, it is
inappropriate for addressing these requirements in connectionist
architectures. As we saw above, it is at the middle level that con-
nectionist architectures provide idioms for recursive embeddings
(e.g., STARTING SMALL) and variable bindings (e.g., CONJUNCTIVE

CODING). And thus it is not surprising that such comparisons have
generally been indeterminate. When the ability of connection-
ist architectures to support models of sentence comprehension is
evaluated at the appropriate level, then the result can be much
more informative (Steedman, 1999).

More generally, when cognitive scientists use cognitive archi-
tectures to understand cognitive phenomena, they select the level
most appropriate for the phenomena to be explained. This level
is different for different architectures and for different domains.
Marr’s analysis was seminal in revealing this complexity, and
continues to be an important component of the meta-theory of
cognitive science.
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The nature of the relationship between box-and-arrow (BA) explanations and neuroscientific
mechanism descriptions (NMDs) is a key foundational issue for cognitive science. In this
article we attempt to identify the nature of the constraints imposed by BA explanations
on the formulation of NMDs. On the basis of a case study about motor control, we
argue that BA explanations and NMDs both identify regularities that hold in the system,
and that these regularities place constraints on the formulation of NMDs from BA
analyses, and vice versa. The regularities identified in the two kinds of explanation play
a crucial role in reasoning about the relationship between them, and in justifying the
use of neuroscientific experimental techniques for the empirical testing of BA analyses
of behavior. In addition, we make claims concerning the similarities and differences
between BA analyses and NMDs. First, we argue that both types of explanation
describe mechanisms. Second, we propose that they differ in terms of the theoretical
vocabulary used to denote the entities and properties involved in the mechanism and
engaging in regular, mutual interactions. On the contrary, the notion of abstractness,
defined as omission of detail, does not help to distinguish BA analyses from NMDs:
there is a sense in which BA analyses are more detailed than NMDs. In relation to
this, we also focus on the nature of the extra detail included in NMDs and missing
from BA analyses, arguing that such detail does not always concern how the system
works. Finally, we propose reasons for doubting that BA analyses, unlike NMDs, may
be considered “mechanism sketches.” We have developed these views by critically
analyzing recent claims in the philosophical literature regarding the foundations of cognitive
science.

Keywords: functional models, neuroscientific explanation, mechanisms, levels of analysis in neuroscience,

regularities in neuroscience

INTRODUCTION
Explanations in the behavioral sciences take on a wide variety of
styles. Quite often, especially at the early stages of their discov-
ery, behavioral mechanisms are described without reference to
brain areas or neural activity. The system is broken down into
a number of interconnected components, each assumed to play
an active part in the generation of the behavior to be explained.
But no mention is made of what brain area, if any, corresponds
to each component. For example, studies on motor control often
postulate the existence of a “feedback controller” component in
the system that produces motor commands on the basis of trajec-
tory errors, without specifying which part of the target nervous
system is presumed to perform this activity. When system com-
ponents are only characterized on the basis of the activity they
perform in the generation of the behavior to be explained, this is
often referred to as a “box-and-arrow” (BA from now on) analysis
of the system. An example of a BA analysis of motor control is
shown in Figure 1. However, other behavioral mechanisms are
described in terms of anatomically identified brain areas and the
associated neural activities. For example, visually guided motor
control in humans is thought to involve areas such as the visual
cortex, the brain stem, the cerebellum and others. Similarly to

BA explanations1, such neuroscientific mechanism descriptions
(from now on NMDs) are often represented in box-and-arrow
format in scientific papers (see Figure 3 for an example); in con-
trast with what we have termed BA analyses, however, each box
stands for a particular brain area or portion of the nervous sys-
tem. Some brain areas may be linked to an activity performed
within the framework of the behavior to be explained (e.g., in
navigation when the hippocampus is said to hold a representation
of space), but this is not always the case: a part of the nervous
system may feature in an NMD even when the precise activity
it carries out within the framework of the target behavior is not
made explicit.

The theoretical vocabulary used in these two kinds of mod-
els is different, at least prima facie2. NMDs identify components
and their organization using the language of neuroscience, which
includes terms denoting brain areas, and expressions such as
“neural activity,” “inhibitory connection,” “firing rate” and so

1The expressions “BA analysis” and “BA explanation” will be used interchangeably
in this article.
2The intended meaning of the expression “theoretical vocabulary” will be clari-
fied in Section “The Relationship Between Functional Models and Neuroscientific
Mechanism Descriptions.”
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FIGURE 1 | A box-and-arrow model of motor control (adapted from Wolpert et al., 1998).

on. In contrast BA explanations identify components and their
organization in terms of a representational or information-
processing language. For example, “feedback controllers” are
said to produce internal representations of motor commands
on the basis of a representation of trajectory error produced by
other components. Yet most neuroscientists and philosophers
of neuroscience assume that BA analyses and NMDs may be
related to, and place constraints on, each other in some cases.
Often, explanation of a behavior starts from the formulation
of a BA analysis of the target system. Later, this BA analysis
is taken as a basis on which to formulate an NMD by seek-
ing out neural components that perform the activities specified
in the BA analysis. In other cases, one starts with a NMD
featuring interconnected brain areas, going on to identify the
specific activities carried out by each: the NMD, in these cases,
is taken as a basis on which to formulate a BA model of the
system.

Now, it is one thing to assume that some kind of relationship
holds between the two types of explanation, but quite another to
clarify the nature of this relationship. What kind of constraints
do BA analyses place on the formulation of NMDs, and vice
versa? This is a question of great importance for neuroscientific
research. Understanding the nature of these constraints would
provide criteria for deriving NMDs from BA analyses in a prin-
cipled way, and for testing the latter according to the empirical
methods of the neurosciences. It would also contribute signifi-
cantly to unifying branches of behavioral science, such as cognitive
psychology (which typically adopts forms of BA analysis) and basic
neuroscience, whose theoretical vocabulary may appear prima
facie unrelated to each other. The aim of the present article is
to take some further steps towards the formulation of such cri-
teria on the basis of a close analysis of a case study on motor
control in humans, and by critical examination of views recently
expressed in the philosophical literature on the foundations of the
cognitive sciences (Piccinini and Craver, 2011; Levy and Bechtel,
2013).

In the selected case study, a BA analysis of motor control
was formulated, whose functional structure was claimed to cor-
respond to the structure of a particular mechanism description
couched in the vocabulary of neuroscience (Wolpert et al., 1998).

The BA explanation and the NMD are described in Sections “On
the Structure of Box-and-Arrow Models in Neuroscience” and
“On the Structure Of Neuroscientific Mechanism Descriptions,”
respectively. In Section “The Relationship Between Functional
Models and Neuroscientific Mechanism Descriptions” we argue
that, in both cases, a number of regularities were claimed to
hold in the system, although different theoretical vocabulary
was used to denote the entities and properties involved in these
regularities. We further argue that these regularities played a
crucial role in justifying the correspondence between the two
explanations. Indeed, the formulation of an NMD proceeded
by searching for neural groups whose activities conformed to
the relationships expressed in the BA analysis. Thus, the cor-
respondence between the two explanations seemed to consist,
in the authors’ view, of a correspondence between the regulari-
ties expressed in each, while the BA analysis placed constraints
on neuroscientific research given that it postulated a number
of regularities to be sought out in the neural activity of the
system.

In Section “The Relationship Between Functional Models and
Neuroscientific Mechanism Descriptions,” we also take the selected
case study to support a number of claims about the structural
similarities and differences between BA analyses and NMDs. As
far as the similarities are concerned we argue, consistently with
what has been claimed, amongst others, by Piccinini and Craver
(2011) that both explanations describe mechanisms, given that
they refer to system components that interact with each other in
a regular fashion3. In relation to the structural differences, we
examine the claim that BA analyses are less detailed (Piccinini
and Craver, 2011) or more abstract (Levy and Bechtel, 2013) than
NMDs. We suggest that BA analyses may provide details that are
missing from NMDs, namely, details on the representational roles
played by certain neural groups, and that for this reason they may
be said to be richer, or more detailed than NMDs. For the same
reasons we also propose that the notion of abstractness, defined
as “omission of detail” (Levy and Bechtel, 2013), does not help to
define the difference between BA explanations and NMDs. Rather,

3For the purposes of the present paper, we provisionally accept the analysis of
neuroscientific mechanisms provided by Craver (2007).
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the two kinds of explanation differ in relation to the theoretical
vocabulary they use to denote system components. By changing
theoretical vocabulary, and re-defining BA components in neuro-
scientific terms, one does not add crucial details about how the
mechanism works: one simply describes the same boxes with dif-
ferent vocabulary. A way to add details on how the system works
is, rather, to iterate mechanistic analysis on the components of
a previously formulated system. This process, often referred to
as decomposition in the epistemological literature on the cognitive
sciences (Bechtel and Richardson, 1993), is to be viewed as distinct
from the process of changing the theoretical vocabulary used to
describe a mechanism.

We then examine more closely the claim, made by Piccinini
and Craver (2011), that BA analyses are elliptical or incomplete
versions of neuroscientific mechanism descriptions – mechanism
sketches, in these authors’ terminology – insofar as they leave out
crucial details on how the system works. We comment on this view
by arguing that the details provided by NMDs and lacking in BA
explanations need not concern how the system works. And we also
suggest more general reasons for doubting that BA analyses may
be considered elliptical versions of NMDs.

Let us begin this discussion by outlining the structure of the BA
analysis of motor control proposed by Wolpert et al. (1998).

ON THE STRUCTURE OF BOX-AND-ARROW MODELS IN
NEUROSCIENCE
The scientific question addressed by Wolpert et al. (1998) is to
understand how human beings control their movements along
a desired trajectory – for example, how they successfully move
a hand towards a specific object, or move an eye to track a
portion of the visual environment. The idea proposed by the
authors, and expressed in the BA analysis shown in Figure 1, is as
follows.

A representation of the desired trajectory is available to the
system. Then two components, the “feedback controller” and
the “inverse model,” produce two motor commands – termed
feedback and feedforward motor commands, respectively – that
are combined before being sent, as a final motor command, to
the “controlled object” (e.g., arm muscles) for execution. Both
components produce motor commands, yet they there is a key
difference between them. The “feedback controller” produces a
motor command on the basis of “trajectory error,” i.e., on the
basis of the difference between (1) the representation of the
desired trajectory, and (2) the representation of the “actual tra-
jectory” followed by the controlled object. This is the classical
cybernetic negative-feedback principle (Rosenblueth et al., 1943),
which is applied in many self-regulation devices (e.g., in ther-
mostats). A major issue with such feedback-based control loops
is the time required to receive feedback information on the actual
trajectory. Sensory pathways are very delayed in humans, and a
control mechanism based purely on feedback would make the
system move too slowly or make too many errors. This was the
main reason leading the authors to postulate a sort of short-
cut, represented by the “inverse model” module. The function
of this module is to generate motor commands on the basis
of a representation of the desired trajectory only, with no sen-
sory information available (intuitively, we use an inverse model

when moving in our house in the dark). Feedforward motor com-
mands are generated much more rapidly than the feedback ones,
because they do not need to wait for the arrival and processing
of sensory information. When a feedback command is available,
it is combined with the feedforward command as earlier stated;
otherwise, the system executes the feedforward command only,
enabling itself to follow the desired trajectory within a reasonable
time-frame.

Clearly, the “inverse model” must be trained before being
able to generate the appropriate motor commands. The train-
ing signal consists of the representation of motor command error,
generated on the basis of trajectory error (we correct our inter-
nal model of the house whenever we bump into a wall or piece
of furniture that we erroneously believed to be farther away
from us).

As mentioned in the Introduction, the authors of this study
also formulated a neuroscientific mechanism description, dis-
cussed in detail in the next section, which was deliberately made
to correspond with the structure described so far. As a basis for
understanding the relationship between the two types of anal-
ysis, it is worth discussing some aspects of the BA explanation
as described here. This explanation implies that there is some-
thing in the system which can represent desired trajectories. The
system can also represent feedback and feedforward motor com-
mands. Indeed, as explained before, the final motor command is
a combination of feedback and feedforward motor commands:
a plausible interpretation of this claim would be that the system
has internal representations of the two commands, which are then
combined into a third representation (the final motor command)
driving the effector organs. In addition, the BA analysis refers
to a number of functional components, including the “inverse
model” and the “feedback controller,” presumed to be involved
in motor control. These components are parts of the target sys-
tem that are assumed to fulfill distinct functions within motor
control.

This raises the question of what differentiates each component
from the others. What is an “inverse model?” The authors of the
study suggested that an inverse model is a component that trans-
forms the desired movement trajectory of the controlled object
into the motor commands required to attain this movement goal.
That is to say that, by claiming that the system has an “inverse
model,” the authors claimed that there is something in the system
that establishes a regular relationship between desired trajectories
and feedforward motor commands. This regular relationship was
not precisely defined in their theory, apart from the claim that
each desired trajectory is mapped onto the motor command that
would make the system follow that trajectory4. Similarly, in sug-
gesting that the system has a “feedback controller,” the authors
claimed that there is something in the system that establishes
a regularity between trajectory errors (which, in turn, depend
on the difference between desired and actual trajectories) and
feedback motor commands: feedback controllers produce motor

4More precisely, the regularity associated with the “inverse model” module in the
BA diagram links three representations to one other, as shown in Figure 1: the
feedforward motor command depends on the desired trajectory and on the motor
command error, which intermittently trains the motor apparatus’ internal model.

www.frontiersin.org May 2014 | Volume 5 | Article 464 | 38

http://www.frontiersin.org/
http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/archive


Datteri and Laudisa Abstractness in neuroscientific explanation

commands that have the effect of reducing trajectory error5. These
definitions are rather vague, but they nevertheless impose restric-
tions on the set of possible regularities associated with the “inverse
model” and “feedback controller” components. The other func-
tional components are associated with other regularities. To sum
up, this BA model suggests that the system possesses a num-
ber of internal representations among which certain regularities
hold.

Note that the BA analysis makes no claim about how each com-
ponent establishes the corresponding regularity. As often noted
in the philosophy of cognitive science, box-and-arrow analysis
may be iterated to obtain finer-grained, more detailed BA anal-
yses of the same behavior. See for example Figure 2, in which a
purely notional BA subanalysis of the “feedback controller” com-
ponent (not included in Wolpert et al., 1998) is shown. Three
components are added, each of which establishes a regularity
among additional intermediate representations. The relationship
between the BA analysis described above, which we may call M for
short, and the richer analysis M′, in which one or more functional
components of M are further analyzed and broken down into a
box-and-arrow structure, is often defined through appeal to the
notion of decomposition (Rosenblueth and Wiener, 1945; Cum-
mins, 1985; Bechtel and Richardson, 1993). Clearly, M′ may be
further decomposed via an even finer-grained analysis; this pro-
cess leads to the formulation of a decomposition hierarchy of BA
explanations.

It is worth stressing here two aspects of BA decomposition
that we come back to in the ensuing discussion. First, by decom-
posing a BA analysis, one obtains a richer BA analysis of the
same system, in which further details are added on how the
system is thought to work. For example, M is silent on a par-
ticular aspect of the functioning of the system, namely on how
the “feedback controller” works, simply stating that the “feedback
controller” component establishes a regular relationship between

5The “trajectory error” and the “feedback motor command” representations may
well be regarded as the input and the output of the“feedback controller”component,
respectively. However, the use of these terms, although consistent with the present
analysis, would require an additional account of what makes something an“input”or
an “output” of a BA component – an account which may enable one to understand,
e.g., why the “trajectory error” is more properly regarded as an input rather than
as an output of the “feedback controller” component. Such an account is not really
required for the purposes of the present article. For this reason we provisionally
avoid the use of the terms “input” and “output” and only claim that, according to
the BA analysis, the “feedback controller” is a component that establishes a regular
relationship between the two representations.

FIGURE 2 | A model of the “feedback controller” component of the BA

model.

two representations. M′ adds details on how this component
works, thus adding information on the functioning of the tar-
get system. Second, decomposition does not imply a change in
the theoretical vocabulary used to describe the organization of
the system – for example, specifically with regard to living sys-
tems, it does not imply a shift to the vocabulary of neuroscience –
or vice versa. This is particularly evident in BA explanations for-
mulated in computer science, in which components establishing
regularities between system representations (typically expressed
as functions in a given programming language) are analyzed
into additional components (sub-functions) that establish regu-
larities connecting additional system representations. Similarly,
BA components in the study of cognition are often analyzed
(decomposed) by postulating cascades of transformations among
intermediate representations. Such a decomposition process does
not lead to a change in vocabulary: it simply leads to another,
richer, BA explanation. The process of decomposing a BA expla-
nation must be kept conceptually distinct from the process of
shifting to another theoretical vocabulary. Later in the paper,
we focus on this distinction, arguing that the “translation” of
a BA explanation into a neuroscientific MD does not necessar-
ily lead to the addition of crucial details on the working of the
system.

Furthermore, this distinction enables us to separate two
methodological issues, both related to the more general prob-
lem of understanding the relationships between functional and
mechanistic models in neuroscience. One of these issues is how
to characterize the decomposition relationship, that is to say,
the relationship holding between an explanation M and another
explanation M′ obtained by decomposing from M and expressed
using the same theoretical vocabulary. In other words, the issue
of identifying the criteria used by scientists to transform pre-
vious explanations of a system into richer ones adding crucial
details on the working of the system. A different issue is that
of characterizing the relationship holding between two explana-
tions of the same behavior formulated using different theoretical
vocabularies. The case study analyzed here, as discussed in the
next section, provides insights that help to address both ques-
tions, although this article is more strongly focused on the second
issue.

ON THE STRUCTURE OF NEUROSCIENTIFIC MECHANISM
DESCRIPTIONS
Figure 3 shows a diagram formulated to explain how we6 con-
trol our eye movements to track moving portions of a visual
scene (the so-called ocular following response or OFR). This
motor control function cannot be fulfilled by feedback con-
trol only, given that visual feedback in humans is too delayed
to enable efficient control of eye movements. The combina-
tion of feedback and inverse control, according to the prin-
ciple described in the previous section, is a more promising
approach to explaining this ability. A neuroscientific explanation

6This study actually examined monkey OFR, and the neuroscientific mechanism
description discussed below refers to areas of the monkey brain. However, the
authors suggested that this mechanism description could also shed light on the OFR
mechanism in humans. Discussion of the reasons for such a generalization is beyond
the scope of the present article.
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FIGURE 3 | A neuroscientific mechanism description for ocular-following

reflex behavior, adapted from (Wolpert et al., 1998). AOS: accessory optic
system; PT: pretectum; NOT: nucleus of optic tract; EOMN: extra-ocular

motor neurons; LGN: lateral geniculate nucleus; STS: superior temporal
sulcus; MT: middle temporal area; MST: medial superior temporal area; DLPN:
dorsolateral pontine nucleus; VPFL: ventral paraflocculus.

of OFR was formulated by Wolpert et al. (1998) so as to
correspond to the BA diagram represented in Figure 1. In
particular, the authors claimed that the “inverse model” com-
ponent corresponded to the component labeled as the ventral
paraflocculus of the cerebellar cortex (VPFL) and to a num-
ber of additional components, as discussed below. The “feed-
back controller” corresponded to a set of components including
the retina, the lateral geniculate nucleus (LGN), and por-
tions of the visual cortex. Other components mentioned in
their mechanistic analysis, as later discussed, cannot be eas-
ily mapped onto the BA explanation outlined in the previous
section.

A question of primary importance is how the authors justi-
fied the claim that the two explanations corresponded to each
other, albeit partially. Let us address this question by focusing
on the “inverse model” component. The authors claimed that
“the VPFL is the major site of the inverse dynamics model of
the eye for OFR” (p. 341). This amounted to claiming that the
VPFL is responsible for the fact that the activity of a neural
group, which we call B for the moment, depends on the activ-
ity of another neural group A in the following regular fashion:
the activity of B drives eye movements along the trajectory rep-
resented in A. In other words, by claiming that the VPFL served
as an inverse model for the eye, Wolpert et al. (1998) were sug-
gesting that the VPFL was responsible for a regular connection
of the “inverse model” type between the activity of two neural
groups. Should no neural activity in the brain be dependent in
this way on a neural representation of desired trajectories, no
inverse model would be claimed to be in the brain. The authors
justified the claim that “the VPFL is the major site of the inverse
dynamics model of the eye for OFR” by providing neuroscien-
tific evidence for such a regularity. Note that an engineer would

argue in the same way that an electromechanical electrical circuit
included an inverse model, that is to say, by showing that the elec-
trical activity at some point of a circuit depended on the electrical
activity at another point of the circuit in accordance with “inverse
model” regularity. In both cases, the fact that the BA analysis spec-
ifies regularities holding between parts of the system is crucial
to understanding the nature of the relationship between BA and
neuroscientific (or electromechanical) explanations of the same
behavior.

The authors presented some interesting, albeit far from deci-
sive, empirical support for their claim. First of all, the activity of
certain VPFL cells – the Purkinje cells, often considered the out-
put of the cerebellum – has been found to be regularly connected
with eye movements. In particular, it is known that the activity of
the Purkinje cells displays two types of spike, namely simple and
complex spikes (SS and CS from now on; see Kandel et al., 2000).
The SS are single action potentials. They occur at a relatively high
frequency and have been found to correlate with certain aspects
of eye movement. According to Wolpert et al. (1998), they may
drive eye movements without waiting for the low-frequency arrival
of sensory information, thus serving as feedfoward motor com-
mands. Motor correlation has not been found in other neurons
projecting from vision-related areas to the cerebellum, namely in
the neurons of the dorsolateral pontine nucleus (DLPN) and the
medial superior temporal (MST) area. In the authors’ view, given
the absence of motor correlation and the connections with visual
areas, these cells may “provide the desired trajectory information”
to the cerebellum. Let us turn now to cerebellar CS. These are
large-amplitude spikes followed by bursts of smaller action poten-
tials. In addition they occur at a very low frequency (about 1–3
per second) and, similarly to the SS, display high correlation with
eye movements. The authors suggested that the occurrence of a
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CS may signal the moment in which a motor command derived
from feedback analysis (thus highly delayed, consistently with the
low frequency of CS) interferes with the activity of the Purkinje
cells and trains the inverse model. This relationship is shown in
the BA diagram by the arrow connecting feedback motor com-
mands with the inverse model. These empirical findings were
taken by the authors as a basis for conjecturing that “the VPFL
is the major site of the inverse dynamics model of the eye for OFR”
(p. 341).

At the time of publication of Wolpert et al. (1998), the formu-
lation of an NMD for OFR behavior was still at the early stages
of development. However, on the basis of Wolpert et al.’s (1998)
report, it is reasonable to believe that they were trying to iden-
tify a “neuroscientific version” of the regularities postulated by the
BA analysis in the neural activity of the system. These regularities
played a crucial role in justifying the correspondence between the
BA analysis and the NMD: the VPFL, for example, was conjectured
to be the neural site of the “inverse model” component as it sup-
posedly establishes a regularity of the inverse-model type among
entities and properties denoted with neuroscientific vocabulary,
that is to say, between the neural activity of two neural groups.
The justification was sought in the fact that the same regulari-
ties, expressed in different theoretical vocabularies, are found in
the system. If no reference were made to the regularities postu-
lated by the BA explanation – or if these regularities were specified
in a qualitative and imprecise way, or BA components were only
described in terms of textual expressions such as “feedforward
controller” – it would not be clear how to relate the BA expla-
nation to a neuroscientific mechanism description of the same
system.

Note that, according to the regulative principle proposed here,
a neuroscientific mechanism description may be formulated from
a BA analysis by mapping each functional regularity onto a neural
regularity, without adding components. This is the case of neu-
roscientific mechanism descriptions which reproduce the boxes
and arrows of a BA analysis of the same system, while adding
an indication of the neural structure subserving each functional
role. In many cases, however, the shift from a BA explanation to
a neuroscientific one is accompanied by a proliferation of neural
structures.

This is also the case of the mechanism description analyzed
here. Some neural structures internal to the VPFL are repre-
sented in the diagram. And various areas, such as the inferior
olive and the previously mentioned AOS, PT, and NOT, are not
easily mapped onto the BA explanation. Such a proliferation can
result from a decomposition process, analogous to the process
described in the previous section. We have pointed out that BA
components may be analyzed into other BA sub-components,
organized so as to produce the corresponding regularity (see
Figure 2). By decomposing explanation M one obtains a richer
explanation M′, which includes additional regularities internal
to each component expressed in the same theoretical vocabulary.
Similarly, the components of a neuroscientific mechanism may
be analyzed into subcomponents, expressed using the theoreti-
cal vocabulary of neuroscience, and organized so as to produce
the corresponding regularity. For example, when analyzing the
internal VPFL cerebellar circuitry, additional regularities defining

sub-components of the cerebellum may be identified: the richer
neuroscientific mechanism is obtained by decomposition of the
initial model. A case of decomposition in the study described
here concerns the inferior olive, the AOS, the PT and the NOT,
which the authors believed to be crucially involved in transform-
ing the representation of the desired trajectory from sensory to
motor coordinates, thus contributing to the inverse model trans-
formation. Decomposition adds detail on the inner working of
model components – thus, it provides extra detail about how
the system is supposed to work – and for this reason it often
marks an advance in the study of the modeled system7. How-
ever, it is worth stressing that it is one thing to “translate” a
BA analysis into a neuroscientific mechanism description, and
another to decompose the latter in order to obtain a more detailed
model; and that – as often acknowledged in the philosophical
literature – both BA explanations and NMDs may be decom-
posed, although they are expressed using different theoretical
vocabularies.

THE RELATIONSHIP BETWEEN FUNCTIONAL MODELS AND
NEUROSCIENTIFIC MECHANISM DESCRIPTIONS
Let us sum up the claims made so far. In the case study ana-
lyzed here, a BA explanation and a NMD were introduced,
each outlining a number of components supposedly involved in
motor control, and describing their regular interactions. Notably,
the neuroscientific mechanism description was claimed to “cor-
respond” to the BA explanation. How did the authors justify
this claim? As suggested in the previous sections, a key role
in providing such a justification was played by the regulari-
ties expressed by the two explanations8: the authors seemed to
follow the regulative principle according to which a BA anal-
ysis and a neuroscientific mechanism description “correspond”
to each other to the extent that they display the same regu-
larities, even though they are expressed in terms of different
theoretical vocabularies. Indeed, the authors’ search for the neu-
ral structures corresponding to each BA component consisted of

7As discussed in Footnote 14, this is not to say that decomposition leads always
to better explanations. We wish to remain entirely neutral in relation to what
level of explanation, or which theoretical vocabulary, is more suited to the pur-
pose of explaining adaptive behavior or answering specific why-questions about it.
Our point solely concerns the structural relationship between BA explanations and
NMDs.
8Whether it is possible to have a theory of what we mean by a “regularity” in the
field of neurosciences is, to a large extent, an open question. Woodward’s notion of
“invariance under interventions” (Woodward, 2003, 2010) is a useful starting point
to address this issue. Many authors – including Craver (2007) – have claimed that
neuroscientific generalizations are fragile and exception-ridden, given that they are
subject to a formidable number of boundary conditions. This claim may be taken
to pose a serious problem for present analysis: if no robust (as opposed to fragile)
generalization may be found in the neural structure of the system, how can the
correspondence between the BA explanation and the NMD be justified according
to the regulative principle proposed here? This is a legitimate question, needing
to be addressed by further analysis; nevertheless, we believe that the regulative
principle put forward here is reasonable. Indeed, in our opinion, it is a matter of
fact that Wolpert et al. (1998) identified regularities in the neural system. These
regularities were claimed to be robust enough to be found in different individuals
and at different times. Clarifying how neuroscientific generalizations may be taken
as sufficiently robust to license prediction and explanation, despite being subject to
a multitude of boundary conditions, is in our opinion an important aim for the
epistemological analysis of neuroscience; see the discussion in Datteri and Laudisa
(2012).
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a search for the regularities characterizing the component, as
outlined in the BA analysis, in anatomically connected regions
of the brain. What makes something an “inverse model” is the
fact that it establishes a particular regularity internal to the sys-
tem, and what makes something a neural structure serving as
an “inverse model” is the fact that it establishes a regularity of
the inverse-model type among the activity of different neural
groups9.

This provides a tentative answer to the key issue addressed in
this article: what kind of constraints do BA analyses place on the
formulation of NMDs, and vice versa? The BA analysis imposes
constraints on the formulation of the NMD by postulating a num-
ber of regularities to be sought for in the neural activities of the
system. Vice versa, the NMD constrains the space of the possible
BA analyses of the system by postulating a number of neural reg-
ularities. Suppose that the study of a particular aspect of motor
control in animals starts from the formulation of an NMD – pos-
sibly via the detection of correlations among the firing of different
neural groups. Suppose, in addition, that one of these correla-
tions takes a “feedback controller” form – e.g., the firing of neural
group B drives muscles so as to reduce firing of neural group A.
In that situation it would be reasonable to suppose that the sys-
tem has a representation of the motor error (the firing of group
A) and is able to produce an appropriate motor command to
reduce motor error – in simpler terms, that it has a feedback
controller. Should the regularity be different (for example, should
the firing of A increase over time instead of tending to 0), one
would not suppose that the system had a negative feedback con-
troller (it might be thought to have a positive feedback controller
instead).

