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Editorial on the Research Topic

Computer-aided drug design: Drug discovery, computational

modelling, and artificial intelligence

Owing to the rapid improvement of computational methodologies and high-

performance computational resources, computer-aided drug design (CADD) has been

validated as an efficient and powerful strategy in almost every stage of drug discovery and

development.

Generally, CADD can be divided into structure-based drug design (SBDD) and

ligand-based drug design (LBDD). Due to the rapid development of crystallography and

homology modeling, structure-based virtual screening has emerged a useful technique to

identify potential hits during early stage of drug discovery. LBDD strategies based on

available information of known bioactive molecules, such as QSAR (Quantitative

Structure–Activity Relationship) analysis, scaffold hopping, pharmacophore modeling,

are also widely used for hit optimization and activity prediction. In addition,

computational techniques like quantum chemistry calculation, molecular dynamics

(MD) simulations and elastic network models can be used to study protein catalytic

mechanism, conformational transition and allosteric regulations at an atomic level of

detail, which provide useful information for mechanism-based drug design. Recently,

with the development of machine learning theory and the accumulation of

pharmacological data, artificial intelligence (AI), a powerful data mining technology,

has been widely used in various fields of drug design, including virtual screening, de novo

drug design, QSAR analysis, as well as in silico evaluation of absorption, distribution,

metabolism, excretion and toxicity (ADME/T) properties.

In this Research Topic, we have invited some scientists worldwide to contribute

original research and review articles which could enhance our understanding of some of

the above issues. Several studies utilized multiple computational approaches, such as
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molecular docking, DFT calculations, molecular dynamics (MD)

simulations, ADME/T prediction, as well as biological

evaluations to identify novel compounds against a series

of important targets, like Tubulin (Khattab and Al-

Karmalawy), Dengue Virus NS5 protein (García-Ariza et al.),

α-Glucosidase (Liu et al.), hACE2 receptor of SARS-CoV-2 (Al-

Karmalawy et al.), Fascin (Lin et al.), TMPRSS2 (Mahmudpour

et al.) and Alzheimer’s disease targets (Pradeep et al.). Santana

et al. discussed the development of computational approaches to

explore the chemo-structural diversity of natural products.

CADD methods are also widely used for exploring

interactions between ligand and receptor, as well as inhibition

mechanisms of active compounds. Tao et al. performed

molecular docking and MD simulations to study the

interaction between RBD and two glycopeptide antibiotics

(Vancomycin and Teicoplanin). Wang et al. used network

pharmacology and molecular docking to explore the

mechanism of Shan Ci Gu (Cremastra appendiculata) against

non-small cell lung cancer. In addition, Di Filippo et al. proposed

a machine learning model to predict drug transfer across the

human placenta barrier, which could be used as a filter for

chemical libraries in virtual screening campaigns.

In summary, the above works presented in this special

Research Topic illustrate the applications of CADD

approaches and highlight the importance of developing new

methods. At last, as the Guest Editors of this Research Topic,

we would like to thank all the authors for their contributed

articles and all the referees for their comments on the

manuscripts. We hope that the readers will find this Research

Topic interesting and useful for their research. Finally, we

appreciate the editorial staff of Frontiers in Chemistry for

their work in publishing this Research Topic.
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Discovery of New α-Glucosidase
Inhibitors: Structure-Based Virtual
Screening and Biological Evaluation
Shan-Kui Liu1, Haifang Hao1, Yuan Bian1, Yong-Xi Ge1, Shengyuan Lu1, Hong-Xu Xie1,
Kai-Ming Wang1, Hongrui Tao2, Chao Yuan3, Juan Zhang1*, Jie Zhang4, Cheng-Shi Jiang1*
and Kongkai Zhu1,5*

1School of Biological Science and Technology, University of Jinan, Jinan, China, 2Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 3Zoucheng
Administration for Market Regulation, Zoucheng, China, 4Lunan Pharmaceutical Group Corporation, Linyi, China, 5Shandong Key
Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and
Technology, Qingdao, China

α-Glycosidase inhibitors could inhibit the digestion of carbohydrates into glucose and
promote glucose conversion, which have been used for the treatment of type 2 diabetes. In
the present study, 52 candidates of α-glycosidase inhibitors were selected from
commercial Specs compound library based on molecular docking–based virtual
screening. Four different scaffold compounds (7, 22, 37, and 44) were identified as
α-glycosidase inhibitors with IC50 values ranging from 9.99 to 35.19 μM. All these four
compounds exerted better inhibitory activities than the positive control (1-
deoxynojirimycin, IC50 � 52.02 μM). The fluorescence quenching study and kinetic
analysis revealed that all these compounds directly bind to α-glycosidase and
belonged to the noncompetitive α-glycosidase inhibitors. Then, the binding modes of
these four compounds were carefully investigated. Significantly, these four compounds
showed nontoxicity (IC50 > 100 μM) toward the human normal hepatocyte cell line (LO2),
which indicated the potential of developing into novel candidates for type 2 diabetes
treatment.

Keywords: α-glycosidase, virtual screening, cytotoxicity, type 2 diabetes, molecular docking

INTRODUCTION

Diabetes is a metabolic disorder that causes high blood sugar and could directly increase the risk of
other deadly diseases, such as cancer, stroke, and cardiovascular diseases (Cohen and Goedert, 2004;
Zeng et al., 2019). According to the statistics of the World Health Organization (WHO), about 422
million people suffered from diabetes in 2014 around the world, and its prevalence is projected to be
642 million by 2040 (Reusch and Manson, 2017; World Health Organization, 2020). The ineffective
use of insulin could result in the type 2 diabetes and accounts for more than 90% of diabetes cases
(Proença et al., 2017).

Controlling blood glucose levels is thought to be the main strategy for treating diabetes and
reducing diabetes complications (Ye et al., 2019). α-Glucosidase is a key carbohydrate hydrolase that
regulates blood glucose by specifically hydrolyzing 1,4-α-glucopyranosidic bond to produce
α-glucose (Kazmi et al., 2018). Early studies have shown that the inhibition of α-glucosidase
activity could retard the absorption of glucose and decrease the postprandial blood glucose levels
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(Park et al., 2008; Kim et al., 2019). Therefore, α-glucosidase has
been taken as a key target for treating diabetes, and the inhibitors of
α-glucosidase can be developed into effective therapeutic drugs to
treat this disease (Li et al., 2010). α-Glucosidase inhibitors such as
acarbose, miglitol, and voglibose (shown in Figure 1) are the most
well-known ones (Joshi et al., 2015). Acarbose, the first approved
drug in α-glucosidase inhibitor category, was used to delay the
release of glucose from polysaccharides by binding with
α-glucosidase. Voglibose was used to discontinue the uptake and
hydrolysis of saccharides by selectively inhibiting α-glucosidase vs.
pancreatic α-amylase and lactase. Miglitol, the first pseudo-
monosaccharide α-glucosidase inhibitor, was approved to reduce
postprandial glucose (Hossain et al., 2020). However, some
unexpected adverse effects (for instance, flatulence, diarrhea, and
stomachache) limited their clinical application. Based on this
background, numerous efforts have been carried out to discover
new a-glucosidase inhibitors from diverse sources, such as natural
products and chemical synthetic compounds (Chen et al., 2017; Liu
and Ma, 2017; Abbas et al., 2019; Dhameja and Gupta, 2019).

Virtual screening has been proven to be a very effective tool
capable of providing drug hits or leads with structural diversity and
makes drug discovery faster and more efficient (Kitchen et al.,
2004; Kontoyianni, 2017). In this study, molecular docking–based
virtual screening on Specs database was conducted to identify
α-glucosidase inhibitors with new chemotypes. After testing the
purchased 52 compounds that were obtained by docking screening,
four compounds, namely, 7, 22, 37, and 44 with different scaffolds,
were disclosed as new α-glycosidase inhibitors. Kinetic analysis of
these compounds revealed that they inhibited α-glycosidase
activity in a noncompetitive type. Then, the binding modes of
these compounds with α-glycosidase were investigated, and the
results indicated that all of these compounds could be well located
in the acarbose-binding site and displayed very similar binding
poses. Moreover, the cytotoxicity of these compounds toward the
human normal hepatocyte cell line (LO2) was evaluated. The
present results provided new α-glycosidase inhibitors serving as
hit compounds for developing novel medications used in the
treatment of type 2 diabetes.

METHODS AND MATERIALS

Molecular Docking–Based Virtual
Screening
The protein coordinates in the α-glycosidase crystal complex
structure (PDB code 3W37) were prepared by the Protein

Preparation Wizard panel inserted in the Maestro with the
default settings. Residues within 15 Å centered on acarbose
were defined as compound-binding sites in which the
docking grid was generated by the Receptor Grid Generation
panel. The default settings were adopted for the cutoff,
neutralization, etc. The docked compounds in Specs database
were prepared with LigPrep panel. Then, the prepared
compounds were docked to the aforementioned docking gird
with extra precision (XP) mode. “Clustering Molecules”
protocol inserted in Pipeline Pilot 7.5 was employed to
achieve the cluster analysis. The top ranked compounds
assessed by XP GScore were clustered into 30 clusters. To
increase the diversity of selected compounds, at least one
candidate was selected in each cluster. In addition, we gave
priority to the compounds with simple structure and/or small
molecular weight.

α-Glycosidase Inhibitory Assay
The α-glucosidase inhibitory evaluation of the purchased 52
compounds was performed according to the previously
described protocol (Tang et al., 2014; Ye et al., 2019).
α-Glucosidase (Sigma, G5003) derived from baker’s yeast, and
pNPG (Sigma, N1377) and the substrate were both purchased
from Sigma-Aldrich. 1-Deoxynojirimycin was used as the
positive control. The tested compounds and 1-
deoxynojirimycin were dissolved in DMSO, the α-glucosidase
and the substrate pNPG were both dissolved in phosphate buffer
(pH � 6.8). The compounds and α-glucosidase were preincubated
in phosphate buffer (37°C, 15 min). Then, 25 μL substrate buffer
was added to the system to start the reaction, and the incubation
was continued at 37°C for 15 min. Finally, the reaction was
terminated by the addition of 50 μL 0.2 M reaction
termination solution. The optical density (OD) was measured
at an absorbance wavelength of 405 nm using a microplate reader
(Tecan, Switzerland). The IC50 values were estimated with six
different concentrations, and each sample was measured three
times in parallel experiments.

Fluorescence Quenching Experiment
According to the previously reported method (Aguilar-
Moncayo et al., 2010), all fluorescence spectra were
measured on a fluorescence spectrophotometer (Agilent Cary
Eclipse) equipped with a 10.0-mm quartz cell and a thermostat
bath. In the fluorescence spectrophotometer, α-glucosidase
(1 U/ml) was pretreated with certain concentrations of
inhibitors for 30 min at 37°C. 100 μL of the above solution

FIGURE 1 | Clinically Approved α-glucosidase inhibitors.
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(pH 6.8) was added accurately to the quartz cell. The blank was
used for buffer spectrum values. The fluorescence emission
spectra were measured at 37°C. The excitation wavelength was
290 nm, and the emission spectrum was recorded from 320 to
500 nm.

Kinetic Assay
The inhibition type of the inhibitors against α-glucosidase
activities was evaluated based on a described method (Hou
et al., 2009). Increasing concentrations of substrates pNPG
were used in the absence or presence of tested compounds at
four different concentrations around the IC50 values. The
inhibitory kinetics of the investigated compounds on
α-glucosidase was analyzed using the Lineweaver–Burk plot of
the substrate concentration and velocity.

Cell Viability Assay
The LO2 cell line was cultured in a proper medium supplemented
with 10% fetal bovine serum in a humidified atmosphere of 5%
CO2 at 37°C. Cell suspensions were plated in 96-well plates at a

density of 2 × 104 cells/cm3. Compounds were solubilized in
DMSO at six different concentrations. After incubation for 24 h,
the cells were treated with various concentrations of tested
substances for 48 h and then incubated with 100 μL of MTT at
37°C for 2 h. The formazan dye product was measured by the
absorbance at 490 nm on a Tecan Spark multimode microplate
reader (Switzerland).

RESULTS AND DISCUSSIONS

Fifty-Two Candidates of α-Glycosidase
Inhibitor Were Selected From the Molecular
Docking–Based Virtual Screening Result
As the crystal structure of α-glycosidase–acarbose complex has
been determined (PDB code 3W37) (Tagami et al., 2013),
molecular docking–based virtual screening could be
performed. Specs database that contains 200,000 compounds
was chosen as the screening database. The redock result of

FIGURE 2 | (A) α-glycosidase inhibitory activity of the 52 selected candidates at 100 μM; (B) The chemical structures and IC50 curves of compounds 7, 22, 37, and
44. IC50 data are shown as mean ± SD of three independent experiments.
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acarbose (Supplementary Figure S1) declared that GLIDE
program (Halgren et al., 2004) inserted in the Schrödinger
program suite could well reproduced the binding mode of

acarbose in the crystal structure. The top 300 molecules
ranked by the docking score were selected for the following
cluster analysis. Finally, 52 compounds were retained and

FIGURE 3 | Variation of fluorescence emission spectra of α-glycosidase (1 U/ml) in the presence of compounds 7, 22, 37, and 44 with increasing concentration for
30 min at 37°C.

FIGURE 4 | Stern-Volmer plots for the fluorescence quenching of α-glycosidase by compounds 7, 22, 37, and 44.
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purchased from the Specs database supplier for further
α-glycosidase enzymatic inhibition activity evaluation.

In vitro Inhibition Test Against
α-Glycosidase Identified Four Active
Compounds 7, 22, 37, and 44
The selected 52 candidates were initially evaluated for their
inhibitory ratios against α-glycosidase at 100 μM with 1-

deoxynojirimycin as positive reference. The α-glycosidase
enzymatic inhibition bioassay results indicated that four
compounds, namely, 7, 22, 37, and 44 with representing
totally different scaffolds, exhibited an inhibition ratio
above 50% at 100 μM (Figure 2A). Then, the IC50 values of
these four compounds were further determined. As shown in
Figure 2B, compounds 7, 22, 37, and 44 displayed IC50 values
of 17.36 ± 1.32, 35.19 ± 2.14, 31.34 ± 3.11, and 9.99 ± 0.43 μM,
respectively. All of them showed better activity than the

FIGURE 5 | Kinetic assay on α-glycosidase inhibition by compounds 7, 22, 37, and 44, respectively. Lineweaver-Burk reciprocal plots of initial velocity and
increasing substrate (PNPG) concentration with secondary plot of slopes vs. the concentration of compounds.

FIGURE 6 | Docking pose of compound 7 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 7 and
α-glycosidase. α-Glycosidase, 7 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts) and Pi-Pi interactions (shown as oval) of 7 with α-Glycosidase.
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positive reference control 1-deoxynojirimycin (IC50, 52.02 ±
3.78 μM), and compound 44 exhibited the most potent
activity.

Fluorescence Quenching Assay Confirmed
the Binding of 7, 22, 37, and 44 to
α-Glycosidase
The interactions of 7, 22, 37, and 44 with α-glycosidase were
explored through the fluorescence quenching experiments. As
displayed in Figure 3, the variations of the intrinsic fluorescence
emission of α-glycosidase (2 μM) in the presence of increasing
concentration of molecules 7, 22, 37, and 44, respectively, were
recorded at 37°C with the wavelength range from 320 to 500 nm.

The intrinsic fluorescence emission peak at 345 nm was observed
after being excited at 290 nm.

After treated by compounds 7, 22, 37, and 44 with increasing
concentration (Figure 4), the fluorescence intensities of enzyme
in all tested systems were gradually quenched in a type of
concentration-dependent manner. Thus, these results
confirmed the binding of these inhibitors to α-glycosidase.

Kinetic Study on α-Glycosidase Inhibition
Declared the Noncompetitive Manner of
These Four Compounds
To explore the mechanism of the interaction modes of
compounds 7, 22, 37, and 44 with the enzyme, kinetic assay

FIGURE 7 | Docking pose of compound 22 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 22 and
α-glycosidase. α-Glycosidase, 22 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts), Pi-Pi interactions (shown as oval), and H-bond interactions
(denoted by dotted green lines) of 22 with α-Glycosidase.

FIGURE 8 | Docking pose of compound 37 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 37 and
α-glycosidase. α-Glycosidase, 37 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts) of 37 with α-Glycosidase.
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was conducted to study their inhibition types using
Lineweaver–Burk plot analysis (Wang et al., 2004; Sun et al.,
2018). The results shown in Figure 5 indicate that compounds 7,
22, 37, and 44 were noncompetitive α-glycosidase inhibitors,
with estimated Ki values of 24.18, 11.34, 11.27, and 15.39 μM,
respectively.

Molecular Docking Simulation Revealed the
Binding Mode of These Four Compounds
The interaction mechanisms of compounds 7, 22, 37, and 44 with
α-glycosidase were carefully analyzed with the molecular docking
results, as shown in Figures 6–9. All these four compounds could
well bind to the allosteric sites away from the active site (Asp214,
Glu276, and Asp349) (Ye et al., 2019) in α-glycosidase and
formed hydrophobic interactions with nearby residues. These
results were consistent with the noncompetitive property. The
docking scores of these four hits were -3.811, -2.825, -3.627, and
-6.283. Specifically, inhibitor 7 established hydrophobic
interactions with residues D357, D469, W432, N237, S497,
L240, I233, W329, W467, F601, H626, and D568 and formed
Pi–Pi stacking with residues W329 and W432. Compound 22
formed hydrophobic interactions with residues W329, F476,
D357, D469, W432, D232, M470, W467, F601, H626, and
D568 and formed Pi–Pi stacking with residues W329 and
F601. Besides, 22 established H bond interaction with R552
residue. Compound 37 formed hydrophobic interaction with
residues M470, W329, F476, D357, D469, W432, F601, D568,
and R552 and formed Pi–Pi stacking with residue F476.
Additionally, compound 44 formed hydrophobic interaction
with residues S474, W329, F476, D357, D469, W432, N475,
D568, D232, F601, and K506 and formed Pi–Pi stacking with
residue W432. From these data, we could find that residues

W432, W329, F601, D357, D469, and D568 were the key
residues contributing interaction with all of the four compounds.

In vitro Cytotoxicity
Since most of the drugs are metabolized in the liver, there is a
great focus on the hepatic safety of new medicines. Thus, the
cytotoxicity of inhibitors 7, 22, 37, and 44 was evaluated in human
normal hepatocyte (LO2) cells using the MTT method (Ge et al.,
2020). The results disclosed that all of these compounds had IC50

values more than 100 μM toward LO2 cells, suggesting they are
nontoxic toward liver cells. Thus, further structural optimization
and biological evaluation for 7, 22, 37, and 44 deserved further
investigation.

CONCLUSION

In this study, four novel α-glycosidase inhibitors 7, 22, 37, and 44
with distinct structural features were identified through virtual
screening and in vitro evaluation. Among them, compound 44
had the best α-glycosidase inhibitory activity with IC50 and Ki

values of 9.99 ± 0.43 and 15.39 μM, respectively. The fluorescence
quenching experiment indicated all these compounds could
directly bind to α-glycosidase, and the kinetic study revealed a
noncompetitive α-glycosidase inhibitory mechanism of these
compounds toward α-glycosidase. In addition, binding mode
analysis provided the detailed binding mechanism of these
four α-glycosidase inhibitors, which made further structural
optimization feasible. Moreover, the in vitro cytotoxicity
bioassay demonstrated these α-glycosidase inhibitors were
nontoxic toward LO2 cells. Based on these results, these
compounds can serve as promising hit compounds for further
bioactivity optimization and anti–type 2 diabetes study.

FIGURE 9 | Docking pose of compound 44 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 44 and
α-glycosidase. Compound 44 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts) and Pi-Pi interactions (shown as oval) of 44 with
α-Glycosidase.
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The recent pandemic caused by SARS-CoV-2 has spread to over 100 countries, infected
more than 47 million people and resulted in more than 1.2 million deaths worldwide until
October. It is well known that, the SARS-CoV-2 starts an infection by binding its Receptor
Binding Domain (RBD) of spike protein to human Angiotensin converting enzyme 2 (ACE2)
receptor, and strenuous efforts had been made to prevent the infection. However, no
successful drugs or vaccines have appeared. Herein, molecular docking and molecular
simulations were carried out to study the interaction between RBD and two glycopeptide
antibiotics (Vancomycin and Teicoplanin). Key residues in binding pocket were highlighted
and the binding free energies were calculated. Our results suggested that Vancomycin and
Teicoplanin, as natural and accepted antibiotics, could block the interaction between RBD
of spike protein and human ACE2 receptor, which might be developed to potential drugs
against the SARS-CoV-2.

Keywords: SARS-CoV-2, RBD, ACE2, molecular docking, MD simulation

INTRODUCTION

Since the end of 2019, the epidemic disease caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) has spread in more than 100 countries, causing over 47 million
infections with more than 1.2 million deaths, which severely threatens the global public health, the
economic development, and the social stability (Jiang et al., 2020). SARS-CoV-2 is a kind of novel
enveloped positive-stranded RNA viruses. The SARS-CoV-2 genome can encode four major
structural proteins (Figure 1): the spike (S) protein, the membrane (M) protein, the envelope
(E) protein and the nucleocapsid (N) protein (Dutta et al. 2020). Among them, the S protein has
attracted much attention, because it is a critical determinant of viral host range and tissue tropism, as
well as a major inducer of host immune response (Walls et al. 2020).

The SARS-CoV-2 S protein consists of three segments: a large ectodomain (ED), a single-pass
transmembrane anchor (TM) and a short intracellular (IC) tail (Figure 1C). The ED is a clove-
shaped trimer, comprising three receptor-binding subunits (S1) heads and a trimeric membrane-
fusion subunits (S2) stalk. The C-terminal domain of S1 (S1-CTD), also named as receptor binding
domain (RBD), is responsible to recognize some protein receptors like ACE2, APN, and DPP4.
Furthermore, the SARS-CoV-2 RBD contains a core structure and a receptor-binding motif (RBM)
as two subdomains. The core structure is formed by a group of five-stranded antiparallel β-sheets and
RBM contains another two short β-sheets and long loop areas (Figure 1D). The RBM presents a
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bowl-like concave surface to accommodate the conformation of
N-terminal α-helix in ACE2 for better binding (Li, 2016).

During the invasion process of SARS-CoV-2, S1 binds to
the receptor on the host cell surface firstly and S2 fuses with the
host cell membrane, allowing viral genomes to enter into the
host cell (Walls et al., 2017). After that, viral genomes can
encode N protein to promote RNA replication intracellularly.
S protein is involved in receptor binding and membranes
fusion that are indispensable steps in the coronavirus
infectious cycle, so S protein has been considered to be the
primary drug target for recent pandemic caused by SARS-
CoV-2.

Although antibiotics become the effective therapy method of
microbial infections after the introduction of sulfonamides and
the discovery of penicillin in 1928, the overuse of them has
resulted in the subsequent emergence of antibiotic-resistant
bacteria, which dramatically reduces the therapeutic effect
(Hutchings et al., 2019). Under this serious circumstance,
antimicrobial peptides (AMP) has been quickly used as an
alternative to antibiotics to treat bacterial and viral infections
because of its natural source and high efficacy. The mechanism of
AMPs against pathogens includes membrane permeabilization,
membrane destabilization, inhibition of macromolecular
synthesis, intracellular translocation of the peptide and
inhibition of DNA/RNA/protein synthesis (Yeaman and
Yount, 2003). A previous study has also shown that the
peptide compounds Mo-CBP3-PepII and PepKAA can interact
with the S1 and S2 domains of the S protein through molecular
docking respectively (Souza et al., 2020). Peptides have been
reported as the potential chemical compound to prevent SARS-
CoV-2 from infecting the cell for the first time, which inspires us
to study the role of glycopeptides in inhibiting the invasion of
SARS-CoV-2 further.

Vancomycin (V) is a tricyclic glycopeptide antibiotic
originally derived from the organism Streptococcus Orientalis.

As the first member of Vancomycin family, Vancomycin was
soon approved by the Food and Drug Administration in 1978 as a
therapy of penicillin-resistant Staphylococcus aureus infection
(Levine, 2006). After introduced into the clinical use, it was
soon replaced by the β-lactam antibiotics including methicillin,
ethoxylpenicillin and cloxacillin due to their higher efficiency and
lower cytotoxicity. Since 2000, Vancomycin has returned as the
clinical therapy of MRSA after the cytotoxic problem was solved.
Nowadays, Vancomycin is still used to treat severe infections that
cannot respond to other antibiotics (Pais et al., 2020).

Teicoplanin (T), another member of the Vancomycin family
glycopeptide antibiotics, was first discovered in 1975 (Boger,
2001). The antibacterial spectrum and antibacterial activity of
Teicoplanin were similar to those of Vancomycin (Figure 2),
which is attributed to the same backbone structure. Compared
with the structure of Vancomycin, the additional fat acid side
chain in Teicoplanin is beneficial for penetrating cells more easily
(Costa et al., 2011).

Considering the glycopeptide structure and the pre-existing
therapeutic effect for pneumonia (Pais et al., 2020), Vancomycin
and Teicoplanin were chosen as the potential compounds against
SARS-CoV2. Their feasibility was investigated by exploring the
interaction with SARS-CoV2-RBD and antiviral experiments in
this study. We constructed the systems of SARS-CoV2-RBD with
Vancomycin (RBD-V) and Teicoplanin (RBD-T) by molecular
docking experiments. For each system, the most stable
conformations were selected from 200 structures to perform
3 × 50 ns molecular dynamics (MD) simulations. Then the
binding energy were calculated via MMPBSA method. The
conformational characteristics were analyzed during MD
simulations and key residues that play a critical role in
different binding modes were highlighted. The strong and
stable interaction between SARS-CoV2-RBD and Vancomycin/
Teicoplanin may be beneficial to prevent receptor binding and
membranes fusion process of SARS-CoV-2 infectious cycle.

FIGURE 1 | The overall structure of SARS-CoV-2 S protein and RBM domain. (A) Important monomers in SARS-CoV-2 S protein. (B) Schematic of SARS-CoV-2
and S protein in color. (C) The overall structure of SARS-CoV-2 S protein (D) The structure of S1-NTD (RBD) in SARS-CoV-2 S protein.
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METHODS

System Preparation
The crystal structure of SARS-CoV2-RBD was derived from the
Protein Data Bank database (PDB ID: 6M0J) (Lan et al., 2020).
We used H++ website (http://biophysics.cs.vt.edu/) to compute
the pKa values of ionizable residues in RBD and determine their
protonation states at pH � 7.0 (Anandakrishnan et al., 2012). The
chemical structures of two glycopeptides, Vancomycin and
Teicoplanin, were obtained from PubChem. Their three-
dimensional structures were optimized by Gaussian16 (Steen
et al., 2015) at m062x (Zhao and Truhlar, 2008)-D3 (Grimme
et al., 2011)/6-31G(d)(Krishnan et al., 1980) level. Then the
electrostatic surface potential (ESP) charges were calculated for
force field preparation. Afterward, a two-step restrained
electrostatic potential (RESP) (Wang et al., 2000) model was
applied to determine the charges distribution on the substrates.

Docking
In this work, the AutoDock4.2 software (Goodsell et al., 1996)
was utilized to build SARS-CoV-2 RBD-V complex and RBD-T
complex. According to the binding position of RBD and ACE2,
the map of 126,126,126 grid points in the point interval of
0.375 Å was set and calculated. The Lamarckian Genetic
Algorithm (LGA) (Fuhrmann et al., 2010) was adopted to
search for stable complexes. The number of runs and
maximum energy evaluations were fixed at 200 and
2,500,000. Other parameters were set as default values.
Finally, the results were ranked by docking energy. The top
five for each system with the low binding energy were extracted
to carry out classical MD simulations later.

Classical Molecular Dynamics Simulation
MD simulations were performed on RBD-V and RBD-T
complexes using AMBER16 accelerated by GPU(Gotz et al.,
2012; Le Grand et al., 2013; Salomon-Ferrer et al., 2013) under
ff14SB force field (Maier et al., 2015). The complexes were solvated
in an octahedral box of TIP3P(Mark and Nilsson, 2001) water
molecules with the thickness of the external water layer exceeding
10 Å, totally 10,190 water molecules in RBD-V system and 10,120
water molecules in RBD-T system. To achieve the charge
neutralization, two chloride ions were added in both systems.

Both solvated systems were firstly subjected to 10,000 steps of
minimization followed by heating and equilibration cycles. In the
heating cycle, the systems were gradually heated from 0 to 300 K
through 25,000 iterations. After equilibration for 50 ps in the
NPT ensemble, three 50 ns molecular dynamics simulation
(300 K, 1 atm) were conducted for each pose of each system
with different random seeds. The Particle Mesh Ewald (PME)
method was employed to account for long-range electrostatic
interactions, and the SHAKE algorithm in its matrix form was
used to fix bonds and angles involving hydrogen atoms (Ryckaert
et al. 1977). The cutoff of Van der Waals interactions was set to
10.0 Å. Each system included top five docking results and three
parallel trajectories for each mode, 15 × 50 ns trajectories in total
(Table 1). Then trajectories analyses were carried out using
Cpptraj (Roe and Cheatham, 2013) in Ambertools18.

Trajectories Analysis
Root mean square deviation (RMSD) was widely used to measure
the variation between two structures. To judge the change of
protein structures, the coordinate difference of alpha carbon,
carbon atom of carbonyl groups and nitrogen atom in the system

FIGURE 2 | The chemical structure of Vancomycin (V) and Teicoplanin (T).

TABLE 1 | List of MD runs performed.

RBD-V RBD-T

Mode V1 V2 V3 V4 V5 T1 T2 T3 T4 T5
Time (ns) 3 × 50 3 × 50 3 × 50 3 × 50 3 × 50 3 × 50 3 × 50 3 × 50 3 × 50 3 × 50
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relative to the initial structure was calculated and averaged during
the MD simulation. In the Eq. 1, di was the distance between the
original and the present coordinates of atom i, and N was the
atom number of the system to calculate the distance.

RMSD �
�����∑ d2i
Natoms

√
(1)

Root mean square fluctuation (RMSF) represented the average
variation of single alpha atom over time. In the Eq. 2, ximeans the
coordinate of atom i and N means the number of frames to be
calculated.

RMSFi �
���������������������

1
NFrames

∑NFrames

j�1
[xi(tj) − xi]2

√√
(2)

Binding Free Energy Calculation
Molecular Mechanics Poisson-Boltzmann Surface Area
(MMPBSA) and Molecular Mechanics Generalized Born

Surface Area (MMGBSA) were two efficient methods to
calculate the binding ability between ligands and
receptors (Genheden and Ryde, 2015). The total binding
energy was calculated on the basis of the difference of
complex free energy and sum of the free energy of
receptor plus ligand. The module anti-MMPBSA.py in
AMBER18 was used to create three topology files
(complex, receptor and ligand) for binding energy
calculation (Miller et al., 2012). Each term on the right-
hand side of Eq. 3 was estimated according to Eq. 4.

ΔGbind,solvated � ΔGcomplex,solvated − [ΔGreceptor,solvated + ΔGligand,solvated]
(3)

ΔGsolvated � 1
N

∑N
i

Ei,gas + 1
N

∑N
i

ΔGi,solvation − T
N

∑N
i

Si,solvate (4)

In this study, one 50 ns MD simulation trajectory of each
mode of each system was used to calculate the binding free
energy. Each trajectory consists of 25,000 frames.

FIGURE 3 | Spatial position analysis of RBD-V and RBD-T complexes. (A)Centroids distribution of V and T in all docking modes were marked with green dots and
pink dots respectively. N-terminal α-helix of ACE2was displayed in grey, the core area of RBD (S1-CTD) was displayed in orange and RBMwas displayed in blue. (B) The
mean and variance of each three-dimensional coordinate vector (Δx, Δy, and Δz) and docking energy score (ΔE) were calculated and represented by histograms.
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RESULTS

Docking Results of SARS-Cov-2 RBD and
Vancomycin/Teicoplanin
According to the binding mode of SARS-CoV-2 RBD and human
ACE2, a docking box was set at the top of RBD. After 200 times
molecular docking in each system, dockingmodes were ranked by
binding energy in Supplementary Figure S1. The sampling of the
docking structures was sufficient according to the distribution of
binding energy and normal distribution of each three-
dimensional coordinate vector (Figure 3). The flexible binding
positions of T and V to ACE2 implied that they could efficiently
block the interactions of RBD with human ACE2 receptor by
occupying their interface.

Next, top five structures with the low energy were collected for
each system and shown in Figure 4A. It can be seen that the
receptor-binding motif (RBM) can easily accommodatedV and T
because of its bowl-like concave surface, except for T3, which
seems escaped from the bowl. After counting up all polar
interaction between ligands and RBD in those docking modes,

five important residues were found and shown in Figure 4B. The
hydrogen bonds formed by K417, Y449, E484, Q493 and S494
and existed in more than three docking modes. These residues
primarily concentrated on RBM region and had been reported
widely to play a key role in RBM binding. Also, other residues
listed in Figure 4B might be involved in the recognition process
between two ligands and RBD. These results suggested that our
docking results are reliable.

Structural Analysis of Receptor-Binding
Motif
To study the structural characteristic of RBD-V and RBD-T
complexes, the top five structures mentioned above were
utilized to perform MD simulations in each system
(Supplementary Figure S2). The RMSD of the RBD-V system
was shown in Supplementary Figure S3. In both systems, the
RMSD values with slight fluctuations (mean is 1.63 ± 0.31 Å in
RBD-V system and 1.55 ± 0.25 Å in RBD-T system) suggested
that the initial structures of RBD-V system and RBD-T system

FIGURE 4 | (A) The top 5 modes obtained from docking experiments of RBD-V and RBD-T system. (B) Residues that could form interactions more than twice in
top five modes with V and T were listed in the table. The residues, appeared once, were merged together on the bottom. Key residues K417, Y449, E484, Q493, and
S494 were shown in sticks in left. The color of RBD is as the same as Figure 3.
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obtained by docking experiments were suitable and the binding
states reached their respective equilibriums during 50 ns MD
simulations.

The structural fluctuations of RBD in two systems were
depicted in Supplementary Figure S3. Based on the RMSF
analysis, residues located on the top and the bottom regions of
RBD including loop1, loop2, and α1 were highlighted
(Figure 5A). According to the structure of the whole S protein
(Figure 1C), loop1 and α2 played important roles in the
interaction of RBD with S1-NTD. The loss of S1-NTD during
MD simulations might lead to the instability of these areas.
Compared with the structure of RBD protein without ligands,
the same RMSF variations in two systems meant the structure
flexibilities of loop1 and α1-3 were not caused by the existence of
ligands. And loop2 exhibited more remarkable structural
flexibilities in RBD-V and RBD-T systems (Figure 5B), which
suggested the existence of ligands could influence the
conformational change of RBD protein. Besides loop2, V445,
G446 and T500 resides at RBM also showed flexible structure
movements in both RBD-V and RBD-T systems. Furthermore,
two systems exhibited the similar structural movement tendency,
suggesting RBD consisted of a stable core structure and the
flexible RBM region responsible for binding with V and T.

In a word,V and T could bind with RBD steadily and influence
the key residues in RBM involved in the recognition of ACE2.

Therefore, more attention would be paid to RBM in the
subsequent studies.

Linear Regression Analysis between
MMPBSA Binding Free Energy and
Interactions
Considering that RBM was a wide binding surface, which was
much different from the traditional binding site. Also, V and T
were large amphiphilic ligands. The binding modes of RBD-V
and RBD-T systems were not only a single stable configuration, so
conformers obtained by MD simulations every 1 ns were
collected to study their structural characteristics. Hydrogen
bond (HB) and hydrophobic (HP) interactions were studied.
The number of the residues that interacted with V and T was
counted for each system (Supplementary Table S3) and the
mean was shown in Figure 6A. Compared with the chemical
structure of V, T had more glycosylated modifications and a
saturated nine-membered carbon chain which could increase the
possibility of forming HB and HP interactions with RBD. During
50 ns MD simulations, T could form HP interaction with 3.25
residues in average, while 2.95 residues in RBD-V system.
Similarly, more glycosylated modifications and polar
functional group were beneficial for T to form nearly 0.5 HB
interactions more thanV. In a conclusion,T could bind with RBD

FIGURE 5 |MD simulation analyses of RBD-V and RBD-T (A) The representative conformations of the system without ligand, RBD-V system and RBD-T system
according to the cluster analysis. The structures were colored by RMSF value. (B) The histogram of RMSF distribution. The RMSF value of each residue in the system
without ligand (N), RBD-V (V) system and RBD-T (T) system was colored by grey, green and red respectively.
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more closely than V. What’s more, five residues in average could
interact with these glycopeptide ligands for each system,
indicating the existence of effective binding.

The binding energy was calculated via MMPBSA method on
the top five complexes and the results were all shown in Table 2.
Comparing the average binding energy of two systems, we found
RBD-T system was lower than RBD-V by 3.0 kcal/mol, which
validated the aforementioned conclusion that T could bind with
RBD more closely than V. Then a line regression analysis was
performed to investigate the correlation between MMPBSA
binding free energies and HB as well as HP interactions
(Figure 6B). The squared correlation coefficient (R2), also
known as the coefficient of determination, was 0.688 that
means the positive relationship between the binding free
energy and the interactions. The coefficient between the free
energy and the number of residues forming HB interaction was
equaled to −6.63 with the p-value below 0.05. The binding

energy contributed by HB interaction lay within the
reasonable range (Emamian et al., 2019). Although the
P-value of the coefficient between the free energy and the
number of residues forming HP interaction was larger than
0.05, which was possibly attributed to the obscure definition of
HP interaction. Besides, the tendency that the binding free
energy was lower with more HP interaction was in
accordance with our knowledge.

Diverse binding modes led to different binding energies. The
regression analysis above showed that lower energy values were
caused by better conformations with more HB and HP
interactions. The average binding energies of RBD-V5
complex and RBD-T1 complex are the lowest in each system
because of more HB and HP interactions, so the key residues of
the two modes were explored subsequently.

Key Residues Found through Dynamic
Hydrogen Bond Analysis and MMPBSA
Decomposition
Basing on the results mentioned above, HB interaction showed
the positive correlation with the binding free energy. Therefore,
we counted up all HBs in RBD-V and RBD-T systems and the
survival time was used to define the strength of these HBs to
search important residues.

The HB whose survival time was longer than 1% MD
simulation time was listed as dots in Figure 7. As we can see,
most dots were concentrated at RBM. The HB distribution in
different modes was complicated and dissimilar, but Y449, E484,
S494, and Y501 interacted with glycopeptide ligands in most
modes. Combined with the results of MMPBSA decomposition
(Supplementary Table S3), the key residues were found out.

FIGURE 6 | (A) Hydrogen bond and hydrophobic interaction in RBD-V and RBD-T systems. The number of residues interacting with V (green) and T (pink) in RBD
region were counted every 1 ns during each 50 ns MD simulation. The average of 15 trajectories for each system was shown as the transparent line and the mean was
shown as the opaque horizontal line. In the plot, hydrogen bond interaction was shown as solid lines and hydrophobic interaction was shown as dotted line. (B) The
multiple linear regression model of MMPBSA binding free energy and HB/HP interactions. The standard line representing the free energy calculated by MMPBSA
was equaled to the value predicted by the model was showed as a grey dotted line.

TABLE 2 | Binding free energy calculated via MMPBSA.

System State MMPBSA (kcal/mol) Ave.(Sta) Ave.(Sys)

MD1 MD2 MD3

RBD-V

V1 −19.4 −21.3 −10.7 −17.1

−17.9
V2 −25.8 −19.7 −11.5 −18.0
V3 −21.5 −20.4 −12.6 −18.1
V4 −13.7 −15.5 −9.4 −12.9
V5 −13.5 −29.3 −23.8 −22.2

RBD-T

T1 −30.5 −33.6 −24.7 −29.6

−20.9
T2 −25.9 −37.0 −19.4 −27.4
T3 −9.8 −27.4 −12.2 −16.5
T4 −13.1 −14.4 −22.9 −16.8
T5 −10.9 −13.8 −17.4 −14.0
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In RBD-V5 complex, K417, Y453, S494 and Y501 stabilized V
by long-time HB interaction. These HBs formed by K417, Y453,
S494, and Y501 maintained 23.40, 52.13, 65.27, and 34.97% of
MD simulation time respectively. Meanwhile, L455, Q498, and
Y505 could be helpful to lower the binding free energy by
interacting with V.

Except S494, the interaction mode in RBD-T1 was
significantly different from that of RBD-V5 complex. The HBs
formed by Y449, E484 and S494 could retain 41.12, 27.72, and
47.45% of MD simulation time respectively. Furthermore, L452
donated −1.5 kcal/mol, F490 donated −2.7 kcal/mol and L492
donated −0.5 kcal/mol to stabilize the binding mode between T
and RBD.

The importance also showed through alanine scanning base
on the wild type trajectories (Liu et al., 2018). The difference of
the MMGBSA energies were shown in Supplementary Table S4.
Except L492, the mutation of the rest residues showed energy
difference more than 0.5 kcal/mol in at least one system,
indicating their important roles in stabilizing the ligands
with RBD.

Aforementioned K417, Y449, Y453, L455, Q498, Y501, and
Y505 had been reported to play a crucial part in the binding with
ACE2 (Hussain et al., 2020; Lan et al., 2020; Veeramachaneni et al.,
2020). The remaining key residues we found including L452, E484,
F490, L492, and S494 were adjacent to these important residues
associated with ACE2. The binding site of V and T was similar to
that of ACE2, so V and T were thought to be able to prevent the
infection of SARS-CoV2 by competitive binding.

The Antiviral Potential of Vancomycin and
Teicoplanin
Besides all the computational analyses mentioned above, antiviral
experiments were performed to confirm our proposal. We used
pseudovirus to simulate the SARS-CoV-2 under 50 μM
Vancomycin or Teicoplanin. The antiviral potential of V and
T were tested through an antiviral sever. The results revealed that
V and T respectively with 83 and 87% being antiviral against
SARS-CoV-2. (Supplementary Table S2).

CONCLUSION

In conclusion, two glycopeptides, Vancomycin and Teicoplanin,
were investigated as potential antiviral molecules by analyzing the
interactions with SARS-CoV-2 RBD of spike protein. Firstly,
200 times docking experiments were used to choose the proper
binding modes and K417, Y449, E484, Q493, and S494 were
found out as key residues to stabilize the ligands with RBD. After
classical MD simulations of top five structures with low energy,
the RMSD analysis showed the binding states reached their
equilibriums and the RMSF analysis showed both ligands
could cause structural change of loop2 by binding with RBD.
Afterwards, the number of hydrogen bonds and hydrophobic
interactions was counted as independent variable and the binding
free energy was calculated as dependent variable. The linear
regression analysis between binding free energy and

FIGURE 7 | The key residues in RBD-V and RBD-T systems. In the structures of RBD-V5 and RBD-T1, residues forming HBs for more than 20% MD simulation
time (blue and orange) were highlighted. Besides, residues listed in the top 10 of the MMPBSA decomposition (grey) were shown. All residues forming HBs in more than
1%modes were summarized in a dot matrix where the transparency was proportional to the survival time. The dots in RBD-V systemwere colored in green and the dots
of RBD-T system were colored in pink.

Frontiers in Chemistry | www.frontiersin.org January 2021 | Volume 8 | Article 6399188

Tao et al. Interaction between Vancomycin/Teicoplanin and RBD

23

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


interactions suggested that hydrogen bonds played important
roles in maintaining the stability of the conformation. Also
compared two systems, More glycosylated modifications and
the fat acid side chain in T increases the possibility of forming
more hydrogen bonds and hydrophobic interactions with RBD.
Furthermore, dynamic hydrogen bond analysis and MMPBSA
decomposition helped us to find out more important residues.
With the help of alanine scanning analysis of those important
residues, we more convinced that they played an important role
of enhancing the combination of two ligands and RBD. Part of
those key residues were also found to bind with ACE2 reported in
other studies (Hussain et al., 2020; Lan et al., 2020;
Veeramachaneni et al., 2020), such as K417, Y449, Y453, L455,
Q498, Y501 and Y505. Although the remaining key residues such
as L452, E484, F490, L492, and S494 did not directly forming
interactions, they were adjacent to these important residues
associated with ACE2. Based on those results mentioned
above, we implied that Vancomycin and Teicoplanin could be
the potential competitive inhibitor to block the binding of SARS-
CoV-2 RBD and ACE2, and further prevent the SARS-CoV-2
infectious cycle.
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Revisiting Activity of Some
Nocodazole Analogues as a Potential
Anticancer Drugs Using Molecular
Docking and DFT Calculations
Muhammad Khattab1* and Ahmed A. Al-Karmalawy2*

1Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research
Centre, Cairo, Egypt, 2Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New
Damietta, Egypt

Although potential anticancer activities of benzimidazole-based anthelmintic drugs have
been approved by preclinical and clinical studies, modes of binding interactions have not
been reported so far. Therefore, in this study, we aimed to propose binding interactions of
some benzimidazole-based anthelmintics with one of the most important cancer targets
(Tubulin protein). Studied drugs were selected based on their structural similarity with the
cocrystallized ligand (Nocodazole) with tubulin protein. Quantum mechanics calculations
were also employed for characterization of electronic configuration of studied drugs at the
atomic and molecular level. Order of binding affinities of tested benzimidazole drugs
toward colchicine binding site on tubulin protein is as follows: Flubendazole >Oxfendazole
> Nocodazole > Mebendazole > Albendazole > Oxibendazole > Fenbendazole >
Ciclobendazole > Thiabendazole > Bendazole. By analyzing binding mode and
hydrogen bond length between the nine studied benzimidazole drugs and colchicine
binding site, Flubendazole was found to bindmore efficiently with tubulin protein than other
benzimidazole derivatives. The quantum mechanics studies showed that the electron
density of HOMOof Flubendazole andMebendazole together with their MEPmap are quite
similar to that of Nocodazole which is also consistent with the calculated binding affinities.
Our study has ramifications for considering the repurposing of Flubendazole as a
promising anticancer candidate.

Keywords: anthelminthic, anticancer, tubulin inhibitors, molecular docking, DFT calcualtions, drug repurposing

INTRODUCTION

Microtubules play a key role in the invasion and metastatic spread of tumor cells, depending on its
crucial roles in mitosis, signaling, trafficking, proliferation, and migration of eukaryotic cells
(Honore, Pasquier and Braguer, 2005). Drugs targeting microtubular proteins constitute a major
and promising anticancer drug category exhibiting both antimitotic and antiangiogenic properties,
besides inhibiting tumor progression in cancer and endothelial cells (D Katsetos and Draber, 2012).
Colchicine binding site (CBS) is one of the five important identified binding sites on tubulin protein
with the longest history of research as an anticancer target (Wang and Zhang, 2016).

The success rate for new anticancer drugs from Phase I trial to commercial use by FDA approval is
estimated to be around 6.7% from 2003 to 2011, taking about 8.3 years as an average (Hay et al., 2014;
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Takebe, Imai and Ono, 2018). The overall numbers of cancer
deaths massively grow, rendering it the leading cause of death
across all age groups by 2020 (Weir et al., 2016). Therefore, there
is a great global need for rapidly approved and effective
anticancer drug candidates.

Computational drug repurposing, a new area of drug
repurposing, has been intensively developed due to breakthrough
advances in fields of molecular, genomic and phenotypic data of
pharmacological compounds (Park, 2019). Drug repurposing is an
accelerated tool for drug development by seeking new indications for
already approved drugs rather than discovering de novo drug
compounds and constitutes nowadays 30% of the newly marked
drugs in the United States (Pushpakom et al., 2018; Park, 2019)
Many successful repurposed drugs have been introduced by FDA as
in case of Aspirin, used for the treatment of stroke and/ormyocardial
infarction, Topiramate, used for the treatment of obesity, and
Mifepristone, used for the treatment of hyperglycaemia in
Cushing’s syndrome (Polamreddy and Gattu, 2019).

Benzimidazole nucleus is a pharmacophore in lots of bioactive
heterocyclic compounds with a wide range of biological and clinical
applications. Moreover, benzimidazole derivatives constitute the
isosteric structures of many naturally occurring nucleotides,
which allows interacting easily with the living system biopolymers
(Narasimhan et al., 2012). As a result, it constitutes a large group of
drugs exhibiting various therapeutic activities such as anthelmintic,
antiviral, antihypertensive, antioxidant, and anticancer (Yadav and
Ganguly, 2015). Benzimidazole anthelmintic drugs are widely used
due to their low toxicity and high efficiency against a wide range of
helminth species (Köhler, 2001). Their mechanism of action is based
on specific binding to tubulin subunit of microtubular protein,
which results in a disruption of its structure and function (Lacey,
1990).

Based on the aforementioned data, benzimidazole derivatives
became an attractive target for drug repurposing trials. The cytotoxic
studies on benzimidazole-based drugs revealed their potential
activity as colchicine binding site inhibitors (CBSIs) (Wang and
Zhang, 2016; Al-Karmalawy andKhattab, 2020). Despite none of the
benzimidazole-based drugs have been granted food and drug
administration (FDA) approval for targeting the colchicine
binding site on tubulin till now, the preclinical and clinical
studies revealed the CBSIs are less susceptible to drug resistance
development rendering them a potential target for cancer treatment
(McLoughlin and O’Boyle, 2020).

Benzimidazole anthelmintic drugs having over 40 years of safe
use as over the counter medications (Geary et al., 2010). They are
meeting many characteristic features to be desirable for
repurposing such as well-known safety profiles, well-described
pharmacokinetic studies, and low prices (Biodegradabilních and
Konjugátů, 2015). In vitro and in vivo studies revealed the
potential of some members of benzimidazole anthelmintic
drugs to suppress tumor progress through inhibition of
multiple biological targets such as tubulin polymerization and
angiogenesis (Mukhopadhyay et al., 2002; Králová et al., 2013;
Raghunath and Viswanathan, 2014; Guerini et al., 2019).

Nocodazole (NZO) is a benzimidazole-based experimental
drug targeting both protein kinases and microtubules. It is
used as a lead compound for the discovery of novel CBSIs

(Geary et al., 2010). In this manuscript, we propose modes of
binding interactions between nine benzimidazole-based drugs in
comparison with the reference cocrystallized NZO drug
(Figure 1) at colchicine binding site of tubulin protein. The
first seven members of the nine elected benzimidazole
anthelmintic drugs (1–7) exhibit structural similarity
(benzimidazole core and carbamate moiety) with NZO. Studies
reported here is a continuation to our previous work on NZO and
a benzimidazole-based anthelmintic drug (Mebendazole) (Al-
Karmalawy and Khattab, 2020; Khattab, 2020).

METHODOLOGY

Docking Studies
Tested Compounds Optimization
Docking studies using the Molecular Operating Environment
(MOE) software package (Inc., 2016) were performed to evaluate
the activities and binding modes of nine benzimidazole
anthelmintic drugs compared to NZO complexed with CBS
(Wang and Zhang, 2016). Mebendazole (1), Albendazole (2),
Ciclobendazole (3), Fenbendazole (4), Flubendazole (5),
Oxibendazole (6), Oxfendazole (7), Thiabendazole (8) and
Bendazole (9) were downloaded from the PubChem website
(https://pubchem.ncbi.nlm.nih.gov/). The nine tested
compounds underwent energy minimization after examining
the structure and the formal charges on atoms using a 2D
depiction model. The partial charges were also automatically
calculated. Structure of the co-crystallized NZO obtained from
two subunits of the target tubulin protein (B and D subunits) and
the nine tested benzimidazole drugs were imported together in
the same database and saved in the form of MDB file to be docked
in two separate processes for each subunit pocket, B and D,
respectively.

Target Tubulin Active Site Optimization
The X-ray structure for tubulin protein (PDB: 5CA1) complexed
with the native NZO was obtained from the Protein Data Bank
(http://www.rcsb.org/). All steps for the preparation of the target
protein for docking calculations were done. The addition of
hydrogen atoms with their standard 3D geometry to the
system, automatic correction to check for any errors in the
connections and types of atoms, and fixation of the potential
of the receptor were also performed. The selection of the same
active site of co-crystallized inhibitor in the protein structure was
done by using Site Finder where dummy atoms were created at
the same binding site of the pocket.

Docking of Molecules into Colchicine Binding Site of
Tubulin
Docking of the database composed of the nine benzimidazole
drugs together with NZO was performed. The following
methodology was applied: the prepared protein active site file
was loaded, and then the general and template docking processes
using dock tools were initiated. Dummy atoms act as the docking
site, triangle matcher is the placement methodology, London dG
is the scoring methodology, rigid receptor represents the
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FIGURE 1 | Diagram illustrating structural similarity between benzimidazole anthelmintic drugs and NZO (reference drug).

TABLE 1 | The 3D view of binding interactions between tested benzimidazole drugs and NZO-binding pocket within Tubulin subunit B and D (PDB: 5CA1) beside the solved
NZO complex (Native) and the docked complex (Docked). Red dashed lines refer to hydrogen bonds, while the black ones denote hydrophobic interactions.

Drug Protein
(5CA1) subunit B

Protein
(5CA1) subunit D

NZO (native)

NZO (docked)

(Continued on following page)
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TABLE 1 | (Continued) The 3D view of binding interactions between tested benzimidazole drugs andNZO-binding pocket within Tubulin subunit B and D (PDB: 5CA1) beside
the solved NZO complex (Native) and the docked complex (Docked). Red dashed lines refer to hydrogen bonds, while the black ones denote hydrophobic interactions.

Drug Protein
(5CA1) subunit B

Protein
(5CA1) subunit D

Mebendazole

Albendazole

Ciclobendazole

Fenbendazole

Flubendazole

Oxibendazole

Oxfendazole

(Continued on following page)
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refinement methodology, and GBVI/WSA dG is the scoring
methodology for selection of the best 10 poses from 100 poses
for each compound. After completion of docking processes, the
obtained poses were studied, and the best ones showing the best
interactions of ligand–colchicine binding site of tubulin were
selected and studied accordingly.

Molecular Mechanics Calculations
Density functional theory (DFT) based Becke’s three-parameters
Lee-Yang-Parr hybrid functional (B3LYP) (Becke, 1993; Becke,
2001) was employed in the calculations. The geometry of all
compounds was initially optimized using the B3LYP/3-21G
model and reoptimized using the B3LYP/6-31G model and
B3LYP/6-311+G* model. No imaginary frequencies were

obtained from the optimized structures demonstrating that the
corresponding geometries are true local minima. Conductor-like
polarizable continuum model (CPCM) (Cossi et al., 2003) and
dielectric constant of solvent water (ε � 78.35) were used to
approximately describe the polarity of colchicine binding pocket.
All simulations were performed using GAUSSIAN 09 Revision
C.01 (Frisch et al., 2016) on Swinburne supercomputing facilities.

RESULTS AND DISCUSSION

Crystallographic data of co-crystallized NZO complexed with
tubulin protein (PDB: 5CA1) revealed the existence of two
binding sites for NZO inside the protein, subunits B and D,

TABLE 2 | Calculated parameters obtained from docking of different benzimidazole drugs and NZO in the binding pockets within subunit B and D of Tubulin protein.

Phys. Prop. S (subunit B) S (subunit D) rmsd_refine E_conf E_refine

NZO (docked) −7.34 — 0.95 0.64 −26.68
— −7.04 2.07 −7.66 −27.13

Mebendazole −7.36 — 1.54 −21.83 −37.08
— −7.28 1.40 −20.16 −37.04

Albendazole −7.23 — 0.97 −53.87 −36.45
— −6.86 1.06 −40.74 −30.12

Ciclobendazole −6.94 — 0.90 62.46 −35.58
— −6.78 1.40 63.16 −32.88

Fenbendazole −7.09 — 1.71 −47.42 −37.47
— −7.39 1.22 −46.84 −37.31

Flubendazole −7.36 — 1.19 −18.75 −36.26
— −7.25 1.38 −3.47 −34.07

Oxibendazole −7.36 — 1.12 −52.05 −38.65
— −6.86 1.82 −40.80 −29.96

Oxfendazole −7.31 — 2.47 −28.07 −38.11
— −7.55 2.03 −27.11 −38.19

Thiabendazole −4.59 — 1.81 43.97 −8.75
— −4.68 0.23 39.50 −11.37

Bendazole −5.44 — 1.12 39.08 −12.60
— −5.03 1.60 43.80 −6.76

S, the score of placement of a compound into the binding pocket of protein; rmsd_refine, the root-mean-squared-deviation (RMSD) between the heavy atoms of the predicted pose (after
refinement) and those of the crystal structure (before refinement); E_conf, conformer energy in kcal/mol; E_refine, the score of refinement step of ligand conformer.

TABLE 1 | (Continued) The 3D view of binding interactions between tested benzimidazole drugs andNZO-binding pocket within Tubulin subunit B and D (PDB: 5CA1) beside
the solved NZO complex (Native) and the docked complex (Docked). Red dashed lines refer to hydrogen bonds, while the black ones denote hydrophobic interactions.

Drug Protein
(5CA1) subunit B

Protein
(5CA1) subunit D

Thiabendazole

Bendazole
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TABLE 3 |Calculated hydrogen bond length (in Å) between different benzimidazole drugs and NZO and the crucial amino acids at binding sites in subunits B and D of Tubulin
protein.

Phys. Prop. Subunit O-carbamate NH-carbamate N (1)H-benzimidazole Cys239

(Direct, indirect)

NZO (native) B 3.19 2.70 2.94 —

D — 2.72 2.92 3.23, 2.70
NZO (docked) B 3.03 2.95 2.87 —

D 2.93 2.76 2.80 —

Mebendazole B — 2.89 2.91 —

D 2.99 3.03 2.83 —

Albendazole B — 2.85 2.78 —

D — 2.71 2.81 3.40, —
Ciclobendazole B — 2.99 2.97 —

D — 2.92 2.81 3.23, 3.20
Fenbendazole B — 2.96 2.86 —

D 2.95 3.03 2.81 —

Flubendazole B 3.03 2.93 2.92 —

D — 2.79 2.84 —, 3.14
Oxibendazole B — 2.89 2.82 —

D 2.87 3.53 3.00 —

Oxfendazole B — 2.97 2.87 —

D 2.95 3.04 2.81 3.30, 3.38
Thiabendazole B — — 2.74 —

D — — 2.66 —

Bendazole B — — 2.72 —

D — — 2.78 —

TABLE 4 | The 3D positioning of different forms tested benzimidazole drugs inside the deep binding pocket of NZO within Tubulin subunit B and D (PDB: 5CA1) alongside
with the solved NZO complex (Native) and the docked complex (Docked).

Drug Protein
(5CA1) subunit B

Protein
(5CA1) subunit D

NZO (native)

NZO (docked)

Mebendazole

Albendazole

(Continued on following page)
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respectively. It was obvious that subunit D is larger than subunit B
in size. By analyzing the binding modes (3D graphic views) of
NZO inside the two subunits (Table 1), it was found that NZO
exhibits almost the same binding interactions within protein
subunits B and D, where three H-bonds were observed
between Glu198 and NH-carbamate (one H-bond) and
NH(3)-benzimidazole (two H-bonds). Another H-bond was
found between Val236 and the protonated NH(1)-
benzimidazole. Besides, NZO docked in subunit B was able to
form H-bond between CO of carbamate moiety and Asn165.
Moreover, a hydrophobic interaction was found between Ala314

and the thiophene ring. In the case of subunit D, two additional
H-bonds were observed between NZO and Cys239, which were a
direct H-bond with the oxygen atom of the carbonyl group and an
indirect H-bond with the carbonyl oxygen through the bridging
water molecule (H2O616). Hydrophobic interactions were also
observed between Leu253 and the benzene and imidazole
moieties. The 2D graphic views of binding interactions
between studied benzimidazole ligands and NZO with the
target protein are deposited in Supplementary Material.

By studying the binding site in both B and D subunits, it was
concluded that the crucial amino acids for binding interactions

TABLE 4 | (Continued) The 3D positioning of different forms tested benzimidazole drugs inside the deep binding pocket of NZO within Tubulin subunit B and D (PDB: 5CA1)
alongside with the solved NZO complex (Native) and the docked complex (Docked).

Drug Protein
(5CA1) subunit B

Protein
(5CA1) subunit D

Ciclobendazole

Fenbendazole

Flubendazole

Oxibendazole

Oxfendazole

Thiabendazole

Bendazole
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between CBSIs and the two subunits are Glu198 and Val236, besides
Asn165 for B subunit and Cys239 for D subunit. The refined NZO
was also docked among other studied benzimidazole drugs into
subunits B and D to validate the molecular dynamic model used in
conducting the current study. For the B subunit, the docked NZO
showed almost a fingerprint binding mode as the original co-
crystallized one. Interestingly, loss of binding interactions between
the oxygen atom of its carbonyl group and Cys239 was also noticed.
Furthermore, as expected, the binding interaction between N (3)-
benzimidazole and Glu198 was lost in two subunits (B and D) as a
result of using the neutral form of refined NZO in contrary to the
protonated form of native NZO. The other nine benzimidazole
drugs were refined and docked intoNZObinding pocket subunits (B
and D), respectively. Results revealed that all of the tested drugs,
except for Thiabendazole (8) and Bendazole (9) members, showed
very similar binding modes to the native NZO due to the great

structural similarity. Regarding B subunit, Flubendazole (5) showed
a nearly similar fingerprint binding mode compared to the native
and docked forms of NZO. Concerning D subunit, surprisingly,
Albendazole (2), Ciclobendazole (3), Flubendazole (5), and
Oxfendazole (7) showed the binding interaction with Cys239
similar to the native NZO which was lost in the docked NZO
itself. Especially Ciclobendazole (3) and Oxfendazole (7) showed a
fingerprint binding interactionwith Cys239with the same direct and
indirect pathways. It was concluded that Flubendazole (5) showed
the highest similarity in bindingmodes compared to the native NZO
in both B and D subunits of protein pocket. Furthermore,
Thiabendazole (8) and Bendazole (9) lost some of the binding
interactions compared to the native NZO due to the differences
in the structure of side chains of their benzimidazole moieties but
maintained the binding interactions with both Val236 and Asn165.
By reviewing molecular dynamics scoring and other parameters

TABLE 5 | The charge density of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the molecular electrostatic potential
(MEP) map of studied compounds. Red and blue color codes represent the most electronegative and electropositive density, respectively. B3LYP/6-311+G* level of
theory was employed to compute molecular orbital energies.

HOMO LUMO MEP

NZO (docked)

Mebendazole

Albendazole

Ciclobendazole

Fenbendazole

Flubendazole

Oxibendazole

Oxfendazole

Thiabendazole

Bendazole
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listed in Table 2, all of the tested benzimidazole drugs showed
comparable high absolute values for MD scoring and energies
(except for Thiabendazole (8) and Bendazole (9) members), and
the lowest rmsd_refine values compared to the docked NZO.
Mebendazole (1) and Flubendazole (5) showed better scores for
binding of its poses inside B and D subunits calculated at −7.36,
−7.36, and −7.28, −7.25 respectively compared to the docked poses
of NZO at −7.34 and −7.04. Again, Flubendazole (5) is the most
promising drug to be repurposed as a colchicine binding site
inhibitor compared to the docked NZO and other tested drugs.
Moreover, the order of binding affinities for our tested
benzimidazole drugs with target Tubulin protein depending on
the docking and the calculated physical properties is as follows:
Flubendazole (5) > Oxfendazole (7) > NZO (docked) >
Mebendazole (1) > Albendazole (2) > Oxibendazole (6) >
Fenbendazole (4) > Ciclobendazole (3) > Thiabendazole (8) >
Bendazole (9).

Another confirmatory tool for validating the binding
interactions between the tested ligands and the target protein is
through measuring the lengths of H-bonds involved. Table 3
shows H-bonds between our tested benzimidazole drugs
compared to the native and docked forms of NZO with the
similar amino acids involved in binding interactions. As
predicted before, Flubendazole 5) was the best drug exhibiting
similar binding mode to the native and docked forms of NZO by
forming alone, at B subunit, an H-bond with Asn136 through the
oxygen atom of its carbamate moiety calculated at 3.03 Å
comparable to 3.19 Å and 3.03 Å formed by the native and
docked forms of NZO, respectively. Additionally, it was one of
the four drugs reported to interact with Cys239, at D subunit,
superior to the docked NZO form by forming an H-bond with the
bridging water molecule (H2O616) calculated at 3.14 Å which is
comparable to the same bond formed at 2.70 Å by the native NZO.

By representing the 3D filling positions of our tested
compounds inside the deep protein pockets of two subunits B
and D compared to the co-crystallized inhibitor, we observed a
very close similarity between all in each subunit confirming the
same binding mode and structural similarity between them as
shown in Table 4.

Moreover, the large size of the two pockets of subunits B and
D, especially D subunit, gives us an idea about the possible drug
modifications especially at the side chain of thiophene ring of
NZO to obtain larger compounds that can occupy the binding
pockets more efficiently maintaining the same essential binding
interactions with the crucial amino acids and at the same time
forming extra binding ones for better inhibition.

It is well known that outermost electrons are those involved in
the binding interaction between a ligand and target protein, we
therefore, computed the electron density of the highest occupied
molecular orbital (HOMO), the lowest unoccupied molecular
orbital (LUMO), and the molecular electrostatic potential (MEP)
map. Figures of the electron density distribution of HOMO,
LUMO, and MEP are depicted in Table 5.

The electron density of HOMO inNZOwas found to be localized
mainly on benzimidazole moiety, while the electron density of
LUMO was solely localized on the thiophene side chain. The
electron density of HOMO and LUMO of all other studied drugs

are delocalized except for Mebendazole (1), Fenbendazole (4), and
Flubendazole (5) in the case of HOMO andOxibendazole (6) in case
of LUMO. The electron density of HOMO of Mebendazole (1) and
Flubendazole (5) is quite similar to that of NZO which is consistent
with the calculated binding affinities [Flubendazole (5) >
Oxfendazole (7) > NZO (docked) > Mebendazole (1)]. Despite of
this consistency, the binding affinity does not solely depend on the
energies and the electronic density distribution of HOMO and
LUMO, but also on other determinants such as hydrogen
bonding, electrostatic interactions, hydrophobic and Van der
Waals forces and presence of clusters of water. We also noted
that the electrons of HOMO are localized mainly on the benzene
moiety and the aromatic side chain of Fenbendazole 4) in a different
pattern to that observed with NZO.

The MEP maps of all studied compounds revealed that one of
benzimidazole nitrogen acts as an electron donating site capable of
forming H-bond with amino acids in colchicine binding sites.
Whereas the other benzimidazolyl nitrogen is electrophilic moiety
acting as H-donor group. Interestingly, the MEP map of
Mebendazole (1), Albendazole (2) and Flubendazole (5) are
quite similar which is also consistent with the calculated binding
affinities, where Flubendazole (5) > Oxfendazole (7) > NZO
(docked) > Mebendazole (1) > Albendazole (2) > Oxibendazole
(6) > Fenbendazole (4) >Ciclobendazole (3) > Thiabendazole (8) >
Bendazole (9). Lack of 5 (6) substitution on the benzimidazole
pharmacophoric group leads to a significant change in the MEP of
Thiabendazole and Bendazole. Weaker binding affinities of these
two drugs can be ascribed to the change in electronic configuration
due to the absence of 5 (6) substitution.

CONCLUSION

Among the nine tested members of benzimidazole anthelmintic
drugs, Flubendazole (5) exhibits the most similar binding
interactions, scoring, electron density distribution, and
electrostatic map to that reported for NZO in tubulin protein
(PDB: 5CA1). This suggests that Flubendazole (5) would be the
most active member exerting antitumor activity mainly at CBS. At
the same time, more structural modifications are required for FDA
approved benzimidazole anthelmintic drugs and the original NZO
inhibitor to obtain larger compounds with better fitting and binding
modes inside the two large pockets of subunits B and D respectively.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

AA-K was responsible for conducting some calculations besides
drafting manuscript. MK was responsible for conceptualization,
performing some calculations, and revising manuscript draft.

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6283989

Khattab and Al-Karmalawy Screening Anthelmintics Against Anticancer Target

34

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ACKNOWLEDGMENTS

The authors acknowledge Swinburne University of
Technology for providing them with the use of
supercomputing facilities.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2021.628398/
full#supplementary-material.