The selected case study also provides a useful basis for assess-
ing the structural similarities and differences between BA analyses
and NMDs. As far as the similarities are concerned, both explana-
tions specify a set of regularities supposedly holding in the system,
though expressed using different theoretical vocabularies. And for
this reason, consistently with Piccinini and Craver (2011), they
both describe mechanisms. Indeed, if we are willing to consider
the structure represented in Figure 3 as a mechanism descrip-
tion, why not view BA analyses in the same way? Both types of
explanation list a number of components suggested to be respon-
sible for the behavior to be explained, and – more crucially –
both specify the regular interactions holding among system com-
ponents via a number of generalizations. The main difference
between the two lies in the theoretical vocabulary used, but it is not
clear why the choice of a particular theoretical vocabulary should
determine whether or not to define something as a “mechanism
description.”

As already stated, one of the major differences between the
two mechanisms concerns the theoretical vocabulary used. The
expression “theoretical vocabulary” is used here to denote a set

9Anatomical considerations guide the authors in selecting the regularities which
may play a part in the explanation. Indeed, only the regularities holding among
anatomically connected parts of the system are typically included in the description
of an explanatory mechanism. This is consistent with the view proposed here: to
claim that neuroscientific mechanism descriptions formulate regularities holding
in the system does not mean to claim that any regularity may be included in a
description of a mechanism.

of terms used in a particular discipline, or in a particular area
of research, to express scientific theories. Statements regarding
the neural activity of particular areas of the nervous system,
and the anatomical connections among brain areas, are couched
in the theoretical vocabulary of the neurosciences (which includes
terms such as “neuron,” “neural activity,” “cerebellum,” “brain,”
and so on). These terms are not used in what we refer to here
as BA explanations10. As often pointed out in the philosophi-
cal literature on cognitive science, the theoretical vocabulary of
BA explanations distinctively includes the term “representation.”
Indeed, many BA explanations – including the explanation con-
sidered here – assume that the target system has a number of
representations. And the various functional components, as in
the case discussed here, are typically defined by appeal to these
representations. Saying that the system has a “feedback controller”
component is to make a rather amorphous claim, unless that com-
ponent is defined more precisely as a component establishing a
regular relationship between different representations held by the
system. The notion of representation plays a key role in defining
the components of a BA analysis and, therefore, in defining a BA
explanation.

Do BA analyses and NMDs (also) differ in that the former
are less detailed or more abstract than the latter? Such a position
has been taken, amongst others, by Piccinini and Craver (2011),
who propose that “functional and mechanistic explanations are
not distinct and autonomous from one another precisely because
functional analysis, properly constrained, is a kind of mecha-
nistic explanation – an elliptical mechanistic explanation” (284).
These authors call such elliptical mechanistic explanations mech-
anism sketches; therefore, in their view, functional explanations
are mechanism sketches. BA analysis is a type of functional analy-
sis, they propose, because it identifies components on the basis of
the functional role they play in the framework of the behavior to
be explained11. Piccinini and Craver’s (2011) identification of BA

10According to the definition proposed in Section “Introduction,” BA explanations
do not specify which parts of the target nervous system are presumed to perform
the activities mentioned there. For this reason NMDs are not included in the class
of BA explanations, even though (as noted before) NMDs are often represented in
a box-and-arrow format in scientific papers. BA and NMDs, as defined here, differ
in relation to the theoretical vocabulary used to denote system components. This
is not to say that the use of representational terms is incompatible with the use of
neuroscientific terms in the same explanation. Indeed, in the course of scientific
discovery, researchers often formulate “mixed” explanations using both represen-
tational and neuroscientific terms. An example can be found in our case study
(Wolpert et al., 1998). After describing the BA explanation, the authors propose an
analysis of motor control (Figure 1B at p. 339) which provides information on the
neural localization of the “inverse model” component only. This analysis, presented
by the authors as an intermediate stage in the formulation of an NMD from the
initial BA explanation, uses representational and neuroscientific terms. Nothing, in
the view proposed here, rules out the possibility of formulating mixed models of
that kind. Rather, the analysis proposed here – focused on the relationship holding
between non-mixed BA explanations and NMDs – may also contribute to under-
standing how mixed analyses are formulated from explanations of the former or the
latter kind. Indeed, there are reasons to believe that the mixed analysis in (Wolpert
et al., 1998) is obtained from the BA explanation by applying the criteria discussed
here to one component only, i.e., by searching for an “inverse-model” type regularity
in the neural structure of the target system, and provisionally ignoring the other BA
components.
11We consider Piccinini and Craver’s (2011) views to be relevant to the main points
made here, given that we believe that they would classify the analysis represented
in Figure 1 as a functional analysis. Indeed, each of its components is labeled
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analyses with mechanism sketches is consistent with their broader
view that BA analyses impose constraints on the formulation
of neuroscientific mechanism descriptions. We agree with this
hypothesis, but not with the hypothesis that BA analyses are ellip-
tical or incomplete mechanism descriptions, for the following
reasons.

As already discussed, both functional and neuroscientific mech-
anism descriptions specify a number of regularities occurring
in the system. They differ in terms of the vocabulary used to
denote the entities and properties involved in these regularities.
Does a change in theoretical vocabulary entail a gain in com-
pleteness? One might answer in the affirmative, in light of the
fact that the BA analysis does not convey information regard-
ing the brain areas and neural groups underlying the various
representations held by the system. The BA explanation, for
example, does not specify what neural groups fulfill the role
of representing desired trajectories or feedforward motor com-
mands. This may lead one to believe that the BA explanation
is less detailed than the NMD. However, it is also true that BA
explanations convey information which are absent in NMDs.
Indeed, in principle, NMDs need not provide information on the
representational functions of the neural groups involved in the
mechanism. They may simply identify neural components and
define their regular interaction, without claiming, for example,
that the firing activity of neural group A is responsible for, encodes,
or serves as, a representation of something. Functional infor-
mation about the system’s representational abilities is explicitly
provided by BA explanations but may be missing from NMDs12.
Therefore, BA explanations may convey details that are lacking
in NMDs. For these reasons, one may legitimately view NMDs
as “more detailed” than BA explanations only by appropriately
restricting the term “detail” to refer to “neural detail.” But the
awarding of such an epistemic privilege to neural details requires
justification.

These considerations may also be applied to Levy and Bech-
tel’s (2013) views on abstractness, defined as “omission of detail.”
BA explanations omit details provided by NMDs, and vice versa.
For this reason, they cannot be ordered on a scale of abstract-
ness without being explicit about the nature of the details at stake
(BA explanations are more abstract than NMDs as far as neu-
ral details are concerned, and NMDs are more abstract than BA
explanations as far as representational details are concerned)13.

using an expression that denotes a functional role, i.e., “feedback controller” and
“inverse model.” And the notion of representation, used to characterize the various
components, is functional by definition.
12This is not to say that NMDs are not functional. Indeed many authors, including
Piccinini and Craver (2011), have convincingly shown that NMDs are functional
according to various interpretations of the term. Not least because they identify neu-
ral components that are assumed to play a crucial functional role in the framework
of the behavior to be explained. But NMDs do not always convey the particular
kind of functional information provided by BA explanations. Specifically, they may
include reference to brain areas thought to play a crucial functional role in the
mechanism (e.g., the cerebellar cortex) without defining their functional role (e.g.,
inverse control) or refer to the activity of a particular neural group without provid-
ing information on what this activity is thought to represent. As a matter of fact,
neuroscientists often add this kind of functional detail to purely anatomical NMDs
for a range of explanatory or experimental purposes.
13Levy and Bechtel’s (2013) study concerns the relationship between NMDs and
models that “abstract from the structural specifics of a mechanism and represent

We claim that a better way to define the difference between the
two kinds of explanation is to say that they each convey different
information (with each abstracting with respect to details of a par-
ticular kind) about the target system, by using different theoretical
vocabularies.

Let us further elaborate on the nature of the details omit-
ted from BA explanations and provided by NMDs, by recall-
ing that Piccinini and Craver (2011) describe BA analyses
as mechanism sketches, which they discuss in the following
terms.

Descriptions of mechanisms [...] can be more or less complete. Incom-
plete models – with gaps, question-marks, filler-terms, or hand-waving
boxes and arrows – are mechanism sketches. Mechanism sketches are
incomplete because they leave out crucial details about how the mech-
anism works. Sometimes a sketch provides just the right amount of
explanatory information for a given context (classroom, courtroom,
lab meeting, etc.). Furthermore, sketches are often useful guides to the
future development of a mechanistic explanation. Yet there remains
a sense in which mechanism sketches are incomplete or elliptical (p.
292).

Now, it is one thing to claim that BA explanations are ellipti-
cal with respect to neuroscientific mechanism descriptions given
that they do not provide information on the neural areas sub-
serving the various representational roles, but another to claim
that they are elliptical because they “leave out crucial details about
how the mechanism works.” By changing theoretical vocabulary,
and expressing similar regularities in the language of neuroscience,
one does not add crucial details about how the mechanism works:
one simply describes the same boxes with a different vocabulary.
Answers to questions such as “how does system A work?” take the
form of mechanism descriptions; further detail on how system
A works is added by decomposing the mechanism description,
as illustrated in the previous sections, and not by expressing it
with a different vocabulary14. If one knows that the target sys-
tem has a component X, simply defining that component using a

it in a skeletal, coarse-grained manner.” In these models, “the pattern of causal
relations within a system is highlighted, while structural aspects of components
are suppressed” (241). Such models may be sensibly viewed as more abstract than
NMDs, because they are obtained from NMDs by omitting certain sorts of details.
However, we doubt that many BA explanations in the cognitive sciences, includ-
ing the analysis represented in Figure 1, may be classified as abstract models
of that kind. The reason is that these explanations are obtained from NMDs by
omitting neural details and by adding representational details: they do something
more than representing the pattern of causal relations within the target system.
Indeed, it is possible to formulate an abstract model both of the NMD shown in
Figure 3 and of the BA analysis shown in Figure 1. Suppose, for example, that
a “feedback controller” is defined as a component that generates a motor com-
mand whose intensity, represented by a real number, is inversely proportional
to the intensity of an error, represented by another number, as determined by
coefficient a. Thus the abstract model of this BA component will take the form
y = ax. This abstract model is not the same thing as the BA analysis on which it is
modeled.
14Adding details on how the system works is not the same as providing a better
explanation of the target behavior: the added details could well be irrelevant for
the given explanatory purpose, for reasons not explored here. We wish to main-
tain a neutral position with regard to what decomposition level is the most suitable
for explaining behavior, and with regard to whether only NMDs can explain. Our
sole interest is the relationship between BA analyses and NMDs. For this reason,
we do not comment on the claims made by Levy and Bechtel (2013) and by Pic-
cinini and Craver (2011) in relation to the explanatory power of BA analyses and
NMDs.
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different vocabulary does not enrich the mechanism description
of the system – rather it translates it into another description.
This is not to deny that such a translation may mark impor-
tant progress in the study of the target system, possibly because
it paves the way for the application of additional experimental
techniques. And it is true that sometimes – as in the present case
study – the shift from a functional to a neuroscientific mech-
anism description is accompanied by a decomposition process.
But this need not be always the case. The point to be empha-
sized is that changing theoretical vocabulary in the description
of a system should be clearly distinguished from the process
of decomposing a model of the system. This distinction, as
already pointed out, has the effect of splitting the question of
the relationship between different models of a system into two
questions: the first concerns the relationship between models
expressed using different vocabularies, while the second concerns
the relationship between different levels of the decomposition
hierarchy.

This view has another implication in relation to Piccinini and
Craver’s (2011) claim that BA analyses are mechanism sketches,
that is to say, incomplete or elliptical. Are NMDs mechanism
sketches too? If so, the notion of mechanism sketch would not
help to draw a distinction between BA analyses and NMDs, con-
trary to the main point made by Piccinini and Craver (2011).
It follows that NMDs, for Piccinini and Craver, are not mech-
anism sketches. And the assumption that BA explanations, as
mechanism sketches, are elliptical and incomplete, leads us to
conclude that NMDs are not elliptical nor incomplete, namely,
that they are complete descriptions of a mechanism. It is impor-
tant to be careful and explicit about the sense in which NMDs may
be defined as such, in order to avoid the strong implication that
NMDs say everything – being complete descriptions – that can be
said about a mechanism (e.g., to avoid the implication that the
mechanism description relating to long-term potentiation used
by Craver, 2002 to illustrate the notion of “mechanism descrip-
tion” says everything about the target mechanism). Here we have
claimed that NMDs may omit information about the represen-
tational roles of the neural structures in the target system and,
that, for this reason, they may sensibly be view as incomplete with
respect to BA explanations.

CONCLUSION
The nature of the relationship between box-and-arrow explana-
tions, which do not invoke neural mechanisms, and neuroscientific
mechanism descriptions, is a key foundational issue for cognitive
science. On the one hand, the opportunity to disregard neu-
ral details in the explanation of behavior has in the past been
a source of insight and creativity, yielding hypotheses that led
to a better understanding of numerous behavioral and cogni-
tive phenomena. On the other hand, the strong increase in detail
of analysis, both theoretically and experimentally, on the part of
the neurosciences has led to a corresponding increase in the pro-
duction of models whose cognitive significance, however, is still
far from clear and unequivocal. In the present article we have
attempted to tackle the question from a foundational viewpoint,
by focusing on the nature of the relationship between box-and-
arrow, non-neural explanations of behavior, and neuroscientific

mechanism descriptions. On the basis of a case study concerning
motor control, we first argued that the regularities formulated
in box-and-arrow explanations and neuroscientific mechanism
descriptions play a crucial role in justifying any “correspondence”
between the two. The regularities formulated in BA explana-
tions place constraints on the formulation of NMDs, and vice
versa. Then, we made some general claims regarding the simi-
larities and differences between BA analyses and NMDs. As far
as the similarities are concerned, consistently with other posi-
tions expressed in the literature, we argued that both kinds of
explanations describe mechanisms. As far as the differences are
concerned, we suggested that the two kinds of explanation dif-
fer in terms of the theoretical vocabulary used to denote the
entities and properties involved in the mechanism and engag-
ing in regular, mutual interaction. On the basis of the selected
case study we also argued, first, that the notion of abstract-
ness, defined as omission of detail, does not help to distinguish
BA analyses from NMDs. BA analyses are more abstract than
NMDs with respect to a particular class of detail, but may be
less abstract with respect to another class of detail. Second, we
argued that the details added into NMDs and missing from in
BA explanations need not necessarily concern how the system
works. Third, we have proposed reasons for doubting that BA
analyses, unlike NMDs, may be considered mechanism sketches.
These views are based on a critical examination of claims made
by Piccinini and Craver (2011) and Levy and Bechtel (2013).
Taken together, they may contribute to further clarifying the rela-
tionship between different styles of explanation widely adopted
in behavioral sciences, and, therefore, to unifying branches
of cognitive science that adopt markedly different theoretical
vocabularies.
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Two general claims are made in this work. First, we need several different layers of
“theory,” in particular for understanding human behavior. These layers should concern: the
cognitive (mental) representations and mechanisms; the neural underlying processes; the
evolutionary history and adaptive functions of our cognition and behaviors; the emergent
and complex social structures and dynamics, their relation and feedbacks on individual
minds and behaviors, and the relationship between internal regulating goals and the
external functions/roles of our conduct; the historical and cultural mechanisms shaping our
minds and behaviors; the developmental paths. Second, we do not just need “predictions”
and “laws” but also “explanations”; that is, we need to identify the mechanisms producing
(here-and-now, or diachronically) a given phenomenon. “Laws” are not enough; they
are simply descriptive and predictive; we need the “why” and “how.” Correlations are
not enough (and they are frequently misleading). We need computational models of the
processes postulated in our theories1.

Keywords: reductionism, cognitive architecture, emergence, intentions, functions, computer modeling and

simulation, proximate causes

THE NEED FOR EXPLANATION: MAIN ISSUES
We do not just need a “pluralistic” approach (as radically inter-
disciplinary) but a “layered” theory of our “objects” (Dale, 2008).
We need (at least) six layers and axes of theory; not just predictions
but explanations, that is, we need to identify the explicit defini-
tion/understanding of the mechanisms producing (here-and-now
or diachronically) a given phenomenon. In particular for human
behavior we need:

(A) Modeling the cognitive (mental) mechanisms producing and gov-
erning (controlling) our behavior. That is, we have to explain
a given behavior with its “proximate” causes: micro-processes,
irreducible to the vocabulary (ontology) of neuro-processes.

(B) The neural and body implementation of psychological represen-
tations and processes. We should know not only where they
are located in the brain, but the brain micro-mechanisms and
emergent cognitive processes, and why they work there.

(C) The biological evolution of our behavior (and its “causes”:
adaptive functions, niche, environmental constraints) and
of the mental (cognitive, motivational, affective) mecha-
nisms selected for governing it. Without understanding the
“origin,” the diachronic causes, we cannot fully explain a
phenomenon.
(C1) This requires the understanding of the relation between

our genes and our behavior; the dispositions selected
by evolution, and how they influence our mental pro-
cesses and behavior, and how these inherited“programs”
interact with experience, learning, and culture.

1I would like to thank my friends and collaborators at the ISTC-CNR GoalGroup
for discussions and criticisms on these issue, especially Maria Miceli for her help;
and Yurij Castelfranchi for useful suggestions and remarks. I also in debt with two
anonymous reviewers for their criticisms and suggestions.

(C2) This also requires the understanding of the relations
between the two kinds of teleology that impinge on us:
the internal goals regulating/controlling our action vs.
the external functions of our conduct.

(D) The emergent, collective, self-organizing effects of our behaviors,
and their mechanisms and dynamics; how complexity deter-
mines the “social orders.” An analytic and dynamic theory of
the “invisible hand.” Otherwise, we cannot understand soci-
eties, etc., as well as the relation between emergent collective
phenomena and our intentions and mental representations:
How is it possible that we “pursue” ends that we do not are
aware of and are not among our intentions? We also need to
explain how the emergent structure/order feedbacks into, and
shapes, our minds and behaviors: not just the “emergence” but
also the “immergence” processes.

(E) The historical and cultural evolution – its mechanisms, not just
its description and narration – shaping our minds and behav-
iors, through learning, practices and technologies, norms, and
so on. The cultural evolution is not less relevant than the bio-
logical one for understanding why we are as we are; and our
historical and cultural differences.

(F) We need the modeling of developmental processes, also
because some causes of our adult behavior can be found
in our personal and relational development (Developmental
Cognitive Sciences).

We needs at least all these layers and perspectives (diachronic
and evolutional) for explaining our behaviors. Laws are not
enough. They are simply descriptive and predictive; we need
the “why,” the “how” (see Cognitive Mechanisms Producing and
Controlling Our Behavior & Computational Science for Recon-
ciling “Emergence” with “Cognition”6). Of course, the need for
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explaining (not just predicting and describing) with the underlying
devices the observed and observable phenomena, is particularly
crucial for the cognitive and behavioral sciences, where the observ-
able phenomena are due to unobservable postulated variables into
the minds. But – in my view – is not valid only for human sci-
ences. To be less schematic and more correct, let me say that there
are in the natural science “laws” that do really explain in terms
of causal underlying “mechanisms” producing the phenomenon
and its dynamics. This is the case – in my view – for exam-
ple of mutation and selection mechanisms explaining Darwinian
evolution; although also these mechanisms and laws have to be
explained at their micro layer in terms of genes and DNA mecha-
nisms. However, many important “laws” in natural science are not
really “explanatory” of the “why” and “how,” of the mechanism.
For example, the most famous natural law, Newton’s gravity, is
more descriptive than based on the explanation of the (micro)
mechanisms producing/causing attraction. We are still in search
of the real causal explanation: the “graviton.” At the higher level of
course that law predicts but also causally “explain” why something
(pears) falls to the ground (from the trees).

No brain map too is enough: it is just cartography, descrip-
tive rather than explicative (see The Neural Implementation of
Psychological Representations and Processes).

Correlations are not enough and they are frequently mislead-
ing (Concluding Remarks). Theories should be complemented by
models of the processes that produce and control people’s behavior.

(G) This is why a crucial revolution in the behavioral sciences is and
will be the computational modeling: the radical “operational”
approach. There is no alternative to this especially if one has to
model the process at a given micro-layer, and the processes at
the macro-layer, and also the emergent (bottom-up) and the
immergent (top-down) feedbacks, and how all this works.

I will only focus on issues (A) (C) (D) (G), and in a quite
schematic and assertive way also on (B). However, there is a coher-
ence between the central claim of section 5 (point D) on “social”
theory (social action and minds are crucial but not enough; we
need a theory of the self-organizing macro social order and of
its feedback at the micro level) and the seemingly far polemic on
(B; brain and mind): layered view is needed because reality is a
recursive multi-layered “emergent” complex system: not only we
have emergence (and self-organization) from individual to collec-
tive, but also from micro neuro-processes and macro functions
in brain, and from brain to mental activities, and from cognitive
micro-constituents (like beliefs or goals) to complex mental states
“gestalts,” like an intention (Knowledge–Motivation Commerce),
an expectation, or an emotions like hope (Miceli and Castelfranchi,
2014); and so on (A Layered Science for a Layered World).

COGNITIVE MECHANISMS PRODUCING AND CONTROLLING
OUR BEHAVIOR
As we said (A), to explain a given behavior we need to identify its
“proximate” cognitive causes -underlying processes that are irre-
ducible to neuro-processes: representational and functional. Of
course, also neural processes are “representational” and based on
“functional” notions (like “activation,” “inhibition,” “connection,”
etc.), but at a lower micro-level.

In particular, what is needed is a theory of how our behav-
ior is under a “control device”; its mainly goal-governed nature,
and how motivations are organized and processed. This is the
weakest part of psychology: we know everything about knowl-
edge processing and organization (step by step, all the chapters
of a handbook of Cognitive Psychology), but we know very lit-
tle about motivation and its processing. In particular we should
model how our goals (used here as a general term for internal
motivational representations during the cybernetic cycle (Miller
et al., 1960); including wishes, desires, concerns, intentions, and
so on) are processed (activated, chosen, preferred, planned) on
the basis of our beliefs, and how we acquire and integrate or
revise them. The central mechanism of mind is the “commerce”
between goals and beliefs (the two basic families of mental repre-
sentations). Of course also other “mechanisms” are there; simple
reflexes, conditioned reactions, habits, routines, scripts, and so on.

To exemplify the kind of cognitive architecture we should
model, let us focus on the last stage of the processing of a goal
and on its final package, which regulates intentional action (as a
specific kind of “behavior”).

KNOWLEDGE–MOTIVATION COMMERCE
Intentions are those goals that actually drive our voluntary actions
or are ready/prepared to drive them. They are not another prim-
itive (like in BDI model inspired by Bratman’s theory, e.g., Rao
and Georgeff, 1995), a different mental object with respect to
goals. They are just a kind of goal: the final stage of a successful
goal-processing, which also includes “desires” in the broad sense,
with very specific and relevant properties (see also Castelfranchi
and Paglieri, 2007). Let’s remark that the creation of two dis-
tinct “primitives,” basic independent notions/objects (“desires” vs.
“intentions”) is in part due to the wrong choice of adopting (also
in accordance with common sense) “desires” as the basic motiva-
tional category and source. We criticize this reductive move, and
introduce a more general and basic (and not fully common sense)
teleonomic notion of “goal.” This notion also favors a better uni-
fication of goal kinds and a better theory of their structural and
dynamic relationships.

In a nutshell (Figure 1), in our model an intention is a goal that:

(1) Has been activated (by a physiological stimulus, an impulse,
or an emotion, or just by a new belief) and processed.

(2) Has been evaluated (beliefs) as not impossible, and not self-
realizing or already realized by another agent, and thus up
to us: we have to act in order to achieve it. An intention is
always the intention to “do something” (including inactions).
We cannot really have intentions about the actions of other
autonomous agents. When we say something like “I have the
intention that John goes to Naples” what we actually mean
is “I have the intention to bring it about that John goes to
Naples.”

(3) Has been chosen against other possible active and conflicting
goals, on the basis of an evaluation (beliefs) of the outcomes
and possible costs and we have “decided” to pursue it as
preferable (greater expected value) to its competitors.

(4) Is consistent with other intentions of ours; a simple goal can
be contradictory, inconsistent with other goals, but, once it
is chosen, it becomes an intention and has to be coherent
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FIGURE 1 | Beliefs in Goal-Processing (Castelfranchi and Paglieri, 2007).

with the other intentions (beliefs about action conditions,
resources, and compatibility in the word; Castelfranchi and
Paglieri, 2007). Decision-making serves precisely the function
of selecting those goals that are feasible and coherent with
each other, and allocating resources and planning one’s actual
behavior.

(5) Implies the agent’s beliefs that she knows (or will/can know)
how to achieve it, that she is able to perform the needed actions,
and that there are or will be the needed conditions for the
intention’s realization; at least the agent believes that she will
be able and in condition to “try.”

(6) Being “chosen” implies a commitment with ourselves, a mort-
gage on our future decisions; intentions have priority over
new possible competing goals, and are more persistent than
the latter (Bratman, 1987).

(7) Is “planned”; we allocate/reserve some resources (means, time,
etc.) for it; and we have formulated or decided to formulate
a plan consisting of the actions to be performed in order to
achieve it. An intention is essentially a two-layer structure:

(a) the “intention that,” the aim, that is, the original goal (for
example, to be in Naples tomorrow); (b) the “intention to do,”
the sub-goals, the planned executive actions (to go to the sta-
tion, buy the ticket, take the train, etc.). There is no intention
without (more or less) specified actions to be performed, and
there is no intention without a motivating outcome of such
action(s).

(8) Thus an intention is the final product of a successful goal-
processing that leads to a goal-driven behavior.

Thus “intention” is not a simple mental object (although
outcome of a complex process); it is a complex config-
uration with its anatomy: of supporting beliefs and of
goals in a means-end relation, and with an impendent
commitment.

After a decision to act, an intention is already there even if the
concrete actions are not fully specified or are not yet in execu-
tion, because some condition for their execution is not currently
available. Intentions can be found in two stages:
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(a) Intention “in action,” that is, guiding the executive intentional
action;

(b) Intention “in agenda” (“future directed,” those more central
to the theories of Bratman, Searle, and other), that is, already
planned and waiting for some lacking condition for their exe-
cution: time, money, skills, etc. For example, I may have the
intention to go to Capri next Easter (the implementation of
my “desire” of spending Easter in Capri), but now is Febru-
ary 17, and I am not going to Capri or doing anything for
that; I have just decided to do so at the right moment; it is
already in my “agenda” and binds my resources and future
decisions.

I would also say that an “intention” is “conscious,” we are aware
of our intentions and we “deliberate” about them; however, the
problem of unconscious goal-driven behavior is open and quite
complex (see Bargh et al., 2001).

During the several steps of its processing, an intention – and
its original goal – is supported by those beliefs (on the past, the
present, or the future) that are filtering and supporting it. When-
ever one of such beliefs changes, there may be a problem for the
supported goal, which may be either put in a “waiting room” or
abandoned as impossible, already achieved, no longer interesting
(because another is deemed to be preferable.), etc. When dealing
with cognitive agents, in order to change their behavior we have
to change their goals (and thus their intentions), but in order to
change their goals we have to change their beliefs.

THE NEURAL IMPLEMENTATION OF PSYCHOLOGICAL
REPRESENTATIONS AND PROCESSES
A neuroscience of human behavior should in primis be the neural
modeling of cognitive mechanisms and processes postulated by the
Cognitive Sciences.

Neuroscience shouldn’t give us a brain “cartography” of behav-
iors and feelings: cartography has never been a “science” (just a
technique); it explains nothing, it is just description. What we
need is the brain/body implementation of specific functions and
models of elaboration of representations, which determine our
conduct.

THE NEUROSIS OF BEHAVIORAL SCIENCES
Neuroscientists shouldn’t try to “skip” psychology and its
information-processing models of structures and manipulations,
for directly connecting brain with behavior (neuro-economics,
neuro-aesthetics, neuro-ethics, neuro-politics,. . .). On the con-
trary they should take the procedural (possibly computational)
models of the cognitive sciences and find their neural grounding
or – if this proves unfeasible – change them. In fact, a cognitive
model that is not grounded in our brain and somatic processes
is just wrong, unacceptable. And – on the other side – psy-
chology should provide models of proximate processes; not just
correlational “theories,” which say nothing on the mechanisms.

Actually, there is a minority of approaches that look me rather
different and going in a much more promising direction: to analyze
the specific “implementation” of psychological processes and model
in brain functions, processes, and“goals”(Goals vs. Pseudo-goals).
Aimed to materialize (they say “embody”) cognitive functions in
their physical and informational substrate. A very good prototype

is for example (Friston et al., 2013) work on the physical dynamics
in the brain that implement the functions and psychological mech-
anisms (confidence, expected utility, attainability, inferences, etc.)
postulated in decision-making processes.

Nevertheless, in my view, the shortcut temptation I’m pointing
on is there, is dominant, and is a misleasing perspective.

The problem is: will neurosciences be able to distinguish, for
example, between mere anticipation of benefits or costs, where
the expected (and perhaps desirable) result is just predicted, and
when this anticipatory representation plays the functional role of
(achievement or avoidance) goal? Moreover, expected outcomes
that we predict and appreciate/desire are not the same of the
expected outcomes that motivate our actions: that is, not just addi-
tional positive results but those that are necessary and sufficient for
acting.