REFERENCES

Al-Karmalawy, A. A., and Khattab, M. (2020). Molecular modelling of
Mebendazole polymorphs as a potential colchicine binding site inhibitor.
New J. Chem. 44 (33), 13990–13996. doi:10.1039/d0nj02844d

Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional
theories. J. Chem. Phys. 98, 1372. doi:10.1063/1.464304

Becke, A. D. (2001). Density-functional thermochemistry III. the role of exact
exchange. J. Chem.Phys. 98, 5648. doi:10.1063/1.464913
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Natural products are continually explored in the development of new bioactive

compounds with industrial applications, attracting the attention of scientific research

efforts due to their pharmacophore-like structures, pharmacokinetic properties, and

unique chemical space. The systematic search for natural sources to obtain valuable

molecules to develop products with commercial value and industrial purposes remains

the most challenging task in bioprospecting. Virtual screening strategies have innovated

the discovery of novel bioactive molecules assessing in silico large compound

libraries, favoring the analysis of their chemical space, pharmacodynamics, and

their pharmacokinetic properties, thus leading to the reduction of financial efforts,

infrastructure, and time involved in the process of discovering new chemical entities.

Herein, we discuss the computational approaches and methods developed to explore

the chemo-structural diversity of natural products, focusing on the main paradigms

involved in the discovery and screening of bioactive compounds from natural sources,

placing particular emphasis on artificial intelligence, cheminformatics methods, and big

data analyses.

Keywords: machine learning, big data, natural products, bioprospecting, cheminformatics, virtual screening, drug

discovery, chemical data

NATURAL PRODUCTS AS SOURCES OF NOVEL BIOACTIVE
COMPOUNDS AND THE PARADIGMS OF THEIR EXPLORATION

The high structural and physicochemical diversity of natural products makes them a valuable
source to discover and develop new bioactive compounds with different pharmaceutical, cosmetic,
biotechnological, agrochemical, and food applications (Rayan et al., 2017). Success histories of
natural product-based drugs have been reported in the pharmaceutical industry and include
pilocarpine, quinine, morphine, and artemisinin (Newman and Cragg, 2016; Zhang L. et al.,
2020). Natural products represent relevant importance in the discovery and development of new
bioinspired bioactive compounds, and more than 50% of the developed drugs approved by the
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GRAPHICAL ABSTRACT | Assessment of the chemo-structural space of natural products using in silico tools.

United States Food and Drug Administration (USFDA, 1981–
2019) are derived or bioinspired from compounds obtained from
natural sources (Newman and Cragg, 2020). Natural products
are chemically complex and differ from synthetic compounds in
different aspects; as an example, these structures contain a high
percentage of oxygen as well as a larger fraction of sp3-hybridized
atoms and chiral centers (Lee and Schneider, 2001; Feher and
Schmidt, 2003; Rodrigues et al., 2016), and their chemical space
is highly diverse, containing different structural scaffolds, when
compared with synthetic compound libraries (Chen et al., 2018).
Due to their unique features, their structures can provide an
innovative solution for the design and synthesis of new bioactive
compounds (Kumar et al., 2017; Silva et al., 2019; Bradley et al.,
2020; Morais et al., 2020).

The systematic search for natural sources to obtain valuable
compounds to develop products with commercial value and
industrial purposes remains the most challenging task in
bioprospecting (Skirycz et al., 2016; Roumpeka et al., 2017;
Cubillos et al., 2019). The traditional approach to discover
new bioactive compounds from natural sources includes
sequential steps that are obtained from the biological material
using ethnological knowledge, extraction, fractionation/isolation,
chemical characterization, and, finally, the execution of the
biological assays of the isolated or fractionated natural products
(Zhang L. et al., 2020). Subsequent analyses include the
lead compound optimization using chemical synthesis to
perform structural modifications in order to improve their
pharmacodynamic and pharmacokinetic properties and to
increase their biological activities (Huffman and Shenvi, 2019). In
contrast, bioprospecting strategies that use computational tools

have been reported as efficient, low-cost, low-labor, and low-time
approaches when compared to experimental methods that use
solely in vitro and in vivo assays (Li and Vederas, 2009; Wingert
and Camacho, 2018; Trujillo-Correa et al., 2019).

Despite natural products being continually explored in drug
development programs, attracting the attention of scientific
research efforts due to their pharmacophore-like structures,
pharmacokinetic properties, and unique chemical space, the big
pharma industry has focused on cutting-edge technologies that
combine high-throughput screening and combinatory chemistry
methods to obtain and evaluate synthetic compound libraries
(Henninot et al., 2018; Batool et al., 2019). This decision is,
in part, a consequence of the complex structures of natural
products that impose limitations in synthetic routes and due
to the time-consuming and laborious process involved in the
isolation of a single chemical constituent, which often requires
a significant amount of reagents and adequate infrastructure,
obtaining low yields of purified target compounds (Huffman
and Shenvi, 2019). Based on these limitations, the isolation and
the characterization of compounds from natural sources have
been indicated only for those with potential applications and
desirable biological activities (Olivon et al., 2017). However,
it has been suggested that the reduced new chemical entities
found by the pharmaceutical industry that reach the final market
could be due to the strategic decision to prioritize combinatorial
synthetic libraries instead of natural product-based libraries
(Over et al., 2013; Rodrigues, 2017). Currently, we are witnessing
a resurgence of natural products in the development and
research of novel bioactive compounds; besides, some structural
scaffolds obtained from different classes of natural products,
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such as alkaloids, phenylpropanoids, polyketides, and terpenoids,
have served as an inspiration to design new drug candidates
(Thomford et al., 2018; Davison and Brimble, 2019; Galúcio
et al., 2019; Li et al., 2019). Natural products remain inspiring
the development of new drugs, cosmetics, and other bioactive
compounds for human use (Newman and Cragg, 2020; Atanasov
et al., 2021).

Recently, metabolomics and metabolic profiling approaches
have explored novel taxonomic groups from the unique
environment, providing opportunities for finding novel natural
bioactive compounds, and some examples include bacteria
(Kleigrewe et al., 2015; Gosse et al., 2019), cnidaria (Santacruz
et al., 2020), marine sponge (Abdelhameed et al., 2020), insects
(Klupczynska et al., 2020), and fungi (Oppong-Danquah et al.,
2018). Special attention has been given to novel chemical
entities that originated from marine environments due to
their diverse and unique drug-like scaffolds (Shang et al.,
2018) and physicochemical properties (Jagannathan, 2019) when
compared with natural products of terrestrial origin, which make
them a valuable source for exploration by the pharmaceutical
and biotechnological industries. Advances in the experimental
methods applied in metabolomic approaches coupled with
computational methods have been useful to identifying new
natural products with plausible biological activities as well as to
understanding their molecular mechanisms of action (Atanasov
et al., 2021).

Currently, artificial intelligence algorithms (Wolfe et al.,
2018; Lima et al., 2020; Stokes et al., 2020) and omics-based
technologies (Floros et al., 2016; Huang et al., 2017; Jones and
Bunnage, 2017; Merwin et al., 2020) have emerged as approaches
to characterize and select interesting chemo-structures with
appropriate physicochemical properties and biological activities
as well as to prioritize the isolation of natural compounds
from biological sources (Chen et al., 2018; Wolfender et al.,
2019), which open up new opportunities to explore their
industrial applications. Combined with other in silico analyses,
artificial intelligence and cheminformatics methods can screen
a high diversity of chemo-structures isolated from natural
sources or deposited in public databases (Chen and Kirchmair,
2020), analyzing their bioactivity, pharmacodynamics, and their
pharmacokinetic properties, thus reducing the financial efforts
involved in research programs that aim to find new chemical
agents (Chen et al., 2018; Al Sharie et al., 2020; Medina-Franco
and Saldívar-González, 2020).

In this review, we discuss the computational approaches
and methods applied to explore the chemo-structural diversity
of natural products, giving particular attention to the main
paradigms involved in the discovery and screening of bioactive
natural compounds with different industrial applications (e.g.,
herbicides, insecticides, etc.) that are beyond the discovery of
new drugs. Here, we emphasize computational strategies that
use artificial intelligence, cheminformatics, and big data analyses
that have been developed in the last years. We also explore
the limitations and biases of these methods and demonstrate
practical applications to evaluate the chemical entities obtained
from natural sources aiming at bioprospecting.

COMPUTATIONAL APPROACHES APPLIED
IN THE VIRTUAL SCREENING OF
BIOACTIVE COMPOUNDS

Virtual screening methods have innovated the discovery of new
compounds with specific bioactivity, assessing in silico large
structural libraries against a bioreceptor or biological system,
thus favoring the reduction of financial efforts, infrastructure,
and the time involved in the process of discovering new
chemo-structures (Macalino et al., 2015). These methods apply
sequential and hierarchical steps that aim at filtering and selecting
compounds with desirable physicochemical, pharmacokinetic,
and pharmacodynamic properties while discarding those that do
not fit the desirable characteristics. A virtual screening workflow
comprises two main computational tasks (Figure 1A): (1) the
first one is the library preparation, which includes, among other
computational tasks, obtaining the structures of the compounds,
file conversion to readable formats, such as SMILES (simplified
molecular-input line entry system), SDF (structure data file),
and MOL2 (MDL Molfile) (Saldívar-González et al., 2020),
conformer generation, and the correction of stereochemical
and valence errors (Ropp et al., 2019); (2) the second one
corresponds to the application of computational techniques
to filter the desirable compounds (Gimeno et al., 2019). The
final step corresponds to experimental validation using in vitro
and in vivo assays, which include enzymatic inhibition assays
and/or cell line inhibition (Spyrakis et al., 2019; Ye et al.,
2019).

Different computational methods have been developed over
the years and implemented in virtual screening strategies
(Tomar et al., 2018), applying knowledge of artificial intelligence
(Gupta et al., 2013; Yang et al., 2018; Schaduangrat et al.,
2019; Shoombuatong et al., 2019; Kong et al., 2020), molecular
modeling (Semighini et al., 2011; Rampogu et al., 2018; Da
Costa et al., 2019; Jin et al., 2020; Mascarenhas et al., 2020),
statistics, and probability (Pire et al., 2015; Daina and Zoete,
2016; Blanco et al., 2018; Madzhidov et al., 2020; Cai et al., 2021).
These methods, when combined with experimental approaches,
increase the success to finding novel bioactive compounds
(Kumar and Zhang, 2015; Coimbra et al., 2020; Gorgulla et al.,
2020; Stokes et al., 2020). Two computational approaches are
related to the virtual screening of compounds: (1) the ligand-
based virtual screening (LBVS) and (2) structure-based virtual
screening (SBVS) approaches (Figure 1B). Both computational
approaches have been combined in virtual screening strategies
that aim to identify novel bioactive compounds against a specific
molecular target or a biological system (Da Costa et al., 2019;
Galúcio et al., 2019; Wang et al., 2020).

The LBVS approach depends solely on the analyses of
the intrinsic characteristics of the compound structure, such
as the electronic, topological, physicochemical, and structural
properties that are related to its molecular activity using, as a
starting point, a set of compounds with experimentally proven
biological activity (Hamza et al., 2012; Berenger et al., 2017;
Garcia-Hernandez et al., 2019). Computational methods applied
in the LBVS approach include structural-, three-dimensional
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FIGURE 1 | (A) Sequential steps applied in virtual screening workflows to select bioactive natural products. (B) Ligand- and structure-based virtual screening

approaches and some of their associated computational methods.

(3D) shape-, and fingerprint-based similarity search methods,
cheminformatics filters, machine learning algorithms, ligand-
based pharmacophore modeling, and quantitative structure–
activity relationship (QSAR) methods (Yan et al., 2016;
Tahir et al., 2020). In contrast, the SBVS approach uses,
as a starting point, information related to the molecular
recognition of the ligand in the bioreceptor structure to design
and discover new bioactive compounds. This information
includes bioreceptor conformation, the ligand-binding affinity,
intermolecular interactions, molecular surface charge, and the
composition of the residue of the binding site (Gonczarek
et al., 2018; Guedes et al., 2018; Yasuo and Sekijima, 2019;

Maia E. H. B. et al., 2020). These methods require the
elucidated 3D structure of the receptor and, preferably, in
complex with the bioactive compound. The 3D structure
informs the structural conformation and molecular binding
site of the bioactive ligands. Among the computational
methods applied in the SBVS approach, we can cite molecular
docking, molecular dynamics simulation, and structure-based
pharmacophore modeling (Wang et al., 2020). Currently, virtual
screening methods are an integral part of the design and
discovery process of new bioactive compounds, and their
applications have become popular in the academia and industry
(Kar and Roy, 2013).
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COMPUTATIONAL METHODS APPLIED IN
VIRTUAL SCREENING APPROACHES

Cheminformatics Filters (Molecular Filters)
The prediction of the pharmacokinetics and drug-likeness
properties of chemical entities represents an important task for
the discovery of structures with interesting biological activity
(Mignani et al., 2018). In essence, drug-likeness represents a
measure of the overall similarity of the analyzed compounds to
a chemical space occupied by known drugs (Mignani et al., 2018;
Jia et al., 2020).

The prediction of the chemical properties of compounds
usually involves the application of a set of simple empirical
chemical rules (Gfeller et al., 2014; Lagorce et al., 2015; Daina
and Zoete, 2016). Over the years, different cheminformatics
filters (also known as molecular filters) have been developed
as useful tools to screen structures that have desirable
pharmacokinetic and pharmacodynamic properties, low toxicity,
and/or low promiscuity/reactivity in inhibition assays, thus
guiding the decision-making process in the discovery of new
chemical entities with pharmaceutical, cosmetic, agrochemical,
and biotechnological interest (Huggins et al., 2011). The most
commonly used filters are intended to remove from structural
libraries the compounds with low cell membrane permeability
or distribution. Among the well-known cheminformatics filters,
we can cite those developed by Lipinski (Lipinski et al., 1997),
Veber (Veber et al., 2002), and Jeffrey (Jeffrey and Summerfield,
2010). Some structural properties evaluated by these molecular
filters predict some pharmacodynamic properties, such as
compound promiscuity, i.e., their non-selectivity against a
molecular target (Walters and Namchuk, 2003; Lovering,
2013). Some filters are based on the selection of a range of
physicochemical and structural properties that are representative
of specific pharmacokinetics (e.g., gastrointestinal absorption or
penetration into the blood–brain barrier) and pharmacodynamic
properties (e.g., specificity or promiscuity to a macromolecular
target). These properties are selected using a statistical cutoff
(e.g., 90th percentile limit) for each molecular descriptor that is
representative to explain the interesting feature of the analyzed
compounds (Daina and Zoete, 2016).

Since the first report of the chemical rules elected by Lipinski
et al. (1997)—also known as the rule of five (RO5) and
Pfizer rules—different chemical extensions to these chemical
properties have been developed over the years to better define
the “drug-like” features and bioavailability of compounds (Doak
et al., 2014). More recently, hybrid methods that combine
some counting schemes similar to Lipinski’s rules with a set of
functional groups identified as reactive, toxic, and problematic
moieties have also been developed to eliminate promiscuous
structures from the high-throughput screening assays (Walters
and Murcko, 2002; Bruns and Watson, 2012). Filters have also
been developed to screen fragment-based chemical libraries (rule
of three, RO3) (Jhoti et al., 2013). Similar to filters developed
for drugs, molecular filters have also been developed to select
herbicide-, fungicide-, and insecticide-likeness due to their
applications in the agrochemical industry (Tice, 2001; Avram
et al., 2014).

Despite these molecular filters having been widely applied
in virtual screening approaches to select natural products
from large chemo-structural libraries (Thireou et al., 2018;
Da Costa et al., 2019; Galúcio et al., 2019), caution must
be taken to avoid remotion of the chemo-structures with
appropriate bioavailability (Shultz, 2019). Most natural products
break some chemical rules applied in molecular filtering;
furthermore, some chemical classes of compounds, such
as peptides and polyketides (e.g., macrolides), are located
beyond the chemical limits determined by the rule of five
(beyond the rule of five, bRO5) (Doak et al., 2014; Naylor
et al., 2017; Rossi Sebastiano et al., 2018). Contrasting to
the drug-likeness, the natural product-likeness concept has
been developed to measure the overall molecular diversity
of the natural product space, and it has been used as a
selection criteria to screen substructures for the prioritization
of combinatorial synthesis, aiming at novelty and the easy
design of building blocks (Ertl et al., 2008; Jayaseelan et al.,
2012). Currently, there are a great variety of cheminformatics
programs that calculate these chemical properties that compose
the cheminformatics filters, including the open-source programs
Osiris DataWarrior [operating system (OS) compatibility:
Linux/MS-Windows/Mac OS] (Sander et al., 2015) and RDKit
(OS compatibility: Linux/MS-Windows/macOS) (Lovrić et al.,
2019), and some commercial solutions, such as Instant JChem
(OS compatibility: Linux/MS-Windows/macOS) (Instant JChem
21.4.0, 2021). Similar to these applications, the FAF-Drugs4
web server also predicts some chemical properties to screen
structures from large compound libraries using some in-
house cheminformatics filters, such as the Drug-Like Soft
and Lead-Like Soft that predict compound similarity to drugs
and leads, respectively (Miteva et al., 2006). Some databases
also offer online tools to evaluate the drug-likeness and
natural product-likeness (Sorokina and Steinbeck, 2019; Jia
et al., 2020). Table 1 exhibits an overview of the main
molecular filters applied to screen natural products from
chemical libraries.

Molecular Fingerprint-Based Methods
Similarity search methods applied in the screening of natural
products are based on the premise that molecules with similar
structures have similar biological activities (Cereto-Massagué
et al., 2015). These methods have been applied to evaluate natural
compound similarities, their bioactivity (Muegge andMukherjee,
2016), and potential molecular targets (Huang et al., 2018).

Molecular fingerprint-based methods use representations of
chemical structures to allow the quantitative assessment of
the pairwise similarity of compounds with computationally
efficient calculations (Riniker and Landrum, 2013; Bajusz et al.,
2015). Molecular fingerprints are binary representations (bits)
of a chemical structure in which 1 (present) denotes the
existence of a certain molecular feature and 0 (absent) denotes
inexistence (Rácz et al., 2018). Figure 2A shows a schematic
view of the binary representation of a molecular fingerprint
of a compound structure. Molecular fingerprints can vary
greatly concerning the applied molecular descriptors, and some
of them are based solely on the chemical structure, such as
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TABLE 1 | Structural and physicochemical properties present in some cheminformatics filters applied in virtual screening.

MW (Da) PSA (A2) HBA HBD cLogP/cLogD RTB NAR Formal charge References

Lipinski’s rule (RO5) ≤500 – 0–10 0–5 ≤5 – – – Lipinski et al., 1997

Ghose’s rule 160–480 – – – −0.4 to +5.6 – 20–70 – Ghose et al., 1999

Oprea’s drug-like rule – – 2–9 0–2 – 2–8 – – Oprea, 2000

Walters 200–500 ≤120 0–10 0–5 – 0–8 – – Walters and Murcko, 2002

Veber’s rule – ≤140 – – – 0–10 – – Veber et al., 2002

REOS 200–500 – 0–5 −5.0 to 5.0 0–8 −2 to +2 Walters and Namchuk, 2003

Beyond rule of five (bRO5) ≤1,000 <250 <15 ≤6 −2 to 10 ≤20 – – Doak et al., 2014

Congreve’s rule (RO3) <300 – ≤ 6 ≤3 ≤3 – – – Congreve et al., 2003

Herbicide-likeness 150–500 – 2–12 < 3 ≤3.5 <12 – – Tice, 2001

Insecticide-likeness 150–500 – 1–18 ≤ 2 0–5 <12 – – Tice, 2001

Hao’s rule (pesticide-likeness) ≤435 – ≤6 ≤ 2 ≤6 ≤9 ≤17 – Hao et al., 2011

MW, molecular weight; PSA, polar surface area; HBD, hydrogen bond donor; HBA, hydrogen bond acceptor; RTB, rotatable bonds; NAR, number of aromatic rings.

topological distances and the presence/absence of functional
groups (Cereto-Massagué et al., 2015). However, some molecular
fingerprints use information from pharmacophore models,
allowing the comparison of the ligand poses (pharmacophore
fingerprints) (Wood et al., 2012). Some molecular fingerprints,
such as SMILES fingerprint (SMIfp) (Schwartz et al., 2013),
and structural interaction fingerprint (SIFt) (Deng et al., 2004),
evaluate structural features related to intermolecular interactions,
such as hydrophobic contacts, polar interactions, and hydrogen
bond acceptors and donors (interaction fingerprints) (Desaphy
et al., 2013). Considering that natural products are chemically
complex and structurally different from the synthetic libraries,
the analyses of their structures using molecular fingerprints
can provide insights, evidencing some structural similarities
(see example in Figure 2B) (Gu et al., 2013; Tao et al., 2015;
Floros et al., 2016; Galúcio et al., 2019; Chávez-Hernández et al.,
2020).

Molecular fingerprints offer a cost-efficient computational
calculation to be implemented with other computational
approaches. Molecular fingerprints have been widely applied
in the representation of chemical space networks to evaluate
the structural similarities of natural products (see example
in Figure 2C) (Zhang et al., 2015) as well as in hierarchical
clustering methods (Figure 2D) (Sánchez-Cruz and Medina-
Franco, 2018). In chemical network representations, the nodes
(vertices) represent the analyzed compounds and edges of
the pairwise fingerprint similarity relationships calculated by
a structural metric. The edge drawn between a pair of
nodes uses a satisfying threshold criterion for the structural
similarity value (e.g., a cutoff = 0.7) between the analyzed
compounds (Maggiora and Bajorath, 2014; Kunimoto and
Bajorath, 2018). The investigation of the chemical space
of natural products is an intelligent way to identify some
classes of compounds, their bioactivity, and the structural
scaffolds present in known active compounds (Opassi et al.,
2018). Due to the high diversity of the derived structures
of natural products containing modified functional groups;
different strategies have been applied to investigate their chemical
space, which include the modeling of hypothetical structural

modification (Skinnider et al., 2017) and the application
of less restrictive similarity-based cutoffs (Pavadai et al.,
2017).

Recently, machine learning algorithms using MACCS
keys and Morgan molecular fingerprints have been used to
differentiate natural products from synthetic molecules. The
authors also used similarity maps to classify natural product
substructures according to their similarity to natural or synthetic
compounds (Chen et al., 2019). Galúcio et al. (2019) used
fingerprint-based similarity to find correspondences between
natural products and FDA-approved anticancer drugs, and
the authors identified an interesting correspondence (see
Figure 2B) between the bisdethiobis(methylthio)gliotoxin
obtained from bacterial strain and the FDA-approved anticancer
drug mitomycin.

Several programs and web servers have been developed to
compute molecular fingerprints, and among them, we can cite
ChemDes (web server) (Dong et al., 2015), ChemoPy (open-
source Python package) (Cao et al., 2013), PaDEL (open-source
Java program) (Yap, 2011), and jCompoundMapper (open-
source Java program) (Hinselmann et al., 2011).

Similarity and Distance Metrics
Structural similarity is a key concept in the discovery of
new bioactive compounds from natural sources due to the
assumption that similar compounds perform similar molecular
activities. Different similarity and distance metrics have been
applied to compare molecular fingerprints (Bajusz et al., 2015);
some of them are available in cheminformatics tools, such as
Konstanz Information Miner (KNIME) (Berthold et al., 2009),
PyBel (O’Boyle et al., 2008), the Chemistry Development Kit
(CDK) (Willighagen et al., 2017), and RDKit (Lovrić et al.,
2019). Similarity metrics could use two-dimensional (2D) or
3D similarities of compounds, but studies have demonstrated
that the 2D similarity coefficient neglects some important
structural/functional features in the identification of the target
compound (Gohlke et al., 2015; Kim et al., 2016).
Several similarities and distance metrics have been applied
to compare the pairwise similarities of molecules and their
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FIGURE 2 | (A) Schematic representation of bits applied in the molecular fingerprints of chemical structures. (B) Fingerprint-based similarity of the natural compound

bisdethiobis (methylthio)gliotoxin and the FDA-approved anticancer drug mitomycin (Galúcio et al., 2019). (C) Schematic view of the chemical space network and (D)

hierarchical clustering that apply fingerprint-based descriptors to analyze natural compounds.

TABLE 2 | Structural similarity and distance metrics applied in virtual screening.

Similarity and distance metrics Equations for dichotomous variables

Cosine coefficient SA,B = c/[ab]1/2

Dice coefficient SA,B = 2c/[a+ b]

Tanimoto coefficient SA,B = c/[a+ b− c]

Tversky coefficient SA,B = c/[αa+ βb− c]

Soergel distance DA,B = 1−
c

a+b−c

Manhattan distance DA,B = a+ b− 2c

Euclidean distance DA,B = [a+ b− 2c]1/2

substructures (Bajusz et al., 2015; O’Hagan and Kell, 2016; Rácz
et al., 2018). Table 2 exhibits the main similarity coefficients
and their dichotomous equations applied to compare molecular
fingerprints, where a correspond to on bits (presence) in
structure A, b is the number of the on bits in structure B,
while c corresponds to bits that are on in both molecular
structures. Differently from other similarity metrics, Tversky is
an asymmetric coefficient that has two user-defined parameters,
α and β . If α is set to 1 and β is set to 0, the Tversky coefficient
will measure the substructural similarity between two molecules,
where a Tversky value equal to 1 indicates that a given structural

moiety is a substructure of the compared compound (Senger,
2009).

Tanimoto has been the most used similarity coefficient in
fingerprint-based similarity in virtual screening strategies, and its
results have been described, in some cases, as equivalent to other
similarity metrics applied to compare two molecules, such as
Soergel, Dice, and Cosine, while the similarity measures derived
from Euclidean and Manhattan distances have been described as
unsatisfactory (Bajusz et al., 2015; Rácz et al., 2018). However,
the Tversky coefficient has been indicated to compare moieties of
natural products or non-symmetrical scaffolds seeking to identify
drug-like similarities (O’Hagan and Kell, 2016). Tanimoto and
Tversky coefficient values range from 0 to 1, where values close
to 1 correspond to a high similarity between the two analyzed
molecules and values close to 0 represent a low similarity (Senger,
2009; Bajusz et al., 2015).

Ligand-Based and Structure-Based
Pharmacophore Modeling
A pharmacophore model consists of a set of chemical groups
with a specific 3D arrangement that are involved in biological
activity against a specific molecular target (Schaller et al.,
2020). The functional characteristics present in a pharmacophore
model include hydrogen bond acceptors, hydrogen bond donors,
hydrophobic groups, positive or negative ionizable groups,
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and coordination with metal ions (Vuorinen and Schuster,
2015; Schaller et al., 2020). The binding sites of ligands have
physicochemical and spatial restrictions that impose limitations
to the non-specific interaction of certain molecules, such as
the physicochemical properties of the amino acid residue
composition, the volume, and the shape of the cavity. These
spatial restrictions dictate the binding mode of the ligands, thus
allowing different molecules, even with different structures, to act
against a specific bioreceptor due to the presence of the same
pharmacophore model (Vuorinen and Schuster, 2015).

Pharmacophore modeling has been extensively applied in
virtual screening, lead compound optimization strategies, and
de novo drug design strategies (Akram et al., 2017; Azminah
et al., 2019; Da Costa et al., 2019; El Kerdawy et al., 2019; Jade
et al., 2020). Two computational approaches are distinguished
in pharmacophore modeling: (1) ligand-based and (2) structure-
based approaches. To predict the pharmacophore model, the
ligand-based methods use 3D alignment to obtain the chemical
information (e.g., shape, functional groups, etc.), shared by a set
of active compounds, and select the functional groups that are
relevant for the interaction of the ligandwith themacromolecular
target (Pal et al., 2019). In contrast, the structure-based approach
uses the spatial information of the ligand complexed with the
molecular target (e.g., ligand poses, conformations, etc.); thus,
this approach is applied only in the presence of experimentally
elucidated structures of the molecular targets (e.g., by X-ray
crystallography) complexed with an active ligand (Jiang et al.,
2020).

The ligand-based pharmacophore-based virtual screening
comprises different stages: (1) selection of the active compounds
validated experimentally; (2) generation of the 3D conformation
of the ligands, followed by their structural alignment; (3)
identification of the structural characteristics and functional
groups involved in molecular recognition; (4) generation and
validation of the pharmacophore model using a compound
library as a testing dataset; and (5) screening of the natural
product library (Figure 3).

In ligand-based pharmacophore modeling, the
pharmacophore model is generated using a 3D alignment
of the conformers of a set of bioactive compounds (training
dataset). Then, active (true-positive compounds or hits) and
inactive compounds (false-positive compounds or decoys) are
used as a testing dataset to validate the pharmacophore model
(Shahin et al., 2016; Pal et al., 2019). It is important to note that,
despite the choice of strict pharmacophore models leading to
the selection of compounds with better activities against the
molecular target, it also could reduce the structural diversity
of the analyzed natural products. In contrast, the choice of less
restrictive models could retrieve a larger number of false-positive
compounds (Schaller et al., 2020).

Pharmacophore modeling methods could be divided into two
scoring function methods to predict the fitness of the analyzed
compounds to the predicted pharmacophore models: the root of
the mean square deviation (RMSD)-based and the overlay-based
scoring function (Sanders et al., 2012). In RMSD-based methods,
the distances between the functional groups of the compounds to
the center of pharmacophore features are used to assess the fitness
of the compounds concerning the predicted pharmacophore
model. In contrast, the overlay-based methods use the radii of
the functional groups and/or atoms to estimate the functional
similarity of the structures with the pharmacophore model
(Vuorinen and Schuster, 2015). Pharmacophore-based methods
that apply RMSD-based scoring functions are better at predicting
the ligand poses than the overlay-based scoring functions
(Sanders et al., 2012). Nevertheless, the ratio of correctly
predicted poses vs. incorrectly predicted poses is better obtained
using overlay-based scoring functions (Sanders et al., 2012).
Regarding structure-based pharmacophore modeling, the use of
experimental structures to build the models must prioritize some
structural features obtained from both methods; as an example,
it has been demonstrated that a higher flexibility obtained in
structures elucidated by nuclear magnetic resonance (NMR)
spectroscopy helps to focus the models on the most essential
interactions with the receptor due to the presence of structural

FIGURE 3 | An overview of pharmacophore-based virtual screening applied for natural product libraries.
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flexibility of the complexes evidenced by the method. On the
other hand, models obtained by X-ray crystallography had more
pharmacophore elements compared to those obtained by NMR
spectroscopy (Ghanakota and Carlson, 2017).

Pharmacophoric screening has been applied to screen
compounds with cosmetic purposes using essential oils (Santana
et al., 2018; Da Costa et al., 2019). Essential oils contain diverse
classes of volatile and low-molecular-weight compounds with a
broad spectrum of biological activities (Do Nascimento et al.,
2020), and due to their reported repellent activities against
mosquitos, these compounds have been investigated in virtual
screening strategies (Santana et al., 2018; Thireou et al., 2018).
Recently, a study performed an in silico analysis of 1,633
compounds from the essential oils of 71 botanical families by
combining a structural similarity-based search method (ligand-
based virtual screening) with a pharmacophore-based virtual
screening (structure-based strategy). The authors used, as a
reference, the structure of N,N-diethyl-meta-toluamide (DEET)
complexed to the odorant-binding protein of Anopheles gambiae,
and they found seven natural volatile compounds with potential
repellent activity against mosquitos, such as p-cymen-8-yl,
thymol acetate, carvacryl acetate, thymyl isovalerate, and p-anisyl
hexanoate (Da Costa et al., 2019).

Currently, different programs generate pharmacophore
models, differing in the algorithm applied to evaluate the
conformational ligand flexibility as well as to perform the
structural alignment. Some commercial programs applied to
pharmacophore prediction include LigandScout (Wolber and
Langer, 2005) and Molecular Operating Environment (MOE)
(Molecular Operating Environment, 2019). Both programs
apply ligand- and structure-based pharmacophore modeling
and are compatible with the most used operating systems. Some
open-source programs that use ligand-based pharmacophore
prediction include Pharmer (https://sourceforge.net/projects/
pharmer/) (Koes and Camacho, 2011) and Align-it (previously
named Pharao; OS compatibility: OS X) (Taminau et al.,
2008). Free-access web servers have also been developed to
screen compounds using the structure-based pharmacophore
approaches, such as Pharmit (http://pharmit.csb.pitt.edu/)
(Sunseri and Koes, 2016) and PharmMapper (http://www.lilab-
ecust.cn/pharmmapper/) (Liu et al., 2010).

3D Shape-Similarity Search Methods
The molecular shape acquired by a ligand is crucial to defining its
affinity and selectivity against the protein binding site (Kortagere
et al., 2009). Based on this assumption, the 3D shape-similarity
search methods assume the premise that two compounds could
be recognized by the same bioreceptor and then modulate their
activity (Koes and Camacho, 2014; Kumar and Zhang, 2018).
Shape-similarity methods can screen vast compound libraries
against a reference ligand with known bioactivity (Ai et al., 2014;
Koes and Camacho, 2014).

These methods are subdivided into two categories: (1)
alignment-free methods that are usually computationally faster
because they do not require overlapping the molecules or
evaluating properties related to the surface (Seddon et al., 2019)
and (2) alignment-basedmethods that are computationally costly
since these methods superimpose molecular shapes and analyze

surface properties, such as polarity and hydrophobicity (Fontaine
et al., 2007; Kumar and Zhang, 2018). Different methods
have been used in the representation of the 3D molecular
shape of the ligands, such as Gaussian overlay-based methods
(Cai et al., 2013), atomic distance-based methods (Ballester
et al., 2009; Ballester, 2011; Bonanno and Ebejer, 2020), and
surface-based methods (Karaboga et al., 2013; Cleves et al.,
2019). The recognized molecular shapes are transformed into
the 3D molecular fingerprints that are then compared using
similarities or distance indexes, such as Tanimoto, Dice, and
Tversky coefficients (Shin et al., 2015). Due to the complex
structure of natural products, the identification of their molecular
targets has been challenging even using computational tools;
however, the 3D shape-based similarity search methods have
emerged as an efficient strategy to predict the macromolecular
targets of these compounds (Shin et al., 2015; Chen et al.,
2020). Web servers that apply shape-similarity search methods
include the SHAFTS (Liu et al., 2011) and USR-VS (Li et al.,
2016). Some installable open-source programs include Shape-
it (OS compatibility: Linux) (Grant et al., 1996), gWEGA (Yan
et al., 2014), and OptiPharm (Puertas-Martín et al., 2019).
Some commercial solutions include Shape TK (OS compatibility:
Linux/MS-Windows/macOS) (Software O Scientific, 2008).

Shape-based similarity methods have been used in virtual
screening workflows alone or combined with different
computational techniques (Pavadai et al., 2017; Thireou
et al., 2018). Pavadai et al. applied shape-based and fingerprint-
based similarity search against natural product libraries to find
new steroid-like natural products as antiplasmodial agents using,
as a search key, fusidic acid. The hit compounds were filtered
based on the predicted partition coefficient, logP, and the authors
identified nine new compounds that inhibited parasite growth
with IC50 values of <20µM (Pavadai et al., 2017). Figure 4
exhibits an overview of the 3D shape-similarity search methods
applied to identify compounds in chemical libraries with similar
molecular shapes despite their different structures.

Machine Learning Algorithms
Machine learning (ML) is the computational practice of
using intelligent algorithms to learn and make decisions
in order to solve problems related to an amount of data.
Artificial Intelligence has made important progress toward the
acceleration of research and development of novel bioactive
natural compounds with industrial applications. This approach
has been widely applied in different steps related to the
virtual screening strategies, for example to predict some
pharmacokinetic properties (Wei et al., 2017; Qiang et al., 2018)
[e.g., penetration of compounds into the blood–brain barrier
(Zhang et al., 2017; Dai et al., 2021) and cell membrane (Wei
et al., 2017; Wolfe et al., 2018)], compounds’ side effects (Dimitri
and Lió, 2017), their toxicity (Mayr et al., 2016; Pu et al.,
2019; Zheng et al., 2020), molecular targets (Wang et al., 2013;
Jeon et al., 2014), and their bioactivity (Li and Huang, 2012;
Schaduangrat et al., 2019; Shoombuatong et al., 2019) [e.g.,
anti-tuberculosis (Gomes et al., 2017; Maia S. M. et al., 2020),
anticancer (Charoenkwan et al., 2021), and insecticidal activities
(Soares Rodrigues et al., 2021)] as well as to identify the pan-
assay interference compounds (PAINS), i.e., highly reactive and
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FIGURE 4 | Applications of alignment-based 3D shape-similarity search

methods to identify compounds with similar molecular shapes.

promiscuous molecules that are often false positives in high-
throughput screening assays (Jasial et al., 2018). In some cases,
the ML algorithms have been reported with superior efficiency
and, thus, are more suitable to predict hit compounds from
chemical libraries than are the traditional QSAR methods (Tsou
et al., 2020).

ML algorithms are trained using a large number of data
that are used as a benchmark to accomplish a particular
computational problem (Vamathevan et al., 2019). The main
aim of an ML framework in virtual screening strategies is to
generalize the results obtained from the training dataset to
better evaluate the test dataset and, then, make the decision
(Sieg et al., 2019; Vamathevan et al., 2019). ML algorithms
applied in the LBVS approach aim to predict the bioactivity
or pharmacodynamic/pharmacokinetic properties of molecules
based on their similarity to known actives. Therefore, to evaluate
the similarity of the molecules, these algorithms use, as datasets,
molecular descriptors calculated from the compound structures
(Li and Huang, 2012; Challa et al., 2020) using different
molecularmodeling and cheminformatics toolkits, such as RDKit
(Lovrić et al., 2019) and CDK (Willighagen et al., 2017). Some
chemo-structural and bioactivity information deposited in public
databases, as well as experimental results, have also been used to

train these algorithms (Martínez-Treviño et al., 2020). Molecular
descriptors applied to evaluate the similarity of molecules
include the physicochemical [cLogP, topological polar surface
area (tPSA), molecular weight, etc.] and structural properties
(rotatable bonds, aromatic rings, etc.) (Lo et al., 2018), molecular
fingerprints (Zhang et al., 2018), functional groups, molecular
shape (Bonanno and Ebejer, 2020), and pharmacophores (Sato
et al., 2010); in the case of proteins and peptides, some molecular
descriptors include amino acid sequence composition (Wei et al.,
2017; Manavalan et al., 2018; Qiang et al., 2018). The choice
of the molecular representation and the type of molecular
descriptor determine the efficiency and the interpretability of
the final results obtained by the ML algorithms (David et al.,
2020; Jiménez-Luna et al., 2020). In structure-based strategies,
ML algorithms have been used in scoring the functions of
molecular docking methods, seeking rank compound libraries
based on their predicted affinity against a molecular target, and
discriminating between hits and decoy compounds. To reach
these results, the ML algorithms are trained using the binding
affinities of active molecules against protein targets (Wójcikowski
et al., 2017; Li et al., 2020). Different open-source programs have
been applied to develop machine learning models [e.g., scikit-
learn (Pedregosa et al., 2011) and SciPy (Virtanen et al., 2020),
both Python modules] and pipelines [e.g., KNIME (Berthold
et al., 2009), a data analytics platform].

ML algorithms are classified into supervised and unsupervised
learning (Figure 5). Supervised ML algorithms require a
retrospective validation using a dataset of active and inactive
compounds to better select the methods that are suitable
to differentiate the bioactive molecules (Sieg et al., 2019).
Supervised learning techniques are divided into two subgroups:
(1) regression analysis and (2) classifier methods. The first
one includes decision trees, artificial neural networks, support
vector machines, and random forest methods. In contrast, the
unsupervised algorithms recognize patterns in the dataset of
compounds without the presence of inactive ones, thus trying to
organize the data in a logical form. Thesemethods have been used
for exploratory analyses using clustering data (Patel et al., 2020).
Unsupervised algorithms include clustering methods, such as
the hidden Markov model, hierarchical clustering, and k-means
(Vamathevan et al., 2019).

Supervised ML algorithms have been widely applied to
discover new bioactive natural products (Bilsland et al., 2015;
Galúcio et al., 2019; Grisoni et al., 2019; Schaduangrat et al.,
2019). Figure 6 exhibits a general overview of the computational
steps involved in obtaining a validated supervised ML algorithm
to predict the bioactivity of natural products. The first
step to modeling a machine learning algorithm involves the
preparation of a molecule dataset, i.e., obtaining the molecular
structures/sequences that will be used in the algorithm using
online databases, literature, or experimental data. This step
also includes the correction of possible stereochemical and
valence errors present in the molecular structures as well
as the correction and conversions of the files to readable
formats recognized by the cheminformatics programs. Then, the
molecular properties are calculated using molecular modeling
and cheminformatics toolboxes, extracted from online databases,
or obtained from experimental results, then these descriptors are
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FIGURE 5 | Classification of supervised and unsupervised learning techniques applied in virtual screening strategies.

evaluated to compose the features of the ML model. Currently,
different online databases have been developed with information
regarding the structural and physicochemical properties of the
molecular structure of natural products that could be used in
the feature composition (Dunkel et al., 2006; Pilon et al., 2017;
Pilón-Jiménez et al., 2019; Sorokina and Steinbeck, 2019). In this
step, some statistical methods are applied to select the features,
such as Kendall correlation, analysis of variance (ANOVA), and
Spearman’s test. Finally, the ML model is evaluated regarding
its performance to discriminate the true and positive bioactive
compounds. Several metrics have been applied to evaluate these
models, such as the receiver operating characteristic (ROC)
curve, enrichment factors, and mean squared error (R2) applied
for linear regression methods. We do not intend to extend the
discussion about the application and the choice of the most
adequate method to select the feature composition or to evaluate
ML models; thus, we recommend the readers to consult previous
reviews (Hossin and Sulaiman, 2015; Rácz et al., 2019). In the
present sessions, we will discuss the functioning of some ML
algorithms most applied in virtual screening strategies focusing
on the k-nearest neighbor, decision tree, random forest, artificial,
and neural network.

Decision tree algorithms are a supervised learning technique
and their construction model is based on two steps: (1) selection
of the features and (2) the building of the decision trees. This
method is commonly represented by a tree, where the internal
nodes represent the selected features (molecular descriptors),
the branches represent the testing results of the molecule
(decision criteria), and the leaf nodes represent the molecules
(molecular structure) (Figure 7A). Compounds are classified
based on the leaf nodes that are reached through a series of

algorithm decisions (branches). Decision tree (DT) models are
constructed focusing on the selection of the best test conditions
to expand the extremities of the tree. Some test metrics, such
as the information–gain ratio and entropy, are applied to select
the best test classification for the algorithm (Lavecchia, 2015).
Decision trees have been applied in different virtual screenings
of natural products to predict their bioactivity and drug-likeness
(Pereira et al., 2015; Wang et al., 2019). Random forest is an
ensemble learning technique considered an improvement of the
decision tree algorithms to correct the overfitting in the training
set (Svetnik et al., 2003). Random forest algorithms generate
a model composed of several randomly sampled decision trees
from the original dataset obtaining its random features. Random
forest models have been applied in virtual screening pipelines to
predict compound drug-likeness, bioactivity (Svetnik et al., 2003;
Zoffmann et al., 2019), and the pharmacokinetic profile (Dong
et al., 2018).

Artificial neural networks are the most studied learning
techniques with widely diverse applications in the investigation of
a compound’s bioactivity (Lata et al., 2007; Liu et al., 2019, 2020;
Stokes et al., 2020). Methods that apply neural networks mimic
brain functioning and structure, building a model that reaches
a decision based on previous experiences obtained from the
training dataset (Jing et al., 2018). The architecture of an artificial
neural network model comprises several units, named neurons
which are connected to form a network arranged in different
layers. Depending upon their position in the network, these layers
are classified as output layers, input layers (external), and hidden
layers (internal) (Zhang R. et al., 2020). Amultilayer feed-forward
neural network contains neurons connected only to those located
in the following layers (Figure 7B), and this class is included in
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FIGURE 6 | A general overview of the computational steps involved in

obtaining a validated supervised machine learning algorithm.

radial basis function networks, multilayer perceptrons, and self-
organizing maps (Kohonen maps) (Lavecchia, 2015). In contrast,
the recurrent neural networks contain feedbacks between the
layers, i.e., interconnections between neurons from the same and
consecutive layers; thus, their outputs are determined by the
previous outputs and the current inputs (Figure 7B), which form
a “memory” during the learning process.

The k-nearest neighbor is instance-based learning and is
one of the simplest and intuitive ML algorithms applied to
classify and rank compounds based on the nearest training
examples present in the chemical space (analyzed feature
composition) (Kauffman and Jurs, 2001; Medina-Franco et al.,
2005). The algorithm compares the molecular descriptors of
the query molecule with k-neighbors that have the smallest
distance (k-value), where the k-value corresponds to the number
of closest neighbors (a positive integer) and classifies them
by majority votes of their closest neighbors (Figure 7C). The
number of neighbors is the most important parameter for the
model, deciding its complexity. k-nearest neighbor is a classifier
algorithm; thus, irrelevant features can lead to disturbances in
the compound classification. It is indicated to first preprocess

the molecular descriptors to remove the irrelevant or the most
correlated ones.

Despite the majority of the computational screening
approaches using ML algorithms lacking experimental
validations, we have some interesting successful studies
that aimed to find and characterize novel natural products with
experimentally validated biological activity (Rupp et al., 2010;
Zhang et al., 2017; Nocedo-Mena et al., 2019; Patsilinakos et al.,
2019; Lee et al., 2020; Liu et al., 2020). Recently, Reher et al.
reported on the SMART 2.0, an NMR-based machine learning
tool designed for the discovery and characterization of natural
products. The tool was successfully applied to investigate the
environmental extract of Symploca sp., a filamentous marine
cyanobacterium, leading to the isolation and identification of a
new chimeric macrolide named symplocolide A. The molecular
structure of this novel natural product was confirmed by 1D/2D
NMR and tandem liquid chromatography mass spectrometry
(LC-MS2) analysis (Reher et al., 2020). Similarly, Lee et al. applied
SMART 2.0 to prioritize the isolation and characterization of
sesquiterpene lactones from the Eupatorium fortune plant. The
isolated natural compounds were experimentally tested against
five cancer cell lines and exhibited cytotoxic activities (Lee et al.,
2020).

ML algorithms have been successfully applied to predict
the bioactivity of compounds. Recently, Nocedo-Mena et al.
(2019) combined machine learning, perturbation theory, and
information fusion techniques to investigate the antibacterial
activity of terpenes from the Cissus incisa plant, and the authors
found that phytol and α-amyrin showed minimum inhibitory
concentrations equal to 100µg/ml against the carbapenem-
resistant Acinetobacter baumannii and the vancomycin-resistant
Enterococcus faecium. In another study, Liu et al. applied
deep learning algorithms to find natural products with anti-
osteoporosis activity. The selected hits successfully suppressed
the osteoclastogenesis-related genes Rank, Tracp, Ctsk, and
Nfatc1 in vitro (Liu et al., 2020). Some studies have also
reported experimental validations of ML models to predict
pharmacokinetic properties. Zhang et al. used a hybrid ML
algorithm using support vector machine, probabilistic neural
network, naive Bayes classifier, and random forest models
combined with in vitro assays to predict the blood–brain barrier
penetration of natural compounds from the Traditional Chinese
Medicine database (TCMDB). The authors found an overall
accuracy for experimental validation around 81% (Zhang et al.,
2017).

BIASES AND LIMITATIONS OF VIRTUAL
SCREENING METHODS

Virtual screening approaches have been predictive, useful, and
cost-effective in identifying novel bioactive compounds when
compared with the traditional methods applied solely. However,
despite their well-known success, these methods have limitations
and their models are prone to biases (Sieg et al., 2019; Slater and
Kontoyianni, 2019). It has been demonstrated that the presence
of stereochemical and valence errors in the chemical data libraries
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FIGURE 7 | Schematic overview of some of the machine learning algorithms applied in virtual screening. (A) Two-dimensional (2D) diagram of a single root tree of a

decision tree algorithm and the general architecture of a random forest. (B) The architecture of a multilayer feed-forward and recursive artificial neural network. Zw

refers to neurons of the hidden layers (internal); Zk and Zt, to the neurons of the input and output layers, respectively. (C) k-Nearest neighbor algorithm showing the

learning technique to classify a new data represented by the 2D yellow point, which is classified as belonging to class A (gray triangles).
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could also induce investigators to choose unfeasible compounds
(Williams and Ekins, 2011; Williams et al., 2012).

Biases, in essence, correspond to distortions from the
true underlying relationship between the investigated objects.
The investigation of the chemo-structural diversity of natural
products and their bioactivity using similarity-based search
methods is biased because it considers an assumption that the
discovery of novel active compoundsmust consider the similarity
of known active ones (Sieg et al., 2019). This assumption is
susceptible to drive the decision-making process to erroneous
directions and can reduce the structural diversity of new chemo-
structures. Combining low time-consuming computational
simulations andmore realistic results also remains a challenge for
some 3D similarity-based search algorithms, which, in general,
require superimposing many conformation pairs of compounds
from large chemical libraries, thus requiring high-performance
computing (Yan et al., 2016).

Despite the chemical space being considered infinite, the
pharmacological space of bioactive compounds of the “druggable
human genome” is limited, and its exploration remains a difficult
task even from a computational point of view (Opassi et al.,
2018). This assumption has been proven to be true for other
classes of bioactive compounds with industrial applications, such
as pesticides and herbicides (Avram et al., 2014). Therefore, the
exclusion of some compounds during the filtering process is
comprehensive, but can also reduce the investigation of new
chemical entities with specific bioactivity.

In pharmacophore-based virtual screening, the selection of
inappropriate models, or very restricted ones, could eliminate an
interesting structural diversity of natural compounds. However,
the choice of less restrictive models could retrieve a larger
number of false-positive compounds (Lans et al., 2020; Schaller
et al., 2020). Based on these biases, a balanced choice between
strict and loose criteria to select the pharmacophore model
to filter natural products could be decided by prioritizing
pharmacophore moieties better associated with a higher
compound activity; thus, the information obtained from
structure–activity analyses might be useful to decide on the
most appropriate pharmacophore model to screen natural
products (Qing et al., 2014). Regarding the limitation of ligand-
based pharmacophore modeling methods, it has been reported
that their dependence on structurally similar compounds
reduces their application since compounds with high structural
dissimilarities may not share the same binding mode (Schaller
et al., 2020). Furthermore, few ligand-basedmethods consider the
conformational flexibility of the macromolecular receptor in the
determination of the pharmacophoremodel (Lans et al., 2020). In
molecular docking, for example, the elimination of compounds
with poor fitness could be biased due to the choice of wrong or
inappropriate scoring functions, i.e., those that contain chemical
information that contradicts the physical reality or that were not
calibrated for the class of investigatedmolecules (Luo et al., 2017).

Supervised machine learning algorithms are also prone to
biases, which can lead to a misleading interpretation of the
final results obtained for chemical data libraries. It has been
demonstrated that highly correlated training and testing datasets,
i.e., containing chemical data too closely similar (e.g., same

molecular scaffold with a high frequency between the datasets),
could limit the applicability of the machine learning model,
reaching false accuracies in its predictiveness (Wallach and
Heifets, 2018; Sieg et al., 2019). Therefore, low training errors
are insufficient to justify the choice of a machine learning
model since the satisfactory predictive performance could be
due to redundancy between the training and testing datasets
rather than accuracy (Wallach and Heifets, 2018). It has also
been demonstrated that some biased machine learning models
could be obtained using a training dataset composed of active
molecules that are easily differentiated from inactive ones by
coarse properties, such as cLogP, the number of HBA, and
molecular weight (Ripphausen et al., 2011). Based on these
biases of machine learning models, it is necessary to investigate
whether chemical data benchmarks contain design flaws that
might lead to optimistic performances that are distorted from
the chemical reality. Some computational methods have been
developed to avoid overfitting in chemical datasets. Wallach and
Heifets (2018) developed the asymmetric validation embedding
(AVE) bias using Python language to predict the performance
across common benchmarks and standard machine learning
algorithms, and Ripphausen et al. (2011) developed a public
compound database, named REPROVIS-DB, that contains
information from successful ligand-based virtual screening
strategies including experimentally confirmed hits, reference
compounds, screening databases, and selection criteria.

NATURAL PRODUCTS DATABASES
APPLIED IN VIRTUAL SCREENING

The development of computational approaches for virtual
screening has been incentivized by the presence of numerous
biological and chemo-structural information of natural products
deposited in public databases (Valli et al., 2013; Harvey et al.,
2015; Pilon et al., 2017), as well as by the advances of computer
processing and storage capacity (Walters, 2019). High scientific
efforts to isolate and characterize natural products have increased
the interest of the academia and industry to comprehensively
organize this information using public databases to better
explore these natural sources and also to contribute to
our knowledge regarding their ethnobotanical information,
biological activities, chemical structures, natural origin, and
physicochemical properties. Herein, we do not intend to provide
exhaustive information regarding these online databases with
public access, but we will exhibit those with potential applications
in virtual screening strategies of natural products.

Nuclei of Bioassays, Ecophysiology, and
Biosynthesis of Natural Products Database
(NuBBEDB)
NuBBEDB (https://nubbe.iq.unesp.br/portal/nubbe-search.html)
provides information regarding chemo-structures obtained from
Brazilian biodiversity (Valli et al., 2013). Currently, the database
contains more than 2,200 structures of natural compounds
obtained from different Brazilian biomes (Pilon et al., 2017).
NuBBEDB contains the 3D structures of natural products in an
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MOL2 file format, which is compatible with the most widely used
molecular modeling and cheminformatics programs.

Comprehensive Marine Natural Products
Database (CMNPD)
The Comprehensive Marine Natural Products Database
(CMNPD) (https://www.cmnpd.org/) is a comprehensive and
curated marine natural products database that contains more
than 32,000 structures (accessed on January 06, 2020) with
different physicochemical and pharmacokinetic properties.
Besides, it includes information regarding their biological
activity, natural origin, and the geographical distribution
of source organisms (Lyu et al., 2020). The database also
contains the complete molecule datasets freely available for
download (https://docs.cmnpd.org/downloads).

Natural Product-Likeness Software Suite
and Database (NaPLeS)
The natural product-likeness software suite NaPLeS (https://
naples.naturalproducts.net/) is an MySQL database of natural
products and an open-source web application that computes
the natural product-likeness scores of large chemical libraries.
Currently, the database contains 315,916 natural products from
various public databases (Sorokina and Steinbeck, 2019).

Universal Natural Product Database
(UNaProd)
The Universal Natural Product Database (UNaProd) (http://
jafarilab.com/unaprod/index.php) is an online and public
database of natural products used in Iranian traditional medicine.
The database currently contains 2,696 compounds of botanical,
animal, and mineral origins (accessed on January 06, 2020)
(Naghizadeh et al., 2020).

Natural Product Activity and Species
Source Database (NPASS)
The Natural Product Activity and Species Source Database
(NPASS) (http://bidd.group/NPASS/index.php) provides
biological activity results and information regarding the
origin species of more than 35,032 natural products (accessed on
January 06, 2020) (Zeng et al., 2018). The database also contains a
structural compound library freely available for download in SDF
and SMILES formats (http://bidd.group/NPASS/downloadnpass.
html).

BIOFACQUIM
BIOFACQUIM (https://biofacquim.herokuapp.com/) is a
free and public database of natural products isolated and
characterized from Mexican biodiversity. Compounds from this
database are also available in the ZINC database (Pilón-Jiménez
et al., 2019). Currently, the database contains 423 natural
compounds (accessed on January 08, 2020) which are identified
by their respective names, accession codes, source organisms, in
SMILE format, and references.

Natural Products Atlas
The Natural Products Atlas (https://www.npatlas.org/joomla/)
is an open-access database of microbial natural products that
contain 24,594 compound structures (accessed on January
07, 2020) and information related to their structure, IUPAC
name, source organisms, and literature (van Santen et al.,
2019). The database also contains information of other natural
product databases, such as the Minimum Information about a
Biosynthetic Gene Cluster (MIBiG) repository and the Global
Natural Products Social Molecular Networking (GNPS) platform
(van Santen et al., 2019).

African Natural Products Database
(ANPDB)
The African Natural Products database (ANPDB) is a free
database of natural products from different regions of the
African continent (available at ANPDB|ANPDB (African-
compounds.org) and contains ∼4,500 structures (accessed on
January 12, 2020). The available data content comprises sources
covering the period from 1962 to 2019 (Ntie-Kang et al., 2017).
The database also contains the 3D structures of natural products
in SMILES and SDF formats available for non-commercial uses.

Natural Products for Cancer Regulation
(NPCARE)
The Natural Products for Cancer Regulation (NPCARE) is a free
online database (http://silver.sejong.ac.kr/npcare/) that provides
more than 6,000 natural products and more than 2,000 extracts
isolated from 1,952 different species including microorganisms,
marine organisms, and plants, as well as information related
to the action of these extracts and isolated natural compounds
against the gene expression levels and cancer cell line inhibition
(Choi et al., 2017). The database is an interesting source to
discover potential anticancer compounds and to understand the
anticancer molecular mechanisms underlying natural products.

StreptomeDB 3.0
StreptomeDB (http://www.pharmbioinf.uni-freiburg.de/
streptomedb) is a free and online database used to explore natural
products isolated or mutasynthesized from streptomycetes
using an interactive phylogenetic analysis (Lucas et al., 2013;
Moumbock et al., 2021). StreptomeDB 3.0 provides more than
6,500 natural products obtained from ∼3,300 Streptomyces
strains (Moumbock et al., 2021). These metabolites show
interesting biological activities, such as antimicrobial, anticancer,
and immunosuppressant properties. The compound structures
are identified by their respective source organisms, references,
biological role, and the routes of biosynthesis.

FINAL CONSIDERATIONS

Natural products offer an interesting structural scaffold, helping
to find new chemical entities with several industrial applications,
thus offering innovative solutions to solve old worldwide
problems, such as bacterial resistance against antibiotics (Smith
et al., 2018; Newman and Cragg, 2020). However, the complex
and highly diverse structure and the peculiar chemical space
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occupied by natural products have imposed pharmacokinetic
and pharmacodynamic limitations, thus restricting their use for
specific purposes by the pharmaceutical and cosmetic industries.

Several computational methods applied in virtual screening
strategies have been developed over the years, thus increasing
the rational explorations of natural sources aiming at the
identification of specific bioactive compounds from large chemo-
structural libraries. These computational strategies have also
opened up new opportunities to discover new industrial
applications of natural compounds justifying the financial and
time efforts for their exploration. Natural products present a
high structural diversity when compared with their synthetic
counterparts, and their difference is, in part, due to the existing
intricate biosynthetic pathways in living organisms that produce
derived structures, containing modified functional groups, such
as glycosylation and methylation. Based on these, the virtual
screening strategies must investigate the chemical space of
natural products, seeking to identify some classes of compounds
with bioactivity or structural scaffolds present in known active
molecules. Some of these screening strategies include applying
less restrictive structural-based similarity cutoffs (Pavadai et al.,
2017) and themodeling of hypothetically derived natural product
structures (Skinnider et al., 2017). Regarding the application
of molecular filters, some “bioactivity-likeness” criteria must be
used with caution to avoid misleading screening or remotion
of the important structural diversity of the compound libraries
since the structural complexity of natural products situates them
beyond the acceptable limits of some empirical rules determined
by these filters.

Artificial intelligence algorithms employed in ligand-based
approaches have demonstrated high success rates in finding
interesting compounds with reduced computational time, and
their combined uses with cheminformatics and molecular
modeling methods have increased the efficiency of virtual

screening strategies, allowing us to explore the highly diverse
chemo-structural landscapes of natural products.

Here, we hope to encourage the use of these computational
tools by experimental groups, helping researchers to familiarize
themselves with their concepts and capabilities as well as alert
them of some of the common biases faced by investigators
during the investigation of natural sources using computational
tools, citing some possible solutions. Finally, we indicate that
the automatic process represented by virtual screening must be
oriented by human expert decision to avoid misinterpretation
or false findings, and also to select compounds based on their
desirable features, such as commercial availability, low cost, and
synthetic feasibility.
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The rapid and global spread of a new human coronavirus, Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover

promising targets for the treatment of COVID-19. Here, we consider drug repurposing

as an attractive approach that can facilitate the drug discovery process by repurposing

existing pharmaceuticals to treat illnesses other than their primary indications. We review

current information concerning the global health issue of COVID-19 including promising

approved drugs, e.g., human angiotensin-converting enzyme inhibitors (hACEIs).

Besides, we describe computational approaches to be used in drug repurposing and

highlight examples of in-silico studies of drug development efforts against SARS-CoV-2.

Alacepril and lisinopril were found to interact with human angiotensin-converting enzyme

2 (hACE2), the host entranceway for SARS-CoV-2 spike protein, through exhibiting the

most acceptable rmsd_refine values and the best binding affinity through forming a

strong hydrogen bond with Asn90, which is assumed to be essential for the activity, as

well as significant extra interactions with other receptor-binding residues. Furthermore,

molecular dynamics (MD) simulations followed by calculation of the binding free energy

were also carried out for the most promising two ligand-pocket complexes from docking

studies (alacepril and lisinopril) to clarify some information on their thermodynamic and

dynamic properties and confirm the docking results as well. These results we obtained

probably provided an excellent lead candidate for the development of therapeutic drugs

against COVID-19. Eventually, animal experiments and accurate clinical trials are needed

to confirm the potential preventive and treatment effect of these compounds.
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INTRODUCTION

In December 2019, rumors began to spread about the prevalence
of a new unknown pneumonia-like illness in Wuhan, the capital
of Hubei Province in China. Afterward, on February 11, 2020,
the WHO reported a novel coronavirus as the causative agent of
clusters of the new illness. Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) or COVID-19 was the name
that the WHO designated for the disease caused by the novel
coronavirus (Coronaviridae Study Group of the International
Committee on Taxonomy of Viruses, 2020). Since the beginning
of the outbreak, infections have expanded rapidly into multiple
simultaneous epidemics worldwide. As of January 23, 2021,
99,071,240 confirmed COVID-19 cases and 2,124,086 COVID-
19-related deaths have been reported across more than 221
countries (Culp, 2021).

The COVID-19 with influenza-like symptoms ranging from
mild discomfort to severe lung injury and multi-organ failure,
eventually leading to death (Rothe et al., 2020). Effective
treatments for SARS-CoV-2 infection do not currently exist.
Thus, it will be of great benefit to identify and repurpose
already well-characterized compounds and approved drugs for
use in combating COVID-19 (https://www.who.int/emergencies/
diseases/novel-coronavirus-2019).

Drug repurposing or drug reprofiling is a promising field
in drug discovery for identifying new therapeutic uses for
already studied drugs (Khattab and Al-Karmalawy, 2021; Khattab
et al., 2021). These drugs could be either currently approved
and marketed for another use or withdrawn because of
adverse effects (Ashburn and Thor, 2004). Available clinical
trials at ClinicalTrials.gov (https://clinicaltrials.gov/) include
the investigation of previously approved drugs for different
indications, e.g.,: telmisartan and losartan. It offers a great
opportunity to the traditional de novo drug discovery since
the success rate of developing a new molecular entity is
2.01% only, and the number of approved drugs has been
declining since the 1990’s (Yeu et al., 2015). In the last
decade, about one-third of the approvals correspond to drug
repurposing, and repurposed drugs currently generate around
25% of the annual revenue for the pharmaceutical industry
(Talevi and Bellera, 2020). As examples of the most common
treatment, hydroxychloroquine, an antimalarial agent with anti-
inflammatory and immunomodulatory activities, has shown
inhibitory activity for SARS-CoV-2 similar to previous studies
on SARS-CoV-1 (Sanders et al., 2020). It has been investigated
for use by COVID-19 patients based on positive in vitro and
limited clinical data. Also, azithromycin, a macrolide antibiotic,
was found to raise the efficacy of hydroxychloroquine as a
complementary therapy (Lover, 2020).

Computer-aided drug discovery is one of the most important
approaches to investigate the activity of a drug through
computational structure-based drug discovery. Different
software tested the interaction between the tested compounds
and the binding site through physics-based equations used
to calculate their binding affinities (Sliwoski et al., 2014).
SARS-CoV-2 proteins, particularly proteases and spike proteins
(Prajapat et al., 2020), have been targeted in many docking

investigations hoping to understand the key amino acids
essential for the interactions at the active site in SARS-CoV-2
(Calligari et al., 2020; Dahab et al., 2020; Khan et al., 2020; Kumar
et al., 2020; Mohammad et al., 2020; Wu et al., 2020; Jairajpuri
et al., 2021).

In general, various organ systems are believed to participate
in COVID-19 due to the widespread expression of the primary
SARS-CoV-2 entry receptor, human angiotensin-converting
enzyme 2 (hACE2) (Groß et al., 2020). Angiotensinogen (AGT)
as a key substrate of the Renin-Angiotensin System (RAS) is
mainly synthesized by the liver and is cleaved by renin to form
Ang I (proangiotensin). In the pulmonary circulation, Ang I
is easily activated to hACE2 (Wu et al., 2018). ACE is a zinc
metallopeptidase ectoenzyme predominantly found in the lungs
and was originally isolated in 1956 as (hypertension converting
enzyme) (Skeggs et al., 1955). In 2000, genomic-based strategies
led to the discovery of hACE2, a human ACE homolog. hACE2
receptors which are the door through which the virus enters
into cells and also the conductor of several pathophysiological
reactions associated with the clinical features of the disease, with
potential therapeutic implications (Donoghue et al., 2000).

Taking into account the characteristics of the mode of entry
of this coronavirus to human cells through binding with hACE2
and extensive scientific and clinical evidence information on
the RAS, the hypothesis of the involvement of this system in
the pathophysiology of COVID-19 was born (Gurwitz, 2020).
The SARS-CoV-2 virus enters the airway and binds, utilizing
the S (Spike) protein on its surface, to the membrane protein
hACE2 in type 2 alveolar cells. The S protein-hACE2 complex is
internalized by endocytosis and facilitates the entry of each virion
into the cytoplasm (Wan et al., 2020).

hACE2 is involved in modulating blood pressure and
establishing blood pressure homeostasis. Recently, a debatable
question has risen, whether using antihypertensive medications
will have a favorable impact on people infected with SARS-
CoV-2 or a deleterious one, mainly since ACEIs and ARBs
therapy can modulate the expression of hACE2protein
(Vaduganathan et al., 2020).

We suppose that inhibition of the hACE2 catalytic pocket by
small molecules, e.g., ACEIs, could change the conformation of
hACE2 in such a way that it could block SARS-CoV-2 entry inside
host cells through hACE2 (Du et al., 2009).

Recently, a new promising success was reported: a group
of scientists claimed that human recombinant soluble ACE2
(hrsACE2) can block the early stages of SARS-CoV-2 infections
(Monteil et al., 2020). Moreover, telmisartan (ClinicalTrials.gov
ID: NCT04355936) and losartan (ClinicalTrials.gov ID:
NCT04312009) were proposed as alternative options for treating
COVID-19 patients before the development of acute respiratory
distress syndrome (ARDS) (Alnajjar et al., 2020; Gurwitz, 2020).

Interestingly, Zhang et al. found that among patients with
hypertension hospitalized with COVID-19, inpatient treatment
with ACEIs or angiotensin receptor blockers (ARBs) was
associated with a lower risk of all-cause mortality compared
with ACEI/ARB non-users (Zhang et al., 2020). Also, ACEIs
proved to be particularly beneficial not only in controlling high
blood pressure but also in reducing the incidence of stroke, by
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downregulating tissue factor synthesis inmonocytes (Dézsi, 2000;
Napoleone et al., 2000).

For these reasons and in continuation to our previous works
targeting SARS-CoV-2 (Alnajjar et al., 2020; Zaki et al., 2020;
Al-Karmalawy et al., in press), the authors present a promising
computational study including molecular docking and dynamics
simulation for almost all FDA approved members of ACEIs
(Figure 1) against the receptor-binding domain (RBD) of the
spike protein of SARS-CoV-2 in complex with hACE2 hoping
to repurpose them effectively for the potential treatment of
COVID-19 infection. However, we propose that ACEIs having
the ability to block the hrsACE2 receptor and so prevent the
entrance of SARS-CoV-2 through its spike protein (Figure 2).
Collectively, the main aim of the study is to investigate the
potentiality of ACEIs, as promising small ligand molecules
with drug-likeness properties, to accommodate the N-acetyl-β-
glucosamine (NAG) specific binding site at the hACE2 protein
target. Accommodation of such pocket could permit distrusted
glycan stability within such site being at proximity to the
hACE2/SARS-CoV-2 Spike protein receptor-binding domain
(RBD) interface. Accommodating this site by small molecules
may impact the SARS-CoV-2 Spike protein owing to the reported
findings of the glycan-mediated influence/interference with the
hACE2/SARS-CoV-2 Spike protein association as well as spike
epitopic recognition (Li et al., 2005; Banerjee et al., 2020; de
Andrade et al., 2020; Devaux et al., 2020; Grant et al., 2020).
Therefore, the affinity of ACEIs against the hACE2-NAG binding
site was investigating through molecular docking and dynamics
studies having the glycan NAG as a competitor binder and
reference ligand.

MATERIALS AND METHODS

Both the molecular docking studies using MOE 2014.09 suite
(Vilar et al., 2008) and molecular dynamics simulation using the
GROMACS-2019 software package and CHARMM36 force field
(da Silva et al., 2020) were applied in this study.