This is a really crucial distinction (that must be neurologi-
cally founded) for a theory of human conduct. Without that it
would/will be impossible to distinguish, for example, between:

– Utility-driven vs. value- or norm-driven behavior; or between
– True “altruistic” and non-altruistic pro-social actions.

In fact – in psychological terms – the altruistic nature of an
action only depends on the mind-set of the agent. Considering an
act as“altruistic”implies a“judgment on mere intent1.”“Altruistic”
is a subjective notion, relative to the underlying mental represen-
tations (especially the motivational ones); it is not – in human
beings – just a behavioral and objective notion. It is not enough
that a given conduct is beneficial for Y and costly for X (the agent);
even if the benefit is intentional. It is necessary to ascribe to X
the motivation to favor Y’s wellbeing, rather than some possible
expected (external or internal) reward. Thus it would be insuffi-
cient to find that these conducts are associated with the activation
of a brain area which is related to a “predictive” or anticipatory
activity, or to pro-social emotions.

Another example is offered by the neural version of “trust.”
As Fehr writes: “the rationale for the experiment originates in
evidence indicating that oxytocin plays a key role in certain pro-
social approach behaviors in non-human mammals. (. . .) Based
on the animal literature, Kosfeld et al. (2005), hypothesized that
oxytocin might cause humans to exhibit more behavioral trust as
measured in the trust game” (Fehr, 2009). In these experiments
they also show how oxytocin has a specific effect on social behavior
because it differently impacts on the trustor and the trustee (only
in the first case there is a positive influence). In addition, it is
also shown that the trustor’s sensitivity to risk is not reduced as a
general behavior but it depends on the partner nature (human ver-
sus non-human). These are no doubt interesting data. However,
the multidimensional and very articulated notion of trust should
not be reduced to a generic pro-social attitude and to a particular
chemical response or the mere activation of a given brain area.
Trust is not a simple, vague, and unitary notion and disposition;
it is made of (rather complex) evaluations, expectations, attribu-
tions, decisions to rely, sentiments. It should be a componential
and analytical psychological model of trust to drive the neural

1Beneficium non in eo quod fit aut datur consistit, sed in ipso dantis aut facientis
animo: a benefit consists not in what is done or given, but in the intention of the
giver or doer (Seneca, De Beneficiis Libro I, 6).

Frontiers in Psychology | Theoretical and Philosophical Psychology June 2014 | Volume 5 | Article 536 | 49

http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/
http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/archive


Castelfranchi For a science of layered mechanisms

research rather than searching for a simplistic and direct solution,
just localistic and correlational (Castelfranchi, 2009).

Analogously, consider norm compliance: will neurosciences
be able to distinguish the explicit understanding and process-
ing of a norm and the decision (and reasons) to comply with
it, from a merely habitual conforming conduct? And in motivated
obedience will neurosciences distinguish between just expected
possible sanctions and a decision “motivated” by that avoidance?
Will they reduce norms just to the activation of feared punish-
ments or of inhibitory responses? Psychologically speaking, these
are very different processes, with quite different socio-political
implications.

Finally, we should accept the idea that, in social “games” and
scripts, part of the mental attitudes we ascribe to others are not
“materially” in their brains. Also mind is an“as if,” an“institutional
construct.” We ascribe certain contents (knowledge, goals,. . .) to
others and we act on such as basis, as if they were materially there,
and this works in our “social pretending”: we give them a real,
pragmatic, effect, like when we turn pieces of paper into money,
by accepting and using them as such (Castelfranchi, 2013). For
example, for sure you “know” that 126 + 32 = 158, or you “know”
that Athens is not the capital of Italy, but do you really have this
knowledge written in a file of your brain? Not at all! Only after
you derived it, not before; however, you implicitly and potentially
“know” that and I know that you know and interact with you on
such a basis.

Mind is not independent on brain, and in general on a material
support of “information processing.” Mind is what the brain does
but not at its micro level; at the level of macro-functions and com-
plex object (representations). However, “mind” is not only what
the brain does. Not only because we might have minds“embodied”
in other “machineries” or supports (also at the distributed social
interaction level); but because mind is also an “intentional stance”
creation, attribution, ascription in order to explain, predict the
behavior, and interact with. It is a crucial “instititional” object,
even independent of its brain content, like the “value” of money,
no longer dependent on gold.

ARBITRARY ASSUMPTIONS IN MIND-BRAIN-BEHAVIOR RELATION
The current views on the relation between psychological processes
and their neuro-chemical substratum often betray some question-
able assumptions. For example, whereas it is very reasonable to
suppose that psychological and support interventions may have
an impact on cerebral regulation, at a biological level, this by no
means implies that the origin of the problem was biological, in
terms of a biochemical or neural malfunction.

Mental representations and psychological processes are per se
IN our brain (if not, where else might they be found?!) and are
processes OF our brain. Every construction, acquisition, or elabo-
ration of them just is a neural pattern/process in which our mind
materially consists and is implemented2.

However, to acknowledge this truism does not mean that
research at the psychological layer has no longer need to be

2However, also consider other bases of mental entities and process, in term of
externalization and distributed cognition, or in radically institutional, conventional
terms (as we have just said).

conducted: psychological notions and models should be neu-
rologically grounded, not “eliminated” (Computational Science
for Reconciling “Emergence” with “Cognition”); moreover, one
should be aware of the (not just theoretical) risks of biological
reductionism and their impact on public opinion; consider for
instance the growing tendency of psychiatry to adopt (in theory
and in practice) a bio-pharmacological approach, and its prob-
lematic consequences at the scientific, social, political, and ethical
levels.

Actually, there is a non sequitur between the (obvious) idea
that dysfunctional/psychopathological (and recovery) processes
are brain processes and

(i) the assumption that therefore their cause must be a brain
damage, a neural or biochemical dysfunction, a neural disease;

(ii) the assumption that therefore [even independently of claim (i)]
the intervention must necessarily and directly be on the brain
and its functioning.

To think something is a new state of our brain; to learn some-
thing is to modify our brain; to relearn, adjust previous learning,
is to modify our brain again. There might have been (for several
concurrent factors: internal and external, experiential, relational) a
dysfunctional learning, dysfunctional thoughts, and the challenge
is – through new cognitive and affective experiences and men-
tal elaborations – restructuring the learned representations and
processes.

Any change in our conduct or attitudes is/presupposes a change
in our minds; any change in our minds is/ presupposes a change
in our brains (and bodies). Our brain has been materially “writ-
ten” by our conduct. In therapeutic, educational or rehabilitation
interventions the challenge is to preserve this route, and this view.
For changing our brain we do not need to directly act on our brain.
Similarly, for producing water we do not need (and it is even worst)
to join oxygen and hydrogenous; or for changing genes regulation
not necessarily we manipulate genes (epigenetics).

TWO TELEOLOGIES IMPINGING ON HUMAN BEHAVIOR
As for the biological evolution issue (point C), let me just consider
a crucial theoretical issue (C2), which is often neglected or mis-
treated: the relation between the two kinds of teleology that impinge
on us: the internal goals regulating/controlling our action vs. the
external functions of our conduct.

In modern science there are two well-defined teleological
frames and notions:

The one provided by evolutionary approaches, where it is stan-
dard (and correct) to talk in terms of functions (adaptive) value,
being for something, having a certain finality/end, providing some
advantage, etc. In this context “goal” (end, function, finality, etc.)
means the “effect” (outcome) that has selected/reproduced and
maintained a certain feature or behavior – originally just an acci-
dental effect, an effect among many others, but later, thanks to the
loop and positive feedback on its own causes (that is, on the feature
or behavior producing it) no longer a mere effect but the function,
the purpose of that feature, what makes it useful and justifies its
reproduction.

• The one provided by cybernetic control theory and its postulated
cycle, representations, and functions, in which the agent is able
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to adjust the world through goal-directed behavior, and to
maintain a given desired state of the world (homeostasis).

• Actually, there might be a third teleological/finalistic notion
used in several sciences (from medicine to social sciences): the
notion of a function of X as a role, a functional component,
an “organ” of a global “system.” For example, the function of
the heart, or of the kidneys, in our body; or the function of
families (or of education or of norms) in a society; or the
function of a given office in an organization; etc. However, this
functionalist and systemic notion has never been well defined
and has elicited a lot of problems and criticisms. My view is
that this finalistic view is correct, but it is reducible to, and
derived from, the previous two kinds of teleology. The organs
are either the result of an evolutionary selection – in that they
contribute to the fitness and reproduction (maintenance) of
that organism – or there is a project, a design, that is, a complex
goal in someone else’s mind, which imposes particular sub-
goals on its parts, components, and tools. Or both.

A serious problem for a (future) science of goals is the fact
that these two fundamental teleological notions/mechanisms have
never been unified:

(i) Neither conceptually, by looking for a common definition, a
conceptual common kernel (for example, in terms of circular
causality, feedback, etc.). Do we have and is it possible to have a
general, unique notion of “goal”with two sub-kinds (functions
vs. psychological goals)?

(ii) Nor by solving the problem of the interaction between the two
coexisting forms of finality.

This constitutes a serious obstacle, and reveals a real ignorance
gap in contemporary science3. For example, as for issue (i), with-
out the aforementioned conceptual unification we cannot have a
unitary theory of communication – or a theory of cooperation, of
sociality, etc. – in animal and humans. What today are presented
as unified theories are just a trick; in fact, those notions – which
necessarily require a goal (for example, communication doesn’t
just require a “reader,” it requires a “sender”: the information is
given on purpose to the receiver/addressee) – are defined in terms
of adaptive functions when applied to simple animals (like insects),
whereas in humans are defined in intentional terms. Thus there is
no unified notion (and theory) of communication, in that we do
not know the common kernel between a functional device and an
intentional device.

Point (ii) is no less problematic. What is the relationship between
the internally represented goals (motivations, and concrete objectives)
of an agent regulating its behaviors from the inside, and the adaptive
functions that have selected that agent and its behaviors?

Usually, in purposive, goal-driven agents/systems, the function
of their conduct, the adaptive result that has to be guaranteed, is
not internally represented and psychologically pursued; it is not
understood and foreseen (Figure 2). Of course not all the foreseen
outcomes or all the side effects have a function.

3For a deep philosophical and critical discussion of teleologies and the relation with
causal explanation in natural sciences, see Larry Wright fundamental work (Wright,
1976). A remarkable attempt to deal with these problems also is Ruth Millikan’s
work.

FIGURE 2 | Mental Goals and possible functions.

The internal motivations (and whatever solutions and instru-
mental goals they generate) may just be sub-goals of the “external”
goals of the behavior, of its functions; they are just “cognitive
mediators” of the (biological or social) functions that would be
non-representable and mentally non-computable. For example,
only very recently we have discovered why we have to eat, the real
functions/effects of our food in our organisms (proteins, carbo-
hydrates, vitamins, etc.); and very few people eat in view of such
effects. We eat for hunger or for pleasure or for habit. Analogously,
we do not usually make courtship and sex in view of reproduction;
we are driven by other internal motives.

Because our behavior may respond to two kinds of teleology –
internal, driving goals (control theory model) vs. external selective
functions, either biological or social (Castelfranchi, 2001) – this
is why there might be conflicts between one’s internal goal and
the function of one’s action/behavior – also considering that we
do not necessarily understand and thus intentionally pursue our
biological or social functions. We may even act against the func-
tions of our behavior. We may even cut the adaptive connection
between our motives and their original functions, for example by
deciding to have sex without inseminating or without establish-
ing/maintaining any friendly/affective/supportive relation with
our mate. As for social functions, an example of a conflict between
our goals and our role function could be the goal that B be
condemned while I’m his defense attorney.

As for social functions and roles in general, we play them (cit-
izen, consumer, father, pedestrian,. . .) quite blindly; not because
they are unconscious, or because just based on reinforcement
learning or on mere “habituses” (in Bourdieu’s view; see The
Emergent, Collective, Self-Organizing Effects of our Behaviors),
but because they are external to our minds. In fact, even our
intentional and deliberated actions, evaluated on their (visible and
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conceivable) consequences, may “pursue” collective (good or bad)
external “ends” (Castelfranchi, 2001).

For example, if we realize how marketing induces “needs,” and
deceives and manipulates us, we couldn’t play well our most crucial
“role” in/for society: the role of “consumers”!

Social functions are parasitic to cognition: they establish and
maintain themselves thanks to and through agents’ mental repre-
sentations but not as mental representations: i.e., without being
necessarily known or at least intended. “By pursuing his own interest
he [the individual] frequently promotes that of the society more
effectually than when he really intends to promote it.” (Adam
Smith; last sentence of cited paragraph in section “The Emergent,
Collective, Self-Organizing Effects of our Behaviors.”) However,
it is possible, and even frequent, that – following our personal
motives – we play our roles in contradiction with the mission and
collective utility of our social function.

GOALS VS. PSEUDO-GOALS
It is also very important to disentangle true goals from pseudo-
goals (Miceli and Castelfranchi, 2012), that is, goals that only seem
to be there and to regulate the system and its behavior. However,
in fact they are not there as goal mechanisms, they are not repre-
sented in the system and “governing” it. They are just functional
ways in which the system has been “designed” (by evolution, by
learning, by the designer); they are the system’s goal-oriented way
of working, its operational rules. For example, a real thermostatic
system (thermostat, thermometer, room, radiator, boiler, etc.) has
been designed in order to reduce naphtha consumption, heat loss,
etc. as much as possible. These are (pseudo)goals of the system,
which works also in order to guarantee them; but they are not
true cybernetic-goals like the set-point of the thermostat. They
are not represented, evaluated, and “pursued” by the system action
cycle.

Analogously, our minds have been shaped (by natural selection,
or culture and learning) in order to have certain working princi-
ples and to guarantee certain functions, which are not explicitly
represented and intended. It seems (from our behavior) that we
have certain goals, but they are not real goals, only pseudo-goals.
This is the case, in our view, of some well-known (and badly
misunderstood) finalistic notions, like utility maximization, cog-
nitive coherence, and even pleasure. No doubt, we often choose
between different possible goals so as to maximize our expected
utility, giving precedence/preference to the greater expected value;
that is obvious and adaptive. However, this does not mean that we
have “the” goal (the unique and monarchic goal) of maximizing
our utility, indifferently to the specific contents and goods. On
the contrary, we are moved and motivated by specific, qualitative
terminal goals of ours (esteem, sex, power, love, etc.), but the
mechanism that has to manage them has been designed and works
so that it maximizes expected utility.

In the same vein, we maintain coherence among our beliefs,
and need to avoid and eliminate contradictions. That is why we
can reject certain information and do not believe all the data we
get (sometimes even what we directly perceive; “we do not believe
our eyes,” literally); the new data must be plausible, credible, inte-
grable, within the context of our preexisting knowledge; otherwise,
we have to revise our previous beliefs on the basis of new (credible)

data. This coherence maintenance is frequently completely auto-
matic and routinely. We have mechanisms for coherence check
and adjustment. We do not usually have any real intention about
the coherence of what we believe. Thus, knowledge coherence is a
pseudo-goal of ours, not a real meta-goal guiding meta-actions.

PLEASURE
Similarly, pleasure is not “the” goal of our activity, and the same
holds for feeling pleasure (or avoiding feeling pain). “Pleasure” –
as a specific and qualitative subjective experience, sensation (not
as an empty tautological label for goal satisfaction) – normally is
not a goal for us: it is not what we intend to realize/achieve while
acting, what move us for performing that behavior. Of course,
feeling pleasure or avoiding pain might become real goals and
intentionally drive our actions: that is basically the mindset of the
true hedonist, who acts for pleasure and not for whatever practical
consequence his/her action accomplishes. But typically looking
for pleasure and avoiding pain are not a unique final goal of ours
(another monarchic view of mind and motivation): rather, they
act as signals for learning, and they help us learning, among other
things, how to generate and evaluate goals.

Those hedonistic philosophies that identify pleasure with
motivation, and relate our goal-oriented activity to pleasure
motivation, should address the following, evident objections:

i. As a matter of fact, several goals when attained do not give us
any pleasure experience; they are just practical results, or consist
in the pursuit of (often unpleasant) duties.

ii. If pleasure is so necessary for goal pursuit and motivated
activity, why it is not necessary at all in cybernetic models of
goal-directed activity and purposive systems? How is it possible to
have a clearly finalistic and anticipation-driven mechanism, open
to “success” and “failure,” without any pleasure? In other terms,
what is the real function and nature of pleasure in a goal-directed
system? Moreover, pleasure seems to be present in nature (both
phylogenetically and ontogenetically) well before mentally goal-
directed actions. This also suggests that the function of pleasure
has to be different; it does not seem to play the role of a goal.

In my view, pleasure is more related to the notion of “reward,” of
“reinforcement” and learning. Pleasure as an internal reward plays
two fundamental roles: it attaches some value to some achieved
state, which is important when the system can have more than
one of such states, possibly in competition with each other; it
signals that a given outcome (perhaps accidental) “deserves” to be
pursued, is good, has to become a goal (that state, not the pleasure
per se). In this view, pleasure is a signal and a learning device for
goal creation/discovery and for evaluation. It seems very useful in
a system endowed with a “generative” goal mechanism, and which
needs different kinds of evaluation, more or less intuitive, fast,
based on experience or on biological/inherited “preferences,” and
not just on reasoning (with its limits, biases, and slowness).

THE EMERGENT, COLLECTIVE, SELF-ORGANIZING EFFECTS
OF OUR BEHAVIORS
That is how complexity determines the “social order.” Our claim
on issue (D) is that we need an analytic and dynamic theory of the
“invisible hand,” aimed at identifying its underlying mechanisms.
Otherwise we cannot understand societies, etc. We also have to
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understand the relation between the mechanisms regulating the
social order and our intentions and mental representations: that
is, how – without being understood and explicitly represented –
the emergent structure/order feedbacks into and shapes our minds
and behaviors; not just the“emergence”but also the“immergence”
processes.

The foundational issue of the Social Sciences is the micro-macro
link, the relation between cognition and individual behavior and
social self-organizing phenomena or complex structures and orga-
nizations4; and institutional actions/phenomena (the two facets of
“social order”: the “spontaneous” one and the organized or at least
institutionalized one; Tummolini and Castelfranchi, 2006). This is
the main reason for the existence of the social sciences, what they
have to “explain,” diachronically and synchronically, in its origin
and dynamics.

As remarked by Hayek (1996): “This problem [the problem of
the unintentional emergence of order and of spontaneous institu-
tions] is in no way specific to economics. . . it is without doubt the
core problem of the whole of social science.”

That is also why Methodological Individualism, although fun-
damental or better necessary, is not sufficient at all as a framework
for explaining social interactions and phenomena (Conte and
Castelfranchi, 1995).

Adam Smith’s original formulation of “THE problem” is – to
me – much deeper and clearer than Hayek’s formulation.

The great question is how [the individual] “which does neither,
in general, intend to pursue the public interest, nor is aware of the
fact that he is pursuing it, . . . is conducted by an invisible hand to
promote an end that is not part of his intention” (Smith, 1976).

The problem is “how” the Invisible Hand does really work; in
the end, we should (and could) explain the “mechanism” and its
reproductive feedback on the agents’ minds and behaviors.

In Smith’s view of the “Invisible Hand”:

(1) there are intentions and intentional behavior;
(2) some unintended and unaware (long term or complex) effect

emerges from this behavior;
(3) but that effect is not just an effect, it is an end we pursue,

i.e., its orients and controls – in some way – our behavior: we
“necessarily operate for” (Smith, ibid.) that result.

Now:

− what does it mean and how is it possible that we promote with
our action, we in a sense pursue something that is not an inten-
tion of ours; that the behavior of an intentional and planning
agent be goal-oriented, finalistic, without being intentional?

− in which sense the unintentional effect of our behavior is an
“end”?

4See for example (with a more traditional approach) Sawyer, 2003 or Prietula et al.,
1998; also related with agent-based simulation (Computational Science for Recon-
ciling “Emergence” with “Cognition”). For interdisciplinary and integration based
view close to our position, see also (Dale et al., 2013). Although in our perspective
goal-directed behavior and intended results and self-organization and spontaneous
social order are two complementary and interacting faces of sociality and social the-
ory. We do not think that dynamical system theory is the framework for integrating
human interaction “into a broader account.” Also because the problem is not the
coordination of motor, expressive, and linguistic “inter-action,” but of social con-
ventions, scripts, institutions, and collective self-organizing “order.” We are more in
agreement with the previous Dare’s claim about the need for a“pluralistic”approach
in Cognitive Science.

The real problem is to understand how not only such pro-
cess coexists with an intentional behavior but also exploits it
(Castelfranchi, 2001).

Thus special attention should be devoted not only to the
“emergent” bottom-up processes but also to the “immergent”
ones: the top-down feedback from emergent phenomena to the
agent control-system via learning or through understanding and
intending (Conte et al., 2007).

In particular we have to identify which of the macro-level
phenomena is or has to be mentally represented, understood,
and even intended in order to reproduce itself and be effective
(as it happens with norms), and to discriminate those that are
unintended and blind, and presuppose some form of alienation
(like social functions or institutional powers). What we have to
explain is also how the Invisible Hand and spontaneous (self-
organizing) social order are not so spontaneous and disinterested
or optimal for the involved people but do systematically favor
powerful agents. What is needed is a criticism to von Hayek’s the-
ory (or vulgate) about the spontaneous social order as the best
possible outcome: the often implicit assumption that an under-
standing of the social dynamics, deliberate planning, and intentional
pursuuit of non-individual outcomes could never achieve better
results.

How much the epistemic and motivational representations that
regulate our intentional conduct are shaped by the macro sociolog-
ical, economic, anthropological, political levels? How the former
are functional to the latters, not just mere complex effects and
consequences?

That is: how could the Spontaneous Order not just emerge from
our autonomous acts but maintain and reproduce itself without
actively influencing and reproducing those acts? Which – however
– are due to our cognitive representations and processes. Thus
it has to shape and reproduce those cognitive mechanisms. The
Invisible Hand works also through and on our minds, by manipu-
lating our mental devices in order to bring out the appropriate (not
understood and unintended) outcomes.

In fact, the problem is not just how a given equilibrium (like
in simple Games) or coherence is achieved and some stable order
emerges. In order to have a “social order” or an “institution” spon-
taneous emergence and equilibrium are not enough. They must
be “functional,” that is self-reproducing by a causal loop.

THE “COGNITIVE MEDIATORS” OF SOCIAL PHENOMENA
Social phenomena are due to the agents’ behaviors, but. . . the
agents’ behaviors are due the mental mechanisms controlling and
(re)producing them.

For example: Our Social Power lies in, consists of, others’
Goals & Beliefs! How do they evaluate us and accept to depend
on us. That’s why we need Mind-Reading! Not only for adjust-
ing ourselves to the others’ interference, but for manipulating and
exploiting the others or for helping or punishing them.

Social and cultural phenomena cannot be deeply accounted
for without explaining how they work through the individual
agents’ minds (the mental “counterparts” or “mediators” of social
phenomena).

Does this mean that social actors fully understand what they
do/construct? No, not necessarily.
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That’s why we use the term: “mediators”: because they are
the mental ingredients necessary for producing that social phe-
nomenon or structure without (necessarily) being the mental
representation (understanding or intending) of the social phenomena
produced by the behaviors that they determine.

So, I play and reproduce a“social function”(of father, consumer,
the witness of a promise, “public opinion,” the follower of a leader,
etc.) without necessarily understanding it, but with something
specific, corresponding, in my head.

As we said, the problem is social functions impinge not only on
our habits and automatic or ritual behaviors, but on our deliber-
ated and intentional actions. Charging only the non-intentional,
non- deliberate behaviors with those functional aspects is a sim-
plistic solution: according to such a view, role-playing would
just be implemented in “habituses” (Bourdieu and Wacquant,
1992). Thus, when a social actor is consciously deliberating
and planning, he would not play a social role, he would be
“free.” I disagree with such a solution. Social actors play social
roles and accomplish their social functions also through their
deliberate, intentional actions, however they do so not delib-
erately. This is precisely the problem to be addressed; and it
requires a sophisticated model of intentions. We are back to
the issues of (C;Two Teleologies Impinging on Human Behav-
ior).

What is the relationship existing between the social system’s goals
and the goals internal to its members, which directly regulate their
actions?

Are social actors able to understand and represent explicitly in
their minds the social system’s goals? Or are the goals of the social
system simply a projection of the goals of (some of) its members?
Or, do the members’ goals and plans happen to happily coincide
with those of the social system? In other terms: do we intends all
the goals we pursue?

Functions establish and maintain themselves thanks to and
through agents’ mental representations but not as mental represen-
tations: i.e., without being known or at least intended.

COMPUTATIONAL SCIENCE FOR RECONCILING
“EMERGENCE” WITH “COGNITION”
However, “necessary” doesn’t mean “sufficient”: Mind is not
enough. For “explaining” what is happening at the societal and
collective layers we have to model the mind of the actors, but this is
insufficient. The“individualistic plus cognitive”approach – even if
complemented with “collective intentionality,” “joint action,” “we
intend,” etc. – is not sufficient for a social theory and for modeling
social processes. Social actors do not understand, negotiate, and
plan all their collective behavior and cooperative activity. Society
is not “team work.”

This is the real challenge not only for the behavioral and cog-
nitive sciences but for multi-agent systems and Social AI, and
computer-supported societies: Reconciling Emergence with Cog-
nition. Emergence and cognition are not incompatible with one
another; neither are they two alternative approaches to intelligence
and cooperation.

On the one hand, cognition has to be conceived as a level
of emergence (from sub-symbolic to symbolic; from objective to
subjective; from implicit to explicit).

On the other side, emergent and unaware functional social
phenomena (ex. emergent cooperation, and swarm intelligence)
should not be modeled only among sub-cognitive agents (Steels,
1990; Mataric, 1992), but also among intelligent agents. In fact, for
a theory of cooperation and society among intelligent agents – as
we said – mind is not enough, and cognition cannot dominate and
exhaust social complexity (on that Hayek is right; Hayek, 1967).

This is why a crucial revolution in the behavioral sciences is and
will be “computational modeling,” with its radical “operational”
approach. There is no alternative to this, especially if one has to
model at the same time the process at a given micro-layer and the
processes at the macro-layer, and also the emergent (bottom-up)
and the immergent (top-down) feedbacks, and how all this works.

We need a computational modeling of cognitive represen-
tations and manipulation (processing; Cognitive Mechanisms
Producing and Controlling Our Behavior) and a computational
modeling of their neural implementation and of brain very com-
plex dynamics (The Neural Implementation of Psychological
Representations and Processes). The same holds at the social level.

THE THEORETICAL MISSION OF SOCIAL SIMULATION
Agent-based computer simulation of social phenomena is the cru-
cial (revolutionary) challenge for the future of behavioral sciences.
But why is it so?

As we said, the micro-macro link is the foundational issue of the
behavioral sciences: they should investigate the relation between
cognition and individual behavior, on the one hand, and social
self-organizing phenomena or complex structures, organizations,
and institutional actions and entities5 on the other hand. This is
the main mission of the social sciences, what they have to“explain,”
diachronically and synchronically.

No approaches or models for studying this complex phe-
nomenon and eventually understanding its (causal) mechanisms
are better than agent-based computer simulation. It is the only
approach able to model at the same time different layers of process-
ing and their top-down and bottom-up feedbacks and circularity.
We can model more or less complex minds (with goals, beliefs,
reasoning, decisions, etc., but also emotions, reactions, biases, and
perception, learning, etc.) and interaction, dependence networks,
group activity, organization, cooperation and competition, norms,
roles. And we can observe the internal and external dynamics.

Moreover computer implementation of models provide us a
formal validation of the theory predictions, and new experimental
data (by simulation).

CONCLUDING REMARKS
What is the correct relation between social and collective human
behaviors and the individual mind, and between mind and brain?
The answer is: a well-conceived reductionism, preserving different
(interconnected) ontological layers with their vocabulary (like in
chemistry for the notion of “valence” or of “acid”).

A LAYERED SCIENCE FOR A LAYERED WORLD
Nature (and, in nature, society) has different levels of complex-
ity and organization, with the emergence of macro-level entities,

5The two faces of “social order”: the “spontaneous” one and the organized or at least
institutionalized one.
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phenomena and laws, grounded on the entities, properties and
mechanisms of the lower layer (micro).

“Reductionism” should not be the “elimination” of the entities,
notions, dynamics of a given macro level, considered superfluous
once it is explained in terms of their micro-entities. “Reduction-
ism” should be “re-conduction”: bringing back and grounding
the macro-dynamics on the underlying ones. The theories of the
macro layer should be not only compatible (non contradictory)
with the laws of the micro one; they have to be grounded and
derivable. Otherwise they are wrong.

Consider for simplicity the following layers of complexity: let’s
ground all on physics (particles, atoms, forces, etc.); on top of
physics, let’s put chemistry, then biology grounded on organic
chemistry, then neuroscience, then psychology, then social sciences
(economics, sociology, anthropology, politics).

Biology has to be explained in biochemical terms, but we cannot
eliminate the notion of “cells” with their new properties and laws,
although we have to biochemically know how they “work”6.

In the same vein, social and collective behavior is due to the
conduct of individual actors; but individual action is due to men-
tal representations and processes; therefore the principles of social
sciences should be grounded in the underlying mental and behav-
ioral phenomena and laws. However after such a re-conduction
is made, we cannot do without such notions as crowd, market,
inflation, government, etc.

Science has for example re-conducted chemical “valence”
(introduced much before atomic modeling) to atomic properties:
particles, their electric charge, etc. To have explained “valence” and
how it works doesn’t make this notion useless; and we couldn’t
put aside notions like “acid,” “basis,” “chemical bonds” although
we have a full grounding and understanding of them in atomic
terms. The Phlogiston theory has been eliminated, because there
was no possible confirmation of the hypothesized processes at the
supporting/implementing layer.

Exactly in the same way we have to re-conduct mental repre-
sentations, functions, and processing to the body and its neural
mechanisms and structures; they are just material, informational
entities7; emergent functions of their ground, described in infor-
mational/functional terms. If it is not possible to bring them back
to their sub-stratum, they are inexistent (like phlogiston); but if
they are brought back to their underlying micro-processes, they
will not be redundant and eliminable. The psychological notions
should be preserved for understanding and explaining “what the
brain is doing”: perceiving, memorizing, retrieving, deciding,
pursuing, and so on; at its macro-functional level of activity.

Neural correlates cannot be the right vocabulary for explaining
human behaviors, just because they are at a micro-level and do
not still represent and discriminate the complex “patterns” and
their properties and functions (not of their sub-components) at
the cognitive and motivational macro-level of working. When
we will have the real neural representation of a complex object
like a “motivating goal,” or an “altruistic intention,” or of real
“trust attitude” (The Neural Implementation of Psychological
Representations and Processes), or a “complex emotion with its

6To say nothing of the “evolutionary theory”: a completely new foundation.
7However, see note 13.

appraisal components” like envy, we will have a quasi-complete
explanation of it (see previous note), but we will not renounce
to that psychological vocabulary; since it holds and works at
the functional/informational macro layer. Also because, there are
other properties of that entity that are due not to its micro-
implementation and mental representation, but to its functions
and relations at the macro anthropological, sociological, economic
level. A table is a “table,” functionally and practically speaking,
although it is just a cluster of molecules of a given substance; how-
ever, at certain level of use its analysis in physical and material
terms is fully irrelevant.

More in general: there are no alternatives to the need for reading
and understanding body in terms of functions, not just in terms of
“simple” matter and its physico-chemical processes description.

We look at the kidney as a “filter,” at glands in terms of “secre-
tion.” Otherwise we do not understand what they do, that is, what
they are; which is the sense of the physico-chemical processes that
we are describing.

The same obviously holds for our brain (just a body organ).
Brain anatomy must be a “political geography,” not a “geography”
of physical objects/structure: it has to localize the areas of given
psychological functions. And brain physiology (activity) – to be
understood – requires to be read in terms of active psychic pro-
cesses. “Mind” is just a functional notion: the high level function
of neural activity and patterns; and given its emergent, functional,
informational, semiotic-representational (and even institutional)
nature is not “reducible” to brain processes, that just provide its
material implementation.

We need a micro-macro theory, a specification of the under-
lying entities and processes producing given phenomena at the
superordinate layer. This is what we call – in strict sense – Science
of “mechanisms.”

THE NEED FOR COMPUTATIONAL MODELING
I claim that there is no alternative to computer modeling. We have
to provide not just mathematical or formal models but computa-
tional ones, if we want to model the proximate causes of a given
phenomenon, and its superficial dynamics; the underlying “mech-
anisms” that determine those behaviors. We also need “synthetic”
modeling, that is, the material construction of the modeled entity
to show how it actually produces the predicted behaviors/effects
in interaction with the environment.

As rightly pointed out by Shieber (2004): “The whole thinking
process is still rather mysterious to us, but I believe the attempt to
make a thinking machine will help us greatly in finding out how we
think ourselves.”

Computational/synthetic modeling will be pervasive. It will
model any hidden mechanism and “dynamics”: from chemical
reactions, to DNA, from evolution to psychological mechanisms,
to social, economic, historical phenomena. This is the message
and the gift that ICT and in particular AI has to give to science.

Computational modeling will provide not only “models” and
conceptual instruments for the theory, but also experimental plat-
forms, new empirical data obtained through simulation, and new
hypotheses and predictions. Some experiments will be made
possible, which are impossible in “nature,” either for practical,
social, historical, or moral reasons (demography, urbanistic, etc.)
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or for the natural inseparability of some distinguishable mech-
anisms (for example motivational and emotional mechanisms).
This will be crucial both for modeling both proximate causes and
diachronic, evolutionary causes.

Computer simulation of neural, cognitive, social mechanisms
and dynamics, obviously is not the only method for identifying the
proximate causes, but the most promising method for (i) their fully
procedural and formal characterization (ii) with the additional
advantage of “running” the postulated dynamics and seeing their
results (conform or not to predictions), and (iii) to conduct a new
precious kind of experiments, in particular useful for complexity
and emergent effects. The most promising method/tool, especially
for modeling “processes” not just static features (physiology not
just anatomy) (iv) at different layers, but interacting; including
also the bottom-up and the top-down effects, and the resulting
dynamics. It is the only approach able to deal in an integrated way
with all these mechanisms.

Moreover, computers are a fundamental device for intelligently
collecting and analyzing relevant data [from the web, for example
“Big Data,” and from human behavior in natural conditions (traf-
fic, investments, migration, etc.)]. Also in the sense that major
scientific discoveries will be made by computers (able to manage
Big Data, to demonstrate theorems, to interpret the laws and mech-
anisms of that data), but also in the sense of “human” traditional
science supported by computational instruments.

In sum, in a few years, science will be “computational”;
otherwise it will not be.

“MORE GEOMETRICO DEMOSTRATA”
To be more explicit about psychology status: It is unbelievable that
after more than half a century the critical remarks of Wittgenstein
on psychology be still valid: “The confusion and barrenness of psy-
chology is not to be explained by calling it a “young science”; its
state is not comparable with that of physics, for instance, in its
beginnings. (. . .) For in psychology there are experimental methods
and conceptual confusion. (. . .) The existence of the experimental
method makes us think we have the means of solving the problems
that trouble us; though problem and method pass one another by”
(Ludwig Wittgenstein Investigations PII p. 232).

In my view, Psychology is one of the few sciences that do not
officially have a clearly separated theoretical domain, with its uni-
versity chairs, conferences, curriculum, . . . like for physics, biology,
economics, . . . without any direct experimental activity (in case
taking into account and explaining the result of their “experimen-
tal” discipline; and anticipating of half a century the empirical
results, like for Einstein theories).

Psychology – probably because of its “guilty” origin from phi-
losophy, and the consequent inferiority complex to the “hard
sciences” – has repressed its theoretical and analytical impulses.

Philosophy is in a sense a party to this somewhat phobic atti-
tude of psychology, because it considers the analytical, formal,
theoretical work as a prerogative of its own. However, philosophi-
cal contributions, though welcome, cannot replace the theoretical
and analytical work that must be internal to psychology.

It is not a matter of “experimental philosophy,” it is a matter of
“theoretical psychology” (Cognitive Science sometime plays such
a role).

We need to have psychological states “more geometrico
demostrata.”

JUST STATISTICAL LAWS AND CONSTRUCTS, AND PROBABILITY?
However, let us conclude with a query about next future, by
following not just optimism of will but pessimism of reason:

Will this analytical and “cognitive mediated” view of social
phenomena and dynamics, and of computational Agent-based
modeling (we hope for) win?

Not so sure at all: we will attend a short cut of statistics,
the impressive power of Big Data, correlations, probability, . . .

An already very robust trend. The title of Mayer-Schonberger
& Cikier’ book is “Big Data: A Revolution That Will Trans-
form How We Live, Work, and Think” and I think that they
are absolutely right; but this revolution will be insufficient
and even deviating if it will just empower our “predition”
capabilities, and will not ground new theoretical understand-
ing of the mechanisms and causal processes underlying soci-
ety and cognition. I worry about Anderson’s profecy: “The
End of Theory: The Data Deluge Makes the Scientific Method
Obsolete”; prophecy that of course begin to be based on Big
Data! And I care more about scientific aim and frame than
about scientific “methods” (See also Anderson, 2008; Harford,
2014).

We are witnessing a growing trend of predicting without
understanding, without modeling the proximate causes.

Does God play dice?
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The paper presents color as a case study for the analysis of phenomena that pertain to
several levels of reality and are typically framed by different sciences and disciplines. Color,
in fact, is studied by physics, biology, phenomenology, and esthetics, among others. Our
thesis is that color is a different entity for each level of reality, and that for this reason
color generates different observables in the epistemologies of the different sciences.
By analyzing color as a paradigmatic case of an entity naturally spreading over different
levels of reality, the paper raises the question as to whether making explicit the usually
implicit ontological assumptions embedded within the different observables exploited
by the different sciences may eventually clarify some of the difficulties of developing a
comprehensive theory of color.
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INTRODUCTION
What is color? Is it a quality of the phenomenal (subjective)
appearance or a property of the physical object? Or both? How
are the phenomenal quality and the physical property related to
each other? As well known, widely different answers have been
provided. Among them are the following: color realism based on
the reflectance of light by surfaces, that is, physics; phenomenal
objectivism based on sensory-motor contingencies; color subjec-
tivism based on qualia, i.e., atomic color experiences; color as
brain product based on the effects of objects within us, from the
point of view of the nervous system; and color dispositionalism
based on the effects of objects within us, from the point of view
of our experiential states (on the different epistemological stances
see Byrne and Hilbert, 1997).

Consequently, theories on these various matters have analyzed
aspects concerning the nature of stimuli, the workings of the
neurons, sensory response, the eminently qualitative nature of
phenomenal vision, or aesthetic yield. But on establishing cor-
relations among events at these various levels, one should be
careful to avoid epistemologically collapsing their relations of
ontological dependence into reductions to either the physical or
the neuronal level (Albertazzi, 2006, 2013). In fact, as Köhler
wrote

If someone states that things seen must first be experienced as if they
were in the brain, he has not realized that the first part of his statement
refers to the visual field as a fact of experience, whilst in the second part,
where he uses the expression “the brain,” he is speaking of a physical
object in physical space. This means that he expects to see parts of visual
space localized in relation to parts of physical space, and this notion is
entirely impossible.

(Köhler, 1947, p. 213)

The discussion on color continues to suffer from the same
shortcomings as denounced by Köhler. It still lacks, for example:

• A categorical classification of the differences among the phys-
ical, the neuronal, and the properly psychic (mental) marking
the onset of color perceptions.

• A distinction between the color stimuli and subjective color
conditions of perceptibility (for example, the assimilative
phenomena in color appearances, the role of subjective inte-
grations, the capacity to understand such aspects of colors as
the difference between warm and cold or light and heavy colors).

• A precise terminology according to the different levels of
analysis, relatively to the different color “observables.”

• An explicit correlation between models of color and the specific
color observables to which they refer.

The thesis put forward in this study is that only the framework
provided by a properly developed theory of levels of reality can handle
the complexity of color perception and color spaces. The assumption,
however, is that the different color observables are not totally inde-
pendent from one another, in the sense that they are connected
by a network of dependencies arising from the different levels of
reality.

As a step toward understanding and clarifying the nature of
color, this paper suggests verifying whether at least some of the
controversial aspects of color understanding depend on different
ontological (not epistemological) assumptions. Otherwise stated,
we propose to bracket the models’ epistemological assumptions as
far as is possible in order to better grasp the possible presence of
underlying ontological differences.

Color perception is characterized by the presence of differ-
ent theories based on conflicting primitives (wavelength, neural
correlates, color appearances), and parameters (hue, saturation,
chroma, brightness, lightness, to mention but a few). Further-
more, a variety of color solids have been proposed as models of
the space of colors, including cylindrical, conic, pyramidal, and
spherical ones (Billmeyer, 1987). Moreover, even when the dif-
ferent theories adopt the same categories, they define them in
different and often conflicting ways.

To make matters worse, even the identification of colors raises
major problems: to wit, the color matching procedure, on which
most colorimetry is based (Boynton, 1979; Brainard, 1995; Koen-
derink and van Doorn,2003; Koenderink, 2010), exploits a severely
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restricted use of color terms and does not consider what the viewer
actually perceives, with the exception of the viewpoint of color
differences. The phenomenological aspects of observed colors
(Stumpf, 1917; Hering, 1920, 1964; Gelb, 1929; Katz, 1935) remain
hidden behind the yes/no responses to just noticeable differences
(jnd – the units of psychophysical analysis).

The question also arises as how to relate natural language
color terms for perceived dimensions of color, i.e., relatively to
what kinds of concepts are encoded or not encoded by languages,
what are the ontological referents, in what universal and lin-
guistic (or culture-specific) meanings consist, etc. The so-called
nature/nurture debate in the field of colors is particularly diffi-
cult to address, given the tangled development of the taxonomy
of colors over time and in the different languages (Williams,
1976; Dedrick, 1998; Paramei, 2007; Jameson and Komarova,
2009; Rakhilina and Paramei, 2011), the terminology adopted by
scientific theories that may define colors according to metrical
parameters or differently shaped color spaces, and the question
of how the subjective perception of color relates to cross-cultural
color naming (Jameson, 2005). Furthermore, many more colors
exist perceptively than can be linguistically named (Kuehni, 2007,
2010). The problem is that there are not enough terms to qual-
ify color appearances in simple, precise, and exhaustive terms, if
necessary.

Scientific nomenclatures usually adopt severely constrained sets
of basic terms and qualifiers. While this may be appropriate for
specific uses, such as industrial ones, it is too coarse to capture
distinctions that people spontaneously make.

Color nomenclatures usually apply to isolated, uniform
patches, or the very simplest configurations of color mondrians.
Moreover, special color nomenclatures refer to colors pertaining
to particular areas of the entire space of colors. A color nomencla-
ture typically relies on a highly simplified framework based on a
small number of qualifiers and their combinations (for instance,
“red,” “deep red,” “dark red,” “light red,” etc.). These labels are
the linguistic translations of numerical expressions. That is, they
are operational definitions that do not consider the correlation
between perception of color and the linguistic expression that best
matches the perception. Perception, depending on different set-
tings, including the physical and the mental, often leads to color
terms that do not fit into acknowledged standards.

COLORS AND COLOR TERMS
The CIE (Commission Internationale de l’Eclairage, International
Commission of Illumination) definition of color runs as follows:
Color (perceived) is the “characteristic of visual perception that
can be described by attributes of hue, brightness (or lightness) and
colourfulness (or saturation or chroma; see International Lighting
Vocabulary [ILV], 2011; Standard CIE S 017/E:2011). A series of
notes (http://cie.co.at/index.php?i_ca_id=827) clarify that: “when
necessary, to avoid confusion between other meanings of the word,
the term “perceived color” may be used (note 1); that “perceived
color depends on the spectral distribution of the color stimulus,
on the size, shape, structure, and surround of the stimulus area,
on the state of adaptation of the observer’s visual system, and on
the observer’s experience of the prevailing and similar situations
of observation” (note 2); and that “perceived color may appear

in several modes of color appearance. The names for various
modes of appearance are intended to distinguish among quali-
tative and geometric differences of color perceptions. Some of the
more important terms of the modes of color appearance are given
in ‘object color,’ ‘surface color,’ and ‘aperture color.’ Other modes
of color appearance include film color, volume color, illuminant
color, body color, and Ganzfeld color. Each of these modes of
color appearance may be further qualified by adjectives to describe
combinations of color or their spatial and temporal relationships.
Other terms that relate to qualitative differences among colors per-
ceived in various modes of color appearance are given in‘luminous
color’, ‘non-luminous color,’ ‘related colour,’ and ‘unrelated color”’
(note 4).

However, color terms can only be linguistic labels of perceived
appearances of colors, not of physical stimuli because we do not
perceive physical stimuli as such. If anything, we perceive colors as
a consequence of physical stimulation. Also in this respect, how-
ever, the relation between physical stimuli and color appearances is
less direct than one might think, or can be taken for granted, given
the strong contextual dependence of color appearances (Chevreul,
1839; Albers, 1963). It is our suggestion that grounding color
nomenclature on the perceptual experience of subjects provides
models more robust than those based on an automatic transla-
tion of numerical expressions or geometrical positions in a color
space. From this emerges the need to arrive at a robust perceptual
definition of color terms.

Natural languages use different types of color terms (Biggam,
2012). Since Berlin and Kay’s (1977) seminal book, the literature
has drawn on a variety of different methodologies ranging from
purely linguistic analyses (Wierzbicka, 2006), to anthropological
field researches (MacLaury et al., 2007), mainly with the subminis-
tration of Munsell chips1 (Berlin and Kay, 1977; MacLaury, 1992;
Davidoff et al., 1999), and Osgood’s semantic differential (Mad-
den et al., 2000). More recently, results from the neurosciences
have begun to be used (Kay and McDaniel, 1978; Wuerger et al.,
2005). For an extensive review of the different universalist and
relativist positions see Da Pos and Albertazzi (2007).

Specifically, as regards basic color terms2, natural languages seg-
ment color appearances according to identifiable patterns. Most
languages broadly agree on the prototypicality of linguistic cate-
gories for so-called focal colors (Rosch, 1973; Rosch et al., 1976).
However, agreement on what aspects are the proper referents of
color terms in natural languages is still lacking, because differ-
ent models refer to different parameters or different aspects of
color. Most of the dispute between universalists and relativists
on color terms, for example, arises because the exponents of
each perspective use concepts of color referring to different real-
ities, including stimuli, neural correlates, and color appearances.
The usual recourse in these cases to qualifiers such as “‘unique,”
“pure,”“primary,”“elementary,”“basic,”“focal,” and “prototypical”
is widely insufficient, because these qualifiers are themselves far
from being univocal. A more systematic framework is needed.

1That is, the hues presented in his Notation book, see Munsell (1905).
2That is, universal color categories assumed to be present in most languages, and in
a highly constrained order; (see Berlin and Kay, 1977; Kay and McDaniel, 1978; Kay
and Regier, 2006, 2007).
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To present one of the customary confusions in addressing col-
ors, it is enlightening to consider the difference between hue and
color. Unique (also known as unitary or psychologically primary)
colors (Hering, 1920) are colors which do not resemble any other
colors, whilst binary, or psychologically mixed colors resemble
at least two others. The definition is based on the visual simi-
larity which a color shows, or does not show, with other colors,
obtained by pure phenomenological observation. The system of
color notation closest to the perception of colors based on their
visual similarity is the Natural Color System (NCS, Sivik, 1991).
In the NCS, reference to unique hues amounts to reference to yel-
low, red, blue, and green, while reference to unique colors includes
also the achromatic white and black; in fact, from a phenomeno-
logical viewpoint, black and white are also perceived as colors.
The categories of color and hue are not easily definable, however.
Prima facie we might define color as everything that is directly
seen, i.e., as the color appearance – defined in CIE as the “aspect of
visual perception by which things are recognized by their color” –
while hue is the aspect possessed by many colors and which makes
them chromatic, distinguishing them from non-chromatic colors.
A specific hue is more or less visible in a particular color, in the
sense that two colors can be of the same hue: one can see the pres-
ence of more red in a highly chromatic color of red hue than in a
scantily chromatic color of the same hue (for instance in a whitish
pink), although the hue of both is simply red. On the other hand,
one can also say that the color most representative of redness is a
highly chromatic red. In linguistic terms, talk of a focal color as
the most representative color of a category (“the best cues of the
category,” according to Rosch’s prototypical classification; Rosch,
1973; Rosch et al., 1976) makes reference to the color with which
the word“red” fits best. In fact, focal color is the color in which one
sees what one considers the best red, not a color which belongs to
the red hue, which is reddest because it is less blue and less yellow.
It is worth noting that the “best” red, differently form “unique”
red, can bear cultural connotations as well.

Highly chromatic colors belonging to a bipolar scale between
two consecutive hues show different degrees of similarity with the
extreme colors of that interval. For instance, the interval defined
by the extremes “most chromatic yellow” and “most chromatic
red” in which mixed colors appear more or less yellowish or more
or less reddish – i.e., are similar to one or the other color in differ-
ent ways – show different degrees of similarity with the extreme
colors of that interval. Linguistically, these intermediate colors
can be expressed, for example, in terms of “red and yellow,” “saf-
fron,”“pumpkin,”“orange,”“carrot,” etc. Not necessarily, however,
do these color terms have the same referent, and some may also
overlap. For example, a color may appear more or less red either
because it is pink or because it is orange: in the former case, the
hue is maximally red but little visible (the color is only slightly
chromatic); in the latter case, the hue is not very red and the color
may be highly chromatic. Consequently, one assesses pink as “very
red” because it is only slightly or not at all yellow or blue; and like-
wise one assesses orange as only slightly red because the “hue” is
not very red. However, it seems that one can also make an absolute
assessment of how much a color is red, so that orange and pink
might be treated equivalently, i.e., the extent to which red (not
hue) is visible in them.

The perceptual similarity of the mixed hues to the extremes
“red” and “yellow” can be quantified (for instance, halfway in the
interval (50–50); or more yellowish than reddish (say, 70–30);
and so on. Needless to say, different similarity metrics can be
developed.

The problem of the perceptual identification and denomina-
tion of colors is particularly complex in the case of mixed colors,
such as orange. To be noted is that Berlin and Kay’s (1977; see
also Kay and Maffi, 1999) eleven basic color terms include both
unique colors such as white, black, red, yellow, green, and blue
(the first six colors in their list), and mixed colors such as orange.
According to Sternheim and Boynton (1966), however, when the
orange response category is available in a judgment experiment
on the color continuum together with the response categories for
red, yellow, and green, orange is used with the lowest reliability,
i.e., randomly. When the orange response category is omitted, the
hues otherwise associated with orange are completely dispersed
into the red and the yellow, though with peaks in either red or
yellow. Sternheim and Boynton (1966) therefore conclude that
orange is some combination of red and yellow, and that the hues
associated with the long wavelength part of the spectrum3 can
be described without the category of orange, and making use of
two already known color terms (yellow and red). The superflu-
ous nature of the category “orange” was questioned by Boyton
himself in a later study. He interviewed Japanese subjects, who
were required to express their degree of agreement on the exis-
tence of specific categories related to Berlin and Kay’s basic color
terms. For 90% of the subjects, the category of orange was well
categorized as a salient color, and the category was linguistically
expressed by mono-lexemic typical terms different from red and
yellow (Uchikawa and Boynton, 1987).

This would imply that, phenomenologically, “orange” lies
exactly midway between the two pure colors of red and yellow
(on the status of “orange” from the point of view of painters,
see Garau, 1993). Whenever orange varies from the mid-point
between red and yellow, the resulting color is described as yellow-
ish red or reddish yellow, as are the other mixed hues of the same
range.

NOMENCLATURES
One of the problems raised by the relationship between color
perception and color terms is whether perceptual categorization
requires linguistic categories at all. That is: do perceptual cate-
gories depend on language, learning and higher cognition, or are
they independent from them? Munsell chips are definitely too
poor a tool with which to verify this issue experimentally (Lucy
and Shweder, 1979; Wierzbicka, 1996, 2006; Lucy, 1997). Testing
the possible influence of language on color perception requires a
more sophisticated experimental setting, such as having several
words available for, say, red, in order to signal different environ-
mental conditions (Green-Armytage, 2006; Winawer et al., 2007).
In fact, as we have already noted, there is an indefinite num-
ber of color appearances, more than any natural language may
encode. Therefore, the question arises as to how to relate natural

3The expression in Sternheim and Boynton’s paper is unfortunate, because the study
refers to “perceived” colors.
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language terms for perceived colors and the terminology adopted
by scientific theories.

Scientific nomenclatures usually adopt severely constrained sets
of basic terms and qualifiers. Four different spaces should be taken
into account: (1) The space of colorimetry (to be noted, however,
is that there are colorimetric spaces, such as CIELAB and CIECAM
(respectively Lab Color Space and Color Appearance Model both
published by CIE), that (do not perfectly) represent perceived col-
ors, (2) the physiological space LMS (color space based on human
cone cells – LMS stands for L- M- and S-cones) and its derivate
DKL (Derrington–Krauskopf–Lennie color space), (3) the space
of the linguistic representation of colors, and (4) the space of the
subjective perception of colors.

To be noted is that the phenomenological perspective under
(4), thus far rarely adopted, is starting to attract attention (Sivik,
1974, 1997; Albertazzi et al., 2012).

For each of these spaces, different theories are customarily
developed. Each space requires specific groups of observables. The
main issue is that most of the contemporary literature fails to dis-
tinguish them as clearly as needed, and therefore has difficulties
in addressing the problem of their relations. Since colors, what-
ever they are, are also, and we would say primarily, a question
of perception, one may wonder whether starting from real (i.e.,
subjective) perceptual experience of color provides information
that may escape or remain hidden if one instead starts from other
frameworks.

COLOR PRIMITIVES
Color theories use different primitives – and even when they use
the same terms, they may define them differently. It is consequently
mandatory to be clear about the different terminologies and the
ways in which different theories use any given term.

It is generally assumed that color can be described according to
the parameters of hue, brightness and saturation (Kuehni, 2003;
on measurement see Krantz et al., 1989)4. These properties make
explicit reference to the relation between a given stimulus (hue
correlated with wavelength, brightness correlated with luminance,
saturation correlated with purity) and the subsequent subjective
experience of a perceiver. On the other hand (see above), it is also
often taken for granted that hue, brightness, and saturation are
attributes of the color as perceived; also taken for granted is what
they are correlated with, and what they correspond to; and that
they form a 3D space where each of them represents a distinct
dimension. These parameters result from innumerable experi-
ments on the physical stimuli, i.e., light spectra, or the power
at each wavelength. As it happens, light spectra can be readily
measured and characterized by three numbers (the so-called tris-
timulus values of light). However, the shift is constantly made
from properties of light spectra (as measured by the tristimulus
values) to properties of the surfaces of seen objects (Wyszecki and
Stiles, 1982; Hurlbert, 2013). It is customarily claimed that the
tristimulus values specify the response of the standard human eye
to the color spectrum. This standard response, however, is far from

4Alternative names for “saturation” are “colorfulness,” “intensity,” and “purity.”
Munsell uses instead a different primitive, namely “chroma”; “chromaticness” in
NCS. See below for a brief reconstruction of their meaning.

providing a general answer to the ways in which human eyes per-
ceive colors, because the determination of the tristimulus values
requires highly specific and severely constrained conditions, i.e.,
generally isolated colors. To provide an example, visual percep-
tion in complex environments where phenomena of contrast and
assimilation regularly occur is purposely never taken into consid-
eration: in fact, one of the major self-imposed limits adopted by
colorimetric analysis is that it should consider only isolated colors,
without taking colors combined with other colors into account
(Boynton, 1979).

The problems are compounded because the literature on color
defines hue, brightness, and saturation in different, often mutu-
ally incompatible, ways. Furthermore, although the distinction
among hue, saturation and brightness is correct as far as the prop-
erties of light are concerned, it is far from being a “natural” –
i.e., “phenomenological” – distinction from the point of view of
the perceiver (Stumpf, 1917, p. 8; Katz, 1935). Saturation, for
example, is a technical term used to characterize decontextualized
light stimuli. According to the CIE definition of saturation, it is
“the colourfulness of an area judged in proportion to its bright-
ness” [1136], and in a note it is specified that “For given viewing
conditions and at luminance levels within the range of photopic
vision, a colour stimulus of a given chromaticity exhibits approx-
imately constant saturation for all luminance levels, except when
the brightness is very high.” Originally introduced by Helmholtz
(1867) – explicitly aware of its arbitrariness from a perceptual
point of view – the property of saturation should measure the
degree of chromatic content in proportion to the brightness of a
color. However, Wyszecki and Stiles (1982) note that the concept
of saturation (together with the concept of chroma) is perhaps
the most controversial concept in the literature on color appear-
ance. In fact, different systems of color representation differ as
to their primitives: for example, one finds chroma in Munsell
and Sättigung in Deutsches Institut für Normung (DIN)5. Since
the definition of saturation changes relatively to the color model
adopted, the “‘usual” definition of saturation as the “colorful-
ness” (Hunt, 1986) of a color in relation to its “brightness,” or
the degree of departure from the gray with the same lightness
(all grays having zero saturation), is of little help (Mausfeld,
2003).

Finally, the different meanings of “saturation” or “chroma” are
not limited to the different color systems in which they appear.
Saturation, in fact, is confused with another phenomenological
aspect of color, its insistence or forcefulness, i.e., the fact that a
color appears more vivid or brighter in the field (Katz, 1935). These
qualities of color carry emotional and affordance-type informa-
tion like the difference between cold and warm colors (Ou et al.,
2004a,b; Xin et al., 2004; Da Pos and Green-Armytage, 2007; Da
Pos and Valenti, 2007) and the difference between light and heavy,
large and small colors (Arnheim et al., 1954/1974; Itten, 1961),
and they concern the theory of the harmonic dimensions of color
(Burchett, 2007).