Molecular Docking Studies
To find a potential candidate for treating COVID-19, molecular
docking studies were performed over 14 ACEIs on the
binding pocket of the SARS-CoV-2 chimeric receptor-binding
domain complexed with its receptor human hACE2 (PDB IDs:
6VW1) (Shang et al., 2020). The chemical structures of drugs
tested for docking study are depicted in Figure 1. The co-
crystallized ligand N-Acetyl-D-Glucosamine (NAG) was used as
a reference standard.

The tested compounds were sketched using ChemDraw 2014,
imported intoMOE, and subjected to 3D protonation and energy
minimization up to 0.01 gradient. Then the co-crystallized ligand
(NAG) and the tested compounds were imported into the same
database and saved in the form of an MDB file to be used in
the docking calculations with SARS-CoV-2 spike protein, 6VW1.
The crystal structure was obtained from Protein Data Bank
(http://www.rscb.org) with good resolutions 2.68 Å (Shang et al.,
2020). The crystal structures were prepared following the detailed
procedure described earlier (Al-Karmalawy and Khattab, 2020;

Ghanem et al., 2020). They were imported into MOE and the
structure preparation wizard of MOE was used to correct all the
issues in protein structures. The hydrogen atoms were added to
structures in their standard geometry, and all solvent molecules
were removed from the structures then subjected to energy
minimization. The final optimized structures were saved in the
working directory. Triangle matcher and refinement methods
were used for performing docking studies. Rigid receptor as
refinement methodology and GBVI/WSA dG as the scoring
methodology for selection of the best 20 poses from 100 different
poses for each tested compound. The scoring methods were
adjusted to their default values (Samra et al., 2021). After
completion of docking processes, the obtained poses were studied
and the best ones showing the best acceptable rmsd_refine values
with the same binding mode of the native ligand were selected.
Also, a program validation process was performed at first and
confirmed by a lowRMSD value (< 1Å) as described before (Eliaa
et al., 2020).

Molecular Dynamics Simulation
The best-docking scored models of the most promising leads,
alacepril and lisinopril, in complex with hACE2 protein were
chosen as starting coordinates for 100 ns all-atom molecular
dynamics simulation using a GROMACS-2019 software package
(GNU, General Public License; http://www.gromacs.org) and
CHARMM36 force field (da Silva et al., 2020). Each ligand–
protein complex was solvated within a cubic box of the
transferable intermolecular potential with a three-points (TIP3P)
water model (100 × 100 × 100 Å) allowing a minimum of 10
Å marginal distance between protein and each side of the 3D
box (Izadi et al., 2014). The CHARMM force field parameters
for the investigated ligands were automatically generated
using the CHARMM General Force Field (CGenFF) program
(Vanommeslaeghe et al., 2009) (ParamChem project; https://
cgenff.umaryland.edu/). Under periodic boundary conditions
implementation, the protein residues were assigned for their
standard ionization states at physiological conditions (pH 7.0),
and the whole complexes were neutralized via sufficient numbers
of K+ and Cl− ions added via Monte-Carlo ion-placing method
(Ross et al., 2019). The MD simulation was conducted over
three stages and 1,000 kJ/mol.nm2 force constant was used
for restraining all heavy atoms and preserving original protein
folding (Helal et al., 2020). The first stage involved initial
optimization of each system geometry using 5,000 iterations (5
ps) with the steepest descent algorithm. The subsequent step
involved system two-staged equilibration where the system was
conditioned for 100,000 iterations (100 ps) at each stage. The
first equilibration stage was proceeded under constant Number
of particles, Volume, and Temperature (NVT) ensemble guided
by the Berendsen temperature coupling method for regulating
the temperature within the 3D box (Golo and Shaitan, 2002).
Subsequently, the second equilibration stage was performed
under a constant Number of particles, Pressure, and Temperature
(NPT) ensemble at 1 atm and 303.15K guided by using the
Parrinello-Rahman barostat (Tuble et al., 2004).

Finally, the MD simulations were run for 100 ns under
constant pressure (NPT ensemble) and long-range electrostatic
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FIGURE 1 | Chemical structures of the tested ACEIs.

interactions were computed using Particle Mesh Ewald
(PME) algorithm (Darden et al., 1998). Adopting such
a highly accurate and rapid algorithm for treating long-
range Coulomb interactions to achieve stable nanosecond
trajectories within highly polar biomolecules like proteins.
However, the implemented linear constraint LINCS method
was used to constrain all covalent bond lengths, including
hydrogens, allowing an integration time step size of 2 fs
(Hess et al., 1997). The non-bounded interactions, Coulomb
(electrostatic potential), and Lennard Jones (Pauli repulsion
and hydrophobic/van der Waals attractions) interactions were
truncated at 10 Å using the Verlet cut-off scheme (Páll and Hess,

2013). Throughout the MD simulation, the CHARMM36m all-
atom force field was applied for both the ions and protein (Best
et al., 2013). Computing comparative data, including RMSD and
radius of gyration (Rg), was performed through analyzing the
MD trajectories using the GROMACS built-in tools. Moreover,
the Distance Calculation Tool, at Visual Molecular Dynamics
1.9.3 (VMD) package (the University of Illinois at Urbana-
Champaign, USA), was utilized to calculate the change in the
distance between the specified ligand/protein atoms over the
whole simulation period (Humphrey et al., 1996). Such an
approach permitted monitoring and investigating the possibility
of interactions of ligands with the most important protein
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FIGURE 2 | Schematic representation showing the idea of repurposing the FDA-approved ACEIs as COVID-19 entrance inhibitors through the inhibition of the

hrsACE2 receptor.

residues. Finally, the binding-free energy between the ligand and
protein was estimated via the GROMACS “g_mmpbsa” module
(Kumari et al., 2014). The Pymol graphical software ver. 2.0.6
(SchrödingerTM, NY, USA) was utilized for figure generation of
ligand–protein conformational analysis (Delano, 2002).

RESULTS AND DISCUSSION

Molecular Docking Studies
Molecular docking simulations were performed in order to
investigate the potentiality of small drug-like molecules, like
ACEIs, to engage the hACE2 glycosylated site and/or vicinal
cavity in a way that would disrupt the glycosylation process
of the hACE2, leading to the modulation of hACE2-RBD
interactions. Actually, this crystallized N-glycan is covalently
linked to the aimed nitrogen of the asparagine residue of the
protein. Nevertheless, the approach of N-glycan and its existence
within the pocket is highly guided by both Coulomb’s electrostatic
interactions and Lenard-Johns van der Waal potential energy
with different target residues comprising the hACE2 pocket
lining. In these regards, this N-glycan was considered as a
reference ligand to investigate the ability of the investigated
ACEIs to compete with it for engaging this glycosylated site and
vicinal cavity. Throughout the adopted docking protocol, this N-
glycan binder was fitted inside the binding pocket of SARS-CoV-
2 spike protein showing one hydrogen bond with Asn90 (2.84 Å,
binding score=−4.4, RMSD= 1.3), Figure 3A.

A molecular docking simulation of the target compounds and
the native ligand into the spike protein active site was carried
out. Many poses were obtained with better binding modes and
interactions inside the receptor pocket. The poses with the most
acceptable rmsd_refine values (related to the closeness of the

selected pose to the original ligand position inside the receptor
pocket) and the same binding mode of the ligand were selected.
Results of energies and different interactions with amino acids
of the spike protein pocket are shown in Table 1. They got
stabilized at the binding site of spike protein by variable several
electrostatic bonds.

Most compounds showed acceptable RMSD values close to the
NAG inhibitor, but only alacepril and lisinopril have the same
binding mode of the NAG. For alacepril, binding interactions
with 6VW1 (binding score = −5.1, RMSD = 1.3) are given in
Figure 3B, two hydrogen bonds were recorded, one of them with
Asn90 (3.81 Å), which is assumed to be essential for the activity.
In addition, another hydrogen bond was observed with Asn30
(2.72 Å), whereas, in the case of lisinopril, binding interactions
with 6VW1 (binding score = −4.7, RMSD = 1.3) are given in
Figure 3C, and two hydrogen bonds also were recorded, one of
them with Asn90 (3.50 Å), which is assumed to be essential for
the activity. Furthermore, another hydrogen bond was observed
with Asn30 (2.92 Å).

Finally, some ACEIs such as trandolapril, fosinopril, and
moexipril have excellent binding scores (−5.60, −5.04, and
−5.10, respectively), better than the native ligand NAG (−4.4),
but, unfortunately, their binding modes are different. For
trandolapril, two hydrogen bonds were observed with Asp30
and the third one with Gln95 (2.75, 2.75, and 2.91 Å). For
fosinopril, one hydrogen bond was observed with Gln96 (4.36 Å).
For moexipril, three hydrogen bonds were observed with Asp30
(4.25, 3.16, and 3.36 Å).

Molecular Dynamics Simulation
Considering it as an efficacious approach for validating the
stability of the predicted docked ligand-hACE2 complex, an
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FIGURE 3 | (A) High-resolution crystal structures of coronavirus target explain the native ligand (NAG) in the active pocket (PDB ID: 6VW1, Score = −4.4, RMSD =

1.3). (B) High-resolution crystal structures of coronavirus target explain Alacepril in the active pocket (PDB ID: 6VW1, Score = −5.1, RMSD = 1.3). (C) High-resolution
crystal structures of coronavirus target explain Lisinopril in the active pocket (PDB ID: 6VW1, Score = −4.6, RMSD = 1.3). N.B: The surface and maps

representations show the H-bond donor, H-bond acceptor, and hydrophobic regions around the docked compound.

all-atom molecular dynamics (MD) simulation study was
performed. Adopting such a study would also provide valuable
information regarding the dynamic behavior of both the ligand
and hACE2 protein as well as evaluate the ligand’s key binding
interactions with important catalytic site residues (Karplus
and Petsko, 1990). Therefore, the predicted ligand–protein
complexes, for both alacepril and lisinopril, as well as the
glycosylated hACE2 protein were enrolled within 100 ns all-atom
MD simulation.

Trajectory Analysis of Ligand-hACE2 Complexes
The stability profile of both alacepril and lisinopril in complex
with the human angiotensin-converting enzyme 2 (hACE2) was
monitored using the GROMACS command line gmx_rmsd to
estimate their respective RMSD values throughout the simulation
runs. Generally, RMSD provides an inference regarding the

deviation extent for a group of atoms (protein, ligand, or
even ligand–protein complex) to the respective initial reference
structure (Schreiner et al., 2012). Thus, high RMSD values
would be correlated to significant instability, being related to
changes within the conformation of the investigated molecule.
Moreover, ligands depicting high RMSD values, for their
respective ligand–protein complex, would suggest inadequate
ligand accommodation within the studied pocket across the
adopted MD simulation time-frames (Liu et al., 2017).

Within the presented MD simulation, both investigated
ligand–protein targets exhibited successful conversion following
20 ns of MD simulation start (Figure 4A). The obtained complex
RMSD trajectories, in respect of their backbone, rises throughout
the initial frames till the RMSDs level off at around 20 ns
where the following trajectories proceeded around respective
average values till the 70 ns of the MD simulation. It worth
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TABLE 1 | Receptor interactions and binding energies of ACEIs drugs and NAG inhibitor into the spike protein of SARS-CoV-2.

No. ACEIs Sa Kcal/mole RMSD_Refineb Amino acid bond Distance Å

1 Alacepril −5.10 1.3 Asn90/H-acceptor 3.81

Asp30/H-acceptor 2.72

2 Captopril −3.40 1.4 Asp30/H-acceptor 3.76

3 Zofenopril −4.6 1.6 Pro389/arene-H 4.34

4 Enalapril −4.8 1.5 Asp30/H-donor 2.94

Asp30/H-donor 2.94

5 Ramipril −4.6 1.7 Lys26/H-acceptor 4.29

Lys26/H-acceptor 3.98

6 Quinapril −4.60 1.7 Pro389/arene-H 4.52

Gln96/H- acceptor 3.07

7 Perindopril −4.2 1.7 Asp30/H-donor 3.31

Asp30/H-donor 3.32

Asp30/H- acceptor 3.31

Asp30/H- acceptor 3.32

8 Lisinopril −4.70 1.3 Asn90/H-acceptor 3.5

Thr92/H-acceptor 2.92

9 Benazepril −4.70 1.3 Lys25/H-donor 3.07

Lys25/H-donor 3.07

10 Imidapril −4.4 1.8 Asp30/H-donor 3.45

Asp30/H-donor 3.45

11 Trandolapril −5.60 1.2 Asp30/H-donor 2.75

Asp30/H-donor 2.75

Gln95/H-acceptor 2.91

12 Cilazapril −4.5 1.6 Pro389/arene-H 4.49

Asp30/H- donor 3.24

Asp30/H- donor 3.24

Asp30/H- donor 3.60

13 Fosinopril −5.04 1.7 Gln96/H-acceptor 4.36

14 Moexipril −5.10 1.7 Asp30/H- donor 4.25

Asp30/H- donor 3.16

Asp30/H- donor 3.36

15 NAG −4.4 1.3 Asp30/H- donor 2.97

Asp30/H- donor 2.92

aS: the score of placement of a compound into the binding pocket of protein using London dG scoring function.
bRMSD_Refine: the root-mean-squared-deviation (RMSD) between the heavy atoms of the predicted pose (after refinement) and those of the crystal structure (before refinement).

noting that the average RMSD values, throughout the plateau
MD simulation interval (20–70 ns), were higher for lisinopril
compared to alacepril (2.610 ± 0.20 Å vs. 3.786 ± 0.13 Å). The
latter differential dynamic behavior confers a more stabilized
and confinement accommodation for alacepril within the hACE2
binding site throughout the plateau interval. However, both
ligands converge around comparable RMSD values (∼3.400 Å)
where only the alacepril–protein trajectories were depicted steady
till the end of the MD simulation at 100 ns. A second RMSD
trajectory increase at the last 10 ns of the MD simulation
was shown for lisinopril–protein complex tones, which further
confirms a significant ligand shift out of the hACE2 pocket. On
the other hand, alacepril depicted a minimal increase within
RMSD trajectories (from 2.316 to 3.110 Å) following the 70 ns
suggesting a limited chance of the alacepril orientation within

the hACE2 pocket rather than a dramatic escape out of the
binding site. All latter findings confer maintained binding of
alacepril within the hACE2 binding site. Compared to lisinopril,
the alacepril–protein complex depicted comparable RMSD tones
to those of NAG-bound (glycosylated) protein along the 100
ns all-atom MD simulation run. All above findings suggest a
more preferential binding for alacepril, over lisinopril, within the
hACE2 NAG-binding site.

Further investigation of ligand stability within the protein
binding site was proceeded throughmonitoring the ligand RMSD
tones (Figure 4B). Monitoring these trajectories would provide
valuable information regarding the conformational/orientation
of the simulated ligands in respective to their binding pocket.
Following convergence, the bound NAG molecule showed the
steadiest RMSD tones (8.970 ± 1.14 Å) across the entire 100
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FIGURE 4 | Analysis of RMSD trajectories for the ligand-hACE2 protein complexes throughout 100 ns all-atom MD simulation. (A) Complex RMSD; (B) ligand RMSD;

(C) protein RMSD; (D) binding pocket residues RMSD, relative to backbone vs. MD simulation time in nanoseconds. Alacepril/hACE2 and lisinopril/hACE2 complexes

as well as glycosylated (NAG)-bound and apo-state (all glycans being removed) hACE2 proteins are illustrated in pink, blue, green, and yellow colors, respectively.

ns all-atom MD simulation. Nevertheless, alacepril depicted
the lowest RMSD trajectories (4.962 ± 1.28 Å) around the
20–70 ns MD simulation run being at ∼1.5 Å RMSD values
below those of its respective ligand–protein complex. With

only limited fluctuations, the alacepril RMSD tones emphasize
its preferential accommodation of the hACE2 NAG-binding
site as compared with lisinopril. The latter ligand depicted
an extreme orientation/conformation shift relative to its initial
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FIGURE 5 | Global stability analysis of ligand-hACE2 protein complexes throughout 100 ns all-atom MD simulation. (A) Complex Rg; (B) protein Rg, vs. MD

simulation time in nanoseconds. Alacepril/hACE2 and lisinopril/hACE2 complexes as well as glycosylated (NAG)-bound and apo-state (all glycans being removed)

hACE2 proteins are illustrated in pink, blue, green, and yellow colors, respectively.

coordinates (37.542 ± 0.92 Å) following 20 ns and up
to 70 ns.

Beyond the 70 ns MD simulation runs, both ACEIs ligands
exhibited comparable trajectories around 75–90 ns with the
highest fluctuations being assigned for lisinopril. Finally, another
elevated lisinopril RMSD values (> 50 Å), near the end of
the MD simulation timeframe, suggested that lisinopril has
left the protein interaction side while being strayed at the
solvent site. Further monitoring of the pocket residue RMSD
trajectories, with the crystal structure, was informative regarding
the differential ligand binding within the hACE2 NAG-binding
site (Figure 4C). As expected, the highest RMSD tones (2.777
± 0.48 Å) were assigned to lisinopril-pocket residues with high
fluctuations being depicted around 25 ns and 70 ns (4.750 Å and
4.800 Å, respectively). Notably, pocket residues showed lower
RMSDs with both alacepril and NAG binding (2.394 ± 0.42 Å
and 2.346± 0.41 Å, respectively), as compared to hACE2 with all
glycans being removed (apo-state; 2.570 ± 0.49 Å), particularly
near the end of the MD simulation. The latter behaviors
confer preferential ligand-pocket mutual stability relationship for
alacepril and NAG across the MD simulation runs.

For excluding the presence of any artifacts within the adopted
MD simulation runs, the hACE2 protein RMSD trajectories
were monitored both for the apo (unbounded) and glycosylated
(NAG-bound) states as well as in complex with both investigated
ligands, alacepril, and lisinopril. Interestingly, the RMSD tones

were comparable for the apo and complexed proteins since
limited differential RMSD values were obtained across the
100 ns MD simulation window (Figure 4D). A little elevation
of the protein RMSD tones, concerning their C-alpha atoms,
was depicted at first frames of MD simulation and then an
equilibrium plateau was achieved around an average RMSD of
2.558, 2.524, 2.661, and 2.611 Å, for apo, NAG, alacepril, and
lisinopril-bound proteins, respectively. Such protein behavior is
typical for optimum MD runs since all the applied constraints,
before the simulation, were released and the protein starts
to relax till reaching an equilibration state around which the
RMSD revolves until reaching the MD simulation end. Showing
comparable average RMSD values for apo hACE2, relative
to those for NAG, alacepril, and lisinopril-bound proteins
could exclude the presence of differential significant secondary
structure rearrangement/folding within the three MD simulation
runs. The latter findings further correlate the RMSD complex
trajectory fluctuations to the ligand behaviors rather than
that of respective proteins within the MD simulation runs.
It worth noting that all protein RMSDs reached comparable
values (∼2.600 Å) at the end of the MD run which further
validate the 100 ns MD simulation time frame being able to
bring both the apo, glycosylated and complexed proteins at
comparable equilibration/relaxed states. Moreover, the latter
dynamic behaviors further ensure sufficient conditioning stages
before the production of the MD simulation runs.
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To gain more insight regarding the investigated complex
stability, the radii of gyration (Rg) were monitored across
the whole MD trajectories using the GROMACS “gmx_gyrate”
command script. This stability parameter accounts for global
stability of either ligand or protein ternary structure, where
Rg is the mass-weighted RMSD for a group of atoms relative
to their common mass center (Likić et al., 2005). Therefore,
sustained stability/compactness of the investigated molecule
would be inferred through depicted low Rg values achieving a
plateau around an average value. Within the furnished study,
the obtained Rg tones confirm the preferential stability of the
alacepril-hACE2 complex as compared to those of lisinopril
(Figure 5). Steadier Rg trajectories were obtained for the alacepril
complex with lower maximum, average, and minimum values
(Table 2), suggesting compactness and stability of the ligand
within the protein active site. Comparable values were depicted
for alacepril and glycosylated (NAG)-bound protein complexes.
The latter complex Rg findings were highly correlated with
those of respective proteins. Minimal fluctuations and low Rg
standard deviations were observed with alacepril and NAG as
compared to that of lisinopril (25.03 ± 0.17 Å and 25.08 ± 0.19
Å; vs. 25.20 ± 0.21 Å, respectively). Interestingly, lower Rgs was
assigned for the alacepril-bound and glycosylated (NAG) hACE2
proteins with the protein’s apo-state (25.23 ± 0.15 Å) suggesting
a more compacted secondary structure upon ligand binding as
well as protein glycosylation. All obtained Rg findings showed
high agreement with the previous RMSD analysis confirming
preferential better stability of alacepril over lisinopril within the
hACE2 NAG-binding site.

Protein Flexibility and Root-Mean-Square Fluctuation

of Target Residues
For gaining more insights regarding the stability of the
complex binding site, the per residue rence root-mean-square
fluctuation (1RMSF) profile was estimated for each ligand-
bound protein relative to the hACE2 apo-state. The individual
backbone RMSF of each protein was estimated using the
GROMACS “gmx rmsf” command line. This flexibility validation
criterion provides information regarding the contribution
of protein individual residues within the ligand/protein
complex structural fluctuations. RMSF estimates the time
evolution of the average deviation for each residue from its
reference position within the minimized starting structures
(Benson and Daggett, 2013). Adopting a 1RMSF cut-off
value of 0.30 Å was relevant for estimating the significant
change within structural movements, where residues with >

0.30 1RMSF values were considered of decreased mobility
(de Souza et al., 2019).

Findings within Figure 6 showed expected terminal-free
residue behavior with high negative1RMSF values since they are
most likely to fluctuate at the highest deviations in comparison
to core residues the thing that is typically depicted in well-
behaved MD simulation. However, a different terminal-free
residue pattern was assigned for each ligand. Lower RMSF
negative values or even positive RMSF values were depicted for
alacepril and NAG, respectively, for the C-terminal-free residues
and vicinal residues. Since the hACE2-NAG pocket residues

are at proximity to the protein C-terminal side, such findings
confer more stabilized alacepril and NAG-protein complexes
as compared to lisinopril. At the N-terminal, lower negative
RMSF values were assigned to lisinopril relative to alacepril
and NAG, suggesting that N-terminal-free residues and vicinal
residues might impact lisinopril-protein binding through MD
simulation. As these latter residues are at > 30 Å distant from
the reference hACE2-NAG binding site, they may be highly
correlated to stabilization of lisinopril following the dramatic
conformational/orientation shift beyond 20 ns and up to 70 ns
of the MD simulation run.

Concerning core protein residues, the three bounded ligands
induced significant limited mobility (1RMSF > 0.3 Å) for
hACE2 residues at four distinct residue ranges including; range-I
(134–140), range-II (173–178), range-III (248–256), and range-
IV (284–286). The earlier two residue ranges-I and -II exhibited
the greatest immobility with 1RMSF values up to 1.55 Å
and 0.91 Å, respectively. on the other hand, the other two
less mobile residue ranges (-III and -IV) were at comparable
1RMSF trajectories across the designated MD simulation
window. Within the four top immobile residue ranges, the
1RMSF trajectories for the three bound ligands were depicted as
comparable. It worth noting that residues within the four residue
ranges are at distances being > 29 Å from the bounded ligands
the thing that can infer the impact of ligand binding site to induce
stabilization of the protein secondary structures distant from the
NAG-binding site.

Regarding residues with the highest fluctuations, there is
a general trend of high negative RMSF values being assigned
to the lisinopril-bound protein residues. Designated residue
ranges (101–110, 195–220, and 462–473) exhibited high negative
1RMSF values in particular for the protein in complex with
lisinopril. Nevertheless, residues at these latter ranges showed
limited flexibility regarding both alacepril and NAG-bound
protein. Notably, one residue range (333–359) did not exhibit
a similar pattern to the above highly mobile or immobile
ranges, where residues of both lisinopril and NAG-bound
protein were of great fluctuation/flexibility (maximum 1RMSF
−1.48 and −2.85 Å, respectively). On the contrary, positive
1RMSF values (up to 0.40 Å) were assigned for the latter
contradictory residue range up on alacepril binding suggesting
the great impact of these residues on the alacepril-protein
binding, which may be highly related to the suggested second
conformation/orientation of alacepril following the 70 ns MD
simulation run.

Further comparative analysis of the furnished 1RMSF
trajectories for the key residues lining the hACE2-NAG binding
site permitted more insights regarding differential ligand-
protein interactions. To the most interest, several pocket
residues illustrated significant immobility with a 1RMSF
value of > 0.30 Å for alacepril-bound protein (Table 3).
Pocket residues including Asn90, Leu91, Leu560, and Ser563
depicted the highest 1RMSF values being the most positive
for Leu91 suggesting the residue’s key role in alacepril-
pocket anchoring. Concerning the pocket residues of the
NAG-bound protein, Asn90 and its vicinal residues (Leu91 and
Thr92) depicted significant rigidity. This was not surprising

Frontiers in Chemistry | www.frontiersin.org 10 May 2021 | Volume 9 | Article 66123068

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Al-Karmalawy et al. ACEIs as Anti SARS-CoV-2

TABLE 2 | The Rg values for investigated ligand-hACE2 complexes across the all-atom MD simulation.

Alacepril-hACE2 complex Lisinopril-hACE2 complex Glycosylated (NAG) hACE2

Reference atom group Maximum
(Å)

Average
(Å)

Minimum
(Å)

Maximum
(Å)

Average
(Å)

Minimum
(Å)

Maximum
(Å)

Average
(Å)

Minimum
(Å)

Complex 25.78 25.08 ± 0.09 24.49 25.90 25.20 ± 0.21 24.63 25.59 25.12 ± 0.19 24.29

Protein 25.75 25.03 ± 0.17 24.45 25.88 25.15 ± 0.21 24.56 25.57 25.08 ± 0.19 24.26

FIGURE 6 | Relative 1RMSF analysis of ligand-hACE2 protein complexes throughout 100 ns all-atom MD simulation. Protein backbone 1RMSF trajectories were

determined from the independent MD-simulated hACE2 apo-state against the complexed protein with alacepril, lisinopril, or NAG, which were shown as a function of

residue number 19-to-619. Alacepril/hACE2, lisinopril/hACE2, and glycosylated (NAG)/hACE2 complexes are illustrated in red, blue, and green colors, respectively.

since crystallized NAG molecule is linked to hACE2 at
Asn90 within hACE2 crystal structure. This observation
ensures the stability of NAG as well as alacepril within the
binding site along with the MD simulation frames. Moreover,
the ability of alacepril to exhibit comparable immobility
pattern or Asn90 and vicinal residues further emphasize the
competitive capability of alacepril to replace NAG at its
binding site. Moving toward the protein in complex with
lisinopril, only Leu560, and Ser563 showed relevant rigidity
with 1RMSF values at the borderline (0.250 and 0.258 Å,
respectively) being lower than those depicted with alacepril.
It worth mentioning that several lisinopril-pocket residues,
even those at the initial docking study, exhibited significant
flexibility/fluctuations with 1RMSF being of negative values
(−0.035 to −0.264 Å). This finding can be correlated with
the earlier suggestion that lisinopril has left the hACE2-
NAG binding site exhibiting dramatic orientation/conformation
shift. All above 1RMSF analysis infer the inferior impact
of lisinopril, as compared to alacepril and NAG, on the
immobility/stability of the protein pocket residues. Therefore,

the 1RMSF analysis is considered relevant as it came in great
agreement with the above 1RMSD and Rg findings suggesting
the higher alacepril-hACE2 complex stability relative to that
of lisinopril.

Conformational Analysis Across Selected Trajectories
For gaining more insight regarding the newly adopted ligand–
protein conformations by each ligand within the late MD
simulation runs, the selected frames of each system were
extracted and minimized to a gradient of 0.001 Kcal/mol/A2

using MOE software for further analysis of key changes.
Figure 7A illustrates the comparative conformations of the
alacepril-protein complex at 0, 70, and 100 ns. Interestingly,
there is no significant orientation change for the ligand within
the hACE2 binding site between the time frames 0 and 65 ns.
There was only a relevant shift toward the main chain of the
Asp90 residue furnishing significant hydrogen bonding with its
backbone amide. Such a shift caused a loss of the initial hydrogen
bond with Asp30 and Gln96. Stabilization of alacepril within its
new conformation/orientation was further mediated by several
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FIGURE 7 | Conformations of the ligand-protein complex at hACE2 binding site through selected trajectories. (A) Alacepril; (B) lisinopril; (C) NAG. Protein is

represented in green, yellow, and red cartoon 3D-representation corresponding to initial (0 ns), dynamic equilibrium (70 ns), and last (100 ns) extracted trajectories,

respectively. The key binding residues (lines), ligands (sticks), and hydrophilic interactions (hydrogen bonding; dashed lines) are all presented in colors corresponding

to their respective extracted trajectory.
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TABLE 3 | Calculated 1RMSFa trajectories of ligand-hACE2 proteins along with

the MD simulation.

Residues of hACE2-NAG binding site Alacepril Lisinopril NAG

Ala25 −0.114 −0.236 0.148

Lys26 −0.037 −0.264 0.146

Asp30 0.239 −0.182 0.030

Lys31 0.286 −0.252 0.043

Asn90 0.381 −0.146 0.295

Leu91 0.404 −0.076 0.300

Thr92 0.053 −0.035 0.274

Val93 0.082 −0.06 0.204

Leu95 0.028 −0.053 0.221

Gln96 −0.006 −0.039 0.130

Ala387 0.091 0.198 0.070

Gln388 0.217 0.267 0.089

Pro389 0.199 0.191 0.054

Leu560 0.315 0.250 0.005

Ser563 0.314 0.258 0.241

Glu564 0.197 0.105 0.088

aRelative difference root-mean-square fluctuation (1RMSF) was estimated for each

ligand-bound protein relative to hACE2 apo-state being without any glycan. Residues

exhibiting significant immobility (1RMSF above 0.30 Å) are only written in bold and

representative 1RMSF value is highlighted.

non-polar residues, including Leu29, Lue91, Val93, Pro389, in
addition to the Cβ of Glu564 side chain.

Concerning the ligand conformation at frame 100 ns, a more
significant shift was depicted by alacepril toward a transient
opened cleft at proximity to the SARS-CoV-2 spike-protein
recognition domain-III. Such shift came in good agreement
with the RMSD fluctuation following the 70 ns. Notably, the
ligand was mainly maintained within this transit cleft through
hydrophobic interaction with pocket lining residues. Being
anchored at proximity to the protein’s hydrophobic residues,
Pro321, Phe356, Ala383, Ala386, Ala387, and Phe555, favored
non-polar interactions were depicted with the ligand’s terminal
phenyl ring and pyrrolidine hydrophobic cage.

Validating the stability of alacepril within this transit cleft was
achieved through extending theMD simulation. The last alacepril
frame at 100 ns was extracted, minimized, and then proceeded
within an extra 50 ns all-atom MD simulation adopting the
same parameters at the initial 100 ns MD simulation run.
Notably, alacepril showed great stability across the additional
trajectories where the RMSD tones for the alacepril-hACE2
complex and protein were maintained at low values (2.511 ±

0.33 Å and 2.482 ± 0.34 Å, respectively), following convergence
(Supplementary Figure 1). Showing minimal fluctuations across
the extended trajectories confirms the stability of alacepril at the
transit cleft being still bounded with the pocket residues.

Concerning the lisinopril-hACE2 complex, a more dramatic
conformational and orientation shift was depicted for the ligand
(Figure 7B). Throughout the dynamic equilibration shown from
20 to 70 ns, lisinopril was anchored at a distant pocket seated at
∼25.00 Å from the initial hACE2 binding site. These deviations

can be correlated to the high complex RMSD-Cα fluctuations
(Figure 4A) and the high maximum value of complex Rg
(25.90 Å) compared to the alacepril–protein complex system.
At this new distant pocket, relevant hydrophobic contacts
between lisinopril and lining residues (Phe308, Trp328, and
Leu 333) greatly mediated the ligand-protein complex stability.
Interestingly, this distant pocket is near the N-terminal free
residues and their vicinal residues. The binding of lisinopril
within this distant pocket can explain the lower negative 1RMSF
trajectories of the N-terminal free residues, as compared to
alacepril and NAG. Therefore, it is suggested that these residues
impose a crucial role in stabilizing the lisinopril-protein complex
within the 20–70 ns timeframe. Based on the furnished results,
inferior stability within the hACE2 binding site was assigned
to lisinopril as compared to alacepril. The latter was further
confirmed since lisinopril was found at the solvent side as being
drifted away from the hACE2 protein at the end of the MD
simulation (100 ns).

Investigating the conformational changes for the glycosylated
hACE2 protein showed that NAG was retained within the
binding pocket along with the whole MD simulation timeframe
(Figure 7C). There is a quite comparable orientation for the
NAG conformation at the 70 ns frame concerning its initial
position at 0 ns time. Polar hydrogen bonding with the pocket
hydrophilic residue, Lys26, was shown to provide extra stability
for the NAG at the binding site. On the other hand, significant
movement of NAG, as well as the pocket residues (Asn90,
Leu91, and Thr92), was illustrated at the end of the MD
simulation. Despite that, these particular pocket residues have
exhibited relevant immobility with high positive 1RMSF values
(Table 3), a significant change in their respective position as
depicted. This could raise the assumption that NAG is not
fully occluding the binding site of interest the thing that could
make it at least partially accessible across the designated MD
simulation. Proving such a concept would provide relevant
evidence that small druggable molecules, like alacepril, could
manage to accommodate the hACE2-NAG binding site of the
glycosylated protein.

Extent of hACE2 Binding Site Coverage by NAG
To speculate the possibility of small ligand inhibitors to
accommodate the hACE2-NAG binding site, an investigation of
the extent of hACE2 binding site coverage by NAG was within
the glycosylated protein was proceeded. The GROMACS “gmx
sasa” tool was used to compare the solvent-accessible-surface
area (SASA) of the binding region in the absence and presence of
glycan. Generally, SASA correlates for the molecular surface area
being assessable to solvent molecules providing a quantitative
measurement about the extent of protein/solvent interaction
(Pirolli et al., 2014). The analysis was calculated for the atoms
of lining residues comprising the hACE2 binding site using
spherical probes estimating the area exposed to the solvent. The%
area of the binding site coverage was calculated as the percentage
difference between the solvent-exposed area in the presence and
absence of NAG. The solvent-sized probes (small radii, 1.4 Å)
were applied to detect the binding site regions being within direct
contact with the glycan. These small-sized probes are appropriate
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for checking the accessibility of small drug-like molecules.
However, larger probes (5–10 Å radius) are more correlated with
more accurate SASA calculations for macromolecules including
antibodies and protein-based molecules (Urbanowicz et al.,
2019). Three different probe sizes (1.4 Å, 7.2 Å, and 10 Å
radii) were utilized for investigating distinct types of binding site
coverage (Grant et al., 2020).

Findings of the adapted SASA calculations illustrated
insignificant binding site coverage by NAG (1.318 ± 5.79%)
using the small probes (1.4 Å) (Figure 8). On the other
hand, moderate% surface occlusion was depicted on larger
probes, 7.2 Å and 10.4 Å, where less than half of the binding
site was covered by NAG (5.502 ± 6.40% and 15.874 ±

6.86%, respectively) throughout the MD simulation run. With
several SASA trajectories having negative% area coverage values,
the simulated NAG molecule is considered to have a lower
number of interactions with the binding site residues as well
as non-complete coverage particularly with the 1.4 Å sized
probes. Based on the above SASA findings, the binding site
of interest has shown significant accessibility for small drug-
like molecules as compared to peptidomimetic and antibody-
related macromolecules during the simulation. Evaluation of the
binding interactions for alacepril within the significant accessible
hACE2-NAG binding site would identify the “hot spot” residues
showing long-term hydrophilic interaction-related stabilization
of the ligand within the binding site. Such information is highly
relevant for understanding the evolution of ligand stability inside
the protein pocket.

Binding Interaction Analysis
Investigating the hydrogen bond network interactions between
the hACE2 residues and alacepril, over the 100 ns MD
simulation, was considered crucial for understanding the
observed conformational changes and stability of ligand–
protein complexes. Using the VMD “Hydrogen bonds” tool, it
was useful to explore the established ligand-protein hydrogen
bond interactions and their relative frequencies (Humphrey
et al., 1996). The cut-off values for hydrogen bond (Donor-
H. . .Acceptor) distance and angle were assigned at 3.0 Å and 20◦,
respectively (de Souza et al., 2019; Albuquerque et al., 2020).

As expected, the hydrogen bond pairs between alacepril and
either Asn90 or Gln96 were of the highest frequency, 55 and 37%,
respectively, mediating the ligand–protein stabilization within
the MD simulation interval 30–70 ns (Figure 9A). Following the
70 nsMD simulation frame, the latter polar interactions were lost
as alacepril adopted the new shifted orientation/conformation at
the transient opened cleft near the SARS-CoV-2 spike-protein
recognition domain-III. On the other hand, the initial hydrogen
bond pair Thr92:HG1-Alacepril: O4 was lost following the 10 ns
of the MD simulation starts showing a minimal frequency of 4%
(Figure 9B). This confers a limited contribution of Thr92 for the
stabilization of the alacepril-hACE2 complex.

Surprisingly, the initial hydrogen bond interaction between
alacepril and Asp30 was conserved up to 40 ns of the MS
simulation. Despite limited fluctuations up to 8 Å hydrogen
bond distances, the Asp30:OD1-Alacepril:H5 hydrogen bond
pair was quite relevant particularly between the 57 ns and 65
ns MD simulation frames. Typically, Asp30 is reported as a key

polar residue for anchoring the SARS-CoV-2 spike glycoprotein
on the receptor-binding domain of hACE2 through hydrogen
bond interaction with Lys417 of the spike protein (Shang et al.,
2020; Wang et al., 2020). Therefore, the depicted occurrence of
hydrogen bonding between alacepril and Asp30 for more than 40
ns arose the promising role of alacepril to counter SARS-CoV-
2/host entrance. It is suggested that polar anchoring of alacepril
with any of the polar residues, involved at the S-protein-ACE2
connective interface, would probably impact both subdomains
binding affinity (Hoffmann et al., 2020). Both suggested scenarios
would halt the crucial stage of COVID-19 infection which is
the virus-host membrane fusion and subsequent release of viral
payload RNA into the host cytoplasm.

Binding-Free Energy Calculations
By illustrating the accessibility of the glycosylated site, we
carried out an investigation of the differential binding affinity
for the small molecules of interest and the N-glycan chain.
Illustrating the potentiality of alacepril to compete with N-
glycan for engaging the cavity near the glycan site would be
beneficial to suggest an ability for disrupting the glycosylation
process of the hACE2, leading to the modulation of hACE2-
RBD interactions. Based on this, the following binding-free
energy calculation was adopted to understand the nature of the
alacepril-protein binding, explore the comparative alacepril/N-
glycan-binding site affinity, and obtain more information
concerning alacepril/residue contribution (Cavasotto, 2020). The
MD-based Molecular Mechanics/Poisson Boltzmann Surface
Area (MM/PBSA) approach was adopted for the designated
binding-free energy calculations, using the “g_mmpbsa” tool on
GROMACS. The approach accounts for more accurate ligand-
protein affinity as compared to the most sophisticated flexible
molecular docking technique (Kumari et al., 2014). Generally,
MM/PBSA estimates binding-free energy as a contribution of
several energy terms through these given Equations (Kumari
et al., 2014):

1Gbinding = Gcomplex − (Gligand + Gprotein)

Gx = (EMM)− TS+ Gsolvation

EMM = Ebonded + (EvdW + Eelectrostatic)

Gsolvation = Gpolar + γ SASA+ b

where 1Gbinding is the binding-free energy correlating to
ligand–protein binding where the higher negative energy values
infer greater protein–ligand affinity. The energy terms Gcomplex,
Gprotein, and Gligand are the total free energies of ligand–protein
complex, isolated protein, and isolated ligand in the solvent,
respectively. Vacuum MM potential energy (EMM) together with
the entropic contribution to free energy (TS) and free energy of
solvation (Gsolvation) provided the total free energy of protein,
ligand, or ligand–protein complex (EX). Terms T and S denote
temperature and entropy, respectively, while EMM was calculated
based on molecular mechanics force-field parameters. Using the
solvent-accessible surface area (SASA)-Non-polar Model, the
Gsolvation energy term comprises polar and non-polar parts, where
the latter was estimated via SASA and fitting constant (b). Finally,
Gpolar is to be solved from the Poisson-Boltzmann equation.
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FIGURE 8 | Extent of hACE2 binding site coverage via SASA analysis along with the time evolution 100 ns all-atom MD simulation. Surface occlusion is defined as the

surface percentage being covered via NAG being calculated relying on the SASA differences for the binding site surface in the presence and absence of NAG glycans.

Three different probe sizes (1.4, 7.2, and 10 Å) were utilized for calculating the SASA values. Data are represented as % surface occlusion vs. the MD simulation time

in nanoseconds.

FIGURE 9 | Time-evolution of hydrogen bond distances for alacepril with hACE2 key binding residues vs. 100-ns MD simulation time. (A) Asn90 and Gln96; (B) Asp30
and Thr92. The Y- and X-axes correlate to the apparent hydrogen bond (Donor-H…. Acceptor) distance in Å and MD simulation time in nanoseconds, respectively.
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FIGURE 10 | Binding-free energy/residue decomposition illustrating the protein residue contribution at alacepril-hACE2 protein complex 1Gbinding calculation. The

residue-wise energy contributions across (A) 30–70 ns and (B) 80–100 ns MD simulation timeframes were represented in blue, brown, and green colored bars for

alacepril, lisinopril, and NAG, respectively. Lower panels are expanded versions of three designated residue regions (19–115, 300–400, and 500–614) of the upper

panels.
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Typically, the binding-free energy should be estimated from
the MD simulation trajectories depicting stabilized protein–
ligand systems. Thus, the free energy calculation was adopted
across the 30–70 ns and last 20 ns intervals where representative
frames were extracted and saved to be enrolled within the
calculation of each energy term. Adopting these specific time
frames was rationalized by the above complex backbone RMSD
analysis where equilibrated plateau tones were illustrated within
the 30-to-70 ns and last 20 ns timeframe interval (Figure 4).

Interestingly, the 1Gbinding of the alacepril-hACE2 complex
was estimated at higher negative values around the 30–70 ns MD
simulation interval as compared to that at 80–100 ns (−51.812
± 17.494 kJ/mol vs. −37.898 ± 10.993 kJ/mol, respectively)
(Table 4). A similar pattern was shown with lisinopril where
its respective free-binding energy was lower across the last 20
ns MD simulation timeframes as compared to 30–70 ns ones.
This less favored lisinopril–protein-binding energy came in good
agreement with highly fluctuated RMSD and Rg tones near the
end of the MD simulation. On the other hand, the 1Gbinding of
the NAG-hACE2 complex was of comparable values (−45.384±
47.279 and −48.729 ± 34.272 kJ/mol) across the two designated
MD simulation time frames. The latter was expected since NAG
depicted the steadiest complex RMSD trajectories along the
whole MD simulation run.

Dissecting the furnished alacepril-hACE2 1Gbinding
around both MD simulation intervals showed a preferential
contribution of the hydrophobic van der Waal interactions as
compared to that of the electrostatic energy term. However,
the significant occupancy of the depicted hydrogen-bond
interaction analysis around 30–70 ns MD simulation interval
can suggest a somewhat balanced contribution between both
energy terms. Moreover, the low electrostatic (1Gelectrostatic)
contribution for 80–100 ns binding energy came in great
agreement with the above bonding analysis findings where
hydrogen bonding between alacepril and hACE2 residues
were limited as well as of minimal frequencies/occupancies.
It worth mentioning that moderate 1Gsolvation energy term
for alacepril at 30–70 ns interval (85.130 ± 25.313 kJ/mol)
is considered favored for ligand–protein binding. as being
balanced for the advent of the high electrostatic and Van
der Waal energy contribution (−126.034 kJ/mol) afforded
by alacepril scaffold. The latter compensated 1Gsolvation
energy contribution further ensures the favored stability
of the alacepril-hACE2 complex since ligand binding is a
solvent-substitution process.

For lisinopril, almost equal van de Waal/electrostatic energy
contributions were assigned for the first MD simulation interval,
whereas the electrostatic energy term depicted dominant free-
binding energy contribution, nearly 3-fold higher than that
of 1GVan der Waal, within the last 20 ns. This came in great
agreement with the above conformational analysis since the
ligand showed an escape from the pocket side while becoming
more solvent-exposed near the end of the MS simulation run.
It worth mentioning that much higher 1GSolvation values were
depicted for the lisinopril-hACE2 complex imposing a great
penalty for the total free-binding energy calculation and ligand-
protein binding. This could partially explain why lisinopril would
exhibit dramatic conformational/orientation shift beyond 20 ns

as well as moving toward the solvent side while escaping the
protein interface at the end of the MD simulation run.

Considering the NAG, the van der Waal energy term
contribution was insignificant within the ligand–protein
free-binding energy calculation depicting very low negative
values across both designated MD simulation intervals. On
the contrarily, the electrostatic energy term was of higher
contributions across both MD intervals. This differential
1GVan der Waal/1GElectrostatic pattern could be reasoned for the
chemical nature of NAG scaffold being rich in polar oxygen-
based functionalities, which serve as excellent hydrogen bond
donor/acceptor. The latter is expected to impose a higher
energy penalty upon close contact with the hydrophobic
residues lining the hACE2-pocket (Leu91, Val93, Ala387,
and Leu560). Additionally, the polar sugar scaffold of
NAG imposed high unfavored 1Gsolvation, which negatively
impacted the ligand–protein binding since such a process is a
solvent-substitution approach.

For identifying the critical residues involved within the
binding of ligands with hACE2 protein, the residue-wise energy
contribution to the obtained 1Gbinding was also estimated using
g_mmpbsa (Figure 10) (Kumari et al., 2014). As a general
observation, both alacepril and NAG depicted high residue-wise
energy contribution near the C-terminal, particularly across the
30–70 ns MD simulation interval (Figure 10A). The latter is in
great agreement with the previously discussed 1RMSF analysis
where the C-terminal free residues and their vicinal amino acids
showed significant immobility with high positive values (1RMSF
> 0.30 Å). This further confirms the significant stabilized
binding of alacepril within the hACE2-NAG pocket within
this simulation interval. Comprehensive analysis of residue-
wise energy contribution for alacepril across 30–70 ns showed
significant contributions by Asn90 and Thr93, conferring their
key role for stabilizing the alacepril-protein complex. Moreover,
several key residues, which have participated in relevant within
the initial docking analysis, showed significant contributions
to the calculated 1Gbinding. The high energy contribution by
Asp30 came in great agreement with the previous hydrogen
bonding analysis as the Asp30:OD1-Alacepril:H5 hydrogen bond
pair was conserved for significant MD simulation frames. This
high energy contribution further ensures the promising antiviral
activity of alacepril in countering the SARS-CoV-2/host entrance
through hampering the polar interaction role of Asp30 within
hACE2 spike-protein annealing and anchoring (Hoffmann et al.,
2020). Other initial hACE2 binding site residue and vicinal
amino acids depicted significant contribution within alacepril-
complex free-binding, including Leu29, Lue91, Val93, Pro389,
and Glu312. These dominant non-polar energy contributions
further confirm the superiority of 1GVan der Waal energy as
compared 1GVelectrostatic energy term.

Moving toward the MD simulation 80–100 ns, residues of
the transient opened cleft which is at proximity to the SARS-
CoV-2 spike-protein recognition domain-III have depicted
significant free-binding energy contributions (Figure 10B). The
latter involves Glu37, Pro321, Asn322, Thr324, Asp355, Phe356,
Gln380, Met383, Ala386, Ala387, and Phe555 residues. Notably,
the highest energy contributions (−4.259 and −4.373 kJ/mol)
were assigned for the aromatic hydrophobic residues (Pro321 and
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TABLE 4 | Binding-free energies calculations (± standard deviation; SD) for the investigated ligand-hACE2 protein complexes.

Energy terms (kJ/mol ± SD) 30–70 ns 80–100 ns

Alacepril Lisinopril NAG Alacepril Lisinopril NAG

1GVan der Waal −101.954 ± 19.491 −121.265 ± 7.925 −3.784 ± 44.849 −76.329 ± 16.017 −30.148 ± 30.735 −7.143 ± 52.568

1GElectrostatic −24.080 ± 21.066 −134.936 ± 45.623 −142.512 ± 26.408 −9.010 ± 12.093 −99.892 ± 188.971 −137.297 ± 28.240

1GSolvation (Polar) 85.130 ± 25.313 231.848 ± 0.866 109.767 ± 18.873 59.004 ± 21.113 111.265 ± 11.102 104.107 ± 43.007

1GSolvation (SASA) −10.908 ± 1.736 −14.900 ± 0.929 −8.855 ± 2.190 −11.563 ± 2.503 −4.288 ± 4.118 −8.396 ± 2.045

1GBinding −51.812 ± 17.494 −39.255 ± 49.430 −45.384 ± 47.279 −37.898 ± 10.993 −23.063 ± 21.715 −48.729 ± 34.272

Phe555, respectively), while moderate contributions (−1.074 to
−1.798 kJ/mol) were assigned to Phe356, Met383, Ala386, and
Ala387 residues. The latter confers dominance of hydrophobic
interactions (1GVan der Waal) for stabilizing alacepril at hACE2
transient opened pit.

Moving toward the glycosylated hACE2, a similar pattern of
residue-wise energy contributions was depicted across the 30–
70 ns and 80–100 ns intervals. Both pocket and vicinal residues
showed significant contribution within the NAG 1Gbinding

calculation. Across the 30–70 ns time frame, the highest energy
contributions were assigned to Lys26 and Asn90 (6.184 and
−6.867 kJ/mol, respectively), conferring their key role in NAG
stabilization within the protein pocket. Other pocket/vicinal
residues such as Glu22, Glu23, Asp30, Glu35, Glu37, Asp38,
Glu87, Gln96, Asp213, Asp216, Arg393, Glu564, and Glu571,
showed moderate energy contributions (−1.081 to −2.545
kJ/mol). Owing to the hydrophilic nature of these residues,
an explanation of the dominant 1Gelectrostatic energy term
contribution within the NAG free-binding energy calculation
is to be rationalized. Regarding the last 20 ns interval, a
general trend of increased residue-wise energy contributions was
depicted for several residues, particularly those at proximity to C-
terminal (Ser19, Glu22, Glu23, Lys26, Asp30, Glu35, Glu37, and
Asp38). Nearly a 2-fold increase in the Lys26 energy contribution
was depicted at 80–100 ns as compared to the 30–70 ns interval.

Other N-terminal pocket residues (Arg559, Lys562, Glu564,
Glu571, and Lys577) showed a similar trend of increased residue-
wise energy contributions. Contrarily, other pocket residues
including Asp90, Val93, Gln96, and Arg393 showed lower energy
contributions at the last 20 ns time with the highest descent for
Asp90 being from −6.867 to −2.573 kJ/mol. Such differential
pattern of residue-wise energy contribution shift came in
great agreement with the previously described conformational
analysis where a significant change in NAG respective position
was depicted at the 100 ns frame. This further confirms the
assumption that NAG is not fully occluding the binding site of
interest the thing that could make it at least partially accessible
across the designatedMD simulation. Therefore, small druggable
molecules, like alacepril, could manage to accommodate the
hACE2-NAG binding site of the glycosylated protein effectively.

Considering the last investigated complex, the lisinopril
residue-wise energy contribution showed minimal values for the
C-terminal free residues and their vicinal amino acids. This came
in adherence with the above 1RMSF analysis confirming the
escape of lisinopril from the initial hACE2-NAG binding site.

Significant energy contribution was depicted for Asp299, Asp303,
Arg306, Ile307, Phe308, Lys309, Glu310, Glu312, Lys313, Phe314,
Phe315, Trp328, Glu329, Met332, Leu333, Asp335, and Pro336.
In worth noting that these latter residues comprise the distant
pocket, or its vicinal residues, being accommodated by lisinopril
throughout the previously described conformational analysis
along with the 30–70 ns interval. Interestingly, the balanced
hydrophilic/hydrophobic nature of these residues could explain
the comparable contributions of1Gelectrostatic and1GVan der Waal
energy terms within the lisinopril-protein binding throughout
30–70 ns. As expected, a significant decrease within the latter
residue-wise energy contribution profile was observed across the
80–100 ns trajectories, since lisinopril showed instability and
dramatic shift toward the solvent side.

CONCLUSION

A total of 14 ACEIs were subjected to virtual screening molecular
docking against the spike protein of COVID-19. The tested
drugs exhibited variable degrees of affinities toward the COVID-
19 spike protein comparing to the native inhibitor. Alacepril
and lisinopril were found to interact with COVID-19 spike
protein by exhibiting the most acceptable rmsd_refine values
and the best binding affinity through forming a strong hydrogen
bond with Asn90, which is assumed to be essential for the
activity, as well as significant extra interactions with other
receptor-binding residues. Throughout the all-atom 100 ns MD
simulation, alacepril depicted superior stability at the hACE2
binding site for more than 70 ns, where the solvation energy
was greatly compensated by the electrostatic and Van der Waal
binding energies. SASA calculations for hACE2 pocket in the
presence and absence of glycan showed significant accessibility of
the pocket for small drug-like molecules like alacepril. Moreover,
alacepril mediated a stabilized favored hydrogen bond interaction
with Asn30 which was conserved for significant MD simulation
intervals. Depicting this favored hydrogen bond pair as well
as the reported key role in hACE2/SARS-CoV-2 spike-protein
association introduces the promising action of alacepril to
counter COVID-19/host entrance and subsequent release of viral
payload RNA into the host cytoplasm through hampering hACE2
spike-protein annealing and anchoring. Based on the furnished
evidence, these drugs are recommended to be tested clinically
for proposed activity against COVID-19. They may be tested
either alone or in combinations. Also, our results may give a clear
spot about SAR required for the spike-protein targeting drug
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to facilitate the future design and synthesis of new candidates
against COVID-19.
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Using Network Pharmacology and
Molecular Docking to Explore the
Mechanism of Shan Ci Gu (Cremastra
appendiculata) Against Non-Small Cell
Lung Cancer
Yan Wang1, Yunwu Zhang2*, Yujia Wang1, Xinyao Shu1, Chaorui Lu1, Shiliang Shao1,
Xingting Liu3, Cheng Yang4, Jingsong Luo3 and Quanyu Du1*

1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2Department of Biochemistry and Molecular
Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China, 3Chengdu
University of Traditional Chinese Medicine, Chengdu, China, 4Faculty of Geosciences and Environmental Engineering, Southwest
Jiaotong University, Chengdu, China

Background: In recent years, the incidence and mortality rates of non-small cell lung
cancer (NSCLC) have increased significantly. Shan Ci Gu is commonly used as an
anticancer drug in traditional Chinese medicine; however, its specific mechanism
against NSCLC has not yet been elucidated. Here, the mechanism was clarified
through network pharmacology and molecular docking.

Methods: The Traditional Chinese Medicine Systems Pharmacology database was
searched for the active ingredients of Shan Ci Gu, and the relevant targets in the
Swiss Target Prediction database were obtained according to the structure of the
active ingredients. GeneCards were searched for NSCLC-related disease targets. We
obtained the cross-target using VENNY to obtain the core targets. The core targets were
imported into the Search Tool for the Retrieval of Interacting Genes/Proteins database, and
Cytoscape software was used to operate a mesh chart. R software was used to analyze
the Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment. The core targets and active compounds were
molecularly docked through Auto-Dock Vina software to predict the detailed molecular
mechanism of Shan Ci Gu for NSCLC treatment. We did a simple survival analysis with hub
gene to assess the prognosis of NSCLC patients.

Results: Three compounds were screened to obtain 143 target genes and 1,226 targets
related to NSCLC, of which 56 genes were related to NSCLC treatment. Shan Ci Gu
treatment for NSCLC involved many BPs and acted on main targets including epidermal
growth factor receptor (EGFR), ESR1, and SRC through signaling pathways including the
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endocrine resistance, EGFR tyrosine kinase inhibitor resistance, and ErbB signaling
pathways. Shan Ci Gu might be beneficial for treating NSCLC by inhibiting cell
proliferation and migration. Molecular docking revealed that the active compounds
β-sitosterol, stigmasterol, and 2-methoxy-9,10-dihydrophenanthrene-4,5-diol had good
affinity with the core target genes (EGFR, SRC, and ESR1). Core targets included EGFR,
SRC, ESR1, ERBB2,MTOR,MCL1,matrix metalloproteinase 2 (MMP2), MMP9, KDR, and
JAK2. Key KEGG pathways included endocrine resistance, EGFR tyrosine kinase inhibitor
resistance, ErbB signaling, PI3K-Akt signaling, and Rap1 signaling pathways. These core
targets and pathways have an inhibitory effect on the proliferation of NSCLC cells.

Conclusion: Shan Ci Gu can treat NSCLC through a multi-target, multi-pathway
molecular mechanism and effectively improve NSCLC prognosis. This study could
serve as a reference for further mechanistic research on wider application of Shan Ci
Gu for NSCLC treatment.

Keywords: Shan Ci Gu, non-small cell lung cancer, network pharmacology, molecular docking, molecular
mechanism

INTRODUCTION

Lung cancer is a malignant tumor with the highest incidence and
mortality rates in China (Zhu et al., 2020), with cough,
hemoptysis, chest pain, fever, and shortness of breath being
the main clinical manifestations. Over the past 50 years, the
incidence and mortality rates of lung cancer have increased
significantly in many countries, and it now ranks first among
the causes of death from malignant tumors in China’s urban
citizens. Non-small cell lung cancer (NSCLC) accounts for more
than 80% of lung cancers, and the vast majority of patients are
diagnosed at advanced inoperable stages. NSCLC remains the
single most common malignancy of lung cancer, which has
caused an increasing number of deaths in recent years (Ye
et al., 2021). The main treatment methods for lung cancer
include surgery, radiotherapy, chemotherapy, targeted therapy,
and immunotherapy, among which concurrent radiotherapy and
chemotherapy are the standard modes of treatment for NSCLC,
but its five-year survival rate is only approximately 5%, and the
side effects of radiotherapy and chemotherapy seriously reduce
the quality of life (Cheng and Chen, 2020). In the last decade,
NSCLC treatment has achieved certain efficacy through the use of
targeted therapy, but all of the commonly used drugs have a single
pathway and are subject to increasing drug resistance. Thus, the
use of Chinese medicine in combination with the commonly used
drugs and treatments can enhance the effectiveness of
conventional treatment, reduce drug resistance, reduce adverse
effects and toxicity, alleviate patient suffering, and improve the
quality of life (Su et al., 2020).

Shan Ci Gu is the dried pseudostem of plants of the
Orchidaceae family, and is sweet, slightly pungent, and cool in
nature. In traditional Chinese Medicine theory, Shan Ci Gu
belongs to the liver and spleen meridians. It is used to treat
carbuncles and furuncles and to heal sores and phlegm ulcers,
snake and insect bites, and traumatic wounds Guo and Wang,
2012. It has antibacterial, antihypertensive, gout, antitumor, and

acetylcholine receptor M3-blocking effects, providing it high
medicinal value (Zhang et al., 2019). Shan Ci Gu is commonly
used as a clinical anti-tumor herbal medicine to treat a variety of
cancers. The extracts of this herb can be used to treat Lewis lung
cancer, liver cancer, and breast cancer (as well as human breast
cancer MDA-MB-231 cells) (Si et al., 2020).

Shan Ci Gu also has a level of clinical efficacy against NSCLC
and is effective in improving the quality of life of patients with
advanced NSCLC, reducing the side effects of radiotherapy and
chemotherapy, as well as enhancing the sensitivity to
radiotherapy and chemotherapy (Shan et al., 2015). Its extracts
can inhibit the growth of tumor cells directly or indirectly
through cytotoxic effects and improve the body’s immunity (Li
et al., 2018). Network pharmacology is a new discipline based on
the theory of systems biology, the network analysis of biological
systems, and the selection of specific signal nodes (Nodes) for the
design of multi-target drug molecules, which can predict the
molecular mechanism of drug action in disease. Molecular
docking is mainly used to study intermolecular interactions
and predict the binding mode and relationship. Molecular
docking is also used for drug and protein function prediction.
By using network pharmacology and molecular docking, we
aimed to explore the mechanism of action of Shan Ci Gu for
the treatment of NSCLC to improve the condition of patients with
NSCLC and reduce mortality rates. Figure 1 shows our
technology roadmap.

METHODS

Search and Collection of Active Ingredients
of Shan Ci Gu
“Shan Ci Gu” was searched for in the Traditional Chinese
Medicine Systems Pharmacology (TCMSP) database (http://
tcmspw.com/tcmsp.php) to find multiple active compounds.
Oral bioavailability (OB) represents the rate and degree of
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absorption of traditional Chinese medicine in the human
circulatory system, while drug-likeness (DL) is the similarity of
compounds to known drugs. OB ≥ 30% and DL ≥ 0.18 were used
to screen the active ingredients of Shan Ci Gu. The names of the
compounds collected from the TCMSP database were entered
into the PubChem database (https://pubchem.ncbi.nlm.nih.gov/)
and the SMILE and 3D “Standard Delay Format” (SDF)
structures of the corresponding compounds were downloaded
for the prediction of target genes and molecular docking.

Acquisition and collection of targets for the active ingredients
of Shan Ci Gu for the treatment of NSCLC.

The SMILE structure of the active compound was uploaded
into the Swiss Target Prediction database (http://www.
swisstargetprediction.ch/), the predicted target gene data were
downloaded in CSV format, and all active compounds were
filtered and integrated using Microsoft Excel software.
Predicted targets of the components were imported into
UniProt for normalization and then restricted to human
species, and all retrieved target proteins were corrected to their
official names. The anti-cancer targets of the main components of
Shan Ci Gu were imported into Cytoscape (3.7.2) to generate a
“component-target” network. The nodes in the network diagram
are the chemical components and targets. The correlation
between components and targets is represented by edges.

Through the GeneCards database (https://www.gene cards.
org/), targets related to NSCLC were searched by entering the
keyword “Non-Small Cell Lung Cancer.” Then, we combined the
components and targets of Shan Ci Gu with those of the drug.
Predicted target mapping of the relevant targets with NSCLC
targets was used to obtain the target of action of Shan Ci Gu for
NSCLC. VENNY (https://bioinfogp.cnb.csic.es/tools/venny_old/)
was used to draw a Venn diagram of matsutake and NSCLC
targets.

Protein-Protein Interaction Analysis and
Core Target Screening
The intersection of Shan Ci Gu and NSCLC targets was uploaded
to the online site of STRING version 10.5 (https://string-db.org/).
The protein type was set to “Homo sapiens,” a high confidence
level of 0.7 was selected, and the other parameters were set to
default values. The protein interaction relationships were
retrieved. Node1, Node2, and the combined score from the
export file were imported into Cytoscape, and the interaction
network was constructed. The node size reflected the degree value
and the thickness of the edge reflected the combined core in the
final PPI network diagram, and the core proteins with the top 10°

values were selected.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analyses
GO analysis of the relevant obtained intersection target proteins
was performed using R software to select the biological process
(BP), cellular component (CC), and molecular function (MF).
These data were plotted as bubble charts, and R software was used
to construct a bar graph of the KEGG biological pathway results,
collect the targets from the pathway, and upload the active
components, pathways, and targets to Cytoscape 3.7.2 software
to create a “component-target-pathway” map. A network
diagram was constructed to visualize, and thus, explore the
mechanisms of Shan Ci Gu related to the treatment of NSCLC
in detail. Cluster ONE was then used to sift the candidate genes
and retrieve them for further analysis. The KEGG function of the
genes was further understood by using the Cytoscape plugin Clue
GO, and the relevant KEGG pathways were selected for
enrichment analysis. The intersecting genes were imported

FIGURE 1 | Technological roadmap.
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into R software, and the script was run to obtain a predictive map
of the endocrine pathway mechanism.

Molecular Docking
Molecular docking is a method for drug design by exploring the
interaction and recognition between receptors and ligands. It is
a theoretical simulation method that focuses on the study of
intermolecular interactions and the prediction of their binding
patterns and affinities. In recent years, molecular docking
methods have become an important technique in the field of
computer-aided drug research (Chen et al., 2020). AutoDock
Vina is an open-source molecular docking program designed by
the Scripps Research Institute for the computation of semi-
flexible molecular docking. AutoDock Vina uses a complex
gradient algorithm and multi-threaded techniques to make
more accurate and faster predictions than AutoDock4. Semi-
flexible docking means that the conformation of the ligand
molecule can be changed according to the receptor molecule and
is flexible, while the receptor molecule does not change and is
rigid. The SDF structure of the active ingredient was imported
into Chem3D 18.0 for optimization. The main protein targets
selected were passed through the PDB database (https://www.
rcsb.org/). Therefore, we searched the PDB database for the 3D
structures of the ten potential targets of Shan Ci Gu in the
treatment of NSCLC and found 3D structures for ten of the
targets (EGFR, SRC, ESR1, ERBB2, MTOR, MCL1, MMP2,
MMP9, KDR, and JAK2.). Then, the best protein crystal
structure was selected [images with lower resolution (A) with
observable ligands and a relatively intact structure were more
desirable] and downloaded from the PDB database. The PDB

files of the active compound and ligand molecules were
imported into AutoDock Tools. We removed these target
proteins’ water molecules, added polar hydrogen, and built
active pockets active pockets, which were saved as PDBQT
format files for later use. By adjusting target protein X-Y-Z
coordinates and grid size, optimizing the position of protein
structure-binding sites for molecular docking. AutoDock Vina
was run to dock the treated active compound to the target
protein ten times, and the lowest binding energy for each
docking was taken as the final result. The complexes were
then observed and plotted using PyMOL.

Survival Analysis
We used OncoLnc (http://www.oncolnc.org/) to obtain OS
(Overall Survival) and DFS (Disease-free survival) significance
data for ten core genes (EGFR, SRC, ESR1 EGFR, SRC, ESR1,
ERBB2, MTOR, MCL1,MMP2, MMP9, KDR, and JAK2) in all
squamous lung cancers at TCGA. High (50%) and low (50%)
cutoff values were used as expression thresholds to split high and
low expression cohorts, and 488 samples were analyzed using log-
rank test and Kaplan-Meier to obtain survival maps. p < 0.05 was
considered a statistically significant difference.

RESULTS

Search and Collection of the Active
Ingredients of Shan Ci Gu
Based on the screening conditions of the compounds, three active
ingredients were collected from the TCMSP database, namely, 2-

TABLE 1 | Active ingredients of Shan Ci Gu.

MOL English name Pubchem CID OB DL

MOL000358 beta-sitosterol 222,284 36.91 0.75
MLL000449 Stigmasterol 5280794 43.83 0.76
MOL007991 2-methoxy-9,10-dihydrophenanthrene-4,5-diol 11506999 44.97 0.18

FIGURE 2 | Drug-active ingredient-target network diagram and Venn diagram. Drug-active ingredient-target network diagram (A). The red octagons represent the
drug, the blue ovals represent the active ingredients of the drug. The yellow ovals represent the hub genes, the orange ovals represent the relevant targets of stigmasterol
and β-sitosterol, and the green ovals represent the relevant targets of 2-methoxy-9,10-dihydrophenanthrene-4,5-diol. Lines represent the relationships between nodes;
the more connections the nodes have, the more important they are. Venn diagram (B). The blue part represents the number of drug targets, and the yellow part
represents the number of disease targets.
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methoxy-9,10-dihydrophenanthrene-4,5-diol, stigmasterol, and
β-sitosterol. The details are shown in Table 1.

Acquisition of Active Targets for the
Treatment of Non-Small Cell Lung Cancer
From Shan Ci Gu
The Swiss Target Prediction database of predicted targets was
compiled, resulting in 42 predicted targets for the active
ingredient β-sitosterol and 45 predicted targets for the active
ingredient stigmasterol, with an active ingredient of 2-methoxy-
9,10-dihydrophenanthrene-4,5-diol. The number of predicted
targets for dihydrophenanthrene-4,5-diol was 100, and the total
number of targets was 143 by combining the duplicates. The “drug-
active compound-target” network graph built in Cytoscape 3.7.2
reflects the correspondence of the compound targets, as shown in
Figure 2A. The GeneCards database was searched with the keyword
“Non-Small Cell Cancer,” and 1226 NSCLC targets were obtained
based on the relevance score. The 56 intersecting genes of Shan Ci
Gu and NSCLC were obtained, as shown in Figure 2B.

Protein-Protein Interaction Network
Analysis
The 56 intersection targets of the predicted Shan Ci Gu and
NSCLC were imported into the STRING database to select a H.

sapiens-generated PPI network map and obtain protein
interaction relationships (Figure 3A). The intersection targets
were imported into Cytoscape 3.7.2 to create a network diagram
of potential target interactions (Figures 3B,C). Nodes represent
proteins and edges represent relationships between proteins,
resulting in a total of 56 nodes and 409 edges. The colors
from yellow to red represent small to large degree values,
respectively, and according to the degree values, the key
nodes, which are epidermal growth factor receptor (EGFR),
ESR1, SRC, ERBB2, MTOR, MCL1, matrix metalloproteinase 2
(MMP2), MMP9, KDR, and JAK2, were selected for interactions
with NSCLC.

Gene Ontology Analysis and Kyoto
Encyclopedia of Genes and Genomes
Pathway Enrichment Analysis
To further explore possible mechanisms of the 56 candidate
targets for the treatment of NSCLC, R software was used for
GO enrichment analysis with the candidate target and KEGG
pathway analysis of these targets for the treatment of NSCLC with
Shan Ci Gu. The results showed that the number of BP terms was
1,385, CC was 35, and MF was 69. The top 15 BPs are shown in
bubble charts (Figures 4A–C). KEGG pathway enrichment
analysis was conducted using R software and involved 125
terms. The bar chart (Figure 4D) reflects the top 20 entries.

FIGURE 3 | Protein-protein interaction (PPI) analysis. (A) The PPI network was constructed using the plug-in targets from the Search Tool for the Retrieval of
Interacting Genes/Proteins database, which were imported into Cytoscape, and the targets were the candidates used for non-small cell lung cancer treatment. (B)
Proteins are represented by nodes (colors from red to yellow illustrate the extent to which the medical targets have combined with each other). Edges indicate protein-
protein associations. (C) The top 10 targets (hub targets) in the PPI network ranked by maximal clique centrality using the cytoHubba plug-in.
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FIGURE 4 |Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. (A–C) The names of the biological processes, cellular
component and molecular function terms distributed in the ordinate and the degree of enrichment in the abscissa. The size of the dots represents the number of genes;
the larger is the dot, the higher is the number of genes in the corresponding process. (D) The names of the pathways distributed in the ordinate and the number of genes
enriched in the pathway distributed in the abscissa. p values indicate the importance of enrichment; the lower is the p value, the redder is the color of the graph, and
the higher is the enrichment.

TABLE 2 | Kyoto Encyclopedia of Genes and Genomes pathway analysis for the treatment of non-small cell lung cancer, using R software.

Pathway ID Paythway pvalue Number
of target hits

hsa01522 Endocrine resistance 6.61E-14 13
hsa01521 EGFR tyrosine kinase inhibitor resistance 1.26E-13 12
hsa05205 Proteoglycans in cancer 2.76E-13 16
hsa05215 Prostate cancer 1.60E-12 12
hsa04926 Relaxin signaling pathway 2.48E-12 13
hsa05219 Bladder cancer 5.53E-12 9
hsa04012 ErbB signaling pathway 9.02E-12 11
hsa05224 Breast cancer 1.34E-11 13
hsa04917 Prolactin signaling pathway 3.15E-11 10
hsa05230 Central carbon metabolism in cancer 3.15E-11 10
hsa05223 Non-small cell lung cancer 4.22E-11 10
hsa05161 Hepatitis B 4.63E-11 13
hsa04151 PI3K-Akt signaling pathway 1.09E-09 16
hsa05212 Pancreatic cancer 1.87E-09 9
hsa05226 Gastric cancer 4.19E-09 11
hsa05213 Endometrial cancer 4.62E-09 8
hsa05210 Colorectal cancer 5.72E-09 9
hsa05225 Hepatocellular carcinoma 1.49E-08 11
hsa04914 Progesterone-mediated oocyte maturation 2.20E-08 9
hsa04915 Estrogen signaling pathway 2.75E-08 10
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Detailed data are shown in Table 2. The active ingredients,
candidate targets, and 20 pathways were imported into
Cytoscape to create a “component-target-pathway” network
diagram and visualize it (Figure 5). The predictive map of the
mechanism of the endocrine pathway is shown in Figure 6.
Relevant targets in the signaling pathway of Shan Ci Gu and
endocrine resistance is shown in Figure 7.

Molecular Docking
Table 3 shows the results acquired from the molecular docking
software (AutoDock Vina). Processed by PyMOL software, the
docked complex and ‘Best-Docked Complex’ show images of the
best docking of the receptor and ligand. According to Table 3, we
can conclude that the binding energies of the three active
ingredients to the top three ranked target gene (EGFR, SRC,
and ESR1) transcriptional proteins were all less than—5 kcal/mol,

and most of the binding energies of the remaining core target
proteins were also less than 0, indicating a high affinity between
the compounds and the core target genes. The binding energies of
MMP2 and MMP9 to the three components were all greater than
0, indicating that the two target proteins had low binding ability
to the active components of Shanzi mushroom and cannot be
used as active sites.

Survival Analysis
We divided the lung squamous carcinoma cases into high and low
expression groups based on the expression levels of ten core genes
and investigated the correlation between the expression of each of
the ten core genes and the prognosis of lung squamous carcinoma
patients mainly using TCGA. As shown in Figure 8, highly
expressed genes were associated with poor prognosis. Among
the ten hub genes analyzed for survival, ESR1 (p � 0.00454) and

FIGURE 5 | Component-target-signal pathway. The orange boxes indicate the active ingredients. The blue boxes indicate the gene names. The green boxes
indicate the signal pathways.
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MMP2 (p � 0.0388) were associated with overall survival in
patients with lung squamous carcinoma (Figures 8C,G), and
overall survival analysis of other hub genes with high and low
expression did not show statistical significance (p < 0.05).

DISCUSSION

As of 2021, lung cancer will continue to be the leading cause of
cancer death for both men and women, accounting for 22% of all
cancer deaths. To further improve the survival rate of patients
with lung cancer, this study identified the active ingredients and
the possible detailed molecular mechanism of Shan Ci Gu in the
treatment of NSCLC. This study supports the wider application
and further mechanistic surveys of Shan Ci Gu for the treatment
of NSCLC.

First, we aimed to derive the feasible active ingredients and
targets according to the OB and DL values of the components of
TCMSP. Consequently, three active components of Shan Ci Gu
were obtained, and only 143 candidate targets of these active
components were retrieved through Swiss Target Prediction.
We constructed an herb-ingredient-target network, which
reflected the relationship between numerous components and

targets of the drug. In this study, three active components of
Shan Ci Gu for the treatment of NSCLC were identified:
β-sitosterol, stigmasterol, and 2-methoxy-9,10-dihydrophen-
anthrene-4,5-diol. Previous studies have mainly focused on anti-
breast cancer, -colon cancer, and -prostate cancer effects of Shan Ci
Gu. β-sitosterol, as a potential natural drug, can effectively prevent
the occurrence and growth of many types of tumors. Zhou et al.
(Zhou et al., 2016), in 2016, showed that β-sitosterol promotes the
apoptosis of A549 cells in a dose-dependent manner in the range of
0–40 μM.The higher is the concentration of β-sitosterol, the higher
is the apoptosis rate of the A549 cells. 2-Methoxy-9,10-
dihydrophenanthrene-4,5-diol is a type of phenanthrene
component, which has anti-tumor, anti-bacterial, anti-
spasmodic, anti-inflammatory, anti-allergic, and anti-platelet
aggregation biological activities. Xue et al. (Xue et al., 2006), in
2006, carried out cytotoxicity experiments that showed that
blestriarene C and other phenanthrene components have strong
inhibitory effects on the proliferation of HepG2 cells of liver
cancer, and blestriarene A has certain inhibitory effects on the
proliferation of A549 cells of lung cancer in vitro. Therefore,
β-sitosterol, stigmasterol, and 2-methoxy-9,10-dihydrophen-
anthrene-4,5-diol are good anti-tumor agents, and related
studies show that they are of importance in the proliferation

FIGURE 6 | KEGG analysis using the ClueGO plug-in. Kyoto Encyclopedia of Genes and Genomes pathway analyses of the potential targets of Shan Ci Gu against
non-small cell lung cancer by the ClueGO plug-in. Each node is a representative enrichment pathway. The nodes indicate the number of genes shared between
pathways. The color represents the enrichment classification of the node.
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and apoptosis of liver, colon, and breast cancer cells, while studies
regarding NSCLC are scarce, and the mechanism of action of Shan
Ci Gu remains unclear.

We retrieved 1,226 candidate NSCLC targets from the
GeneCards database and 143 candidate targets of Shan Ci Gu
through Swiss Target Prediction. We found 56 targets in common
between the disease and Shan Ci Gu, which were considered
potential targets for treating NSCLC. The degree of association
between these genes is shown in Figures 3A,B. The top 10 core
genes are shown in Figure 3C, including EGFR, ESR1, SRC, ERB2,
MTOR, MCL1, MMP2, MMP9, KDR, and JAK2. These genes play
a significant role in the proliferation, migration, and apoptosis of
NSCLC cells. As EGFR and ERBB2 are human EGFRs, they have
important impacts on the physiological processes of cell growth,
proliferation, and differentiation in humans. Increased expression
of EGFR is commonly observed in malignancies such as lung,
breast, and pancreatic cancers, making this receptor a major target
for the development of anti-tumor therapies (de Lavera et al.,
2021). ESR1 and SRC are involved in endocrine regulation, and
MMP2 and MMP9 regulate complex kinases, thus participating in
cell proliferation and migration.

The target genes of Shan Ci Gu for the treatment of NSCLC
were used to obtain an enrichment map of the GO and KEGG

pathway analyses using R software (Figure 4). Figure 4 shows
that the BP is mainly associated with the regulation of protein
kinases such as MAP kinase and serine threonine kinase, and CC
is mainly associated with various cell bodies such as the receptor
complex, cell body, neuronal cell body, dendrite, and dendritic
tree. The perinuclear region of cytoplasmMF is mainly associated
with protein kinase activity. The main signaling pathways are the
endocrine, EGFR-TKI resistance, ErbB, PI3K-Akt, and Rap1
signaling pathways. The diseases involved are prostate cancer
and hepatitis B.

EGFR plays an important role in lung carcinogenesis, while its
expression level is independent of EGFR positivity rate, lung cancer
stage, lung cancer differentiation, the presence of lymph node
metastasis, and so on. It should be used as an index of prognosis
together with other cytokines. In human lung adenocarcinoma
A549 cells, MMP secretes epidermal growth factor, activates the
EGFR-ERK signaling pathway, and promotes the expression of
claudin-2, thus promoting tumor colonization (ciardiello and
Tortora, 2008). Among the EGFR-TKI resistance signaling
pathways, KRAS is an important signaling pathway downstream
of EGFR, and the mutated KRAS gene directly activates theMAPK
signaling pathway without relying on the activation of upstream
EGFR, leading to tumor proliferation and metastasis (Wang et al.,

FIGURE 7 | Relevant targets in the signaling pathway of Shan Ci Gu and endocrine resistance. Green and red rectangles indicate unidentified and identified
proteins, respectively.
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TABLE 3 | Molecular docking results.

Target Target structure Compound Compound 2D
structure

Affinity (kcal/
mol)

Best-docked complex

EGFR Beta-sitosterol −9.0

Stigmasterol −9.1

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −8.0

SRC Beta-sitosterol −10.1

Stigmasterol −10.1

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −8.4

ESR1 Beta-sitosterol −7.3

Stigmasterol −6.8

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −8.4

MTOR Beta-sitosterol −5.0

Stigmasterol −5.0

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −5.0

ERBB2 Beta-sitosterol −4.7

Stigmasterol −5.1

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −5.0

(Continued on following page)
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2020). Inhibition of EGFR expression can be used to treat NSCLC
by modulating the immune microenvironment. This is because
EGFR can upregulate immune checkpoints such as PD-L1 and

IDO1, making NSCLC more resistant to drugs. In addition, ESR1
encodes an estrogen receptor involved in hormone binding, DNA
binding, and transcription activation and participates in breast

TABLE 3 | (Continued) Molecular docking results.

Target Target structure Compound Compound 2D
structure

Affinity (kcal/
mol)

Best-docked complex

MCL1 Beta-sitosterol −6.9

Stigmasterol −6.8

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −6.7

MMP2 Beta-sitosterol 4.5 NA

Stigmasterol 4.4

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol 4.5

MMP9 Beta-sitosterol 7.1 NA

Stigmasterol 2.8

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol 1.8

KDR Beta-sitosterol −2.8

Stigmasterol −2.7

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −3.3

JAK2 Beta-sitosterol −1.8

Stigmasterol −1.9

2-Methoxy-9,10-dihydrophenanthrene-4,5-diol −1.7

Note: The results of the docking data of MAPP2 and MAPP9 show that these two proteins cannot be binding sites; thus, NA means there is no optimal binding image.
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cancer, endometrial cancer, osteoporosis, and other pathological
processes. ESR1 mRNA overexpression is associated with the
prognosis of NSCLC (Teng et al., 2018). The existence of a
ligand-independent ESR signaling pathway has been
demonstrated, wherein ESR and its functional pathways are
subject to multiple regulations such as those of the growth and
differentiation of target cells, either through their own
phosphorylation or through binding or interaction with
different growth factors, co-regulators, oncogenes, or oncogenic
proteins (Zhang et al., 2014). A study by Atmaca, in 2020, showed
that assessment of ESR1 mRNA by qPCR is a feasible method to

examine ESR1 expression in NSCLC, and ESR1 expression
determines the prognosis of metastatic NSCLC. ESR1 is a
predictive biomarker that is of therapeutic importance in breast
cancer, and this study indicates that it can play a similar role in
lung cancer (Atmaca et al., 2014). The Src tyrosine kinase inhibitor
can be selectively used for the molecular targeting of NSCLC with
high activation of Src proteins (Zheng et al., 2011). A study by Yao,
in 2020, further demonstrated that hesperidin effectively inhibits
the proliferation ofNSCLC cells (A549 andH460) by inhibiting the
SRC3-mediated ubiquitination of IGF-1R-PI3K-AKT signaling to
induce apoptosis and exert an inhibitory effect on the tumor

FIGURE 8 | Survival analysis for hub genes by oncolnc. Red lines represent sample groups with high gene expression, while green lines represent sample groups
with low gene expression.
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growth in NSCLC (Yao et al., 2020). Dong et al. found that
quercetin inhibited the expression of Src, and subsequently,
inhibited Fn14/NF-kappa B signaling, thereby suppressing
the proliferation and metastasis of NSCLC. This suggests that
Src expression promotes NSCLC progression and could be a
target for the treatment of NSCLC (Dong et al., 2020). In the
ErbB signaling pathway, the ErbB receptor family and its
downstream pathways may regulate epithelial-mesenchymal
transition, migration, and tumor invasion by regulating
components of the extracellular matrix (ECM) (Kern et al.,
1992). This mechanism occurs not only in NSCLC but also in
other tumor growth processes such as those of breast,
ovarian, and bladder cancer. EGFR is a member of the
ErbB family and can bind to ECM components such as
matrikines to promote tumor cell expansion (Appert-
Collin et al., 2015). Yu et al., in 2020, found that TMPO-
AS1 was upregulated in the cancerous tissues of NSCLC
samples, which enhanced the expression of ERBB2,
promoting the deterioration of NSCLC cells (Yu et al.,
2020). The activation of mTOR causes an accelerated
tumor cell cycle, shortened G1 phase duration, rapid cell
proliferation, and increased secretion of on coproteins, and
this promotes tumor development. mTOR acts in a
synergistic manner to inhibit tumor growth in mouse
prostate and lung cancer models, and phosphorylated or
activated mTOR is found in 74% of the NSCLCs, making
it an additional target for NSCLC therapy (Marinov et al.,
2007). In A549 and primary human NSCLC cells, GDC-0349
inhibits NSCLC cell growth, proliferation, cell cycle
progression, migration, and invasion through the Akt-Akt-
mTOR pathway, while inducing significant apoptotic
activation (Yang et al., 2020). Analysis of a receiver operating
characteristic curve (area under curve � 0.6785) showed that the
expression of MCL-1 is an important critical value for predicting
prognosis in 30.0% of the NSCLC tumor cell types. Curcumin
inhibits the expression of radiation-induced EMT and sE-cad by
reducing the expression of MMP9, thereby inhibiting the
migration and invasion of NSCLC (Deng et al., 2020). CCK8
and Transwell invasion assays have shown that A549 cells
transfected with the miR-4448 inhibitor have higher
proliferation and metastatic abilities. High expression of
MMP2 and MMP9 in A549 cells transfected with the miR-
4448 inhibitor has been confirmed by qRT-PCR and western blot
(Xu et al., 2020). miR-142-3p overexpression inhibits the
expression of NR2F6, MMP2, and MMP9 and improves
caspase-3 expression, thereby inhibiting lung adenocarcinoma
cell proliferation, migration, and invasion and enhancing
apoptosis, demonstrating that miR-142-3p may be a new
therapeutic target for lung adenocarcinoma treatment (Jin et al.,
2019). In one study, compared to that in the normal lung cell line,
miR-204 expression was found to be downregulated, while that of
JAK2 was upregulated in four NSCLC cell lines (A549, H1299,
H1650, and H358). These findings indicate that miR-204 functions
as a tumor suppressor in NSCLC by acting on JAK2. Therefore, we
can consider miR-204 as a biomarker for the diagnosis and

treatment of NSCLC (Wang et al., 2016). Among the endocrine
signaling pathways, the core targets EGFR, ERBB2, ESR1, MTOR,
MMP2, MMP9, and SRC are in endocrine signaling pathways.
Neuroendocrine dedifferentiation (NED) is widely found in
tumors of prostate, gastrointestinal tract, and lung cancers,
among others. Chen (Chen et al., 2014), have found that 0–20%
of NSCLC is associated with NED and inhibition of the Akt
signaling pathway. Clinical manifestations, natural course,
pathological changes, and treatment response are all
characteristic of NED and have become a new field of lung
cancer research (Dudzińska et al., 2020). Ma et al. (Ma and
Zhang, 2015), in 2015, found that with a positive rate of 72.3%,
the expression of Rap1b was significantly higher in NSCLC
tissues compared to that in paraneoplastic tissues. Further
studies have confirmed that Rap1b is closely related to tumor
differentiation, supporting the conclusion that Rap1b may have
an oncogene function in the development of NSCLC. The results
of survival analysis showed that the survival rate of the low-
expression group of ESR1 and MMP2 was higher than that of
the high-expression group, which further confirmed that
reducing the expression of ESR1 and MMP2 could improve
the quality of life of NSCLC patients.

CONCLUSION

We speculate that Shan Ci Gu may play a role in inhibiting
tumor cell proliferation by targeting several proteins such as
EGFR, SRC, and ESR1 in NSCLC. The therapeutic effect of
Shan Ci Gu involves a variety of BPs mainly involved in the
inhibition of cell proliferation and endocrine effects, such as
the endocrine, EGFR-TKI resistance, ErbB, and PI3K-Akt
signaling pathways. In conclusion, Shan Ci Gu plays a role
in the treatment of NSCLC through multiple targets and
pathways. Therefore, the results of this study provide a
basis for further research on the clinical application of Shan
Ci Gu in NSCLC.
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Molecular Dynamics Simulations
Reveal Interactions of an IgG1
Antibody With Selected Fc Receptors
Sebastjan Kralj 1,2, Milan Hodošček1, Barbara Podobnik3, Tanja Kunej4, Urban Bren2,
Dušanka Janežič 5* and Janez Konc1,2*

1Theory Department, National Institute of Chemistry, Ljubljana, Slovenia, 2Laboratory of Physical Chemistry and Chemical
Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia, 3Biologics Technical
Development Menges,̌ Technical Research and Development Novartis, Lek Pharmaceuticals d.d., Menges,̌ Slovenia,
4Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia, 5Faculty of Mathematics, Natural
Sciences and Information Technologies, University of Primorska, Koper, Slovenia

In a survey of novel interactions between an IgG1 antibody and different Fcγ receptors
(FcγR), molecular dynamics simulations were performed of interactions of monoclonal
antibody involved complexes with FcγRs. Free energy simulations were also performed of
isolated wild-type and substituted Fc regions bound to FcγRs with the aim of assessing
their relative binding affinities. Two different free energy calculation methods, Molecular
Mechanical/Generalized Born Molecular Volume (MM/GBMV) and Bennett Acceptance
Ratio (BAR), were used to evaluate the known effector substitution G236A that is known to
selectively increase antibody dependent cellular phagocytosis. The obtained results for the
MM/GBMV binding affinity between different FcγRs are in good agreement with previous
experiments, and those obtained using the BARmethod for the complete antibody and the
Fc-FcγR simulations show increased affinity across all FcγRs when binding to the
substituted antibody. The FcγRIIa, a key determinant of antibody agonistic efficacy,
shows a 10-fold increase in binding affinity, which is also consistent with the published
experimental results. Novel interactions between the Fab region of the antibody and the
FcγRs were discovered with this in silico approach, and provide insights into the antibody-
FcγR binding mechanism and show promise for future improvements of therapeutic
antibodies for preclinical studies of biological drugs.

Keywords: free energy calculation, homology modeling, molecular dynamics, fab-fcγ receptor interactions,
monoclonal antibody, biological drugs

INTRODUCTION

As therapeutic agents, monoclonal antibodies possess key advantages over small-molecule drugs.
These include target specificity, lower toxicity profiles, longer serum half-life and multiple cytotoxic
modes of action. This versatility has led to a valuation predicted to be $137–220 billion by the end of
year 2020 for the antibody drug market. With this potential of antibodies, the pharmaceutical
industry is searching for ways to improve existing therapies and cutting into the future market share
(Grilo and Mantalaris, 2019). Currently, all FDA-approved therapeutic antibodies belong to the
immunoglobulin isotype G (IgG) (Brezski and Georgiou, 2016), one of five isotypes of human
antibodies or immunoglobulins (Franklin, 1975). The IgG antibody is a heterodimer consisting of
two light chains and two heavy chains. The fragment antigen binding (Fab) domain is responsible for
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specific antigen recognition, while the C-terminal part of both
heavy chains forms the fragment crystallizable (Fc) domain. This
domain is responsible for immune effector functions associated
with antibodies.

The efficacy of many antibodies is associated with antibody
dependent cellular cytotoxicity (ADCC), complement dependent
cytotoxicity (CDC) and antibody dependent cellular phagocytosis
(ADCP) to deplete target cells is mediated through interaction of
the Fc region with the complementary component C1q or Fcγ
receptors (FcγR). These are expressed in a broad spectrum of
immune cells, and formation of an Fc/FcγR complex recruits
these cells to sites of the bound antigen. The IgG antibodies
predominantly elicit ADCC and ADCP by interacting with
FcγRs. In humans, the FcγR protein family consists of FcγRI,
FcγRII (subtypes a/b/c) and FcγRIII (subtypes a/b) (Raghavan
and Bjorkman, 1996). All FcγRs bind the same region on the IgG
Fc, with the FcγRI classified as a high affinity FcγRs and the
FcγRII and FcγRIII as the low affinity FcγRs. The FcγRI, FcγRIIa/c
and FcγRIIIa are activating receptors characterized by an
intracellular immunoreceptor tyrosine-based activation motif,
while the FcγRIIb is an inhibitory receptor characterized by an
inhibition motif (Maenaka et al., 2001) (Table 1). The genomic
region of the low-affinity Fcγ receptor cluster on human
chromosome 1q23.3 is presented in Figure 1.

Antibodies possess multiple cytotoxic modes of action, but
many have failed in clinical trials due to insufficient efficacy. This
has led to attempts to increase their potency through
enhancement of their ability to mediate cellular cytotoxicity
functions such as ADCC and ADCP (Weiner and Carter,
2005). Further studies have found the Fc region to be essential
for the therapeutic efficacy of antibodies that rely on ADCC or
ADCP (Clynes et al., 2000; Arce Vargas et al., 2018; Lešnik et al.,
2020). In order to achieve optimal therapeutic efficacy, specific
sub-types of FcγR must engage with the Fc region. Increased
binding to FcγRIIa or FcγRIIIa results in greater ADCP and
ADCC activity, a desirable effect in many therapeutic antibodies,
but an increase in FcγRIIb binding is desired for inhibitory
antibodies. Achieving this is difficult as FcγRIIb and FcγRIIa
demonstrate ∼92% homology in their extracellular domains
despite the fact that they differ functionally. However, several
successful engineered Fc variants with increased binding affinity
to human FcγRIIIa have been reported (Lazar et al., 2006;
Richards et al., 2008; Liu et al., 2014; Wang et al., 2018).
These variants include the single mutants S239D and I332E,
the double mutant S239D/I332E, and the triple mutant S239D/
I332E/A330L (Liu et al., 2014). All of these variants have also been
linked to enhanced ADCC activity (Lazar et al., 2006). On the
spectrum of increasing FcγRIIa binding and enhancing

TABLE 1 | Characteristics of the FcγRs. Data extracted from the HGNC database (https://www.genenames.org/).

Affinity Function Gene symbol Gene name Gene HGNC ID Chromosomal location Alias symbols

FcγRIa High Activating FCGR1A Fc fragment of IgG receptor Ia 3,613 1q21.2 CD64, CD64A
FcγRIb High Activating FCGR1B Fc fragment of IgG receptor Ib 3,614 1p11.2 CD64b
FcγRIIa Low Activating FCGR2A Fc fragment of IgG receptor IIa 3,616 1q23.3 CD32, CD32A
FcγRIIb Low Inhibiting FCGR2B Fc fragment of IgG receptor IIb 3,618 1q23.3 CD32, CD32B
FcγRIIc Low Activating FCGR2C Fc fragment of IgG receptor IIc 15,626 1q23.3 hFcRII-C, D32C
FcγRIIIa Low Activating FCGR3A Fc fragment of IgG receptor IIIa 3,619 1q23.3 CD16, CD16a
FcγRIIIb Low Activating FCGR3B Fc fragment of IgG receptor IIIb 3,620 1q23.3 CD16, CD16b

FIGURE 1 | Genomic region of the low-affinity Fcγ receptor cluster on human chromosome 1q23.3. FCGR2A, FCGR2B and FCGR2C are located on the forward
strand and FCGR3A and FCGR3B on the reverse strand.
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phagocytosis, the reported Fc variant G236A has selectively
enhanced binding to FcγRIIa compared to FcγRIIb and
mediates enhanced phagocytosis of antibody-coated target cells
by macrophages (Richards et al., 2008; Wang et al., 2018).

We have examined the molecular dynamics of both the
complete antibody structures and the isolated Fc region and
have conducted binding free energy calculations to gain
insight into their interactions with various FcγRs and to
obtain directions which could lead to improved antibodies.
We used homology modeling (Šali and Blundell, 1993) to
obtain a new structure of a complete therapeutic IgG1
antibody, to which we examined the binding of FcγRIIa,
FcγRIIb and FcγRIIIa using existing structures from the
Protein Data Bank (PDB). Using the CHARMM biomolecular
simulation program (Brooks et al., 2009) we performed 100 ns
simulations for both the wild type (wt) antibody and the antibody
with the G236A substitution in the lower hinge of the Fc region, a
substitution known to increase the ADCP selectively (Richards
et al., 2008). The calculated free energy values for the complete
antibody simulations agree with the published experimental
results (Richards et al., 2008), which show that FcγRIIIa
enjoys a higher affinity than both FcγRIIa and FcγRIIb, with
FcγRIIa having a higher affinity than FcγRIIb. However, the wild
type and substituted antibody free energy values are not entirely
in agreement with the published results for complete antibodies
(Richards et al., 2008). The relatively higher agreement of the Fc-
FcγR simulations with the experimental data is probably due to
the negation of the effects of Fab-FcγR interactions seen in these
simulations. With the more stringent conditions of the BAR free
energy calculation method, a large increase in affinity is observed
exclusively for FcγRIIa, as has been reported by Richards
(Richards et al., 2008). The agreement of the calculated
energies with the experimental data lends credibility to the in
silico approach to future prospective evaluations of potential
effector substitutions.

METHODS

HomologyModeling of the IgG1 Therapeutic
Antibody and Preparation of Structures
The sequence of the therapeutic IgG1 antibody in the FASTA
format was obtained from the DrugBank database (https://www.
drugbank.ca, accessed on date August 28, 2019). Structural
templates for this sequence were found using the blastp
algorithm (Altschul et al., 1990) with default settings. Only
similar sequences found in the PDB were retained. The
templates were selected based on sequence identity, query
cover and resolution of the solved structure. For modeling of
the heavy chain of a therapeutic antibody we used the structure of
an intact human IgG1 (PDB ID:1HZH) (Saphire, 2001) which has
100% query cover and 84% sequence identity to the target
sequence. 1HZH, a complete IgG1 antibody structure, enabled
us to correctly spatially orient the Fab arms in our model. As
monoclonal antibodies differ significantly in the Fab variable
region which has both the light and heavy chains, an additional
template was used to improve the quality of the model in this

region. The structure of ipilimumab bound to the human receptor
CTLA-4 (PDB ID:5TRU) was selected based on the 100% query
cover and 100% sequence identity to the light chain of the
investigated therapeutic antibody (Ramagopal et al., 2017).
High query cover and sequence identity are crucial for the
final quality of the obtained homology model. Templates were
aligned to their corresponding targets using the MUSCLE
sequence alignment algorithm (Edgar, 2004). The alignment
was checked for potential gaps or misaligned residues before
the modeling. Protein models were constructed using the
MODELLER software, builds a model of the protein by
satisfying all spatial restraints (Šali and Blundell, 1993). The
models obtained in this way were evaluated using the discrete
optimized protein energy (DOPE) score. The lowest scoring
model, with a DOPE value of −131,997 was further checked
for quality using several homology model validating tools (see
SupplementaryMaterial) and was chosen for further work (Shen
and Sali, 2006).

Models of the selected FcγRs complexed with the complete
antibody structure were generated (Figure 2). The criteria for the
selection of FcγR structures from the PDB were the resolution of
the solved structure and the scope of the FcγR glycosylation
profile, since glycosylation of both the Fc region and the FcγR
play a crucial role in the binding mechanics of these two proteins
(Hayes et al., 2014). The PDB structure of the FcγRIIIa bound to
antibody Fc region (PDB ID:3SGK) contains the intact IgG1 Fc
region bound to FcγRIIIa (Ferrara et al., 2011). The Fc region in
the PDB structure 3SGK was superimposed on the modeled
complete therapeutic IgG1 antibody to position the FcγRIIIa
so that it was bound to our model. The redundant Fc region of
3SGK crystal structure was deleted to produce the final model of
the antibody in a complex with FcγRIIIa. The other two models
were then constructed by superimposing the structures of
FcγRIIa (1FCG) and FcγRIIb (5OCC) onto the correctly
positioned antibody (Hogarth et al., 1999; Sutton et al., 2018).
This was possible because the selected FcγRs, FcγRIIa, FcγRIIb
and FcγRIIIa bind to the same region of the IgG1 Fc region and in
a similar conformation. Structural files for each of the FcγRs
bound to the antibody were saved as PDB files to be used as inputs
for molecular dynamics. For the isolated Fc regions, no homology
modeling was performed. The PDB structure 3SGJ was chosen
because of its extended hinge region which was not expected to
interfere with the receptors during the simulation (Ferrara et al.,
2011). The same three FcγRs used for the complete antibody
simulations, were superimposed to the structure and saved as
separate files.

Molecular Dynamics Simulations of
IgG1-FcγR Complexes
We performed MD simulations of the complete IgG1 therapeutic
antibody with selected FcγRs and simulations of the isolated Fc
region with various bound FcγRs, using the latter to calculate the
impact of substitution on binding free energy. Finally, we
compared the in silico results obtained with experimental
binding affinities. The use of MD simulations allows us to
study the motion of our system through time. This is achieved
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by numerically integrating Newton’s second law of motion. The
simulation inputs were prepared using the CHARMM-GUI
web interface for the CHARMM biomolecular simulations
program (Jo et al., 2008; Brooks et al., 2009). CHARMM-
GUI Glycan Modeler was used to apply the most prevalent
experimentally determined human glycosylation profile:
{bDGal (14)bDGlcNAc(1→2)aDMan (1→6)
[bDGlcNAc(1→2)-aDMan (1→3)] bDMan (1→4)
bDGlcNAc(1→4)[aLFuc (1→6)]bDGlcNAc(1→)ASN-297)}
for IgG1 antibodies based on experimental data (Sonneveld
et al., 2018), as the homology model PDB structure was
unglycosylated (Park et al., 2019). The protein structures
were solvated using TIP3P water, and then neutralized using
Na+ and Cl− ions (0.1 M) to approximate physiological
conditions. For the removal of steric clashes, that could be
present after merging coordinate files of water molecules with
proteins and, to optimize atomic coordinates of the complexes,
50 steps of steepest descent and 250 steps of adopted basis
Newton-Raphson (ABNR) energy minimizations were
performed. Both functions attempt to minimize the potential
energy of the system, by slightly nudging the atomic
coordinates of the protein followed by potential energy
calculation and examination of the first derivatives to
determine the direction of the gradient. Nudges of
coordinates which result in lower potential energy i.e.
moving towards a local minimum are saved, and the process
is repeated with new coordinates until the specified step
number.

This is followed by a short MD simulation during which the
protein was equilibrated at 310.15 K using the HOOVER
thermostat and the integration time-step set to 1 fs The
total length of equilibration molecular dynamics with NVT
ensemble applied was 1 ns Final molecular dynamics
production runs were carried out using an NPT ensemble
with periodic boundary conditions applied, the time-step set to
2 fs and the HOOVER thermostat set to 310.15 K. Van der

Waals interactions were cutoff between 10 and 12 Å using the
force switch method (VFSWIt). Electrostatic potential used
force shifting method (FSHIft) with a cutoff of 12 Å. The
particle-mesh Ewald summation (Darden et al., 1999) was
used to calculate electrostatic interactions. Bonds to
hydrogens were constrained using the SHAKE algorithm.
This allows for a 1–2 fs integration step as otherwise
unconstrained hydrogens, which have high frequency
vibrating bonds lead to errors when integrating Newton’s
second law of motion. The force field, a simplified
representation of reality allows us to derive the forces
required for solving Newton’s second law. The
CHARMM36m force field was used for all simulations
(Brooks et al., 2009; Guvench et al., 2011). For each of the
selected FcγRs bound to either the complete antibody structure
or the isolated Fc region production runs were generated using
GPU acceleration with the final analysis performed on the last
100 ns for the complete antibodies and 200 ns for the isolated
Fc region. In order to solve Newton’s second law of motion
velocities of atoms beside forces are required as well. Velocities
are randomly generated at the start of the simulations. For this
reason the first 20 ns of production runs were ignored to
minimize the error arising from different initial velocities,
as the additional time before sampling allows the protein to
settle.

Calculation of the Binding Free Energy
The final result of MD simulations is the trajectory file that
contains the information of how the protein moved in time.
Beside visual cues that are offered from this file, we can calculate
thermodynamic properties from it. In this paper two different
approaches were used to calculate the relative binding free
energies for the simulated complexes, the end-point Molecular
Mechanical/Generalized Born molecular volume (MM/GBMV)
method and the Bennett Acceptance Ratio (BAR) method
(Bennett, 1976). The relative binding free energy was

FIGURE 2 | The differences between the FcγRs were exploited to selectively enhance binding of the antibody to the activating Fcγ receptors. The effector
substitution G236A is in the Fc region of the antibody (orange) in the complex with the inhibitory FcγRIIb (blue), and the activating FcγRIIa (green) and FcγRIIIa (yellow). In
comparison to the wild-type Gly236 (A), the substituted Ala236 (B) is bulkier thus preventing the binding of the antibody to the FcγRIIb due to the steric clash with
Arg176, while allowing the binding to FcγRIIa and FcγRIIIa that have histidines at this position.
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calculated, rather than the absolute binding free energy, since
calculation of absolute binding free energies for biological events
requires much longer simulations.

The MM/GBMV(Lee et al., 2002) method implemented in
CHARMM decomposes the free energy of binding of the ligand,
the protein and the complex, into contributions of different
interactions (Figure 3) and can be expressed as follows:

ΔGbind � ΔH − T · ΔS ≈ ΔEMM + ΔGsol − T · ΔS (1)

ΔEMM � ΔEint + ΔEel−st + ΔEvdw (2)

ΔGsol � ΔGgeneralized−Born + ΔGmolecular volume (3)

In these equations, ΔEMM represents the changes in the gas-
phase molecular mechanics energy and includes changes in the
internal energy (ΔEint) (bond, angle and dihedral), electrostatic
(ΔEel-st) and the van der Waals energy (ΔEvdw). The effect
between the solute and the implicit solvent is described by ΔGsol,
which represents the sum of the polar and non-polar contribution
to the desolvation free energy with the polar contribution
(ΔGgeneralized-Born) calculated by the Generalized Born
using Molecular Volume (GBMV) model implemented in
CHARMM and the molecular volume contribution
(ΔGmolecular volume) estimated by the molecular volume
calculation implemented within the GB module (Lee et al.,
2002, 2003). The entropic contribution due to vibrational
modes of the system to the binding free energy was neglected
as the aim was to calculate relative binding free energies.
Furthermore, the calculation of the entropic contribution of
protein-ligand binding is only relevant in binding events
where large conformational changes occur. Such
conformational changes were not expected in this case, as we
had very similar complexes (wild type and G236A), and

consequently we neglected the entropy term (Konc et al.,
2013). For calculation of free energy using the MM/GBMV
approach a single MD simulation of a protein-ligand complex
was used, fromwhich we obtained three separate trajectories of all
components, the ligand, the apo protein and the protein-ligand
complex (Lee and Olson, 2006). For the complete antibody
simulations, all energy terms with the exception of the entropy
terms were calculated for the final 100 ns(10,000 snapshots) of the
production run for each MD trajectory. The energy terms for the
isolated Fc region with the bound FcγR were calculated for
200 ns(20,000 snapshots).

The Bennett Acceptance Ratio (BAR) method is a rigorous
method for calculating relative binding free energy but it offers
greater accuracy (Bennett, 1976). Using the coupling parameter, λ
to define intermediate states, it calculates the free energy
difference between end-states A and B. This is useful as two
similar systems, such as a wild type and substituted antibody can
show very little overlap in phase space, making estimation of the
free energy difficult when relying solely on the end states. In the
production runs that were obtained, each snapshot of the
simulation was submitted to an energy minimization of 100
steps of ABNR or until the specified tolerance (tolgrd) was 1.0
before calculating the energy. This was done to prevent steric
clashes that might arise when inserting (mutating) the amino-
acid into the non-mutated simulation snapshot. In the case of
glycine to alanine the presence of the additional –CH3 after
mutation might cause steric clashes with the amino acids in the
vicinity, giving false energy calculations. The non mutated
simulation paths (0:0,1:1, Figure 4) were minimized as well to
achieve consistency of energies. The energy data was filtered using
an in-house python script, and the average ΔΔG differences for
the simulations were obtained using the BAR script for

FIGURE 3 | The thermodynamic cycle used in the MM/GBMV calculation. The square blue surface represents the water solvent.
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CHARMM. No additional intermediate λ states were defined, as
great overlap between the phase space of both simulations was
achieved using only the end states (Figure 4).

RESULTS AND DISCUSSION

Free Energy Calculations of the Effector
G236A Substitution
The effect of the G236A substitution on the binding affinity of the
monoclonal antibody with different Fcγ receptors (FcγRs) was
assessed by the free energy MM/GBMV and BAR methods using
the simulations of the complete antibody as well as its isolated Fc

region. The calculated binding affinities are in agreement with the
experiment by Richards et al. using the MM/GBMV method; in
both simulations, FcγRIIIa exhibits the highest overall affinity of
the three receptors, FcγRIIb the lowest, while FcγRIIa is
intermediate (Figure 5).

It was also reported (Richards et al., 2008) that the G236A
substitution in the Fc region of the antibody results in selective
increase of the binding of FcγRIIa over that of FcγRIIb or
FcγRIIIa. The complete antibody simulations do not confirm
this (Figure 5A), as the calculated binding free energy of the wild
type antibody in complex with FcγRIIa is −36.9 ± 20 kcal/mol,
but increases to −25.2 ± 13 kcal/mol for the mutated antibody.
This indicates that the G236A substitution decreases the binding

FIGURE 4 | The thermodynamic cycle for the calculation of the binding free energy using the BAR method. The IgG1 antibody is colored yellow for the first
simulation and green for the second, the Gly236 variant is orange and the mutated Ala236 is blue. Two simulations were performed for each of the FcγR bound to the
antibody. Subsequently, the intermediate trajectories 0→1 and 1→0 were obtained by mutating the original amino acid of the given simulation at every snapshot of the
simulation before calculating the free energy terms.
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affinity. For the FcγRIIIa wild type antibody the binding affinity
drops significantly, as the binding free energy for the wild type
antibody is −52.1 ± 24 kcal/mol and for the substituted it is
−33.8 ± 16 kcal/mol. When comparing the number of hydrogen
bonds formed between the two antibodies (wild type and Ala236)
bound to FcγRIIIa, the Ala236 antibody surprisingly forms more
hydrogen bonds, on average 11.49 for the Ala236 antibody, and
4.85 for the wild type antibody. This difference could be due to
different types of hydrogen bonds, with variable strengths. The
binding affinity of the complete antibody towards FcγRIIb
increases slightly from −17.4 ± 17 to −20 ± 15 kcal/mol, but
the number of hydrogen bonds formed decreases from 4.79 (78%)
in the wild type compared to 2.11 (32%) in the Ala236 antibody,
suggesting a decrease in the binding affinity. When comparing
the wild type antibody with the G236A substituted antibody we
were unable to establish a clear correlation with the reference
experimental values.

It was observed that the trajectories of the complete antibodies
contained, in addition to the expected interactions between the Fc
regions and the FcγRs, many interactions between the Fab
regions and the FcγRs. It is thought that these Fab
interactions may have disrupted the Fc-FcγRs interactions that
were studied. This can be seen by comparison of Figures 5A,B,
which shows that the binding affinity for the isolated Fc region
(Figure 5B) is higher in all cases than the binding affinity of the
complete antibody simulations (Figure 5A). This higher affinity
for isolated Fc regions is thought to be due to the destabilizing
effects of the Fab-FcγRs interactions that were seen with the
complete antibody simulations, which may reduce the binding of
the FcγRs with the complete antibody.

To examine the possible effects of the Fab region on the
binding affinity we performed additional simulations using the
isolated Fc regions in complexes with FcγRs (Figure 5B). Here, in
accordance with existing data (Richards et al., 2008), the FcγRIIa

exhibits a ∼4 kcal/mol decrease in binding free energy,
consequently an increase in binding affinity after introducing
the G236A substitution, which drops from −53.2 ± 11 kcal/mol to
−57.1 kcal/mol. The FcγRIIIa shows an increase in binding free
energy, or a decrease in binding affinity after substitution,
probably due to the steric clash of the His135 in FcγRIIIa with
the Ala236 methyl group (Figure 2). The decrease in the binding
affinity for FcγRIIIa is −21 kcal/mol, from −68.9 ± 15 kcal/mol
for the wild type Fc region to −48 ± 15 kcal/mol for the Ala236
substituted Fc region. The FcγRIIb shows no significant increase
in binding free energy, which goes from −42.4 ± 13 kcal/mol for
the wild type Fc region to −43.3 ± 13 kcal/mol for the Ala236
substituted Fc region, indicating no effect of this substitution on
binding affinity. These findings are in agreement with
experimental results (Richards et al., 2008).

Results from the BAR method show that in fact the G236A
substitution causes an increase of the binding affinity for all
FcγRs (Figure 6). The effect of the Fab region on the FcγR
binding is clearly visible as the simulation of the isolated Fc
region shows a larger increase in binding affinity compared to
the simulations of the complete antibody (cf Figures 6A,B).
The value for the FcγRIIa is in alignment with published data
(Richards et al., 2008) as the binding free energy increase of
−1,29 kcal/mol indicates an almost 10-fold increase in the
binding affinity. The binding affinity increases along all of
the receptors when the substitution is present, but the largest
increase for the Fc-FcγR simulations is seen in the activation of
FcγRIIa, an important mediator of ADCP, compared to the
inhibitory FcγRIIb and ADCC stimulating FcγRIIIa
(Figure 6B). This indicates that introduction of this
substitution strengthens the binding to FcγRIIa, resulting in
a higher activation of macrophages (ADCP) and a better
therapeutic outcome, a result that has been observed
experimentally (Richards et al., 2008).

FIGURE 5 | Binding free energy calculated using the MM/GBMV method for the complex of (A) the complete antibody with FcγRs and (B) the isolated Fc region
with FcγRs. The error bars represent standard deviations.
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Novel Interactions Between the FcγRs and
the Fab Regions of the Therapeutic
Antibody
Upon inspection of the obtained trajectories of all the FcγRIIa,
FcγRIIIa and FcγRIIb FcγRs, we discovered novel interactions
of the Fab region of the therapeutic antibody with the selected
FcγRs (Figure 7). This was unexpected as it is generally

thought that interactions between an antibody and FcγRs
occur exclusively in the Fc region of the antibody (Lu et al.,
2015). The FcγR-Fab interactions observed in the simulations
may be present in vivo and may play a previously unrecognized
role in the binding of antibodies to FcγRs (Hogarth et al.,
1999). To date, one study [see Figure 6 in Ref (Yogo et al.,
2019)] reports such interactions with the receptor FcγRIIIa,
and similar interactions were observed using MD simulations

FIGURE 6 | Relative binding free energies calculated using the BAR method and representing the relative change in binding free energy after the induction of the
G236A substitution for (A) the complete antibody simulation and (B) the isolated Fc region simulation.

FIGURE 7 | The complete antibody structure (yellow) interacting with FcγR (green) with both the Fc region and the Fab region. Close-up of the interaction between
the Fab region, which interacts predominantly with its α-helix (residues 183–190), and the FcγR. Hydrogen bond interactions are shown as yellow dashed lines.
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with the FcγRI (Zhao et al., 2019). Our simulations show that
antibodies can interact similarly with FcγRs through their Fab
regions, confirming this previous report (Yogo et al., 2019).

Our simulations show that the CH1 domain of the antibody’s
Fab region forms the strongest interactions with the FcγR
through an α-helix (residues 183–190) of the Fab light chain,
which interacts with the upper region of the receptor (Figure 7,
close-up). In addition, the loop (residues 12–17) of the heavy

chain CH1 is also seen to interact with the FcγR, as has been
observed experimentally (Yogo et al., 2019).

To quantify the interactions between the antibody and FcγRs,
we calculated the average number of hydrogen bonds formed
during simulations between the individual regions (Fc or Fab)
and the FcγRs (Figure 8). The significant percentage of hydrogen
bonds between the Fab region and the FcγRs (Figure 9) indicates
that the Fab region may indeed play an important role in binding

FIGURE 8 | Average number of hydrogen bonds formed between the FcγR and the antibody during simulation: comparison between the Fab-FcγR (yellow)
interactions and the Fc-FcγR interactions (orange).

FIGURE 9 | Hydrogen bonds as percentage of all interactions. Comparison between Fc-FcγR (orange) and Fab-FcγR (yellow) interactions shows that hydrogen
bonds formed between Fab region and FcγR represent at least 30% of the interactions, indicating their relevance.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7059319

Kralj et al. Novel Interactions of IgG1 Antibody

102

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


of the antibody to the FcγRs. Particularly, the wild type antibody
in complex with FcγRIIb had predominantly the Fab region
binding with the receptor, as in this complex, and the bonds
between the Fab and the FcγR bonds amounted to 77% of all
hydrogen bonds formed between the antibody and the FcγR.
Across all the simulated complexes, the average proportion of the
Fab-FcγR hydrogen bonds is 38% or 2.7 hydrogen bonds. These
newly discovered hydrogen bond interactions reaffirm that the
Fab region influences the binding of FcγRs, which has been
reported in just one study to date (Yogo et al., 2019). Further,
the comparison of the calculated binding free energies (Figure 5)
and the hydrogen bond interactions (Figure 8) suggests that the
interactions formed between the Fab region and FcγRs decrease
the binding affinity of the Fc region for the receptors. This
decrease in affinity however, is partially compensated for by
the formation of new hydrogen bonds with the Fab region.

CONCLUSIONS

Using the free energy simulation methods MM/GBMV and BAR,
we have shown that the known substitution (G236A) has a
selective effect on the binding of the antibody with FcγRs. The
substitution increases the binding with FcγRIIa, thereby
increasing ADCP, and to a lesser extent it increases binding
affinity for the inhibitory FcγRIIb and the ADCC-activating
FcγRIIIa, consistent with experiments (Richards et al., 2008).
Through simulations of the complete antibody, we found novel
interactions between the Fab region of the antibody and the
FcγRs, which were experimentally determined recently using
high-speed atomic force microscopy (Yogo et al., 2019). Our

simulation results should be very valuable for future
improvement of therapeutic monoclonal antibodies and could
contribute to the development of new antibody therapeutic
approaches.
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Chemistry, Lanzhou University, Lanzhou, China

The formation of amyloid fibrils from Tau is a key pathogenic feature of Alzheimer’s disease
(AD). To disturb the formation of Tau aggregates is considered as a promising therapeutic
strategy for AD. Recently, a natural product proanthocyanidin B2 (PB2) was confirmed to
not only inhibit Tau aggregation, but also disaggregate Tau fibrils. Herein, to explore the
inhibition mechanism of PB2 against Tau fibril and to provide the useful information for drug
design and discovery, all-atom molecular dynamics simulations were carried out for the
ordered Tau hexapeptide PHF6 oligomer in the presence and absence of PB2. The
obtained result shows that PB2 can transform PHF6 oligomer from the ordered β-sheet
structure into disordered one. Moreover, the clustering analysis and binding free energy
calculations identify that S3 site is the most potential binding site. At S3 site, by
hydrophobic and hydrogen bond interactions, the residues V309, Y310 and K311 are
essential for binding with PB2, especially K311. In a word, our study reveals the molecular
mechanism of PB2 inhibiting PHF6 aggregation and it will provide some valuable
information for the development of Tau aggregation inhibitors.

Keywords: PHF6, Tau aggregation, proanthocyanidin B2, molecular dynamics simulation, Alzheimer’s disease

INTRODUCTION

Alzheimer’s disease (AD), as the most common neurodegenerative disorder, is clinically
distinguished by progressive declines in cognitive functions, causing severe dementia (Goedert
and Spillantini, 2006). It is also the sixth leading cause of death in the United States. There are
approximately 5.8 million people diagnosed with AD and the cost of care for these individuals in
2019 is about $244 billion, causing an enormous psychological and economic stress on families,
caregivers, and the health care system in the United States (Alzheimer’s Association, 2020). AD is
histopathologically identified by the presence of extracellular amyloid plaques composed of amyloid-
beta (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated Tau
proteins in paired helical (PHFs) or straight filaments (SFs) (Crowther, 1991; Bloom, 2014; Götz
et al., 2019). Tau hyperphosphorylation triggers neurodegeneration due to Tau propagation and
aggregation into NFTs (Spillantini and Goedert, 2013). Based on the widely accepted amyloid
cascade hypothesis, the aggregation and spreading of Tau seems to be facilitated by aggregation of
Aβ. Nevertheless, many compounds targeting Aβ have failed to demonstrate efficacy in slowing
disease progression during clinical trials (Aisen et al., 2006; Wilcock et al., 2008; Chiang and Koo,
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2014). Moreover, recent research has suggested that compared to
Aβ pathology, Tau pathology that is described as the
accumulation of Tau and the deposition of NFTs has better
correlation with disease severity (Arriagada et al., 1992;
Kametani and Hasegawa, 2018). In this context, considerable
attention is now focused on targeting Tau as a therapeutic
strategy for AD.

Tau is a microtubule-associated protein (MAP), abundantly
expressed in the central nervous system. Under normal
conditions, Tau acts as a cytoskeleton stabilizer through its
interface with tubulin heterodimers (Kadavath et al., 2015).

But in the certain conditions, Tau may experience some
abnormal post-translational modifications including
hyperphosphorylation, acetylation, methylation, ubiquitination
and cleavage. Abnormally phosphorylated Tau protein no longer
binds to microtubules, but assembles into fibrils which are
insoluble and toxic, leading to neuronal death (Grundke-Iqbal
et al., 1986; Alonso et al., 2001; Šimić et al., 2016).

To develop new therapeutic agents in AD, several Tau-based
therapeutic approaches are currently emerging, including Tau
phosphorylation inhibitors (Mazanetz and Fischer, 2007),
microtubule stabilizers (Zhang et al., 2005), Tau aggregation

FIGURE 1 | The initial structures of (A) PHF6 oligomer and (B) PB2.

FIGURE 2 | The monitoring of structural characteristics of PHF6 oligomer calculated from each run. (A) The RMSD of protein backbone atoms. (B) The contact
number between peptides. (C) The number of backbone H-bonds between peptides. (D) Time evolution of β-sheet content.
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inhibitors (Wischik et al., 1996; Pickhardt et al., 2015), and
immune therapy (Kontsekova et al., 2014). Among them, the
most widely studied are Tau aggregation inhibitors. A screening
from over 200,000 compounds finds that polyphenols,
phenothiazines, anthraquinones and porphyrins are capable of
inhibiting Tau fibril formation not only in vitro but also in
cultured cells (Pickhardt et al., 2005; Taniguchi et al., 2005;
Crowe et al., 2007), in addition, some compounds are under
clinical trials (Gauthier et al., 2016). Attractively, natural
polyphenolic compounds such as myricetin, curcumin,
oleocanthal and EGCG have been found to have anti-amyloid
effects that prevent amyloid aggregation and fibril formation
(Taniguchi et al., 2005; Li et al., 2009; Wobst et al., 2015; Rane
et al., 2017). Compared to synthetic compounds, natural
polyphenols from food or herbal extracts usually exhibit
higher availability, stability, convenience and lower side effects.
Proanthocyanidins, the most abundant polyphenols present in
human diets, are potentially effective in the prevention and
treatment for AD due to their antioxidant and neuroprotective
capacity (Zhao et al., 2019). Proanthocyanidin B2 (PB2), a major
type of proanthocyanidins, has been reported to cross blood-
brain-barrier and have potent inhibitory activity on Tau and Aβ
aggregates for the treatment in AD. It is also shown that PB2 can
not only inhibit Tau aggregation, but also disaggregate Tau fibrils

(Snow et al., 2019). However, the potential mechanism of PB2
exerting its effects is still unclear.

This study was to explore the inhibition mechanism of PB2 on
Tau oligomer at atom level, where the used oligomer is formed of
a hexapeptide motif 306VQIVYK311 (PHF6), the most important
nucleation sequence in Tau aggregation. PHF6 has been reported
to self-assemble to form the steric-zipper conformation
composed of an ordered antiparallel-layered parallel β-sheet
structures (von Bergen et al., 2000; Sawaya et al., 2007;
Plumley and Dannenberg, 2010). Moreover, PHF6 is capable
of forming fibrils in vitro similar to those formed by full-length
Tau (Goux et al., 2004; Rojas Quijano et al., 2006). In this work,
we started with a preformed PHF6 oligomer and then performed
all-atom molecular dynamics (MD) simulations to explore the
inhibition mechanism of PB2 on PHF6 oligomer. Contrast to the
traditional experimental approaches, molecular dynamics
simulation method can obtain more structural dynamics
information of protein and clarify the significant effects of
inhibitors of amyloid protein (Wang et al., 2015; Liu et al.,
2018). It is also able to predict the detailed binding mode of
the inhibitor and search for the key residues of PHF6 oligomer.
The results will give some helpful guidance for the discovery and
design of Tau aggregation inhibitors in the future.

COMPUTATIONAL METHODS

Preparation of Starting Structures
The stable PHF6 oligomer was used to investigate the
disaggregation of PB2 on Tau fibril. The three-dimensional
coordinates of PHF6 were gained from the Protein Data Bank
(PDB ID: 2ON9) (Sawaya et al., 2007). Then PyMOL software
version 1.3 (DeLano Scientific LLC) was applied to construct the
three-dimensional structure of PHF6 oligomer, consisting of four
sheets and six strands per sheet, made of a total of 24 PHF6
monomers. In order to neutralize the N- and C-terminals in
peptide strands, ACE and NME residues were added to cap the N-
and C-terminals. The obtained starting PHF6 oligomer structure
as well as the structure of PB2 was given in Figure 1. Here, 24
strands were numbered as A-X sequentially. The applied molar
ratio of PB2/PHF6 was about 1:5 in this model according to the
experimental condition (Snow et al., 2019). Therefore, in each
system, five PB2 molecules were randomly placed around PHF6
oligomer, and their minimum distance from the oligomer were at
least 8 Å. Gaussian 09 software (Frisch et al., 2009) was used to
optimize the structure of PB2 at the Hartree-Fock level with 6-
31G* basis set. The partial atomic charges were derived using
RESP fitting technique (Bayly et al., 1993). The GAFF force field
(Wang et al., 2004) and the Amber ff99SB force field (Hornak
et al., 2006) was applied to describe PB2 and the oligomer,
respectively.

Details of Molecular Dynamics Simulations
All molecular dynamics simulations were performed using
Amber18 software (Case et al., 2018). Each system prepared
for simulation was placed in a cube periodic box filled with
TIP3P water (Jorgensen et al., 1983) molecules, with more than

FIGURE 3 | (A) β-sheet and (B) coil content of each strand of PHF6
oligomer.
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12 Å distance around the oligomer. In order to maintain the
electrical neutrality of the system, an appropriate amount of
chloride ions were added to each system. Subsequently, the
steepest descent method and the conjugate gradient method
were used to optimize the system to eliminate unnatural
collisions. Then, each system was heated from 0 to 300 K
under the NVT ensemble. In the meantime, all oligomer
atoms were constrained by a harmonic force of 5.0 kcal/
(mol·Å2). And then the further five steps equilibrium process
was performed in the NPT ensemble with decreased restraint
force on the complexes from 5.0 to 0 kcal/(mol·Å2) to release all
the restraints. Finally, 500 ns molecular dynamics simulations
were performed without any restraints. The temperature was
controlled by the Langevin thermostat. The SHAKE algorithm
(Ryckaert et al., 1977) was used to limit the bond length
concerning hydrogen atoms. The particle mesh Ewald (PME)
method (Essmann et al., 1995) was used to calculate long-range
electrostatic interactions. Totally, four separate trajectories
which include three parallel runs for PHF6 oligomer with PB2
(oligomer + PB2) and one for PHF6 oligomer without PB2

(PHF6_oligomer), were performed to explore the disrupting
mechanism of PB2 against PHF6 oligomer.

Molecular Dynamics Trajectory Analysis
All the trajectory analysis was performed in Amber and VMD
programs (Humphrey et al., 1996). The contact between strands of
PHF6 oligomer is considered to be formed when the distance
between the pair of heavy atoms is less than 4.0 Å. The hydrogen
bond is considered to be formed when the hydrogen-acceptor
distance is less than 3.5 Å and the donor-hydrogen-acceptor angle
should be larger than 120°. Principal components analysis (PCA)
(Amadei et al., 1993) was applied to obtain the first two
eigenvectors to draw the free energy landscape. Secondary
structure tendency for every residue was calculated by
employing the DSSP method (Kabsch and Sander, 1983). The
K-means clustering algorithm (Feig et al., 2004) was applied to
cluster the geometrically similar conformations. The molecular
mechanics/generalized Born surface area (MM-GBSA) method
(Hou et al., 2011) was used to calculate the binding free energy
between the oligomer and PB2. By MM-GBSA approach, 5,000

FIGURE 4 | Secondary structure changes of each strand in four systems.
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snapshots from the last 100 ns were extracted to calculate the
binding free energy between protein PHF6 oligomer and PB2. The
calclulated interaction energy was further decomposed to each
residue to obtain the contribution of each residue to the binding
energy.

RESULTS AND DISCUSSION

The Stability of Studied Systems
The convergence of four simulations was firstly examined to
monitor if the simulations were up to the equilibration. First, the
root mean square deviation (RMSD) of backbone atoms was
calculated for all four trajectories. As shown in Figure 2A, the
RMSD values of all systems fluctuated slightly after 250 ns,
indicating all systems are up to the convergence of trajectories.
To further explore the influence of inhibitor on the structure of
PHF6 oligomer in each system, the total contact number between
peptides was calculated (Figure 2B). For three oligomer systems
with PB2, the contact number of oligomer decreased obviously
compared with that of the system without PB2, suggesting that
the oligomer becomes less stable in the present of PB2. The
hydrogen bond (H-bond) interactions between peptides generally
play an important part in the aggregation and the formation of
oligomer (Zheng et al., 2006; Matthes et al., 2012; Zhou et al.,
2016). The ordered PHF6 oligomer is stabilized by a complex
network of inter-strandH-bond interactions. On this account, the
H-bond number between peptides (Figure 2C) was calculated
and the result shows that H-bond number of run2 and run3 of
oligomer system with PB2 are obviously less than apo oligomer.
The interrupted inter-strand hydrogen bonds in both run2 and
run3 implies that the interaction of PB2 with oligomer will

interrupt the formed hydrogen bonds between peptides and
result in the decrease of stability of PHF6 oligomer. While
little difference of H-bond number in run1 can be explained
by weak binding of PB2. By analyzing the contact number and
H-bond number, it is evident that the stability of PHF6 oligomer
is indeed reduced by PB2.

The Conformational Changes of PHF6
Oligomer
It is now well-accepted that the β-sheet-rich structure is the
typical structural feature of the amyloid oligomer. Thus, in order
to explore the conformational change of PHF6 oligomer, the
β-sheet content during the simulation was calculated to study the
influence of PB2 on the PHF6 oligomer. As can be seen from
Figure 3, the β-sheet content of oligomer with PB2 is notably
lower than apo oligomer. As results, the coil content of oligomer
with PB2 increases. It is proved that β-sheet structures convert
into coil structures (Figure 3 and Figure 4). From Figure 4, the
secondary structure analysis suggests that PB2 molecules change
the secondary structures significantly, including strand X in run1,
strand A, B and C in run3, and especially for strand L, M, N, O
and S in run2 (Figure 3 and Figure 4). This implies that PB2
molecules may bind most strongly to the oligomer in run2
trajectory, causing great parts (strand L, M, N, O and S) of
the β-sheet structure of PHF6 oligomer to convert into disordered
random coil and turn structures. Then, PCA analysis was applied
to investigate the influence of PB2 on the general conformational
space of PHF6 oligomer. We can see from Figure 5 that PHF6
oligomers in complex with PB2 exhibit the larger conformational
space and more disperse basins appear on the free energy
landscape than PHF6 oligomer without PB2. These results

FIGURE 5 | The free energy landscapemap of (A)PHF6_oligomer, (B)PHF6_oligomer + PB2_run1, (C) PHF6_oligomer + PB2_run2 and (D) PHF6_oligomer + PB2_run3.
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FIGURE 6 | The superposed representative structures of the first two classes of each run. Green and ice blue represent the first and second cluster, respectively.
The possible binding site S1, S2, S3 and S4 are circled in black from each parallel run.

TABLE 1 | Binding free energy (kcal/mol) between PHF6 oligomer and PB2 at four possible binding sites.

Contribution S1 S2 S3 S4

ΔEvdw −26.35 ± 3.75 −41.70 ± 6.58 −32.80 ± 3.99 −38.09 ± 3.92
ΔEele −40.30 ± 16.88 −44.07 ± 12.72 −71.18 ± 9.15 −26.02 ± 10.38
ΔGGB 55.36 ± 15.34 65.24 ± 12.61 83.63 ± 7.66 49.91 ± 9.22
ΔGnp −3.41 ± 0.38 −4.78 ± 0.65 −4.78 ± 0.35 −5.46 ± 0.44
ΔEMM −66.65 ± 19.15 −85.77 ± 16.84 −103.98 ± 9.48 −64.11 ± 10.30
ΔGsol 51.96 ± 15.15 60.45 ± 12.12 78.85 ± 7.55 44.44 ± 9.14
ΔGbind −14.69 ± 4.90 −25.32 ± 6.29 −25.13 ± 3.90 −19.67 ± 3.90

FIGURE 7 | The decomposition of binding free energy of PHF6 oligomer with PB2 at (A) S2 site and (B) S3 site. The residues with energy contribution larger than
1 kcal/mol are labeled.
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reveal that the initial ordered structure of PHF6 oligomer is partly
disrupted by PB2, which are consistent with the contact and
H-bond analysis results.

The Identification of the Most Possible
Binding Site of Proanthocyanidin B2 on
PHF6 Oligomer
The above results show that PHF6 oligomer can be influenced by
PB2 inhibitor, but it is still unknown how PB2 influences the
structure of PHF6 oligomer. Further analysis was performed to
uncover the detailed inhibition mechanism. First, clustering
analysis was executed to obtain the representative
conformations of trajectories with MMTSB toolset based on
K-means algorithm. During this process, 4, 5 classes of
conformations were generated for apo oligomer and three
trajectories of oligomer with PB2, respectively. Figure 6 shows
the first two representative classes for these four trajectories.
Compared with apo oligomer, the oligomers with PB2 exhibit
more twisted and disordered structure. It is suggested that PB2
can disrupt the ordered β-sheet structure of PHF6 oligomer.
Based on the representative conformations from clustering
analysis, four possible binding sites S1, S2, S3 and S4 are
identified as shown in Figure 6. Further, to examine the
binding ability of PB2 molecules at different sites, the binding

free energy of each binding site was then calculated by using the
MM-GBSAmethod. The binding free energy and detailed statistic
results were listed in Table 1. From Table 1, the electrostatic
interactions are the driving force and play an important role in
binding of PB2 to oligomer. What’s more, the van der Waals
interactions also contribute a lot to the total binding free energy.
By comparison, the ranking of binding free energy is—25.31 (S2)
<—25.05 (S3) <—19.62 (S4) <—14.68 (S1) kcal/mol. Due to the
lower binding free energy, S2 and S3 sites are considered as more
possible binding sites of PB2 on oligomer. Then the key residues
of S2 and S3 sites in interaction with PB2 were further analyzed.
Figure 7 shows that K311 residues contribute most at both S2 and
S3 site. Unexpectedly, a few ACE residues also have an obvious
contribution at S2 site (Figure 7A). But ACE terminal caps are
not natural residues, and they were added to cap the N-terminals
to avoid the abnormal electrostatic action between C-terminal
and N-terminal when the oligomer structure was prepared.
Considering that these residues make a great contribution to
the binding, the practical interaction between PB2 and PHF6
oligomer at S2 site may not be as strong as the predicted binding
free energy. Therefore, S3 site seems to be more reasonable than
S2 site. Figure 7B shows that V309 residues of strand O and P,
K311 residues of strand O, P and X as well as Y310 of strand P
make favorable contributions to the binding of PB2 to oligomer at
S3 site. According to the binding mode analysis, V309 residue
exerts enormous functions on hydrophobic interactions with
PB2. It is worth mentioning that the favorable contribution of
K311 of strand P is mainly derived from the strong H-bond
interactions with PB2. There are six H-bonds between O3/O9 of
hydroxy group of PB2 and NZ of K311 in strand P of the oligomer
(Table 2). Here, Y310.P represents residue Y310 of strand P for
simplification. To show the dynamics changes of hyrogen bonds
during MD simulation, we monitored the distances between O3/
O9 of PB2 and NZ of K311 in strand P of the oligomer
(Figure 8B). The distances are rapidly narrowed and keep
stable around 3.0 Å from 70 ns, validating the strong H-bond
interactions are formed in PB2 binding to PHF6 oligomer during
MD simulation. It coincides well with some previous reports that
the inhibitor can bind to lysine side chain located in the steric

TABLE 2 | The H-bond occupancy between PHF6 oligomer and PB2 (only gave
the hydrogen bonds with occupancy larger than 15%).

Acceptor Donor Occupancy (%)

Y310.P@O PB2@HO6 74.23
PB2@O3 K311.P@HZ2NZ 32.44
Q307.P@OE1 PB2@HO10 31.78
PB2@O3 K311.P@HZ1NZ 31.04
PB2@O3 K311.P@HZ3NZ 31.04
PB2@O9 K311.P@HZ3NZ 29.71
PB2@O9 K311.P@HZ2NZ 28.28
PB2@O9 K311.P@HZ1NZ 28.24
Y310.P@O PB2@HO7 22.62
Y310.O@O PB2@HO7 17.77

FIGURE 8 | (A) The H-bond interaction between PHF6 oligomer and PB2 at S3 site in the representative complex structure. (B) Time evolution of the distance
between residue K311 of strand P and PB2. The representative conformation is extracted by the cluster analysis with K-means algorithm.
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zipper of PHF6 oligomer (Landau et al., 2011; Mohamed et al.,
2013). As shown in Table 2 and Figure 8, there are numerous
critical H-bonds formed between hydroxy groups of PB2 and
Q307, Y310 and K311 of strand P as well as Y310 of strand O,
which may disturb initial inter-strand hydrogen bond network
and the stability of the oligomer. This result also explains why the
oligomer without PB2 keeps stable while the oligomer with PB2
becomes less stable. These detailed interaction results reveal that
PB2 can stably bind to adjacent strands (strand O and P) of PHF6
oligomer with hydrophobic and hydrogen bond interactions at
the S3 site. The binding process of PB2 to PHF oligomer along
500 ns simulation time is captured and shown in Supplementary
Movie S1.