5DIN is based on a circle of 24 color-hues, a saturation scale, and a darkness
scale as a special parameter for establishing the relative brightness of non-self-
illuminating colors (i.e., colors that are illuminated by an external source). See
http://www.colorsystem.com/?page_id=948&lang=en.
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In past years, “brightness” was sometimes even used as syn-
onymous with “lightness,” which fortunately is no longer the case.
From a perceptual point of view, “brightness” is an attribute of
the light that reaches the eye from a surface, while “lightness”
refers to the colors of an object, i.e., it is an attribute of a sur-
face. Lightness is an observable referring to white, understood as
the color with the highest lightness (100%). It follows that the
lightness of chromatic colors and grays is always less than 100%.
Lightness then corresponds to the reflectance of a surface, a prop-
erty of distal stimulus – that is, a phenomenologically inaccessible
property. Using brightness and lightness as synonymous would
therefore merge two different observables: an observable of light
and an observable of surface. To further compound the confusion,
“brightness” may be also used for surfaces, thereby indicating the
more or less strong illumination (i.e., light) to which they are sub-
ject. In this latter case, many technicians prefer to use “luminance”
(thereby not referring to the corresponding perception, i.e., bright-
ness). Luminance, in fact, is a psychophysical property pertaining
to the stimulus, and not perceivable as such by a perceiver.

Finally, “brightness” is also used for the correlation between
the impression of lightness and luminance, where under the same
luminance colors of higher saturation appear brighter than colors
of low saturation (for example, the Helmholtz, Kohlrausch, and
Boswell illusion; see Kaiser, 1985).

FRAMEWORKS OF ANALYSIS
The foregoing discussion has shown how tangled the “scientific”
analysis of colors is, and we have provided some evidence about
how different some of the presently most widely used theories
and approaches are. Some of their differences are due to prag-
matic factors such as the needs of the communities using them:
for instance, technicians requiring colorimetric data prefer to use
either the DIN, the Munsell, the CIELAB or CIECAM02 systems
(nowadays with a preference for the last). In one way or another,
all the systems need to take account of four different natural sys-
tems: physical radiation, physiological elaboration, perception,
and language. They differ as to where the focus falls, and therefore
in which other system(s) should be kept under control in order to
obtain the information they deem relevant. Munsell, NCS, and also
OSA-UCS (Optical Society of America, Uniform Color Scale), for
example, have a phenomenological base, none of them is primar-
ily focused on physical radiation. Munsell, however, accepting the
Fechnerian psychometric law adopts a two-sided understanding
of perception, while the NCS adopts and develops a properly phe-
nomenological stance (perception as connected to what appears
to awareness), though ruled by psychometric principles.

The Munsell system constrains both psychological and linguis-
tic information: the former by showing individual chips, that is by
avoiding contextual influences on color, and the latter by admitting
only yes/no answers by the perceiver.

On the other hand, the NCS constrains the neurophysiological
base of perception and considers both the source and the neuronal
elaboration of the stimuli to be irrelevant. This is not to imply
that opponency has no neuronal correlates (Jameson and Hur-
vich, 1955; MacLeod and van der Twer, 2003; MacLeod, 2010).
The problem, however, is that anatomo-physiological substrates
cannot explain the phenomenological qualities of opponent colors

(Valberg, 2001; Kuehni, 2004). As a matter of fact, stimuli for the
NCS may arise from any source whatsoever (either “external” or
“internal”), and there may be different kinds of them.

By not constraining its phenomenological base, NCS seems to
better exploit the richness of both perceptual experience and its lin-
guistic formulation: for example, the relation between warm and
cold colors and its linguistic expression (Hård and Sivik, 1981; Da
Pos and Valenti, 2007). The very existence of NCS shows that phe-
nomenological observables can produce scientifically exploitable
models of color.

The problem remains of making sense of the variety of mod-
els. As said, some models are explicitly tailored to the needs of
specific communities of users, whilst others are more general in
nature. The question however is that all the major models suc-
ceed in capturing aspects of the enormously complex problem
of color perception. Finding a way to better codify the specific
points of view embedded in the various models and systematically
coordinate their outcomes may greatly deepen our understand-
ing of colors. Since the discussion has already shown not only
that the different models focus on different types of information,
but that these types pertain to different sciences (physics, biology,
psychology, linguistics – what in a more explicit philosophical par-
lance becomes the different levels of reality characterizing physical
waves, neurophysiological activities, perception, and language –
the question arises naturally whether a theory of the levels of real-
ity will indeed be able to clarify and connect, at least to some
degree, the different models.

APPROACHING LEVELS OF REALITY
Before presenting some aspects of the theory of levels of reality and
their relevance to our topic, some preliminary clarifications on the
nature of ontological categories are needed. Needless to say, these
clarifications are far from being anything like the presentation of
a full-fledged, ontological framework. The economy of the paper
forces us to skip issues that a purely philosophical paper would
have to address. With these limitations, these clarifications may
provide the required anchor points to an ontological framework
sufficiently general to clarify scientific models.

We distinguish between categories on the one hand, and
individuals on the other, as the entities to which categories
refer. Only individuals pertain to the furniture of the world.
Categories are not new entities added to the furniture of the
world; they are instead principles (or determinations) of the
individuals that they categorize. Individuals may be subdivided
between concreta and abstracta, and their categories between
real and ideal categories. Concreta and real categories pertain
to the ontology of real being, abstracta and ideal categories
to the ontology of ideal (or abstract) being. Universal cat-
egories comprise both concreta and abstracta, real and ideal
being. The partial ontology that we are presenting in this
paper deals with some aspects of real being only, namely
colors.

Moreover, the difference between the nature of categories as
principles and the often cumbersome process of their discovery
and refinement should never be forgotten. The following quo-
tation aptly summarizes our own understanding of ontological
categories:
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“the categories with which . . . ontology deals are won neither by a
definition of the universal nor through derivation from a formal table
of judgment. They are rather gleaned step by step from an observation
of existing realities. And since, of course, this method of their discovery
does not allow for an absolute criterion of truth, here no more than
in any other field of knowledge, it must be added that the procedure
of finding and rechecking is a laborious and cumbersome one. Under
the limited conditions of human research it requires manifold detours,
demands constant corrections, and, like all genuine scholarly work,
never comes to an end”

(Hartmann, 1975, p. 13–14).

One of the most difficult problems faced by any ontology is
the answer to the following question “What are the individuals to
which ontological categories refer?” Two main positions compete;
one according to which ontological individuals are only atomic
entities, and one which accepts both atomic and molar entities.
The former position sees ontological categories as referring to
the most elementary components of the universe of discourse
(e.g., colors as captured by colorimetry), from which all the
other components should derive by composition or other suit-
able procedures. This is obviously the classic reductionist credo.
The alternative vision is more flexible in the sense that it admits
a variety of ontological individuals, some of which may work at
molar levels of reality (e.g., colors as they appear in the environ-
ment, according to phenomena of assimilation and contrast). The
main problem facing this alternative vision is that no generally
accepted set of intermediate levels arise as the natural candidates
from which to start. To compound the difficulty, the various sci-
ences are such that a number of different levels present themselves
as “natural” starting points. Selecting any one of them rather than
any other is entirely arbitrary. Therefore, there is no saying that the
former position is much simpler and (apparently) more effective
than the latter. Notwithstanding all the difficulties encountered by
the reductionist strategy, many see the reduction to atoms or basic
individuals as a perhaps awkward but unavoidable TINA (There Is
No Alternative) position. The underlying belief is that the difficul-
ties arising from the reduction to atoms will eventually be solved
by more refined strategies, such as new forms of composition.
The possibility is usually overcome that even if some individual
problem can be reductionistically analyzed, this does not neces-
sarily imply that a generic (that is universal) reductionist strategy
is available. Anyway, no patent decision procedure exists to help
seriously puzzled scholars to choose between the former and the
latter strategy. The unavailability of a proper decision procedure
means that in the end the decision depends on a choice that the
community of scholars has to take.

Our take on the issue is that the constraint forcing ontological
categories to refer to atoms only impoverishes reality in the sense
that information is lost and in the end authentic aspects of real-
ity are missed. Instead, an ontological framework acknowledging
both atomic and molar categories is both more general, in the sense
of being able to categorize a wider spectrum of real phenomena,
and more complex, in the sense of having to address many more
problems, such as the ontological nature of the relations between
different levels of reality.

This ontological framework systematically distinguishes
between “pure” (i.e., “general” or “universal”) categories and
“domain” (or “level”) categories. Keeping in mind this distinction

will avert misunderstandings, especially when categories like those
of space, time, and causation are introduced.

LEVELS OF REALITY
Today, levels of reality are mostly discussed under the rubrics of
“emergence” and “parts and wholes6.” In fact, the two most obvi-
ous strategies with which to approach levels are to divide the world
into hierarchies of entities (such as atom–molecule–cell, etc.) or
groups of properties (physical, biological, etc.). Not surprisingly,
the main distinction among theories of levels of reality closely
replicates the divide between entity-based and property-based
theories. It is also not surprising that the entity-based theory of
levels comes close to part-whole theories, and the property-based
theory of levels comes close to type theories. Their merits and
demerits notwithstanding, it is worth taking immediate note of
an underlying problem: in the above lists of entities/properties,
the exact meaning of the concluding “etc.” is unclear. Consider
the entity-based framework: let us suppose that the series “atom–
molecule–cell” will be at some point enlarged by the addition
of new entities such as “mind” or “society” (or suitable alterna-
tives). While there are prima facie plausible candidates for the
relation connecting the items “atom,”“molecule,” and “cell” (e.g., a
part–whole relation), the candidate relations for the new items are
remarkably less easy to detect. Similarly, the connections between
the properties characterizing “physical” and “biological” types are
much simpler (e.g., a subset-set inclusion) than the connections
between the properties characterizing the group comprising also
“psychological” and “social” types7.

Of the two main ontological acceptations of entity-based or
type-based theories of levels, the former, as said, comes close to
the theory of parts and wholes, and the latter to the theory of
ontological types. Let us adopt the latter option and understand a
level of reality as a group of (ontological) categories (Poli, 2001).

The next step is to distinguish universal categories, those that
pertain to the whole of reality, from level categories, those that
pertain to one or more levels, but not to all of them. The distinc-
tion among physical, biological, psychological, and social types
follows naturally. The subsequent step is to specify the relations
connecting the levels to each other. Contemporary theories of
levels of reality customarily exploit only one inter-level relation
(e.g., in the form of supervenience). As far as color is concerned,
for instance, its phenomenic appearance would be a supervenient
product over its physical basis. One of the reasons for rehabilitat-
ing Hartmann’s theory of levels (see note 6) is that his theory uses
two different inter-level relations and is therefore able to better
distinguish the differences between the physical and the biological
levels, on the one hand, and the biological and the psychologi-
cal levels on the other (Poli, 2006a,b,c, 2007). Provided that the

6In the English-speaking world, both strands of analysis have been stimulated by
influential papers by Hilary Putnam – notably Oppenheim and Putnam (1958) and
Putnam (1961). Since them, an enormous discussion has developed, which cannot
be summarized here (for an old but still valuable survey, see Blitz, 1992). However,
as important as the discussion in English has been, it is worth noting that some
major pre-WWII contributions have never been taken into account, notably those
by Nicolai Hartmann. See Hartmann (1940, 1975), Werkmeister (1990), Poli (2012).
7Furthermore, beyond or above the distinction between entity-based and type-
based theories of levels of reality, other acceptations of levels often intrude, such as
notions of levels of organization, complexity or representation.
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theory is fully developed and updated to contemporary knowl-
edge, the two relations cover the connections between the physical
and the biological levels, on the one hand, and among the bio-
logical, psychological, and social (including language and culture)
levels on the other (Birren, 1969; Bornstein, 1973). With reference
to colors, the two mentioned relations respectively cover stimuli
(wavelengths) and their neuro-physiological elaboration (neural
correlates), on the one hand, and perceptual modes of appear-
ances of colors (Katz, 1935) and the relations among color terms
in natural languages on the other.

As said, the original theory of levels developed by Hartmann
is based on two different inter-level relations. Leaving universal
categories aside, the following two main categorical situations
can be distinguished: (a) Beings A and B are categorically dif-
ferent because the categories upon which the former is founded
are partially different from the categories upon which the latter
is founded, in the sense that the latter is founded on new cat-
egories (which implies that the latter includes at least a novum,
a new category not present in the former); (b) Beings A and B
are categorically different because the categories upon which the
former is founded and those upon which the latter is founded
form two entirely different (disjoint) groups of categories. Fol-
lowing Hartmann, the two relations can be termed respectively
relations of super-formation (Überformung) and super-position
(Überbauung ; Hartmann, 1940).

Super-formation [the type (a) form of dependence] is weaker
than super-position because it includes already actualized cat-
egories, those of the level below. Suffice it to consider the
super-formation between molecules and cells, i.e., between the
physical and the biological levels of reality. In this regard, one can
mention that even if organisms are unquestionably more complex
than mechanisms, the behavior of organisms complies with the
laws of mechanics. On the other hand, the psychological and social
levels are different because they are characterized by an interrup-
tion in the categorical series and by the onset of new categorical
series (relative respectively to the psychological and social levels).
The relation between the biological level and the psychological
level, on the one hand, and the relation between the psychological
level and the social one, on the other, are both relations of super-
position. By way of example, the group of categories embedded
in psychological entities is different from the group of categories
embedded in biological entities. Similarly, the group of categories
embedded in social entities is different from the group of categories
embedded in biological entities.

When the connecting relation is a relation of super-formation,
some categories of the lower level recur in the higher one. Recur-
ring categories interact with the categories of the higher level and
are, so to speak, contaminated by them; some of their moments
become different. Higher levels are never characterized by recur-
ring categories, however. Each level has its novum, the category
or group of categories that distinguishes the level from the lower
ones. The novum does not derive either from the elements of the
level or from their synthesis.

Two aspects characterize super-position relations: first, the
categories embedded in the entities of the connected levels are
different (they are all nova); second, a relation of existential
dependence links the higher level to the lower one. Most details

of the links connecting together the various levels of reality are
still unknown, because the various sciences have worked mainly
on causal links internal to their regional phenomena8.

As an observable, color has ramifications into all these different
levels of reality and as we have seen the properties of color are
different in the different levels.

This is the main reason for at least some of the differences
among the different color models. Specifically, the distinction
between super-formation and super-position plays a major role.
While two different levels related by a relation of super-formation
may indeed present the same category, the internal determinants
of this category are nevertheless partially different because the cat-
egory pertains to two different categorical groups: that is to say,
it interacts with two different groups of categories. One may say
that the category seems to presents an intrinsic ambiguity. We
say “seems” because the ambiguity is not embedded in intrinsic
features of the category but depends entirely on the observer’s
shift between different levels of reality (connected by a relation of
super-formation). Reading a physical category (the three stimu-
lus codification of a light wave) as a biological category (the three
stimulus codification of a neural network) is a case in point.

On the other hand, levels of reality connected by a super-
position relation present a remarkably different situation. In this
latter case – and leaving universal categories aside – the categories
defining the two levels are different. In this sense, no ambiguity is
likely to arise. Moreover, the two levels are connected by a relation
of existential dependence, meaning that the higher level requires
the lower one as its existential bearer. Examples from the field of
colors are provided by the difference between warm and cold, light
and heavy, large and small colors (see Color Primitives above).
None of these properties is present in the space of physical radia-
tion. They are authentically phenomenological categories, present
only at that level of reality. On the other hand, the phenomeno-
logical level requires suitable existential bearers – and more than
one as a matter of fact: not only the brain as the bearer of the
mind, but also the body (because the brain is not an autonomous
whole)9, and the external environment. All of them are required,
and all of them are sources of possible perceptual stimulation.

CONCLUSION
As we have seen, color perception is paradigmatic for its complex-
ity, including its ramifications into the physical, the neurophysi-
ological, the linguistic (and cultural) and the phenomenological

8The lack of a theory of levels of reality has possibly been the main obstruction
against development of the theories needed. Proposals concerning the architecture
of levels and their links will improve our understanding of the world and its many
dependencies. To mention but one case, the theory of levels paves the way to the
claim that there may be different families of times and spaces, each with its own
structure. We shall argue that there are numerous types of real times and spaces
endowed with structures that may differ greatly from each other. The qualifier real
is mandatory, since the problem is not the trivial one that different abstract theories
of space and time can eventually be, and have been, constructed. We shall treat
the general problem of space and time as a problem of chronotopoids (understood
jointly, or separated into chronoids and topoids). The guiding intuition is that each
stratum of reality comes equipped with its own family of chronotopoids (Poli, 2007;
for further details on the theory of levels of reality, see Poli, 1998, 2001, 2006a,b,c,
2009, 2010a,b, 2011a,b, 2012).
9Here is where the connection with the theory of levels from the perspective point
of the theory of wholes becomes visible.
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domains. Some of these ramifications are simpler than others.
Not surprisingly, the phenomenological one is the most com-
plex because phenomenic color exists only in the way in which it
appears and therefore is a primarily contextual entity deeply influ-
enced by interaction and assimilation (Katz, 1935) and language.
The higher complexity of color perception may partly explain the
preference shown by many experts for other points of view.

The research hypothesis that we have presented is that the the-
ory of levels may clarify some of these intricacies in the sense of
making explicit the ontological references of the various aspects of
color, and it may therefore contribute to explaining the concepts
of color used in science, phenomenology, and natural language
conceptualization.

The analysis has shown that the different models explain color
perception by encoding qualities pertaining to different levels of
reality, which implies that strictly speaking they model different
realities. However, since phenomenic color is essentially a con-
textual entity, the NCS system seems to be the model closer to
color appearances. Further studies may provide additional evi-
dence about whether the explicit connection between a model
and the level of reality that it encodes is indeed able to clarify the
relations among models themselves (an issue that may be called
“ontology as a framework for clarifying science”).
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1. INTRODUCTION
The two decades around the turn of the millennium have seen the
rapid advent, and perhaps the premature decline, of a paradig-
matic shift in science, represented by agent-based modeling
(ABM) and simulation. In this section, after shortly defining what
we mean with ABM, we present a short account of its history.

1.1. WHAT AGENT-BASED MODELING IS
What is meant by Agent Based Modeling? Often, this is defined
in opposition to Equation-Based Modeling (see for example
Dyke Parunak et al., 1998; Cecconi et al., 2010). More specifically,
ABM arises at the intersection between agent theory, systems,
and architectures, on one hand, and the social sciences, on the
other hand. Agents are usually defined (see Conte, 2009) as
autonomous systems that operate transitions between states of
the world, based on mechanisms and representations somehow
incorporated into them.

Under this general definition, the field of agents shows a
tremendous variability. Agents vary indeed on several dimen-
sions, which include whether and to what extent they are
autonomous, self-interested, sociable, and capable to learn from
experience and/or observation. Agents also differ in their level
of complexity: according to a classic distinction introduced by
Wooldridge and Jennings in their influential work (Wooldridge
and Jennings, 1995), agents in a “strong” sense are capable to
manipulate and reason upon mental representations; otherwise
they are considered agents in a “weak” sense. Another impor-
tant distinction concerns the way in which mental representations
are incorporated: symbolic representations allow an agent to
mentally manipulate them in order to reason, plan, take deci-
sion, communicate. Sub-symbolic representations are unaware,
implicit, based for example on network-like configurations repre-
senting the structure of relationships among neurons in cerebral

areas, and not liable to purposive manipulation on the side of the
agent. Finally, agents vary according to the philosophical or meta-
theoretical view their description is based upon. One example is
the attempt to model agents on the basis of a personal utility func-
tion, on which much work on agents has been done over the past
30–40 years or so, and that has also been criticized as for its micro
plausibility (Antunes and Coelho, 2004).

The practice of ABM however did represent a substantial
under-exploitation of such wide spectrum of possibilities. De
facto, much of the agent models worked out and simulated are
totally ad-hoc, based on very simple local rules (Epstein, 2006),
more or less arbitrarily implemented on a program running on
a computer (Gilbert and Troitzsch, 2005). When the program is
run, macroscopic effects of the local rules can be observed on the
screen, and then be stored, analyzed and possibly visualized in
search for emergent phenomena. We will return to the problem
of ad-hoc rules in section 2.3 below. Such a practice of model-
ing lends itself well to observe and experiment upon multi-agent
worlds or agent societies. These are meant to either reproduce
some real-world setting or phenomenon [a typical example is the
Anasazi culture simulation (Axtell et al., 2002)], or to build up
and observe would-be worlds (Casti, 1997). Such models allow
novel theories about abstract social phenomena to be formulated,
operationalized, and tested. Examples of this application of ABM
abound and are among the best cited works so far worked out in
this field.

1.2. AGENT-BASED MODELING IN A HISTORICAL PERSPECTIVE
Conference proceedings, dedicated to the new methodology
of ABM and its multiple applications within the social and
behavioral areas of science, started to appear in Europe since
the early nineties (Gilbert and Doran, 1994; Gilbert and
Conte, 1995; Conte et al., 1997). Agent-based models of social
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phenomena trace back to as early as 1971, when the famous
(Schelling, 1971) model of segregation was published in the
Journal of Mathematical Sociology. In 2002, the field obtained
a major institutional acknowledgment, when the proceedings
of a Sackler Colloqium of the National Academy of Sciences,
under the title “Adaptive Agents, Intelligence, and Emergent
Human Organization: Capturing Complexity through Agent-
Based Modeling,” held in October 2001, were published on PNAS
(Bonabeau, 2002). In that circumstance, ABM was proclaimed
as the leading field—we might say the flagship to use a trendy
tag - in the renewal of the social, behavioral, and complex-
ity science, which was expected to take place in the years to
come. Consecrated by the US scientific institutions, the field was
already intensely practiced also, if not primarily, in Europe, where
ABM had given rise to a new journal, the Journal of Artificial
Societies and Social Simulation (JASSS, founded in 1998), to the
first scientific association (ESSA, The European Social Simulation
Association, created in 2003), and was at the center of a vari-
ety of promotional activities. Soon enough its range of influence
extended beyond the two sides of the Atlantic, reaching out to
the Pacific area, and giving rise to the PAAA association. At the
same time, the NAACSOS association was founded in the US.
After some years of fruitful competition, the associations joined
in the first World Conference on Social Simulation held in Kyoto
in 2006.

At the end of the first decade, however, the ABM leader-
ship seems to be challenged if not decisively weakened by the
(re)appearance of a more sober, more encompassing, and less
innovative tag, that of Computational Social Science (CSS), of
which ABM is a component (see Bankes et al., 2002) for an early
insight), and which now candidates itself to replace ABM in the
same leading position for the next decade. Evidence of a change
of leadership and of a possible coming era for bare CSS, rather
than for the more inspiring Generative Social Science proposed by
Epstein in 2006, can easily be found in some position papers (e.g.,
Lazer et al., 2009; Cioffi-Revilla, 2010), books recently appeared
(Gilbert, 2010), a new regional association—the CSS Society of
the Americas, born on the ashes of the short-lived NAACSOS, and
the relative conference held in 2011—and, finally, the objectives
of the unsuccessful but groundbreaking EU FET flagship pilot
FuturIct (www.futurict.eu).

If history is instructive, the study of signaling is fun. In
the era of information overflow, distributed content produc-
tion, collaborative filtering, crowd sourcing, and so on, emblems
are decisive. Tags have a far-reaching but short life. Under the
tyranny of PageRank, contents compete in terms of lookups,
and these most certainly depend on familiarity, and possibly
also on tags appeal. Science makes no difference. It is some-
what surprising when a paradigm shift is signaled by a flat
combination of two traditional scientific areas: social sciences
and computational science. What is the meaning conveyed by
this signal? Does the new label correspond to a new paradigm
shift in the social and behavioral sciences, or does it sim-
ply meet a kind of marketing need for periodical renewal of
names?

This paper presents an attempt to weigh up the impact of ABM
and answer the question whether this field is undergoing or not a

real decline; whether or not his replacement was timely, necessary,
and effective. Next, some current variants of CSS will be com-
pared. Finally, some important requirements for achieving real
progresses in the computational study of social phenomena will
be identified and discussed.

2. AGENT-BASED MODELING: A BALANCE
Rather than a detailed survey of ABM (for a good example, see
Helbing and Balietti, 2011a) this paper presents an attempt to
draw a balance of this field, pointing to its main weaknesses and
strengths.

2.1. STRENGTH OF AGENT-BASED MODELING
One may wonder what ABM is good for and what are its major
strong points. The tricky questions as to when ABM is really
needed, whether agent-based models can or cannot be converted
into an analytical, equation-based model and to what extent this
can be done has been debated at length elsewhere (see for example
Epstein, 2006; Cecconi et al., 2010). Nonetheless, ABM remains
the only known approach apt to model and reproduce sets of
heterogeneous agents interacting and communicating in different
ways.

Of course, ABM can only provide a sufficient explanation of
the phenomenon of interest, not a necessary one. This feature,
which (Epstein, 2006) extensively clarifies and discusses, is also
known as multi-realizability (Sawyer, 2005), and it is an outstand-
ing property of multilevel systems. A macro-level phenomenon in
whatever domain social, natural, mental, etc. of reality, is multi-
realizable when it can be implemented in different ways on the
lower levels. Inevitably, ABM generates the higher-level effect by
following one of the possible generating paths. Even if as many
models as generating paths were actually implemented, it would
still be difficult, if not impossible, to assess which one among
them is effectively implemented in the real world. But, interest-
ingly, this is true also of the target phenomena: an organization
can perform its mission independently of the internal structure
(consider as an example a project-based structure against a func-
tional one). Social conformity is achieved through a variety of
internal mechanisms, e.g., imitation or norm compliance. It is still
unclear how disapproval works as a sanction, whether it affects
people’s decision-making because it activates an expected asso-
ciated material punishment, or violates the goal of a good (self)
esteem. Actually, multi-realizability is a property not only of ABM
but also of the real world. In this sense, multi-realizability dif-
fers from the more general issue of model underdetermination,
as it connects it directly with possible generative paths in reality,
an analogy that makes ABM particularly apt to study the equiva-
lence, or possible lack thereof, of structure and mechanisms inside
intermediate levels, in the sense of the examples above.

To implement sets of heterogeneous agents in interaction
brings about a series of second order advantages: agent societies
are (1) operational platforms where theories get converted into
falsifiable hypotheses; (2) experimental laboratories where theo-
ries get gradually and thoroughly controlled; (3) multilevel worlds
where the level of individual units, the agent, is clearly distinct
from the macro-level, the system level and unforeseen effects and
emergent properties of interaction can be observed.
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In short, ABM is an in nuce society, which unfolds and actu-
alizes when the model is implemented on a computer program
and this runs. In some cases, the effects observed in the com-
puter could not be predicted while modeling and implementing
the single units, the individual agents. Hence, the effects of such
behavioral units on the whole agent society or parts of it can
be observed and investigated. Otherwise stated, ABM allows the
interplay between different levels of a social system to be modeled
and observed. As shall be seen later, this important property of
real-world societies has been insufficiently exploited. The main
dynamic investigated by ABM is the way-up of the interaction
among the micro and the macro-level. The complementary pro-
cess, the way-down from the macro-level to the micro-level, has
been poorly explored. Closing the loop, however, may require
a high level of ABM complexity. Theory-driven, non-ad-hoc
models of phenomena generated by intelligent behavior may be
relatively difficult to calibrate (Heckbert et al., 2010). Difficulties
usually increase with the model’s level of scale and the number of
parameters. One may perceive a trade-off between vertical scal-
ing, i.e., agent complexity, and horizontal scaling, i.e., scenario
complexity. Such a trade-off is probably one of the keys for ABM
development and leads us straightforward to one of the weak
points in the field.

2.2. WEAKNESS OF AGENT-BASED MODELING
Some problems and difficulties in the field of ABM and simula-
tion have been perceived from within the scientific community
since long, while others have only recently come to our atten-
tion. Since the field’s early days, a serious concern of Agent Based
modelers and simulators is how to design large-scale agent-based
simulations. In its initial applications, agent-based models did not
care much about the problem of scale, as they were applied to
observe the emergence of patterns from interaction at the micro-
scopic level in artificial scenarios sharing some crucial features of
the real-world, but not really aimed to reproduce its details. As
soon as the potential of agent-based models became apparent—
revealing a great occasion for observing and manipulating in silico
models of target phenomena in order to acquire a better control,
and possibly to optimize intervention—upgrading their level of
scale of several orders of magnitude proved necessary. You cannot
optimize a system of traffic if you do not manipulate parameters
in populations of several millions of agents.

Under the pressure of complex systems science, which is gain-
ing ground in the study of social phenomena (Helbing and
Balietti, 2011b), agent-based simulation is increasingly expected
to meet a further, and connected, important requirement, i.e.,
to be fed by massive data in real-time. To answer the prob-
lems of scale and real-time simulation, a variety of ICT solutions
(parallel and supercomputing infrastructures) are being designed
and tested. To deal with this challenge, agent-based simula-
tions were bent to applications needs, such as policy modeling
and traffic optimization (Grether et al., 2010), distributed com-
munication over the Internet (Chen, 2009), electricity market
(Guerci et al., 2010), financial crisis (Sornette, 2003), epidemics
(Pastor-Satorras and Vespignani, 2001). This is not the forum
for discussing sophisticated technical solutions (but for a review
of techniques to that purpose, the reader might be referred to

Paolucci et al., 2013) to the problem of making ABM more apt
to the requirements of BigData science. We will instead touch
briefly on the question of model equivalence across disciplines
and applications.