CONCLUSION

In this work, we simulated PHF6 oligomer in the absence and
presence of PB2 to explore the molecular mechanism of
disruption of PB2 on PHF6 oligomer. Through comparing and
analyzing the change of contact and H-bond number, secondary
structure and conformation space, we find that PB2 can indeed
destabilize PHF6 oligomer. The results are in accordance with
experimental observations (Snow et al., 2019). Then to identify
the binding site of PB2 on the oligomer, cluster analysis was
applied and four possible binding sites were recognized. Among
them, S3 site is considered as the most possible one. Our results
show that PB2 can stably bind to PHF6 oligomer with
hydrophobic and H-bond interactions. Residues V309, Y310
and K311 are essential to the binding of PB2 to PHF6
oligomer, especially residues K311. There are many H-bonds
formed between O3/O9 of hydroxy groups of PB2 and NZ of

K311 of the oligomer. These interactions can disrupt the inter-
strand H-bonds and convert the ordered β-sheet structure into
the disordered one, ultimately disaggregating the PHF6 oligomer.
In general, PB2 is a promising Tau aggregation inhibitor and
clarifying the molecular inhibition mechanism will help to
develop more effective drugs to prevent Tau aggregation for AD.
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The development of computational models for assessing the transfer of chemicals across
the placental membrane would be of the utmost importance in drug discovery campaigns,
in order to develop safe therapeutic options. We have developed a low-dimensional
machine learning model capable of classifying compounds according to whether they can
cross or not the placental barrier. To this aim, we compiled a database of 248 compounds
with experimental information about their placental transfer, characterizing each
compound with a set of ∼5.4 thousand descriptors, including physicochemical
properties and structural features. We evaluated different machine learning classifiers
and implemented a genetic algorithm, in a five cross validation scheme, to perform feature
selection. The optimization was guided towards models displaying a low number of false
positives (molecules that actually cross the placental barrier, but are predicted as not
crossing it). A Linear Discriminant Analysis model trained with only four structural features
resulted to be robust for this task, exhibiting only one false positive case across all testing
folds. This model is expected to be useful in predicting placental drug transfer during
pregnancy, and thus could be used as a filter for chemical libraries in virtual screening
campaigns.

Keywords: placenta barrier permeability, machine learning, toxicology, clearence index, fetus:mother ratio

INTRODUCTION

Drug prescribing in pregnancy remains a complex and controversial issue for both pregnant women
and clinicians (Leong et al., 2019). According to the Center for Disease Control and Prevention
(CDC), 9 out of 10 women take at least one medication during pregnancy; and 70% of pregnant
women take at least one prescribed medication (https://www.cdc.gov/pregnancy/meds/
treatingfortwo/index.html). Over the past 30 years, the use of prescription drugs during the first
quarter trimester of pregnancy has increased by more than 60%. This suggests that at the beginning
of pregnancy, many women either present pre-chronic conditions (e.g., pre-gestational diabetes) or
develop pregnancy-specific diseases (e.g., hyperemesis gravidarum, intrahepatic cholestasis of
pregnancy, HELLP syndrome) which will require the administration of medications, including
those which might cause fetal toxicity or teratogenesis (Eke et al., 2020). To guarantee drug safety
during pregnancy, in vitro and in vivo experimental models were developed to study the transfer
and metabolism of drugs across the human placental barrier. Since the placenta is the most
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species-specific organ, human cell lines and tissue models are
considered more appropriate than in vivo assays performed in
rodent models for evaluating the transfer of chemicals across the
human placental barrier (Giaginis et al., 2012). In this regard, the
ex vivo human placental perfusion model, which preserves
placental structural integrity, and mimics the maternal and
fetal blood circulation, is more suitable (Gordon et al., 2016).
Unfortunately, in vitro and ex vivo methods cannot directly
predict in vivo outcomes, making the assessment of placental
transfer difficult (Hutson et al., 2011). On the other hand, in vivo
assays are more accurate in evaluating drug toxicity. In vivo data
can be obtained by measuring drug concentrations in the
umbilical cord blood and maternal blood at delivery (Freriksen
et al., 2020). The fetal-maternal concentration ratio is a widely
used indicator of placental permeability that has been applied to
drug monitoring (Hutson et al., 2011). However, there is an
obvious ethical barrier to develop in vivo studies to assess the risk
of transfer of chemicals across the placental membrane from the
mother to the fetus. In this scenario, there is an urgent need for an
integrated approach incorporating all the range of methodologies
(in vitro, ex vivo, in silico and in vivo studies) to accelerate
the availability of pharmacology data in pregnant women to
allow the safe and effective use of medication during this
physiological state.

Several Quantitative Structure–Activity Relationship (QSAR)
models have been published on this topic. Based on ex vivo
human placental perfusion results, Giaginis et al. Giaginis et al,
(2009) developed a model to predict placental transfer through
the calculation of the Clearance Index (CI) values for a set of 88
compounds. Using this approach, Zhang et al. Zhang et al, (2015)
estimated the placental barrier permeability, also expressed as CI
values, for a set of 65 compounds. Takaku et al. Takaku et al,
(2015) developed a QSAR model for predicting the in vivo
fetal–maternal blood concentration ratio (F/M ratio) for a set
of 55 compounds. Later, Wang et al., using the same chemical
library of 55 compounds as Takaku et al. Takaku et al, (2015),
developed a QSAR model following the Organization for
Economic Co-operation and Development (OECD) guidelines
based on multiple linear regression adjustments for predicting in
vivo log (F/M) values (Wang et al., 2020). These studies achieved a
reasonable predictive potential (the correlation between
measured and predicted values is acceptable); however, all of
them were validated with few samples. Giagnis et al. used only
nine compounds as a test set, Takaku et al. andWang et al. used a
test set of 14 compounds, and Zhang et al. utilized 19 compounds
for the test set. Takaku et al. used three features for their QSAR
model, and Wang et al. utilized two descriptors, which is a
reasonable approach taking into account the number of
samples in their set; however, Zhang et al. utilized 48
descriptors to construct their QSAR model.

In this study, we used available information on drug placental
transfer to train machine learning (ML) algorithms in order to
carry out the in silico prediction of whether a compound will cross
the placental barrier or not. ML approaches have been
consistently implemented in the last decade with different
degrees of success in the drug discovery pipeline (Carpenter
et al., 2018; Chen et al., 2018; Chan et al., 2019; Mak and

Pichika, 2019; Cavasotto and Di Filippo, 2021a); while a ML
model would not necessarily provide a clearer understanding of
why some drugs cross or do not cross the placental barrier, its
importance lies on the direct use for practical purposes, namely,
serving as a filter in a high throughput screening campaign of a
chemical library. To this purpose, we compiled a database of 248
compounds, collecting for each compound its CI value, and/or
F/M ratio, and/or assessment from the literature whether it
crosses or not the placental barrier. Considering the variability
of the experimental parameters collected between different
laboratories (Hutson et al., 2011), we decided to label each
compound in a binary fashion according to whether it crosses
(C) or does not cross (NC) the placental membrane, using the
above mentioned information and based on a proposed set of
criteria (see Methods). We used molecular descriptors as inputs
and the binary output (C/NC) to train the ML classifiers to
predict whether a molecule will cross the placental barrier or not.
After an extensive feature selection process and the evaluation of
different models, we present in this work a robust LDA classifier
trained with only four features that exhibits an excellent
performance. Furthermore, the model exhibits a critical
characteristic, namely, the amount of molecules that cross the
placenta that are misclassified as not crossing is almost null.

MATERIALS AND METHODS

Data Collection
We collected a dataset of 248 molecules with at least one of these
pieces of information: CI, F/M ratio (F/M), evidence from the
literature that the molecule crosses or not the placenta barrier
(Supplementary Table S1). If F/M ≤ 0.15, the molecule was
labeled as NC; if F/M ≥ 0.3, the molecule was labeled as C; to
avoid dubious cases, molecules in the range 0.15 < F/M < 0.3 were
not included in the set. In cases where only the CI value was
available, the molecule was labeled as C if CI > 0.80 (this
threshold was chosen based on the fact that whenever both
F/M and CI values were available, all molecules with CI > 0.8
have F/M > 0.3, i.e., they were labeled as C). If F/M ≥ 0.3 and CI <
0.8 the molecule was labeled as C, since we privileged results from
in vivo assays over those using the perfusion method. Several
molecules lacked of F/M and CI values, but evidence was found in
the literature to classify them as C or NC (cf. Supplementary
Table S1). Using these criteria, the dataset contained 213
molecules (∼86%) that cross the placental barrier, and 35
(∼14%) that do not. Following the standard convention, we
defined the larger class as the negative one.

Dataset Split
The standard training set/test set split is useful only for large size
datasets, which is clearly not our case. If, for example, 20% of the
dataset were used for testing, results would be reported only over
50 samples; furthermore, the results could be biased due to the
unique random split of the training and test sets. Instead, we
adopted a standard procedure when dealing with small datasets, a
5-fold cross-validation scheme. For this purpose, the dataset was
split randomly into five folds, where each fold approximately
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exhibits the C/NC distribution of the entire dataset, as shown in
Figure 1. Unlike a single training set/test set split, this scheme
allows the use of each of the samples both in the training set (four
times) and in the test set (once).

Molecular Descriptors
Molecules were protonated at physiological pH using the ICM
software (MolSoft, San Diego, CA, 2019) (Abagyan et al., 1994),
in a similar fashion as in earlier works (Cavasotto and Aucar,
2020; Cavasotto and Di Filippo, 2021b), and then each molecule
was visually inspected. To generate model inputs, molecules were
described using a set of 5,379 features, which are summarized in
Table 1. These were calculated with OpenBabel (O’Boyle et al.,
2008; O’Boyle et al., 2011) and PaDEL (Yap, 2011), and included
both physicochemical properties and substructure fingerprint
counts. These fingerprint count features encompass electro-
topological state indices (Hall and Kier, 1995), the presence of
SMARTS patterns (Klekota and Roth, 2008), and the presence of
chemical substructures.

Evaluation Metrics
A binary classifier predicts all the instances as either positive 1) or
negative (0). Considering that these instances can be classified
correctly or incorrectly, four types of outcomes can be
distinguished: True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). In general, classification
algorithms predict the probability that an observation will belong to
the positive class, i.e., will be 1. Tomake discrete predictions based on
the probability provided by the classifier, that is to say, to have a
binary outcome, it is necessary to define a threshold: Probabilities
below this threshold are discretized as 0 and above the threshold as 1.

The Accuracy (A) is the percentage of accurate predictions,
and is defined as

A � TP + TN
TP + FP + TN + FN

(1)

Precision (P), Recall (R), and the False Positive Rate (FPR) are
defined as

P � TP
TP + FP

,

R � TP
TP + FN

,

FPR � FP
FP + TN

(2)

The Fβ score, which is the weighted harmonicmean of P and R,
is expressed as

Fβ � (1 + β2) P × R

β2 × P + R
(3)

where β is a parameter that controls the balance to give more
weight to P (β < 1) or R (β > 1).

Due to the imbalance of the dataset classes, it is evident that
accuracy (Eq. 1) would not be a proper score for the classification
task. Indeed, a classificator that predicts the negative class for all
cases would have an accuracy of 86%. It has been shown that, for
imbalanced sets, computing precision and recall (Eq. 2) gives a
better insight about the classificator’s performance than the
Receiver Operating Characteristic curve, a common metric in
classification tasks (Saito and Rehmsmeier, 2015). In this context,
a low false positive rate is represented by a high precision score,
while false negatives are addressed by the recall. In this work, we
chose the Fβ score (Eq. 3) using β � 0.5 to penalize the classifying
of molecules that cross the barrier as not crossing, i., e,
classification of negative samples as positive samples. Thus, we
favor models that have a low number of false positives. A
common metric for unbalanced classification problems is the
Mathews Correlation Coefficient (MCC); since a recent study
discourages its use in unbalanced sets (Zhu, 2020), we decided to
use only the Fβ score due to its direct implementation in
penalizing false positives.

The Precision-Recall Curve (PRC) is constructed by plotting P
in terms of R for different probability thresholds. The Average
Precision (AP) is a scalar that summarizes the PRC, in the same
manner as the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve. Strictly, the AP is the
area under the PRC.

AP � ∫1

0
P(R)dR (4)

FIGURE 1 | The dataset of 248 compounds was divided randomly into
five folds. Each of these folds presents, approximately, the same distribution of
positive and negative samples as the full dataset.

TABLE 1 |Molecular features calculated with OpenBabel and PaDEL. Physicochemical properties include classical descriptors such as molecular weight, rotatable bonds,
number of Hydrogen bond donors and acceptors, etc.

Source Name Descriptors Number

OpenBabel 1D and 2D descriptors Physicochemical properties 13
PaDEL EState fingerprints Electrotopological state indices 79
PaDEL KlekotahRoth fingerprints Presence of SMARTS patterns 307
PaDEL Substructure fingerprints Presence of chemical substructures 4,860

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7146783

Di Filippo et al. Placental Transfer Prediction Using ML

116

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


In this work, we approximated this integral by a sum over the
precisions at every possible threshold value (n) multiplied by the
change in R, according to

AP ≈ ∑
n

Pn(Rn − Rn−1) (5)

where Rn and Pn are, the recall and precision values at the nth
threshold value, respectively.

RESULTS AND DISCUSSION

The objective of this study was to provide a ML model capable of
classifying compounds either as crossing or not crossing the
placental barrier. To this aim, using a dataset of 248
compounds (see Methods), we trained and compared several
ML models, searching for optimal low-dimensional sets of
descriptors. Considering that the odds of classifying a
molecule that crosses the placenta as not crossing must be
reduced to a minimum, we chose F1/2 as the metric to
evaluate performance, thus favoring models that have a low
number of FPs; while having a high false rate of predictions is
always undesirable, it would be highly risky in this specific case.
Due to the high features/samples ratio, we decided to keep the
number of descriptors in the final models to a minimum.

Design of the Feature Selection Protocol
Considering the size of our dataset (248 samples), and the
number of calculated features (∼5.4 thousand descriptors), we
performed a feature selection process to avoid over-fitting.
Initially we considerably reduced the high dimensionality of
the feature space by eliminating from the PaDEL set of
descriptors variables that did not provide significant
information, by eliminating features (specifically, fingerprint
counts) that had less than three matches within the molecules
of the dataset. This decision was principally based on the trade-off
between the number of remaining descriptors (by removing
features) and the information loss. After this process, the
number of descriptors fell to 760. Needless to say, this
procedure is independent of the class labels, and thus can be
done before the cross validation split.

To reduce even further the set of 760 features, we used a
genetic algorithm (GA) which essentially searches for sets of
features with a high F1/2 score over a given training set, as
described below.

Genetic Algorithm
From a training dataset composed of a set of molecules with their
corresponding descriptors, the GA generated a population of
1,000 individuals, where each individual was defined as a set of six
randomly selected features; we also explored the use of
individuals described with nine and 12 features, but did not
find any improvement over the use of six features (see Additional
Genetic Algorithm Runs Using Identical Initial Conditions). Then,
each individual was used to train a ML classifier, and
subsequently ranked in terms of the obtained F1/2 score over

the training data. After having this initial population of 1,000
individuals ranked, the following iterative process was carried
out: 1) the set of features with the best score of the population (the
optimal individual) was assessed; 2) random sets from the top half
of the population were selected in pairs and combined until 500
new sets were obtained; with two individuals, a new agent was
generated by retrieving the first three features from one individual
and the other three features from the other individual; 3) the F1/2
score was calculated for each of these 500 generated sets and,
independently of the results, these new individuals replaced the
bottom half from the past population; 4) the new population of
1,000 features was re-ranked. This iterative process was carried
out for 199 iterations, which allowed both the convergence of the
method (the top ranked individuals were very similar) and the
exploration of the feature space (as explained below).

Within this process, three operations were performed: 1) every
time a new set of features was generated (by the combination of
two other sets), it was assigned a probability of 0.2 of being
mutated. If it was mutated, the new agent would change all its
variables with those of the optimal individual, replacing two
features with two random ones from the major set; in certain
sense, this is a way to explore the “vicinity” of the best scored
individual; 2) for each generation we replaced one third of the
reproducible population (top half of the population) with new
random agents; 3) finally, after 50 iterations, a new initial
population of 1,000 individuals was generated and ranked, and
the current population was replaced entirely except for the top 10
individuals. The last two operations were performed for the sake
of augmenting the exploration of the feature space.

Coupling the Genetic Algorithm With the Cross
Validation Scheme
Following Hastie et al. Hastie et al, (2009), we first split the data
according to the cross validation scheme, and then used the
feature selection method described above with the training data.
Specifically, we proceeded as follows:

1) Divide the total amount of samples into 5 cross-validation
folds (k � 1, 5) at random as shown in Figure 1 and generate
five partitions, where partition k corresponds to using fold k as
a test set, and the remaining four folds as the training set.

2) For each partition, the GA is used to find a set of predictors
that exhibits a high value of the F1/2 score, calculated only on
the training samples.

3) Assess shared features between the optimal sets found in each
of the five partitions (common features), as illustrated in
Figure 2.

4) Evaluate the performance of the set of common features over
the corresponding test sets of each partition, as shown in
Figure 3.

As is standard in the use of cross validation schemes, we report
the average F1/2 scores over the five training sets, and over the five
test sets. For simplicity, the process depicted in Figure 2 of
finding a set of “Common features” and evaluating it as shown in
Figure 3 will be referred from now on as a “run”.
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Selection of the Best Machine Learning
Model
Common sets of descriptors were searched for four different ML
algorithms: Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Random Forest (RF), and Support Vector
Machines (SVM). For this task, we ran one GA per model,
feeding each algorithm with the same initial population.
Before displaying the results corresponding to the four
methods, we will illustrate the feature selection protocol with
the LDA. In Table 2 we show the best sets of features found in
each partition for the LDA model by running a single GA. As
mentioned earlier, only the F1/2 score over the training set is

reported at this stage. These sets of features correspond to the
“Selected features” shown in Figure 2.

Across the five sets of features shown in Table 2, there are four
repeated descriptors: KRFPC413 (2 times), KRFPC566 (4 times),
KRFPC608 (4 times), and KRFPC4830 (2 times). Although the
GA was fed with sets of six features, only these four repeated
features constitute the set of “Common features” (cf. Figure 2).
Using these four features we trained another LDA model
(Figure 3). This model exhibited mean F1/2 scores of 0.80 and
0.77 in the training and test sets, respectively (see Table 3). The
average F1/2 score of 0.77 over the test sets corresponded to
average values of P and R of 0.93 and 0.51, respectively. This

FIGURE 2 | Feature selection scheme. From left to right, training data from partitions 1-5 are fed to a GA. The GA yields a solution for each partition (“Selected
features”) and finally, the shared features between those solutions are collected (“Common features”).

FIGURE 3 | Evaluation procedure of the common sets of features with the 5-fold cross validation scheme.
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represents a very good performance, and a priori indicates that it
is plausible to select features in this manner.

The same process was carried out for the other 3 ML methods.
The sets of common features found for each model, as well as the
training and test F1/2 scores are summarized in Table 3. RF and
SVM models were prone to over-fitting, as they achieved a null
averaged R over the test sets (non-defined F1/2 score), and the LR
model displayed a significantly poorer performance compared to
LDA. We thus continued the analysis with only the LDA model.
While different alternatives could be pursued to improve the
performance of the other ML models, the aim of this study is to
find a robust and accurate model exhibiting high performance.

Linear Discriminant Analysis Model
Analysis
Despite of having promising results with the LDA model
(Table 3), at this point it is not yet clear whether the found
set of features is robust. Considering the random nature of the
GA, we analyzed how the different parameters of the feature
selection process could impact on the results. First, we performed
five additional runs using the same initial conditions of the GA
used for the LDA model shown in Table 3. Then, we focused on
three main parameters of the initial conditions of the GA, namely,
the number of features used to describe the individuals of the GA,
the cross validation split, and the initial population fed to the GA,
and performed additional runs maintaining two of the mentioned
initial parameters fixed, while varying the third one. In the
following results, “run” refers to the finding of a set of
common features” and evaluating it (see Figures 2, 3).

Additional Genetic Algorithm Runs Using Identical
Initial Conditions
Using the same initial population and cross validation split as in
the first ML model selection (Table 3), we performed five
additional runs of the GA for the LDA model, obtaining

another five sets of common features. Results are summarized
in Supplementary Table S2. In four of the five runs, KRFPC566
and KRFPC608 belonged to the set of common features and,
remarkably, KRPFC3948 was repeated in the five sets. This
indicates, that the KRFPC566 and KRFPC608 features, which
were found in the first LDAmodel (Table 3), are retrieved despite
of the inherent randomness of the GA, and that the first obtained
solution missed an apparently important feature, KRFPC3948.

Extending the Size of the Genetic Algorithm
Individuals
We performed five runs (see Figures 2, 3) with sets of nine
features, and five runs with sets of 12 features. Results are shown
in Supplementary Tables S3, S4.

Every set of common features exhibited a low performance in
comparison to the LDA model using six features in the GA
(Table 3). Over the training data, the highest F1/2 score was of
0.60. In the test data, we found one common set for which the
model’s performance was of 0.50 (run 3, Supplementary Table
S3), and in the rest of the runs, the corresponding models
achieved null recall values. This shows that using nine or 12
features in the GA shows no advantage on the performance of the
LDA model.

Genetic Algorithm Runs Changing the Cross
Validation Split
We performed fifteenmore runs using the same initial population
fed to the GA, but changing the cross validation split three
times–five runs per cross validation split. Results are
summarized in Supplementary Tables S5-S7. In the first split
(Supplementary Table S5) the KRFPC566 feature was found in
the common set of features in four of the five runs, which further
supports the hypothesis of this descriptor being a key feature. The
same applies to the KRFPC3948 descriptor, which was found in
three of the five common sets. Two additional features were
found: the KRFPC435 descriptor, repeated in two of the five

TABLE 2 | Best set of features (“Selected features”, see Figure 2) obtained on each partition of the cross validation split based on the training F1/2 score for the LDA model.

Partition Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 F1/2 Train

1 KRFPC608 KRFPC841 KRFPC1773 KRFPC3224 KRFPC3591 KRFPC4830 0.87
2 KRFPC413 KRFPC566 KRFPC608 KRFPC1638 KRFPC3399 SubFPC19 0.90
3 KRFPC442 KRFPC557 KRFPC566 KRFPC3400 KRFPC3741 KRFPC3948 0.89
4 KRFPC413 KRFPC566 KRFPC608 KRFPC3139 KRFPC3737 KRFPC4006 0.87
5 KRFPC326 KRFPC566 KRFPC592 KRFPC608 KRFPC3730 KRFPC4830 0.83

TABLE 3 | Repeated features across different partitions for the first run of the GA (“Common features”, see Figures 2, 3) using different ML models. The frequency each
feature is repeated within partitions is shown in paretheses. The F1/2 Train and F1/2 Test columns refer to the average score across the different training folds and test
folds, respectively.

Model Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

F1/2
train

F1/2
test

RF KRFPC476 (2) KRFPC3707 (2) KRFPC4556 (2) SubFPC3 (2) SubFPC301 (2) MP (2) 1.0 -
LDA KRFPC413 (2) KRFPC566 (3) KRFPC608 (4) KRFPC4830 (2) - - 0.80 0.77
SVM KRFPC1564 (2) KRFPC3946 (2) SubFPC169 (2) - - 0.72 -
LR KRFPC608 (4) ROTB (2) - - - - 0.59 0.54
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common sets, and the KRFPC4830 descriptor, found in three of
the five common sets. Remarkably, one of the common sets
found consisted of these four features and obtained an average
training F1/2 score of 0.81 and an average test F1/2 score of 0.78,
matching the top performance of the first LDA model (Table 3).
Both these sets of common features that display top
performances (at least up to this point) share two features,
KRFPC566 and KRFPC4830, which indicates that KRFPC4830
may also be a key descriptor.

Although in the second cross validation split (Supplemenatry
Table S6) the observed top performance was of 0.54 in the test set,
an already encountered descriptor, the KRFPC608 feature, was
found repeated in three of the five runs. In the last cross validation
split (Supplementary Table S7), the top F1/2 score achieved in the
test set was of 0.64. The KRFPC435 descriptor was found again in
these sets of runs - repeated in three of the five runs-, and also the
KRFPC3392 descriptor, found in two of the five runs.

Genetic Algorithm Runs Changing the Initial
Population
We also performed five extra runs in which the cross validation
split was maintained (the same as in the initial run), but changing
the initial population fed to the GA. Strictly speaking, this was
performed with three different initial populations, totalizing
fifteen extra runs. Results are shown in Supplementary Tables
S8-S10. The KRFPC566 descriptor was found to be repeated in
eight of the fifteen runs, thus clearly indicating that this feature is
indeed important to achieve a high F1/2 score with the LDA
model. For the first change in the initial population, i.e., the first
five runs, the KRFPC3948 descriptor was found in four of the five
common sets. Although it was not found repeated in the
remaining ten runs, it must be taken into consideration that
this descriptor had already been found previously in a high
performance set (Supplementary Table S5). The KRFPC435
descriptor shows a similar behavior, which was found earlier
along with the KRFPC3948 descriptor (Supplementary Table
S5): the results of the second change in the initial population
(Supplementary Table S9) show that the KRFPC435 descriptor
is repeated in two of five common sets. Other descriptors were
also found repeated within the common sets, but at this point we
considered them as irrelevant since they did not show up in any of
the previous results, specifically, the KRFPC3899 and the
KRFPC669 descriptors. Similar to the change in the cross
validation split, where one particular change led to a top
performing model (Supplementary Table S5), and the two
other led to models with a poor performance (Supplementary
Tables S6, S7), the same happens with the change in the initial
population: The performances shown in Supplementary Tables
S9-S10 are low in comparison to previous results. Nonetheless, a
particular run shown in Supplemenatary Table S8 presents the
best performance so far. This set of features included the
KRFPC435, KRFPC566 and KRFPC3948 descriptors, along
with KRFPC3399 and KRFPC3899. The first three descriptors
were already included in a high performance model (Run 1 from
Supplementary Table S5). Presumably, the last two descriptors
are only complementary features (to the first three) related to the
change of the initial population.

Final Linear Discriminant Analysis Model
From the previous results (Table 3; Supplementary Table S4-
S10), we show in Table 4 the three sets with the best
performances. These correspond to the LDA run from
Table 3, run 1 from Supplementary Table S5, and run 1
from Supplemenatary Table S8.

To compare these sets of features, we assessed, feature by
feature, in which of the previous runs (Table 3; Supplementary
Table S4-S10), each descriptor was present. For each table, we
distinguish three cases: 1) the feature was not present in any of the
runs of the corresponding table; 2) the feature was present only in
one run; 3) the feature was present in more than one run. To
quantify the appearance of features across different runs we
assigned a partial score to each of the cases described before,
being 0 for 1), ½ for 2) and 1 for 3). Taking into account that in
Table 3 there is only one LDA run, the sum of partial scores
ranges from 0 to 7.5. The feature importance was defined, for each
feature, as the sum of partial scores normalized by 7.5, so that the
ranking goes between 0 and 1. This information is summarized in
Table 5, which allows the visualization of which features are
repeated even when the initial conditions of the selection process
were changed consistently, like KRFPC566, and which features
appear to be dependent on a particular condition of the same
process, such as KRFPC608, which appears only in Table 3;
Supplementary Table S4, corresponding to the exact same
conditions. The comparison between the sets of features
presented in Table 4 in terms of the feature importance of
each descriptor supports the fact that the set of features
composed by KRFPC435, KRFPC566, KRFPC3948 and
KRFPC4830 descriptors (Table 4, highlighted in bold) is the
most robust. Intuitively, the selected features were the ones which
were found more often in the different runs in which the initial
conditions of the optimization process were changed. Given a
compound, these four features describe the number of times a
specific SMARTS pattern is repeated along the molecular
structure. The SMARTS associated with each descriptor are
shown in Table 6.

Analysis of Misclassified Molecules Within
the Final Model
It is important to bear in mind that the scores of the final model
shown in Table 4 (highlighted in bold) were achieved over a
particular cross validation split. To ensure that the score achieved
with these features was not highly dependent on that particular
split, we generated 100 different splits and evaluated the model’s
scores on each one (see Figure 4).

As can be seen, the mean scores are close to the achieved values
in the initial split. For this reason, we present the full performance
over the test set on each fold (Table 7) using that initial cross
validation split. TP, FP, FN and TN are also computed to show
exactly how the LDA model is classifying the compounds.

Remarkably, there is only one negative sample misclassified,
thus achieving the most important objective sought for this
classifier. A great balance is observed between the total
number of TPs (17) and FNs (18), which in conjunction with
the correct classification of the negative class, gives an overall
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excellent performance. To use this model prospectively, given a
new set of molecules, the final model would have to be trained
with our entire dataset of 248 compounds. For the new
compounds, we would only calculate the KRFPC435,
KRFPC566, KRFPC3948 and KRFPC4830 descriptors, and
placental transfer would be predicted by inputting the new set
of molecules to the ML model.

False Positive Case
The only FP observed in the test sets corresponds to Tubocuraine
(CID � 6,000), which belongs to fold 2. As a matter of fact, when

this compound is used to train the LDA model, and this trained
model is used to make predictions over the corresponding
training set (partitions 1, 3, 4, and 5), this compound is also
miss-classified, so this is the only compound belonging to the
negative class that is misclassified both in the training and
test sets.

Compound 6,000 is described with the following
descriptors: KRFPC435 � 4, KRFPC566 � 0, KRFPC3948 � 0
and KRFPC4830 � 0. Similar molecules from the database in
terms of these four features, i.e., compounds with KRFPC435
> 0 and the rest of the descriptors equal to zero, are listed in

TABLE 4 | Best set of common features found in the complete set of runs.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 F1/2 Train F1/2 Test

LDA (Table 3) KRFPC435 KRFPC566 KRFPC3948 KRFPC4830 - 0.81 0.78
Run 1 (Supplementary Table S5) KRFPC413 KRFPC566 KRFPC608 KRFPC4830 - 0.80 0.77
Run 1 (Supplementary Table S6) KRFPC435 KRFPC566 KRFPC3948 KRFPC3399 KRFPC3899 0.80 0.78

TABLE 5 | Analysis of the repeated features over different runs. The column headers display each of the features that appear in Table 4. The rows contain information on
whether these features were present or not in each of the performed runs: XX indicates that the feature was repeated across common sets of features, and X indicates
the presence of the feature in only one common set.

KRFPC435 KRFPC566 KRFPC3948 KRFPC4830 KRFPC413 KRFPC608 KRFPC3399 KRFPC3899

Initial run (Table 3) - X - X X X - -
Extra five runs (Supplementary Table S2) - XX XX X - XX - -
Change in cross validation split
(Supplementary Table S5)

XX XX XX X - - - X

Change in cross validation split
(Supplemenatry Table S6)

- X - - - XX - -

Change in cross validation split
(Supplementary Table S7)

XX - - X - X - -

Change initial population (Supplemenatary
Table S8)

X XX XX - - - X XX

Change initial population (Supplementary
Table S9)

XX XX X X X - - -

Change initial population (Supplementary
Table S10)

X XX - X - - - -

Feature importance 0.53 0.8 0.47 0.4 0.13 0.4 0.07 0.2

TABLE 6 | SMARTS patterns associated with set of descriptors of the final LDA model. R represents any atom other than Hydrogen.

KlekotahRoth
Fingerprint Count

SMARTS Molecular Structure

KRFPC435 [#6]-[#7](-[!#1])-[#6]-[#6]-[!#1]

KRFPC566 [!#1]-[#6]-[#6]-1 � [#6]-[#6] � [#6]-[#6] � [#6]-1

KRFPC3948 [#6]-[#7]-[#6]-[#6]-[#8]

KRFPC4830 [#8]-[#6]-[#6]-[#8]-[#6] � [#8]
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Table 8, together with their actual placental transfer class (C
or NC).

Taking into account that compound 6,000 is the only FP in the
training and test sets, and considering that the rest of the
compounds that cross the placenta shown in Table 8 are
correctly classified whether they were in the training or the
test set, it is reasonable to suppose that in the case of having
null values in the KRFPC566, KRFPC3948 and KRFPC4830
descriptors, classes are distinguished based on a threshold in
the KRFPC435 value: compounds with KRFPC435 ≤ 4 cross the
placenta, while compounds with a KRFPC435 > 5 do not cross it.

To assess which threshold our LDA model–trained with the
248 compounds has learned, we inputted several artificial samples
with KRFPC435 values ranging from one to nine and the rest of

the descriptors with values equal to zero. We confirmed that
compounds are classified as not crossing the placental barrier
with KRFPC435 ≥ 4, which explains why compound 6,000 is
misclassified.

False Negative Cases
From Table 7 18 FNs were identified in the test sets. Inspecting the
representation of the database in terms of the optimal descriptors,
we found that the majority of the compounds that cross the
placenta were described by null values in the four descriptors
(161 compounds), or had only KRFPC3948 > 0 (31 compounds).
Of the 18 FNs, we found 17 compounds that had one of the
representations described before (corresponding to compounds
crossing the placenta): 12 compounds had all the four values equal
to zero and five compounds had only KRFPC3948 > 0. The
remaining FN corresponds to compound 441243. Surprisingly,
there is another compound (CID � 5362440) with the same
representation (KRFPC435 � 0, KRFPC566 � 1, KRFPC4830 �
0 and KRFPC3948 � 3) that does not cross the placenta and which
is not misclassified. As these two compounds belong to different
folds, and effectively checking that there is no compound that
crosses the placenta with this exact representation, we assume that
the misclassification of compound 441243 is directly related to the
cross validation split. Unlike the other 17 FNs, miss-classifications
like compound 441243 could be avoided in prospective
applications (by the use of both 441243 and 5362440
compounds in the training set).

TABLE 7 | Results using the best set of features (KRFPC435, KRFPC566,
KRFPC3948 and KRFPC4830) on each partition over the corresponding test
sets.

Partition F1/2
Test

Precision Recall AP TP FP FN TN

1 0.79 1.0 0.43 0.54 3 0 4 43
2 0.74 0.8 0.57 0.63 4 1 3 42
3 0.66 1.0 0.29 0.40 2 0 5 43
4 0.79 1.0 0.43 0.73 3 0 4 42
5 0.93 1.0 0.71 0.76 5 0 2 42
Average 0.78 0.96 0.49 0.61 - - - -

FIGURE4 | Performance of the final LDAmodel over 100 different five cross validation splits. The red line indicates themean score on each case. Left: Training data.
Right: Test data.

TABLE 8 | Compounds from the database similar to Tubocuraine (CID � 6,000, in bold) in terms of the four descriptors of the final model. The“Cross” column contains the
actual placental transfer class (C or NC).

CID Name KRFPC435 KRFPC566 KRFPC3948 KRFPC4830 Cross

47,320 Atracurium Besilate 8 0 0 0 NC
21,233 Dimethyl-Tubocurarine 6 0 0 0 NC
6,000 Tubocuraine 4 0 0 0 C
5,750 Pethidine (Meperidine) 2 0 0 0 C
4,062 Mepivacaine 1 0 0 0 C
43,708 Cefotiam 1 0 0 0 C
89,594 Nicotine 1 0 0 0 C
5288826 Morphine 1 0 0 0 C
2,801 Clomipramine 1 0 0 0 C
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It is clear that the majority of FNs arise due to there being
compounds belonging to different classes (C-NC) with the same
representation. In fact, the positive samples that were correctly
classified in the test sets (Table 7) presented clear distinctions in
their representations with respect to negative samples. This
indicates that to reduce the amount of FNs, at least one more
feature should be incorporated. As simple as this may sound,
directly incorporating new descriptors to this particular set of
features would introduce a bias into the solution [because the
relationship between descriptors and classes (C-NC) is already
known for the entire dataset], and would finally result in an
overfitted model. Although this is a limitation of our method,
taking into account that the amount of TPs is at an acceptable
level, and that the main goal of having low amounts of false
positives was fulfilled by the use of the F1/2 score, we consider
performing further GA searches or modifying any of the feature
selection protocol parameters unnecessary.

CONCLUSION

The study of chemical transfer across the placental membrane
from themother to the fetus is of the utmost importance due to its
importance to drug safety, especially in a time when drug
prescription during pregnancy is common. Taking into
account that in vivo data cannot be obtained for ethical
reasons, the main difficulty arises from the fact that in vitro
and ex vivo methods cannot directly predict in vivo outcomes. In
this scenario, the use of in silico approaches to complement ex
vivo and in vitro models constitutes an interesting strategy to
tackle this challenge.

Although QSAR models have been developed, the datasets
used for developing these models were rather small (<100
compounds), and the models validated only on small test sets
(<20 compounds). In this study, a database of 248 compounds
was compiled, and although this still remains a small dataset, to
our knowledge it is the largest reported so far. Also, unlike those
studies, which predicted either the CI or the F/M ratio, we treated
the placental transfer as a binary classification problem (cross/not
cross) rather than as a regression task for a continuous variable.

The results shown in this work support the use of our feature
selection protocol, which involves the implementation of a GA
that maximizes the F1/2 score in conjunction with a five cross
validation scheme. The final LDA model displayed key
characteristics that are desirable for a ML classificator in this
context: 1) it relies on a set of only four features to discriminate
between classes; 2) it correctly classifies the majority of both

classes; 3) most importantly, the number of molecules that cross
the placenta predicted by the LDA model as not crossing was
very low.

One limitation of our ML model is that it was trained with a
low amount of data (N ∼ 250). Strictly speaking, this limitation is
not intrinsic to the model itself, but related to our knowledge of
placental transfer itself, since there is scarce reliable information
publicly available.

As we highlighted before, despite having a low amount of
positive (non-crossing) samples, the fact of having only one false
positive along the test sets is remarkable. Considering also that a
significant number of molecules within the positive class was
correctly classified in the test sets (approximately, half of the
corresponding positive samples), this supports the incorporation
of a ML predictor of placental membrane crossing in a drug
discovery campaign.
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Identification of Potential Binding
Sites of Sialic Acids on the RBD
Domain of SARS-CoV-2 Spike Protein
Bingqian Li1,2†, Lin Wang1†, Huan Ge3†, Xianglei Zhang1, Penxuan Ren1, Yu Guo4,
Wuyan Chen5, Jie Li 5, Wei Zhu1, Wenzhang Chen1, Lili Zhu3* and Fang Bai1*

1Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University,
Shanghai, China, 2Department of Chemistry, Imperial College London, London, United Kingdom, 3State Key Laboratory of
Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and
Technology, Shanghai, China, 4State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University,
Tianjin, China, 5National Center for Protein Science Shanghai, Shanghai, China

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is
still an emergent pandemic for humans. The virus infection is achieved by penetrating its
spike protein to host cells via binding with ACE2. Moreover, recent studies show that
SARS-CoV-2 may have multiple receptors that need to be further revealed. SARS-CoV-2
shares similar sequences of the spike protein with the Middle East Respiratory Syndrome
Coronavirus (MERS-CoV), which can invade host cells by binding to either DPP4 or sialic
acids. Sialic acids can be linked to the terminal of glycoproteins and gangliosides are used
as one of the receptors of many types of viruses. Therefore, it is very interesting to
determine whether sialic acid is a potential receptor of SARS-CoV-2. To address this
question, we took N-Acetylneuraminic acid (Neu5Ac), a type of predominant sialic acid
found in human cells, as the molecular probe to computationally search the surface of the
spike protein to locate the potential binding sites of Neu5Ac. SPR analysis and mass
spectrum analysis confirmed the interaction between Neu5Ac and spike protein. This
study shows that sialic acids can moderately interact with the spike protein of SARS-CoV-
2 by binding between the two RBDs of the spike protein, indicating it could be a potential
secondary or auxiliary receptor of SARS-CoV-2.

Keywords: SARS-CoV-2, receptor, sialic acid, RBD domain, spike protein

INTRODUCTION

The new coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). COVID-19 has caused a worldwide health emergency with parallel
effects on the economy. Over a hundred million cases were reported by February 20, 2021, with
thousands of deaths every day (World Health Organization, 2021). The molecular mechanisms of
SARS-CoV-2 infection are still not clear and urgently needed to be explored. To date, several medical
agents, including small molecular agents and vaccines are in the process of clinical trials (Liu et al.,
2020).

SARS-CoV-2 belongs to the beta-coronavirus family which contains Human beta-Coronavirus
(HCoV-OC43), Human beta-Coronavirus (HCoV-HKU1), Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV), and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)
(Hu et al., 2015; Hulswit et al., 2019). It shares similarity in sequence with SARS-CoV and MERS-
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CoV, being with identity of 79 and 50%, respectively, (Lu et al.,
2020; Petrosillo et al., 2020) Compared with MERS-CoV and
SARS-CoV, the SARS-CoV-2 virus has a relatively low mortality
rate (around 2.3%) (9.5% for SARS-CoV and 34.4% for MERS-
CoV), but a significantly higher rate of transmission (DÖmling
and Gao, 2020; Petrosillo et al., 2020).

Coronavirus enters the host cell mainly by binding to the host
cell receptor. Both SARS-CoV and SARS-CoV-2 share the same
human cell receptor, angiotensin-converting enzyme 2 (hACE2),
while MERS-CoV enters human cells by binding to dipeptidyl-
peptidase (DPP4) (Wan et al., 2020). Cell surface protease
TMPRSS2 and lysosomal cathepsins activate the SARS-CoV-2
and may cleave the spike protein at two distinct sites. This
presence of pre-activation enables SARS-CoV-2 to be less
dependent on target cell activation. Studies have also shown a
higher binding affinity to hACE2 for SARS-CoV-2 than for
SARS-CoV (Hoffmann et al., 2020). Two other potential host
receptors for SARS-CoV-2 entry, kringle containing
transmembrane protein 1 (KREMEN1) and asialoglycoprotein
receptor 1 (ASGR1), were recently discovered (Gu et al., 2020).

Sialic acid is a generic term for a family of derivatives of
neuraminic acid, an acid sugar with a nine-carbon backbone. It is
generally found in the terminal position on a variety of
glycoconjugates, which cover the surfaces of many different
cell types, playing important cellular functions, including
mediating the attachment, and entry of types of viruses, such
as influenza viruses, orthomyxoviruses, infectious salmon anemia
virus, as well as coronavirus (Matrosovich et al., 2015). HCoV-
OC43 and HCoV-HKU1 can interact with 9-O-acetyl-sialic acid
to infect the host cell (Hulswit et al., 2019; Tortorici et al., 2019).
Different from HCoV-OC43, MERS-CoV also shows a stronger
preference interaction with α2,3-linked sialosides other than
α2,6-linked sialosides (Park et al., 2019). One recent study
reported the identification of binding between SARS-CoV-2
and sialic acids (N-acetyl neuraminic acid) by using a new
lateral flow detection system. (Baker et al., 2020) This
indicates that sialic acids may be a candidate receptor, and
their binding molecular mechanisms with spike protein need
to be further studied.

SARS-CoV-2 is formed as an enveloped structure that
contains RNA genome, spike (S) protein, nucleocapsid (N)
protein, membrane (M) protein, and envelop (E) protein. The
homo-trimeric S protein contains two subunits, S1 and S2,
covering the cleavage sites at R685 and S686 (Hu et al., 2015;
Woo et al., 2020). The N-terminal S1 subunit mainly comprises
the N-terminal domain (NTD) and receptor-binding domain
(RBD), which is responsible for hACE2 binding. However,
KREMEN1 and ASGR1 bind to both NTD and RBD (Gu
et al., 2020). The C-terminal S2 subunit is mainly made up of
heptad repeats 1 and 2 (HR1 and HR2), as well as the
transmembrane domain (TM), which specializes in membrane
fusion while entering the cell (DÖmling and Gao, 2020; Woo,
et al., 2020).

The spike glycoprotein of SARS-CoV-2 is usually in a “down”
conformational state to escape from the immune response. When
it approaches a target cell receptor, RBD shifts its position to bind
with a human cell receptor, which turns the protein into an “up”

conformational state (Shang et al., 2020). The types of
conformational structures of S protein and compositions were
fully discovered using cryo-EM, with 31% S protein in the “down”
conformational state, 55% in the state with one RBD “up”, and
14% in the state with two RBDs “up” (Cai et al., 2020; Ke et al.,
2020). In reality, S protein is largely shielded by glycans, which are
utilized for thwarting immune response from the host. N-glycans
at N165 and N234 play a critical role in the process of the state
changes of RBD (Casalino et al., 2020) Previous studies have
predicted 22 N-glycosylation and 4 O-glycosylation sites on the
surface of S protein (Woo et al., 2020). 17 of 22 N-glycosylated
and 2 O-glycosylated sites were observed using the cryo-EM
technique. (Shajahan et al., 2020; Woo et al., 2020).

Computational techniques have already been widely used in
drug discovery. Although experimental technologies provide
straightforward observation in studies, they are normally time-
consuming and laborious. Moreover, recent techniques focus on
studying biological molecular mechanisms by using molecular
dynamics (MD), which improve the understanding of reaction
mechanisms and protein dynamic behavior (Karplus and
McCammon, 2002). For example, Arantes’ group used MD
simulations to explore strategies for developing vaccines of
SARS-CoV-2 (Arantes et al., 2020). Deganutti’s group focused
on identifying druggable binding sites on the SARS-CoV-2 spike
protein by using supervised molecular dynamics. (Deganutti
et al., 2021). Chauhan’s team outlined some key aspects in
molecular structure that may affect inhibition performance in
organic corrosion inhibitors using molecular dynamics
techniques (Chauhan et al., 2021).

Yadav’s group tested FDA-approved drugs on several new
SARS-CoV-2 proteases using molecular docking techniques
(Yadav et al., 2020).

The present study designed a comprehensive framework by
combining multiple computational modeling methods with
experimental technologies, aiming to determine whether and
how sialic acids bind with the spike protein of SARS-CoV-2.
Several studies have shown glycosylation can alter the
thermodynamic stability and folding as well as conformations of
proteins, resulting in an increase in protein free energies (Shental-
Bechor and Levy., 2008; Gavrilov et al., 2015). Hence, this work also
studies whether the binding of sialic acids may also be affected by
the existence of glycan ligands on the surface of the spike protein.

RESULTS AND DISCUSSION

Identification of Possible Binding Sites of
Sialic Acids
To explore the potential binding sites of sialic acids on the surface
of the spike protein, in which both the conformational change
and the glycosylation states were considered, a series of ligandable
binding site identification simulations were performed on the
four different modeled protein structures of the spike protein
(illustrated in Supplementary Figure S1). Both RBD “down” and
one RBD “up” conformations, as well as the glycosylation, were
considered. As a result, four protein structures were constructed
based on the different RBD conformational states and
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glycosylated states. A detailed description of the protein structure
modeling process has been given in the methods section. Firstly,
twenty-one potential binding sites mainly locating on the S1
domain were identified by using Sitemap (Halgren, 2009), which
is a computational druggable binding site characterizing method
for proteins. To double-check the prediction results, another
binding site identification method, which was a fragment-
based druggable “hot spot” searching method developed with a
different algorithm (the Fourier domain correlation algorithm),
named as FTMap, was also used to search again on the surface of
these four structures. The spike protein is trimer and some
positions identified should be symmetrically located. However,
some of such binding sites were only captured once or twice in
our calculations. In this way, we artificially corrected the results
by adding the missing ones. Finally, forty candidate positions
were obtained. Interestingly, the obtained active sites were shown
at similar positions with the results from Sitemap. These
candidate binding sites should be evaluated further by using
other techniques.

Based on these identified candidate binding sites, several
rounds of molecular docking simulations were performed to
verify whether sialic acids could interact with or not.
Theoretically, the sialic acid may be extended with
oligosaccharides to decorate glycoproteins and gangliosides at
the host cell surface (Schauer and Kamerling, 2018). Hence, the
binding sites of sialic acids could be relatively exposed to solvent,
in other words, on the surface of a protein. Given this, the
candidate binding sites located on the surface of proteins were
extensively explored. Because of this, we used
N-Acetylneuraminic acid (Neu5Ac), a type of predominant
sialic acid, as a small molecular probe to detect the potential
anchor site of glycogen chains on the surface of the S protein. The
spike protein is a pivotal trimeric structure, therefore, once the
candidate binding sites were discovered on one chain of the
protein, the additional binding sites symmetrically located on the
other chains would be manually added to our candidate list if they
were not observed accidentally. Finally, for the protein in the “up”
conformational state, 15 potential binding sites on the

FIGURE 1 | Predicted potential bindings of sialic acids on the surface of the spike protein. Potential ligandable binding sites were identified on the four constructed
models of the trimeric spike protein by using FTMap (Ngan et al., 2012) and SiteMap (Halgren, 2009). The different colors of the cartoon models in each figure represent
different chains of the protein: chain A is shown in pale-green, chain B is in pale-blue, and chain C is in light-pink. The protein structures which contain gray sphere balls
represent glycosylated state S trimer (the gray sphere models are the glycosylation), and the orange balls represent sialic acid molecules. (A) 21 and (B) 15 sialic
acid molecules were observed to bind to the different places of the surface of unglycosylated spike protein in “down” and “up” conformational states, respectively, (C) 23
potential sites for sialic acid binding were identified on the surface of glycosylated spike protein in “down” conformational state, and 17 were found (D) in the “up”
conformational state.
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unglycosylated spike protein, and 17 on the glycosylated spike
protein were observed, respectively. Compared with the “up”
state, 21 and 23 potential binding sites were found to be able to
accommodate sialic acids in the unglycosylated and glycosylated
“down” state of the protein. Through the comprehensive analysis
of the locations of all the candidate binding sites, a total of 40
unique candidate binding sites were collected from those four
protein models and numbered from 1 to 40. In general, most of
the predicted binding sites of sialic acid molecules were found to
locate in the RBD of the protein, as shown in Figure 1. Based on
the above docking simulations and artificial correlation, these
four modeled protein structures were modeled as multiple sialic
acid-bound complex structures.

Determining theMost Likely Binding Site for
the Sialic Acid
To find the most likely binding site for the sialic acid, where a
sialic acid molecule could stably bind, a series of molecular
dynamics simulations were carried out to monitor the stability
of the bindings of sialic acids against the candidate binding sites,
obtained from the molecular docking simulations mentioned
above. Theoretically, the weaker bound sialic acids would
dissociate faster. For each protein structure, three repeated
MD simulations were performed. These modeled four sialic

acid-protein complex structures were subjected to molecular
dynamics simulations for 200 ns and generated twelve
independent trajectories. As shown in Figure 1. The Cα-
RMSD of each trajectory shows relative fluctuations of the
proteins in a range of about 3–4 Å (Figure 2; Supplementary
Figure S2). These curves which show obvious fluctuations of the
conformational change of the protein along the trajectories are
mainly contributed by the larger numbers of flexible loops of the
protein. The “down” states of S protein generally show relative
small-scale fluctuations than “up” states, suggesting that later
structures could be less stable. During the simulations, some sialic
acid molecules docked to the protein surface fly away after 20 ns
of simulations, whereas some are stably staying in their positions
after 200 ns. Therefore, the most probable (strongly bound) sites
for the sialic acid can be distinguished from others. To compare
the strength of those binding sites, all unique potential pockets
were numbered from 1 to 40 by simply aligning all four
structures. The strength of interactions of every ligand (sialic
acid) in each frame of the trajectories was analyzed and plotted in
heatmaps (See Supporting Information, Supplementary Figures
S3–S6). Moreover, the depth of color suggests the number of
molecular interactions, i.e., hydrogen bonds, hydrophobic
contacts, and ionic bonds, etc., between ligand and protein in
each frame. Interestingly, we found some sialic acids that flew
away after 20 ns and re-bounded to the protein at different
positions from their initial binding sites, which then left again
after several nanoseconds. However, this action did not show up
in any repeats for a particular sialic acid and therefore is random
interactions. From an overall perspective, the glycosylation may
be beneficial to strengthening the binding of sialic acids to the
spike protein, as the interactions observed in the glycosylated
spike protein are significantly more than unglycosylated proteins
(as shown in Supplementary Figures S3–S6). By comparing the
heatmaps, sialic acids at positions SA_6, SA_7, and SA_24 are
appeared to show stable interactions within the 200 ns trajectories
for glycosylated “RBD” down conformational state
(Supplementary Figure S3). The positions of SA_7 and
SA_24 can also be observed to be stable within the 200 ns
trajectories for unglycosylated “RBD” down conformational
state (Supplementary Figure S4). Sialic acid is strongly bound
to the position of SA_6 in glycosylated “RBD” up conformational
state (Supplementary Figure S5). By superposing the last frames
from the trajectories for these four protein structures (Figure 3),
we found that the positions of SA_6, SA_7, and SA_24 are similar
and symmetrically located between every two adjacent RBDs
from different chains.

The predicted binding modes of sialic acid molecules in the
positions of SA_6, SA_7, and SA_24 for glycosylated “RBD”
down conformational state are shown in Figure 4. In general, the
residue of D405 cooperated with its neighboring residue of R403
or R408, participating in all sialic acid interactions in the
positions of SA_6, SA_7, and SA_24. On the other hand, sialic
acids form a salt bridge with K378 of an adjacent chain, whereas
in the position of SA_24, the predicted binding orientation is
slightly different from the other two positions, i.e., interacting
with the residue of S375 but not K378. Three sialic acid molecules
symmetrically bind around the residue of D405 in each chain

FIGURE 2 | Cα root-mean-square deviation (RMSD) of the molecular
dynamics simulations for our four systems. Each system was studied
extensively by running three times of molecular dynamic simulations. For each
protein system, only one of the simulations was taken out to make this
plot representative. The raw data of RMSDs are shown in dot lines, and the
fluctuations of RMSD are smoothed by using the Savitzky-Golay method in
OriginPro, version 2020 (OriginLab Corporation, Northampton, MA, and
United States), with the polynomial order as 1 and polynomial order as 50. The
details for other trajectories are shown in supporting information (See
Supporting Information. Supplementary Figure S2). All systems show an
RMSD variation around 3 ∼ 4 Å, which is contributed by the large
conformational motion of flexible loops of the spike protein. Compared with
these “down” conformational states, these “up” conformational states show
more obvious fluctuations.
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with forming couples of molecular interactions, such as the
hydrogen bonds with G504, G404, and K417. Moreover, the
observed bindingmode of sialic acid molecules against these three
positions in the different conformational or glycosylation states
are shown in Supplementary Figures S7, S8. Both “down” state
systems show sialic acids stably bind between two adjacent RBDs
in different chains, whereas in the “up” state system, there is only
one sialic acid in the same position because one “up” chain of
RBD could distort the binding sites (Supplementary Figure S7).
Alternatively, this can be explained by the shifting position of one
RBD. As the RBD shifting upwards, it moves further from the
other two RBDs, causing loss of stable interactions. The positions
of sialic acids in each trajectory are slightly shifted from the origin
docking position but still in the same region. These findings
indicate that sialic acids could bind to the RBD domain of the
spike protein of SARS-CoV-2, but not the N-terminal domain of
the S1 domain (NTD) that the binding sites of the sialic acid
locate on the MERS’s or other viruses’ spike protein. Therefore,
experimental validations were performed against Neu5Ac and the
RBD of the spike protein.

On the other hand, as shown in Supplementary Figures
S3–S6, SA_28 shows an obvious preference for binding with
sialic acid. The binding mode has been illustrated in

Supplementary Figure S9. This position is embedded inside
of the protein. Despite its strong interaction with sialic acid, it
should not be the binding site for glycans.

One recent study reported conformational accessibility and
binding strength of the S protein to its receptor of ACE2. In these
reported simulations, five potential ligand-binding pockets were
identified to expose and correlate with the conformational shifts
of S protein (Peng et al., 2020). The authors also screened the
compound database to identify potential ligands and reported
one polyhydroxy (Quercetin) compound that is somehow like the
sialic acid. This makes us curious whether this pocket is the site of
the sialic acid. By carefully comparing, pocket four was found in
the report to be close to our predicted site, but not fully
overlapping. This indicates that the binding of the sialic site in
this position may be involved in some relationship with the
conformational change of spike protein, but we do not know
how and why at this stage. It is a very interesting topic that needs
to be explored further in the future.

Mass Spectrometry Analysis
To validate the binding of sialic acid to spike protein. Mass
spectrometry analysis was firstly performed to qualitatively
determine the bindings. According to our computational

FIGURE 3 | Alignment of different protein structures to identify the overlapped sialic acid-binding positions, that is, SA_6, SA_7, and SA_24. The figure shows the
alignment of these final stable complex structures of sialic acid with spike protein, generated by the MD simulations starting from those four different protein structures.
The sialic acid-binding positions, i.e., SA_6, SA_7, and SA_24 were found to be conserved in “down” conformational states of the spike protein and to be observable in
“up” conformational states. Position SA_6 is between chain B (pale-blue) and chain C (light-pink), position SA_7 is between chain A (pale-green) and chain B and
position SA_24 is between chain A and chain C. The stable bound sialic acids are shown in different colors. Three sialic acids in the glycosylated “down” conformational
state are shown in orange color. Two sialic acids in the unglycosylated “down” conformational state are shown in light orange color. One sialic acid bound on the
glycosylated “up” conformational state is shown in yellow-orange color. The detailed interaction modes for the bound modes are shown in Figure 4 and
Supplementary Figures S7, S8. No stable sialic acid appears in these three positions for the glycated “up” state.
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prediction, sialic acids may bind the site which is around the
residue of D405 and belongs to the RBD domain. Therefore, mass
spectrometry analysis was carried out between sialic acids and the
RBD domain of spike protein. The experiment was carried out in
a protein-ligand ratio of 1:50. As shown in Figure 5, the presence
of a peak at 24,261 suggests the presence of a ligand-protein

complex. The ratio of peaks at 23,951 and 24,261 is
approximately 2.5:1.

Surface Plasmon Resonance Analysis
To further confirm our findings, we analyzed the binding affinity
between the RBD domain and sialic acid by using Surface

FIGURE 4 | Predicted most likely binding modes of sialic acids with glycosylated spike protein at positions SA_6, SA_7, and SA_24. Molecular dynamics
simulations identified three stable interacting sites, locating between every two adjacent RBD domains. The figure in themiddle shows the relative positions of these three
bound sialic acids. The enlarged binding areas show the detailed molecular interactions at each binding site. Position SA_6 is between chain B (pale-cyan) and chain C
(light-pink). Sialic acid can form hydrogen bonds with the residues of R403, G504 as well as D405 from chain B, and the residue of S375 from chain C. Position
SA_7 locates between chain A (pale-green) and chain B, where the sialic acid molecule is observed to specifically interact with the residues of R403, D405, R408 and
Y505 of chain A, and the residues of K378 as well as G404 of chain B in the form of salt bridges or hydrogen bonds. Position SA_24 lies between chain A and chain C,
where the sialic acid binds to the residues of D405, R408 as K417 of chain B, and the residues of K378, R408, and Y508 of chain C. Overall, the residue D405 in each of
these three chains shows a significant role in sialic acid binding. The interactions to K378/S375 on their adjacent chains may play a role in further stabilizing sialic acid
molecules. Dash lines represent hydrogen or ionic bonds. White spheres are the glycans that are artificially modified on the protein.

FIGURE 5 |Mass spectrum analysis of RBD and sialic acid binding complex. The peak at 23,951 represents the RBD domain. The ligand-protein binding complex
is shown by the peak 24261 m/z. The condition for analysis is RBD: SIA � 1:50.
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Plasmon Resonance (SPR). SPR is a biophysical method that can
quantify molecular-molecular binding interactions. It allows
“label-free” detection in real time and has been widely used to
monitor interface processes (Shepherd et al., 2014). The
experimental result shows that sialic acid effectively binds to
the RBD domain with a rapid dissociation rate (koff � 0.0127 1/s),
and the binding is concentration-dependent, as illustrated in
Figure 6. The experiment shows a binding affinity of KD �
27.26 μM. From previous computational simulations, sialic
acid is most likely bound between two adjacent RBD domains,
while the SPR only detects the interaction between ligand and one
RBD (1:1 model). In other words, the real binding affinity should
be stronger than the observed 27.26 μM.

Further Discussion
SARS-CoV-2 is experiencing rapid evolution. A number of
mutations have been observed and most of them have
occurred on the spike protein (CNCB, 2021; CoVariants,
2021). At present, the most important reported mutations are
D614G and N501Y, which have been found can increase the
binding affinities between the spike protein and ACE2. The two
mutations are away from the identified bindings sites of sialic
acid, and may not impact their bindings (Leung et al., 2021;
Weissman et al., 2021). We also compared all reported single
point mutations of S protein of SARS-CoV-2 (Supplementary
Table S1), and mutations that happened outside the proposed
binding sites for sialic acids, therefore, are less likely to affect the
binding of sialic acids.

This paper proposes a new binding site for sialic acids on the
RBD domain of Spike proteins. Drug repurposing can be done on
this pocket through artificial intelligence (Zhou et al., 2020).
Apart from Yadav’s work, last year, Martin’s group reported that
Toremifene, an FDA-approved drug, could work on SARS-CoV-

2 S protein and NSP14 (Martin and Cheng., 2020). This provides
a new scientific orientation for further studies.

Moreover, the allosteric binding sites on the S protein of SARS-
CoV-2 have been discovered and reported by designing a
comprehensive framework, combining computational methods
and experimental validation (Paola et al., 2020). The allosteric
sites, being different from the conventional active sites, can
allosterically alter the conformation of the proteins and regulate
the functions. Therefore, it is important to identify the potential
allosteric binding sites of sialic acids and probe the corresponding
allosteric molecular mechanisms, to better understand the functions
of sialic acids in triggering the virus invasion.

METHODS

Constructing the Spike Protein Structures
Full-length spike protein structure models were built based on
experimentally obtained protein structures, the PDB codes of
these proteins are 6VXX for “down” and 6VSB for “up”
conformational states. The missing fragments of the sequence
were added by comparing different spike protein PDB models.
Gaps between loops were filled by referring to full-length
sequence of S protein by using Maestro (Zhu et al., 2014). A
part of the incomplete RBD in all three chains was replaced by a
modeled fully-sequenced model (modification based on the
structure with the PDB code of 6M17). Based on the built-up
reference models, two spike protein trimer models, one “up” and
one “down” conformational state, was built using the Maestro
Homology modeling method (Cappel et al., 2016). The
glycosylation in the above PDBs were kept, and an additional
one missing O-glycosylation at N801 was added manually
according to the literature (Woo et al., 2020). The other two
models without glycans were built by removing the glycans from
previously built structures (Supplementary Figure S1)

Detecting Potential Druggable Binding Sites
for Sialic Acids on Spike Protein
Based on the above built four protein structures, SiteMap (Halgren,
2007; Halgren, 2009) and FTMap (Ngan et al., 2012) were used as
two individual methods, which gave complementary results,
identifying active sites on the surface of the spike protein
structure. The SiteMap is a server of Schrödinger which predicts
possible binding sites by scanning through the protein surface
(Halgren, 2007). FTMap scans the entire protein by placing lots
of probes in the funnel. More detailed descriptions of FTMap have
already been published (Brenke et al., 2009; Ngan et al., 2012;
Kozakov et al., 2015). Both methods were used by setting the
parameters as default. Compared with SiteMap, the binding sites
found by FTMap were relatively embedded into the protein. Overall,
approximately 21 candidate sites were detected on the surface of the
trimer. Then, sialic acid molecules were placed onto the trimer
structure using molecular docking simulations by Glide (Tubert-
Brohman et al., 2013). Two potential binding sites on “down”
glycosylated state were added artificially because there were
similar binding sites had been observed on the symmetric chain.

FIGURE 6 | SPR analysis of binding affinity between sialic acid and RBD
domain. The figure shows different levels of response with different sialic acid
concentrations. The curve suggests the presence of binding between sialic
acid and the RBD domain.
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Molecular Dynamics Simulations
All simulation systems were built and minimized using Desmond
(Bowers et al., 2006), TIP3P (Gillan et al., 2016) as water model,
neutralized by Na cation and Cl anion. Simulations for “down”
state without glycans initially measured 45,770,357 Å3, NaCl at a
concentration of 0.15 M, for a total of about 440,000 atoms.
Simulation for “down” state with glycans initially measured
4,804,764 Å3, NaCl at a concentration of 0.15 M, for a total of
about 442,000 atoms. Simulation for “up” state without glycans
initially measured 4,770,069 Å3, NaCl at a concentration of
0.15 M, for a total of about 447,000 atoms. Simulation for
“down” state with glycans initially measured 4,902,837 Å3,
NaCl at a concentration of 0.15 M, for a total of about 460,000
atoms. The systems were modeled in the OPLS_2005 force field
(Shivakumar et al., 2010). A molecular dynamics simulation was
carried out using Desmond (Bowers et al., 2006). The systems
were pre-production run for 50 ns After that, each trajectory was
set for a longer simulation as long as 200 ns, an ensemble at 310 K
(37°C), and 1 bar. Every system was then repeated three times
with the same conditions but various initial velocities.
Trajectories were analyzed using a simulation interaction
analysis module in Maestro (Bowers et al., 2006).

Mass Spectrometry Analysis
Proteins were dissolved in 25 ammonium acetate at a
concentration of 10 uM, the drugs dissolved DMSO were
diluted by 25 ammonium acetate to 100 uM. Then proteins
were incubated with an equal volume of the drugs.

The above-mixed solutions were then injected into Orbitrap Fusion
MS (Thermo Scientific) through direct injection. TheMSwas operated
in intact protein mode. Data were analyzed with BioPharma Finder
(Thermo Scientific) software (Marcoux et al., 2015).

Surface Plasmon Resonance Analysis
We carried out surface plasmon resonance (SPR) experiments using
BIAcore T200 to evaluate the kinetic parameters of sialic acid
binding to RBD. The purified RBD (residues 319–591), which
was diluted in sodium acetate solution (pH 4.5) with a final
concentration of 50 μg/ml, was immobilized covalently on a CM5
sensor chip. The final immobilization level was 4,430.3 resonance
units (RU). The running buffer was PBS, 0.005% (vol/vol) surfactant
P20, pH 7.4, and 1%DMSO. Salic acid was diluted using the running

buffer from the top concentration. The measurements were
performed at a flow rate of 30 μL/min. For each binding cycle,
the analyte was injected for 120 s and the dissociation timewas 180 s.
Data were analyzed using BIAevaluation 1.1 software.
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Marine nature products are unique compounds that are produced by the marine
environment including plants, animals, and microorganisms. The wide diversity of
marine natural products have great potential and are versatile in terms of drug
discovery. In this paper, we use state-of-the-art computational methods to discover
inhibitors from marine natural products to block the function of Fascin, an overexpressed
protein in various cancers. First, virtual screening (pharmacophore model and molecular
docking) was carried out based on a marine natural products database (12015 molecules)
and provided eighteen molecules that could potentially inhibit the function of Fascin. Next,
molecular mechanics generalized Born surface area (MM/GBSA) calculations were
conducted and indicated that four molecules have higher binding affinities than the
inhibitor NP-G2-029, which was validated experimentally. ADMET analyses of
pharmacokinetics demonstrated that one of the four molecules does not match the
criterion. Finally, ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations
were carried out to validate the three inhibitors binding to Fascin stably. In addition,
dynamic interactions between protein and ligands were analyzed systematically. Our study
will accelerate the development of the cancer drugs targeting Fascin.

Keywords: marine nature product, fascin, virtual screening, docking, molecular dynamics

INTRODUCTION

With a deeper understanding of the particularity of the marine environment and the diversity of
marine biology, researchers have developed many applications based on aquatic and marine
resources (Carroll et al., 2021). Extreme conditions in the ocean in terms of temperature,
salinity, pressure, and illumination promote marine organisms to evolve and create a unique
system with different processes of absorption and metabolism (Montaser and Luesch, 2011). In the
metabolism of marine organisms, enormous and innovative marine natural products (MNPs) are
produced, and those products can be exploited to develop new functional materials and drugs
(Barbosa and Roque, 2019). In recent years, many new compounds have been discovered from
marine life, which have also benefited from the rapid development of technology (Hu et al., 2011; Hu
et al., 2015; Greco and Cinquegrani, 2016; Ruiz et al., 2016; Blunt et al., 2017; Bilal et al., 2018; Blunt
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et al., 2018). To exploit the data of MNPs for the treatment of
diseases conveniently, some databases of MNPs are built for drug
screening and other research on ocean resources (Haroun et al.,
2019).

One of the applications of MNPs is drug discovery, e.g.,
drugs for cancer treatment, as tumor metastasis is the main

cause of cancer-related deaths (Chen et al., 2010). Cell
invasion and migration are essential features of tumor cells
and actin cytoskeleton reconstruction triggers the switch of
protrusive tissue, e.g., filopodia, lamellipodia, and
lamellipodia (Machesky and Li, 2010). Fascin is one of the
actin-binding proteins and it is overexpressed in various

FIGURE 1 | (A) The structure of the Fascin-inhibitor complex. Junctions between β-trefoils 1 and 2, β-trefoils 1 and 4 contain two actin-binding sites respectively,
and another actin-binding site locates on β-trefoils 3 (Figure 1A). (B) Inhibitor NP-G02-029 and the binding pocket. (C) Protein−NP-G2-029 interactions are represented
by an asteroid plot. The inner ring represents direct interactions. The outer ring represents indirect interactions. The size of the ball is the interaction-number proportion in
atomic scale. The colors of residues correspond to their secondary structures. (D) Secondary structure connection of Fascin. The bottom panel shows the
secondary structure (β-sheets and α helixes) with their respective colors. Arrows stand for β-sheets, rectangles stand for α helix. N-ter, N terminus; C-ter, C terminus.
PDB ID: 6B0T. Structure visualized by PyMOL (Rigsby and Parker, 2016).
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types of cancer. Fascin plays a key role in the formation of
filopodia, which leads to increased cell movability in multiple
transformed cells (Conesa-Zamora et al., 2013; Tan et al.,
2013). Some studies have indicated that Fascin can be used as
a diagnostic marker and therapeutic target for aggressive
tumors (Tan et al., 2013; Rodrigues et al., 2017).

Fascin was first found as a cross-linking protein in sea
urchin (Kane, 1975) and later identified in Drosophila,
Xenopus (Holthuis, Schoonderwoert, and Martens, 1994),
mice (Edwards et al., 1995), and human beings (Duh et al.,
1994; Yamashiro-Matsumura and Matsumura, 1985). Fascin
is one of the components of actin bundles, with 55 k Da and
four β-trefoil domains (Figures 1A,B) (Yamashiro-
Matsumura and Matsumura, 1985). There are six pairs of
two-stranded β-hairpins in each β-trefoil domain with 3-fold
symmetry (Murzin, Lesk, and Chothia, 1992; Ponting and
Russell, 2000). These four β-trefoils of Fascin form a
quadrilateral-like shape and each β-trefoil located in the
catercorner (Yamashiro-Matsumura and Matsumura,
1985). Fascin is a monomeric protein and functions by
bundling actin filament at its monomeric state. Previous
studies have suggested that Fascin has three individual
surfaces for its bunding activity to actin, i.e., binding site
1, 2, and 3 (Figure 1A) (Yang et al., 2013). The junction
between β-trefoils 1 and 2 of Fascin is suggested to be
essential for its actin-bunding activity, which is termed
actin-binding site 2. (Figure 1A) (Ono et al., 1997).

To block actin-Fascin interaction and inhibit filament
assembly, several small molecule inhibitors have been
developed from chemical libraries for biochemical and
pathological research (Chen et al., 2010; Huang et al., 2015;
Huang et al., 2018). However, the inhibitor exploration for
Fascin is still under development, due to the limitation of
current inhibitors on efficiency and specificity. NP-G2-029 and
NP-G2-044 are two inhibitors targeting Fascin, which show a

strong effect, weakening the migration ability of human breast
cancer cells (Han et al., 2016; Huang et al., 2018). The IC50 values
of NP-G2-029 and NP-G2-044 are 0.19 and 0.07 μm in the
F-actin-bundling assay. The crystal structure of the
Fascin−NP-G2-029 complex was solved by Huang et al.
(2018). Six hydrophobic residues surround the benzene ring of
NP-G2-029, i.e., Glu11, Phe14, Leu16, Gln50, Trp101, Leu103,
Trp132, Val134, and Phe216 (Figure 1B), and the benzene ring
also forms edge-to-face pi–pi stacking with Phe14 and Trp101.
Two hydrogen-bond interactions are formed between the
backbone of Phe216 and the pyrazole and amide groups of
NP-G2-029.

The second structure connections of Fascin (Figures 1C,D)
show the residues in the binding pocket of NP-G2-029, and the
connections of β-sheets and helixes in Fascin. It can be seen from
Figure 1D that interactions between secondary structures are
complex, indicating that the correlations between those structures
are strong. The bottom panel shows the secondary structure
(β-sheets and α helixes) with their respective colors
(Conducted by Protein Contacts Atlas server) (Kayikci et al.,
2018).

In recent years, computer-aided drug discovery (CADD)
methods are extensively used for new drug discovery. The
pharmacophore model is a ligand-based method to screen lead
compounds (Gupta et al., 2019; Wang et al., 2019; Fu et al., 2020;
Liu et al., 2020; Liu et al., 2020). It is a rapid and powerful method
for the first screening from a large chemical library. The
pharmacophore model is often used in combination with
structure-based methods, e.g., molecular docking (Saikia and
Bordoloi, 2019). Molecular docking programs can be used to
predict the bound poses of ligands and to rank them with scoring
functions. (Huang and Zou, 2010; Lopez-Vallejo et al., 2011;
Garcia-Sosa and Maran, 2021). With CADD approaches, the cost
of drug research and development can be reduced markedly
(Xiang et al., 2012). These approaches can provide a

FIGURE 2 | The workflow of inhibitors screening in this study. The pharmacophore model used LigandScout software; docking used the AutoDock Vina module of
LigandScout (Nguyen et al., 2020).
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comprehensive insight into biomolecule mechanisms and
improve the effectiveness of the drug development process
(Macalino et al., 2015).

It is noteworthy that molecule docking results still need
further evaluation and analyses (Rastelli and Pinzi, 2019), and
molecular dynamics (MD) simulation is an often-used
method to improve the accuracy of molecular docking.
Meanwhile, the dynamic properties of proteins can be
investigated in depth by MD simulations, which can
provide detailed information on the process of ligand
binding at an atomic level and this information is
significant for drug discovery (De Vivo et al., 2016).
Molecular mechanics generalized born surface area (MM/
GBSA) is an efficient method for binding free energy
calculation, which is used to assess docking poses,
determine structural stability and predict binding affinities
(Ylilauri and Pentikainen, 2013; Wang et al., 2019). On the
other hand, the free energy landscape can be calculated to
explore the intermediate states and global minimum of

biomolecule (Buckley et al., 2017). However, conformation
transition overcoming energy barrier usually needs a
millisecond time scale or even longer, depending on the
height of the barrier (Miao, Feher, and McCammon, 2015).
To overcome this challenge, many enhanced sampling
methods have been developed (Bernardi, Melo, and
Schulten, 2015). In addition, small molecules have various
conformations because of their flexibility in solvent, and the
dynamics of small molecules are significant for the induced-fit
process (Francis et al., 2019). Thus, exploring the binding
state of the inhibitor is important for drug design.

In this study, we use several CADD methods to screen small
molecules from an MNP library, as indicated by the workflow
in Figure 2. First, based on the marine natural products
database (12,015 molecules), virtual screening using the
pharmacophore model and molecular docking were carried
out to discover potential inhibitors of Fascin. Then, the top 18
compounds were selected for further MD simulations, and the
binding affinity of each inhibitor was calculated. ADMET

FIGURE 3 | 2D (A) and 3D (B) inhibitor NP-G2-029 with its abstract pharmacophore model generated by LigandScout. Hydrogen bond acceptor (red arrow),
hydrogen bond donor (green arrow), hydrophobic interaction, aromatic ring feature interaction (yellow sphere).

FIGURE 4 | (A) The binding pocket of Fascin with inhibitor NP-G2-029; (B) The molecular docking results for 18 small-molecules.
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TABLE 1 | Data collection of potential inhibitors for Fascin by molecular docking. Unit: kcal/mol.

No./Compound Library ID Structure Molecular weight Binding affinity

01a NP-G2-029 C20H15F3N4O2 No data 400.36 −10.80

02 C25H36O6 ZINC000238749885 432.56 −10.50

03 C28H22O7 ZINC000014693073 470.48 −9.90

04 C27H46O5 ZINC000044387599 450.66 −9.70

05 C25H35NO5 ZINC000014714664 429.56 −9.60

06 C25H34O6 ZINC000238761262 430.54 −9.50

07 C25H38O6 ZINC000040915743 434.57 −9.40

08 C27H34N2O5 ZINC000042851223 466.58 −9.40

09 C25H25NO6Cl No data 470.93 −9.30

10 C29H50O6 ZINC000255214715 494.71 −9.30

(Continued on following page)
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predictions were also performed to study pharmacokinetic
properties. Furthermore, Ligand Gaussian accelerated
Molecular Dynamics (LiGaMD) were carried out on the
three potential inhibitors to study low-energy states (Miao,

Bhattarai, and Wang, 2020). To validate the low-energy states
in LiGaMD, we performed an extended conventional MD.
Finally, we analyzed the binding pockets of Fascin with
different potential inhibitors.

TABLE 1 | (Continued) Data collection of potential inhibitors for Fascin by molecular docking. Unit: kcal/mol.

No./Compound Library ID Structure Molecular weight Binding affinity

11 C28H40O7 ZINC000042888842 488.62 −9.20

12 C20H28O4 ZINC000005890667 332.44 −9.10

13 C28H40O3 ZINC000014767734 424.62 −9.10

14 C27H48O4 ZINC000137671675 436.68 −9.10

15 C28H50O4 ZINC000137547990 450.70 −9.10

16 C30H52O4 No data 476.74 −9.10

17 C24H20Cl2N2O4 ZINC000085599962 471.34 −9.10

18 C27H39N3O2 No data 437.63 −9.00

19 C28H48O6 ZINC000044387005 480.69 −9.00

aActive controlled indicator.
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MATERIALS AND METHODS

Data Preparation
In terms of the target protein, the crystal structure of Fascin
was obtained from an online protein database (https://www.
rcsb.org), PDB: 6B0T, 2.80 Å resolution (Huang et al., 2018).

The crystal structure was solved with its inhibitor NP-G2-029,
which was set as an active controlled sample in our study.
In addition, NP-G2-044, another effective inhibitor, was used
as an active control (Han et al., 2016; Huang et al., 2018). On
the other hand, inhibitors NP-G2-112 and NP-G2-113
were used as an inactive control since they do not have

FIGURE 5 | The RMSF of residues in complex with NP-G2-029 and 18 inhibitors in conventional MD simulations. Different color lines stand for the different
inhibitors.

TABLE 2 | Binding affinity for each inhibitor by MM/GBSA (Unit: kcal/mol. Potential inhibitors those meet the criterion are highlighted as bold values.)

Receptor Ligand No. △EvdW △Eele △EPolar △Enon-polar ΔGbind SD

Fascin 01(NP-G02-029) −50.42 −20.92 35.29 −4.93 −40.97 0.28
Fascin 02 −43.71 −19.74 34.51 −4.98 −33.91 3.54
Fascin 03 −44.63 −28.99 51.13 −5.18 −27.66 3.07
Fascin 04 −47.44 −15.72 33.96 −5.04 −34.23 3.42
Fascin 05 −47.86 −11.60 27.43 −5.38 −37.41 2.51
Fascin 06 −45.80 −11.71 31.96 −5.03 −30.58 3.79
Fascin 07 −52.78 −10.03 27.01 −5.35 −41.14 2.53
Fascin 08 −42.05 −29.61 42.83 −4.60 −33.41 2.66
Fascin 09 −45.42 −16.57 36.71 −5.24 −30.52 2.62
Fascin 10 −40.84 −17.14 32.68 −4.80 −30.10 2.65
Fascin 11 −43.02 −19.21 33.22 −5.21 −34.22 3.07
Fascin 12 −38.20 −6.21 21.80 −4.28 −26.89 1.79
Fascin 13 −58.00 −15.99 32.75 −5.97 −47.20 3.94
Fascin 14 −47.53 −8.89 25.55 −5.01 −35.88 2.09
Fascin 15 −49.60 −18.33 32.55 −5.26 −40.64 0.69
Fascin 16 −46.01 −7.04 21.67 −5.06 −36.44 2.42
Fascin 17 −42.97 −32.28 45.93 −4.74 −34.06 2.59
Fascin 18 −56.03 −12.02 29.80 −5.55 −43.79 2.56
Fascin 19 −47.41 −9.60 31.15 −5.18 −31.04 2.86
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any effect on Fascin (Han et al., 2016). Because no complex
structures were solved for the NP-G2-044, -112, and -113,
complex structures were prepared by molecular docking.

For the ligand database, Marine Natural Products Library
(Marvin annotated) series (http://docking.umh.es) was used
(Bugni et al., 2008; Encinar et al., 2015; Galiano et al., 2016).
OMEGA was used for generating the conformations of all
compounds (Hawkins et al., 2010).

Pharmacophore Model
Ligand-based pharmacophore modeling is one of the widely used
methods in CADD (Leach et al., 2010). In this work, the
pharmacophore model was built by LigandScout V4.4.5, (Salam,
Nuti, and Sherman, 2009; Dixon et al., 2006; Maia et al., 2020).
Directed hydrogen-bond interactions, hydrophobic interactions,
charge interactions, and steric exclusions were detected directly.
In this work, the HypoGen algorithm was used to produce the
model, which contains three hydrophobic, one hydrogen-bond
donor, and one hydrogen-bond acceptor (Figure 3) (Koes and
Camacho, 2011). All features are added as 3D objects. It can be
seen from Figure 3A that there are three hydrophobic models for
this inhibitor, so the hydrophobic effect is the main
pharmacophore feature. In addition, two hydrogen-bond
interactions were formed between the inhibitor and Fascin,
and inhibitor acted as hydrogen acceptor and donor, respectively.

Molecular Docking
Molecular docking is a structure based virtual screening method
for drug discovery (Liu et al., 2020). It explores small ligand
binding to biomacromolecule by searching the possible degrees of
freedom of the whole system and finding the global energy

minimum. The binding sites of the ligand are evaluated by
different score functions. It is widely used for lead screening
and optimization (Saikia and Bordoloi, 2019). In this work, the
AutoDock Vina module of LigandScout was used for docking
(Roy, Srinivasan, and Skolnick, 2015; Nguyen et al., 2020). The
scoring function of Vina includes a finite repulsion term,
Gaussian steric interaction terms, Piecewise linear
hydrophobic, hydrogen-bond interaction terms, etc. (Gaillard,
2018). All docking calculations were performed with default
values in LigandScout.

Molecular Dynamics Simulation
In this paper, we performed molecular dynamic simulations on
Fascin with 19 inhibitors. The coordinate of Fascin for all systems
was taken from the 2.80 Å crystal structure of the Fascin-NP-
G02-029 complex (PDB code: 6B0T) (Huang et al., 2018).
Missing residues of structure (fragment 1–6) were modeled by
using Chimera (Pettersen et al., 2004). TIP3P water models were
used for solvating all systems (Jorgensen et al., 1983) in an
octahedral box with a minimum distance of 12 Å from protein
structures to box boundary (Gillan, Alfe, and Michaelides, 2016).
Each His residue protonation state was identified by the pKa
value from PROPKA (Olsson et al., 2011). All of the His residues
were protonated at NE2 atoms, except His96, His108, His154,
His198, His310 which are assumed to be doubly protonated, and
His135 is protonated at ND1 atoms.

For all ligands, AM1-BCC atomic charges were calculated by
the antechamber program (Wang and Kollman, 2001) (Jakalian
et al., 2000; Jakalian, Jack, and Bayly, 2002). The general AMBER
force field (GAFF) and Amber ff14sb force field were used for
inhibitors and Fascin, respectively (Wang et al., 2004; Maier et al.,
2015). In addition, an optimal amount of counterions was added
to generate a neutral system.

The conventional MD simulation of each Fascin-inhibitor
system was performed by using Amber 20 (Belfon et al.,
2020). Langevin dynamics (Wu and Brooks, 2003) were
performed at a constant temperature of 300 K. Collision
frequency was set to 2.0 ps−1. For NPT ensemble, pressure was
kept at 1 atm (Berendsen et al., 1984). Particle mesh Ewald
summation was used to handle the long-range electrostatics
(Darden, York, and Pedersen, 1993).

For all simulations, we first ran a 5000-step minimization. Then,
20 ps NVT and 20 ps NPT pre-equilibration were carried out with
restraints for heavy atoms of the protein. To further equilibrate the
system, we ran a 1 ns NPT simulation without any restraints. Finally,
20 ns NPT production simulations were performed and coordinates
were printed every 1 ps. For each inhibitor with Fascin, we
performed five replicates of production calculations. For all
systems, root mean square deviation (RMSD), root mean square
fluctuation (RMSF), and radius of gyration (Rg) were calculated by
using the cpptraj module in AMBER 20 (Belfon et al., 2020).

Ligand Gaussian Accelerated Molecular
Dynamics
Conformation transition of protein usually happens in a
millisecond time scale due to the high energy barrier between

FIGURE 6 | ADME evaluation result. Different color circles stand for each
inhibitor.
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different states. Thus, it is hard to capture the most stable state
of protein from the whole potential surface. To investigate the
conformational changes of Fascin with different inhibitors
effectively, we used Li-GaMD (Miao, Feher, and McCammon,

2015; Miao, Bhattarai, andWang, 2020) for simulation, which is
developed from the enhanced sampling method GaMD (Miao,
Feher, and McCammon, 2015), LiGaMD can accelerate
simulations of the receptor with ligand between binding and

FIGURE 7 | Toxicity evaluation result. Evaluation processed by ProTox-II server (https://tox-new.charite.de/) (Banerjee et al., 2018).
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FIGURE 8 | Free energy landscapes and low-energy conformational states of Fascin with inhibitors, whose wasmodeled with the GAFF force field by using LiGaMD
simulation: (A) PMF profile of inhibitor No. 07, collective variables (CVs) are backbone dihedrals (φ) and RMSD of inhibitor No.07. (B) PMF profiles of inhibitor No. 15, CVs
are the radius of gyration and RMSD. (C) PMF profiles of inhibitor No. 18, CVs are the same with inhibitor No.15.
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unbinding, explore protein conformational transition
efficiently.

In a system comprising ligand L, protein P, and environment
E, the system comprises N atoms with their coordinates
r ≡ {r1→, . . . , rN

�→} and momenta p ≡ {p1
�→

, . . . , pN
��→}. The system

Hamiltonian can be expressed as:

H(r, p) � K(p) + V(r) (1)

where K(p) and V(r) are the systems kinetic and total potential
energies, respectively. Then, the potential energy could be
decomposed into the following terms:

V(r) � VP,b(rP) + VL,b(rL) + VE,b(rE)
+VPP,nb(rP) + VLL,nb(rPL) + VEE,nb(rPL)
+VPL,nb(rPL) + VPE,nb(rPE) + VLE,nb(rLE) (2)

whereVP,b, VL,b, andVE,b are the bonded potential energies in protein
P, ligand L, and environment E, respectively. VPP,nb, VLL,nb, and
VEE,nb are the nonbonded potential energies. VPL,nb, VPE,nb, and
VLE,nb are the nonbonded interaction energies. Based on classical force
fields (Duan et al., 2003; Vanommeslaeghe and MacKerell, 2015), the
non-bonded potential energies are usually presented as:

Vnb � Velec + Vvdw (3)

Presumably, ligand binding mainly involves the nonbonded
interaction energies of the ligand,
VL,nb(r) � VLL,nb(rL) + VPL,nb(rPL) + VLE,nb(rLE). LiGaMD adds
a boost potential selectively to the ligand non-bonded
potential energy according to the GaMD algorithm:

ΔVL,nb(r) �
⎧⎪⎨⎪⎩ 1

2
kL,nb(EL,nb − VL,nb(r))2, VL,nb(r)<EL,nb

0, VL,nb(r)<EL,nb

(4)

where EL,nb is the threshold energy for applying boost potential
and kL,nb is the harmonic constant. These parameters in LiGaMD
are derived similarly as in the GaMD algorithm (Miao, Feher, and
McCammon, 2015).

In addition to optional boosting non-bonded potential energy
term of ligand, a second boost potential can be added on protein
to explore protein conformational changes. The second boost
potential is calculated using the total system potential energy as:

ΔVD(r) �
⎧⎪⎨⎪⎩ 1

2
kD(ED − VD(r))2, VD(r)<ED

0, VD(r)<ED

(5)

where VD is the total potential energy without the nonbonded
potential energy of ligand, ED is the threshold energy for applying
the second boost potential and kD is the harmonic constant. In
this study, we applied dual-boost LiGaMD and total boost
potential ΔV(r) � ΔVL,nb(r) + ΔVD(r) � ΔVL,nb(r) + ΔVD(r).
For the analysis of the results, we used the PyReweighting
program to calculate the free energy surface with different
collective variables (Miao et al., 2014).

Binding Affinity Calculation With MM/GBSA
In order to calculate the binding free energies for different
potential inhibitors, we used molecular mechanics MM/GBSA
methods. It is an end-point based free energy calculation method,

FIGURE 9 | The RMSD of inhibitor No. 07, 15, 18 in extended
conventional MD simulation. The line with black, red, green color is inhibitor
No. 07, 15, 18 respectively.

FIGURE 10 | Energy decomposition analysis and interaction networks
between Fascin and inhibitors No. 07, 15, and 18. Interaction networks
plotted by LIGPLOT Software (Laskowski and Thornton, 1995).
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i.e., the binding free energy is calculated by

ΔGbind �GRL –GR –GL (6)

whereGL, GR, andGL represent the free energy of the complex and the
receptor and ligand, respectively. Each free energy is calculated with

G � (Ebond) + (Eele) + (EvdW) + (Epol) + (Enp) − TS (7)

where Ebond is the energy of covalent interactions, Eele is the
electrostatic potential, EvdW is the energy of van der Waals
interactions, and Gpol and Gnp are the polar and nonpolar
contributions. The conformational entropy contribution (-TS)
is estimated by normal-mode analysis (Srinivasan et al., 1998),
but it is usually neglected from consideration due to its high
computational cost and low prediction accuracy (Hou and Yu,
2007; Sun et al., 2018). In this work, MMPBSA. py (Miller et al.,
2012) module in Amber20 (Belfon et al., 2020) was used to
calculate the MM/GBSA for each system based on the last
2,500 frames extracted from the 20 ns conventional MD
trajectory.

Pharmacokinetics Evaluation
ADMET evaluation is a comprehensive study of drug absorption,
distribution, metabolism, excretion, and toxicity properties (Acuna,
Hopper, and Yoder, 2020). Evaluation of ADMET properties at the
early stage of drug development can significantly improve the success
rate of drug discovery. It is used to efficiently and accurately calculate
the physicochemical properties, toxicity information, and
pharmacokinetic properties of candidate drug molecules, provide
the basis for prediction and improve the interpretability of
structure and drug credibility (Wenzel, Matter, and Schmidt,
2019). The small molecule hits were predicted by ADMET based
on the Swissadme server (http://www.swissadme.ch/) (Daina,
Michielin, and Zoete, 2017), and LogP and TPSA were pointed
out as the main reference indexes of the results.

Log P refers to the equilibrium distribution of the undissociated
molecules in the oil and water phases, which is an important indicator
in the passage of compounds through biofilm. TPSA refers to the
topological polar surface area. TPSA <60 indicates that it has good
membrane permeability and is completely absorbed. 60 <TPSA <140
indicates the molecular permeability decreases with the increase of
polar surface area. TPSA >140 indicates poor permeability of the
molecule. Lipid solubility is an important parameter of small
molecules in pharmaceutical chemistry. Log P is the logarithm of
the oil-water partition coefficient P of the compound, which refers to
the equilibrium of the distribution of the undissociated molecules in
the oil phase and water phase. When oral drugs are permeated by
passive diffusion, logP in the 0–3 range is the best. High logP
compounds have poor water solubility and low logP compounds
have poor lipid permeability.

RESULTS AND DISCUSSION

Pharmacophore Model
In this work, the pharmacophore model with three hydrophobic,
one hydrogen-bond donor, and one hydrogen-bond acceptor

(Figure 3) was used for virtual screening. First, the MNPs
database (14,064 compounds) was processed by Openbabel
V2.4.1 for 3D structure generation, hydrogenation, and charge
processing operation (O’Boyle et al., 2011), and 12,015
compounds were generated. Then, the pharmacophore virtual
screening was performed on the 12,015 compounds (Figure 3). In
total, 472 compounds with high fitness were found. Finally,
compounds that have a molecular weight larger than 500 were
removed with the Filter module, which provided 281 results for
further study.

Molecular Docking
In the crystal structure, inhibitor NP-G2-029 resides in the
pocket formed by the residues located in the junction of
domains 1 and 2 (Figure 4A). The surface volume of the
active site inherent is 1130 A3 calculated by the Proteins Plus
server (Schoning-Stierand et al., 2020). To rank the 281 ligands
from the screening based on the Pharmacophore model,
molecular docking was performed with the AutoDock Vina
module of the Ligandscout program (Wolber and Langer, 2005).
The top 18 ligands with binding energy ≤ −9 kcal/mol were
selected as the potential inhibitors for further calculations. The
molecular structures and molecular binding energy are shown
in Table 1 (For convenience, we have also provided the ZNIC ID
for those MNPs).

As is shown in Figure 4B, all the 18 small molecules that are
embedded in the binding pocket are approximately as same as
NP-G2-029. The residues of Fascin involved in the binding
pocket are mainly Leu48, Glu49, Gln50, Ile93, Trp101, Val
103, Glu215, Phe216, and Arg217. All the detailed interactions
between ligands and proteins are shown in Supplementary
Figure S1.

Conventional Molecular Dynamics for
Fascin-Inhibitor Complex
To find a better inhibitor than NP-G2-029, conventional MD
dynamics were carried for the Fascin with 18 inhibitors from
AutoDock Vina. For each system, we run 20 ns × 5 replicates.
RMSDs for all systems indicate that all simulations are
converged (Supplementary Figure S2). It can be seen from
RMSF data (Figure5) that the binding sites of inhibitor in
Fascin-inhibitor complexes are more dynamic with a range of
3–10 Å in β-trefoil 1, whereas other regions are relatively rigid,
compared to Fascin without inhibitor (Blue line in Figure 5).
These findings are consistent with a study by Huang et al.
(2018). Overall, the inhibitors affect the RMSF of Fascin
significantly.

Binding Free Energy by MM/GBSA
To improve the accuracy of ranking in molecular docking, we
calculated the binding affinities of inhibitors in each complex
using MM/GBSA with conventional MD trajectories. Binding
free energy results were obtained based on the five replicate (20 ns
× 5 replicas) simulations (Table 2). For inhibitor NP-G2-029 with
Fascin, the calculated binding affinity is −41 kcal/mol, indicating
the two objectives are favorable for binding, which is consistent
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with experimental data that NP-G2-029 inhibits Fascin (Huang
et al., 2018). For the other active inhibitor NP-G2-044, the
binding affinity is −42 kcal/mol (Supplementary Table S2).
For the inactive inhibitors NP-G2-112 and NP-G2-113, they
are −38 and −35 kcal/mol, respectively. Thus, −41 kcal/mol
was used as a threshold value, i.e., ligands with binding
affinity larger than −40 kcal/mol are thought of as potential
inhibitors. It can be found from Table 2, No. 07, 13, 15, 18
inhibitors have qualified binding affinities to Fascin with binding
free energies of −41, −47, −41, −44 kcal/mol, respectively.

Pharmacokinetics Evaluation
Pharmacokinetics prediction was performed for the 19
compounds (including NP-G2-029) on the ADMETlab server
(Dong et al., 2018), which is based on a comprehensive database
that includes 288,967 entries (Ferreira and Andricopulo, 2019).
There are four function modules for drug-likeness analysis,
ADME endpoint prediction, systematic evaluation, and
similarity searching, these results give an overall
understanding of compounds and can check the rapid
screening process.

For NP-G02-029 and the 18 small molecules, we perform
ADMET assessments, which include Lipid solubility (Dong et al.,
2018; Ferreira and Andricopulo, 2019). Lipid solubility is an
important parameter for small molecules in pharmaceutical
chemistry (Williams et al., 2013). When oral drugs are
permeated by passive diffusion, the logP 0–3 range is the best.
High logP compounds have poor water solubility, low logP
compounds have poor lipid permeability. TPSA <60 denotes
good membrane permeability and is completely absorbed. 60 <
TPSA <140 denotes that the molecular permeability decreases
with the increase of polar surface area. TPSA >140 denotes the
poor permeability of the molecule.

ADME results in Figure 6 show that TPSA of No. 02, 04, 05,
06, 07, 09, 10, 11, 12, 14, 15, 17, 18, 19 are in range of 60–120, and
whose logP are in a range of 3–5. Notable, No.13 inhibitor is out
of 60–120 TPSA and 3–5 logP, therefore, we exclude No.13
inhibitor for the next assessment.

Toxicity predictions are performed on the potential inhibitor
No. 07, 15, 18, and the NP-G2-029. Data in Figure 7 shows that
the toxicity score of NP-G2-029 is 5, the toxicity scores of
inhibitor No. 07, 15, 18 are 5, 2, 3 respectively, whose are
lower than NP-G2-029, signify that the potentials inhibitor are
less toxic than NP-G2-029.

Ligand GAMD Simulation
To confirm whether the docking pose of compounds 07, 15, and
18 are stable in the pocket of Fascin, we performed LiGaMD
simulations. The boost potential added in LiGaMD simulations is
according to Gaussian distribution, accurate reweighting and
recovery of the original biomolecular free energy landscapes
can be achieved by using cumulant expansion to the second order.

For No. 07 inhibitor (Figure 8A), 2D PMF with backbone
dihedrals (φ) and RMSD is calculated by reweighting 100 ns
LiGaMD simulations. One low-energy state (labeled as A) can be
found from the potential surface. The binding pocket in this state
includes Ile93, Trp101, Val134, Phe216, Leu48, Val60, Phe14,

Leu103, Leu16, and they contribute the binding free energy much
according to the energy decomposition in MM/GBSA
(Figure 10).

For No. 15 inhibitor (Figure 8B) 2D PMF with the radius of
gyration of protein and RMSD. The state with the lowest energy is
shown in Figure 8B. For this inhibitor, the binding pocket is
slightly modulated due to ligand binding. The pocket consists of
Glu215, Val134, Phe216, Arg217, Leu48, Ile93, Val60, Trp101,
Phe14, and Leu16.

For the No.18 inhibitor (Figure 8C), the 2D PMF was plotted
with the same collective variables as inhibitor No. 15. Again, the
binding pocket modulates slightly, including Ile93, Phe216,
Trp101, Val134, Leu48, Glu215, Val60, Phe14, and Leu103.

In addition, for binding poses of the ligands, AutoDock Vina
gives almost the same pose as LiGaMD simulations in this study.

Extended Conventional MD From
Low-Energy States
To confirm that whether the three inhibitors reside in the binding
pocket of Fascin in LiGaMD, we ran 100 ns conventional MD
simulations that start from the structures at A position in
Figure 8. As is shown in Figure 9, RMSD values for the three
potential inhibitors are mainly lower than 1 Å, indicating that all of
them stay at the binding position. On the other hand, our results
indicate that the docking structures can be trusted for this system.

Finally, we run the binding affinity and binding energy
decomposition analysis for the three systems (Figure 10A). The
binding affinities of inhibitor No. 07, 15, 18 are −42, −45, and
−41 kcal/mol, respectively. Our results indicate the three
compounds can bind to Fascin as well as NP-G2-029. The crucial
residues contributed to the binding affinity of the inhibitor and are
mainly in the binding pocket, as shown in Figure 10B. It can be seen
from the interaction network that the hydrophobic interactions have a
large contribution for binding, i.e., 7 hydrophobic interactions for
ligand No. 07, 11 hydrophobic interactions for ligand No. 15, and 24
hydrophobic interactions for ligand No. 18. In addition, 2 hydrogen
bonds are formed for ligandNo. 07 and one hydrogen bond is formed
for ligand No. 15.

CONCLUSION

Fascin is overexpressed in many cancers, e.g., esophageal cancer.
In this paper, we performed CADD methods to predict the
potential inhibitors for Fascin from a library of marine natural
products including 14,064 compounds, viz. pharmacophore
model, molecular docking, molecular dynamics, MM/GBSA,
and predictions of absorption, distribution, metabolism,
excretion and toxicity properties (AMDET).

First, we built the pharmacophore model for the inhibitor NP-
G02-029, which was confirmed experimentally (Huang et al., 2018).
With the pharmacophoremodel, we achieved 472 results. In addition,
compounds that have a molecular weight larger than 500 were kicked
out, which gives 281 hits for further study. Next, molecular docking
was carried out to rank all the 281 hits. The top 18 inhibitors with
binding affinity larger than 9 kcal/mol were selected for further study.
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To accurately assess the binding affinity, MM/GBSA
calculations are performed for the 19 compounds (including
NP-G02-029). Four compounds (No. 07, 13, 15, and 18) were
found to have larger affinities to Fascin than NP-G02-029 and
were deemed potential inhibitors.

To predict the AMDET, we used the web server ADMETlab
server (Dong et al., 2018) and ProTox-II server (Banerjee et al.,
2018). AMDET results indicate that compound No.13 does not
satisfy the criteria. Thus, three compounds (No. 07, 15, and 18)
potentially inhibit the function of Fascin.

Finally, we ran LiGaMD and other conventional MD
simulations to confirm whether the three potential inhibitors
reside in the binding site or not. Our results demonstrate that all
of them stay at the binding site stably.

Thus, we predict three potential inhibitors for Fascin from
marine natural products in this investigation. These
inhibitors could have higher binding affinities than the one
(NP-G02-029) found in the previous study (Huang et al.,
2018), and block the function of Fascin. All the
computational methods used in this study could accelerate
drug discovery dramatically.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This investigation has been supported by grants from the
National Natural Science Foundation of China (81872372,
21907063, and 81902469), the Li Ka Shing Foundation
(project LD0101), and the 2020 Li Ka Shing Foundation
Cross-Disciplinary Research Grant (2020LKSFG07B).

ACKNOWLEDGMENTS

We acknowledge the Big Data Platform of Shantou University
Medical College for providing resources for computations and
storage.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2021.719949/
full#supplementary-material

REFERENCES

Acuna, V. V., Hopper, R. M., and Yoder, R. J. (2020). Computer-Aided Drug
Design for the Organic Chemistry Laboratory Using Accessible Molecular
Modeling Tools. J. Chem. Educ. 97, 760–763. doi:10.1021/acs.jchemed.9b00592

Banerjee, P., Eckert, A. O., Schrey, A. K., and Preissner, R. (2018). ProTox-II: a
webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46,
W257–W263. doi:10.1093/nar/gky318

Barbosa, A. J. M., and Roque, A. C. A. (2019). Free Marine Natural Products
Databases for Biotechnology and Bioengineering. Biotechnol. J. 14, e1800607.
doi:10.1002/biot.201800607

Belfon, D. A., K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E.,
III, Darden, T. A., et al. (2020). AMBER 2020. San Francisco: University of
California.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak,
J. R. (1984). Molecular dynamics with coupling to an external bath. J. Chem.
Phys. 81, 3684–3690. doi:10.1063/1.448118

Bernardi, R. C., Melo, M. C. R., and Schulten, K. (2015). Enhanced sampling
techniques in molecular dynamics simulations of biological systems. Biochim.
Biophys. Acta (Bba) - Gen. Subjects 1850, 872–877. doi:10.1016/
j.bbagen.2014.10.019

Bilal, M., Rasheed, T., Sosa-Hernández, J. E., Raza, A., Nabeel, F., and Iqbal, H. M.
N. (2018). Biosorption: An Interplay between Marine Algae and Potentially
Toxic Elements-A Review. Mar. Drugs, 16. doi:10.3390/md16020065

Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., and Prinsep, M.
R. (2018). Marine natural products. Nat. Prod. Rep. 35, 8–53. doi:10.1039/
c7np00052a

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., and Prinsep, M. R.
(2017). Marine natural products. Nat. Prod. Rep. 34, 235–294. doi:10.1039/
c6np00124f

Buckley, C. L., Kim, C. S., McGregor, S., and Seth, A. K. (2017). The free energy
principle for action and perception: A mathematical review. J. Math. Psychol.
81, 55–79. doi:10.1016/j.jmp.2017.09.004

Bugni, T. S., Richards, B., Bhoite, L., Cimbora, D., Harper, M. K., and Ireland,
C. M. (2008). Marine natural product libraries for high-throughput
screening and rapid drug discovery. J. Nat. Prod. 71, 1095–1098.
doi:10.1021/np800184g

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., and Prinsep, M. R. (2021).
Marine natural products.Nat. Prod. Rep. 38, 362–413. doi:10.1039/d0np00089b

Chen, L., Yang, S., Jakoncic, J., Zhang, J. J., and Huang, X.-Y. (2010). Migrastatin
analogues target fascin to block tumour metastasis. Nature 464, 1062–1066.
doi:10.1038/nature08978

Conesa-Zamora, P., García-Solano, J., García-García, F., Turpin, M. d. C., Trujillo-
Santos, J., Torres-Moreno, D., et al. (2013). Expression profiling shows
differential molecular pathways and provides potential new diagnostic
biomarkers for colorectal serrated adenocarcinoma. Int. J. Cancer 132,
297–307. doi:10.1002/ijc.27674

Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: a free web tool to
evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness
of small molecules. Sci. Rep. 7, 42717. doi:10.1038/srep42717

Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: AnN·log(N)
method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.
doi:10.1063/1.464397

De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A. (2016). Role of Molecular
Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 59,
4035–4061. doi:10.1021/acs.jmedchem.5b01684

Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., and Friesner,
R. A. (2006). PHASE: a new engine for pharmacophore perception, 3D QSAR
model development, and 3D database screening: 1. Methodology and
preliminary results. J. Comput. Aided Mol. Des. 20, 647–671. doi:10.1007/
s10822-006-9087-6

Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., et al. (2018).
ADMETlab: a platform for systematic ADMET evaluation based on a
comprehensively collected ADMET database. J. Cheminform. 10, 29.
doi:10.1186/s13321-018-0283-x

Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., et al. (2003). A
point-charge force field for molecular mechanics simulations of proteins based

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 71994914

Lin et al. Potential Inhibitors for Fascin

147

https://www.frontiersin.org/articles/10.3389/fchem.2021.719949/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.719949/full#supplementary-material
https://doi.org/10.1021/acs.jchemed.9b00592
https://doi.org/10.1093/nar/gky318
https://doi.org/10.1002/biot.201800607
https://doi.org/10.1063/1.448118
https://doi.org/10.1016/j.bbagen.2014.10.019
https://doi.org/10.1016/j.bbagen.2014.10.019
https://doi.org/10.3390/md16020065
https://doi.org/10.1039/c7np00052a
https://doi.org/10.1039/c7np00052a
https://doi.org/10.1039/c6np00124f
https://doi.org/10.1039/c6np00124f
https://doi.org/10.1016/j.jmp.2017.09.004
https://doi.org/10.1021/np800184g
https://doi.org/10.1039/d0np00089b
https://doi.org/10.1038/nature08978
https://doi.org/10.1002/ijc.27674
https://doi.org/10.1038/srep42717
https://doi.org/10.1063/1.464397
https://doi.org/10.1021/acs.jmedchem.5b01684
https://doi.org/10.1007/s10822-006-9087-6
https://doi.org/10.1007/s10822-006-9087-6
https://doi.org/10.1186/s13321-018-0283-x
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24,
1999–2012. doi:10.1002/jcc.10349

Duh, F.-M., Latif, F., Weng, Y., Geil, L., Modi, W., Stackhouse, T., et al. (1994).
cDNA cloning and expression of the human homolog of the sea urchin fascin
and Drosophila singed genes which encodes an actin-bundling protein. DNA
Cel Biol. 13, 821–827. doi:10.1089/dna.1994.13.821

Edwards, R. A., Herrera-Sosa, H., Otto, J., and Bryan, J. (1995). Cloning and
expression of a murine fascin homolog from mouse brain. J. Biol. Chem. 270,
10764–10770. doi:10.1074/jbc.270.18.10764

Encinar, J. A., Fernández-Ballester, G. J., Galiano-Ibarra, V., and Micol-Molina, V.
(2015). In silico approach for the discovery of new PPARγ modulators among
plant-derived polyphenols. Dddt 9, 5877–5895. doi:10.2147/dddt.s93449

Ferreira, L. L. G., and Andricopulo, A. D. (2019). ADMET modeling approaches in
drug discovery. Drug Discov. Today 24, 1157–1165. doi:10.1016/
j.drudis.2019.03.015

Francis, S., Croft, D., Schüttelkopf, A. W., Parry, C., Pugliese, A., Cameron, K., et al.
(2019). Structure-based design, synthesis and biological evaluation of a novel
series of isoquinolone and pyrazolo[4,3-c]pyridine inhibitors of fascin 1 as
potential anti-metastatic agents. Bioorg. Med. Chem. Lett. 29, 1023–1029.
doi:10.1016/j.bmcl.2019.01.035

Fu, Y., Ye, T., Liu, Y. X., Wang, J., and Ye, F. (2020). Based on the Virtual Screening
of Multiple Pharmacophores, Docking and Molecular Dynamics Simulation
Approaches toward the Discovery of Novel HPPD Inhibitors. Int. J. Mol. Sci. 21,
21. doi:10.3390/ijms21155546

Gaillard, T. (2018). Evaluation of AutoDock and AutoDock Vina on the CASF-
2013 Benchmark. J. Chem. Inf. Model. 58, 1697–1706. doi:10.1021/
acs.jcim.8b00312

Galiano, V., Garcia-Valtanen, P., Micol, V., and Encinar, J. A. (2016). Looking for
inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a
molecular docking approach. Dddt Vol. 10, 3163–3181. doi:10.2147/
dddt.s117369

García-Sosa, A. T., and Maran, U. (2021). Combined Naïve Bayesian, Chemical
Fingerprints and Molecular Docking Classifiers to Model and Predict
Androgen Receptor Binding Data for Environmentally- and Health-Sensitive
Substances. Int. J. Mol. Sci. 22, 22. doi:10.3390/ijms22136695

Gillan, M. J., Alfè, D., and Michaelides, A. (2016). Perspective: How good is DFT
for water. J. Chem. Phys. 144, 130901. doi:10.1063/1.4944633

Greco, G. R., and Cinquegrani, M. (2016). Firms Plunge into the Sea. Marine
Biotechnology Industry, a First Investigation. Front. Mar. Sci., 2. doi:10.3389/
fmars.2015.00124

Gupta, C. L., Babu Khan, M., Ampasala, D. R., Akhtar, S., Dwivedi, U. N., and
Bajpai, P. (2019). Pharmacophore-based virtual screening approach for
identification of potent natural modulatory compounds of human Toll-like
receptor 7. J. Biomol. Struct. Dyn. 37, 4721–4736. doi:10.1080/
07391102.2018.1559098

Han, S., Huang, J., Liu, B., Xing, B., Bordeleau, F., Reinhart-King, C. A., et al.
(2016). Improving fascin inhibitors to block tumor cell migration and
metastasis. Mol. Oncol. 10, 966–980. doi:10.1016/j.molonc.2016.03.006

Haroun, R., Gil-Rodríguez, M. C., Neto, A. I., Machín-Sánchez, M., and Viera-
Rodríguez, M. A. (2019). A review of current uses and potential
biotechnological applications of seaweeds from the Macaronesian region
(Central-East Atlantic Ocean). J. Appl. Phycol. 31, 3777–3790. doi:10.1007/
s10811-019-01889-4

Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A., and Stahl, M. T.
(2010). Conformer generation with OMEGA: algorithm and validation using
high quality structures from the Protein Databank and Cambridge Structural
Database. J. Chem. Inf. Model. 50, 572–584. doi:10.1021/ci100031x

Holthuis, J. C. M., Schoonderwoert, V. T. G., and Martens, G. J. M. (1994). A
vertebrate homolog of the actin-bundling protein fascin. Biochim.
Biophys. Acta (Bba) - Gene Struct. Expr. 1219, 184–188. doi:10.1016/
0167-4781(94)90267-4

Hou, T., and Yu, R. (2007). Molecular dynamics and free energy studies on the
wild-type and double mutant HIV-1 protease complexed with amprenavir and
two amprenavir-related inhibitors: mechanism for binding and drug resistance.
J. Med. Chem. 50, 1177–1188. doi:10.1021/jm0609162

Hu, G.-P., Yuan, J., Sun, L., She, Z.-G., Wu, J.-H., Lan, X.-J., et al. (2011). Statistical
research on marine natural products based on data obtained between 1985 and
2008. Mar. Drugs 9, 514–525. doi:10.3390/md9040514

Hu, Y., Chen, J., Hu, G., Yu, J., Zhu, X., Lin, Y., et al. (2015). Statistical research on
the bioactivity of new marine natural products discovered during the 28 years
from 1985 to 2012. Mar. Drugs 13, 202–221. doi:10.3390/md13010202

Huang, F.-K., Han, S., Xing, B., Huang, J., Liu, B., Bordeleau, F., et al. (2015).
Targeted inhibition of fascin function blocks tumour invasion and metastatic
colonization. Nat. Commun. 6, 7465. doi:10.1038/ncomms8465

Huang, J., Dey, R., Wang, Y., Jakoncic, J., Kurinov, I., and Huang, X.-Y. (2018).
Structural Insights into the Induced-fit Inhibition of Fascin by a Small-Molecule
Inhibitor. J. Mol. Biol. 430, 1324–1335. doi:10.1016/j.jmb.2018.03.009

Huang, S.-Y., and Zou, X. (2010). Advances and challenges in protein-ligand
docking. Ijms 11, 3016–3034. doi:10.3390/ijms11083016

Jakalian, A., Bush, B. L., Jack, D. B., and Bayly, C. I. (2000). Fast, efficient generation
of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem.
21, 132–146. doi:10.1002/(sici)1096-987x(20000130)21:2<132:aid-jcc5>3.0.co;
2-p

Jakalian, A., Jack, D. B., and Bayly, C. I. (2002). Fast, efficient generation of high-
quality atomic charges. AM1-BCC model: II. Parameterization and validation.
J. Comput. Chem. 23, 1623–1641. doi:10.1002/jcc.10128

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L.
(1983). Comparison of simple potential functions for simulating liquid water.
J. Chem. Phys. 79, 926–935. doi:10.1063/1.445869

Kane, R. E. (1975). Preparation and purification of polymerized actin from sea
urchin egg extracts. J. Cel Biol. 66, 305–315. doi:10.1083/jcb.66.2.305

Kayikci, M., Venkatakrishnan, A. J., Scott-Brown, J., Ravarani, C. N. J., Flock, T.,
and Babu, M. M. (2018). Visualization and analysis of non-covalent contacts
using the Protein Contacts Atlas. Nat. Struct. Mol. Biol. 25, 185–194.
doi:10.1038/s41594-017-0019-z

Koes, D. R., and Camacho, C. J. (2011). Pharmer: efficient and exact
pharmacophore search. J. Chem. Inf. Model. 51, 1307–1314. doi:10.1021/
ci200097m

Laskowski, R. A., and Thornton, J. M. (1995). LIGPLOT: a program to generate
schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134.
doi:10.1093/protein/8.2.127

Leach, A. R., Gillet, V. J., Lewis, R. A., and Taylor, R. (2010). Three-dimensional
pharmacophore methods in drug discovery. J. Med. Chem. 53, 539–558.
doi:10.1021/jm900817u

Liu, Y.-X., Gao, S., Ye, T., Li, J.-Z., Ye, F., and Fu, Y. (2020). Combined 3D-
quantitative structure-activity relationships and topomer technology-based
molecular design of human 4-hydroxyphenylpyruvate dioxygenase
inhibitors. Future Med. Chem. 12, 795–811. doi:10.4155/fmc-2019-0349

Liu, Y.-X., Zhao, L.-X., Ye, T., Gao, S., Li, J.-Z., Ye, F., et al. (2020). Identification of
key residues determining the binding specificity of human 4-
hydroxyphenylpyruvate dioxygenase. Eur. J. Pharm. Sci. 154, 105504.
doi:10.1016/j.ejps.2020.105504

Lopez-Vallejo, F., Caulfield, T., Martinez-Mayorga, K., A. Giulianotti, M., Nefzi, A.,
A. Houghten, R., et al. (2011). Integrating virtual screening and combinatorial
chemistry for accelerated drug discovery. Cchts 14, 475–487. doi:10.2174/
138620711795767866

Macalino, S. J. Y., Gosu, V., Hong, S., and Choi, S. (2015). Role of computer-aided
drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701.
doi:10.1007/s12272-015-0640-5

Machesky, L. M., and Li, A. (2010). Fascin. Communicative Integr. Biol. 3, 263–270.
doi:10.4161/cib.3.3.11556

Maia, E. H. B., Medaglia, L. R., da Silva, A. M., and Taranto, A. G. (2020). Molecular
Architect: A User-Friendly Workflow for Virtual Screening. ACS Omega 5,
6628–6640. doi:10.1021/acsomega.9b04403

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and
Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain
and Backbone Parameters from ff99SB. J. Chem. Theor. Comput. 11,
3696–3713. doi:10.1021/acs.jctc.5b00255

Miao, Y., Bhattarai, A., and Wang, J. (2020). Ligand Gaussian Accelerated
Molecular Dynamics (LiGaMD): Characterization of Ligand Binding
Thermodynamics and Kinetics. J. Chem. Theor. Comput. 16, 5526–5547.
doi:10.1021/acs.jctc.0c00395

Miao, Y., Feher, V. A., and McCammon, J. A. (2015). Gaussian Accelerated
Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy
Calculation. J. Chem. Theor. Comput. 11, 3584–3595. doi:10.1021/
acs.jctc.5b00436

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 71994915

Lin et al. Potential Inhibitors for Fascin

148

https://doi.org/10.1002/jcc.10349
https://doi.org/10.1089/dna.1994.13.821
https://doi.org/10.1074/jbc.270.18.10764
https://doi.org/10.2147/dddt.s93449
https://doi.org/10.1016/j.drudis.2019.03.015
https://doi.org/10.1016/j.drudis.2019.03.015
https://doi.org/10.1016/j.bmcl.2019.01.035
https://doi.org/10.3390/ijms21155546
https://doi.org/10.1021/acs.jcim.8b00312
https://doi.org/10.1021/acs.jcim.8b00312
https://doi.org/10.2147/dddt.s117369
https://doi.org/10.2147/dddt.s117369
https://doi.org/10.3390/ijms22136695
https://doi.org/10.1063/1.4944633
https://doi.org/10.3389/fmars.2015.00124
https://doi.org/10.3389/fmars.2015.00124
https://doi.org/10.1080/07391102.2018.1559098
https://doi.org/10.1080/07391102.2018.1559098
https://doi.org/10.1016/j.molonc.2016.03.006
https://doi.org/10.1007/s10811-019-01889-4
https://doi.org/10.1007/s10811-019-01889-4
https://doi.org/10.1021/ci100031x
https://doi.org/10.1016/0167-4781(94)90267-4
https://doi.org/10.1016/0167-4781(94)90267-4
https://doi.org/10.1021/jm0609162
https://doi.org/10.3390/md9040514
https://doi.org/10.3390/md13010202
https://doi.org/10.1038/ncomms8465
https://doi.org/10.1016/j.jmb.2018.03.009
https://doi.org/10.3390/ijms11083016
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2<132:aid-jcc5>3.0.co;2-p
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2<132:aid-jcc5>3.0.co;2-p
https://doi.org/10.1002/jcc.10128
https://doi.org/10.1063/1.445869
https://doi.org/10.1083/jcb.66.2.305
https://doi.org/10.1038/s41594-017-0019-z
https://doi.org/10.1021/ci200097m
https://doi.org/10.1021/ci200097m
https://doi.org/10.1093/protein/8.2.127
https://doi.org/10.1021/jm900817u
https://doi.org/10.4155/fmc-2019-0349
https://doi.org/10.1016/j.ejps.2020.105504
https://doi.org/10.2174/138620711795767866
https://doi.org/10.2174/138620711795767866
https://doi.org/10.1007/s12272-015-0640-5
https://doi.org/10.4161/cib.3.3.11556
https://doi.org/10.1021/acsomega.9b04403
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1021/acs.jctc.0c00395
https://doi.org/10.1021/acs.jctc.5b00436
https://doi.org/10.1021/acs.jctc.5b00436
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R. C., and McCammon, J. A.
(2014). Improved Reweighting of AcceleratedMolecular Dynamics Simulations
for Free Energy Calculation. J. Chem. Theor. Comput. 10, 2677–2689.
doi:10.1021/ct500090q

Miller, B. R., 3rd, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., and
Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free
Energy Calculations. J. Chem. Theor. Comput. 8, 3314–3321. doi:10.1021/
ct300418h

Montaser, R., and Luesch, H. (2011). Marine natural products: a new wave of drugs.
Future Med. Chem. 3, 1475–1489. doi:10.4155/fmc.11.118

Murzin, A. G., Lesk, A. M., and Chothia, C. (1992). β-Trefoil fold. J. Mol. Biol. 223,
531–543. doi:10.1016/0022-2836(92)90668-a

Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M. V., Pham, M. Q.,
et al. (2020). Autodock Vina Adopts More Accurate Binding Poses but
Autodock4 Forms Better Binding Affinity. J. Chem. Inf. Model. 60, 204–211.
doi:10.1021/acs.jcim.9b00778

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and
Hutchison, G. R. (2011). Open Babel: An open chemical toolbox.
J. Cheminform. 3, 33. doi:10.1186/1758-2946-3-33

Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., and Jensen, J. H. (2011).
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical
pKa Predictions. J. Chem. Theor. Comput. 7, 525–537. doi:10.1021/ct100578z

Ono, S., Yamakita, Y., Yamashiro, S., Matsudaira, P. T., Gnarra, J. R., Obinata, T.,
et al. (1997). Identification of an actin binding region and a protein kinase C
phosphorylation site on human fascin. J. Biol. Chem. 272, 2527–2533.
doi:10.1074/jbc.272.4.2527

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M.,
Meng, E. C., et al. (2004). UCSF Chimera?A visualization system for exploratory
research and analysis. J. Comput. Chem. 25, 1605–1612. doi:10.1002/jcc.20084

Ponting, C. P., and Russell, R. B. (2000). Identification of distant homologues of
fibroblast growth factors suggests a common ancestor for all β-trefoil proteins
1 1Edited by J. Thornton. J. Mol. Biol. 302, 1041–1047. doi:10.1006/
jmbi.2000.4087

Rastelli, G., and Pinzi, L. (2019). Refinement and Rescoring of Virtual Screening
Results. Front. Chem. 7, 498. doi:10.3389/fchem.2019.00498

Rigsby, R. E., and Parker, A. B. (2016). Using the PyMOL application to reinforce
visual understanding of protein structure. Biochem. Mol. Biol. Educ. 44,
433–437. doi:10.1002/bmb.20966

Rodrigues, P. C., Sawazaki-Calone, I., Ervolino de Oliveira, C., Soares Macedo, C.
C., Dourado, M. R., Cervigne, N. K., et al. (2017). Fascin promotes migration
and invasion and is a prognostic marker for oral squamous cell carcinoma.
Oncotarget 8, 74736–74754. doi:10.18632/oncotarget.20360

Roy, A., Srinivasan, B., and Skolnick, J. (2015). PoLi: A Virtual Screening Pipeline
Based on Template Pocket and Ligand Similarity. J. Chem. Inf. Model. 55,
1757–1770. doi:10.1021/acs.jcim.5b00232

Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J. H., et al. (2016).
Towards industrial products from microalgae. Energy Environ. Sci. 9,
3036–3043. doi:10.1039/c6ee01493c

Saikia, S., and Bordoloi, M. (2019). Molecular Docking: Challenges, Advances and
its Use in Drug Discovery Perspective. Cdt 20, 501–521. doi:10.2174/
1389450119666181022153016

Salam, N. K., Nuti, R., and Sherman, W. (2009). Novel method for generating
structure-based pharmacophores using energetic analysis. J. Chem. Inf. Model.
49, 2356–2368. doi:10.1021/ci900212v

Schöning-Stierand, K., Diedrich, K., Fährrolfes, R., Flachsenberg, F., Meyder, A., Nittinger,
E., et al. (2020). ProteinsPlus: interactive analysis of protein-ligand binding interfaces.
Nucleic Acids Res. 48, W48–W53. doi:10.1093/nar/gkaa235

Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., and Case, D. A. (1998).
Continuum Solvent Studies of the Stability of DNA, RNA, and
Phosphoramidate−DNA Helices. J. Am. Chem. Soc. 120, 37. doi:10.1021/ja981844+

Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., et al. (2018). Assessing the
performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the

performance of end-point binding free energy calculation approaches. Phys.
Chem. Chem. Phys. 20, 14450–14460. doi:10.1039/c7cp07623a

Tan, V. Y., Lewis, S. J., Adams, J. C., and Martin, R. M. (2013). Association of
fascin-1 with mortality, disease progression and metastasis in carcinomas: a
systematic review andmeta-analysis. BMCMed. 11, 52. doi:10.1186/1741-7015-
11-52

Vanommeslaeghe, K., and MacKerell, A. D., Jr. (2015). CHARMM additive and
polarizable force fields for biophysics and computer-aided drug design.
Biochim. Biophys. Acta (Bba) - Gen. Subjects 1850, 861–871. doi:10.1016/
j.bbagen.2014.08.004

Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., et al. (2019). End-
Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA:
Strategies and Applications in Drug Design. Chem. Rev. 119, 9478–9508.
doi:10.1021/acs.chemrev.9b00055

Wang, J., and Kollman, P. A. (2001). Automatic parameterization of force field by
systematic search and genetic algorithms. J. Comput. Chem. 22, 1219–1228.
doi:10.1002/jcc.1079

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004).
Development and testing of a general amber force field. J. Comput. Chem. 25,
1157–1174. doi:10.1002/jcc.20035

Wenzel, J., Matter, H., and Schmidt, F. (2019). Predictive Multitask Deep
Neural Network Models for ADME-Tox Properties: Learning from Large
Data Sets. J. Chem. Inf. Model. 59, 1253–1268. doi:10.1021/
acs.jcim.8b00785

Williams, H. D., Trevaskis, N. L., Charman, S. A., Shanker, R. M., Charman, W. N.,
Pouton, C. W., et al. (2013). Strategies to address low drug solubility in
discovery and development. Pharmacol. Rev. 65, 315–499. doi:10.1124/
pr.112.005660

Wolber, G., and Langer, T. (2005). LigandScout: 3-D pharmacophores derived
from protein-bound ligands and their use as virtual screening filters. J. Chem.
Inf. Model. 45, 160–169. doi:10.1021/ci049885e

Wu, X., and Brooks, B. R. (2003). Self-guided Langevin dynamics simulation
method. Chem. Phys. Lett. 381, 512–518. doi:10.1016/j.cplett.2003.10.013

Xiang, M., Cao, Y., Fan, W., Chen, L., and Mo, Y. (2012). Computer-aided drug
design: lead discovery and optimization. Cchts 15, 328–337. doi:10.2174/
138620712799361825

Yamashiro-Matsumura, S., and Matsumura, F. (1985). Purification and
characterization of an F-actin-bundling 55-kilodalton protein from HeLa
cells. J. Biol. Chem. 260, 5087–5097. doi:10.1016/s0021-9258(18)89183-9

Yang, S., Huang, F.-K., Huang, J., Chen, S., Jakoncic, J., Leo-Macias, A., et al.
(2013). Molecular mechanism of fascin function in filopodial formation. J. Biol.
Chem. 288, 274–284. doi:10.1074/jbc.m112.427971

Ylilauri, M., and Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the
binding affinities of filamin-peptide interactions. J. Chem. Inf. Model. 53,
2626–2633. doi:10.1021/ci4002475

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lin, Lin, Wu, Liu, Cheng, Xu, Li and Dong. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CCBY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 71994916

Lin et al. Potential Inhibitors for Fascin

149

https://doi.org/10.1021/ct500090q
https://doi.org/10.1021/ct300418h
https://doi.org/10.1021/ct300418h
https://doi.org/10.4155/fmc.11.118
https://doi.org/10.1016/0022-2836(92)90668-a
https://doi.org/10.1021/acs.jcim.9b00778
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/ct100578z
https://doi.org/10.1074/jbc.272.4.2527
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1006/jmbi.2000.4087
https://doi.org/10.1006/jmbi.2000.4087
https://doi.org/10.3389/fchem.2019.00498
https://doi.org/10.1002/bmb.20966
https://doi.org/10.18632/oncotarget.20360
https://doi.org/10.1021/acs.jcim.5b00232
https://doi.org/10.1039/c6ee01493c
https://doi.org/10.2174/1389450119666181022153016
https://doi.org/10.2174/1389450119666181022153016
https://doi.org/10.1021/ci900212v
https://doi.org/10.1093/nar/gkaa235
https://doi.org/10.1021/ja981844+
https://doi.org/10.1039/c7cp07623a
https://doi.org/10.1186/1741-7015-11-52
https://doi.org/10.1186/1741-7015-11-52
https://doi.org/10.1016/j.bbagen.2014.08.004
https://doi.org/10.1016/j.bbagen.2014.08.004
https://doi.org/10.1021/acs.chemrev.9b00055
https://doi.org/10.1002/jcc.1079
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/acs.jcim.8b00785
https://doi.org/10.1021/acs.jcim.8b00785
https://doi.org/10.1124/pr.112.005660
https://doi.org/10.1124/pr.112.005660
https://doi.org/10.1021/ci049885e
https://doi.org/10.1016/j.cplett.2003.10.013
https://doi.org/10.2174/138620712799361825
https://doi.org/10.2174/138620712799361825
https://doi.org/10.1016/s0021-9258(18)89183-9
https://doi.org/10.1074/jbc.m112.427971
https://doi.org/10.1021/ci4002475
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Synthesis, Computational
Pharmacokinetics Report, Conceptual
DFT-Based Calculations and
Anti-Acetylcholinesterase Activity of
Hydroxyapatite Nanoparticles Derived
From Acorus Calamus Plant Extract
Sushma Pradeep1, Anisha S. Jain1, Chandan Dharmashekara1, Shashanka K. Prasad1,
Nagaraju Akshatha2, R. Pruthvish3, Raghavendra G Amachawadi4,
Chandrashekar Srinivasa5, Asad Syed6, Abdallah M. Elgorban6, Abdulaziz A. Al Kheraif 7,
Joaquín Ortega-Castro8, Juan Frau8, Norma Flores-Holguín9, Chandan Shivamallu1*,
Shiva Prasad Kollur10* and Daniel Glossman-Mitnik9*

1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research,
Mysuru, India, 2Department of Physics, Marimallapa PU College, Mysuru, India, 3Department of Biotechnology, Acharya Institute
of Technology, Bengaluru, India, 4Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University,
Manhattan, KS, United States, 5Department of Studies in Biotechnology, Davangere University, Shivagangothri, Davangere,
India, 6Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia, 7Dental Health
Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia, 8Departament de Química,
Universitat de les Illes Balears, Palma de Mallorca, Spain, 9Laboratorio Virtual NANOCOSMOS, Departamento de Medio
Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México, 10Department of Sciences, Amrita
School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India

Over the years, Alzheimer’s disease (AD) treatments have been a major focus, culminating
in the identification of promising therapeutic targets. A herbal therapy approach has been
required by the demand of AD stage-dependent optimal settings. Present study describes
the evaluation of anti-acetylcholinesterase (AChE) activity of hydroxyapatite nanoparticles
derived from an Acorus calamus rhizome extract (AC-HAp NPs). The structure and
morphology of as-prepared (AC-HAp NPs) was confirmed using powder X-ray
diffractometer (XRD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM).
The crystalline nature of as-prepared AC-HAp NPs was evident from XRD pattern. The
SEM analysis suggested the spherical nature of the synthesized material with an average
diameter between 30 and 50 nm. Further, the TEM and HR-TEM images revealed the
shape and size of as-prepared (AC-HAp NPs). The interplanar distance between two
lattice fringes was found to be 0.342 nm, which further supported the crystalline nature of
the material synthesized. The anti-acetylcholinesterase activity of AC-HAp NPs was
greater as compared to that of pure HAp NPs. The mechanistic evaluation of such an
activity carried out using in silico studies suggested that the anti-acetylcholinesterase
activity of phytoconstituents derived from Acorus calamus rhizome extract was mediated
by BNDF, APOE4, PKC-c, BACE1 and c-secretase proteins. The global and local
descriptors, which are the underpinnings of Conceptual Density Functional Theory
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(CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to
help in the comprehension of the chemical reactivity properties of the five ligands
considered in this study. With the further objective of analyzing their bioactivity, the
CDFT studies are complemented with the estimation of some useful computed
pharmacokinetics indices, their predicted biological targets, and the ADMET
parameters related to the bioavailability of the five ligands are also reported.

Keywords: Alzheimer’s disease, neuropathology, neurofibrillary tangles, amyloid plaques, molecular docking,
computational pharmacokinetics, Conceptual DFT

1 INTRODUCTION

The most frequent form of dementia is Alzheimer’s disease. It
affects millions of individuals around the world, and the number
is rapidly increasing. Alzheimer’s disease has been found to
impact socially and financially the lives of those affected
(Wang et al. 2016). According to the amyloid hypothesis,
misfolding of the extracellular protein collected in senile
plaques and intracellular deposition of misfolded tau protein
in neurofibrillary tangles induce memory loss and disorientation,
as well as personality and cognitive decline over time (Förstl and
Kurz 1999). Over 24 million people worldwide are estimated to
have dementia, with Alzheimer’s disease accounting for the bulk
of cases (Mayeux and Stern 2012). As a result, research into
Alzheimer’s disease, which is a huge public health concern, must
be prioritized. The treatments available are aimed at alleviating
the symptoms of Alzheimer’s disease, implying the necessity to
have a better understanding of disease pathophysiology to find/
develop treatments that can lessen symptoms or repair harm
already done (Solfrizzi et al. 2011). The most important
component in focusing therapy efforts is integrating both
pharmaceutical and psychosocial support systems towards
early diagnosis and studying the disease further.

The absence of treatment for Alzheimer’s disease and
dementia has become a major public health concern.
Alzheimer’s disease is a neurological disease that worsens with
time Heneka et al. (2015). The therapeutic drugs used to treat
Alzheimer’s disease must either cure or slow the illness. There are
few first-line medications/drugs available to treat AD and these
works as acetylcholinesterase inhibitors and have FDA approval
in the United States Wilson et al. (2011). However, because none
of the treatments are designed to boost neural functioning, none
of them can entirely heal the disease or improve the patient’s
cognitive or memory skills. As a result, there is a need for an
alternative supply of medication to treat Alzheimer’s disease
Blennow et al. (2006). The amyloid hypothesis, presented in
1991, claimed that AD was caused by the accumulation of Aβ
proteins. The APP (amyloid β-protien precursor) gene, which
produces Aβ protein, is found on the 21st chromosome, and
people with Down’s syndrome (trisomy 21) have an extra copy of
this gene, resulting in the earliest reported symptom(s) of
Alzheimer’s disease at the age of 40 Waring and Rosenberg
(2008). APOE4 (Apolipoprotein E4) has long been thought to
be a key risk factor for Alzheimer’s disease since it aids in the
breakdown of Aβ proteins. However, some isoforms of APOE4

are ineffective, resulting in amyloid buildup in the brain Selkoe
(1999). Also, the enzyme acetylcholinesterase is involved in
cholinergic neurotransmission. It degrades acetylcholine
stopping the neurotransmission process. The assay of AChE
activity can be used to confirm the efficacy of various test
substances as herbal extracts or herbal extracts derived
nanoparticles in terms of treatment Kim (2018).

Ayurveda is an ancient medicinal system that employs a
variety of herbs and plants to effectively treat a wide range of
diseases Strittmatter et al. (1993). Herbal treatments from plants
contain a blend of phytocompounds with varying pharmaco-
biological relevance and can treat a variety of disorders. Plants, in
fact, have long been a primary source of medications in a variety
of therapeutic traditions Mahley et al. (2006). The plant’s
pharmacological activity, such as anti-amyloidogenic, anti-
inflammatory, antioxidants and anti-cholinesterase properties,
are due to phytochemical components such as polyphenols,
alkaloids, triterpenes, tannins, lignins, sterols and flavonoids
Francis et al. (1999). Acorus calamus, a member of the
Acoraceae family, is native to India. In Ayurveda, this plant is
revered for its revitalizing effects on the neurological system,
brain, and digestive systems. Alkaloids, volatile oil, steroids,
tannins, sesquiterpenes, polyphenols, saponin, lignin, mucilage,
monoterpenes, flavonoids and glycosides chemicals are among
the phytoconstituents found in AyurvedaMartorana et al. (2010).
A. calamus has anti-microbial, anti-ulcer, antidiabetic,
insecticidal, neuroprotective, anti-allergic, anti-inflammatory,
cardioprotective, pesticidal, anti-cancer and anti-oxidant
activities. Ferreira-Vieira et al. (2016).