2.2.1. Equivalence of models
Unlike laws of nature, Agent Based models of socio-economic
phenomena are countless and not always consistent (see Alfi et al.,
2009). Think of the various heuristics and rules of thumb applied
in defining microscopic rules for ABM. Most of them gener-
ate results at the macroscopic level, which are applied more or
less the same narratives or metaphors. Hence, cooperation in
Prisoner’s Dilemma is found to emerge from a set of heteroge-
neous strategies, from TIT-FOR-TAT (Axelrod, 1997) to strong
reciprocity (Boyd et al., 2003), from image-scoring (Nowak and
Sigmund, 1998) to reputation-building (Pinyol et al., 2012), and
finally group selection (Di Tosto et al., 2007); social control is
found to emerge from ostracism (Xenitidou and Elsenbroich,
2010), but also from partner selection, and finally from gossip
(Giardini and Conte, 2012); norms emerge from punishment
(Galán and Izquierdo, 2005), which in turn is but a TIT-FOR-
TAT strategy, but can also emerge from conditioned preferences
(Bicchieri, 2006), and from habituation (Epstein, 2008). Is mod-
els’ equivalence a major shortcoming of the field, or something
social scientists can put up with? What does it depend upon? Is it
a necessary or a contingent feature of ABM?

We believe the variety of equivalent agent models in part
depends on a property inherent to multi-level systems as com-
plex social systems are. The property in question is the multi-
realizability that we have mentioned above. In part, we believe it
to be a consequence of the shaky foundations, the poor theoretical
justification at the basis of many agent models. This is not equal
to finding poorly realistic the model of agent often proposed by
current modelers, and asking to improve it toward psychological,
cognitive, or sociological plausibility - toward a seemingly human
agent. What is wrong, in our view, is the procedure for model
building and the role of behavioral rules. Let us examine both
points with some detail in the next two sections.

2.3. THE ABM RECIPE FOR MODEL BUILDING
A consensus seems to have emerged in ABM on a minimal-
ity procedure; that is, models are built by setting up the rules
that are minimally required to obtain the macroscopic effect to
be described. While minimality might sound obviously inspired
by the success of hard sciences, the substantial failure to apply
such a minimality procedure to social science is testified by cen-
turies of failed attempts, starting from what had been announced
as “Social Physics” in the seventeenth century (for an historical
perspective, see Ball, 2002). The reasons for consensus on mini-
mality might be better described with the tools of the sociology of
science than rooted in the search of theoretically sound and scien-
tific advances. Indeed, the ABM community, being still relatively
small, is subject to issues of disciplinary recognition, with the con-
sequent pressure to publish in a limited number of outlets; and it
might still be looking for the right dimension of the contribution -
the ideal paper size, as measured in effort invested and soundness
of results, could be very different from the “correct” paper size
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in terms of publication chances. This discrepancy causes a moti-
vational pressure toward minimal (and publishable) models, and
hampers research in the much more interesting issue, why mini-
mality seems to fail in the social sciences. We will get back to our
intuition on this matter in the conclusions.

Under the rule of minimality, model building is operated (1)
a posteriori, based on backward engineering from the effects
obtained to the generating rules; (2) ad-hoc, so that rules are
suggested by the specific results to be obtained; (3) in a rule-
oriented rather than agent-oriented approach: what is achieved
is a set of rules, rather than an agent view; (4) inspired by the
minimal-conditions logic: modeling consists of finding out a set
of microscopic rules minimally required to reproduce a given
phenomenon of interest. The minimal approach, thus, strongly
reduces the validity of ABMs on two separate accounts. On the
one hand, theory-based, agent models are implausible caricatures
of agent as prescribed by the rationality theory, with a touch
of psychological realism in the best possible case. On the other
hand, when agent models are not derived from any pre-existing
agent theory or vision, whether computational or not, but only
by the behavior they are expected to generate (Epstein, 2006),
agent models become arbitrary, poorly comparable, competent
in highly specific domains of knowledge and disarmingly inapt
in any other. It should not come as a surprise if, as a result, a myr-
iad of rather inconsistent agent-based models have been produced
over the past 20–30 years or so. Is it possible to find an escape
between implausible models and arbitrary ones, or between
ad-hoc rules and useless ones? Options exist, but are poorly
exploited. Why?

2.3.1. From cognitive models. . .
One such option is represented by cognitive agent models, which
exist since the late nineties. Their wide range of influence is shown
by the popularity of BDI architectures (about 32,700 “BDI agents”
cites on Google Scholar retrieved on March, 18th 2013) within
and beyond the field of agent systems and theories. Simulation
of social phenomena with BDI based models also abound in the
literature (about 7060 “BDI social simulation” cites on Google
Scholar on March, 18th 2013), and usable platforms to imple-
ment them are under consolidation, from Jason (Bordini et al.,
2007) to Netlogo extensions (Sakellariou et al., 2008). However,
works with this approach receive attention mostly from the com-
puter science community, and are rarely published in main social
scientific journals.

Although the rich cognitive models tag appeared since the
early nineties (for a recent example see Dignum et al., 2010),
the amount of models inspired from it remains negligible. Sub-
symbolic systems and neural nets did not make much better.
Although neural nets and social simulation fare better, rela-
tive publications again do not appear in major social scien-
tific journals. Why are cognitive theories on agency, whether
symbolic or subsymbolic, so poorly applied in ABM? In part,
there are problems of inner validity and calibration. While
it is difficult to control the inner validity a complex agent-
based model (Cioffi-Revilla, 2002; Windrum et al., 2007), to
calibrate it and manipulate parameters values so to reflect a
real-world system is hard. To gather data on which the agent

model is based upon takes more time and more complex empir-
ical methodology. Therefore, the utility of a complex agent
model to simulate the real-world system (i.e., showing that
the model’s results match the real-world data) is questionable
(Crooks et al., 2008). Undoubtedly, these difficulties reduce the
interest of cognitively grounded models simulators, although
the latter’s foundations are much firmer than those of most of
the models used. The lesson one might draw is that, like it or
not, scientific developments are often due to practical utility
more than theoretical soundness. However, the little success of
cognitively grounded agent-based models is also due to other
factors.

First, unlike other theory-grounded agent models, for exam-
ple the rational models, cognitive models are not prescriptive.
Whereas the theory of rationality is a theory of action, cognitive
modeling provides theories of the agent. Hence, the rational agent
model fits only apparently better the objectives of ABM and sim-
ulation, but it does so only because it allows the modeler to get
rid of the tricky part of the modeling, that is, how agents form the
goals, the motivations, the preferences, that will be implied in the
decisions.

2.3.2. .. to generative models.
Secondly, cognitive modeling is a truly generative theory of
behavior, accounting for behavior in terms of the mechanisms
that are supposed to operate while producing it. A genera-
tive explanation of an observed social phenomenon consists of
describing it in terms of the external (environmental and social)
and internal (behavioral) mechanisms that generate them, rather
than by inferring causes from observed co-variations. This is a
vital property of explanation, which cannot easily be realized
otherwise. When describing agent behavior by means of other for-
malisms (logic-based or numeric), we describe behavior from the
outside, as perceived by an observer, but do not describe the way
it is generated. ABM explains behavior from within, in terms of
the mechanisms that are supposed to have generated it, that is,
the mechanisms that operate in the agent when s/he behaves one
way or another.

Of course, behavior can be explained otherwise. For example,
the flight of hawks is wonderfully explained by the mathemati-
cal property of logarithmic spiral, such that any tangent from the
center of the spiral yields an angle of the same width. Thanks to
this property, hawks can keep their preys always in their aim while
describing a spiral before pouncing on them. But this explana-
tion is not generative, in the sense that it does not tell us what
are the internal mechanisms allowing hawks to fly the way they
do. For sure, hawks do not fly based on an understanding of the
properties of logarithmic spiral. How can they show the corre-
sponding behavior? The often invoked evolutionary explanation
offers poor help: it accounts for behavior in terms of its reproduc-
tive advantage. As the spiral-like flight proved advantageous for
hawks, those who performed it were able to generate more off-
spring, while the others extinguished. No generative theory here:
it tells us not how hawks produce the behavior in question. We
could use the mathematical theory to describe their behavior, and
incorporate the mathematical explanation into a set of ad-hoc
behavioral rules for reproducing it. But neither the mathematical
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explanation, which describes internal causes, nor the set of ad-hoc
rules are generative.

Now, a fully generative explanation implies a more general the-
ory of how external causes, including fitness-enhancing effects,
get converted into internal reasons (what sometimes are called
proximate causes of behavior). Agent-based models are often
limited in focus, and not easily compatible with the temporal per-
spective and the theoretical requirements of a fully generative - in
the sense here intended - explanation. Do we always need a gen-
erative explanation? Not really, as ad-hoc rules sometimes are just
all that is needed to explain behavior. This is the case of entirely
programmed organisms, and it may even be the case of hawks, as
far as we know. Sometimes, instead, you need more. Suppose you
want a hawk to learn a new trick with respect to the approach
behavior. That is, you, or nature, in the form of new environ-
ment - perhaps, but we’re letting imagination run wild here, in
the form of a prey that develops a counterstrategy to the spiral.
Then, immediately how the flight is generated becomes impor-
tant: how much learned, how much hard wired, and where; in a
plastic neuronal connection, or in a fixed relative placement of
eye and bone? Suddenly, to reproduce their behavior you would
need more than a rigid set of rules; you need to know how it is
generated.

Cognitive modeling aims at finding the general mechanisms
yielding the wide spectrum of behaviors of relatively autonomous
systems. Of course, you don’t need such mechanisms to simply
reproduce behavior. The more specific the target behavior, the
lesser you need a cognitive agent-based model. Since ABM is often
used to investigate fairly specific phenomena, either mathematical
model or a set of ad-hoc rule are preferred over cognitive model-
ing. But together with cognitive modeling, we also dispense away
with truly generative modeling.

2.4. WHY BOTHER WITH GENERATIVE EXPLANATION
One might say, who cares after all? Provided we can reproduce
behavior, observe it and make artificial experiments to opti-
mize it, why bother with theory-driven generative modeling?
There are several reasons. One is that a truly generative explana-
tion is needed to model complex social dynamics. For universal
admission, the dynamics of social entities and phenomena is at
least bidirectional if not multidirectional. Entities and proper-
ties emerge from the bottom up and retro-act on the systems
that have generated them. Current agent-based models instead
simulate only emergent properties, i.e., the way up of social
dynamics. To mention only a few examples, the ABM litera-
ture offers countless models of the emergence of segregation,
norms, reciprocity, altruism, cooperation, punishment, conven-
tions, institutions, coalitions, leadership, hierarchies, the modern
state. Studies of different types and levels of downward causa-
tion are much less frequent (to cite some exceptions, see Gilbert,
2002; Conte et al., 2013). However, how to change self- and other-
damaging behaviors (i.e., smoking, over-eating, etc.) was ranked
as the fourth most important among the top-ten hard problems
the social sciences will have to address in the near future (Giles,
2011).

Agents should not be taken for granted as they change under
different types and degrees of social influence. Entities at the

macroscopic level affect them and their behavior, and we must
understand how this can happen if we want to drive, enforce, or
prevent such an influence. This a line of research that presents
obvious ethical issues, but at the same time addresses themes so
important that social science cannot just leave them alone, or,
even worse, desert them to market solutions. For example, at least
in some fields, we badly need to know how to reduce or control
people’s overconfidence, for example in finance, where it so heav-
ily contributed to the last financial crisis (see Akerlof and Shiller,
2010), causing a disruption of global scale; how to change people’s
bad food habits, which are mainly responsible for highly diffuse
diseases as diabetes; how to make low compliant populations to
obey the norms, how to increase social trust, reduce hostility
toward out-groups, favor communitarian attitudes, and so on.
All of these questions might find useful answers based on reality
mining. Through Google or Yahoo we may trace people’s habits,
moods, investment decisions, political views, risk propensity and
attitudes toward culture, education and migration. Based on this
information, we may drive production, capital movements, busi-
ness strategies, political decisions, and international cooperation.
But we will not be able to suggest effective plans for modifying
such behaviors and the underlying mental states, unless we under-
stand the mental dynamics and how this interacts with the social
dynamics, and model the cognitive mechanisms that respond to
external influence and rule behavioral change. In absence of such
theory and model, we will not get to the core of hard problems.

2.5. A MISSED OPPORTUNITY
ABM is a powerful means for investigating the hinge between dif-
ferent domains of reality, including economy, environment, and
society: systems’ behavior at different levels of scale. It is necessary
to explain phenomena pertaining to any domain of reality that is
heavily dependent on the behavior of autonomously interactive
systems, as was convincingly argued by Epstein. More, ABM is
unique for allowing a generative approach to behavioral systems
in the sense here defined, and somewhat different from Epstein’s,
i.e., to describe phenomena in terms of the external and internal
mechanisms that produce them.

However, ABM seems to have fulfilled its mission only in part.
Its generative capacity has been deployed to a lesser extent than
could have been the case. The practice of ABM missed the oppor-
tunity it provided: paradoxically, the same principle that led it
to a fast popularity, like the KISS principle—i.e., keep it simple,
stupid - introduced by Axelrod (1997), and moreover the proce-
dure to find the minimal required conditions to obtain a given
phenomenon, do now sentence ABM to a premature end. The
KISS principle still drives most of the simulation work: we have
performed a check on a whole year of JASSS, a journal that we
consider representative of the files. In 2013, JASSS published 49
papers, of which 38 could be classified as simulations (the rest is
composed mostly by theoretical papers). Of those, 30 could be
considered as following the KISS advice, which makes about the
80% of published papers.

If internal mechanisms are ad-hoc and arbitrary, why don’t
dispense away with them in favor of more powerful quantitative
modeling allowing the same phenomena to be accurately pre-
dicted? Why bother with agents, if one can apply computational
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tools to reality mining and platforms to large scale real-world
data-driven simulations, and aim at even higher orders of mag-
nitude, enabling us to forecast events at aggregate levels, such
as epidemics, climate change, and traffic jams? Couldn’t it be
the case that a mere quantitative use of computational tools be
enough to forecast financial crises, social instability, and even
human well-being?

It could be the case, indeed. However, centuries of failed
attempts (see the “Social Physics” case mentioned above) make
us doubtful. But what is maybe more important, by pursu-
ing this quantitative approach alone, science would have lost a
wonderful opportunity: to understand the micro-foundations of
phenomena at aggregate levels and how the latter (re)generate
them.

3. COMPUTATIONAL SOCIAL SCIENCE
Science, like history, is not a linear process. A decade ago, social,
and behavioral science dropped the disciplinary label (Conte,
2002) under the influence of an entirely new field, ABM. In the
last couple of years a CSS is being re-proposed. But CSS is being
practiced since a couple of decades if not earlier. What is new to
the current program?

Computational Social Science (from now on CSS) can be
meant in at least three different ways, the deductive, the genera-
tive, and the complex one; and it should be made clear which one
we are referring to. As these are conceptual, rather than empirical,
variants, there is no need to have each of them matching a defined
historical example of CSS, since concrete examples are often a
mix. Let us characterize variants also with reference to existing
programs and try to forecast what their consequences might be.

3.1. THE DEDUCTIVE VARIANT
The second half of the last century is constellated of attempts to
apply the theory-building instruments of mathematics and the
theory-testing tools of computer science on one side, game the-
oretic, and logic-based computational models on the other, to
describe and explain social phenomena. The latter, in particu-
lar, attempted at deducing properties at the macro-level from
general assumptions at the micro-level. Expectations á la homo
economicus, allowed by the theoretical framework, turned out to
be wrong, what did not imply that the approach was incorrect,
only that it had been based on the wrong assumption, depend-
ing on the theoretical and sometimes ideological positions of the
authors. What was worse, these position were often left implicit.
The deductive variant consists of formulating the mathematical
equations that account for the phenomena to be explained. With
the support of observation and data gathering, parameters can be
assigned their correct values. Although the theoretical framework
is often much too simple, the general program scarcely inter-
disciplinary, and the ambition for social impact mainly based
on a rather prescriptive view of micro-level theory, deductive
CSS yielded a foundational, general, explanatory theory of social
systems. A lesson we should not forget.

3.2. THE GENERATIVE VARIANT
The decline of the rationality paradigm produced several conse-
quences. One of these was a stronger and more interdisciplinary

effort to ground computational models on explicit models of
the micro-foundations. This led to the advent of the gener-
ative variant of ABM, which derives its explanatory vocation
and micro-foundational framework from the deductive variant.
Unlike it, generative science aims at modeling operational micro-
scopic rules that generate macroscopic phenomena, rather than
formulating mathematical equations from which to deduce them.
The explanatory vocation is declined in a radically different way:
rather than describing a causal process from the outside, the mod-
eler attempts to show the internal rules that initialize it and follow
the unfolding of it all the way up to the observed effects.

As argued in the preceding section, however, ABM fulfilled its
mission, provide generative theories, to a lesser extent than was
expected. If the deductive variant was found to theorize upon
fairly abstract phenomena and has often been criticized for its
poor predictive capacity, the generative variant did not prove any
better at prediction, partly due to problems of validation and
calibration.

3.3. THE COMPLEX VARIANT
Inductive computational science is certainly not new (Newell and
Simon, 1976). The necessity to combine mathematics and logic
with learning, probability, and induction is receiving a grow-
ing attention since the early nineties in several computational
disciplines such as knowledge representation, reasoning about
uncertainty, data mining, and machine learning. Nor is new the
use of computational instruments for quantitative social science:
it suffices to think of the wide application of statistics package
for social scientific research, and by the number of reposito-
ries and archives of social scientific data (for example, http://
www.data-archive.ac.uk/). However, techniques of data-mining
are exercising an even stronger influence on the social sciences.
The use of advanced computer technology by social scientists is
also shown by sites where freely available web resources are assem-
bled with information on how access social scientific data (see
for example, http://guides.lib.wayne.edu/socialsciencesdata), and
by funded programs for interfaces between computer and social
sciences.

A new impulse to computer-based quantitative social science
is coming from the science of complexity, which is now going
through a season of deserved popularity. The use of complex
systems’ methods, models and techniques to economic systems
goes back to the nineties (for a rather informative introduction,
see Mantegna and Stanley, 2000), and the welcome received by
mechanical statistics in the field of economics and finance was
such as to encourage its wider application to the rest of the social
sciences. The popularity of sociophysics grew even more under
the influence of success stories, especially concerning the domain
of pedestrians’ crowd (Helbing et al., 2000) and that of epidemics
(Pastor-Satorras and Vespignani, 2001). In the last few years, a
diffuse uncertainty related to globalization, international and cul-
tural conflicts, and the recent financial crisis, led to the necessity
to anticipate and manage critical events on the front-stage. Not
only stakeholders and policy makers but also, and consequently,
research and development funding agencies and evaluators laid
emphasis on science as a system of warning, a source of antic-
ipatory information on the performance of aggregate systems,
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simultaneously triggering and guiding the action of politicians,
administrators, and businessmen. But science is more than antic-
ipation. It is first of all explanation. Accurate prediction can do
without explaining, especially if it is based on large datasets and
sophisticated techniques for extracting knowledge out of them.
Science cannot. Of course, explanation may be allowed by sta-
tistical analysis. For example, topological properties of complex
networks are found among the main factors affecting epidemic
dynamics (for a review, see Yang et al., 2007). But this is not always
the case. Indeed, this is not the paradigmatic case in those social
phenomena in which behavior can be assumed to be irrelevant,
or non-influential.

Behavior is irrelevant or non-influential in social dynamics
where the implications of the phenomenon in question are social,
but its nature is not. To go back to epidemics, the nature of epi-
demics is biological. The level of reality involved entities belong
to does not matter for the observed phenomenon to take place:
the nature of entities involved in and target of epidemics matters
not. In the spread of epidemics, the difference between human
behavior and that of particles in the space does not matter,
nor does the difference from carriers and the viruses they carry
around. But in other cases, that is, when the nature of behav-
ior matters, accurate statistical analyses of social dynamics can
maybe reach predictive power but cannot fully explain what is
going on.

As a hypothetical example, suppose we want to know what are
the main factors responsible for the dynamics of opinions. Again,
current models (Deffuant et al., 2001; Galam, 2002; Hegselmann
and Krause, 2002; Castellano et al., 2009), find that the struc-
ture of the network of communication affects opinion dynamics.
Of course, the source of information also matters; a contrast-
ing source may inhibit the effect of media broadcasting and the
process is non-linear: under a given critical level of coverage,
the broadcasting message may be inhibited by a “contrarian”
opinion spread through word of mouth. Analogously, below a
critical level of confidence “contrarian” opinions may reach all
agents (Castellano et al., 2009). Social dynamics are often non-
linear and typically smolder at some length under the ashes and
only subsequently surface in convergent opinions or behaviors.
Suppose one predicts the moment(s) at which this will hap-
pen in real-world dynamics thanks to statistical analysis and
physical models. The question is why it happens. Of course behav-
ior is irrelevant to predict when convergence will occur. But it
matters if, for example, we want to affect the process, by short-
ening or delaying it, or even prevent it; to educate people to a
higher autonomy; to favor info-diversity; finally, to convert opin-
ions in something more solid and resistant, like knowledge, and
so on.

People withdrawing support from political leaders is a good
example of non-linear opinion dynamics. It is unclear when peo-
ple change their minds and turn down their leaders. The destiny
of a popular (and often populist) figure is often decided upon in
a very short time. Today, those who enjoyed the favor of their fol-
lowers until yesterday, may suddenly lose popularity and fall in
disgrace, what is again a matter of threshold: after a certain level
of spreading, and perceived spreading, agents are led to mod-
ify their opinions, what probably reveals an interesting effect of

shared representations about shared opinions on one’s confidence
level. Possibly, such a lowering confidence leads agents to be more
eager to change opinions.

However, the circuit may be completely different: agents may
resist pressure to change opinions despite contrasting evidence
for reasons of cognitive dissonance. The more the contrast-
ing evidence they gather, the higher the dissonance. To reduce
it, they try to ignore evidence that is less costly than change
opinion, which imply dropping the previous commitment and
making a new one. As the perceived distance from others’ opin-
ions increases, however, agents either hide their opinions or
must defend them openly. If they choose the latter strategy, they
may even end up by accepting to form part of a minority. If
they take the former option they cannot get along with decep-
tion too long as cognitive dissonance increases. Consequently,
they accept others’ opinions as own, and are likelier to con-
vert them in open behaviors to convince others and them-
selves about the solidity of their new opinions. Both routes
imply critical thresholds for totally different reasons. To act effi-
caciously on this process, we must be clear what is actually
going on. Confidence has different implications from cogni-
tive dissonance and self-deception. To increase confidence may
lead to higher stability in the former case, but not in the
latter.

To sum up, to model social dynamics without taking into
account the internal (cognitive) dynamics of the entities involved
in a social phenomenon does not prevent accurate predictions
of critical events and changes. It may even allow to find out fac-
tors responsible for such events and changes, and this is the case
with dynamics for which the social nature of behavior is irrele-
vant. To understand internal dynamics is crucial instead whenever
we need not only to anticipate but also to understand events for
which behavior is relevant. Model the internal dynamics of events
is necessary not only for scientific reasons but also for guiding
intervention.

4. TOWARD A NEW INTERDISCIPLINARY FOUNDATION FOR
CSS

The program for CSS needs clarification. Why would such a
program be necessary, if we practice CSS since at least a cou-
ple of decades? Of course one might say that we need to
introduce a new Curriculum at the academic level, and that
to do this implies to form a new, cohesive, scientific commu-
nity, form associations, give visibility to this new Curriculum,
strengthen the academic, editorial, and political power of the
underlying community etc. However, the reason for a pro-
gram on CSS is not only political but also scientific. As
seen so far, there are different variants of CSS and to take
a pluralistic approach to it may be considered wise. CSS
could be seen today as a larger umbrella under which dif-
ferent approaches might coexist and somehow feel legitimate.
Hence, generative ABM might be practiced by a subset of
social scientists, while others might prefer a purely quantita-
tive approach, based on data-mining and numerical simulation,
and still others might continue to formulate abstract theories of
social action in elegant equations and deduce their macro-level
consequences.
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The main thesis of this paper is that such a multidisciplinary
program for CSS would be another lost occasion for science. It
would but result either in tight but essentially useless theories,
or in accurate predictions of poorly understood social phenom-
ena. In the best possible case, mathematicians will go on citing
one another in fairly close circuits of beautiful minds, physicists
will find new phenomena affected by the properties of scale-free
networks, and social scientists will give up generative ABM in
the desperate attempt to produce competitive quantitative social
science and get reasonably high scientific scores.

An interesting, innovative program in CSS can only be inter-
disciplinary. Why and where is the difference? The reason lies
in the necessity to take advantage from the different mod-
eling methods and techniques to both understand and pre-
dict the same phenomena! The difference of interdisciplinary
from multidisciplinary CSS consists not only of a convergent
investigation of the same phenomena from different perspec-
tives and involving different competencies, what would already
be a step ahead with regard to current practice, but in a
more radical process aimed at multilevel and modular mod-
eling. Such a type of modeling would allow to describe the
dynamics of given phenomena at aggregate levels based on large
datasets, find out the criticalities thanks to complex dynamic
systems models, make hypotheses about the behavioral dynam-
ics when this is relevant, use ABM to check internal consis-
tency and observe the resulting states at the aggregate level,
apply cross-methodological experimental methods to validate
the hypotheses against real-world data, update data-mining
methods, models, and probability distribution models to newly
acquired knowledge, and use mathematical equations when pos-
sible to close the number of states resulting at the aggregate
level.

An interdisciplinary endeavor like this certainly points out
some new challenges: not only to extract knowledge from larger
and larger datasets, not only develop simulators that scale up
of several orders of magnitude, or feed simulation and data-
mining with online real-data, not only to develop supercom-
puting infrastructures and systems to transfer data to super-
computing platforms, but also develop simulation platforms
that scale up both in terms of systems’ dimensions and in
terms of levels of complexity. We need to account for large-
scale systems as well as more complex entities. We need to
apply simulation methods to understand the social and the men-
tal dynamics and to describe their interrelationships. Last, but
not least, we need incentives that are compatible with such an
endeavor—publication-wise and career-wise. This is a challenge
for a program on CSS that deserves attention and investment.
CSS ought to accept it, or another occasion will be lost for
founding a novel, integrated, interdisciplinary, falsifiable science
of society helping us to solve transformative and foundational
problems.
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The problem of deriving the processes of perception and cognition or the modes of
behavior from states of the brain appears to be unsolvable in view of the huge numbers
of elements involved. However, neural activities are not random, nor independent, but
constrained to form spatio-temporal patterns, and thanks to these restrictions, which in
turn are due to connections among neurons, the problem can at least be approached.
The situation is similar to what happens in large physical ensembles, where global
behaviors are derived by microscopic properties. Despite the obvious differences between
neural and physical systems a statistical mechanics approach is almost inescapable, since
dynamics of the brain as a whole are clearly determined by the outputs of single neurons.
In this paper it will be shown how, starting from very simple systems, connectivity
engenders levels of increasing complexity in the functions of the brain depending on
specific constraints. Correspondingly levels of explanations must take into account the
fundamental role of constraints and assign at each level proper model structures and
variables, that, on one hand, emerge from outputs of the lower levels, and yet are specific,
in that they ignore irrelevant details.

Keywords: neural network, statistichal mechanics, behavior, connectivity, mapping

1. INTRODUCTION
Any attempt to derive the processes of perception and cognition
or the modes of behavior from sets of neural activities is con-
fronted with the problem of mapping an incredibly large set of
possible brain states to a very large number of observables. Simply
put, the numbers are staggering: although estimates vary, there
are purportedly about N = 1011 neurons in the human brain
(Sporns, 2012) and even with the very drastic simplification that

a neuron is a binary device, possible states are 2N = 21011
. This

enormous set of states must be mapped into the possible observ-
ables and even in this case numbers are huge: for instance even
with a conservative estimate the number of possible postures
is 1030 (Stephens et al., 2011). The sheer orders of magnitude
involved seem to prevent the possibility of finding any correspon-
dence among elements of the two sets, i.e., the matching of states
to observable processes.

Fortunately there are factors that somewhat simplify the prob-
lem: for instance a given behavior can result from many different
brain states, as redundancy is a well known evolutionary fea-
ture to make living systems more robust. Furthermore brains
are made up of very complex networks (connections are of the
order of 1015), thus neural states are not independent variables
and they tend to form spatio-temporal patterns, rather that dis-
ordered sequences of activity. Indeed, fMRI measures have shown
that spatial maps of activity are formed even in resting state situa-
tions, without any external stimulus (Raichle, 2010). In addition,
as suggested in Ganguli and Sompolinsky (2012), states of the
dynamical systems describing the activity of cortical areas (e.g.,
motor cortex, or sensory cortex) are limited by the dimensionality
of the inputs (e.g., motor task to be performed, or sensory inputs),

which is often much lower than the dimensionality of the cortical
dynamical system.

These simplifying factors notwithstanding, the brain is so
complex that to explain cognitive and behavioral functions
philosophers and scientists have often resorted to conceptual
metaphors (Daugman, 1993); modern examples are the com-
puter and information metaphor (see Werner, 2011) for a critical
review.