Nanomedicines (NMs) have a number of unique qualities that
allow them to deliver anti-AD therapies to specific brain locations
Spuch et al. (2012). NMs benefit from smaller dimensions and
enhanced biocompatibility, making therapeutic chemicals easier
to move into the brain Fakhoury et al. (2015). NMs that are small
(about 100–10,000 times smaller than a human cell) can easily
interact with proteins and chemicals on the cell surface and inside
the cell. The essential core structures of NP-functionalized NMs
ensure drug encapsulation or conjugation, as well as protection
and sustained blood circulation Leszek et al. (2017). NMs can also
target cells or even an intracellular compartment such as Aβ in
cells, allowing the drug to be delivered at a predetermined dosage
straight to the diseased spot Kim et al. (2012). NMs can reduce the
dose and frequency of treatment, resulting in better patient
compliance Altinoglu and Adali (2020). Nanomedicines have
potential advantages over other conventional ways of drug
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delivery to the brain to cure AD, such as favorability to the brain,
greater stability, biocompatibility and biodegradability,
protection from enzymatic degradation, increased half-life,
improved bioavailability, and controlled release, despite some
clinical issues Knop et al. (2010).

Hydroxyapatite (Ca10(PO4)6(OH)2) is composed of 70% apatite
calcium phosphate and remaining 30% of natural materials Gopi
et al. (2013). As a result, it is frequently employed in biomedical
applications including fillers for bone deformities, scaffolds for tissue
engineering, coatings on metallic implants to increase
biocompatibility, and drug/protein delivery carriers Youness et al.
(2017). On the other hand, green synthesis of nanoparticles using
plant leaf extracts has opened a new era in research.

A quite oftenmethod of predicting a small molecule’s orientation
when it is bound to a target molecule to create a stable complex is the
in silico molecular docking approach Davies (1999). Predicting the
strength of association or binding affinity between two molecules
requires knowledge of the preferred orientation. The study of how
two or more molecular structures fit together is known as molecular
docking. As a result, molecular docking can be used to forecast the
strength that will be created between the molecules Polvikoski et al.
(1995). The binding behavioral studies have aided in understanding
the fundamental biological processes that help in rational drug
discovery techniques Lacor et al. (2007). Rational drug discovery
(RDD) study was to find an inhibitor that binds and stops the action
of some toxic proteins produced in the human body. RDD allows
researchers to forecast how tiny molecules like ligands bind in the
receptor target site. One of the most often used strategies in
structure-based drug design is molecular docking Nikolaev et al.
(2009). The present study investigates the in silico and AChE
inhibitory activity of pure HApNPs and Ac-HApNPs prepared
using aqueous extract of rhizome of Acorus calamus against AD
proteins.

2 MATERIALS AND METHODS

All the chemicals and reagents were procured from Loba
chemicals (Bangalore, India). Demineralized water was
collected from an ELGA RO system and was used throughout
the experiments (Elga Veolia, Lane End, United Kingdom). The
crystalline phases were recorded on Bruker X-ray diffractometer
with a scan range of 20–70° at a 2°/min scan rate using Cu Kα
(1.5406 Å) radiation (Bruker, Karlsruhe, Germany). The
morphology and elemental composition were studied using
Scanning electron microscopy (SEM) and Energy dispersive
X-ray (EDX) mapping, respectively, which were recorded on a
Zeiss microscope (Carl Zeiss, White Plains, NY, United States).
Transmission electron microscopy (TEM) images and Selected
Area Electron Diffraction (SAED) patterns were recorded on a
JEOL 2100F FEG apparatus operating at 200 kV after casting a
drop of sample material for dispersion in ethanol over a Cu grid
(JEOL, Akishima, Tokyo, Japan).

2.1 Plant Material Collection
The matured rhizomes of the Acorus calamus plant grown were
collected in the region around Mysuru, Karnataka, India. The

rhizomes collected were washed with single distilled water and
0.5% sodium hypochlorite solution and lastly with double
distilled water to remove microscopic entities and other dust
particles and later the rhizomes were shade dried for 45 days at
room temperature (28 ± 5°C) Turner et al. (2003). The dried
materials were then crushed using a blender and made into fine
powder.

2.2 Aqueous Rhizome Extract Preparation
The powdered sample was extracted using the Soxhlet apparatus.
Around 60 g of sample was added into thimble for extraction
using water as the solvent for 8 h (24 cycles). The obtained
extracts were air-dried and stored at 4°C. Further, it was
subjected to qualitative and quantitative phytochemical
analysis to quantify the presence of various phytochemicals
present in the rhizome extract Mudher and Lovestone (2002).
Further, the prepared extract was sent for GC-MS (gas
chromatography-mass spectrometry) analysis to identify the
important phytochemical constituents and functional groups
Goedert et al. (1991).

2.3 Preparation of Hydroyapatite
Nanoparticles (AC-HAp NPs)
1 M CaCl2 and 0.6 M Na2HPO4 were prepared using leaf extract
as the solvent and separately raised to pH 10.0 using 0.8 MNaOH
solution for the synthesis of HAp nanospheres. The CaCl2
solution was then aggressively agitated at room temperature
with a magnetic stirrer, and then Na2HPO4 solution was
added drop by drop to generate a gelatinous precipitate. The
formation of precipitation of HAp is described as follows:

10 CaCl2 + 6 Na2HPO4 + 8 NaOH → Ca10(PO4)6(OH)2 +
20 NaCl + 6 H2O

The precipitate formed was centrifuged to eliminate
byproducts before being dried in a hot air oven at 130°C for
6 h and resulting in a dry cake which was crushed to form powder
Iqbal et al. (2005). In addition, for comparison, HAp without
rhizome extract was made and termed control (pure HAp).

2.4 Anti-Acetylcholinesterase Inhibition
Assay
Ellman’s method was slightly modified to measure AChE
inhibition. Briefly, 150 μl of 0.1 M sodium phosphate buffer
(pH 8.0), 10 μl of test chemical solution, and 20 μl of AChE
enzyme solution (0.1 units/mL) were combined and incubated
at 25°C for 15 min. After that, 10 μl of DTNB (10 mM) (5,5-
dithio-bis-(2-nitrobenzoic acid)) was added, and the reaction
was started by adding substrate (10 μl of ATCI
(acetylthiocholine iodide), 14 mM solution). The formation
of the colored product, 5-thio-2-nitrobenzoate anion
generated by the reaction of DTNB and thiocholine, which
is released by the ATCI’s hydrolysis, can be used to determine
the enzyme’s hydrolysis. After 10 min, the colored product was
detected at 410 nm wavelength. Tacrine was utilized as a
positive control Kametani and Hasegawa (2018). Inhibition
(%) was estimated using the following equation:
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Inhibition Activity(%) � 1 − Absorbance of sample
Absorbance of control

[ ] × 100

2.5 In Silico Bioinformatics Studies
2.5.1 Lead Optimization
GC-MS analysis is one of the fast, best and accurate technique
used to detect various compounds that includes organic acids,
long chain hydrocarbons, alcohols, steroids, amino acids, nitro
compounds, alkaloids and esters Pradeep et al. (2020). The GC-
MS analysis of aqueous extract of rhizomes of the Acorus calamus
detected the presence of 110 compounds among which a library
of 20 molecules were created based on the review of literature
Singh et al. (2010). Subsequently, all 20 molecules were analyzed
for their bioactivity through in silico molecular docking studies.

The 2D chemical structure of all the 20 molecules were
sketched using ChemSketch software Tian et al. (2010). These
files were further converted to 3D structures (pdb format) using
OpenBabel GUI2.4.1 software Obulesu and Rao (2011). Before
carrying out the molecular docking studies, the geometry of all
the structures was cleaned using ArgusLab program Jaiswal et al.
(2011).

2.5.2 Protein Preparation
Proteins/enzymes that are mainly involved in amyloid hypothesis
of AD are BNDF (brain-derived neurotophic factor), APOE4,
PKC-γ (protein kinase c), BACE1 and γ-secretase. By altering
synaptic plasticity, BDNF plays a fundamental role in cognition,
learning, and memory formation, making it a critical molecule in
dementia and neurodegenerative illnesses Prasad et al. (2021).
The biggest genetic risk factor for Alzheimer’s disease is APOE4.
It is important for the metabolism of lipids such as cholesterol
and for the repair of neuronal injury in the brain Kollur et al.
(2021). PKC isoforms have crucial functions as tau kinases in
addition to their role in memory formation. PKC-γ is involved in
the maintenance of synaptic plasticity Prasad et al. (2020c).
BACE1 (β-secretase 1) catalyses the amyloid precursor
protein’s initial cleavage to produce Aβ proteins. As a result,
inhibiting BACE1 activity could prevent one of the earliest
pathogenic events in Alzheimer’s disease Ankegowda et al.
(2020). γ-Secretase is a protease complex that cuts the
transmembrane domain of the APP to create the amyloid
β-protein (Aβ), an aggregation-prone product that builds up
in the brain of Alzheimer’s patients Desikan et al. (2009). The
above mentioned protein play very important role in memory
and cognition functions thus, all the 5 enzymes were selected for
the in silico inhibition studies to dock the screened
phytocompounds against them.

The three dimensional structures of BNDF, APOE4, PKC-γ,
BACE1 and γ-secretase with their respective PDB IDs such as
1B8M, 1GS9, 3PFQ, 4L7G and 5A63, required for the in silico
studies were obtained from Protein Data Bank (PDB) [https://
www.rcsb.org/], a protein structural database Tiraboschi et al.
(2004). Before beginning with the docking analysis, all of the
protein structures were refined and energy-optimized Mendez
(2006). The cleanup of the proteins was accomplished by
finishing incomplete residues with hydrogen atoms. External

ligands and non-essential ions were removed from the protein
structure Waldemar et al. (2007).

2.5.3 Protein Structure Validation
Using the PROCHECK module of the PDBSum server [https://
servicesn.mbi.ucla.edu/PROCHECK/], the stereochemical stability
of the predicted models was further verified using various protein
quality-based parameters such as percentage of residues lying in
favored and allowed regions, number of glycine and proline residues,
and orientation of dihedral angles including phi (ϕ) and psi (ψ), as
well as backbone conformation Schroeter et al. (2009).

2.5.4 Binding Site Prediction
Residues in the protein interacting with the ligand is termed as a
binding site of that protein. This binding site was predicted using
the CASTp 3.0 server (http://sts.bioe.uic.edu/castp/index.html?
4jii) which stands for Computed Atlas of Surface Topography of
proteins. Surface pockets and interior cavities are identified and
measured by CASTp Jain et al. (2021). The modeled protein is
used to predict ligand binding sites, and the server identifies the
amino acids that are relevant for binding interactions.

2.5.5 Molecular Docking Studies
MD is a technique for studying the molecular behavior of target
proteins when they bind. It is a tool widely utilized in drug
development. PyRx 0.8 [https://pyrx.sourceforge.io/], a virtual
screening tool was used to accomplish molecular docking Prasad
et al. (2020a). A genetic algorithm is an effective approach for
searching the docked conformer’s space globally. It also allows for
the existence of a population of solutions, which can evolve
through processes like ‘breeding’ and ‘mutation’ Prasad et al.
(2020b). Poor solutions are extinguished, while good ones are
passed down to future generations. In a few tens of generations,
such algorithms may usually obtain an excellent answer Uppar
et al. (2021). The MD results were analyzed for their bonded and
non-bonded interactions using Discovery Studio 3.1 (Accelrys,
San Diego, United States) visualization software Avinash et al.
(2021). The whole process is depicted in Figure 1

2.6 Computational Pharmacokinetics
Analysis
It is critical to learn about the pharmacokinetics, or the fate of a
molecule in the body, during the creation of a novel therapeutic
medicine. Individual indices known as Absorption, Distribution,
Metabolism, Excretion, and Toxicity (ADMET) factors are typically
used to do this. As an alternative to employing experimental
approaches to determine these parameters, computer models are
commonly used. Chemicalize, a software developed by ChemAxon
[http://www.chemaxon.com], and the internet available
SwissADME program were used to estimate some ADME
parameters in this study Daina et al. (2017). Additional
information about the Pharmacokinetics parameters and the
ADMET properties were obtained by resorting to pkCSM Pires
et al. (2015), a software for the prediction of small-molecule
pharmacokinetic properties using SMILES [https://biosig.unimelb.
edu.au/pkcsm/] (accessed, June 2021). Molinspiration
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Cheminoformatics’ freely available Molinspiration software [https://
www.molinspiration.com/] (accessed, June 2021) was used to
conduct similarity searches in the chemical space of compounds
with molecular structures comparable to those being researched and
to predict bioactivity ratings for a variety of pharmacological targets.
A Webtool named SwissTargetPrediction for efficient prediction of
protein targets of small molecules was used for the determination of
the potential bioactivity of the five ligands considered in this study
Daina et al. (2019). The associated website allows the estimation of
the most probable macromolecular targets of a small molecule,
assumed as bioactive.

2.7 Conceptual DFT Studies
The molecular energy, electronic density, and orbital energies of a
particular system, including the Highest Occupied Molecular Orbital
(HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO)
were determined using the Kohn-Sham (KS) approach Lewars
(2003); Young (2001); Jensen (2007); Cramer (2004) while making
use of the Conceptual DFT (CDFT) methodology Parr and Yang
(1989); Chermette (1999); Geerlings et al. (2003, 2020); Toro-Labbé
(2007); Chattaraj (2009); Chakraborty and Chattaraj (2021). The
conformers of the compounds studied in this work were determined

using MarvinView 17.15 from ChemAxon [http://www.chemaxon.
com] by using the entire MMFF94 force field to perform Molecular
Mechanics calculations Halgren (1996a,b, 1999); Halgren and
Nachbar (1996); Halgren (1996c). This was followed by a
geometry optimization and frequency calculation by means of the
Density Functional Tight Binding (DFTBA) methodology Frisch
et al. (2016). This last step was required for the verification of the
absence of imaginary frequencies as a check for the stability of the
optimized structures as being a minimum in the energy landscape.
The electronic properties and the chemical reactivity descriptors of
the studied molecules involved the use of MN12SX/Def2TZVP/H2O
model chemistry Peverati and Truhlar (2012);Weigend and Ahlrichs
(2005);Weigend (2006) on the optimizedmolecular structures due to
is ability in the verification of the ‘Koopmans in DFT’ (KID) protocol
Flores-Holguín et al. (2019b); Flores-Holguín et al. (2019d); Frau and
Glossman-Mitnik (2018a); Frau and Glossman-Mitnik (2018b); Frau
and Glossman-Mitnik (2018c); Frau and Glossman-Mitnik (2018d);
Frau and Glossman-Mitnik (2018e); Frau and Glossman-Mitnik
(2018f); Flores-Holguín et al. (2019a); Frau et al. (2019); Flores-
Holguín et al. (2019c), Flores-Holguín et al. (2020c); Flores-Holguín
et al. (2020a); Flores-Holguín et al. (2020b); Flores-Holguín et al.
(2021) using Gaussian 16 Frisch et al. (2016) and the SMDmodel for

FIGURE 1 | Graphical representation of in silico analysis carried out in the present study and the 3D structure of selected proteins.
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the simulation of the solvent Marenich et al. (2009). This model
chemistry considers the MN12SX screened-exchange density
functional Peverati and Truhlar (2012) together with the
Def2TZVP basis set Weigend and Ahlrichs (2005); Weigend
(2006) and in all cases the charge of the molecules is equal to
zero while the radical anion and cation have been considered in
the doublet spin state.

3 RESULTS

3.1 SEM Analysis
The surface morphology of as-prepared AC-HAp NPs showed
spherical shaped particles which are highly agglomerated. The
average particles size ranged between 30 and 50 nm (Figure 2).
Further, EDAX analysis was carried out to explore the
composition of the AC-HAp NPs. Figure 3 depicts the EDX

spectra of as-obtained AC-HAp NPs showing the characteristic
peaks of Ca, P and O with the atomic and weight percentages of
the elemental particles providing the mean relative calcium to
phosphate ratios, and was found to be 1.68, which is quite close to
the Ca/P ratio of the human bone.

3.2 X-ray Diffraction Analysis
The crystalline phases of the as-prepared AC-HAp NPs was
determined using XRD diffraction pattern (Figure 4). The
position of observed diffraction peaks are in good agreement with
the JCPDS (89-6438). The peaks observed at 2θ � 27.8°, 30.1°, 33.3°,
35.1°, 36.2°, 45.8°, 49.8°, and 60.2° corresponds to the (hkl): (002),
(210), (211), (112), (212), (400), (222), and (323), matching exactly
with the hexagonal system with primitive lattice. Furthermore, the
average particle size of the as-prepared AC-HAp NPs was said to
36mm, which was calculated (using FWHM) by Scherrer’ formulam
D � k λ/β cosθ Ankegowda et al. (2020).

FIGURE 2 | SEM images of A. calamus rhizome extract derived HAp NPs.

FIGURE 3 | EDX spectra showing the elements present in as-prepared HAp NPs.
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3.3 TEM Analysis
The structure and morphology of as-prepared AC-HAp NPs was
determined by Transmission electron microscopy (TEM). The TEM
images as shown in Figure 5, reveals that the average sizes were
between 30 and 40 nm. The spherical nature of AC-HAp NPs is
evident from the TEM image. Moreover, the aggregate blocks with
porous structure of the material can be seen form TEM image.
Further, the HR-TEM image showed that the inter-planer spacing
between two lattice fringes was 0.342 nm (Figure 5B),
corresponding to (102) lattice plane of AC-HAp NPs, and same
has been confirmed by SAED pattern, which shows the crystalline
structure of as-prepared AC-HAp NPs (Figure 5C).

3.4 AChE Inhibition
By inhibiting AChE of the cholinergic synapse, AChE inhibitors
enhance acetylcholine levels by inhibiting AChE of the
cholinergic synapse thus enhancing the function and relieving
the symptoms of neurological illnesses, including Alzheimer’s
disease. In addition to alkaloid-derived chemicals as the most
well-known natural AChE inhibitors, plant-derived extract are

also a major source of AChE inhibitors. HAp NPs from the
rhizome of A. calamus has been demonstrated to inhibit AChE.
As a result, AC-HAp NPs of the A. calamus rhizome were found
to have AChE inhibitory action.

Surprisingly, the anti-AChE activity was evidently greater with
AC-HAp NPs when compared to positive control Tacrine and
pure HAp NPs with IC50 value of about 22.39 μg/ml (Figure 6).

3.5 MD Interactions
Interaction affinity describes the strength of protein-ligand binding.
The binding affinity is determined by the strength of the attractive
force between the protein and the ligand. The best molecularly
docked poses were analyzed and visualized. The docking procedure
was validated before the ligands were screened. The optimum
ligand-protein complex orientations were investigated. The
docking score was used to identify the excellent docking
conformation. The binding affinity of a specific protein-ligand
complex with a known 3D structure is computed using the
binding energy score. Van der Waals interactions, hydrogen
bonding and hydrophobic effects are all included in the binding
energy (Table 1). The 3D and 2D interactions between all the
protein-Apiin complexes were analyzed and its images were taken
usingDiscovery Studio 3.1 visualization software fromFigures 7–11.

TheMD studies revealed that only 5molecules out of 20molecules
has the ability to bind to the active site with the selected targets by
forming greater binding affinity and least binding energy against the
targets. Also, all the 25 protein-ligand complexes were capable of
forming a very good amount of bonded and non-bonded interaction
between them. Therefore, all the five phytoconstituents obtained from
the GC-MS analysis of aqueous extracts of A. calamus were able to
form a great interactionwith all the 5 selected targets and thus showed
the in silico inhibition activity against AD.

3.6 Computational Pharmacokinetics
Report
The Bioactivity Scores, that is a measure of the ability of the
molecules to behave or interact with different receptors, for the
five ligands are presented in Table 2FIGURE 4 | XRD diffraction pattern of as-prepared AC-HAp NPs.

FIGURE 5 | (A) TEM; (B) HR-TEM, and (C) SAED pattern of as-prepared AC-HAp NPs.

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7410377

Pradeep et al. Synthesis, Pharmacokinetics and Conceptual DFT

156

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


A chemical with a bioactivity score more than 0 is predicted to
have significant biological activities, while values between −0.50
and 0.00 are moderately active. The molecular system is
considered inactive if the bioactivity score is less than −0.50.
The findings clearly show that the drug complexes’ physiological
activities may be mediated by many pathways, including
interactions with GPCR ligands, protease inhibitors, and other
enzymes. The results from Table 2 indicate that
S-Adenosylhomocysteine will mostly act as a GPCR ligand, an
enzyme inhibitor and a protease inhibitor. For the case of
Carbenicillin, the main interaction are going to be as a
protease and enzyme inhibitor. Lastly, by considering the
Apiin, Rutine and Chloramphenicol monoglucoronide ligands,
they may be regarded as enzyme inhibitors, and with the
exception of Rutine, also as protease inhibitors.

An ADMET study is the assessment of pharmacokinetics of a
drug which stands for Absorption, Distribution, Metabolism,
Excretion and Toxicity. The prediction of the fate of a drug
and the effects caused by a drug inside the body, such as how
much drug is absorbed if administered orally and how much is
absorbed in the gastrointestinal tract, is an indispensable part of
drug discovery. In a similar way, if the absorption is poor, its
distribution and metabolism would be affected, which can lead to
causing neurotoxicity and nephrotoxicity.

The computed ADMET properties of the five studied ligands
are presented in Table 3.

A chemical can reach a tissue if it is injected into the
bloodstream. Before being taken up by target cells, a drug is
usually given through mucous surfaces such as the digestive tract,
i.e. intestinal absorption. Drug absorption is limited following
oral delivery due to poor substance solubility, intestinal transit
time, gastric emptying time, difficulty permeating the intestinal
wall, and chemical instability in the stomach. Absorption is

important because it affects the bioavailability of a chemical.
For medications with low absorption, oral delivery, such as
inhalation or intravenously, is less desirable Jujjavarapu et al.
(2019); Pires et al. (2015). For projected values >0.90, a substance
is deemed to have a high Caco-2 permeability across the human
intestinal mucosa, being Apiin with a value of 0.737 the only drug
that could be considered in this regard. In most cases, the gut is
the principal location of medication absorption from an orally
delivered solution. Intestinal Absorption forecasts the percentage
of a substance that will be absorbed through the human intestine,
with less than 30% being considered poorly absorbed. Again,
Apiin is the only drug that satisfies this requirement, according to
Table 3. The model forecast whether or not a particular substance
will be a P-glycoprotein substrate. This is verified for all the
molecules considered in this study. Modulation of
P-glycoprotein-mediated transport has significant
pharmacokinetic implications for P-glycoprotein substrates,
which might have therapeutic benefits or create
contraindications. As a result, this study indicates that none of
the molecules will inhibit P-glycoprotein I and II, with the
exception of S-Adenosylhomocysteine which will be an
inhibitor of P-glycoprotein I. Furthermore, it may be predicted
whether a certain substance will be skin permeable. If a chemical
has a log Kp > −2.5, it is regarded to have low skin permeability,
meaning that all five drug may be useful in the development of
transdermal medication administration Pires et al. (2015). The
total dose of a drug requires a certain volume to be uniformly
distributed in blood plasma known as VDss. The drug will be
more distributed in the tissue rather than in the plasma for higher
VDss. From Table 3, low values of VDss are found for the five
drugs. The efficacy of a given drug may be affected by the degree
to which it binds proteins within the blood. The Fraction
Unbound predicts the fraction that will be unbound in plasma

FIGURE 6 | Anti-acetylcholinesterase activity of HAp NPs derived from A. calalmus, pure HAp NPs and Tacrine as positive control.
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resulting in the values shown in Table 3. A drug’s ability to cross
into the brain is a significant descriptor because it will be able to
contribute to the reduction of toxicities and side effects, and is
evaluated through the Blood-Brain Permeability parameter. For a
given potential therapeutic drug, a logBBB > −0.3 value is
estimated to readily cross the blood-brain barrier while
molecules with logBBB > −1 will be badly distributed to the
brain. The CNS Permeability is another measurement having low
values which indicates that these drugs cannot penetrate the
Central Nervous System (CNS) Pires et al. (2015). Cytochrome
P450 is an important detoxification enzyme in the body, mostly
present in the liver, since it oxidizes xenobiotics to enhance
excretion Pires et al. (2015). Table 3 shows that none of the
studied molecules will be inhibitors or substrates of any P450
cytochrome isoform. Drug clearance happens as a combination of
renal and hepatic clearance, and is associated with bioavailability;
consequently, it is important for determining dosing rates. The
AMES toxicity test utilizes microbes in oder to ascertain a
compound’s mutagenesis potential. A positive test shows that

the substance is mutagenic; therefore, it could result in cancer.
The predictions are negative for all the molecules with the
exception of Rutine. The main causes of acquiring long QT
syndrome are the blocking of the potassium channels encoded
by hERG (the human Ether-a-go-go-Related Gene), which leads
to fatal ventricular arrhythmia. The predictions indicate that
none of the molecules will be an hERG inhibitor, but Apiin
and Rutine will be hERG II inhibitors. The lethal dosage value
(LD50) can be assessed in terms of the ORAT (Oral Rat Acute
Toxicity) and the ORCT (Oral Rat Chronic Toxicity) parameters.
Drug-induced liver injury is a major safety concern for drug
development and a significant cause of drug attrition. Thus,
Hepatoxicity is related to the disruption of the normal liver
function and the predictions for Apiin, Rutine aand
Chloramphenicol Monoglucoronide are negative. Skin
Sensitization is predicted negative in all cases. T. Pyriformis is
a protozoa bacteria whose toxicity is frequently applied as a toxic
endpoint. A forecasted value > −0.5 for a given compound is
considered toxic Pires et al. (2015).

TABLE 1 | Protein-ligand complex binding energy and interaction details.

Protein ID Ligand name Binding affinity (Kcal/mol) Number
of hydrogen bonds

Residues forming hydrogen
bonds

1B8M S-Adenosylhomocysteine −6.0 7 THR-83, GLN-84, SER-21, ALA-19, CYS-119
Carbenicillin −7.4 8 THR-59, THR-83, GLN-84, TYR-86, SER-108, THR-117
Apiin −7.2 10 SER-21, ALA-19, GLN-84, SER-108, THR-83, CYS-111

VAL-16, CYS-17
Rutine −6.9 11 SER-17, CYS-13, TYR, 54, THR-56, GLN-94, LYS-93

CYS-13, ASP-14
Chloramphenicol Monoglucoronide −7.0 10 GLU-9, SER-11, ASP-14, SER-15, LYS-93, TYR-96

1GS9 S-Adenosylhomocysteine −5.7 6 GLY-23, GLU-27, ASP-36, ASP-153, GLN-156
Carbenicillin −6.8 3 Trp-34, ASP-35, GLN-156
Apiin −6.0 6 GLU-27, ARG-145, GLN-156
Rutine −6.6 4 VAL-103, SER-104, ARG-108, THR-188, HIS-222

GLU-245, ILE-246
Chloramphenicol Monoglucoronide −6.9 3 GLU-27, ARG-145, GLN-156

3PFQ S-Adenosylhomocysteine −6.4 9 VAL-103, SER-104, ARG-108, THR-188, HIS-222
GLU-245, ILE-246

Carbenicillin −8.6 7 VAL-103, SER-104, ARG-108, PRO-244, GLU-245
ARG-652

Apiin −9.0 9 SER-104, THR-188, LYS-239, PRO-244, GLU-245
ILE-246, ARG-652

Rutine −9.5 8 SER-67, SER-102, VAL-103, ARG-108, THR-188, LYS-654
LYS-654, ARG-657, ARG-659

Chloramphenicol Monoglucoronide −8.6 9 VAL-103, SER-104, ARG-108, GLU-184, HIS-222, ILE-246
ARG-652

5A63 S-Adenosylhomocysteine −7.7 7 LEU-348, TYR-422, VAL-423, GLY-426, ASP-427, ASP-470
Carbenicillin −7.2 2 TYR-422, MET-473
Apiin −9.0 8 TYR-123, GLN-128, HIS-140, TYR-422, ASN-424, SER-476
Rutine −7.8 8 LEU-348, GLY-351, GLY-354, GLY-426, ASP-427, ASP-470
Chloramphenicol Monoglucoronide −7.4 5 TYR-123, GLN-128, GLY-129, LYS-141, SER-476

4L7G S-Adenosylhomocysteine −7.8 5 SER-35, ASN-37, TYR-71, ILE-126
Carbenicillin −7.4 5 GLY-11, TYR-71, THR-232
Apiin −7.4 4 GLY-11, SER-35, SER-36, ASN-37, TYR-71, ILE-126

TYR-198, THR-232
Rutine −9.2 8 ASP-32, SER-35, ASN-37, ALA-39, TYR-198, LYS-224

THR-231, ARG-235
Chloramphenicol Monoglucoronide −10.7 10 GLY-11, SER-35, TYR-71, THR-72, GLN-73, GLY-230

THR-232
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3.7 Conceptual DFT Studies
The calculated global reactivity descriptors: Electronegativity (χ),
Hardness (η), Electrophilicity (ω) (all in eV), Softness (S),
Nucleophilicity (N), Electrodonating Power (ω−),
Electroaccepting Power (ω+) and Net Electrophilicity (Δω±)
Parr and Yang (1989); Chermette (1999); Geerlings et al.
(2003, 2020); Toro-Labbé (2007); Chattaraj (2009);
Chakraborty and Chattaraj (2021), estimated following the
methodology presented in the 2.7 subsection together with the
in-house developed CDFT software tool are displayed in Table 4

As the global hardness η can be regarded as a direct measure of
the deformation of the electron density and of the chemical

reactivity being related to the HOMO-LUMO gap, it can be
seen that Carbenicillin will be the less reactive ligand being the
others very similar in their reactivity. The electrodonating ability
ω− is more important than its electroaccepting power ω+ for all
the ligands because of their molecular structures. However, after a
comparison of the values of ω− and ω+ for eachmolecule, it can be
concluded that the reactivity of the Chloramphenicol
monoglucoronide will be very different from the other ligands.
The electrophilicity ω index encompasses the equilibrium
between an electrophile’s tendency to acquire extra electron
density and a molecule’s resistance to exchanging electron
density with the environment Domingo et al. (2016). By

FIGURE 7 | Molecular docking interaction analysis of protein 1B8M, (A): 3D interactions and (B): 2D interactions have been represented between 1B8M-Apiin
complex structures.

FIGURE 8 | Molecular docking interaction analysis of protein 1GS9, (A): 3D interactions and (B): 2D interactions have been represented between 1GS9-Apiin
complex structures.
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studying the electrophilicities of a series of reagents involved in
Diels-Alder reactions Domingo et al. (2002); Domingo and Sáez
(2009); Pérez et al. (2003), an electrophilicity ω scale for the
classification of organic molecules as strong, moderate or
marginal electrophiles was proposed being ω > 1.5 eV for the
first case, 0.8 < ω < 1.5 eV for the second case and ω < 0.8 eV for
the last case Domingo et al. (2002); Domingo and Sáez (2009);
Pérez et al. (2003). By inspection of Table 4, it can be said that
with the exception of Carbenicillin all the ligands may be
regarded as strong electrophiles.

Besides the global reactivity descriptors, their local
counterparts have been developed to get an idea of the
differences in chemical reactivity between the atoms within the
molecule. Among these local reactivity descriptors are the Fukui
functions Parr and Yang (1989); Chermette (1999); Geerlings
et al. (2003) and the Dual Descriptor Toro-Labbé (2007); Morell
et al. (2005, 2006); Martínez-Araya (2012a); Martínez-Araya
(2012b); Martínez-Araya (2015), which have been defined as:
Nucleophilic Fukui Function (NFF) � f+(r) � ρN+1(r) − ρN(r),
Electrophilic Fukui Function (EFF) � f−(r) � ρN(r) − ρN−1(r), and

FIGURE 9 | Molecular docking interaction analysis of protein 3PFQ, (A): 3D interactions and (B): 2D interactions have been represented between 3PFQ-Apiin
complex structures.

FIGURE 10 | Molecular docking interaction analysis of protein 5A63, (A): 3D interactions and (B): 2D interactions have been represented between 5A63-Apiin
complex structures.
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Dual Descriptor (DD) � Δf(r) � (zf(r)/zN)υ(r), relating the
electronic densities of the neutral, positive and negative species.

The NFF, f+(r), is associated with the sites within a molecular
system which are prone to nucleophilic attacks while the EFF,
f−(r), describes those sites that are more susceptible to
electrophilic attacks. Although the NFF and the EFF have been
used successfully for the identification of reactive sites, the Dual
Descriptor Δf(r) or DD, has been shown to describe
unambiguously nucleophilic and electrophilic sites within a
molecule Martínez-Araya (2015). Graphical representations of
the DD for the five studied ligands is displayed in Figure 12
showing the zones where DD > 0 and DD < 0:

Although there is some overlap between the different regions
within the ligands, these graphical representations allow to clearly
distinguish the regions within the molecules where the Dual
Descriptor will be greater or smaller than zero, implying the
differences in their chemical reactivities.

4 DISCUSSION

Alzheimer’s disease (AD) is a chronic neurodegenerative
disorder characterized by the progressive impairment of

memory, cognition and behavior that usually exhibits a slow
onset before worsening over time and ultimately leading to
death. The causes of AD are poorly understood, although
several etiological factors, such as genetic abnormalities,
history of head injuries, environmental factors, general
lifestyles, depression or hypertension, deposition of
extracellular ß-amyloid protein (Aβ) and microtubule
associated tau protein in the brain, and cholinergic
dysfunction have all been implicated in AD. At present,
there are no drugs available that are capable of curing
Alzheimer’s disease or any of the other common types of
dementia, but two conceptual approaches for the treatment
of AD have been developed. Currently, only three
cholinesterase inhibitors such as donepezil, galantamine and
rivasigmine are the Food and Drug Administration (FDA)
approved drugs to treat AD. Unfortunately, they only work for
a short period of time, primarily in the early stages of the
illness, to help patients delay the loss of cognitive functions as
much as possible.

In this study, the HAp nanoparticles were selected as the drug
delivery system with precise targeting. In general, nanoparticles
are divided into two types: inorganic (metallic, metal oxide, and
ceramic particles) and organic (organic, metal oxide, and

FIGURE 11 | Molecular docking interaction analysis of protein 4L7G, (A): 3D interactions and (B): 2D interactions have been represented between 4L7G-Apiin
complex structures.

TABLE 2 | Bioactivity scores of the studied molecules calculated on the basis of the GPCR ligand, ion channel modulator, nuclear receptor ligand, kinase inhibitor, protease
inhibitor, and enzyme inhibitor interactions.

Property S-adenosyl
homocysteine

Carbenicillin Apiin Rutine Chloramphenicol
monoglucoronide

GPCR Ligand 1.04 0.05 0.18 −0.05 0.08
Ion Channel Modulator 0.44 −0.40 −0.17 −0.52 −0.06
Nuclear Receptor Ligand 0.47 −0.75 0.09 −0.14 −0.28
Kinase Inhibitor −1.18 −0.37 0.18 −0.23 −0.12
Protease Inhibitor 0.51 0.85 0.17 −0.07 0.08
Enzyme Inhibitor 1.23 0.30 0.42 0.12 0.28
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ceramic particles) (lipidic and polymeric particles). The metallic
NPs have some limitations over organic NPs because of the
presence of metals, but few metallic NPs like gold, selenium and
cerium NPs are reported to exhibit significant anti-AD
properties. Recently in a study, the solid lipid NPs was
shown to have significant inhibitory effects against amyloid
aggregation Sathya et al. (2020). The selenium based NPs were
seen to reduce the ROS level in the brain which is a key strategy
to relieve AD because of the presence of many trace elements
such as sodium selenite (VI), sodium selenite (IV) and selenium

selenite (II) Fernandes and Gandin (2015). In the AD mouse
model, the cerium NPs coupled with triphenylphosphonium
(TPP) was seen to localize in the mitochondria to prevent the
neuronal death Kwon et al. (2016). In another study, the gold
NPs (AuNPs) showed significant results in reducing the
symptoms of AD by modulating the mitochondrial functions
dos Santos Tramontin et al. (2019).

When compared to the above mentioned nanoparticles AC-
HAp NPs are not only bioactive but also non-toxic and non-
immunogenic and do not contain any toxic elements Yasukawa

TABLE 3 | ADMET properties of the five studied ligands.

Property S-adenosyl
homocystein

Carbenicillin Apiin Rutine Chloramphenicol
monoglucoronide

Absorption

Caco-2 Permeability −0.506 0.377 0.737 −0.763 −0.868
Intestinal Absorption 27.464 23.953 29.350 28.135 0.000
Skin Permeability −2.735 −2.735 −2.735 −2.735 −2.735
P-glycoprotein Substrate Yes Yes Yes Yes Yes
P-glycoprotein I Inhibitor Yes No No No No
P-glycoprotein II Inhibitor No No No No No

Distribution

VDss −0.575 −1.804 −0.108 0.013 −2.144
Fraction Unbound 0.559 0.427 0.175 0.292 0.427
BBB Permeability −1.630 −1.051 −1.523 −2.080 −5.744
CNS Permeability −4.090 −3.572 −5.144 −5.744 −4.556

Metabolism

CYP2D6 Substrate No No No No No
CYP3A4 Substrate No No No No No
CYP1A2 Inhibitor No No No No No
CYP2C19 Inhibitor No No No No No
CYP2C9 Inhibitor No No No No No
CYP2D6 Inhibitor No No No No No
CYP3A4 Inhibitor No No No No No

Excretion

Total Clearance 0.721 0.081 0.117 −0.200 0.373
Renal OCT2 Substrate No No No No No

Toxicity

AMES Toxicity No No No Yes No
Maximum Tolerated Dose 0.514 1.717 0.516 0.427 0.759
hERG I Inhibitor No No No No No
hERG II Inhibitor No No Yes Yes No
Oral Rat Acute Toxicity 2.403 1.856 2.417 2.445 2.439
Oral Rat Chronic Toxicity 2.771 2.956 5.414 5.414 5.158
Hepatotoxicity Yes Yes No No No
Skin Sensitisation No No No No No
T. Pyriformis Toxicity 0.285 0.285 0.285 0.2.85 0.2.85

TABLE 4 |Global Reactivity Descriptors of the Five Studied Ligands: Electronegativity (χ), Hardness (η), Electrophilicity (ω) (all in eV), Softness (S) (in eV−1), Nucleophilicity (N),
Electrodonating Power (ω−), Electroaccepting Power (ω+) and Net Electrophilicity (Δω±) (also in eV).

Molecule χ H ω S N ω− ω+ Δω±

S-Adenosylhomocysteine 3.8897 4.2687 1.7722 0.2343 2.7684 5.7561 1.8664 7.6225
Carbenicillin 3.8718 5.6238 1.3328 0.1778 2.1088 4.9530 1.0812 6.0341
Apiin 4.1168 4.6227 1.8332 0.2163 2.3643 6.0136 1.8968 7.9105
Rutine 4.1346 4.1184 2.0754 0.2428 2.5986 6.4756 2.3410 8.8166
Chloramphenicol Monoglucoronide 5.2081 4.2387 3.1996 0.2359 2.8369 9.2682 4.0601 13.3283
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et al. (1994). The AC-HAp NPs exhibit improved densification
and better bioactivity than pure HAp NPs. None of the above
discussed NPs were checked for their AChE inhibitory activity
but in our present study, A. calamus rhizome with revitalizing
neurological properties has been used to produce the HAp NPs
and their AChE inhibitory activity was evaluated and has shown a
promising AChE inhibitory action.

Inhibition of AChE, the key enzyme in the breakdown of
acetylcholine, is considered one of the treatment strategies
against Alzheimer’s disease. Plants have been traditionally
used to enhance cognitive function and to alleviate other
symptoms associated nowadays with Alzheimer’s disease.
The AC-HAp NPs drastically enhanced the AChE
inhibitory action even at very low concentrations when
compared to pure HAp NPs. The IC50 values of 206.31 and
22.39 μg/ml were recorded with HAp NPs and AC-HAp NPs
(Figure 6). Tacrine was used as a positive control which

showed IC50 of 96.43 μg/ml. Surprisingly, significant AChE
inhibition activity results was observed in A. calamusmediated
HAp NPs, suggesting that the preparation of HAp NPs from A.
calamus rhizome extract enhanced the AChE inhibition.
Similar observations were made by Uddin et al. (2021)
where the extracts of Blumea lacera, Cyclea barbata, Smilax
guianensis and Byttneria Pilosa inhibited AChE with an IC50
values of 150 ± 11, 176 ± 14, 205 ± 31, and 221 ± 2 μg/ml
respectively Uddin et al. (2021). They also proved that the
plant extracts selected in their study showed a promising effect
in inhibiting AChE activity, wherein the present study has
shown improvement in biological activities in the medicinal
plants when in combination with nanoparticle.

In the Molecular Docking studies, the strength of protein-
ligand complex binding is well known as binding affinity. The
affinity determines if the ligand binds to the target. Further,
amongst the 20 phytocompounds screened, 5 compounds
exhibited highest binding affinity and lowest binding energy
values for the selected target proteins of AD, such as 1B8M,
1GS9, 3PFQ, 4L7G, and 5A63. The binding energy for all the
target proteins was in the range of −5.7 to −10.7 kcal/mol with the
formation of at least 6 to 11 hydrogen bonds. Depending upon the
obtained binding energy, bonded and non-bonded interactions
between the targets and 5 ligands (S-Adenosylhomocysteine,
Carbenicillin, Apiin, Rutine and Chloramphenicol
Monoglucuronide) the present study concludes that A.
calamus phytocompounds have an effective anti-
neurodegenarative activity.

5 CONCLUSION

A. calamus rhizome extract was used to successfully produce
hydroxyapatite nanoparticles (AC-HAp NPs). The formation
of nanoparticles was confirmed by SEM, EDX, XRD, TEM,
HR-TEM and SAED techniques. The formation of AC-HAp
NPs with high crystallinity and well defined forms was
demonstrated by XRD, SEM, and TEM analysis. The goal of
this study was to find phytoconstituents that can bind to the
critical targets of amyloid hypothesis of AD using a
computational approach and also to check the AChE
inhibition activity of the synthesized AC-HAp NPs. The
findings of the present study shows that as-prepared AC-
HAp NPs can inhibit AChE, which was compared with pure
AC-HAp NPs. In silico molecular docking approach revealed
that most of the compounds derived from A. calamus rhizome
extract have the ability to bind to the selected targets,
according to the binding scores and analysis of the
interactions of the compounds. Further, in vivo studies to
evaluate substances like S-Adenosylhomocysteine,
Carbenicillin, Apiin, Rutine and Chloramphenicol
Monoglucuronide would lead to therapeutically effective
molecules for treating a variety of chronic pain problems. It
is also suggested that multipurpose NPs with multitherapeutic
capabilities can be used. Given the present medications’ major
targets of tau proteins, neuroinflammation, and Aβ proteins,
there is an urgent need to create drugs with novel targets that

FIGURE 12 | Graphical representations of the dual descriptor DD of the
five studied ligands. Left: DD < 0, Right: DD < 0.
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can not only treat the symptoms but also prevent the disease
from progressing at an early stage, resulting in a better life.

With the additional goal of analyzing their bioactivities, the
predicted biological targets and the ADMET parameters related
to the bioavailability and computational pharmacokinetics of the five
ligands have been reported. The chemical reactivities of these five
ligands have been thoroughly investigated through the optimization
of their structures using the DFTBA methodology and the
estimation of their electronic properties using the MN12SX/
Def2TZVP/H2O model chemistry, which has already been used
in previous research for the study of potentially therapeutic
molecules, proving its suitability for this type of calculation and
supporting this and previous research on this important subject.
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Although SARS-CoV-2 entry to cells strictly depends on angiotensin-converting enzyme 2
(ACE2), the virus also needs transmembrane serine protease 2 (TMPRSS2) for its spike
protein priming. It has been shown that the entrance of SARS-CoV-2 through ACE2 can be
blocked by cellular TMPRSS2 blockers. The main aim of this study was to find potential
inhibitor(s) of TMPRSS2 through virtual screening against a homology model of TMPRSS2
using the library of marine natural products (MNPs). The homology modeling technique for
generating a three-dimensional structure of TMPRSS2 was applied. Molecular docking,
MM-GBSA and absorption, distribution, metabolism, excretion (ADME) evaluations were
performed to investigate the inhibitory activity of marine natural products (MNPs) against
TMPRSS2 and their pharmacokinetic properties. Camostat and nafamostat mesylate
were used as the standard inhibitory molecules. Seven MNPs were able to inhibit
TMPRSS2 better than the standard compounds. MNP 10 with CAS number 107503-
09-3, called Watasenia β-D- Preluciferyl glucopyrasoiuronic acid, was found to be the best
inhibitor of TMPRSS2 with acceptable pharmacokinetic properties. Herein, for the first
time, a new marine natural product was introduced with potent inhibitory effects against
TMPRSS2. MNP 10 exhibited favorable drug-like pharmacokinetic properties and it
promises a novel TMPRSS2 blocker to combat SARS-CoV-2.

Keywords: SARS-CoV-2, COVID-19, tmprss2, molecular modeling, molecular docking

HIGHLIGHTS

1) Marine natural products (MNPs) are a valuable source for anti-SARS-CoV-2 drugs.
2) MNP 10 is a potent TMPRSS2 inhibitor to combat SARS-CoV-2.
3) MNP 10 has favorable drug-like pharmacokinetic characteristics.

INTRODUCTION

The devastating pandemic caused by SARS-CoV-2 (Astuti, 2020; Guan et al., 2020;Wang et al., 2020;
Zhu et al., 2020) that first broke out in Wuhan, China in late 2019, has become the most important
global health and socioeconomic issue. Although there is a worldwide effort to develop an effective
vaccine against SARS-CoV-2 using both established and new vaccine production technologies
(WHO, 2021), no one can yet claim what kind of therapy can be absolutely efficient for the treatment
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of or protection against COVID-19. Based on the involved
pathophysiologic pathways, different kinds of therapeutic
modalities have been conducted in numerous clinical trials
with conflicting results.

SARS-CoV-2 is a spherical shaped virus with a diameter of
about 60–140 nm with some pleomorphism belonging to
Coronaviride family. The enveloped virus has distinctive
spikes (Zhu et al., 2020). Its genome is around 29.8 kilobase
with a single-stranded positive-sense RNA (Lu et al., 2020a;
Chan et al., 2020; Zhou et al., 2020) encoding 12 putative
structural and non-structural proteins; of which spike(S),
envelope (E), membrane (M) and nuclecapsid (N) proteins
are structural. The S protein complex has two subunits, the
S1 subunit contains a single peptide, a receptor-binding domain
(RBD) which mediates attachment of virion to host cell surface
receptors, and an N-terminal domain (NTD). The S2 subunit
mediates fusion between the viral and host cellular membranes
which facilitates virus genome entry into the host cell (Gui et al.,
2017; Kirchdoerfer et al., 2018; Song et al., 2018; Wan et al.,
2020).

Although it has been discovered that the SARS-CoV-2 entry
to cells strictly depends on Angiotensin-Converting Enzyme 2
(ACE2) (Li et al., 2003; Li and De Clercq, 2020), it has been
shown in several studies that SARS-CoV-2 also needs
transmembrane serine protease 2 (TMPRSS2) for S protein

priming (Hoffmann et al., 2020a; Hoffmann et al., 2020b;
Stopsack et al., 2020). Hoffmann et al. showed that the
entrance of SARS-CoV-2 through ACE2 can be blocked
using cellular TMPRSS2 blockers. The SARS-CoV-2 spike
protein contains several arginine residues with a high
cleavability action at the communication point in the S1/S2
cleavage site. It has been suggested that this zoonotic-origin
cleavage site sequence is required for SARS-CoV-2 entrance into
human cells. These findings are consistent with previous
observations from several clinically relevant viruses such as
MERS, other Coronaviruses, and Influenza A virus (Kim
et al., 2006; Matsuyama et al., 2010; Glowacka et al., 2011;
Shulla et al., 2011; Kawase et al., 2012; Gierer et al., 2013; Zhou
et al., 2015; Shen et al., 2017; Iwata-Yoshikawa et al., 2019;
Kleine-Weber et al., 2019). Moreover, Heurich et al. showed that
TMPRSS2 and other potentially related proteases cleave the
ACE2 and SARS-S protein leading to the SARS-CoV entry and
fusion of the virus S protein with the host cell membrane,
respectively (Heurich et al., 2014). Therefore blocking S
protein priming by specific serine protease might have the
potential to control SARS-CoV-2 infection. There are some
therapeutic agents like bromehexine (Lucas et al., 2014),
camostat mesylate (Shirato et al., 2013), and nafamostat
mesylate (Yamamoto et al., 2016) that have been elucidated
to be a good inhibitor of TMPRSS2.

Regarding TMPRSS2 inhibitors as potent candidates for anti
SARS-CoV-2 infection, it may be promising to investigate
natural resources to discover novel components with anti-
TMPRSS2 activities. The extreme and unusual environment
of the ocean has extraordinary organisms with astonishing
properties, which can reveal new horizons for treatment in
modern medicine including marine-derived secondary
metabolites with evident anti-inflammatory, antitumor,
antimicrobial, antiviral, antimalarial, and antioxidant
activities (Molinski et al., 2009; Gogineni et al., 2015; Blunt
et al., 2018; Riccio et al., 2020; Yi et al., 2020; Carroll et al., 2021).
Based on the extraordinary self-defense capacities of marine
organisms and the occurrence in them of some deadly viral
infections, these organisms might be regarded as a source of
novel antiviral agents, which may be able to combat a SARS-
CoV-2 infection. Hence, marine-derived natural compounds
should be considered in our efforts to overcome the challenges
of COVID-19 treatments.

A promising method to investigate viral entry and
proliferation is to apply a computer-aided active site directed
inhibition study. To the best of our knowledge, there are no
studies that have screened the marine natural products (MNPs)
libraries specifically to find a blocker of TMPRSS2. However,
several studies have screened the libraries of other natural
products, particularly plant-derived compounds, to discover
the potential inhibitors of TMPRSS2 (Chikhale et al., 2020;
Da Silva Antonio et al., 2020; Idris et al., 2020; Rahman et al.,
2020; Singh et al., 2020; Vivek-Ananth et al., 2020; Hu et al.,
2021).

This study aimed to find potential inhibitor(s) of TMPRSS2
through virtual screening against a homology model of TMPRSS2
using the library of marine natural products (MNPs).

SCHEME 1 | Standard inhibitors (A) camostat mesylate and (B)
nafamostat mesylate.
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MATERIALS AND METHODS

Homology Modeling
The essential step in the study of the structural and functional
aspects of any protein is to have its suitable crystal structure.

Unfortunately, the three-dimensional (3D) structure of
TMPRSS2 had not been found at the time of the current
study. Hence, in this case, the only option was to generate a
3D coordinate of TMPRSS2 by comparative prediction approach.
Herein, the online server SWISS-MODEL (Guex et al., 2009;

FIGURE 1 | (A) Three-dimensional structure of the modeled serine protease transmembrane protease serine 2 (TMPRSS2), (B) Ramachandran plot validation of
the modeled 3D structure, (C) alignment of the target serine protease TMPRSS2 and the template serine protease hepsin (PDB ID: 5CE1.A.).
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Bertoni et al., 2017; Waterhouse et al., 2018) (https://swissmodel.
expasy.org/) was used to build the 3D structure of TMPRSS2. The
amino acid sequence of human transmembrane protease serine 2,
from the Universal Protein Resource “UniProtKB” (accession no:
O15393) isoform-2,492 amino acids long (https://www.uniprot.
org/uniprot/O15393), was selected for homology modeling that
was performed by a template-based method. Then, the
RAMPAGE server was used to validate the 3D modeled
structure (http://mordred.bioc.cam.ac.uk/∼%7B%7Drapper/
rampage.php).

Pharmacophore-Based Virtual Screening
The pharmacophore model was created using the Pharmit
server (http://pharmit.csb.pitt.edu/). First, pharmacophore
features were automatically extracted from the co-
crystalized inhibitor of Serine protease Hepsin (PDB: 5CE1.

TABLE 1 |Homology modeling results and validation for predicting 3D structure of
TMPRSS2.

Server/tool Parameter Score

Swiss-model QMEAN z score −1.47
GMQE 0.48
Seq Similarity 51%
Coverage 71%
Seq identity 33.82%

RAMPAGE(Ramachandran plot) favored region 92.7%
Allowed region 6.7%
Outlier region 2%

MolProbity Molprobity Score 1.89
Ramachandran Favoured 92.20%
Ramachandran Outliers 1.16%
Rotamer Outliers 1.35%
C-Beta Deviations 7%

TABLE 2 | Predicted binding site of homology model of TMPRSS2.

Predicted
binding
site

C-score E-Value Involved
residues

Docking energy
of representative
ligand-template

complex

Predicted binding
residues

CDD-search — 7.39e-
100

ILE293-GLN524 — HIS333 to SER478
Catalytic site: HIS333, ASP382 and SER478
Substrate binding site: ASP472, SER497and GLY499

COACH-D 0.99 — ILE293-GLN524 −6.0 HIS333, LYS379, ASP472-GLY476, SER478, THR496-CYS502 and
GLY509

FIGURE 2 | (A) The predicted binding site by CPACH-D server. The protein template is a serine protease of the coagulation system (PDB: 5jb8) and ligand is [(4S,
5S)-4-[[2-[[(2S)-2-amino-4-carboxybutanoyl]amino]acetyl]amino]-6-chloro-5-hydroxyhexyl]-(diaminomethylidene)azanium with pubchem CID: 137347860. (B) The
binding sites predicted by Sitemap. Site1: Sitescore 0.972, Dscore 1.001, size 87, and volume 150. Site 2: Sitescore 0.968, Dscore 1.026, size 91, and volume 228. Site
3: Sitescore 0.994, Dscore 1.044, size 108, and volume 331.
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A), and camostat mesylate was also used as another ligand for
the pharmacophore modeling to obtain a more realistic model
for homology structure of TMPRSS2 as input receptor. Hence,
the pharmacophore model used for TMPRSS2 virtual
screening was generated based on the predicted binding
interactions of TMPRSS2 with these two inhibitors. The
Pharmit parameters for 3D-pharmacophore research were
changed according to these pharmacophore parameters.
Then the MNP library, which contains 164,952 conformers
from 14,064 molecules, was searched on this model. The hit
compounds with an RMSD ≥4 Å and minimized affinity ≥ -6
were discarded. The remaining poses were minimized using
functions of Pharmit. Finally, the pharmacophore-based
minimized entries were further docked with the target
protein to identify the lead compounds with the best
docking scores.

Active Site Identification and Preparation of
TMPRSS2 for Docking
The conserved domain (CD) search was done on the Fasta
sequence of the homology model of TMPRSS2 using the
NCBI’s conserved domain database (CDD/SPARCLE:
https://www.ncbi.nlm.nih.gov/cdd/) (Lu et al., 2020b).
Then, it was analyzed and its cleavage, active, and substrate
binding site residues were predicted. The COACH-D server
(https://yanglab.nankai.edu.cn/COACH-D/) (Yang et al.,
2013; Wu et al., 2018) was also applied to predict
TMPRSS2 putative ligand-binding sites. Then, in a model-
template active site comparative study, the active and
substrate binding residues of the (5CE1.A) template were
similarly obtained.

Finally, the homology structure of TMPRSS2 was imported
into Maestro Protein Wizard and sitemap analysis was done by
SiteMap (Halgren, 2007; Halgren, 2009; Schrödinger, 2015b).

This software was used with default settings, in which the top
five possible binding sites by a minimum of 15 points were
identified while cropping site maps set at 4 A from the nearest
site point. SiteMap used a more restrictive definition of
hydrophobicity by standard grid. A SiteScore value above 0.80
is indicative of high druggability and promising drug-binding
sites and is used in conjunction with Dscores, which serve as a
measure of hydrophobicity. Dscore or druggability score
penalizes increasing hydrophilicity and is thus used as a
druggability measure for a pocket. In general, Dscore <0.83 is
considered as “undruggable,” 0.83–0.98 as “difficult to drug” and
>0.98 as “druggable” (Halgren, 2007; Halgren, 2009; Vidler et al.,
2012).

Molecular Docking
Ligand Preparation
One conformation was generated per compound which was
followed by geometry optimization with PM3 (Stewart, 1991),
a semi-empirical method using Hyperchem release 7 for windows
(HyperCube Inc., 2002). The geometry-optimized structures were
retrieved in MOL type for further analysis with the LigPrep
application which has been implemented in the Schrödinger
2015-2 suite of software (Schrödinger, 2015a). The ionization
state was specified at pH � 7.00±2.0 using Epik (Epik, 2015) based
on Hammett and Taft methodologies (Sastry et al., 2013). The
desalt option was the same as the program default. All 32 possible
conformations were produced for each compound at pH 7.00 in
the OPLS3 (Harder et al., 2016). The obtained ligands were then
used in the docking calculations.

FIGURE 3 | (A) Pharmacophore model generated by the Pharmit server, Two amide nitrogen atoms to represent hydrogen bond donors (DON) (green sphere), four
negatively charged oxygen atoms (as in a carboxyl group) to represent a hydrogen bond acceptor (ACC) (orange sphere), and the two isopropyl group to represent a
hydrophobic center (HYD) (yellow sphere) (B) superposition of all 11 aligned lead MNPs according to pharmacophore model.
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TABLE 3 | CAS number, 2D and 3D presentations of investigated marine natural products.

# CAS# 2D structure 3D structure

1 26605-16-3

2 125127-57-3

3 174286-21-6

4 454470-88-3

5 143572-73-0

6 170894-36-7

7 81720-10-7
(Continued on following page)
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Generation of the Grid
As adequate generation of the grid is a key step in the prediction
of a ligand binding to a receptor, the 3D boundary for ligand
binding was produced by Glide, version 10.2 of Mastero,
Schrödinger (Glide, 2015). First, the protein preparation
wizard was used with the following settings: 1) The original
hydrogens removal and subsequent addition of hydrogens. 2)
The atomic charges and bond orders were assigned. 3) The N and
C termini were capped. 4) The disulfide bonds were generated
between sulfur atoms (within 3.2 Å). 5) Epik was applied to

generate possible protonation states at neutral pH. 6) The
H-bonds were assigned, optimized by PROPKA (Olsson et al.,
2011; Søndergaard et al., 2011) at pH 7.0, and then the structure
was minimized with the OPLS3 force field. Glide was used to
generate the grid on the catalytic domain of the receptor. The grid
box size was set to 32*32*32 Å.

Molecular Interaction and Docking Studies
After grid generation, ligand docking was done according to the
protocols in Glide version 10.2. The homology model of TMPRSS2

TABLE 3 | (Continued) CAS number, 2D and 3D presentations of investigated marine natural products.

# CAS# 2D structure 3D structure

8 6184-17-4

9 174286-17-0

10 107503-09-3

11 59985-26-1
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was used as the receptor, and the different internally produced
conformations by the software were passed across some filters such
as Euler angles, grid-based force field evaluation, and energy
minimization by Monte Carlo. Finally, docking score is an
important parameter for evaluating the conformations, and in
this study, the output of standard precision (SP) docking was put
forward in extra precision (XP) docking. The docked compounds
were ranked based on their docking scores.

Pose Rescoring With Molecular Mechanics
Generalized Born Surface Area
The binding energies of all docking poses were calculated using the
molecular mechanics generalized Born surface area (MM-GBSA)
approach implemented in the Prime program in the Schrödinger
software suite (Prime, 2015). This approach employs a single
minimized protein-ligand structure, and so is used as an
efficient approach to rapidly refine and rescore docking results.
A variable dielectric solvent model VSGB 2.0 (Li et al., 2011) was
used, this solvent model contains several empirical corrections for
modeling the directionality of hydrogen bond and π-stacking
interactions. MM-GBSA has been shown to give good binding
free energies for a wide range of protein-ligand complexes
(Mulakala and Viswanadhan, 2013). It is also widely used to
evaluate docking poses, to determine the stability of ligand-
target complex for predicting binding affinity in drug design
(Genheden and Ryde, 2011; Wang et al., 2019).

Absorption, Distribution, Metabolism, and
Excretion and Drug-likeness Analysis
It is known that nearly 40% of drug candidates fail in clinical trials
because of poor absorption, distribution, metabolism, and excretion
(ADME). Hence, it is very crucial to recognize these problematic
candidates at an early stage to avoid wasted time and resources.
Accurate ADME prediction is based on full 3Dmolecular structures.
Qikprop offers a set of several predictors including central nervous
system (CNS) penetration, predicted apparent Caco-2 cell
permeability across the gut-blood barrier in nm/sec (QPPCaco),
apparent MDCK cell permeability (QPPMDCK), human oral
absorption, Lipinski’s rule of five, and predicted maximum
transdermal transport rate (JM). Another option of Qikprop
(Qikprop, 2015) is to rank compounds based on how drug-like
they are. In the current study, the ADME, drug-likeness, and
medicinal chemistry parameters of these 11 compounds were
predicted by QikProp (Qikprop, 2015).

RESULTS AND DISCUSSION

Homology Modeling and Evaluation of
Model Quality
Since the crystal structure of TMPRSS2 was unavailable at the
time of this study, the 3D structure of TMPRSS2 was predicted
using the online server SWISS-MODEL, as shown in Figure 1A.
Its global model quality estimate (GMQE) score was 0.48, this
score estimates the quality of the expected output model by a

particular template. Its QMEAN Z-score was -1.47, with
sequence coverage of 71%, sequence identity of 33.82%, and
sequence similarity of 50% in comparison with the template
(PDB ID: 5CE1.A). It has been shown that when the sequence
similarity with the template is more than 30%, the obtained
model can be considered reliable and suitable for further study
(Xiang, 2006). Benkert et al. (2011) showed that QMEAN
Z-score is an estimation of the degree of native likeness of
the model, and a value close to 0 (and not lower than -4) could
be an acceptable agreement criteria for the experimental
structure of similar size Table 1.

By validating the obtained results of SWISS-MODEL and cross-
checking in RAMPAGE, it was observed that there were 319 (92.7%)
residues were in the favored region, 23 (6.7%) residues in the allowed
region, and 2 (0.6%) residues in the outlier region. Moreover, there
were no steric clashes or deviations in bond length or bond angle
compared to the protein structure report (Supplementary Figure S1
and Supplementary Figure S2). These results indicated that the
obtained model may have the correct geometry. The 3D
arrangement of the model is shown in Figure 1B. The alignment
of the template (PDB ID: 5CE1.A) and the target protein is shown in
Figure 1C. The summary of obtained results is presented inTable 1.

Catalytic Site of the Homology Model of
TMPRSS2
According to a conserved domain database (CDD) search, the protein
classification of TMPRSS2 was Trypsin-like serine proteases with
E-value 7.39e-100, and the residues of ILE293-GLN524were involved
in the characteristic domain of this protein. Based on the CDD
algorithm, six amino acid residues have been identified as especially
important in the active site of TMPRSS2, and one residue for its
cleavage site. The active site included residue HIS333 to SER478
where (HIS333, ASP382, and SER478) were the three important
amino acids at the catalytic site whereas (ASP472, SER497, and
GLY499) residues were found to be the substrate binding site
(Table 2). Moreover, the COACH-D results supported those
findings. According to the COACH-D best prediction results, the
protein template was a serine protease of the coagulation system
(PDB ID: 5JB8) with a confidence score of 0.99.

The corresponding docking energy of the template for its
representative ligand (with pubchem CID: 137347860) was
-6.0 kcal/mol. HIS333, LYS379, ASP472-GLY476, SER478, THR496-
CYS502, andGLY509were identified as the predicted binding residues,
of which the CDD search showed HIS333, ASP472, SER478, SER497,
and GLY499, as the same catalytic domain residues.

From the five binding sites which were calculated by sitemap, two
sites had a Dscore above 1, and their locations were completely in the
agreement with the CDD search and COACH-D results (Site 1:
Sitescore 0.972, Dscore 1.001, size 87, and volume 150. Site 2:
Sitescore 0.968, Dscore 1.026, size 91, and volume 228). The
Dscore of site 3 was 1.044 with Sitescore 0.994 but its position is
not in agreement with the catalytic site of Trypsin-like serine
proteases active domain which is located in the base of its S1
pocket where it contains Asp472, and therefore is predicted to
cleave after lysine or arginine residues (Hedstrom, 2002; Wilson
et al., 2005; Blay and Pei, 2019). The predicted binding sites by all

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7226338

Mahmudpour et al. Marine Originated Inhibitors for TMPRSS2

175

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


applied approaches are in agreement with the theoretical study by
Idris et al. (2020). Two other predicted binding sites had a Dscore
lower than 0.8, which indicates that they are not druggable. Hence,
domains 1 and 2 were chosen for the docking study. Figures 2A,B
illustrate the predicted binding site of TMPRSS2 from COACH-D
and SiteMap analysis.

Pharmacophore Model
Since a pharmacophore states the crucial features of interactions,
such as the spatial arrangement of each interaction in the close
contact of ligand and the target, its accurate setup is very important
in binding site pharmacophore modeling. In this study, the 3D
structure of TMPRSS2 homology was used to set pharmacophore
using the Pharmit server; this server provides both pharmacophore
and molecular shape search options and the results are ranked by
the energy. The generated pharmacophore features were selected
according to the co-crystal inhibitor of the template and camostat
mesylate. In this modeling, the binding-site derived pharmacophore
models include three subgroups of ligand binding sites: i) two amide
nitrogen atoms were added to represent hydrogen bond donors
(DON), ii) four negatively charged oxygen atoms (as in a carboxyl
group) were added to represent a hydrogen bond acceptor (ACC),
and iii) the two isopropyl group were added to represent a
hydrophobic center (HYD) (Figure 3A). According to the
generated pharmacophore model, a vast library of MNP (14,064
molecules, 164,952 conformers) was filtered. A total of 25,000 hits
thatmet the criteria wereminimized, resulting in 114 conformers. A
total of 11 structures were retained by using one conformer for each
molecule, with an RMSD lower than 4 Å and a binding score lower
than -6 (Figure 3B and Table 3).

Molecular Docking and Molecular
Mechanics Generalized Born Surface Area
Studies
The top 11 selected MNPs of the 114 structures which are shown
in Table 3 were separately docked into the catalytic site of
TMPRSS2. The results of docking of these structures, as well
as camostat and nafamostat mesylate, as two standard inhibitors
of TMPRSS2 (Scheme 1), are presented in Table 4.

The molecular docking analysis revealed that all the studied
compounds had comparable or lower docking scores than those of
the standard inhibitors. The highest docking Glide score is −8.16 in
compound 10, whereas these scores were −4.52 and −3.73 in
camostat and nafamostat mesylate respectively. Also, the docking
scores in compounds 3, 4, 6, 7, and 11 are lower than −7. Thus, these
MNPs could be considered as the most potent inhibitors for
TMPRSS2. Moreover, the highest Glide energy value was −59.21
for compound 10, and its Glide emodel value is −71.34, which
are almost the highest values. The Glide energies were −42.47 and
−38.27 for camostat mesylate and nafamostat mesylate respectively,
and Glide emodel values were -53.19 and −45.75 respectively.
Therefore, from the observed theoretical superiority of these 11
MNPs compared to the standard inhibitors (camostat and
nafamostat mesylate), these compounds may be encouraging for
further studies. Interestingly, among these selected compounds,
compound 10 had the most promising results. Compound 10 (CAS
number 107503-09-3; Watasenia Preluciferyl β-D-glucopyrasoiuronic
acid) is a bioluminescent substance that was derived from the

TABLE 4 | Glide Docking score, Glide energy, Glide emodel, and estimated free
energy of binding for the best poses of investigated compounds in kcal/mol.

Ligand Docking score Glide energy Glide emodel ΔGbind

1 −3.99 −40.89 −49.54 −36.06
2 −5.82 −47.34 −62.26 −64.33
3 −7.04 −51.70 −72.78 −73.48
4 −7.10 −47.50 −67.96 −67.30
5 −3.68 −36.62 −48.24 −54.64
6 −7.09 −42.77 −54.31 −62.99
7 −7.02 −48.18 −37.76 −53.89
8 −6.51 −47.50 −55.17 −76.00
9 −5.42 −45.15 −59.48 −67.82
10 −8.16 −59.21 −71.34 −76.00
11 −7.12 −49.37 −63.35 −67.68
Camostat −4.52 −42.47 −53.19 −57.91
Nafamostat −3.73 −38.27 −45.75 −47.49

FIGURE 4 | (A) The best pose of docking (2D) of ligand 10 at the
predicted catalytic domain of TMPRSS2. (B) The 3D presentation of the best
docking pose of ligand 10.
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liver of myctophina fish, Diaphus elucens (Inoue et al., 1987;
Blunt and Munro, 2007).