An earlier version of the computation metaphor, based on
the seminal work of McCulloch and Pitts (1943), on the equiva-
lence between networks of formal neurons and Turing machines,
was centered on the notion that neural activity implements log-
ical calculus via formal rules for the transformation of for the
manipulation of symbols (Daugman, 1993), an idea which has
provided much impulse to the development of artificial neural
networks and their applications (Haykin, 1994; Werner, 2011).
The computation metaphor later has given rise to the so called
“computational theory” of the brain whose aim is to explain
and to simulate the mechanisms by which the brain performs
a variety of tasks such as, for instance, edge detection or stereo
vision (Marr, 1982). This version of the computation metaphor
has became so popular that the term “computational” is nowa-
days used to characterize almost any model including task analysis
(Daugman, 1993).

Complementary to this approach is the information metaphor,
that views the brain as an information processing device and
focuses on the input–output relations among neurons in the
framework of information theory. The central issues in this
framework are those of coding and decoding of the neural
stimulus, namely which feature of a neural spike train (rate,
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correlations, etc.) carries the information (in Shannon’s sense)
and, next, how this information is decoded by the brain, reveal-
ing the nature of the external (physical) stimulus (Jacobs et al.,
2009; Werner, 2011). The latter problem is known to be an infer-
ence problem (Knill and Pouget, 2004), to solve which Bayesian
techniques have proven to be very successful. This has lead to
the “Bayesian coding hypothesis”: the brain represents sensory
information in the form of probabilities and derives posterior
probabilities of the configurations of the external world (Knill and
Pouget, 2004; Doya, 2007; Friston, 2012).

Computation and information metaphors are useful to eluci-
date important aspects of brain function, but, as pointed out in
Werner (2011), they fail to provide the fundamental link between
the dynamics of neural activity and computational and informa-
tion processing properties of the brain. Thus, a different approach
has emerged which maintains that real comprehension of cogni-
tive and behavioral functions can only follow from the analysis
and explanation of the collective dynamics of neural systems
(Werner, 2011; Parker and Srivastava, 2013).

This is also the point of view taken in the present work: specific
models related to this approach will be reviewed in more detail
later.

Neuronal activity takes place at different scales and a rough
classification can distinguish between microscopic (neurons and
synapses), mesoscopic (networks and local interactions between
neurons), and macroscopic levels (areas of the brain) (Deco
et al., 2008). All these levels have their own specificity determined
by different types of activity patterns. Then understanding the
dynamics of the nervous system requires insights into processes
occurring at different scales and that must be matched by appro-
priate levels of description or representation, characterized by
specific variables and model structures.

Different neural models can be represented as elements of a
two dimensional space (Cessac and Samuelides, 2007). The first
axis of this space describes the type of neuron and its prox-
imity to biology, starting from the Hodgkin–Huxley equations
followed by excitable systems with continuous state and finally
binary neurons of the McCulloch–Pitts type. The other axis takes
in account the collective aspect of neural networks in a hierar-
chy of ordering: one neuron, few neurons, one population of
weakly coupled neurons and finally one population with arbitrary
coupling.

Large neural populations present an obvious similarity with
physical systems composed of very large number of elements
(atoms or molecules) subjected to mutual interactions. In physics
the answer to challenges posed by such systems is to resort to
mechanical statistical methods, which do not try to solve mod-
els at the microscopical level of individual elements, but, instead,
use laws of probability to derive a set of collective variables,
whose properties can then be studied at the macroscopic level.
The success of this approach requires, and indeed depends on,
finding the right variables, which can lead to meaningful macro-
scopic representations, while disregarding irrelevant ones. This,
in turn, involves simplifying the system under consideration,
from a detailed description to a more abstract representation in
which some properties of the elements forming the system are
disregarded.

It must be kept in mind, however, there are crucial differences
when considering physical vs. neurobiological systems.

1. First, neural systems of the brain are part of living organisms.
The problems concerning the transitions from inert to living
states of matter and the characterization of life (Smith and
Szathmary, 1997; Longo and Montévil, 2012) are outside the
scope of this paper. It is enough to say that, at a fundamental
level, activity of neural systems is constrained by the amount
of metabolic energy available and by the need to limit entropy
production (Schrödinger, 1956; Longo and Montévil, 2012).
More relevant for our work is the fact that animal brains have
been shaped by evolutionary pressures and, therefore, neu-
ral systems are subjected to many cost-benefits trade-offs, the
most basic involving the balance between the speed of respose
against the accuracy of identification of a stimulus (Geary,
2005).
These constraints affect the topology of the connections:
empirical evidence suggests that brain anatomical connectivity
is locally clustered with a few long-range connections between
any pair of regions, and this can be explained by the need
to minimize wiring costs while maintaining the possibility
of long range interactions among different areas (Bassett and
Bullmore, 2006).

2. Neurons interact with the rest of the organism and among
themselves in ways, in general, more complex than inter-
actions among elements of physical systems. Furthermore,
neurons are computational units, able to perform non trivial
computations (Koch, 2004).

3. Differently from physics where the elements of a system can
be considered all equal (“all electron are the same” as Fermi
put it), neural systems are characterized by heterogeneity, e.g.,
excitatory vs. inhibitory neurons or electrical vs. chemical
coupling.

4. Neural systems are endowed with specific architectures,
gauged to specific sensory, motor, and cognitive tasks.

5. Networks can learn by changing the strength of their mutual
connections.

6. In physical systems the global behavior can be represented
by simple scalars, for instance critical exponents and corre-
lation lengths in non-equilibrium phase transitions, whereas
models of large networks in the brain must explain the com-
plex spatio-temporal patterns that make up physiological or
behavioral responses. Therefore the question arises of what
constitutes the relevant definition of system activity for a given
level of explanation.

These differences notwithstanding, a statistical mechanics
approach is almost inescapable, since dynamics of the brain as
a whole are obviously determined by patterns of neural activi-
ties occurring at a lower level, and, indeed statistical mechanics
tries to derive the laws at the macroscopic level from interactions
among microscopic components.

A classical example are, in the theory of artificial neural net-
works, the so called Hopfield networks of binary units, (see
Hopfield, 1982; Amit, 1992) and, for more recent results, (Advani
et al., 2013).
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Statistical mechanical techniques are not restricted to the
Hopfield model (Coolen and Del Prete, 2003): they have been
applied also to biological neural systems both to explain exper-
imental data (Masoller et al., 2009; Montani et al., 2009; Deco
et al., 2012) and to provide general models of the brain (Ingber,
1981; Freeman and Vitiello, 2006; Parker and Srivastava, 2013).

It will be argued here that the problem of modeling and rep-
resenting neural systems of increasing size and complexity is akin
to the problem of statistical mechanics and that the way out of
the problem of intractability is the same: to assign at each scale
proper variables, namely variables that emerge from outputs of
the lower level, while ignoring details which are irrelevant for the
higher level.

In particular, the main claims of this paper are:

• Systems at each level obey to the laws holding for the lower
levels, but they are subjected to new constraints that in turn
generate new features, like novel patterns of activity, requiring
adequate levels of representations.

• Constraints derive from the neural connections whose com-
plexity increases with the dimension of neural circuits, whose
topology then plays a central role in determining neural
dynamics.

This approach is inspired by the ideas of Jacob (1977) on the
structure of natural systems:

“Nature functions by integration. . . . Each system at a given level uses
as ingredients some systems of the simpler level but some only. The
hierarchy in the complexity of objects is thus accompanied by a series
of restrictions of limitations. At each level new properties may appear
that impose new constraint on the system. . . Those (constraints ) that
operate at a given levels are still valid at a more complex level.”

2. LEVELS OF COMPLEXITY AND EXPLANATION
Levels of explanations are determined by two main issues: the
choice of state variables and the formal structure of the model.

In very general terms, a neural network is a dynamical sys-
tem describing the temporal evolution of the activities, {ai} i =
1, . . . n, of a neural population of n elements, and can be formally
expressed by a map φ which starting from the state at initial time
t0 yields the state at time t

φi : ai (t0) → ai (t) ; (1)

this system can be either deterministic or ruled by probabilistic
laws. Maps φi are usually the solutions of systems of differential
equations and their formal expressions are typically very complex,
as they depend on a set of external inputs {Ij} j = 1, . . . m and
on the connections among neurons. Thus, in general some sim-
plifications are carried out to make the dynamical system more
manageable.

First one must decide which variable represents the neural
activity: this choice is important not just in order to simplify
the problem but because, implicitly, it identifies which aspect of
neuron dynamics is considered to be important.

Usually in neural networks theory the elementary computa-
tional element is assumed to be the single neuron and the basic

variable is the potential V across the membrane, but other, finer,
levels of resolution could be considered, for instance ion species
and channels or, in principle, the quantum mechanical scale.
Suppose, for sake of argument, that it is possible to write down
and solve the Schrodinger equation for any molecule or atom
of the neuron: the result would be the an incredibly complex
wave function which would not explain more than Hodgkin and
Huxley theory, because the quantum mechanical scale is not really
necessary to understand how spikes are generated, even though,
obviously, the laws of quantum mechanics apply to all atoms
forming the neuron.

In conclusion, for a neuron a “natural” variable is the dif-
ference of potential V across the membrane, whose dynamics
are formally described by the theory of Hodgkin and Huxley.
However, the level of detail of this model is not really required
when one moves from single neurons to neural networks and
more abstract models can be developed, whose structure implic-
itly defines which aspects of spikes generation and transmission
are considered important.

For instance, information transmitted along the nervous sys-
tem of an organism is thought to be encoded by the frequency
of the action potentials (the firing rate), and/or by the timing of
spikes. Then in modeling the transmission of information one
can disregard the shape of the spike and just consider the time
intervals with which action potentials occur: this approach is at
the basis of the “integrate and fire” type of neuron models (Koch,
2004; Deco et al., 2008).

Neural dynamics can be also described by the temporal vari-
ation of spike rates: activity is now identified with the frequency
of action potentials and the sequence of spikes collapsed in just
one number. The reasons behind this choice, besides the obvious
simplification, are based on the observation that many neuro-
biological phenomena appear to be determined at the level of
firing rate. Indeed many experimental data are reported in term
of spike rate, which is considered the fundamental element in the
information processing in the brain, an idea that goes back to
the fundamental work of Adrian (1926). It must be noted that,
in recent years, the idea that spike rate suffices to explain cod-
ing and decoding of neural signal has been, rather convincingly,
questioned (Rieke, 1999).

The rest of this section will try to clarify how increasing com-
plexity of connectivity patterns engenders the emergence of new
properties of neural systems and how levels of explanation can be
found matching this evolution from simple to complex systems.

2.1. MINIMAL NETWORKS
First we shall consider minimal systems of neuron pairs and a
rather abstract and very simple version of the Wilson–Cowan
model (Wilson, 1999) will be adopted to illustrate the role of the
connections in neural dynamics. The state of the neuron will be
represented by its activity a, a real variable, which evolves accord-
ing to a set of differential equations. It is not important here to
give a precise definition of activity, which can be, for instance,
V or spike rate, as the equations used in the following can be
adapted to different meanings of a. Note that the results described
in the sequel are general and not depending on the particular
form of the equations, used here solely for illustrative purposes.
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The activity of a neuron is described by just one differential
equation of the form

τ
da

dt
= −a + S(I − θ), (2)

where τ is a time constant, θ a threshold and I the total input that
can originate from the external world or, more frequently, from
other neurons: in this latter case I can be the sum of several inputs.
The term −a just expresses the obvious idea that in absence of
input the activity relaxes to zero, whereas the function S defines
the effect of the input I on the activity a of the neuron and it
can be modeled in a variety of ways: usually it is assumed S to be
a monotonically increasing function, with S(I) = 0 if I − θ ≤ 0
and tending to a finite value as I increases.

In the following θ will be set to 0 and for simplicity’s sake it
will be supposed that, at least in a time interval δt, I is constant.
Under these assumptions it is straightforward to show that when
the input signal I is switched on the activity a tends to reach a
value a∗ = S(I). Note that, as S is monotonous, there is an one-
to-one relation between a∗ and I, so that for any given a∗ there
exists just one value of I satisfying the equality a∗ = S(I); this
means that the activity a just scale-transforms the input signal,
i.e., reproduces I on a different scale.

Very different, more complex, activity patterns appear in sys-
tem of mutually connected neurons, even when just two units are
considered: the activity is now a vector

a = (a1, a2)

and the corresponding system can be written as

τ1
da1

dt
= −a1 + S (w1a2 + I1)

τ2
da2

dt
= −a2 + S (w2a1 + I2) (3)

The new elements here are the synaptic weights w1, w2, that pro-
vide a description of the interaction between the neurons: three
cases are possible, each characterized by a specific dynamic:

1. the E − E system, where the connections are mutually excita-
tory, that is wi > 0, i = 1, 2,

2. the I − I system characterized by mutually inhibitory con-
nections, wi < 0, i = 1, 2,

3. the E − I system, where one neuron is excitatory and the
other is inhibitory, and the synaptic weights have opposite
signs.

If the connections are mutually excitatory the network is a bistable
system, namely it is characterized by two stable states (attractors):
the activity of both neurons can be either low (possibly zero) or it
can reach high activity levels, depending on the values of synaptic
weights w1, w2, and on the inputs I1, I2. This very simple network
shows that connections between neurons give rise to a set of new
behaviors: for instance, also a very short (ideally instantaneous)
stimulus to one of the neurons can trigger the evolution of both
neurons toward stable high activity levels, i.e., the system is able to
self sustain even when the inputs I1, I2 are switched off. Attractors

of this system are the simplest instance of multi-stabilities, that
can be the basis of short time memory (Wilson, 1999) and can
provide a mechanism for the switching between different percep-
tions or behaviors, as suggested by theoretical and experimental
studies, (Deco et al., 2007; Moreno-Bote et al., 2007).

Two mutually inhibitory neurons are an elementary example
of winner-takes-all networks, which have been widely used in the
context of artificial intelligence and pattern recognition. Due to
mutual inhibition one of the two neurons has high activity levels
whereas the other is not active. The “winning” neuron is deter-
mined by the parameters of the system: in particular if w1 = w2

neuron with the larger input “wins.” Such type of network imple-
ments the very general principle of competitive exclusion, found
also in ecology and population theory, by which when two pop-
ulation compete for resources just one survives (Murray, 2002).
Mechanisms of the winner takes all types are thought to be at the
basis of selection processes, motor control and path integration
(Wilson, 1999).

Finally, a E − I system gives rise to the emergence of
homoeostasis mechanisms, by which sensory input is regulated,
for instance to make the localization of its sources more precise.
Moreover the system can be modified in a straightforward way
to produce sustained oscillations also in presence of a constant
stimulus, an ubiquitous feature in living organisms, from cardiac
cycles to the rhythms of breathing and locomotion. Note that
this property is unique for the E − I arrangement, in that it is
straightforward to show with the standard methods of the the-
ory of dynamical systems that such oscillations cannot appear in
either mutually excitatory or mutually inhibitory systems. It fol-
lows then that oscillations under constant stimulus are due to the
heterogeneity of the system, i.e., the presence of both excitatory
and inhibitory connections. Pairs of E − I type can in turn be
connected into coupled oscillators that act as central pattern gen-
erators, controlling motion routines (Kleinfeld and Sompolinsky,
1988; Brunel and Wang, 2001).

In conclusion these simple neural systems show that coupling
between neurons gives rise to a variety of activity patterns, more
complex than those of a single neuron; hence, they exhibit a larger
spectrum of computational and behavioral properties. The basis
of this enhanced capability resides in the fact that now a1, a2

do not depend solely on the inputs, as connections make them
dependent one on the other.

Consider a pair of neurons to which are given inputs I1, I2,
respectively: if they are not connected the attractors of activity are
a∗

1 = S(I1), a∗
2 = S(I2). As mentioned before there is a one-to-one

correspondence between a∗ and I and therefore any activity pair
of values a∗

1, a∗
2 can be reached given suitable inputs I1, I2, since

activities are independent one from the other. On the contrary
mutual dependence of activities limits the number of states the
system can reach. Suppose that neurons now form, for instance, a
I − I pair. In this case it is straightforward to show that if w1 =
w2 and I1 > I2 the attractors of this system are a∗

1 = S(I1), a2 = 0,
that is the second neuron will be inactive whatever be the value of
I2, provided of course that I1 > I2.

This idea can be made more precise if one considers activi-
ties ai, i = 1, 2, as stochastic variables, with randomness due to
fluctuations of the stimulus or to stochasticity in the mechanisms
generating the neural response.
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The probability that ai take values in a given interval ai + dai

can be computed, at least in principle, via the Fokker Planck equa-
tion (Deco et al., 2008). The derivation of such equation is not
trivial and its solution is, usually, very difficult, but some qual-
itative results can be readily obtained. Let p(ai), i = 1, 2, be the
probability density functions (pdf) of activities ai and let p(a)
be the pdf of the activity vector a; if neurons are supposed to
be independent then the entropy H(a) of the stochastic vari-
able a, a measure of disorder of the system, is the sum of the
entropies of the single variables ai, H(a) = H(a1) + H(a2). On
the other hand it is a standard result of probability theory that if
ai are not independent, as in case of connected neurons, H(a) <

H(a1) + H(a2). Thus, connections among neurons reduce the
effect of casual fluctuations and this in turn entails the generation
of more complex activity patterns.

Mutual dependence of activities has another important conse-
quence: let the activities ai, i = 1, 2 be the input of some neuron
j, and let, for simplicity, assume the weight connecting the input
neurons i = 1, 2 with j to be equal to 1. The total input reaching
j is I = a1 + a2 and its variance σ 2

I ≤ σ 2
a1

+ σ 2
a2

, where the equal-
ity holds only if the activities aj are independent. We see then that
mutual connections provide more reliable global inputs.

2.2. LARGE NEURAL SYSTEMS
It has been shown, so far, that even very simple systems of con-
nected neurons can implement processes of self-organization and
entropy reduction. These properties are inherited by large neural
populations, but obviously increasing the dimensionality of the
system makes the structure of attractors more complex and able to
generate a larger number of possible behaviors: for instance more
multistabilites appear, that can correspond to a larger number of
possible memories or choices. In addition, different experimen-
tal techniques (fMRI, EEG, etc.) have shown that the non-linear
nature of neural dynamics leads to processes of self- organization
and phase transitions (Kelso, 1995; Freeman and Vitiello, 2006).

A variety of theoretical models has been used to investigate the
properties of large scale networks: it is not possible here to give
a detailed review, but they can be subdivided roughly in models
derived by the theory of dynamical systems and models derived
by analogies with physical systems.

A natural application of the theory of dynamical systems is the
concept of neural field, which represents the organization of the
cortex with spatially structured neural network whose dynam-
ics are modeled by differential equations in the continuum limit:
activity of neural fields can form dynamic spatio-temporal pat-
terns, similar to the spatial distributions experimentally observed
in the brain (Wilson and Cowan, 1972; Deco et al., 2008; Bressloff,
2012).

Other models are derived by analogies with physical systems
and use typical methods of statistical mechanics: for instance in
Ingber (1981) collective neural activities in the cortex are for-
mulated by considering first the microscopical level of synaptic
interactions and averaging them spatially to form a mesoscop-
ical domain. The same procedure is then repeated to produce
macroscopic spatial-temporal regions, described by the formal-
ism of stochastic processes. A different, but related, approach
(Freeman and Vitiello, 2006) utilizes many-body field dynamics,

to derive equations describing ordered pattern formation and
phase transitions.

More recently the idea has been put forward that analysis of
self organized criticality can provide useful insight in the anal-
ysis and function of perceptual, cognitive, and motor networks
(Parker and Srivastava, 2013) in that these processes offer a way
out from the stability-plasticity dilemma (Abraham and Robins,
2005), namely the opposite requirements of stability and plastic-
ity. Self-organized criticality is a feature of non-linear dynamical
systems where the macroscopic behavior of a system emerges
from the interactions of its component parts. This results in
non-equilibrium phase transitions, i.e., sharp variation of neu-
ral activity, which depends on the intrinsic dynamics of the
system rather than on external inputs (Parker and Srivastava,
2013).

Neural field and physics based models assume that brain states,
and hence behavior, arises from activity propagating from micro-
scopic to mesoscopic and finally to macroscopic scale, and these
are the basic levels of explanation.

2.3. THE ROLE OF CONNECTIONS
We have seen that large populations of neurons give rise to a
rich variety of behavior. The increased dimensionality of the
system leads to the appearance of new topological properties
and two principles seem to be at work: segregation and integra-
tion. Segregation results in the subdivision of the brain in areas
which, for instance, respond to specific sensory inputs or perform
specialized tasks.

Next, integration among areas is required to process informa-
tion coming from different sources in the external world and to
produce an appropriate behavioral response (Sporns, 2012).

These dual aspects also provide a structural and functional
basis to model brain function. Segregation allows more abstract
levels of explanation, in that neurons belonging to the same area
can be treated as a single variable, for instance by making use of
mean field approximation; any description of the brain activity
aiming to explain behavior, however, cannot help but taking into
account the topology of the connections at the basis of integration
among areas (Geary, 2005; Sporns, 2012).

The increased complexity of neural connections in large pop-
ulations of neurons suggests that the expansion of the range of
possible dynamical states does not depend simply on the number
of neurons but also on the more complex interactions occurring
within the populations. For instance, consider a set of neurons
connected in a purely feedforward way. In this case no oscillatory
behavior can arise in response to a constant stimulus, but, on the
contrary, a feedback loop may give rise to persistent oscillations.

The relevance of the complexity of connections is apparent in
the organization of the visual system, where their topology deter-
mines the receptive fields from the retina to simple, complex,
and hypercomplex cells in the visual cortex, in that the shapes
of these receptive fields require excitatory and inhibitory connec-
tions to form a precise configuration (Wandell, 1995). Specific
structures also characterize the separate, but interactive, visual
systems which preside, respectively, to the formation of internal
models of the external world, and to the control of object-directed
actions (Goodale and Humphrey, 1998).
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Even the generation of simple motions requires specific con-
straints: the neural population must be subdivided in subnets,
each able to perform a specific sub-task, connected in a pre-
cise way to ensure an ordered succession of neural events. The
simplest gesture requires the coordination of activity of different
subnets each firing in a precise sequence: more generally motion
routines result from the synchronization of the activity of many
oscillators, each composed of several neurons, whose phases must
have fixed differences to ensure a proper coordination of single
steps (Murray, 2002).

The type and topology of connections appear then to play a
crucial role in the functions of brain areas at the macroscopical
level. As it could be expected this is true also at the lower scale
of activity patterns: for instance spatially localized areas of activ-
ity can arise from constant input solely if neurons of the area are
linked by mutually excitatory and inhibitory synapses forming
the so called “Mexican hat” weights distribution (Murray, 2002;
Bressloff, 2012). Also, it has been shown that dominant patterns
of spontaneous activities in the brain are determined by neural
connectivity (Galán, 2008).

Data from fRMI studies on spontaneous brain activity pro-
vide further evidence on the role of neural connections. In recent
years several studies found that spatiotemporal activity patterns
are both complex and consistent across different subjects at rest
(Raichle et al., 2001). This evidence poses the question of their
origin, namely whether they are the expression of a common
cognitive state or the consequence of the constraints imposed by
neural connections (Deco et al., 2009).

Several models have been used to predict experimental pat-
terns of activity using connectivity data derived from neu-
roanatomy. These models represent brain areas as nodes of a
graph whose link were derived from neuronatomical data by
application of diffusion tensor imaging (DTI). Dynamics of activ-
ity of the nodes (brain areas) are simulated, for each model,
by a set of differential equations with different variables: mem-
brane potential (Honey et al., 2007; Ghosh et al., 2008), the mean
level of spike rate of a neural population (Deco et al., 2009),
the phase synchrony of neural oscillations (Cabral et al., 2013).
Finally activity can be modeled by a simplified stochastic spin
model (Deco et al., 2012).

For each model the correlation between activity of the pairs
of nodes (functional connectivity) has been calculated and com-
pared with the correlation between brain areas. The results show,
for all models, similar predictions and good agreement between
the experimental and simulated correlations (Cabral et al., 2013).

Two conclusions can be drawn from these analyses. First,
observed spatiotemporal activity patterns in resting state can be
derived just as a consequence of constraints imposed by neural
connections among brain regions. Next, note that the models dif-
fer by the type of variables and the only common feature is the
connectivity matrix, and yet their results are similar. These results,
then, support the idea that connectivity is central in the formation
of patterns of activity in the brain.

Such idea is at the core of the Connectome project (Bullmore
and Sporns, 2009; Sporns, 2012) that intends to under-
stand the complete details of neural connectivity and to con-
struct a map of the complete structural and functional neural

connections in vivo (Sporns et al., 2005; Hagmann et al., 2007,
2008).

3. DISCUSSION
It is often said that the human brain is the most complex struc-
ture in the known universe, even though how such complexity
can be computed is still a open question. In Tononi et al. (1994),
complexity is derived by measures of mutual information, but
other definitions could be considered, based on the entropy of
the states of neural populations (Shiner et al., 1999). In any case
the complex nature of the brain reveals itself in the structure of
its connections and patterns of activities. These two aspects are
inextricably linked: the structure of interactions among elements
of a neural population generates patterns of activity of increasing
complexity.

If the single neuron can just perform a scale transformation
of the inputs, pairs of mutually connected neuron can give rise
to a variety activity patterns, characterized by the presence of
attractors and sustained oscillations. These patterns result from
the constraints that weights impose on activities. Also, we have
shown that in large neural systems the processes of integration
and segregation of connections give rise to a greater variety of
activities of neurons and neuron groups.

As mentioned earlier, in models of biological networks events
are usually supposed to occur at three canonical scales, namely:
microscopic, mesoscopic, and macroscopic, to which correspond
different levels of explanation.

Inside each scale some finer subdivision can be considered.
For instance, motifs, small repetitive networks occurring in large
neural populations and supposed to be building blocks of larger
networks (Sporns and Kötter, 2004; Battaglia et al., 2012) can
be thought of as an intermediate level between microscopic and
mesoscopic scales. Also networks devoted to specific behavioral
or cognitive tasks can provide a link between mesoscopic and
macroscopic levels.

An interesting suggestion has been presented in West and
Deering (1994): in many physical systems “exists a critical dimen-
sion above which fluctuations have only a quantitative effect, but
below which the fluctuation can be amplified to modify the qualita-
tive behavior of the phenomenon.”

In the context of neurobiology, this observation could be
translated to mean that domains in the cortex in which varia-
tions of activity are amplified into sharp transitions implicitly
determine a proper scale for the explanation, for instance, of the
sensory or cognitive responses to an input.

The focus of the present work is on the connectivity among
neurons in large neural populations and considers a simple neu-
ron model with complex connections, so it can be thought of
as situated close to one end of the conceptual space proposed in
Cessac and Samuelides (2007); moving across this space one can
find models with different emphasis on the neuron/connectivity
relationships. At the opposite end of the spectrum with respect
to the approach presented here is the analysis of the computa-
tional properties of the single neuron, which appears to be able
to perform also complex computations (Rieke, 1999; Dayan and
Abbott, 2001; Koch, 2004). Each specific model can be backed (or
disproved) by specific types of data, from recording of electrical
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activity for single neurons or small networks to activity maps, for
instance obtained with fMRI techniques, for large populations.
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Focusing in experimental study of human behavior, this article discusses the concepts
of information and mental representation aiming the integration of their biological,
computational, and semantic aspects. Assuming that the objective of any communication
process is ultimately to modify the receiver’s state, the term correlational information is
proposed as a measure of how changes occurring in external world correlate with changes
occurring inside an individual. Mental representations are conceptualized as a special case
of information processing in which correlational information is received, recorded, but
also modified by a complex emergent process of associating new elements. In humans,
the acquisition of information and creation of mental representations occurs in a two-
step process. First, a sufficiently complex brain structure is necessary to establishing
internal states capable to co-vary with external events. Second, the validity or meaning
of these representations must be gradually achieved by confronting them with the
environment. This contextualization can be considered as part of the process of ascribing
meaning to information and representations. The hypothesis introduced here is that the
sophisticated psychological constructs classically associated with the concept of mental
representation are essentially of the same nature of simple interactive behaviors. The
capacity of generating elaborated mental phenomena like beliefs and desires emerges
gradually during evolution and, in a given individual, by learning and social interaction.

Keywords: information, mental representation, human behavior

INTRODUCTION
The construction of comprehensive explanatory models of human
behavior requires constant review and improvement of concepts
in order to integrate different types of structures and levels
of implementation. In this sense, this article discuss two con-
cepts frequently used for modeling different aspects of human
behavior in biological, psychological, philosophical, physical,
and computational explanatory theories. They are the concepts
of information and representation. The objective is to discuss
the interdependency between both constructs with special atten-
tion to their use in experimental investigations of cognitive
phenomena.

Briefly, the idea of representation discussed here is related to the
brain’s capacity of developing inner states, in the form of relatively
stable patterns of neuronal activity, that keep some kind of rela-
tionship with events occurring in external world. In many cases,
these representations start by simple reactions to external stimuli
but, due to brain’s organizational characteristics, evolve by incor-
porating many other elements than those directly apprehensible
from the direct contact with the environment. This capacity of
constructing complex mental representations results from a long
evolutionary process but its basic constituents can be identified in
the neuronal activity of simpler organisms in the form of reactive
or conditioned behaviors, for example.