As it is presented in Table 5, the 2D template of best poses
demonstrates the types of contacts formed between the ligands
and target with cutoff 4.00 A. Remarkably, close contact/
interactions within the catalytic domain were detected for all
MNPs, however, all the important residues of catalytic domains
significantly contributed in interactions with compound 10, such

as HIS333 which was involved in π-π stacking interaction, and
SER497 and GLY499 which were the important residues of
substrate binding, in the close vicinity of phenol and iduronic
acid moieties (Figure 4A). In addition, SER473, GLU426,
LYS379, and GLU336 participated in intermolecular H-bond
interaction with the active domain (Figure 4B). Taken
together, compounds 3, 4, 10, and 11 had stronger interactions
with TMPRSS2 than the standard ligands based on both their

TABLE 5 | 2D presentation of best Glide docking pose at the catalytic domain of TMPRSS2 for investigated marine natural product.

MNP 2D presentation of
best docking pose

MNP 2D presentation of
best docking pose

1 2

3 4

5 6

7 8

9 11

Camostate Nafamostate
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Glide and XP-pose emodel energies and were significantly
involved in active domain contacts/interactions. On the other
hand, the energy values of compounds 2 and 9 were also
considerable and close to the references. Molecule 3,
Downeyoside I, firstly isolated from starfish Henricia Downyae
by Plagiano; molecule 2, Forbeside E, a sulfated sterol glycoside
from starfish Asterias forbesi; molecule 4, Ulososide E, which has
been derived from the sponge Ulosa sp; and molecule 9,
Downeyoside E, sulfated steroid glycoside isolated from
Henricia Downeyae (Blunt and Munro, 2007).

In addition, the MM-GBSA calculations which estimated the
values of ΔGbind are reported in Table 4. According to these
results, the two standard inhibitors had values of −57.91 and
−47.49 kcal/mol while eight molecules out of the 11 studied
MNPs had more negative ΔGbind than the standard inhibitors.
The highest binding free energies were for compounds 8 and 10
(−76.00 kcal/mol) which is much higher than the standard
inhibitors, and the values of compounds 2, 3, 4, 6, 9, and 11
were more negative than the standard inhibitors. After the
rescoring of the 11 MNPs, compound 10 remained as a potent
inhibitor of TMPRSS2, however other ligands might be also
interesting for further studies. Although these compounds
belong to various sources, starfish-derived products sound to
be prominent. For example, 2, 3, and 9 have been isolated from
starfish, whereas 7 has been isolated from the marine sponge
Merriamum oxeato (Blunt and Munro, 2007). In this study, the
marine natural products showed good measurable binding
affinities for the TMPRSS2 residues. In other words, these
binding affinities are indicative of the ligand’s contribution to
ligand-target interactions and their sensible flexibility for this
target. Based on XP Glide docking score, compounds 10 and 11
have strong interactions with the enzyme but rescoring by MM-
GBSA suggests that other compounds such as 2, 3, 4, 8, and 9 are
also important. Nevertheless, our proposed lead compound is
compound 10, which has concurrently both high docking scores
and a comparable ΔGbind to standard inhibitors.

Absorption, Distribution, Metabolism, and
Excretion and Drug-likeness Analysis
In this study, the ADME https://www.sciencedirect.com/
topics/pharmacology-toxicology-and-pharmaceutical-science/
admeproperties of 11 MNPs were analyzed using the QikProp
tool. This analysis represents the physicochemical properties
of chemical compounds along with their biological functions.
The resulting physicochemical and biological properties are
molecular formula, molecular weight, volume, SASA, acceptor
H-bond, donor H-bond groups, the number of ring atoms,
QPlogPw (−2–6.5), the percentage of human oral absorption,
and CNS effects. However, it has been suggested that Lipinski’s
rule of five (Zhang and Wilkinson, 2007) is not a strict
criterion for natural compounds (Lipinski, 2003) and it has
been revealed that natural compounds mostly do not follow
Lipinski’s rule and they tend to keep their low hydrophobicity
as well as their potential of donating the intermolecular
H-bonds (Ganesan, 2008).

In general, Lipinski’s rule of five (Lipinski et al., 1997) is
applied for predicting the drug-likeness with the following
criteria: molecular mass less than 500 Da, up to 5 hydrogen
bond donors, no more than 10 hydrogen bond acceptors, and
an octanol-water partition coefficient (logPo/w) no higher than 5.
The rule states that a molecule or an inhibitor can be orally
absorbed/active if two or more of these thresholds are not
violated. However, Jorgensen’s rule of three may also be used
to evaluate the bioavailability of each marine natural product by
estimating its solubility, permeability, and liver first-pass
metabolism through the following rules: predicted aqueous
solubility (logSwat) higher than -5.7 (with S in mol/dm3),
predicted apparent Caco-2 cell rate permeability (BIPcaco-2) high
than 22 nm/s, and number of primary metabolites up to 7 (Di and
Kerns, 2015). In addition, the predicted qualitative human oral
absorption (2 � medium and 3 � high) and the predicted skin
permeability (logKp values between -8.0–1.0) are considered. Finally,
the ADME-compliance score drug-likeness parameter (#star) was

TABLE 6 | ADME parameters and drug similarity of investigated marine natural products.

MNP S MW QPLogP
o/w

QPlogS QPLogK QPPCaco QPlogBB PHOA RO5 JRO3 The most similar drug (%)

1 11 600.71 −3.39 2.00 −3.19 0 −5.32 0 3 1 Trientine (50)
2 1 640.76 1.53 −4.29 −0.83 0 −3.40 7 2 1 Sulfamazone (65.2)
3 11 818.97 2.00 −5.16 −0.84 0 −4.83 0 3 2 Dirithromycin (60.45)
4 11 798.96 1.78 −3.96 −0.91 0 −3.88 0 3 2 Monoxerutin (64.25)
5 1 638.74 1.00 −3.17 −1.01 0 −3.00 6 2 1 Sulfamazone (69.7)
6 5 718.85 2.16 −6.24 −0.52 0 −3.80 0 3 2 Azithromycin (65.70)
7 11 819.04 7.21 −10.30 1.40 36 −2.68 59 3 2 Rifaximin (56.25)
8 3 456.35 −1.04 −2.04 −1.47 0 −3.68 0 2 1 Methotrexate (79.50)
9 2 702.85 3.34 −4.86 −0.26 1 −3.12 9 3 2 Cefotiam (66)
10 1 599.60 3.22 −4.24 −0.13 9 −2.45 23 3 2 Amprenavir (68.5)
11 9 618.44 −2.24 −0.86 −1.25 0 −4.93 0 3 2 Lymecycline (67.23)

S (STARS) � Number of property/descriptor values falling outside the 95% range of similar values for known drugs. Recommended value 0–5. MW � Molecular weight Recommended
values 130.0–725.0. QPlogPo/w � Predicted octanol/water partition coefficient. Recommended values –2.0–6.5. QPlogK � hsa Serum Protein Binding.Recommended values −1.5–1.5).
QPlogS � Predicted aqueous solubility, log S. Recommended values –6.5–0.5. QPPCaco � Predicted apparent Caco-2 cell permeability in nm/sec. Recommended values < 25 poor,
>500 great. QPlogBB � Predicted brain/blood partition coefficient. Recommended values –3.0–1.2. PHOA � Predicted human oral absorption on 0–100% scale. Recommended values >
80% is high <25% is poor. RO5 � Rule of Five, The rules are: mol_MW < 500, QPlogPo/w < 5, donorHB ≤5, and accptHB ≤10. Maximum is 4. JRO3 � Jorgensen Rule of 3 Violations.
Maximum is 3.
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used to evaluate the pharmacokinetic of the studied compounds,
including 25 different properties within the acceptable range of 95%
of the known drugs. Herein, compounds 2, 5, 9, and 10 had the
fewest violations when ADME-compliance score drug-likeness
parameter (#stars) was considered less than 2 (Table 6), however,
the recommended value is 0–5, and compounds 6 and 8 were also
considered in the acceptable range of #stars. It is concluded that these
MNPs may be proper candidate drugs for TMPRSS2 inhibition.

Again, amongst the latter compounds, compound 10 showed a
higher human oral absorption (23), as well as median aggregation
to plasma proteins (Qlog k has serum protein binding: −0.13) and
predicted aqueous solubility values (QPlog S: 3.22). Moreover, by
considering the number of “stars” and the violations from the
Lipsinki and Jorgensen rules, the obtained results for compound
10 indicated a high degree of reliability to be a drug candidate.

To find chemical similarity to the known drug molecules, the
QikProp (Qikprop, 2015) software database identified five
similar drug molecules for each entry according to its
predicted descriptors. In this study, the results of two of the
compounds were very promising. Accordingly, Azithromycin
with a similarity of 65.70% was suggested for compound 6. It is
interesting to know that in the early phase of COVID-19,
azithromycin could reduce the need for hospitalization or
duration of clinical recovery (Echeverría-Esnal et al., 2020;
Million et al., 2020; Molina et al., 2020). There is also an
opinion supporting the potential effectiveness of Azithromycin
in SARS-CoV-2 infection, as well as its antiviral activity and
immunomodulatory effects (Bleyzac et al., 2020). Interestingly,
Amprenavir (Shen et al., 2010), as an antiretroviral protease
inhibitor for HIV infection has been identified with 68.5%
similarity to compound 10.

In conclusion, marine natural product 10, with high similarity to
a known antiretroviral protease, might be considered as a potent
inhibitor of TMPRSS2. However, molecular docking and MM-
GBSA studies demonstrated that compounds 3, 4, 6, 7, 8, 9, and

11 were also able to inhibit TMPRSS2 as well. In a comparison study,
these compounds showed better results than the standard
TMPRSS2 inhibitors (camostat and nafamostat mesylate). Further
computational, experimental, and clinical investigations are
warranted to reveal their anti-SARS-CoV-2 activities.
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Virtual Screening of Drug-Like
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the Dengue Virus NS5 Protein
Leidy L. García-Ariza1*, Cristian Rocha-Roa2,3, Leonardo Padilla-Sanabria1 and
Jhon C. Castaño-Osorio1
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Dengue virus (DENV) is the causative agent of dengue fever. Annually, there are about 400
million new cases of dengue worldwide, and so far there is no specific treatment against
this disease. The NS5 protein is the largest and most conserved viral protein among
flaviviruses and is considered a therapeutic target of great interest. This study aims to
search drug-like compounds for possible inhibitors of the NS5 protein in the four serotypes
of DENV. Using a virtual screening from a ~642,759-compound database, we suggest 18
compounds with NS5 binding and highlight the best compound per region, in the
methyltransferase and RNA-dependent RNA polymerase domains. These compounds
interact mainly with the amino acids of the catalytic sites and/or are involved in processes of
protein activity. The identified compounds presented physicochemical and
pharmacological properties of interest for their use as possible drugs; furthermore, we
found that some of these compounds do not affect cell viability in Huh-7; therefore, we
suggest evaluating these compounds in vitro as candidates in future research.

Keywords: dengue virus, NS5 protein, drug-like compounds, molecular docking, virtual screening

INTRODUCTION

Dengue virus (DENV) is a member of the genus Flavivirus belonging to the family Flaviviridae (Zou
et al., 2011; Lim et al., 2013a). DENV is the causative agent of the viral disease known as dengue fever,
which is transmitted through the bite of mosquito species Aedes aegypti and Aedes albopictus (Regato
et al., 2008; Basavannacharya and Vasudevan., 2014). This disease mainly affects people who live in
tropical and subtropical countries, with approximately 400 million new cases worldwide annually,
and can lead to febrile illness and flu-like symptoms or can progress to the more severe dengue
hemorrhagic fever or dengue shock syndrome (Klema et al., 2016). However, to date, there is no
specific treatment that can inhibit the replication of DENV.

This virus has a non-segmented, single-stranded, positive-sense RNA genome of approximately
11 kb (Basavannacharya and Vasudevan., 2014), which codes for 10 proteins: 3 structural virion
components (C, PRM, and E proteins) and 7 nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5) (Lim et al., 2013b; Basavannacharya and Vasudevan., 2014; Galiano et al., 2016). To
date, four serotypes of DENV have been reported (DENV1 to DENV4) (Niyomrattanakit et al., 2015;
Lai et al., 2017; Potisopon et al., 2017). Nevertheless, in the last years, the presence of a fifth serotype
with a sylvatic cycle was reported (Mustafa et al., 2014).
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The NS5 protein is the largest (Troost and Smit, 2020) and
most highly conserved viral protein encoded by the flavivirus
genome (Zou et al., 2011; Bollati et al., 2010; García et al., 2017;
Wu, J et al., 2020; Bhatnagar et al., 2021). In particular, this
protein shows approximately 67–82% amino acid sequence
identity among the four dengue serotypes. NS5 consists of two
domains, namely methyltransferase (MTase) domain and RNA-
dependent RNA polymerase (RdRp) domain (Klema et al., 2016).
These domains are linked through a short sequence of poorly
conserved amino acids (Lim et al., 2015). The MTase and RdRp
domains have enzymatic activity, and both are essential for the
viral replication cycle (Bhattacharya et al., 2008).

The N-terminal region of the protein comprises the MTase
domain (with a length of approximately 270 amino acids) (Galiano
et al., 2016), which functions as a doublemethyltransferase that can
methylate the 5′-end of the viral RNA genome at the N-7 position
of the guanosine cap (N-7 MTase) as well as the 2′-OH position of
the ribose of the first nucleotide (2′O MTase) (Lim et al., 2013b).
Depending on the serotype and the experimental system, the
MTase domain, within the context of NS5, can positively
influence the polymerase activity. Specifically, the MTase
domain of DENV2 can stimulate RNA loading within the
adjacent polymerase domain and improve its stable catalytic
state during de novo specific initiation and the elongation
reaction (Potisopon et al., 2017).

On the other hand, the C-terminal region of NS5 harbors
RdRp (with a length of approximately 630 amino acids) (Galiano
et al., 2016), which plays a vital role in the viral life cycle through
replication. After viral entry and the translation of proteins from
its genome, the polymerase domain performs the de novo
synthesis of RNA (first generating RNA of negative polarity
from RNA of positive polarity (Lim et al., 2015). Like all
polymerases, the structure of the RdRp of flaviviruses
resembles a right hand with the characteristic subdomain
fingers (amino acids 273- 315, 416-496, and 543- 600), palm
(amino acids 497-542 and 601-705), and thumb (amino acid 706-
900) (Zou et al., 2011; Najera, 2013; Galiano et al., 2016). In
addition, the RdRp domain is unique to RNA viruses, and it is
absent in human cells; for this reason, the DENV NS5 protein is
an attractive target in the search for antiviral compounds (Malet
et al., 2008; De Burghgraeve et al., 2013; Meguellati et al., 2014;
Alhossary et al., 2018; Mirza et al., 2019). The crystal structure of
the RdRp catalytic domain of DENV was reported by Yap et al.,
allowing the exploration of regions in its structure that could be of
interest for the design of anti-dengue compounds (Yap et al.,
2007).

To date, several inhibitors of MTase and RdRp activities have
been identified by large-scale in vitro screening (Bhatnagar et al.,
2021). For instance, sinefungin (a SAM analog with a broad
antiviral spectrum) has shown affinity six times greater than SAM
for its binding site in the MTase domain (Lim et al., 2015).
Ribavirin, a synthetic analog of guanosine, has been shown to
inhibit dengue and hepatitis C virus replication (Chang et al.,
2011; Tomlinson and Watowich, 2011); however, the use of
ribavirin is limited by its oral toxicity, and its aerosol
presentation diminishes its efficacy for clinical uses (Fusco and
Chung, 2014).

Also, the activity of the RdRp enzyme of DENV is inhibited
allosterically by blocking the RNA tunnel using
N-sulfonylanthranilic acid derivatives, which are considered
desirable for the development of antiviral compounds (Yin
et al., 2009b; Niyomrattanakit et al., 2010). Likewise, the
activity of this enzyme is inhibited by the action of beta-d-2′-
ethenyl-7-deaza-adenosine triphosphate (2′E-7D-ATP) through
competition with the natural nucleotide. This nucleoside analog,
initially developed for hepatitis C (HCV), showed anti-dengue
activity in cell culture and significantly reduced viremia in mouse
models with DENV. However, the catalytic efficiency of
incorporation of this molecule is 10 times lower than that of
ATP (Latour et al., 2010; De Burghgraeve et al., 2013; García et al.,
2017). Two non-nucleoside inhibitors, retinamide and
ivermectin, were identified in binding assays as compounds
that can block DENV NS5 (Lim et al., 2015). Ivermectin is
reported as an inhibitor of the α/β importin and therefore of
the NS5 polymerase since it is required for its activity. There are
reports that a previous treatment with ivermectin inhibits dengue
virus infection in Vero cells; in addition, a pretreatment with this
compound strongly inhibits the nuclear localization of NS5
during infection with DENV1 and DENV2 in BHK-21 or
Huh-7 cells (Fusco and Chung, 2014).

Despite many efforts in the search for antiviral compounds
against DENV, success has been limited (Diosa-Toro et al., 2018);
consequently, it is necessary to look for new alternatives with low
or no toxicity and powerful anti-dengue activity. For this,
compounds with similar properties to drugs already approved
for use in humans can be of great help. Also, the application of
computational tools, such as virtual screening, predictors of
physical–chemical characteristics, and molecular dynamics
(MD) simulations, can contribute to the design and
improvement of new drugs. In recent years, most inhibitors
have been first selected via in silico or high-throughput
screening, which was followed by the evaluation of their
antiviral activities via in vitro or in-cell based assays (Tian et al.,
2018). Here, we explore seven binding sites in the NS5 protein of
the four DENV serotypes and perform virtual screening strategies
to select compounds that can be tested against DENV. Finally, we
suggest a short list of 18 compounds that could be considered as
candidates for in vitro evaluation.

MATERIALS AND METHODS

Structural Modeling of DENV1–4 NS5
Proteins
The structural models of the NS5 proteins of DENV1, DENV2,
and DENV4 serotypes were constructed by homology modeling
on the SWISS-MODEL web server (Waterhouse et al., 2018),
using the full crystal structure of NS5 DENV3 (PDB accession
code: 5JJR) (Lim et al., 2016) as a template. We used the
consensus amino acid sequences of NS5 for each serotype
obtained from the Virus Variation database (NCBI) (Hatcher
et al., 2017). For the NS5 protein of DENV3, the non-crystallized
regions were modeled but retained the rest of the crystallized
structure.
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The sequence alignment was performed by the UniProt web
server (https://www.uniprot.org/) (Uniprot Consortium, 2021).
The stereochemical quality of the constructed models was
assessed by analyzing the Ramachandran plot (Hollingsworth
and Karplus, 2010), which allows to evaluate the phi (Φ) and psi
(Ψ) angles of each amino acid. These plots were obtained from the
MolProbity web server (Williams et al., 2018). Additionally, we
calculated the Z-scores, obtained from the ProSA web server
(Wiederstein and Sippl, 2007). The root mean square deviation
(RMSD) between the structures of the serotypes was calculated
with the MatchMaker module available in Chimera v1.11.2
software (Pettersen et al., 2004).

Virtual Screening of Drug-Like Compounds
and Molecular Docking Calculations
The virtual screenings were performed using the supercomputer
of the Texas Advanced Computing Center (TACC) (https://
drugdiscovery.tacc.utexas.edu) (Viswanathan et al., 2014)
linked to the ZINC database of compounds for virtual
screening (https://zinc.docking.org/). AutoDock Tools v.1.5.6
(Morris et al., 2009) was used for preparing the receptors
(NS5 protein) and ligands (compounds used as controls). For
proteins, we removed the water molecules, and co-crystallized
ligands, polar hydrogens, and Kollman charges were added. For
ligands, the polar hydrogens, Gasteiger charges, and rotatable
bonds were added. The compounds in the ZINC Lrg database
(~642,759) were not prepared as the TACC portal, where this
library is available, has the compounds ready for molecular
docking.

The molecular docking calculations were performed with
AutoDock Vina software (Trott and Olson, 2010) in several
important regions for functionality of NS5 in the four
serotypes of DENV. These regions have been studied in other
research studies (Zou et al., 2011; Galiano et al., 2016; Lim et al.,
2015; Malet et al., 2008; Yap et al., 2007; Niyomrattanakit et al.,
2010; Dong et al., 2008; Zhou et al., 2007; Zhao et al., 2015a), and
they have been recognized as interesting sites for antiviral drug
development. For the RdRp domain, we evaluated cavities A and
B (Malet et al., 2008; Zhou et al., 2007), the RNA tunnel (Galiano
et al., 2016; Yap et al., 2007; Niyomrattanakit et al., 2010), and the
GDD motif (Galiano et al., 2016). Likewise, we assessed the
KDKE tetrad (Dong et al., 2008; Zhou et al., 2007; Zhao et al.,
2015a; Zhao et al., 2015c) and the SAM- and GTP-binding site
(Lim et al., 2015; Dong et al., 2008) for the MTase domain.
Overall, we explored seven regions in the two domains. The
regions with a crystallized ligand, such as GTP-binding site,
SAM-binding site, and GDD motif, were validated using re-
docking. All the models were aligned to be able to use the
same boxes in the four serotypes, and the boxes were
configured with a dimension of 24 A˚. The compounds were
obtained from the library ZINC Lrg, available as a tab inside
TACC options (https://drugdiscovery.tacc.utexas.edu). This
library contains ~642,759 commercially available drug-like
compounds. The visualizations of the 2D interactions and the
generation of the protein–ligand complexes were performed with
Chimera v1.11.2 software (Pettersen et al., 2004).

Selection of the Compounds
Initially, we selected the candidate compounds based on two
filters: 1) multi-domain binding compounds (compounds that
were docked to both the MTase and RdRp domains) and 2)
single-domain binding compounds or those that were docked
only to one domain. These analyses were performed using a
classification script in the R package (R Foundation for Statistical
Computing, s.f.). We applied a strict parameter to select
compounds docked to the same region of the NS5 protein in
the four DENV serotypes, which should theoretically increase
their spectrum of activity and antiviral potential. The selected
compounds were also subjected to other filters, including
compliance to Lipinski’s rules, solubility, gastrointestinal
absorption, and prediction of toxicological risks (Figure 1).

Compliance to Lipinski’s Rules, Solubility,
Gastrointestinal Absorption, and
Toxicological Risk Predictions
The prediction of Lipinski’s rules, solubility, gastrointestinal
absorption, and toxicological risk was performed using the
SwissADME web server (Daina et al., 2017). For compliance
with Lipinski’s rules, this tool provides a qualification of Yes or
No, accompanied by the number of rules violated. We discarded
all the compounds that presented at least one violation. For
solubility prediction, we used three predictors in SwissADME,
which yields a qualification of insoluble, poorly, moderately,
soluble, very, and highly. We decided to assign a score for
each prediction as follows: insoluble and poorly, a value of 1;
moderately and soluble, a value of 2; and very and highly, a value
of 3. We discarded all the compounds that presented a value ≤5.
In order to estimate the gastrointestinal absorption of each query
compound, we accepted only compounds with a high predicted
gastrointestinal absorption. Finally, we used DataWarrior
software (Sander et al., 2015), ProToxII (Banerjee et al., 2018),
and CarcinoPred-EL (Zhang et al., 2017) web servers to predict
several types of toxicological risks, including possible mutagenic,
tumorigenic, reproductive, irritant, hepatotoxic, immunotoxic,
cytotoxic, and carcinogenic risks. We discarded the compounds
that presented three or more toxicological risks.

Molecular Dynamics Simulations and
Binding Free-Energy Calculations
Molecular dynamics simulations were performed using
GROMACS 2019 software (Berendsen et al., 1995). The
complexes formed by the four DENV serotypes and the best
selected compound per each binding site were taken as initial
coordinates and were simulated. A total of 20 simulations were
carried out. For the protein, the amber ff99SB-ILDN force field
was used (Lindorff-Larsen et al., 2010); the ligands were
parameterized using the general AMBER force field (Wang
et al., 2004) and ACPYPE web server (based on
ANTECHAMBER, https://www.bio2byte.be/acpype/), by which
the parameters of the ligands to work in GROMACS are obtained
(Sousa da Silva and Vranken, 2012). Each protein–ligand
complex was solvated using the TIP3P water model, and its
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charges were neutralized using Na+ Cl− ions, and an excess of ions
were added to reach a concentration of 0.15 M of NaCl. Each
system was subjected to an energy minimization stage of 50,000
steps, followed by an NVT equilibration for 250 ps using a
temperature of 310 K. Then, a series of equilibrations were
performed under NPT conditions using a pressure of 1 bar,
with decreasing restrictions on the heavy atoms of the protein
and the ligand for 250 ps each (1,000, 100, 10, and 1 kJ/mol*nm2).
In general, all systems were subjected to one energy minimization
stage and five equilibration stages. The systems were subjected to
a production stage for a total of 40 ns, in which a V-rescale
thermostat and a Parrinello–Rahman barostat were
implemented. A time-step of 2 fs was used. Once the
simulations were finished, the RMSD, root mean square
fluctuation (RMSF), radius of gyration (Rg), and contacts plots
of each protein–ligand complex were obtained through the gmx_
rms, gmx_rmsf, gmx_gyrate, and gmx_mindist modules
contained in the GROMACS package, respectively. Then, we
calculated the binding free-energy (ΔGbind) using the molecular
mechanics/Poisson–Boltzmann surface area (MM/PBSA)
method, available in the tool gmx_MMPBSA (Miller et al.,
2012; Valdés et al., 2021). The ΔGbind between a protein and
ligand can be calculated as seen in the following equations (Hou
et al., 2011):

ΔGbind � ΔH − TΔS ≈ ΔEMM + ΔGsolvation − TΔS; (1)
ΔEMM � ΔEinternal + ΔEelectrostatic + ΔEvan derWaals; (2)

ΔGSolvation � ΔGPB/GB + ΔGSA, (3)
where ΔEMM represents the contribution of MM energy, and it
can be obtained from the force field implemented in the MD

simulations. ΔGSolvation represents the solvation energy given by
the sum of the polar contribution (ΔGPB/GB) and nonpolar
contribution (ΔGSA). ΔGPB/GB can be obtained using the
Poisson–Boltzmann or generalized-Born models, while ΔGSA

can be calculated by the solvent accessible surface area (SASA)
(Hou et al., 2011; Genheden and Ryde., 2015). The term TΔS can
be added to refine the predictions. For ΔGbind calculations, frames
from the 10 ns to the end were taken for each 30 ps, for a total of
1,000 frames per each trajectory.

Pharmacophore Modeling
Once the list of the best compounds that passed all the previous
filters was obtained, we used the binding poses on the four
serotypes of the compounds with the best binding-free energy
scores, and we generated a model of the pharmacophore resultant
of a possible inhibitor for each binding site separately. For that,
we use the PharmaGist web server (http://bioinfo3d.cs.tau.ac.il/
PharmaGist/) (Schneidman-Duhovny et al., 2008). This allows a
rational design of molecules, by identifyingmodifications that can
improve the affinity of each compound for its binding site.

Cytotoxicity Assay in Huh-7 Cells
The cytotoxic effect of acquired compounds was evaluated on the
Huh-7 cell line. A total of 2 × 104 cells were subcultured per well
in 96-well plates and incubated for 24 h at 37°C and 5% CO₂.
Once the cells reached 80% confluence, each of the compounds
was added in serial concentrations from 0.7 to 50 µM and
incubated again under the previously described conditions for
24 h. The medium was then replaced, and 15 μL of the staining
solution with tetrazolium salt (MTT) was added (CellTiter 96®
Non-Radioactive Cell Proliferation Assay kit, Reference G4001,

FIGURE 1 | Structural quality of the NS5 models of DENV. (A) Superposition of the four structures of the DENV NS5 protein. The 3D structure is shown in pipes for
alpha-helix and planks for the beta-sheet. (B) Graphic generated by the ProSA web server; each model showed a Z-score value as follows: DENV1 of –12.6, DENV2 of
–10.68, DENV3 of –12.09, and DENV4 of –11.94. The dots in B follow the same color code as shown in A.
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Promega) and incubated again for 4 h under the previously
mentioned conditions. After incubation, 100 µL of
solubilization solution was added and incubated again for an
additional 1 h. The contents of the wells were mixed until
obtaining uniformity in the coloration, and finally the
absorbance of each well was read at 570 nm. As a control in
the test, 0.3% dimethylsulfoxide (DMSO) was used, which
corresponds to the vehicle control (solution in which the
compounds are dissolved at a concentration of 50 μM), and
the cellular control was included, which corresponds to
untreated Huh-7 cells. For data analysis, the absorbance of the
medium was subtracted, and the percentage of cell viability was
calculated by applying the following formula:

% Cell Viability = Sample Abs/Control Abs × 100,
where

-Sample Abs corresponds to the absorbance value of each well
with cells and treatment.
-Control Abs corresponds to the value of the absorbance of the
wells with cells without treatment.

The data were evaluated by the Kruskal–Wallis test, with a
comparison by Dunn’s test. All data were analyzed in GraphPad
Prism 6.0 software. A p value <0.05 was considered statistically
significant.

RESULTS

Structural Modeling of DENV1–4 NS5
Proteins
The structural models of the NS5 proteins of DENV serotypes 1
and 4 were obtained by homology modeling. The models were
generated from consensus sequences obtained with BioEdit using
the sequences reported in the Virus Variation database (Hatcher
et al., 2017) for each serotype. We found 2097 sequences of
DENV1, 1559 of DENV2, and 370 of DENV4. The NS5 of
DENV3 showed a high percentage of structural and sequence
identity with the other serotypes of DENV as can be seen in
Table 1. The sequence alignment is shown in Supplementary
Figure S1, in which some relevant regions are highlighted.

TABLE 1 | Percentages of sequence identity and structural RMSD (Å) between the NS5 protein of the four DENV serotypes.

NS5 serotype DENV1 DENV2 DENV3 DENV4

Sequence identity RMSD Sequence identity RMSD Sequence identity RMSD Sequence identity RMSD

DENV1 100 0 80.07 0.90 81.71 0.15 75.59 0.20
DENV2 80.07 0.90 100 0 79.42 0.91 74.38 0.89
DENV3 81.71 0.15 79.42 0.91 100 0 77.08 0.21
DENV4 75.59 0.20 74.38 0.89 77.08 0.21 100 0

FIGURE 2 | Workflow of the virtual screening of drug-like compounds with possible multi-domain and single-domain binding, as potential candidates for in vitro
experimental assays against the NS5 protein of DENV. Candidate compounds against the NS5 protein of DENV.
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Once all the full-length models were obtained, the general
quality was analyzed through the estimation of GMQE (Global
Model Quality Estimate) and global QMEANDisCo (Qualitative
Model Energy Analysis) provided in the SWISS-MODEL web
server (overall measure of model quality between 0 and 1), the
stereochemical quality by Ramachandran plot, and the structural
quality based on the Z-score value, for each model. Based on the
quality estimates, the following GMQE and QMEANDisCo values
were found for the NS5 models of each serotype: GMQE 0.83 for
DENV1 and DENV2, 0.85 for DENV3, and 0.82 for DENV4, and
QMEANDisCo 0.82, 0.81, 0.83, and 0.81 ± 0.05 for DENV1,
DENV2, DENV3, and DENV4, respectively. The values obtained
are close to 1, which indicates favorable quality for thesemodels. On
the other hand, the Ramachandran plots (not shown) for these
structures suggested the following percentages for the amino acid
residues that are located in the favored regions: 91.6% for DENV1,
96.1% for DENV2, 98.3% for DENV3, and 97.6% for DENV4.

Figure 1A shows the four models after a structural alignment.
In general, the models showed low RMSD values between them,
which supports the idea of designing compounds with activity on
the four dengue serotypes. Additionally, Figure 1B shows the
spectrum provided by the ProSA web server that locates all the
Z-scores for the structures that have been resolved by X-ray and
NMR and shows the obtained values for the four models of the
NS5 protein of DENV.

Virtual Screening and Compounds
Selection
In this study, we used the DrugDiscovery@TACC web portal of
the Texas Advanced Computing Center (https://portal.tacc.
utexas.edu) and screened the largest library (Lgr), which
contained approximately 642,759 compounds with structural
characteristics similar to drugs. The regions with a crystallized

TABLE 2 | Best compounds obtained for the GTP-binding site of the four DENV serotypes. The best compound is highlighted in bold.

Compound Molecular structure Docking score (kcal/mol)

DENV1 DENV2 DENV3 DENV4

1md ZINC15827835 −9.3 −9.3 −9.5 −8.9

2md ZINC15827831 −9.1 −9.1 −9.5 −8.7

3md ZINC15730200 −9.0 −8.8 −8.9 −8.8

4md −8.8 −8.6 −9.1 −8.8
ZINC9835726

5md ZINC9268549 −9.1 −8.8 −9.2 −9.3

1sd ZINC12122852 −9.2 −9.2 −9.4 −9.0

2sd ZINC11971657 −9.0 −9.0 −9.2 −9.0

GTPa −7.9 −7.7 −7.9 −7.8

aCrystal control: natural subtract of the MTase domain crystallized with the PDB accession code: 4V0R (Zhao et al., 2015a).
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ligand, such as GTP-binding site, SAM-binding site, and GDD
motif, were validated using re-docking (Supplementary Figure
S2). The similarity between these structures was evidenced, with a
RMSD value between the experimental and the crystallographic
pose of 1.545 Å, 1.707 Å, and 0.884 Å for GTP-binding site, SAM-
binding site, and GDD motif, respectively.

The DrugDiscovery@TACC web portal provided a list of the
first 1,000 compounds for each virtual screening run, ranked by
their binding-free energy score calculated with AutoDock Vina
software. In total, we studied seven regions in the NS5 protein (3
in the MTase domain and 4 in the RdRp domain) of the four
DENV serotypes, retrieving a total of 28,000 compounds that
were filtered according to our selection criteria. A simple R script
was designed to perform the first filter that consisted in: 1)
selecting all the compounds that were present in the four
serotypes and docked to a region of the MTase domain as well
as to a region of the RdRp domain and 2) selecting all the
compounds that were present in all four DENV serotypes, but
this time, only in one domain of the NS5 protein (MTase or
RdRp). This selection resulted in 22 compounds with possible
multi-domain binding and 499 compounds with possible single-
domain binding in the NS5 protein of DENV (Figure 2).

Once we obtained the compounds for each strategy, we
performed each of our filters. For prediction of compliance or

violation of Lipinski’s rules, resulted in 20 compounds for
strategy 1 and 428 compounds for strategy 2. After evaluating
our scores for solubility prediction, strategy 1 was reduced to 12
compounds and strategy 2 to 328 compounds. All the compounds
of strategy 1 presented high gastrointestinal absorption, which
did not reduce the list, while for strategy 2 the list was reduced to
318 compounds. Toxicological risks prediction resulted in the
removal of 4 compounds from strategy 1 according to our
exclusion criteria, resulting in a list of 8 compounds.
Meanwhile, strategy 2 was reduced to 80 compounds that did
not present any predicted toxicological risks. Finally, based on the
binding score from molecular docking, we postulate the best
compounds from both strategies, as potential candidates to be
inhibitors of DENV NS5 protein in vitro assays, resulting 8
compounds with possible multi-domain binding (strategy 1)
and the top 10 compounds with possible single-domain
binding (strategy 2).

The 8 compounds resulting from strategy 1 (multi-domain)
showedmixed binding between four regions of the NS5 protein of
the four DENV serotypes, such as the GTP-binding site, cavity B,
KDKE tetrad, and GDD motif. In particular, two regions were
located in the MTase domain (KDKE and GTP) and two in the
RdRp domain (CB and GDD). For strategy 2 (single-domain), we
obtained 80 compounds that passed the filters of the structural

FIGURE 3 | RMSD as a function of the time for the protein–ligand complexes formed by the best compound of each binding site. (A) DENV1, (B) DENV2, (C)
DENV3, and (D) DENV4.
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predictions. These compounds showed dockings in regions such
as the GTP-binding site, cavity B, KDKE tetrad, GDD motif, and
SAM-binding site. The single-domain criteria allowed obtaining a
much larger list than the list obtained with strategy 1. However,
we only took the best 10 compounds (2 per region) for the
subsequent analyses. Accordingly, we postulate a short list of 18
compounds, 8 with double binding sites and 10 compounds with
single binding sites in the NS5 protein of the four DENV
serotypes. The best compounds for the GTP-binding site are
shown in Table 2, with 1md (ID ZINC15827835) being the
compound with the best affinity results.

Molecular Dynamics Simulations and
Binding-Free Energy Calculations
The molecular dynamics simulations aimed to sample the
protein–ligand complexes formed by the best compound at each
binding site for 40 ns. Then, with these obtained trajectories and by
means of the MM/PBSAmethod, we calculated a new binding-free
energy, which in principle is more computationally robust than the
score obtained in the molecular docking. This was in order to
analyze on which serotype the interaction of each compound
would be stronger. In addition, we obtained the RMSD, RMSF,
Rg, and contact map graphs for each simulated complex. In

Figure 3, the RMSD values for the NS5 protein of the four
DENV serotypes are shown. In brief, the RMSD measures the
structural deviation of the protein along the time regarding its
initial conformation. For complexes with DENV1 (Figure 3A), an
approximate RMSD range of 0.2–0.4 nmwas obtained. Compound
4md (bound in cavity B) presented greater fluctuations at the
beginning of the simulation than the other compounds, reaching
values very close to 0.5 nm. For the complexes with DENV2
(Figure 3B), the approximate range of RMSD was smaller than
that of the DENV1 complexes, being between 0.15 and 0.3 nm.
Compound 1md (bound at the GTP-binding site) shows greater
fluctuations in the interval from 17 to 30 ns, reaching values less
than 0.5 nm, for the rest of the time, its behavior was similar to the
other DENV2 complexes. For complexes with DENV3
(Figure 3C), the approximate range of RMSD was narrower,
being between 0.2 and 0.3 nm. For the complexes with DENV4
(Figure 3D), the approximate range of RMSD was 0.2–0.5 nm. All
complexes except the one formed by 7sd (bound in the GDDmotif
region) exhibited a plateau between 0.3 and 0.4 nm after ~27 ns. In
general, the structural changes for all serotypes were less than or
equal to 0.5 nm.

The RMSF plots for simulated protein–ligand complexes are
shown in Figure 4. In brief, the RMSF measures the average
deviation of the protein residues, that is, it measures the

FIGURE 4 | RMSF as a function of numbers of residues for the protein–ligand complexes formed by the best compound of each binding site in (A) DENV1, (B)
DENV2, (C) DENV3, and (D) DENV4.
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fluctuation in their position. Thus, high values in the RMSF
indicate portions in the protein with greater flexibility (Martínez,
2015). For the RMSF of the complexes with DENV1 (Figure 4A),

it was found that 8md increased the flexibility of a short fragment
(from residue 461–465) reaching a value of ~0.75 nm. For the
complexes formed by DENV2 (Figure 4B), it was observed that

FIGURE 5 | Contact frequency maps for the compound 1md, bound to the GTP-binding site of the (A) DENV1, (B) DENV2, (C) DENV3, and (D) DENV4. Red
represents that the contact frequency was 0%, while green represents that the contact frequency was 100%.

FIGURE 6 | Contact frequency maps for the compound 8md, bound to the region of the KDKE tetrad of the (A) DENV1, (B) DENV2, (C) DENV3, and (D) DENV4.
Red represents that the contact frequency was 0%, while green represents that the contact frequency was 100%.
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1md caused a slight increase in the flexibility of the protein with
respect to the flexibility of the other complexes, in fragments that
go from the N-terminal to residue ~400 and from residue ~700 to
the C-terminal. For the complexes formed by DENV3
(Figure 4C), compounds 8md and 9sd increased the flexibility
of the protein in a short fragment from residue 462 to 466,
reaching values close to ~0.63 nm. For the complexes formed by
DENV4 (Figure 4D), 7sd presented an increase in flexibility in
the protein with respect to the other complexes.

In order to dynamically track the interactions between the
protein and the ligand, we calculated the average frequencies of
interaction. Here, the interactions were all those contacts between
the protein and the ligand at a distance less than or equal to 0.35
nm; in this way, only the strongest or closest interactions are
considered. To do it dynamically, we divide the simulation time
into blocks of 10 ns, obtaining 3 blocks of time (since the first
10 ns was omitted for equilibration). If a residue has an
interaction percentage of 100% with the ligand, the green
color will be assigned, which means that this interaction was
conserved for all 10 ns of the time block.

In general, it can be observed that the interactions between
compound 1md and the residues of the GTP-binding site of the
four DENV serotypes (Figure 5) were both in a higher
percentage and in greater quantity with DENV4 and DENV3
serotypes, and they were both in a lower percentage and in a
lower quantity in DENV2 and DENV1 serotypes. 1md
conserved interactions with residues such as Lys14, Leu17,
Asn18, Phe25, Ser151, Leu210 (DENV2 and DENV4), and
Ser213, which have been classified as important for the

stabilization of the natural substrate GTP (Geiss et al., 2009).
To indicate the position of the other amino acids involved, the
sequence of NS5 DENV3 was taken as reference, according to
the alignment (Supplementary Figure S1).

The interactions between compound 8md and the residues in
the region of the KDKE tetrad (Figure 6) suggest that the highest
number of contacts with the highest frequency occurred in the
DENV3 and DENV2 serotypes, while those with the lowest
frequencies were DENV1 and DENV4 serotypes. 8md showed
interactions with some amino acids of the KDKE tetrad and close
ones, such as Asp146, Ile147, Lys180, and Thr215 (DENV4),
which are considered important residues for the interaction of the
natural substrate SAM (Zhou et al., 2007; Lim et al., 2011). To
indicate the position of the other amino acids involved, the
sequence of NS5 DENV3 was taken as reference, according to
the alignment (Supplementary Figure S1).

For compound 9sd, bound to the SAM-binding site in the
MTase domain, the highest frequencies of interactions were
for the DENV1 and DENV2 serotypes (Figures 7A, B);
therefore, the lowest frequencies of interactions were for
the DENV3 and DENV4 serotypes (Figures 7C, D).
Compound 9sd exhibited interactions with described amino
acids important for the stabilization of SAM, such as Lys61,
Arg84, Lys105, His110, Glu111, Asp131, Val132, Asp146,
Ile147, Gly148, Lys180, and Glu216 (Zhou et al., 2007;
Dong et al., 2008; Zhao et al., 2015a; Zhao et al., 2015c).
To indicate the position of the amino acids involved, the
sequence of NS5 DENV3 was taken as reference, according to
the alignment (Supplementary Figure S1).

FIGURE 7 | Contact frequency maps for the compound 9sd, bound to the SAM binding-site of the (A) DENV1, (B) DENV2, (C) DENV3, and (D) DENV4. Red
represents that the contact frequency was 0%, while green represents that the contact frequency was 100%.
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FIGURE 8 |Contact frequency maps for the compound 4md, bound to the cavity B of the (A)DENV1, (B)DENV2, (C)DENV3, and (D)DENV4. Red represents that
the contact frequency was 0%, while green represents that the contact frequency was 100%.

FIGURE 9 | Contact frequency maps for the compound 7sd, bound to the region of the GDD motif in the RdRp domain of the (A) DENV1, (B) DENV2, (C) DENV3,
and (D) DENV4. Red represents that the contact frequency was 0%, while green represents that the contact frequency was 100%.
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For compound 4md, bound to cavity B of the RdRp domain,
the highest frequencies and numbers of contacts were for the
DENV1 and DENV2 serotypes (Figures 8A, B), while the lowest
frequencies and numbers of contacts were for the DENV3 and
DENV4 serotypes (Figures 8C, D). 4md presented interactions
with amino acids from cavity B, such as Leu327, Lys329, Pro330,
Asp332, Thr858, Trp859, Asn862, Ile863, Ala866, and Gln869,
which have been described as interacting with other inhibitors

designed for this cavity (Zou et al., 2011; Kaptein et al., 2018;
Cannalire et al., 2020). To indicate the position of the amino acids
involved, the sequence of NS5 DENV3 was taken as reference,
according to the alignment (Supplementary Figure S1).

For compound 7sd, bound to the GDD motif region of the
RdRp domain, the highest frequencies and numbers of
interactions were with DENV3 and DENV2 serotypes (Figures
9B, C), and the lowest frequencies of interactions were for

TABLE 3 | Best compounds obtained for the KDKE tetrad site of the four DENV serotypes. The best compound is highlighted in bold.

Compound Molecular structure Docking score (kcal/mol)

DENV1 DENV2 DENV3 DENV4

6md ZINC33106115 −9.7 −11.1 −9.9 −11.2

7md ZINC15869753 −9.8 −11.0 −9.8 −11.0

8md ZINC15730188 −10.4 −11.5 −10.8 −11.7

5sd ZINC21152560 −10.0 −11.1 −10.2 −11.0

6sd ZINC12307816 −9.8 −11.0 −10.0 −11.1

TABLE 4 | Best compounds obtained for the SAM-binding site of the four dengue serotypes. The best compound is highlighted in bold.

Compound Molecular structure Docking score (kcal/mol)

DENV1 DENV2 DENV3 DENV4

9sd ZINC20943220 −9.7 −11.3 −9.7 −11.2

10sd ZINC20943169 −9.7 −11.1 −9.6 −11.1

SAHa −7.8 −7.9 −8.0 −7.9

aCrystal control: natural subtract of the MTase domain crystallized with the PDB accession code: 5JJR (Lim et al., 2016).
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TABLE 5 | Best compounds obtained for cavity B of the four dengue serotypes. The best compound is highlighted in bold.

Compound Molecular structure Docking score (kcal/mol)

DENV1 DENV2 DENV3 DENV4

1md ZINC15827835 −8.9 −8.8 −8.8 −9.0

2md ZINC15827831 −9.1 −9.0 −9.0 −9.0

3md ZINC15730200 −8.6 −8.8 −8.9 −8.5

4md ZINC9835726 −9.6 −9.5 −9.5 −9.2

5md ZINC9268549 −8.6 −8.7 −8.7 −8.8

6md ZINC33106115 −8.8 −8.8 −8.8 −8.7

7md ZINC15869753 −8.8 −8.4 −8.5 −8.6

3sd ZINC12705528 −9.0 −9.1 −9.0 −9.1

4sd ZINC09268580 −9.4 −9.0 −9.1 −8.9

PBTZ1a −7.9 −7.6 −7.5 −7.6

aCrystal control: compound with reported anti-dengue activity and with possible binding mode in cavity B (Cannalire et al., 2020).
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DENV1 and DENV4 serotypes (Figures 9A, D). Also, 7sd
conserved interactions with some amino acids that have been
involved in the stabilization of the inhibitor NITD107 crystallized
in the GDD motif region and as important for the polymerase
activity of the RdRp domain (Noble et al., 2013; Klema et al.,
2016), such as Val411, Phe412, Val603, Thr605, Tyr606, Asp663,
Asp664, Trp795, and Ile797. To indicate the position of the amino
acids involved, the sequence of NS5 DENV3 was taken as
reference, according to the alignment (Supplementary
Figure S1).

On the other hand, to analyze possible preferences of the
compounds for any of the serotypes, we calculated the binding-
free energy frommolecular dynamics simulations (Figure 10). Our
results suggest that compound 1md prefers the DENV3 and
DENV4 serotypes over the other two serotypes, with DENV3
andDENV4 being the serotypes with the highestΔGbind values. For
compound 8md, the two best ΔGbind values were for the DENV2
and DENV3 serotypes. For compound 9sd, the best ΔGbind values
were for DENV1 and DENV3 serotypes. For compound 4md, the
best ΔGbind values were for DENV1 and DENV2. Finally, for
compound 7sd, the best values were for the DENV2 and DENV3
serotypes. Thus, in general, we can conclude that the serotypes with
the best ΔGbind values were the DENV2 and DENV3 serotypes.

The pharmacophore approximation models were presented as
an additional result after selecting the best compounds for each
region. The idea behind this analysis was to take advantage of the
predicted poses of the best compounds and obtain a pattern of
chemical characteristics (Supplementary Figure S3) that can
suggest structural modifications of the ligands that can be used
to design new molecules in future research (Figure 11).

The prediction of the pharmacophore patterns in the GTP-
binding site was predicted using compounds 1md, 2md, 5md,

and 1sd (Table 2), among which 1md (ID ZINC15827835) being
the compound with the best affinity value. In general, four
pharmacophore patterns are observed (Supplementary Figure
S3A) to consider in compounds with affinity for the GTP-
binding site: (I) a highly hydrophobic region, (II) a highly polar
region, (III) an aromatic ring with polar and hydrophobic radicals,
and (IV) an aromatic region that could be represented by a two-ring
fragment, where both can have polar atoms. Based on this, we
postulate 3 sites in 1md, in which 2 polar-type and 1 hydrophobic
modifications can be explored (Figure 11A).

The best compounds for the KDKE tetrad are shown in
Table 3, where 8md (ID ZINC15730188) being the compound
with the best affinity results. The pharmacophore patterns at this

TABLE 6 | Best compounds obtained for the GDD motif of the four dengue serotypes. The best compound is highlighted in bold.

Compound Molecular structure Docking score (kcal/mol)

DENV1 DENV2 DENV3 DENV4

8md ZINC15730188 −9.9 −10.4 −10.3 −9.8

7sd ZINC09405884 −10.3 −10.6 −9.8 −10.2

8sd ZINC21887378 −10.1 −10.2 −9.7 −10.4

NITD107a −8,4 −9.2 −8.0 −8.5

aCrystal control: inhibitor of the RdRp domain of DENV3 crystallized with the PDB accession code: 3VWS (Noble et al., 2013).

FIGURE 10 | Binding-free energy obtained from the MMPBSA method
for the simulated protein–ligand complexes. Major pharmacophore patterns
for each binding site.
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binding site were predicted using compounds 6md, 8md, 5sd, and
6sd (compounds with the best affinity values). We highlight four
pharmacophore patterns for compounds with possible binding in
the region of the KDKE tetrad (Supplementary Figure S3B): 1)
an aromatic fragment with hydrophobic substituents, 2) an
aromatic region with hydrophobic and polar radicals, 3) a
highly polar fragment, 4) and a voluminous fragment that can
be described by a three-ring fragment, an aromatic one with
heteroatoms, followed by a hydrophobic one, and finally a fully
aromatic one. Based on this, we postulate four sites in 8md, in
which 2 polar-type and 2 hydrophobic modifications can be
explored (Figure 11B).

Among our results, only two compounds, 9sd (ID
ZINC20943220) and 10sd (ID ZINC20943169), were in the
SAM-binding site (Table 4), both presented affinities of similar
values, although 9sd has the best results. The both compounds were
used for pharmacophore prediction because 9sd and 10sd have very
similar chemical structures and the pharmacophore pattern mostly
matches for both compounds. Region I, which is described by the
identical part between both molecules, is conserved. Region II
suggests that a more elongated aromatic group would be more
representative, coinciding with the fact that it is a phenylpiperazine
fragment for 9sd and it is an indole ring for 10sd, which is a smaller
fragment (Supplementary Figure S3C). Based on this, we postulate
only one site in 9sd, in which hydrophobic-typemodifications can be
explored (Figure 11C).

The best compounds for cavity B are shown in Table 5, where
4md (ID ZINC9835726) being the compound with the best
binding-free energy score. Then, in order to describe the
chemical environment for inhibitors with binding in cavity B,
we calculated a possible pharmacophore using compounds 2md,

4md, 3sd, and 4sd. In general, five chemical patterns can be
described to consider in the structure of the future ligand with
binding in cavity B: 1) an aromatic region with polar substituents,
2) a polar region with small hydrophobic groups, 3) an aromatic
fragment as a linker, 4) a highly polar region with a hydrophobic
character, and 5) a voluminous hydrophobic region
(Supplementary Figure S3D). Based on this, we postulate
four sites in 4md, in which 2 polar-type and 2 hydrophobic
modifications can be explored (Figure 11D).

For the case of the GDD motif site, only 3 compounds were
obtained (Table 6), of which 7ds was the one that presented the
best affinity scores. Therefore, the 3 compounds, 8md, 7sd, and
8sd, were used for the prediction of pharmacophores. For this
case, three regions are described: 1) a bulky region, which can be
described by fragments of two rings, one aromatic ring with
heteroatoms, and the other with one hydrophobic ring; 2) a
region with a hydrophobic ring and an aromatic ring with
substituents polar, thus forming a fragment of two rings; and
finally 3) a region that suggests that aromatic-type modifications
with hydrophobic substituents can be considered on the aromatic
ring of region II (Supplementary Figure S3E). Based on this, we
postulate four sites in 7sd, in which 2 modifications of the polar
type and 1 modification of the hydrophobic type were explored,
and for this case we found that an aromatic fragment with
hydrophobic substitutions could be included, for example, a
benzene ring with hydrophobic groups in the para position
(Figure 11E).

Cytotoxicity Assay in Huh-7 Cells
Initially, the cytotoxic effect of 10 of the 18 candidate compounds
identified in this study was evaluated on the Huh-7 cell line. Cell

FIGURE 11 | Possible structural modifications for the compound 1md bound to the GTP-binding site (A), compound 8md bound to the region of the KDKE tetrad
(B), compound 9sd bound to the SAM-binding site (C), compound 4md bound to the cavity B (D), and compound 7sd bound to the region of the GDD motif (E). The
polar, hydrophobic, and aromatic patterns are shown as blue, red, and green spheres, respectively. These spheres show the position on each compound where they
can be located.
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viability was close to 100% in the presence of the evaluated
compounds (Figure 12), without statistically significant
differences with respect to the control, indicating that they
present CC50 greater than 50 µM in Huh-7 cells.

DISCUSSION

In recent years, many efforts have been made to search for effective
antiviral compounds as a treatment against DENV. Among the
identified compounds, only a few have been further evaluated in
preclinical or clinical trials (Troost and Smit, 2020). The difficulty
that has arisen in finding effective treatments is related to the toxicity
of some compounds evaluated, as has been reported in other
investigations (Lim et al., 2013b; Tay et al., 2013; Caillet-Saguy
et al., 2014; Fusco and Chung, 2014; Lim et al., 2015; García et al.,
2017), which is why it is important to continue searching for drugs.
Computational tools have a large impact in drug discovery because
of its fast and promising results (Halim et al., 2017). In the discovery,
design, and development of new compounds with putative biological
activity, it is common to find research papers that begin with listings
or libraries of hundreds of thousands of compounds, which are
subsequently reduced to lists of just a few compounds; for this,
methodologies based on virtual screening have been proved to be
very useful (Jenwitheesuk et al., 2008; Westermaier et al., 2015;
Seyedi et al., 2016).

Target identification and validation is the first key stage in the
drug-discovery pipeline (Li et al., 2008). In the present study, the
DENV NS5 protein was selected as a target. NS5 represents a
promising antiviral target (Tripathi and Shrivastava, 2018) to
design specific inhibitors with low toxicity (El Sahili and Lescar,
2017). We obtained the three-dimensional structures for all dengue
virus serotypes, based on PDB accession code: 5JJR. The identity of
sequences between NS5 was consistent with that of the sequence
identities reported in other studies (García et al., 2017; Sampath and

Padmanabhan, 2009). This crystal structure was an adequate
template for the first stage of this study, finding values close to 1
in the measurement of the quality of each model according to
GMQE and QMEANDisCo and valid stereochemical quality,
confirmed with the Ramachandran plot. The structural alignment
showed small RMSD values, being the lowest between
DENV1–DENV4 and the biggest between DENV2–DENV3. The
difference between these global topologies is related to the differences
about the sequence (Saw et al., 2015). It has been shown that NS5
adopts multiple conformations owing to its flexible linker and that
DENV4 NS5 is more compact and less flexible compared with NS5
fromDENV1 toDENV3 (Saw et al., 2015; Subramanian et al., 2016).
A ten-residue linker in the NS5 protein is important in
communication between the MTase and RdRp domain (Zhao
et al., 2015b; Saw et al., 2015). According to the alignment in this
region, the higher sequence identity was 60% between NS5 linker
DENV1–DENV3 and less between NS5 linker DENV1–DENV2,
DENV1–DENV4, and DENV2–DENV4, with 30%, indicating
variation in different amino acid in all serotypes, found only
conserved E267 and E269 according to sequence of DENV3
(Supplementary Figure S1). Together with the high percentages
of identity between sequences and the high conservation of the
global topology of the protein, it is possible to think of drugs that can
act on the NS5 protein in the four DENV serotypes. The Z-score
values for each NS5 structure (Figure 1B) indicate that the built
structures are comparable to other proteins resolved by X-Ray and
NMR, indicating an acceptable overall quality, because Z-scores
outside a range characteristic for native proteins indicate erroneous
structures (Wiederstein and Sippl, 2007). Also, it is observed that the
most distant model, with respect to NS5 DENV3, is DENV2;
however, all the models obtained included most of the amino
acids of NS5, allowing the models to be reliable and comparable.
Additionally, the Ramachandran plot results for eachNS5 allowed to
continue with the virtual screening, suggesting that the structures of
each model displayed a valid structural quality, according to torsion
angles (Hollingsworth and Karplus, 2010).

After molecular docking in the DrugDiscovery@TACC web
portal, all compounds were analyzed through physicochemical
predictions and ADMET. One of the most important/common
parameters in drug development is the Lipinski’s rule, which
plays an important role because it reveals that if the selected
compounds possess the properties of possible drugs and they
may be used in the future as drug candidates (Ahmad et al.,
2020). As with the development of drug discovery, it was
realized that it is important to filter and optimize the
ADMET properties for drugs at an early stage, which has
been accepted and widely used to reduce the attrition rate in
drug research and development (Wu, F et al., 2020). So,
starting with a total of 22 compounds with possible multi-
domain binding and 499 compounds with possible single-
domain binding in the NS5 protein of DENV, we came up
with a list of 18 compounds with varied chemical structure
(Tables 2–6). For the binding sites in which we have controls
(GTP-binding site, SAM-binding site, cavity B, and GDD
motif), the molecular docking results suggest that all our
compounds have an affinity for the binding site greater
than their respective control. In the case of GTP- and SAM-

FIGURE 12 | Graph of cell viability of the compounds to 50 µM. Cell
control corresponds to cells without treatment, while DMSO 0.3%
corresponds to the diluent of the compounds.
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binding sites, the results suggest a competitive-type
interaction, presenting much higher affinities than natural
substrates. For the case of cavity B, we used one compound
reported by Cannalire et al., called PBTZ1. It presented a mean
effective concentration (EC50) to inhibit DENV2 replication of
2.1 ± 0.22 μM (Cannalire et al., 2020). For the binding site of
the GDD motif, we use the crystallized compound by Noble
et al., in the RdRp domain of DENV3 (PDB accession code:
3VWS) called NITD107 as control. It inhibits the RdRp
activity of DENV4 with an IC50 value of 113 μM and
inhibits DENV2 replication with an IC50 value of 100 μM
(Noble et al., 2013). Thus, in general, our molecular
docking results suggest that all our compounds docked on
cavity B and GDD motif region would have a better affinity
than the PBTZ1 and NITD107 compounds, which in turn
suggests that they, in theory, could have a better in vitro effect.

Subsequently, making use of the best compound for each
binding site, we carried out a new calculation of the binding-free
energy but this time from molecular dynamics simulations.
First, our simulations show that, generally speaking, the
backbone of the protein ranges roughly between RMSD
values of 0.2–0.4 nm. However, for some time periods and
specific serotypes, RMSD values of ~0.5 nm were reached.
For example, for compound 7sd in serotype DENV4. Here, it
is necessary to mention that since the simulation time was only
40 ns, new simulations with a much more extensive sampling
are necessary to delve into the behavior of each of the proteins
once they interact with these compounds, although it has been
reported that even shorter simulation times may be suitable for
performing junction-free energy calculations using MMPBSA
(Xu et al., 2013; Genheden and Ryde, 2015; Wang et al., 2019).
In addition, other additional analysis could be useful to deepen
the selectivity of these compounds (Al-Sha’er and Taha, 2010;
Al-Sha’er and Taha, 2021). Recently Wu, J et al., reported the
crystallographic structure of the DENV2 NS5 protein in two
distant conformations (Wu, J et al., 2020): the structure with
PDB accession code: 6KR2 adopts a conformation similar to the
homologous protein in the Zika virus, and the structure with
PDB accession code: 6KR3 adopts the same conformation as the
crystallized structure for serotype DENV3 with PDB accession
code: 5JJR. The RMSD value between the 6KR2 and 6KR3
crystals is ~0.57 nm, while the RMSD value between the
6KR2 and 5JJR crystals is ~0.91 nm (values calculated with
the Chimera program). Zhao et al., performed molecular
dynamics simulations to study the role of linker amino acid
mutations in the DENV3 NS5 protein and obtained an RMSD
for the wild-type protein that converges around 0.5 nm after
20 ns (Zhao et al., 2015b). So, if we consider that the DENV NS5
protein can modify its structure reaching RMSD values lower
than 1 nm, it is feasible to think that our RMSD values could be
considered natural fluctuations of the protein. In agreements,
from the Rg plots (Supplementary Figure S4), it could be
observed that the compaction or stiffness of all the serotypes
with all the compounds oscillates in a range of 3–3.2 nm, being
the complexes of serotype 3 those that presented minor changes
in their values of the Rg in time with respect to the other
serotypes.

The best compounds conserved interactions with important
amino acids within each of the studied binding sites (Figures
5–9). The DENV2 and DENV3 serotypes were the ones with the
highest frequencies and the highest number of contacts with the
compounds. In addition, it can be observed that the DENV4
serotype tends, in a general way, to present interactions with very
low frequencies with respect to the other serotypes. From now on,
it could be hypothesized which will be the serotypes that present
the best free binding energies with the compounds. In this order
of ideas, our contact frequency results have a correlation with the
results of the ΔGbind calculation (Figure 10), since the DENV4
serotype presented the lowest frequency of interactions and also
the lowest values were obtained for ΔGbind. In this way, more
economical computational analyses such as the frequency of
interactions from classical molecular dynamics simulations
could be used to filter compounds in this type of
methodologies. Also, using the best compounds and analyzing
their pharmacophore patterns, we postulate specific sites on the
structure of the best molecule of each binding site (Figure 11) to
be able to carry out modifications that can lead to increase the
affinity for its binding site in the DENV NS5 protein.

According to our results, we found compounds with the
possibility of binding to the two enzymatic domains of NS5
protein, which is interesting considering that both functions
(MTase and RdRp) have been investigated as antiviral targets.
Targets with multiple binding sites (prerequisites or
allosteric) are of increasing importance in the drug design
(Hetényi and Bálint, 2020). The exploration of multiple
binding sites is of great importance in pharmacology
(Hetényi and Bálint, 2020; Yuan et al., 2020) and has been
a strategy considered in various studies (Hammoudeh et al.,
2009; Ludlow et al., 2015). Most studies have focused on the
function of NS5 as RdRp (Troost and Smit, 2020) because this
activity is absent in the host cell (Galiano et al., 2016), and this
is promising to design specific inhibitors with low toxicity (El
Sahili and Lescar, 2017); and within RdRp, cavity B has been
considered a site to be explored for the drug design (Malet
et al., 2008; Alhossary et al., 2018); however, the MTase
domain is also reported as an attractive strategy in the
anti-flavivirus drug design (Santos et al., 2020), and regions
such as GTP and SAM pockets are obvious targets for antiviral
development since they have both been shown to bind to low-
molecular-weight ligands (Lim et al., 2015).

The idea of looking for drugs for all serotypes must consider
the differences between them because although any serotype is
equally able to cause dengue, serotype differences have been
postulated to lead to differences in pathogenesis such as the
case for DENV2 which has been related with severe dengue
(Trujillo-Correa et al., 2019); however, DENV inhibitors that
protect toward two or three serotypes should not be neglected for
further testing. Thus, serotype-specific treatment may help to
treat serotype confirmed DENV patients, and when more
antiviral drugs are available it may be possible to achieve a
pan-protective effect via drug combinational therapy (Troost
and Smit, 2020).

On the other hand, the in silico assays have served as a starting
point for the identification of potential compounds as inhibitors;
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many studies report this strategy as a good means for the
discovery and development of drugs for different diseases.
Some example for this is the use of these strategies to search,
from libraries, for natural compounds that inhibit RdRp of
DENV (Galiano et al., 2016) and also the identification of
phytochemical compounds reported for various flaviviruses, on
non-structural proteins of DENV (Tahir ul Qamar and Muner,
2019).

On the other hand, with respect to in vitro assays, 10 of the 18
candidate compounds were acquired and subsequently evaluated
on Huh-7 cells, in order to determine their effect on cell viability.
The Huh-7 cell line is derived from hepatocytes, which represent a
target cell during natural DENV infection. These cells have been
used in previous studies of dengue–host cell interaction (Pando-
Robles et al., 2014). CC50 is defined as the concentration that causes
a 50% reduction or inhibition of cell viability, or that causes 50%
cytotoxicity (Dewi et al., 2019). The results indicated that none of
the compounds were cytotoxic at the highest concentration
evaluated, which implies a CC50 for each of them above 50 μM,
during the first 24 h of exposure (Figure 12). The evaluation of all
concentrations reflected that cell viability remained above 80% for
most of the compounds, which validates the evaluation of these
compounds in antiviral tests on this cellular model.

In this study, we propose 18 compounds, identified in in silico,
as possible candidates for the in vitro evaluation of the antiviral
effect in the four serotypes of dengue virus. The compounds
identified in this work bind to different regions of the DENVNS5
protein, such as cavities that are allosteric sites and active sites in
the MTase and RdRp domains. However, these compounds are
not nucleotide analogs, yet they interact on important sites of the
NS5 protein and may be promising compounds to be evaluated
by in vitro assays.

Future Outlook
According to our results, our interest is to evaluate the
identified compounds in this study (18 compounds)
in vitro. It is worth mentioning that all the compounds
presented here (18) were selected under a rational
identification criterion, for which the classification of “best
compounds” according to the in silico analyses was supported
by the binding-free energies that they presented in the selected
regions of the NS5 protein; however, all the identified
compounds correspond to compounds with desirable
physicochemical and pharmacological properties to have
been considered as candidates to be evaluated in vitro.

The experimental validation of the identified compounds
has been carried out with prior identification of cellular
toxicity on Huh-7 cells as an ideal model of dengue
infection. Subsequently, it is intended to evaluate the effect
on DENV by means of plaque-forming units (PFUs), on the
synthesis of viral proteins and RNA and on the activity of the
viral NS5 protein.

So far, we have evaluated the cytotoxicity of some of these
compounds on Huh-7 cells, as 1sd, 2sd, 3sd, 4sd, 6sd, 7sd, 8sd,
9sd, 3md, and 8md (compounds that were possible to purchase
from the seller). According to preliminary results, the
compounds do not generate cytotoxic effect in lower

concentrations to 50 μM, finding cell viability greater than
80% for most of these, which validates the evaluation of these
compounds in other in vitro assays. A preliminary analysis of
the effect of these compounds against Huh-7 cells infected with
DENV2, showed that for compounds 8md and 9sd, there is a
statistically significant difference (p-value <0.01) between the
percentage of plaque-forming units (PFUs) of DENV
compared to the control of DMSO 0.3%, indicating that was
a reduction by treatment. On the other hand, other compounds
identified in this study, such as compounds 6sd and 3md
reduce Log PFUs, with a behavior similar to that presented
by compound NITD-008, a nucleotide analog that it potently
inhibits replication in DENV (Yin et al., 2009a; Lim et al.,
2013b) and that was used as an experimental control;
furthermore, the compound 3md has been found to reduce
the percentage of infected cells and the number of viral copies.
The in vitro antiviral assays are in process.

CONCLUSION

We performed a computational screening of several drug-like
compounds with potential effects against the NS5 protein of
the dengue virus. We report two virtual screening strategies
focused on the search for compounds with binding to multiple
sites within the same protein, called multi-domain
compounds, and compounds of classical inhibition or those
that bind to a single site within the NS5 protein, called single-
domain compounds. As inclusion and exclusion criteria, we
developed a series of filters that allowed us to recognize
possible structural risks in the selected compounds to
minimize complications in future experimental trials
against DENV. Starting from a list of ~642,759
commercially available drug-like compounds for each
strategy, we found 8 compounds with multi-domain
binding and 80 with single-domain binding. Then, we
identified the best compound for each region and analyzed
their interaction with the four serotypes. According to our
results, we highlight a short list of 18 compounds as the most
promissory for future research. Additionally, we suggest that
contact frequency analysis can be useful when filtering
compounds from molecular dynamics simulations, being
computationally cheaper than a calculation of free binding
energies, and in the evaluation in vitro of 10 of these
compounds we found that they are not cytotoxic in the
Huh-7 cell line below 50 μM. We are aware that
experimental validation, more extensive simulations, and
robust thermodynamic studies can be useful in order to
validate our hypothesis and to expand the search for
compounds with antiviral activity.
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