The concept of mental representation in cognitive sciences
is frequently associated to complex phenomena such as beliefs

and desires. This class of models, also known as representa-
tional theories of mind (RTM), consider that these states have
“intentionality” in the sense that they are about or refer to things,
and may be evaluated with respect to properties like consistency,
truth, appropriateness, and accuracy (Cummins, 1989).

This article proposes that the general idea of intentionality or
the propriety of mental states of maintaining a correlation with
external events can be generalized to describe even the early stages
of information processing in the nervous system. This mechanism
of co-variation, in association with memory resources and the
capacity of generating brain states related to abstract elements of
world (more specifically the capacity of deduce the rules governing
the behavior of external elements) allow the emergence of the
characteristically human cognitive traits.

This broad idea of intentionality is based in a peculiar con-
cept of information as a linking element between brains and
world. Information, as used in neurobiological research, can be
described as something intrinsically linked to the construction of
representations but at the same time as a concept not exclusive of
mental instance. Information seems to exist in natural world and
human mind has a very special capability of extracting, process-
ing, and using it to increase its capacity of interaction with the
environment.

Although frequently studied separately, the concepts of infor-
mation and representation can be described as having compu-
tational and semantic aspects. The term computational refers
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to the possibility of codification, quantification, manipulation,
and physical implementation of information and representations
while the term semantic refers to the meaning of both concepts in
different contexts.

Information and representation will be discussed here from
a neurobiological point of view but with the intention of
maintaining coherence with their conceptualization in computa-
tional or artificial models of cognition. This coherence requires
considering mental representations as biological phenomena,
proper but not exclusive of human minds, which construc-
tion is achieved by a mechanism of information exchange with
the external world. As we shall see below, although repre-
sentations can be localized in the brain, their meaning does
not reside exclusively in the neurobiological instance being a
characteristic of the dynamic interaction between brains and
environment.

In the following sections, the concepts of mental representation
and information will be discussed with a declared bias toward its
application in empirical problems of cognitive neurosciences. The
interest in these concepts, however, is not restrict to the study of
human cognition. Comprehensive discussions about classic infor-
mation theory can be found in Shannon (1948), Karnani et al.
(2009), Wang and Shen (2011), and Adami (2012). The nature
of mental representations in philosophy, psychology, and neuro-
sciences is discussed by Cummins (1989, 1996), Stich (1992), and
Fodor (2000). Comprehensive discussions about semantic infor-
mation are found in Floridi (2005), Karnani et al. (2009), Jensen
et al. (2013), and Vakarelov (2014).

THE EMPIRICAL STUDY OF HUMAN BEHAVIOR
The paradigmatic situation faced by neuroscientists during their
experimental work can be described as follows: consider an indi-
vidual observing an object and/or carrying out a mental task while
his/her brain activity is recorded by a functional neuroimaging
machine. Based in the machine’s outputs, the scientist controlling
the experimental setup wants to know how the individual’s cog-
nition works and to what extent the machine output reflects the
individual experience of thinking.

Although it is possible to get some kind of information
from the machine, the descriptive capacity of this paradigm is
limited, especially in relation to the apprehensibility of sub-
jective experiences. This limitation can be expressed by the
qualia argument: although the scientist can know something
about the individual’s internal state it is impossible for an
external observer to have access to the very nature of men-
tal processes because they involve a special quality of conscious
experience that cannot be reduced to a linguistically mediated
set of descriptive elements (Kanai and Tsuchiya, 2012; Ramos,
2012).

This problem can be partially reduced by questioning the
individual about her/his subjective experience and checking
the accuracy of her/his representations of the external world.
This method, however, is limited by the capacity of the
individual in accessing their own internal states. The extra-
conscious character of many brain activities makes it impos-
sible for someone to be aware and report all elements com-
posing the cognitive experience. Even simple activities are

subject to uncontrollable perceptive distortions (optical illu-
sions, for example), spontaneous evocation of memory con-
tents, and subtle affective states that are not consciously per-
ceived.

Although neuroimaging techniques do not account for the
qualia question, they are continually improving their capac-
ity of detecting details of brain function in terms of anatomic
location and time course of events. The information obtained
by functional imaging machines is expressed in terms of elec-
trical signals or measures of metabolic activity which must be
articulated with the individual’s linguistic descriptions. Machine
recordings allow the spatial localization of structures working at
a given moment as well as mapping the time dynamics of their
interaction (Nunez et al., 2014). Thus, functional data are col-
lected and analyzed based in a general conceptualization of the
brain as an information processing device constituted by special-
ized and widely interconnected substructures working in constant
communication.

INFORMATION BASED ON RECEIVER
Probably, the most influential theory of information is that pro-
posed by Shannon (1948) based in the concept of entropy or the
uncertainty associated to the occurrence of a message. The gen-
eral communication system proposed by Shannon is shown in
Figure 1.

In a simplified form, this definition is based on the probabil-
ity of occurrence of a given message among other possible ones.
Although widely explored in computer sciences as well as in the
study of interactions between neurons and cortical areas (Bezzi,
2007; Ward and Mazaheri, 2008), this approach is not suitable for
many other applications in neurosciences. An accurate estimation
of the message probability requires previous knowledge of how
many other possible messages can possibly occur, which is fre-
quently inaccessible in behavioral studies. In addition, Shannon’s
model explicitly does not take in consideration the meaning of the
message emitted, transmitted, and received.

The question of meaning of information, centrally important
in neurosciences, has been discussed under the general topic of
semantic information. Despite the lack of consensus about its
definition, semantic information can be described as the data
and its meaning, including or not the conditions of truthful-
ness (Vakarelov, 2014). The study of semantic information has
focused in a number of problems, most of them systematized by
Floridi (2005). The main question related to the semantic aspect
of information of particular interest for this discussion is “how
can data acquire their meaning” (Floridi, 2005; Vakarelov, 2010).
Vakarelov (2010), for example, suggests a “pragmatic approach
to information where one defines the notion of information sys-
tem as a special kind of purposeful system emerging within the
underlying dynamics of the world, and defines semantic informa-
tion as the currency of the system. In this way, systems operating
with semantic information can be viewed as patterns in organized
systems.”

Returning to the general framework of Shannon’s communi-
cation system, one can says that the information transmission
process is not dependent on the meaning of the message only until
reaching the receiver component of the communication system. It
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FIGURE 1 | Information system proposed by Shannon. The red square delimits the receiver component of the system where the information’s semantic
value is determined.

occurs because the objective of sending a message is ultimately
to provoke changes in receiver’s state. These changes are what
determine the existence of the message from the receiver’s point
of view. For example, let’s consider an individual in a dark cave
populated by bats. In the absence of light and without the capac-
ity of perceiving ultrasounds, the individual can construct only
a very partial representation of the cave environment. He/she
cannot determine how many bats are inside the cave, what they
are doing, and if they are communicating with each other. The
observer’s state cannot be modified by the events occurring in
the cave due to the absence of adequate sensory mechanisms.
For the bats, however, the same environment is full of meaning-
ful information due to their capacity of emitting high frequency
sounds and analyzing its echoes. If this individual is a scien-
tist interested in understanding bat behavior, he/she can develop
instruments to detect ultrasounds otherwise unperceivable and
“extract” more information from the environment. Even with this
new instrument, the “meaning” of this new information is not
immediately clear. The only way to construct a comprehensible
picture of bat activities is by establishing correlations between
observable behaviors and the signals obtained by the machine.
Although it is impossible for the scientist to get full access to
the bat’s mind and to know how is to be like a bat, he/she can
map the modifications observed in the environment and compare
them with the modifications occurring in the machine states. If
the machine is sufficiently precise and the bat’s behavior is suffi-
ciently sophisticated, the scientist can build a limited map of bat’s
mind.

This example can be extended to the neuroimaging techniques
in general. In brain functional studies the strategy of simply cor-
relating stationary brain states with static external stimuli has
been proved meaningless. The simple mapping of all neurons
firing at the moment that a specific stimulus is presented does
not guarantee that the neural activity observed is related to that
act of observation. In order to determine the correlation level
between external world and internal brain activity, the strat-
egy is to induce changes in object’s characteristics and observe
the resulting changes occurring in brain activity. In functional
brain techniques, co-varying patterns of brain activities and object
presentation are usually obtained through several repetitions of
stereotyped tasks which results are submitted statistical analysis. In
fact, the term stimulus used in biological research can be defined
as any modification of the environment that interferes with the
organism’s state. In this situation, the scientist can check if the

observer’s brain is receiving information by identifying changes in
neural activity that correlate with changes occurring in the external
world.

Therefore, the process that defines the information as some-
thing significant occurs in the receiver component of the system
(the red box in Figure 1). It does not mean that other components
are not relevant but the hypothesis to be explored in the next
sections is that the meaning of message emerges in the receiver
and any other stimuli running through the information system
that is not recognized or that does not induces modifications in
the receiver’s state is not information.

The Shannon communication system model has been applied
in modeling each step of the nervous system’s functioning. Exter-
nal stimuli work as an information source to sensory cells that
generate action potentials and excite the next neuron in the path-
way. Cortical areas work as transmitters and receivers in relation
to other areas and one person can also be modeled as transmit-
ter, receiver, noise source, or information media according to
the interest of the model. Thus, the limits of each component
of an information system in an organism are arbitrary and the
same formalism used to describe the interaction between two
neurons can, in principle, be applied to describe the interac-
tions between neuron nuclei or even between individuals in social
interaction.

DEVELOPING REPRESENTATIONS
The co-variation of an observer’s neural/mental states with
changes occurring in the external world is the first condition for
establishing a representation of objects. Many forms of repre-
sentation can be generated by this process and several of them
may be incomplete or inaccurate. The construction of a set
of valid and useful representations requires a complementary
mechanism of validation and improvement that, in biologi-
cal organisms, can be implemented by the process of natural
selection.

Tononi (2008) suggests that “through natural selection, epi-
genesis, and learning, informational relationships in the world
mold informational relationships within the main complex that
“resonate” best on a commensurate spatial and temporal scale.
Moreover, over time these relationships will be shaped by an organ-
ism’s values, to refiect relevance for survival. This process can be
envisioned as the experiential analog of natural selection. As is
well known, selective processes act on organisms through differ-
ential survival to modify gene frequencies (genotype), which in
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turn leads to the evolution of certain body forms and behaviors
(extrinsic phenotype).”

Thus, the acquisition of information and creation of mental
representations occurs in a two-step process. First, a sufficiently
complex brain structure is necessary to establishing internal states
capable to co-vary with external events. Second, the validity of
these representations must be gradually achieved by confronting
them with the environment. The hypothesis discussed here is that
the sophisticated psychological constructs classically associated
with the concept of mental representation start from simple inter-
active behaviors. The capacity of using language and interacting
in social groups allowed the gradual emergence of more complex
human mental phenomena. This development can had occurred
even by a relatively disorganized process of creation, modification,
and correction of internal states in function of new inputs from
external world.

Therefore, it is possible to admit that the mechanisms by which
human cognition had developed are present in other classes of
organisms. For example, an insect survives in its natural habi-
tat because it can maintain a sufficiently accurate representation
of external world. This representation-mediated “world-insect
relationship” is limited and it even may not be considered as
of cognitive nature. However, the quality and precision of this
representation is the optimized result of a compromise between
anatomo-physiological constraints and the necessity of provid-
ing information processing resources in the context of selective
pressure in a specific niche. Partial representations may be suited
to improve survival chances because they are easier to be cre-
ated and corrected and faster to be implemented in natural life
situations.

REPRESENTING RULES
Another representational strategy that emerged along the evolu-
tion is the representation of the rules or patterns governing what
happen in the external world. For example, conditioned behaviors
in several animal species can be understood as a representation
of external regularities. The increased dog’s salivation after a con-
ditioned stimulus related to food is mediated by a representation,
established by learning, of a rule of correlation between two events.

In the human brain, similar mechanisms seem to work even
in more complex activities. Noelle (2012) reviewed evidences that
rule-guided behaviors in humans are associated with the func-
tioning of the prefrontal cortex, the basal ganglia, and related
brain structures. The author suggests that a “dopamine-based
gating mechanism interacts with standard models of synaptic plas-
ticity to support the development of appropriately isolated and
dimensional prefrontal representations, giving rise to improved
generalization to novel situations when adequately diverse train-
ing experiences are provided.” According to this proposal, some
regions of the prefrontal cortex may encode references or “point-
ers” to other prefrontal areas in a representational scheme that
would allow for essentially combinatoric generalization to novel
rules. This capacity of combinatoric generalization does not
imply a “mere implementation” of symbolic rule-interpretation
mechanisms. For Noelle, “complex interactions between the rule
representations actively maintained in prefrontal cortex and the
dynamic processes of more posterior neural circuits give rise to

graded and context-sensitive patterns of performance that escape
description by a purely symbolic rule account. Also, statistical
regularities in the experiences present during the development of
prefrontal cortex can profoundly shape the kinds the explicit rules
that can robustly be represented and applied.”

The process of information processing based on representa-
tion of rules can be further enhanced by the creation of subsets
of a priori representations available for use in natural situations.
Innate behaviors, related to threat detection for example, require
the pre-existence of relatively complex representations capable of
enhancing fast protective actions. This characteristic is called pre-
paredness of fear and phobias and it has been identified also in
human behavior. Mineka and Ohman (2002) present evidences
for the existence of an evolved module for fear elicitation and fear
learning with four primary characteristics: “First, it is preferen-
tially activated by stimuli related to survival threats in evolutionary
history. Thus, fear-relevant stimuli lead to superior condition-
ing of aversive associations compared with fear-irrelevant stimuli.
Second, the module is automatically activated by fear-relevant
stimuli, meaning that fear activation occurs before conscious cog-
nitive analysis of the stimulus can occur. Third, the fear module
is relatively impenetrable to conscious cognitive control, and fear
conditioning with fear-relevant stimuli can occur even with sub-
liminal conditioned stimuli. Fourth, the amygdala seems to be the
central brain area dedicated to the fear module.”

The high velocity required by the process of identifying threats
and implementing adequate responses imply in an increased prob-
ability of errors related to the simplification of external situations,
misinterpretation of new events, and ultimately the creation of
distorted representations. This style of cognitive functioning can
be understood under a biological perspective where, in natural sit-
uations, errors of commission (wrongly reacting to a non-threat)
are more acceptable than errors of omission (not reacting to a real
threat).

Other cognitive capacities like empathy and face recognizing
also seem to be implemented by similar mechanisms of working
with pre-prepared representations (Regenbogen et al., 2012; Kryk-
lywy et al., 2013; Prochnow et al., 2013). Admitting that the same
design strategy is used in the implementation of other cognitive
functions, this mechanism of simplifying representations in order
to facilitate stimuli responses may be hypothesized as playing a role
in complex phenomena associated to partial or biased evaluations
of external situations like folk psychological explanations and the
occurrence of preconceptions in social contexts.

CORRELATION AND INFORMATION
In order to differentiate from Shannon’s informational entropy,
the term correlational information is proposed here, not as a mea-
sure of probability but as a measure of how changes occurring in
external world correlate with changes occurring inside an agent.
This concept does not depend either on the physical, biologi-
cal, or linguistic nature of external object nor on the cognitive
capacity of the receiver. Correlational information depends on
the receiver capacity of modifying aspects of its internal states
in function of changes occurring in the external environment.
This receiver’s plasticity needs not to reflect every characteristic
of external objects because even partial representations can be
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FIGURE 2 |This figure illustrates different representational capacities of

sensory organs. (A) represents a light source emitting different colors. The
sensory organ illustrated in (B) is capable of associating the series of different
states a,b,c,d where each state is related to a different color blue, red, green,

and yellow. (C) illustrate another kind of sensory organ not capable of
distinguishing blue from green and red from yellow and, therefore,
representing the changes occurring in the exterior world by simplified set of
states (f,g).

sufficient for adequate interactions with the environment. This
strategy of adopting an information model based in correlations
aims to emphasize the importance of the receiver component of
in the general model of information system.

This approach can be illustrated as follow: let’s consider an
animal visually perceiving a light source emitting different colors
(Figure 2A). If its sensory organ has the capacity of having its
state modified in a given way by each color which induces one
corresponding change of state (Figure 2B), one can says that this
animal is capable of having accurate color perception. Note that,
in this model, how exactly this correspondence is physically imple-
mented is not important. The central point is that the path blue,
red, green, yellow in the external world correspond to the path
a,b,c,d inside the organism. In contrast, if the sensory organ is not
capable of distinguishing blue from green and red from yellow, for
example, its internal representation is given by a simpler path (fig)
in Figure 2C.

The representation expressed in Figure 2C is partial in compari-
son to that expressed by Figure 2B but its physical implementation
by a simpler sensory organ demands less resources. If both repre-
sentations have the same efficiency in preserving the animal’s life
(detecting food or predators, for example), the simplest alternative
may be the most advantageous unless new changes occur in the
environment making the exact color perception an essential trait
for survival.

According this model, the flux of correlational informa-
tion along nervous system is the set of modifications gradu-
ally established along sensory cells, nerves, interneurons, and
brain structures involved in behavior expression. An advan-
tage of this concept is that these modifications are potentially
detectable by functional techniques although not always acces-
sible to an individual’s consciousness. In experimental context,
even physiological manifestations like, for example changes in
autonomic functioning or postural control can be considered
as part of the set of information that composes mental repre-
sentations. The inclusion of these not purely cognitive elements
is essential, for example, in the study of emotions where sev-
eral experiential elements cannot be adequately described by
language.

This proposal does not imply in denying the existence of inter-
nally generated states. Although mental events can occur with
a degree of independence from external influences (for exam-
ple, reflections, interpretations, and mathematical thinking) the
basic neural components that allowed the development of these

sophisticated capacities are closely related to those working in
other relatively more simple brain activities.

The human thinking process can run with a relative
independence from external inputs like in mental fantasies. The
correlational model proposes is that the ability of working at this
level of abstraction was acquired by the gradual improvement of
the capacity of using correlational information. Once acquired,
this ability allows to the individual to work with independence
from direct sensorial inputs and add new elements to mental con-
tents. Although fantasies can be generated with large degree of
freedom, the awareness that these contents are internally created
is given by the capacity of confronting them with external inputs.

One example of internally generated state involving pre-
prepared structures closely related with external events is the
mirror neurons system. Originally found in macaque monkeys, in
the ventral premotor cortex, area F5 and inferior parietal lobule,
this group of neurons fire when the animal sees another animal (or
the experimenter) performing actions similar to those pertaining
to its natural repertoire of actions. Neuroimaging and electrophys-
iological studies indicate that mirror neurons may serve for action
recognition in monkeys as well as humans, whereas their puta-
tive role in imitation and language may be realized in human but
not in monkey (Oztop et al., 2013). Although primarily of motor
nature, mirror neurons have been associated with mental activi-
ties like intention understanding, emotions, empathy, and speech
(Acharya and Shukla, 2012).

Another examples of mental representations based in brain-
environment co-variant proprieties are those involved in the
orientation and movement in the space. Land (2014) points out
“that the motor system requires a representation of space that
maintains a consistent relationship with objects in the outside
world as the body moves within it, then this could also serve as a
model of a stable outside world of which we can be conscious. A
high-definition representation is not necessary, all that is required
is that it provides a stable framework to which detailed informa-
tion, provided by the visual pathways through the occipital and
temporal lobes, can be temporarily attached.”

The creation and recording of mental representations involves
the gradual recruiting of relatively distant but highly connected
brain components with different time dynamics. Consequently,
mental representations are not localized in specific brain regions
but they gradually emerge along the entire neuronal processing.
This idea is compatible with several neurobiological phenomena
associated with conscious experience. Shen et al. (2013) proposed
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that the experience of “insight,” described as an experience related
to a state of understanding, which emerges into one’s conscious
awareness with sudden abruptness, involves many distributed
brain regions, including the lateral prefrontal cortex, cingulate
cortex, hippocampus, superior temporal gyrus, fusiform gyrus,
precuneus, cuneus, insula, cerebellum, and some areas of the
parietal cortex.

The ability of processing complex concepts and rules governing
external events is essential to the emergence of another property
of human cognitive systems that is the possibility of anticipating
future events. The capacity of preview the occurrence of a given
stimulus can be identified even in simple organisms exhibiting
conditioned behaviors. For example, the technique of olfactory
conditioning of the sting extension response has been extensively
used to yield new insights into the rules and mechanisms of
aversive learning in insects (Tedjakumala and Giurfa, 2013).

This simple capacity of representing rules can be improved
by the development of more complex neural resources. In
fact, this capacity vary from one species to other (Seed et al.,
2012) and along the cognitive development of each individ-
ual (Wellman et al., 2001). Moreover, there are also evidences
that this representational capacity do not depend of neuronal
mechanisms but also of adequate social and cultural influences
(Moriguchi, 2014).

EMERGENCE AND COMPLEXITY
The next question, central for this discussion, is how simple mech-
anisms of correlation allow the emergence of complex abstractions
in the human mind. A possible strategy for clarifying this point
is to explore complex systems theories and its applicability at the
several structural and organizational levels evolved in the genesis
of human behavior.

The idea that complex patterns can spontaneously emerge from
simpler components is largely discussed in natural sciences and
a number of theoretical ideas have been proposed to explain
their occurrence like, for example agent-based models and genetic
algorithms (Caticha and Vicente, 2011; Gros, 2013).

One of these theoretical models in particular, known as self-
organized criticality (SOC), has received great attention as a
possible explanation for the spontaneous emergence of complex
patterns both at neural and behavioral levels. The concept of
SOC was proposed by Bak et al. (1987) as one of the mech-
anisms by which complexity arises in nature. They suggested
that “dissipative dynamical systems with extended degrees of
freedom can evolve toward a self-organized critical state, with
spatial and temporal power-law scaling behavior.” This spatial
scaling leads to self-similar “fractal” structure identifiable in many
conditions.

Beggs and Plenz (2003) reported evidences of this phe-
nomenon studying organotypic cultures from coronal slices of rat
somatosensory cortex. They continuously recorded spontaneous
local field potentials (LFPs) using a 60 channel multielectrode
array and found that the propagation of synchronized LFPs activ-
ity was described by a power-law. The authors suggested the slope
of this power-law, as well as its branching parameter, indicate
the presence of SOC in these preparations. (Beggs and Plenz,
2003) found evidence that the critical branching process optimizes

information transmission while preserving stability in cortical net-
works. Simulations showed that a branching parameter at value
found in the experimental preparation optimizes information
transmission in feed forward networks, while preventing run-
away network excitation. The authors called this pattern“neuronal
avalanches”and hypothesized that it could be a generic property of
cortical networks and represent a mode of activity differing from
oscillatory, synchronized, or wave-like network states.

Compatible with the ideas discussed here, the identification
of such patterns of functioning seems to depend on the brain
functioning in context. El Boustani et al. (2009) studied intracel-
lular activity of 15 neurons in the primary visual cortex of the
anesthetized and paralyzed cat. Each neuron was recorded while
presenting four full field stimuli through the dominant eye: a drift-
ing grating at the cell’s optimal orientation and spatial frequency,
a high spatial definition dense noise, a natural image animated
with a simulated eye movement sequence, and a grating animated
with the same eye movement sequence. The authors found the
recordings displayed power-law frequency scaling at high frequen-
cies, with a fractional exponent dependent on the spatio-temporal
statistics of the visual stimuli. They also reported that this effect
was reproduced in computational models of a recurrent network.
They noted “that the power-law relations found here depend on
the stimulus, which means that the frequency scaling exponent
does not represent a unique signature of cortical network activity,
but rather reflects a measure of the dynamic interplay between
the sensory evoked activity and the ongoing recurrent network
activity.”

The possibility of SOC being relevant for explaining complex
human behavior was explored by Ramos et al. (2011) who evalu-
ated groups of individuals with and without mental disorders in
social interaction during several weeks. Although the behavior of
each individual had been very different from other participants in
absolute terms, the statistical description of the different groups
(individuals with depression, psychosis, mania, and normal con-
trols) showed identical patterns of behavioral variation. In all
groups, comparing the behavior of individuals with themselves,
small changes of behavior were very frequent while large varia-
tions were rare. The characteristic of having the same variation
pattern reproduced at different levels of human activity, suggests
the presence of self-similarity (Serrano et al., 2008). The curves
describing the behavior of all clinical groups and controls showed
the same aspect and fitted a power-law. The authors suggested
that the presence of self-similarity and power-laws is compatible
with the hypothesis that humans in social interaction constitute a
system exhibiting SOC.

Self-organized criticality is certainly a promising concept for
integrating biological and behavioral aspects of human behavior
under the same causal mechanisms but it doubtless requires more
empirical investigations (Hidalgo et al., 2014).

A BRIEF COMMENT ON THE SEMANTIC QUESTION
The last important point to be discussed here is the question of the
ascription of meaning in informational models of cognition. This
is a very problematic discussion in the literature that cannot be
adequately addressed in the limited scope of this article. However,
the empirical research in neurosciences demands some strategy for

Frontiers in Psychology | Theoretical and Philosophical Psychology September 2014 | Volume 5 | Article 1034 | 89

http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/
http://www.frontiersin.org/Theoretical_and_Philosophical_Psychology/archive


Ramos Information, representation, and human behavior

dealing with this problem due to the impossibility of understand-
ing many aspects of human behavior without considering some
form of justification.

A possible provisional strategy is to leave the concept of
meaning momentarily aside and explore a utilitarian approach
of the mental representations. In a biological perspective, the
immediate utility of behaviors and mental representations is
increasing individual’s survival chances in different contexts. So,
although informations and representations have been defined,
in this correlational approach, in function of effects observed
in the receiver component, their utilitarian character must be
apprehended only in the context of the entire communication
system.

Naturally, the idea that human cognition was molded by evo-
lutionary mechanisms is not new. Tononi (2008) explain this
hypothesis: “Brain mechanisms, including those inside the main
complex, are what they are by virtue of along evolutionary his-
tory, individual development, and learning. Evolutionary history
leads to the establishment of certain species-specific traits encoded
in the genome, including brains and means to interact with
the environment. Development and epigenetic processes lead to
an appropriate scaffold of anatomical connections. Experience
then refines neural connectivity in an ongoing manner though
plastic processes, leading to the idiosyncrasies of the individual
“connectome” and the memories it embeds.”

The general concepts of evolution theory have been used for
the explanation of several kinds of behaviors and cognitive phe-
nomena. However, this explanatory strategy still needs to be better
incorporated by empirical studies. The same attention dedicated
to developing neurofunctional techniques must also be dedicated
to the identification and analysis to the characteristics of the envi-
ronment where the behaviors are manifested. For example, this
utilitarian characteristic of informational models suggests that
future developments in functional brain studies must consider
the use of immersive virtual reality setups as a way of controlling
the behavioral context.

CONCLUDING REMARKS
This article aimed to address some questions about the use of
the representation and information concepts in the context of
experimental research in cognitive sciences. The focus in the
“information based on the receiver” proposed here is justified by
the interest of developing objective approaches to the study of
human behavior in biological and semantic terms. This search for
new conceptual approaches took the risk of being superficial in its
formalism but it was proposed as a first step for the description
of the different elements that contribute to the construction of
mental representations.

The correlational information concept discussed here aimed
to be sufficiently simple to allow a naturalization of the infor-
mation concept in the sense that all interaction between physical
entities can be seen as an informational phenomenon. In this
model, the construction of mental representations can be seen
as a special case of information processing in which correla-
tional information is received, recorded, but also modified by a
complex, emergent, and possibly stochastic process of associat-
ing new elements. The validity of these new internally generated

constituent elements is granted by its continuous confrontation
with new external inputs and by the selection of the most adequate
representations in relation to its capacity of improving survival
chances.

The hypothesis is that this basic mechanism works in all ani-
mal species but, with the improved human brain capacity, it leads
to the emergence of higher order or abstract descriptive elements
of external objects that allow the prediction of future events. This
process is possible by the manipulation of internal states represent-
ing not only objects but also the rules governing their behavior.
In this model, although the content of correlational information
depend on the receiver capacity of creating internal states capable
to co-vary with external events, the utility of a given informa-
tion can be apprehended only by the observation of the entire
communication system.

The continuous process of collecting information, creating rep-
resentations, generating predictions, comparing with outcomes,
and adjusting them in order to optimize their accuracy is compat-
ible with several psychological models of learning and cognitive
development. This mechanism of correlational representations is
also compatible with a Bayesian conception of cognitive function-
ing where partial or provisional representations work as estimators
of a priori probabilities in dealing with future events (Tenenbaum
et al., 2011).

The ideas discussed here represent a first approach and nat-
urally demand deeper investigations in relation to its theoretical
and empirical implications. In theoretical terms, although theo-
ries like SOC are promising in explaining human behavior, other
mathematical models also deserve attention. Caticha and Vicente
(2011), for example, argue that statistical mechanics can leads
to aggregated predictions which can be tested against extensive
data sets with partial information about populations. The pro-
cess of exchanging information and learning patterns involved in
these models can elicits collective emergent properties not found
in individual behaviors.

In relation to the empirical research, this discussion suggests
that the integrative study of the computational and semantic ele-
ments that compose human experiences will demand significant
technical and theoretical improvements. Technically, the com-
bined register of different variables like cortical electric activity,
mapping of eye movements, measures of skin galvanic conduc-
tance, and postural control obtained during carefully planned
cognitive activities emulated in virtual reality environments,
for example, can potentially give a deeper comprehension of
the mental, affective, and motor events occurring in realistic
contexts.
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